blob: d4a7725d1fd6c2c909154c638935b6304e685bdb [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
Sean Silva6cda6dc2013-11-27 04:55:23 +0000131 incrementing counter, starting with 0). Note that basic blocks are
132 included in this numbering. For example, if the entry basic block is not
133 given a label name, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000134
135It also shows a convention that we follow in this document. When
136demonstrating instructions, we will follow an instruction with a comment
137that defines the type and name of value produced.
138
139High Level Structure
140====================
141
142Module Structure
143----------------
144
145LLVM programs are composed of ``Module``'s, each of which is a
146translation unit of the input programs. Each module consists of
147functions, global variables, and symbol table entries. Modules may be
148combined together with the LLVM linker, which merges function (and
149global variable) definitions, resolves forward declarations, and merges
150symbol table entries. Here is an example of the "hello world" module:
151
152.. code-block:: llvm
153
Michael Liaoa7699082013-03-06 18:24:34 +0000154 ; Declare the string constant as a global constant.
155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000156
Michael Liaoa7699082013-03-06 18:24:34 +0000157 ; External declaration of the puts function
158 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000159
160 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000161 define i32 @main() { ; i32()*
162 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
164
Michael Liaoa7699082013-03-06 18:24:34 +0000165 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000166 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000168 }
169
170 ; Named metadata
171 !1 = metadata !{i32 42}
172 !foo = !{!1, null}
173
174This example is made up of a :ref:`global variable <globalvars>` named
175"``.str``", an external declaration of the "``puts``" function, a
176:ref:`function definition <functionstructure>` for "``main``" and
177:ref:`named metadata <namedmetadatastructure>` "``foo``".
178
179In general, a module is made up of a list of global values (where both
180functions and global variables are global values). Global values are
181represented by a pointer to a memory location (in this case, a pointer
182to an array of char, and a pointer to a function), and have one of the
183following :ref:`linkage types <linkage>`.
184
185.. _linkage:
186
187Linkage Types
188-------------
189
190All Global Variables and Functions have one of the following types of
191linkage:
192
193``private``
194 Global values with "``private``" linkage are only directly
195 accessible by objects in the current module. In particular, linking
196 code into a module with an private global value may cause the
197 private to be renamed as necessary to avoid collisions. Because the
198 symbol is private to the module, all references can be updated. This
199 doesn't show up in any symbol table in the object file.
200``linker_private``
201 Similar to ``private``, but the symbol is passed through the
202 assembler and evaluated by the linker. Unlike normal strong symbols,
203 they are removed by the linker from the final linked image
204 (executable or dynamic library).
205``linker_private_weak``
206 Similar to "``linker_private``", but the symbol is weak. Note that
207 ``linker_private_weak`` symbols are subject to coalescing by the
208 linker. The symbols are removed by the linker from the final linked
209 image (executable or dynamic library).
210``internal``
211 Similar to private, but the value shows as a local symbol
212 (``STB_LOCAL`` in the case of ELF) in the object file. This
213 corresponds to the notion of the '``static``' keyword in C.
214``available_externally``
215 Globals with "``available_externally``" linkage are never emitted
216 into the object file corresponding to the LLVM module. They exist to
217 allow inlining and other optimizations to take place given knowledge
218 of the definition of the global, which is known to be somewhere
219 outside the module. Globals with ``available_externally`` linkage
220 are allowed to be discarded at will, and are otherwise the same as
221 ``linkonce_odr``. This linkage type is only allowed on definitions,
222 not declarations.
223``linkonce``
224 Globals with "``linkonce``" linkage are merged with other globals of
225 the same name when linkage occurs. This can be used to implement
226 some forms of inline functions, templates, or other code which must
227 be generated in each translation unit that uses it, but where the
228 body may be overridden with a more definitive definition later.
229 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
230 that ``linkonce`` linkage does not actually allow the optimizer to
231 inline the body of this function into callers because it doesn't
232 know if this definition of the function is the definitive definition
233 within the program or whether it will be overridden by a stronger
234 definition. To enable inlining and other optimizations, use
235 "``linkonce_odr``" linkage.
236``weak``
237 "``weak``" linkage has the same merging semantics as ``linkonce``
238 linkage, except that unreferenced globals with ``weak`` linkage may
239 not be discarded. This is used for globals that are declared "weak"
240 in C source code.
241``common``
242 "``common``" linkage is most similar to "``weak``" linkage, but they
243 are used for tentative definitions in C, such as "``int X;``" at
244 global scope. Symbols with "``common``" linkage are merged in the
245 same way as ``weak symbols``, and they may not be deleted if
246 unreferenced. ``common`` symbols may not have an explicit section,
247 must have a zero initializer, and may not be marked
248 ':ref:`constant <globalvars>`'. Functions and aliases may not have
249 common linkage.
250
251.. _linkage_appending:
252
253``appending``
254 "``appending``" linkage may only be applied to global variables of
255 pointer to array type. When two global variables with appending
256 linkage are linked together, the two global arrays are appended
257 together. This is the LLVM, typesafe, equivalent of having the
258 system linker append together "sections" with identical names when
259 .o files are linked.
260``extern_weak``
261 The semantics of this linkage follow the ELF object file model: the
262 symbol is weak until linked, if not linked, the symbol becomes null
263 instead of being an undefined reference.
264``linkonce_odr``, ``weak_odr``
265 Some languages allow differing globals to be merged, such as two
266 functions with different semantics. Other languages, such as
267 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000268 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000269 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
270 global will only be merged with equivalent globals. These linkage
271 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000272``external``
273 If none of the above identifiers are used, the global is externally
274 visible, meaning that it participates in linkage and can be used to
275 resolve external symbol references.
276
277The next two types of linkage are targeted for Microsoft Windows
278platform only. They are designed to support importing (exporting)
279symbols from (to) DLLs (Dynamic Link Libraries).
280
281``dllimport``
282 "``dllimport``" linkage causes the compiler to reference a function
283 or variable via a global pointer to a pointer that is set up by the
284 DLL exporting the symbol. On Microsoft Windows targets, the pointer
285 name is formed by combining ``__imp_`` and the function or variable
286 name.
287``dllexport``
288 "``dllexport``" linkage causes the compiler to provide a global
289 pointer to a pointer in a DLL, so that it can be referenced with the
290 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
291 name is formed by combining ``__imp_`` and the function or variable
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000292 name. Since this linkage exists for defining a dll interface, the
293 compiler, assembler and linker know it is externally referenced and
294 must refrain from deleting the symbol.
Sean Silvab084af42012-12-07 10:36:55 +0000295
Sean Silvab084af42012-12-07 10:36:55 +0000296It is illegal for a function *declaration* to have any linkage type
297other than ``external``, ``dllimport`` or ``extern_weak``.
298
Sean Silvab084af42012-12-07 10:36:55 +0000299.. _callingconv:
300
301Calling Conventions
302-------------------
303
304LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
305:ref:`invokes <i_invoke>` can all have an optional calling convention
306specified for the call. The calling convention of any pair of dynamic
307caller/callee must match, or the behavior of the program is undefined.
308The following calling conventions are supported by LLVM, and more may be
309added in the future:
310
311"``ccc``" - The C calling convention
312 This calling convention (the default if no other calling convention
313 is specified) matches the target C calling conventions. This calling
314 convention supports varargs function calls and tolerates some
315 mismatch in the declared prototype and implemented declaration of
316 the function (as does normal C).
317"``fastcc``" - The fast calling convention
318 This calling convention attempts to make calls as fast as possible
319 (e.g. by passing things in registers). This calling convention
320 allows the target to use whatever tricks it wants to produce fast
321 code for the target, without having to conform to an externally
322 specified ABI (Application Binary Interface). `Tail calls can only
323 be optimized when this, the GHC or the HiPE convention is
324 used. <CodeGenerator.html#id80>`_ This calling convention does not
325 support varargs and requires the prototype of all callees to exactly
326 match the prototype of the function definition.
327"``coldcc``" - The cold calling convention
328 This calling convention attempts to make code in the caller as
329 efficient as possible under the assumption that the call is not
330 commonly executed. As such, these calls often preserve all registers
331 so that the call does not break any live ranges in the caller side.
332 This calling convention does not support varargs and requires the
333 prototype of all callees to exactly match the prototype of the
334 function definition.
335"``cc 10``" - GHC convention
336 This calling convention has been implemented specifically for use by
337 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
338 It passes everything in registers, going to extremes to achieve this
339 by disabling callee save registers. This calling convention should
340 not be used lightly but only for specific situations such as an
341 alternative to the *register pinning* performance technique often
342 used when implementing functional programming languages. At the
343 moment only X86 supports this convention and it has the following
344 limitations:
345
346 - On *X86-32* only supports up to 4 bit type parameters. No
347 floating point types are supported.
348 - On *X86-64* only supports up to 10 bit type parameters and 6
349 floating point parameters.
350
351 This calling convention supports `tail call
352 optimization <CodeGenerator.html#id80>`_ but requires both the
353 caller and callee are using it.
354"``cc 11``" - The HiPE calling convention
355 This calling convention has been implemented specifically for use by
356 the `High-Performance Erlang
357 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
358 native code compiler of the `Ericsson's Open Source Erlang/OTP
359 system <http://www.erlang.org/download.shtml>`_. It uses more
360 registers for argument passing than the ordinary C calling
361 convention and defines no callee-saved registers. The calling
362 convention properly supports `tail call
363 optimization <CodeGenerator.html#id80>`_ but requires that both the
364 caller and the callee use it. It uses a *register pinning*
365 mechanism, similar to GHC's convention, for keeping frequently
366 accessed runtime components pinned to specific hardware registers.
367 At the moment only X86 supports this convention (both 32 and 64
368 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000369"``webkit_jscc``" - WebKit's JavaScript calling convention
370 This calling convention has been implemented for `WebKit FTL JIT
371 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
372 stack right to left (as cdecl does), and returns a value in the
373 platform's customary return register.
374"``anyregcc``" - Dynamic calling convention for code patching
375 This is a special convention that supports patching an arbitrary code
376 sequence in place of a call site. This convention forces the call
377 arguments into registers but allows them to be dynamcially
378 allocated. This can currently only be used with calls to
379 llvm.experimental.patchpoint because only this intrinsic records
380 the location of its arguments in a side table. See :doc:`StackMaps`.
Sean Silvab084af42012-12-07 10:36:55 +0000381"``cc <n>``" - Numbered convention
382 Any calling convention may be specified by number, allowing
383 target-specific calling conventions to be used. Target specific
384 calling conventions start at 64.
385
386More calling conventions can be added/defined on an as-needed basis, to
387support Pascal conventions or any other well-known target-independent
388convention.
389
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000390.. _visibilitystyles:
391
Sean Silvab084af42012-12-07 10:36:55 +0000392Visibility Styles
393-----------------
394
395All Global Variables and Functions have one of the following visibility
396styles:
397
398"``default``" - Default style
399 On targets that use the ELF object file format, default visibility
400 means that the declaration is visible to other modules and, in
401 shared libraries, means that the declared entity may be overridden.
402 On Darwin, default visibility means that the declaration is visible
403 to other modules. Default visibility corresponds to "external
404 linkage" in the language.
405"``hidden``" - Hidden style
406 Two declarations of an object with hidden visibility refer to the
407 same object if they are in the same shared object. Usually, hidden
408 visibility indicates that the symbol will not be placed into the
409 dynamic symbol table, so no other module (executable or shared
410 library) can reference it directly.
411"``protected``" - Protected style
412 On ELF, protected visibility indicates that the symbol will be
413 placed in the dynamic symbol table, but that references within the
414 defining module will bind to the local symbol. That is, the symbol
415 cannot be overridden by another module.
416
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000417.. _namedtypes:
418
Sean Silvab084af42012-12-07 10:36:55 +0000419Named Types
420-----------
421
422LLVM IR allows you to specify name aliases for certain types. This can
423make it easier to read the IR and make the IR more condensed
424(particularly when recursive types are involved). An example of a name
425specification is:
426
427.. code-block:: llvm
428
429 %mytype = type { %mytype*, i32 }
430
431You may give a name to any :ref:`type <typesystem>` except
432":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
433expected with the syntax "%mytype".
434
435Note that type names are aliases for the structural type that they
436indicate, and that you can therefore specify multiple names for the same
437type. This often leads to confusing behavior when dumping out a .ll
438file. Since LLVM IR uses structural typing, the name is not part of the
439type. When printing out LLVM IR, the printer will pick *one name* to
440render all types of a particular shape. This means that if you have code
441where two different source types end up having the same LLVM type, that
442the dumper will sometimes print the "wrong" or unexpected type. This is
443an important design point and isn't going to change.
444
445.. _globalvars:
446
447Global Variables
448----------------
449
450Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000451instead of run-time.
452
453Global variables definitions must be initialized, may have an explicit section
454to be placed in, and may have an optional explicit alignment specified.
455
456Global variables in other translation units can also be declared, in which
457case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000458
459A variable may be defined as ``thread_local``, which means that it will
460not be shared by threads (each thread will have a separated copy of the
461variable). Not all targets support thread-local variables. Optionally, a
462TLS model may be specified:
463
464``localdynamic``
465 For variables that are only used within the current shared library.
466``initialexec``
467 For variables in modules that will not be loaded dynamically.
468``localexec``
469 For variables defined in the executable and only used within it.
470
471The models correspond to the ELF TLS models; see `ELF Handling For
472Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
473more information on under which circumstances the different models may
474be used. The target may choose a different TLS model if the specified
475model is not supported, or if a better choice of model can be made.
476
Michael Gottesman006039c2013-01-31 05:48:48 +0000477A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000478the contents of the variable will **never** be modified (enabling better
479optimization, allowing the global data to be placed in the read-only
480section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000481initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000482variable.
483
484LLVM explicitly allows *declarations* of global variables to be marked
485constant, even if the final definition of the global is not. This
486capability can be used to enable slightly better optimization of the
487program, but requires the language definition to guarantee that
488optimizations based on the 'constantness' are valid for the translation
489units that do not include the definition.
490
491As SSA values, global variables define pointer values that are in scope
492(i.e. they dominate) all basic blocks in the program. Global variables
493always define a pointer to their "content" type because they describe a
494region of memory, and all memory objects in LLVM are accessed through
495pointers.
496
497Global variables can be marked with ``unnamed_addr`` which indicates
498that the address is not significant, only the content. Constants marked
499like this can be merged with other constants if they have the same
500initializer. Note that a constant with significant address *can* be
501merged with a ``unnamed_addr`` constant, the result being a constant
502whose address is significant.
503
504A global variable may be declared to reside in a target-specific
505numbered address space. For targets that support them, address spaces
506may affect how optimizations are performed and/or what target
507instructions are used to access the variable. The default address space
508is zero. The address space qualifier must precede any other attributes.
509
510LLVM allows an explicit section to be specified for globals. If the
511target supports it, it will emit globals to the section specified.
512
Michael Gottesmane743a302013-02-04 03:22:00 +0000513By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000514variables defined within the module are not modified from their
515initial values before the start of the global initializer. This is
516true even for variables potentially accessible from outside the
517module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000518``@llvm.used`` or dllexported variables. This assumption may be suppressed
519by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000520
Sean Silvab084af42012-12-07 10:36:55 +0000521An explicit alignment may be specified for a global, which must be a
522power of 2. If not present, or if the alignment is set to zero, the
523alignment of the global is set by the target to whatever it feels
524convenient. If an explicit alignment is specified, the global is forced
525to have exactly that alignment. Targets and optimizers are not allowed
526to over-align the global if the global has an assigned section. In this
527case, the extra alignment could be observable: for example, code could
528assume that the globals are densely packed in their section and try to
529iterate over them as an array, alignment padding would break this
530iteration.
531
532For example, the following defines a global in a numbered address space
533with an initializer, section, and alignment:
534
535.. code-block:: llvm
536
537 @G = addrspace(5) constant float 1.0, section "foo", align 4
538
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000539The following example just declares a global variable
540
541.. code-block:: llvm
542
543 @G = external global i32
544
Sean Silvab084af42012-12-07 10:36:55 +0000545The following example defines a thread-local global with the
546``initialexec`` TLS model:
547
548.. code-block:: llvm
549
550 @G = thread_local(initialexec) global i32 0, align 4
551
552.. _functionstructure:
553
554Functions
555---------
556
557LLVM function definitions consist of the "``define``" keyword, an
558optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
559style <visibility>`, an optional :ref:`calling convention <callingconv>`,
560an optional ``unnamed_addr`` attribute, a return type, an optional
561:ref:`parameter attribute <paramattrs>` for the return type, a function
562name, a (possibly empty) argument list (each with optional :ref:`parameter
563attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
564an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000565collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
566curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000567
568LLVM function declarations consist of the "``declare``" keyword, an
569optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
570style <visibility>`, an optional :ref:`calling convention <callingconv>`,
571an optional ``unnamed_addr`` attribute, a return type, an optional
572:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000573name, a possibly empty list of arguments, an optional alignment, an optional
574:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000575
Bill Wendling6822ecb2013-10-27 05:09:12 +0000576A function definition contains a list of basic blocks, forming the CFG (Control
577Flow Graph) for the function. Each basic block may optionally start with a label
578(giving the basic block a symbol table entry), contains a list of instructions,
579and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
580function return). If an explicit label is not provided, a block is assigned an
581implicit numbered label, using the next value from the same counter as used for
582unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
583entry block does not have an explicit label, it will be assigned label "%0",
584then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000585
586The first basic block in a function is special in two ways: it is
587immediately executed on entrance to the function, and it is not allowed
588to have predecessor basic blocks (i.e. there can not be any branches to
589the entry block of a function). Because the block can have no
590predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
591
592LLVM allows an explicit section to be specified for functions. If the
593target supports it, it will emit functions to the section specified.
594
595An explicit alignment may be specified for a function. If not present,
596or if the alignment is set to zero, the alignment of the function is set
597by the target to whatever it feels convenient. If an explicit alignment
598is specified, the function is forced to have at least that much
599alignment. All alignments must be a power of 2.
600
601If the ``unnamed_addr`` attribute is given, the address is know to not
602be significant and two identical functions can be merged.
603
604Syntax::
605
606 define [linkage] [visibility]
607 [cconv] [ret attrs]
608 <ResultType> @<FunctionName> ([argument list])
609 [fn Attrs] [section "name"] [align N]
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000610 [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000611
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000612.. _langref_aliases:
613
Sean Silvab084af42012-12-07 10:36:55 +0000614Aliases
615-------
616
617Aliases act as "second name" for the aliasee value (which can be either
618function, global variable, another alias or bitcast of global value).
619Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
620:ref:`visibility style <visibility>`.
621
622Syntax::
623
624 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
625
Rafael Espindola65785492013-10-07 13:57:59 +0000626The linkage must be one of ``private``, ``linker_private``,
Rafael Espindola78527052013-10-06 15:10:43 +0000627``linker_private_weak``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000628``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Alp Tokerf907b892013-12-05 05:44:44 +0000629might not correctly handle dropping a weak symbol that is aliased by a non-weak
Rafael Espindola716e7402013-11-01 17:09:14 +0000630alias.
Rafael Espindola78527052013-10-06 15:10:43 +0000631
Sean Silvab084af42012-12-07 10:36:55 +0000632.. _namedmetadatastructure:
633
634Named Metadata
635--------------
636
637Named metadata is a collection of metadata. :ref:`Metadata
638nodes <metadata>` (but not metadata strings) are the only valid
639operands for a named metadata.
640
641Syntax::
642
643 ; Some unnamed metadata nodes, which are referenced by the named metadata.
644 !0 = metadata !{metadata !"zero"}
645 !1 = metadata !{metadata !"one"}
646 !2 = metadata !{metadata !"two"}
647 ; A named metadata.
648 !name = !{!0, !1, !2}
649
650.. _paramattrs:
651
652Parameter Attributes
653--------------------
654
655The return type and each parameter of a function type may have a set of
656*parameter attributes* associated with them. Parameter attributes are
657used to communicate additional information about the result or
658parameters of a function. Parameter attributes are considered to be part
659of the function, not of the function type, so functions with different
660parameter attributes can have the same function type.
661
662Parameter attributes are simple keywords that follow the type specified.
663If multiple parameter attributes are needed, they are space separated.
664For example:
665
666.. code-block:: llvm
667
668 declare i32 @printf(i8* noalias nocapture, ...)
669 declare i32 @atoi(i8 zeroext)
670 declare signext i8 @returns_signed_char()
671
672Note that any attributes for the function result (``nounwind``,
673``readonly``) come immediately after the argument list.
674
675Currently, only the following parameter attributes are defined:
676
677``zeroext``
678 This indicates to the code generator that the parameter or return
679 value should be zero-extended to the extent required by the target's
680 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
681 the caller (for a parameter) or the callee (for a return value).
682``signext``
683 This indicates to the code generator that the parameter or return
684 value should be sign-extended to the extent required by the target's
685 ABI (which is usually 32-bits) by the caller (for a parameter) or
686 the callee (for a return value).
687``inreg``
688 This indicates that this parameter or return value should be treated
689 in a special target-dependent fashion during while emitting code for
690 a function call or return (usually, by putting it in a register as
691 opposed to memory, though some targets use it to distinguish between
692 two different kinds of registers). Use of this attribute is
693 target-specific.
694``byval``
695 This indicates that the pointer parameter should really be passed by
696 value to the function. The attribute implies that a hidden copy of
697 the pointee is made between the caller and the callee, so the callee
698 is unable to modify the value in the caller. This attribute is only
699 valid on LLVM pointer arguments. It is generally used to pass
700 structs and arrays by value, but is also valid on pointers to
701 scalars. The copy is considered to belong to the caller not the
702 callee (for example, ``readonly`` functions should not write to
703 ``byval`` parameters). This is not a valid attribute for return
704 values.
705
706 The byval attribute also supports specifying an alignment with the
707 align attribute. It indicates the alignment of the stack slot to
708 form and the known alignment of the pointer specified to the call
709 site. If the alignment is not specified, then the code generator
710 makes a target-specific assumption.
711
Reid Klecknera534a382013-12-19 02:14:12 +0000712.. _attr_inalloca:
713
714``inalloca``
715
716.. Warning:: This feature is unstable and not fully implemented.
717
718 The ``inalloca`` argument attribute allows the caller to get the
719 address of an outgoing argument to a ``call`` or ``invoke`` before
720 it executes. It is similar to ``byval`` in that it is used to pass
721 arguments by value, but it guarantees that the argument will not be
722 copied.
723
724 To be :ref:`well formed <wellformed>`, the caller must pass in an
725 alloca value into an ``inalloca`` parameter, and an alloca may be
726 used as an ``inalloca`` argument at most once. The attribute can
727 only be applied to parameters that would be passed in memory and not
728 registers. The ``inalloca`` attribute cannot be used in conjunction
729 with other attributes that affect argument storage, like ``inreg``,
730 ``nest``, ``sret``, or ``byval``. The ``inalloca`` stack space is
731 considered to be clobbered by any call that uses it, so any
732 ``inalloca`` parameters cannot be marked ``readonly``.
733
734 Allocas passed with ``inalloca`` to a call must be in the opposite
735 order of the parameter list, meaning that the rightmost argument
736 must be allocated first. If a call has inalloca arguments, no other
737 allocas can occur between the first alloca used by the call and the
738 call site, unless they are are cleared by calls to
739 :ref:`llvm.stackrestore <int_stackrestore>`. Violating these rules
740 results in undefined behavior at runtime.
741
742 See :doc:`InAlloca` for more information on how to use this
743 attribute.
744
Sean Silvab084af42012-12-07 10:36:55 +0000745``sret``
746 This indicates that the pointer parameter specifies the address of a
747 structure that is the return value of the function in the source
748 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000749 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000750 not to trap and to be properly aligned. This may only be applied to
751 the first parameter. This is not a valid attribute for return
752 values.
753``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000754 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000755 the argument or return value do not alias pointer values which are
756 not *based* on it, ignoring certain "irrelevant" dependencies. For a
757 call to the parent function, dependencies between memory references
758 from before or after the call and from those during the call are
759 "irrelevant" to the ``noalias`` keyword for the arguments and return
760 value used in that call. The caller shares the responsibility with
761 the callee for ensuring that these requirements are met. For further
762 details, please see the discussion of the NoAlias response in `alias
763 analysis <AliasAnalysis.html#MustMayNo>`_.
764
765 Note that this definition of ``noalias`` is intentionally similar
766 to the definition of ``restrict`` in C99 for function arguments,
767 though it is slightly weaker.
768
769 For function return values, C99's ``restrict`` is not meaningful,
770 while LLVM's ``noalias`` is.
771``nocapture``
772 This indicates that the callee does not make any copies of the
773 pointer that outlive the callee itself. This is not a valid
774 attribute for return values.
775
776.. _nest:
777
778``nest``
779 This indicates that the pointer parameter can be excised using the
780 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000781 attribute for return values and can only be applied to one parameter.
782
783``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000784 This indicates that the function always returns the argument as its return
785 value. This is an optimization hint to the code generator when generating
786 the caller, allowing tail call optimization and omission of register saves
787 and restores in some cases; it is not checked or enforced when generating
788 the callee. The parameter and the function return type must be valid
789 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
790 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000791
792.. _gc:
793
794Garbage Collector Names
795-----------------------
796
797Each function may specify a garbage collector name, which is simply a
798string:
799
800.. code-block:: llvm
801
802 define void @f() gc "name" { ... }
803
804The compiler declares the supported values of *name*. Specifying a
805collector which will cause the compiler to alter its output in order to
806support the named garbage collection algorithm.
807
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000808.. _prefixdata:
809
810Prefix Data
811-----------
812
813Prefix data is data associated with a function which the code generator
814will emit immediately before the function body. The purpose of this feature
815is to allow frontends to associate language-specific runtime metadata with
816specific functions and make it available through the function pointer while
817still allowing the function pointer to be called. To access the data for a
818given function, a program may bitcast the function pointer to a pointer to
819the constant's type. This implies that the IR symbol points to the start
820of the prefix data.
821
822To maintain the semantics of ordinary function calls, the prefix data must
823have a particular format. Specifically, it must begin with a sequence of
824bytes which decode to a sequence of machine instructions, valid for the
825module's target, which transfer control to the point immediately succeeding
826the prefix data, without performing any other visible action. This allows
827the inliner and other passes to reason about the semantics of the function
828definition without needing to reason about the prefix data. Obviously this
829makes the format of the prefix data highly target dependent.
830
Peter Collingbourne213358a2013-09-23 20:14:21 +0000831Prefix data is laid out as if it were an initializer for a global variable
832of the prefix data's type. No padding is automatically placed between the
833prefix data and the function body. If padding is required, it must be part
834of the prefix data.
835
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000836A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
837which encodes the ``nop`` instruction:
838
839.. code-block:: llvm
840
841 define void @f() prefix i8 144 { ... }
842
843Generally prefix data can be formed by encoding a relative branch instruction
844which skips the metadata, as in this example of valid prefix data for the
845x86_64 architecture, where the first two bytes encode ``jmp .+10``:
846
847.. code-block:: llvm
848
849 %0 = type <{ i8, i8, i8* }>
850
851 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
852
853A function may have prefix data but no body. This has similar semantics
854to the ``available_externally`` linkage in that the data may be used by the
855optimizers but will not be emitted in the object file.
856
Bill Wendling63b88192013-02-06 06:52:58 +0000857.. _attrgrp:
858
859Attribute Groups
860----------------
861
862Attribute groups are groups of attributes that are referenced by objects within
863the IR. They are important for keeping ``.ll`` files readable, because a lot of
864functions will use the same set of attributes. In the degenerative case of a
865``.ll`` file that corresponds to a single ``.c`` file, the single attribute
866group will capture the important command line flags used to build that file.
867
868An attribute group is a module-level object. To use an attribute group, an
869object references the attribute group's ID (e.g. ``#37``). An object may refer
870to more than one attribute group. In that situation, the attributes from the
871different groups are merged.
872
873Here is an example of attribute groups for a function that should always be
874inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
875
876.. code-block:: llvm
877
878 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000879 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +0000880
881 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000882 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +0000883
884 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
885 define void @f() #0 #1 { ... }
886
Sean Silvab084af42012-12-07 10:36:55 +0000887.. _fnattrs:
888
889Function Attributes
890-------------------
891
892Function attributes are set to communicate additional information about
893a function. Function attributes are considered to be part of the
894function, not of the function type, so functions with different function
895attributes can have the same function type.
896
897Function attributes are simple keywords that follow the type specified.
898If multiple attributes are needed, they are space separated. For
899example:
900
901.. code-block:: llvm
902
903 define void @f() noinline { ... }
904 define void @f() alwaysinline { ... }
905 define void @f() alwaysinline optsize { ... }
906 define void @f() optsize { ... }
907
Sean Silvab084af42012-12-07 10:36:55 +0000908``alignstack(<n>)``
909 This attribute indicates that, when emitting the prologue and
910 epilogue, the backend should forcibly align the stack pointer.
911 Specify the desired alignment, which must be a power of two, in
912 parentheses.
913``alwaysinline``
914 This attribute indicates that the inliner should attempt to inline
915 this function into callers whenever possible, ignoring any active
916 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +0000917``builtin``
918 This indicates that the callee function at a call site should be
919 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +0000920 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +0000921 direct calls to functions which are declared with the ``nobuiltin``
922 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +0000923``cold``
924 This attribute indicates that this function is rarely called. When
925 computing edge weights, basic blocks post-dominated by a cold
926 function call are also considered to be cold; and, thus, given low
927 weight.
Sean Silvab084af42012-12-07 10:36:55 +0000928``inlinehint``
929 This attribute indicates that the source code contained a hint that
930 inlining this function is desirable (such as the "inline" keyword in
931 C/C++). It is just a hint; it imposes no requirements on the
932 inliner.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000933``minsize``
934 This attribute suggests that optimization passes and code generator
935 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000936 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000937 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +0000938``naked``
939 This attribute disables prologue / epilogue emission for the
940 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +0000941``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +0000942 This indicates that the callee function at a call site is not recognized as
943 a built-in function. LLVM will retain the original call and not replace it
944 with equivalent code based on the semantics of the built-in function, unless
945 the call site uses the ``builtin`` attribute. This is valid at call sites
946 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +0000947``noduplicate``
948 This attribute indicates that calls to the function cannot be
949 duplicated. A call to a ``noduplicate`` function may be moved
950 within its parent function, but may not be duplicated within
951 its parent function.
952
953 A function containing a ``noduplicate`` call may still
954 be an inlining candidate, provided that the call is not
955 duplicated by inlining. That implies that the function has
956 internal linkage and only has one call site, so the original
957 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000958``noimplicitfloat``
959 This attributes disables implicit floating point instructions.
960``noinline``
961 This attribute indicates that the inliner should never inline this
962 function in any situation. This attribute may not be used together
963 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +0000964``nonlazybind``
965 This attribute suppresses lazy symbol binding for the function. This
966 may make calls to the function faster, at the cost of extra program
967 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +0000968``noredzone``
969 This attribute indicates that the code generator should not use a
970 red zone, even if the target-specific ABI normally permits it.
971``noreturn``
972 This function attribute indicates that the function never returns
973 normally. This produces undefined behavior at runtime if the
974 function ever does dynamically return.
975``nounwind``
976 This function attribute indicates that the function never returns
977 with an unwind or exceptional control flow. If the function does
978 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +0000979``optnone``
980 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000981 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +0000982 exception of interprocedural optimization passes.
