blob: 617083a15d0169229cb473e1aec70448504d6a20 [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
James Molloy493e57d2015-10-26 14:10:46 +000016#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Chandler Carruthd9903882015-01-14 11:23:27 +000018#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000019#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000020#include "llvm/Analysis/MemoryBuiltins.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000021#include "llvm/Analysis/LoopInfo.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000022#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000023#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000024#include "llvm/IR/Constants.h"
25#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000026#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000027#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000028#include "llvm/IR/GlobalAlias.h"
29#include "llvm/IR/GlobalVariable.h"
30#include "llvm/IR/Instructions.h"
31#include "llvm/IR/IntrinsicInst.h"
32#include "llvm/IR/LLVMContext.h"
33#include "llvm/IR/Metadata.h"
34#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000035#include "llvm/IR/PatternMatch.h"
Philip Reames5461d452015-04-23 17:36:48 +000036#include "llvm/IR/Statepoint.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000037#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000038#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000039#include <algorithm>
40#include <array>
Chris Lattner64496902008-06-04 04:46:14 +000041#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000042using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000043using namespace llvm::PatternMatch;
44
45const unsigned MaxDepth = 6;
46
Philip Reames1c292272015-03-10 22:43:20 +000047/// Enable an experimental feature to leverage information about dominating
48/// conditions to compute known bits. The individual options below control how
Benjamin Kramerdf005cb2015-08-08 18:27:36 +000049/// hard we search. The defaults are chosen to be fairly aggressive. If you
Philip Reames1c292272015-03-10 22:43:20 +000050/// run into compile time problems when testing, scale them back and report
51/// your findings.
52static cl::opt<bool> EnableDomConditions("value-tracking-dom-conditions",
53 cl::Hidden, cl::init(false));
54
55// This is expensive, so we only do it for the top level query value.
56// (TODO: evaluate cost vs profit, consider higher thresholds)
57static cl::opt<unsigned> DomConditionsMaxDepth("dom-conditions-max-depth",
58 cl::Hidden, cl::init(1));
59
60/// How many dominating blocks should be scanned looking for dominating
61/// conditions?
62static cl::opt<unsigned> DomConditionsMaxDomBlocks("dom-conditions-dom-blocks",
63 cl::Hidden,
Igor Laevskycea9ede2015-09-29 14:57:52 +000064 cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000065
66// Controls the number of uses of the value searched for possible
67// dominating comparisons.
68static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000069 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000070
71// If true, don't consider only compares whose only use is a branch.
72static cl::opt<bool> DomConditionsSingleCmpUse("dom-conditions-single-cmp-use",
73 cl::Hidden, cl::init(false));
74
Sanjay Patelaee84212014-11-04 16:27:42 +000075/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
76/// 0). For vector types, returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000077static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000078 if (unsigned BitWidth = Ty->getScalarSizeInBits())
79 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000080
Mehdi Aminia28d91d2015-03-10 02:37:25 +000081 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000082}
Chris Lattner965c7692008-06-02 01:18:21 +000083
Benjamin Kramercfd8d902014-09-12 08:56:53 +000084namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000085// Simplifying using an assume can only be done in a particular control-flow
86// context (the context instruction provides that context). If an assume and
87// the context instruction are not in the same block then the DT helps in
88// figuring out if we can use it.
89struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +000090 const DataLayout &DL;
Chandler Carruth66b31302015-01-04 12:03:27 +000091 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +000092 const Instruction *CxtI;
93 const DominatorTree *DT;
94
Matthias Braun37e5d792016-01-28 06:29:33 +000095 /// Set of assumptions that should be excluded from further queries.
96 /// This is because of the potential for mutual recursion to cause
97 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
98 /// classic case of this is assume(x = y), which will attempt to determine
99 /// bits in x from bits in y, which will attempt to determine bits in y from
100 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
101 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
102 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
103 /// on.
104 std::array<const Value*, MaxDepth> Excluded;
105 unsigned NumExcluded;
106
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000107 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
108 const DominatorTree *DT)
Matthias Braun37e5d792016-01-28 06:29:33 +0000109 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {}
Hal Finkel60db0582014-09-07 18:57:58 +0000110
111 Query(const Query &Q, const Value *NewExcl)
Matthias Braun37e5d792016-01-28 06:29:33 +0000112 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) {
113 Excluded = Q.Excluded;
114 Excluded[NumExcluded++] = NewExcl;
115 assert(NumExcluded <= Excluded.size());
116 }
117
118 bool isExcluded(const Value *Value) const {
119 if (NumExcluded == 0)
120 return false;
121 auto End = Excluded.begin() + NumExcluded;
122 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000123 }
124};
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000125} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000126
Sanjay Patel547e9752014-11-04 16:09:50 +0000127// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000128// the preferred context instruction (if any).
129static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
130 // If we've been provided with a context instruction, then use that (provided
131 // it has been inserted).
132 if (CxtI && CxtI->getParent())
133 return CxtI;
134
135 // If the value is really an already-inserted instruction, then use that.
136 CxtI = dyn_cast<Instruction>(V);
137 if (CxtI && CxtI->getParent())
138 return CxtI;
139
140 return nullptr;
141}
142
143static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000144 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000145
146void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000147 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000148 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000149 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000150 ::computeKnownBits(V, KnownZero, KnownOne, Depth,
151 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000152}
153
Jingyue Wuca321902015-05-14 23:53:19 +0000154bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
155 AssumptionCache *AC, const Instruction *CxtI,
156 const DominatorTree *DT) {
157 assert(LHS->getType() == RHS->getType() &&
158 "LHS and RHS should have the same type");
159 assert(LHS->getType()->isIntOrIntVectorTy() &&
160 "LHS and RHS should be integers");
161 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
162 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
163 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
164 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
165 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
166 return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
167}
168
Hal Finkel60db0582014-09-07 18:57:58 +0000169static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000170 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000171
172void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000173 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000174 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000175 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000176 ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
177 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000178}
179
180static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000181 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000182
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000183bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero,
Chandler Carruth66b31302015-01-04 12:03:27 +0000184 unsigned Depth, AssumptionCache *AC,
Hal Finkel60db0582014-09-07 18:57:58 +0000185 const Instruction *CxtI,
186 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000187 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000188 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000189}
190
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000191static bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000192
193bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
194 AssumptionCache *AC, const Instruction *CxtI,
195 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000196 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000197}
198
Jingyue Wu10fcea52015-08-20 18:27:04 +0000199bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth,
200 AssumptionCache *AC, const Instruction *CxtI,
201 const DominatorTree *DT) {
202 bool NonNegative, Negative;
203 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
204 return NonNegative;
205}
206
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000207static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000208
209bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
210 AssumptionCache *AC, const Instruction *CxtI,
211 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000212 return ::isKnownNonEqual(V1, V2, Query(DL, AC,
213 safeCxtI(V1, safeCxtI(V2, CxtI)),
214 DT));
James Molloy1d88d6f2015-10-22 13:18:42 +0000215}
216
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000217static bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
218 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000219
220bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
221 unsigned Depth, AssumptionCache *AC,
222 const Instruction *CxtI, const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000223 return ::MaskedValueIsZero(V, Mask, Depth,
224 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000225}
226
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000227static unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000228
229unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL,
230 unsigned Depth, AssumptionCache *AC,
231 const Instruction *CxtI,
232 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000233 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000234}
235
Jay Foada0653a32014-05-14 21:14:37 +0000236static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
237 APInt &KnownZero, APInt &KnownOne,
238 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000239 unsigned Depth, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000240 if (!Add) {
241 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
242 // We know that the top bits of C-X are clear if X contains less bits
243 // than C (i.e. no wrap-around can happen). For example, 20-X is
244 // positive if we can prove that X is >= 0 and < 16.
245 if (!CLHS->getValue().isNegative()) {
246 unsigned BitWidth = KnownZero.getBitWidth();
247 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
248 // NLZ can't be BitWidth with no sign bit
249 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000250 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000251
252 // If all of the MaskV bits are known to be zero, then we know the
253 // output top bits are zero, because we now know that the output is
254 // from [0-C].
255 if ((KnownZero2 & MaskV) == MaskV) {
256 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
257 // Top bits known zero.
258 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
259 }
260 }
261 }
262 }
263
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000264 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000265
David Majnemer97ddca32014-08-22 00:40:43 +0000266 // If an initial sequence of bits in the result is not needed, the
267 // corresponding bits in the operands are not needed.
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000268 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000269 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
270 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000271
David Majnemer97ddca32014-08-22 00:40:43 +0000272 // Carry in a 1 for a subtract, rather than a 0.
273 APInt CarryIn(BitWidth, 0);
274 if (!Add) {
275 // Sum = LHS + ~RHS + 1
276 std::swap(KnownZero2, KnownOne2);
277 CarryIn.setBit(0);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000278 }
279
David Majnemer97ddca32014-08-22 00:40:43 +0000280 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
281 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
282
283 // Compute known bits of the carry.
284 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
285 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
286
287 // Compute set of known bits (where all three relevant bits are known).
288 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
289 APInt RHSKnown = KnownZero2 | KnownOne2;
290 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
291 APInt Known = LHSKnown & RHSKnown & CarryKnown;
292
293 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
294 "known bits of sum differ");
295
296 // Compute known bits of the result.
297 KnownZero = ~PossibleSumOne & Known;
298 KnownOne = PossibleSumOne & Known;
299
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000300 // Are we still trying to solve for the sign bit?
David Majnemer97ddca32014-08-22 00:40:43 +0000301 if (!Known.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000302 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000303 // Adding two non-negative numbers, or subtracting a negative number from
304 // a non-negative one, can't wrap into negative.
305 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
306 KnownZero |= APInt::getSignBit(BitWidth);
307 // Adding two negative numbers, or subtracting a non-negative number from
308 // a negative one, can't wrap into non-negative.
309 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
310 KnownOne |= APInt::getSignBit(BitWidth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000311 }
312 }
313}
314
Jay Foada0653a32014-05-14 21:14:37 +0000315static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
316 APInt &KnownZero, APInt &KnownOne,
317 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000318 unsigned Depth, const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000319 unsigned BitWidth = KnownZero.getBitWidth();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000320 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
321 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000322
323 bool isKnownNegative = false;
324 bool isKnownNonNegative = false;
325 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000326 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000327 if (Op0 == Op1) {
328 // The product of a number with itself is non-negative.
329 isKnownNonNegative = true;
330 } else {
331 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
332 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
333 bool isKnownNegativeOp1 = KnownOne.isNegative();
334 bool isKnownNegativeOp0 = KnownOne2.isNegative();
335 // The product of two numbers with the same sign is non-negative.
336 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
337 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
338 // The product of a negative number and a non-negative number is either
339 // negative or zero.
340 if (!isKnownNonNegative)
341 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000342 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000343 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000344 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000345 }
346 }
347
348 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000349 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000350 // More trickiness is possible, but this is sufficient for the
351 // interesting case of alignment computation.
352 KnownOne.clearAllBits();
353 unsigned TrailZ = KnownZero.countTrailingOnes() +
354 KnownZero2.countTrailingOnes();
355 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
356 KnownZero2.countLeadingOnes(),
357 BitWidth) - BitWidth;
358
359 TrailZ = std::min(TrailZ, BitWidth);
360 LeadZ = std::min(LeadZ, BitWidth);
361 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
362 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000363
364 // Only make use of no-wrap flags if we failed to compute the sign bit
365 // directly. This matters if the multiplication always overflows, in
366 // which case we prefer to follow the result of the direct computation,
367 // though as the program is invoking undefined behaviour we can choose
368 // whatever we like here.
369 if (isKnownNonNegative && !KnownOne.isNegative())
370 KnownZero.setBit(BitWidth - 1);
371 else if (isKnownNegative && !KnownZero.isNegative())
372 KnownOne.setBit(BitWidth - 1);
373}
374
Jingyue Wu37fcb592014-06-19 16:50:16 +0000375void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000376 APInt &KnownZero,
377 APInt &KnownOne) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000378 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000379 unsigned NumRanges = Ranges.getNumOperands() / 2;
380 assert(NumRanges >= 1);
381
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000382 KnownZero.setAllBits();
383 KnownOne.setAllBits();
384
Rafael Espindola53190532012-03-30 15:52:11 +0000385 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000386 ConstantInt *Lower =
387 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
388 ConstantInt *Upper =
389 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000390 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000391
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000392 // The first CommonPrefixBits of all values in Range are equal.
393 unsigned CommonPrefixBits =
394 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
395
396 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
397 KnownOne &= Range.getUnsignedMax() & Mask;
398 KnownZero &= ~Range.getUnsignedMax() & Mask;
399 }
Rafael Espindola53190532012-03-30 15:52:11 +0000400}
Jay Foad5a29c362014-05-15 12:12:55 +0000401
Hal Finkel60db0582014-09-07 18:57:58 +0000402static bool isEphemeralValueOf(Instruction *I, const Value *E) {
403 SmallVector<const Value *, 16> WorkSet(1, I);
404 SmallPtrSet<const Value *, 32> Visited;
405 SmallPtrSet<const Value *, 16> EphValues;
406
Hal Finkelf2199b22015-10-23 20:37:08 +0000407 // The instruction defining an assumption's condition itself is always
408 // considered ephemeral to that assumption (even if it has other
409 // non-ephemeral users). See r246696's test case for an example.
