blob: 1fa266a87b9f10b0ca666088b537dd848d918041 [file] [log] [blame]
Tim Northover3b0846e2014-05-24 12:50:23 +00001//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AArch64TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "AArch64ISelLowering.h"
Tim Northover3c55cca2014-11-27 21:02:42 +000015#include "AArch64CallingConvention.h"
Benjamin Kramer1f8930e2014-07-25 11:42:14 +000016#include "AArch64MachineFunctionInfo.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000017#include "AArch64PerfectShuffle.h"
18#include "AArch64Subtarget.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000019#include "AArch64TargetMachine.h"
20#include "AArch64TargetObjectFile.h"
21#include "MCTargetDesc/AArch64AddressingModes.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/IR/Function.h"
David Blaikie457343d2015-05-21 21:12:43 +000028#include "llvm/IR/GetElementPtrTypeIterator.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000029#include "llvm/IR/Intrinsics.h"
30#include "llvm/IR/Type.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetOptions.h"
36using namespace llvm;
37
38#define DEBUG_TYPE "aarch64-lower"
39
40STATISTIC(NumTailCalls, "Number of tail calls");
41STATISTIC(NumShiftInserts, "Number of vector shift inserts");
42
Alexey Samsonovf17f03e2014-08-19 18:40:39 +000043namespace {
Tim Northover3b0846e2014-05-24 12:50:23 +000044enum AlignMode {
45 StrictAlign,
46 NoStrictAlign
47};
Alexey Samsonovf17f03e2014-08-19 18:40:39 +000048}
Tim Northover3b0846e2014-05-24 12:50:23 +000049
50static cl::opt<AlignMode>
51Align(cl::desc("Load/store alignment support"),
52 cl::Hidden, cl::init(NoStrictAlign),
53 cl::values(
54 clEnumValN(StrictAlign, "aarch64-strict-align",
55 "Disallow all unaligned memory accesses"),
56 clEnumValN(NoStrictAlign, "aarch64-no-strict-align",
57 "Allow unaligned memory accesses"),
58 clEnumValEnd));
59
60// Place holder until extr generation is tested fully.
61static cl::opt<bool>
62EnableAArch64ExtrGeneration("aarch64-extr-generation", cl::Hidden,
63 cl::desc("Allow AArch64 (or (shift)(shift))->extract"),
64 cl::init(true));
65
66static cl::opt<bool>
67EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
Kristof Beylsaea84612015-03-04 09:12:08 +000068 cl::desc("Allow AArch64 SLI/SRI formation"),
69 cl::init(false));
70
71// FIXME: The necessary dtprel relocations don't seem to be supported
72// well in the GNU bfd and gold linkers at the moment. Therefore, by
73// default, for now, fall back to GeneralDynamic code generation.
74cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration(
75 "aarch64-elf-ldtls-generation", cl::Hidden,
76 cl::desc("Allow AArch64 Local Dynamic TLS code generation"),
77 cl::init(false));
Tim Northover3b0846e2014-05-24 12:50:23 +000078
Eric Christopher905f12d2015-01-29 00:19:42 +000079AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM,
80 const AArch64Subtarget &STI)
81 : TargetLowering(TM), Subtarget(&STI) {
Tim Northover3b0846e2014-05-24 12:50:23 +000082
83 // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
84 // we have to make something up. Arbitrarily, choose ZeroOrOne.
85 setBooleanContents(ZeroOrOneBooleanContent);
86 // When comparing vectors the result sets the different elements in the
87 // vector to all-one or all-zero.
88 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
89
90 // Set up the register classes.
91 addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
92 addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
93
94 if (Subtarget->hasFPARMv8()) {
95 addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
96 addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
97 addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
98 addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
99 }
100
101 if (Subtarget->hasNEON()) {
102 addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
103 addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
104 // Someone set us up the NEON.
105 addDRTypeForNEON(MVT::v2f32);
106 addDRTypeForNEON(MVT::v8i8);
107 addDRTypeForNEON(MVT::v4i16);
108 addDRTypeForNEON(MVT::v2i32);
109 addDRTypeForNEON(MVT::v1i64);
110 addDRTypeForNEON(MVT::v1f64);
Oliver Stannard89d15422014-08-27 16:16:04 +0000111 addDRTypeForNEON(MVT::v4f16);
Tim Northover3b0846e2014-05-24 12:50:23 +0000112
113 addQRTypeForNEON(MVT::v4f32);
114 addQRTypeForNEON(MVT::v2f64);
115 addQRTypeForNEON(MVT::v16i8);
116 addQRTypeForNEON(MVT::v8i16);
117 addQRTypeForNEON(MVT::v4i32);
118 addQRTypeForNEON(MVT::v2i64);
Oliver Stannard89d15422014-08-27 16:16:04 +0000119 addQRTypeForNEON(MVT::v8f16);
Tim Northover3b0846e2014-05-24 12:50:23 +0000120 }
121
122 // Compute derived properties from the register classes
Eric Christopher23a3a7c2015-02-26 00:00:24 +0000123 computeRegisterProperties(Subtarget->getRegisterInfo());
Tim Northover3b0846e2014-05-24 12:50:23 +0000124
125 // Provide all sorts of operation actions
126 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
127 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
128 setOperationAction(ISD::SETCC, MVT::i32, Custom);
129 setOperationAction(ISD::SETCC, MVT::i64, Custom);
130 setOperationAction(ISD::SETCC, MVT::f32, Custom);
131 setOperationAction(ISD::SETCC, MVT::f64, Custom);
132 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
133 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
134 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
135 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
136 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
137 setOperationAction(ISD::SELECT, MVT::i32, Custom);
138 setOperationAction(ISD::SELECT, MVT::i64, Custom);
139 setOperationAction(ISD::SELECT, MVT::f32, Custom);
140 setOperationAction(ISD::SELECT, MVT::f64, Custom);
141 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
142 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
143 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
144 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
145 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
146 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
147
148 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
149 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
150 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
151
152 setOperationAction(ISD::FREM, MVT::f32, Expand);
153 setOperationAction(ISD::FREM, MVT::f64, Expand);
154 setOperationAction(ISD::FREM, MVT::f80, Expand);
155
156 // Custom lowering hooks are needed for XOR
157 // to fold it into CSINC/CSINV.
158 setOperationAction(ISD::XOR, MVT::i32, Custom);
159 setOperationAction(ISD::XOR, MVT::i64, Custom);
160
161 // Virtually no operation on f128 is legal, but LLVM can't expand them when
162 // there's a valid register class, so we need custom operations in most cases.
163 setOperationAction(ISD::FABS, MVT::f128, Expand);
164 setOperationAction(ISD::FADD, MVT::f128, Custom);
165 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
166 setOperationAction(ISD::FCOS, MVT::f128, Expand);
167 setOperationAction(ISD::FDIV, MVT::f128, Custom);
168 setOperationAction(ISD::FMA, MVT::f128, Expand);
169 setOperationAction(ISD::FMUL, MVT::f128, Custom);
170 setOperationAction(ISD::FNEG, MVT::f128, Expand);
171 setOperationAction(ISD::FPOW, MVT::f128, Expand);
172 setOperationAction(ISD::FREM, MVT::f128, Expand);
173 setOperationAction(ISD::FRINT, MVT::f128, Expand);
174 setOperationAction(ISD::FSIN, MVT::f128, Expand);
175 setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
176 setOperationAction(ISD::FSQRT, MVT::f128, Expand);
177 setOperationAction(ISD::FSUB, MVT::f128, Custom);
178 setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
179 setOperationAction(ISD::SETCC, MVT::f128, Custom);
180 setOperationAction(ISD::BR_CC, MVT::f128, Custom);
181 setOperationAction(ISD::SELECT, MVT::f128, Custom);
182 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
183 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
184
185 // Lowering for many of the conversions is actually specified by the non-f128
186 // type. The LowerXXX function will be trivial when f128 isn't involved.
187 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
188 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
189 setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
190 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
191 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
192 setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
193 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
194 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
195 setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
196 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
197 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
198 setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
199 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
200 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
201
202 // Variable arguments.
203 setOperationAction(ISD::VASTART, MVT::Other, Custom);
204 setOperationAction(ISD::VAARG, MVT::Other, Custom);
205 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
206 setOperationAction(ISD::VAEND, MVT::Other, Expand);
207
208 // Variable-sized objects.
209 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
210 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
211 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
212
213 // Exception handling.
214 // FIXME: These are guesses. Has this been defined yet?
215 setExceptionPointerRegister(AArch64::X0);
216 setExceptionSelectorRegister(AArch64::X1);
217
218 // Constant pool entries
219 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
220
221 // BlockAddress
222 setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
223
224 // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
225 setOperationAction(ISD::ADDC, MVT::i32, Custom);
226 setOperationAction(ISD::ADDE, MVT::i32, Custom);
227 setOperationAction(ISD::SUBC, MVT::i32, Custom);
228 setOperationAction(ISD::SUBE, MVT::i32, Custom);
229 setOperationAction(ISD::ADDC, MVT::i64, Custom);
230 setOperationAction(ISD::ADDE, MVT::i64, Custom);
231 setOperationAction(ISD::SUBC, MVT::i64, Custom);
232 setOperationAction(ISD::SUBE, MVT::i64, Custom);
233
234 // AArch64 lacks both left-rotate and popcount instructions.
235 setOperationAction(ISD::ROTL, MVT::i32, Expand);
236 setOperationAction(ISD::ROTL, MVT::i64, Expand);
237
238 // AArch64 doesn't have {U|S}MUL_LOHI.
239 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
240 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
241
242
243 // Expand the undefined-at-zero variants to cttz/ctlz to their defined-at-zero
244 // counterparts, which AArch64 supports directly.
245 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
246 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
247 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
248 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
249
250 setOperationAction(ISD::CTPOP, MVT::i32, Custom);
251 setOperationAction(ISD::CTPOP, MVT::i64, Custom);
252
253 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
254 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
255 setOperationAction(ISD::SREM, MVT::i32, Expand);
256 setOperationAction(ISD::SREM, MVT::i64, Expand);
257 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
258 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
259 setOperationAction(ISD::UREM, MVT::i32, Expand);
260 setOperationAction(ISD::UREM, MVT::i64, Expand);
261
262 // Custom lower Add/Sub/Mul with overflow.
263 setOperationAction(ISD::SADDO, MVT::i32, Custom);
264 setOperationAction(ISD::SADDO, MVT::i64, Custom);
265 setOperationAction(ISD::UADDO, MVT::i32, Custom);
266 setOperationAction(ISD::UADDO, MVT::i64, Custom);
267 setOperationAction(ISD::SSUBO, MVT::i32, Custom);
268 setOperationAction(ISD::SSUBO, MVT::i64, Custom);
269 setOperationAction(ISD::USUBO, MVT::i32, Custom);
270 setOperationAction(ISD::USUBO, MVT::i64, Custom);
271 setOperationAction(ISD::SMULO, MVT::i32, Custom);
272 setOperationAction(ISD::SMULO, MVT::i64, Custom);
273 setOperationAction(ISD::UMULO, MVT::i32, Custom);
274 setOperationAction(ISD::UMULO, MVT::i64, Custom);
275
276 setOperationAction(ISD::FSIN, MVT::f32, Expand);
277 setOperationAction(ISD::FSIN, MVT::f64, Expand);
278 setOperationAction(ISD::FCOS, MVT::f32, Expand);
279 setOperationAction(ISD::FCOS, MVT::f64, Expand);
280 setOperationAction(ISD::FPOW, MVT::f32, Expand);
281 setOperationAction(ISD::FPOW, MVT::f64, Expand);
282 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
283 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
284
Ahmed Bougacha1ffe7c72015-04-10 00:08:48 +0000285 // f16 is a storage-only type, always promote it to f32.
286 setOperationAction(ISD::SETCC, MVT::f16, Promote);
287 setOperationAction(ISD::BR_CC, MVT::f16, Promote);
288 setOperationAction(ISD::SELECT_CC, MVT::f16, Promote);
289 setOperationAction(ISD::SELECT, MVT::f16, Promote);
290 setOperationAction(ISD::FADD, MVT::f16, Promote);
291 setOperationAction(ISD::FSUB, MVT::f16, Promote);
292 setOperationAction(ISD::FMUL, MVT::f16, Promote);
293 setOperationAction(ISD::FDIV, MVT::f16, Promote);
294 setOperationAction(ISD::FREM, MVT::f16, Promote);
295 setOperationAction(ISD::FMA, MVT::f16, Promote);
296 setOperationAction(ISD::FNEG, MVT::f16, Promote);
297 setOperationAction(ISD::FABS, MVT::f16, Promote);
298 setOperationAction(ISD::FCEIL, MVT::f16, Promote);
299 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);
300 setOperationAction(ISD::FCOS, MVT::f16, Promote);
301 setOperationAction(ISD::FFLOOR, MVT::f16, Promote);
302 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
303 setOperationAction(ISD::FPOW, MVT::f16, Promote);
304 setOperationAction(ISD::FPOWI, MVT::f16, Promote);
305 setOperationAction(ISD::FRINT, MVT::f16, Promote);
306 setOperationAction(ISD::FSIN, MVT::f16, Promote);
307 setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
308 setOperationAction(ISD::FSQRT, MVT::f16, Promote);
309 setOperationAction(ISD::FEXP, MVT::f16, Promote);
310 setOperationAction(ISD::FEXP2, MVT::f16, Promote);
311 setOperationAction(ISD::FLOG, MVT::f16, Promote);
312 setOperationAction(ISD::FLOG2, MVT::f16, Promote);
313 setOperationAction(ISD::FLOG10, MVT::f16, Promote);
314 setOperationAction(ISD::FROUND, MVT::f16, Promote);
315 setOperationAction(ISD::FTRUNC, MVT::f16, Promote);
316 setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
317 setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
Oliver Stannardf5469be2014-08-18 14:22:39 +0000318
Oliver Stannard89d15422014-08-27 16:16:04 +0000319 // v4f16 is also a storage-only type, so promote it to v4f32 when that is
320 // known to be safe.
321 setOperationAction(ISD::FADD, MVT::v4f16, Promote);
322 setOperationAction(ISD::FSUB, MVT::v4f16, Promote);
323 setOperationAction(ISD::FMUL, MVT::v4f16, Promote);
324 setOperationAction(ISD::FDIV, MVT::v4f16, Promote);
325 setOperationAction(ISD::FP_EXTEND, MVT::v4f16, Promote);
326 setOperationAction(ISD::FP_ROUND, MVT::v4f16, Promote);
327 AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32);
328 AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32);
329 AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32);
330 AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32);
331 AddPromotedToType(ISD::FP_EXTEND, MVT::v4f16, MVT::v4f32);
332 AddPromotedToType(ISD::FP_ROUND, MVT::v4f16, MVT::v4f32);
333
334 // Expand all other v4f16 operations.
335 // FIXME: We could generate better code by promoting some operations to
336 // a pair of v4f32s
337 setOperationAction(ISD::FABS, MVT::v4f16, Expand);
338 setOperationAction(ISD::FCEIL, MVT::v4f16, Expand);
339 setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand);
340 setOperationAction(ISD::FCOS, MVT::v4f16, Expand);
341 setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand);
342 setOperationAction(ISD::FMA, MVT::v4f16, Expand);
343 setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand);
344 setOperationAction(ISD::FNEG, MVT::v4f16, Expand);
345 setOperationAction(ISD::FPOW, MVT::v4f16, Expand);
346 setOperationAction(ISD::FPOWI, MVT::v4f16, Expand);
347 setOperationAction(ISD::FREM, MVT::v4f16, Expand);
348 setOperationAction(ISD::FROUND, MVT::v4f16, Expand);
349 setOperationAction(ISD::FRINT, MVT::v4f16, Expand);
350 setOperationAction(ISD::FSIN, MVT::v4f16, Expand);
351 setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand);
352 setOperationAction(ISD::FSQRT, MVT::v4f16, Expand);
353 setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand);
354 setOperationAction(ISD::SETCC, MVT::v4f16, Expand);
355 setOperationAction(ISD::BR_CC, MVT::v4f16, Expand);
356 setOperationAction(ISD::SELECT, MVT::v4f16, Expand);
357 setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand);
358 setOperationAction(ISD::FEXP, MVT::v4f16, Expand);
359 setOperationAction(ISD::FEXP2, MVT::v4f16, Expand);
360 setOperationAction(ISD::FLOG, MVT::v4f16, Expand);
361 setOperationAction(ISD::FLOG2, MVT::v4f16, Expand);
362 setOperationAction(ISD::FLOG10, MVT::v4f16, Expand);
363
364
365 // v8f16 is also a storage-only type, so expand it.
366 setOperationAction(ISD::FABS, MVT::v8f16, Expand);
367 setOperationAction(ISD::FADD, MVT::v8f16, Expand);
368 setOperationAction(ISD::FCEIL, MVT::v8f16, Expand);
369 setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand);
370 setOperationAction(ISD::FCOS, MVT::v8f16, Expand);
371 setOperationAction(ISD::FDIV, MVT::v8f16, Expand);
372 setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand);
373 setOperationAction(ISD::FMA, MVT::v8f16, Expand);
374 setOperationAction(ISD::FMUL, MVT::v8f16, Expand);
375 setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand);
376 setOperationAction(ISD::FNEG, MVT::v8f16, Expand);
377 setOperationAction(ISD::FPOW, MVT::v8f16, Expand);
378 setOperationAction(ISD::FPOWI, MVT::v8f16, Expand);
379 setOperationAction(ISD::FREM, MVT::v8f16, Expand);
380 setOperationAction(ISD::FROUND, MVT::v8f16, Expand);
381 setOperationAction(ISD::FRINT, MVT::v8f16, Expand);
382 setOperationAction(ISD::FSIN, MVT::v8f16, Expand);
383 setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand);
384 setOperationAction(ISD::FSQRT, MVT::v8f16, Expand);
385 setOperationAction(ISD::FSUB, MVT::v8f16, Expand);
386 setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand);
387 setOperationAction(ISD::SETCC, MVT::v8f16, Expand);
388 setOperationAction(ISD::BR_CC, MVT::v8f16, Expand);
389 setOperationAction(ISD::SELECT, MVT::v8f16, Expand);
390 setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand);
391 setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand);
392 setOperationAction(ISD::FEXP, MVT::v8f16, Expand);
393 setOperationAction(ISD::FEXP2, MVT::v8f16, Expand);
394 setOperationAction(ISD::FLOG, MVT::v8f16, Expand);
395 setOperationAction(ISD::FLOG2, MVT::v8f16, Expand);
396 setOperationAction(ISD::FLOG10, MVT::v8f16, Expand);
397
Tim Northover3b0846e2014-05-24 12:50:23 +0000398 // AArch64 has implementations of a lot of rounding-like FP operations.
Benjamin Kramer57a3d082015-03-08 16:07:39 +0000399 for (MVT Ty : {MVT::f32, MVT::f64}) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000400 setOperationAction(ISD::FFLOOR, Ty, Legal);
401 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
402 setOperationAction(ISD::FCEIL, Ty, Legal);
403 setOperationAction(ISD::FRINT, Ty, Legal);
404 setOperationAction(ISD::FTRUNC, Ty, Legal);
405 setOperationAction(ISD::FROUND, Ty, Legal);
406 }
407
408 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
409
410 if (Subtarget->isTargetMachO()) {
411 // For iOS, we don't want to the normal expansion of a libcall to
412 // sincos. We want to issue a libcall to __sincos_stret to avoid memory
413 // traffic.
414 setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
415 setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
416 } else {
417 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
418 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
419 }
420
Juergen Ributzka23266502014-12-10 19:43:32 +0000421 // Make floating-point constants legal for the large code model, so they don't
422 // become loads from the constant pool.
423 if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
424 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
425 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
426 }
427
Tim Northover3b0846e2014-05-24 12:50:23 +0000428 // AArch64 does not have floating-point extending loads, i1 sign-extending
429 // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000430 for (MVT VT : MVT::fp_valuetypes()) {
431 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
432 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
433 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
434 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
435 }
436 for (MVT VT : MVT::integer_valuetypes())
437 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);
438
Tim Northover3b0846e2014-05-24 12:50:23 +0000439 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
440 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
441 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
442 setTruncStoreAction(MVT::f128, MVT::f80, Expand);
443 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
444 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
445 setTruncStoreAction(MVT::f128, MVT::f16, Expand);
Tim Northoverf8bfe212014-07-18 13:07:05 +0000446
447 setOperationAction(ISD::BITCAST, MVT::i16, Custom);
448 setOperationAction(ISD::BITCAST, MVT::f16, Custom);
449
Tim Northover3b0846e2014-05-24 12:50:23 +0000450 // Indexed loads and stores are supported.
451 for (unsigned im = (unsigned)ISD::PRE_INC;
452 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
453 setIndexedLoadAction(im, MVT::i8, Legal);
454 setIndexedLoadAction(im, MVT::i16, Legal);
455 setIndexedLoadAction(im, MVT::i32, Legal);
456 setIndexedLoadAction(im, MVT::i64, Legal);
457 setIndexedLoadAction(im, MVT::f64, Legal);
458 setIndexedLoadAction(im, MVT::f32, Legal);
459 setIndexedStoreAction(im, MVT::i8, Legal);
460 setIndexedStoreAction(im, MVT::i16, Legal);
461 setIndexedStoreAction(im, MVT::i32, Legal);
462 setIndexedStoreAction(im, MVT::i64, Legal);
463 setIndexedStoreAction(im, MVT::f64, Legal);
464 setIndexedStoreAction(im, MVT::f32, Legal);
465 }
466
467 // Trap.
468 setOperationAction(ISD::TRAP, MVT::Other, Legal);
469
470 // We combine OR nodes for bitfield operations.
471 setTargetDAGCombine(ISD::OR);
472
473 // Vector add and sub nodes may conceal a high-half opportunity.
474 // Also, try to fold ADD into CSINC/CSINV..
475 setTargetDAGCombine(ISD::ADD);
476 setTargetDAGCombine(ISD::SUB);
477
478 setTargetDAGCombine(ISD::XOR);
479 setTargetDAGCombine(ISD::SINT_TO_FP);
480 setTargetDAGCombine(ISD::UINT_TO_FP);
481
482 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
483
484 setTargetDAGCombine(ISD::ANY_EXTEND);
485 setTargetDAGCombine(ISD::ZERO_EXTEND);
486 setTargetDAGCombine(ISD::SIGN_EXTEND);
487 setTargetDAGCombine(ISD::BITCAST);
488 setTargetDAGCombine(ISD::CONCAT_VECTORS);
489 setTargetDAGCombine(ISD::STORE);
490
491 setTargetDAGCombine(ISD::MUL);
492
493 setTargetDAGCombine(ISD::SELECT);
494 setTargetDAGCombine(ISD::VSELECT);
Artyom Skrobova70dfe12015-05-14 12:59:46 +0000495 setTargetDAGCombine(ISD::SELECT_CC);
Tim Northover3b0846e2014-05-24 12:50:23 +0000496
497 setTargetDAGCombine(ISD::INTRINSIC_VOID);
498 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
499 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
500
501 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 8;
502 MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 4;
503 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 4;
504
505 setStackPointerRegisterToSaveRestore(AArch64::SP);
506
507 setSchedulingPreference(Sched::Hybrid);
508
509 // Enable TBZ/TBNZ
510 MaskAndBranchFoldingIsLegal = true;
Quentin Colombet6843ac42015-03-31 20:52:32 +0000511 EnableExtLdPromotion = true;
Tim Northover3b0846e2014-05-24 12:50:23 +0000512
513 setMinFunctionAlignment(2);
514
515 RequireStrictAlign = (Align == StrictAlign);
516
517 setHasExtractBitsInsn(true);
518
519 if (Subtarget->hasNEON()) {
520 // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
521 // silliness like this:
522 setOperationAction(ISD::FABS, MVT::v1f64, Expand);
523 setOperationAction(ISD::FADD, MVT::v1f64, Expand);
524 setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
525 setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
526 setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
527 setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
528 setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
529 setOperationAction(ISD::FMA, MVT::v1f64, Expand);
530 setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
531 setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
532 setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
533 setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
534 setOperationAction(ISD::FREM, MVT::v1f64, Expand);
535 setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
536 setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
537 setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
538 setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
539 setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
540 setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
541 setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
542 setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
543 setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
544 setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
545 setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
546 setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
547
548 setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
549 setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
550 setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
551 setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
552 setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
553
554 setOperationAction(ISD::MUL, MVT::v1i64, Expand);
555
556 // AArch64 doesn't have a direct vector ->f32 conversion instructions for
557 // elements smaller than i32, so promote the input to i32 first.
558 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Promote);
559 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Promote);
560 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Promote);
561 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Promote);
Pirama Arumuga Nainarb1881532015-04-23 17:16:27 +0000562 // i8 and i16 vector elements also need promotion to i32 for v8i8 or v8i16
563 // -> v8f16 conversions.
564 setOperationAction(ISD::SINT_TO_FP, MVT::v8i8, Promote);
565 setOperationAction(ISD::UINT_TO_FP, MVT::v8i8, Promote);
566 setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Promote);
567 setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Promote);
Tim Northover3b0846e2014-05-24 12:50:23 +0000568 // Similarly, there is no direct i32 -> f64 vector conversion instruction.
569 setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
570 setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
571 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
572 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
Pirama Arumuga Nainarb1881532015-04-23 17:16:27 +0000573 // Or, direct i32 -> f16 vector conversion. Set it so custom, so the
574 // conversion happens in two steps: v4i32 -> v4f32 -> v4f16
575 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Custom);
576 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom);
Tim Northover3b0846e2014-05-24 12:50:23 +0000577
578 // AArch64 doesn't have MUL.2d:
579 setOperationAction(ISD::MUL, MVT::v2i64, Expand);
Chad Rosierd9d0f862014-10-08 02:31:24 +0000580 // Custom handling for some quad-vector types to detect MULL.
581 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
582 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
583 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
584
Tim Northover3b0846e2014-05-24 12:50:23 +0000585 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
586 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
587 // Likewise, narrowing and extending vector loads/stores aren't handled
588 // directly.
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000589 for (MVT VT : MVT::vector_valuetypes()) {
590 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000591
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000592 setOperationAction(ISD::MULHS, VT, Expand);
593 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
594 setOperationAction(ISD::MULHU, VT, Expand);
595 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000596
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000597 setOperationAction(ISD::BSWAP, VT, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000598
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000599 for (MVT InnerVT : MVT::vector_valuetypes()) {
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000600 setTruncStoreAction(VT, InnerVT, Expand);
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000601 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
602 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
603 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
604 }
Tim Northover3b0846e2014-05-24 12:50:23 +0000605 }
606
607 // AArch64 has implementations of a lot of rounding-like FP operations.
Benjamin Kramer57a3d082015-03-08 16:07:39 +0000608 for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64}) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000609 setOperationAction(ISD::FFLOOR, Ty, Legal);
610 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
611 setOperationAction(ISD::FCEIL, Ty, Legal);
612 setOperationAction(ISD::FRINT, Ty, Legal);
613 setOperationAction(ISD::FTRUNC, Ty, Legal);
614 setOperationAction(ISD::FROUND, Ty, Legal);
615 }
616 }
James Molloyf089ab72014-08-06 10:42:18 +0000617
618 // Prefer likely predicted branches to selects on out-of-order cores.
619 if (Subtarget->isCortexA57())
620 PredictableSelectIsExpensive = true;
Tim Northover3b0846e2014-05-24 12:50:23 +0000621}
622
623void AArch64TargetLowering::addTypeForNEON(EVT VT, EVT PromotedBitwiseVT) {
Jiangning Liu08f4cda2014-08-29 01:31:42 +0000624 if (VT == MVT::v2f32 || VT == MVT::v4f16) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000625 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
626 AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i32);
627
628 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
629 AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i32);
Jiangning Liu08f4cda2014-08-29 01:31:42 +0000630 } else if (VT == MVT::v2f64 || VT == MVT::v4f32 || VT == MVT::v8f16) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000631 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
632 AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i64);
633
634 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
635 AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i64);
636 }
637
638 // Mark vector float intrinsics as expand.
639 if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
640 setOperationAction(ISD::FSIN, VT.getSimpleVT(), Expand);
641 setOperationAction(ISD::FCOS, VT.getSimpleVT(), Expand);
642 setOperationAction(ISD::FPOWI, VT.getSimpleVT(), Expand);
643 setOperationAction(ISD::FPOW, VT.getSimpleVT(), Expand);
644 setOperationAction(ISD::FLOG, VT.getSimpleVT(), Expand);
645 setOperationAction(ISD::FLOG2, VT.getSimpleVT(), Expand);
646 setOperationAction(ISD::FLOG10, VT.getSimpleVT(), Expand);
647 setOperationAction(ISD::FEXP, VT.getSimpleVT(), Expand);
648 setOperationAction(ISD::FEXP2, VT.getSimpleVT(), Expand);
649 }
650
651 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
652 setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom);
653 setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
654 setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
655 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Custom);
656 setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
657 setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
658 setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
659 setOperationAction(ISD::AND, VT.getSimpleVT(), Custom);
660 setOperationAction(ISD::OR, VT.getSimpleVT(), Custom);
661 setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
662 setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
663
664 setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
665 setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
666 setOperationAction(ISD::VSELECT, VT.getSimpleVT(), Expand);
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000667 for (MVT InnerVT : MVT::all_valuetypes())
668 setLoadExtAction(ISD::EXTLOAD, InnerVT, VT.getSimpleVT(), Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000669
670 // CNT supports only B element sizes.
671 if (VT != MVT::v8i8 && VT != MVT::v16i8)
672 setOperationAction(ISD::CTPOP, VT.getSimpleVT(), Expand);
673
674 setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
675 setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
676 setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
677 setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
678 setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
679
680 setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom);
681 setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom);
682
James Molloycfb04432015-05-15 16:15:57 +0000683 // [SU][MIN|MAX] are available for all NEON types apart from i64.
684 if (!VT.isFloatingPoint() &&
685 VT.getSimpleVT() != MVT::v2i64 && VT.getSimpleVT() != MVT::v1i64)
686 for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
687 setOperationAction(Opcode, VT.getSimpleVT(), Legal);
688
Tim Northover3b0846e2014-05-24 12:50:23 +0000689 if (Subtarget->isLittleEndian()) {
690 for (unsigned im = (unsigned)ISD::PRE_INC;
691 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
692 setIndexedLoadAction(im, VT.getSimpleVT(), Legal);
693 setIndexedStoreAction(im, VT.getSimpleVT(), Legal);
694 }
695 }
696}
697
698void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
699 addRegisterClass(VT, &AArch64::FPR64RegClass);
700 addTypeForNEON(VT, MVT::v2i32);
701}
702
703void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
704 addRegisterClass(VT, &AArch64::FPR128RegClass);
705 addTypeForNEON(VT, MVT::v4i32);
706}
707
708EVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
709 if (!VT.isVector())
710 return MVT::i32;
711 return VT.changeVectorElementTypeToInteger();
712}
713
714/// computeKnownBitsForTargetNode - Determine which of the bits specified in
715/// Mask are known to be either zero or one and return them in the
716/// KnownZero/KnownOne bitsets.
717void AArch64TargetLowering::computeKnownBitsForTargetNode(
718 const SDValue Op, APInt &KnownZero, APInt &KnownOne,
719 const SelectionDAG &DAG, unsigned Depth) const {
720 switch (Op.getOpcode()) {
721 default:
722 break;
723 case AArch64ISD::CSEL: {
724 APInt KnownZero2, KnownOne2;
725 DAG.computeKnownBits(Op->getOperand(0), KnownZero, KnownOne, Depth + 1);
726 DAG.computeKnownBits(Op->getOperand(1), KnownZero2, KnownOne2, Depth + 1);
727 KnownZero &= KnownZero2;
728 KnownOne &= KnownOne2;
729 break;
730 }
731 case ISD::INTRINSIC_W_CHAIN: {
732 ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
733 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
734 switch (IntID) {
735 default: return;
736 case Intrinsic::aarch64_ldaxr:
737 case Intrinsic::aarch64_ldxr: {
738 unsigned BitWidth = KnownOne.getBitWidth();
739 EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
740 unsigned MemBits = VT.getScalarType().getSizeInBits();
741 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
742 return;
743 }
744 }
745 break;
746 }
747 case ISD::INTRINSIC_WO_CHAIN:
748 case ISD::INTRINSIC_VOID: {
749 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
750 switch (IntNo) {
751 default:
752 break;
753 case Intrinsic::aarch64_neon_umaxv:
754 case Intrinsic::aarch64_neon_uminv: {
755 // Figure out the datatype of the vector operand. The UMINV instruction
756 // will zero extend the result, so we can mark as known zero all the
757 // bits larger than the element datatype. 32-bit or larget doesn't need
758 // this as those are legal types and will be handled by isel directly.
759 MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
760 unsigned BitWidth = KnownZero.getBitWidth();
761 if (VT == MVT::v8i8 || VT == MVT::v16i8) {
762 assert(BitWidth >= 8 && "Unexpected width!");
763 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
764 KnownZero |= Mask;
765 } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
766 assert(BitWidth >= 16 && "Unexpected width!");
767 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
768 KnownZero |= Mask;
769 }
770 break;
771 } break;
772 }
773 }
774 }
775}
776
777MVT AArch64TargetLowering::getScalarShiftAmountTy(EVT LHSTy) const {
778 return MVT::i64;
779}
780
Tim Northover3b0846e2014-05-24 12:50:23 +0000781FastISel *
782AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
783 const TargetLibraryInfo *libInfo) const {
784 return AArch64::createFastISel(funcInfo, libInfo);
785}
786
787const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
Matthias Braund04893f2015-05-07 21:33:59 +0000788 switch ((AArch64ISD::NodeType)Opcode) {
789 case AArch64ISD::FIRST_NUMBER: break;
Tim Northover3b0846e2014-05-24 12:50:23 +0000790 case AArch64ISD::CALL: return "AArch64ISD::CALL";
791 case AArch64ISD::ADRP: return "AArch64ISD::ADRP";
792 case AArch64ISD::ADDlow: return "AArch64ISD::ADDlow";
793 case AArch64ISD::LOADgot: return "AArch64ISD::LOADgot";
794 case AArch64ISD::RET_FLAG: return "AArch64ISD::RET_FLAG";
795 case AArch64ISD::BRCOND: return "AArch64ISD::BRCOND";
796 case AArch64ISD::CSEL: return "AArch64ISD::CSEL";
797 case AArch64ISD::FCSEL: return "AArch64ISD::FCSEL";
798 case AArch64ISD::CSINV: return "AArch64ISD::CSINV";
799 case AArch64ISD::CSNEG: return "AArch64ISD::CSNEG";
800 case AArch64ISD::CSINC: return "AArch64ISD::CSINC";
801 case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
Kristof Beylsaea84612015-03-04 09:12:08 +0000802 case AArch64ISD::TLSDESC_CALLSEQ: return "AArch64ISD::TLSDESC_CALLSEQ";
Tim Northover3b0846e2014-05-24 12:50:23 +0000803 case AArch64ISD::ADC: return "AArch64ISD::ADC";
804 case AArch64ISD::SBC: return "AArch64ISD::SBC";
805 case AArch64ISD::ADDS: return "AArch64ISD::ADDS";
806 case AArch64ISD::SUBS: return "AArch64ISD::SUBS";
807 case AArch64ISD::ADCS: return "AArch64ISD::ADCS";
808 case AArch64ISD::SBCS: return "AArch64ISD::SBCS";
809 case AArch64ISD::ANDS: return "AArch64ISD::ANDS";
810 case AArch64ISD::FCMP: return "AArch64ISD::FCMP";
811 case AArch64ISD::FMIN: return "AArch64ISD::FMIN";
812 case AArch64ISD::FMAX: return "AArch64ISD::FMAX";
813 case AArch64ISD::DUP: return "AArch64ISD::DUP";
814 case AArch64ISD::DUPLANE8: return "AArch64ISD::DUPLANE8";
815 case AArch64ISD::DUPLANE16: return "AArch64ISD::DUPLANE16";
816 case AArch64ISD::DUPLANE32: return "AArch64ISD::DUPLANE32";
817 case AArch64ISD::DUPLANE64: return "AArch64ISD::DUPLANE64";
818 case AArch64ISD::MOVI: return "AArch64ISD::MOVI";
819 case AArch64ISD::MOVIshift: return "AArch64ISD::MOVIshift";
820 case AArch64ISD::MOVIedit: return "AArch64ISD::MOVIedit";
821 case AArch64ISD::MOVImsl: return "AArch64ISD::MOVImsl";
822 case AArch64ISD::FMOV: return "AArch64ISD::FMOV";
823 case AArch64ISD::MVNIshift: return "AArch64ISD::MVNIshift";
824 case AArch64ISD::MVNImsl: return "AArch64ISD::MVNImsl";
825 case AArch64ISD::BICi: return "AArch64ISD::BICi";
826 case AArch64ISD::ORRi: return "AArch64ISD::ORRi";
827 case AArch64ISD::BSL: return "AArch64ISD::BSL";
828 case AArch64ISD::NEG: return "AArch64ISD::NEG";
829 case AArch64ISD::EXTR: return "AArch64ISD::EXTR";
830 case AArch64ISD::ZIP1: return "AArch64ISD::ZIP1";
831 case AArch64ISD::ZIP2: return "AArch64ISD::ZIP2";
832 case AArch64ISD::UZP1: return "AArch64ISD::UZP1";
833 case AArch64ISD::UZP2: return "AArch64ISD::UZP2";
834 case AArch64ISD::TRN1: return "AArch64ISD::TRN1";
835 case AArch64ISD::TRN2: return "AArch64ISD::TRN2";
836 case AArch64ISD::REV16: return "AArch64ISD::REV16";
837 case AArch64ISD::REV32: return "AArch64ISD::REV32";
838 case AArch64ISD::REV64: return "AArch64ISD::REV64";
839 case AArch64ISD::EXT: return "AArch64ISD::EXT";
840 case AArch64ISD::VSHL: return "AArch64ISD::VSHL";
841 case AArch64ISD::VLSHR: return "AArch64ISD::VLSHR";
842 case AArch64ISD::VASHR: return "AArch64ISD::VASHR";
843 case AArch64ISD::CMEQ: return "AArch64ISD::CMEQ";
844 case AArch64ISD::CMGE: return "AArch64ISD::CMGE";
845 case AArch64ISD::CMGT: return "AArch64ISD::CMGT";
846 case AArch64ISD::CMHI: return "AArch64ISD::CMHI";
847 case AArch64ISD::CMHS: return "AArch64ISD::CMHS";
848 case AArch64ISD::FCMEQ: return "AArch64ISD::FCMEQ";
849 case AArch64ISD::FCMGE: return "AArch64ISD::FCMGE";
850 case AArch64ISD::FCMGT: return "AArch64ISD::FCMGT";
851 case AArch64ISD::CMEQz: return "AArch64ISD::CMEQz";
852 case AArch64ISD::CMGEz: return "AArch64ISD::CMGEz";
853 case AArch64ISD::CMGTz: return "AArch64ISD::CMGTz";
854 case AArch64ISD::CMLEz: return "AArch64ISD::CMLEz";
855 case AArch64ISD::CMLTz: return "AArch64ISD::CMLTz";
856 case AArch64ISD::FCMEQz: return "AArch64ISD::FCMEQz";
857 case AArch64ISD::FCMGEz: return "AArch64ISD::FCMGEz";
858 case AArch64ISD::FCMGTz: return "AArch64ISD::FCMGTz";
859 case AArch64ISD::FCMLEz: return "AArch64ISD::FCMLEz";
860 case AArch64ISD::FCMLTz: return "AArch64ISD::FCMLTz";
Ahmed Bougachafab58922015-03-10 20:45:38 +0000861 case AArch64ISD::SADDV: return "AArch64ISD::SADDV";
862 case AArch64ISD::UADDV: return "AArch64ISD::UADDV";
863 case AArch64ISD::SMINV: return "AArch64ISD::SMINV";
864 case AArch64ISD::UMINV: return "AArch64ISD::UMINV";
865 case AArch64ISD::SMAXV: return "AArch64ISD::SMAXV";
866 case AArch64ISD::UMAXV: return "AArch64ISD::UMAXV";
Tim Northover3b0846e2014-05-24 12:50:23 +0000867 case AArch64ISD::NOT: return "AArch64ISD::NOT";
868 case AArch64ISD::BIT: return "AArch64ISD::BIT";
869 case AArch64ISD::CBZ: return "AArch64ISD::CBZ";
870 case AArch64ISD::CBNZ: return "AArch64ISD::CBNZ";
871 case AArch64ISD::TBZ: return "AArch64ISD::TBZ";
872 case AArch64ISD::TBNZ: return "AArch64ISD::TBNZ";
873 case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN";
Matthias Braund04893f2015-05-07 21:33:59 +0000874 case AArch64ISD::PREFETCH: return "AArch64ISD::PREFETCH";
Tim Northover3b0846e2014-05-24 12:50:23 +0000875 case AArch64ISD::SITOF: return "AArch64ISD::SITOF";
876 case AArch64ISD::UITOF: return "AArch64ISD::UITOF";
Asiri Rathnayake530b3ed2014-10-01 09:59:45 +0000877 case AArch64ISD::NVCAST: return "AArch64ISD::NVCAST";
Tim Northover3b0846e2014-05-24 12:50:23 +0000878 case AArch64ISD::SQSHL_I: return "AArch64ISD::SQSHL_I";
879 case AArch64ISD::UQSHL_I: return "AArch64ISD::UQSHL_I";
880 case AArch64ISD::SRSHR_I: return "AArch64ISD::SRSHR_I";
881 case AArch64ISD::URSHR_I: return "AArch64ISD::URSHR_I";
882 case AArch64ISD::SQSHLU_I: return "AArch64ISD::SQSHLU_I";
883 case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge";
884 case AArch64ISD::LD2post: return "AArch64ISD::LD2post";
885 case AArch64ISD::LD3post: return "AArch64ISD::LD3post";
886 case AArch64ISD::LD4post: return "AArch64ISD::LD4post";
887 case AArch64ISD::ST2post: return "AArch64ISD::ST2post";
888 case AArch64ISD::ST3post: return "AArch64ISD::ST3post";
889 case AArch64ISD::ST4post: return "AArch64ISD::ST4post";
890 case AArch64ISD::LD1x2post: return "AArch64ISD::LD1x2post";
891 case AArch64ISD::LD1x3post: return "AArch64ISD::LD1x3post";
892 case AArch64ISD::LD1x4post: return "AArch64ISD::LD1x4post";
893 case AArch64ISD::ST1x2post: return "AArch64ISD::ST1x2post";
894 case AArch64ISD::ST1x3post: return "AArch64ISD::ST1x3post";
895 case AArch64ISD::ST1x4post: return "AArch64ISD::ST1x4post";
896 case AArch64ISD::LD1DUPpost: return "AArch64ISD::LD1DUPpost";
897 case AArch64ISD::LD2DUPpost: return "AArch64ISD::LD2DUPpost";
898 case AArch64ISD::LD3DUPpost: return "AArch64ISD::LD3DUPpost";
899 case AArch64ISD::LD4DUPpost: return "AArch64ISD::LD4DUPpost";
900 case AArch64ISD::LD1LANEpost: return "AArch64ISD::LD1LANEpost";
901 case AArch64ISD::LD2LANEpost: return "AArch64ISD::LD2LANEpost";
902 case AArch64ISD::LD3LANEpost: return "AArch64ISD::LD3LANEpost";
903 case AArch64ISD::LD4LANEpost: return "AArch64ISD::LD4LANEpost";
904 case AArch64ISD::ST2LANEpost: return "AArch64ISD::ST2LANEpost";
905 case AArch64ISD::ST3LANEpost: return "AArch64ISD::ST3LANEpost";
906 case AArch64ISD::ST4LANEpost: return "AArch64ISD::ST4LANEpost";
Chad Rosierd9d0f862014-10-08 02:31:24 +0000907 case AArch64ISD::SMULL: return "AArch64ISD::SMULL";
908 case AArch64ISD::UMULL: return "AArch64ISD::UMULL";
Tim Northover3b0846e2014-05-24 12:50:23 +0000909 }
Matthias Braund04893f2015-05-07 21:33:59 +0000910 return nullptr;
Tim Northover3b0846e2014-05-24 12:50:23 +0000911}
912
913MachineBasicBlock *
914AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
915 MachineBasicBlock *MBB) const {
916 // We materialise the F128CSEL pseudo-instruction as some control flow and a
917 // phi node:
918
919 // OrigBB:
920 // [... previous instrs leading to comparison ...]