983 This attribute cannot be used together with the ``alwaysinline``
984 attribute; this attribute is also incompatible
985 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000986
Paul Robinsondcbe35b2013-11-18 21:44:03 +0000987 This attribute requires the ``noinline`` attribute to be specified on
988 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +0000989 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +0000990 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +0000991``optsize``
992 This attribute suggests that optimization passes and code generator
993 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000994 and otherwise do optimizations specifically to reduce code size as
995 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +0000996``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +0000997 On a function, this attribute indicates that the function computes its
998 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +0000999 without dereferencing any pointer arguments or otherwise accessing
1000 any mutable state (e.g. memory, control registers, etc) visible to
1001 caller functions. It does not write through any pointer arguments
1002 (including ``byval`` arguments) and never changes any state visible
1003 to callers. This means that it cannot unwind exceptions by calling
1004 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001005
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001006 On an argument, this attribute indicates that the function does not
1007 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001008 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001009``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001010 On a function, this attribute indicates that the function does not write
1011 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001012 modify any state (e.g. memory, control registers, etc) visible to
1013 caller functions. It may dereference pointer arguments and read
1014 state that may be set in the caller. A readonly function always
1015 returns the same value (or unwinds an exception identically) when
1016 called with the same set of arguments and global state. It cannot
1017 unwind an exception by calling the ``C++`` exception throwing
1018 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001019
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001020 On an argument, this attribute indicates that the function does not write
1021 through this pointer argument, even though it may write to the memory that
1022 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001023``returns_twice``
1024 This attribute indicates that this function can return twice. The C
1025 ``setjmp`` is an example of such a function. The compiler disables
1026 some optimizations (like tail calls) in the caller of these
1027 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001028``sanitize_address``
1029 This attribute indicates that AddressSanitizer checks
1030 (dynamic address safety analysis) are enabled for this function.
1031``sanitize_memory``
1032 This attribute indicates that MemorySanitizer checks (dynamic detection
1033 of accesses to uninitialized memory) are enabled for this function.
1034``sanitize_thread``
1035 This attribute indicates that ThreadSanitizer checks
1036 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001037``ssp``
1038 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001039 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001040 placed on the stack before the local variables that's checked upon
1041 return from the function to see if it has been overwritten. A
1042 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001043 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001044
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001045 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1046 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1047 - Calls to alloca() with variable sizes or constant sizes greater than
1048 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001049
1050 If a function that has an ``ssp`` attribute is inlined into a
1051 function that doesn't have an ``ssp`` attribute, then the resulting
1052 function will have an ``ssp`` attribute.
1053``sspreq``
1054 This attribute indicates that the function should *always* emit a
1055 stack smashing protector. This overrides the ``ssp`` function
1056 attribute.
1057
1058 If a function that has an ``sspreq`` attribute is inlined into a
1059 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001060 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1061 an ``sspreq`` attribute.
1062``sspstrong``
1063 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001064 protector. This attribute causes a strong heuristic to be used when
1065 determining if a function needs stack protectors. The strong heuristic
1066 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001067
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001068 - Arrays of any size and type
1069 - Aggregates containing an array of any size and type.
1070 - Calls to alloca().
1071 - Local variables that have had their address taken.
1072
1073 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001074
1075 If a function that has an ``sspstrong`` attribute is inlined into a
1076 function that doesn't have an ``sspstrong`` attribute, then the
1077 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001078``uwtable``
1079 This attribute indicates that the ABI being targeted requires that
1080 an unwind table entry be produce for this function even if we can
1081 show that no exceptions passes by it. This is normally the case for
1082 the ELF x86-64 abi, but it can be disabled for some compilation
1083 units.
Sean Silvab084af42012-12-07 10:36:55 +00001084
1085.. _moduleasm:
1086
1087Module-Level Inline Assembly
1088----------------------------
1089
1090Modules may contain "module-level inline asm" blocks, which corresponds
1091to the GCC "file scope inline asm" blocks. These blocks are internally
1092concatenated by LLVM and treated as a single unit, but may be separated
1093in the ``.ll`` file if desired. The syntax is very simple:
1094
1095.. code-block:: llvm
1096
1097 module asm "inline asm code goes here"
1098 module asm "more can go here"
1099
1100The strings can contain any character by escaping non-printable
1101characters. The escape sequence used is simply "\\xx" where "xx" is the
1102two digit hex code for the number.
1103
1104The inline asm code is simply printed to the machine code .s file when
1105assembly code is generated.
1106
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001107.. _langref_datalayout:
1108
Sean Silvab084af42012-12-07 10:36:55 +00001109Data Layout
1110-----------
1111
1112A module may specify a target specific data layout string that specifies
1113how data is to be laid out in memory. The syntax for the data layout is
1114simply:
1115
1116.. code-block:: llvm
1117
1118 target datalayout = "layout specification"
1119
1120The *layout specification* consists of a list of specifications
1121separated by the minus sign character ('-'). Each specification starts
1122with a letter and may include other information after the letter to
1123define some aspect of the data layout. The specifications accepted are
1124as follows:
1125
1126``E``
1127 Specifies that the target lays out data in big-endian form. That is,
1128 the bits with the most significance have the lowest address
1129 location.
1130``e``
1131 Specifies that the target lays out data in little-endian form. That
1132 is, the bits with the least significance have the lowest address
1133 location.
1134``S<size>``
1135 Specifies the natural alignment of the stack in bits. Alignment
1136 promotion of stack variables is limited to the natural stack
1137 alignment to avoid dynamic stack realignment. The stack alignment
1138 must be a multiple of 8-bits. If omitted, the natural stack
1139 alignment defaults to "unspecified", which does not prevent any
1140 alignment promotions.
1141``p[n]:<size>:<abi>:<pref>``
1142 This specifies the *size* of a pointer and its ``<abi>`` and
1143 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001144 bits. The address space, ``n`` is optional, and if not specified,
1145 denotes the default address space 0. The value of ``n`` must be
1146 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001147``i<size>:<abi>:<pref>``
1148 This specifies the alignment for an integer type of a given bit
1149 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1150``v<size>:<abi>:<pref>``
1151 This specifies the alignment for a vector type of a given bit
1152 ``<size>``.
1153``f<size>:<abi>:<pref>``
1154 This specifies the alignment for a floating point type of a given bit
1155 ``<size>``. Only values of ``<size>`` that are supported by the target
1156 will work. 32 (float) and 64 (double) are supported on all targets; 80
1157 or 128 (different flavors of long double) are also supported on some
1158 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001159``a:<abi>:<pref>``
1160 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001161``m:<mangling>``
1162 If prerest, specifies that llvm names are mangled in the output. The
1163 options are
1164 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1165 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1166 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1167 symbols get a ``_`` prefix.
1168 * ``c``: COFF prefix: Similar to Mach-O, but stdcall and fastcall
Rafael Espindolaaa842f02014-01-03 19:42:04 +00001169 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001170``n<size1>:<size2>:<size3>...``
1171 This specifies a set of native integer widths for the target CPU in
1172 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1173 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1174 this set are considered to support most general arithmetic operations
1175 efficiently.
1176
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001177On every specification that takes a ``<abi>:<pref>``, specifying the
1178``<pref>`` alignment is optional. If omitted, the preceding ``:``
1179should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1180
Sean Silvab084af42012-12-07 10:36:55 +00001181When constructing the data layout for a given target, LLVM starts with a
1182default set of specifications which are then (possibly) overridden by
1183the specifications in the ``datalayout`` keyword. The default
1184specifications are given in this list:
1185
1186- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001187- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1188- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1189 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001190- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001191- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1192- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1193- ``i16:16:16`` - i16 is 16-bit aligned
1194- ``i32:32:32`` - i32 is 32-bit aligned
1195- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1196 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001197- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001198- ``f32:32:32`` - float is 32-bit aligned
1199- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001200- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001201- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1202- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001203- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001204
1205When LLVM is determining the alignment for a given type, it uses the
1206following rules:
1207
1208#. If the type sought is an exact match for one of the specifications,
1209 that specification is used.
1210#. If no match is found, and the type sought is an integer type, then
1211 the smallest integer type that is larger than the bitwidth of the
1212 sought type is used. If none of the specifications are larger than
1213 the bitwidth then the largest integer type is used. For example,
1214 given the default specifications above, the i7 type will use the
1215 alignment of i8 (next largest) while both i65 and i256 will use the
1216 alignment of i64 (largest specified).
1217#. If no match is found, and the type sought is a vector type, then the
1218 largest vector type that is smaller than the sought vector type will
1219 be used as a fall back. This happens because <128 x double> can be
1220 implemented in terms of 64 <2 x double>, for example.
1221
1222The function of the data layout string may not be what you expect.
1223Notably, this is not a specification from the frontend of what alignment
1224the code generator should use.
1225
1226Instead, if specified, the target data layout is required to match what
1227the ultimate *code generator* expects. This string is used by the
1228mid-level optimizers to improve code, and this only works if it matches
1229what the ultimate code generator uses. If you would like to generate IR
1230that does not embed this target-specific detail into the IR, then you
1231don't have to specify the string. This will disable some optimizations
1232that require precise layout information, but this also prevents those
1233optimizations from introducing target specificity into the IR.
1234
Bill Wendling5cc90842013-10-18 23:41:25 +00001235.. _langref_triple:
1236
1237Target Triple
1238-------------
1239
1240A module may specify a target triple string that describes the target
1241host. The syntax for the target triple is simply:
1242
1243.. code-block:: llvm
1244
1245 target triple = "x86_64-apple-macosx10.7.0"
1246
1247The *target triple* string consists of a series of identifiers delimited
1248by the minus sign character ('-'). The canonical forms are:
1249
1250::
1251
1252 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1253 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1254
1255This information is passed along to the backend so that it generates
1256code for the proper architecture. It's possible to override this on the
1257command line with the ``-mtriple`` command line option.
1258
Sean Silvab084af42012-12-07 10:36:55 +00001259.. _pointeraliasing:
1260
1261Pointer Aliasing Rules
1262----------------------
1263
1264Any memory access must be done through a pointer value associated with
1265an address range of the memory access, otherwise the behavior is
1266undefined. Pointer values are associated with address ranges according
1267to the following rules:
1268
1269- A pointer value is associated with the addresses associated with any
1270 value it is *based* on.
1271- An address of a global variable is associated with the address range
1272 of the variable's storage.
1273- The result value of an allocation instruction is associated with the
1274 address range of the allocated storage.
1275- A null pointer in the default address-space is associated with no
1276 address.
1277- An integer constant other than zero or a pointer value returned from
1278 a function not defined within LLVM may be associated with address
1279 ranges allocated through mechanisms other than those provided by
1280 LLVM. Such ranges shall not overlap with any ranges of addresses
1281 allocated by mechanisms provided by LLVM.
1282
1283A pointer value is *based* on another pointer value according to the
1284following rules:
1285
1286- A pointer value formed from a ``getelementptr`` operation is *based*
1287 on the first operand of the ``getelementptr``.
1288- The result value of a ``bitcast`` is *based* on the operand of the
1289 ``bitcast``.
1290- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1291 values that contribute (directly or indirectly) to the computation of
1292 the pointer's value.
1293- The "*based* on" relationship is transitive.
1294
1295Note that this definition of *"based"* is intentionally similar to the
1296definition of *"based"* in C99, though it is slightly weaker.
1297
1298LLVM IR does not associate types with memory. The result type of a
1299``load`` merely indicates the size and alignment of the memory from
1300which to load, as well as the interpretation of the value. The first
1301operand type of a ``store`` similarly only indicates the size and
1302alignment of the store.
1303
1304Consequently, type-based alias analysis, aka TBAA, aka
1305``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1306:ref:`Metadata <metadata>` may be used to encode additional information
1307which specialized optimization passes may use to implement type-based
1308alias analysis.
1309
1310.. _volatile:
1311
1312Volatile Memory Accesses
1313------------------------
1314
1315Certain memory accesses, such as :ref:`load <i_load>`'s,
1316:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1317marked ``volatile``. The optimizers must not change the number of
1318volatile operations or change their order of execution relative to other
1319volatile operations. The optimizers *may* change the order of volatile
1320operations relative to non-volatile operations. This is not Java's
1321"volatile" and has no cross-thread synchronization behavior.
1322
Andrew Trick89fc5a62013-01-30 21:19:35 +00001323IR-level volatile loads and stores cannot safely be optimized into
1324llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1325flagged volatile. Likewise, the backend should never split or merge
1326target-legal volatile load/store instructions.
1327
Andrew Trick7e6f9282013-01-31 00:49:39 +00001328.. admonition:: Rationale
1329
1330 Platforms may rely on volatile loads and stores of natively supported
1331 data width to be executed as single instruction. For example, in C
1332 this holds for an l-value of volatile primitive type with native
1333 hardware support, but not necessarily for aggregate types. The
1334 frontend upholds these expectations, which are intentionally
1335 unspecified in the IR. The rules above ensure that IR transformation
1336 do not violate the frontend's contract with the language.
1337
Sean Silvab084af42012-12-07 10:36:55 +00001338.. _memmodel:
1339
1340Memory Model for Concurrent Operations
1341--------------------------------------
1342
1343The LLVM IR does not define any way to start parallel threads of
1344execution or to register signal handlers. Nonetheless, there are
1345platform-specific ways to create them, and we define LLVM IR's behavior
1346in their presence. This model is inspired by the C++0x memory model.
1347
1348For a more informal introduction to this model, see the :doc:`Atomics`.
1349
1350We define a *happens-before* partial order as the least partial order
1351that
1352
1353- Is a superset of single-thread program order, and
1354- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1355 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1356 techniques, like pthread locks, thread creation, thread joining,
1357 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1358 Constraints <ordering>`).
1359
1360Note that program order does not introduce *happens-before* edges
1361between a thread and signals executing inside that thread.
1362
1363Every (defined) read operation (load instructions, memcpy, atomic
1364loads/read-modify-writes, etc.) R reads a series of bytes written by
1365(defined) write operations (store instructions, atomic
1366stores/read-modify-writes, memcpy, etc.). For the purposes of this
1367section, initialized globals are considered to have a write of the
1368initializer which is atomic and happens before any other read or write
1369of the memory in question. For each byte of a read R, R\ :sub:`byte`
1370may see any write to the same byte, except:
1371
1372- If write\ :sub:`1` happens before write\ :sub:`2`, and
1373 write\ :sub:`2` happens before R\ :sub:`byte`, then
1374 R\ :sub:`byte` does not see write\ :sub:`1`.
1375- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1376 R\ :sub:`byte` does not see write\ :sub:`3`.
1377
1378Given that definition, R\ :sub:`byte` is defined as follows:
1379
1380- If R is volatile, the result is target-dependent. (Volatile is
1381 supposed to give guarantees which can support ``sig_atomic_t`` in
1382 C/C++, and may be used for accesses to addresses which do not behave
1383 like normal memory. It does not generally provide cross-thread
1384 synchronization.)
1385- Otherwise, if there is no write to the same byte that happens before
1386 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1387- Otherwise, if R\ :sub:`byte` may see exactly one write,
1388 R\ :sub:`byte` returns the value written by that write.
1389- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1390 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1391 Memory Ordering Constraints <ordering>` section for additional
1392 constraints on how the choice is made.
1393- Otherwise R\ :sub:`byte` returns ``undef``.
1394
1395R returns the value composed of the series of bytes it read. This
1396implies that some bytes within the value may be ``undef`` **without**
1397the entire value being ``undef``. Note that this only defines the
1398semantics of the operation; it doesn't mean that targets will emit more
1399than one instruction to read the series of bytes.
1400
1401Note that in cases where none of the atomic intrinsics are used, this
1402model places only one restriction on IR transformations on top of what
1403is required for single-threaded execution: introducing a store to a byte
1404which might not otherwise be stored is not allowed in general.
1405(Specifically, in the case where another thread might write to and read
1406from an address, introducing a store can change a load that may see
1407exactly one write into a load that may see multiple writes.)
1408
1409.. _ordering:
1410
1411Atomic Memory Ordering Constraints
1412----------------------------------
1413
1414Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1415:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1416:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1417an ordering parameter that determines which other atomic instructions on
1418the same address they *synchronize with*. These semantics are borrowed
1419from Java and C++0x, but are somewhat more colloquial. If these
1420descriptions aren't precise enough, check those specs (see spec
1421references in the :doc:`atomics guide <Atomics>`).
1422:ref:`fence <i_fence>` instructions treat these orderings somewhat
1423differently since they don't take an address. See that instruction's
1424documentation for details.
1425
1426For a simpler introduction to the ordering constraints, see the
1427:doc:`Atomics`.
1428
1429``unordered``
1430 The set of values that can be read is governed by the happens-before
1431 partial order. A value cannot be read unless some operation wrote
1432 it. This is intended to provide a guarantee strong enough to model
1433 Java's non-volatile shared variables. This ordering cannot be
1434 specified for read-modify-write operations; it is not strong enough
1435 to make them atomic in any interesting way.
1436``monotonic``
1437 In addition to the guarantees of ``unordered``, there is a single
1438 total order for modifications by ``monotonic`` operations on each
1439 address. All modification orders must be compatible with the
1440 happens-before order. There is no guarantee that the modification
1441 orders can be combined to a global total order for the whole program
1442 (and this often will not be possible). The read in an atomic
1443 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1444 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1445 order immediately before the value it writes. If one atomic read
1446 happens before another atomic read of the same address, the later
1447 read must see the same value or a later value in the address's
1448 modification order. This disallows reordering of ``monotonic`` (or
1449 stronger) operations on the same address. If an address is written
1450 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1451 read that address repeatedly, the other threads must eventually see
1452 the write. This corresponds to the C++0x/C1x
1453 ``memory_order_relaxed``.
1454``acquire``
1455 In addition to the guarantees of ``monotonic``, a
1456 *synchronizes-with* edge may be formed with a ``release`` operation.
1457 This is intended to model C++'s ``memory_order_acquire``.
1458``release``
1459 In addition to the guarantees of ``monotonic``, if this operation
1460 writes a value which is subsequently read by an ``acquire``
1461 operation, it *synchronizes-with* that operation. (This isn't a
1462 complete description; see the C++0x definition of a release
1463 sequence.) This corresponds to the C++0x/C1x
1464 ``memory_order_release``.
1465``acq_rel`` (acquire+release)
1466 Acts as both an ``acquire`` and ``release`` operation on its
1467 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1468``seq_cst`` (sequentially consistent)
1469 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1470 operation which only reads, ``release`` for an operation which only
1471 writes), there is a global total order on all
1472 sequentially-consistent operations on all addresses, which is
1473 consistent with the *happens-before* partial order and with the
1474 modification orders of all the affected addresses. Each
1475 sequentially-consistent read sees the last preceding write to the
1476 same address in this global order. This corresponds to the C++0x/C1x
1477 ``memory_order_seq_cst`` and Java volatile.
1478
1479.. _singlethread:
1480
1481If an atomic operation is marked ``singlethread``, it only *synchronizes
1482with* or participates in modification and seq\_cst total orderings with
1483other operations running in the same thread (for example, in signal
1484handlers).
1485
1486.. _fastmath:
1487
1488Fast-Math Flags
1489---------------
1490
1491LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1492:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1493:ref:`frem <i_frem>`) have the following flags that can set to enable
1494otherwise unsafe floating point operations
1495
1496``nnan``
1497 No NaNs - Allow optimizations to assume the arguments and result are not
1498 NaN. Such optimizations are required to retain defined behavior over
1499 NaNs, but the value of the result is undefined.
1500
1501``ninf``
1502 No Infs - Allow optimizations to assume the arguments and result are not
1503 +/-Inf. Such optimizations are required to retain defined behavior over
1504 +/-Inf, but the value of the result is undefined.
1505
1506``nsz``
1507 No Signed Zeros - Allow optimizations to treat the sign of a zero
1508 argument or result as insignificant.
1509
1510``arcp``
1511 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1512 argument rather than perform division.
1513
1514``fast``
1515 Fast - Allow algebraically equivalent transformations that may
1516 dramatically change results in floating point (e.g. reassociate). This
1517 flag implies all the others.
1518
1519.. _typesystem:
1520
1521Type System
1522===========
1523
1524The LLVM type system is one of the most important features of the
1525intermediate representation. Being typed enables a number of
1526optimizations to be performed on the intermediate representation
1527directly, without having to do extra analyses on the side before the
1528transformation. A strong type system makes it easier to read the
1529generated code and enables novel analyses and transformations that are
1530not feasible to perform on normal three address code representations.
1531
Rafael Espindola08013342013-12-07 19:34:20 +00001532.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001533
Rafael Espindola08013342013-12-07 19:34:20 +00001534Void Type
1535---------
Sean Silvab084af42012-12-07 10:36:55 +00001536
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001537:Overview:
1538
Rafael Espindola08013342013-12-07 19:34:20 +00001539
1540The void type does not represent any value and has no size.
1541
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001542:Syntax:
1543
Rafael Espindola08013342013-12-07 19:34:20 +00001544
1545::
1546
1547 void
Sean Silvab084af42012-12-07 10:36:55 +00001548
1549
Rafael Espindola08013342013-12-07 19:34:20 +00001550.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001551
Rafael Espindola08013342013-12-07 19:34:20 +00001552Function Type
1553-------------
Sean Silvab084af42012-12-07 10:36:55 +00001554
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001555:Overview:
1556
Sean Silvab084af42012-12-07 10:36:55 +00001557
Rafael Espindola08013342013-12-07 19:34:20 +00001558The function type can be thought of as a function signature. It consists of a
1559return type and a list of formal parameter types. The return type of a function
1560type is a void type or first class type --- except for :ref:`label <t_label>`
1561and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001562
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001563:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001564
Rafael Espindola08013342013-12-07 19:34:20 +00001565::
Sean Silvab084af42012-12-07 10:36:55 +00001566
Rafael Espindola08013342013-12-07 19:34:20 +00001567 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001568
Rafael Espindola08013342013-12-07 19:34:20 +00001569...where '``<parameter list>``' is a comma-separated list of type
1570specifiers. Optionally, the parameter list may include a type ``...``, which
1571indicates that the function takes a variable number of arguments. Variable
1572argument functions can access their arguments with the :ref:`variable argument
1573handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1574except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001575
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001576:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001577
Rafael Espindola08013342013-12-07 19:34:20 +00001578+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1579| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1580+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1581| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1582+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1583| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1584+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1585| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1586+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1587
1588.. _t_firstclass:
1589
1590First Class Types
1591-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001592
1593The :ref:`first class <t_firstclass>` types are perhaps the most important.
1594Values of these types are the only ones which can be produced by
1595instructions.
1596
Rafael Espindola08013342013-12-07 19:34:20 +00001597.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001598
Rafael Espindola08013342013-12-07 19:34:20 +00001599Single Value Types
1600^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001601
Rafael Espindola08013342013-12-07 19:34:20 +00001602These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001603
1604.. _t_integer:
1605
1606Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001607""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001608
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001609:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001610
1611The integer type is a very simple type that simply specifies an
1612arbitrary bit width for the integer type desired. Any bit width from 1
1613bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1614
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001615:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001616
1617::
1618
1619 iN
1620
1621The number of bits the integer will occupy is specified by the ``N``
1622value.
1623
1624Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001625*********
Sean Silvab084af42012-12-07 10:36:55 +00001626
1627+----------------+------------------------------------------------+
1628| ``i1`` | a single-bit integer. |
1629+----------------+------------------------------------------------+
1630| ``i32`` | a 32-bit integer. |
1631+----------------+------------------------------------------------+
1632| ``i1942652`` | a really big integer of over 1 million bits. |
1633+----------------+------------------------------------------------+
1634
1635.. _t_floating:
1636
1637Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001638""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001639
1640.. list-table::
1641 :header-rows: 1
1642
1643 * - Type
1644 - Description
1645
1646 * - ``half``
1647 - 16-bit floating point value
1648
1649 * - ``float``
1650 - 32-bit floating point value
1651
1652 * - ``double``
1653 - 64-bit floating point value
1654
1655 * - ``fp128``
1656 - 128-bit floating point value (112-bit mantissa)
1657
1658 * - ``x86_fp80``
1659 - 80-bit floating point value (X87)
1660
1661 * - ``ppc_fp128``
1662 - 128-bit floating point value (two 64-bits)
1663
1664.. _t_x86mmx:
1665
1666X86mmx Type
Rafael Espindola08013342013-12-07 19:34:20 +00001667"""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001668
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001669:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001670
1671The x86mmx type represents a value held in an MMX register on an x86
1672machine. The operations allowed on it are quite limited: parameters and
1673return values, load and store, and bitcast. User-specified MMX
1674instructions are represented as intrinsic or asm calls with arguments
1675and/or results of this type. There are no arrays, vectors or constants
1676of this type.
1677
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001678:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001679
1680::
1681
1682 x86mmx
1683
Sean Silvab084af42012-12-07 10:36:55 +00001684
Rafael Espindola08013342013-12-07 19:34:20 +00001685.. _t_pointer:
1686
1687Pointer Type
1688""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001689
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001690:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001691
Rafael Espindola08013342013-12-07 19:34:20 +00001692The pointer type is used to specify memory locations. Pointers are
1693commonly used to reference objects in memory.
1694
1695Pointer types may have an optional address space attribute defining the
1696numbered address space where the pointed-to object resides. The default
1697address space is number zero. The semantics of non-zero address spaces
1698are target-specific.
1699
1700Note that LLVM does not permit pointers to void (``void*``) nor does it
1701permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001702
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001703:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001704
1705::
1706
Rafael Espindola08013342013-12-07 19:34:20 +00001707 <type> *
1708
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001709:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001710
1711+-------------------------+--------------------------------------------------------------------------------------------------------------+
1712| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1713+-------------------------+--------------------------------------------------------------------------------------------------------------+
1714| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1715+-------------------------+--------------------------------------------------------------------------------------------------------------+
1716| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1717+-------------------------+--------------------------------------------------------------------------------------------------------------+
1718
1719.. _t_vector:
1720
1721Vector Type
1722"""""""""""
1723
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001724:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001725
1726A vector type is a simple derived type that represents a vector of
1727elements. Vector types are used when multiple primitive data are
1728operated in parallel using a single instruction (SIMD). A vector type
1729requires a size (number of elements) and an underlying primitive data
1730type. Vector types are considered :ref:`first class <t_firstclass>`.
1731
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001732:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001733
1734::
1735
1736 < <# elements> x <elementtype> >
1737
1738The number of elements is a constant integer value larger than 0;
1739elementtype may be any integer or floating point type, or a pointer to
1740these types. Vectors of size zero are not allowed.
1741
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001742:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001743
1744+-------------------+--------------------------------------------------+
1745| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1746+-------------------+--------------------------------------------------+
1747| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1748+-------------------+--------------------------------------------------+
1749| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1750+-------------------+--------------------------------------------------+
1751| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1752+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00001753
1754.. _t_label:
1755
1756Label Type
1757^^^^^^^^^^
1758
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001759:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001760
1761The label type represents code labels.
1762
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001763:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001764
1765::
1766
1767 label
1768
1769.. _t_metadata:
1770
1771Metadata Type
1772^^^^^^^^^^^^^
1773
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001774:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001775
1776The metadata type represents embedded metadata. No derived types may be
1777created from metadata except for :ref:`function <t_function>` arguments.
1778
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001779:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001780
1781::
1782
1783 metadata
1784
Sean Silvab084af42012-12-07 10:36:55 +00001785.. _t_aggregate:
1786
1787Aggregate Types
1788^^^^^^^^^^^^^^^
1789
1790Aggregate Types are a subset of derived types that can contain multiple
1791member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1792aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1793aggregate types.
1794
1795.. _t_array:
1796
1797Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00001798""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001799
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001800:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001801
1802The array type is a very simple derived type that arranges elements
1803sequentially in memory. The array type requires a size (number of
1804elements) and an underlying data type.
1805
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001806:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001807
1808::
1809
1810 [<# elements> x <elementtype>]
1811
1812The number of elements is a constant integer value; ``elementtype`` may
1813be any type with a size.
1814
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001815:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001816
1817+------------------+--------------------------------------+
1818| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1819+------------------+--------------------------------------+
1820| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1821+------------------+--------------------------------------+
1822| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1823+------------------+--------------------------------------+
1824
1825Here are some examples of multidimensional arrays:
1826
1827+-----------------------------+----------------------------------------------------------+
1828| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1829+-----------------------------+----------------------------------------------------------+
1830| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1831+-----------------------------+----------------------------------------------------------+
1832| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1833+-----------------------------+----------------------------------------------------------+
1834
1835There is no restriction on indexing beyond the end of the array implied
1836by a static type (though there are restrictions on indexing beyond the
1837bounds of an allocated object in some cases). This means that
1838single-dimension 'variable sized array' addressing can be implemented in
1839LLVM with a zero length array type. An implementation of 'pascal style
1840arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1841example.
1842
Sean Silvab084af42012-12-07 10:36:55 +00001843.. _t_struct:
1844
1845Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00001846""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001847
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001848:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001849
1850The structure type is used to represent a collection of data members
1851together in memory. The elements of a structure may be any type that has
1852a size.
1853
1854Structures in memory are accessed using '``load``' and '``store``' by
1855getting a pointer to a field with the '``getelementptr``' instruction.
1856Structures in registers are accessed using the '``extractvalue``' and
1857'``insertvalue``' instructions.
1858
1859Structures may optionally be "packed" structures, which indicate that
1860the alignment of the struct is one byte, and that there is no padding
1861between the elements. In non-packed structs, padding between field types
1862is inserted as defined by the DataLayout string in the module, which is
1863required to match what the underlying code generator expects.
1864
1865Structures can either be "literal" or "identified". A literal structure
1866is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1867identified types are always defined at the top level with a name.
1868Literal types are uniqued by their contents and can never be recursive
1869or opaque since there is no way to write one. Identified types can be
1870recursive, can be opaqued, and are never uniqued.
1871
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001872:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001873
1874::
1875
1876 %T1 = type { <type list> } ; Identified normal struct type
1877 %T2 = type <{ <type list> }> ; Identified packed struct type
1878
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001879:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001880
1881+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1882| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1883+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00001884| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00001885+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1886| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1887+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1888
1889.. _t_opaque:
1890
1891Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00001892""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001893
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001894:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001895
1896Opaque structure types are used to represent named structure types that
1897do not have a body specified. This corresponds (for example) to the C
1898notion of a forward declared structure.
1899
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001900:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001901
1902::
1903
1904 %X = type opaque
1905 %52 = type opaque
1906
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001907:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001908
1909+--------------+-------------------+
1910| ``opaque`` | An opaque type. |
1911+--------------+-------------------+
1912
Sean Silvab084af42012-12-07 10:36:55 +00001913Constants
1914=========
1915
1916LLVM has several different basic types of constants. This section
1917describes them all and their syntax.
1918
1919Simple Constants
1920----------------
1921
1922**Boolean constants**
1923 The two strings '``true``' and '``false``' are both valid constants
1924 of the ``i1`` type.
1925**Integer constants**
1926 Standard integers (such as '4') are constants of the
1927 :ref:`integer <t_integer>` type. Negative numbers may be used with
1928 integer types.
1929**Floating point constants**
1930 Floating point constants use standard decimal notation (e.g.
1931 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1932 hexadecimal notation (see below). The assembler requires the exact
1933 decimal value of a floating-point constant. For example, the
1934 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1935 decimal in binary. Floating point constants must have a :ref:`floating
1936 point <t_floating>` type.
1937**Null pointer constants**
1938 The identifier '``null``' is recognized as a null pointer constant
1939 and must be of :ref:`pointer type <t_pointer>`.
1940
1941The one non-intuitive notation for constants is the hexadecimal form of
1942floating point constants. For example, the form
1943'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1944than) '``double 4.5e+15``'. The only time hexadecimal floating point
1945constants are required (and the only time that they are generated by the
1946disassembler) is when a floating point constant must be emitted but it
1947cannot be represented as a decimal floating point number in a reasonable
1948number of digits. For example, NaN's, infinities, and other special
1949values are represented in their IEEE hexadecimal format so that assembly
1950and disassembly do not cause any bits to change in the constants.