410 if (std::find(I->op_begin(), I->op_end(), E) != I->op_end())
411 return true;
412
Hal Finkel60db0582014-09-07 18:57:58 +0000413 while (!WorkSet.empty()) {
414 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000415 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000416 continue;
417
418 // If all uses of this value are ephemeral, then so is this value.
Benjamin Kramer56115612015-10-24 19:30:37 +0000419 if (std::all_of(V->user_begin(), V->user_end(),
420 [&](const User *U) { return EphValues.count(U); })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000421 if (V == E)
422 return true;
423
424 EphValues.insert(V);
425 if (const User *U = dyn_cast<User>(V))
426 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
427 J != JE; ++J) {
428 if (isSafeToSpeculativelyExecute(*J))
429 WorkSet.push_back(*J);
430 }
431 }
432 }
433
434 return false;
435}
436
437// Is this an intrinsic that cannot be speculated but also cannot trap?
438static bool isAssumeLikeIntrinsic(const Instruction *I) {
439 if (const CallInst *CI = dyn_cast<CallInst>(I))
440 if (Function *F = CI->getCalledFunction())
441 switch (F->getIntrinsicID()) {
442 default: break;
443 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
444 case Intrinsic::assume:
445 case Intrinsic::dbg_declare:
446 case Intrinsic::dbg_value:
447 case Intrinsic::invariant_start:
448 case Intrinsic::invariant_end:
449 case Intrinsic::lifetime_start:
450 case Intrinsic::lifetime_end:
451 case Intrinsic::objectsize:
452 case Intrinsic::ptr_annotation:
453 case Intrinsic::var_annotation:
454 return true;
455 }
456
457 return false;
458}
459
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000460static bool isValidAssumeForContext(Value *V, const Instruction *CxtI,
461 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000462 Instruction *Inv = cast<Instruction>(V);
463
464 // There are two restrictions on the use of an assume:
465 // 1. The assume must dominate the context (or the control flow must
466 // reach the assume whenever it reaches the context).
467 // 2. The context must not be in the assume's set of ephemeral values
468 // (otherwise we will use the assume to prove that the condition
469 // feeding the assume is trivially true, thus causing the removal of
470 // the assume).
471
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000472 if (DT) {
473 if (DT->dominates(Inv, CxtI)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000474 return true;
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000475 } else if (Inv->getParent() == CxtI->getParent()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000476 // The context comes first, but they're both in the same block. Make sure
477 // there is nothing in between that might interrupt the control flow.
478 for (BasicBlock::const_iterator I =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000479 std::next(BasicBlock::const_iterator(CxtI)),
Hal Finkel60db0582014-09-07 18:57:58 +0000480 IE(Inv); I != IE; ++I)
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +0000481 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
Hal Finkel60db0582014-09-07 18:57:58 +0000482 return false;
483
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000484 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000485 }
486
487 return false;
488 }
489
490 // When we don't have a DT, we do a limited search...
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000491 if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000492 return true;
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000493 } else if (Inv->getParent() == CxtI->getParent()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000494 // Search forward from the assume until we reach the context (or the end
495 // of the block); the common case is that the assume will come first.
496 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
497 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000498 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000499 return true;
500
501 // The context must come first...
502 for (BasicBlock::const_iterator I =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000503 std::next(BasicBlock::const_iterator(CxtI)),
Hal Finkel60db0582014-09-07 18:57:58 +0000504 IE(Inv); I != IE; ++I)
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +0000505 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
Hal Finkel60db0582014-09-07 18:57:58 +0000506 return false;
507
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000508 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000509 }
510
511 return false;
512}
513
514bool llvm::isValidAssumeForContext(const Instruction *I,
515 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000516 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000517 return ::isValidAssumeForContext(const_cast<Instruction *>(I), CxtI, DT);
Hal Finkel60db0582014-09-07 18:57:58 +0000518}
519
520template<typename LHS, typename RHS>
521inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>,
522 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>>
523m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
524 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L));
525}
526
527template<typename LHS, typename RHS>
528inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>,
529 BinaryOp_match<RHS, LHS, Instruction::And>>
530m_c_And(const LHS &L, const RHS &R) {
531 return m_CombineOr(m_And(L, R), m_And(R, L));
532}
533
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000534template<typename LHS, typename RHS>
535inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>,
536 BinaryOp_match<RHS, LHS, Instruction::Or>>
537m_c_Or(const LHS &L, const RHS &R) {
538 return m_CombineOr(m_Or(L, R), m_Or(R, L));
539}
540
541template<typename LHS, typename RHS>
542inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>,
543 BinaryOp_match<RHS, LHS, Instruction::Xor>>
544m_c_Xor(const LHS &L, const RHS &R) {
545 return m_CombineOr(m_Xor(L, R), m_Xor(R, L));
546}
547
Philip Reames1c292272015-03-10 22:43:20 +0000548/// Compute known bits in 'V' under the assumption that the condition 'Cmp' is
549/// true (at the context instruction.) This is mostly a utility function for
550/// the prototype dominating conditions reasoning below.
551static void computeKnownBitsFromTrueCondition(Value *V, ICmpInst *Cmp,
552 APInt &KnownZero,
553 APInt &KnownOne,
Philip Reames1c292272015-03-10 22:43:20 +0000554 unsigned Depth, const Query &Q) {
555 Value *LHS = Cmp->getOperand(0);
556 Value *RHS = Cmp->getOperand(1);
557 // TODO: We could potentially be more aggressive here. This would be worth
558 // evaluating. If we can, explore commoning this code with the assume
559 // handling logic.
560 if (LHS != V && RHS != V)
561 return;
562
563 const unsigned BitWidth = KnownZero.getBitWidth();
564
565 switch (Cmp->getPredicate()) {
566 default:
567 // We know nothing from this condition
568 break;
569 // TODO: implement unsigned bound from below (known one bits)
570 // TODO: common condition check implementations with assumes
571 // TODO: implement other patterns from assume (e.g. V & B == A)
572 case ICmpInst::ICMP_SGT:
573 if (LHS == V) {
574 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000575 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q);
Philip Reames1c292272015-03-10 22:43:20 +0000576 if (KnownOneTemp.isAllOnesValue() || KnownZeroTemp.isNegative()) {
577 // We know that the sign bit is zero.
578 KnownZero |= APInt::getSignBit(BitWidth);
579 }
580 }
581 break;
582 case ICmpInst::ICMP_EQ:
Jingyue Wu12b0c282015-06-15 05:46:29 +0000583 {
584 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
585 if (LHS == V)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000586 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +0000587 else if (RHS == V)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000588 computeKnownBits(LHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +0000589 else
590 llvm_unreachable("missing use?");
591 KnownZero |= KnownZeroTemp;
592 KnownOne |= KnownOneTemp;
593 }
Philip Reames1c292272015-03-10 22:43:20 +0000594 break;
595 case ICmpInst::ICMP_ULE:
596 if (LHS == V) {
597 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000598 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q);
Philip Reames1c292272015-03-10 22:43:20 +0000599 // The known zero bits carry over
600 unsigned SignBits = KnownZeroTemp.countLeadingOnes();
601 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits);
602 }
603 break;
604 case ICmpInst::ICMP_ULT:
605 if (LHS == V) {
606 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000607 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q);
Philip Reames1c292272015-03-10 22:43:20 +0000608 // Whatever high bits in rhs are zero are known to be zero (if rhs is a
609 // power of 2, then one more).
610 unsigned SignBits = KnownZeroTemp.countLeadingOnes();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000611 if (isKnownToBeAPowerOfTwo(RHS, false, Depth + 1, Query(Q, Cmp)))
Philip Reames1c292272015-03-10 22:43:20 +0000612 SignBits++;
613 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits);
614 }
615 break;
616 };
617}
618
619/// Compute known bits in 'V' from conditions which are known to be true along
620/// all paths leading to the context instruction. In particular, look for
621/// cases where one branch of an interesting condition dominates the context
622/// instruction. This does not do general dataflow.
623/// NOTE: This code is EXPERIMENTAL and currently off by default.
624static void computeKnownBitsFromDominatingCondition(Value *V, APInt &KnownZero,
625 APInt &KnownOne,
Philip Reames1c292272015-03-10 22:43:20 +0000626 unsigned Depth,
627 const Query &Q) {
628 // Need both the dominator tree and the query location to do anything useful
629 if (!Q.DT || !Q.CxtI)
630 return;
631 Instruction *Cxt = const_cast<Instruction *>(Q.CxtI);
Philip Reames963febd2015-09-21 22:04:10 +0000632 // The context instruction might be in a statically unreachable block. If
633 // so, asking dominator queries may yield suprising results. (e.g. the block
634 // may not have a dom tree node)
635 if (!Q.DT->isReachableFromEntry(Cxt->getParent()))
636 return;
Philip Reames1c292272015-03-10 22:43:20 +0000637
638 // Avoid useless work
639 if (auto VI = dyn_cast<Instruction>(V))
640 if (VI->getParent() == Cxt->getParent())
641 return;
642
643 // Note: We currently implement two options. It's not clear which of these
644 // will survive long term, we need data for that.
645 // Option 1 - Try walking the dominator tree looking for conditions which
646 // might apply. This works well for local conditions (loop guards, etc..),
647 // but not as well for things far from the context instruction (presuming a
648 // low max blocks explored). If we can set an high enough limit, this would
649 // be all we need.
650 // Option 2 - We restrict out search to those conditions which are uses of
651 // the value we're interested in. This is independent of dom structure,
652 // but is slightly less powerful without looking through lots of use chains.
653 // It does handle conditions far from the context instruction (e.g. early
654 // function exits on entry) really well though.
655
656 // Option 1 - Search the dom tree
657 unsigned NumBlocksExplored = 0;
658 BasicBlock *Current = Cxt->getParent();
659 while (true) {
660 // Stop searching if we've gone too far up the chain
661 if (NumBlocksExplored >= DomConditionsMaxDomBlocks)
662 break;
663 NumBlocksExplored++;
664
665 if (!Q.DT->getNode(Current)->getIDom())
666 break;
667 Current = Q.DT->getNode(Current)->getIDom()->getBlock();
668 if (!Current)
669 // found function entry
670 break;
671
672 BranchInst *BI = dyn_cast<BranchInst>(Current->getTerminator());
673 if (!BI || BI->isUnconditional())
674 continue;
675 ICmpInst *Cmp = dyn_cast<ICmpInst>(BI->getCondition());
676 if (!Cmp)
677 continue;
678
679 // We're looking for conditions that are guaranteed to hold at the context
680 // instruction. Finding a condition where one path dominates the context
681 // isn't enough because both the true and false cases could merge before
682 // the context instruction we're actually interested in. Instead, we need
Philip Reames963febd2015-09-21 22:04:10 +0000683 // to ensure that the taken *edge* dominates the context instruction. We
684 // know that the edge must be reachable since we started from a reachable
685 // block.
Philip Reames1c292272015-03-10 22:43:20 +0000686 BasicBlock *BB0 = BI->getSuccessor(0);
687 BasicBlockEdge Edge(BI->getParent(), BB0);
688 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent()))
689 continue;
690
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000691 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, Depth, Q);
Philip Reames1c292272015-03-10 22:43:20 +0000692 }
693
694 // Option 2 - Search the other uses of V
695 unsigned NumUsesExplored = 0;
696 for (auto U : V->users()) {
697 // Avoid massive lists
698 if (NumUsesExplored >= DomConditionsMaxUses)
699 break;
700 NumUsesExplored++;
701 // Consider only compare instructions uniquely controlling a branch
702 ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
703 if (!Cmp)
704 continue;
705
706 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse())
707 continue;
708
709 for (auto *CmpU : Cmp->users()) {
710 BranchInst *BI = dyn_cast<BranchInst>(CmpU);
711 if (!BI || BI->isUnconditional())
712 continue;
713 // We're looking for conditions that are guaranteed to hold at the
714 // context instruction. Finding a condition where one path dominates
715 // the context isn't enough because both the true and false cases could
716 // merge before the context instruction we're actually interested in.
717 // Instead, we need to ensure that the taken *edge* dominates the context
718 // instruction.
719 BasicBlock *BB0 = BI->getSuccessor(0);
720 BasicBlockEdge Edge(BI->getParent(), BB0);
721 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent()))
722 continue;
723
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000724 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, Depth, Q);
Philip Reames1c292272015-03-10 22:43:20 +0000725 }
726 }
727}
728
Hal Finkel60db0582014-09-07 18:57:58 +0000729static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000730 APInt &KnownOne, unsigned Depth,
731 const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000732 // Use of assumptions is context-sensitive. If we don't have a context, we
733 // cannot use them!