921 // b.ne TrueBB
922 // b EndBB
923 // TrueBB:
924 // ; Fallthrough
925 // EndBB:
926 // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
927
Tim Northover3b0846e2014-05-24 12:50:23 +0000928 MachineFunction *MF = MBB->getParent();
Eric Christopher905f12d2015-01-29 00:19:42 +0000929 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +0000930 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
931 DebugLoc DL = MI->getDebugLoc();
932 MachineFunction::iterator It = MBB;
933 ++It;
934
935 unsigned DestReg = MI->getOperand(0).getReg();
936 unsigned IfTrueReg = MI->getOperand(1).getReg();
937 unsigned IfFalseReg = MI->getOperand(2).getReg();
938 unsigned CondCode = MI->getOperand(3).getImm();
939 bool NZCVKilled = MI->getOperand(4).isKill();
940
941 MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
942 MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
943 MF->insert(It, TrueBB);
944 MF->insert(It, EndBB);
945
946 // Transfer rest of current basic-block to EndBB
947 EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
948 MBB->end());
949 EndBB->transferSuccessorsAndUpdatePHIs(MBB);
950
951 BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
952 BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
953 MBB->addSuccessor(TrueBB);
954 MBB->addSuccessor(EndBB);
955
956 // TrueBB falls through to the end.
957 TrueBB->addSuccessor(EndBB);
958
959 if (!NZCVKilled) {
960 TrueBB->addLiveIn(AArch64::NZCV);
961 EndBB->addLiveIn(AArch64::NZCV);
962 }
963
964 BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
965 .addReg(IfTrueReg)
966 .addMBB(TrueBB)
967 .addReg(IfFalseReg)
968 .addMBB(MBB);
969
970 MI->eraseFromParent();
971 return EndBB;
972}
973
974MachineBasicBlock *
975AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
976 MachineBasicBlock *BB) const {
977 switch (MI->getOpcode()) {
978 default:
979#ifndef NDEBUG
980 MI->dump();
981#endif
Craig Topper35b2f752014-06-19 06:10:58 +0000982 llvm_unreachable("Unexpected instruction for custom inserter!");
Tim Northover3b0846e2014-05-24 12:50:23 +0000983
984 case AArch64::F128CSEL:
985 return EmitF128CSEL(MI, BB);
986
987 case TargetOpcode::STACKMAP:
988 case TargetOpcode::PATCHPOINT:
989 return emitPatchPoint(MI, BB);
990 }
Tim Northover3b0846e2014-05-24 12:50:23 +0000991}
992
993//===----------------------------------------------------------------------===//
994// AArch64 Lowering private implementation.
995//===----------------------------------------------------------------------===//
996
997//===----------------------------------------------------------------------===//
998// Lowering Code
999//===----------------------------------------------------------------------===//
1000
1001/// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
1002/// CC
1003static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
1004 switch (CC) {
1005 default:
1006 llvm_unreachable("Unknown condition code!");
1007 case ISD::SETNE:
1008 return AArch64CC::NE;
1009 case ISD::SETEQ:
1010 return AArch64CC::EQ;
1011 case ISD::SETGT:
1012 return AArch64CC::GT;
1013 case ISD::SETGE:
1014 return AArch64CC::GE;
1015 case ISD::SETLT:
1016 return AArch64CC::LT;
1017 case ISD::SETLE:
1018 return AArch64CC::LE;
1019 case ISD::SETUGT:
1020 return AArch64CC::HI;
1021 case ISD::SETUGE:
1022 return AArch64CC::HS;
1023 case ISD::SETULT:
1024 return AArch64CC::LO;
1025 case ISD::SETULE:
1026 return AArch64CC::LS;
1027 }
1028}
1029
1030/// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
1031static void changeFPCCToAArch64CC(ISD::CondCode CC,
1032 AArch64CC::CondCode &CondCode,
1033 AArch64CC::CondCode &CondCode2) {
1034 CondCode2 = AArch64CC::AL;
1035 switch (CC) {
1036 default:
1037 llvm_unreachable("Unknown FP condition!");
1038 case ISD::SETEQ:
1039 case ISD::SETOEQ:
1040 CondCode = AArch64CC::EQ;
1041 break;
1042 case ISD::SETGT:
1043 case ISD::SETOGT:
1044 CondCode = AArch64CC::GT;
1045 break;
1046 case ISD::SETGE:
1047 case ISD::SETOGE:
1048 CondCode = AArch64CC::GE;
1049 break;
1050 case ISD::SETOLT:
1051 CondCode = AArch64CC::MI;
1052 break;
1053 case ISD::SETOLE:
1054 CondCode = AArch64CC::LS;
1055 break;
1056 case ISD::SETONE:
1057 CondCode = AArch64CC::MI;
1058 CondCode2 = AArch64CC::GT;
1059 break;
1060 case ISD::SETO:
1061 CondCode = AArch64CC::VC;
1062 break;
1063 case ISD::SETUO:
1064 CondCode = AArch64CC::VS;
1065 break;
1066 case ISD::SETUEQ:
1067 CondCode = AArch64CC::EQ;
1068 CondCode2 = AArch64CC::VS;
1069 break;
1070 case ISD::SETUGT:
1071 CondCode = AArch64CC::HI;
1072 break;
1073 case ISD::SETUGE:
1074 CondCode = AArch64CC::PL;
1075 break;
1076 case ISD::SETLT:
1077 case ISD::SETULT:
1078 CondCode = AArch64CC::LT;
1079 break;
1080 case ISD::SETLE:
1081 case ISD::SETULE:
1082 CondCode = AArch64CC::LE;
1083 break;
1084 case ISD::SETNE:
1085 case ISD::SETUNE:
1086 CondCode = AArch64CC::NE;
1087 break;
1088 }
1089}
1090
1091/// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
1092/// CC usable with the vector instructions. Fewer operations are available
1093/// without a real NZCV register, so we have to use less efficient combinations
1094/// to get the same effect.
1095static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
1096 AArch64CC::CondCode &CondCode,
1097 AArch64CC::CondCode &CondCode2,
1098 bool &Invert) {
1099 Invert = false;
1100 switch (CC) {
1101 default:
1102 // Mostly the scalar mappings work fine.
1103 changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1104 break;
1105 case ISD::SETUO:
1106 Invert = true; // Fallthrough
1107 case ISD::SETO:
1108 CondCode = AArch64CC::MI;
1109 CondCode2 = AArch64CC::GE;
1110 break;
1111 case ISD::SETUEQ:
1112 case ISD::SETULT:
1113 case ISD::SETULE:
1114 case ISD::SETUGT:
1115 case ISD::SETUGE:
1116 // All of the compare-mask comparisons are ordered, but we can switch
1117 // between the two by a double inversion. E.g. ULE == !OGT.
1118 Invert = true;
1119 changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2);
1120 break;
1121 }
1122}
1123
1124static bool isLegalArithImmed(uint64_t C) {
1125 // Matches AArch64DAGToDAGISel::SelectArithImmed().
1126 return (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
1127}
1128
1129static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1130 SDLoc dl, SelectionDAG &DAG) {
1131 EVT VT = LHS.getValueType();
1132
1133 if (VT.isFloatingPoint())
1134 return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
1135
1136 // The CMP instruction is just an alias for SUBS, and representing it as
1137 // SUBS means that it's possible to get CSE with subtract operations.
1138 // A later phase can perform the optimization of setting the destination
1139 // register to WZR/XZR if it ends up being unused.
1140 unsigned Opcode = AArch64ISD::SUBS;
1141
1142 if (RHS.getOpcode() == ISD::SUB && isa<ConstantSDNode>(RHS.getOperand(0)) &&
1143 cast<ConstantSDNode>(RHS.getOperand(0))->getZExtValue() == 0 &&
1144 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1145 // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on
1146 // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags
1147 // can be set differently by this operation. It comes down to whether
1148 // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
1149 // everything is fine. If not then the optimization is wrong. Thus general
1150 // comparisons are only valid if op2 != 0.
1151
1152 // So, finally, the only LLVM-native comparisons that don't mention C and V
1153 // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
1154 // the absence of information about op2.
1155 Opcode = AArch64ISD::ADDS;
1156 RHS = RHS.getOperand(1);
1157 } else if (LHS.getOpcode() == ISD::AND && isa<ConstantSDNode>(RHS) &&
1158 cast<ConstantSDNode>(RHS)->getZExtValue() == 0 &&
1159 !isUnsignedIntSetCC(CC)) {
1160 // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
1161 // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
1162 // of the signed comparisons.
1163 Opcode = AArch64ISD::ANDS;
1164 RHS = LHS.getOperand(1);
1165 LHS = LHS.getOperand(0);
1166 }
1167
Matthias Braun83210062015-06-17 04:02:32 +00001168 return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS)
Tim Northover3b0846e2014-05-24 12:50:23 +00001169 .getValue(1);
1170}
1171
1172static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1173 SDValue &AArch64cc, SelectionDAG &DAG, SDLoc dl) {
David Xuee978202014-08-28 04:59:53 +00001174 SDValue Cmp;
1175 AArch64CC::CondCode AArch64CC;
Tim Northover3b0846e2014-05-24 12:50:23 +00001176 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1177 EVT VT = RHS.getValueType();
1178 uint64_t C = RHSC->getZExtValue();
1179 if (!isLegalArithImmed(C)) {
1180 // Constant does not fit, try adjusting it by one?
1181 switch (CC) {
1182 default:
1183 break;
1184 case ISD::SETLT:
1185 case ISD::SETGE:
1186 if ((VT == MVT::i32 && C != 0x80000000 &&
1187 isLegalArithImmed((uint32_t)(C - 1))) ||
1188 (VT == MVT::i64 && C != 0x80000000ULL &&
1189 isLegalArithImmed(C - 1ULL))) {
1190 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1191 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001192 RHS = DAG.getConstant(C, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00001193 }
1194 break;
1195 case ISD::SETULT:
1196 case ISD::SETUGE:
1197 if ((VT == MVT::i32 && C != 0 &&
1198 isLegalArithImmed((uint32_t)(C - 1))) ||
1199 (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
1200 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1201 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001202 RHS = DAG.getConstant(C, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00001203 }
1204 break;
1205 case ISD::SETLE:
1206 case ISD::SETGT:
Oliver Stannard269a275c2014-11-03 15:28:40 +00001207 if ((VT == MVT::i32 && C != INT32_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001208 isLegalArithImmed((uint32_t)(C + 1))) ||
Oliver Stannard269a275c2014-11-03 15:28:40 +00001209 (VT == MVT::i64 && C != INT64_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001210 isLegalArithImmed(C + 1ULL))) {
1211 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1212 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001213 RHS = DAG.getConstant(C, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00001214 }
1215 break;
1216 case ISD::SETULE:
1217 case ISD::SETUGT:
Oliver Stannard269a275c2014-11-03 15:28:40 +00001218 if ((VT == MVT::i32 && C != UINT32_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001219 isLegalArithImmed((uint32_t)(C + 1))) ||
Oliver Stannard269a275c2014-11-03 15:28:40 +00001220 (VT == MVT::i64 && C != UINT64_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001221 isLegalArithImmed(C + 1ULL))) {
1222 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1223 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001224 RHS = DAG.getConstant(C, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00001225 }
1226 break;
1227 }
1228 }
1229 }
Matthias Braun83210062015-06-17 04:02:32 +00001230 // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
1231 // For the i8 operand, the largest immediate is 255, so this can be easily
1232 // encoded in the compare instruction. For the i16 operand, however, the
1233 // largest immediate cannot be encoded in the compare.
1234 // Therefore, use a sign extending load and cmn to avoid materializing the -1
1235 // constant. For example,
1236 // movz w1, #65535
1237 // ldrh w0, [x0, #0]
1238 // cmp w0, w1
1239 // >
1240 // ldrsh w0, [x0, #0]
1241 // cmn w0, #1
1242 // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
1243 // if and only if (sext LHS) == (sext RHS). The checks are in place to ensure
1244 // both the LHS and RHS are truely zero extended and to make sure the
1245 // transformation is profitable.
David Xuee978202014-08-28 04:59:53 +00001246 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
Matthias Braun83210062015-06-17 04:02:32 +00001247 if ((cast<ConstantSDNode>(RHS)->getZExtValue() >> 16 == 0) &&
1248 isa<LoadSDNode>(LHS)) {
1249 if (cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
1250 cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
1251 LHS.getNode()->hasNUsesOfValue(1, 0)) {
1252 int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
1253 if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
1254 SDValue SExt =
1255 DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
1256 DAG.getValueType(MVT::i16));
1257 Cmp = emitComparison(SExt,
1258 DAG.getConstant(ValueofRHS, dl,
1259 RHS.getValueType()),
1260 CC, dl, DAG);
1261 AArch64CC = changeIntCCToAArch64CC(CC);
1262 AArch64cc = DAG.getConstant(AArch64CC, dl, MVT::i32);
1263 return Cmp;
1264 }
David Xuee978202014-08-28 04:59:53 +00001265 }
1266 }
1267 }
1268 Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
1269 AArch64CC = changeIntCCToAArch64CC(CC);
Matthias Braun83210062015-06-17 04:02:32 +00001270 AArch64cc = DAG.getConstant(AArch64CC, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00001271 return Cmp;
1272}
1273
1274static std::pair<SDValue, SDValue>
1275getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
1276 assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
1277 "Unsupported value type");
1278 SDValue Value, Overflow;
1279 SDLoc DL(Op);
1280 SDValue LHS = Op.getOperand(0);
1281 SDValue RHS = Op.getOperand(1);
1282 unsigned Opc = 0;
1283 switch (Op.getOpcode()) {
1284 default:
1285 llvm_unreachable("Unknown overflow instruction!");
1286 case ISD::SADDO:
1287 Opc = AArch64ISD::ADDS;
1288 CC = AArch64CC::VS;
1289 break;
1290 case ISD::UADDO:
1291 Opc = AArch64ISD::ADDS;
1292 CC = AArch64CC::HS;
1293 break;
1294 case ISD::SSUBO:
1295 Opc = AArch64ISD::SUBS;
1296 CC = AArch64CC::VS;
1297 break;
1298 case ISD::USUBO:
1299 Opc = AArch64ISD::SUBS;
1300 CC = AArch64CC::LO;
1301 break;
1302 // Multiply needs a little bit extra work.
1303 case ISD::SMULO:
1304 case ISD::UMULO: {
1305 CC = AArch64CC::NE;
David Blaikie186d2cb2015-03-24 16:24:01 +00001306 bool IsSigned = Op.getOpcode() == ISD::SMULO;
Tim Northover3b0846e2014-05-24 12:50:23 +00001307 if (Op.getValueType() == MVT::i32) {
1308 unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1309 // For a 32 bit multiply with overflow check we want the instruction
1310 // selector to generate a widening multiply (SMADDL/UMADDL). For that we
1311 // need to generate the following pattern:
1312 // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
1313 LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
1314 RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
1315 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1316 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001317 DAG.getConstant(0, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00001318 // On AArch64 the upper 32 bits are always zero extended for a 32 bit
1319 // operation. We need to clear out the upper 32 bits, because we used a
1320 // widening multiply that wrote all 64 bits. In the end this should be a
1321 // noop.
1322 Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
1323 if (IsSigned) {
1324 // The signed overflow check requires more than just a simple check for
1325 // any bit set in the upper 32 bits of the result. These bits could be
1326 // just the sign bits of a negative number. To perform the overflow
1327 // check we have to arithmetic shift right the 32nd bit of the result by
1328 // 31 bits. Then we compare the result to the upper 32 bits.
1329 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001330 DAG.getConstant(32, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00001331 UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
1332 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001333 DAG.getConstant(31, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00001334 // It is important that LowerBits is last, otherwise the arithmetic
1335 // shift will not be folded into the compare (SUBS).
1336 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
1337 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1338 .getValue(1);
1339 } else {
1340 // The overflow check for unsigned multiply is easy. We only need to
1341 // check if any of the upper 32 bits are set. This can be done with a
1342 // CMP (shifted register). For that we need to generate the following
1343 // pattern:
1344 // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
1345 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001346 DAG.getConstant(32, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00001347 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1348 Overflow =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001349 DAG.getNode(AArch64ISD::SUBS, DL, VTs,
1350 DAG.getConstant(0, DL, MVT::i64),
Tim Northover3b0846e2014-05-24 12:50:23 +00001351 UpperBits).getValue(1);
1352 }
1353 break;
1354 }
1355 assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
1356 // For the 64 bit multiply
1357 Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1358 if (IsSigned) {
1359 SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
1360 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001361 DAG.getConstant(63, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00001362 // It is important that LowerBits is last, otherwise the arithmetic
1363 // shift will not be folded into the compare (SUBS).
1364 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1365 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1366 .getValue(1);
1367 } else {
1368 SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
1369 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1370 Overflow =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001371 DAG.getNode(AArch64ISD::SUBS, DL, VTs,
1372 DAG.getConstant(0, DL, MVT::i64),
Tim Northover3b0846e2014-05-24 12:50:23 +00001373 UpperBits).getValue(1);
1374 }
1375 break;
1376 }
1377 } // switch (...)
1378
1379 if (Opc) {
1380 SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
1381
1382 // Emit the AArch64 operation with overflow check.
1383 Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
1384 Overflow = Value.getValue(1);
1385 }
1386 return std::make_pair(Value, Overflow);
1387}
1388
1389SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
1390 RTLIB::Libcall Call) const {
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00001391 SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
Tim Northover3b0846e2014-05-24 12:50:23 +00001392 return makeLibCall(DAG, Call, MVT::f128, &Ops[0], Ops.size(), false,
1393 SDLoc(Op)).first;
1394}
1395
1396static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
1397 SDValue Sel = Op.getOperand(0);
1398 SDValue Other = Op.getOperand(1);
1399
1400 // If neither operand is a SELECT_CC, give up.
1401 if (Sel.getOpcode() != ISD::SELECT_CC)
1402 std::swap(Sel, Other);
1403 if (Sel.getOpcode() != ISD::SELECT_CC)
1404 return Op;
1405
1406 // The folding we want to perform is:
1407 // (xor x, (select_cc a, b, cc, 0, -1) )
1408 // -->
1409 // (csel x, (xor x, -1), cc ...)
1410 //
1411 // The latter will get matched to a CSINV instruction.
1412
1413 ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
1414 SDValue LHS = Sel.getOperand(0);
1415 SDValue RHS = Sel.getOperand(1);
1416 SDValue TVal = Sel.getOperand(2);
1417 SDValue FVal = Sel.getOperand(3);
1418 SDLoc dl(Sel);
1419
1420 // FIXME: This could be generalized to non-integer comparisons.
1421 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
1422 return Op;
1423
1424 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
1425 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
1426
1427 // The the values aren't constants, this isn't the pattern we're looking for.
1428 if (!CFVal || !CTVal)
1429 return Op;
1430
1431 // We can commute the SELECT_CC by inverting the condition. This
1432 // might be needed to make this fit into a CSINV pattern.
1433 if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
1434 std::swap(TVal, FVal);
1435 std::swap(CTVal, CFVal);
1436 CC = ISD::getSetCCInverse(CC, true);
1437 }
1438
1439 // If the constants line up, perform the transform!
1440 if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
1441 SDValue CCVal;
1442 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
1443
1444 FVal = Other;
1445 TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001446 DAG.getConstant(-1ULL, dl, Other.getValueType()));
Tim Northover3b0846e2014-05-24 12:50:23 +00001447
1448 return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
1449 CCVal, Cmp);
1450 }
1451
1452 return Op;
1453}
1454
1455static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
1456 EVT VT = Op.getValueType();
1457
1458 // Let legalize expand this if it isn't a legal type yet.
1459 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
1460 return SDValue();
1461
1462 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
1463
1464 unsigned Opc;
1465 bool ExtraOp = false;
1466 switch (Op.getOpcode()) {
1467 default:
Craig Topper2a30d782014-06-18 05:05:13 +00001468 llvm_unreachable("Invalid code");
Tim Northover3b0846e2014-05-24 12:50:23 +00001469 case ISD::ADDC:
1470 Opc = AArch64ISD::ADDS;
1471 break;
1472 case ISD::SUBC:
1473 Opc = AArch64ISD::SUBS;
1474 break;
1475 case ISD::ADDE:
1476 Opc = AArch64ISD::ADCS;
1477 ExtraOp = true;
1478 break;
1479 case ISD::SUBE:
1480 Opc = AArch64ISD::SBCS;
1481 ExtraOp = true;
1482 break;
1483 }
1484
1485 if (!ExtraOp)
1486 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
1487 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
1488 Op.getOperand(2));
1489}
1490
1491static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
1492 // Let legalize expand this if it isn't a legal type yet.
1493 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
1494 return SDValue();
1495
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001496 SDLoc dl(Op);
Tim Northover3b0846e2014-05-24 12:50:23 +00001497 AArch64CC::CondCode CC;
1498 // The actual operation that sets the overflow or carry flag.
1499 SDValue Value, Overflow;
1500 std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
1501
1502 // We use 0 and 1 as false and true values.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001503 SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
1504 SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00001505
1506 // We use an inverted condition, because the conditional select is inverted
1507 // too. This will allow it to be selected to a single instruction:
1508 // CSINC Wd, WZR, WZR, invert(cond).
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001509 SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
1510 Overflow = DAG.getNode(AArch64ISD::CSEL, dl, MVT::i32, FVal, TVal,
Tim Northover3b0846e2014-05-24 12:50:23 +00001511 CCVal, Overflow);
1512
1513 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001514 return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
Tim Northover3b0846e2014-05-24 12:50:23 +00001515}
1516
1517// Prefetch operands are:
1518// 1: Address to prefetch
1519// 2: bool isWrite
1520// 3: int locality (0 = no locality ... 3 = extreme locality)
1521// 4: bool isDataCache
1522static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
1523 SDLoc DL(Op);
1524 unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
1525 unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
Yi Konge56de692014-08-05 12:46:47 +00001526 unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00001527
1528 bool IsStream = !Locality;
1529 // When the locality number is set
1530 if (Locality) {
1531 // The front-end should have filtered out the out-of-range values
1532 assert(Locality <= 3 && "Prefetch locality out-of-range");
1533 // The locality degree is the opposite of the cache speed.
1534 // Put the number the other way around.
1535 // The encoding starts at 0 for level 1
1536 Locality = 3 - Locality;
1537 }
1538
1539 // built the mask value encoding the expected behavior.
1540 unsigned PrfOp = (IsWrite << 4) | // Load/Store bit
Yi Konge56de692014-08-05 12:46:47 +00001541 (!IsData << 3) | // IsDataCache bit
Tim Northover3b0846e2014-05-24 12:50:23 +00001542 (Locality << 1) | // Cache level bits
1543 (unsigned)IsStream; // Stream bit
1544 return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001545 DAG.getConstant(PrfOp, DL, MVT::i32), Op.getOperand(1));
Tim Northover3b0846e2014-05-24 12:50:23 +00001546}
1547
1548SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
1549 SelectionDAG &DAG) const {
1550 assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
1551
1552 RTLIB::Libcall LC;
1553 LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
1554
1555 return LowerF128Call(Op, DAG, LC);
1556}
1557
1558SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
1559 SelectionDAG &DAG) const {
1560 if (Op.getOperand(0).getValueType() != MVT::f128) {
1561 // It's legal except when f128 is involved
1562 return Op;
1563 }
1564
1565 RTLIB::Libcall LC;
1566 LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
1567
1568 // FP_ROUND node has a second operand indicating whether it is known to be
1569 // precise. That doesn't take part in the LibCall so we can't directly use
1570 // LowerF128Call.
1571 SDValue SrcVal = Op.getOperand(0);
1572 return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
1573 /*isSigned*/ false, SDLoc(Op)).first;
1574}
1575
1576static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
1577 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1578 // Any additional optimization in this function should be recorded
1579 // in the cost tables.
1580 EVT InVT = Op.getOperand(0).getValueType();
1581 EVT VT = Op.getValueType();
1582
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001583 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00001584 SDLoc dl(Op);
1585 SDValue Cv =
1586 DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
1587 Op.getOperand(0));
1588 return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001589 }
1590
1591 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00001592 SDLoc dl(Op);
Oliver Stannard89d15422014-08-27 16:16:04 +00001593 MVT ExtVT =
1594 MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
1595 VT.getVectorNumElements());
1596 SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
Tim Northover3b0846e2014-05-24 12:50:23 +00001597 return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
1598 }
1599
1600 // Type changing conversions are illegal.
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001601 return Op;
Tim Northover3b0846e2014-05-24 12:50:23 +00001602}
1603
1604SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
1605 SelectionDAG &DAG) const {
1606 if (Op.getOperand(0).getValueType().isVector())
1607 return LowerVectorFP_TO_INT(Op, DAG);
1608
Ahmed Bougacha1ffe7c72015-04-10 00:08:48 +00001609 // f16 conversions are promoted to f32.
1610 if (Op.getOperand(0).getValueType() == MVT::f16) {
1611 SDLoc dl(Op);
1612 return DAG.getNode(
1613 Op.getOpcode(), dl, Op.getValueType(),
1614 DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Op.getOperand(0)));
1615 }
1616
Tim Northover3b0846e2014-05-24 12:50:23 +00001617 if (Op.getOperand(0).getValueType() != MVT::f128) {
1618 // It's legal except when f128 is involved
1619 return Op;
1620 }
1621
1622 RTLIB::Libcall LC;
1623 if (Op.getOpcode() == ISD::FP_TO_SINT)
1624 LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
1625 else
1626 LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
1627
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00001628 SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
Tim Northover3b0846e2014-05-24 12:50:23 +00001629 return makeLibCall(DAG, LC, Op.getValueType(), &Ops[0], Ops.size(), false,
1630 SDLoc(Op)).first;
1631}
1632
1633static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
1634 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1635 // Any additional optimization in this function should be recorded
1636 // in the cost tables.
1637 EVT VT = Op.getValueType();
1638 SDLoc dl(Op);
1639 SDValue In = Op.getOperand(0);
1640 EVT InVT = In.getValueType();
1641
Tim Northoveref0d7602014-06-15 09:27:06 +00001642 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
1643 MVT CastVT =
1644 MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
1645 InVT.getVectorNumElements());
1646 In = DAG.getNode(Op.getOpcode(), dl, CastVT, In);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001647 return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0, dl));
Tim Northover3b0846e2014-05-24 12:50:23 +00001648 }
1649
Tim Northoveref0d7602014-06-15 09:27:06 +00001650 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
1651 unsigned CastOpc =
1652 Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1653 EVT CastVT = VT.changeVectorElementTypeToInteger();
1654 In = DAG.getNode(CastOpc, dl, CastVT, In);
1655 return DAG.getNode(Op.getOpcode(), dl, VT, In);
Tim Northover3b0846e2014-05-24 12:50:23 +00001656 }
1657
Tim Northoveref0d7602014-06-15 09:27:06 +00001658 return Op;
Tim Northover3b0846e2014-05-24 12:50:23 +00001659}
1660
1661SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
1662 SelectionDAG &DAG) const {
1663 if (Op.getValueType().isVector())
1664 return LowerVectorINT_TO_FP(Op, DAG);
1665
Ahmed Bougacha1ffe7c72015-04-10 00:08:48 +00001666 // f16 conversions are promoted to f32.
1667 if (Op.getValueType() == MVT::f16) {
1668 SDLoc dl(Op);
1669 return DAG.getNode(
1670 ISD::FP_ROUND, dl, MVT::f16,
1671 DAG.getNode(Op.getOpcode(), dl, MVT::f32, Op.getOperand(0)),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001672 DAG.getIntPtrConstant(0, dl));
Ahmed Bougacha1ffe7c72015-04-10 00:08:48 +00001673 }
1674
Tim Northover3b0846e2014-05-24 12:50:23 +00001675 // i128 conversions are libcalls.
1676 if (Op.getOperand(0).getValueType() == MVT::i128)
1677 return SDValue();
1678
1679 // Other conversions are legal, unless it's to the completely software-based
1680 // fp128.
1681 if (Op.getValueType() != MVT::f128)
1682 return Op;
1683
1684 RTLIB::Libcall LC;
1685 if (Op.getOpcode() == ISD::SINT_TO_FP)
1686 LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
1687 else
1688 LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
1689
1690 return LowerF128Call(Op, DAG, LC);
1691}
1692
1693SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
1694 SelectionDAG &DAG) const {
1695 // For iOS, we want to call an alternative entry point: __sincos_stret,
1696 // which returns the values in two S / D registers.
1697 SDLoc dl(Op);
1698 SDValue Arg = Op.getOperand(0);
1699 EVT ArgVT = Arg.getValueType();
1700 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1701
1702 ArgListTy Args;
1703 ArgListEntry Entry;
1704
1705 Entry.Node = Arg;
1706 Entry.Ty = ArgTy;
1707 Entry.isSExt = false;
1708 Entry.isZExt = false;
1709 Args.push_back(Entry);
1710
1711 const char *LibcallName =
1712 (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
1713 SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy());
1714
Reid Kleckner343c3952014-11-20 23:51:47 +00001715 StructType *RetTy = StructType::get(ArgTy, ArgTy, nullptr);
Tim Northover3b0846e2014-05-24 12:50:23 +00001716 TargetLowering::CallLoweringInfo CLI(DAG);
1717 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
Juergen Ributzka3bd03c72014-07-01 22:01:54 +00001718 .setCallee(CallingConv::Fast, RetTy, Callee, std::move(Args), 0);
Tim Northover3b0846e2014-05-24 12:50:23 +00001719
1720 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1721 return CallResult.first;
1722}
1723
Tim Northoverf8bfe212014-07-18 13:07:05 +00001724static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) {
1725 if (Op.getValueType() != MVT::f16)
1726 return SDValue();
1727
1728 assert(Op.getOperand(0).getValueType() == MVT::i16);
1729 SDLoc DL(Op);
1730
1731 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
1732 Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
1733 return SDValue(
1734 DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001735 DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
Tim Northoverf8bfe212014-07-18 13:07:05 +00001736 0);
1737}
1738
Chad Rosierd9d0f862014-10-08 02:31:24 +00001739static EVT getExtensionTo64Bits(const EVT &OrigVT) {
1740 if (OrigVT.getSizeInBits() >= 64)
1741 return OrigVT;
1742
1743 assert(OrigVT.isSimple() && "Expecting a simple value type");
1744
1745 MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
1746 switch (OrigSimpleTy) {
1747 default: llvm_unreachable("Unexpected Vector Type");
1748 case MVT::v2i8:
1749 case MVT::v2i16:
1750 return MVT::v2i32;
1751 case MVT::v4i8:
1752 return MVT::v4i16;
1753 }
1754}
1755
1756static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG,
1757 const EVT &OrigTy,
1758 const EVT &ExtTy,
1759 unsigned ExtOpcode) {
1760 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
1761 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
1762 // 64-bits we need to insert a new extension so that it will be 64-bits.
1763 assert(ExtTy.is128BitVector() && "Unexpected extension size");
1764 if (OrigTy.getSizeInBits() >= 64)
1765 return N;
1766
1767 // Must extend size to at least 64 bits to be used as an operand for VMULL.
1768 EVT NewVT = getExtensionTo64Bits(OrigTy);
1769
1770 return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
1771}
1772
1773static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
1774 bool isSigned) {
1775 EVT VT = N->getValueType(0);
1776
1777 if (N->getOpcode() != ISD::BUILD_VECTOR)
1778 return false;
1779
1780 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1781 SDNode *Elt = N->getOperand(i).getNode();
1782 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
1783 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
1784 unsigned HalfSize = EltSize / 2;
1785 if (isSigned) {
1786 if (!isIntN(HalfSize, C->getSExtValue()))
1787 return false;
1788 } else {
1789 if (!isUIntN(HalfSize, C->getZExtValue()))
1790 return false;
1791 }
1792 continue;
1793 }
1794 return false;
1795 }
1796
1797 return true;
1798}
1799
1800static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) {
1801 if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
1802 return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG,
1803 N->getOperand(0)->getValueType(0),
1804 N->getValueType(0),
1805 N->getOpcode());
1806
1807 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
1808 EVT VT = N->getValueType(0);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001809 SDLoc dl(N);
Chad Rosierd9d0f862014-10-08 02:31:24 +00001810 unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
1811 unsigned NumElts = VT.getVectorNumElements();
1812 MVT TruncVT = MVT::getIntegerVT(EltSize);
1813 SmallVector<SDValue, 8> Ops;
1814 for (unsigned i = 0; i != NumElts; ++i) {
1815 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
1816 const APInt &CInt = C->getAPIntValue();
1817 // Element types smaller than 32 bits are not legal, so use i32 elements.
1818 // The values are implicitly truncated so sext vs. zext doesn't matter.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001819 Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
Chad Rosierd9d0f862014-10-08 02:31:24 +00001820 }
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001821 return DAG.getNode(ISD::BUILD_VECTOR, dl,
Chad Rosierd9d0f862014-10-08 02:31:24 +00001822 MVT::getVectorVT(TruncVT, NumElts), Ops);
1823}
1824
1825static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
1826 if (N->getOpcode() == ISD::SIGN_EXTEND)
1827 return true;
1828 if (isExtendedBUILD_VECTOR(N, DAG, true))
1829 return true;
1830 return false;
1831}
1832
1833static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
1834 if (N->getOpcode() == ISD::ZERO_EXTEND)
1835 return true;
1836 if (isExtendedBUILD_VECTOR(N, DAG, false))
1837 return true;
1838 return false;
1839}
1840
1841static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
1842 unsigned Opcode = N->getOpcode();
1843 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
1844 SDNode *N0 = N->getOperand(0).getNode();
1845 SDNode *N1 = N->getOperand(1).getNode();
1846 return N0->hasOneUse() && N1->hasOneUse() &&
1847 isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
1848 }
1849 return false;
1850}
1851
1852static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
1853 unsigned Opcode = N->getOpcode();
1854 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
1855 SDNode *N0 = N->getOperand(0).getNode();
1856 SDNode *N1 = N->getOperand(1).getNode();
1857 return N0->hasOneUse() && N1->hasOneUse() &&
1858 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
1859 }
1860 return false;
1861}
1862
1863static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
1864 // Multiplications are only custom-lowered for 128-bit vectors so that
1865 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
1866 EVT VT = Op.getValueType();
1867 assert(VT.is128BitVector() && VT.isInteger() &&
1868 "unexpected type for custom-lowering ISD::MUL");
1869 SDNode *N0 = Op.getOperand(0).getNode();
1870 SDNode *N1 = Op.getOperand(1).getNode();
1871 unsigned NewOpc = 0;
1872 bool isMLA = false;
1873 bool isN0SExt = isSignExtended(N0, DAG);
1874 bool isN1SExt = isSignExtended(N1, DAG);
1875 if (isN0SExt && isN1SExt)
1876 NewOpc = AArch64ISD::SMULL;
1877 else {
1878 bool isN0ZExt = isZeroExtended(N0, DAG);
1879 bool isN1ZExt = isZeroExtended(N1, DAG);
1880 if (isN0ZExt && isN1ZExt)
1881 NewOpc = AArch64ISD::UMULL;
1882 else if (isN1SExt || isN1ZExt) {
1883 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
1884 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
1885 if (isN1SExt && isAddSubSExt(N0, DAG)) {
1886 NewOpc = AArch64ISD::SMULL;
1887 isMLA = true;
1888 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
1889 NewOpc = AArch64ISD::UMULL;
1890 isMLA = true;
1891 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
1892 std::swap(N0, N1);
1893 NewOpc = AArch64ISD::UMULL;
1894 isMLA = true;
1895 }
1896 }
1897
1898 if (!NewOpc) {
1899 if (VT == MVT::v2i64)
1900 // Fall through to expand this. It is not legal.
1901 return SDValue();
1902 else
1903 // Other vector multiplications are legal.
1904 return Op;
1905 }
1906 }
1907
1908 // Legalize to a S/UMULL instruction
1909 SDLoc DL(Op);
1910 SDValue Op0;
1911 SDValue Op1 = skipExtensionForVectorMULL(N1, DAG);
1912 if (!isMLA) {
1913 Op0 = skipExtensionForVectorMULL(N0, DAG);
1914 assert(Op0.getValueType().is64BitVector() &&
1915 Op1.getValueType().is64BitVector() &&
1916 "unexpected types for extended operands to VMULL");
1917 return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
1918 }
1919 // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
1920 // isel lowering to take advantage of no-stall back to back s/umul + s/umla.
1921 // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
1922 SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG);
1923 SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG);
1924 EVT Op1VT = Op1.getValueType();
1925 return DAG.getNode(N0->getOpcode(), DL, VT,
1926 DAG.getNode(NewOpc, DL, VT,
1927 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
1928 DAG.getNode(NewOpc, DL, VT,
1929 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
1930}
Tim Northoverf8bfe212014-07-18 13:07:05 +00001931
Tim Northover3b0846e2014-05-24 12:50:23 +00001932SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
1933 SelectionDAG &DAG) const {
1934 switch (Op.getOpcode()) {
1935 default:
1936 llvm_unreachable("unimplemented operand");
1937 return SDValue();
Tim Northoverf8bfe212014-07-18 13:07:05 +00001938 case ISD::BITCAST:
1939 return LowerBITCAST(Op, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00001940 case ISD::GlobalAddress:
1941 return LowerGlobalAddress(Op, DAG);
1942 case ISD::GlobalTLSAddress:
1943 return LowerGlobalTLSAddress(Op, DAG);
1944 case ISD::SETCC:
1945 return LowerSETCC(Op, DAG);
1946 case ISD::BR_CC:
1947 return LowerBR_CC(Op, DAG);
1948 case ISD::SELECT:
1949 return LowerSELECT(Op, DAG);
1950 case ISD::SELECT_CC:
1951 return LowerSELECT_CC(Op, DAG);
1952 case ISD::JumpTable:
1953 return LowerJumpTable(Op, DAG);
1954 case ISD::ConstantPool:
1955 return LowerConstantPool(Op, DAG);
1956 case ISD::BlockAddress:
1957 return LowerBlockAddress(Op, DAG);
1958 case ISD::VASTART:
1959 return LowerVASTART(Op, DAG);
1960 case ISD::VACOPY:
1961 return LowerVACOPY(Op, DAG);
1962 case ISD::VAARG:
1963 return LowerVAARG(Op, DAG);
1964 case ISD::ADDC:
1965 case ISD::ADDE:
1966 case ISD::SUBC:
1967 case ISD::SUBE:
1968 return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
1969 case ISD::SADDO:
1970 case ISD::UADDO:
1971 case ISD::SSUBO:
1972 case ISD::USUBO:
1973 case ISD::SMULO:
1974 case ISD::UMULO:
1975 return LowerXALUO(Op, DAG);
1976 case ISD::FADD:
1977 return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
1978 case ISD::FSUB:
1979 return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
1980 case ISD::FMUL:
1981 return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
1982 case ISD::FDIV:
1983 return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
1984 case ISD::FP_ROUND:
1985 return LowerFP_ROUND(Op, DAG);
1986 case ISD::FP_EXTEND:
1987 return LowerFP_EXTEND(Op, DAG);
1988 case ISD::FRAMEADDR:
1989 return LowerFRAMEADDR(Op, DAG);
1990 case ISD::RETURNADDR:
1991 return LowerRETURNADDR(Op, DAG);
1992 case ISD::INSERT_VECTOR_ELT:
1993 return LowerINSERT_VECTOR_ELT(Op, DAG);
1994 case ISD::EXTRACT_VECTOR_ELT:
1995 return LowerEXTRACT_VECTOR_ELT(Op, DAG);
1996 case ISD::BUILD_VECTOR:
1997 return LowerBUILD_VECTOR(Op, DAG);
1998 case ISD::VECTOR_SHUFFLE:
1999 return LowerVECTOR_SHUFFLE(Op, DAG);
2000 case ISD::EXTRACT_SUBVECTOR:
2001 return LowerEXTRACT_SUBVECTOR(Op, DAG);
2002 case ISD::SRA:
2003 case ISD::SRL:
2004 case ISD::SHL:
2005 return LowerVectorSRA_SRL_SHL(Op, DAG);
2006 case ISD::SHL_PARTS:
2007 return LowerShiftLeftParts(Op, DAG);
2008 case ISD::SRL_PARTS:
2009 case ISD::SRA_PARTS:
2010 return LowerShiftRightParts(Op, DAG);
2011 case ISD::CTPOP:
2012 return LowerCTPOP(Op, DAG);
2013 case ISD::FCOPYSIGN:
2014 return LowerFCOPYSIGN(Op, DAG);
2015 case ISD::AND:
2016 return LowerVectorAND(Op, DAG);
2017 case ISD::OR:
2018 return LowerVectorOR(Op, DAG);
2019 case ISD::XOR:
2020 return LowerXOR(Op, DAG);
2021 case ISD::PREFETCH:
2022 return LowerPREFETCH(Op, DAG);
2023 case ISD::SINT_TO_FP:
2024 case ISD::UINT_TO_FP:
2025 return LowerINT_TO_FP(Op, DAG);
2026 case ISD::FP_TO_SINT:
2027 case ISD::FP_TO_UINT:
2028 return LowerFP_TO_INT(Op, DAG);
2029 case ISD::FSINCOS:
2030 return LowerFSINCOS(Op, DAG);
Chad Rosierd9d0f862014-10-08 02:31:24 +00002031 case ISD::MUL:
2032 return LowerMUL(Op, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00002033 }
2034}
2035
2036/// getFunctionAlignment - Return the Log2 alignment of this function.
2037unsigned AArch64TargetLowering::getFunctionAlignment(const Function *F) const {
2038 return 2;
2039}
2040
2041//===----------------------------------------------------------------------===//
2042// Calling Convention Implementation
2043//===----------------------------------------------------------------------===//
2044
2045#include "AArch64GenCallingConv.inc"
2046
Robin Morisset039781e2014-08-29 21:53:01 +00002047/// Selects the correct CCAssignFn for a given CallingConvention value.
Tim Northover3b0846e2014-05-24 12:50:23 +00002048CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
2049 bool IsVarArg) const {
2050 switch (CC) {
2051 default:
2052 llvm_unreachable("Unsupported calling convention.");
2053 case CallingConv::WebKit_JS:
2054 return CC_AArch64_WebKit_JS;
Greg Fitzgeraldfa78d082015-01-19 17:40:05 +00002055 case CallingConv::GHC:
2056 return CC_AArch64_GHC;
Tim Northover3b0846e2014-05-24 12:50:23 +00002057 case CallingConv::C:
2058 case CallingConv::Fast:
2059 if (!Subtarget->isTargetDarwin())
2060 return CC_AArch64_AAPCS;
2061 return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS;
2062 }
2063}
2064
2065SDValue AArch64TargetLowering::LowerFormalArguments(
2066 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2067 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
2068 SmallVectorImpl<SDValue> &InVals) const {
2069 MachineFunction &MF = DAG.getMachineFunction();
2070 MachineFrameInfo *MFI = MF.getFrameInfo();
2071
2072 // Assign locations to all of the incoming arguments.
2073 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002074 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2075 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002076
2077 // At this point, Ins[].VT may already be promoted to i32. To correctly
2078 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2079 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2080 // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
2081 // we use a special version of AnalyzeFormalArguments to pass in ValVT and
2082 // LocVT.
2083 unsigned NumArgs = Ins.size();
2084 Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
2085 unsigned CurArgIdx = 0;
2086 for (unsigned i = 0; i != NumArgs; ++i) {
2087 MVT ValVT = Ins[i].VT;
Andrew Trick05938a52015-02-16 18:10:47 +00002088 if (Ins[i].isOrigArg()) {
2089 std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx);
2090 CurArgIdx = Ins[i].getOrigArgIndex();
Tim Northover3b0846e2014-05-24 12:50:23 +00002091
Andrew Trick05938a52015-02-16 18:10:47 +00002092 // Get type of the original argument.