1951
1952When using the hexadecimal form, constants of types half, float, and
1953double are represented using the 16-digit form shown above (which
1954matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00001955must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00001956precision, respectively. Hexadecimal format is always used for long
1957double, and there are three forms of long double. The 80-bit format used
1958by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1959128-bit format used by PowerPC (two adjacent doubles) is represented by
1960``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00001961represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
1962will only work if they match the long double format on your target.
1963The IEEE 16-bit format (half precision) is represented by ``0xH``
1964followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
1965(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00001966
1967There are no constants of type x86mmx.
1968
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001969.. _complexconstants:
1970
Sean Silvab084af42012-12-07 10:36:55 +00001971Complex Constants
1972-----------------
1973
1974Complex constants are a (potentially recursive) combination of simple
1975constants and smaller complex constants.
1976
1977**Structure constants**
1978 Structure constants are represented with notation similar to
1979 structure type definitions (a comma separated list of elements,
1980 surrounded by braces (``{}``)). For example:
1981 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
1982 "``@G = external global i32``". Structure constants must have
1983 :ref:`structure type <t_struct>`, and the number and types of elements
1984 must match those specified by the type.
1985**Array constants**
1986 Array constants are represented with notation similar to array type
1987 definitions (a comma separated list of elements, surrounded by
1988 square brackets (``[]``)). For example:
1989 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
1990 :ref:`array type <t_array>`, and the number and types of elements must
1991 match those specified by the type.
1992**Vector constants**
1993 Vector constants are represented with notation similar to vector
1994 type definitions (a comma separated list of elements, surrounded by
1995 less-than/greater-than's (``<>``)). For example:
1996 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
1997 must have :ref:`vector type <t_vector>`, and the number and types of
1998 elements must match those specified by the type.
1999**Zero initialization**
2000 The string '``zeroinitializer``' can be used to zero initialize a
2001 value to zero of *any* type, including scalar and
2002 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2003 having to print large zero initializers (e.g. for large arrays) and
2004 is always exactly equivalent to using explicit zero initializers.
2005**Metadata node**
2006 A metadata node is a structure-like constant with :ref:`metadata
2007 type <t_metadata>`. For example:
2008 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2009 constants that are meant to be interpreted as part of the
2010 instruction stream, metadata is a place to attach additional
2011 information such as debug info.
2012
2013Global Variable and Function Addresses
2014--------------------------------------
2015
2016The addresses of :ref:`global variables <globalvars>` and
2017:ref:`functions <functionstructure>` are always implicitly valid
2018(link-time) constants. These constants are explicitly referenced when
2019the :ref:`identifier for the global <identifiers>` is used and always have
2020:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2021file:
2022
2023.. code-block:: llvm
2024
2025 @X = global i32 17
2026 @Y = global i32 42
2027 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2028
2029.. _undefvalues:
2030
2031Undefined Values
2032----------------
2033
2034The string '``undef``' can be used anywhere a constant is expected, and
2035indicates that the user of the value may receive an unspecified
2036bit-pattern. Undefined values may be of any type (other than '``label``'
2037or '``void``') and be used anywhere a constant is permitted.
2038
2039Undefined values are useful because they indicate to the compiler that
2040the program is well defined no matter what value is used. This gives the
2041compiler more freedom to optimize. Here are some examples of
2042(potentially surprising) transformations that are valid (in pseudo IR):
2043
2044.. code-block:: llvm
2045
2046 %A = add %X, undef
2047 %B = sub %X, undef
2048 %C = xor %X, undef
2049 Safe:
2050 %A = undef
2051 %B = undef
2052 %C = undef
2053
2054This is safe because all of the output bits are affected by the undef
2055bits. Any output bit can have a zero or one depending on the input bits.
2056
2057.. code-block:: llvm
2058
2059 %A = or %X, undef
2060 %B = and %X, undef
2061 Safe:
2062 %A = -1
2063 %B = 0
2064 Unsafe:
2065 %A = undef
2066 %B = undef
2067
2068These logical operations have bits that are not always affected by the
2069input. For example, if ``%X`` has a zero bit, then the output of the
2070'``and``' operation will always be a zero for that bit, no matter what
2071the corresponding bit from the '``undef``' is. As such, it is unsafe to
2072optimize or assume that the result of the '``and``' is '``undef``'.
2073However, it is safe to assume that all bits of the '``undef``' could be
20740, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2075all the bits of the '``undef``' operand to the '``or``' could be set,
2076allowing the '``or``' to be folded to -1.
2077
2078.. code-block:: llvm
2079
2080 %A = select undef, %X, %Y
2081 %B = select undef, 42, %Y
2082 %C = select %X, %Y, undef
2083 Safe:
2084 %A = %X (or %Y)
2085 %B = 42 (or %Y)
2086 %C = %Y
2087 Unsafe:
2088 %A = undef
2089 %B = undef
2090 %C = undef
2091
2092This set of examples shows that undefined '``select``' (and conditional
2093branch) conditions can go *either way*, but they have to come from one
2094of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2095both known to have a clear low bit, then ``%A`` would have to have a
2096cleared low bit. However, in the ``%C`` example, the optimizer is
2097allowed to assume that the '``undef``' operand could be the same as
2098``%Y``, allowing the whole '``select``' to be eliminated.
2099
2100.. code-block:: llvm
2101
2102 %A = xor undef, undef
2103
2104 %B = undef
2105 %C = xor %B, %B
2106
2107 %D = undef
2108 %E = icmp lt %D, 4
2109 %F = icmp gte %D, 4
2110
2111 Safe:
2112 %A = undef
2113 %B = undef
2114 %C = undef
2115 %D = undef
2116 %E = undef
2117 %F = undef
2118
2119This example points out that two '``undef``' operands are not
2120necessarily the same. This can be surprising to people (and also matches
2121C semantics) where they assume that "``X^X``" is always zero, even if
2122``X`` is undefined. This isn't true for a number of reasons, but the
2123short answer is that an '``undef``' "variable" can arbitrarily change
2124its value over its "live range". This is true because the variable
2125doesn't actually *have a live range*. Instead, the value is logically
2126read from arbitrary registers that happen to be around when needed, so
2127the value is not necessarily consistent over time. In fact, ``%A`` and
2128``%C`` need to have the same semantics or the core LLVM "replace all
2129uses with" concept would not hold.
2130
2131.. code-block:: llvm
2132
2133 %A = fdiv undef, %X
2134 %B = fdiv %X, undef
2135 Safe:
2136 %A = undef
2137 b: unreachable
2138
2139These examples show the crucial difference between an *undefined value*
2140and *undefined behavior*. An undefined value (like '``undef``') is
2141allowed to have an arbitrary bit-pattern. This means that the ``%A``
2142operation can be constant folded to '``undef``', because the '``undef``'
2143could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2144However, in the second example, we can make a more aggressive
2145assumption: because the ``undef`` is allowed to be an arbitrary value,
2146we are allowed to assume that it could be zero. Since a divide by zero
2147has *undefined behavior*, we are allowed to assume that the operation
2148does not execute at all. This allows us to delete the divide and all
2149code after it. Because the undefined operation "can't happen", the
2150optimizer can assume that it occurs in dead code.
2151
2152.. code-block:: llvm
2153
2154 a: store undef -> %X
2155 b: store %X -> undef
2156 Safe:
2157 a: <deleted>
2158 b: unreachable
2159
2160These examples reiterate the ``fdiv`` example: a store *of* an undefined
2161value can be assumed to not have any effect; we can assume that the
2162value is overwritten with bits that happen to match what was already
2163there. However, a store *to* an undefined location could clobber
2164arbitrary memory, therefore, it has undefined behavior.
2165
2166.. _poisonvalues:
2167
2168Poison Values
2169-------------
2170
2171Poison values are similar to :ref:`undef values <undefvalues>`, however
2172they also represent the fact that an instruction or constant expression
2173which cannot evoke side effects has nevertheless detected a condition
2174which results in undefined behavior.
2175
2176There is currently no way of representing a poison value in the IR; they
2177only exist when produced by operations such as :ref:`add <i_add>` with
2178the ``nsw`` flag.
2179
2180Poison value behavior is defined in terms of value *dependence*:
2181
2182- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2183- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2184 their dynamic predecessor basic block.
2185- Function arguments depend on the corresponding actual argument values
2186 in the dynamic callers of their functions.
2187- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2188 instructions that dynamically transfer control back to them.
2189- :ref:`Invoke <i_invoke>` instructions depend on the
2190 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2191 call instructions that dynamically transfer control back to them.
2192- Non-volatile loads and stores depend on the most recent stores to all
2193 of the referenced memory addresses, following the order in the IR
2194 (including loads and stores implied by intrinsics such as
2195 :ref:`@llvm.memcpy <int_memcpy>`.)
2196- An instruction with externally visible side effects depends on the
2197 most recent preceding instruction with externally visible side
2198 effects, following the order in the IR. (This includes :ref:`volatile
2199 operations <volatile>`.)
2200- An instruction *control-depends* on a :ref:`terminator
2201 instruction <terminators>` if the terminator instruction has
2202 multiple successors and the instruction is always executed when
2203 control transfers to one of the successors, and may not be executed
2204 when control is transferred to another.
2205- Additionally, an instruction also *control-depends* on a terminator
2206 instruction if the set of instructions it otherwise depends on would
2207 be different if the terminator had transferred control to a different
2208 successor.
2209- Dependence is transitive.
2210
2211Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2212with the additional affect that any instruction which has a *dependence*
2213on a poison value has undefined behavior.
2214
2215Here are some examples:
2216
2217.. code-block:: llvm
2218
2219 entry:
2220 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2221 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2222 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2223 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2224
2225 store i32 %poison, i32* @g ; Poison value stored to memory.
2226 %poison2 = load i32* @g ; Poison value loaded back from memory.
2227
2228 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2229
2230 %narrowaddr = bitcast i32* @g to i16*
2231 %wideaddr = bitcast i32* @g to i64*
2232 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2233 %poison4 = load i64* %wideaddr ; Returns a poison value.
2234
2235 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2236 br i1 %cmp, label %true, label %end ; Branch to either destination.
2237
2238 true:
2239 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2240 ; it has undefined behavior.
2241 br label %end
2242
2243 end:
2244 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2245 ; Both edges into this PHI are
2246 ; control-dependent on %cmp, so this
2247 ; always results in a poison value.
2248
2249 store volatile i32 0, i32* @g ; This would depend on the store in %true
2250 ; if %cmp is true, or the store in %entry
2251 ; otherwise, so this is undefined behavior.
2252
2253 br i1 %cmp, label %second_true, label %second_end
2254 ; The same branch again, but this time the
2255 ; true block doesn't have side effects.
2256
2257 second_true:
2258 ; No side effects!
2259 ret void
2260
2261 second_end:
2262 store volatile i32 0, i32* @g ; This time, the instruction always depends
2263 ; on the store in %end. Also, it is
2264 ; control-equivalent to %end, so this is
2265 ; well-defined (ignoring earlier undefined
2266 ; behavior in this example).
2267
2268.. _blockaddress:
2269
2270Addresses of Basic Blocks
2271-------------------------
2272
2273``blockaddress(@function, %block)``
2274
2275The '``blockaddress``' constant computes the address of the specified
2276basic block in the specified function, and always has an ``i8*`` type.
2277Taking the address of the entry block is illegal.
2278
2279This value only has defined behavior when used as an operand to the
2280':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2281against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002282undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002283no label is equal to the null pointer. This may be passed around as an
2284opaque pointer sized value as long as the bits are not inspected. This
2285allows ``ptrtoint`` and arithmetic to be performed on these values so
2286long as the original value is reconstituted before the ``indirectbr``
2287instruction.
2288
2289Finally, some targets may provide defined semantics when using the value
2290as the operand to an inline assembly, but that is target specific.
2291
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002292.. _constantexprs:
2293
Sean Silvab084af42012-12-07 10:36:55 +00002294Constant Expressions
2295--------------------
2296
2297Constant expressions are used to allow expressions involving other
2298constants to be used as constants. Constant expressions may be of any
2299:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2300that does not have side effects (e.g. load and call are not supported).
2301The following is the syntax for constant expressions:
2302
2303``trunc (CST to TYPE)``
2304 Truncate a constant to another type. The bit size of CST must be
2305 larger than the bit size of TYPE. Both types must be integers.
2306``zext (CST to TYPE)``
2307 Zero extend a constant to another type. The bit size of CST must be
2308 smaller than the bit size of TYPE. Both types must be integers.
2309``sext (CST to TYPE)``
2310 Sign extend a constant to another type. The bit size of CST must be
2311 smaller than the bit size of TYPE. Both types must be integers.
2312``fptrunc (CST to TYPE)``
2313 Truncate a floating point constant to another floating point type.
2314 The size of CST must be larger than the size of TYPE. Both types
2315 must be floating point.
2316``fpext (CST to TYPE)``
2317 Floating point extend a constant to another type. The size of CST
2318 must be smaller or equal to the size of TYPE. Both types must be
2319 floating point.
2320``fptoui (CST to TYPE)``
2321 Convert a floating point constant to the corresponding unsigned
2322 integer constant. TYPE must be a scalar or vector integer type. CST
2323 must be of scalar or vector floating point type. Both CST and TYPE
2324 must be scalars, or vectors of the same number of elements. If the
2325 value won't fit in the integer type, the results are undefined.
2326``fptosi (CST to TYPE)``
2327 Convert a floating point constant to the corresponding signed
2328 integer constant. TYPE must be a scalar or vector integer type. CST
2329 must be of scalar or vector floating point type. Both CST and TYPE
2330 must be scalars, or vectors of the same number of elements. If the
2331 value won't fit in the integer type, the results are undefined.
2332``uitofp (CST to TYPE)``
2333 Convert an unsigned integer constant to the corresponding floating
2334 point constant. TYPE must be a scalar or vector floating point type.
2335 CST must be of scalar or vector integer type. Both CST and TYPE must
2336 be scalars, or vectors of the same number of elements. If the value
2337 won't fit in the floating point type, the results are undefined.
2338``sitofp (CST to TYPE)``
2339 Convert a signed integer constant to the corresponding floating
2340 point constant. TYPE must be a scalar or vector floating point type.
2341 CST must be of scalar or vector integer type. Both CST and TYPE must
2342 be scalars, or vectors of the same number of elements. If the value
2343 won't fit in the floating point type, the results are undefined.
2344``ptrtoint (CST to TYPE)``
2345 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002346 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002347 pointer type. The ``CST`` value is zero extended, truncated, or
2348 unchanged to make it fit in ``TYPE``.
2349``inttoptr (CST to TYPE)``
2350 Convert an integer constant to a pointer constant. TYPE must be a
2351 pointer type. CST must be of integer type. The CST value is zero
2352 extended, truncated, or unchanged to make it fit in a pointer size.
2353 This one is *really* dangerous!
2354``bitcast (CST to TYPE)``
2355 Convert a constant, CST, to another TYPE. The constraints of the
2356 operands are the same as those for the :ref:`bitcast
2357 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002358``addrspacecast (CST to TYPE)``
2359 Convert a constant pointer or constant vector of pointer, CST, to another
2360 TYPE in a different address space. The constraints of the operands are the
2361 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002362``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2363 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2364 constants. As with the :ref:`getelementptr <i_getelementptr>`
2365 instruction, the index list may have zero or more indexes, which are
2366 required to make sense for the type of "CSTPTR".
2367``select (COND, VAL1, VAL2)``
2368 Perform the :ref:`select operation <i_select>` on constants.
2369``icmp COND (VAL1, VAL2)``
2370 Performs the :ref:`icmp operation <i_icmp>` on constants.
2371``fcmp COND (VAL1, VAL2)``
2372 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2373``extractelement (VAL, IDX)``
2374 Perform the :ref:`extractelement operation <i_extractelement>` on
2375 constants.
2376``insertelement (VAL, ELT, IDX)``
2377 Perform the :ref:`insertelement operation <i_insertelement>` on
2378 constants.
2379``shufflevector (VEC1, VEC2, IDXMASK)``
2380 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2381 constants.
2382``extractvalue (VAL, IDX0, IDX1, ...)``
2383 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2384 constants. The index list is interpreted in a similar manner as
2385 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2386 least one index value must be specified.
2387``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2388 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2389 The index list is interpreted in a similar manner as indices in a
2390 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2391 value must be specified.
2392``OPCODE (LHS, RHS)``
2393 Perform the specified operation of the LHS and RHS constants. OPCODE
2394 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2395 binary <bitwiseops>` operations. The constraints on operands are
2396 the same as those for the corresponding instruction (e.g. no bitwise
2397 operations on floating point values are allowed).
2398
2399Other Values
2400============
2401
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002402.. _inlineasmexprs:
2403
Sean Silvab084af42012-12-07 10:36:55 +00002404Inline Assembler Expressions
2405----------------------------
2406
2407LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2408Inline Assembly <moduleasm>`) through the use of a special value. This
2409value represents the inline assembler as a string (containing the
2410instructions to emit), a list of operand constraints (stored as a
2411string), a flag that indicates whether or not the inline asm expression
2412has side effects, and a flag indicating whether the function containing
2413the asm needs to align its stack conservatively. An example inline
2414assembler expression is:
2415
2416.. code-block:: llvm
2417
2418 i32 (i32) asm "bswap $0", "=r,r"
2419
2420Inline assembler expressions may **only** be used as the callee operand
2421of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2422Thus, typically we have:
2423
2424.. code-block:: llvm
2425
2426 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2427
2428Inline asms with side effects not visible in the constraint list must be
2429marked as having side effects. This is done through the use of the
2430'``sideeffect``' keyword, like so:
2431
2432.. code-block:: llvm
2433
2434 call void asm sideeffect "eieio", ""()
2435
2436In some cases inline asms will contain code that will not work unless
2437the stack is aligned in some way, such as calls or SSE instructions on
2438x86, yet will not contain code that does that alignment within the asm.
2439The compiler should make conservative assumptions about what the asm
2440might contain and should generate its usual stack alignment code in the
2441prologue if the '``alignstack``' keyword is present:
2442
2443.. code-block:: llvm
2444
2445 call void asm alignstack "eieio", ""()
2446
2447Inline asms also support using non-standard assembly dialects. The
2448assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2449the inline asm is using the Intel dialect. Currently, ATT and Intel are
2450the only supported dialects. An example is:
2451
2452.. code-block:: llvm
2453
2454 call void asm inteldialect "eieio", ""()
2455
2456If multiple keywords appear the '``sideeffect``' keyword must come
2457first, the '``alignstack``' keyword second and the '``inteldialect``'
2458keyword last.
2459
2460Inline Asm Metadata
2461^^^^^^^^^^^^^^^^^^^
2462
2463The call instructions that wrap inline asm nodes may have a
2464"``!srcloc``" MDNode attached to it that contains a list of constant
2465integers. If present, the code generator will use the integer as the
2466location cookie value when report errors through the ``LLVMContext``
2467error reporting mechanisms. This allows a front-end to correlate backend
2468errors that occur with inline asm back to the source code that produced
2469it. For example:
2470
2471.. code-block:: llvm
2472
2473 call void asm sideeffect "something bad", ""(), !srcloc !42
2474 ...
2475 !42 = !{ i32 1234567 }
2476
2477It is up to the front-end to make sense of the magic numbers it places
2478in the IR. If the MDNode contains multiple constants, the code generator
2479will use the one that corresponds to the line of the asm that the error
2480occurs on.
2481
2482.. _metadata:
2483
2484Metadata Nodes and Metadata Strings
2485-----------------------------------
2486
2487LLVM IR allows metadata to be attached to instructions in the program
2488that can convey extra information about the code to the optimizers and
2489code generator. One example application of metadata is source-level
2490debug information. There are two metadata primitives: strings and nodes.
2491All metadata has the ``metadata`` type and is identified in syntax by a
2492preceding exclamation point ('``!``').
2493
2494A metadata string is a string surrounded by double quotes. It can
2495contain any character by escaping non-printable characters with
2496"``\xx``" where "``xx``" is the two digit hex code. For example:
2497"``!"test\00"``".
2498
2499Metadata nodes are represented with notation similar to structure
2500constants (a comma separated list of elements, surrounded by braces and
2501preceded by an exclamation point). Metadata nodes can have any values as
2502their operand. For example:
2503
2504.. code-block:: llvm
2505
2506 !{ metadata !"test\00", i32 10}
2507
2508A :ref:`named metadata <namedmetadatastructure>` is a collection of
2509metadata nodes, which can be looked up in the module symbol table. For
2510example:
2511
2512.. code-block:: llvm
2513
2514 !foo = metadata !{!4, !3}
2515
2516Metadata can be used as function arguments. Here ``llvm.dbg.value``
2517function is using two metadata arguments:
2518
2519.. code-block:: llvm
2520
2521 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2522
2523Metadata can be attached with an instruction. Here metadata ``!21`` is
2524attached to the ``add`` instruction using the ``!dbg`` identifier:
2525
2526.. code-block:: llvm
2527
2528 %indvar.next = add i64 %indvar, 1, !dbg !21
2529
2530More information about specific metadata nodes recognized by the
2531optimizers and code generator is found below.
2532
2533'``tbaa``' Metadata
2534^^^^^^^^^^^^^^^^^^^
2535
2536In LLVM IR, memory does not have types, so LLVM's own type system is not
2537suitable for doing TBAA. Instead, metadata is added to the IR to
2538describe a type system of a higher level language. This can be used to
2539implement typical C/C++ TBAA, but it can also be used to implement
2540custom alias analysis behavior for other languages.
2541
2542The current metadata format is very simple. TBAA metadata nodes have up
2543to three fields, e.g.:
2544
2545.. code-block:: llvm
2546
2547 !0 = metadata !{ metadata !"an example type tree" }
2548 !1 = metadata !{ metadata !"int", metadata !0 }
2549 !2 = metadata !{ metadata !"float", metadata !0 }
2550 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2551
2552The first field is an identity field. It can be any value, usually a
2553metadata string, which uniquely identifies the type. The most important
2554name in the tree is the name of the root node. Two trees with different
2555root node names are entirely disjoint, even if they have leaves with
2556common names.
2557
2558The second field identifies the type's parent node in the tree, or is
2559null or omitted for a root node. A type is considered to alias all of
2560its descendants and all of its ancestors in the tree. Also, a type is
2561considered to alias all types in other trees, so that bitcode produced
2562from multiple front-ends is handled conservatively.
2563
2564If the third field is present, it's an integer which if equal to 1
2565indicates that the type is "constant" (meaning
2566``pointsToConstantMemory`` should return true; see `other useful
2567AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2568
2569'``tbaa.struct``' Metadata
2570^^^^^^^^^^^^^^^^^^^^^^^^^^
2571
2572The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2573aggregate assignment operations in C and similar languages, however it
2574is defined to copy a contiguous region of memory, which is more than
2575strictly necessary for aggregate types which contain holes due to
2576padding. Also, it doesn't contain any TBAA information about the fields
2577of the aggregate.
2578
2579``!tbaa.struct`` metadata can describe which memory subregions in a
2580memcpy are padding and what the TBAA tags of the struct are.
2581
2582The current metadata format is very simple. ``!tbaa.struct`` metadata
2583nodes are a list of operands which are in conceptual groups of three.
2584For each group of three, the first operand gives the byte offset of a
2585field in bytes, the second gives its size in bytes, and the third gives
2586its tbaa tag. e.g.:
2587
2588.. code-block:: llvm
2589
2590 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2591
2592This describes a struct with two fields. The first is at offset 0 bytes
2593with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2594and has size 4 bytes and has tbaa tag !2.
2595
2596Note that the fields need not be contiguous. In this example, there is a
25974 byte gap between the two fields. This gap represents padding which
2598does not carry useful data and need not be preserved.
2599
2600'``fpmath``' Metadata
2601^^^^^^^^^^^^^^^^^^^^^
2602
2603``fpmath`` metadata may be attached to any instruction of floating point
2604type. It can be used to express the maximum acceptable error in the
2605result of that instruction, in ULPs, thus potentially allowing the
2606compiler to use a more efficient but less accurate method of computing
2607it. ULP is defined as follows:
2608
2609 If ``x`` is a real number that lies between two finite consecutive
2610 floating-point numbers ``a`` and ``b``, without being equal to one
2611 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2612 distance between the two non-equal finite floating-point numbers
2613 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2614
2615The metadata node shall consist of a single positive floating point
2616number representing the maximum relative error, for example:
2617
2618.. code-block:: llvm
2619
2620 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2621
2622'``range``' Metadata
2623^^^^^^^^^^^^^^^^^^^^
2624
2625``range`` metadata may be attached only to loads of integer types. It
2626expresses the possible ranges the loaded value is in. The ranges are
2627represented with a flattened list of integers. The loaded value is known
2628to be in the union of the ranges defined by each consecutive pair. Each
2629pair has the following properties:
2630
2631- The type must match the type loaded by the instruction.
2632- The pair ``a,b`` represents the range ``[a,b)``.
2633- Both ``a`` and ``b`` are constants.
2634- The range is allowed to wrap.
2635- The range should not represent the full or empty set. That is,
2636 ``a!=b``.
2637
2638In addition, the pairs must be in signed order of the lower bound and
2639they must be non-contiguous.
2640
2641Examples:
2642
2643.. code-block:: llvm
2644
2645 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2646 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2647 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2648 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2649 ...
2650 !0 = metadata !{ i8 0, i8 2 }
2651 !1 = metadata !{ i8 255, i8 2 }
2652 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2653 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2654
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002655'``llvm.loop``'
2656^^^^^^^^^^^^^^^
2657
2658It is sometimes useful to attach information to loop constructs. Currently,
2659loop metadata is implemented as metadata attached to the branch instruction
2660in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002661guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002662specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002663
2664The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002665itself to avoid merging it with any other identifier metadata, e.g.,
2666during module linkage or function inlining. That is, each loop should refer
2667to their own identification metadata even if they reside in separate functions.
2668The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002669constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002670
2671.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002672
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002673 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002674 !1 = metadata !{ metadata !1 }
2675
Paul Redmond5fdf8362013-05-28 20:00:34 +00002676The loop identifier metadata can be used to specify additional per-loop
2677metadata. Any operands after the first operand can be treated as user-defined
2678metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2679by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002680
Paul Redmond5fdf8362013-05-28 20:00:34 +00002681.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002682
Paul Redmond5fdf8362013-05-28 20:00:34 +00002683 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2684 ...
2685 !0 = metadata !{ metadata !0, metadata !1 }
2686 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002687
2688'``llvm.mem``'
2689^^^^^^^^^^^^^^^
2690
2691Metadata types used to annotate memory accesses with information helpful
2692for optimizations are prefixed with ``llvm.mem``.
2693
2694'``llvm.mem.parallel_loop_access``' Metadata
2695^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2696
2697For a loop to be parallel, in addition to using
Paul Redmond5fdf8362013-05-28 20:00:34 +00002698the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002699also all of the memory accessing instructions in the loop body need to be
2700marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2701is at least one memory accessing instruction not marked with the metadata,
Paul Redmond5fdf8362013-05-28 20:00:34 +00002702the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002703converted to sequential loops due to optimization passes that are unaware of
2704the parallel semantics and that insert new memory instructions to the loop
2705body.
2706
2707Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00002708both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002709metadata types that refer to the same loop identifier metadata.
2710
2711.. code-block:: llvm
2712
2713 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002714 ...
2715 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2716 ...
2717 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2718 ...
2719 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002720
2721 for.end:
2722 ...
2723 !0 = metadata !{ metadata !0 }
2724
2725It is also possible to have nested parallel loops. In that case the
2726memory accesses refer to a list of loop identifier metadata nodes instead of
2727the loop identifier metadata node directly:
2728
2729.. code-block:: llvm
2730
2731 outer.for.body:
2732 ...
2733
2734 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002735 ...
2736 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2737 ...
2738 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2739 ...
2740 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002741
2742 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002743 ...
2744 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2745 ...
2746 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2747 ...
2748 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002749
2750 outer.for.end: ; preds = %for.body
2751 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00002752 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2753 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2754 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002755
Paul Redmond5fdf8362013-05-28 20:00:34 +00002756'``llvm.vectorizer``'
2757^^^^^^^^^^^^^^^^^^^^^
2758
2759Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2760vectorization parameters such as vectorization factor and unroll factor.
2761
2762``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2763loop identification metadata.
2764
2765'``llvm.vectorizer.unroll``' Metadata
2766^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2767
2768This metadata instructs the loop vectorizer to unroll the specified
2769loop exactly ``N`` times.
2770
2771The first operand is the string ``llvm.vectorizer.unroll`` and the second
2772operand is an integer specifying the unroll factor. For example:
2773
2774.. code-block:: llvm
2775
2776 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2777
2778Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2779loop.
2780
2781If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2782determined automatically.
2783
2784'``llvm.vectorizer.width``' Metadata
2785^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2786
Paul Redmondeccbb322013-05-30 17:22:46 +00002787This metadata sets the target width of the vectorizer to ``N``. Without
2788this metadata, the vectorizer will choose a width automatically.
2789Regardless of this metadata, the vectorizer will only vectorize loops if
2790it believes it is valid to do so.
Paul Redmond5fdf8362013-05-28 20:00:34 +00002791
2792The first operand is the string ``llvm.vectorizer.width`` and the second
2793operand is an integer specifying the width. For example:
2794
2795.. code-block:: llvm
2796
2797 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2798
2799Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2800loop.
2801
2802If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2803automatically.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002804
Sean Silvab084af42012-12-07 10:36:55 +00002805Module Flags Metadata
2806=====================
2807
2808Information about the module as a whole is difficult to convey to LLVM's
2809subsystems. The LLVM IR isn't sufficient to transmit this information.
2810The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002811this. These flags are in the form of key / value pairs --- much like a
2812dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00002813look it up.
2814
2815The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2816Each triplet has the following form:
2817
2818- The first element is a *behavior* flag, which specifies the behavior
2819 when two (or more) modules are merged together, and it encounters two
2820 (or more) metadata with the same ID. The supported behaviors are
2821 described below.
2822- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002823 metadata. Each module may only have one flag entry for each unique ID (not
2824 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00002825- The third element is the value of the flag.
2826
2827When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002828``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2829each unique metadata ID string, there will be exactly one entry in the merged
2830modules ``llvm.module.flags`` metadata table, and the value for that entry will
2831be determined by the merge behavior flag, as described below. The only exception
2832is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00002833
2834The following behaviors are supported:
2835
2836.. list-table::
2837 :header-rows: 1
2838 :widths: 10 90
2839
2840 * - Value
2841 - Behavior
2842
2843 * - 1
2844 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002845 Emits an error if two values disagree, otherwise the resulting value
2846 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00002847
2848 * - 2
2849 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002850 Emits a warning if two values disagree. The result value will be the
2851 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00002852
2853 * - 3
2854 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002855 Adds a requirement that another module flag be present and have a
2856 specified value after linking is performed. The value must be a
2857 metadata pair, where the first element of the pair is the ID of the
2858 module flag to be restricted, and the second element of the pair is
2859 the value the module flag should be restricted to. This behavior can
2860 be used to restrict the allowable results (via triggering of an
2861 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002862
2863 * - 4
2864 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002865 Uses the specified value, regardless of the behavior or value of the
2866 other module. If both modules specify **Override**, but the values
2867 differ, an error will be emitted.
2868
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00002869 * - 5
2870 - **Append**
2871 Appends the two values, which are required to be metadata nodes.
2872
2873 * - 6
2874 - **AppendUnique**
2875 Appends the two values, which are required to be metadata
2876 nodes. However, duplicate entries in the second list are dropped
2877 during the append operation.