Chandler Carruth66b31302015-01-04 12:03:27 +0000734 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000735 return;
736
737 unsigned BitWidth = KnownZero.getBitWidth();
738
Chandler Carruth66b31302015-01-04 12:03:27 +0000739 for (auto &AssumeVH : Q.AC->assumptions()) {
740 if (!AssumeVH)
741 continue;
742 CallInst *I = cast<CallInst>(AssumeVH);
Chandler Carruth75c11b82015-01-04 23:13:57 +0000743 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
Chandler Carruth66b31302015-01-04 12:03:27 +0000744 "Got assumption for the wrong function!");
Matthias Braun37e5d792016-01-28 06:29:33 +0000745 if (Q.isExcluded(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000746 continue;
747
Philip Reames00d3b272014-11-24 23:44:28 +0000748 // Warning: This loop can end up being somewhat performance sensetive.
749 // We're running this loop for once for each value queried resulting in a
750 // runtime of ~O(#assumes * #values).
751
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000752 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
Philip Reames00d3b272014-11-24 23:44:28 +0000753 "must be an assume intrinsic");
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000754
Philip Reames00d3b272014-11-24 23:44:28 +0000755 Value *Arg = I->getArgOperand(0);
756
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000757 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000758 assert(BitWidth == 1 && "assume operand is not i1?");
759 KnownZero.clearAllBits();
760 KnownOne.setAllBits();
761 return;
762 }
763
David Majnemer9b609752014-12-12 23:59:29 +0000764 // The remaining tests are all recursive, so bail out if we hit the limit.
765 if (Depth == MaxDepth)
766 continue;
767
Hal Finkel60db0582014-09-07 18:57:58 +0000768 Value *A, *B;
769 auto m_V = m_CombineOr(m_Specific(V),
770 m_CombineOr(m_PtrToInt(m_Specific(V)),
771 m_BitCast(m_Specific(V))));
772
773 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000774 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000775 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000776 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000777 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000778 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000779 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000780 KnownZero |= RHSKnownZero;
781 KnownOne |= RHSKnownOne;
782 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000783 } else if (match(Arg,
784 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000785 Pred == ICmpInst::ICMP_EQ &&
786 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000787 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000788 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000789 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000790 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000791
792 // For those bits in the mask that are known to be one, we can propagate
793 // known bits from the RHS to V.
794 KnownZero |= RHSKnownZero & MaskKnownOne;
795 KnownOne |= RHSKnownOne & MaskKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000796 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000797 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
798 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000799 Pred == ICmpInst::ICMP_EQ &&
800 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000801 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000802 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000803 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000804 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000805
806 // For those bits in the mask that are known to be one, we can propagate
807 // inverted known bits from the RHS to V.
808 KnownZero |= RHSKnownOne & MaskKnownOne;
809 KnownOne |= RHSKnownZero & MaskKnownOne;
810 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000811 } else if (match(Arg,
812 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000813 Pred == ICmpInst::ICMP_EQ &&
814 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000815 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000816 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000817 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000818 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000819
820 // For those bits in B that are known to be zero, we can propagate known
821 // bits from the RHS to V.
822 KnownZero |= RHSKnownZero & BKnownZero;
823 KnownOne |= RHSKnownOne & BKnownZero;
824 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000825 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
826 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000827 Pred == ICmpInst::ICMP_EQ &&
828 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000829 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000830 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000831 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000832 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000833
834 // For those bits in B that are known to be zero, we can propagate
835 // inverted known bits from the RHS to V.
836 KnownZero |= RHSKnownOne & BKnownZero;
837 KnownOne |= RHSKnownZero & BKnownZero;
838 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000839 } else if (match(Arg,
840 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000841 Pred == ICmpInst::ICMP_EQ &&
842 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000843 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000844 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000845 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000846 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000847
848 // For those bits in B that are known to be zero, we can propagate known
849 // bits from the RHS to V. For those bits in B that are known to be one,
850 // we can propagate inverted known bits from the RHS to V.
851 KnownZero |= RHSKnownZero & BKnownZero;
852 KnownOne |= RHSKnownOne & BKnownZero;
853 KnownZero |= RHSKnownOne & BKnownOne;
854 KnownOne |= RHSKnownZero & BKnownOne;
855 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000856 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
857 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000858 Pred == ICmpInst::ICMP_EQ &&
859 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000860 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000861 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000862 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000863 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000864
865 // For those bits in B that are known to be zero, we can propagate
866 // inverted known bits from the RHS to V. For those bits in B that are
867 // known to be one, we can propagate known bits from the RHS to V.
868 KnownZero |= RHSKnownOne & BKnownZero;
869 KnownOne |= RHSKnownZero & BKnownZero;
870 KnownZero |= RHSKnownZero & BKnownOne;
871 KnownOne |= RHSKnownOne & BKnownOne;
872 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000873 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
874 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000875 Pred == ICmpInst::ICMP_EQ &&
876 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000877 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000878 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000879 // For those bits in RHS that are known, we can propagate them to known
880 // bits in V shifted to the right by C.
881 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
882 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
883 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000884 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
885 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000886 Pred == ICmpInst::ICMP_EQ &&
887 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000888 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000889 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000890 // For those bits in RHS that are known, we can propagate them inverted
891 // to known bits in V shifted to the right by C.
892 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
893 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
894 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000895 } else if (match(Arg,
896 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000897 m_AShr(m_V, m_ConstantInt(C))),
898 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000899 Pred == ICmpInst::ICMP_EQ &&
900 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000901 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000902 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000903 // For those bits in RHS that are known, we can propagate them to known
904 // bits in V shifted to the right by C.
905 KnownZero |= RHSKnownZero << C->getZExtValue();
906 KnownOne |= RHSKnownOne << C->getZExtValue();
907 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000908 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000909 m_LShr(m_V, m_ConstantInt(C)),
910 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000911 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000912 Pred == ICmpInst::ICMP_EQ &&
913 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000914 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000915 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000916 // For those bits in RHS that are known, we can propagate them inverted
917 // to known bits in V shifted to the right by C.
918 KnownZero |= RHSKnownOne << C->getZExtValue();
919 KnownOne |= RHSKnownZero << C->getZExtValue();
920 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000921 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000922 Pred == ICmpInst::ICMP_SGE &&
923 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000924 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000925 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000926
927 if (RHSKnownZero.isNegative()) {
928 // We know that the sign bit is zero.
929 KnownZero |= APInt::getSignBit(BitWidth);
930 }
931 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000932 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000933 Pred == ICmpInst::ICMP_SGT &&
934 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000935 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000936 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000937
938 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
939 // We know that the sign bit is zero.
940 KnownZero |= APInt::getSignBit(BitWidth);
941 }
942 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000943 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000944 Pred == ICmpInst::ICMP_SLE &&
945 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000946 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000947 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000948
949 if (RHSKnownOne.isNegative()) {
950 // We know that the sign bit is one.
951 KnownOne |= APInt::getSignBit(BitWidth);
952 }
953 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000954 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000955 Pred == ICmpInst::ICMP_SLT &&
956 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000957 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000958 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000959
960 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
961 // We know that the sign bit is one.
962 KnownOne |= APInt::getSignBit(BitWidth);
963 }
964 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000965 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000966 Pred == ICmpInst::ICMP_ULE &&
967 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000968 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000969 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000970
971 // Whatever high bits in c are zero are known to be zero.
972 KnownZero |=
973 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
974 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000975 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000976 Pred == ICmpInst::ICMP_ULT &&
977 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000978 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000979 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000980
981 // Whatever high bits in c are zero are known to be zero (if c is a power
982 // of 2, then one more).
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000983 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000984 KnownZero |=
985 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
986 else
987 KnownZero |=
988 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000989 }
990 }
991}
992
Hal Finkelf2199b22015-10-23 20:37:08 +0000993// Compute known bits from a shift operator, including those with a
994// non-constant shift amount. KnownZero and KnownOne are the outputs of this
995// function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
996// same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
997// functors that, given the known-zero or known-one bits respectively, and a
998// shift amount, compute the implied known-zero or known-one bits of the shift
999// operator's result respectively for that shift amount. The results from calling
1000// KZF and KOF are conservatively combined for all permitted shift amounts.
1001template <typename KZFunctor, typename KOFunctor>
1002static void computeKnownBitsFromShiftOperator(Operator *I,
1003 APInt &KnownZero, APInt &KnownOne,
1004 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001005 unsigned Depth, const Query &Q, KZFunctor KZF, KOFunctor KOF) {
Hal Finkelf2199b22015-10-23 20:37:08 +00001006 unsigned BitWidth = KnownZero.getBitWidth();
1007
1008 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1009 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
1010
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001011 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +00001012 KnownZero = KZF(KnownZero, ShiftAmt);
1013 KnownOne = KOF(KnownOne, ShiftAmt);
1014 return;
1015 }
1016
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001017 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +00001018
1019 // Note: We cannot use KnownZero.getLimitedValue() here, because if
1020 // BitWidth > 64 and any upper bits are known, we'll end up returning the
1021 // limit value (which implies all bits are known).
1022 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
1023 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
1024
1025 // It would be more-clearly correct to use the two temporaries for this
1026 // calculation. Reusing the APInts here to prevent unnecessary allocations.
Richard Trieu7a083812016-02-18 22:09:30 +00001027 KnownZero.clearAllBits();
1028 KnownOne.clearAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +00001029
James Molloy493e57d2015-10-26 14:10:46 +00001030 // If we know the shifter operand is nonzero, we can sometimes infer more
1031 // known bits. However this is expensive to compute, so be lazy about it and
1032 // only compute it when absolutely necessary.
1033 Optional<bool> ShifterOperandIsNonZero;
1034
Hal Finkelf2199b22015-10-23 20:37:08 +00001035 // Early exit if we can't constrain any well-defined shift amount.
James Molloy493e57d2015-10-26 14:10:46 +00001036 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
1037 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001038 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +00001039 if (!*ShifterOperandIsNonZero)
1040 return;
1041 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001042
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001043 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +00001044
1045 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
1046 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
1047 // Combine the shifted known input bits only for those shift amounts
1048 // compatible with its known constraints.
1049 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
1050 continue;
1051 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
1052 continue;
James Molloy493e57d2015-10-26 14:10:46 +00001053 // If we know the shifter is nonzero, we may be able to infer more known
1054 // bits. This check is sunk down as far as possible to avoid the expensive
1055 // call to isKnownNonZero if the cheaper checks above fail.
1056 if (ShiftAmt == 0) {
1057 if (!ShifterOperandIsNonZero.hasValue())
1058 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001059 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +00001060 if (*ShifterOperandIsNonZero)
1061 continue;
1062 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001063
1064 KnownZero &= KZF(KnownZero2, ShiftAmt);
1065 KnownOne &= KOF(KnownOne2, ShiftAmt);
1066 }
1067
1068 // If there are no compatible shift amounts, then we've proven that the shift
1069 // amount must be >= the BitWidth, and the result is undefined. We could
1070 // return anything we'd like, but we need to make sure the sets of known bits
1071 // stay disjoint (it should be better for some other code to actually
1072 // propagate the undef than to pick a value here using known bits).
Richard Trieu7a083812016-02-18 22:09:30 +00001073 if ((KnownZero & KnownOne) != 0) {
1074 KnownZero.clearAllBits();
1075 KnownOne.clearAllBits();
1076 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001077}
1078
Jingyue Wu12b0c282015-06-15 05:46:29 +00001079static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001080 APInt &KnownOne, unsigned Depth,
1081 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001082 unsigned BitWidth = KnownZero.getBitWidth();
1083
Chris Lattner965c7692008-06-02 01:18:21 +00001084 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001085 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +00001086 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +00001087 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001088 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +00001089 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Jay Foad5a29c362014-05-15 12:12:55 +00001090 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001091 case Instruction::And: {
1092 // If either the LHS or the RHS are Zero, the result is zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001093 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
1094 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001095
Chris Lattner965c7692008-06-02 01:18:21 +00001096 // Output known-1 bits are only known if set in both the LHS & RHS.
1097 KnownOne &= KnownOne2;
1098 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1099 KnownZero |= KnownZero2;
Philip Reames2d858742015-11-10 18:46:14 +00001100
1101 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1102 // here we handle the more general case of adding any odd number by
1103 // matching the form add(x, add(x, y)) where y is odd.
1104 // TODO: This could be generalized to clearing any bit set in y where the
1105 // following bit is known to be unset in y.
1106 Value *Y = nullptr;
1107 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
1108 m_Value(Y))) ||
1109 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
1110 m_Value(Y)))) {
1111 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001112 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
Philip Reames2d858742015-11-10 18:46:14 +00001113 if (KnownOne3.countTrailingOnes() > 0)
1114 KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
1115 }
Jay Foad5a29c362014-05-15 12:12:55 +00001116 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001117 }
1118 case Instruction::Or: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001119 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
1120 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001121
Chris Lattner965c7692008-06-02 01:18:21 +00001122 // Output known-0 bits are only known if clear in both the LHS & RHS.