2093 EVT ActualVT = getValueType(CurOrigArg->getType(), /*AllowUnknown*/ true);
2094 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
2095 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
2096 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
2097 ValVT = MVT::i8;
2098 else if (ActualMVT == MVT::i16)
2099 ValVT = MVT::i16;
2100 }
Tim Northover3b0846e2014-05-24 12:50:23 +00002101 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
2102 bool Res =
Tim Northover47e003c2014-05-26 17:21:53 +00002103 AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
Tim Northover3b0846e2014-05-24 12:50:23 +00002104 assert(!Res && "Call operand has unhandled type");
2105 (void)Res;
2106 }
2107 assert(ArgLocs.size() == Ins.size());
2108 SmallVector<SDValue, 16> ArgValues;
2109 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2110 CCValAssign &VA = ArgLocs[i];
2111
2112 if (Ins[i].Flags.isByVal()) {
2113 // Byval is used for HFAs in the PCS, but the system should work in a
2114 // non-compliant manner for larger structs.
2115 EVT PtrTy = getPointerTy();
2116 int Size = Ins[i].Flags.getByValSize();
2117 unsigned NumRegs = (Size + 7) / 8;
2118
2119 // FIXME: This works on big-endian for composite byvals, which are the common
2120 // case. It should also work for fundamental types too.
2121 unsigned FrameIdx =
2122 MFI->CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
2123 SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy);
2124 InVals.push_back(FrameIdxN);
2125
2126 continue;
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002127 }
2128
2129 if (VA.isRegLoc()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00002130 // Arguments stored in registers.
2131 EVT RegVT = VA.getLocVT();
2132
2133 SDValue ArgValue;
2134 const TargetRegisterClass *RC;
2135
2136 if (RegVT == MVT::i32)
2137 RC = &AArch64::GPR32RegClass;
2138 else if (RegVT == MVT::i64)
2139 RC = &AArch64::GPR64RegClass;
Oliver Stannard6eda6ff2014-07-11 13:33:46 +00002140 else if (RegVT == MVT::f16)
2141 RC = &AArch64::FPR16RegClass;
Tim Northover3b0846e2014-05-24 12:50:23 +00002142 else if (RegVT == MVT::f32)
2143 RC = &AArch64::FPR32RegClass;
2144 else if (RegVT == MVT::f64 || RegVT.is64BitVector())
2145 RC = &AArch64::FPR64RegClass;
2146 else if (RegVT == MVT::f128 || RegVT.is128BitVector())
2147 RC = &AArch64::FPR128RegClass;
2148 else
2149 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2150
2151 // Transform the arguments in physical registers into virtual ones.
2152 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2153 ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2154
2155 // If this is an 8, 16 or 32-bit value, it is really passed promoted
2156 // to 64 bits. Insert an assert[sz]ext to capture this, then
2157 // truncate to the right size.
2158 switch (VA.getLocInfo()) {
2159 default:
2160 llvm_unreachable("Unknown loc info!");
2161 case CCValAssign::Full:
2162 break;
2163 case CCValAssign::BCvt:
2164 ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
2165 break;
Tim Northover47e003c2014-05-26 17:21:53 +00002166 case CCValAssign::AExt:
Tim Northover3b0846e2014-05-24 12:50:23 +00002167 case CCValAssign::SExt:
Tim Northover3b0846e2014-05-24 12:50:23 +00002168 case CCValAssign::ZExt:
Tim Northover47e003c2014-05-26 17:21:53 +00002169 // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt
2170 // nodes after our lowering.
2171 assert(RegVT == Ins[i].VT && "incorrect register location selected");
Tim Northover3b0846e2014-05-24 12:50:23 +00002172 break;
2173 }
2174
2175 InVals.push_back(ArgValue);
2176
2177 } else { // VA.isRegLoc()
2178 assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
2179 unsigned ArgOffset = VA.getLocMemOffset();
Amara Emerson82da7d02014-08-15 14:29:57 +00002180 unsigned ArgSize = VA.getValVT().getSizeInBits() / 8;
Tim Northover3b0846e2014-05-24 12:50:23 +00002181
2182 uint32_t BEAlign = 0;
Tim Northover293d4142014-12-03 17:49:26 +00002183 if (!Subtarget->isLittleEndian() && ArgSize < 8 &&
2184 !Ins[i].Flags.isInConsecutiveRegs())
Tim Northover3b0846e2014-05-24 12:50:23 +00002185 BEAlign = 8 - ArgSize;
2186
2187 int FI = MFI->CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
2188
2189 // Create load nodes to retrieve arguments from the stack.
2190 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2191 SDValue ArgValue;
2192
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002193 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
Tim Northover47e003c2014-05-26 17:21:53 +00002194 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002195 MVT MemVT = VA.getValVT();
2196
Tim Northover47e003c2014-05-26 17:21:53 +00002197 switch (VA.getLocInfo()) {
2198 default:
2199 break;
Tim Northover6890add2014-06-03 13:54:53 +00002200 case CCValAssign::BCvt:
2201 MemVT = VA.getLocVT();
2202 break;
Tim Northover47e003c2014-05-26 17:21:53 +00002203 case CCValAssign::SExt:
2204 ExtType = ISD::SEXTLOAD;
2205 break;
2206 case CCValAssign::ZExt:
2207 ExtType = ISD::ZEXTLOAD;
2208 break;
2209 case CCValAssign::AExt:
2210 ExtType = ISD::EXTLOAD;
2211 break;
Tim Northover3b0846e2014-05-24 12:50:23 +00002212 }
2213
Tim Northover6890add2014-06-03 13:54:53 +00002214 ArgValue = DAG.getExtLoad(ExtType, DL, VA.getLocVT(), Chain, FIN,
Tim Northover47e003c2014-05-26 17:21:53 +00002215 MachinePointerInfo::getFixedStack(FI),
Benjamin Kramer2e52f022014-10-04 22:44:29 +00002216 MemVT, false, false, false, 0);
Tim Northover47e003c2014-05-26 17:21:53 +00002217
Tim Northover3b0846e2014-05-24 12:50:23 +00002218 InVals.push_back(ArgValue);
2219 }
2220 }
2221
2222 // varargs
2223 if (isVarArg) {
2224 if (!Subtarget->isTargetDarwin()) {
2225 // The AAPCS variadic function ABI is identical to the non-variadic
2226 // one. As a result there may be more arguments in registers and we should
2227 // save them for future reference.
2228 saveVarArgRegisters(CCInfo, DAG, DL, Chain);
2229 }
2230
2231 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2232 // This will point to the next argument passed via stack.
2233 unsigned StackOffset = CCInfo.getNextStackOffset();
2234 // We currently pass all varargs at 8-byte alignment.
2235 StackOffset = ((StackOffset + 7) & ~7);
2236 AFI->setVarArgsStackIndex(MFI->CreateFixedObject(4, StackOffset, true));
2237 }
2238
2239 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2240 unsigned StackArgSize = CCInfo.getNextStackOffset();
2241 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2242 if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
2243 // This is a non-standard ABI so by fiat I say we're allowed to make full
2244 // use of the stack area to be popped, which must be aligned to 16 bytes in
2245 // any case:
2246 StackArgSize = RoundUpToAlignment(StackArgSize, 16);
2247
2248 // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
2249 // a multiple of 16.
2250 FuncInfo->setArgumentStackToRestore(StackArgSize);
2251
2252 // This realignment carries over to the available bytes below. Our own
2253 // callers will guarantee the space is free by giving an aligned value to
2254 // CALLSEQ_START.
2255 }
2256 // Even if we're not expected to free up the space, it's useful to know how
2257 // much is there while considering tail calls (because we can reuse it).
2258 FuncInfo->setBytesInStackArgArea(StackArgSize);
2259
2260 return Chain;
2261}
2262
2263void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
2264 SelectionDAG &DAG, SDLoc DL,
2265 SDValue &Chain) const {
2266 MachineFunction &MF = DAG.getMachineFunction();
2267 MachineFrameInfo *MFI = MF.getFrameInfo();
2268 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2269
2270 SmallVector<SDValue, 8> MemOps;
2271
2272 static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
2273 AArch64::X3, AArch64::X4, AArch64::X5,
2274 AArch64::X6, AArch64::X7 };
2275 static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
Tim Northover3b6b7ca2015-02-21 02:11:17 +00002276 unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs);
Tim Northover3b0846e2014-05-24 12:50:23 +00002277
2278 unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
2279 int GPRIdx = 0;
2280 if (GPRSaveSize != 0) {
2281 GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
2282
2283 SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy());
2284
2285 for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
2286 unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
2287 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
2288 SDValue Store =
2289 DAG.getStore(Val.getValue(1), DL, Val, FIN,
2290 MachinePointerInfo::getStack(i * 8), false, false, 0);
2291 MemOps.push_back(Store);
2292 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002293 DAG.getConstant(8, DL, getPointerTy()));
Tim Northover3b0846e2014-05-24 12:50:23 +00002294 }
2295 }
2296 FuncInfo->setVarArgsGPRIndex(GPRIdx);
2297 FuncInfo->setVarArgsGPRSize(GPRSaveSize);
2298
2299 if (Subtarget->hasFPARMv8()) {
2300 static const MCPhysReg FPRArgRegs[] = {
2301 AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
2302 AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
2303 static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
Tim Northover3b6b7ca2015-02-21 02:11:17 +00002304 unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs);
Tim Northover3b0846e2014-05-24 12:50:23 +00002305
2306 unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
2307 int FPRIdx = 0;
2308 if (FPRSaveSize != 0) {
2309 FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
2310
2311 SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());
2312
2313 for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
2314 unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
2315 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
2316
2317 SDValue Store =
2318 DAG.getStore(Val.getValue(1), DL, Val, FIN,
2319 MachinePointerInfo::getStack(i * 16), false, false, 0);
2320 MemOps.push_back(Store);
2321 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002322 DAG.getConstant(16, DL, getPointerTy()));
Tim Northover3b0846e2014-05-24 12:50:23 +00002323 }
2324 }
2325 FuncInfo->setVarArgsFPRIndex(FPRIdx);
2326 FuncInfo->setVarArgsFPRSize(FPRSaveSize);
2327 }
2328
2329 if (!MemOps.empty()) {
2330 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
2331 }
2332}
2333
2334/// LowerCallResult - Lower the result values of a call into the
2335/// appropriate copies out of appropriate physical registers.
2336SDValue AArch64TargetLowering::LowerCallResult(
2337 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
2338 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
2339 SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
2340 SDValue ThisVal) const {
2341 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2342 ? RetCC_AArch64_WebKit_JS
2343 : RetCC_AArch64_AAPCS;
2344 // Assign locations to each value returned by this call.
2345 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002346 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2347 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002348 CCInfo.AnalyzeCallResult(Ins, RetCC);
2349
2350 // Copy all of the result registers out of their specified physreg.
2351 for (unsigned i = 0; i != RVLocs.size(); ++i) {
2352 CCValAssign VA = RVLocs[i];
2353
2354 // Pass 'this' value directly from the argument to return value, to avoid
2355 // reg unit interference
2356 if (i == 0 && isThisReturn) {
2357 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
2358 "unexpected return calling convention register assignment");
2359 InVals.push_back(ThisVal);
2360 continue;
2361 }
2362
2363 SDValue Val =
2364 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2365 Chain = Val.getValue(1);
2366 InFlag = Val.getValue(2);
2367
2368 switch (VA.getLocInfo()) {
2369 default:
2370 llvm_unreachable("Unknown loc info!");
2371 case CCValAssign::Full:
2372 break;
2373 case CCValAssign::BCvt:
2374 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2375 break;
2376 }
2377
2378 InVals.push_back(Val);
2379 }
2380
2381 return Chain;
2382}
2383
2384bool AArch64TargetLowering::isEligibleForTailCallOptimization(
2385 SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
2386 bool isCalleeStructRet, bool isCallerStructRet,
2387 const SmallVectorImpl<ISD::OutputArg> &Outs,
2388 const SmallVectorImpl<SDValue> &OutVals,
2389 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2390 // For CallingConv::C this function knows whether the ABI needs
2391 // changing. That's not true for other conventions so they will have to opt in
2392 // manually.
2393 if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
2394 return false;
2395
2396 const MachineFunction &MF = DAG.getMachineFunction();
2397 const Function *CallerF = MF.getFunction();
2398 CallingConv::ID CallerCC = CallerF->getCallingConv();
2399 bool CCMatch = CallerCC == CalleeCC;
2400
2401 // Byval parameters hand the function a pointer directly into the stack area
2402 // we want to reuse during a tail call. Working around this *is* possible (see
2403 // X86) but less efficient and uglier in LowerCall.
2404 for (Function::const_arg_iterator i = CallerF->arg_begin(),
2405 e = CallerF->arg_end();
2406 i != e; ++i)
2407 if (i->hasByValAttr())
2408 return false;
2409
2410 if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2411 if (IsTailCallConvention(CalleeCC) && CCMatch)
2412 return true;
2413 return false;
2414 }
2415
Oliver Stannard12993dd2014-08-18 12:42:15 +00002416 // Externally-defined functions with weak linkage should not be
2417 // tail-called on AArch64 when the OS does not support dynamic
2418 // pre-emption of symbols, as the AAELF spec requires normal calls
2419 // to undefined weak functions to be replaced with a NOP or jump to the
2420 // next instruction. The behaviour of branch instructions in this
2421 // situation (as used for tail calls) is implementation-defined, so we
2422 // cannot rely on the linker replacing the tail call with a return.
2423 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2424 const GlobalValue *GV = G->getGlobal();
Daniel Sandersc81f4502015-06-16 15:44:21 +00002425 const Triple &TT = getTargetMachine().getTargetTriple();
Saleem Abdulrasool67f72992015-01-03 21:35:00 +00002426 if (GV->hasExternalWeakLinkage() &&
2427 (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
Oliver Stannard12993dd2014-08-18 12:42:15 +00002428 return false;
2429 }
2430
Tim Northover3b0846e2014-05-24 12:50:23 +00002431 // Now we search for cases where we can use a tail call without changing the
2432 // ABI. Sibcall is used in some places (particularly gcc) to refer to this
2433 // concept.
2434
2435 // I want anyone implementing a new calling convention to think long and hard
2436 // about this assert.
2437 assert((!isVarArg || CalleeCC == CallingConv::C) &&
2438 "Unexpected variadic calling convention");
2439
2440 if (isVarArg && !Outs.empty()) {
2441 // At least two cases here: if caller is fastcc then we can't have any
2442 // memory arguments (we'd be expected to clean up the stack afterwards). If
2443 // caller is C then we could potentially use its argument area.
2444
2445 // FIXME: for now we take the most conservative of these in both cases:
2446 // disallow all variadic memory operands.
2447 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002448 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
2449 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002450
2451 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
2452 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2453 if (!ArgLocs[i].isRegLoc())
2454 return false;
2455 }
2456
2457 // If the calling conventions do not match, then we'd better make sure the
2458 // results are returned in the same way as what the caller expects.
2459 if (!CCMatch) {
2460 SmallVector<CCValAssign, 16> RVLocs1;
Eric Christopherb5217502014-08-06 18:45:26 +00002461 CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1,
2462 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002463 CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForCall(CalleeCC, isVarArg));
2464
2465 SmallVector<CCValAssign, 16> RVLocs2;
Eric Christopherb5217502014-08-06 18:45:26 +00002466 CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2,
2467 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002468 CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForCall(CallerCC, isVarArg));
2469
2470 if (RVLocs1.size() != RVLocs2.size())
2471 return false;
2472 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2473 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2474 return false;
2475 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2476 return false;
2477 if (RVLocs1[i].isRegLoc()) {
2478 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2479 return false;
2480 } else {
2481 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2482 return false;
2483 }
2484 }
2485 }
2486
2487 // Nothing more to check if the callee is taking no arguments
2488 if (Outs.empty())
2489 return true;
2490
2491 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002492 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
2493 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002494
2495 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2496
2497 const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2498
2499 // If the stack arguments for this call would fit into our own save area then
2500 // the call can be made tail.
2501 return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
2502}
2503
2504SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
2505 SelectionDAG &DAG,
2506 MachineFrameInfo *MFI,
2507 int ClobberedFI) const {
2508 SmallVector<SDValue, 8> ArgChains;
2509 int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
2510 int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
2511
2512 // Include the original chain at the beginning of the list. When this is
2513 // used by target LowerCall hooks, this helps legalize find the
2514 // CALLSEQ_BEGIN node.
2515 ArgChains.push_back(Chain);
2516
2517 // Add a chain value for each stack argument corresponding
2518 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
2519 UE = DAG.getEntryNode().getNode()->use_end();
2520 U != UE; ++U)
2521 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
2522 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
2523 if (FI->getIndex() < 0) {
2524 int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
2525 int64_t InLastByte = InFirstByte;
2526 InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
2527
2528 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
2529 (FirstByte <= InFirstByte && InFirstByte <= LastByte))
2530 ArgChains.push_back(SDValue(L, 1));
2531 }
2532
2533 // Build a tokenfactor for all the chains.
2534 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
2535}
2536
2537bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
2538 bool TailCallOpt) const {
2539 return CallCC == CallingConv::Fast && TailCallOpt;
2540}
2541
2542bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
2543 return CallCC == CallingConv::Fast;
2544}
2545
2546/// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
2547/// and add input and output parameter nodes.
2548SDValue
2549AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
2550 SmallVectorImpl<SDValue> &InVals) const {
2551 SelectionDAG &DAG = CLI.DAG;
2552 SDLoc &DL = CLI.DL;
2553 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2554 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2555 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2556 SDValue Chain = CLI.Chain;
2557 SDValue Callee = CLI.Callee;
2558 bool &IsTailCall = CLI.IsTailCall;
2559 CallingConv::ID CallConv = CLI.CallConv;
2560 bool IsVarArg = CLI.IsVarArg;
2561
2562 MachineFunction &MF = DAG.getMachineFunction();
2563 bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
2564 bool IsThisReturn = false;
2565
2566 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2567 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2568 bool IsSibCall = false;
2569
2570 if (IsTailCall) {
2571 // Check if it's really possible to do a tail call.
2572 IsTailCall = isEligibleForTailCallOptimization(
2573 Callee, CallConv, IsVarArg, IsStructRet,
2574 MF.getFunction()->hasStructRetAttr(), Outs, OutVals, Ins, DAG);
2575 if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
2576 report_fatal_error("failed to perform tail call elimination on a call "
2577 "site marked musttail");
2578
2579 // A sibling call is one where we're under the usual C ABI and not planning
2580 // to change that but can still do a tail call:
2581 if (!TailCallOpt && IsTailCall)
2582 IsSibCall = true;
2583
2584 if (IsTailCall)
2585 ++NumTailCalls;
2586 }
2587
2588 // Analyze operands of the call, assigning locations to each operand.
2589 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002590 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
2591 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002592
2593 if (IsVarArg) {
2594 // Handle fixed and variable vector arguments differently.
2595 // Variable vector arguments always go into memory.
2596 unsigned NumArgs = Outs.size();
2597
2598 for (unsigned i = 0; i != NumArgs; ++i) {
2599 MVT ArgVT = Outs[i].VT;
2600 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2601 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
2602 /*IsVarArg=*/ !Outs[i].IsFixed);
2603 bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2604 assert(!Res && "Call operand has unhandled type");
2605 (void)Res;
2606 }
2607 } else {
2608 // At this point, Outs[].VT may already be promoted to i32. To correctly
2609 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2610 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2611 // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
2612 // we use a special version of AnalyzeCallOperands to pass in ValVT and
2613 // LocVT.
2614 unsigned NumArgs = Outs.size();
2615 for (unsigned i = 0; i != NumArgs; ++i) {
2616 MVT ValVT = Outs[i].VT;
2617 // Get type of the original argument.
2618 EVT ActualVT = getValueType(CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
2619 /*AllowUnknown*/ true);
2620 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
2621 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2622 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
Tim Northover3b0846e2014-05-24 12:50:23 +00002623 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
Tim Northover47e003c2014-05-26 17:21:53 +00002624 ValVT = MVT::i8;
Tim Northover3b0846e2014-05-24 12:50:23 +00002625 else if (ActualMVT == MVT::i16)
Tim Northover47e003c2014-05-26 17:21:53 +00002626 ValVT = MVT::i16;
Tim Northover3b0846e2014-05-24 12:50:23 +00002627
2628 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
Tim Northover47e003c2014-05-26 17:21:53 +00002629 bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
Tim Northover3b0846e2014-05-24 12:50:23 +00002630 assert(!Res && "Call operand has unhandled type");
2631 (void)Res;
2632 }
2633 }
2634
2635 // Get a count of how many bytes are to be pushed on the stack.
2636 unsigned NumBytes = CCInfo.getNextStackOffset();
2637
2638 if (IsSibCall) {
2639 // Since we're not changing the ABI to make this a tail call, the memory
2640 // operands are already available in the caller's incoming argument space.
2641 NumBytes = 0;
2642 }
2643
2644 // FPDiff is the byte offset of the call's argument area from the callee's.
2645 // Stores to callee stack arguments will be placed in FixedStackSlots offset
2646 // by this amount for a tail call. In a sibling call it must be 0 because the
2647 // caller will deallocate the entire stack and the callee still expects its
2648 // arguments to begin at SP+0. Completely unused for non-tail calls.
2649 int FPDiff = 0;
2650
2651 if (IsTailCall && !IsSibCall) {
2652 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
2653
2654 // Since callee will pop argument stack as a tail call, we must keep the
2655 // popped size 16-byte aligned.
2656 NumBytes = RoundUpToAlignment(NumBytes, 16);
2657
2658 // FPDiff will be negative if this tail call requires more space than we
2659 // would automatically have in our incoming argument space. Positive if we
2660 // can actually shrink the stack.
2661 FPDiff = NumReusableBytes - NumBytes;
2662
2663 // The stack pointer must be 16-byte aligned at all times it's used for a
2664 // memory operation, which in practice means at *all* times and in
2665 // particular across call boundaries. Therefore our own arguments started at
2666 // a 16-byte aligned SP and the delta applied for the tail call should
2667 // satisfy the same constraint.
2668 assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
2669 }
2670
2671 // Adjust the stack pointer for the new arguments...
2672 // These operations are automatically eliminated by the prolog/epilog pass
2673 if (!IsSibCall)
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002674 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, DL,
2675 true),
2676 DL);
Tim Northover3b0846e2014-05-24 12:50:23 +00002677
2678 SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP, getPointerTy());
2679
2680 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2681 SmallVector<SDValue, 8> MemOpChains;
2682
2683 // Walk the register/memloc assignments, inserting copies/loads.
2684 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
2685 ++i, ++realArgIdx) {
2686 CCValAssign &VA = ArgLocs[i];
2687 SDValue Arg = OutVals[realArgIdx];
2688 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2689
2690 // Promote the value if needed.
2691 switch (VA.getLocInfo()) {
2692 default:
2693 llvm_unreachable("Unknown loc info!");
2694 case CCValAssign::Full:
2695 break;
2696 case CCValAssign::SExt:
2697 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2698 break;
2699 case CCValAssign::ZExt:
2700 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2701 break;
2702 case CCValAssign::AExt:
Tim Northover68ae5032014-05-26 17:22:07 +00002703 if (Outs[realArgIdx].ArgVT == MVT::i1) {
2704 // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
2705 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
2706 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
2707 }
Tim Northover3b0846e2014-05-24 12:50:23 +00002708 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2709 break;
2710 case CCValAssign::BCvt:
2711 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2712 break;
2713 case CCValAssign::FPExt:
2714 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
2715 break;
2716 }
2717
2718 if (VA.isRegLoc()) {
2719 if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i64) {
2720 assert(VA.getLocVT() == MVT::i64 &&
2721 "unexpected calling convention register assignment");
2722 assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
2723 "unexpected use of 'returned'");
2724 IsThisReturn = true;
2725 }
2726 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2727 } else {
2728 assert(VA.isMemLoc());
2729
2730 SDValue DstAddr;
2731 MachinePointerInfo DstInfo;
2732
2733 // FIXME: This works on big-endian for composite byvals, which are the
2734 // common case. It should also work for fundamental types too.
2735 uint32_t BEAlign = 0;
2736 unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
Amara Emerson82da7d02014-08-15 14:29:57 +00002737 : VA.getValVT().getSizeInBits();
Tim Northover3b0846e2014-05-24 12:50:23 +00002738 OpSize = (OpSize + 7) / 8;
Tim Northover293d4142014-12-03 17:49:26 +00002739 if (!Subtarget->isLittleEndian() && !Flags.isByVal() &&
2740 !Flags.isInConsecutiveRegs()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00002741 if (OpSize < 8)
2742 BEAlign = 8 - OpSize;
2743 }
2744 unsigned LocMemOffset = VA.getLocMemOffset();
2745 int32_t Offset = LocMemOffset + BEAlign;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002746 SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
Tim Northover3b0846e2014-05-24 12:50:23 +00002747 PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
2748
2749 if (IsTailCall) {
2750 Offset = Offset + FPDiff;
2751 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2752
2753 DstAddr = DAG.getFrameIndex(FI, getPointerTy());
2754 DstInfo = MachinePointerInfo::getFixedStack(FI);
2755
2756 // Make sure any stack arguments overlapping with where we're storing
2757 // are loaded before this eventual operation. Otherwise they'll be
2758 // clobbered.
2759 Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
2760 } else {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002761 SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
Tim Northover3b0846e2014-05-24 12:50:23 +00002762
2763 DstAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff);
2764 DstInfo = MachinePointerInfo::getStack(LocMemOffset);
2765 }
2766
2767 if (Outs[i].Flags.isByVal()) {
2768 SDValue SizeNode =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002769 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00002770 SDValue Cpy = DAG.getMemcpy(
2771 Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
Krzysztof Parzyszeka46c36b2015-04-13 17:16:45 +00002772 /*isVol = */ false, /*AlwaysInline = */ false,
2773 /*isTailCall = */ false,
2774 DstInfo, MachinePointerInfo());
Tim Northover3b0846e2014-05-24 12:50:23 +00002775
2776 MemOpChains.push_back(Cpy);
2777 } else {
2778 // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
2779 // promoted to a legal register type i32, we should truncate Arg back to
2780 // i1/i8/i16.
Tim Northover6890add2014-06-03 13:54:53 +00002781 if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
2782 VA.getValVT() == MVT::i16)
2783 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
Tim Northover3b0846e2014-05-24 12:50:23 +00002784
2785 SDValue Store =
2786 DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, false, false, 0);
2787 MemOpChains.push_back(Store);
2788 }
2789 }
2790 }
2791
2792 if (!MemOpChains.empty())
2793 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2794
2795 // Build a sequence of copy-to-reg nodes chained together with token chain
2796 // and flag operands which copy the outgoing args into the appropriate regs.
2797 SDValue InFlag;
2798 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2799 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first,
2800 RegsToPass[i].second, InFlag);
2801 InFlag = Chain.getValue(1);
2802 }
2803
2804 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2805 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2806 // node so that legalize doesn't hack it.
2807 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
2808 Subtarget->isTargetMachO()) {
2809 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2810 const GlobalValue *GV = G->getGlobal();
2811 bool InternalLinkage = GV->hasInternalLinkage();
2812 if (InternalLinkage)
2813 Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
2814 else {
2815 Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0,
2816 AArch64II::MO_GOT);
2817 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee);
2818 }
2819 } else if (ExternalSymbolSDNode *S =
2820 dyn_cast<ExternalSymbolSDNode>(Callee)) {
2821 const char *Sym = S->getSymbol();
2822 Callee =
2823 DAG.getTargetExternalSymbol(Sym, getPointerTy(), AArch64II::MO_GOT);
2824 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee);
2825 }
2826 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2827 const GlobalValue *GV = G->getGlobal();
2828 Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0);
2829 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2830 const char *Sym = S->getSymbol();
2831 Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), 0);
2832 }
2833
2834 // We don't usually want to end the call-sequence here because we would tidy
2835 // the frame up *after* the call, however in the ABI-changing tail-call case
2836 // we've carefully laid out the parameters so that when sp is reset they'll be
2837 // in the correct location.
2838 if (IsTailCall && !IsSibCall) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002839 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
2840 DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
Tim Northover3b0846e2014-05-24 12:50:23 +00002841 InFlag = Chain.getValue(1);
2842 }
2843
2844 std::vector<SDValue> Ops;
2845 Ops.push_back(Chain);
2846 Ops.push_back(Callee);
2847
2848 if (IsTailCall) {
2849 // Each tail call may have to adjust the stack by a different amount, so
2850 // this information must travel along with the operation for eventual
2851 // consumption by emitEpilogue.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002852 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00002853 }
2854
2855 // Add argument registers to the end of the list so that they are known live
2856 // into the call.
2857 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2858 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2859 RegsToPass[i].second.getValueType()));
2860
2861 // Add a register mask operand representing the call-preserved registers.
2862 const uint32_t *Mask;
Eric Christopher905f12d2015-01-29 00:19:42 +00002863 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +00002864 if (IsThisReturn) {
2865 // For 'this' returns, use the X0-preserving mask if applicable
Eric Christopher9deb75d2015-03-11 22:42:13 +00002866 Mask = TRI->getThisReturnPreservedMask(MF, CallConv);
Tim Northover3b0846e2014-05-24 12:50:23 +00002867 if (!Mask) {
2868 IsThisReturn = false;
Eric Christopher9deb75d2015-03-11 22:42:13 +00002869 Mask = TRI->getCallPreservedMask(MF, CallConv);
Tim Northover3b0846e2014-05-24 12:50:23 +00002870 }
2871 } else
Eric Christopher9deb75d2015-03-11 22:42:13 +00002872 Mask = TRI->getCallPreservedMask(MF, CallConv);
Tim Northover3b0846e2014-05-24 12:50:23 +00002873
2874 assert(Mask && "Missing call preserved mask for calling convention");
2875 Ops.push_back(DAG.getRegisterMask(Mask));
2876
2877 if (InFlag.getNode())
2878 Ops.push_back(InFlag);
2879
2880 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2881
2882 // If we're doing a tall call, use a TC_RETURN here rather than an
2883 // actual call instruction.
Arnold Schwaighoferf54b73d2015-05-08 23:52:00 +00002884 if (IsTailCall) {
2885 MF.getFrameInfo()->setHasTailCall();
Tim Northover3b0846e2014-05-24 12:50:23 +00002886 return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
Arnold Schwaighoferf54b73d2015-05-08 23:52:00 +00002887 }
Tim Northover3b0846e2014-05-24 12:50:23 +00002888
2889 // Returns a chain and a flag for retval copy to use.
2890 Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
2891 InFlag = Chain.getValue(1);
2892
2893 uint64_t CalleePopBytes = DoesCalleeRestoreStack(CallConv, TailCallOpt)
2894 ? RoundUpToAlignment(NumBytes, 16)
2895 : 0;
2896
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002897 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
2898 DAG.getIntPtrConstant(CalleePopBytes, DL, true),
Tim Northover3b0846e2014-05-24 12:50:23 +00002899 InFlag, DL);
2900 if (!Ins.empty())
2901 InFlag = Chain.getValue(1);
2902
2903 // Handle result values, copying them out of physregs into vregs that we
2904 // return.
2905 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
2906 InVals, IsThisReturn,
2907 IsThisReturn ? OutVals[0] : SDValue());
2908}
2909
2910bool AArch64TargetLowering::CanLowerReturn(
2911 CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
2912 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
2913 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2914 ? RetCC_AArch64_WebKit_JS
2915 : RetCC_AArch64_AAPCS;
2916 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002917 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
Tim Northover3b0846e2014-05-24 12:50:23 +00002918 return CCInfo.CheckReturn(Outs, RetCC);
2919}
2920
2921SDValue
2922AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2923 bool isVarArg,
2924 const SmallVectorImpl<ISD::OutputArg> &Outs,
2925 const SmallVectorImpl<SDValue> &OutVals,
2926 SDLoc DL, SelectionDAG &DAG) const {
2927 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2928 ? RetCC_AArch64_WebKit_JS
2929 : RetCC_AArch64_AAPCS;
2930 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002931 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2932 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002933 CCInfo.AnalyzeReturn(Outs, RetCC);
2934
2935 // Copy the result values into the output registers.
2936 SDValue Flag;
2937 SmallVector<SDValue, 4> RetOps(1, Chain);
2938 for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
2939 ++i, ++realRVLocIdx) {
2940 CCValAssign &VA = RVLocs[i];
2941 assert(VA.isRegLoc() && "Can only return in registers!");
2942 SDValue Arg = OutVals[realRVLocIdx];
2943
2944 switch (VA.getLocInfo()) {
2945 default:
2946 llvm_unreachable("Unknown loc info!");
2947 case CCValAssign::Full:
Tim Northover68ae5032014-05-26 17:22:07 +00002948 if (Outs[i].ArgVT == MVT::i1) {
2949 // AAPCS requires i1 to be zero-extended to i8 by the producer of the
2950 // value. This is strictly redundant on Darwin (which uses "zeroext
2951 // i1"), but will be optimised out before ISel.
2952 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
2953 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2954 }
Tim Northover3b0846e2014-05-24 12:50:23 +00002955 break;
2956 case CCValAssign::BCvt:
2957 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2958 break;
2959 }
2960
2961 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2962 Flag = Chain.getValue(1);
2963 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2964 }
2965
2966 RetOps[0] = Chain; // Update chain.
2967
2968 // Add the flag if we have it.
2969 if (Flag.getNode())
2970 RetOps.push_back(Flag);
2971
2972 return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
2973}
2974
2975//===----------------------------------------------------------------------===//
2976// Other Lowering Code
2977//===----------------------------------------------------------------------===//
2978
2979SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
2980 SelectionDAG &DAG) const {
2981 EVT PtrVT = getPointerTy();
2982 SDLoc DL(Op);
Asiri Rathnayake369c0302014-09-10 13:54:38 +00002983 const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
2984 const GlobalValue *GV = GN->getGlobal();
Tim Northover3b0846e2014-05-24 12:50:23 +00002985 unsigned char OpFlags =
2986 Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
2987
2988 assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
2989 "unexpected offset in global node");
2990
2991 // This also catched the large code model case for Darwin.
2992 if ((OpFlags & AArch64II::MO_GOT) != 0) {
2993 SDValue GotAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
2994 // FIXME: Once remat is capable of dealing with instructions with register
2995 // operands, expand this into two nodes instead of using a wrapper node.
2996 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
2997 }
2998
Asiri Rathnayake369c0302014-09-10 13:54:38 +00002999 if ((OpFlags & AArch64II::MO_CONSTPOOL) != 0) {
3000 assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
3001 "use of MO_CONSTPOOL only supported on small model");
3002 SDValue Hi = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, AArch64II::MO_PAGE);
3003 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3004 unsigned char LoFlags = AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
3005 SDValue Lo = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, LoFlags);
3006 SDValue PoolAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3007 SDValue GlobalAddr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), PoolAddr,
3008 MachinePointerInfo::getConstantPool(),
3009 /*isVolatile=*/ false,
3010 /*isNonTemporal=*/ true,
3011 /*isInvariant=*/ true, 8);
3012 if (GN->getOffset() != 0)
3013 return DAG.getNode(ISD::ADD, DL, PtrVT, GlobalAddr,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003014 DAG.getConstant(GN->getOffset(), DL, PtrVT));
Asiri Rathnayake369c0302014-09-10 13:54:38 +00003015 return GlobalAddr;
3016 }
3017
Tim Northover3b0846e2014-05-24 12:50:23 +00003018 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
3019 const unsigned char MO_NC = AArch64II::MO_NC;
3020 return DAG.getNode(
3021 AArch64ISD::WrapperLarge, DL, PtrVT,
3022 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G3),
3023 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
3024 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
3025 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
3026 } else {
3027 // Use ADRP/ADD or ADRP/LDR for everything else: the small model on ELF and
3028 // the only correct model on Darwin.
3029 SDValue Hi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3030 OpFlags | AArch64II::MO_PAGE);
3031 unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
3032 SDValue Lo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, LoFlags);
3033
3034 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3035 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3036 }
3037}
3038
3039/// \brief Convert a TLS address reference into the correct sequence of loads
3040/// and calls to compute the variable's address (for Darwin, currently) and
3041/// return an SDValue containing the final node.
3042
3043/// Darwin only has one TLS scheme which must be capable of dealing with the
3044/// fully general situation, in the worst case. This means:
3045/// + "extern __thread" declaration.
3046/// + Defined in a possibly unknown dynamic library.
3047///
3048/// The general system is that each __thread variable has a [3 x i64] descriptor
3049/// which contains information used by the runtime to calculate the address. The
3050/// only part of this the compiler needs to know about is the first xword, which
3051/// contains a function pointer that must be called with the address of the
3052/// entire descriptor in "x0".
3053///
3054/// Since this descriptor may be in a different unit, in general even the
3055/// descriptor must be accessed via an indirect load. The "ideal" code sequence
3056/// is:
3057/// adrp x0, _var@TLVPPAGE
3058/// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor
3059/// ldr x1, [x0] ; x1 contains 1st entry of descriptor,
3060/// ; the function pointer
3061/// blr x1 ; Uses descriptor address in x0
3062/// ; Address of _var is now in x0.
3063///
3064/// If the address of _var's descriptor *is* known to the linker, then it can
3065/// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
3066/// a slight efficiency gain.
3067SDValue
3068AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
3069 SelectionDAG &DAG) const {
3070 assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin");
3071
3072 SDLoc DL(Op);
3073 MVT PtrVT = getPointerTy();
3074 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3075
3076 SDValue TLVPAddr =
3077 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3078 SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
3079
3080 // The first entry in the descriptor is a function pointer that we must call
3081 // to obtain the address of the variable.
3082 SDValue Chain = DAG.getEntryNode();
3083 SDValue FuncTLVGet =
3084 DAG.getLoad(MVT::i64, DL, Chain, DescAddr, MachinePointerInfo::getGOT(),
3085 false, true, true, 8);
3086 Chain = FuncTLVGet.getValue(1);
3087
3088 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3089 MFI->setAdjustsStack(true);
3090
3091 // TLS calls preserve all registers except those that absolutely must be
3092 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
3093 // silly).
Eric Christopher6c901622015-01-28 03:51:33 +00003094 const uint32_t *Mask =
Eric Christopher905f12d2015-01-29 00:19:42 +00003095 Subtarget->getRegisterInfo()->getTLSCallPreservedMask();
Tim Northover3b0846e2014-05-24 12:50:23 +00003096
3097 // Finally, we can make the call. This is just a degenerate version of a
3098 // normal AArch64 call node: x0 takes the address of the descriptor, and
3099 // returns the address of the variable in this thread.
3100 Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
3101 Chain =
3102 DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
3103 Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
3104 DAG.getRegisterMask(Mask), Chain.getValue(1));
3105 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
3106}
3107
3108/// When accessing thread-local variables under either the general-dynamic or
3109/// local-dynamic system, we make a "TLS-descriptor" call. The variable will
3110/// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
Kristof Beylsaea84612015-03-04 09:12:08 +00003111/// is a function pointer to carry out the resolution.
Tim Northover3b0846e2014-05-24 12:50:23 +00003112///
Kristof Beylsaea84612015-03-04 09:12:08 +00003113/// The sequence is:
3114/// adrp x0, :tlsdesc:var
3115/// ldr x1, [x0, #:tlsdesc_lo12:var]
3116/// add x0, x0, #:tlsdesc_lo12:var
3117/// .tlsdesccall var
3118/// blr x1
3119/// (TPIDR_EL0 offset now in x0)
Tim Northover3b0846e2014-05-24 12:50:23 +00003120///
Kristof Beylsaea84612015-03-04 09:12:08 +00003121/// The above sequence must be produced unscheduled, to enable the linker to
3122/// optimize/relax this sequence.
3123/// Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the
3124/// above sequence, and expanded really late in the compilation flow, to ensure
3125/// the sequence is produced as per above.
3126SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr, SDLoc DL,
3127 SelectionDAG &DAG) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00003128 EVT PtrVT = getPointerTy();
3129
Kristof Beylsaea84612015-03-04 09:12:08 +00003130 SDValue Chain = DAG.getEntryNode();
Tim Northover3b0846e2014-05-24 12:50:23 +00003131 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Kristof Beylsaea84612015-03-04 09:12:08 +00003132
3133 SmallVector<SDValue, 2> Ops;
3134 Ops.push_back(Chain);
3135 Ops.push_back(SymAddr);
3136
3137 Chain = DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, Ops);
3138 SDValue Glue = Chain.getValue(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003139
3140 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
3141}
3142
3143SDValue
3144AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
3145 SelectionDAG &DAG) const {
3146 assert(Subtarget->isTargetELF() && "This function expects an ELF target");
3147 assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
3148 "ELF TLS only supported in small memory model");
Kristof Beylsaea84612015-03-04 09:12:08 +00003149 // Different choices can be made for the maximum size of the TLS area for a
3150 // module. For the small address model, the default TLS size is 16MiB and the
3151 // maximum TLS size is 4GiB.
3152 // FIXME: add -mtls-size command line option and make it control the 16MiB
3153 // vs. 4GiB code sequence generation.
Tim Northover3b0846e2014-05-24 12:50:23 +00003154 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3155
3156 TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
Kristof Beylsaea84612015-03-04 09:12:08 +00003157 if (!EnableAArch64ELFLocalDynamicTLSGeneration) {
3158 if (Model == TLSModel::LocalDynamic)
3159 Model = TLSModel::GeneralDynamic;
3160 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003161
3162 SDValue TPOff;
3163 EVT PtrVT = getPointerTy();
3164 SDLoc DL(Op);
3165 const GlobalValue *GV = GA->getGlobal();
3166
3167 SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
3168
3169 if (Model == TLSModel::LocalExec) {
3170 SDValue HiVar = DAG.getTargetGlobalAddress(
Kristof Beylsaea84612015-03-04 09:12:08 +00003171 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
Tim Northover3b0846e2014-05-24 12:50:23 +00003172 SDValue LoVar = DAG.getTargetGlobalAddress(
3173 GV, DL, PtrVT, 0,
Kristof Beylsaea84612015-03-04 09:12:08 +00003174 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
Tim Northover3b0846e2014-05-24 12:50:23 +00003175
Kristof Beylsaea84612015-03-04 09:12:08 +00003176 SDValue TPWithOff_lo =
3177 SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003178 HiVar,
3179 DAG.getTargetConstant(0, DL, MVT::i32)),
Kristof Beylsaea84612015-03-04 09:12:08 +00003180 0);
3181 SDValue TPWithOff =
3182 SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPWithOff_lo,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003183 LoVar,
3184 DAG.getTargetConstant(0, DL, MVT::i32)),
Kristof Beylsaea84612015-03-04 09:12:08 +00003185 0);
3186 return TPWithOff;
Tim Northover3b0846e2014-05-24 12:50:23 +00003187 } else if (Model == TLSModel::InitialExec) {
3188 TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3189 TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
3190 } else if (Model == TLSModel::LocalDynamic) {
3191 // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
3192 // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
3193 // the beginning of the module's TLS region, followed by a DTPREL offset
3194 // calculation.
3195
3196 // These accesses will need deduplicating if there's more than one.
3197 AArch64FunctionInfo *MFI =
3198 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
3199 MFI->incNumLocalDynamicTLSAccesses();
3200
Tim Northover3b0846e2014-05-24 12:50:23 +00003201 // The call needs a relocation too for linker relaxation. It doesn't make
3202 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3203 // the address.
3204 SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
3205 AArch64II::MO_TLS);
3206
3207 // Now we can calculate the offset from TPIDR_EL0 to this module's
3208 // thread-local area.
Kristof Beylsaea84612015-03-04 09:12:08 +00003209 TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00003210
3211 // Now use :dtprel_whatever: operations to calculate this variable's offset
3212 // in its thread-storage area.