2878
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002879It is an error for a particular unique flag ID to have multiple behaviors,
2880except in the case of **Require** (which adds restrictions on another metadata
2881value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00002882
2883An example of module flags:
2884
2885.. code-block:: llvm
2886
2887 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2888 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2889 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2890 !3 = metadata !{ i32 3, metadata !"qux",
2891 metadata !{
2892 metadata !"foo", i32 1
2893 }
2894 }
2895 !llvm.module.flags = !{ !0, !1, !2, !3 }
2896
2897- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2898 if two or more ``!"foo"`` flags are seen is to emit an error if their
2899 values are not equal.
2900
2901- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2902 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002903 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00002904
2905- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2906 behavior if two or more ``!"qux"`` flags are seen is to emit a
2907 warning if their values are not equal.
2908
2909- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2910
2911 ::
2912
2913 metadata !{ metadata !"foo", i32 1 }
2914
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002915 The behavior is to emit an error if the ``llvm.module.flags`` does not
2916 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2917 performed.
Sean Silvab084af42012-12-07 10:36:55 +00002918
2919Objective-C Garbage Collection Module Flags Metadata
2920----------------------------------------------------
2921
2922On the Mach-O platform, Objective-C stores metadata about garbage
2923collection in a special section called "image info". The metadata
2924consists of a version number and a bitmask specifying what types of
2925garbage collection are supported (if any) by the file. If two or more
2926modules are linked together their garbage collection metadata needs to
2927be merged rather than appended together.
2928
2929The Objective-C garbage collection module flags metadata consists of the
2930following key-value pairs:
2931
2932.. list-table::
2933 :header-rows: 1
2934 :widths: 30 70
2935
2936 * - Key
2937 - Value
2938
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002939 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002940 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00002941
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002942 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002943 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00002944 always 0.
2945
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002946 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002947 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00002948 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2949 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2950 Objective-C ABI version 2.
2951
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002952 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002953 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00002954 not. Valid values are 0, for no garbage collection, and 2, for garbage
2955 collection supported.
2956
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002957 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002958 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00002959 If present, its value must be 6. This flag requires that the
2960 ``Objective-C Garbage Collection`` flag have the value 2.
2961
2962Some important flag interactions:
2963
2964- If a module with ``Objective-C Garbage Collection`` set to 0 is
2965 merged with a module with ``Objective-C Garbage Collection`` set to
2966 2, then the resulting module has the
2967 ``Objective-C Garbage Collection`` flag set to 0.
2968- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2969 merged with a module with ``Objective-C GC Only`` set to 6.
2970
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002971Automatic Linker Flags Module Flags Metadata
2972--------------------------------------------
2973
2974Some targets support embedding flags to the linker inside individual object
2975files. Typically this is used in conjunction with language extensions which
2976allow source files to explicitly declare the libraries they depend on, and have
2977these automatically be transmitted to the linker via object files.
2978
2979These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002980using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002981to be ``AppendUnique``, and the value for the key is expected to be a metadata
2982node which should be a list of other metadata nodes, each of which should be a
2983list of metadata strings defining linker options.
2984
2985For example, the following metadata section specifies two separate sets of
2986linker options, presumably to link against ``libz`` and the ``Cocoa``
2987framework::
2988
Michael Liaoa7699082013-03-06 18:24:34 +00002989 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002990 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00002991 metadata !{ metadata !"-lz" },
2992 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002993 !llvm.module.flags = !{ !0 }
2994
2995The metadata encoding as lists of lists of options, as opposed to a collapsed
2996list of options, is chosen so that the IR encoding can use multiple option
2997strings to specify e.g., a single library, while still having that specifier be
2998preserved as an atomic element that can be recognized by a target specific
2999assembly writer or object file emitter.
3000
3001Each individual option is required to be either a valid option for the target's
3002linker, or an option that is reserved by the target specific assembly writer or
3003object file emitter. No other aspect of these options is defined by the IR.
3004
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003005.. _intrinsicglobalvariables:
3006
Sean Silvab084af42012-12-07 10:36:55 +00003007Intrinsic Global Variables
3008==========================
3009
3010LLVM has a number of "magic" global variables that contain data that
3011affect code generation or other IR semantics. These are documented here.
3012All globals of this sort should have a section specified as
3013"``llvm.metadata``". This section and all globals that start with
3014"``llvm.``" are reserved for use by LLVM.
3015
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003016.. _gv_llvmused:
3017
Sean Silvab084af42012-12-07 10:36:55 +00003018The '``llvm.used``' Global Variable
3019-----------------------------------
3020
Rafael Espindola74f2e462013-04-22 14:58:02 +00003021The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003022:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003023pointers to named global variables, functions and aliases which may optionally
3024have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003025use of it is:
3026
3027.. code-block:: llvm
3028
3029 @X = global i8 4
3030 @Y = global i32 123
3031
3032 @llvm.used = appending global [2 x i8*] [
3033 i8* @X,
3034 i8* bitcast (i32* @Y to i8*)
3035 ], section "llvm.metadata"
3036
Rafael Espindola74f2e462013-04-22 14:58:02 +00003037If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3038and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003039symbol that it cannot see (which is why they have to be named). For example, if
3040a variable has internal linkage and no references other than that from the
3041``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3042references from inline asms and other things the compiler cannot "see", and
3043corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003044
3045On some targets, the code generator must emit a directive to the
3046assembler or object file to prevent the assembler and linker from
3047molesting the symbol.
3048
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003049.. _gv_llvmcompilerused:
3050
Sean Silvab084af42012-12-07 10:36:55 +00003051The '``llvm.compiler.used``' Global Variable
3052--------------------------------------------
3053
3054The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3055directive, except that it only prevents the compiler from touching the
3056symbol. On targets that support it, this allows an intelligent linker to
3057optimize references to the symbol without being impeded as it would be
3058by ``@llvm.used``.
3059
3060This is a rare construct that should only be used in rare circumstances,
3061and should not be exposed to source languages.
3062
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003063.. _gv_llvmglobalctors:
3064
Sean Silvab084af42012-12-07 10:36:55 +00003065The '``llvm.global_ctors``' Global Variable
3066-------------------------------------------
3067
3068.. code-block:: llvm
3069
3070 %0 = type { i32, void ()* }
3071 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
3072
3073The ``@llvm.global_ctors`` array contains a list of constructor
3074functions and associated priorities. The functions referenced by this
3075array will be called in ascending order of priority (i.e. lowest first)
3076when the module is loaded. The order of functions with the same priority
3077is not defined.
3078
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003079.. _llvmglobaldtors:
3080
Sean Silvab084af42012-12-07 10:36:55 +00003081The '``llvm.global_dtors``' Global Variable
3082-------------------------------------------
3083
3084.. code-block:: llvm
3085
3086 %0 = type { i32, void ()* }
3087 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
3088
3089The ``@llvm.global_dtors`` array contains a list of destructor functions
3090and associated priorities. The functions referenced by this array will
3091be called in descending order of priority (i.e. highest first) when the
3092module is loaded. The order of functions with the same priority is not
3093defined.
3094
3095Instruction Reference
3096=====================
3097
3098The LLVM instruction set consists of several different classifications
3099of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3100instructions <binaryops>`, :ref:`bitwise binary
3101instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3102:ref:`other instructions <otherops>`.
3103
3104.. _terminators:
3105
3106Terminator Instructions
3107-----------------------
3108
3109As mentioned :ref:`previously <functionstructure>`, every basic block in a
3110program ends with a "Terminator" instruction, which indicates which
3111block should be executed after the current block is finished. These
3112terminator instructions typically yield a '``void``' value: they produce
3113control flow, not values (the one exception being the
3114':ref:`invoke <i_invoke>`' instruction).
3115
3116The terminator instructions are: ':ref:`ret <i_ret>`',
3117':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3118':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3119':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3120
3121.. _i_ret:
3122
3123'``ret``' Instruction
3124^^^^^^^^^^^^^^^^^^^^^
3125
3126Syntax:
3127"""""""
3128
3129::
3130
3131 ret <type> <value> ; Return a value from a non-void function
3132 ret void ; Return from void function
3133
3134Overview:
3135"""""""""
3136
3137The '``ret``' instruction is used to return control flow (and optionally
3138a value) from a function back to the caller.
3139
3140There are two forms of the '``ret``' instruction: one that returns a
3141value and then causes control flow, and one that just causes control
3142flow to occur.
3143
3144Arguments:
3145""""""""""
3146
3147The '``ret``' instruction optionally accepts a single argument, the
3148return value. The type of the return value must be a ':ref:`first
3149class <t_firstclass>`' type.
3150
3151A function is not :ref:`well formed <wellformed>` if it it has a non-void
3152return type and contains a '``ret``' instruction with no return value or
3153a return value with a type that does not match its type, or if it has a
3154void return type and contains a '``ret``' instruction with a return
3155value.
3156
3157Semantics:
3158""""""""""
3159
3160When the '``ret``' instruction is executed, control flow returns back to
3161the calling function's context. If the caller is a
3162":ref:`call <i_call>`" instruction, execution continues at the
3163instruction after the call. If the caller was an
3164":ref:`invoke <i_invoke>`" instruction, execution continues at the
3165beginning of the "normal" destination block. If the instruction returns
3166a value, that value shall set the call or invoke instruction's return
3167value.
3168
3169Example:
3170""""""""
3171
3172.. code-block:: llvm
3173
3174 ret i32 5 ; Return an integer value of 5
3175 ret void ; Return from a void function
3176 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3177
3178.. _i_br:
3179
3180'``br``' Instruction
3181^^^^^^^^^^^^^^^^^^^^
3182
3183Syntax:
3184"""""""
3185
3186::
3187
3188 br i1 <cond>, label <iftrue>, label <iffalse>
3189 br label <dest> ; Unconditional branch
3190
3191Overview:
3192"""""""""
3193
3194The '``br``' instruction is used to cause control flow to transfer to a
3195different basic block in the current function. There are two forms of
3196this instruction, corresponding to a conditional branch and an
3197unconditional branch.
3198
3199Arguments:
3200""""""""""
3201
3202The conditional branch form of the '``br``' instruction takes a single
3203'``i1``' value and two '``label``' values. The unconditional form of the
3204'``br``' instruction takes a single '``label``' value as a target.
3205
3206Semantics:
3207""""""""""
3208
3209Upon execution of a conditional '``br``' instruction, the '``i1``'
3210argument is evaluated. If the value is ``true``, control flows to the
3211'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3212to the '``iffalse``' ``label`` argument.
3213
3214Example:
3215""""""""
3216
3217.. code-block:: llvm
3218
3219 Test:
3220 %cond = icmp eq i32 %a, %b
3221 br i1 %cond, label %IfEqual, label %IfUnequal
3222 IfEqual:
3223 ret i32 1
3224 IfUnequal:
3225 ret i32 0
3226
3227.. _i_switch:
3228
3229'``switch``' Instruction
3230^^^^^^^^^^^^^^^^^^^^^^^^
3231
3232Syntax:
3233"""""""
3234
3235::
3236
3237 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3238
3239Overview:
3240"""""""""
3241
3242The '``switch``' instruction is used to transfer control flow to one of
3243several different places. It is a generalization of the '``br``'
3244instruction, allowing a branch to occur to one of many possible
3245destinations.
3246
3247Arguments:
3248""""""""""
3249
3250The '``switch``' instruction uses three parameters: an integer
3251comparison value '``value``', a default '``label``' destination, and an
3252array of pairs of comparison value constants and '``label``'s. The table
3253is not allowed to contain duplicate constant entries.
3254
3255Semantics:
3256""""""""""
3257
3258The ``switch`` instruction specifies a table of values and destinations.
3259When the '``switch``' instruction is executed, this table is searched
3260for the given value. If the value is found, control flow is transferred
3261to the corresponding destination; otherwise, control flow is transferred
3262to the default destination.
3263
3264Implementation:
3265"""""""""""""""
3266
3267Depending on properties of the target machine and the particular
3268``switch`` instruction, this instruction may be code generated in
3269different ways. For example, it could be generated as a series of
3270chained conditional branches or with a lookup table.
3271
3272Example:
3273""""""""
3274
3275.. code-block:: llvm
3276
3277 ; Emulate a conditional br instruction
3278 %Val = zext i1 %value to i32
3279 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3280
3281 ; Emulate an unconditional br instruction
3282 switch i32 0, label %dest [ ]
3283
3284 ; Implement a jump table:
3285 switch i32 %val, label %otherwise [ i32 0, label %onzero
3286 i32 1, label %onone
3287 i32 2, label %ontwo ]
3288
3289.. _i_indirectbr:
3290
3291'``indirectbr``' Instruction
3292^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3293
3294Syntax:
3295"""""""
3296
3297::
3298
3299 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3300
3301Overview:
3302"""""""""
3303
3304The '``indirectbr``' instruction implements an indirect branch to a
3305label within the current function, whose address is specified by
3306"``address``". Address must be derived from a
3307:ref:`blockaddress <blockaddress>` constant.
3308
3309Arguments:
3310""""""""""
3311
3312The '``address``' argument is the address of the label to jump to. The
3313rest of the arguments indicate the full set of possible destinations
3314that the address may point to. Blocks are allowed to occur multiple
3315times in the destination list, though this isn't particularly useful.
3316
3317This destination list is required so that dataflow analysis has an
3318accurate understanding of the CFG.
3319
3320Semantics:
3321""""""""""
3322
3323Control transfers to the block specified in the address argument. All
3324possible destination blocks must be listed in the label list, otherwise
3325this instruction has undefined behavior. This implies that jumps to
3326labels defined in other functions have undefined behavior as well.
3327
3328Implementation:
3329"""""""""""""""
3330
3331This is typically implemented with a jump through a register.
3332
3333Example:
3334""""""""
3335
3336.. code-block:: llvm
3337
3338 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3339
3340.. _i_invoke:
3341
3342'``invoke``' Instruction
3343^^^^^^^^^^^^^^^^^^^^^^^^
3344
3345Syntax:
3346"""""""
3347
3348::
3349
3350 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3351 to label <normal label> unwind label <exception label>
3352
3353Overview:
3354"""""""""
3355
3356The '``invoke``' instruction causes control to transfer to a specified
3357function, with the possibility of control flow transfer to either the
3358'``normal``' label or the '``exception``' label. If the callee function
3359returns with the "``ret``" instruction, control flow will return to the
3360"normal" label. If the callee (or any indirect callees) returns via the
3361":ref:`resume <i_resume>`" instruction or other exception handling
3362mechanism, control is interrupted and continued at the dynamically
3363nearest "exception" label.
3364
3365The '``exception``' label is a `landing
3366pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3367'``exception``' label is required to have the
3368":ref:`landingpad <i_landingpad>`" instruction, which contains the
3369information about the behavior of the program after unwinding happens,
3370as its first non-PHI instruction. The restrictions on the
3371"``landingpad``" instruction's tightly couples it to the "``invoke``"
3372instruction, so that the important information contained within the
3373"``landingpad``" instruction can't be lost through normal code motion.
3374
3375Arguments:
3376""""""""""
3377
3378This instruction requires several arguments:
3379
3380#. The optional "cconv" marker indicates which :ref:`calling
3381 convention <callingconv>` the call should use. If none is
3382 specified, the call defaults to using C calling conventions.
3383#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3384 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3385 are valid here.
3386#. '``ptr to function ty``': shall be the signature of the pointer to
3387 function value being invoked. In most cases, this is a direct
3388 function invocation, but indirect ``invoke``'s are just as possible,
3389 branching off an arbitrary pointer to function value.
3390#. '``function ptr val``': An LLVM value containing a pointer to a
3391 function to be invoked.
3392#. '``function args``': argument list whose types match the function
3393 signature argument types and parameter attributes. All arguments must
3394 be of :ref:`first class <t_firstclass>` type. If the function signature
3395 indicates the function accepts a variable number of arguments, the
3396 extra arguments can be specified.
3397#. '``normal label``': the label reached when the called function
3398 executes a '``ret``' instruction.
3399#. '``exception label``': the label reached when a callee returns via
3400 the :ref:`resume <i_resume>` instruction or other exception handling
3401 mechanism.
3402#. The optional :ref:`function attributes <fnattrs>` list. Only
3403 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3404 attributes are valid here.
3405
3406Semantics:
3407""""""""""
3408
3409This instruction is designed to operate as a standard '``call``'
3410instruction in most regards. The primary difference is that it
3411establishes an association with a label, which is used by the runtime
3412library to unwind the stack.
3413
3414This instruction is used in languages with destructors to ensure that
3415proper cleanup is performed in the case of either a ``longjmp`` or a
3416thrown exception. Additionally, this is important for implementation of
3417'``catch``' clauses in high-level languages that support them.
3418
3419For the purposes of the SSA form, the definition of the value returned
3420by the '``invoke``' instruction is deemed to occur on the edge from the
3421current block to the "normal" label. If the callee unwinds then no
3422return value is available.
3423
3424Example:
3425""""""""
3426
3427.. code-block:: llvm
3428
3429 %retval = invoke i32 @Test(i32 15) to label %Continue
3430 unwind label %TestCleanup ; {i32}:retval set
3431 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3432 unwind label %TestCleanup ; {i32}:retval set
3433
3434.. _i_resume:
3435
3436'``resume``' Instruction
3437^^^^^^^^^^^^^^^^^^^^^^^^
3438
3439Syntax:
3440"""""""
3441
3442::
3443
3444 resume <type> <value>
3445
3446Overview:
3447"""""""""
3448
3449The '``resume``' instruction is a terminator instruction that has no
3450successors.
3451
3452Arguments:
3453""""""""""
3454
3455The '``resume``' instruction requires one argument, which must have the
3456same type as the result of any '``landingpad``' instruction in the same
3457function.
3458
3459Semantics:
3460""""""""""
3461
3462The '``resume``' instruction resumes propagation of an existing
3463(in-flight) exception whose unwinding was interrupted with a
3464:ref:`landingpad <i_landingpad>` instruction.
3465
3466Example:
3467""""""""
3468
3469.. code-block:: llvm
3470
3471 resume { i8*, i32 } %exn
3472
3473.. _i_unreachable:
3474
3475'``unreachable``' Instruction
3476^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3477
3478Syntax:
3479"""""""
3480
3481::
3482
3483 unreachable
3484
3485Overview:
3486"""""""""
3487
3488The '``unreachable``' instruction has no defined semantics. This
3489instruction is used to inform the optimizer that a particular portion of
3490the code is not reachable. This can be used to indicate that the code
3491after a no-return function cannot be reached, and other facts.
3492
3493Semantics:
3494""""""""""
3495
3496The '``unreachable``' instruction has no defined semantics.
3497
3498.. _binaryops:
3499
3500Binary Operations
3501-----------------
3502
3503Binary operators are used to do most of the computation in a program.
3504They require two operands of the same type, execute an operation on
3505them, and produce a single value. The operands might represent multiple
3506data, as is the case with the :ref:`vector <t_vector>` data type. The
3507result value has the same type as its operands.
3508
3509There are several different binary operators:
3510
3511.. _i_add:
3512
3513'``add``' Instruction
3514^^^^^^^^^^^^^^^^^^^^^
3515
3516Syntax:
3517"""""""
3518
3519::
3520
3521 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3522 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3523 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3524 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3525
3526Overview:
3527"""""""""
3528
3529The '``add``' instruction returns the sum of its two operands.
3530
3531Arguments:
3532""""""""""
3533
3534The two arguments to the '``add``' instruction must be
3535:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3536arguments must have identical types.
3537
3538Semantics:
3539""""""""""
3540
3541The value produced is the integer sum of the two operands.
3542
3543If the sum has unsigned overflow, the result returned is the
3544mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3545the result.
3546
3547Because LLVM integers use a two's complement representation, this
3548instruction is appropriate for both signed and unsigned integers.
3549
3550``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3551respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3552result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3553unsigned and/or signed overflow, respectively, occurs.
3554
3555Example:
3556""""""""
3557
3558.. code-block:: llvm
3559
3560 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3561
3562.. _i_fadd:
3563
3564'``fadd``' Instruction
3565^^^^^^^^^^^^^^^^^^^^^^
3566
3567Syntax:
3568"""""""
3569
3570::
3571
3572 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3573
3574Overview:
3575"""""""""
3576
3577The '``fadd``' instruction returns the sum of its two operands.
3578
3579Arguments:
3580""""""""""
3581
3582The two arguments to the '``fadd``' instruction must be :ref:`floating
3583point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3584Both arguments must have identical types.
3585
3586Semantics:
3587""""""""""
3588
3589The value produced is the floating point sum of the two operands. This
3590instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3591which are optimization hints to enable otherwise unsafe floating point
3592optimizations:
3593
3594Example:
3595""""""""
3596
3597.. code-block:: llvm
3598
3599 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3600
3601'``sub``' Instruction
3602^^^^^^^^^^^^^^^^^^^^^
3603
3604Syntax:
3605"""""""
3606
3607::
3608
3609 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3610 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3611 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3612 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3613
3614Overview:
3615"""""""""
3616
3617The '``sub``' instruction returns the difference of its two operands.
3618
3619Note that the '``sub``' instruction is used to represent the '``neg``'
3620instruction present in most other intermediate representations.
3621
3622Arguments:
3623""""""""""
3624
3625The two arguments to the '``sub``' instruction must be
3626:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3627arguments must have identical types.
3628
3629Semantics:
3630""""""""""
3631
3632The value produced is the integer difference of the two operands.
3633
3634If the difference has unsigned overflow, the result returned is the
3635mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3636the result.
3637
3638Because LLVM integers use a two's complement representation, this
3639instruction is appropriate for both signed and unsigned integers.
3640
3641``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3642respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3643result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3644unsigned and/or signed overflow, respectively, occurs.
3645
3646Example:
3647""""""""
3648
3649.. code-block:: llvm
3650
3651 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3652 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3653
3654.. _i_fsub:
3655
3656'``fsub``' Instruction
3657^^^^^^^^^^^^^^^^^^^^^^
3658
3659Syntax:
3660"""""""
3661
3662::
3663
3664 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3665
3666Overview:
3667"""""""""
3668
3669The '``fsub``' instruction returns the difference of its two operands.
3670
3671Note that the '``fsub``' instruction is used to represent the '``fneg``'
3672instruction present in most other intermediate representations.
3673
3674Arguments:
3675""""""""""
3676
3677The two arguments to the '``fsub``' instruction must be :ref:`floating
3678point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3679Both arguments must have identical types.
3680
3681Semantics:
3682""""""""""
3683
3684The value produced is the floating point difference of the two operands.
3685This instruction can also take any number of :ref:`fast-math
3686flags <fastmath>`, which are optimization hints to enable otherwise
3687unsafe floating point optimizations:
3688
3689Example:
3690""""""""
3691
3692.. code-block:: llvm
3693
3694 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3695 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3696
3697'``mul``' Instruction
3698^^^^^^^^^^^^^^^^^^^^^
3699
3700Syntax:
3701"""""""
3702
3703::
3704
3705 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3706 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3707 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3708 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3709
3710Overview:
3711"""""""""
3712
3713The '``mul``' instruction returns the product of its two operands.
3714
3715Arguments:
3716""""""""""
3717
3718The two arguments to the '``mul``' instruction must be
3719:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3720arguments must have identical types.
3721
3722Semantics:
3723""""""""""
3724
3725The value produced is the integer product of the two operands.
3726
3727If the result of the multiplication has unsigned overflow, the result
3728returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3729bit width of the result.
3730
3731Because LLVM integers use a two's complement representation, and the
3732result is the same width as the operands, this instruction returns the
3733correct result for both signed and unsigned integers. If a full product
3734(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3735sign-extended or zero-extended as appropriate to the width of the full
3736product.
3737
3738``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3739respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3740result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3741unsigned and/or signed overflow, respectively, occurs.
3742
3743Example:
3744""""""""
3745
3746.. code-block:: llvm
3747
3748 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3749
3750.. _i_fmul:
3751
3752'``fmul``' Instruction
3753^^^^^^^^^^^^^^^^^^^^^^
3754
3755Syntax:
3756"""""""
3757
3758::
3759
3760 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3761
3762Overview:
3763"""""""""
3764
3765The '``fmul``' instruction returns the product of its two operands.
3766
3767Arguments:
3768""""""""""
3769
3770The two arguments to the '``fmul``' instruction must be :ref:`floating
3771point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3772Both arguments must have identical types.
3773
3774Semantics:
3775""""""""""
3776
3777The value produced is the floating point product of the two operands.
3778This instruction can also take any number of :ref:`fast-math
3779flags <fastmath>`, which are optimization hints to enable otherwise
3780unsafe floating point optimizations:
3781
3782Example:
3783""""""""
3784
3785.. code-block:: llvm
3786
3787 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3788
3789'``udiv``' Instruction
3790^^^^^^^^^^^^^^^^^^^^^^
3791
3792Syntax:
3793"""""""
3794
3795::
3796
3797 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3798 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3799
3800Overview:
3801"""""""""
3802
3803The '``udiv``' instruction returns the quotient of its two operands.
3804
3805Arguments:
3806""""""""""
3807
3808The two arguments to the '``udiv``' instruction must be
3809:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3810arguments must have identical types.
3811
3812Semantics:
3813""""""""""
3814
3815The value produced is the unsigned integer quotient of the two operands.
3816
3817Note that unsigned integer division and signed integer division are
3818distinct operations; for signed integer division, use '``sdiv``'.
3819
3820Division by zero leads to undefined behavior.
3821
3822If the ``exact`` keyword is present, the result value of the ``udiv`` is
3823a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3824such, "((a udiv exact b) mul b) == a").
3825
3826Example:
3827""""""""
3828
3829.. code-block:: llvm
3830
3831 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3832
3833'``sdiv``' Instruction
3834^^^^^^^^^^^^^^^^^^^^^^
3835
3836Syntax:
3837"""""""
3838
3839::
3840
3841 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3842 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3843
3844Overview:
3845"""""""""
3846
3847The '``sdiv``' instruction returns the quotient of its two operands.
3848
3849Arguments:
3850""""""""""
3851
3852The two arguments to the '``sdiv``' instruction must be
3853:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3854arguments must have identical types.
3855
3856Semantics:
3857""""""""""
3858
3859The value produced is the signed integer quotient of the two operands
3860rounded towards zero.
3861
3862Note that signed integer division and unsigned integer division are
3863distinct operations; for unsigned integer division, use '``udiv``'.
3864
3865Division by zero leads to undefined behavior. Overflow also leads to
3866undefined behavior; this is a rare case, but can occur, for example, by
3867doing a 32-bit division of -2147483648 by -1.
3868
3869If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3870a :ref:`poison value <poisonvalues>` if the result would be rounded.
3871
3872Example:
3873""""""""
3874
3875.. code-block:: llvm
3876
3877 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3878
3879.. _i_fdiv:
3880
3881'``fdiv``' Instruction
3882^^^^^^^^^^^^^^^^^^^^^^
3883
3884Syntax:
3885"""""""
3886
3887::
3888
3889 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3890
3891Overview:
3892"""""""""
3893
3894The '``fdiv``' instruction returns the quotient of its two operands.
3895
3896Arguments:
3897""""""""""
3898
3899The two arguments to the '``fdiv``' instruction must be :ref:`floating
3900point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3901Both arguments must have identical types.
3902
3903Semantics:
3904""""""""""
3905
3906The value produced is the floating point quotient of the two operands.
3907This instruction can also take any number of :ref:`fast-math
3908flags <fastmath>`, which are optimization hints to enable otherwise
3909unsafe floating point optimizations:
3910
3911Example:
3912""""""""
3913
3914.. code-block:: llvm
3915
3916 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3917
3918'``urem``' Instruction
3919^^^^^^^^^^^^^^^^^^^^^^
3920
3921Syntax:
3922"""""""
3923
3924::
3925
3926 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3927
3928Overview:
3929"""""""""
3930
3931The '``urem``' instruction returns the remainder from the unsigned
3932division of its two arguments.
3933
3934Arguments:
3935""""""""""
3936
3937The two arguments to the '``urem``' instruction must be
3938:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3939arguments must have identical types.
3940
3941Semantics:
3942""""""""""
3943
3944This instruction returns the unsigned integer *remainder* of a division.
3945This instruction always performs an unsigned division to get the
3946remainder.
3947
3948Note that unsigned integer remainder and signed integer remainder are
3949distinct operations; for signed integer remainder, use '``srem``'.
3950
3951Taking the remainder of a division by zero leads to undefined behavior.
3952
3953Example:
3954""""""""
3955
3956.. code-block:: llvm
3957
3958 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3959
3960'``srem``' Instruction
3961^^^^^^^^^^^^^^^^^^^^^^
3962
3963Syntax:
3964"""""""
3965
3966::
3967
3968 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3969
3970Overview:
3971"""""""""
3972
3973The '``srem``' instruction returns the remainder from the signed
3974division of its two operands. This instruction can also take
3975:ref:`vector <t_vector>` versions of the values in which case the elements
3976must be integers.
3977
3978Arguments:
3979""""""""""
3980
3981The two arguments to the '``srem``' instruction must be
3982:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3983arguments must have identical types.
3984
3985Semantics:
3986""""""""""
3987
3988This instruction returns the *remainder* of a division (where the result
3989is either zero or has the same sign as the dividend, ``op1``), not the
3990*modulo* operator (where the result is either zero or has the same sign
3991as the divisor, ``op2``) of a value. For more information about the
3992difference, see `The Math
3993Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
3994table of how this is implemented in various languages, please see
3995`Wikipedia: modulo
3996operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
3997
3998Note that signed integer remainder and unsigned integer remainder are
3999distinct operations; for unsigned integer remainder, use '``urem``'.
4000
4001Taking the remainder of a division by zero leads to undefined behavior.
4002Overflow also leads to undefined behavior; this is a rare case, but can
4003occur, for example, by taking the remainder of a 32-bit division of
4004-2147483648 by -1. (The remainder doesn't actually overflow, but this
4005rule lets srem be implemented using instructions that return both the
4006result of the division and the remainder.)
4007
4008Example:
4009""""""""
4010
4011.. code-block:: llvm
4012
4013 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
4014
4015.. _i_frem:
4016
4017'``frem``' Instruction
4018^^^^^^^^^^^^^^^^^^^^^^
4019
4020Syntax:
4021"""""""
4022
4023::
4024
4025 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4026
4027Overview:
4028"""""""""
4029
4030The '``frem``' instruction returns the remainder from the division of
4031its two operands.
4032
4033Arguments:
4034""""""""""
4035
4036The two arguments to the '``frem``' instruction must be :ref:`floating
4037point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4038Both arguments must have identical types.
4039
4040Semantics:
4041""""""""""
4042
4043This instruction returns the *remainder* of a division. The remainder
4044has the same sign as the dividend. This instruction can also take any
4045number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4046to enable otherwise unsafe floating point optimizations:
4047
4048Example:
4049""""""""
4050
4051.. code-block:: llvm
4052
4053 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
4054
4055.. _bitwiseops:
4056
4057Bitwise Binary Operations
4058-------------------------
4059
4060Bitwise binary operators are used to do various forms of bit-twiddling
4061in a program. They are generally very efficient instructions and can
4062commonly be strength reduced from other instructions. They require two
4063operands of the same type, execute an operation on them, and produce a
4064single value. The resulting value is the same type as its operands.
4065
4066'``shl``' Instruction
4067^^^^^^^^^^^^^^^^^^^^^
4068
4069Syntax:
4070"""""""
4071
4072::
4073
4074 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4075 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4076 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4077 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4078
4079Overview:
4080"""""""""
4081
4082The '``shl``' instruction returns the first operand shifted to the left
4083a specified number of bits.