1123 KnownZero &= KnownZero2;
1124 // Output known-1 are known to be set if set in either the LHS | RHS.
1125 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +00001126 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001127 }
1128 case Instruction::Xor: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001129 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
1130 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00001131
Chris Lattner965c7692008-06-02 01:18:21 +00001132 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1133 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1134 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1135 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1136 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +00001137 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001138 }
1139 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +00001140 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001141 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001142 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001143 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001144 }
1145 case Instruction::UDiv: {
1146 // For the purposes of computing leading zeros we can conservatively
1147 // treat a udiv as a logical right shift by the power of 2 known to
1148 // be less than the denominator.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001149 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001150 unsigned LeadZ = KnownZero2.countLeadingOnes();
1151
Jay Foad25a5e4c2010-12-01 08:53:58 +00001152 KnownOne2.clearAllBits();
1153 KnownZero2.clearAllBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001154 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001155 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1156 if (RHSUnknownLeadingOnes != BitWidth)
1157 LeadZ = std::min(BitWidth,
1158 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1159
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001160 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +00001161 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001162 }
James Molloyc5eded52016-01-14 15:49:32 +00001163 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001164 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
1165 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001166
1167 // Only known if known in both the LHS and RHS.
1168 KnownOne &= KnownOne2;
1169 KnownZero &= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +00001170 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001171 case Instruction::FPTrunc:
1172 case Instruction::FPExt:
1173 case Instruction::FPToUI:
1174 case Instruction::FPToSI:
1175 case Instruction::SIToFP:
1176 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +00001177 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +00001178 case Instruction::PtrToInt:
1179 case Instruction::IntToPtr:
Matt Arsenaultf1a7e622014-07-15 01:55:03 +00001180 case Instruction::AddrSpaceCast: // Pointers could be different sizes.
Chris Lattner965c7692008-06-02 01:18:21 +00001181 // FALL THROUGH and handle them the same as zext/trunc.
1182 case Instruction::ZExt:
1183 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +00001184 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +00001185
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001186 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +00001187 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1188 // which fall through here.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001189 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +00001190
1191 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +00001192 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1193 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001194 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001195 KnownZero = KnownZero.zextOrTrunc(BitWidth);
1196 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001197 // Any top bits are known to be zero.
1198 if (BitWidth > SrcBitWidth)
1199 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001200 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001201 }
1202 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001203 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Patel9115cf82015-10-08 16:56:55 +00001204 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy() ||
1205 SrcTy->isFloatingPointTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001206 // TODO: For now, not handling conversions like:
1207 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001208 !I->getType()->isVectorTy()) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001209 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001210 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001211 }
1212 break;
1213 }
1214 case Instruction::SExt: {
1215 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001216 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001217
Jay Foad583abbc2010-12-07 08:25:19 +00001218 KnownZero = KnownZero.trunc(SrcBitWidth);
1219 KnownOne = KnownOne.trunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001220 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001221 KnownZero = KnownZero.zext(BitWidth);
1222 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001223
1224 // If the sign bit of the input is known set or clear, then we know the
1225 // top bits of the result.
1226 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
1227 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1228 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
1229 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001230 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001231 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001232 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001233 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001234 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1235 return (KnownZero << ShiftAmt) |
1236 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1237 };
1238
1239 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1240 return KnownOne << ShiftAmt;
1241 };
1242
1243 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001244 KnownZero2, KnownOne2, Depth, Q, KZF,
1245 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001246 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001247 }
1248 case Instruction::LShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001249 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001250 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1251 return APIntOps::lshr(KnownZero, ShiftAmt) |
1252 // High bits known zero.
1253 APInt::getHighBitsSet(BitWidth, ShiftAmt);
1254 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001255
Hal Finkelf2199b22015-10-23 20:37:08 +00001256 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1257 return APIntOps::lshr(KnownOne, ShiftAmt);
1258 };
1259
1260 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001261 KnownZero2, KnownOne2, Depth, Q, KZF,
1262 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001263 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001264 }
1265 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001266 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001267 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1268 return APIntOps::ashr(KnownZero, ShiftAmt);
1269 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001270
Hal Finkelf2199b22015-10-23 20:37:08 +00001271 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1272 return APIntOps::ashr(KnownOne, ShiftAmt);
1273 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001274
Hal Finkelf2199b22015-10-23 20:37:08 +00001275 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001276 KnownZero2, KnownOne2, Depth, Q, KZF,
1277 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001278 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001279 }
Chris Lattner965c7692008-06-02 01:18:21 +00001280 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001281 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001282 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001283 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1284 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001285 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001286 }
Chris Lattner965c7692008-06-02 01:18:21 +00001287 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001288 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001289 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001290 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1291 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001292 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001293 }
1294 case Instruction::SRem:
1295 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001296 APInt RA = Rem->getValue().abs();
1297 if (RA.isPowerOf2()) {
1298 APInt LowBits = RA - 1;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001299 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001300 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001301
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001302 // The low bits of the first operand are unchanged by the srem.
1303 KnownZero = KnownZero2 & LowBits;
1304 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001305
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001306 // If the first operand is non-negative or has all low bits zero, then
1307 // the upper bits are all zero.
1308 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1309 KnownZero |= ~LowBits;
1310
1311 // If the first operand is negative and not all low bits are zero, then
1312 // the upper bits are all one.
1313 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1314 KnownOne |= ~LowBits;
1315
Craig Topper1bef2c82012-12-22 19:15:35 +00001316 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001317 }
1318 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001319
1320 // The sign bit is the LHS's sign bit, except when the result of the
1321 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001322 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +00001323 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001324 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1325 Q);
Nick Lewyckye4679792011-03-07 01:50:10 +00001326 // If it's known zero, our sign bit is also zero.
1327 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +00001328 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +00001329 }
1330
Chris Lattner965c7692008-06-02 01:18:21 +00001331 break;
1332 case Instruction::URem: {
1333 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1334 APInt RA = Rem->getValue();
1335 if (RA.isPowerOf2()) {
1336 APInt LowBits = (RA - 1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001337 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001338 KnownZero |= ~LowBits;
1339 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001340 break;
1341 }
1342 }
1343
1344 // Since the result is less than or equal to either operand, any leading
1345 // zero bits in either operand must also exist in the result.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001346 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1347 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001348
Chris Lattner4612ae12009-01-20 18:22:57 +00001349 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +00001350 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +00001351 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001352 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001353 break;
1354 }
1355
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001356 case Instruction::Alloca: {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001357 AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001358 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001359 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001360 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001361
Chris Lattner965c7692008-06-02 01:18:21 +00001362 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001363 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001364 break;
1365 }
1366 case Instruction::GetElementPtr: {
1367 // Analyze all of the subscripts of this getelementptr instruction
1368 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001369 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001370 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1371 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001372 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1373
1374 gep_type_iterator GTI = gep_type_begin(I);
1375 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1376 Value *Index = I->getOperand(i);
Chris Lattner229907c2011-07-18 04:54:35 +00001377 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001378 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001379
1380 // Handle case when index is vector zeroinitializer
1381 Constant *CIndex = cast<Constant>(Index);
1382 if (CIndex->isZeroValue())
1383 continue;
1384
1385 if (CIndex->getType()->isVectorTy())
1386 Index = CIndex->getSplatValue();
1387
Chris Lattner965c7692008-06-02 01:18:21 +00001388 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001389 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001390 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001391 TrailZ = std::min<unsigned>(TrailZ,
1392 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001393 } else {
1394 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001395 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001396 if (!IndexedTy->isSized()) {
1397 TrailZ = 0;
1398 break;
1399 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001400 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001401 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Chris Lattner965c7692008-06-02 01:18:21 +00001402 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001403 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001404 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001405 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +00001406 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001407 }
1408 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001409
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001410 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001411 break;
1412 }
1413 case Instruction::PHI: {
1414 PHINode *P = cast<PHINode>(I);
1415 // Handle the case of a simple two-predecessor recurrence PHI.
1416 // There's a lot more that could theoretically be done here, but
1417 // this is sufficient to catch some interesting cases.
1418 if (P->getNumIncomingValues() == 2) {
1419 for (unsigned i = 0; i != 2; ++i) {
1420 Value *L = P->getIncomingValue(i);
1421 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001422 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001423 if (!LU)
1424 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001425 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001426 // Check for operations that have the property that if
1427 // both their operands have low zero bits, the result
1428 // will have low zero bits.
1429 if (Opcode == Instruction::Add ||
1430 Opcode == Instruction::Sub ||
1431 Opcode == Instruction::And ||
1432 Opcode == Instruction::Or ||
1433 Opcode == Instruction::Mul) {
1434 Value *LL = LU->getOperand(0);
1435 Value *LR = LU->getOperand(1);
1436 // Find a recurrence.
1437 if (LL == I)
1438 L = LR;
1439 else if (LR == I)
1440 L = LL;
1441 else
1442 break;
1443 // Ok, we have a PHI of the form L op= R. Check for low
1444 // zero bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001445 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001446
1447 // We need to take the minimum number of known bits
1448 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001449 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001450
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001451 KnownZero = APInt::getLowBitsSet(BitWidth,
David Greeneaebd9e02008-10-27 23:24:03 +00001452 std::min(KnownZero2.countTrailingOnes(),
1453 KnownZero3.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001454 break;
1455 }
1456 }
1457 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001458
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001459 // Unreachable blocks may have zero-operand PHI nodes.
1460 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001461 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001462
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001463 // Otherwise take the unions of the known bit sets of the operands,
1464 // taking conservative care to avoid excessive recursion.
1465 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001466 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001467 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001468 break;
1469
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001470 KnownZero = APInt::getAllOnesValue(BitWidth);
1471 KnownOne = APInt::getAllOnesValue(BitWidth);
Pete Cooper833f34d2015-05-12 20:05:31 +00001472 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001473 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001474 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001475
1476 KnownZero2 = APInt(BitWidth, 0);
1477 KnownOne2 = APInt(BitWidth, 0);
1478 // Recurse, but cap the recursion to one level, because we don't
1479 // want to waste time spinning around in loops.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001480 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001481 KnownZero &= KnownZero2;
1482 KnownOne &= KnownOne2;
1483 // If all bits have been ruled out, there's no need to check
1484 // more operands.
1485 if (!KnownZero && !KnownOne)
1486 break;
1487 }
1488 }
Chris Lattner965c7692008-06-02 01:18:21 +00001489 break;
1490 }
1491 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001492 case Instruction::Invoke:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001493 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +00001494 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Jingyue Wu37fcb592014-06-19 16:50:16 +00001495 // If a range metadata is attached to this IntrinsicInst, intersect the
1496 // explicit range specified by the metadata and the implicit range of
1497 // the intrinsic.
Chris Lattner965c7692008-06-02 01:18:21 +00001498 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1499 switch (II->getIntrinsicID()) {
1500 default: break;
Philip Reames675418e2015-10-06 20:20:45 +00001501 case Intrinsic::bswap:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001502 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reames675418e2015-10-06 20:20:45 +00001503 KnownZero |= KnownZero2.byteSwap();
1504 KnownOne |= KnownOne2.byteSwap();
1505 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001506 case Intrinsic::ctlz:
1507 case Intrinsic::cttz: {
1508 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001509 // If this call is undefined for 0, the result will be less than 2^n.
1510 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1511 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001512 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001513 break;
1514 }
1515 case Intrinsic::ctpop: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001516 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001517 // We can bound the space the count needs. Also, bits known to be zero
1518 // can't contribute to the population.
1519 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1520 unsigned LeadingZeros =
1521 APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
Aaron Ballman58f413c2015-10-15 13:55:43 +00001522 assert(LeadingZeros <= BitWidth);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001523 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1524 KnownOne &= ~KnownZero;
1525 // TODO: we could bound KnownOne using the lower bound on the number
1526 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001527 break;
1528 }
Sanjay Patel9115cf82015-10-08 16:56:55 +00001529 case Intrinsic::fabs: {
1530 Type *Ty = II->getType();
1531 APInt SignBit = APInt::getSignBit(Ty->getScalarSizeInBits());
1532 KnownZero |= APInt::getSplat(Ty->getPrimitiveSizeInBits(), SignBit);
1533 break;
1534 }
Chad Rosierb3628842011-05-26 23:13:19 +00001535 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001536 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001537 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001538 }
1539 }
1540 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001541 case Instruction::ExtractValue:
1542 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1543 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1544 if (EVI->getNumIndices() != 1) break;
1545 if (EVI->getIndices()[0] == 0) {
1546 switch (II->getIntrinsicID()) {
1547 default: break;
1548 case Intrinsic::uadd_with_overflow:
1549 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001550 computeKnownBitsAddSub(true, II->getArgOperand(0),
1551 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001552 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001553 break;
1554 case Intrinsic::usub_with_overflow:
1555 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001556 computeKnownBitsAddSub(false, II->getArgOperand(0),
1557 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001558 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001559 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001560 case Intrinsic::umul_with_overflow:
1561 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001562 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001563 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1564 Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001565 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001566 }
1567 }
1568 }
Chris Lattner965c7692008-06-02 01:18:21 +00001569 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001570}
1571
1572/// Determine which bits of V are known to be either zero or one and return
1573/// them in the KnownZero/KnownOne bit sets.