3213 SDValue HiVar = DAG.getTargetGlobalAddress(
Kristof Beylsaea84612015-03-04 09:12:08 +00003214 GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
Tim Northover3b0846e2014-05-24 12:50:23 +00003215 SDValue LoVar = DAG.getTargetGlobalAddress(
3216 GV, DL, MVT::i64, 0,
Tim Northover3b0846e2014-05-24 12:50:23 +00003217 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3218
Kristof Beylsaea84612015-03-04 09:12:08 +00003219 TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003220 DAG.getTargetConstant(0, DL, MVT::i32)),
Kristof Beylsaea84612015-03-04 09:12:08 +00003221 0);
3222 TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003223 DAG.getTargetConstant(0, DL, MVT::i32)),
Kristof Beylsaea84612015-03-04 09:12:08 +00003224 0);
3225 } else if (Model == TLSModel::GeneralDynamic) {
Tim Northover3b0846e2014-05-24 12:50:23 +00003226 // The call needs a relocation too for linker relaxation. It doesn't make
3227 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3228 // the address.
3229 SDValue SymAddr =
3230 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3231
3232 // Finally we can make a call to calculate the offset from tpidr_el0.
Kristof Beylsaea84612015-03-04 09:12:08 +00003233 TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00003234 } else
3235 llvm_unreachable("Unsupported ELF TLS access model");
3236
3237 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
3238}
3239
3240SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
3241 SelectionDAG &DAG) const {
3242 if (Subtarget->isTargetDarwin())
3243 return LowerDarwinGlobalTLSAddress(Op, DAG);
3244 else if (Subtarget->isTargetELF())
3245 return LowerELFGlobalTLSAddress(Op, DAG);
3246
3247 llvm_unreachable("Unexpected platform trying to use TLS");
3248}
3249SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3250 SDValue Chain = Op.getOperand(0);
3251 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3252 SDValue LHS = Op.getOperand(2);
3253 SDValue RHS = Op.getOperand(3);
3254 SDValue Dest = Op.getOperand(4);
3255 SDLoc dl(Op);
3256
3257 // Handle f128 first, since lowering it will result in comparing the return
3258 // value of a libcall against zero, which is just what the rest of LowerBR_CC
3259 // is expecting to deal with.
3260 if (LHS.getValueType() == MVT::f128) {
3261 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3262
3263 // If softenSetCCOperands returned a scalar, we need to compare the result
3264 // against zero to select between true and false values.
3265 if (!RHS.getNode()) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003266 RHS = DAG.getConstant(0, dl, LHS.getValueType());
Tim Northover3b0846e2014-05-24 12:50:23 +00003267 CC = ISD::SETNE;
3268 }
3269 }
3270
3271 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
3272 // instruction.
3273 unsigned Opc = LHS.getOpcode();
3274 if (LHS.getResNo() == 1 && isa<ConstantSDNode>(RHS) &&
3275 cast<ConstantSDNode>(RHS)->isOne() &&
3276 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3277 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
3278 assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
3279 "Unexpected condition code.");
3280 // Only lower legal XALUO ops.
3281 if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
3282 return SDValue();
3283
3284 // The actual operation with overflow check.
3285 AArch64CC::CondCode OFCC;
3286 SDValue Value, Overflow;
3287 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
3288
3289 if (CC == ISD::SETNE)
3290 OFCC = getInvertedCondCode(OFCC);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003291 SDValue CCVal = DAG.getConstant(OFCC, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003292
Ahmed Bougachadf956a22015-02-06 23:15:39 +00003293 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
3294 Overflow);
Tim Northover3b0846e2014-05-24 12:50:23 +00003295 }
3296
3297 if (LHS.getValueType().isInteger()) {
3298 assert((LHS.getValueType() == RHS.getValueType()) &&
3299 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3300
3301 // If the RHS of the comparison is zero, we can potentially fold this
3302 // to a specialized branch.
3303 const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
3304 if (RHSC && RHSC->getZExtValue() == 0) {
3305 if (CC == ISD::SETEQ) {
3306 // See if we can use a TBZ to fold in an AND as well.
3307 // TBZ has a smaller branch displacement than CBZ. If the offset is
3308 // out of bounds, a late MI-layer pass rewrites branches.
3309 // 403.gcc is an example that hits this case.
3310 if (LHS.getOpcode() == ISD::AND &&
3311 isa<ConstantSDNode>(LHS.getOperand(1)) &&
3312 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3313 SDValue Test = LHS.getOperand(0);
3314 uint64_t Mask = LHS.getConstantOperandVal(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003315 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003316 DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
3317 Dest);
Tim Northover3b0846e2014-05-24 12:50:23 +00003318 }
3319
3320 return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
3321 } else if (CC == ISD::SETNE) {
3322 // See if we can use a TBZ to fold in an AND as well.
3323 // TBZ has a smaller branch displacement than CBZ. If the offset is
3324 // out of bounds, a late MI-layer pass rewrites branches.
3325 // 403.gcc is an example that hits this case.
3326 if (LHS.getOpcode() == ISD::AND &&
3327 isa<ConstantSDNode>(LHS.getOperand(1)) &&
3328 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3329 SDValue Test = LHS.getOperand(0);
3330 uint64_t Mask = LHS.getConstantOperandVal(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003331 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003332 DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
3333 Dest);
Tim Northover3b0846e2014-05-24 12:50:23 +00003334 }
3335
3336 return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
Chad Rosier579c02c2014-08-01 14:48:56 +00003337 } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
3338 // Don't combine AND since emitComparison converts the AND to an ANDS
3339 // (a.k.a. TST) and the test in the test bit and branch instruction
3340 // becomes redundant. This would also increase register pressure.
3341 uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3342 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003343 DAG.getConstant(Mask, dl, MVT::i64), Dest);
Tim Northover3b0846e2014-05-24 12:50:23 +00003344 }
3345 }
Chad Rosier579c02c2014-08-01 14:48:56 +00003346 if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
3347 LHS.getOpcode() != ISD::AND) {
3348 // Don't combine AND since emitComparison converts the AND to an ANDS
3349 // (a.k.a. TST) and the test in the test bit and branch instruction
3350 // becomes redundant. This would also increase register pressure.
3351 uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3352 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003353 DAG.getConstant(Mask, dl, MVT::i64), Dest);
Chad Rosier579c02c2014-08-01 14:48:56 +00003354 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003355
3356 SDValue CCVal;
3357 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3358 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
3359 Cmp);
3360 }
3361
3362 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3363
3364 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
3365 // clean. Some of them require two branches to implement.
3366 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3367 AArch64CC::CondCode CC1, CC2;
3368 changeFPCCToAArch64CC(CC, CC1, CC2);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003369 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003370 SDValue BR1 =
3371 DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
3372 if (CC2 != AArch64CC::AL) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003373 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003374 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
3375 Cmp);
3376 }
3377
3378 return BR1;
3379}
3380
3381SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
3382 SelectionDAG &DAG) const {
3383 EVT VT = Op.getValueType();
3384 SDLoc DL(Op);
3385
3386 SDValue In1 = Op.getOperand(0);
3387 SDValue In2 = Op.getOperand(1);
3388 EVT SrcVT = In2.getValueType();
3389 if (SrcVT != VT) {
3390 if (SrcVT == MVT::f32 && VT == MVT::f64)
3391 In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
3392 else if (SrcVT == MVT::f64 && VT == MVT::f32)
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003393 In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2,
3394 DAG.getIntPtrConstant(0, DL));
Tim Northover3b0846e2014-05-24 12:50:23 +00003395 else
3396 // FIXME: Src type is different, bail out for now. Can VT really be a
3397 // vector type?
3398 return SDValue();
3399 }
3400
3401 EVT VecVT;
3402 EVT EltVT;
Benjamin Kramer5fbfe2f2015-02-28 13:20:15 +00003403 uint64_t EltMask;
3404 SDValue VecVal1, VecVal2;
Tim Northover3b0846e2014-05-24 12:50:23 +00003405 if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
3406 EltVT = MVT::i32;
3407 VecVT = MVT::v4i32;
Benjamin Kramer5fbfe2f2015-02-28 13:20:15 +00003408 EltMask = 0x80000000ULL;
Tim Northover3b0846e2014-05-24 12:50:23 +00003409
3410 if (!VT.isVector()) {
3411 VecVal1 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3412 DAG.getUNDEF(VecVT), In1);
3413 VecVal2 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3414 DAG.getUNDEF(VecVT), In2);
3415 } else {
3416 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3417 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3418 }
3419 } else if (VT == MVT::f64 || VT == MVT::v2f64) {
3420 EltVT = MVT::i64;
3421 VecVT = MVT::v2i64;
3422
3423 // We want to materialize a mask with the the high bit set, but the AdvSIMD
3424 // immediate moves cannot materialize that in a single instruction for
3425 // 64-bit elements. Instead, materialize zero and then negate it.
Benjamin Kramer5fbfe2f2015-02-28 13:20:15 +00003426 EltMask = 0;
Tim Northover3b0846e2014-05-24 12:50:23 +00003427
3428 if (!VT.isVector()) {
3429 VecVal1 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3430 DAG.getUNDEF(VecVT), In1);
3431 VecVal2 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3432 DAG.getUNDEF(VecVT), In2);
3433 } else {
3434 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3435 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3436 }
3437 } else {
3438 llvm_unreachable("Invalid type for copysign!");
3439 }
3440
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003441 SDValue BuildVec = DAG.getConstant(EltMask, DL, VecVT);
Tim Northover3b0846e2014-05-24 12:50:23 +00003442
3443 // If we couldn't materialize the mask above, then the mask vector will be
3444 // the zero vector, and we need to negate it here.
3445 if (VT == MVT::f64 || VT == MVT::v2f64) {
3446 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
3447 BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
3448 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
3449 }
3450
3451 SDValue Sel =
3452 DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
3453
3454 if (VT == MVT::f32)
3455 return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
3456 else if (VT == MVT::f64)
3457 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
3458 else
3459 return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
3460}
3461
3462SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
Duncan P. N. Exon Smith003bb7d2015-02-14 02:09:06 +00003463 if (DAG.getMachineFunction().getFunction()->hasFnAttribute(
3464 Attribute::NoImplicitFloat))
Tim Northover3b0846e2014-05-24 12:50:23 +00003465 return SDValue();
3466
Weiming Zhao7a2d1562014-11-19 00:29:14 +00003467 if (!Subtarget->hasNEON())
3468 return SDValue();
3469
Tim Northover3b0846e2014-05-24 12:50:23 +00003470 // While there is no integer popcount instruction, it can
3471 // be more efficiently lowered to the following sequence that uses
3472 // AdvSIMD registers/instructions as long as the copies to/from
3473 // the AdvSIMD registers are cheap.
3474 // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd
3475 // CNT V0.8B, V0.8B // 8xbyte pop-counts
3476 // ADDV B0, V0.8B // sum 8xbyte pop-counts
3477 // UMOV X0, V0.B[0] // copy byte result back to integer reg
3478 SDValue Val = Op.getOperand(0);
3479 SDLoc DL(Op);
3480 EVT VT = Op.getValueType();
Tim Northover3b0846e2014-05-24 12:50:23 +00003481
Hao Liue0335d72015-01-30 02:13:53 +00003482 if (VT == MVT::i32)
3483 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
3484 Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
Tim Northover3b0846e2014-05-24 12:50:23 +00003485
Hao Liue0335d72015-01-30 02:13:53 +00003486 SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val);
Tim Northover3b0846e2014-05-24 12:50:23 +00003487 SDValue UaddLV = DAG.getNode(
3488 ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003489 DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop);
Tim Northover3b0846e2014-05-24 12:50:23 +00003490
3491 if (VT == MVT::i64)
3492 UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
3493 return UaddLV;
3494}
3495
3496SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3497
3498 if (Op.getValueType().isVector())
3499 return LowerVSETCC(Op, DAG);
3500
3501 SDValue LHS = Op.getOperand(0);
3502 SDValue RHS = Op.getOperand(1);
3503 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3504 SDLoc dl(Op);
3505
3506 // We chose ZeroOrOneBooleanContents, so use zero and one.
3507 EVT VT = Op.getValueType();
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003508 SDValue TVal = DAG.getConstant(1, dl, VT);
3509 SDValue FVal = DAG.getConstant(0, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00003510
3511 // Handle f128 first, since one possible outcome is a normal integer
3512 // comparison which gets picked up by the next if statement.
3513 if (LHS.getValueType() == MVT::f128) {
3514 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3515
3516 // If softenSetCCOperands returned a scalar, use it.
3517 if (!RHS.getNode()) {
3518 assert(LHS.getValueType() == Op.getValueType() &&
3519 "Unexpected setcc expansion!");
3520 return LHS;
3521 }
3522 }
3523
3524 if (LHS.getValueType().isInteger()) {
3525 SDValue CCVal;
3526 SDValue Cmp =
3527 getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
3528
3529 // Note that we inverted the condition above, so we reverse the order of
3530 // the true and false operands here. This will allow the setcc to be
3531 // matched to a single CSINC instruction.
3532 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
3533 }
3534
3535 // Now we know we're dealing with FP values.
3536 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3537
3538 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
3539 // and do the comparison.
3540 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3541
3542 AArch64CC::CondCode CC1, CC2;
3543 changeFPCCToAArch64CC(CC, CC1, CC2);
3544 if (CC2 == AArch64CC::AL) {
3545 changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003546 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003547
3548 // Note that we inverted the condition above, so we reverse the order of
3549 // the true and false operands here. This will allow the setcc to be
3550 // matched to a single CSINC instruction.
3551 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
3552 } else {
3553 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
3554 // totally clean. Some of them require two CSELs to implement. As is in
3555 // this case, we emit the first CSEL and then emit a second using the output
3556 // of the first as the RHS. We're effectively OR'ing the two CC's together.
3557
3558 // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003559 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003560 SDValue CS1 =
3561 DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3562
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003563 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003564 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3565 }
3566}
3567
3568/// A SELECT_CC operation is really some kind of max or min if both values being
3569/// compared are, in some sense, equal to the results in either case. However,
3570/// it is permissible to compare f32 values and produce directly extended f64
3571/// values.
3572///
3573/// Extending the comparison operands would also be allowed, but is less likely
3574/// to happen in practice since their use is right here. Note that truncate
3575/// operations would *not* be semantically equivalent.
3576static bool selectCCOpsAreFMaxCompatible(SDValue Cmp, SDValue Result) {
3577 if (Cmp == Result)
Artyom Skrobova70dfe12015-05-14 12:59:46 +00003578 return (Cmp.getValueType() == MVT::f32 ||
3579 Cmp.getValueType() == MVT::f64);
Tim Northover3b0846e2014-05-24 12:50:23 +00003580
3581 ConstantFPSDNode *CCmp = dyn_cast<ConstantFPSDNode>(Cmp);
3582 ConstantFPSDNode *CResult = dyn_cast<ConstantFPSDNode>(Result);
3583 if (CCmp && CResult && Cmp.getValueType() == MVT::f32 &&
3584 Result.getValueType() == MVT::f64) {
3585 bool Lossy;
3586 APFloat CmpVal = CCmp->getValueAPF();
3587 CmpVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &Lossy);
3588 return CResult->getValueAPF().bitwiseIsEqual(CmpVal);
3589 }
3590
3591 return Result->getOpcode() == ISD::FP_EXTEND && Result->getOperand(0) == Cmp;
3592}
3593
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00003594SDValue AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC, SDValue LHS,
3595 SDValue RHS, SDValue TVal,
3596 SDValue FVal, SDLoc dl,
Tim Northover3b0846e2014-05-24 12:50:23 +00003597 SelectionDAG &DAG) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00003598 // Handle f128 first, because it will result in a comparison of some RTLIB
3599 // call result against zero.
3600 if (LHS.getValueType() == MVT::f128) {
3601 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3602
3603 // If softenSetCCOperands returned a scalar, we need to compare the result
3604 // against zero to select between true and false values.
3605 if (!RHS.getNode()) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003606 RHS = DAG.getConstant(0, dl, LHS.getValueType());
Tim Northover3b0846e2014-05-24 12:50:23 +00003607 CC = ISD::SETNE;
3608 }
3609 }
3610
3611 // Handle integers first.
3612 if (LHS.getValueType().isInteger()) {
3613 assert((LHS.getValueType() == RHS.getValueType()) &&
3614 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3615
3616 unsigned Opcode = AArch64ISD::CSEL;
3617
3618 // If both the TVal and the FVal are constants, see if we can swap them in
3619 // order to for a CSINV or CSINC out of them.
3620 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
3621 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
3622
3623 if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
3624 std::swap(TVal, FVal);
3625 std::swap(CTVal, CFVal);
3626 CC = ISD::getSetCCInverse(CC, true);
3627 } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
3628 std::swap(TVal, FVal);
3629 std::swap(CTVal, CFVal);
3630 CC = ISD::getSetCCInverse(CC, true);
3631 } else if (TVal.getOpcode() == ISD::XOR) {
3632 // If TVal is a NOT we want to swap TVal and FVal so that we can match
3633 // with a CSINV rather than a CSEL.
3634 ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(1));
3635
3636 if (CVal && CVal->isAllOnesValue()) {
3637 std::swap(TVal, FVal);
3638 std::swap(CTVal, CFVal);
3639 CC = ISD::getSetCCInverse(CC, true);
3640 }
3641 } else if (TVal.getOpcode() == ISD::SUB) {
3642 // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
3643 // that we can match with a CSNEG rather than a CSEL.
3644 ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(0));
3645
3646 if (CVal && CVal->isNullValue()) {
3647 std::swap(TVal, FVal);
3648 std::swap(CTVal, CFVal);
3649 CC = ISD::getSetCCInverse(CC, true);
3650 }
3651 } else if (CTVal && CFVal) {
3652 const int64_t TrueVal = CTVal->getSExtValue();
3653 const int64_t FalseVal = CFVal->getSExtValue();
3654 bool Swap = false;
3655
3656 // If both TVal and FVal are constants, see if FVal is the
3657 // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
3658 // instead of a CSEL in that case.
3659 if (TrueVal == ~FalseVal) {
3660 Opcode = AArch64ISD::CSINV;
3661 } else if (TrueVal == -FalseVal) {
3662 Opcode = AArch64ISD::CSNEG;
3663 } else if (TVal.getValueType() == MVT::i32) {
3664 // If our operands are only 32-bit wide, make sure we use 32-bit
3665 // arithmetic for the check whether we can use CSINC. This ensures that
3666 // the addition in the check will wrap around properly in case there is
3667 // an overflow (which would not be the case if we do the check with
3668 // 64-bit arithmetic).
3669 const uint32_t TrueVal32 = CTVal->getZExtValue();
3670 const uint32_t FalseVal32 = CFVal->getZExtValue();
3671
3672 if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
3673 Opcode = AArch64ISD::CSINC;
3674
3675 if (TrueVal32 > FalseVal32) {
3676 Swap = true;
3677 }
3678 }
3679 // 64-bit check whether we can use CSINC.
3680 } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
3681 Opcode = AArch64ISD::CSINC;
3682
3683 if (TrueVal > FalseVal) {
3684 Swap = true;
3685 }
3686 }
3687
3688 // Swap TVal and FVal if necessary.
3689 if (Swap) {
3690 std::swap(TVal, FVal);
3691 std::swap(CTVal, CFVal);
3692 CC = ISD::getSetCCInverse(CC, true);
3693 }
3694
3695 if (Opcode != AArch64ISD::CSEL) {
3696 // Drop FVal since we can get its value by simply inverting/negating
3697 // TVal.
3698 FVal = TVal;
3699 }
3700 }
3701
3702 SDValue CCVal;
3703 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3704
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00003705 EVT VT = TVal.getValueType();
Tim Northover3b0846e2014-05-24 12:50:23 +00003706 return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
3707 }
3708
3709 // Now we know we're dealing with FP values.
3710 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3711 assert(LHS.getValueType() == RHS.getValueType());
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00003712 EVT VT = TVal.getValueType();
Tim Northover3b0846e2014-05-24 12:50:23 +00003713 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3714
3715 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
3716 // clean. Some of them require two CSELs to implement.
3717 AArch64CC::CondCode CC1, CC2;
3718 changeFPCCToAArch64CC(CC, CC1, CC2);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003719 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003720 SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3721
3722 // If we need a second CSEL, emit it, using the output of the first as the
3723 // RHS. We're effectively OR'ing the two CC's together.
3724 if (CC2 != AArch64CC::AL) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003725 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003726 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3727 }
3728
3729 // Otherwise, return the output of the first CSEL.
3730 return CS1;
3731}
3732
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00003733SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
3734 SelectionDAG &DAG) const {
3735 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3736 SDValue LHS = Op.getOperand(0);
3737 SDValue RHS = Op.getOperand(1);
3738 SDValue TVal = Op.getOperand(2);
3739 SDValue FVal = Op.getOperand(3);
3740 SDLoc DL(Op);
3741 return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
3742}
3743
3744SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
3745 SelectionDAG &DAG) const {
3746 SDValue CCVal = Op->getOperand(0);
3747 SDValue TVal = Op->getOperand(1);
3748 SDValue FVal = Op->getOperand(2);
3749 SDLoc DL(Op);
3750
3751 unsigned Opc = CCVal.getOpcode();
3752 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
3753 // instruction.
3754 if (CCVal.getResNo() == 1 &&
3755 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3756 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
3757 // Only lower legal XALUO ops.
3758 if (!DAG.getTargetLoweringInfo().isTypeLegal(CCVal->getValueType(0)))
3759 return SDValue();
3760
3761 AArch64CC::CondCode OFCC;
3762 SDValue Value, Overflow;
3763 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CCVal.getValue(0), DAG);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003764 SDValue CCVal = DAG.getConstant(OFCC, DL, MVT::i32);
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00003765
3766 return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
3767 CCVal, Overflow);
3768 }
3769
3770 // Lower it the same way as we would lower a SELECT_CC node.
3771 ISD::CondCode CC;
3772 SDValue LHS, RHS;
3773 if (CCVal.getOpcode() == ISD::SETCC) {
3774 LHS = CCVal.getOperand(0);
3775 RHS = CCVal.getOperand(1);
3776 CC = cast<CondCodeSDNode>(CCVal->getOperand(2))->get();
3777 } else {
3778 LHS = CCVal;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003779 RHS = DAG.getConstant(0, DL, CCVal.getValueType());
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00003780 CC = ISD::SETNE;
3781 }
3782 return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
3783}
3784
Tim Northover3b0846e2014-05-24 12:50:23 +00003785SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
3786 SelectionDAG &DAG) const {
3787 // Jump table entries as PC relative offsets. No additional tweaking
3788 // is necessary here. Just get the address of the jump table.
3789 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3790 EVT PtrVT = getPointerTy();
3791 SDLoc DL(Op);
3792
3793 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3794 !Subtarget->isTargetMachO()) {
3795 const unsigned char MO_NC = AArch64II::MO_NC;
3796 return DAG.getNode(
3797 AArch64ISD::WrapperLarge, DL, PtrVT,
3798 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G3),
3799 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G2 | MO_NC),
3800 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G1 | MO_NC),
3801 DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3802 AArch64II::MO_G0 | MO_NC));
3803 }
3804
3805 SDValue Hi =
3806 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_PAGE);
3807 SDValue Lo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3808 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3809 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3810 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3811}
3812
3813SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
3814 SelectionDAG &DAG) const {
3815 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3816 EVT PtrVT = getPointerTy();
3817 SDLoc DL(Op);
3818
3819 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
3820 // Use the GOT for the large code model on iOS.
3821 if (Subtarget->isTargetMachO()) {
3822 SDValue GotAddr = DAG.getTargetConstantPool(
3823 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
3824 AArch64II::MO_GOT);
3825 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
3826 }
3827
3828 const unsigned char MO_NC = AArch64II::MO_NC;
3829 return DAG.getNode(
3830 AArch64ISD::WrapperLarge, DL, PtrVT,
3831 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3832 CP->getOffset(), AArch64II::MO_G3),
3833 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3834 CP->getOffset(), AArch64II::MO_G2 | MO_NC),
3835 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3836 CP->getOffset(), AArch64II::MO_G1 | MO_NC),
3837 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3838 CP->getOffset(), AArch64II::MO_G0 | MO_NC));
3839 } else {
3840 // Use ADRP/ADD or ADRP/LDR for everything else: the small memory model on
3841 // ELF, the only valid one on Darwin.
3842 SDValue Hi =
3843 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
3844 CP->getOffset(), AArch64II::MO_PAGE);
3845 SDValue Lo = DAG.getTargetConstantPool(
3846 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
3847 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3848
3849 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3850 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3851 }
3852}
3853
3854SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
3855 SelectionDAG &DAG) const {
3856 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
3857 EVT PtrVT = getPointerTy();
3858 SDLoc DL(Op);
3859 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3860 !Subtarget->isTargetMachO()) {
3861 const unsigned char MO_NC = AArch64II::MO_NC;
3862 return DAG.getNode(
3863 AArch64ISD::WrapperLarge, DL, PtrVT,
3864 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G3),
3865 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
3866 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
3867 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
3868 } else {
3869 SDValue Hi = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGE);
3870 SDValue Lo = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGEOFF |
3871 AArch64II::MO_NC);
3872 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3873 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3874 }
3875}
3876
3877SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
3878 SelectionDAG &DAG) const {
3879 AArch64FunctionInfo *FuncInfo =
3880 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
3881
3882 SDLoc DL(Op);
3883 SDValue FR =
3884 DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
3885 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3886 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
3887 MachinePointerInfo(SV), false, false, 0);
3888}
3889
3890SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
3891 SelectionDAG &DAG) const {
3892 // The layout of the va_list struct is specified in the AArch64 Procedure Call
3893 // Standard, section B.3.
3894 MachineFunction &MF = DAG.getMachineFunction();
3895 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
3896 SDLoc DL(Op);
3897
3898 SDValue Chain = Op.getOperand(0);
3899 SDValue VAList = Op.getOperand(1);
3900 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3901 SmallVector<SDValue, 4> MemOps;
3902
3903 // void *__stack at offset 0
3904 SDValue Stack =
3905 DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy());
3906 MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
3907 MachinePointerInfo(SV), false, false, 8));
3908
3909 // void *__gr_top at offset 8
3910 int GPRSize = FuncInfo->getVarArgsGPRSize();
3911 if (GPRSize > 0) {
3912 SDValue GRTop, GRTopAddr;
3913
3914 GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003915 DAG.getConstant(8, DL, getPointerTy()));
Tim Northover3b0846e2014-05-24 12:50:23 +00003916
3917 GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), getPointerTy());
3918 GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003919 DAG.getConstant(GPRSize, DL, getPointerTy()));
Tim Northover3b0846e2014-05-24 12:50:23 +00003920
3921 MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
3922 MachinePointerInfo(SV, 8), false, false, 8));
3923 }
3924
3925 // void *__vr_top at offset 16
3926 int FPRSize = FuncInfo->getVarArgsFPRSize();
3927 if (FPRSize > 0) {
3928 SDValue VRTop, VRTopAddr;
3929 VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003930 DAG.getConstant(16, DL, getPointerTy()));
Tim Northover3b0846e2014-05-24 12:50:23 +00003931
3932 VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), getPointerTy());
3933 VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003934 DAG.getConstant(FPRSize, DL, getPointerTy()));
Tim Northover3b0846e2014-05-24 12:50:23 +00003935
3936 MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
3937 MachinePointerInfo(SV, 16), false, false, 8));
3938 }
3939
3940 // int __gr_offs at offset 24
3941 SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003942 DAG.getConstant(24, DL, getPointerTy()));
3943 MemOps.push_back(DAG.getStore(Chain, DL,
3944 DAG.getConstant(-GPRSize, DL, MVT::i32),
Tim Northover3b0846e2014-05-24 12:50:23 +00003945 GROffsAddr, MachinePointerInfo(SV, 24), false,
3946 false, 4));
3947
3948 // int __vr_offs at offset 28
3949 SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003950 DAG.getConstant(28, DL, getPointerTy()));
3951 MemOps.push_back(DAG.getStore(Chain, DL,
3952 DAG.getConstant(-FPRSize, DL, MVT::i32),
Tim Northover3b0846e2014-05-24 12:50:23 +00003953 VROffsAddr, MachinePointerInfo(SV, 28), false,
3954 false, 4));
3955
3956 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3957}
3958
3959SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
3960 SelectionDAG &DAG) const {
3961 return Subtarget->isTargetDarwin() ? LowerDarwin_VASTART(Op, DAG)
3962 : LowerAAPCS_VASTART(Op, DAG);
3963}
3964
3965SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
3966 SelectionDAG &DAG) const {
3967 // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
3968 // pointer.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003969 SDLoc DL(Op);
Tim Northover3b0846e2014-05-24 12:50:23 +00003970 unsigned VaListSize = Subtarget->isTargetDarwin() ? 8 : 32;
3971 const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3972 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3973
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003974 return DAG.getMemcpy(Op.getOperand(0), DL, Op.getOperand(1),
3975 Op.getOperand(2),
3976 DAG.getConstant(VaListSize, DL, MVT::i32),
Krzysztof Parzyszeka46c36b2015-04-13 17:16:45 +00003977 8, false, false, false, MachinePointerInfo(DestSV),
Tim Northover3b0846e2014-05-24 12:50:23 +00003978 MachinePointerInfo(SrcSV));
3979}
3980
3981SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3982 assert(Subtarget->isTargetDarwin() &&
3983 "automatic va_arg instruction only works on Darwin");
3984
3985 const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3986 EVT VT = Op.getValueType();
3987 SDLoc DL(Op);
3988 SDValue Chain = Op.getOperand(0);
3989 SDValue Addr = Op.getOperand(1);
3990 unsigned Align = Op.getConstantOperandVal(3);
3991
3992 SDValue VAList = DAG.getLoad(getPointerTy(), DL, Chain, Addr,
3993 MachinePointerInfo(V), false, false, false, 0);
3994 Chain = VAList.getValue(1);
3995
3996 if (Align > 8) {
3997 assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
3998 VAList = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003999 DAG.getConstant(Align - 1, DL, getPointerTy()));
Tim Northover3b0846e2014-05-24 12:50:23 +00004000 VAList = DAG.getNode(ISD::AND, DL, getPointerTy(), VAList,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004001 DAG.getConstant(-(int64_t)Align, DL, getPointerTy()));
Tim Northover3b0846e2014-05-24 12:50:23 +00004002 }
4003
4004 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
4005 uint64_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
4006
4007 // Scalar integer and FP values smaller than 64 bits are implicitly extended
4008 // up to 64 bits. At the very least, we have to increase the striding of the
4009 // vaargs list to match this, and for FP values we need to introduce
4010 // FP_ROUND nodes as well.
4011 if (VT.isInteger() && !VT.isVector())
4012 ArgSize = 8;
4013 bool NeedFPTrunc = false;
4014 if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
4015 ArgSize = 8;
4016 NeedFPTrunc = true;
4017 }
4018
4019 // Increment the pointer, VAList, to the next vaarg
4020 SDValue VANext = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004021 DAG.getConstant(ArgSize, DL, getPointerTy()));
Tim Northover3b0846e2014-05-24 12:50:23 +00004022 // Store the incremented VAList to the legalized pointer
4023 SDValue APStore = DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V),
4024 false, false, 0);
4025
4026 // Load the actual argument out of the pointer VAList
4027 if (NeedFPTrunc) {
4028 // Load the value as an f64.
4029 SDValue WideFP = DAG.getLoad(MVT::f64, DL, APStore, VAList,
4030 MachinePointerInfo(), false, false, false, 0);
4031 // Round the value down to an f32.
4032 SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004033 DAG.getIntPtrConstant(1, DL));
Tim Northover3b0846e2014-05-24 12:50:23 +00004034 SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
4035 // Merge the rounded value with the chain output of the load.
4036 return DAG.getMergeValues(Ops, DL);
4037 }
4038
4039 return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo(), false,
4040 false, false, 0);
4041}
4042
4043SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
4044 SelectionDAG &DAG) const {
4045 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4046 MFI->setFrameAddressIsTaken(true);
4047
4048 EVT VT = Op.getValueType();
4049 SDLoc DL(Op);
4050 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4051 SDValue FrameAddr =
4052 DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
4053 while (Depth--)
4054 FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
4055 MachinePointerInfo(), false, false, false, 0);
4056 return FrameAddr;
4057}
4058
4059// FIXME? Maybe this could be a TableGen attribute on some registers and
4060// this table could be generated automatically from RegInfo.
4061unsigned AArch64TargetLowering::getRegisterByName(const char* RegName,
4062 EVT VT) const {
4063 unsigned Reg = StringSwitch<unsigned>(RegName)
4064 .Case("sp", AArch64::SP)
4065 .Default(0);
4066 if (Reg)
4067 return Reg;
Luke Cheeseman85fd06d2015-06-01 12:02:47 +00004068 report_fatal_error(Twine("Invalid register name \""
4069 + StringRef(RegName) + "\"."));
Tim Northover3b0846e2014-05-24 12:50:23 +00004070}
4071
4072SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
4073 SelectionDAG &DAG) const {
4074 MachineFunction &MF = DAG.getMachineFunction();
4075 MachineFrameInfo *MFI = MF.getFrameInfo();
4076 MFI->setReturnAddressIsTaken(true);
4077
4078 EVT VT = Op.getValueType();
4079 SDLoc DL(Op);
4080 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4081 if (Depth) {
4082 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004083 SDValue Offset = DAG.getConstant(8, DL, getPointerTy());
Tim Northover3b0846e2014-05-24 12:50:23 +00004084 return DAG.getLoad(VT, DL, DAG.getEntryNode(),
4085 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
4086 MachinePointerInfo(), false, false, false, 0);
4087 }
4088
4089 // Return LR, which contains the return address. Mark it an implicit live-in.
4090 unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
4091 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
4092}
4093
4094/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
4095/// i64 values and take a 2 x i64 value to shift plus a shift amount.
4096SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
4097 SelectionDAG &DAG) const {
4098 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4099 EVT VT = Op.getValueType();
4100 unsigned VTBits = VT.getSizeInBits();
4101 SDLoc dl(Op);
4102 SDValue ShOpLo = Op.getOperand(0);
4103 SDValue ShOpHi = Op.getOperand(1);
4104 SDValue ShAmt = Op.getOperand(2);
4105 SDValue ARMcc;
4106 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
4107
4108 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
4109
4110 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004111 DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
Tim Northover3b0846e2014-05-24 12:50:23 +00004112 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
4113 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004114 DAG.getConstant(VTBits, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00004115 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
4116
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004117 SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64),
Tim Northover3b0846e2014-05-24 12:50:23 +00004118 ISD::SETGE, dl, DAG);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004119 SDValue CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00004120
4121 SDValue FalseValLo = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4122 SDValue TrueValLo = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
4123 SDValue Lo =
4124 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
4125
4126 // AArch64 shifts larger than the register width are wrapped rather than
4127 // clamped, so we can't just emit "hi >> x".
4128 SDValue FalseValHi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
4129 SDValue TrueValHi = Opc == ISD::SRA
4130 ? DAG.getNode(Opc, dl, VT, ShOpHi,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004131 DAG.getConstant(VTBits - 1, dl,
4132 MVT::i64))
4133 : DAG.getConstant(0, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00004134 SDValue Hi =
4135 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValHi, FalseValHi, CCVal, Cmp);
4136
4137 SDValue Ops[2] = { Lo, Hi };
4138 return DAG.getMergeValues(Ops, dl);
4139}
4140
4141/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
4142/// i64 values and take a 2 x i64 value to shift plus a shift amount.
4143SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
4144 SelectionDAG &DAG) const {
4145 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4146 EVT VT = Op.getValueType();
4147 unsigned VTBits = VT.getSizeInBits();
4148 SDLoc dl(Op);
4149 SDValue ShOpLo = Op.getOperand(0);
4150 SDValue ShOpHi = Op.getOperand(1);
4151 SDValue ShAmt = Op.getOperand(2);
4152 SDValue ARMcc;
4153
4154 assert(Op.getOpcode() == ISD::SHL_PARTS);
4155 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004156 DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
Tim Northover3b0846e2014-05-24 12:50:23 +00004157 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
4158 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004159 DAG.getConstant(VTBits, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00004160 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
4161 SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
4162
4163 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4164
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004165 SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64),
Tim Northover3b0846e2014-05-24 12:50:23 +00004166 ISD::SETGE, dl, DAG);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004167 SDValue CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00004168 SDValue Hi =
4169 DAG.getNode(AArch64ISD::CSEL, dl, VT, Tmp3, FalseVal, CCVal, Cmp);
4170
4171 // AArch64 shifts of larger than register sizes are wrapped rather than
4172 // clamped, so we can't just emit "lo << a" if a is too big.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004173 SDValue TrueValLo = DAG.getConstant(0, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00004174 SDValue FalseValLo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4175 SDValue Lo =
4176 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp);
4177
4178 SDValue Ops[2] = { Lo, Hi };
4179 return DAG.getMergeValues(Ops, dl);
4180}
4181
4182bool AArch64TargetLowering::isOffsetFoldingLegal(
4183 const GlobalAddressSDNode *GA) const {
4184 // The AArch64 target doesn't support folding offsets into global addresses.
4185 return false;
4186}
4187
4188bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
4189 // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases.
4190 // FIXME: We should be able to handle f128 as well with a clever lowering.
4191 if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32))
4192 return true;
4193
4194 if (VT == MVT::f64)
4195 return AArch64_AM::getFP64Imm(Imm) != -1;
4196 else if (VT == MVT::f32)
4197 return AArch64_AM::getFP32Imm(Imm) != -1;
4198 return false;
4199}
4200
4201//===----------------------------------------------------------------------===//
4202// AArch64 Optimization Hooks
4203//===----------------------------------------------------------------------===//
4204
4205//===----------------------------------------------------------------------===//
4206// AArch64 Inline Assembly Support
4207//===----------------------------------------------------------------------===//
4208
4209// Table of Constraints
4210// TODO: This is the current set of constraints supported by ARM for the
4211// compiler, not all of them may make sense, e.g. S may be difficult to support.
4212//
4213// r - A general register
4214// w - An FP/SIMD register of some size in the range v0-v31
4215// x - An FP/SIMD register of some size in the range v0-v15
4216// I - Constant that can be used with an ADD instruction
4217// J - Constant that can be used with a SUB instruction
4218// K - Constant that can be used with a 32-bit logical instruction
4219// L - Constant that can be used with a 64-bit logical instruction
4220// M - Constant that can be used as a 32-bit MOV immediate
4221// N - Constant that can be used as a 64-bit MOV immediate
4222// Q - A memory reference with base register and no offset
4223// S - A symbolic address
4224// Y - Floating point constant zero
4225// Z - Integer constant zero
4226//
4227// Note that general register operands will be output using their 64-bit x
4228// register name, whatever the size of the variable, unless the asm operand
4229// is prefixed by the %w modifier. Floating-point and SIMD register operands
4230// will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
4231// %q modifier.
4232
4233/// getConstraintType - Given a constraint letter, return the type of
4234/// constraint it is for this target.
4235AArch64TargetLowering::ConstraintType
4236AArch64TargetLowering::getConstraintType(const std::string &Constraint) const {
4237 if (Constraint.size() == 1) {
4238 switch (Constraint[0]) {
4239 default:
4240 break;
4241 case 'z':
4242 return C_Other;
4243 case 'x':
4244 case 'w':
4245 return C_RegisterClass;
4246 // An address with a single base register. Due to the way we
4247 // currently handle addresses it is the same as 'r'.
4248 case 'Q':
4249 return C_Memory;
4250 }
4251 }
4252 return TargetLowering::getConstraintType(Constraint);
4253}
4254
4255/// Examine constraint type and operand type and determine a weight value.
4256/// This object must already have been set up with the operand type
4257/// and the current alternative constraint selected.
4258TargetLowering::ConstraintWeight
4259AArch64TargetLowering::getSingleConstraintMatchWeight(
4260 AsmOperandInfo &info, const char *constraint) const {
4261 ConstraintWeight weight = CW_Invalid;
4262 Value *CallOperandVal = info.CallOperandVal;
4263 // If we don't have a value, we can't do a match,
4264 // but allow it at the lowest weight.
4265 if (!CallOperandVal)
4266 return CW_Default;
4267 Type *type = CallOperandVal->getType();
4268 // Look at the constraint type.
4269 switch (*constraint) {
4270 default:
4271 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
4272 break;
4273 case 'x':
4274 case 'w':
4275 if (type->isFloatingPointTy() || type->isVectorTy())
4276 weight = CW_Register;
4277 break;
4278 case 'z':
4279 weight = CW_Constant;
4280 break;
4281 }
4282 return weight;
4283}
4284
4285std::pair<unsigned, const TargetRegisterClass *>
4286AArch64TargetLowering::getRegForInlineAsmConstraint(
Eric Christopher11e4df72015-02-26 22:38:43 +00004287 const TargetRegisterInfo *TRI, const std::string &Constraint,
4288 MVT VT) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00004289 if (Constraint.size() == 1) {
4290 switch (Constraint[0]) {
4291 case 'r':
4292 if (VT.getSizeInBits() == 64)
4293 return std::make_pair(0U, &AArch64::GPR64commonRegClass);
4294 return std::make_pair(0U, &AArch64::GPR32commonRegClass);
4295 case 'w':
4296 if (VT == MVT::f32)
4297 return std::make_pair(0U, &AArch64::FPR32RegClass);
4298 if (VT.getSizeInBits() == 64)
4299 return std::make_pair(0U, &AArch64::FPR64RegClass);
4300 if (VT.getSizeInBits() == 128)
4301 return std::make_pair(0U, &AArch64::FPR128RegClass);
4302 break;
4303 // The instructions that this constraint is designed for can
4304 // only take 128-bit registers so just use that regclass.
4305 case 'x':
4306 if (VT.getSizeInBits() == 128)
4307 return std::make_pair(0U, &AArch64::FPR128_loRegClass);
4308 break;
4309 }
4310 }
4311 if (StringRef("{cc}").equals_lower(Constraint))
4312 return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
4313
4314 // Use the default implementation in TargetLowering to convert the register
4315 // constraint into a member of a register class.
4316 std::pair<unsigned, const TargetRegisterClass *> Res;
Eric Christopher11e4df72015-02-26 22:38:43 +00004317 Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00004318
4319 // Not found as a standard register?
4320 if (!Res.second) {
4321 unsigned Size = Constraint.size();
4322 if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
4323 tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
4324 const std::string Reg =
4325 std::string(&Constraint[2], &Constraint[Size - 1]);
4326 int RegNo = atoi(Reg.c_str());
4327 if (RegNo >= 0 && RegNo <= 31) {
4328 // v0 - v31 are aliases of q0 - q31.
4329 // By default we'll emit v0-v31 for this unless there's a modifier where
4330 // we'll emit the correct register as well.
4331 Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
4332 Res.second = &AArch64::FPR128RegClass;
4333 }
4334 }
4335 }
4336
4337 return Res;
4338}
4339
4340/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4341/// vector. If it is invalid, don't add anything to Ops.
4342void AArch64TargetLowering::LowerAsmOperandForConstraint(
4343 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
4344 SelectionDAG &DAG) const {
4345 SDValue Result;
4346
4347 // Currently only support length 1 constraints.
4348 if (Constraint.length() != 1)
4349 return;
4350
4351 char ConstraintLetter = Constraint[0];
4352 switch (ConstraintLetter) {
4353 default:
4354 break;
4355
4356 // This set of constraints deal with valid constants for various instructions.
4357 // Validate and return a target constant for them if we can.
4358 case 'z': {
4359 // 'z' maps to xzr or wzr so it needs an input of 0.
4360 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4361 if (!C || C->getZExtValue() != 0)
4362 return;
4363
4364 if (Op.getValueType() == MVT::i64)
4365 Result = DAG.getRegister(AArch64::XZR, MVT::i64);
4366 else
4367 Result = DAG.getRegister(AArch64::WZR, MVT::i32);
4368 break;
4369 }
4370
4371 case 'I':
4372 case 'J':
4373 case 'K':
4374 case 'L':
4375 case 'M':
4376 case 'N':
4377 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4378 if (!C)
4379 return;
4380
4381 // Grab the value and do some validation.