4084
4085Arguments:
4086""""""""""
4087
4088Both arguments to the '``shl``' instruction must be the same
4089:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4090'``op2``' is treated as an unsigned value.
4091
4092Semantics:
4093""""""""""
4094
4095The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4096where ``n`` is the width of the result. If ``op2`` is (statically or
4097dynamically) negative or equal to or larger than the number of bits in
4098``op1``, the result is undefined. If the arguments are vectors, each
4099vector element of ``op1`` is shifted by the corresponding shift amount
4100in ``op2``.
4101
4102If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4103value <poisonvalues>` if it shifts out any non-zero bits. If the
4104``nsw`` keyword is present, then the shift produces a :ref:`poison
4105value <poisonvalues>` if it shifts out any bits that disagree with the
4106resultant sign bit. As such, NUW/NSW have the same semantics as they
4107would if the shift were expressed as a mul instruction with the same
4108nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4109
4110Example:
4111""""""""
4112
4113.. code-block:: llvm
4114
4115 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4116 <result> = shl i32 4, 2 ; yields {i32}: 16
4117 <result> = shl i32 1, 10 ; yields {i32}: 1024
4118 <result> = shl i32 1, 32 ; undefined
4119 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4120
4121'``lshr``' Instruction
4122^^^^^^^^^^^^^^^^^^^^^^
4123
4124Syntax:
4125"""""""
4126
4127::
4128
4129 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4130 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4131
4132Overview:
4133"""""""""
4134
4135The '``lshr``' instruction (logical shift right) returns the first
4136operand shifted to the right a specified number of bits with zero fill.
4137
4138Arguments:
4139""""""""""
4140
4141Both arguments to the '``lshr``' instruction must be the same
4142:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4143'``op2``' is treated as an unsigned value.
4144
4145Semantics:
4146""""""""""
4147
4148This instruction always performs a logical shift right operation. The
4149most significant bits of the result will be filled with zero bits after
4150the shift. If ``op2`` is (statically or dynamically) equal to or larger
4151than the number of bits in ``op1``, the result is undefined. If the
4152arguments are vectors, each vector element of ``op1`` is shifted by the
4153corresponding shift amount in ``op2``.
4154
4155If the ``exact`` keyword is present, the result value of the ``lshr`` is
4156a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4157non-zero.
4158
4159Example:
4160""""""""
4161
4162.. code-block:: llvm
4163
4164 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4165 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4166 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover8b5b3602013-05-07 06:17:14 +00004167 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004168 <result> = lshr i32 1, 32 ; undefined
4169 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4170
4171'``ashr``' Instruction
4172^^^^^^^^^^^^^^^^^^^^^^
4173
4174Syntax:
4175"""""""
4176
4177::
4178
4179 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4180 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4181
4182Overview:
4183"""""""""
4184
4185The '``ashr``' instruction (arithmetic shift right) returns the first
4186operand shifted to the right a specified number of bits with sign
4187extension.
4188
4189Arguments:
4190""""""""""
4191
4192Both arguments to the '``ashr``' instruction must be the same
4193:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4194'``op2``' is treated as an unsigned value.
4195
4196Semantics:
4197""""""""""
4198
4199This instruction always performs an arithmetic shift right operation,
4200The most significant bits of the result will be filled with the sign bit
4201of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4202than the number of bits in ``op1``, the result is undefined. If the
4203arguments are vectors, each vector element of ``op1`` is shifted by the
4204corresponding shift amount in ``op2``.
4205
4206If the ``exact`` keyword is present, the result value of the ``ashr`` is
4207a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4208non-zero.
4209
4210Example:
4211""""""""
4212
4213.. code-block:: llvm
4214
4215 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4216 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4217 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4218 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4219 <result> = ashr i32 1, 32 ; undefined
4220 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4221
4222'``and``' Instruction
4223^^^^^^^^^^^^^^^^^^^^^
4224
4225Syntax:
4226"""""""
4227
4228::
4229
4230 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4231
4232Overview:
4233"""""""""
4234
4235The '``and``' instruction returns the bitwise logical and of its two
4236operands.
4237
4238Arguments:
4239""""""""""
4240
4241The two arguments to the '``and``' instruction must be
4242:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4243arguments must have identical types.
4244
4245Semantics:
4246""""""""""
4247
4248The truth table used for the '``and``' instruction is:
4249
4250+-----+-----+-----+
4251| In0 | In1 | Out |
4252+-----+-----+-----+
4253| 0 | 0 | 0 |
4254+-----+-----+-----+
4255| 0 | 1 | 0 |
4256+-----+-----+-----+
4257| 1 | 0 | 0 |
4258+-----+-----+-----+
4259| 1 | 1 | 1 |
4260+-----+-----+-----+
4261
4262Example:
4263""""""""
4264
4265.. code-block:: llvm
4266
4267 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4268 <result> = and i32 15, 40 ; yields {i32}:result = 8
4269 <result> = and i32 4, 8 ; yields {i32}:result = 0
4270
4271'``or``' Instruction
4272^^^^^^^^^^^^^^^^^^^^
4273
4274Syntax:
4275"""""""
4276
4277::
4278
4279 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4280
4281Overview:
4282"""""""""
4283
4284The '``or``' instruction returns the bitwise logical inclusive or of its
4285two operands.
4286
4287Arguments:
4288""""""""""
4289
4290The two arguments to the '``or``' instruction must be
4291:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4292arguments must have identical types.
4293
4294Semantics:
4295""""""""""
4296
4297The truth table used for the '``or``' instruction is:
4298
4299+-----+-----+-----+
4300| In0 | In1 | Out |
4301+-----+-----+-----+
4302| 0 | 0 | 0 |
4303+-----+-----+-----+
4304| 0 | 1 | 1 |
4305+-----+-----+-----+
4306| 1 | 0 | 1 |
4307+-----+-----+-----+
4308| 1 | 1 | 1 |
4309+-----+-----+-----+
4310
4311Example:
4312""""""""
4313
4314::
4315
4316 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4317 <result> = or i32 15, 40 ; yields {i32}:result = 47
4318 <result> = or i32 4, 8 ; yields {i32}:result = 12
4319
4320'``xor``' Instruction
4321^^^^^^^^^^^^^^^^^^^^^
4322
4323Syntax:
4324"""""""
4325
4326::
4327
4328 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4329
4330Overview:
4331"""""""""
4332
4333The '``xor``' instruction returns the bitwise logical exclusive or of
4334its two operands. The ``xor`` is used to implement the "one's
4335complement" operation, which is the "~" operator in C.
4336
4337Arguments:
4338""""""""""
4339
4340The two arguments to the '``xor``' instruction must be
4341:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4342arguments must have identical types.
4343
4344Semantics:
4345""""""""""
4346
4347The truth table used for the '``xor``' instruction is:
4348
4349+-----+-----+-----+
4350| In0 | In1 | Out |
4351+-----+-----+-----+
4352| 0 | 0 | 0 |
4353+-----+-----+-----+
4354| 0 | 1 | 1 |
4355+-----+-----+-----+
4356| 1 | 0 | 1 |
4357+-----+-----+-----+
4358| 1 | 1 | 0 |
4359+-----+-----+-----+
4360
4361Example:
4362""""""""
4363
4364.. code-block:: llvm
4365
4366 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4367 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4368 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4369 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4370
4371Vector Operations
4372-----------------
4373
4374LLVM supports several instructions to represent vector operations in a
4375target-independent manner. These instructions cover the element-access
4376and vector-specific operations needed to process vectors effectively.
4377While LLVM does directly support these vector operations, many
4378sophisticated algorithms will want to use target-specific intrinsics to
4379take full advantage of a specific target.
4380
4381.. _i_extractelement:
4382
4383'``extractelement``' Instruction
4384^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4385
4386Syntax:
4387"""""""
4388
4389::
4390
4391 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4392
4393Overview:
4394"""""""""
4395
4396The '``extractelement``' instruction extracts a single scalar element
4397from a vector at a specified index.
4398
4399Arguments:
4400""""""""""
4401
4402The first operand of an '``extractelement``' instruction is a value of
4403:ref:`vector <t_vector>` type. The second operand is an index indicating
4404the position from which to extract the element. The index may be a
4405variable.
4406
4407Semantics:
4408""""""""""
4409
4410The result is a scalar of the same type as the element type of ``val``.
4411Its value is the value at position ``idx`` of ``val``. If ``idx``
4412exceeds the length of ``val``, the results are undefined.
4413
4414Example:
4415""""""""
4416
4417.. code-block:: llvm
4418
4419 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4420
4421.. _i_insertelement:
4422
4423'``insertelement``' Instruction
4424^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4425
4426Syntax:
4427"""""""
4428
4429::
4430
4431 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4432
4433Overview:
4434"""""""""
4435
4436The '``insertelement``' instruction inserts a scalar element into a
4437vector at a specified index.
4438
4439Arguments:
4440""""""""""
4441
4442The first operand of an '``insertelement``' instruction is a value of
4443:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4444type must equal the element type of the first operand. The third operand
4445is an index indicating the position at which to insert the value. The
4446index may be a variable.
4447
4448Semantics:
4449""""""""""
4450
4451The result is a vector of the same type as ``val``. Its element values
4452are those of ``val`` except at position ``idx``, where it gets the value
4453``elt``. If ``idx`` exceeds the length of ``val``, the results are
4454undefined.
4455
4456Example:
4457""""""""
4458
4459.. code-block:: llvm
4460
4461 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4462
4463.. _i_shufflevector:
4464
4465'``shufflevector``' Instruction
4466^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4467
4468Syntax:
4469"""""""
4470
4471::
4472
4473 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4474
4475Overview:
4476"""""""""
4477
4478The '``shufflevector``' instruction constructs a permutation of elements
4479from two input vectors, returning a vector with the same element type as
4480the input and length that is the same as the shuffle mask.
4481
4482Arguments:
4483""""""""""
4484
4485The first two operands of a '``shufflevector``' instruction are vectors
4486with the same type. The third argument is a shuffle mask whose element
4487type is always 'i32'. The result of the instruction is a vector whose
4488length is the same as the shuffle mask and whose element type is the
4489same as the element type of the first two operands.
4490
4491The shuffle mask operand is required to be a constant vector with either
4492constant integer or undef values.
4493
4494Semantics:
4495""""""""""
4496
4497The elements of the two input vectors are numbered from left to right
4498across both of the vectors. The shuffle mask operand specifies, for each
4499element of the result vector, which element of the two input vectors the
4500result element gets. The element selector may be undef (meaning "don't
4501care") and the second operand may be undef if performing a shuffle from
4502only one vector.
4503
4504Example:
4505""""""""
4506
4507.. code-block:: llvm
4508
4509 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4510 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4511 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4512 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4513 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4514 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4515 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4516 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4517
4518Aggregate Operations
4519--------------------
4520
4521LLVM supports several instructions for working with
4522:ref:`aggregate <t_aggregate>` values.
4523
4524.. _i_extractvalue:
4525
4526'``extractvalue``' Instruction
4527^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4528
4529Syntax:
4530"""""""
4531
4532::
4533
4534 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4535
4536Overview:
4537"""""""""
4538
4539The '``extractvalue``' instruction extracts the value of a member field
4540from an :ref:`aggregate <t_aggregate>` value.
4541
4542Arguments:
4543""""""""""
4544
4545The first operand of an '``extractvalue``' instruction is a value of
4546:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4547constant indices to specify which value to extract in a similar manner
4548as indices in a '``getelementptr``' instruction.
4549
4550The major differences to ``getelementptr`` indexing are:
4551
4552- Since the value being indexed is not a pointer, the first index is
4553 omitted and assumed to be zero.
4554- At least one index must be specified.
4555- Not only struct indices but also array indices must be in bounds.
4556
4557Semantics:
4558""""""""""
4559
4560The result is the value at the position in the aggregate specified by
4561the index operands.
4562
4563Example:
4564""""""""
4565
4566.. code-block:: llvm
4567
4568 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4569
4570.. _i_insertvalue:
4571
4572'``insertvalue``' Instruction
4573^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4574
4575Syntax:
4576"""""""
4577
4578::
4579
4580 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4581
4582Overview:
4583"""""""""
4584
4585The '``insertvalue``' instruction inserts a value into a member field in
4586an :ref:`aggregate <t_aggregate>` value.
4587
4588Arguments:
4589""""""""""
4590
4591The first operand of an '``insertvalue``' instruction is a value of
4592:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4593a first-class value to insert. The following operands are constant
4594indices indicating the position at which to insert the value in a
4595similar manner as indices in a '``extractvalue``' instruction. The value
4596to insert must have the same type as the value identified by the
4597indices.
4598
4599Semantics:
4600""""""""""
4601
4602The result is an aggregate of the same type as ``val``. Its value is
4603that of ``val`` except that the value at the position specified by the
4604indices is that of ``elt``.
4605
4606Example:
4607""""""""
4608
4609.. code-block:: llvm
4610
4611 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4612 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4613 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4614
4615.. _memoryops:
4616
4617Memory Access and Addressing Operations
4618---------------------------------------
4619
4620A key design point of an SSA-based representation is how it represents
4621memory. In LLVM, no memory locations are in SSA form, which makes things
4622very simple. This section describes how to read, write, and allocate
4623memory in LLVM.
4624
4625.. _i_alloca:
4626
4627'``alloca``' Instruction
4628^^^^^^^^^^^^^^^^^^^^^^^^
4629
4630Syntax:
4631"""""""
4632
4633::
4634
4635 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4636
4637Overview:
4638"""""""""
4639
4640The '``alloca``' instruction allocates memory on the stack frame of the
4641currently executing function, to be automatically released when this
4642function returns to its caller. The object is always allocated in the
4643generic address space (address space zero).
4644
4645Arguments:
4646""""""""""
4647
4648The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4649bytes of memory on the runtime stack, returning a pointer of the
4650appropriate type to the program. If "NumElements" is specified, it is
4651the number of elements allocated, otherwise "NumElements" is defaulted
4652to be one. If a constant alignment is specified, the value result of the
4653allocation is guaranteed to be aligned to at least that boundary. If not
4654specified, or if zero, the target can choose to align the allocation on
4655any convenient boundary compatible with the type.
4656
4657'``type``' may be any sized type.
4658
4659Semantics:
4660""""""""""
4661
4662Memory is allocated; a pointer is returned. The operation is undefined
4663if there is insufficient stack space for the allocation. '``alloca``'d
4664memory is automatically released when the function returns. The
4665'``alloca``' instruction is commonly used to represent automatic
4666variables that must have an address available. When the function returns
4667(either with the ``ret`` or ``resume`` instructions), the memory is
4668reclaimed. Allocating zero bytes is legal, but the result is undefined.
4669The order in which memory is allocated (ie., which way the stack grows)
4670is not specified.
4671
4672Example:
4673""""""""
4674
4675.. code-block:: llvm
4676
4677 %ptr = alloca i32 ; yields {i32*}:ptr
4678 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4679 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4680 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4681
4682.. _i_load:
4683
4684'``load``' Instruction
4685^^^^^^^^^^^^^^^^^^^^^^
4686
4687Syntax:
4688"""""""
4689
4690::
4691
4692 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4693 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4694 !<index> = !{ i32 1 }
4695
4696Overview:
4697"""""""""
4698
4699The '``load``' instruction is used to read from memory.
4700
4701Arguments:
4702""""""""""
4703
Eli Bendersky239a78b2013-04-17 20:17:08 +00004704The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00004705from which to load. The pointer must point to a :ref:`first
4706class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4707then the optimizer is not allowed to modify the number or order of
4708execution of this ``load`` with other :ref:`volatile
4709operations <volatile>`.
4710
4711If the ``load`` is marked as ``atomic``, it takes an extra
4712:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4713``release`` and ``acq_rel`` orderings are not valid on ``load``
4714instructions. Atomic loads produce :ref:`defined <memmodel>` results
4715when they may see multiple atomic stores. The type of the pointee must
4716be an integer type whose bit width is a power of two greater than or
4717equal to eight and less than or equal to a target-specific size limit.
4718``align`` must be explicitly specified on atomic loads, and the load has
4719undefined behavior if the alignment is not set to a value which is at
4720least the size in bytes of the pointee. ``!nontemporal`` does not have
4721any defined semantics for atomic loads.
4722
4723The optional constant ``align`` argument specifies the alignment of the
4724operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00004725or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004726alignment for the target. It is the responsibility of the code emitter
4727to ensure that the alignment information is correct. Overestimating the
4728alignment results in undefined behavior. Underestimating the alignment
4729may produce less efficient code. An alignment of 1 is always safe.
4730
4731The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004732metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00004733``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004734metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00004735that this load is not expected to be reused in the cache. The code
4736generator may select special instructions to save cache bandwidth, such
4737as the ``MOVNT`` instruction on x86.
4738
4739The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004740metadata name ``<index>`` corresponding to a metadata node with no
4741entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00004742instruction tells the optimizer and code generator that this load
4743address points to memory which does not change value during program
4744execution. The optimizer may then move this load around, for example, by
4745hoisting it out of loops using loop invariant code motion.
4746
4747Semantics:
4748""""""""""
4749
4750The location of memory pointed to is loaded. If the value being loaded
4751is of scalar type then the number of bytes read does not exceed the
4752minimum number of bytes needed to hold all bits of the type. For
4753example, loading an ``i24`` reads at most three bytes. When loading a
4754value of a type like ``i20`` with a size that is not an integral number
4755of bytes, the result is undefined if the value was not originally
4756written using a store of the same type.
4757
4758Examples:
4759"""""""""
4760
4761.. code-block:: llvm
4762
4763 %ptr = alloca i32 ; yields {i32*}:ptr
4764 store i32 3, i32* %ptr ; yields {void}
4765 %val = load i32* %ptr ; yields {i32}:val = i32 3
4766
4767.. _i_store:
4768
4769'``store``' Instruction
4770^^^^^^^^^^^^^^^^^^^^^^^
4771
4772Syntax:
4773"""""""
4774
4775::
4776
4777 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4778 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4779
4780Overview:
4781"""""""""
4782
4783The '``store``' instruction is used to write to memory.
4784
4785Arguments:
4786""""""""""
4787
Eli Benderskyca380842013-04-17 17:17:20 +00004788There are two arguments to the ``store`` instruction: a value to store
4789and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00004790operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00004791the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00004792then the optimizer is not allowed to modify the number or order of
4793execution of this ``store`` with other :ref:`volatile
4794operations <volatile>`.
4795
4796If the ``store`` is marked as ``atomic``, it takes an extra
4797:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4798``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4799instructions. Atomic loads produce :ref:`defined <memmodel>` results
4800when they may see multiple atomic stores. The type of the pointee must
4801be an integer type whose bit width is a power of two greater than or
4802equal to eight and less than or equal to a target-specific size limit.
4803``align`` must be explicitly specified on atomic stores, and the store
4804has undefined behavior if the alignment is not set to a value which is
4805at least the size in bytes of the pointee. ``!nontemporal`` does not
4806have any defined semantics for atomic stores.
4807
Eli Benderskyca380842013-04-17 17:17:20 +00004808The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00004809operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00004810or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004811alignment for the target. It is the responsibility of the code emitter
4812to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00004813alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00004814alignment may produce less efficient code. An alignment of 1 is always
4815safe.
4816
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004817The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00004818name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004819value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00004820tells the optimizer and code generator that this load is not expected to
4821be reused in the cache. The code generator may select special
4822instructions to save cache bandwidth, such as the MOVNT instruction on
4823x86.
4824
4825Semantics:
4826""""""""""
4827
Eli Benderskyca380842013-04-17 17:17:20 +00004828The contents of memory are updated to contain ``<value>`` at the
4829location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00004830of scalar type then the number of bytes written does not exceed the
4831minimum number of bytes needed to hold all bits of the type. For
4832example, storing an ``i24`` writes at most three bytes. When writing a
4833value of a type like ``i20`` with a size that is not an integral number
4834of bytes, it is unspecified what happens to the extra bits that do not
4835belong to the type, but they will typically be overwritten.
4836
4837Example:
4838""""""""
4839
4840.. code-block:: llvm
4841
4842 %ptr = alloca i32 ; yields {i32*}:ptr
4843 store i32 3, i32* %ptr ; yields {void}
4844 %val = load i32* %ptr ; yields {i32}:val = i32 3
4845
4846.. _i_fence:
4847
4848'``fence``' Instruction
4849^^^^^^^^^^^^^^^^^^^^^^^
4850
4851Syntax:
4852"""""""
4853
4854::
4855
4856 fence [singlethread] <ordering> ; yields {void}
4857
4858Overview:
4859"""""""""
4860
4861The '``fence``' instruction is used to introduce happens-before edges
4862between operations.
4863
4864Arguments:
4865""""""""""
4866
4867'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4868defines what *synchronizes-with* edges they add. They can only be given
4869``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4870
4871Semantics:
4872""""""""""
4873
4874A fence A which has (at least) ``release`` ordering semantics
4875*synchronizes with* a fence B with (at least) ``acquire`` ordering
4876semantics if and only if there exist atomic operations X and Y, both
4877operating on some atomic object M, such that A is sequenced before X, X
4878modifies M (either directly or through some side effect of a sequence
4879headed by X), Y is sequenced before B, and Y observes M. This provides a
4880*happens-before* dependency between A and B. Rather than an explicit
4881``fence``, one (but not both) of the atomic operations X or Y might
4882provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4883still *synchronize-with* the explicit ``fence`` and establish the
4884*happens-before* edge.
4885
4886A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4887``acquire`` and ``release`` semantics specified above, participates in
4888the global program order of other ``seq_cst`` operations and/or fences.
4889
4890The optional ":ref:`singlethread <singlethread>`" argument specifies
4891that the fence only synchronizes with other fences in the same thread.
4892(This is useful for interacting with signal handlers.)
4893
4894Example:
4895""""""""
4896
4897.. code-block:: llvm
4898
4899 fence acquire ; yields {void}
4900 fence singlethread seq_cst ; yields {void}
4901
4902.. _i_cmpxchg:
4903
4904'``cmpxchg``' Instruction
4905^^^^^^^^^^^^^^^^^^^^^^^^^
4906
4907Syntax:
4908"""""""
4909
4910::
4911
4912 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4913
4914Overview:
4915"""""""""
4916
4917The '``cmpxchg``' instruction is used to atomically modify memory. It
4918loads a value in memory and compares it to a given value. If they are
4919equal, it stores a new value into the memory.
4920
4921Arguments:
4922""""""""""
4923
4924There are three arguments to the '``cmpxchg``' instruction: an address
4925to operate on, a value to compare to the value currently be at that
4926address, and a new value to place at that address if the compared values
4927are equal. The type of '<cmp>' must be an integer type whose bit width
4928is a power of two greater than or equal to eight and less than or equal
4929to a target-specific size limit. '<cmp>' and '<new>' must have the same
4930type, and the type of '<pointer>' must be a pointer to that type. If the
4931``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4932to modify the number or order of execution of this ``cmpxchg`` with
4933other :ref:`volatile operations <volatile>`.
4934
4935The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4936synchronizes with other atomic operations.
4937
4938The optional "``singlethread``" argument declares that the ``cmpxchg``
4939is only atomic with respect to code (usually signal handlers) running in
4940the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4941respect to all other code in the system.
4942
4943The pointer passed into cmpxchg must have alignment greater than or
4944equal to the size in memory of the operand.
4945
4946Semantics:
4947""""""""""
4948
4949The contents of memory at the location specified by the '``<pointer>``'
4950operand is read and compared to '``<cmp>``'; if the read value is the
4951equal, '``<new>``' is written. The original value at the location is
4952returned.
4953
4954A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4955of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4956atomic load with an ordering parameter determined by dropping any
4957``release`` part of the ``cmpxchg``'s ordering.
4958
4959Example:
4960""""""""
4961
4962.. code-block:: llvm
4963
4964 entry:
4965 %orig = atomic load i32* %ptr unordered ; yields {i32}
4966 br label %loop
4967
4968 loop:
4969 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4970 %squared = mul i32 %cmp, %cmp
4971 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4972 %success = icmp eq i32 %cmp, %old
4973 br i1 %success, label %done, label %loop
4974
4975 done:
4976 ...
4977
4978.. _i_atomicrmw:
4979
4980'``atomicrmw``' Instruction
4981^^^^^^^^^^^^^^^^^^^^^^^^^^^
4982
4983Syntax:
4984"""""""
4985
4986::
4987
4988 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
4989
4990Overview:
4991"""""""""
4992
4993The '``atomicrmw``' instruction is used to atomically modify memory.
4994
4995Arguments:
4996""""""""""
4997
4998There are three arguments to the '``atomicrmw``' instruction: an
4999operation to apply, an address whose value to modify, an argument to the
5000operation. The operation must be one of the following keywords:
5001
5002- xchg
5003- add
5004- sub
5005- and
5006- nand
5007- or
5008- xor
5009- max
5010- min
5011- umax
5012- umin
5013
5014The type of '<value>' must be an integer type whose bit width is a power
5015of two greater than or equal to eight and less than or equal to a
5016target-specific size limit. The type of the '``<pointer>``' operand must
5017be a pointer to that type. If the ``atomicrmw`` is marked as
5018``volatile``, then the optimizer is not allowed to modify the number or
5019order of execution of this ``atomicrmw`` with other :ref:`volatile
5020operations <volatile>`.
5021
5022Semantics:
5023""""""""""
5024
5025The contents of memory at the location specified by the '``<pointer>``'
5026operand are atomically read, modified, and written back. The original
5027value at the location is returned. The modification is specified by the
5028operation argument:
5029
5030- xchg: ``*ptr = val``
5031- add: ``*ptr = *ptr + val``
5032- sub: ``*ptr = *ptr - val``
5033- and: ``*ptr = *ptr & val``
5034- nand: ``*ptr = ~(*ptr & val)``
5035- or: ``*ptr = *ptr | val``
5036- xor: ``*ptr = *ptr ^ val``
5037- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5038- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5039- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5040 comparison)
5041- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5042 comparison)
5043
5044Example:
5045""""""""
5046
5047.. code-block:: llvm
5048
5049 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
5050
5051.. _i_getelementptr:
5052
5053'``getelementptr``' Instruction
5054^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5055
5056Syntax:
5057"""""""
5058
5059::
5060
5061 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5062 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5063 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5064
5065Overview:
5066"""""""""
5067
5068The '``getelementptr``' instruction is used to get the address of a
5069subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5070address calculation only and does not access memory.
5071
5072Arguments:
5073""""""""""
5074
5075The first argument is always a pointer or a vector of pointers, and
5076forms the basis of the calculation. The remaining arguments are indices
5077that indicate which of the elements of the aggregate object are indexed.
5078The interpretation of each index is dependent on the type being indexed
5079into. The first index always indexes the pointer value given as the
5080first argument, the second index indexes a value of the type pointed to
5081(not necessarily the value directly pointed to, since the first index
5082can be non-zero), etc. The first type indexed into must be a pointer
5083value, subsequent types can be arrays, vectors, and structs. Note that
5084subsequent types being indexed into can never be pointers, since that
5085would require loading the pointer before continuing calculation.
5086
5087The type of each index argument depends on the type it is indexing into.
5088When indexing into a (optionally packed) structure, only ``i32`` integer
5089**constants** are allowed (when using a vector of indices they must all
5090be the **same** ``i32`` integer constant). When indexing into an array,
5091pointer or vector, integers of any width are allowed, and they are not
5092required to be constant. These integers are treated as signed values
5093where relevant.
5094
5095For example, let's consider a C code fragment and how it gets compiled
5096to LLVM:
5097
5098.. code-block:: c
5099
5100 struct RT {
5101 char A;
5102 int B[10][20];
5103 char C;
5104 };
5105 struct ST {
5106 int X;
5107 double Y;
5108 struct RT Z;
5109 };
5110
5111 int *foo(struct ST *s) {
5112 return &s[1].Z.B[5][13];
5113 }
5114
5115The LLVM code generated by Clang is:
5116
5117.. code-block:: llvm
5118
5119 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5120 %struct.ST = type { i32, double, %struct.RT }
5121
5122 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5123 entry:
5124 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5125 ret i32* %arrayidx
5126 }
5127
5128Semantics:
5129""""""""""
5130
5131In the example above, the first index is indexing into the
5132'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5133= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5134indexes into the third element of the structure, yielding a
5135'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5136structure. The third index indexes into the second element of the
5137structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5138dimensions of the array are subscripted into, yielding an '``i32``'
5139type. The '``getelementptr``' instruction returns a pointer to this
5140element, thus computing a value of '``i32*``' type.
5141
5142Note that it is perfectly legal to index partially through a structure,
5143returning a pointer to an inner element. Because of this, the LLVM code
5144for the given testcase is equivalent to:
5145
5146.. code-block:: llvm
5147
5148 define i32* @foo(%struct.ST* %s) {
5149 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5150 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5151 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5152 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5153 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5154 ret i32* %t5
5155 }
5156
5157If the ``inbounds`` keyword is present, the result value of the
5158``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5159pointer is not an *in bounds* address of an allocated object, or if any
5160of the addresses that would be formed by successive addition of the
5161offsets implied by the indices to the base address with infinitely
5162precise signed arithmetic are not an *in bounds* address of that
5163allocated object. The *in bounds* addresses for an allocated object are
5164all the addresses that point into the object, plus the address one byte
5165past the end. In cases where the base is a vector of pointers the
5166``inbounds`` keyword applies to each of the computations element-wise.
5167
5168If the ``inbounds`` keyword is not present, the offsets are added to the
5169base address with silently-wrapping two's complement arithmetic. If the
5170offsets have a different width from the pointer, they are sign-extended
5171or truncated to the width of the pointer. The result value of the
5172``getelementptr`` may be outside the object pointed to by the base
5173pointer. The result value may not necessarily be used to access memory
5174though, even if it happens to point into allocated storage. See the
5175:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5176information.
5177
5178The getelementptr instruction is often confusing. For some more insight
5179into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5180
5181Example:
5182""""""""
5183
5184.. code-block:: llvm
5185
5186 ; yields [12 x i8]*:aptr
5187 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5188 ; yields i8*:vptr
5189 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5190 ; yields i8*:eptr
5191 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5192 ; yields i32*:iptr
5193 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5194
5195In cases where the pointer argument is a vector of pointers, each index
5196must be a vector with the same number of elements. For example:
5197
5198.. code-block:: llvm
5199
5200 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5201
5202Conversion Operations
5203---------------------
5204
5205The instructions in this category are the conversion instructions
5206(casting) which all take a single operand and a type. They perform
5207various bit conversions on the operand.
5208
5209'``trunc .. to``' Instruction
5210^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5211
5212Syntax:
5213"""""""
5214
5215::
5216
5217 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5218
5219Overview:
5220"""""""""
5221
5222The '``trunc``' instruction truncates its operand to the type ``ty2``.
5223
5224Arguments:
5225""""""""""
5226
5227The '``trunc``' instruction takes a value to trunc, and a type to trunc
5228it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5229of the same number of integers. The bit size of the ``value`` must be
5230larger than the bit size of the destination type, ``ty2``. Equal sized
5231types are not allowed.
5232
5233Semantics:
5234""""""""""
5235
5236The '``trunc``' instruction truncates the high order bits in ``value``
5237and converts the remaining bits to ``ty2``. Since the source size must
5238be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5239It will always truncate bits.
5240
5241Example:
5242""""""""
5243
5244.. code-block:: llvm
5245
5246 %X = trunc i32 257 to i8 ; yields i8:1
5247 %Y = trunc i32 123 to i1 ; yields i1:true
5248 %Z = trunc i32 122 to i1 ; yields i1:false
5249 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5250
5251'``zext .. to``' Instruction
5252^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5253
5254Syntax:
5255"""""""
5256
5257::
5258
5259 <result> = zext <ty> <value> to <ty2> ; yields ty2
5260
5261Overview:
5262"""""""""
5263
5264The '``zext``' instruction zero extends its operand to type ``ty2``.