1574///
1575/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1576/// we cannot optimize based on the assumption that it is zero without changing
1577/// it to be an explicit zero. If we don't change it to zero, other code could
1578/// optimized based on the contradictory assumption that it is non-zero.
1579/// Because instcombine aggressively folds operations with undef args anyway,
1580/// this won't lose us code quality.
1581///
1582/// This function is defined on values with integer type, values with pointer
1583/// type, and vectors of integers. In the case
1584/// where V is a vector, known zero, and known one values are the
1585/// same width as the vector element, and the bit is set only if it is true
1586/// for all of the elements in the vector.
1587void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001588 unsigned Depth, const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001589 assert(V && "No Value?");
1590 assert(Depth <= MaxDepth && "Limit Search Depth");
1591 unsigned BitWidth = KnownZero.getBitWidth();
1592
1593 assert((V->getType()->isIntOrIntVectorTy() ||
Sanjay Patel9115cf82015-10-08 16:56:55 +00001594 V->getType()->isFPOrFPVectorTy() ||
Jingyue Wu12b0c282015-06-15 05:46:29 +00001595 V->getType()->getScalarType()->isPointerTy()) &&
Sanjay Patel9115cf82015-10-08 16:56:55 +00001596 "Not integer, floating point, or pointer type!");
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001597 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Jingyue Wu12b0c282015-06-15 05:46:29 +00001598 (!V->getType()->isIntOrIntVectorTy() ||
1599 V->getType()->getScalarSizeInBits() == BitWidth) &&
1600 KnownZero.getBitWidth() == BitWidth &&
1601 KnownOne.getBitWidth() == BitWidth &&
1602 "V, KnownOne and KnownZero should have same BitWidth");
1603
1604 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1605 // We know all of the bits for a constant!
1606 KnownOne = CI->getValue();
1607 KnownZero = ~KnownOne;
1608 return;
1609 }
1610 // Null and aggregate-zero are all-zeros.
1611 if (isa<ConstantPointerNull>(V) ||
1612 isa<ConstantAggregateZero>(V)) {
1613 KnownOne.clearAllBits();
1614 KnownZero = APInt::getAllOnesValue(BitWidth);
1615 return;
1616 }
1617 // Handle a constant vector by taking the intersection of the known bits of
1618 // each element. There is no real need to handle ConstantVector here, because
1619 // we don't handle undef in any particularly useful way.
1620 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1621 // We know that CDS must be a vector of integers. Take the intersection of
1622 // each element.
1623 KnownZero.setAllBits(); KnownOne.setAllBits();
1624 APInt Elt(KnownZero.getBitWidth(), 0);
1625 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1626 Elt = CDS->getElementAsInteger(i);
1627 KnownZero &= ~Elt;
1628 KnownOne &= Elt;
1629 }
1630 return;
1631 }
1632
Jingyue Wu12b0c282015-06-15 05:46:29 +00001633 // Start out not knowing anything.
1634 KnownZero.clearAllBits(); KnownOne.clearAllBits();
1635
1636 // Limit search depth.
1637 // All recursive calls that increase depth must come after this.
1638 if (Depth == MaxDepth)
1639 return;
1640
1641 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1642 // the bits of its aliasee.
1643 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1644 if (!GA->mayBeOverridden())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001645 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001646 return;
1647 }
1648
1649 if (Operator *I = dyn_cast<Operator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001650 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001651
Artur Pilipenko029d8532015-09-30 11:55:45 +00001652 // Aligned pointers have trailing zeros - refine KnownZero set
1653 if (V->getType()->isPointerTy()) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00001654 unsigned Align = V->getPointerAlignment(Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001655 if (Align)
1656 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1657 }
1658
Jingyue Wu12b0c282015-06-15 05:46:29 +00001659 // computeKnownBitsFromAssume and computeKnownBitsFromDominatingCondition
1660 // strictly refines KnownZero and KnownOne. Therefore, we run them after
1661 // computeKnownBitsFromOperator.
1662
1663 // Check whether a nearby assume intrinsic can determine some known bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001664 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001665
1666 // Check whether there's a dominating condition which implies something about
1667 // this value at the given context.
1668 if (EnableDomConditions && Depth <= DomConditionsMaxDepth)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001669 computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, Depth, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001670
1671 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001672}
1673
Sanjay Patelaee84212014-11-04 16:27:42 +00001674/// Determine whether the sign bit is known to be zero or one.
1675/// Convenience wrapper around computeKnownBits.
Hal Finkel60db0582014-09-07 18:57:58 +00001676void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001677 unsigned Depth, const Query &Q) {
1678 unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001679 if (!BitWidth) {
1680 KnownZero = false;
1681 KnownOne = false;
1682 return;
1683 }
1684 APInt ZeroBits(BitWidth, 0);
1685 APInt OneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001686 computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001687 KnownOne = OneBits[BitWidth - 1];
1688 KnownZero = ZeroBits[BitWidth - 1];
1689}
1690
Sanjay Patelaee84212014-11-04 16:27:42 +00001691/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001692/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001693/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001694/// types and vectors of integers.
Hal Finkel60db0582014-09-07 18:57:58 +00001695bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001696 const Query &Q) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001697 if (Constant *C = dyn_cast<Constant>(V)) {
1698 if (C->isNullValue())
1699 return OrZero;
1700 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1701 return CI->getValue().isPowerOf2();
1702 // TODO: Handle vector constants.
1703 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001704
1705 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1706 // it is shifted off the end then the result is undefined.
1707 if (match(V, m_Shl(m_One(), m_Value())))
1708 return true;
1709
1710 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1711 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +00001712 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001713 return true;
1714
1715 // The remaining tests are all recursive, so bail out if we hit the limit.
1716 if (Depth++ == MaxDepth)
1717 return false;
1718
Craig Topper9f008862014-04-15 04:59:12 +00001719 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001720 // A shift left or a logical shift right of a power of two is a power of two
1721 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001722 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001723 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001724 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001725
Duncan Sandsd3951082011-01-25 09:38:29 +00001726 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001727 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001728
1729 if (SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001730 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1731 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001732
Duncan Sandsba286d72011-10-26 20:55:21 +00001733 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1734 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001735 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1736 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001737 return true;
1738 // X & (-X) is always a power of two or zero.
1739 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1740 return true;
1741 return false;
1742 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001743
David Majnemerb7d54092013-07-30 21:01:36 +00001744 // Adding a power-of-two or zero to the same power-of-two or zero yields
1745 // either the original power-of-two, a larger power-of-two or zero.
1746 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1747 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1748 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1749 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1750 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001751 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001752 return true;
1753 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1754 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001755 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001756 return true;
1757
1758 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1759 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001760 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001761
1762 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001763 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001764 // If i8 V is a power of two or zero:
1765 // ZeroBits: 1 1 1 0 1 1 1 1
1766 // ~ZeroBits: 0 0 0 1 0 0 0 0
1767 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1768 // If OrZero isn't set, we cannot give back a zero result.
1769 // Make sure either the LHS or RHS has a bit set.
1770 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1771 return true;
1772 }
1773 }
David Majnemerbeab5672013-05-18 19:30:37 +00001774
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001775 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001776 // is a power of two only if the first operand is a power of two and not
1777 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001778 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1779 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001780 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001781 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001782 }
1783
Duncan Sandsd3951082011-01-25 09:38:29 +00001784 return false;
1785}
1786
Chandler Carruth80d3e562012-12-07 02:08:58 +00001787/// \brief Test whether a GEP's result is known to be non-null.
1788///
1789/// Uses properties inherent in a GEP to try to determine whether it is known
1790/// to be non-null.
1791///
1792/// Currently this routine does not support vector GEPs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001793static bool isGEPKnownNonNull(GEPOperator *GEP, unsigned Depth,
1794 const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001795 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1796 return false;
1797
1798 // FIXME: Support vector-GEPs.
1799 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1800
1801 // If the base pointer is non-null, we cannot walk to a null address with an
1802 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001803 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001804 return true;
1805
Chandler Carruth80d3e562012-12-07 02:08:58 +00001806 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1807 // If so, then the GEP cannot produce a null pointer, as doing so would
1808 // inherently violate the inbounds contract within address space zero.
1809 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1810 GTI != GTE; ++GTI) {
1811 // Struct types are easy -- they must always be indexed by a constant.
1812 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1813 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1814 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001815 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001816 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1817 if (ElementOffset > 0)
1818 return true;
1819 continue;
1820 }
1821
1822 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001823 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001824 continue;
1825
1826 // Fast path the constant operand case both for efficiency and so we don't
1827 // increment Depth when just zipping down an all-constant GEP.
1828 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1829 if (!OpC->isZero())
1830 return true;
1831 continue;
1832 }
1833
1834 // We post-increment Depth here because while isKnownNonZero increments it
1835 // as well, when we pop back up that increment won't persist. We don't want
1836 // to recurse 10k times just because we have 10k GEP operands. We don't
1837 // bail completely out because we want to handle constant GEPs regardless
1838 // of depth.
1839 if (Depth++ >= MaxDepth)
1840 continue;
1841
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001842 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001843 return true;
1844 }
1845
1846 return false;
1847}
1848
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001849/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1850/// ensure that the value it's attached to is never Value? 'RangeType' is
1851/// is the type of the value described by the range.
1852static bool rangeMetadataExcludesValue(MDNode* Ranges,
1853 const APInt& Value) {
1854 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1855 assert(NumRanges >= 1);
1856 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001857 ConstantInt *Lower =
1858 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1859 ConstantInt *Upper =
1860 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001861 ConstantRange Range(Lower->getValue(), Upper->getValue());
1862 if (Range.contains(Value))
1863 return false;
1864 }
1865 return true;
1866}
1867
Sanjay Patelaee84212014-11-04 16:27:42 +00001868/// Return true if the given value is known to be non-zero when defined.
1869/// For vectors return true if every element is known to be non-zero when
1870/// defined. Supports values with integer or pointer type and vectors of
1871/// integers.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001872bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001873 if (Constant *C = dyn_cast<Constant>(V)) {
1874 if (C->isNullValue())
1875 return false;
1876 if (isa<ConstantInt>(C))
1877 // Must be non-zero due to null test above.
1878 return true;
1879 // TODO: Handle vectors
1880 return false;
1881 }
1882
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001883 if (Instruction* I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001884 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001885 // If the possible ranges don't contain zero, then the value is
1886 // definitely non-zero.
1887 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) {
1888 const APInt ZeroValue(Ty->getBitWidth(), 0);
1889 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1890 return true;
1891 }
1892 }
1893 }
1894
Duncan Sandsd3951082011-01-25 09:38:29 +00001895 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001896 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001897 return false;
1898
Chandler Carruth80d3e562012-12-07 02:08:58 +00001899 // Check for pointer simplifications.
1900 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +00001901 if (isKnownNonNull(V))
1902 return true;
Chandler Carruth80d3e562012-12-07 02:08:58 +00001903 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001904 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001905 return true;
1906 }
1907
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001908 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001909
1910 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001911 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001912 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001913 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001914
1915 // ext X != 0 if X != 0.
1916 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001917 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001918
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001919 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001920 // if the lowest bit is shifted off the end.
1921 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001922 // shl nuw can't remove any non-zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001923 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001924 if (BO->hasNoUnsignedWrap())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001925 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001926
Duncan Sandsd3951082011-01-25 09:38:29 +00001927 APInt KnownZero(BitWidth, 0);
1928 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001929 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001930 if (KnownOne[0])
1931 return true;
1932 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001933 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001934 // defined if the sign bit is shifted off the end.
1935 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001936 // shr exact can only shift out zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001937 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001938 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001939 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001940
Duncan Sandsd3951082011-01-25 09:38:29 +00001941 bool XKnownNonNegative, XKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001942 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001943 if (XKnownNegative)
1944 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001945
1946 // If the shifter operand is a constant, and all of the bits shifted
1947 // out are known to be zero, and X is known non-zero then at least one
1948 // non-zero bit must remain.
1949 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1950 APInt KnownZero(BitWidth, 0);
1951 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001952 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001953
1954 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1955 // Is there a known one in the portion not shifted out?
1956 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1957 return true;
1958 // Are all the bits to be shifted out known zero?
1959 if (KnownZero.countTrailingOnes() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001960 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001961 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001962 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001963 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001964 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001965 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001966 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001967 // X + Y.
1968 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1969 bool XKnownNonNegative, XKnownNegative;
1970 bool YKnownNonNegative, YKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001971 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1972 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001973
1974 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001975 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00001976 if (XKnownNonNegative && YKnownNonNegative)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001977 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001978 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001979
1980 // If X and Y are both negative (as signed values) then their sum is not
1981 // zero unless both X and Y equal INT_MIN.