4382 uint64_t CVal = C->getZExtValue();
4383 switch (ConstraintLetter) {
4384 // The I constraint applies only to simple ADD or SUB immediate operands:
4385 // i.e. 0 to 4095 with optional shift by 12
4386 // The J constraint applies only to ADD or SUB immediates that would be
4387 // valid when negated, i.e. if [an add pattern] were to be output as a SUB
4388 // instruction [or vice versa], in other words -1 to -4095 with optional
4389 // left shift by 12.
4390 case 'I':
4391 if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
4392 break;
4393 return;
4394 case 'J': {
4395 uint64_t NVal = -C->getSExtValue();
Tim Northover2c46beb2014-07-27 07:10:29 +00004396 if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
4397 CVal = C->getSExtValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00004398 break;
Tim Northover2c46beb2014-07-27 07:10:29 +00004399 }
Tim Northover3b0846e2014-05-24 12:50:23 +00004400 return;
4401 }
4402 // The K and L constraints apply *only* to logical immediates, including
4403 // what used to be the MOVI alias for ORR (though the MOVI alias has now
4404 // been removed and MOV should be used). So these constraints have to
4405 // distinguish between bit patterns that are valid 32-bit or 64-bit
4406 // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
4407 // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
4408 // versa.
4409 case 'K':
4410 if (AArch64_AM::isLogicalImmediate(CVal, 32))
4411 break;
4412 return;
4413 case 'L':
4414 if (AArch64_AM::isLogicalImmediate(CVal, 64))
4415 break;
4416 return;
4417 // The M and N constraints are a superset of K and L respectively, for use
4418 // with the MOV (immediate) alias. As well as the logical immediates they
4419 // also match 32 or 64-bit immediates that can be loaded either using a
4420 // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
4421 // (M) or 64-bit 0x1234000000000000 (N) etc.
4422 // As a note some of this code is liberally stolen from the asm parser.
4423 case 'M': {
4424 if (!isUInt<32>(CVal))
4425 return;
4426 if (AArch64_AM::isLogicalImmediate(CVal, 32))
4427 break;
4428 if ((CVal & 0xFFFF) == CVal)
4429 break;
4430 if ((CVal & 0xFFFF0000ULL) == CVal)
4431 break;
4432 uint64_t NCVal = ~(uint32_t)CVal;
4433 if ((NCVal & 0xFFFFULL) == NCVal)
4434 break;
4435 if ((NCVal & 0xFFFF0000ULL) == NCVal)
4436 break;
4437 return;
4438 }
4439 case 'N': {
4440 if (AArch64_AM::isLogicalImmediate(CVal, 64))
4441 break;
4442 if ((CVal & 0xFFFFULL) == CVal)
4443 break;
4444 if ((CVal & 0xFFFF0000ULL) == CVal)
4445 break;
4446 if ((CVal & 0xFFFF00000000ULL) == CVal)
4447 break;
4448 if ((CVal & 0xFFFF000000000000ULL) == CVal)
4449 break;
4450 uint64_t NCVal = ~CVal;
4451 if ((NCVal & 0xFFFFULL) == NCVal)
4452 break;
4453 if ((NCVal & 0xFFFF0000ULL) == NCVal)
4454 break;
4455 if ((NCVal & 0xFFFF00000000ULL) == NCVal)
4456 break;
4457 if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
4458 break;
4459 return;
4460 }
4461 default:
4462 return;
4463 }
4464
4465 // All assembler immediates are 64-bit integers.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004466 Result = DAG.getTargetConstant(CVal, SDLoc(Op), MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00004467 break;
4468 }
4469
4470 if (Result.getNode()) {
4471 Ops.push_back(Result);
4472 return;
4473 }
4474
4475 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
4476}
4477
4478//===----------------------------------------------------------------------===//
4479// AArch64 Advanced SIMD Support
4480//===----------------------------------------------------------------------===//
4481
4482/// WidenVector - Given a value in the V64 register class, produce the
4483/// equivalent value in the V128 register class.
4484static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
4485 EVT VT = V64Reg.getValueType();
4486 unsigned NarrowSize = VT.getVectorNumElements();
4487 MVT EltTy = VT.getVectorElementType().getSimpleVT();
4488 MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
4489 SDLoc DL(V64Reg);
4490
4491 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004492 V64Reg, DAG.getConstant(0, DL, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00004493}
4494
4495/// getExtFactor - Determine the adjustment factor for the position when
4496/// generating an "extract from vector registers" instruction.
4497static unsigned getExtFactor(SDValue &V) {
4498 EVT EltType = V.getValueType().getVectorElementType();
4499 return EltType.getSizeInBits() / 8;
4500}
4501
4502/// NarrowVector - Given a value in the V128 register class, produce the
4503/// equivalent value in the V64 register class.
4504static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
4505 EVT VT = V128Reg.getValueType();
4506 unsigned WideSize = VT.getVectorNumElements();
4507 MVT EltTy = VT.getVectorElementType().getSimpleVT();
4508 MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
4509 SDLoc DL(V128Reg);
4510
4511 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
4512}
4513
4514// Gather data to see if the operation can be modelled as a
4515// shuffle in combination with VEXTs.
4516SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
4517 SelectionDAG &DAG) const {
Kevin Qinf0ec9af2014-06-18 05:54:42 +00004518 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
Tim Northover3b0846e2014-05-24 12:50:23 +00004519 SDLoc dl(Op);
4520 EVT VT = Op.getValueType();
4521 unsigned NumElts = VT.getVectorNumElements();
4522
Tim Northover7324e842014-07-24 15:39:55 +00004523 struct ShuffleSourceInfo {
4524 SDValue Vec;
4525 unsigned MinElt;
4526 unsigned MaxElt;
Tim Northover3b0846e2014-05-24 12:50:23 +00004527
Tim Northover7324e842014-07-24 15:39:55 +00004528 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
4529 // be compatible with the shuffle we intend to construct. As a result
4530 // ShuffleVec will be some sliding window into the original Vec.
4531 SDValue ShuffleVec;
4532
4533 // Code should guarantee that element i in Vec starts at element "WindowBase
4534 // + i * WindowScale in ShuffleVec".
4535 int WindowBase;
4536 int WindowScale;
4537
4538 bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
4539 ShuffleSourceInfo(SDValue Vec)
4540 : Vec(Vec), MinElt(UINT_MAX), MaxElt(0), ShuffleVec(Vec), WindowBase(0),
4541 WindowScale(1) {}
4542 };
4543
4544 // First gather all vectors used as an immediate source for this BUILD_VECTOR
4545 // node.
4546 SmallVector<ShuffleSourceInfo, 2> Sources;
Tim Northover3b0846e2014-05-24 12:50:23 +00004547 for (unsigned i = 0; i < NumElts; ++i) {
4548 SDValue V = Op.getOperand(i);
4549 if (V.getOpcode() == ISD::UNDEF)
4550 continue;
4551 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4552 // A shuffle can only come from building a vector from various
4553 // elements of other vectors.
4554 return SDValue();
4555 }
4556
Tim Northover7324e842014-07-24 15:39:55 +00004557 // Add this element source to the list if it's not already there.
Tim Northover3b0846e2014-05-24 12:50:23 +00004558 SDValue SourceVec = V.getOperand(0);
Tim Northover7324e842014-07-24 15:39:55 +00004559 auto Source = std::find(Sources.begin(), Sources.end(), SourceVec);
4560 if (Source == Sources.end())
James Molloyf497d552014-10-17 17:06:31 +00004561 Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
Tim Northover3b0846e2014-05-24 12:50:23 +00004562
Tim Northover7324e842014-07-24 15:39:55 +00004563 // Update the minimum and maximum lane number seen.
4564 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4565 Source->MinElt = std::min(Source->MinElt, EltNo);
4566 Source->MaxElt = std::max(Source->MaxElt, EltNo);
Tim Northover3b0846e2014-05-24 12:50:23 +00004567 }
4568
4569 // Currently only do something sane when at most two source vectors
Tim Northover7324e842014-07-24 15:39:55 +00004570 // are involved.
4571 if (Sources.size() > 2)
Tim Northover3b0846e2014-05-24 12:50:23 +00004572 return SDValue();
4573
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004574 // Find out the smallest element size among result and two sources, and use
4575 // it as element size to build the shuffle_vector.
4576 EVT SmallestEltTy = VT.getVectorElementType();
Tim Northover7324e842014-07-24 15:39:55 +00004577 for (auto &Source : Sources) {
4578 EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004579 if (SrcEltTy.bitsLT(SmallestEltTy)) {
4580 SmallestEltTy = SrcEltTy;
4581 }
4582 }
4583 unsigned ResMultiplier =
4584 VT.getVectorElementType().getSizeInBits() / SmallestEltTy.getSizeInBits();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004585 NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
4586 EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
Tim Northover3b0846e2014-05-24 12:50:23 +00004587
Tim Northover7324e842014-07-24 15:39:55 +00004588 // If the source vector is too wide or too narrow, we may nevertheless be able
4589 // to construct a compatible shuffle either by concatenating it with UNDEF or
4590 // extracting a suitable range of elements.
4591 for (auto &Src : Sources) {
4592 EVT SrcVT = Src.ShuffleVec.getValueType();
Kevin Qinf0ec9af2014-06-18 05:54:42 +00004593
Tim Northover7324e842014-07-24 15:39:55 +00004594 if (SrcVT.getSizeInBits() == VT.getSizeInBits())
Tim Northover3b0846e2014-05-24 12:50:23 +00004595 continue;
Tim Northover7324e842014-07-24 15:39:55 +00004596
4597 // This stage of the search produces a source with the same element type as
4598 // the original, but with a total width matching the BUILD_VECTOR output.
4599 EVT EltVT = SrcVT.getVectorElementType();
James Molloyf497d552014-10-17 17:06:31 +00004600 unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
4601 EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
Tim Northover7324e842014-07-24 15:39:55 +00004602
4603 if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
4604 assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits());
Tim Northover3b0846e2014-05-24 12:50:23 +00004605 // We can pad out the smaller vector for free, so if it's part of a
4606 // shuffle...
Tim Northover7324e842014-07-24 15:39:55 +00004607 Src.ShuffleVec =
4608 DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
4609 DAG.getUNDEF(Src.ShuffleVec.getValueType()));
Tim Northover3b0846e2014-05-24 12:50:23 +00004610 continue;
4611 }
4612
Tim Northover7324e842014-07-24 15:39:55 +00004613 assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits());
Tim Northover3b0846e2014-05-24 12:50:23 +00004614
James Molloyf497d552014-10-17 17:06:31 +00004615 if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004616 // Span too large for a VEXT to cope
4617 return SDValue();
4618 }
4619
James Molloyf497d552014-10-17 17:06:31 +00004620 if (Src.MinElt >= NumSrcElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004621 // The extraction can just take the second half
Tim Northover7324e842014-07-24 15:39:55 +00004622 Src.ShuffleVec =
4623 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004624 DAG.getConstant(NumSrcElts, dl, MVT::i64));
James Molloyf497d552014-10-17 17:06:31 +00004625 Src.WindowBase = -NumSrcElts;
4626 } else if (Src.MaxElt < NumSrcElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004627 // The extraction can just take the first half
Tim Northover5e84fe32014-12-06 00:33:37 +00004628 Src.ShuffleVec =
4629 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004630 DAG.getConstant(0, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00004631 } else {
4632 // An actual VEXT is needed
Tim Northover5e84fe32014-12-06 00:33:37 +00004633 SDValue VEXTSrc1 =
4634 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004635 DAG.getConstant(0, dl, MVT::i64));
Tim Northover7324e842014-07-24 15:39:55 +00004636 SDValue VEXTSrc2 =
4637 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004638 DAG.getConstant(NumSrcElts, dl, MVT::i64));
Tim Northover7324e842014-07-24 15:39:55 +00004639 unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);
4640
4641 Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004642 VEXTSrc2,
4643 DAG.getConstant(Imm, dl, MVT::i32));
Tim Northover7324e842014-07-24 15:39:55 +00004644 Src.WindowBase = -Src.MinElt;
Tim Northover3b0846e2014-05-24 12:50:23 +00004645 }
4646 }
4647
Tim Northover7324e842014-07-24 15:39:55 +00004648 // Another possible incompatibility occurs from the vector element types. We
4649 // can fix this by bitcasting the source vectors to the same type we intend
4650 // for the shuffle.
4651 for (auto &Src : Sources) {
4652 EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
4653 if (SrcEltTy == SmallestEltTy)
4654 continue;
4655 assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
4656 Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
4657 Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
4658 Src.WindowBase *= Src.WindowScale;
4659 }
Tim Northover3b0846e2014-05-24 12:50:23 +00004660
Tim Northover7324e842014-07-24 15:39:55 +00004661 // Final sanity check before we try to actually produce a shuffle.
4662 DEBUG(
4663 for (auto Src : Sources)
4664 assert(Src.ShuffleVec.getValueType() == ShuffleVT);
4665 );
4666
4667 // The stars all align, our next step is to produce the mask for the shuffle.
4668 SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
4669 int BitsPerShuffleLane = ShuffleVT.getVectorElementType().getSizeInBits();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004670 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004671 SDValue Entry = Op.getOperand(i);
Tim Northover7324e842014-07-24 15:39:55 +00004672 if (Entry.getOpcode() == ISD::UNDEF)
4673 continue;
Tim Northover3b0846e2014-05-24 12:50:23 +00004674
Tim Northover7324e842014-07-24 15:39:55 +00004675 auto Src = std::find(Sources.begin(), Sources.end(), Entry.getOperand(0));
4676 int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
4677
4678 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
4679 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
4680 // segment.
4681 EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
4682 int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
4683 VT.getVectorElementType().getSizeInBits());
4684 int LanesDefined = BitsDefined / BitsPerShuffleLane;
4685
4686 // This source is expected to fill ResMultiplier lanes of the final shuffle,
4687 // starting at the appropriate offset.
4688 int *LaneMask = &Mask[i * ResMultiplier];
4689
4690 int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
4691 ExtractBase += NumElts * (Src - Sources.begin());
4692 for (int j = 0; j < LanesDefined; ++j)
4693 LaneMask[j] = ExtractBase + j;
Tim Northover3b0846e2014-05-24 12:50:23 +00004694 }
4695
4696 // Final check before we try to produce nonsense...
Tim Northover7324e842014-07-24 15:39:55 +00004697 if (!isShuffleMaskLegal(Mask, ShuffleVT))
4698 return SDValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00004699
Tim Northover7324e842014-07-24 15:39:55 +00004700 SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
4701 for (unsigned i = 0; i < Sources.size(); ++i)
4702 ShuffleOps[i] = Sources[i].ShuffleVec;
4703
4704 SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
4705 ShuffleOps[1], &Mask[0]);
4706 return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
Tim Northover3b0846e2014-05-24 12:50:23 +00004707}
4708
4709// check if an EXT instruction can handle the shuffle mask when the
4710// vector sources of the shuffle are the same.
4711static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
4712 unsigned NumElts = VT.getVectorNumElements();
4713
4714 // Assume that the first shuffle index is not UNDEF. Fail if it is.
4715 if (M[0] < 0)
4716 return false;
4717
4718 Imm = M[0];
4719
4720 // If this is a VEXT shuffle, the immediate value is the index of the first
4721 // element. The other shuffle indices must be the successive elements after
4722 // the first one.
4723 unsigned ExpectedElt = Imm;
4724 for (unsigned i = 1; i < NumElts; ++i) {
4725 // Increment the expected index. If it wraps around, just follow it
4726 // back to index zero and keep going.
4727 ++ExpectedElt;
4728 if (ExpectedElt == NumElts)
4729 ExpectedElt = 0;
4730
4731 if (M[i] < 0)
4732 continue; // ignore UNDEF indices
4733 if (ExpectedElt != static_cast<unsigned>(M[i]))
4734 return false;
4735 }
4736
4737 return true;
4738}
4739
4740// check if an EXT instruction can handle the shuffle mask when the
4741// vector sources of the shuffle are different.
4742static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
4743 unsigned &Imm) {
4744 // Look for the first non-undef element.
4745 const int *FirstRealElt = std::find_if(M.begin(), M.end(),
4746 [](int Elt) {return Elt >= 0;});
4747
4748 // Benefit form APInt to handle overflow when calculating expected element.
4749 unsigned NumElts = VT.getVectorNumElements();
4750 unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
4751 APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
4752 // The following shuffle indices must be the successive elements after the
4753 // first real element.
4754 const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
4755 [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
4756 if (FirstWrongElt != M.end())
4757 return false;
4758
4759 // The index of an EXT is the first element if it is not UNDEF.
4760 // Watch out for the beginning UNDEFs. The EXT index should be the expected
4761 // value of the first element. E.g.
4762 // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
4763 // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
4764 // ExpectedElt is the last mask index plus 1.
4765 Imm = ExpectedElt.getZExtValue();
4766
4767 // There are two difference cases requiring to reverse input vectors.
4768 // For example, for vector <4 x i32> we have the following cases,
4769 // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
4770 // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
4771 // For both cases, we finally use mask <5, 6, 7, 0>, which requires
4772 // to reverse two input vectors.
4773 if (Imm < NumElts)
4774 ReverseEXT = true;
4775 else
4776 Imm -= NumElts;
4777
4778 return true;
4779}
4780
4781/// isREVMask - Check if a vector shuffle corresponds to a REV
4782/// instruction with the specified blocksize. (The order of the elements
4783/// within each block of the vector is reversed.)
4784static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
4785 assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
4786 "Only possible block sizes for REV are: 16, 32, 64");
4787
4788 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4789 if (EltSz == 64)
4790 return false;
4791
4792 unsigned NumElts = VT.getVectorNumElements();
4793 unsigned BlockElts = M[0] + 1;
4794 // If the first shuffle index is UNDEF, be optimistic.
4795 if (M[0] < 0)
4796 BlockElts = BlockSize / EltSz;
4797
4798 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
4799 return false;
4800
4801 for (unsigned i = 0; i < NumElts; ++i) {
4802 if (M[i] < 0)
4803 continue; // ignore UNDEF indices
4804 if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
4805 return false;
4806 }
4807
4808 return true;
4809}
4810
4811static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4812 unsigned NumElts = VT.getVectorNumElements();
4813 WhichResult = (M[0] == 0 ? 0 : 1);
4814 unsigned Idx = WhichResult * NumElts / 2;
4815 for (unsigned i = 0; i != NumElts; i += 2) {
4816 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
4817 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
4818 return false;
4819 Idx += 1;
4820 }
4821
4822 return true;
4823}
4824
4825static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4826 unsigned NumElts = VT.getVectorNumElements();
4827 WhichResult = (M[0] == 0 ? 0 : 1);
4828 for (unsigned i = 0; i != NumElts; ++i) {
4829 if (M[i] < 0)
4830 continue; // ignore UNDEF indices
4831 if ((unsigned)M[i] != 2 * i + WhichResult)
4832 return false;
4833 }
4834
4835 return true;
4836}
4837
4838static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4839 unsigned NumElts = VT.getVectorNumElements();
4840 WhichResult = (M[0] == 0 ? 0 : 1);
4841 for (unsigned i = 0; i < NumElts; i += 2) {
4842 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
4843 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
4844 return false;
4845 }
4846 return true;
4847}
4848
4849/// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
4850/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4851/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
4852static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4853 unsigned NumElts = VT.getVectorNumElements();
4854 WhichResult = (M[0] == 0 ? 0 : 1);
4855 unsigned Idx = WhichResult * NumElts / 2;
4856 for (unsigned i = 0; i != NumElts; i += 2) {
4857 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
4858 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
4859 return false;
4860 Idx += 1;
4861 }
4862
4863 return true;
4864}
4865
4866/// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
4867/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4868/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
4869static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4870 unsigned Half = VT.getVectorNumElements() / 2;
4871 WhichResult = (M[0] == 0 ? 0 : 1);
4872 for (unsigned j = 0; j != 2; ++j) {
4873 unsigned Idx = WhichResult;
4874 for (unsigned i = 0; i != Half; ++i) {
4875 int MIdx = M[i + j * Half];
4876 if (MIdx >= 0 && (unsigned)MIdx != Idx)
4877 return false;
4878 Idx += 2;
4879 }
4880 }
4881
4882 return true;
4883}
4884
4885/// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
4886/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4887/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
4888static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4889 unsigned NumElts = VT.getVectorNumElements();
4890 WhichResult = (M[0] == 0 ? 0 : 1);
4891 for (unsigned i = 0; i < NumElts; i += 2) {
4892 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
4893 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
4894 return false;
4895 }
4896 return true;
4897}
4898
4899static bool isINSMask(ArrayRef<int> M, int NumInputElements,
4900 bool &DstIsLeft, int &Anomaly) {
4901 if (M.size() != static_cast<size_t>(NumInputElements))
4902 return false;
4903
4904 int NumLHSMatch = 0, NumRHSMatch = 0;
4905 int LastLHSMismatch = -1, LastRHSMismatch = -1;
4906
4907 for (int i = 0; i < NumInputElements; ++i) {
4908 if (M[i] == -1) {
4909 ++NumLHSMatch;
4910 ++NumRHSMatch;
4911 continue;
4912 }
4913
4914 if (M[i] == i)
4915 ++NumLHSMatch;
4916 else
4917 LastLHSMismatch = i;
4918
4919 if (M[i] == i + NumInputElements)
4920 ++NumRHSMatch;
4921 else
4922 LastRHSMismatch = i;
4923 }
4924
4925 if (NumLHSMatch == NumInputElements - 1) {
4926 DstIsLeft = true;
4927 Anomaly = LastLHSMismatch;
4928 return true;
4929 } else if (NumRHSMatch == NumInputElements - 1) {
4930 DstIsLeft = false;
4931 Anomaly = LastRHSMismatch;
4932 return true;
4933 }
4934
4935 return false;
4936}
4937
4938static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
4939 if (VT.getSizeInBits() != 128)
4940 return false;
4941
4942 unsigned NumElts = VT.getVectorNumElements();
4943
4944 for (int I = 0, E = NumElts / 2; I != E; I++) {
4945 if (Mask[I] != I)
4946 return false;
4947 }
4948
4949 int Offset = NumElts / 2;
4950 for (int I = NumElts / 2, E = NumElts; I != E; I++) {
4951 if (Mask[I] != I + SplitLHS * Offset)
4952 return false;
4953 }
4954
4955 return true;
4956}
4957
4958static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
4959 SDLoc DL(Op);
4960 EVT VT = Op.getValueType();
4961 SDValue V0 = Op.getOperand(0);
4962 SDValue V1 = Op.getOperand(1);
4963 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
4964
4965 if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
4966 VT.getVectorElementType() != V1.getValueType().getVectorElementType())
4967 return SDValue();
4968
4969 bool SplitV0 = V0.getValueType().getSizeInBits() == 128;
4970
4971 if (!isConcatMask(Mask, VT, SplitV0))
4972 return SDValue();
4973
4974 EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
4975 VT.getVectorNumElements() / 2);
4976 if (SplitV0) {
4977 V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004978 DAG.getConstant(0, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00004979 }
4980 if (V1.getValueType().getSizeInBits() == 128) {
4981 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004982 DAG.getConstant(0, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00004983 }
4984 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
4985}
4986
4987/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4988/// the specified operations to build the shuffle.
4989static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4990 SDValue RHS, SelectionDAG &DAG,
4991 SDLoc dl) {
4992 unsigned OpNum = (PFEntry >> 26) & 0x0F;
4993 unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
4994 unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
4995
4996 enum {
4997 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4998 OP_VREV,
4999 OP_VDUP0,
5000 OP_VDUP1,
5001 OP_VDUP2,
5002 OP_VDUP3,
5003 OP_VEXT1,
5004 OP_VEXT2,
5005 OP_VEXT3,
5006 OP_VUZPL, // VUZP, left result
5007 OP_VUZPR, // VUZP, right result
5008 OP_VZIPL, // VZIP, left result
5009 OP_VZIPR, // VZIP, right result
5010 OP_VTRNL, // VTRN, left result
5011 OP_VTRNR // VTRN, right result
5012 };
5013
5014 if (OpNum == OP_COPY) {
5015 if (LHSID == (1 * 9 + 2) * 9 + 3)
5016 return LHS;
5017 assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
5018 return RHS;
5019 }
5020
5021 SDValue OpLHS, OpRHS;
5022 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
5023 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
5024 EVT VT = OpLHS.getValueType();
5025
5026 switch (OpNum) {
5027 default:
5028 llvm_unreachable("Unknown shuffle opcode!");
5029 case OP_VREV:
5030 // VREV divides the vector in half and swaps within the half.
5031 if (VT.getVectorElementType() == MVT::i32 ||
5032 VT.getVectorElementType() == MVT::f32)
5033 return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
5034 // vrev <4 x i16> -> REV32
Oliver Stannard89d15422014-08-27 16:16:04 +00005035 if (VT.getVectorElementType() == MVT::i16 ||
5036 VT.getVectorElementType() == MVT::f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005037 return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
5038 // vrev <4 x i8> -> REV16
5039 assert(VT.getVectorElementType() == MVT::i8);
5040 return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
5041 case OP_VDUP0:
5042 case OP_VDUP1:
5043 case OP_VDUP2:
5044 case OP_VDUP3: {
5045 EVT EltTy = VT.getVectorElementType();
5046 unsigned Opcode;
5047 if (EltTy == MVT::i8)
5048 Opcode = AArch64ISD::DUPLANE8;
Ahmed Bougacha941420d2015-04-16 23:57:07 +00005049 else if (EltTy == MVT::i16 || EltTy == MVT::f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005050 Opcode = AArch64ISD::DUPLANE16;
5051 else if (EltTy == MVT::i32 || EltTy == MVT::f32)
5052 Opcode = AArch64ISD::DUPLANE32;
5053 else if (EltTy == MVT::i64 || EltTy == MVT::f64)
5054 Opcode = AArch64ISD::DUPLANE64;
5055 else
5056 llvm_unreachable("Invalid vector element type?");
5057
5058 if (VT.getSizeInBits() == 64)
5059 OpLHS = WidenVector(OpLHS, DAG);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005060 SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00005061 return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
5062 }
5063 case OP_VEXT1:
5064 case OP_VEXT2:
5065 case OP_VEXT3: {
5066 unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
5067 return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005068 DAG.getConstant(Imm, dl, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00005069 }
5070 case OP_VUZPL:
5071 return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
5072 OpRHS);
5073 case OP_VUZPR:
5074 return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
5075 OpRHS);
5076 case OP_VZIPL:
5077 return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
5078 OpRHS);
5079 case OP_VZIPR:
5080 return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
5081 OpRHS);
5082 case OP_VTRNL:
5083 return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
5084 OpRHS);
5085 case OP_VTRNR:
5086 return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
5087 OpRHS);
5088 }
5089}
5090
5091static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
5092 SelectionDAG &DAG) {
5093 // Check to see if we can use the TBL instruction.
5094 SDValue V1 = Op.getOperand(0);
5095 SDValue V2 = Op.getOperand(1);
5096 SDLoc DL(Op);
5097
5098 EVT EltVT = Op.getValueType().getVectorElementType();
5099 unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
5100
5101 SmallVector<SDValue, 8> TBLMask;
5102 for (int Val : ShuffleMask) {
5103 for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
5104 unsigned Offset = Byte + Val * BytesPerElt;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005105 TBLMask.push_back(DAG.getConstant(Offset, DL, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00005106 }
5107 }
5108
5109 MVT IndexVT = MVT::v8i8;
5110 unsigned IndexLen = 8;
5111 if (Op.getValueType().getSizeInBits() == 128) {
5112 IndexVT = MVT::v16i8;
5113 IndexLen = 16;
5114 }
5115
5116 SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
5117 SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
5118
5119 SDValue Shuffle;
5120 if (V2.getNode()->getOpcode() == ISD::UNDEF) {
5121 if (IndexLen == 8)
5122 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
5123 Shuffle = DAG.getNode(
5124 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005125 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
Tim Northover3b0846e2014-05-24 12:50:23 +00005126 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5127 makeArrayRef(TBLMask.data(), IndexLen)));
5128 } else {
5129 if (IndexLen == 8) {
5130 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
5131 Shuffle = DAG.getNode(
5132 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005133 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
Tim Northover3b0846e2014-05-24 12:50:23 +00005134 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5135 makeArrayRef(TBLMask.data(), IndexLen)));
5136 } else {
5137 // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
5138 // cannot currently represent the register constraints on the input
5139 // table registers.
5140 // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
5141 // DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5142 // &TBLMask[0], IndexLen));
5143 Shuffle = DAG.getNode(
5144 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005145 DAG.getConstant(Intrinsic::aarch64_neon_tbl2, DL, MVT::i32),
5146 V1Cst, V2Cst,
Tim Northover3b0846e2014-05-24 12:50:23 +00005147 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5148 makeArrayRef(TBLMask.data(), IndexLen)));
5149 }
5150 }
5151 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
5152}
5153
5154static unsigned getDUPLANEOp(EVT EltType) {
5155 if (EltType == MVT::i8)
5156 return AArch64ISD::DUPLANE8;
Oliver Stannard89d15422014-08-27 16:16:04 +00005157 if (EltType == MVT::i16 || EltType == MVT::f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005158 return AArch64ISD::DUPLANE16;
5159 if (EltType == MVT::i32 || EltType == MVT::f32)
5160 return AArch64ISD::DUPLANE32;
5161 if (EltType == MVT::i64 || EltType == MVT::f64)
5162 return AArch64ISD::DUPLANE64;
5163
5164 llvm_unreachable("Invalid vector element type?");
5165}
5166
5167SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
5168 SelectionDAG &DAG) const {
5169 SDLoc dl(Op);
5170 EVT VT = Op.getValueType();
5171
5172 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
5173
5174 // Convert shuffles that are directly supported on NEON to target-specific
5175 // DAG nodes, instead of keeping them as shuffles and matching them again
5176 // during code selection. This is more efficient and avoids the possibility
5177 // of inconsistencies between legalization and selection.
5178 ArrayRef<int> ShuffleMask = SVN->getMask();
5179
5180 SDValue V1 = Op.getOperand(0);
5181 SDValue V2 = Op.getOperand(1);
5182
5183 if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0],
5184 V1.getValueType().getSimpleVT())) {
5185 int Lane = SVN->getSplatIndex();
5186 // If this is undef splat, generate it via "just" vdup, if possible.
5187 if (Lane == -1)
5188 Lane = 0;
5189
5190 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
5191 return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
5192 V1.getOperand(0));
5193 // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
5194 // constant. If so, we can just reference the lane's definition directly.
5195 if (V1.getOpcode() == ISD::BUILD_VECTOR &&
5196 !isa<ConstantSDNode>(V1.getOperand(Lane)))
5197 return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
5198
5199 // Otherwise, duplicate from the lane of the input vector.
5200 unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
5201
5202 // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
5203 // to make a vector of the same size as this SHUFFLE. We can ignore the
5204 // extract entirely, and canonicalise the concat using WidenVector.
5205 if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
5206 Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
5207 V1 = V1.getOperand(0);
5208 } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
5209 unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
5210 Lane -= Idx * VT.getVectorNumElements() / 2;
5211 V1 = WidenVector(V1.getOperand(Idx), DAG);
5212 } else if (VT.getSizeInBits() == 64)
5213 V1 = WidenVector(V1, DAG);
5214
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005215 return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00005216 }
5217
5218 if (isREVMask(ShuffleMask, VT, 64))
5219 return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
5220 if (isREVMask(ShuffleMask, VT, 32))
5221 return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
5222 if (isREVMask(ShuffleMask, VT, 16))
5223 return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
5224
5225 bool ReverseEXT = false;
5226 unsigned Imm;
5227 if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
5228 if (ReverseEXT)
5229 std::swap(V1, V2);
5230 Imm *= getExtFactor(V1);
5231 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005232 DAG.getConstant(Imm, dl, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00005233 } else if (V2->getOpcode() == ISD::UNDEF &&
5234 isSingletonEXTMask(ShuffleMask, VT, Imm)) {
5235 Imm *= getExtFactor(V1);
5236 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005237 DAG.getConstant(Imm, dl, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00005238 }
5239
5240 unsigned WhichResult;
5241 if (isZIPMask(ShuffleMask, VT, WhichResult)) {
5242 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5243 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5244 }
5245 if (isUZPMask(ShuffleMask, VT, WhichResult)) {
5246 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5247 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5248 }
5249 if (isTRNMask(ShuffleMask, VT, WhichResult)) {
5250 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5251 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5252 }
5253
5254 if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5255 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5256 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5257 }
5258 if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5259 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5260 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5261 }
5262 if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5263 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5264 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5265 }
5266
5267 SDValue Concat = tryFormConcatFromShuffle(Op, DAG);
5268 if (Concat.getNode())
5269 return Concat;
5270
5271 bool DstIsLeft;
5272 int Anomaly;
5273 int NumInputElements = V1.getValueType().getVectorNumElements();
5274 if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
5275 SDValue DstVec = DstIsLeft ? V1 : V2;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005276 SDValue DstLaneV = DAG.getConstant(Anomaly, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00005277
5278 SDValue SrcVec = V1;
5279 int SrcLane = ShuffleMask[Anomaly];
5280 if (SrcLane >= NumInputElements) {
5281 SrcVec = V2;
5282 SrcLane -= VT.getVectorNumElements();
5283 }
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005284 SDValue SrcLaneV = DAG.getConstant(SrcLane, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00005285
5286 EVT ScalarVT = VT.getVectorElementType();
Oliver Stannard89d15422014-08-27 16:16:04 +00005287
5288 if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00005289 ScalarVT = MVT::i32;
5290
5291 return DAG.getNode(
5292 ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
5293 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
5294 DstLaneV);
5295 }
5296
5297 // If the shuffle is not directly supported and it has 4 elements, use
5298 // the PerfectShuffle-generated table to synthesize it from other shuffles.
5299 unsigned NumElts = VT.getVectorNumElements();
5300 if (NumElts == 4) {
5301 unsigned PFIndexes[4];
5302 for (unsigned i = 0; i != 4; ++i) {
5303 if (ShuffleMask[i] < 0)
5304 PFIndexes[i] = 8;
5305 else
5306 PFIndexes[i] = ShuffleMask[i];
5307 }
5308
5309 // Compute the index in the perfect shuffle table.
5310 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
5311 PFIndexes[2] * 9 + PFIndexes[3];
5312 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5313 unsigned Cost = (PFEntry >> 30);
5314
5315 if (Cost <= 4)
5316 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5317 }
5318
5319 return GenerateTBL(Op, ShuffleMask, DAG);
5320}
5321
5322static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
5323 APInt &UndefBits) {
5324 EVT VT = BVN->getValueType(0);
5325 APInt SplatBits, SplatUndef;
5326 unsigned SplatBitSize;
5327 bool HasAnyUndefs;
5328 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
5329 unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
5330
5331 for (unsigned i = 0; i < NumSplats; ++i) {
5332 CnstBits <<= SplatBitSize;
5333 UndefBits <<= SplatBitSize;
5334 CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
5335 UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
5336 }
5337
5338 return true;
5339 }
5340
5341 return false;
5342}
5343
5344SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
5345 SelectionDAG &DAG) const {
5346 BuildVectorSDNode *BVN =
5347 dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5348 SDValue LHS = Op.getOperand(0);
5349 SDLoc dl(Op);
5350 EVT VT = Op.getValueType();
5351
5352 if (!BVN)
5353 return Op;
5354
5355 APInt CnstBits(VT.getSizeInBits(), 0);
5356 APInt UndefBits(VT.getSizeInBits(), 0);
5357 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5358 // We only have BIC vector immediate instruction, which is and-not.
5359 CnstBits = ~CnstBits;
5360
5361 // We make use of a little bit of goto ickiness in order to avoid having to
5362 // duplicate the immediate matching logic for the undef toggled case.
5363 bool SecondTry = false;
5364 AttemptModImm:
5365
5366 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5367 CnstBits = CnstBits.zextOrTrunc(64);
5368 uint64_t CnstVal = CnstBits.getZExtValue();
5369
5370 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5371 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5372 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5373 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005374 DAG.getConstant(CnstVal, dl, MVT::i32),
5375 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005376 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005377 }
5378
5379 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5380 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5381 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5382 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005383 DAG.getConstant(CnstVal, dl, MVT::i32),
5384 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005385 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005386 }
5387
5388 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5389 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5390 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5391 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005392 DAG.getConstant(CnstVal, dl, MVT::i32),
5393 DAG.getConstant(16, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005394 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005395 }
5396
5397 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5398 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5399 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5400 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005401 DAG.getConstant(CnstVal, dl, MVT::i32),
5402 DAG.getConstant(24, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005403 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005404 }
5405
5406 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5407 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5408 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5409 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005410 DAG.getConstant(CnstVal, dl, MVT::i32),
5411 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005412 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005413 }
5414
5415 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5416 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5417 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5418 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005419 DAG.getConstant(CnstVal, dl, MVT::i32),
5420 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005421 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005422 }
5423 }
5424
5425 if (SecondTry)
5426 goto FailedModImm;
5427 SecondTry = true;
5428 CnstBits = ~UndefBits;
5429 goto AttemptModImm;
5430 }
5431
5432// We can always fall back to a non-immediate AND.
5433FailedModImm:
5434 return Op;
5435}
5436
5437// Specialized code to quickly find if PotentialBVec is a BuildVector that
5438// consists of only the same constant int value, returned in reference arg
5439// ConstVal
5440static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
5441 uint64_t &ConstVal) {
5442 BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
5443 if (!Bvec)
5444 return false;
5445 ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
5446 if (!FirstElt)
5447 return false;
5448 EVT VT = Bvec->getValueType(0);
5449 unsigned NumElts = VT.getVectorNumElements();
5450 for (unsigned i = 1; i < NumElts; ++i)
5451 if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
5452 return false;
5453 ConstVal = FirstElt->getZExtValue();
5454 return true;
5455}
5456
5457static unsigned getIntrinsicID(const SDNode *N) {
5458 unsigned Opcode = N->getOpcode();
5459 switch (Opcode) {
5460 default:
5461 return Intrinsic::not_intrinsic;
5462 case ISD::INTRINSIC_WO_CHAIN: {
5463 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5464 if (IID < Intrinsic::num_intrinsics)
5465 return IID;
5466 return Intrinsic::not_intrinsic;
5467 }
5468 }
5469}
5470
5471// Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
5472// to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
5473// BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
5474// Also, logical shift right -> sri, with the same structure.
5475static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
5476 EVT VT = N->getValueType(0);
5477
5478 if (!VT.isVector())
5479 return SDValue();
5480
5481 SDLoc DL(N);
5482
5483 // Is the first op an AND?
5484 const SDValue And = N->getOperand(0);
5485 if (And.getOpcode() != ISD::AND)
5486 return SDValue();
5487
5488 // Is the second op an shl or lshr?
5489 SDValue Shift = N->getOperand(1);
5490 // This will have been turned into: AArch64ISD::VSHL vector, #shift
5491 // or AArch64ISD::VLSHR vector, #shift
5492 unsigned ShiftOpc = Shift.getOpcode();
5493 if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
5494 return SDValue();
5495 bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
5496
5497 // Is the shift amount constant?
5498 ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
5499 if (!C2node)
5500 return SDValue();
5501
5502 // Is the and mask vector all constant?
5503 uint64_t C1;
5504 if (!isAllConstantBuildVector(And.getOperand(1), C1))
5505 return SDValue();
5506
5507 // Is C1 == ~C2, taking into account how much one can shift elements of a
5508 // particular size?
5509 uint64_t C2 = C2node->getZExtValue();
5510 unsigned ElemSizeInBits = VT.getVectorElementType().getSizeInBits();
5511 if (C2 > ElemSizeInBits)
5512 return SDValue();
5513 unsigned ElemMask = (1 << ElemSizeInBits) - 1;
5514 if ((C1 & ElemMask) != (~C2 & ElemMask))
5515 return SDValue();
5516
5517 SDValue X = And.getOperand(0);
5518 SDValue Y = Shift.getOperand(0);
5519
5520 unsigned Intrin =
5521 IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
5522 SDValue ResultSLI =
5523 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005524 DAG.getConstant(Intrin, DL, MVT::i32), X, Y,
5525 Shift.getOperand(1));
Tim Northover3b0846e2014-05-24 12:50:23 +00005526
5527 DEBUG(dbgs() << "aarch64-lower: transformed: \n");
5528 DEBUG(N->dump(&DAG));
5529 DEBUG(dbgs() << "into: \n");
5530 DEBUG(ResultSLI->dump(&DAG));
5531
5532 ++NumShiftInserts;
5533 return ResultSLI;
5534}
5535
5536SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
5537 SelectionDAG &DAG) const {
5538 // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
5539 if (EnableAArch64SlrGeneration) {
5540 SDValue Res = tryLowerToSLI(Op.getNode(), DAG);
5541 if (Res.getNode())
5542 return Res;
5543 }
5544
5545 BuildVectorSDNode *BVN =
5546 dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
5547 SDValue LHS = Op.getOperand(1);
5548 SDLoc dl(Op);
5549 EVT VT = Op.getValueType();
5550
5551 // OR commutes, so try swapping the operands.
5552 if (!BVN) {
5553 LHS = Op.getOperand(0);
5554 BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5555 }
5556 if (!BVN)
5557 return Op;
5558
5559 APInt CnstBits(VT.getSizeInBits(), 0);
5560 APInt UndefBits(VT.getSizeInBits(), 0);
5561 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5562 // We make use of a little bit of goto ickiness in order to avoid having to
5563 // duplicate the immediate matching logic for the undef toggled case.
5564 bool SecondTry = false;
5565 AttemptModImm:
5566
5567 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5568 CnstBits = CnstBits.zextOrTrunc(64);
5569 uint64_t CnstVal = CnstBits.getZExtValue();
5570
5571 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5572 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5573 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5574 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005575 DAG.getConstant(CnstVal, dl, MVT::i32),
5576 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005577 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005578 }
5579
5580 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5581 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5582 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5583 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005584 DAG.getConstant(CnstVal, dl, MVT::i32),
5585 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005586 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005587 }
5588
5589 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5590 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5591 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5592 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005593 DAG.getConstant(CnstVal, dl, MVT::i32),
5594 DAG.getConstant(16, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005595 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005596 }
5597
5598 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5599 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5600 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5601 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005602 DAG.getConstant(CnstVal, dl, MVT::i32),
5603 DAG.getConstant(24, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005604 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005605 }
5606
5607 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5608 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5609 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5610 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005611 DAG.getConstant(CnstVal, dl, MVT::i32),
5612 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005613 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005614 }
5615
5616 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5617 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5618 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5619 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005620 DAG.getConstant(CnstVal, dl, MVT::i32),
5621 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005622 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005623 }
5624 }
5625
5626 if (SecondTry)
5627 goto FailedModImm;
5628 SecondTry = true;
5629 CnstBits = UndefBits;
5630 goto AttemptModImm;
5631 }
5632
5633// We can always fall back to a non-immediate OR.
5634FailedModImm:
5635 return Op;
5636}
5637
Kevin Qin4473c192014-07-07 02:45:40 +00005638// Normalize the operands of BUILD_VECTOR. The value of constant operands will
5639// be truncated to fit element width.
5640static SDValue NormalizeBuildVector(SDValue Op,
5641 SelectionDAG &DAG) {
5642 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
Tim Northover3b0846e2014-05-24 12:50:23 +00005643 SDLoc dl(Op);
5644 EVT VT = Op.getValueType();
Kevin Qin4473c192014-07-07 02:45:40 +00005645 EVT EltTy= VT.getVectorElementType();
5646
5647 if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
5648 return Op;
5649
5650 SmallVector<SDValue, 16> Ops;
5651 for (unsigned I = 0, E = VT.getVectorNumElements(); I != E; ++I) {
5652 SDValue Lane = Op.getOperand(I);
5653 if (Lane.getOpcode() == ISD::Constant) {
5654 APInt LowBits(EltTy.getSizeInBits(),
5655 cast<ConstantSDNode>(Lane)->getZExtValue());
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005656 Lane = DAG.getConstant(LowBits.getZExtValue(), dl, MVT::i32);
Kevin Qin4473c192014-07-07 02:45:40 +00005657 }
5658 Ops.push_back(Lane);
5659 }
5660 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
5661}
5662
5663SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
5664 SelectionDAG &DAG) const {
5665 SDLoc dl(Op);
5666 EVT VT = Op.getValueType();
5667 Op = NormalizeBuildVector(Op, DAG);
5668 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
Tim Northover3b0846e2014-05-24 12:50:23 +00005669
5670 APInt CnstBits(VT.getSizeInBits(), 0);
5671 APInt UndefBits(VT.getSizeInBits(), 0);
5672 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5673 // We make use of a little bit of goto ickiness in order to avoid having to
5674 // duplicate the immediate matching logic for the undef toggled case.