5265
5266Arguments:
5267""""""""""
5268
5269The '``zext``' instruction takes a value to cast, and a type to cast it
5270to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5271the same number of integers. The bit size of the ``value`` must be
5272smaller than the bit size of the destination type, ``ty2``.
5273
5274Semantics:
5275""""""""""
5276
5277The ``zext`` fills the high order bits of the ``value`` with zero bits
5278until it reaches the size of the destination type, ``ty2``.
5279
5280When zero extending from i1, the result will always be either 0 or 1.
5281
5282Example:
5283""""""""
5284
5285.. code-block:: llvm
5286
5287 %X = zext i32 257 to i64 ; yields i64:257
5288 %Y = zext i1 true to i32 ; yields i32:1
5289 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5290
5291'``sext .. to``' Instruction
5292^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5293
5294Syntax:
5295"""""""
5296
5297::
5298
5299 <result> = sext <ty> <value> to <ty2> ; yields ty2
5300
5301Overview:
5302"""""""""
5303
5304The '``sext``' sign extends ``value`` to the type ``ty2``.
5305
5306Arguments:
5307""""""""""
5308
5309The '``sext``' instruction takes a value to cast, and a type to cast it
5310to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5311the same number of integers. The bit size of the ``value`` must be
5312smaller than the bit size of the destination type, ``ty2``.
5313
5314Semantics:
5315""""""""""
5316
5317The '``sext``' instruction performs a sign extension by copying the sign
5318bit (highest order bit) of the ``value`` until it reaches the bit size
5319of the type ``ty2``.
5320
5321When sign extending from i1, the extension always results in -1 or 0.
5322
5323Example:
5324""""""""
5325
5326.. code-block:: llvm
5327
5328 %X = sext i8 -1 to i16 ; yields i16 :65535
5329 %Y = sext i1 true to i32 ; yields i32:-1
5330 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5331
5332'``fptrunc .. to``' Instruction
5333^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5334
5335Syntax:
5336"""""""
5337
5338::
5339
5340 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5341
5342Overview:
5343"""""""""
5344
5345The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5346
5347Arguments:
5348""""""""""
5349
5350The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5351value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5352The size of ``value`` must be larger than the size of ``ty2``. This
5353implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5354
5355Semantics:
5356""""""""""
5357
5358The '``fptrunc``' instruction truncates a ``value`` from a larger
5359:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5360point <t_floating>` type. If the value cannot fit within the
5361destination type, ``ty2``, then the results are undefined.
5362
5363Example:
5364""""""""
5365
5366.. code-block:: llvm
5367
5368 %X = fptrunc double 123.0 to float ; yields float:123.0
5369 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5370
5371'``fpext .. to``' Instruction
5372^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5373
5374Syntax:
5375"""""""
5376
5377::
5378
5379 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5380
5381Overview:
5382"""""""""
5383
5384The '``fpext``' extends a floating point ``value`` to a larger floating
5385point value.
5386
5387Arguments:
5388""""""""""
5389
5390The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5391``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5392to. The source type must be smaller than the destination type.
5393
5394Semantics:
5395""""""""""
5396
5397The '``fpext``' instruction extends the ``value`` from a smaller
5398:ref:`floating point <t_floating>` type to a larger :ref:`floating
5399point <t_floating>` type. The ``fpext`` cannot be used to make a
5400*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5401*no-op cast* for a floating point cast.
5402
5403Example:
5404""""""""
5405
5406.. code-block:: llvm
5407
5408 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5409 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5410
5411'``fptoui .. to``' Instruction
5412^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5413
5414Syntax:
5415"""""""
5416
5417::
5418
5419 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5420
5421Overview:
5422"""""""""
5423
5424The '``fptoui``' converts a floating point ``value`` to its unsigned
5425integer equivalent of type ``ty2``.
5426
5427Arguments:
5428""""""""""
5429
5430The '``fptoui``' instruction takes a value to cast, which must be a
5431scalar or vector :ref:`floating point <t_floating>` value, and a type to
5432cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5433``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5434type with the same number of elements as ``ty``
5435
5436Semantics:
5437""""""""""
5438
5439The '``fptoui``' instruction converts its :ref:`floating
5440point <t_floating>` operand into the nearest (rounding towards zero)
5441unsigned integer value. If the value cannot fit in ``ty2``, the results
5442are undefined.
5443
5444Example:
5445""""""""
5446
5447.. code-block:: llvm
5448
5449 %X = fptoui double 123.0 to i32 ; yields i32:123
5450 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5451 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5452
5453'``fptosi .. to``' Instruction
5454^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5455
5456Syntax:
5457"""""""
5458
5459::
5460
5461 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5462
5463Overview:
5464"""""""""
5465
5466The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5467``value`` to type ``ty2``.
5468
5469Arguments:
5470""""""""""
5471
5472The '``fptosi``' instruction takes a value to cast, which must be a
5473scalar or vector :ref:`floating point <t_floating>` value, and a type to
5474cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5475``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5476type with the same number of elements as ``ty``
5477
5478Semantics:
5479""""""""""
5480
5481The '``fptosi``' instruction converts its :ref:`floating
5482point <t_floating>` operand into the nearest (rounding towards zero)
5483signed integer value. If the value cannot fit in ``ty2``, the results
5484are undefined.
5485
5486Example:
5487""""""""
5488
5489.. code-block:: llvm
5490
5491 %X = fptosi double -123.0 to i32 ; yields i32:-123
5492 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5493 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5494
5495'``uitofp .. to``' Instruction
5496^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5497
5498Syntax:
5499"""""""
5500
5501::
5502
5503 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5504
5505Overview:
5506"""""""""
5507
5508The '``uitofp``' instruction regards ``value`` as an unsigned integer
5509and converts that value to the ``ty2`` type.
5510
5511Arguments:
5512""""""""""
5513
5514The '``uitofp``' instruction takes a value to cast, which must be a
5515scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5516``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5517``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5518type with the same number of elements as ``ty``
5519
5520Semantics:
5521""""""""""
5522
5523The '``uitofp``' instruction interprets its operand as an unsigned
5524integer quantity and converts it to the corresponding floating point
5525value. If the value cannot fit in the floating point value, the results
5526are undefined.
5527
5528Example:
5529""""""""
5530
5531.. code-block:: llvm
5532
5533 %X = uitofp i32 257 to float ; yields float:257.0
5534 %Y = uitofp i8 -1 to double ; yields double:255.0
5535
5536'``sitofp .. to``' Instruction
5537^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5538
5539Syntax:
5540"""""""
5541
5542::
5543
5544 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5545
5546Overview:
5547"""""""""
5548
5549The '``sitofp``' instruction regards ``value`` as a signed integer and
5550converts that value to the ``ty2`` type.
5551
5552Arguments:
5553""""""""""
5554
5555The '``sitofp``' instruction takes a value to cast, which must be a
5556scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5557``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5558``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5559type with the same number of elements as ``ty``
5560
5561Semantics:
5562""""""""""
5563
5564The '``sitofp``' instruction interprets its operand as a signed integer
5565quantity and converts it to the corresponding floating point value. If
5566the value cannot fit in the floating point value, the results are
5567undefined.
5568
5569Example:
5570""""""""
5571
5572.. code-block:: llvm
5573
5574 %X = sitofp i32 257 to float ; yields float:257.0
5575 %Y = sitofp i8 -1 to double ; yields double:-1.0
5576
5577.. _i_ptrtoint:
5578
5579'``ptrtoint .. to``' Instruction
5580^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5581
5582Syntax:
5583"""""""
5584
5585::
5586
5587 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5588
5589Overview:
5590"""""""""
5591
5592The '``ptrtoint``' instruction converts the pointer or a vector of
5593pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5594
5595Arguments:
5596""""""""""
5597
5598The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5599a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5600type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5601a vector of integers type.
5602
5603Semantics:
5604""""""""""
5605
5606The '``ptrtoint``' instruction converts ``value`` to integer type
5607``ty2`` by interpreting the pointer value as an integer and either
5608truncating or zero extending that value to the size of the integer type.
5609If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5610``value`` is larger than ``ty2`` then a truncation is done. If they are
5611the same size, then nothing is done (*no-op cast*) other than a type
5612change.
5613
5614Example:
5615""""""""
5616
5617.. code-block:: llvm
5618
5619 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5620 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5621 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5622
5623.. _i_inttoptr:
5624
5625'``inttoptr .. to``' Instruction
5626^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5627
5628Syntax:
5629"""""""
5630
5631::
5632
5633 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5634
5635Overview:
5636"""""""""
5637
5638The '``inttoptr``' instruction converts an integer ``value`` to a
5639pointer type, ``ty2``.
5640
5641Arguments:
5642""""""""""
5643
5644The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5645cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5646type.
5647
5648Semantics:
5649""""""""""
5650
5651The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5652applying either a zero extension or a truncation depending on the size
5653of the integer ``value``. If ``value`` is larger than the size of a
5654pointer then a truncation is done. If ``value`` is smaller than the size
5655of a pointer then a zero extension is done. If they are the same size,
5656nothing is done (*no-op cast*).
5657
5658Example:
5659""""""""
5660
5661.. code-block:: llvm
5662
5663 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5664 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5665 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5666 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5667
5668.. _i_bitcast:
5669
5670'``bitcast .. to``' Instruction
5671^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5672
5673Syntax:
5674"""""""
5675
5676::
5677
5678 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5679
5680Overview:
5681"""""""""
5682
5683The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5684changing any bits.
5685
5686Arguments:
5687""""""""""
5688
5689The '``bitcast``' instruction takes a value to cast, which must be a
5690non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00005691also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5692bit sizes of ``value`` and the destination type, ``ty2``, must be
5693identical. If the source type is a pointer, the destination type must
5694also be a pointer of the same size. This instruction supports bitwise
5695conversion of vectors to integers and to vectors of other types (as
5696long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00005697
5698Semantics:
5699""""""""""
5700
Matt Arsenault24b49c42013-07-31 17:49:08 +00005701The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5702is always a *no-op cast* because no bits change with this
5703conversion. The conversion is done as if the ``value`` had been stored
5704to memory and read back as type ``ty2``. Pointer (or vector of
5705pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005706pointers) types with the same address space through this instruction.
5707To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
5708or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00005709
5710Example:
5711""""""""
5712
5713.. code-block:: llvm
5714
5715 %X = bitcast i8 255 to i8 ; yields i8 :-1
5716 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5717 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5718 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5719
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005720.. _i_addrspacecast:
5721
5722'``addrspacecast .. to``' Instruction
5723^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5724
5725Syntax:
5726"""""""
5727
5728::
5729
5730 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
5731
5732Overview:
5733"""""""""
5734
5735The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
5736address space ``n`` to type ``pty2`` in address space ``m``.
5737
5738Arguments:
5739""""""""""
5740
5741The '``addrspacecast``' instruction takes a pointer or vector of pointer value
5742to cast and a pointer type to cast it to, which must have a different
5743address space.
5744
5745Semantics:
5746""""""""""
5747
5748The '``addrspacecast``' instruction converts the pointer value
5749``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00005750value modification, depending on the target and the address space
5751pair. Pointer conversions within the same address space must be
5752performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005753conversion is legal then both result and operand refer to the same memory
5754location.
5755
5756Example:
5757""""""""
5758
5759.. code-block:: llvm
5760
Matt Arsenault9c13dd02013-11-15 22:43:50 +00005761 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
5762 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
5763 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005764
Sean Silvab084af42012-12-07 10:36:55 +00005765.. _otherops:
5766
5767Other Operations
5768----------------
5769
5770The instructions in this category are the "miscellaneous" instructions,
5771which defy better classification.
5772
5773.. _i_icmp:
5774
5775'``icmp``' Instruction
5776^^^^^^^^^^^^^^^^^^^^^^
5777
5778Syntax:
5779"""""""
5780
5781::
5782
5783 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5784
5785Overview:
5786"""""""""
5787
5788The '``icmp``' instruction returns a boolean value or a vector of
5789boolean values based on comparison of its two integer, integer vector,
5790pointer, or pointer vector operands.
5791
5792Arguments:
5793""""""""""
5794
5795The '``icmp``' instruction takes three operands. The first operand is
5796the condition code indicating the kind of comparison to perform. It is
5797not a value, just a keyword. The possible condition code are:
5798
5799#. ``eq``: equal
5800#. ``ne``: not equal
5801#. ``ugt``: unsigned greater than
5802#. ``uge``: unsigned greater or equal
5803#. ``ult``: unsigned less than
5804#. ``ule``: unsigned less or equal
5805#. ``sgt``: signed greater than
5806#. ``sge``: signed greater or equal
5807#. ``slt``: signed less than
5808#. ``sle``: signed less or equal
5809
5810The remaining two arguments must be :ref:`integer <t_integer>` or
5811:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5812must also be identical types.
5813
5814Semantics:
5815""""""""""
5816
5817The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5818code given as ``cond``. The comparison performed always yields either an
5819:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5820
5821#. ``eq``: yields ``true`` if the operands are equal, ``false``
5822 otherwise. No sign interpretation is necessary or performed.
5823#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5824 otherwise. No sign interpretation is necessary or performed.
5825#. ``ugt``: interprets the operands as unsigned values and yields
5826 ``true`` if ``op1`` is greater than ``op2``.
5827#. ``uge``: interprets the operands as unsigned values and yields
5828 ``true`` if ``op1`` is greater than or equal to ``op2``.
5829#. ``ult``: interprets the operands as unsigned values and yields
5830 ``true`` if ``op1`` is less than ``op2``.
5831#. ``ule``: interprets the operands as unsigned values and yields
5832 ``true`` if ``op1`` is less than or equal to ``op2``.
5833#. ``sgt``: interprets the operands as signed values and yields ``true``
5834 if ``op1`` is greater than ``op2``.
5835#. ``sge``: interprets the operands as signed values and yields ``true``
5836 if ``op1`` is greater than or equal to ``op2``.
5837#. ``slt``: interprets the operands as signed values and yields ``true``
5838 if ``op1`` is less than ``op2``.
5839#. ``sle``: interprets the operands as signed values and yields ``true``
5840 if ``op1`` is less than or equal to ``op2``.
5841
5842If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5843are compared as if they were integers.
5844
5845If the operands are integer vectors, then they are compared element by
5846element. The result is an ``i1`` vector with the same number of elements
5847as the values being compared. Otherwise, the result is an ``i1``.
5848
5849Example:
5850""""""""
5851
5852.. code-block:: llvm
5853
5854 <result> = icmp eq i32 4, 5 ; yields: result=false
5855 <result> = icmp ne float* %X, %X ; yields: result=false
5856 <result> = icmp ult i16 4, 5 ; yields: result=true
5857 <result> = icmp sgt i16 4, 5 ; yields: result=false
5858 <result> = icmp ule i16 -4, 5 ; yields: result=false
5859 <result> = icmp sge i16 4, 5 ; yields: result=false
5860
5861Note that the code generator does not yet support vector types with the
5862``icmp`` instruction.
5863
5864.. _i_fcmp:
5865
5866'``fcmp``' Instruction
5867^^^^^^^^^^^^^^^^^^^^^^
5868
5869Syntax:
5870"""""""
5871
5872::
5873
5874 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5875
5876Overview:
5877"""""""""
5878
5879The '``fcmp``' instruction returns a boolean value or vector of boolean
5880values based on comparison of its operands.
5881
5882If the operands are floating point scalars, then the result type is a
5883boolean (:ref:`i1 <t_integer>`).
5884
5885If the operands are floating point vectors, then the result type is a
5886vector of boolean with the same number of elements as the operands being
5887compared.
5888
5889Arguments:
5890""""""""""
5891
5892The '``fcmp``' instruction takes three operands. The first operand is
5893the condition code indicating the kind of comparison to perform. It is
5894not a value, just a keyword. The possible condition code are:
5895
5896#. ``false``: no comparison, always returns false
5897#. ``oeq``: ordered and equal
5898#. ``ogt``: ordered and greater than
5899#. ``oge``: ordered and greater than or equal
5900#. ``olt``: ordered and less than
5901#. ``ole``: ordered and less than or equal
5902#. ``one``: ordered and not equal
5903#. ``ord``: ordered (no nans)
5904#. ``ueq``: unordered or equal
5905#. ``ugt``: unordered or greater than
5906#. ``uge``: unordered or greater than or equal
5907#. ``ult``: unordered or less than
5908#. ``ule``: unordered or less than or equal
5909#. ``une``: unordered or not equal
5910#. ``uno``: unordered (either nans)
5911#. ``true``: no comparison, always returns true
5912
5913*Ordered* means that neither operand is a QNAN while *unordered* means
5914that either operand may be a QNAN.
5915
5916Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5917point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5918type. They must have identical types.
5919
5920Semantics:
5921""""""""""
5922
5923The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5924condition code given as ``cond``. If the operands are vectors, then the
5925vectors are compared element by element. Each comparison performed
5926always yields an :ref:`i1 <t_integer>` result, as follows:
5927
5928#. ``false``: always yields ``false``, regardless of operands.
5929#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5930 is equal to ``op2``.
5931#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5932 is greater than ``op2``.
5933#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5934 is greater than or equal to ``op2``.
5935#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5936 is less than ``op2``.
5937#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5938 is less than or equal to ``op2``.
5939#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5940 is not equal to ``op2``.
5941#. ``ord``: yields ``true`` if both operands are not a QNAN.
5942#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5943 equal to ``op2``.
5944#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5945 greater than ``op2``.
5946#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5947 greater than or equal to ``op2``.
5948#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5949 less than ``op2``.
5950#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5951 less than or equal to ``op2``.
5952#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5953 not equal to ``op2``.
5954#. ``uno``: yields ``true`` if either operand is a QNAN.
5955#. ``true``: always yields ``true``, regardless of operands.
5956
5957Example:
5958""""""""
5959
5960.. code-block:: llvm
5961
5962 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5963 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5964 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5965 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5966
5967Note that the code generator does not yet support vector types with the
5968``fcmp`` instruction.
5969
5970.. _i_phi:
5971
5972'``phi``' Instruction
5973^^^^^^^^^^^^^^^^^^^^^
5974
5975Syntax:
5976"""""""
5977
5978::
5979
5980 <result> = phi <ty> [ <val0>, <label0>], ...
5981
5982Overview:
5983"""""""""
5984
5985The '``phi``' instruction is used to implement the φ node in the SSA
5986graph representing the function.
5987
5988Arguments:
5989""""""""""
5990
5991The type of the incoming values is specified with the first type field.
5992After this, the '``phi``' instruction takes a list of pairs as
5993arguments, with one pair for each predecessor basic block of the current
5994block. Only values of :ref:`first class <t_firstclass>` type may be used as
5995the value arguments to the PHI node. Only labels may be used as the
5996label arguments.
5997
5998There must be no non-phi instructions between the start of a basic block
5999and the PHI instructions: i.e. PHI instructions must be first in a basic
6000block.
6001
6002For the purposes of the SSA form, the use of each incoming value is
6003deemed to occur on the edge from the corresponding predecessor block to
6004the current block (but after any definition of an '``invoke``'
6005instruction's return value on the same edge).
6006
6007Semantics:
6008""""""""""
6009
6010At runtime, the '``phi``' instruction logically takes on the value
6011specified by the pair corresponding to the predecessor basic block that
6012executed just prior to the current block.
6013
6014Example:
6015""""""""
6016
6017.. code-block:: llvm
6018
6019 Loop: ; Infinite loop that counts from 0 on up...
6020 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6021 %nextindvar = add i32 %indvar, 1
6022 br label %Loop
6023
6024.. _i_select:
6025
6026'``select``' Instruction
6027^^^^^^^^^^^^^^^^^^^^^^^^
6028
6029Syntax:
6030"""""""
6031
6032::
6033
6034 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6035
6036 selty is either i1 or {<N x i1>}
6037
6038Overview:
6039"""""""""
6040
6041The '``select``' instruction is used to choose one value based on a
6042condition, without branching.
6043
6044Arguments:
6045""""""""""
6046
6047The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6048values indicating the condition, and two values of the same :ref:`first
6049class <t_firstclass>` type. If the val1/val2 are vectors and the
6050condition is a scalar, then entire vectors are selected, not individual
6051elements.
6052
6053Semantics:
6054""""""""""
6055
6056If the condition is an i1 and it evaluates to 1, the instruction returns
6057the first value argument; otherwise, it returns the second value
6058argument.
6059
6060If the condition is a vector of i1, then the value arguments must be
6061vectors of the same size, and the selection is done element by element.
6062
6063Example:
6064""""""""
6065
6066.. code-block:: llvm
6067
6068 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6069
6070.. _i_call:
6071
6072'``call``' Instruction
6073^^^^^^^^^^^^^^^^^^^^^^
6074
6075Syntax:
6076"""""""
6077
6078::
6079
6080 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
6081
6082Overview:
6083"""""""""
6084
6085The '``call``' instruction represents a simple function call.
6086
6087Arguments:
6088""""""""""
6089
6090This instruction requires several arguments:
6091
6092#. The optional "tail" marker indicates that the callee function does
6093 not access any allocas or varargs in the caller. Note that calls may
6094 be marked "tail" even if they do not occur before a
6095 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
6096 function call is eligible for tail call optimization, but `might not
6097 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
6098 The code generator may optimize calls marked "tail" with either 1)
6099 automatic `sibling call
6100 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
6101 callee have matching signatures, or 2) forced tail call optimization
6102 when the following extra requirements are met:
6103
6104 - Caller and callee both have the calling convention ``fastcc``.
6105 - The call is in tail position (ret immediately follows call and ret
6106 uses value of call or is void).
6107 - Option ``-tailcallopt`` is enabled, or
6108 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6109 - `Platform specific constraints are
6110 met. <CodeGenerator.html#tailcallopt>`_
6111
6112#. The optional "cconv" marker indicates which :ref:`calling
6113 convention <callingconv>` the call should use. If none is
6114 specified, the call defaults to using C calling conventions. The
6115 calling convention of the call must match the calling convention of
6116 the target function, or else the behavior is undefined.
6117#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6118 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6119 are valid here.
6120#. '``ty``': the type of the call instruction itself which is also the
6121 type of the return value. Functions that return no value are marked
6122 ``void``.
6123#. '``fnty``': shall be the signature of the pointer to function value
6124 being invoked. The argument types must match the types implied by
6125 this signature. This type can be omitted if the function is not
6126 varargs and if the function type does not return a pointer to a
6127 function.
6128#. '``fnptrval``': An LLVM value containing a pointer to a function to
6129 be invoked. In most cases, this is a direct function invocation, but
6130 indirect ``call``'s are just as possible, calling an arbitrary pointer
6131 to function value.
6132#. '``function args``': argument list whose types match the function
6133 signature argument types and parameter attributes. All arguments must
6134 be of :ref:`first class <t_firstclass>` type. If the function signature
6135 indicates the function accepts a variable number of arguments, the
6136 extra arguments can be specified.
6137#. The optional :ref:`function attributes <fnattrs>` list. Only
6138 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6139 attributes are valid here.
6140
6141Semantics:
6142""""""""""
6143
6144The '``call``' instruction is used to cause control flow to transfer to
6145a specified function, with its incoming arguments bound to the specified
6146values. Upon a '``ret``' instruction in the called function, control
6147flow continues with the instruction after the function call, and the
6148return value of the function is bound to the result argument.
6149
6150Example:
6151""""""""
6152
6153.. code-block:: llvm
6154
6155 %retval = call i32 @test(i32 %argc)
6156 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6157 %X = tail call i32 @foo() ; yields i32
6158 %Y = tail call fastcc i32 @foo() ; yields i32
6159 call void %foo(i8 97 signext)
6160
6161 %struct.A = type { i32, i8 }
6162 %r = call %struct.A @foo() ; yields { 32, i8 }
6163 %gr = extractvalue %struct.A %r, 0 ; yields i32
6164 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6165 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6166 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6167
6168llvm treats calls to some functions with names and arguments that match
6169the standard C99 library as being the C99 library functions, and may
6170perform optimizations or generate code for them under that assumption.
6171This is something we'd like to change in the future to provide better
6172support for freestanding environments and non-C-based languages.
6173
6174.. _i_va_arg:
6175
6176'``va_arg``' Instruction
6177^^^^^^^^^^^^^^^^^^^^^^^^
6178
6179Syntax:
6180"""""""
6181
6182::
6183
6184 <resultval> = va_arg <va_list*> <arglist>, <argty>
6185
6186Overview:
6187"""""""""
6188
6189The '``va_arg``' instruction is used to access arguments passed through
6190the "variable argument" area of a function call. It is used to implement
6191the ``va_arg`` macro in C.
6192
6193Arguments:
6194""""""""""
6195
6196This instruction takes a ``va_list*`` value and the type of the
6197argument. It returns a value of the specified argument type and
6198increments the ``va_list`` to point to the next argument. The actual
6199type of ``va_list`` is target specific.
6200
6201Semantics:
6202""""""""""
6203
6204The '``va_arg``' instruction loads an argument of the specified type
6205from the specified ``va_list`` and causes the ``va_list`` to point to
6206the next argument. For more information, see the variable argument
6207handling :ref:`Intrinsic Functions <int_varargs>`.
6208
6209It is legal for this instruction to be called in a function which does
6210not take a variable number of arguments, for example, the ``vfprintf``
6211function.
6212
6213``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6214function <intrinsics>` because it takes a type as an argument.
6215
6216Example:
6217""""""""
6218
6219See the :ref:`variable argument processing <int_varargs>` section.
6220
6221Note that the code generator does not yet fully support va\_arg on many
6222targets. Also, it does not currently support va\_arg with aggregate
6223types on any target.
6224
6225.. _i_landingpad:
6226
6227'``landingpad``' Instruction
6228^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6229
6230Syntax:
6231"""""""
6232
6233::
6234
6235 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6236 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6237
6238 <clause> := catch <type> <value>
6239 <clause> := filter <array constant type> <array constant>
6240
6241Overview:
6242"""""""""
6243
6244The '``landingpad``' instruction is used by `LLVM's exception handling
6245system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006246is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006247code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6248defines values supplied by the personality function (``pers_fn``) upon
6249re-entry to the function. The ``resultval`` has the type ``resultty``.
6250
6251Arguments:
6252""""""""""
6253
6254This instruction takes a ``pers_fn`` value. This is the personality
6255function associated with the unwinding mechanism. The optional
6256``cleanup`` flag indicates that the landing pad block is a cleanup.
6257
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006258A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006259contains the global variable representing the "type" that may be caught
6260or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6261clause takes an array constant as its argument. Use
6262"``[0 x i8**] undef``" for a filter which cannot throw. The
6263'``landingpad``' instruction must contain *at least* one ``clause`` or
6264the ``cleanup`` flag.
6265
6266Semantics:
6267""""""""""
6268
6269The '``landingpad``' instruction defines the values which are set by the
6270personality function (``pers_fn``) upon re-entry to the function, and
6271therefore the "result type" of the ``landingpad`` instruction. As with
6272calling conventions, how the personality function results are
6273represented in LLVM IR is target specific.
6274
6275The clauses are applied in order from top to bottom. If two
6276``landingpad`` instructions are merged together through inlining, the
6277clauses from the calling function are appended to the list of clauses.
6278When the call stack is being unwound due to an exception being thrown,
6279the exception is compared against each ``clause`` in turn. If it doesn't
6280match any of the clauses, and the ``cleanup`` flag is not set, then
6281unwinding continues further up the call stack.
6282
6283The ``landingpad`` instruction has several restrictions:
6284
6285- A landing pad block is a basic block which is the unwind destination
6286 of an '``invoke``' instruction.
6287- A landing pad block must have a '``landingpad``' instruction as its
6288 first non-PHI instruction.
6289- There can be only one '``landingpad``' instruction within the landing
6290 pad block.
6291- A basic block that is not a landing pad block may not include a
6292 '``landingpad``' instruction.
6293- All '``landingpad``' instructions in a function must have the same
6294 personality function.
6295
6296Example:
6297""""""""
6298
6299.. code-block:: llvm
6300
6301 ;; A landing pad which can catch an integer.
6302 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6303 catch i8** @_ZTIi
6304 ;; A landing pad that is a cleanup.
6305 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6306 cleanup
6307 ;; A landing pad which can catch an integer and can only throw a double.
6308 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6309 catch i8** @_ZTIi
6310 filter [1 x i8**] [@_ZTId]
6311
6312.. _intrinsics:
6313
6314Intrinsic Functions
6315===================
6316
6317LLVM supports the notion of an "intrinsic function". These functions
6318have well known names and semantics and are required to follow certain
6319restrictions. Overall, these intrinsics represent an extension mechanism
6320for the LLVM language that does not require changing all of the
6321transformations in LLVM when adding to the language (or the bitcode
6322reader/writer, the parser, etc...).
6323
6324Intrinsic function names must all start with an "``llvm.``" prefix. This
6325prefix is reserved in LLVM for intrinsic names; thus, function names may
6326not begin with this prefix. Intrinsic functions must always be external
6327functions: you cannot define the body of intrinsic functions. Intrinsic
6328functions may only be used in call or invoke instructions: it is illegal
6329to take the address of an intrinsic function. Additionally, because
6330intrinsic functions are part of the LLVM language, it is required if any
6331are added that they be documented here.
6332
6333Some intrinsic functions can be overloaded, i.e., the intrinsic
6334represents a family of functions that perform the same operation but on
6335different data types. Because LLVM can represent over 8 million
6336different integer types, overloading is used commonly to allow an
6337intrinsic function to operate on any integer type. One or more of the
6338argument types or the result type can be overloaded to accept any
6339integer type. Argument types may also be defined as exactly matching a
6340previous argument's type or the result type. This allows an intrinsic
6341function which accepts multiple arguments, but needs all of them to be
6342of the same type, to only be overloaded with respect to a single
6343argument or the result.
6344
6345Overloaded intrinsics will have the names of its overloaded argument
6346types encoded into its function name, each preceded by a period. Only
6347those types which are overloaded result in a name suffix. Arguments
6348whose type is matched against another type do not. For example, the
6349``llvm.ctpop`` function can take an integer of any width and returns an
6350integer of exactly the same integer width. This leads to a family of
6351functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6352``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6353overloaded, and only one type suffix is required. Because the argument's
6354type is matched against the return type, it does not require its own
6355name suffix.
6356
6357To learn how to add an intrinsic function, please see the `Extending
6358LLVM Guide <ExtendingLLVM.html>`_.
6359
6360.. _int_varargs:
6361
6362Variable Argument Handling Intrinsics
6363-------------------------------------
6364
6365Variable argument support is defined in LLVM with the
6366:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6367functions. These functions are related to the similarly named macros
6368defined in the ``<stdarg.h>`` header file.
6369
6370All of these functions operate on arguments that use a target-specific
6371value type "``va_list``". The LLVM assembly language reference manual
6372does not define what this type is, so all transformations should be
6373prepared to handle these functions regardless of the type used.
6374
6375This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6376variable argument handling intrinsic functions are used.
6377
6378.. code-block:: llvm
6379
6380 define i32 @test(i32 %X, ...) {
6381 ; Initialize variable argument processing
6382 %ap = alloca i8*
6383 %ap2 = bitcast i8** %ap to i8*
6384 call void @llvm.va_start(i8* %ap2)
6385
6386 ; Read a single integer argument
6387 %tmp = va_arg i8** %ap, i32
6388
6389 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6390 %aq = alloca i8*
6391 %aq2 = bitcast i8** %aq to i8*
6392 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6393 call void @llvm.va_end(i8* %aq2)
6394
6395 ; Stop processing of arguments.