1982 if (BitWidth && XKnownNegative && YKnownNegative) {
1983 APInt KnownZero(BitWidth, 0);
1984 APInt KnownOne(BitWidth, 0);
1985 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1986 // The sign bit of X is set. If some other bit is set then X is not equal
1987 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001988 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001989 if ((KnownOne & Mask) != 0)
1990 return true;
1991 // The sign bit of Y is set. If some other bit is set then Y is not equal
1992 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001993 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001994 if ((KnownOne & Mask) != 0)
1995 return true;
1996 }
1997
1998 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001999 if (XKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002000 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00002001 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00002002 if (YKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002003 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00002004 return true;
2005 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00002006 // X * Y.
2007 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2008 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2009 // If X and Y are non-zero then so is X * Y as long as the multiplication
2010 // does not overflow.
2011 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002012 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00002013 return true;
2014 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002015 // (C ? X : Y) != 0 if X != 0 and Y != 0.
2016 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002017 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
2018 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00002019 return true;
2020 }
James Molloy897048b2015-09-29 14:08:45 +00002021 // PHI
2022 else if (PHINode *PN = dyn_cast<PHINode>(V)) {
2023 // Try and detect a recurrence that monotonically increases from a
2024 // starting value, as these are common as induction variables.
2025 if (PN->getNumIncomingValues() == 2) {
2026 Value *Start = PN->getIncomingValue(0);
2027 Value *Induction = PN->getIncomingValue(1);
2028 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2029 std::swap(Start, Induction);
2030 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2031 if (!C->isZero() && !C->isNegative()) {
2032 ConstantInt *X;
2033 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2034 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2035 !X->isNegative())
2036 return true;
2037 }
2038 }
2039 }
Jun Bum Limca832662016-02-01 17:03:07 +00002040 // Check if all incoming values are non-zero constant.
2041 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
2042 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
2043 });
2044 if (AllNonZeroConstants)
2045 return true;
James Molloy897048b2015-09-29 14:08:45 +00002046 }
Duncan Sandsd3951082011-01-25 09:38:29 +00002047
2048 if (!BitWidth) return false;
2049 APInt KnownZero(BitWidth, 0);
2050 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002051 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00002052 return KnownOne != 0;
2053}
2054
James Molloy1d88d6f2015-10-22 13:18:42 +00002055/// Return true if V2 == V1 + X, where X is known non-zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002056static bool isAddOfNonZero(Value *V1, Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00002057 BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2058 if (!BO || BO->getOpcode() != Instruction::Add)
2059 return false;
2060 Value *Op = nullptr;
2061 if (V2 == BO->getOperand(0))
2062 Op = BO->getOperand(1);
2063 else if (V2 == BO->getOperand(1))
2064 Op = BO->getOperand(0);
2065 else
2066 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002067 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002068}
2069
2070/// Return true if it is known that V1 != V2.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002071static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00002072 if (V1->getType()->isVectorTy() || V1 == V2)
2073 return false;
2074 if (V1->getType() != V2->getType())
2075 // We can't look through casts yet.
2076 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002077 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00002078 return true;
2079
2080 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
2081 // Are any known bits in V1 contradictory to known bits in V2? If V1
2082 // has a known zero where V2 has a known one, they must not be equal.
2083 auto BitWidth = Ty->getBitWidth();
2084 APInt KnownZero1(BitWidth, 0);
2085 APInt KnownOne1(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002086 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002087 APInt KnownZero2(BitWidth, 0);
2088 APInt KnownOne2(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002089 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00002090
2091 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
2092 if (OppositeBits.getBoolValue())
2093 return true;
2094 }
2095 return false;
2096}
2097
Sanjay Patelaee84212014-11-04 16:27:42 +00002098/// Return true if 'V & Mask' is known to be zero. We use this predicate to
2099/// simplify operations downstream. Mask is known to be zero for bits that V
2100/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00002101///
2102/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002103/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00002104/// where V is a vector, the mask, known zero, and known one values are the
2105/// same width as the vector element, and the bit is set only if it is true
2106/// for all of the elements in the vector.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002107bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
2108 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00002109 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002110 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002111 return (KnownZero & Mask) == Mask;
2112}
2113
2114
2115
Sanjay Patelaee84212014-11-04 16:27:42 +00002116/// Return the number of times the sign bit of the register is replicated into
2117/// the other bits. We know that at least 1 bit is always equal to the sign bit
2118/// (itself), but other cases can give us information. For example, immediately
2119/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2120/// other, so we return 3.
Chris Lattner965c7692008-06-02 01:18:21 +00002121///
2122/// 'Op' must have a scalar integer type.
2123///
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002124unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q) {
2125 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00002126 unsigned Tmp, Tmp2;
2127 unsigned FirstAnswer = 1;
2128
Jay Foada0653a32014-05-14 21:14:37 +00002129 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00002130 // below.
2131
Chris Lattner965c7692008-06-02 01:18:21 +00002132 if (Depth == 6)
2133 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002134
Dan Gohman80ca01c2009-07-17 20:47:02 +00002135 Operator *U = dyn_cast<Operator>(V);
2136 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00002137 default: break;
2138 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00002139 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002140 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00002141
Nadav Rotemc99a3872015-03-06 00:23:58 +00002142 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00002143 const APInt *Denominator;
2144 // sdiv X, C -> adds log(C) sign bits.
2145 if (match(U->getOperand(1), m_APInt(Denominator))) {
2146
2147 // Ignore non-positive denominator.
2148 if (!Denominator->isStrictlyPositive())
2149 break;
2150
2151 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002152 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00002153
2154 // Add floor(log(C)) bits to the numerator bits.
2155 return std::min(TyBits, NumBits + Denominator->logBase2());
2156 }
2157 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00002158 }
2159
2160 case Instruction::SRem: {
2161 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00002162 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2163 // positive constant. This let us put a lower bound on the number of sign
2164 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002165 if (match(U->getOperand(1), m_APInt(Denominator))) {
2166
2167 // Ignore non-positive denominator.
2168 if (!Denominator->isStrictlyPositive())
2169 break;
2170
2171 // Calculate the incoming numerator bits. SRem by a positive constant
2172 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002173 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002174 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00002175
2176 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00002177 // denominator. Given that the denominator is positive, there are two
2178 // cases:
2179 //
2180 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2181 // (1 << ceilLogBase2(C)).
2182 //
2183 // 2. the numerator is negative. Then the result range is (-C,0] and
2184 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2185 //
2186 // Thus a lower bound on the number of sign bits is `TyBits -
2187 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00002188
Sanjoy Dase561fee2015-03-25 22:33:53 +00002189 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00002190 return std::max(NumrBits, ResBits);
2191 }
2192 break;
2193 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00002194
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002195 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002196 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002197 // ashr X, C -> adds C sign bits. Vectors too.
2198 const APInt *ShAmt;
2199 if (match(U->getOperand(1), m_APInt(ShAmt))) {
2200 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00002201 if (Tmp > TyBits) Tmp = TyBits;
2202 }
2203 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002204 }
2205 case Instruction::Shl: {
2206 const APInt *ShAmt;
2207 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002208 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002209 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002210 Tmp2 = ShAmt->getZExtValue();
2211 if (Tmp2 >= TyBits || // Bad shift.
2212 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2213 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002214 }
2215 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002216 }
Chris Lattner965c7692008-06-02 01:18:21 +00002217 case Instruction::And:
2218 case Instruction::Or:
2219 case Instruction::Xor: // NOT is handled here.
2220 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002221 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002222 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002223 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002224 FirstAnswer = std::min(Tmp, Tmp2);
2225 // We computed what we know about the sign bits as our first
2226 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002227 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002228 }
2229 break;
2230
2231 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002232 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002233 if (Tmp == 1) return 1; // Early out.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002234 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002235 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002236
Chris Lattner965c7692008-06-02 01:18:21 +00002237 case Instruction::Add:
2238 // Add can have at most one carry bit. Thus we know that the output
2239 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002240 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002241 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002242
Chris Lattner965c7692008-06-02 01:18:21 +00002243 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002244 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002245 if (CRHS->isAllOnesValue()) {
2246 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002247 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002248
Chris Lattner965c7692008-06-02 01:18:21 +00002249 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2250 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002251 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002252 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002253
Chris Lattner965c7692008-06-02 01:18:21 +00002254 // If we are subtracting one from a positive number, there is no carry
2255 // out of the result.
2256 if (KnownZero.isNegative())
2257 return Tmp;
2258 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002259
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002260 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002261 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002262 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002263
Chris Lattner965c7692008-06-02 01:18:21 +00002264 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002265 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002266 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002267
Chris Lattner965c7692008-06-02 01:18:21 +00002268 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002269 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002270 if (CLHS->isNullValue()) {
2271 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002272 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002273 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2274 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002275 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002276 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002277
Chris Lattner965c7692008-06-02 01:18:21 +00002278 // If the input is known to be positive (the sign bit is known clear),
2279 // the output of the NEG has the same number of sign bits as the input.
2280 if (KnownZero.isNegative())
2281 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002282
Chris Lattner965c7692008-06-02 01:18:21 +00002283 // Otherwise, we treat this like a SUB.
2284 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002285
Chris Lattner965c7692008-06-02 01:18:21 +00002286 // Sub can have at most one carry bit. Thus we know that the output
2287 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002288 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002289 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002290 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002291
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002292 case Instruction::PHI: {
2293 PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002294 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002295 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002296 if (NumIncomingValues > 4) break;
2297 // Unreachable blocks may have zero-operand PHI nodes.
2298 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002299
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002300 // Take the minimum of all incoming values. This can't infinitely loop
2301 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002302 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002303 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002304 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002305 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002306 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002307 }
2308 return Tmp;
2309 }
2310
Chris Lattner965c7692008-06-02 01:18:21 +00002311 case Instruction::Trunc:
2312 // FIXME: it's tricky to do anything useful for this, but it is an important
2313 // case for targets like X86.
2314 break;
2315 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002316
Chris Lattner965c7692008-06-02 01:18:21 +00002317 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2318 // use this information.
2319 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002320 APInt Mask;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002321 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002322
Chris Lattner965c7692008-06-02 01:18:21 +00002323 if (KnownZero.isNegative()) { // sign bit is 0
2324 Mask = KnownZero;
2325 } else if (KnownOne.isNegative()) { // sign bit is 1;
2326 Mask = KnownOne;
2327 } else {
2328 // Nothing known.
2329 return FirstAnswer;
2330 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002331
Chris Lattner965c7692008-06-02 01:18:21 +00002332 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
2333 // the number of identical bits in the top of the input value.
2334 Mask = ~Mask;
2335 Mask <<= Mask.getBitWidth()-TyBits;
2336 // Return # leading zeros. We use 'min' here in case Val was zero before
2337 // shifting. We don't want to return '64' as for an i32 "0".
2338 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
2339}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002340
Sanjay Patelaee84212014-11-04 16:27:42 +00002341/// This function computes the integer multiple of Base that equals V.
2342/// If successful, it returns true and returns the multiple in
2343/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002344/// through SExt instructions only if LookThroughSExt is true.
2345bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002346 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002347 const unsigned MaxDepth = 6;
2348
Dan Gohman6a976bb2009-11-18 00:58:27 +00002349 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002350 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002351 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002352
Chris Lattner229907c2011-07-18 04:54:35 +00002353 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002354
Dan Gohman6a976bb2009-11-18 00:58:27 +00002355 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002356
2357 if (Base == 0)
2358 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002359
Victor Hernandez47444882009-11-10 08:28:35 +00002360 if (Base == 1) {
2361 Multiple = V;
2362 return true;
2363 }
2364
2365 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2366 Constant *BaseVal = ConstantInt::get(T, Base);
2367 if (CO && CO == BaseVal) {
2368 // Multiple is 1.