5675 bool SecondTry = false;
5676 AttemptModImm:
5677
5678 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5679 CnstBits = CnstBits.zextOrTrunc(64);
5680 uint64_t CnstVal = CnstBits.getZExtValue();
5681
5682 // Certain magic vector constants (used to express things like NOT
5683 // and NEG) are passed through unmodified. This allows codegen patterns
5684 // for these operations to match. Special-purpose patterns will lower
5685 // these immediates to MOVIs if it proves necessary.
5686 if (VT.isInteger() && (CnstVal == 0 || CnstVal == ~0ULL))
5687 return Op;
5688
5689 // The many faces of MOVI...
5690 if (AArch64_AM::isAdvSIMDModImmType10(CnstVal)) {
5691 CnstVal = AArch64_AM::encodeAdvSIMDModImmType10(CnstVal);
5692 if (VT.getSizeInBits() == 128) {
5693 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::v2i64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005694 DAG.getConstant(CnstVal, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005695 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005696 }
5697
5698 // Support the V64 version via subregister insertion.
5699 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::f64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005700 DAG.getConstant(CnstVal, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005701 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005702 }
5703
5704 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5705 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5706 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5707 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005708 DAG.getConstant(CnstVal, dl, MVT::i32),
5709 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005710 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005711 }
5712
5713 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5714 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5715 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5716 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005717 DAG.getConstant(CnstVal, dl, MVT::i32),
5718 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005719 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005720 }
5721
5722 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5723 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5724 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5725 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005726 DAG.getConstant(CnstVal, dl, MVT::i32),
5727 DAG.getConstant(16, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005728 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005729 }
5730
5731 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5732 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5733 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5734 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005735 DAG.getConstant(CnstVal, dl, MVT::i32),
5736 DAG.getConstant(24, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005737 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005738 }
5739
5740 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5741 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5742 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5743 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005744 DAG.getConstant(CnstVal, dl, MVT::i32),
5745 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005746 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005747 }
5748
5749 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5750 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5751 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5752 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005753 DAG.getConstant(CnstVal, dl, MVT::i32),
5754 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005755 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005756 }
5757
5758 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
5759 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
5760 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5761 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005762 DAG.getConstant(CnstVal, dl, MVT::i32),
5763 DAG.getConstant(264, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005764 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005765 }
5766
5767 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
5768 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
5769 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5770 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005771 DAG.getConstant(CnstVal, dl, MVT::i32),
5772 DAG.getConstant(272, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005773 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005774 }
5775
5776 if (AArch64_AM::isAdvSIMDModImmType9(CnstVal)) {
5777 CnstVal = AArch64_AM::encodeAdvSIMDModImmType9(CnstVal);
5778 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
5779 SDValue Mov = DAG.getNode(AArch64ISD::MOVI, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005780 DAG.getConstant(CnstVal, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005781 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005782 }
5783
5784 // The few faces of FMOV...
5785 if (AArch64_AM::isAdvSIMDModImmType11(CnstVal)) {
5786 CnstVal = AArch64_AM::encodeAdvSIMDModImmType11(CnstVal);
5787 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4f32 : MVT::v2f32;
5788 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005789 DAG.getConstant(CnstVal, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005790 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005791 }
5792
5793 if (AArch64_AM::isAdvSIMDModImmType12(CnstVal) &&
5794 VT.getSizeInBits() == 128) {
5795 CnstVal = AArch64_AM::encodeAdvSIMDModImmType12(CnstVal);
5796 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MVT::v2f64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005797 DAG.getConstant(CnstVal, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005798 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005799 }
5800
5801 // The many faces of MVNI...
5802 CnstVal = ~CnstVal;
5803 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5804 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5805 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5806 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005807 DAG.getConstant(CnstVal, dl, MVT::i32),
5808 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005809 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005810 }
5811
5812 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5813 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5814 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5815 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005816 DAG.getConstant(CnstVal, dl, MVT::i32),
5817 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005818 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005819 }
5820
5821 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5822 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5823 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5824 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005825 DAG.getConstant(CnstVal, dl, MVT::i32),
5826 DAG.getConstant(16, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005827 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005828 }
5829
5830 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5831 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5832 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5833 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005834 DAG.getConstant(CnstVal, dl, MVT::i32),
5835 DAG.getConstant(24, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005836 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005837 }
5838
5839 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5840 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5841 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5842 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005843 DAG.getConstant(CnstVal, dl, MVT::i32),
5844 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005845 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005846 }
5847
5848 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5849 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5850 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5851 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005852 DAG.getConstant(CnstVal, dl, MVT::i32),
5853 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005854 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005855 }
5856
5857 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
5858 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
5859 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5860 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005861 DAG.getConstant(CnstVal, dl, MVT::i32),
5862 DAG.getConstant(264, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005863 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005864 }
5865
5866 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
5867 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
5868 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5869 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005870 DAG.getConstant(CnstVal, dl, MVT::i32),
5871 DAG.getConstant(272, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00005872 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005873 }
5874 }
5875
5876 if (SecondTry)
5877 goto FailedModImm;
5878 SecondTry = true;
5879 CnstBits = UndefBits;
5880 goto AttemptModImm;
5881 }
5882FailedModImm:
5883
5884 // Scan through the operands to find some interesting properties we can
5885 // exploit:
5886 // 1) If only one value is used, we can use a DUP, or
5887 // 2) if only the low element is not undef, we can just insert that, or
5888 // 3) if only one constant value is used (w/ some non-constant lanes),
5889 // we can splat the constant value into the whole vector then fill
5890 // in the non-constant lanes.
5891 // 4) FIXME: If different constant values are used, but we can intelligently
5892 // select the values we'll be overwriting for the non-constant
5893 // lanes such that we can directly materialize the vector
5894 // some other way (MOVI, e.g.), we can be sneaky.
5895 unsigned NumElts = VT.getVectorNumElements();
5896 bool isOnlyLowElement = true;
5897 bool usesOnlyOneValue = true;
5898 bool usesOnlyOneConstantValue = true;
5899 bool isConstant = true;
5900 unsigned NumConstantLanes = 0;
5901 SDValue Value;
5902 SDValue ConstantValue;
5903 for (unsigned i = 0; i < NumElts; ++i) {
5904 SDValue V = Op.getOperand(i);
5905 if (V.getOpcode() == ISD::UNDEF)
5906 continue;
5907 if (i > 0)
5908 isOnlyLowElement = false;
5909 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
5910 isConstant = false;
5911
5912 if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
5913 ++NumConstantLanes;
5914 if (!ConstantValue.getNode())
5915 ConstantValue = V;
5916 else if (ConstantValue != V)
5917 usesOnlyOneConstantValue = false;
5918 }
5919
5920 if (!Value.getNode())
5921 Value = V;
5922 else if (V != Value)
5923 usesOnlyOneValue = false;
5924 }
5925
5926 if (!Value.getNode())
5927 return DAG.getUNDEF(VT);
5928
5929 if (isOnlyLowElement)
5930 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
5931
5932 // Use DUP for non-constant splats. For f32 constant splats, reduce to
5933 // i32 and try again.
5934 if (usesOnlyOneValue) {
5935 if (!isConstant) {
5936 if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5937 Value.getValueType() != VT)
5938 return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
5939
5940 // This is actually a DUPLANExx operation, which keeps everything vectory.
5941
5942 // DUPLANE works on 128-bit vectors, widen it if necessary.
5943 SDValue Lane = Value.getOperand(1);
5944 Value = Value.getOperand(0);
5945 if (Value.getValueType().getSizeInBits() == 64)
5946 Value = WidenVector(Value, DAG);
5947
5948 unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
5949 return DAG.getNode(Opcode, dl, VT, Value, Lane);
5950 }
5951
5952 if (VT.getVectorElementType().isFloatingPoint()) {
5953 SmallVector<SDValue, 8> Ops;
Pirama Arumuga Nainar12aeefc2015-03-17 23:10:29 +00005954 EVT EltTy = VT.getVectorElementType();
5955 assert ((EltTy == MVT::f16 || EltTy == MVT::f32 || EltTy == MVT::f64) &&
5956 "Unsupported floating-point vector type");
5957 MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits());
Tim Northover3b0846e2014-05-24 12:50:23 +00005958 for (unsigned i = 0; i < NumElts; ++i)
5959 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
5960 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
5961 SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
5962 Val = LowerBUILD_VECTOR(Val, DAG);
5963 if (Val.getNode())
5964 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
5965 }
5966 }
5967
5968 // If there was only one constant value used and for more than one lane,
5969 // start by splatting that value, then replace the non-constant lanes. This
5970 // is better than the default, which will perform a separate initialization
5971 // for each lane.
5972 if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
5973 SDValue Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
5974 // Now insert the non-constant lanes.
5975 for (unsigned i = 0; i < NumElts; ++i) {
5976 SDValue V = Op.getOperand(i);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005977 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00005978 if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) {
5979 // Note that type legalization likely mucked about with the VT of the
5980 // source operand, so we may have to convert it here before inserting.
5981 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
5982 }
5983 }
5984 return Val;
5985 }
5986
5987 // If all elements are constants and the case above didn't get hit, fall back
5988 // to the default expansion, which will generate a load from the constant
5989 // pool.
5990 if (isConstant)
5991 return SDValue();
5992
5993 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
5994 if (NumElts >= 4) {
5995 SDValue shuffle = ReconstructShuffle(Op, DAG);
5996 if (shuffle != SDValue())
5997 return shuffle;
5998 }
5999
6000 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
6001 // know the default expansion would otherwise fall back on something even
6002 // worse. For a vector with one or two non-undef values, that's
6003 // scalar_to_vector for the elements followed by a shuffle (provided the
6004 // shuffle is valid for the target) and materialization element by element
6005 // on the stack followed by a load for everything else.
6006 if (!isConstant && !usesOnlyOneValue) {
6007 SDValue Vec = DAG.getUNDEF(VT);
6008 SDValue Op0 = Op.getOperand(0);
6009 unsigned ElemSize = VT.getVectorElementType().getSizeInBits();
6010 unsigned i = 0;
6011 // For 32 and 64 bit types, use INSERT_SUBREG for lane zero to
6012 // a) Avoid a RMW dependency on the full vector register, and
6013 // b) Allow the register coalescer to fold away the copy if the
6014 // value is already in an S or D register.
6015 if (Op0.getOpcode() != ISD::UNDEF && (ElemSize == 32 || ElemSize == 64)) {
6016 unsigned SubIdx = ElemSize == 32 ? AArch64::ssub : AArch64::dsub;
6017 MachineSDNode *N =
6018 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VT, Vec, Op0,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006019 DAG.getTargetConstant(SubIdx, dl, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00006020 Vec = SDValue(N, 0);
6021 ++i;
6022 }
6023 for (; i < NumElts; ++i) {
6024 SDValue V = Op.getOperand(i);
6025 if (V.getOpcode() == ISD::UNDEF)
6026 continue;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006027 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00006028 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
6029 }
6030 return Vec;
6031 }
6032
6033 // Just use the default expansion. We failed to find a better alternative.
6034 return SDValue();
6035}
6036
6037SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
6038 SelectionDAG &DAG) const {
6039 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
6040
Tim Northovere4b8e132014-07-15 10:00:26 +00006041 // Check for non-constant or out of range lane.
6042 EVT VT = Op.getOperand(0).getValueType();
6043 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
6044 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
Tim Northover3b0846e2014-05-24 12:50:23 +00006045 return SDValue();
6046
Tim Northover3b0846e2014-05-24 12:50:23 +00006047
6048 // Insertion/extraction are legal for V128 types.
6049 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
Oliver Stannard89d15422014-08-27 16:16:04 +00006050 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
6051 VT == MVT::v8f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006052 return Op;
6053
6054 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
Oliver Stannard89d15422014-08-27 16:16:04 +00006055 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006056 return SDValue();
6057
6058 // For V64 types, we perform insertion by expanding the value
6059 // to a V128 type and perform the insertion on that.
6060 SDLoc DL(Op);
6061 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
6062 EVT WideTy = WideVec.getValueType();
6063
6064 SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
6065 Op.getOperand(1), Op.getOperand(2));
6066 // Re-narrow the resultant vector.
6067 return NarrowVector(Node, DAG);
6068}
6069
6070SDValue
6071AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6072 SelectionDAG &DAG) const {
6073 assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
6074
Tim Northovere4b8e132014-07-15 10:00:26 +00006075 // Check for non-constant or out of range lane.
6076 EVT VT = Op.getOperand(0).getValueType();
6077 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6078 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
Tim Northover3b0846e2014-05-24 12:50:23 +00006079 return SDValue();
6080
Tim Northover3b0846e2014-05-24 12:50:23 +00006081
6082 // Insertion/extraction are legal for V128 types.
6083 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
Oliver Stannard89d15422014-08-27 16:16:04 +00006084 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
6085 VT == MVT::v8f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006086 return Op;
6087
6088 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
Oliver Stannard89d15422014-08-27 16:16:04 +00006089 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006090 return SDValue();
6091
6092 // For V64 types, we perform extraction by expanding the value
6093 // to a V128 type and perform the extraction on that.
6094 SDLoc DL(Op);
6095 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
6096 EVT WideTy = WideVec.getValueType();
6097
6098 EVT ExtrTy = WideTy.getVectorElementType();
6099 if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
6100 ExtrTy = MVT::i32;
6101
6102 // For extractions, we just return the result directly.
6103 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
6104 Op.getOperand(1));
6105}
6106
6107SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
6108 SelectionDAG &DAG) const {
6109 EVT VT = Op.getOperand(0).getValueType();
6110 SDLoc dl(Op);
6111 // Just in case...
6112 if (!VT.isVector())
6113 return SDValue();
6114
6115 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6116 if (!Cst)
6117 return SDValue();
6118 unsigned Val = Cst->getZExtValue();
6119
6120 unsigned Size = Op.getValueType().getSizeInBits();
6121 if (Val == 0) {
6122 switch (Size) {
6123 case 8:
6124 return DAG.getTargetExtractSubreg(AArch64::bsub, dl, Op.getValueType(),
6125 Op.getOperand(0));
6126 case 16:
6127 return DAG.getTargetExtractSubreg(AArch64::hsub, dl, Op.getValueType(),
6128 Op.getOperand(0));
6129 case 32:
6130 return DAG.getTargetExtractSubreg(AArch64::ssub, dl, Op.getValueType(),
6131 Op.getOperand(0));
6132 case 64:
6133 return DAG.getTargetExtractSubreg(AArch64::dsub, dl, Op.getValueType(),
6134 Op.getOperand(0));
6135 default:
6136 llvm_unreachable("Unexpected vector type in extract_subvector!");
6137 }
6138 }
6139 // If this is extracting the upper 64-bits of a 128-bit vector, we match
6140 // that directly.
6141 if (Size == 64 && Val * VT.getVectorElementType().getSizeInBits() == 64)
6142 return Op;
6143
6144 return SDValue();
6145}
6146
6147bool AArch64TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
6148 EVT VT) const {
6149 if (VT.getVectorNumElements() == 4 &&
6150 (VT.is128BitVector() || VT.is64BitVector())) {
6151 unsigned PFIndexes[4];
6152 for (unsigned i = 0; i != 4; ++i) {
6153 if (M[i] < 0)
6154 PFIndexes[i] = 8;
6155 else
6156 PFIndexes[i] = M[i];
6157 }
6158
6159 // Compute the index in the perfect shuffle table.
6160 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
6161 PFIndexes[2] * 9 + PFIndexes[3];
6162 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6163 unsigned Cost = (PFEntry >> 30);
6164
6165 if (Cost <= 4)
6166 return true;
6167 }
6168
6169 bool DummyBool;
6170 int DummyInt;
6171 unsigned DummyUnsigned;
6172
6173 return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
6174 isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
6175 isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
6176 // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
6177 isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
6178 isZIPMask(M, VT, DummyUnsigned) ||
6179 isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
6180 isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
6181 isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
6182 isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
6183 isConcatMask(M, VT, VT.getSizeInBits() == 128));
6184}
6185
6186/// getVShiftImm - Check if this is a valid build_vector for the immediate
6187/// operand of a vector shift operation, where all the elements of the
6188/// build_vector must have the same constant integer value.
6189static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
6190 // Ignore bit_converts.
6191 while (Op.getOpcode() == ISD::BITCAST)
6192 Op = Op.getOperand(0);
6193 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6194 APInt SplatBits, SplatUndef;
6195 unsigned SplatBitSize;
6196 bool HasAnyUndefs;
6197 if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
6198 HasAnyUndefs, ElementBits) ||
6199 SplatBitSize > ElementBits)
6200 return false;
6201 Cnt = SplatBits.getSExtValue();
6202 return true;
6203}
6204
6205/// isVShiftLImm - Check if this is a valid build_vector for the immediate
6206/// operand of a vector shift left operation. That value must be in the range:
6207/// 0 <= Value < ElementBits for a left shift; or
6208/// 0 <= Value <= ElementBits for a long left shift.
6209static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
6210 assert(VT.isVector() && "vector shift count is not a vector type");
6211 unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
6212 if (!getVShiftImm(Op, ElementBits, Cnt))
6213 return false;
6214 return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
6215}
6216
6217/// isVShiftRImm - Check if this is a valid build_vector for the immediate
6218/// operand of a vector shift right operation. For a shift opcode, the value
6219/// is positive, but for an intrinsic the value count must be negative. The
6220/// absolute value must be in the range:
6221/// 1 <= |Value| <= ElementBits for a right shift; or
6222/// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
6223static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
6224 int64_t &Cnt) {
6225 assert(VT.isVector() && "vector shift count is not a vector type");
6226 unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
6227 if (!getVShiftImm(Op, ElementBits, Cnt))
6228 return false;
6229 if (isIntrinsic)
6230 Cnt = -Cnt;
6231 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
6232}
6233
6234SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
6235 SelectionDAG &DAG) const {
6236 EVT VT = Op.getValueType();
6237 SDLoc DL(Op);
6238 int64_t Cnt;
6239
6240 if (!Op.getOperand(1).getValueType().isVector())
6241 return Op;
6242 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
6243
6244 switch (Op.getOpcode()) {
6245 default:
6246 llvm_unreachable("unexpected shift opcode");
6247
6248 case ISD::SHL:
6249 if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006250 return DAG.getNode(AArch64ISD::VSHL, DL, VT, Op.getOperand(0),
6251 DAG.getConstant(Cnt, DL, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00006252 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006253 DAG.getConstant(Intrinsic::aarch64_neon_ushl, DL,
6254 MVT::i32),
Tim Northover3b0846e2014-05-24 12:50:23 +00006255 Op.getOperand(0), Op.getOperand(1));
6256 case ISD::SRA:
6257 case ISD::SRL:
6258 // Right shift immediate
6259 if (isVShiftRImm(Op.getOperand(1), VT, false, false, Cnt) &&
6260 Cnt < EltSize) {
6261 unsigned Opc =
6262 (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006263 return DAG.getNode(Opc, DL, VT, Op.getOperand(0),
6264 DAG.getConstant(Cnt, DL, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00006265 }
6266
6267 // Right shift register. Note, there is not a shift right register
6268 // instruction, but the shift left register instruction takes a signed
6269 // value, where negative numbers specify a right shift.
6270 unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
6271 : Intrinsic::aarch64_neon_ushl;
6272 // negate the shift amount
6273 SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
6274 SDValue NegShiftLeft =
6275 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006276 DAG.getConstant(Opc, DL, MVT::i32), Op.getOperand(0),
6277 NegShift);
Tim Northover3b0846e2014-05-24 12:50:23 +00006278 return NegShiftLeft;
6279 }
6280
6281 return SDValue();
6282}
6283
6284static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
6285 AArch64CC::CondCode CC, bool NoNans, EVT VT,
6286 SDLoc dl, SelectionDAG &DAG) {
6287 EVT SrcVT = LHS.getValueType();
Tim Northover45aa89c2015-02-08 00:50:47 +00006288 assert(VT.getSizeInBits() == SrcVT.getSizeInBits() &&
6289 "function only supposed to emit natural comparisons");
Tim Northover3b0846e2014-05-24 12:50:23 +00006290
6291 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
6292 APInt CnstBits(VT.getSizeInBits(), 0);
6293 APInt UndefBits(VT.getSizeInBits(), 0);
6294 bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
6295 bool IsZero = IsCnst && (CnstBits == 0);
6296
6297 if (SrcVT.getVectorElementType().isFloatingPoint()) {
6298 switch (CC) {
6299 default:
6300 return SDValue();
6301 case AArch64CC::NE: {
6302 SDValue Fcmeq;
6303 if (IsZero)
6304 Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6305 else
6306 Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6307 return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
6308 }
6309 case AArch64CC::EQ:
6310 if (IsZero)
6311 return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6312 return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6313 case AArch64CC::GE:
6314 if (IsZero)
6315 return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
6316 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
6317 case AArch64CC::GT:
6318 if (IsZero)
6319 return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
6320 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
6321 case AArch64CC::LS:
6322 if (IsZero)
6323 return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
6324 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
6325 case AArch64CC::LT:
6326 if (!NoNans)
6327 return SDValue();
6328 // If we ignore NaNs then we can use to the MI implementation.
6329 // Fallthrough.
6330 case AArch64CC::MI:
6331 if (IsZero)
6332 return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
6333 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
6334 }
6335 }
6336
6337 switch (CC) {
6338 default:
6339 return SDValue();
6340 case AArch64CC::NE: {
6341 SDValue Cmeq;
6342 if (IsZero)
6343 Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6344 else
6345 Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6346 return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
6347 }
6348 case AArch64CC::EQ:
6349 if (IsZero)
6350 return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6351 return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6352 case AArch64CC::GE:
6353 if (IsZero)
6354 return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
6355 return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
6356 case AArch64CC::GT:
6357 if (IsZero)
6358 return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
6359 return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
6360 case AArch64CC::LE:
6361 if (IsZero)
6362 return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
6363 return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
6364 case AArch64CC::LS:
6365 return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
6366 case AArch64CC::LO:
6367 return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
6368 case AArch64CC::LT:
6369 if (IsZero)
6370 return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
6371 return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
6372 case AArch64CC::HI:
6373 return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
6374 case AArch64CC::HS:
6375 return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
6376 }
6377}
6378
6379SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
6380 SelectionDAG &DAG) const {
6381 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6382 SDValue LHS = Op.getOperand(0);
6383 SDValue RHS = Op.getOperand(1);
Tim Northover45aa89c2015-02-08 00:50:47 +00006384 EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger();
Tim Northover3b0846e2014-05-24 12:50:23 +00006385 SDLoc dl(Op);
6386
6387 if (LHS.getValueType().getVectorElementType().isInteger()) {
6388 assert(LHS.getValueType() == RHS.getValueType());
6389 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
Tim Northover45aa89c2015-02-08 00:50:47 +00006390 SDValue Cmp =
6391 EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG);
6392 return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
Tim Northover3b0846e2014-05-24 12:50:23 +00006393 }
6394
6395 assert(LHS.getValueType().getVectorElementType() == MVT::f32 ||
6396 LHS.getValueType().getVectorElementType() == MVT::f64);
6397
6398 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
6399 // clean. Some of them require two branches to implement.
6400 AArch64CC::CondCode CC1, CC2;
6401 bool ShouldInvert;
6402 changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
6403
6404 bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
6405 SDValue Cmp =
Tim Northover45aa89c2015-02-08 00:50:47 +00006406 EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00006407 if (!Cmp.getNode())
6408 return SDValue();
6409
6410 if (CC2 != AArch64CC::AL) {
6411 SDValue Cmp2 =
Tim Northover45aa89c2015-02-08 00:50:47 +00006412 EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00006413 if (!Cmp2.getNode())
6414 return SDValue();
6415
Tim Northover45aa89c2015-02-08 00:50:47 +00006416 Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2);
Tim Northover3b0846e2014-05-24 12:50:23 +00006417 }
6418
Tim Northover45aa89c2015-02-08 00:50:47 +00006419 Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
6420
Tim Northover3b0846e2014-05-24 12:50:23 +00006421 if (ShouldInvert)
6422 return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
6423
6424 return Cmp;
6425}
6426
6427/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
6428/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
6429/// specified in the intrinsic calls.
6430bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
6431 const CallInst &I,
6432 unsigned Intrinsic) const {
6433 switch (Intrinsic) {
6434 case Intrinsic::aarch64_neon_ld2:
6435 case Intrinsic::aarch64_neon_ld3:
6436 case Intrinsic::aarch64_neon_ld4:
6437 case Intrinsic::aarch64_neon_ld1x2:
6438 case Intrinsic::aarch64_neon_ld1x3:
6439 case Intrinsic::aarch64_neon_ld1x4:
6440 case Intrinsic::aarch64_neon_ld2lane:
6441 case Intrinsic::aarch64_neon_ld3lane:
6442 case Intrinsic::aarch64_neon_ld4lane:
6443 case Intrinsic::aarch64_neon_ld2r:
6444 case Intrinsic::aarch64_neon_ld3r:
6445 case Intrinsic::aarch64_neon_ld4r: {
6446 Info.opc = ISD::INTRINSIC_W_CHAIN;
6447 // Conservatively set memVT to the entire set of vectors loaded.
6448 uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
6449 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6450 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6451 Info.offset = 0;
6452 Info.align = 0;
6453 Info.vol = false; // volatile loads with NEON intrinsics not supported
6454 Info.readMem = true;
6455 Info.writeMem = false;
6456 return true;
6457 }
6458 case Intrinsic::aarch64_neon_st2:
6459 case Intrinsic::aarch64_neon_st3:
6460 case Intrinsic::aarch64_neon_st4:
6461 case Intrinsic::aarch64_neon_st1x2:
6462 case Intrinsic::aarch64_neon_st1x3:
6463 case Intrinsic::aarch64_neon_st1x4:
6464 case Intrinsic::aarch64_neon_st2lane:
6465 case Intrinsic::aarch64_neon_st3lane:
6466 case Intrinsic::aarch64_neon_st4lane: {
6467 Info.opc = ISD::INTRINSIC_VOID;
6468 // Conservatively set memVT to the entire set of vectors stored.
6469 unsigned NumElts = 0;
6470 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
6471 Type *ArgTy = I.getArgOperand(ArgI)->getType();
6472 if (!ArgTy->isVectorTy())
6473 break;
6474 NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
6475 }
6476 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6477 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6478 Info.offset = 0;
6479 Info.align = 0;
6480 Info.vol = false; // volatile stores with NEON intrinsics not supported
6481 Info.readMem = false;
6482 Info.writeMem = true;
6483 return true;
6484 }
6485 case Intrinsic::aarch64_ldaxr:
6486 case Intrinsic::aarch64_ldxr: {
6487 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
6488 Info.opc = ISD::INTRINSIC_W_CHAIN;
6489 Info.memVT = MVT::getVT(PtrTy->getElementType());
6490 Info.ptrVal = I.getArgOperand(0);
6491 Info.offset = 0;
6492 Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
6493 Info.vol = true;
6494 Info.readMem = true;
6495 Info.writeMem = false;
6496 return true;
6497 }
6498 case Intrinsic::aarch64_stlxr:
6499 case Intrinsic::aarch64_stxr: {
6500 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
6501 Info.opc = ISD::INTRINSIC_W_CHAIN;
6502 Info.memVT = MVT::getVT(PtrTy->getElementType());
6503 Info.ptrVal = I.getArgOperand(1);
6504 Info.offset = 0;
6505 Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
6506 Info.vol = true;
6507 Info.readMem = false;
6508 Info.writeMem = true;
6509 return true;
6510 }
6511 case Intrinsic::aarch64_ldaxp:
6512 case Intrinsic::aarch64_ldxp: {
6513 Info.opc = ISD::INTRINSIC_W_CHAIN;
6514 Info.memVT = MVT::i128;
6515 Info.ptrVal = I.getArgOperand(0);
6516 Info.offset = 0;
6517 Info.align = 16;
6518 Info.vol = true;
6519 Info.readMem = true;
6520 Info.writeMem = false;
6521 return true;
6522 }
6523 case Intrinsic::aarch64_stlxp:
6524 case Intrinsic::aarch64_stxp: {
6525 Info.opc = ISD::INTRINSIC_W_CHAIN;
6526 Info.memVT = MVT::i128;
6527 Info.ptrVal = I.getArgOperand(2);
6528 Info.offset = 0;
6529 Info.align = 16;
6530 Info.vol = true;
6531 Info.readMem = false;
6532 Info.writeMem = true;
6533 return true;
6534 }
6535 default:
6536 break;
6537 }
6538
6539 return false;
6540}
6541
6542// Truncations from 64-bit GPR to 32-bit GPR is free.
6543bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
6544 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6545 return false;
6546 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6547 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006548 return NumBits1 > NumBits2;
Tim Northover3b0846e2014-05-24 12:50:23 +00006549}
6550bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
Hao Liu40914502014-05-29 09:19:07 +00006551 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00006552 return false;
6553 unsigned NumBits1 = VT1.getSizeInBits();
6554 unsigned NumBits2 = VT2.getSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006555 return NumBits1 > NumBits2;
Tim Northover3b0846e2014-05-24 12:50:23 +00006556}
6557
Chad Rosier54390052015-02-23 19:15:16 +00006558/// Check if it is profitable to hoist instruction in then/else to if.
6559/// Not profitable if I and it's user can form a FMA instruction
6560/// because we prefer FMSUB/FMADD.
6561bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const {
6562 if (I->getOpcode() != Instruction::FMul)
6563 return true;
6564
6565 if (I->getNumUses() != 1)
6566 return true;
6567
6568 Instruction *User = I->user_back();
6569
6570 if (User &&
6571 !(User->getOpcode() == Instruction::FSub ||
6572 User->getOpcode() == Instruction::FAdd))
6573 return true;
6574
6575 const TargetOptions &Options = getTargetMachine().Options;
6576 EVT VT = getValueType(User->getOperand(0)->getType());
6577
6578 if (isFMAFasterThanFMulAndFAdd(VT) &&
6579 isOperationLegalOrCustom(ISD::FMA, VT) &&
6580 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath))
6581 return false;
6582
6583 return true;
6584}
6585
Tim Northover3b0846e2014-05-24 12:50:23 +00006586// All 32-bit GPR operations implicitly zero the high-half of the corresponding
6587// 64-bit GPR.
6588bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
6589 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6590 return false;
6591 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6592 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006593 return NumBits1 == 32 && NumBits2 == 64;
Tim Northover3b0846e2014-05-24 12:50:23 +00006594}
6595bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
Hao Liu40914502014-05-29 09:19:07 +00006596 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00006597 return false;
6598 unsigned NumBits1 = VT1.getSizeInBits();
6599 unsigned NumBits2 = VT2.getSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006600 return NumBits1 == 32 && NumBits2 == 64;
Tim Northover3b0846e2014-05-24 12:50:23 +00006601}
6602
6603bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
6604 EVT VT1 = Val.getValueType();
6605 if (isZExtFree(VT1, VT2)) {
6606 return true;
6607 }
6608
6609 if (Val.getOpcode() != ISD::LOAD)
6610 return false;
6611
6612 // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
Hao Liu40914502014-05-29 09:19:07 +00006613 return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
6614 VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
6615 VT1.getSizeInBits() <= 32);
Tim Northover3b0846e2014-05-24 12:50:23 +00006616}
6617
Quentin Colombet6843ac42015-03-31 20:52:32 +00006618bool AArch64TargetLowering::isExtFreeImpl(const Instruction *Ext) const {
6619 if (isa<FPExtInst>(Ext))
6620 return false;
6621
6622 // Vector types are next free.
6623 if (Ext->getType()->isVectorTy())
6624 return false;
6625
6626 for (const Use &U : Ext->uses()) {
6627 // The extension is free if we can fold it with a left shift in an
6628 // addressing mode or an arithmetic operation: add, sub, and cmp.
6629
6630 // Is there a shift?
6631 const Instruction *Instr = cast<Instruction>(U.getUser());
6632
6633 // Is this a constant shift?
6634 switch (Instr->getOpcode()) {
6635 case Instruction::Shl:
6636 if (!isa<ConstantInt>(Instr->getOperand(1)))
6637 return false;
6638 break;
6639 case Instruction::GetElementPtr: {
6640 gep_type_iterator GTI = gep_type_begin(Instr);
6641 std::advance(GTI, U.getOperandNo());
6642 Type *IdxTy = *GTI;
6643 // This extension will end up with a shift because of the scaling factor.
6644 // 8-bit sized types have a scaling factor of 1, thus a shift amount of 0.
6645 // Get the shift amount based on the scaling factor:
6646 // log2(sizeof(IdxTy)) - log2(8).
6647 uint64_t ShiftAmt =
6648 countTrailingZeros(getDataLayout()->getTypeStoreSizeInBits(IdxTy)) - 3;
6649 // Is the constant foldable in the shift of the addressing mode?
6650 // I.e., shift amount is between 1 and 4 inclusive.
6651 if (ShiftAmt == 0 || ShiftAmt > 4)
6652 return false;
6653 break;
6654 }
6655 case Instruction::Trunc:
6656 // Check if this is a noop.
6657 // trunc(sext ty1 to ty2) to ty1.
6658 if (Instr->getType() == Ext->getOperand(0)->getType())
6659 continue;
6660 // FALL THROUGH.
6661 default:
6662 return false;
6663 }
6664
6665 // At this point we can use the bfm family, so this extension is free
6666 // for that use.
6667 }
6668 return true;
6669}
6670
Tim Northover3b0846e2014-05-24 12:50:23 +00006671bool AArch64TargetLowering::hasPairedLoad(Type *LoadedType,
6672 unsigned &RequiredAligment) const {
6673 if (!LoadedType->isIntegerTy() && !LoadedType->isFloatTy())
6674 return false;
6675 // Cyclone supports unaligned accesses.
6676 RequiredAligment = 0;
6677 unsigned NumBits = LoadedType->getPrimitiveSizeInBits();
6678 return NumBits == 32 || NumBits == 64;
6679}
6680
6681bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
6682 unsigned &RequiredAligment) const {
6683 if (!LoadedType.isSimple() ||
6684 (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
6685 return false;
6686 // Cyclone supports unaligned accesses.
6687 RequiredAligment = 0;
6688 unsigned NumBits = LoadedType.getSizeInBits();
6689 return NumBits == 32 || NumBits == 64;
6690}
6691
6692static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
6693 unsigned AlignCheck) {
6694 return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
6695 (DstAlign == 0 || DstAlign % AlignCheck == 0));
6696}
6697
6698EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
6699 unsigned SrcAlign, bool IsMemset,
6700 bool ZeroMemset,
6701 bool MemcpyStrSrc,
6702 MachineFunction &MF) const {
6703 // Don't use AdvSIMD to implement 16-byte memset. It would have taken one
6704 // instruction to materialize the v2i64 zero and one store (with restrictive
6705 // addressing mode). Just do two i64 store of zero-registers.
6706 bool Fast;
6707 const Function *F = MF.getFunction();
6708 if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 &&
Duncan P. N. Exon Smith003bb7d2015-02-14 02:09:06 +00006709 !F->hasFnAttribute(Attribute::NoImplicitFloat) &&
Tim Northover3b0846e2014-05-24 12:50:23 +00006710 (memOpAlign(SrcAlign, DstAlign, 16) ||
Matt Arsenault6f2a5262014-07-27 17:46:40 +00006711 (allowsMisalignedMemoryAccesses(MVT::f128, 0, 1, &Fast) && Fast)))
Tim Northover3b0846e2014-05-24 12:50:23 +00006712 return MVT::f128;
6713
Lang Hames90333852015-04-09 03:40:33 +00006714 if (Size >= 8 &&
6715 (memOpAlign(SrcAlign, DstAlign, 8) ||
6716 (allowsMisalignedMemoryAccesses(MVT::i64, 0, 1, &Fast) && Fast)))
6717 return MVT::i64;
6718
6719 if (Size >= 4 &&
6720 (memOpAlign(SrcAlign, DstAlign, 4) ||
6721 (allowsMisalignedMemoryAccesses(MVT::i32, 0, 1, &Fast) && Fast)))
Lang Hames522bf132015-04-09 05:34:57 +00006722 return MVT::i32;
Lang Hames90333852015-04-09 03:40:33 +00006723
6724 return MVT::Other;
Tim Northover3b0846e2014-05-24 12:50:23 +00006725}
6726
6727// 12-bit optionally shifted immediates are legal for adds.
6728bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
6729 if ((Immed >> 12) == 0 || ((Immed & 0xfff) == 0 && Immed >> 24 == 0))
6730 return true;
6731 return false;
6732}
6733
6734// Integer comparisons are implemented with ADDS/SUBS, so the range of valid
6735// immediates is the same as for an add or a sub.
6736bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
6737 if (Immed < 0)
6738 Immed *= -1;
6739 return isLegalAddImmediate(Immed);
6740}
6741
6742/// isLegalAddressingMode - Return true if the addressing mode represented
6743/// by AM is legal for this target, for a load/store of the specified type.
6744bool AArch64TargetLowering::isLegalAddressingMode(const AddrMode &AM,
Matt Arsenaultbd7d80a2015-06-01 05:31:59 +00006745 Type *Ty,
6746 unsigned AS) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00006747 // AArch64 has five basic addressing modes:
6748 // reg
6749 // reg + 9-bit signed offset
6750 // reg + SIZE_IN_BYTES * 12-bit unsigned offset
6751 // reg1 + reg2
6752 // reg + SIZE_IN_BYTES * reg
6753
6754 // No global is ever allowed as a base.
6755 if (AM.BaseGV)
6756 return false;
6757
6758 // No reg+reg+imm addressing.
6759 if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
6760 return false;
6761
6762 // check reg + imm case:
6763 // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
6764 uint64_t NumBytes = 0;
6765 if (Ty->isSized()) {
6766 uint64_t NumBits = getDataLayout()->getTypeSizeInBits(Ty);
6767 NumBytes = NumBits / 8;
6768 if (!isPowerOf2_64(NumBits))
6769 NumBytes = 0;
6770 }
6771
6772 if (!AM.Scale) {
6773 int64_t Offset = AM.BaseOffs;
6774
6775 // 9-bit signed offset
6776 if (Offset >= -(1LL << 9) && Offset <= (1LL << 9) - 1)
6777 return true;
6778
6779 // 12-bit unsigned offset
6780 unsigned shift = Log2_64(NumBytes);
6781 if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
6782 // Must be a multiple of NumBytes (NumBytes is a power of 2)
6783 (Offset >> shift) << shift == Offset)
6784 return true;
6785 return false;
6786 }
6787
6788 // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
6789
6790 if (!AM.Scale || AM.Scale == 1 ||
6791 (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes))
6792 return true;
6793 return false;
6794}
6795
6796int AArch64TargetLowering::getScalingFactorCost(const AddrMode &AM,
Matt Arsenaultbd7d80a2015-06-01 05:31:59 +00006797 Type *Ty,
6798 unsigned AS) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00006799 // Scaling factors are not free at all.
6800 // Operands | Rt Latency
6801 // -------------------------------------------
6802 // Rt, [Xn, Xm] | 4
6803 // -------------------------------------------
6804 // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
6805 // Rt, [Xn, Wm, <extend> #imm] |
Matt Arsenaultbd7d80a2015-06-01 05:31:59 +00006806 if (isLegalAddressingMode(AM, Ty, AS))
Tim Northover3b0846e2014-05-24 12:50:23 +00006807 // Scale represents reg2 * scale, thus account for 1 if
6808 // it is not equal to 0 or 1.
6809 return AM.Scale != 0 && AM.Scale != 1;
6810 return -1;
6811}
6812
6813bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
6814 VT = VT.getScalarType();
6815
6816 if (!VT.isSimple())
6817 return false;
6818
6819 switch (VT.getSimpleVT().SimpleTy) {
6820 case MVT::f32:
6821 case MVT::f64:
6822 return true;
6823 default:
6824 break;
6825 }
6826
6827 return false;
6828}
6829
6830const MCPhysReg *
6831AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
6832 // LR is a callee-save register, but we must treat it as clobbered by any call
6833 // site. Hence we include LR in the scratch registers, which are in turn added
6834 // as implicit-defs for stackmaps and patchpoints.
6835 static const MCPhysReg ScratchRegs[] = {
6836 AArch64::X16, AArch64::X17, AArch64::LR, 0
6837 };
6838 return ScratchRegs;
6839}
6840
6841bool
6842AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const {
6843 EVT VT = N->getValueType(0);
6844 // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
6845 // it with shift to let it be lowered to UBFX.
6846 if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
6847 isa<ConstantSDNode>(N->getOperand(1))) {
6848 uint64_t TruncMask = N->getConstantOperandVal(1);
6849 if (isMask_64(TruncMask) &&
6850 N->getOperand(0).getOpcode() == ISD::SRL &&
6851 isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
6852 return false;
6853 }
6854 return true;
6855}
6856
6857bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
6858 Type *Ty) const {
6859 assert(Ty->isIntegerTy());
6860
6861 unsigned BitSize = Ty->getPrimitiveSizeInBits();
6862 if (BitSize == 0)
6863 return false;
6864
6865 int64_t Val = Imm.getSExtValue();
6866 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
6867 return true;
6868
6869 if ((int64_t)Val < 0)
6870 Val = ~Val;
6871 if (BitSize == 32)
6872 Val &= (1LL << 32) - 1;
6873
6874 unsigned LZ = countLeadingZeros((uint64_t)Val);
6875 unsigned Shift = (63 - LZ) / 16;
6876 // MOVZ is free so return true for one or fewer MOVK.
David Blaikie186d2cb2015-03-24 16:24:01 +00006877 return Shift < 3;
Tim Northover3b0846e2014-05-24 12:50:23 +00006878}
6879
6880// Generate SUBS and CSEL for integer abs.
6881static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
6882 EVT VT = N->getValueType(0);
6883
6884 SDValue N0 = N->getOperand(0);
6885 SDValue N1 = N->getOperand(1);
6886 SDLoc DL(N);
6887
6888 // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
6889 // and change it to SUB and CSEL.
6890 if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
6891 N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
6892 N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
6893 if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
6894 if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006895 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
Tim Northover3b0846e2014-05-24 12:50:23 +00006896 N0.getOperand(0));
6897 // Generate SUBS & CSEL.
6898 SDValue Cmp =
6899 DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006900 N0.getOperand(0), DAG.getConstant(0, DL, VT));
Tim Northover3b0846e2014-05-24 12:50:23 +00006901 return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006902 DAG.getConstant(AArch64CC::PL, DL, MVT::i32),
Tim Northover3b0846e2014-05-24 12:50:23 +00006903 SDValue(Cmp.getNode(), 1));
6904 }
6905 return SDValue();
6906}
6907
6908// performXorCombine - Attempts to handle integer ABS.