6396 call void @llvm.va_end(i8* %ap2)
6397 ret i32 %tmp
6398 }
6399
6400 declare void @llvm.va_start(i8*)
6401 declare void @llvm.va_copy(i8*, i8*)
6402 declare void @llvm.va_end(i8*)
6403
6404.. _int_va_start:
6405
6406'``llvm.va_start``' Intrinsic
6407^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6408
6409Syntax:
6410"""""""
6411
6412::
6413
Nick Lewycky04f6de02013-09-11 22:04:52 +00006414 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006415
6416Overview:
6417"""""""""
6418
6419The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6420subsequent use by ``va_arg``.
6421
6422Arguments:
6423""""""""""
6424
6425The argument is a pointer to a ``va_list`` element to initialize.
6426
6427Semantics:
6428""""""""""
6429
6430The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6431available in C. In a target-dependent way, it initializes the
6432``va_list`` element to which the argument points, so that the next call
6433to ``va_arg`` will produce the first variable argument passed to the
6434function. Unlike the C ``va_start`` macro, this intrinsic does not need
6435to know the last argument of the function as the compiler can figure
6436that out.
6437
6438'``llvm.va_end``' Intrinsic
6439^^^^^^^^^^^^^^^^^^^^^^^^^^^
6440
6441Syntax:
6442"""""""
6443
6444::
6445
6446 declare void @llvm.va_end(i8* <arglist>)
6447
6448Overview:
6449"""""""""
6450
6451The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6452initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6453
6454Arguments:
6455""""""""""
6456
6457The argument is a pointer to a ``va_list`` to destroy.
6458
6459Semantics:
6460""""""""""
6461
6462The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6463available in C. In a target-dependent way, it destroys the ``va_list``
6464element to which the argument points. Calls to
6465:ref:`llvm.va_start <int_va_start>` and
6466:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6467``llvm.va_end``.
6468
6469.. _int_va_copy:
6470
6471'``llvm.va_copy``' Intrinsic
6472^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6473
6474Syntax:
6475"""""""
6476
6477::
6478
6479 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6480
6481Overview:
6482"""""""""
6483
6484The '``llvm.va_copy``' intrinsic copies the current argument position
6485from the source argument list to the destination argument list.
6486
6487Arguments:
6488""""""""""
6489
6490The first argument is a pointer to a ``va_list`` element to initialize.
6491The second argument is a pointer to a ``va_list`` element to copy from.
6492
6493Semantics:
6494""""""""""
6495
6496The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6497available in C. In a target-dependent way, it copies the source
6498``va_list`` element into the destination ``va_list`` element. This
6499intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6500arbitrarily complex and require, for example, memory allocation.
6501
6502Accurate Garbage Collection Intrinsics
6503--------------------------------------
6504
6505LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6506(GC) requires the implementation and generation of these intrinsics.
6507These intrinsics allow identification of :ref:`GC roots on the
6508stack <int_gcroot>`, as well as garbage collector implementations that
6509require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6510Front-ends for type-safe garbage collected languages should generate
6511these intrinsics to make use of the LLVM garbage collectors. For more
6512details, see `Accurate Garbage Collection with
6513LLVM <GarbageCollection.html>`_.
6514
6515The garbage collection intrinsics only operate on objects in the generic
6516address space (address space zero).
6517
6518.. _int_gcroot:
6519
6520'``llvm.gcroot``' Intrinsic
6521^^^^^^^^^^^^^^^^^^^^^^^^^^^
6522
6523Syntax:
6524"""""""
6525
6526::
6527
6528 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6529
6530Overview:
6531"""""""""
6532
6533The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6534the code generator, and allows some metadata to be associated with it.
6535
6536Arguments:
6537""""""""""
6538
6539The first argument specifies the address of a stack object that contains
6540the root pointer. The second pointer (which must be either a constant or
6541a global value address) contains the meta-data to be associated with the
6542root.
6543
6544Semantics:
6545""""""""""
6546
6547At runtime, a call to this intrinsic stores a null pointer into the
6548"ptrloc" location. At compile-time, the code generator generates
6549information to allow the runtime to find the pointer at GC safe points.
6550The '``llvm.gcroot``' intrinsic may only be used in a function which
6551:ref:`specifies a GC algorithm <gc>`.
6552
6553.. _int_gcread:
6554
6555'``llvm.gcread``' Intrinsic
6556^^^^^^^^^^^^^^^^^^^^^^^^^^^
6557
6558Syntax:
6559"""""""
6560
6561::
6562
6563 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6564
6565Overview:
6566"""""""""
6567
6568The '``llvm.gcread``' intrinsic identifies reads of references from heap
6569locations, allowing garbage collector implementations that require read
6570barriers.
6571
6572Arguments:
6573""""""""""
6574
6575The second argument is the address to read from, which should be an
6576address allocated from the garbage collector. The first object is a
6577pointer to the start of the referenced object, if needed by the language
6578runtime (otherwise null).
6579
6580Semantics:
6581""""""""""
6582
6583The '``llvm.gcread``' intrinsic has the same semantics as a load
6584instruction, but may be replaced with substantially more complex code by
6585the garbage collector runtime, as needed. The '``llvm.gcread``'
6586intrinsic may only be used in a function which :ref:`specifies a GC
6587algorithm <gc>`.
6588
6589.. _int_gcwrite:
6590
6591'``llvm.gcwrite``' Intrinsic
6592^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6593
6594Syntax:
6595"""""""
6596
6597::
6598
6599 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6600
6601Overview:
6602"""""""""
6603
6604The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6605locations, allowing garbage collector implementations that require write
6606barriers (such as generational or reference counting collectors).
6607
6608Arguments:
6609""""""""""
6610
6611The first argument is the reference to store, the second is the start of
6612the object to store it to, and the third is the address of the field of
6613Obj to store to. If the runtime does not require a pointer to the
6614object, Obj may be null.
6615
6616Semantics:
6617""""""""""
6618
6619The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6620instruction, but may be replaced with substantially more complex code by
6621the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6622intrinsic may only be used in a function which :ref:`specifies a GC
6623algorithm <gc>`.
6624
6625Code Generator Intrinsics
6626-------------------------
6627
6628These intrinsics are provided by LLVM to expose special features that
6629may only be implemented with code generator support.
6630
6631'``llvm.returnaddress``' Intrinsic
6632^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6633
6634Syntax:
6635"""""""
6636
6637::
6638
6639 declare i8 *@llvm.returnaddress(i32 <level>)
6640
6641Overview:
6642"""""""""
6643
6644The '``llvm.returnaddress``' intrinsic attempts to compute a
6645target-specific value indicating the return address of the current
6646function or one of its callers.
6647
6648Arguments:
6649""""""""""
6650
6651The argument to this intrinsic indicates which function to return the
6652address for. Zero indicates the calling function, one indicates its
6653caller, etc. The argument is **required** to be a constant integer
6654value.
6655
6656Semantics:
6657""""""""""
6658
6659The '``llvm.returnaddress``' intrinsic either returns a pointer
6660indicating the return address of the specified call frame, or zero if it
6661cannot be identified. The value returned by this intrinsic is likely to
6662be incorrect or 0 for arguments other than zero, so it should only be
6663used for debugging purposes.
6664
6665Note that calling this intrinsic does not prevent function inlining or
6666other aggressive transformations, so the value returned may not be that
6667of the obvious source-language caller.
6668
6669'``llvm.frameaddress``' Intrinsic
6670^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6671
6672Syntax:
6673"""""""
6674
6675::
6676
6677 declare i8* @llvm.frameaddress(i32 <level>)
6678
6679Overview:
6680"""""""""
6681
6682The '``llvm.frameaddress``' intrinsic attempts to return the
6683target-specific frame pointer value for the specified stack frame.
6684
6685Arguments:
6686""""""""""
6687
6688The argument to this intrinsic indicates which function to return the
6689frame pointer for. Zero indicates the calling function, one indicates
6690its caller, etc. The argument is **required** to be a constant integer
6691value.
6692
6693Semantics:
6694""""""""""
6695
6696The '``llvm.frameaddress``' intrinsic either returns a pointer
6697indicating the frame address of the specified call frame, or zero if it
6698cannot be identified. The value returned by this intrinsic is likely to
6699be incorrect or 0 for arguments other than zero, so it should only be
6700used for debugging purposes.
6701
6702Note that calling this intrinsic does not prevent function inlining or
6703other aggressive transformations, so the value returned may not be that
6704of the obvious source-language caller.
6705
6706.. _int_stacksave:
6707
6708'``llvm.stacksave``' Intrinsic
6709^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6710
6711Syntax:
6712"""""""
6713
6714::
6715
6716 declare i8* @llvm.stacksave()
6717
6718Overview:
6719"""""""""
6720
6721The '``llvm.stacksave``' intrinsic is used to remember the current state
6722of the function stack, for use with
6723:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6724implementing language features like scoped automatic variable sized
6725arrays in C99.
6726
6727Semantics:
6728""""""""""
6729
6730This intrinsic returns a opaque pointer value that can be passed to
6731:ref:`llvm.stackrestore <int_stackrestore>`. When an
6732``llvm.stackrestore`` intrinsic is executed with a value saved from
6733``llvm.stacksave``, it effectively restores the state of the stack to
6734the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6735practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6736were allocated after the ``llvm.stacksave`` was executed.
6737
6738.. _int_stackrestore:
6739
6740'``llvm.stackrestore``' Intrinsic
6741^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6742
6743Syntax:
6744"""""""
6745
6746::
6747
6748 declare void @llvm.stackrestore(i8* %ptr)
6749
6750Overview:
6751"""""""""
6752
6753The '``llvm.stackrestore``' intrinsic is used to restore the state of
6754the function stack to the state it was in when the corresponding
6755:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6756useful for implementing language features like scoped automatic variable
6757sized arrays in C99.
6758
6759Semantics:
6760""""""""""
6761
6762See the description for :ref:`llvm.stacksave <int_stacksave>`.
6763
6764'``llvm.prefetch``' Intrinsic
6765^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6766
6767Syntax:
6768"""""""
6769
6770::
6771
6772 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6773
6774Overview:
6775"""""""""
6776
6777The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6778insert a prefetch instruction if supported; otherwise, it is a noop.
6779Prefetches have no effect on the behavior of the program but can change
6780its performance characteristics.
6781
6782Arguments:
6783""""""""""
6784
6785``address`` is the address to be prefetched, ``rw`` is the specifier
6786determining if the fetch should be for a read (0) or write (1), and
6787``locality`` is a temporal locality specifier ranging from (0) - no
6788locality, to (3) - extremely local keep in cache. The ``cache type``
6789specifies whether the prefetch is performed on the data (1) or
6790instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6791arguments must be constant integers.
6792
6793Semantics:
6794""""""""""
6795
6796This intrinsic does not modify the behavior of the program. In
6797particular, prefetches cannot trap and do not produce a value. On
6798targets that support this intrinsic, the prefetch can provide hints to
6799the processor cache for better performance.
6800
6801'``llvm.pcmarker``' Intrinsic
6802^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6803
6804Syntax:
6805"""""""
6806
6807::
6808
6809 declare void @llvm.pcmarker(i32 <id>)
6810
6811Overview:
6812"""""""""
6813
6814The '``llvm.pcmarker``' intrinsic is a method to export a Program
6815Counter (PC) in a region of code to simulators and other tools. The
6816method is target specific, but it is expected that the marker will use
6817exported symbols to transmit the PC of the marker. The marker makes no
6818guarantees that it will remain with any specific instruction after
6819optimizations. It is possible that the presence of a marker will inhibit
6820optimizations. The intended use is to be inserted after optimizations to
6821allow correlations of simulation runs.
6822
6823Arguments:
6824""""""""""
6825
6826``id`` is a numerical id identifying the marker.
6827
6828Semantics:
6829""""""""""
6830
6831This intrinsic does not modify the behavior of the program. Backends
6832that do not support this intrinsic may ignore it.
6833
6834'``llvm.readcyclecounter``' Intrinsic
6835^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6836
6837Syntax:
6838"""""""
6839
6840::
6841
6842 declare i64 @llvm.readcyclecounter()
6843
6844Overview:
6845"""""""""
6846
6847The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6848counter register (or similar low latency, high accuracy clocks) on those
6849targets that support it. On X86, it should map to RDTSC. On Alpha, it
6850should map to RPCC. As the backing counters overflow quickly (on the
6851order of 9 seconds on alpha), this should only be used for small
6852timings.
6853
6854Semantics:
6855""""""""""
6856
6857When directly supported, reading the cycle counter should not modify any
6858memory. Implementations are allowed to either return a application
6859specific value or a system wide value. On backends without support, this
6860is lowered to a constant 0.
6861
Tim Northoverbc933082013-05-23 19:11:20 +00006862Note that runtime support may be conditional on the privilege-level code is
6863running at and the host platform.
6864
Sean Silvab084af42012-12-07 10:36:55 +00006865Standard C Library Intrinsics
6866-----------------------------
6867
6868LLVM provides intrinsics for a few important standard C library
6869functions. These intrinsics allow source-language front-ends to pass
6870information about the alignment of the pointer arguments to the code
6871generator, providing opportunity for more efficient code generation.
6872
6873.. _int_memcpy:
6874
6875'``llvm.memcpy``' Intrinsic
6876^^^^^^^^^^^^^^^^^^^^^^^^^^^
6877
6878Syntax:
6879"""""""
6880
6881This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6882integer bit width and for different address spaces. Not all targets
6883support all bit widths however.
6884
6885::
6886
6887 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6888 i32 <len>, i32 <align>, i1 <isvolatile>)
6889 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6890 i64 <len>, i32 <align>, i1 <isvolatile>)
6891
6892Overview:
6893"""""""""
6894
6895The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6896source location to the destination location.
6897
6898Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6899intrinsics do not return a value, takes extra alignment/isvolatile
6900arguments and the pointers can be in specified address spaces.
6901
6902Arguments:
6903""""""""""
6904
6905The first argument is a pointer to the destination, the second is a
6906pointer to the source. The third argument is an integer argument
6907specifying the number of bytes to copy, the fourth argument is the
6908alignment of the source and destination locations, and the fifth is a
6909boolean indicating a volatile access.
6910
6911If the call to this intrinsic has an alignment value that is not 0 or 1,
6912then the caller guarantees that both the source and destination pointers
6913are aligned to that boundary.
6914
6915If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6916a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6917very cleanly specified and it is unwise to depend on it.
6918
6919Semantics:
6920""""""""""
6921
6922The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6923source location to the destination location, which are not allowed to
6924overlap. It copies "len" bytes of memory over. If the argument is known
6925to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00006926argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00006927
6928'``llvm.memmove``' Intrinsic
6929^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6930
6931Syntax:
6932"""""""
6933
6934This is an overloaded intrinsic. You can use llvm.memmove on any integer
6935bit width and for different address space. Not all targets support all
6936bit widths however.
6937
6938::
6939
6940 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6941 i32 <len>, i32 <align>, i1 <isvolatile>)
6942 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6943 i64 <len>, i32 <align>, i1 <isvolatile>)
6944
6945Overview:
6946"""""""""
6947
6948The '``llvm.memmove.*``' intrinsics move a block of memory from the
6949source location to the destination location. It is similar to the
6950'``llvm.memcpy``' intrinsic but allows the two memory locations to
6951overlap.
6952
6953Note that, unlike the standard libc function, the ``llvm.memmove.*``
6954intrinsics do not return a value, takes extra alignment/isvolatile
6955arguments and the pointers can be in specified address spaces.
6956
6957Arguments:
6958""""""""""
6959
6960The first argument is a pointer to the destination, the second is a
6961pointer to the source. The third argument is an integer argument
6962specifying the number of bytes to copy, the fourth argument is the
6963alignment of the source and destination locations, and the fifth is a
6964boolean indicating a volatile access.
6965
6966If the call to this intrinsic has an alignment value that is not 0 or 1,
6967then the caller guarantees that the source and destination pointers are
6968aligned to that boundary.
6969
6970If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6971is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6972not very cleanly specified and it is unwise to depend on it.
6973
6974Semantics:
6975""""""""""
6976
6977The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6978source location to the destination location, which may overlap. It
6979copies "len" bytes of memory over. If the argument is known to be
6980aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00006981otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00006982
6983'``llvm.memset.*``' Intrinsics
6984^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6985
6986Syntax:
6987"""""""
6988
6989This is an overloaded intrinsic. You can use llvm.memset on any integer
6990bit width and for different address spaces. However, not all targets
6991support all bit widths.
6992
6993::
6994
6995 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6996 i32 <len>, i32 <align>, i1 <isvolatile>)
6997 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6998 i64 <len>, i32 <align>, i1 <isvolatile>)
6999
7000Overview:
7001"""""""""
7002
7003The '``llvm.memset.*``' intrinsics fill a block of memory with a
7004particular byte value.
7005
7006Note that, unlike the standard libc function, the ``llvm.memset``
7007intrinsic does not return a value and takes extra alignment/volatile
7008arguments. Also, the destination can be in an arbitrary address space.
7009
7010Arguments:
7011""""""""""
7012
7013The first argument is a pointer to the destination to fill, the second
7014is the byte value with which to fill it, the third argument is an
7015integer argument specifying the number of bytes to fill, and the fourth
7016argument is the known alignment of the destination location.
7017
7018If the call to this intrinsic has an alignment value that is not 0 or 1,
7019then the caller guarantees that the destination pointer is aligned to
7020that boundary.
7021
7022If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7023a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7024very cleanly specified and it is unwise to depend on it.
7025
7026Semantics:
7027""""""""""
7028
7029The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7030at the destination location. If the argument is known to be aligned to
7031some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007032it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007033
7034'``llvm.sqrt.*``' Intrinsic
7035^^^^^^^^^^^^^^^^^^^^^^^^^^^
7036
7037Syntax:
7038"""""""
7039
7040This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7041floating point or vector of floating point type. Not all targets support
7042all types however.
7043
7044::
7045
7046 declare float @llvm.sqrt.f32(float %Val)
7047 declare double @llvm.sqrt.f64(double %Val)
7048 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7049 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7050 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7051
7052Overview:
7053"""""""""
7054
7055The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7056returning the same value as the libm '``sqrt``' functions would. Unlike
7057``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7058negative numbers other than -0.0 (which allows for better optimization,
7059because there is no need to worry about errno being set).
7060``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7061
7062Arguments:
7063""""""""""
7064
7065The argument and return value are floating point numbers of the same
7066type.
7067
7068Semantics:
7069""""""""""
7070
7071This function returns the sqrt of the specified operand if it is a
7072nonnegative floating point number.
7073
7074'``llvm.powi.*``' Intrinsic
7075^^^^^^^^^^^^^^^^^^^^^^^^^^^
7076
7077Syntax:
7078"""""""
7079
7080This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7081floating point or vector of floating point type. Not all targets support
7082all types however.
7083
7084::
7085
7086 declare float @llvm.powi.f32(float %Val, i32 %power)
7087 declare double @llvm.powi.f64(double %Val, i32 %power)
7088 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7089 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7090 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7091
7092Overview:
7093"""""""""
7094
7095The '``llvm.powi.*``' intrinsics return the first operand raised to the
7096specified (positive or negative) power. The order of evaluation of
7097multiplications is not defined. When a vector of floating point type is
7098used, the second argument remains a scalar integer value.
7099
7100Arguments:
7101""""""""""
7102
7103The second argument is an integer power, and the first is a value to
7104raise to that power.
7105
7106Semantics:
7107""""""""""
7108
7109This function returns the first value raised to the second power with an
7110unspecified sequence of rounding operations.
7111
7112'``llvm.sin.*``' Intrinsic
7113^^^^^^^^^^^^^^^^^^^^^^^^^^
7114
7115Syntax:
7116"""""""
7117
7118This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7119floating point or vector of floating point type. Not all targets support
7120all types however.
7121
7122::
7123
7124 declare float @llvm.sin.f32(float %Val)
7125 declare double @llvm.sin.f64(double %Val)
7126 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7127 declare fp128 @llvm.sin.f128(fp128 %Val)
7128 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7129
7130Overview:
7131"""""""""
7132
7133The '``llvm.sin.*``' intrinsics return the sine of the operand.
7134
7135Arguments:
7136""""""""""
7137
7138The argument and return value are floating point numbers of the same
7139type.
7140
7141Semantics:
7142""""""""""
7143
7144This function returns the sine of the specified operand, returning the
7145same values as the libm ``sin`` functions would, and handles error
7146conditions in the same way.
7147
7148'``llvm.cos.*``' Intrinsic
7149^^^^^^^^^^^^^^^^^^^^^^^^^^
7150
7151Syntax:
7152"""""""
7153
7154This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7155floating point or vector of floating point type. Not all targets support
7156all types however.
7157
7158::
7159
7160 declare float @llvm.cos.f32(float %Val)
7161 declare double @llvm.cos.f64(double %Val)
7162 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7163 declare fp128 @llvm.cos.f128(fp128 %Val)
7164 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7165
7166Overview:
7167"""""""""
7168
7169The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7170
7171Arguments:
7172""""""""""
7173
7174The argument and return value are floating point numbers of the same
7175type.
7176
7177Semantics:
7178""""""""""
7179
7180This function returns the cosine of the specified operand, returning the
7181same values as the libm ``cos`` functions would, and handles error
7182conditions in the same way.
7183
7184'``llvm.pow.*``' Intrinsic
7185^^^^^^^^^^^^^^^^^^^^^^^^^^
7186
7187Syntax:
7188"""""""
7189
7190This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7191floating point or vector of floating point type. Not all targets support
7192all types however.
7193
7194::
7195
7196 declare float @llvm.pow.f32(float %Val, float %Power)
7197 declare double @llvm.pow.f64(double %Val, double %Power)
7198 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7199 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7200 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7201
7202Overview:
7203"""""""""
7204
7205The '``llvm.pow.*``' intrinsics return the first operand raised to the
7206specified (positive or negative) power.
7207
7208Arguments:
7209""""""""""
7210
7211The second argument is a floating point power, and the first is a value
7212to raise to that power.
7213
7214Semantics:
7215""""""""""
7216
7217This function returns the first value raised to the second power,
7218returning the same values as the libm ``pow`` functions would, and
7219handles error conditions in the same way.
7220
7221'``llvm.exp.*``' Intrinsic
7222^^^^^^^^^^^^^^^^^^^^^^^^^^
7223
7224Syntax:
7225"""""""
7226
7227This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7228floating point or vector of floating point type. Not all targets support
7229all types however.
7230
7231::
7232
7233 declare float @llvm.exp.f32(float %Val)
7234 declare double @llvm.exp.f64(double %Val)
7235 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7236 declare fp128 @llvm.exp.f128(fp128 %Val)
7237 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7238
7239Overview:
7240"""""""""
7241
7242The '``llvm.exp.*``' intrinsics perform the exp function.
7243
7244Arguments:
7245""""""""""
7246
7247The argument and return value are floating point numbers of the same
7248type.
7249
7250Semantics:
7251""""""""""
7252
7253This function returns the same values as the libm ``exp`` functions
7254would, and handles error conditions in the same way.
7255
7256'``llvm.exp2.*``' Intrinsic
7257^^^^^^^^^^^^^^^^^^^^^^^^^^^
7258
7259Syntax:
7260"""""""
7261
7262This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7263floating point or vector of floating point type. Not all targets support
7264all types however.
7265
7266::
7267
7268 declare float @llvm.exp2.f32(float %Val)
7269 declare double @llvm.exp2.f64(double %Val)
7270 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7271 declare fp128 @llvm.exp2.f128(fp128 %Val)
7272 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7273
7274Overview:
7275"""""""""
7276
7277The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7278
7279Arguments:
7280""""""""""
7281
7282The argument and return value are floating point numbers of the same
7283type.
7284
7285Semantics:
7286""""""""""
7287
7288This function returns the same values as the libm ``exp2`` functions
7289would, and handles error conditions in the same way.
7290
7291'``llvm.log.*``' Intrinsic
7292^^^^^^^^^^^^^^^^^^^^^^^^^^
7293
7294Syntax:
7295"""""""
7296
7297This is an overloaded intrinsic. You can use ``llvm.log`` on any
7298floating point or vector of floating point type. Not all targets support
7299all types however.
7300
7301::
7302
7303 declare float @llvm.log.f32(float %Val)
7304 declare double @llvm.log.f64(double %Val)
7305 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7306 declare fp128 @llvm.log.f128(fp128 %Val)
7307 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7308
7309Overview:
7310"""""""""
7311
7312The '``llvm.log.*``' intrinsics perform the log function.
7313
7314Arguments:
7315""""""""""
7316
7317The argument and return value are floating point numbers of the same
7318type.
7319
7320Semantics:
7321""""""""""
7322
7323This function returns the same values as the libm ``log`` functions
7324would, and handles error conditions in the same way.
7325
7326'``llvm.log10.*``' Intrinsic
7327^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7328
7329Syntax:
7330"""""""
7331
7332This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7333floating point or vector of floating point type. Not all targets support
7334all types however.
7335
7336::
7337
7338 declare float @llvm.log10.f32(float %Val)
7339 declare double @llvm.log10.f64(double %Val)
7340 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7341 declare fp128 @llvm.log10.f128(fp128 %Val)
7342 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7343
7344Overview:
7345"""""""""
7346
7347The '``llvm.log10.*``' intrinsics perform the log10 function.
7348
7349Arguments:
7350""""""""""
7351
7352The argument and return value are floating point numbers of the same
7353type.
7354
7355Semantics:
7356""""""""""
7357
7358This function returns the same values as the libm ``log10`` functions
7359would, and handles error conditions in the same way.
7360
7361'``llvm.log2.*``' Intrinsic
7362^^^^^^^^^^^^^^^^^^^^^^^^^^^
7363
7364Syntax:
7365"""""""
7366
7367This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7368floating point or vector of floating point type. Not all targets support
7369all types however.
7370
7371::
7372
7373 declare float @llvm.log2.f32(float %Val)
7374 declare double @llvm.log2.f64(double %Val)
7375 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7376 declare fp128 @llvm.log2.f128(fp128 %Val)
7377 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7378
7379Overview:
7380"""""""""
7381
7382The '``llvm.log2.*``' intrinsics perform the log2 function.
7383
7384Arguments:
7385""""""""""
7386
7387The argument and return value are floating point numbers of the same
7388type.
7389
7390Semantics:
7391""""""""""
7392
7393This function returns the same values as the libm ``log2`` functions
7394would, and handles error conditions in the same way.
7395
7396'``llvm.fma.*``' Intrinsic
7397^^^^^^^^^^^^^^^^^^^^^^^^^^
7398
7399Syntax:
7400"""""""
7401
7402This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7403floating point or vector of floating point type. Not all targets support
7404all types however.
7405
7406::
7407
7408 declare float @llvm.fma.f32(float %a, float %b, float %c)
7409 declare double @llvm.fma.f64(double %a, double %b, double %c)
7410 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7411 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7412 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7413
7414Overview:
7415"""""""""
7416
7417The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7418operation.
7419
7420Arguments:
7421""""""""""
7422
7423The argument and return value are floating point numbers of the same
7424type.
7425
7426Semantics:
7427""""""""""
7428
7429This function returns the same values as the libm ``fma`` functions
7430would.
7431
7432'``llvm.fabs.*``' Intrinsic
7433^^^^^^^^^^^^^^^^^^^^^^^^^^^
7434
7435Syntax:
7436"""""""
7437
7438This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7439floating point or vector of floating point type. Not all targets support
7440all types however.
7441
7442::
7443
7444 declare float @llvm.fabs.f32(float %Val)
7445 declare double @llvm.fabs.f64(double %Val)
7446 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7447 declare fp128 @llvm.fabs.f128(fp128 %Val)
7448 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7449
7450Overview:
7451"""""""""
7452
7453The '``llvm.fabs.*``' intrinsics return the absolute value of the
7454operand.
7455
7456Arguments:
7457""""""""""
7458
7459The argument and return value are floating point numbers of the same
7460type.
7461
7462Semantics:
7463""""""""""
7464
7465This function returns the same values as the libm ``fabs`` functions
7466would, and handles error conditions in the same way.
7467
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007468'``llvm.copysign.*``' Intrinsic
7469^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7470
7471Syntax:
7472"""""""
7473
7474This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7475floating point or vector of floating point type. Not all targets support
7476all types however.
7477
7478::
7479
7480 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7481 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7482 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7483 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7484 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7485
7486Overview:
7487"""""""""
7488
7489The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7490first operand and the sign of the second operand.
7491
7492Arguments:
7493""""""""""
7494
7495The arguments and return value are floating point numbers of the same
7496type.
7497
7498Semantics:
7499""""""""""
7500
7501This function returns the same values as the libm ``copysign``
7502functions would, and handles error conditions in the same way.
7503
Sean Silvab084af42012-12-07 10:36:55 +00007504'``llvm.floor.*``' Intrinsic
7505^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7506
7507Syntax:
7508"""""""
7509
7510This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7511floating point or vector of floating point type. Not all targets support
7512all types however.
7513
7514::
7515
7516 declare float @llvm.floor.f32(float %Val)
7517 declare double @llvm.floor.f64(double %Val)
7518 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7519 declare fp128 @llvm.floor.f128(fp128 %Val)
7520 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7521
7522Overview:
7523"""""""""
7524
7525The '``llvm.floor.*``' intrinsics return the floor of the operand.
7526
7527Arguments:
7528""""""""""
7529
7530The argument and return value are floating point numbers of the same
7531type.
7532
7533Semantics:
7534""""""""""
7535
7536This function returns the same values as the libm ``floor`` functions
7537would, and handles error conditions in the same way.
7538
7539'``llvm.ceil.*``' Intrinsic
7540^^^^^^^^^^^^^^^^^^^^^^^^^^^
7541
7542Syntax:
7543"""""""
7544
7545This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7546floating point or vector of floating point type. Not all targets support
7547all types however.
7548
7549::
7550
7551 declare float @llvm.ceil.f32(float %Val)
7552 declare double @llvm.ceil.f64(double %Val)
7553 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7554 declare fp128 @llvm.ceil.f128(fp128 %Val)
7555 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7556
7557Overview:
7558"""""""""
7559
7560The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7561
7562Arguments:
7563""""""""""
7564
7565The argument and return value are floating point numbers of the same
7566type.
7567
7568Semantics:
7569""""""""""
7570
7571This function returns the same values as the libm ``ceil`` functions
7572would, and handles error conditions in the same way.
7573
7574'``llvm.trunc.*``' Intrinsic
7575^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7576
7577Syntax:
7578"""""""
7579
7580This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7581floating point or vector of floating point type. Not all targets support
7582all types however.
7583
7584::
7585
7586 declare float @llvm.trunc.f32(float %Val)
7587 declare double @llvm.trunc.f64(double %Val)
7588 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7589 declare fp128 @llvm.trunc.f128(fp128 %Val)
7590 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7591
7592Overview:
7593"""""""""
7594
7595The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7596nearest integer not larger in magnitude than the operand.
7597
7598Arguments:
7599""""""""""
7600
7601The argument and return value are floating point numbers of the same
7602type.
7603
7604Semantics:
7605""""""""""
7606
7607This function returns the same values as the libm ``trunc`` functions
7608would, and handles error conditions in the same way.
7609
7610'``llvm.rint.*``' Intrinsic
7611^^^^^^^^^^^^^^^^^^^^^^^^^^^
7612
7613Syntax:
7614"""""""
7615
7616This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7617floating point or vector of floating point type. Not all targets support
7618all types however.