2369 Multiple = ConstantInt::get(T, 1);
2370 return true;
2371 }
2372
2373 if (CI && CI->getZExtValue() % Base == 0) {
2374 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002375 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002376 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002377
Victor Hernandez47444882009-11-10 08:28:35 +00002378 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002379
Victor Hernandez47444882009-11-10 08:28:35 +00002380 Operator *I = dyn_cast<Operator>(V);
2381 if (!I) return false;
2382
2383 switch (I->getOpcode()) {
2384 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002385 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002386 if (!LookThroughSExt) return false;
2387 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002388 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002389 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2390 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002391 case Instruction::Shl:
2392 case Instruction::Mul: {
2393 Value *Op0 = I->getOperand(0);
2394 Value *Op1 = I->getOperand(1);
2395
2396 if (I->getOpcode() == Instruction::Shl) {
2397 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2398 if (!Op1CI) return false;
2399 // Turn Op0 << Op1 into Op0 * 2^Op1
2400 APInt Op1Int = Op1CI->getValue();
2401 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002402 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002403 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002404 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002405 }
2406
Craig Topper9f008862014-04-15 04:59:12 +00002407 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002408 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2409 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2410 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002411 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002412 MulC->getType()->getPrimitiveSizeInBits())
2413 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002414 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002415 MulC->getType()->getPrimitiveSizeInBits())
2416 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002417
Chris Lattner72d283c2010-09-05 17:20:46 +00002418 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2419 Multiple = ConstantExpr::getMul(MulC, Op1C);
2420 return true;
2421 }
Victor Hernandez47444882009-11-10 08:28:35 +00002422
2423 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2424 if (Mul0CI->getValue() == 1) {
2425 // V == Base * Op1, so return Op1
2426 Multiple = Op1;
2427 return true;
2428 }
2429 }
2430
Craig Topper9f008862014-04-15 04:59:12 +00002431 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002432 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2433 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2434 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002435 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002436 MulC->getType()->getPrimitiveSizeInBits())
2437 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002438 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002439 MulC->getType()->getPrimitiveSizeInBits())
2440 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002441
Chris Lattner72d283c2010-09-05 17:20:46 +00002442 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2443 Multiple = ConstantExpr::getMul(MulC, Op0C);
2444 return true;
2445 }
Victor Hernandez47444882009-11-10 08:28:35 +00002446
2447 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2448 if (Mul1CI->getValue() == 1) {
2449 // V == Base * Op0, so return Op0
2450 Multiple = Op0;
2451 return true;
2452 }
2453 }
Victor Hernandez47444882009-11-10 08:28:35 +00002454 }
2455 }
2456
2457 // We could not determine if V is a multiple of Base.
2458 return false;
2459}
2460
Sanjay Patelaee84212014-11-04 16:27:42 +00002461/// Return true if we can prove that the specified FP value is never equal to
2462/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002463///
2464/// NOTE: this function will need to be revisited when we support non-default
2465/// rounding modes!
2466///
2467bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
2468 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2469 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002470
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002471 // FIXME: Magic number! At the least, this should be given a name because it's
2472 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2473 // expose it as a parameter, so it can be used for testing / experimenting.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002474 if (Depth == 6)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002475 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002476
Dan Gohman80ca01c2009-07-17 20:47:02 +00002477 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002478 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002479
2480 // Check if the nsz fast-math flag is set
2481 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2482 if (FPO->hasNoSignedZeros())
2483 return true;
2484
Chris Lattnera12a6de2008-06-02 01:29:46 +00002485 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002486 if (I->getOpcode() == Instruction::FAdd)
2487 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2488 if (CFP->isNullValue())
2489 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002490
Chris Lattnera12a6de2008-06-02 01:29:46 +00002491 // sitofp and uitofp turn into +0.0 for zero.
2492 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2493 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002494
Chris Lattnera12a6de2008-06-02 01:29:46 +00002495 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2496 // sqrt(-0.0) = -0.0, no other negative results are possible.
2497 if (II->getIntrinsicID() == Intrinsic::sqrt)
Gabor Greif1abbde32010-06-23 23:38:07 +00002498 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
Craig Topper1bef2c82012-12-22 19:15:35 +00002499
Chris Lattnera12a6de2008-06-02 01:29:46 +00002500 if (const CallInst *CI = dyn_cast<CallInst>(I))
2501 if (const Function *F = CI->getCalledFunction()) {
2502 if (F->isDeclaration()) {
Daniel Dunbarca414c72009-07-26 08:34:35 +00002503 // abs(x) != -0.0
2504 if (F->getName() == "abs") return true;
Dale Johannesenf6a987b2009-09-25 20:54:50 +00002505 // fabs[lf](x) != -0.0
2506 if (F->getName() == "fabs") return true;
2507 if (F->getName() == "fabsf") return true;
2508 if (F->getName() == "fabsl") return true;
2509 if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
2510 F->getName() == "sqrtl")
Gabor Greif1abbde32010-06-23 23:38:07 +00002511 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
Chris Lattnera12a6de2008-06-02 01:29:46 +00002512 }
2513 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002514
Chris Lattnera12a6de2008-06-02 01:29:46 +00002515 return false;
2516}
2517
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002518bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) {
2519 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2520 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2521
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002522 // FIXME: Magic number! At the least, this should be given a name because it's
2523 // used similarly in CannotBeNegativeZero(). A better fix may be to
2524 // expose it as a parameter, so it can be used for testing / experimenting.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002525 if (Depth == 6)
2526 return false; // Limit search depth.
2527
2528 const Operator *I = dyn_cast<Operator>(V);
2529 if (!I) return false;
2530
2531 switch (I->getOpcode()) {
2532 default: break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002533 // Unsigned integers are always nonnegative.
2534 case Instruction::UIToFP:
2535 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002536 case Instruction::FMul:
2537 // x*x is always non-negative or a NaN.
2538 if (I->getOperand(0) == I->getOperand(1))
2539 return true;
2540 // Fall through
2541 case Instruction::FAdd:
2542 case Instruction::FDiv:
2543 case Instruction::FRem:
2544 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) &&
2545 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002546 case Instruction::Select:
2547 return CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1) &&
2548 CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002549 case Instruction::FPExt:
2550 case Instruction::FPTrunc:
2551 // Widening/narrowing never change sign.
2552 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
2553 case Instruction::Call:
2554 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2555 switch (II->getIntrinsicID()) {
2556 default: break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002557 case Intrinsic::maxnum:
2558 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) ||
2559 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
2560 case Intrinsic::minnum:
2561 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) &&
2562 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002563 case Intrinsic::exp:
2564 case Intrinsic::exp2:
2565 case Intrinsic::fabs:
2566 case Intrinsic::sqrt:
2567 return true;
2568 case Intrinsic::powi:
2569 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2570 // powi(x,n) is non-negative if n is even.
2571 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2572 return true;
2573 }
2574 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
2575 case Intrinsic::fma:
2576 case Intrinsic::fmuladd:
2577 // x*x+y is non-negative if y is non-negative.
2578 return I->getOperand(0) == I->getOperand(1) &&
2579 CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1);
2580 }
2581 break;
2582 }
2583 return false;
2584}
2585
Sanjay Patelaee84212014-11-04 16:27:42 +00002586/// If the specified value can be set by repeating the same byte in memory,
2587/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002588/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2589/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2590/// byte store (e.g. i16 0x1234), return null.
2591Value *llvm::isBytewiseValue(Value *V) {
2592 // All byte-wide stores are splatable, even of arbitrary variables.
2593 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002594
2595 // Handle 'null' ConstantArrayZero etc.
2596 if (Constant *C = dyn_cast<Constant>(V))
2597 if (C->isNullValue())
2598 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002599
Chris Lattner9cb10352010-12-26 20:15:01 +00002600 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002601 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002602 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2603 if (CFP->getType()->isFloatTy())
2604 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2605 if (CFP->getType()->isDoubleTy())
2606 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2607 // Don't handle long double formats, which have strange constraints.
2608 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002609
Benjamin Kramer17d90152015-02-07 19:29:02 +00002610 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002611 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002612 if (CI->getBitWidth() % 8 == 0) {
2613 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002614
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002615 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002616 return nullptr;
2617 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002618 }
2619 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002620
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002621 // A ConstantDataArray/Vector is splatable if all its members are equal and
2622 // also splatable.
2623 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2624 Value *Elt = CA->getElementAsConstant(0);
2625 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002626 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002627 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002628
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002629 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2630 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002631 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002632
Chris Lattner9cb10352010-12-26 20:15:01 +00002633 return Val;
2634 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002635
Chris Lattner9cb10352010-12-26 20:15:01 +00002636 // Conceptually, we could handle things like:
2637 // %a = zext i8 %X to i16
2638 // %b = shl i16 %a, 8
2639 // %c = or i16 %a, %b
2640 // but until there is an example that actually needs this, it doesn't seem
2641 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002642 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002643}
2644
2645
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002646// This is the recursive version of BuildSubAggregate. It takes a few different
2647// arguments. Idxs is the index within the nested struct From that we are
2648// looking at now (which is of type IndexedType). IdxSkip is the number of
2649// indices from Idxs that should be left out when inserting into the resulting
2650// struct. To is the result struct built so far, new insertvalue instructions
2651// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002652static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002653 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002654 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002655 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002656 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002657 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002658 // Save the original To argument so we can modify it
2659 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002660 // General case, the type indexed by Idxs is a struct
2661 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2662 // Process each struct element recursively
2663 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002664 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002665 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002666 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002667 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002668 if (!To) {
2669 // Couldn't find any inserted value for this index? Cleanup
2670 while (PrevTo != OrigTo) {
2671 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2672 PrevTo = Del->getAggregateOperand();
2673 Del->eraseFromParent();
2674 }
2675 // Stop processing elements
2676 break;
2677 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002678 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002679 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002680 if (To)
2681 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002682 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002683 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2684 // the struct's elements had a value that was inserted directly. In the latter
2685 // case, perhaps we can't determine each of the subelements individually, but
2686 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002687
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002688 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002689 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002690
2691 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002692 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002693
2694 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002695 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002696 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002697}
2698
2699// This helper takes a nested struct and extracts a part of it (which is again a
2700// struct) into a new value. For example, given the struct:
2701// { a, { b, { c, d }, e } }
2702// and the indices "1, 1" this returns
2703// { c, d }.
2704//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002705// It does this by inserting an insertvalue for each element in the resulting
2706// struct, as opposed to just inserting a single struct. This will only work if
2707// each of the elements of the substruct are known (ie, inserted into From by an
2708// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002709//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002710// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002711static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002712 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002713 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002714 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002715 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002716 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002717 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002718 unsigned IdxSkip = Idxs.size();
2719
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002720 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002721}
2722
Sanjay Patelaee84212014-11-04 16:27:42 +00002723/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002724/// the scalar value indexed is already around as a register, for example if it
2725/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002726///
2727/// If InsertBefore is not null, this function will duplicate (modified)
2728/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002729Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2730 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002731 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002732 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002733 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002734 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002735 // We have indices, so V should have an indexable type.
2736 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2737 "Not looking at a struct or array?");
2738 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2739 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002740
Chris Lattner67058832012-01-25 06:48:06 +00002741 if (Constant *C = dyn_cast<Constant>(V)) {
2742 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002743 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002744 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2745 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002746
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002747 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002748 // Loop the indices for the insertvalue instruction in parallel with the
2749 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002750 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002751 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2752 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002753 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002754 // We can't handle this without inserting insertvalues
2755 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002756 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002757
2758 // The requested index identifies a part of a nested aggregate. Handle
2759 // this specially. For example,
2760 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2761 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2762 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2763 // This can be changed into
2764 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2765 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2766 // which allows the unused 0,0 element from the nested struct to be
2767 // removed.
2768 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2769 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002770 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002771
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002772 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002773 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002774 // looking for, then.
2775 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002776 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002777 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002778 }
2779 // If we end up here, the indices of the insertvalue match with those
2780 // requested (though possibly only partially). Now we recursively look at
2781 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002782 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002783 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002784 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002785 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002786
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002787 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002788 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002789 // something else, we can extract from that something else directly instead.
2790 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002791
2792 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002793 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002794 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002795 SmallVector<unsigned, 5> Idxs;
2796 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002797 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002798 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002799
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002800 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002801 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002802
Craig Topper1bef2c82012-12-22 19:15:35 +00002803 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002804 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002805
Jay Foad57aa6362011-07-13 10:26:04 +00002806 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002807 }
2808 // Otherwise, we don't know (such as, extracting from a function return value
2809 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002810 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002811}
Evan Chengda3db112008-06-30 07:31:25 +00002812
Sanjay Patelaee84212014-11-04 16:27:42 +00002813/// Analyze the specified pointer to see if it can be expressed as a base
2814/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002815Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002816 const DataLayout &DL) {
2817 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00002818 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00002819
2820 // We walk up the defs but use a visited set to handle unreachable code. In
2821 // that case, we stop after accumulating the cycle once (not that it
2822 // matters).
2823 SmallPtrSet<Value *, 16> Visited;
2824 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002825 if (Ptr->getType()->isVectorTy())
2826 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002827
Nuno Lopes368c4d02012-12-31 20:48:35 +00002828 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002829 APInt GEPOffset(BitWidth, 0);
2830 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2831 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002832
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002833 ByteOffset += GEPOffset;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002834
Nuno Lopes368c4d02012-12-31 20:48:35 +00002835 Ptr = GEP->getPointerOperand();
Matt Arsenaultfd78d0c2014-07-14 22:39:22 +00002836 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2837 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002838 Ptr = cast<Operator>(Ptr)->getOperand(0);
2839 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
2840 if (GA->mayBeOverridden())
2841 break;
2842 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002843 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002844 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002845 }
2846 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002847 Offset = ByteOffset.getSExtValue();
2848 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002849}
2850
2851
Sanjay Patelaee84212014-11-04 16:27:42 +00002852/// This function computes the length of a null-terminated C string pointed to
2853/// by V. If successful, it returns true and returns the string in Str.