6909static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
6910 TargetLowering::DAGCombinerInfo &DCI,
6911 const AArch64Subtarget *Subtarget) {
6912 if (DCI.isBeforeLegalizeOps())
6913 return SDValue();
6914
6915 return performIntegerAbsCombine(N, DAG);
6916}
6917
Chad Rosier17020f92014-07-23 14:57:52 +00006918SDValue
6919AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
6920 SelectionDAG &DAG,
6921 std::vector<SDNode *> *Created) const {
6922 // fold (sdiv X, pow2)
6923 EVT VT = N->getValueType(0);
6924 if ((VT != MVT::i32 && VT != MVT::i64) ||
6925 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
6926 return SDValue();
6927
6928 SDLoc DL(N);
6929 SDValue N0 = N->getOperand(0);
6930 unsigned Lg2 = Divisor.countTrailingZeros();
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006931 SDValue Zero = DAG.getConstant(0, DL, VT);
6932 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
Chad Rosier17020f92014-07-23 14:57:52 +00006933
6934 // Add (N0 < 0) ? Pow2 - 1 : 0;
6935 SDValue CCVal;
6936 SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL);
6937 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
6938 SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp);
6939
6940 if (Created) {
6941 Created->push_back(Cmp.getNode());
6942 Created->push_back(Add.getNode());
6943 Created->push_back(CSel.getNode());
6944 }
6945
6946 // Divide by pow2.
6947 SDValue SRA =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006948 DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, DL, MVT::i64));
Chad Rosier17020f92014-07-23 14:57:52 +00006949
6950 // If we're dividing by a positive value, we're done. Otherwise, we must
6951 // negate the result.
6952 if (Divisor.isNonNegative())
6953 return SRA;
6954
6955 if (Created)
6956 Created->push_back(SRA.getNode());
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006957 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
Chad Rosier17020f92014-07-23 14:57:52 +00006958}
6959
Tim Northover3b0846e2014-05-24 12:50:23 +00006960static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
6961 TargetLowering::DAGCombinerInfo &DCI,
6962 const AArch64Subtarget *Subtarget) {
6963 if (DCI.isBeforeLegalizeOps())
6964 return SDValue();
6965
6966 // Multiplication of a power of two plus/minus one can be done more
6967 // cheaply as as shift+add/sub. For now, this is true unilaterally. If
6968 // future CPUs have a cheaper MADD instruction, this may need to be
6969 // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
6970 // 64-bit is 5 cycles, so this is always a win.
6971 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
6972 APInt Value = C->getAPIntValue();
6973 EVT VT = N->getValueType(0);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006974 SDLoc DL(N);
Chad Rosiere6b87612014-06-30 14:51:14 +00006975 if (Value.isNonNegative()) {
6976 // (mul x, 2^N + 1) => (add (shl x, N), x)
6977 APInt VM1 = Value - 1;
6978 if (VM1.isPowerOf2()) {
6979 SDValue ShiftedVal =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006980 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
6981 DAG.getConstant(VM1.logBase2(), DL, MVT::i64));
6982 return DAG.getNode(ISD::ADD, DL, VT, ShiftedVal,
Chad Rosiere6b87612014-06-30 14:51:14 +00006983 N->getOperand(0));
6984 }
6985 // (mul x, 2^N - 1) => (sub (shl x, N), x)
6986 APInt VP1 = Value + 1;
6987 if (VP1.isPowerOf2()) {
6988 SDValue ShiftedVal =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006989 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
6990 DAG.getConstant(VP1.logBase2(), DL, MVT::i64));
6991 return DAG.getNode(ISD::SUB, DL, VT, ShiftedVal,
Chad Rosiere6b87612014-06-30 14:51:14 +00006992 N->getOperand(0));
6993 }
6994 } else {
Chad Rosier8e38f302015-03-03 17:31:01 +00006995 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
6996 APInt VNP1 = -Value + 1;
6997 if (VNP1.isPowerOf2()) {
6998 SDValue ShiftedVal =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006999 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
7000 DAG.getConstant(VNP1.logBase2(), DL, MVT::i64));
7001 return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0),
Chad Rosier8e38f302015-03-03 17:31:01 +00007002 ShiftedVal);
7003 }
Chad Rosiere6b87612014-06-30 14:51:14 +00007004 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
7005 APInt VNM1 = -Value - 1;
7006 if (VNM1.isPowerOf2()) {
7007 SDValue ShiftedVal =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007008 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
7009 DAG.getConstant(VNM1.logBase2(), DL, MVT::i64));
Chad Rosiere6b87612014-06-30 14:51:14 +00007010 SDValue Add =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007011 DAG.getNode(ISD::ADD, DL, VT, ShiftedVal, N->getOperand(0));
7012 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Add);
Chad Rosiere6b87612014-06-30 14:51:14 +00007013 }
Chad Rosierd96e9f12014-06-09 01:25:51 +00007014 }
Tim Northover3b0846e2014-05-24 12:50:23 +00007015 }
7016 return SDValue();
7017}
7018
Jim Grosbachf7502c42014-07-18 00:40:52 +00007019static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
7020 SelectionDAG &DAG) {
7021 // Take advantage of vector comparisons producing 0 or -1 in each lane to
7022 // optimize away operation when it's from a constant.
7023 //
7024 // The general transformation is:
7025 // UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
7026 // AND(VECTOR_CMP(x,y), constant2)
7027 // constant2 = UNARYOP(constant)
7028
Jim Grosbach8f6f0852014-07-23 20:41:38 +00007029 // Early exit if this isn't a vector operation, the operand of the
7030 // unary operation isn't a bitwise AND, or if the sizes of the operations
7031 // aren't the same.
Jim Grosbachf7502c42014-07-18 00:40:52 +00007032 EVT VT = N->getValueType(0);
7033 if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
Jim Grosbach8f6f0852014-07-23 20:41:38 +00007034 N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
7035 VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
Jim Grosbachf7502c42014-07-18 00:40:52 +00007036 return SDValue();
7037
Jim Grosbach724e4382014-07-23 20:41:43 +00007038 // Now check that the other operand of the AND is a constant. We could
Jim Grosbachf7502c42014-07-18 00:40:52 +00007039 // make the transformation for non-constant splats as well, but it's unclear
7040 // that would be a benefit as it would not eliminate any operations, just
7041 // perform one more step in scalar code before moving to the vector unit.
7042 if (BuildVectorSDNode *BV =
7043 dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
Jim Grosbach724e4382014-07-23 20:41:43 +00007044 // Bail out if the vector isn't a constant.
7045 if (!BV->isConstant())
Jim Grosbachf7502c42014-07-18 00:40:52 +00007046 return SDValue();
7047
7048 // Everything checks out. Build up the new and improved node.
7049 SDLoc DL(N);
7050 EVT IntVT = BV->getValueType(0);
7051 // Create a new constant of the appropriate type for the transformed
7052 // DAG.
7053 SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
7054 // The AND node needs bitcasts to/from an integer vector type around it.
7055 SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
7056 SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
7057 N->getOperand(0)->getOperand(0), MaskConst);
7058 SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
7059 return Res;
7060 }
7061
7062 return SDValue();
7063}
7064
Weiming Zhaocc4bf3f2014-12-04 20:25:50 +00007065static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG,
7066 const AArch64Subtarget *Subtarget) {
Jim Grosbachf7502c42014-07-18 00:40:52 +00007067 // First try to optimize away the conversion when it's conditionally from
7068 // a constant. Vectors only.
7069 SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG);
7070 if (Res != SDValue())
7071 return Res;
7072
Tim Northover3b0846e2014-05-24 12:50:23 +00007073 EVT VT = N->getValueType(0);
7074 if (VT != MVT::f32 && VT != MVT::f64)
7075 return SDValue();
Jim Grosbachf7502c42014-07-18 00:40:52 +00007076
Tim Northover3b0846e2014-05-24 12:50:23 +00007077 // Only optimize when the source and destination types have the same width.
7078 if (VT.getSizeInBits() != N->getOperand(0).getValueType().getSizeInBits())
7079 return SDValue();
7080
7081 // If the result of an integer load is only used by an integer-to-float
7082 // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
7083 // This eliminates an "integer-to-vector-move UOP and improve throughput.
7084 SDValue N0 = N->getOperand(0);
Weiming Zhaocc4bf3f2014-12-04 20:25:50 +00007085 if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
Tim Northover3b0846e2014-05-24 12:50:23 +00007086 // Do not change the width of a volatile load.
7087 !cast<LoadSDNode>(N0)->isVolatile()) {
7088 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
7089 SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
7090 LN0->getPointerInfo(), LN0->isVolatile(),
7091 LN0->isNonTemporal(), LN0->isInvariant(),
7092 LN0->getAlignment());
7093
7094 // Make sure successors of the original load stay after it by updating them
7095 // to use the new Chain.
7096 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
7097
7098 unsigned Opcode =
7099 (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
7100 return DAG.getNode(Opcode, SDLoc(N), VT, Load);
7101 }
7102
7103 return SDValue();
7104}
7105
7106/// An EXTR instruction is made up of two shifts, ORed together. This helper
7107/// searches for and classifies those shifts.
7108static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
7109 bool &FromHi) {
7110 if (N.getOpcode() == ISD::SHL)
7111 FromHi = false;
7112 else if (N.getOpcode() == ISD::SRL)
7113 FromHi = true;
7114 else
7115 return false;
7116
7117 if (!isa<ConstantSDNode>(N.getOperand(1)))
7118 return false;
7119
7120 ShiftAmount = N->getConstantOperandVal(1);
7121 Src = N->getOperand(0);
7122 return true;
7123}
7124
7125/// EXTR instruction extracts a contiguous chunk of bits from two existing
7126/// registers viewed as a high/low pair. This function looks for the pattern:
7127/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
7128/// EXTR. Can't quite be done in TableGen because the two immediates aren't
7129/// independent.
7130static SDValue tryCombineToEXTR(SDNode *N,
7131 TargetLowering::DAGCombinerInfo &DCI) {
7132 SelectionDAG &DAG = DCI.DAG;
7133 SDLoc DL(N);
7134 EVT VT = N->getValueType(0);
7135
7136 assert(N->getOpcode() == ISD::OR && "Unexpected root");
7137
7138 if (VT != MVT::i32 && VT != MVT::i64)
7139 return SDValue();
7140
7141 SDValue LHS;
7142 uint32_t ShiftLHS = 0;
7143 bool LHSFromHi = 0;
7144 if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
7145 return SDValue();
7146
7147 SDValue RHS;
7148 uint32_t ShiftRHS = 0;
7149 bool RHSFromHi = 0;
7150 if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
7151 return SDValue();
7152
7153 // If they're both trying to come from the high part of the register, they're
7154 // not really an EXTR.
7155 if (LHSFromHi == RHSFromHi)
7156 return SDValue();
7157
7158 if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
7159 return SDValue();
7160
7161 if (LHSFromHi) {
7162 std::swap(LHS, RHS);
7163 std::swap(ShiftLHS, ShiftRHS);
7164 }
7165
7166 return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007167 DAG.getConstant(ShiftRHS, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007168}
7169
7170static SDValue tryCombineToBSL(SDNode *N,
7171 TargetLowering::DAGCombinerInfo &DCI) {
7172 EVT VT = N->getValueType(0);
7173 SelectionDAG &DAG = DCI.DAG;
7174 SDLoc DL(N);
7175
7176 if (!VT.isVector())
7177 return SDValue();
7178
7179 SDValue N0 = N->getOperand(0);
7180 if (N0.getOpcode() != ISD::AND)
7181 return SDValue();
7182
7183 SDValue N1 = N->getOperand(1);
7184 if (N1.getOpcode() != ISD::AND)
7185 return SDValue();
7186
7187 // We only have to look for constant vectors here since the general, variable
7188 // case can be handled in TableGen.
7189 unsigned Bits = VT.getVectorElementType().getSizeInBits();
7190 uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
7191 for (int i = 1; i >= 0; --i)
7192 for (int j = 1; j >= 0; --j) {
7193 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
7194 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
7195 if (!BVN0 || !BVN1)
7196 continue;
7197
7198 bool FoundMatch = true;
7199 for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
7200 ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
7201 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
7202 if (!CN0 || !CN1 ||
7203 CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
7204 FoundMatch = false;
7205 break;
7206 }
7207 }
7208
7209 if (FoundMatch)
7210 return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
7211 N0->getOperand(1 - i), N1->getOperand(1 - j));
7212 }
7213
7214 return SDValue();
7215}
7216
7217static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
7218 const AArch64Subtarget *Subtarget) {
7219 // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
7220 if (!EnableAArch64ExtrGeneration)
7221 return SDValue();
7222 SelectionDAG &DAG = DCI.DAG;
7223 EVT VT = N->getValueType(0);
7224
7225 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7226 return SDValue();
7227
7228 SDValue Res = tryCombineToEXTR(N, DCI);
7229 if (Res.getNode())
7230 return Res;
7231
7232 Res = tryCombineToBSL(N, DCI);
7233 if (Res.getNode())
7234 return Res;
7235
7236 return SDValue();
7237}
7238
7239static SDValue performBitcastCombine(SDNode *N,
7240 TargetLowering::DAGCombinerInfo &DCI,
7241 SelectionDAG &DAG) {
7242 // Wait 'til after everything is legalized to try this. That way we have
7243 // legal vector types and such.
7244 if (DCI.isBeforeLegalizeOps())
7245 return SDValue();
7246
7247 // Remove extraneous bitcasts around an extract_subvector.
7248 // For example,
7249 // (v4i16 (bitconvert
7250 // (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
7251 // becomes
7252 // (extract_subvector ((v8i16 ...), (i64 4)))
7253
7254 // Only interested in 64-bit vectors as the ultimate result.
7255 EVT VT = N->getValueType(0);
7256 if (!VT.isVector())
7257 return SDValue();
7258 if (VT.getSimpleVT().getSizeInBits() != 64)
7259 return SDValue();
7260 // Is the operand an extract_subvector starting at the beginning or halfway
7261 // point of the vector? A low half may also come through as an
7262 // EXTRACT_SUBREG, so look for that, too.
7263 SDValue Op0 = N->getOperand(0);
7264 if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
7265 !(Op0->isMachineOpcode() &&
7266 Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG))
7267 return SDValue();
7268 uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
7269 if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
7270 if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
7271 return SDValue();
7272 } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) {
7273 if (idx != AArch64::dsub)
7274 return SDValue();
7275 // The dsub reference is equivalent to a lane zero subvector reference.
7276 idx = 0;
7277 }
7278 // Look through the bitcast of the input to the extract.
7279 if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
7280 return SDValue();
7281 SDValue Source = Op0->getOperand(0)->getOperand(0);
7282 // If the source type has twice the number of elements as our destination
7283 // type, we know this is an extract of the high or low half of the vector.
7284 EVT SVT = Source->getValueType(0);
7285 if (SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
7286 return SDValue();
7287
7288 DEBUG(dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
7289
7290 // Create the simplified form to just extract the low or high half of the
7291 // vector directly rather than bothering with the bitcasts.
7292 SDLoc dl(N);
7293 unsigned NumElements = VT.getVectorNumElements();
7294 if (idx) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007295 SDValue HalfIdx = DAG.getConstant(NumElements, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00007296 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
7297 } else {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007298 SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00007299 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
7300 Source, SubReg),
7301 0);
7302 }
7303}
7304
7305static SDValue performConcatVectorsCombine(SDNode *N,
7306 TargetLowering::DAGCombinerInfo &DCI,
7307 SelectionDAG &DAG) {
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007308 SDLoc dl(N);
7309 EVT VT = N->getValueType(0);
7310 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
7311
Ahmed Bougachae0afb1f2015-03-17 03:23:09 +00007312 // Optimize concat_vectors of truncated vectors, where the intermediate
7313 // type is illegal, to avoid said illegality, e.g.,
7314 // (v4i16 (concat_vectors (v2i16 (truncate (v2i64))),
7315 // (v2i16 (truncate (v2i64)))))
7316 // ->
Ahmed Bougachae6bb09a2015-03-21 01:08:39 +00007317 // (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))),
7318 // (v4i32 (bitcast (v2i64))),
7319 // <0, 2, 4, 6>)))
Ahmed Bougachae0afb1f2015-03-17 03:23:09 +00007320 // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed
7321 // on both input and result type, so we might generate worse code.
7322 // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8.
7323 if (N->getNumOperands() == 2 &&
7324 N0->getOpcode() == ISD::TRUNCATE &&
7325 N1->getOpcode() == ISD::TRUNCATE) {
7326 SDValue N00 = N0->getOperand(0);
7327 SDValue N10 = N1->getOperand(0);
7328 EVT N00VT = N00.getValueType();
7329
7330 if (N00VT == N10.getValueType() &&
7331 (N00VT == MVT::v2i64 || N00VT == MVT::v4i32) &&
7332 N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) {
Ahmed Bougachae6bb09a2015-03-21 01:08:39 +00007333 MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16);
7334 SmallVector<int, 8> Mask(MidVT.getVectorNumElements());
7335 for (size_t i = 0; i < Mask.size(); ++i)
7336 Mask[i] = i * 2;
7337 return DAG.getNode(ISD::TRUNCATE, dl, VT,
7338 DAG.getVectorShuffle(
7339 MidVT, dl,
7340 DAG.getNode(ISD::BITCAST, dl, MidVT, N00),
7341 DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask));
Ahmed Bougachae0afb1f2015-03-17 03:23:09 +00007342 }
7343 }
7344
Tim Northover3b0846e2014-05-24 12:50:23 +00007345 // Wait 'til after everything is legalized to try this. That way we have
7346 // legal vector types and such.
7347 if (DCI.isBeforeLegalizeOps())
7348 return SDValue();
7349
Tim Northover3b0846e2014-05-24 12:50:23 +00007350 // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
7351 // splat. The indexed instructions are going to be expecting a DUPLANE64, so
7352 // canonicalise to that.
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007353 if (N0 == N1 && VT.getVectorNumElements() == 2) {
Tim Northover3b0846e2014-05-24 12:50:23 +00007354 assert(VT.getVectorElementType().getSizeInBits() == 64);
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007355 return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007356 DAG.getConstant(0, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007357 }
7358
7359 // Canonicalise concat_vectors so that the right-hand vector has as few
7360 // bit-casts as possible before its real operation. The primary matching
7361 // destination for these operations will be the narrowing "2" instructions,
7362 // which depend on the operation being performed on this right-hand vector.
7363 // For example,
7364 // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS))))
7365 // becomes
7366 // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
7367
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007368 if (N1->getOpcode() != ISD::BITCAST)
Tim Northover3b0846e2014-05-24 12:50:23 +00007369 return SDValue();
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007370 SDValue RHS = N1->getOperand(0);
Tim Northover3b0846e2014-05-24 12:50:23 +00007371 MVT RHSTy = RHS.getValueType().getSimpleVT();
7372 // If the RHS is not a vector, this is not the pattern we're looking for.
7373 if (!RHSTy.isVector())
7374 return SDValue();
7375
7376 DEBUG(dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
7377
7378 MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
7379 RHSTy.getVectorNumElements() * 2);
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007380 return DAG.getNode(ISD::BITCAST, dl, VT,
7381 DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
7382 DAG.getNode(ISD::BITCAST, dl, RHSTy, N0),
7383 RHS));
Tim Northover3b0846e2014-05-24 12:50:23 +00007384}
7385
7386static SDValue tryCombineFixedPointConvert(SDNode *N,
7387 TargetLowering::DAGCombinerInfo &DCI,
7388 SelectionDAG &DAG) {
7389 // Wait 'til after everything is legalized to try this. That way we have
7390 // legal vector types and such.
7391 if (DCI.isBeforeLegalizeOps())
7392 return SDValue();
7393 // Transform a scalar conversion of a value from a lane extract into a
7394 // lane extract of a vector conversion. E.g., from foo1 to foo2:
7395 // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
7396 // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
7397 //
7398 // The second form interacts better with instruction selection and the
7399 // register allocator to avoid cross-class register copies that aren't
7400 // coalescable due to a lane reference.
7401
7402 // Check the operand and see if it originates from a lane extract.
7403 SDValue Op1 = N->getOperand(1);
7404 if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
7405 // Yep, no additional predication needed. Perform the transform.
7406 SDValue IID = N->getOperand(0);
7407 SDValue Shift = N->getOperand(2);
7408 SDValue Vec = Op1.getOperand(0);
7409 SDValue Lane = Op1.getOperand(1);
7410 EVT ResTy = N->getValueType(0);
7411 EVT VecResTy;
7412 SDLoc DL(N);
7413
7414 // The vector width should be 128 bits by the time we get here, even
7415 // if it started as 64 bits (the extract_vector handling will have
7416 // done so).
7417 assert(Vec.getValueType().getSizeInBits() == 128 &&
7418 "unexpected vector size on extract_vector_elt!");
7419 if (Vec.getValueType() == MVT::v4i32)
7420 VecResTy = MVT::v4f32;
7421 else if (Vec.getValueType() == MVT::v2i64)
7422 VecResTy = MVT::v2f64;
7423 else
Craig Topper2a30d782014-06-18 05:05:13 +00007424 llvm_unreachable("unexpected vector type!");
Tim Northover3b0846e2014-05-24 12:50:23 +00007425
7426 SDValue Convert =
7427 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
7428 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
7429 }
7430 return SDValue();
7431}
7432
7433// AArch64 high-vector "long" operations are formed by performing the non-high
7434// version on an extract_subvector of each operand which gets the high half:
7435//
7436// (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
7437//
7438// However, there are cases which don't have an extract_high explicitly, but
7439// have another operation that can be made compatible with one for free. For
7440// example:
7441//
7442// (dupv64 scalar) --> (extract_high (dup128 scalar))
7443//
7444// This routine does the actual conversion of such DUPs, once outer routines
7445// have determined that everything else is in order.
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00007446// It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold
7447// similarly here.
Tim Northover3b0846e2014-05-24 12:50:23 +00007448static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
Tim Northover3b0846e2014-05-24 12:50:23 +00007449 switch (N.getOpcode()) {
7450 case AArch64ISD::DUP:
Tim Northover3b0846e2014-05-24 12:50:23 +00007451 case AArch64ISD::DUPLANE8:
7452 case AArch64ISD::DUPLANE16:
7453 case AArch64ISD::DUPLANE32:
7454 case AArch64ISD::DUPLANE64:
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00007455 case AArch64ISD::MOVI:
7456 case AArch64ISD::MOVIshift:
7457 case AArch64ISD::MOVIedit:
7458 case AArch64ISD::MOVImsl:
7459 case AArch64ISD::MVNIshift:
7460 case AArch64ISD::MVNImsl:
Tim Northover3b0846e2014-05-24 12:50:23 +00007461 break;
7462 default:
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00007463 // FMOV could be supported, but isn't very useful, as it would only occur
7464 // if you passed a bitcast' floating point immediate to an eligible long
7465 // integer op (addl, smull, ...).
Tim Northover3b0846e2014-05-24 12:50:23 +00007466 return SDValue();
7467 }
7468
7469 MVT NarrowTy = N.getSimpleValueType();
7470 if (!NarrowTy.is64BitVector())
7471 return SDValue();
7472
7473 MVT ElementTy = NarrowTy.getVectorElementType();
7474 unsigned NumElems = NarrowTy.getVectorNumElements();
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00007475 MVT NewVT = MVT::getVectorVT(ElementTy, NumElems * 2);
Tim Northover3b0846e2014-05-24 12:50:23 +00007476
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007477 SDLoc dl(N);
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00007478 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NarrowTy,
7479 DAG.getNode(N->getOpcode(), dl, NewVT, N->ops()),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007480 DAG.getConstant(NumElems, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007481}
7482
7483static bool isEssentiallyExtractSubvector(SDValue N) {
7484 if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR)
7485 return true;
7486
7487 return N.getOpcode() == ISD::BITCAST &&
7488 N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR;
7489}
7490
7491/// \brief Helper structure to keep track of ISD::SET_CC operands.
7492struct GenericSetCCInfo {
7493 const SDValue *Opnd0;
7494 const SDValue *Opnd1;
7495 ISD::CondCode CC;
7496};
7497
7498/// \brief Helper structure to keep track of a SET_CC lowered into AArch64 code.
7499struct AArch64SetCCInfo {
7500 const SDValue *Cmp;
7501 AArch64CC::CondCode CC;
7502};
7503
7504/// \brief Helper structure to keep track of SetCC information.
7505union SetCCInfo {
7506 GenericSetCCInfo Generic;
7507 AArch64SetCCInfo AArch64;
7508};
7509
7510/// \brief Helper structure to be able to read SetCC information. If set to
7511/// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
7512/// GenericSetCCInfo.
7513struct SetCCInfoAndKind {
7514 SetCCInfo Info;
7515 bool IsAArch64;
7516};
7517
7518/// \brief Check whether or not \p Op is a SET_CC operation, either a generic or
7519/// an
7520/// AArch64 lowered one.
7521/// \p SetCCInfo is filled accordingly.
7522/// \post SetCCInfo is meanginfull only when this function returns true.
7523/// \return True when Op is a kind of SET_CC operation.
7524static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
7525 // If this is a setcc, this is straight forward.
7526 if (Op.getOpcode() == ISD::SETCC) {
7527 SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
7528 SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
7529 SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7530 SetCCInfo.IsAArch64 = false;
7531 return true;
7532 }
7533 // Otherwise, check if this is a matching csel instruction.
7534 // In other words:
7535 // - csel 1, 0, cc
7536 // - csel 0, 1, !cc
7537 if (Op.getOpcode() != AArch64ISD::CSEL)
7538 return false;
7539 // Set the information about the operands.
7540 // TODO: we want the operands of the Cmp not the csel
7541 SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
7542 SetCCInfo.IsAArch64 = true;
7543 SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
7544 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
7545
7546 // Check that the operands matches the constraints:
7547 // (1) Both operands must be constants.
7548 // (2) One must be 1 and the other must be 0.
7549 ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
7550 ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7551
7552 // Check (1).
7553 if (!TValue || !FValue)
7554 return false;
7555
7556 // Check (2).
7557 if (!TValue->isOne()) {
7558 // Update the comparison when we are interested in !cc.
7559 std::swap(TValue, FValue);
7560 SetCCInfo.Info.AArch64.CC =
7561 AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
7562 }
7563 return TValue->isOne() && FValue->isNullValue();
7564}
7565
7566// Returns true if Op is setcc or zext of setcc.
7567static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
7568 if (isSetCC(Op, Info))
7569 return true;
7570 return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
7571 isSetCC(Op->getOperand(0), Info));
7572}
7573
7574// The folding we want to perform is:
7575// (add x, [zext] (setcc cc ...) )
7576// -->
7577// (csel x, (add x, 1), !cc ...)
7578//
7579// The latter will get matched to a CSINC instruction.
7580static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
7581 assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
7582 SDValue LHS = Op->getOperand(0);
7583 SDValue RHS = Op->getOperand(1);
7584 SetCCInfoAndKind InfoAndKind;
7585
7586 // If neither operand is a SET_CC, give up.
7587 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
7588 std::swap(LHS, RHS);
7589 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
7590 return SDValue();
7591 }
7592
7593 // FIXME: This could be generatized to work for FP comparisons.
7594 EVT CmpVT = InfoAndKind.IsAArch64
7595 ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
7596 : InfoAndKind.Info.Generic.Opnd0->getValueType();
7597 if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
7598 return SDValue();
7599
7600 SDValue CCVal;
7601 SDValue Cmp;
7602 SDLoc dl(Op);
7603 if (InfoAndKind.IsAArch64) {
7604 CCVal = DAG.getConstant(
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007605 AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), dl,
7606 MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00007607 Cmp = *InfoAndKind.Info.AArch64.Cmp;
7608 } else
7609 Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0,
7610 *InfoAndKind.Info.Generic.Opnd1,
7611 ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
7612 CCVal, DAG, dl);
7613
7614 EVT VT = Op->getValueType(0);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007615 LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, dl, VT));
Tim Northover3b0846e2014-05-24 12:50:23 +00007616 return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
7617}
7618
7619// The basic add/sub long vector instructions have variants with "2" on the end
7620// which act on the high-half of their inputs. They are normally matched by
7621// patterns like:
7622//
7623// (add (zeroext (extract_high LHS)),
7624// (zeroext (extract_high RHS)))
7625// -> uaddl2 vD, vN, vM
7626//
7627// However, if one of the extracts is something like a duplicate, this
7628// instruction can still be used profitably. This function puts the DAG into a
7629// more appropriate form for those patterns to trigger.
7630static SDValue performAddSubLongCombine(SDNode *N,
7631 TargetLowering::DAGCombinerInfo &DCI,
7632 SelectionDAG &DAG) {
7633 if (DCI.isBeforeLegalizeOps())
7634 return SDValue();
7635
7636 MVT VT = N->getSimpleValueType(0);
7637 if (!VT.is128BitVector()) {
7638 if (N->getOpcode() == ISD::ADD)
7639 return performSetccAddFolding(N, DAG);
7640 return SDValue();
7641 }
7642
7643 // Make sure both branches are extended in the same way.
7644 SDValue LHS = N->getOperand(0);
7645 SDValue RHS = N->getOperand(1);
7646 if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
7647 LHS.getOpcode() != ISD::SIGN_EXTEND) ||
7648 LHS.getOpcode() != RHS.getOpcode())
7649 return SDValue();
7650
7651 unsigned ExtType = LHS.getOpcode();
7652
7653 // It's not worth doing if at least one of the inputs isn't already an
7654 // extract, but we don't know which it'll be so we have to try both.
7655 if (isEssentiallyExtractSubvector(LHS.getOperand(0))) {
7656 RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
7657 if (!RHS.getNode())
7658 return SDValue();
7659
7660 RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
7661 } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) {
7662 LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
7663 if (!LHS.getNode())
7664 return SDValue();
7665
7666 LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
7667 }
7668
7669 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
7670}
7671
7672// Massage DAGs which we can use the high-half "long" operations on into
7673// something isel will recognize better. E.g.
7674//
7675// (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
7676// (aarch64_neon_umull (extract_high (v2i64 vec)))
7677// (extract_high (v2i64 (dup128 scalar)))))
7678//
7679static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
7680 TargetLowering::DAGCombinerInfo &DCI,
7681 SelectionDAG &DAG) {
7682 if (DCI.isBeforeLegalizeOps())
7683 return SDValue();
7684
7685 SDValue LHS = N->getOperand(1);
7686 SDValue RHS = N->getOperand(2);
7687 assert(LHS.getValueType().is64BitVector() &&
7688 RHS.getValueType().is64BitVector() &&
7689 "unexpected shape for long operation");
7690
7691 // Either node could be a DUP, but it's not worth doing both of them (you'd
7692 // just as well use the non-high version) so look for a corresponding extract
7693 // operation on the other "wing".
7694 if (isEssentiallyExtractSubvector(LHS)) {
7695 RHS = tryExtendDUPToExtractHigh(RHS, DAG);
7696 if (!RHS.getNode())
7697 return SDValue();
7698 } else if (isEssentiallyExtractSubvector(RHS)) {
7699 LHS = tryExtendDUPToExtractHigh(LHS, DAG);
7700 if (!LHS.getNode())
7701 return SDValue();
7702 }
7703
7704 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
7705 N->getOperand(0), LHS, RHS);
7706}
7707
7708static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
7709 MVT ElemTy = N->getSimpleValueType(0).getScalarType();
7710 unsigned ElemBits = ElemTy.getSizeInBits();
7711
7712 int64_t ShiftAmount;
7713 if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
7714 APInt SplatValue, SplatUndef;
7715 unsigned SplatBitSize;
7716 bool HasAnyUndefs;
7717 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
7718 HasAnyUndefs, ElemBits) ||
7719 SplatBitSize != ElemBits)
7720 return SDValue();
7721
7722 ShiftAmount = SplatValue.getSExtValue();
7723 } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
7724 ShiftAmount = CVN->getSExtValue();
7725 } else
7726 return SDValue();
7727
7728 unsigned Opcode;
7729 bool IsRightShift;
7730 switch (IID) {
7731 default:
7732 llvm_unreachable("Unknown shift intrinsic");
7733 case Intrinsic::aarch64_neon_sqshl:
7734 Opcode = AArch64ISD::SQSHL_I;
7735 IsRightShift = false;
7736 break;
7737 case Intrinsic::aarch64_neon_uqshl:
7738 Opcode = AArch64ISD::UQSHL_I;
7739 IsRightShift = false;
7740 break;
7741 case Intrinsic::aarch64_neon_srshl:
7742 Opcode = AArch64ISD::SRSHR_I;
7743 IsRightShift = true;
7744 break;
7745 case Intrinsic::aarch64_neon_urshl:
7746 Opcode = AArch64ISD::URSHR_I;
7747 IsRightShift = true;
7748 break;
7749 case Intrinsic::aarch64_neon_sqshlu:
7750 Opcode = AArch64ISD::SQSHLU_I;
7751 IsRightShift = false;
7752 break;
7753 }
7754
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007755 if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) {
7756 SDLoc dl(N);
7757 return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
7758 DAG.getConstant(-ShiftAmount, dl, MVT::i32));
7759 } else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) {
7760 SDLoc dl(N);
7761 return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
7762 DAG.getConstant(ShiftAmount, dl, MVT::i32));
7763 }
Tim Northover3b0846e2014-05-24 12:50:23 +00007764
7765 return SDValue();
7766}
7767
7768// The CRC32[BH] instructions ignore the high bits of their data operand. Since
7769// the intrinsics must be legal and take an i32, this means there's almost
7770// certainly going to be a zext in the DAG which we can eliminate.
7771static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
7772 SDValue AndN = N->getOperand(2);
7773 if (AndN.getOpcode() != ISD::AND)
7774 return SDValue();
7775
7776 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
7777 if (!CMask || CMask->getZExtValue() != Mask)
7778 return SDValue();
7779
7780 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
7781 N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
7782}
7783
Ahmed Bougachafab58922015-03-10 20:45:38 +00007784static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N,
7785 SelectionDAG &DAG) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007786 SDLoc dl(N);
7787 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0),
7788 DAG.getNode(Opc, dl,
Ahmed Bougachafab58922015-03-10 20:45:38 +00007789 N->getOperand(1).getSimpleValueType(),
7790 N->getOperand(1)),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007791 DAG.getConstant(0, dl, MVT::i64));
Ahmed Bougachafab58922015-03-10 20:45:38 +00007792}
7793
Tim Northover3b0846e2014-05-24 12:50:23 +00007794static SDValue performIntrinsicCombine(SDNode *N,
7795 TargetLowering::DAGCombinerInfo &DCI,
7796 const AArch64Subtarget *Subtarget) {
7797 SelectionDAG &DAG = DCI.DAG;
7798 unsigned IID = getIntrinsicID(N);
7799 switch (IID) {
7800 default:
7801 break;
7802 case Intrinsic::aarch64_neon_vcvtfxs2fp:
7803 case Intrinsic::aarch64_neon_vcvtfxu2fp:
7804 return tryCombineFixedPointConvert(N, DCI, DAG);
7805 break;
Ahmed Bougachafab58922015-03-10 20:45:38 +00007806 case Intrinsic::aarch64_neon_saddv:
7807 return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG);
7808 case Intrinsic::aarch64_neon_uaddv:
7809 return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG);
7810 case Intrinsic::aarch64_neon_sminv:
7811 return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG);
7812 case Intrinsic::aarch64_neon_uminv:
7813 return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG);
7814 case Intrinsic::aarch64_neon_smaxv:
7815 return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG);
7816 case Intrinsic::aarch64_neon_umaxv:
7817 return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00007818 case Intrinsic::aarch64_neon_fmax:
7819 return DAG.getNode(AArch64ISD::FMAX, SDLoc(N), N->getValueType(0),
7820 N->getOperand(1), N->getOperand(2));
7821 case Intrinsic::aarch64_neon_fmin:
7822 return DAG.getNode(AArch64ISD::FMIN, SDLoc(N), N->getValueType(0),
7823 N->getOperand(1), N->getOperand(2));
7824 case Intrinsic::aarch64_neon_smull:
7825 case Intrinsic::aarch64_neon_umull:
7826 case Intrinsic::aarch64_neon_pmull:
7827 case Intrinsic::aarch64_neon_sqdmull:
7828 return tryCombineLongOpWithDup(IID, N, DCI, DAG);
7829 case Intrinsic::aarch64_neon_sqshl:
7830 case Intrinsic::aarch64_neon_uqshl:
7831 case Intrinsic::aarch64_neon_sqshlu:
7832 case Intrinsic::aarch64_neon_srshl:
7833 case Intrinsic::aarch64_neon_urshl:
7834 return tryCombineShiftImm(IID, N, DAG);
7835 case Intrinsic::aarch64_crc32b:
7836 case Intrinsic::aarch64_crc32cb:
7837 return tryCombineCRC32(0xff, N, DAG);
7838 case Intrinsic::aarch64_crc32h:
7839 case Intrinsic::aarch64_crc32ch:
7840 return tryCombineCRC32(0xffff, N, DAG);
7841 }
7842 return SDValue();
7843}
7844
7845static SDValue performExtendCombine(SDNode *N,
7846 TargetLowering::DAGCombinerInfo &DCI,
7847 SelectionDAG &DAG) {
7848 // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
7849 // we can convert that DUP into another extract_high (of a bigger DUP), which
7850 // helps the backend to decide that an sabdl2 would be useful, saving a real
7851 // extract_high operation.
7852 if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
7853 N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
7854 SDNode *ABDNode = N->getOperand(0).getNode();
7855 unsigned IID = getIntrinsicID(ABDNode);
7856 if (IID == Intrinsic::aarch64_neon_sabd ||
7857 IID == Intrinsic::aarch64_neon_uabd) {
7858 SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
7859 if (!NewABD.getNode())
7860 return SDValue();
7861
7862 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
7863 NewABD);
7864 }
7865 }
7866
7867 // This is effectively a custom type legalization for AArch64.
7868 //
7869 // Type legalization will split an extend of a small, legal, type to a larger
7870 // illegal type by first splitting the destination type, often creating
7871 // illegal source types, which then get legalized in isel-confusing ways,
7872 // leading to really terrible codegen. E.g.,
7873 // %result = v8i32 sext v8i8 %value
7874 // becomes
7875 // %losrc = extract_subreg %value, ...
7876 // %hisrc = extract_subreg %value, ...
7877 // %lo = v4i32 sext v4i8 %losrc
7878 // %hi = v4i32 sext v4i8 %hisrc
7879 // Things go rapidly downhill from there.
7880 //
7881 // For AArch64, the [sz]ext vector instructions can only go up one element
7882 // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
7883 // take two instructions.
7884 //
7885 // This implies that the most efficient way to do the extend from v8i8
7886 // to two v4i32 values is to first extend the v8i8 to v8i16, then do
7887 // the normal splitting to happen for the v8i16->v8i32.
7888
7889 // This is pre-legalization to catch some cases where the default
7890 // type legalization will create ill-tempered code.
7891 if (!DCI.isBeforeLegalizeOps())
7892 return SDValue();
7893
7894 // We're only interested in cleaning things up for non-legal vector types
7895 // here. If both the source and destination are legal, things will just
7896 // work naturally without any fiddling.
7897 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7898 EVT ResVT = N->getValueType(0);
7899 if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
7900 return SDValue();
7901 // If the vector type isn't a simple VT, it's beyond the scope of what
7902 // we're worried about here. Let legalization do its thing and hope for
7903 // the best.
Jim Grosbachec2b0d02014-08-28 22:08:28 +00007904 SDValue Src = N->getOperand(0);
7905 EVT SrcVT = Src->getValueType(0);
7906 if (!ResVT.isSimple() || !SrcVT.isSimple())
Tim Northover3b0846e2014-05-24 12:50:23 +00007907 return SDValue();
7908
Tim Northover3b0846e2014-05-24 12:50:23 +00007909 // If the source VT is a 64-bit vector, we can play games and get the
7910 // better results we want.
7911 if (SrcVT.getSizeInBits() != 64)
7912 return SDValue();
7913
7914 unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits();
7915 unsigned ElementCount = SrcVT.getVectorNumElements();
7916 SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
7917 SDLoc DL(N);
7918 Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
7919
7920 // Now split the rest of the operation into two halves, each with a 64
7921 // bit source.
7922 EVT LoVT, HiVT;
7923 SDValue Lo, Hi;
7924 unsigned NumElements = ResVT.getVectorNumElements();
7925 assert(!(NumElements & 1) && "Splitting vector, but not in half!");
7926 LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
7927 ResVT.getVectorElementType(), NumElements / 2);
7928
7929 EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
7930 LoVT.getVectorNumElements());
7931 Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007932 DAG.getConstant(0, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007933 Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007934 DAG.getConstant(InNVT.getVectorNumElements(), DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007935 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
7936 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
7937
7938 // Now combine the parts back together so we still have a single result
7939 // like the combiner expects.
7940 return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
7941}
7942
7943/// Replace a splat of a scalar to a vector store by scalar stores of the scalar
7944/// value. The load store optimizer pass will merge them to store pair stores.
7945/// This has better performance than a splat of the scalar followed by a split
7946/// vector store. Even if the stores are not merged it is four stores vs a dup,
7947/// followed by an ext.b and two stores.
7948static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode *St) {
7949 SDValue StVal = St->getValue();
7950 EVT VT = StVal.getValueType();
7951
7952 // Don't replace floating point stores, they possibly won't be transformed to
7953 // stp because of the store pair suppress pass.
7954 if (VT.isFloatingPoint())
7955 return SDValue();
7956
7957 // Check for insert vector elements.
7958 if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
7959 return SDValue();
7960
7961 // We can express a splat as store pair(s) for 2 or 4 elements.
7962 unsigned NumVecElts = VT.getVectorNumElements();
7963 if (NumVecElts != 4 && NumVecElts != 2)
7964 return SDValue();
7965 SDValue SplatVal = StVal.getOperand(1);
7966 unsigned RemainInsertElts = NumVecElts - 1;
7967
7968 // Check that this is a splat.
7969 while (--RemainInsertElts) {
7970 SDValue NextInsertElt = StVal.getOperand(0);
7971 if (NextInsertElt.getOpcode() != ISD::INSERT_VECTOR_ELT)
7972 return SDValue();
7973 if (NextInsertElt.getOperand(1) != SplatVal)
7974 return SDValue();
7975 StVal = NextInsertElt;
7976 }
7977 unsigned OrigAlignment = St->getAlignment();
7978 unsigned EltOffset = NumVecElts == 4 ? 4 : 8;
7979 unsigned Alignment = std::min(OrigAlignment, EltOffset);
7980
7981 // Create scalar stores. This is at least as good as the code sequence for a
7982 // split unaligned store wich is a dup.s, ext.b, and two stores.
7983 // Most of the time the three stores should be replaced by store pair
7984 // instructions (stp).
7985 SDLoc DL(St);
7986 SDValue BasePtr = St->getBasePtr();
7987 SDValue NewST1 =
7988 DAG.getStore(St->getChain(), DL, SplatVal, BasePtr, St->getPointerInfo(),
7989 St->isVolatile(), St->isNonTemporal(), St->getAlignment());
7990
7991 unsigned Offset = EltOffset;
7992 while (--NumVecElts) {
7993 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007994 DAG.getConstant(Offset, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007995 NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
7996 St->getPointerInfo(), St->isVolatile(),
7997 St->isNonTemporal(), Alignment);
7998 Offset += EltOffset;
7999 }
8000 return NewST1;
8001}
8002
8003static SDValue performSTORECombine(SDNode *N,
8004 TargetLowering::DAGCombinerInfo &DCI,
8005 SelectionDAG &DAG,
8006 const AArch64Subtarget *Subtarget) {
8007 if (!DCI.isBeforeLegalize())
8008 return SDValue();
8009
8010 StoreSDNode *S = cast<StoreSDNode>(N);
8011 if (S->isVolatile())
8012 return SDValue();
8013
8014 // Cyclone has bad performance on unaligned 16B stores when crossing line and
Sanjay Patel08efcd92015-01-28 22:37:32 +00008015 // page boundaries. We want to split such stores.
Tim Northover3b0846e2014-05-24 12:50:23 +00008016 if (!Subtarget->isCyclone())
8017 return SDValue();
8018
8019 // Don't split at Oz.
8020 MachineFunction &MF = DAG.getMachineFunction();
Duncan P. N. Exon Smith003bb7d2015-02-14 02:09:06 +00008021 bool IsMinSize = MF.getFunction()->hasFnAttribute(Attribute::MinSize);
Tim Northover3b0846e2014-05-24 12:50:23 +00008022 if (IsMinSize)
8023 return SDValue();
8024
8025 SDValue StVal = S->getValue();
8026 EVT VT = StVal.getValueType();
8027
8028 // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
8029 // those up regresses performance on micro-benchmarks and olden/bh.