7619
7620::
7621
7622 declare float @llvm.rint.f32(float %Val)
7623 declare double @llvm.rint.f64(double %Val)
7624 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7625 declare fp128 @llvm.rint.f128(fp128 %Val)
7626 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7627
7628Overview:
7629"""""""""
7630
7631The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7632nearest integer. It may raise an inexact floating-point exception if the
7633operand isn't an integer.
7634
7635Arguments:
7636""""""""""
7637
7638The argument and return value are floating point numbers of the same
7639type.
7640
7641Semantics:
7642""""""""""
7643
7644This function returns the same values as the libm ``rint`` functions
7645would, and handles error conditions in the same way.
7646
7647'``llvm.nearbyint.*``' Intrinsic
7648^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7649
7650Syntax:
7651"""""""
7652
7653This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7654floating point or vector of floating point type. Not all targets support
7655all types however.
7656
7657::
7658
7659 declare float @llvm.nearbyint.f32(float %Val)
7660 declare double @llvm.nearbyint.f64(double %Val)
7661 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7662 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7663 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7664
7665Overview:
7666"""""""""
7667
7668The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7669nearest integer.
7670
7671Arguments:
7672""""""""""
7673
7674The argument and return value are floating point numbers of the same
7675type.
7676
7677Semantics:
7678""""""""""
7679
7680This function returns the same values as the libm ``nearbyint``
7681functions would, and handles error conditions in the same way.
7682
Hal Finkel171817e2013-08-07 22:49:12 +00007683'``llvm.round.*``' Intrinsic
7684^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7685
7686Syntax:
7687"""""""
7688
7689This is an overloaded intrinsic. You can use ``llvm.round`` on any
7690floating point or vector of floating point type. Not all targets support
7691all types however.
7692
7693::
7694
7695 declare float @llvm.round.f32(float %Val)
7696 declare double @llvm.round.f64(double %Val)
7697 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7698 declare fp128 @llvm.round.f128(fp128 %Val)
7699 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7700
7701Overview:
7702"""""""""
7703
7704The '``llvm.round.*``' intrinsics returns the operand rounded to the
7705nearest integer.
7706
7707Arguments:
7708""""""""""
7709
7710The argument and return value are floating point numbers of the same
7711type.
7712
7713Semantics:
7714""""""""""
7715
7716This function returns the same values as the libm ``round``
7717functions would, and handles error conditions in the same way.
7718
Sean Silvab084af42012-12-07 10:36:55 +00007719Bit Manipulation Intrinsics
7720---------------------------
7721
7722LLVM provides intrinsics for a few important bit manipulation
7723operations. These allow efficient code generation for some algorithms.
7724
7725'``llvm.bswap.*``' Intrinsics
7726^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7727
7728Syntax:
7729"""""""
7730
7731This is an overloaded intrinsic function. You can use bswap on any
7732integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7733
7734::
7735
7736 declare i16 @llvm.bswap.i16(i16 <id>)
7737 declare i32 @llvm.bswap.i32(i32 <id>)
7738 declare i64 @llvm.bswap.i64(i64 <id>)
7739
7740Overview:
7741"""""""""
7742
7743The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7744values with an even number of bytes (positive multiple of 16 bits).
7745These are useful for performing operations on data that is not in the
7746target's native byte order.
7747
7748Semantics:
7749""""""""""
7750
7751The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7752and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7753intrinsic returns an i32 value that has the four bytes of the input i32
7754swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7755returned i32 will have its bytes in 3, 2, 1, 0 order. The
7756``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7757concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7758respectively).
7759
7760'``llvm.ctpop.*``' Intrinsic
7761^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7762
7763Syntax:
7764"""""""
7765
7766This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7767bit width, or on any vector with integer elements. Not all targets
7768support all bit widths or vector types, however.
7769
7770::
7771
7772 declare i8 @llvm.ctpop.i8(i8 <src>)
7773 declare i16 @llvm.ctpop.i16(i16 <src>)
7774 declare i32 @llvm.ctpop.i32(i32 <src>)
7775 declare i64 @llvm.ctpop.i64(i64 <src>)
7776 declare i256 @llvm.ctpop.i256(i256 <src>)
7777 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7778
7779Overview:
7780"""""""""
7781
7782The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7783in a value.
7784
7785Arguments:
7786""""""""""
7787
7788The only argument is the value to be counted. The argument may be of any
7789integer type, or a vector with integer elements. The return type must
7790match the argument type.
7791
7792Semantics:
7793""""""""""
7794
7795The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7796each element of a vector.
7797
7798'``llvm.ctlz.*``' Intrinsic
7799^^^^^^^^^^^^^^^^^^^^^^^^^^^
7800
7801Syntax:
7802"""""""
7803
7804This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7805integer bit width, or any vector whose elements are integers. Not all
7806targets support all bit widths or vector types, however.
7807
7808::
7809
7810 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7811 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7812 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7813 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7814 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7815 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7816
7817Overview:
7818"""""""""
7819
7820The '``llvm.ctlz``' family of intrinsic functions counts the number of
7821leading zeros in a variable.
7822
7823Arguments:
7824""""""""""
7825
7826The first argument is the value to be counted. This argument may be of
7827any integer type, or a vectory with integer element type. The return
7828type must match the first argument type.
7829
7830The second argument must be a constant and is a flag to indicate whether
7831the intrinsic should ensure that a zero as the first argument produces a
7832defined result. Historically some architectures did not provide a
7833defined result for zero values as efficiently, and many algorithms are
7834now predicated on avoiding zero-value inputs.
7835
7836Semantics:
7837""""""""""
7838
7839The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7840zeros in a variable, or within each element of the vector. If
7841``src == 0`` then the result is the size in bits of the type of ``src``
7842if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7843``llvm.ctlz(i32 2) = 30``.
7844
7845'``llvm.cttz.*``' Intrinsic
7846^^^^^^^^^^^^^^^^^^^^^^^^^^^
7847
7848Syntax:
7849"""""""
7850
7851This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7852integer bit width, or any vector of integer elements. Not all targets
7853support all bit widths or vector types, however.
7854
7855::
7856
7857 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7858 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7859 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7860 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7861 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7862 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7863
7864Overview:
7865"""""""""
7866
7867The '``llvm.cttz``' family of intrinsic functions counts the number of
7868trailing zeros.
7869
7870Arguments:
7871""""""""""
7872
7873The first argument is the value to be counted. This argument may be of
7874any integer type, or a vectory with integer element type. The return
7875type must match the first argument type.
7876
7877The second argument must be a constant and is a flag to indicate whether
7878the intrinsic should ensure that a zero as the first argument produces a
7879defined result. Historically some architectures did not provide a
7880defined result for zero values as efficiently, and many algorithms are
7881now predicated on avoiding zero-value inputs.
7882
7883Semantics:
7884""""""""""
7885
7886The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7887zeros in a variable, or within each element of a vector. If ``src == 0``
7888then the result is the size in bits of the type of ``src`` if
7889``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7890``llvm.cttz(2) = 1``.
7891
7892Arithmetic with Overflow Intrinsics
7893-----------------------------------
7894
7895LLVM provides intrinsics for some arithmetic with overflow operations.
7896
7897'``llvm.sadd.with.overflow.*``' Intrinsics
7898^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7899
7900Syntax:
7901"""""""
7902
7903This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7904on any integer bit width.
7905
7906::
7907
7908 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7909 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7910 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7911
7912Overview:
7913"""""""""
7914
7915The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7916a signed addition of the two arguments, and indicate whether an overflow
7917occurred during the signed summation.
7918
7919Arguments:
7920""""""""""
7921
7922The arguments (%a and %b) and the first element of the result structure
7923may be of integer types of any bit width, but they must have the same
7924bit width. The second element of the result structure must be of type
7925``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7926addition.
7927
7928Semantics:
7929""""""""""
7930
7931The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007932a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00007933first element of which is the signed summation, and the second element
7934of which is a bit specifying if the signed summation resulted in an
7935overflow.
7936
7937Examples:
7938"""""""""
7939
7940.. code-block:: llvm
7941
7942 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7943 %sum = extractvalue {i32, i1} %res, 0
7944 %obit = extractvalue {i32, i1} %res, 1
7945 br i1 %obit, label %overflow, label %normal
7946
7947'``llvm.uadd.with.overflow.*``' Intrinsics
7948^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7949
7950Syntax:
7951"""""""
7952
7953This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7954on any integer bit width.
7955
7956::
7957
7958 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7959 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7960 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7961
7962Overview:
7963"""""""""
7964
7965The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7966an unsigned addition of the two arguments, and indicate whether a carry
7967occurred during the unsigned summation.
7968
7969Arguments:
7970""""""""""
7971
7972The arguments (%a and %b) and the first element of the result structure
7973may be of integer types of any bit width, but they must have the same
7974bit width. The second element of the result structure must be of type
7975``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7976addition.
7977
7978Semantics:
7979""""""""""
7980
7981The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007982an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00007983first element of which is the sum, and the second element of which is a
7984bit specifying if the unsigned summation resulted in a carry.
7985
7986Examples:
7987"""""""""
7988
7989.. code-block:: llvm
7990
7991 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7992 %sum = extractvalue {i32, i1} %res, 0
7993 %obit = extractvalue {i32, i1} %res, 1
7994 br i1 %obit, label %carry, label %normal
7995
7996'``llvm.ssub.with.overflow.*``' Intrinsics
7997^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7998
7999Syntax:
8000"""""""
8001
8002This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8003on any integer bit width.
8004
8005::
8006
8007 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8008 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8009 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8010
8011Overview:
8012"""""""""
8013
8014The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8015a signed subtraction of the two arguments, and indicate whether an
8016overflow occurred during the signed subtraction.
8017
8018Arguments:
8019""""""""""
8020
8021The arguments (%a and %b) and the first element of the result structure
8022may be of integer types of any bit width, but they must have the same
8023bit width. The second element of the result structure must be of type
8024``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8025subtraction.
8026
8027Semantics:
8028""""""""""
8029
8030The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008031a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008032first element of which is the subtraction, and the second element of
8033which is a bit specifying if the signed subtraction resulted in an
8034overflow.
8035
8036Examples:
8037"""""""""
8038
8039.. code-block:: llvm
8040
8041 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8042 %sum = extractvalue {i32, i1} %res, 0
8043 %obit = extractvalue {i32, i1} %res, 1
8044 br i1 %obit, label %overflow, label %normal
8045
8046'``llvm.usub.with.overflow.*``' Intrinsics
8047^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8048
8049Syntax:
8050"""""""
8051
8052This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8053on any integer bit width.
8054
8055::
8056
8057 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8058 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8059 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8060
8061Overview:
8062"""""""""
8063
8064The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8065an unsigned subtraction of the two arguments, and indicate whether an
8066overflow occurred during the unsigned subtraction.
8067
8068Arguments:
8069""""""""""
8070
8071The arguments (%a and %b) and the first element of the result structure
8072may be of integer types of any bit width, but they must have the same
8073bit width. The second element of the result structure must be of type
8074``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8075subtraction.
8076
8077Semantics:
8078""""""""""
8079
8080The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008081an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008082the first element of which is the subtraction, and the second element of
8083which is a bit specifying if the unsigned subtraction resulted in an
8084overflow.
8085
8086Examples:
8087"""""""""
8088
8089.. code-block:: llvm
8090
8091 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8092 %sum = extractvalue {i32, i1} %res, 0
8093 %obit = extractvalue {i32, i1} %res, 1
8094 br i1 %obit, label %overflow, label %normal
8095
8096'``llvm.smul.with.overflow.*``' Intrinsics
8097^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8098
8099Syntax:
8100"""""""
8101
8102This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8103on any integer bit width.
8104
8105::
8106
8107 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8108 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8109 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8110
8111Overview:
8112"""""""""
8113
8114The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8115a signed multiplication of the two arguments, and indicate whether an
8116overflow occurred during the signed multiplication.
8117
8118Arguments:
8119""""""""""
8120
8121The arguments (%a and %b) and the first element of the result structure
8122may be of integer types of any bit width, but they must have the same
8123bit width. The second element of the result structure must be of type
8124``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8125multiplication.
8126
8127Semantics:
8128""""""""""
8129
8130The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008131a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008132the first element of which is the multiplication, and the second element
8133of which is a bit specifying if the signed multiplication resulted in an
8134overflow.
8135
8136Examples:
8137"""""""""
8138
8139.. code-block:: llvm
8140
8141 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8142 %sum = extractvalue {i32, i1} %res, 0
8143 %obit = extractvalue {i32, i1} %res, 1
8144 br i1 %obit, label %overflow, label %normal
8145
8146'``llvm.umul.with.overflow.*``' Intrinsics
8147^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8148
8149Syntax:
8150"""""""
8151
8152This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8153on any integer bit width.
8154
8155::
8156
8157 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8158 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8159 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8160
8161Overview:
8162"""""""""
8163
8164The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8165a unsigned multiplication of the two arguments, and indicate whether an
8166overflow occurred during the unsigned multiplication.
8167
8168Arguments:
8169""""""""""
8170
8171The arguments (%a and %b) and the first element of the result structure
8172may be of integer types of any bit width, but they must have the same
8173bit width. The second element of the result structure must be of type
8174``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8175multiplication.
8176
8177Semantics:
8178""""""""""
8179
8180The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008181an unsigned multiplication of the two arguments. They return a structure ---
8182the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008183element of which is a bit specifying if the unsigned multiplication
8184resulted in an overflow.
8185
8186Examples:
8187"""""""""
8188
8189.. code-block:: llvm
8190
8191 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8192 %sum = extractvalue {i32, i1} %res, 0
8193 %obit = extractvalue {i32, i1} %res, 1
8194 br i1 %obit, label %overflow, label %normal
8195
8196Specialised Arithmetic Intrinsics
8197---------------------------------
8198
8199'``llvm.fmuladd.*``' Intrinsic
8200^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8201
8202Syntax:
8203"""""""
8204
8205::
8206
8207 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8208 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8209
8210Overview:
8211"""""""""
8212
8213The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008214expressions that can be fused if the code generator determines that (a) the
8215target instruction set has support for a fused operation, and (b) that the
8216fused operation is more efficient than the equivalent, separate pair of mul
8217and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008218
8219Arguments:
8220""""""""""
8221
8222The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8223multiplicands, a and b, and an addend c.
8224
8225Semantics:
8226""""""""""
8227
8228The expression:
8229
8230::
8231
8232 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8233
8234is equivalent to the expression a \* b + c, except that rounding will
8235not be performed between the multiplication and addition steps if the
8236code generator fuses the operations. Fusion is not guaranteed, even if
8237the target platform supports it. If a fused multiply-add is required the
8238corresponding llvm.fma.\* intrinsic function should be used instead.
8239
8240Examples:
8241"""""""""
8242
8243.. code-block:: llvm
8244
8245 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8246
8247Half Precision Floating Point Intrinsics
8248----------------------------------------
8249
8250For most target platforms, half precision floating point is a
8251storage-only format. This means that it is a dense encoding (in memory)
8252but does not support computation in the format.
8253
8254This means that code must first load the half-precision floating point
8255value as an i16, then convert it to float with
8256:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8257then be performed on the float value (including extending to double
8258etc). To store the value back to memory, it is first converted to float
8259if needed, then converted to i16 with
8260:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8261i16 value.
8262
8263.. _int_convert_to_fp16:
8264
8265'``llvm.convert.to.fp16``' Intrinsic
8266^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8267
8268Syntax:
8269"""""""
8270
8271::
8272
8273 declare i16 @llvm.convert.to.fp16(f32 %a)
8274
8275Overview:
8276"""""""""
8277
8278The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8279from single precision floating point format to half precision floating
8280point format.
8281
8282Arguments:
8283""""""""""
8284
8285The intrinsic function contains single argument - the value to be
8286converted.
8287
8288Semantics:
8289""""""""""
8290
8291The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8292from single precision floating point format to half precision floating
8293point format. The return value is an ``i16`` which contains the
8294converted number.
8295
8296Examples:
8297"""""""""
8298
8299.. code-block:: llvm
8300
8301 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8302 store i16 %res, i16* @x, align 2
8303
8304.. _int_convert_from_fp16:
8305
8306'``llvm.convert.from.fp16``' Intrinsic
8307^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8308
8309Syntax:
8310"""""""
8311
8312::
8313
8314 declare f32 @llvm.convert.from.fp16(i16 %a)
8315
8316Overview:
8317"""""""""
8318
8319The '``llvm.convert.from.fp16``' intrinsic function performs a
8320conversion from half precision floating point format to single precision
8321floating point format.
8322
8323Arguments:
8324""""""""""
8325
8326The intrinsic function contains single argument - the value to be
8327converted.
8328
8329Semantics:
8330""""""""""
8331
8332The '``llvm.convert.from.fp16``' intrinsic function performs a
8333conversion from half single precision floating point format to single
8334precision floating point format. The input half-float value is
8335represented by an ``i16`` value.
8336
8337Examples:
8338"""""""""
8339
8340.. code-block:: llvm
8341
8342 %a = load i16* @x, align 2
8343 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8344
8345Debugger Intrinsics
8346-------------------
8347
8348The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8349prefix), are described in the `LLVM Source Level
8350Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8351document.
8352
8353Exception Handling Intrinsics
8354-----------------------------
8355
8356The LLVM exception handling intrinsics (which all start with
8357``llvm.eh.`` prefix), are described in the `LLVM Exception
8358Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8359
8360.. _int_trampoline:
8361
8362Trampoline Intrinsics
8363---------------------
8364
8365These intrinsics make it possible to excise one parameter, marked with
8366the :ref:`nest <nest>` attribute, from a function. The result is a
8367callable function pointer lacking the nest parameter - the caller does
8368not need to provide a value for it. Instead, the value to use is stored
8369in advance in a "trampoline", a block of memory usually allocated on the
8370stack, which also contains code to splice the nest value into the
8371argument list. This is used to implement the GCC nested function address
8372extension.
8373
8374For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8375then the resulting function pointer has signature ``i32 (i32, i32)*``.
8376It can be created as follows:
8377
8378.. code-block:: llvm
8379
8380 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8381 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8382 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8383 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8384 %fp = bitcast i8* %p to i32 (i32, i32)*
8385
8386The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8387``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8388
8389.. _int_it:
8390
8391'``llvm.init.trampoline``' Intrinsic
8392^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8393
8394Syntax:
8395"""""""
8396
8397::
8398
8399 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8400
8401Overview:
8402"""""""""
8403
8404This fills the memory pointed to by ``tramp`` with executable code,
8405turning it into a trampoline.
8406
8407Arguments:
8408""""""""""
8409
8410The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8411pointers. The ``tramp`` argument must point to a sufficiently large and
8412sufficiently aligned block of memory; this memory is written to by the
8413intrinsic. Note that the size and the alignment are target-specific -
8414LLVM currently provides no portable way of determining them, so a
8415front-end that generates this intrinsic needs to have some
8416target-specific knowledge. The ``func`` argument must hold a function
8417bitcast to an ``i8*``.
8418
8419Semantics:
8420""""""""""
8421
8422The block of memory pointed to by ``tramp`` is filled with target
8423dependent code, turning it into a function. Then ``tramp`` needs to be
8424passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8425be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8426function's signature is the same as that of ``func`` with any arguments
8427marked with the ``nest`` attribute removed. At most one such ``nest``
8428argument is allowed, and it must be of pointer type. Calling the new
8429function is equivalent to calling ``func`` with the same argument list,
8430but with ``nval`` used for the missing ``nest`` argument. If, after
8431calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8432modified, then the effect of any later call to the returned function
8433pointer is undefined.
8434
8435.. _int_at:
8436
8437'``llvm.adjust.trampoline``' Intrinsic
8438^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8439
8440Syntax:
8441"""""""
8442
8443::
8444
8445 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8446
8447Overview:
8448"""""""""
8449
8450This performs any required machine-specific adjustment to the address of
8451a trampoline (passed as ``tramp``).
8452
8453Arguments:
8454""""""""""
8455
8456``tramp`` must point to a block of memory which already has trampoline
8457code filled in by a previous call to
8458:ref:`llvm.init.trampoline <int_it>`.
8459
8460Semantics:
8461""""""""""
8462
8463On some architectures the address of the code to be executed needs to be
8464different to the address where the trampoline is actually stored. This
8465intrinsic returns the executable address corresponding to ``tramp``
8466after performing the required machine specific adjustments. The pointer
8467returned can then be :ref:`bitcast and executed <int_trampoline>`.
8468
8469Memory Use Markers
8470------------------
8471
8472This class of intrinsics exists to information about the lifetime of
8473memory objects and ranges where variables are immutable.
8474
Reid Klecknera534a382013-12-19 02:14:12 +00008475.. _int_lifestart:
8476
Sean Silvab084af42012-12-07 10:36:55 +00008477'``llvm.lifetime.start``' Intrinsic
8478^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8479
8480Syntax:
8481"""""""
8482
8483::
8484
8485 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8486
8487Overview:
8488"""""""""
8489
8490The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8491object's lifetime.
8492
8493Arguments:
8494""""""""""
8495
8496The first argument is a constant integer representing the size of the
8497object, or -1 if it is variable sized. The second argument is a pointer
8498to the object.
8499
8500Semantics:
8501""""""""""
8502
8503This intrinsic indicates that before this point in the code, the value
8504of the memory pointed to by ``ptr`` is dead. This means that it is known
8505to never be used and has an undefined value. A load from the pointer
8506that precedes this intrinsic can be replaced with ``'undef'``.
8507
Reid Klecknera534a382013-12-19 02:14:12 +00008508.. _int_lifeend:
8509
Sean Silvab084af42012-12-07 10:36:55 +00008510'``llvm.lifetime.end``' Intrinsic
8511^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8512
8513Syntax:
8514"""""""
8515
8516::
8517
8518 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8519
8520Overview:
8521"""""""""
8522
8523The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8524object's lifetime.
8525
8526Arguments:
8527""""""""""
8528
8529The first argument is a constant integer representing the size of the
8530object, or -1 if it is variable sized. The second argument is a pointer
8531to the object.
8532
8533Semantics:
8534""""""""""
8535
8536This intrinsic indicates that after this point in the code, the value of
8537the memory pointed to by ``ptr`` is dead. This means that it is known to
8538never be used and has an undefined value. Any stores into the memory
8539object following this intrinsic may be removed as dead.
8540
8541'``llvm.invariant.start``' Intrinsic
8542^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8543
8544Syntax:
8545"""""""
8546
8547::
8548
8549 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8550
8551Overview:
8552"""""""""
8553
8554The '``llvm.invariant.start``' intrinsic specifies that the contents of
8555a memory object will not change.
8556
8557Arguments:
8558""""""""""
8559
8560The first argument is a constant integer representing the size of the
8561object, or -1 if it is variable sized. The second argument is a pointer
8562to the object.
8563
8564Semantics:
8565""""""""""
8566
8567This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8568the return value, the referenced memory location is constant and
8569unchanging.
8570
8571'``llvm.invariant.end``' Intrinsic
8572^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8573
8574Syntax:
8575"""""""
8576
8577::
8578
8579 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8580
8581Overview:
8582"""""""""
8583
8584The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8585memory object are mutable.
8586
8587Arguments:
8588""""""""""
8589
8590The first argument is the matching ``llvm.invariant.start`` intrinsic.
8591The second argument is a constant integer representing the size of the
8592object, or -1 if it is variable sized and the third argument is a
8593pointer to the object.
8594
8595Semantics:
8596""""""""""
8597
8598This intrinsic indicates that the memory is mutable again.
8599
8600General Intrinsics
8601------------------
8602
8603This class of intrinsics is designed to be generic and has no specific
8604purpose.
8605
8606'``llvm.var.annotation``' Intrinsic
8607^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8608
8609Syntax:
8610"""""""
8611
8612::
8613
8614 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8615
8616Overview:
8617"""""""""
8618
8619The '``llvm.var.annotation``' intrinsic.
8620
8621Arguments:
8622""""""""""
8623
8624The first argument is a pointer to a value, the second is a pointer to a
8625global string, the third is a pointer to a global string which is the
8626source file name, and the last argument is the line number.
8627
8628Semantics:
8629""""""""""
8630
8631This intrinsic allows annotation of local variables with arbitrary
8632strings. This can be useful for special purpose optimizations that want
8633to look for these annotations. These have no other defined use; they are
8634ignored by code generation and optimization.
8635
Michael Gottesman88d18832013-03-26 00:34:27 +00008636'``llvm.ptr.annotation.*``' Intrinsic
8637^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8638
8639Syntax:
8640"""""""
8641
8642This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8643pointer to an integer of any width. *NOTE* you must specify an address space for
8644the pointer. The identifier for the default address space is the integer
8645'``0``'.
8646
8647::
8648
8649 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8650 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8651 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8652 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8653 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8654
8655Overview:
8656"""""""""
8657
8658The '``llvm.ptr.annotation``' intrinsic.
8659
8660Arguments:
8661""""""""""
8662
8663The first argument is a pointer to an integer value of arbitrary bitwidth
8664(result of some expression), the second is a pointer to a global string, the
8665third is a pointer to a global string which is the source file name, and the
8666last argument is the line number. It returns the value of the first argument.
8667
8668Semantics:
8669""""""""""
8670
8671This intrinsic allows annotation of a pointer to an integer with arbitrary
8672strings. This can be useful for special purpose optimizations that want to look
8673for these annotations. These have no other defined use; they are ignored by code
8674generation and optimization.
8675
Sean Silvab084af42012-12-07 10:36:55 +00008676'``llvm.annotation.*``' Intrinsic
8677^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8678
8679Syntax:
8680"""""""
8681
8682This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8683any integer bit width.
8684
8685::
8686
8687 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8688 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8689 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8690 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8691 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8692
8693Overview:
8694"""""""""
8695
8696The '``llvm.annotation``' intrinsic.
8697
8698Arguments:
8699""""""""""
8700
8701The first argument is an integer value (result of some expression), the
8702second is a pointer to a global string, the third is a pointer to a
8703global string which is the source file name, and the last argument is
8704the line number. It returns the value of the first argument.
8705
8706Semantics:
8707""""""""""
8708
8709This intrinsic allows annotations to be put on arbitrary expressions
8710with arbitrary strings. This can be useful for special purpose
8711optimizations that want to look for these annotations. These have no
8712other defined use; they are ignored by code generation and optimization.
8713
8714'``llvm.trap``' Intrinsic
8715^^^^^^^^^^^^^^^^^^^^^^^^^
8716
8717Syntax:
8718"""""""
8719
8720::
8721
8722 declare void @llvm.trap() noreturn nounwind
8723
8724Overview:
8725"""""""""
8726
8727The '``llvm.trap``' intrinsic.
8728
8729Arguments:
8730""""""""""
8731
8732None.
8733
8734Semantics:
8735""""""""""
8736
8737This intrinsic is lowered to the target dependent trap instruction. If
8738the target does not have a trap instruction, this intrinsic will be
8739lowered to a call of the ``abort()`` function.
8740
8741'``llvm.debugtrap``' Intrinsic
8742^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8743
8744Syntax:
8745"""""""
8746
8747::
8748
8749 declare void @llvm.debugtrap() nounwind
8750
8751Overview:
8752"""""""""
8753
8754The '``llvm.debugtrap``' intrinsic.
8755
8756Arguments:
8757""""""""""
8758
8759None.
8760
8761Semantics:
8762""""""""""
8763
8764This intrinsic is lowered to code which is intended to cause an
8765execution trap with the intention of requesting the attention of a
8766debugger.
8767
8768'``llvm.stackprotector``' Intrinsic
8769^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8770
8771Syntax:
8772"""""""
8773
8774::
8775
8776 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8777
8778Overview:
8779"""""""""
8780
8781The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8782onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8783is placed on the stack before local variables.
8784
8785Arguments:
8786""""""""""
8787
8788The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8789The first argument is the value loaded from the stack guard
8790``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8791enough space to hold the value of the guard.
8792
8793Semantics:
8794""""""""""
8795
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008796This intrinsic causes the prologue/epilogue inserter to force the position of
8797the ``AllocaInst`` stack slot to be before local variables on the stack. This is
8798to ensure that if a local variable on the stack is overwritten, it will destroy
8799the value of the guard. When the function exits, the guard on the stack is
8800checked against the original guard by ``llvm.stackprotectorcheck``. If they are
8801different, then ``llvm.stackprotectorcheck`` causes the program to abort by
8802calling the ``__stack_chk_fail()`` function.
8803
8804'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00008805^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008806
8807Syntax:
8808"""""""
8809
8810::
8811
8812 declare void @llvm.stackprotectorcheck(i8** <guard>)
8813
8814Overview:
8815"""""""""
8816
8817The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00008818created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00008819``__stack_chk_fail()`` function.
8820
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008821Arguments:
8822""""""""""
8823
8824The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
8825the variable ``@__stack_chk_guard``.
8826
8827Semantics:
8828""""""""""
8829
8830This intrinsic is provided to perform the stack protector check by comparing
8831``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
8832values do not match call the ``__stack_chk_fail()`` function.
8833
8834The reason to provide this as an IR level intrinsic instead of implementing it
8835via other IR operations is that in order to perform this operation at the IR
8836level without an intrinsic, one would need to create additional basic blocks to
8837handle the success/failure cases. This makes it difficult to stop the stack
8838protector check from disrupting sibling tail calls in Codegen. With this
8839intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00008840codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008841
Sean Silvab084af42012-12-07 10:36:55 +00008842'``llvm.objectsize``' Intrinsic
8843^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8844
8845Syntax:
8846"""""""
8847
8848::
8849
8850 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8851 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8852
8853Overview:
8854"""""""""
8855
8856The ``llvm.objectsize`` intrinsic is designed to provide information to
8857the optimizers to determine at compile time whether a) an operation
8858(like memcpy) will overflow a buffer that corresponds to an object, or
8859b) that a runtime check for overflow isn't necessary. An object in this
8860context means an allocation of a specific class, structure, array, or
8861other object.
8862
8863Arguments:
8864""""""""""
8865
8866The ``llvm.objectsize`` intrinsic takes two arguments. The first
8867argument is a pointer to or into the ``object``. The second argument is
8868a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8869or -1 (if false) when the object size is unknown. The second argument
8870only accepts constants.
8871
8872Semantics:
8873""""""""""
8874
8875The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8876the size of the object concerned. If the size cannot be determined at
8877compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8878on the ``min`` argument).
8879
8880'``llvm.expect``' Intrinsic
8881^^^^^^^^^^^^^^^^^^^^^^^^^^^
8882
8883Syntax:
8884"""""""
8885
8886::
8887
8888 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8889 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8890
8891Overview:
8892"""""""""
8893
8894The ``llvm.expect`` intrinsic provides information about expected (the
8895most probable) value of ``val``, which can be used by optimizers.
8896
8897Arguments:
8898""""""""""
8899
8900The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8901a value. The second argument is an expected value, this needs to be a
8902constant value, variables are not allowed.
8903
8904Semantics:
8905""""""""""
8906
8907This intrinsic is lowered to the ``val``.
8908
8909'``llvm.donothing``' Intrinsic
8910^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8911
8912Syntax:
8913"""""""
8914
8915::
8916
8917 declare void @llvm.donothing() nounwind readnone
8918
8919Overview:
8920"""""""""
8921
8922The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8923only intrinsic that can be called with an invoke instruction.
8924
8925Arguments:
8926""""""""""
8927
8928None.
8929
8930Semantics:
8931""""""""""
8932
8933This intrinsic does nothing, and it's removed by optimizers and ignored
8934by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00008935
8936Stack Map Intrinsics
8937--------------------
8938
8939LLVM provides experimental intrinsics to support runtime patching
8940mechanisms commonly desired in dynamic language JITs. These intrinsics
8941are described in :doc:`StackMaps`.