8030 if (!VT.isVector() || VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
8031 return SDValue();
8032
8033 // Split unaligned 16B stores. They are terrible for performance.
8034 // Don't split stores with alignment of 1 or 2. Code that uses clang vector
8035 // extensions can use this to mark that it does not want splitting to happen
8036 // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
8037 // eliminating alignment hazards is only 1 in 8 for alignment of 2.
8038 if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
8039 S->getAlignment() <= 2)
8040 return SDValue();
8041
8042 // If we get a splat of a scalar convert this vector store to a store of
8043 // scalars. They will be merged into store pairs thereby removing two
8044 // instructions.
8045 SDValue ReplacedSplat = replaceSplatVectorStore(DAG, S);
8046 if (ReplacedSplat != SDValue())
8047 return ReplacedSplat;
8048
8049 SDLoc DL(S);
8050 unsigned NumElts = VT.getVectorNumElements() / 2;
8051 // Split VT into two.
8052 EVT HalfVT =
8053 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts);
8054 SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008055 DAG.getConstant(0, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00008056 SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008057 DAG.getConstant(NumElts, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00008058 SDValue BasePtr = S->getBasePtr();
8059 SDValue NewST1 =
8060 DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
8061 S->isVolatile(), S->isNonTemporal(), S->getAlignment());
8062 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008063 DAG.getConstant(8, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00008064 return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
8065 S->getPointerInfo(), S->isVolatile(), S->isNonTemporal(),
8066 S->getAlignment());
8067}
8068
8069/// Target-specific DAG combine function for post-increment LD1 (lane) and
8070/// post-increment LD1R.
8071static SDValue performPostLD1Combine(SDNode *N,
8072 TargetLowering::DAGCombinerInfo &DCI,
8073 bool IsLaneOp) {
8074 if (DCI.isBeforeLegalizeOps())
8075 return SDValue();
8076
8077 SelectionDAG &DAG = DCI.DAG;
8078 EVT VT = N->getValueType(0);
8079
8080 unsigned LoadIdx = IsLaneOp ? 1 : 0;
8081 SDNode *LD = N->getOperand(LoadIdx).getNode();
8082 // If it is not LOAD, can not do such combine.
8083 if (LD->getOpcode() != ISD::LOAD)
8084 return SDValue();
8085
8086 LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
8087 EVT MemVT = LoadSDN->getMemoryVT();
8088 // Check if memory operand is the same type as the vector element.
8089 if (MemVT != VT.getVectorElementType())
8090 return SDValue();
8091
8092 // Check if there are other uses. If so, do not combine as it will introduce
8093 // an extra load.
8094 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
8095 ++UI) {
8096 if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
8097 continue;
8098 if (*UI != N)
8099 return SDValue();
8100 }
8101
8102 SDValue Addr = LD->getOperand(1);
8103 SDValue Vector = N->getOperand(0);
8104 // Search for a use of the address operand that is an increment.
8105 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
8106 Addr.getNode()->use_end(); UI != UE; ++UI) {
8107 SDNode *User = *UI;
8108 if (User->getOpcode() != ISD::ADD
8109 || UI.getUse().getResNo() != Addr.getResNo())
8110 continue;
8111
8112 // Check that the add is independent of the load. Otherwise, folding it
8113 // would create a cycle.
8114 if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User))
8115 continue;
8116 // Also check that add is not used in the vector operand. This would also
8117 // create a cycle.
8118 if (User->isPredecessorOf(Vector.getNode()))
8119 continue;
8120
8121 // If the increment is a constant, it must match the memory ref size.
8122 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
8123 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
8124 uint32_t IncVal = CInc->getZExtValue();
8125 unsigned NumBytes = VT.getScalarSizeInBits() / 8;
8126 if (IncVal != NumBytes)
8127 continue;
8128 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
8129 }
8130
Ahmed Bougacha2448ef52015-04-17 21:02:30 +00008131 // Finally, check that the vector doesn't depend on the load.
8132 // Again, this would create a cycle.
8133 // The load depending on the vector is fine, as that's the case for the
8134 // LD1*post we'll eventually generate anyway.
8135 if (LoadSDN->isPredecessorOf(Vector.getNode()))
8136 continue;
8137
Tim Northover3b0846e2014-05-24 12:50:23 +00008138 SmallVector<SDValue, 8> Ops;
8139 Ops.push_back(LD->getOperand(0)); // Chain
8140 if (IsLaneOp) {
8141 Ops.push_back(Vector); // The vector to be inserted
8142 Ops.push_back(N->getOperand(2)); // The lane to be inserted in the vector
8143 }
8144 Ops.push_back(Addr);
8145 Ops.push_back(Inc);
8146
8147 EVT Tys[3] = { VT, MVT::i64, MVT::Other };
Craig Toppere1d12942014-08-27 05:25:25 +00008148 SDVTList SDTys = DAG.getVTList(Tys);
Tim Northover3b0846e2014-05-24 12:50:23 +00008149 unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
8150 SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
8151 MemVT,
8152 LoadSDN->getMemOperand());
8153
8154 // Update the uses.
Ahmed Bougacha4c2b0782015-02-19 23:13:10 +00008155 SmallVector<SDValue, 2> NewResults;
Tim Northover3b0846e2014-05-24 12:50:23 +00008156 NewResults.push_back(SDValue(LD, 0)); // The result of load
8157 NewResults.push_back(SDValue(UpdN.getNode(), 2)); // Chain
8158 DCI.CombineTo(LD, NewResults);
8159 DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result
8160 DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register
8161
8162 break;
8163 }
8164 return SDValue();
8165}
8166
8167/// Target-specific DAG combine function for NEON load/store intrinsics
8168/// to merge base address updates.
8169static SDValue performNEONPostLDSTCombine(SDNode *N,
8170 TargetLowering::DAGCombinerInfo &DCI,
8171 SelectionDAG &DAG) {
8172 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8173 return SDValue();
8174
8175 unsigned AddrOpIdx = N->getNumOperands() - 1;
8176 SDValue Addr = N->getOperand(AddrOpIdx);
8177
8178 // Search for a use of the address operand that is an increment.
8179 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
8180 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
8181 SDNode *User = *UI;
8182 if (User->getOpcode() != ISD::ADD ||
8183 UI.getUse().getResNo() != Addr.getResNo())
8184 continue;
8185
8186 // Check that the add is independent of the load/store. Otherwise, folding
8187 // it would create a cycle.
8188 if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
8189 continue;
8190
8191 // Find the new opcode for the updating load/store.
8192 bool IsStore = false;
8193 bool IsLaneOp = false;
8194 bool IsDupOp = false;
8195 unsigned NewOpc = 0;
8196 unsigned NumVecs = 0;
8197 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
8198 switch (IntNo) {
8199 default: llvm_unreachable("unexpected intrinsic for Neon base update");
8200 case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post;
8201 NumVecs = 2; break;
8202 case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post;
8203 NumVecs = 3; break;
8204 case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post;
8205 NumVecs = 4; break;
8206 case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post;
8207 NumVecs = 2; IsStore = true; break;
8208 case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post;
8209 NumVecs = 3; IsStore = true; break;
8210 case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post;
8211 NumVecs = 4; IsStore = true; break;
8212 case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post;
8213 NumVecs = 2; break;
8214 case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post;
8215 NumVecs = 3; break;
8216 case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post;
8217 NumVecs = 4; break;
8218 case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post;
8219 NumVecs = 2; IsStore = true; break;
8220 case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post;
8221 NumVecs = 3; IsStore = true; break;
8222 case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post;
8223 NumVecs = 4; IsStore = true; break;
8224 case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost;
8225 NumVecs = 2; IsDupOp = true; break;
8226 case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost;
8227 NumVecs = 3; IsDupOp = true; break;
8228 case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost;
8229 NumVecs = 4; IsDupOp = true; break;
8230 case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost;
8231 NumVecs = 2; IsLaneOp = true; break;
8232 case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost;
8233 NumVecs = 3; IsLaneOp = true; break;
8234 case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost;
8235 NumVecs = 4; IsLaneOp = true; break;
8236 case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost;
8237 NumVecs = 2; IsStore = true; IsLaneOp = true; break;
8238 case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost;
8239 NumVecs = 3; IsStore = true; IsLaneOp = true; break;
8240 case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost;
8241 NumVecs = 4; IsStore = true; IsLaneOp = true; break;
8242 }
8243
8244 EVT VecTy;
8245 if (IsStore)
8246 VecTy = N->getOperand(2).getValueType();
8247 else
8248 VecTy = N->getValueType(0);
8249
8250 // If the increment is a constant, it must match the memory ref size.
8251 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
8252 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
8253 uint32_t IncVal = CInc->getZExtValue();
8254 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
8255 if (IsLaneOp || IsDupOp)
8256 NumBytes /= VecTy.getVectorNumElements();
8257 if (IncVal != NumBytes)
8258 continue;
8259 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
8260 }
8261 SmallVector<SDValue, 8> Ops;
8262 Ops.push_back(N->getOperand(0)); // Incoming chain
8263 // Load lane and store have vector list as input.
8264 if (IsLaneOp || IsStore)
8265 for (unsigned i = 2; i < AddrOpIdx; ++i)
8266 Ops.push_back(N->getOperand(i));
8267 Ops.push_back(Addr); // Base register
8268 Ops.push_back(Inc);
8269
8270 // Return Types.
8271 EVT Tys[6];
8272 unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
8273 unsigned n;
8274 for (n = 0; n < NumResultVecs; ++n)
8275 Tys[n] = VecTy;
8276 Tys[n++] = MVT::i64; // Type of write back register
8277 Tys[n] = MVT::Other; // Type of the chain
Craig Toppere1d12942014-08-27 05:25:25 +00008278 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
Tim Northover3b0846e2014-05-24 12:50:23 +00008279
8280 MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
8281 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
8282 MemInt->getMemoryVT(),
8283 MemInt->getMemOperand());
8284
8285 // Update the uses.
8286 std::vector<SDValue> NewResults;
8287 for (unsigned i = 0; i < NumResultVecs; ++i) {
8288 NewResults.push_back(SDValue(UpdN.getNode(), i));
8289 }
8290 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
8291 DCI.CombineTo(N, NewResults);
8292 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
8293
8294 break;
8295 }
8296 return SDValue();
8297}
8298
Louis Gerbarg03c627e2014-08-29 21:00:22 +00008299// Checks to see if the value is the prescribed width and returns information
8300// about its extension mode.
8301static
8302bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) {
8303 ExtType = ISD::NON_EXTLOAD;
8304 switch(V.getNode()->getOpcode()) {
8305 default:
8306 return false;
8307 case ISD::LOAD: {
8308 LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
8309 if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8)
8310 || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) {
8311 ExtType = LoadNode->getExtensionType();
8312 return true;
8313 }
8314 return false;
8315 }
8316 case ISD::AssertSext: {
8317 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
8318 if ((TypeNode->getVT() == MVT::i8 && width == 8)
8319 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
8320 ExtType = ISD::SEXTLOAD;
8321 return true;
8322 }
8323 return false;
8324 }
8325 case ISD::AssertZext: {
8326 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
8327 if ((TypeNode->getVT() == MVT::i8 && width == 8)
8328 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
8329 ExtType = ISD::ZEXTLOAD;
8330 return true;
8331 }
8332 return false;
8333 }
8334 case ISD::Constant:
8335 case ISD::TargetConstant: {
Reid Kleckner39ad7c92014-08-29 22:14:26 +00008336 if (std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) <
Aaron Ballman8ca53882014-09-02 12:19:02 +00008337 1LL << (width - 1))
Louis Gerbarg03c627e2014-08-29 21:00:22 +00008338 return true;
8339 return false;
8340 }
8341 }
8342
8343 return true;
8344}
8345
8346// This function does a whole lot of voodoo to determine if the tests are
8347// equivalent without and with a mask. Essentially what happens is that given a
8348// DAG resembling:
8349//
8350// +-------------+ +-------------+ +-------------+ +-------------+
8351// | Input | | AddConstant | | CompConstant| | CC |
8352// +-------------+ +-------------+ +-------------+ +-------------+
8353// | | | |
8354// V V | +----------+
8355// +-------------+ +----+ | |
8356// | ADD | |0xff| | |
8357// +-------------+ +----+ | |
8358// | | | |
8359// V V | |
8360// +-------------+ | |
8361// | AND | | |
8362// +-------------+ | |
8363// | | |
8364// +-----+ | |
8365// | | |
8366// V V V
8367// +-------------+
8368// | CMP |
8369// +-------------+
8370//
8371// The AND node may be safely removed for some combinations of inputs. In
8372// particular we need to take into account the extension type of the Input,
8373// the exact values of AddConstant, CompConstant, and CC, along with the nominal
8374// width of the input (this can work for any width inputs, the above graph is
8375// specific to 8 bits.
8376//
8377// The specific equations were worked out by generating output tables for each
8378// AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
8379// problem was simplified by working with 4 bit inputs, which means we only
8380// needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
8381// extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
8382// patterns present in both extensions (0,7). For every distinct set of
8383// AddConstant and CompConstants bit patterns we can consider the masked and
8384// unmasked versions to be equivalent if the result of this function is true for
8385// all 16 distinct bit patterns of for the current extension type of Input (w0).
8386//
8387// sub w8, w0, w1
8388// and w10, w8, #0x0f
8389// cmp w8, w2
8390// cset w9, AArch64CC
8391// cmp w10, w2
8392// cset w11, AArch64CC
8393// cmp w9, w11
8394// cset w0, eq
8395// ret
8396//
8397// Since the above function shows when the outputs are equivalent it defines
8398// when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
8399// would be expensive to run during compiles. The equations below were written
8400// in a test harness that confirmed they gave equivalent outputs to the above
8401// for all inputs function, so they can be used determine if the removal is
8402// legal instead.
8403//
8404// isEquivalentMaskless() is the code for testing if the AND can be removed
8405// factored out of the DAG recognition as the DAG can take several forms.
8406
8407static
8408bool isEquivalentMaskless(unsigned CC, unsigned width,
8409 ISD::LoadExtType ExtType, signed AddConstant,
8410 signed CompConstant) {
8411 // By being careful about our equations and only writing the in term
8412 // symbolic values and well known constants (0, 1, -1, MaxUInt) we can
8413 // make them generally applicable to all bit widths.
8414 signed MaxUInt = (1 << width);
8415
8416 // For the purposes of these comparisons sign extending the type is
8417 // equivalent to zero extending the add and displacing it by half the integer
8418 // width. Provided we are careful and make sure our equations are valid over
8419 // the whole range we can just adjust the input and avoid writing equations
8420 // for sign extended inputs.
8421 if (ExtType == ISD::SEXTLOAD)
8422 AddConstant -= (1 << (width-1));
8423
8424 switch(CC) {
8425 case AArch64CC::LE:
8426 case AArch64CC::GT: {
8427 if ((AddConstant == 0) ||
8428 (CompConstant == MaxUInt - 1 && AddConstant < 0) ||
8429 (AddConstant >= 0 && CompConstant < 0) ||
8430 (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant))
8431 return true;
8432 } break;
8433 case AArch64CC::LT:
8434 case AArch64CC::GE: {
8435 if ((AddConstant == 0) ||
8436 (AddConstant >= 0 && CompConstant <= 0) ||
8437 (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant))
8438 return true;
8439 } break;
8440 case AArch64CC::HI:
8441 case AArch64CC::LS: {
8442 if ((AddConstant >= 0 && CompConstant < 0) ||
8443 (AddConstant <= 0 && CompConstant >= -1 &&
8444 CompConstant < AddConstant + MaxUInt))
8445 return true;
8446 } break;
8447 case AArch64CC::PL:
8448 case AArch64CC::MI: {
8449 if ((AddConstant == 0) ||
8450 (AddConstant > 0 && CompConstant <= 0) ||
8451 (AddConstant < 0 && CompConstant <= AddConstant))
8452 return true;
8453 } break;
8454 case AArch64CC::LO:
8455 case AArch64CC::HS: {
8456 if ((AddConstant >= 0 && CompConstant <= 0) ||
8457 (AddConstant <= 0 && CompConstant >= 0 &&
8458 CompConstant <= AddConstant + MaxUInt))
8459 return true;
8460 } break;
8461 case AArch64CC::EQ:
8462 case AArch64CC::NE: {
8463 if ((AddConstant > 0 && CompConstant < 0) ||
8464 (AddConstant < 0 && CompConstant >= 0 &&
8465 CompConstant < AddConstant + MaxUInt) ||
8466 (AddConstant >= 0 && CompConstant >= 0 &&
8467 CompConstant >= AddConstant) ||
8468 (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant))
8469
8470 return true;
8471 } break;
8472 case AArch64CC::VS:
8473 case AArch64CC::VC:
8474 case AArch64CC::AL:
8475 case AArch64CC::NV:
8476 return true;
8477 case AArch64CC::Invalid:
8478 break;
8479 }
8480
8481 return false;
8482}
8483
8484static
8485SDValue performCONDCombine(SDNode *N,
8486 TargetLowering::DAGCombinerInfo &DCI,
8487 SelectionDAG &DAG, unsigned CCIndex,
8488 unsigned CmpIndex) {
8489 unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue();
8490 SDNode *SubsNode = N->getOperand(CmpIndex).getNode();
8491 unsigned CondOpcode = SubsNode->getOpcode();
8492
8493 if (CondOpcode != AArch64ISD::SUBS)
8494 return SDValue();
8495
8496 // There is a SUBS feeding this condition. Is it fed by a mask we can
8497 // use?
8498
8499 SDNode *AndNode = SubsNode->getOperand(0).getNode();
8500 unsigned MaskBits = 0;
8501
8502 if (AndNode->getOpcode() != ISD::AND)
8503 return SDValue();
8504
8505 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) {
8506 uint32_t CNV = CN->getZExtValue();
8507 if (CNV == 255)
8508 MaskBits = 8;
8509 else if (CNV == 65535)
8510 MaskBits = 16;
8511 }
8512
8513 if (!MaskBits)
8514 return SDValue();
8515
8516 SDValue AddValue = AndNode->getOperand(0);
8517
8518 if (AddValue.getOpcode() != ISD::ADD)
8519 return SDValue();
8520
8521 // The basic dag structure is correct, grab the inputs and validate them.
8522
8523 SDValue AddInputValue1 = AddValue.getNode()->getOperand(0);
8524 SDValue AddInputValue2 = AddValue.getNode()->getOperand(1);
8525 SDValue SubsInputValue = SubsNode->getOperand(1);
8526
8527 // The mask is present and the provenance of all the values is a smaller type,
8528 // lets see if the mask is superfluous.
8529
8530 if (!isa<ConstantSDNode>(AddInputValue2.getNode()) ||
8531 !isa<ConstantSDNode>(SubsInputValue.getNode()))
8532 return SDValue();
8533
8534 ISD::LoadExtType ExtType;
8535
8536 if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) ||
8537 !checkValueWidth(AddInputValue2, MaskBits, ExtType) ||
8538 !checkValueWidth(AddInputValue1, MaskBits, ExtType) )
8539 return SDValue();
8540
8541 if(!isEquivalentMaskless(CC, MaskBits, ExtType,
8542 cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(),
8543 cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue()))
8544 return SDValue();
8545
8546 // The AND is not necessary, remove it.
8547
8548 SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0),
8549 SubsNode->getValueType(1));
8550 SDValue Ops[] = { AddValue, SubsNode->getOperand(1) };
8551
8552 SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops);
8553 DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode());
8554
8555 return SDValue(N, 0);
8556}
8557
Tim Northover3b0846e2014-05-24 12:50:23 +00008558// Optimize compare with zero and branch.
8559static SDValue performBRCONDCombine(SDNode *N,
8560 TargetLowering::DAGCombinerInfo &DCI,
8561 SelectionDAG &DAG) {
Louis Gerbarg03c627e2014-08-29 21:00:22 +00008562 SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3);
8563 if (NV.getNode())
8564 N = NV.getNode();
Tim Northover3b0846e2014-05-24 12:50:23 +00008565 SDValue Chain = N->getOperand(0);
8566 SDValue Dest = N->getOperand(1);
8567 SDValue CCVal = N->getOperand(2);
8568 SDValue Cmp = N->getOperand(3);
8569
8570 assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
8571 unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
8572 if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
8573 return SDValue();
8574
8575 unsigned CmpOpc = Cmp.getOpcode();
8576 if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
8577 return SDValue();
8578
8579 // Only attempt folding if there is only one use of the flag and no use of the
8580 // value.
8581 if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
8582 return SDValue();
8583
8584 SDValue LHS = Cmp.getOperand(0);
8585 SDValue RHS = Cmp.getOperand(1);
8586
8587 assert(LHS.getValueType() == RHS.getValueType() &&
8588 "Expected the value type to be the same for both operands!");
8589 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
8590 return SDValue();
8591
8592 if (isa<ConstantSDNode>(LHS) && cast<ConstantSDNode>(LHS)->isNullValue())
8593 std::swap(LHS, RHS);
8594
8595 if (!isa<ConstantSDNode>(RHS) || !cast<ConstantSDNode>(RHS)->isNullValue())
8596 return SDValue();
8597
8598 if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
8599 LHS.getOpcode() == ISD::SRL)
8600 return SDValue();
8601
8602 // Fold the compare into the branch instruction.
8603 SDValue BR;
8604 if (CC == AArch64CC::EQ)
8605 BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
8606 else
8607 BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
8608
8609 // Do not add new nodes to DAG combiner worklist.
8610 DCI.CombineTo(N, BR, false);
8611
8612 return SDValue();
8613}
8614
8615// vselect (v1i1 setcc) ->
8616// vselect (v1iXX setcc) (XX is the size of the compared operand type)
8617// FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
8618// condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
8619// such VSELECT.
8620static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
8621 SDValue N0 = N->getOperand(0);
8622 EVT CCVT = N0.getValueType();
8623
8624 if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
8625 CCVT.getVectorElementType() != MVT::i1)
8626 return SDValue();
8627
8628 EVT ResVT = N->getValueType(0);
8629 EVT CmpVT = N0.getOperand(0).getValueType();
8630 // Only combine when the result type is of the same size as the compared
8631 // operands.
8632 if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
8633 return SDValue();
8634
8635 SDValue IfTrue = N->getOperand(1);
8636 SDValue IfFalse = N->getOperand(2);
8637 SDValue SetCC =
8638 DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
8639 N0.getOperand(0), N0.getOperand(1),
8640 cast<CondCodeSDNode>(N0.getOperand(2))->get());
8641 return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
8642 IfTrue, IfFalse);
8643}
8644
8645/// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
8646/// the compare-mask instructions rather than going via NZCV, even if LHS and
8647/// RHS are really scalar. This replaces any scalar setcc in the above pattern
8648/// with a vector one followed by a DUP shuffle on the result.
Ahmed Bougachac004c602015-04-27 21:43:12 +00008649static SDValue performSelectCombine(SDNode *N,
8650 TargetLowering::DAGCombinerInfo &DCI) {
8651 SelectionDAG &DAG = DCI.DAG;
Tim Northover3b0846e2014-05-24 12:50:23 +00008652 SDValue N0 = N->getOperand(0);
8653 EVT ResVT = N->getValueType(0);
Tim Northover3c0915e2014-08-29 15:34:58 +00008654
Ahmed Bougachac004c602015-04-27 21:43:12 +00008655 if (N0.getOpcode() != ISD::SETCC)
Tim Northover3c0915e2014-08-29 15:34:58 +00008656 return SDValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00008657
Ahmed Bougachac004c602015-04-27 21:43:12 +00008658 // Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered
8659 // scalar SetCCResultType. We also don't expect vectors, because we assume
8660 // that selects fed by vector SETCCs are canonicalized to VSELECT.
8661 assert((N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) &&
8662 "Scalar-SETCC feeding SELECT has unexpected result type!");
8663
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008664 // If NumMaskElts == 0, the comparison is larger than select result. The
8665 // largest real NEON comparison is 64-bits per lane, which means the result is
8666 // at most 32-bits and an illegal vector. Just bail out for now.
Tim Northover3c0915e2014-08-29 15:34:58 +00008667 EVT SrcVT = N0.getOperand(0).getValueType();
Ahmed Bougachad0ce0582014-12-01 20:59:00 +00008668
8669 // Don't try to do this optimization when the setcc itself has i1 operands.
8670 // There are no legal vectors of i1, so this would be pointless.
8671 if (SrcVT == MVT::i1)
8672 return SDValue();
8673
Tim Northover3c0915e2014-08-29 15:34:58 +00008674 int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits();
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008675 if (!ResVT.isVector() || NumMaskElts == 0)
Tim Northover3b0846e2014-05-24 12:50:23 +00008676 return SDValue();
8677
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008678 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts);
Tim Northover3b0846e2014-05-24 12:50:23 +00008679 EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
8680
Ahmed Bougacha89bba612015-04-27 21:01:20 +00008681 // Also bail out if the vector CCVT isn't the same size as ResVT.
8682 // This can happen if the SETCC operand size doesn't divide the ResVT size
8683 // (e.g., f64 vs v3f32).
8684 if (CCVT.getSizeInBits() != ResVT.getSizeInBits())
8685 return SDValue();
8686
Ahmed Bougachac004c602015-04-27 21:43:12 +00008687 // Make sure we didn't create illegal types, if we're not supposed to.
8688 assert(DCI.isBeforeLegalize() ||
8689 DAG.getTargetLoweringInfo().isTypeLegal(SrcVT));
8690
Tim Northover3b0846e2014-05-24 12:50:23 +00008691 // First perform a vector comparison, where lane 0 is the one we're interested
8692 // in.
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008693 SDLoc DL(N0);
Tim Northover3b0846e2014-05-24 12:50:23 +00008694 SDValue LHS =
8695 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
8696 SDValue RHS =
8697 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
8698 SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
8699
8700 // Now duplicate the comparison mask we want across all other lanes.
8701 SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
8702 SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask.data());
Tim Northoverc1c05ae2014-08-29 13:05:18 +00008703 Mask = DAG.getNode(ISD::BITCAST, DL,
8704 ResVT.changeVectorElementTypeToInteger(), Mask);
Tim Northover3b0846e2014-05-24 12:50:23 +00008705
8706 return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
8707}
8708
Artyom Skrobova70dfe12015-05-14 12:59:46 +00008709/// performSelectCCCombine - Target-specific DAG combining for ISD::SELECT_CC
8710/// to match FMIN/FMAX patterns.
8711static SDValue performSelectCCCombine(SDNode *N, SelectionDAG &DAG) {
8712 // Try to use FMIN/FMAX instructions for FP selects like "x < y ? x : y".
8713 // Unless the NoNaNsFPMath option is set, be careful about NaNs:
8714 // vmax/vmin return NaN if either operand is a NaN;
8715 // only do the transformation when it matches that behavior.
8716
8717 SDValue CondLHS = N->getOperand(0);
8718 SDValue CondRHS = N->getOperand(1);
8719 SDValue LHS = N->getOperand(2);
8720 SDValue RHS = N->getOperand(3);
8721 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
8722
8723 unsigned Opcode;
8724 bool IsReversed;
8725 if (selectCCOpsAreFMaxCompatible(CondLHS, LHS) &&
8726 selectCCOpsAreFMaxCompatible(CondRHS, RHS)) {
8727 IsReversed = false; // x CC y ? x : y
8728 } else if (selectCCOpsAreFMaxCompatible(CondRHS, LHS) &&
8729 selectCCOpsAreFMaxCompatible(CondLHS, RHS)) {
8730 IsReversed = true ; // x CC y ? y : x
8731 } else {
8732 return SDValue();
8733 }
8734
8735 bool IsUnordered = false, IsOrEqual;
8736 switch (CC) {
8737 default:
8738 return SDValue();
8739 case ISD::SETULT:
8740 case ISD::SETULE:
8741 IsUnordered = true;
8742 case ISD::SETOLT:
8743 case ISD::SETOLE:
8744 case ISD::SETLT:
8745 case ISD::SETLE:
8746 IsOrEqual = (CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE);
8747 Opcode = IsReversed ? AArch64ISD::FMAX : AArch64ISD::FMIN;
8748 break;
8749
8750 case ISD::SETUGT:
8751 case ISD::SETUGE:
8752 IsUnordered = true;
8753 case ISD::SETOGT:
8754 case ISD::SETOGE:
8755 case ISD::SETGT:
8756 case ISD::SETGE:
8757 IsOrEqual = (CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE);
8758 Opcode = IsReversed ? AArch64ISD::FMIN : AArch64ISD::FMAX;
8759 break;
8760 }
8761
8762 // If LHS is NaN, an ordered comparison will be false and the result will be
8763 // the RHS, but FMIN(NaN, RHS) = FMAX(NaN, RHS) = NaN. Avoid this by checking
8764 // that LHS != NaN. Likewise, for unordered comparisons, check for RHS != NaN.
8765 if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
8766 return SDValue();
8767
8768 // For xxx-or-equal comparisons, "+0 <= -0" and "-0 >= +0" will both be true,
8769 // but FMIN will return -0, and FMAX will return +0. So FMIN/FMAX can only be
8770 // used for unsafe math or if one of the operands is known to be nonzero.
8771 if (IsOrEqual && !DAG.getTarget().Options.UnsafeFPMath &&
8772 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
8773 return SDValue();
8774
8775 return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), LHS, RHS);
8776}
8777
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00008778/// Get rid of unnecessary NVCASTs (that don't change the type).
8779static SDValue performNVCASTCombine(SDNode *N) {
8780 if (N->getValueType(0) == N->getOperand(0).getValueType())
8781 return N->getOperand(0);
8782
8783 return SDValue();
8784}
8785
Tim Northover3b0846e2014-05-24 12:50:23 +00008786SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
8787 DAGCombinerInfo &DCI) const {
8788 SelectionDAG &DAG = DCI.DAG;
8789 switch (N->getOpcode()) {
8790 default:
8791 break;
8792 case ISD::ADD:
8793 case ISD::SUB:
8794 return performAddSubLongCombine(N, DCI, DAG);
8795 case ISD::XOR:
8796 return performXorCombine(N, DAG, DCI, Subtarget);
8797 case ISD::MUL:
8798 return performMulCombine(N, DAG, DCI, Subtarget);
8799 case ISD::SINT_TO_FP:
8800 case ISD::UINT_TO_FP:
Weiming Zhaocc4bf3f2014-12-04 20:25:50 +00008801 return performIntToFpCombine(N, DAG, Subtarget);
Tim Northover3b0846e2014-05-24 12:50:23 +00008802 case ISD::OR:
8803 return performORCombine(N, DCI, Subtarget);
8804 case ISD::INTRINSIC_WO_CHAIN:
8805 return performIntrinsicCombine(N, DCI, Subtarget);
8806 case ISD::ANY_EXTEND:
8807 case ISD::ZERO_EXTEND:
8808 case ISD::SIGN_EXTEND:
8809 return performExtendCombine(N, DCI, DAG);
8810 case ISD::BITCAST:
8811 return performBitcastCombine(N, DCI, DAG);
8812 case ISD::CONCAT_VECTORS:
8813 return performConcatVectorsCombine(N, DCI, DAG);
8814 case ISD::SELECT:
Ahmed Bougachac004c602015-04-27 21:43:12 +00008815 return performSelectCombine(N, DCI);
Tim Northover3b0846e2014-05-24 12:50:23 +00008816 case ISD::VSELECT:
8817 return performVSelectCombine(N, DCI.DAG);
Artyom Skrobova70dfe12015-05-14 12:59:46 +00008818 case ISD::SELECT_CC:
8819 return performSelectCCCombine(N, DCI.DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00008820 case ISD::STORE:
8821 return performSTORECombine(N, DCI, DAG, Subtarget);
8822 case AArch64ISD::BRCOND:
8823 return performBRCONDCombine(N, DCI, DAG);
Louis Gerbarg03c627e2014-08-29 21:00:22 +00008824 case AArch64ISD::CSEL:
8825 return performCONDCombine(N, DCI, DAG, 2, 3);
Tim Northover3b0846e2014-05-24 12:50:23 +00008826 case AArch64ISD::DUP:
8827 return performPostLD1Combine(N, DCI, false);
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00008828 case AArch64ISD::NVCAST:
8829 return performNVCASTCombine(N);
Tim Northover3b0846e2014-05-24 12:50:23 +00008830 case ISD::INSERT_VECTOR_ELT:
8831 return performPostLD1Combine(N, DCI, true);
8832 case ISD::INTRINSIC_VOID:
8833 case ISD::INTRINSIC_W_CHAIN:
8834 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
8835 case Intrinsic::aarch64_neon_ld2:
8836 case Intrinsic::aarch64_neon_ld3:
8837 case Intrinsic::aarch64_neon_ld4:
8838 case Intrinsic::aarch64_neon_ld1x2:
8839 case Intrinsic::aarch64_neon_ld1x3:
8840 case Intrinsic::aarch64_neon_ld1x4:
8841 case Intrinsic::aarch64_neon_ld2lane:
8842 case Intrinsic::aarch64_neon_ld3lane:
8843 case Intrinsic::aarch64_neon_ld4lane:
8844 case Intrinsic::aarch64_neon_ld2r:
8845 case Intrinsic::aarch64_neon_ld3r:
8846 case Intrinsic::aarch64_neon_ld4r:
8847 case Intrinsic::aarch64_neon_st2:
8848 case Intrinsic::aarch64_neon_st3:
8849 case Intrinsic::aarch64_neon_st4:
8850 case Intrinsic::aarch64_neon_st1x2:
8851 case Intrinsic::aarch64_neon_st1x3:
8852 case Intrinsic::aarch64_neon_st1x4:
8853 case Intrinsic::aarch64_neon_st2lane:
8854 case Intrinsic::aarch64_neon_st3lane:
8855 case Intrinsic::aarch64_neon_st4lane:
8856 return performNEONPostLDSTCombine(N, DCI, DAG);
8857 default:
8858 break;
8859 }
8860 }
8861 return SDValue();
8862}
8863
8864// Check if the return value is used as only a return value, as otherwise
8865// we can't perform a tail-call. In particular, we need to check for
8866// target ISD nodes that are returns and any other "odd" constructs
8867// that the generic analysis code won't necessarily catch.
8868bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
8869 SDValue &Chain) const {
8870 if (N->getNumValues() != 1)
8871 return false;
8872 if (!N->hasNUsesOfValue(1, 0))
8873 return false;
8874
8875 SDValue TCChain = Chain;
8876 SDNode *Copy = *N->use_begin();
8877 if (Copy->getOpcode() == ISD::CopyToReg) {
8878 // If the copy has a glue operand, we conservatively assume it isn't safe to
8879 // perform a tail call.
8880 if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
8881 MVT::Glue)
8882 return false;
8883 TCChain = Copy->getOperand(0);
8884 } else if (Copy->getOpcode() != ISD::FP_EXTEND)
8885 return false;
8886
8887 bool HasRet = false;
8888 for (SDNode *Node : Copy->uses()) {
8889 if (Node->getOpcode() != AArch64ISD::RET_FLAG)
8890 return false;
8891 HasRet = true;
8892 }
8893
8894 if (!HasRet)
8895 return false;
8896
8897 Chain = TCChain;
8898 return true;
8899}
8900
8901// Return whether the an instruction can potentially be optimized to a tail
8902// call. This will cause the optimizers to attempt to move, or duplicate,
8903// return instructions to help enable tail call optimizations for this
8904// instruction.
8905bool AArch64TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
8906 if (!CI->isTailCall())
8907 return false;
8908
8909 return true;
8910}
8911
8912bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
8913 SDValue &Offset,
8914 ISD::MemIndexedMode &AM,
8915 bool &IsInc,
8916 SelectionDAG &DAG) const {
8917 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
8918 return false;
8919
8920 Base = Op->getOperand(0);
8921 // All of the indexed addressing mode instructions take a signed
8922 // 9 bit immediate offset.
8923 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
8924 int64_t RHSC = (int64_t)RHS->getZExtValue();
8925 if (RHSC >= 256 || RHSC <= -256)
8926 return false;
8927 IsInc = (Op->getOpcode() == ISD::ADD);
8928 Offset = Op->getOperand(1);
8929 return true;
8930 }
8931 return false;
8932}
8933
8934bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
8935 SDValue &Offset,
8936 ISD::MemIndexedMode &AM,
8937 SelectionDAG &DAG) const {
8938 EVT VT;
8939 SDValue Ptr;
8940 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8941 VT = LD->getMemoryVT();
8942 Ptr = LD->getBasePtr();
8943 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8944 VT = ST->getMemoryVT();
8945 Ptr = ST->getBasePtr();
8946 } else
8947 return false;
8948
8949 bool IsInc;
8950 if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
8951 return false;
8952 AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
8953 return true;
8954}
8955
8956bool AArch64TargetLowering::getPostIndexedAddressParts(
8957 SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
8958 ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
8959 EVT VT;
8960 SDValue Ptr;
8961 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8962 VT = LD->getMemoryVT();
8963 Ptr = LD->getBasePtr();
8964 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
8965 VT = ST->getMemoryVT();
8966 Ptr = ST->getBasePtr();
8967 } else
8968 return false;
8969
8970 bool IsInc;
8971 if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
8972 return false;
8973 // Post-indexing updates the base, so it's not a valid transform
8974 // if that's not the same as the load's pointer.
8975 if (Ptr != Base)
8976 return false;
8977 AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
8978 return true;
8979}
8980
Tim Northoverf8bfe212014-07-18 13:07:05 +00008981static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
8982 SelectionDAG &DAG) {
Tim Northoverf8bfe212014-07-18 13:07:05 +00008983 SDLoc DL(N);
8984 SDValue Op = N->getOperand(0);
Ahmed Bougacha87946322014-12-01 20:52:32 +00008985
8986 if (N->getValueType(0) != MVT::i16 || Op.getValueType() != MVT::f16)
8987 return;
8988
Tim Northoverf8bfe212014-07-18 13:07:05 +00008989 Op = SDValue(
8990 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
8991 DAG.getUNDEF(MVT::i32), Op,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008992 DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
Tim Northoverf8bfe212014-07-18 13:07:05 +00008993 0);
8994 Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
8995 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
8996}
8997
Tim Northover3b0846e2014-05-24 12:50:23 +00008998void AArch64TargetLowering::ReplaceNodeResults(
8999 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
9000 switch (N->getOpcode()) {
9001 default:
9002 llvm_unreachable("Don't know how to custom expand this");
Tim Northoverf8bfe212014-07-18 13:07:05 +00009003 case ISD::BITCAST:
9004 ReplaceBITCASTResults(N, Results, DAG);
9005 return;
Tim Northover3b0846e2014-05-24 12:50:23 +00009006 case ISD::FP_TO_UINT:
9007 case ISD::FP_TO_SINT:
9008 assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
9009 // Let normal code take care of it by not adding anything to Results.
9010 return;
9011 }
9012}
9013
Akira Hatanakae5b6e0d2014-07-25 19:31:34 +00009014bool AArch64TargetLowering::useLoadStackGuardNode() const {
9015 return true;
9016}
9017
Hao Liu44e5d7a2014-11-21 06:39:58 +00009018bool AArch64TargetLowering::combineRepeatedFPDivisors(unsigned NumUsers) const {
9019 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
9020 // reciprocal if there are three or more FDIVs.
9021 return NumUsers > 2;
9022}
9023
Chandler Carruth9d010ff2014-07-03 00:23:43 +00009024TargetLoweringBase::LegalizeTypeAction
9025AArch64TargetLowering::getPreferredVectorAction(EVT VT) const {
9026 MVT SVT = VT.getSimpleVT();
9027 // During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8,
9028 // v4i16, v2i32 instead of to promote.
9029 if (SVT == MVT::v1i8 || SVT == MVT::v1i16 || SVT == MVT::v1i32
9030 || SVT == MVT::v1f32)
9031 return TypeWidenVector;
9032
9033 return TargetLoweringBase::getPreferredVectorAction(VT);
9034}
9035
Robin Morisseted3d48f2014-09-03 21:29:59 +00009036// Loads and stores less than 128-bits are already atomic; ones above that
9037// are doomed anyway, so defer to the default libcall and blame the OS when
9038// things go wrong.
9039bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
9040 unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
9041 return Size == 128;
9042}
9043
9044// Loads and stores less than 128-bits are already atomic; ones above that
9045// are doomed anyway, so defer to the default libcall and blame the OS when
9046// things go wrong.
9047bool AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
9048 unsigned Size = LI->getType()->getPrimitiveSizeInBits();
9049 return Size == 128;
9050}
9051
9052// For the real atomic operations, we have ldxr/stxr up to 128 bits,
JF Bastienf14889e2015-03-04 15:47:57 +00009053TargetLoweringBase::AtomicRMWExpansionKind
9054AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
Robin Morisseted3d48f2014-09-03 21:29:59 +00009055 unsigned Size = AI->getType()->getPrimitiveSizeInBits();
JF Bastienf14889e2015-03-04 15:47:57 +00009056 return Size <= 128 ? AtomicRMWExpansionKind::LLSC
9057 : AtomicRMWExpansionKind::None;
Robin Morisseted3d48f2014-09-03 21:29:59 +00009058}
9059
Robin Morisset25c8e312014-09-17 00:06:58 +00009060bool AArch64TargetLowering::hasLoadLinkedStoreConditional() const {
9061 return true;
9062}
9063
Tim Northover3b0846e2014-05-24 12:50:23 +00009064Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
9065 AtomicOrdering Ord) const {
9066 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
9067 Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
Robin Morissetb155f522014-08-18 16:48:58 +00009068 bool IsAcquire = isAtLeastAcquire(Ord);
Tim Northover3b0846e2014-05-24 12:50:23 +00009069
9070 // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
9071 // intrinsic must return {i64, i64} and we have to recombine them into a
9072 // single i128 here.
9073 if (ValTy->getPrimitiveSizeInBits() == 128) {
9074 Intrinsic::ID Int =
9075 IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
9076 Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int);
9077
9078 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
9079 Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
9080
9081 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
9082 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
9083 Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
9084 Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
9085 return Builder.CreateOr(
9086 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
9087 }
9088
9089 Type *Tys[] = { Addr->getType() };
9090 Intrinsic::ID Int =
9091 IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
9092 Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int, Tys);
9093
9094 return Builder.CreateTruncOrBitCast(
9095 Builder.CreateCall(Ldxr, Addr),
9096 cast<PointerType>(Addr->getType())->getElementType());
9097}
9098
9099Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
9100 Value *Val, Value *Addr,
9101 AtomicOrdering Ord) const {
9102 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Robin Morissetb155f522014-08-18 16:48:58 +00009103 bool IsRelease = isAtLeastRelease(Ord);
Tim Northover3b0846e2014-05-24 12:50:23 +00009104
9105 // Since the intrinsics must have legal type, the i128 intrinsics take two
9106 // parameters: "i64, i64". We must marshal Val into the appropriate form
9107 // before the call.
9108 if (Val->getType()->getPrimitiveSizeInBits() == 128) {
9109 Intrinsic::ID Int =
9110 IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
9111 Function *Stxr = Intrinsic::getDeclaration(M, Int);
9112 Type *Int64Ty = Type::getInt64Ty(M->getContext());
9113
9114 Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
9115 Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
9116 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
David Blaikieff6409d2015-05-18 22:13:54 +00009117 return Builder.CreateCall(Stxr, {Lo, Hi, Addr});
Tim Northover3b0846e2014-05-24 12:50:23 +00009118 }
9119
9120 Intrinsic::ID Int =
9121 IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
9122 Type *Tys[] = { Addr->getType() };
9123 Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
9124
David Blaikieff6409d2015-05-18 22:13:54 +00009125 return Builder.CreateCall(Stxr,
9126 {Builder.CreateZExtOrBitCast(
9127 Val, Stxr->getFunctionType()->getParamType(0)),
9128 Addr});
Tim Northover3b0846e2014-05-24 12:50:23 +00009129}
Tim Northover3c55cca2014-11-27 21:02:42 +00009130
9131bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
9132 Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
9133 return Ty->isArrayTy();
9134}