2854/// If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002855bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2856 uint64_t Offset, bool TrimAtNul) {
2857 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002858
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002859 // Look through bitcast instructions and geps.
2860 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002861
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002862 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002863 // offset.
2864 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Evan Chengda3db112008-06-30 07:31:25 +00002865 // Make sure the GEP has exactly three arguments.
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002866 if (GEP->getNumOperands() != 3)
2867 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002868
Evan Chengda3db112008-06-30 07:31:25 +00002869 // Make sure the index-ee is a pointer to array of i8.
Eduard Burtescu19eb0312016-01-19 17:28:00 +00002870 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
Craig Topper9f008862014-04-15 04:59:12 +00002871 if (!AT || !AT->getElementType()->isIntegerTy(8))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002872 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002873
Evan Chengda3db112008-06-30 07:31:25 +00002874 // Check to make sure that the first operand of the GEP is an integer and
2875 // has value 0 so that we are sure we're indexing into the initializer.
Dan Gohman0b4df042010-04-14 22:20:45 +00002876 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
Craig Topper9f008862014-04-15 04:59:12 +00002877 if (!FirstIdx || !FirstIdx->isZero())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002878 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002879
Evan Chengda3db112008-06-30 07:31:25 +00002880 // If the second index isn't a ConstantInt, then this is a variable index
2881 // into the array. If this occurs, we can't say anything meaningful about
2882 // the string.
2883 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00002884 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00002885 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002886 else
2887 return false;
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002888 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2889 TrimAtNul);
Evan Chengda3db112008-06-30 07:31:25 +00002890 }
Nick Lewycky46209882011-10-20 00:34:35 +00002891
Evan Chengda3db112008-06-30 07:31:25 +00002892 // The GEP instruction, constant or instruction, must reference a global
2893 // variable that is a constant and is initialized. The referenced constant
2894 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002895 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00002896 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002897 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002898
Nick Lewycky46209882011-10-20 00:34:35 +00002899 // Handle the all-zeros case
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002900 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00002901 // This is a degenerate case. The initializer is constant zero so the
2902 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002903 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002904 return true;
2905 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002906
Evan Chengda3db112008-06-30 07:31:25 +00002907 // Must be a Constant Array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002908 const ConstantDataArray *Array =
2909 dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00002910 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002911 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002912
Evan Chengda3db112008-06-30 07:31:25 +00002913 // Get the number of elements in the array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002914 uint64_t NumElts = Array->getType()->getArrayNumElements();
2915
2916 // Start out with the entire array in the StringRef.
2917 Str = Array->getAsString();
2918
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002919 if (Offset > NumElts)
2920 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002921
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002922 // Skip over 'offset' bytes.
2923 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00002924
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002925 if (TrimAtNul) {
2926 // Trim off the \0 and anything after it. If the array is not nul
2927 // terminated, we just return the whole end of string. The client may know
2928 // some other way that the string is length-bound.
2929 Str = Str.substr(0, Str.find('\0'));
2930 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002931 return true;
Evan Chengda3db112008-06-30 07:31:25 +00002932}
Eric Christopher4899cbc2010-03-05 06:58:57 +00002933
2934// These next two are very similar to the above, but also look through PHI
2935// nodes.
2936// TODO: See if we can integrate these two together.
2937
Sanjay Patelaee84212014-11-04 16:27:42 +00002938/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002939/// the specified pointer, return 'len+1'. If we can't, return 0.
Craig Topper71b7b682014-08-21 05:55:13 +00002940static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00002941 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002942 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00002943
2944 // If this is a PHI node, there are two cases: either we have already seen it
2945 // or we haven't.
2946 if (PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00002947 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00002948 return ~0ULL; // already in the set.
2949
2950 // If it was new, see if all the input strings are the same length.
2951 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00002952 for (Value *IncValue : PN->incoming_values()) {
2953 uint64_t Len = GetStringLengthH(IncValue, PHIs);
Eric Christopher4899cbc2010-03-05 06:58:57 +00002954 if (Len == 0) return 0; // Unknown length -> unknown.
2955
2956 if (Len == ~0ULL) continue;
2957
2958 if (Len != LenSoFar && LenSoFar != ~0ULL)
2959 return 0; // Disagree -> unknown.
2960 LenSoFar = Len;
2961 }
2962
2963 // Success, all agree.
2964 return LenSoFar;
2965 }
2966
2967 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
2968 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2969 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
2970 if (Len1 == 0) return 0;
2971 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
2972 if (Len2 == 0) return 0;
2973 if (Len1 == ~0ULL) return Len2;
2974 if (Len2 == ~0ULL) return Len1;
2975 if (Len1 != Len2) return 0;
2976 return Len1;
2977 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002978
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002979 // Otherwise, see if we can read the string.
2980 StringRef StrData;
2981 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00002982 return 0;
2983
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002984 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00002985}
2986
Sanjay Patelaee84212014-11-04 16:27:42 +00002987/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002988/// the specified pointer, return 'len+1'. If we can't, return 0.
2989uint64_t llvm::GetStringLength(Value *V) {
2990 if (!V->getType()->isPointerTy()) return 0;
2991
2992 SmallPtrSet<PHINode*, 32> PHIs;
2993 uint64_t Len = GetStringLengthH(V, PHIs);
2994 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
2995 // an empty string as a length.
2996 return Len == ~0ULL ? 1 : Len;
2997}
Dan Gohmana4fcd242010-12-15 20:02:24 +00002998
Adam Nemete2b885c2015-04-23 20:09:20 +00002999/// \brief \p PN defines a loop-variant pointer to an object. Check if the
3000/// previous iteration of the loop was referring to the same object as \p PN.
3001static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) {
3002 // Find the loop-defined value.
3003 Loop *L = LI->getLoopFor(PN->getParent());
3004 if (PN->getNumIncomingValues() != 2)
3005 return true;
3006
3007 // Find the value from previous iteration.
3008 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3009 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3010 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3011 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3012 return true;
3013
3014 // If a new pointer is loaded in the loop, the pointer references a different
3015 // object in every iteration. E.g.:
3016 // for (i)
3017 // int *p = a[i];
3018 // ...
3019 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3020 if (!L->isLoopInvariant(Load->getPointerOperand()))
3021 return false;
3022 return true;
3023}
3024
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003025Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3026 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003027 if (!V->getType()->isPointerTy())
3028 return V;
3029 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3030 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3031 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00003032 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3033 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00003034 V = cast<Operator>(V)->getOperand(0);
3035 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
3036 if (GA->mayBeOverridden())
3037 return V;
3038 V = GA->getAliasee();
3039 } else {
Dan Gohman05b18f12010-12-15 20:49:55 +00003040 // See if InstructionSimplify knows any relevant tricks.
3041 if (Instruction *I = dyn_cast<Instruction>(V))
Chandler Carruth66b31302015-01-04 12:03:27 +00003042 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003043 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00003044 V = Simplified;
3045 continue;
3046 }
3047
Dan Gohmana4fcd242010-12-15 20:02:24 +00003048 return V;
3049 }
3050 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3051 }
3052 return V;
3053}
Nick Lewycky3e334a42011-06-27 04:20:45 +00003054
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003055void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00003056 const DataLayout &DL, LoopInfo *LI,
3057 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003058 SmallPtrSet<Value *, 4> Visited;
3059 SmallVector<Value *, 4> Worklist;
3060 Worklist.push_back(V);
3061 do {
3062 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003063 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003064
David Blaikie70573dc2014-11-19 07:49:26 +00003065 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003066 continue;
3067
3068 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3069 Worklist.push_back(SI->getTrueValue());
3070 Worklist.push_back(SI->getFalseValue());
3071 continue;
3072 }
3073
3074 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003075 // If this PHI changes the underlying object in every iteration of the
3076 // loop, don't look through it. Consider:
3077 // int **A;
3078 // for (i) {
3079 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3080 // Curr = A[i];
3081 // *Prev, *Curr;
3082 //
3083 // Prev is tracking Curr one iteration behind so they refer to different
3084 // underlying objects.
3085 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3086 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003087 for (Value *IncValue : PN->incoming_values())
3088 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003089 continue;
3090 }
3091
3092 Objects.push_back(P);
3093 } while (!Worklist.empty());
3094}
3095
Sanjay Patelaee84212014-11-04 16:27:42 +00003096/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003097bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003098 for (const User *U : V->users()) {
3099 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003100 if (!II) return false;
3101
3102 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3103 II->getIntrinsicID() != Intrinsic::lifetime_end)
3104 return false;
3105 }
3106 return true;
3107}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003108
Philip Reames5461d452015-04-23 17:36:48 +00003109static bool isDereferenceableFromAttribute(const Value *BV, APInt Offset,
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003110 Type *Ty, const DataLayout &DL,
3111 const Instruction *CtxI,
3112 const DominatorTree *DT,
3113 const TargetLibraryInfo *TLI) {
Philip Reames5461d452015-04-23 17:36:48 +00003114 assert(Offset.isNonNegative() && "offset can't be negative");
3115 assert(Ty->isSized() && "must be sized");
3116
3117 APInt DerefBytes(Offset.getBitWidth(), 0);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003118 bool CheckForNonNull = false;
Philip Reames5461d452015-04-23 17:36:48 +00003119 if (const Argument *A = dyn_cast<Argument>(BV)) {
3120 DerefBytes = A->getDereferenceableBytes();
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003121 if (!DerefBytes.getBoolValue()) {
3122 DerefBytes = A->getDereferenceableOrNullBytes();
3123 CheckForNonNull = true;
3124 }
Philip Reames5461d452015-04-23 17:36:48 +00003125 } else if (auto CS = ImmutableCallSite(BV)) {
3126 DerefBytes = CS.getDereferenceableBytes(0);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003127 if (!DerefBytes.getBoolValue()) {
3128 DerefBytes = CS.getDereferenceableOrNullBytes(0);
3129 CheckForNonNull = true;
3130 }
Sanjoy Dasf9995472015-05-19 20:10:19 +00003131 } else if (const LoadInst *LI = dyn_cast<LoadInst>(BV)) {
3132 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
3133 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
3134 DerefBytes = CI->getLimitedValue();
3135 }
3136 if (!DerefBytes.getBoolValue()) {
3137 if (MDNode *MD =
3138 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
3139 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
3140 DerefBytes = CI->getLimitedValue();
3141 }
3142 CheckForNonNull = true;
3143 }
Philip Reames5461d452015-04-23 17:36:48 +00003144 }
3145
3146 if (DerefBytes.getBoolValue())
3147 if (DerefBytes.uge(Offset + DL.getTypeStoreSize(Ty)))
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003148 if (!CheckForNonNull || isKnownNonNullAt(BV, CtxI, DT, TLI))
3149 return true;
3150
Philip Reames5461d452015-04-23 17:36:48 +00003151 return false;
3152}
3153
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003154static bool isDereferenceableFromAttribute(const Value *V, const DataLayout &DL,
3155 const Instruction *CtxI,
3156 const DominatorTree *DT,
3157 const TargetLibraryInfo *TLI) {
Philip Reames5461d452015-04-23 17:36:48 +00003158 Type *VTy = V->getType();
3159 Type *Ty = VTy->getPointerElementType();
3160 if (!Ty->isSized())
3161 return false;
3162
3163 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0);
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003164 return isDereferenceableFromAttribute(V, Offset, Ty, DL, CtxI, DT, TLI);
Philip Reames5461d452015-04-23 17:36:48 +00003165}
3166
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003167static bool isAligned(const Value *Base, APInt Offset, unsigned Align,
3168 const DataLayout &DL) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00003169 APInt BaseAlign(Offset.getBitWidth(), Base->getPointerAlignment(DL));
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003170
3171 if (!BaseAlign) {
3172 Type *Ty = Base->getType()->getPointerElementType();
Michael Zolotukhin0c979882015-12-21 20:38:18 +00003173 if (!Ty->isSized())
3174 return false;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003175 BaseAlign = DL.getABITypeAlignment(Ty);
3176 }
3177
3178 APInt Alignment(Offset.getBitWidth(), Align);
3179
3180 assert(Alignment.isPowerOf2() && "must be a power of 2!");
3181 return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1));
3182}
3183
3184static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) {
Michael Zolotukhin0c979882015-12-21 20:38:18 +00003185 Type *Ty = Base->getType();
3186 assert(Ty->isSized() && "must be sized");
3187 APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003188 return isAligned(Base, Offset, Align, DL);
3189}
3190
Philip Reames5461d452015-04-23 17:36:48 +00003191/// Test if V is always a pointer to allocated and suitably aligned memory for
3192/// a simple load or store.
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003193static bool isDereferenceableAndAlignedPointer(
3194 const Value *V, unsigned Align, const DataLayout &DL,
3195 const Instruction *CtxI, const DominatorTree *DT,
3196 const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited) {
Philip Reames5461d452015-04-23 17:36:48 +00003197 // Note that it is not safe to speculate into a malloc'd region because
3198 // malloc may return null.
3199
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003200 // These are obviously ok if aligned.
3201 if (isa<AllocaInst>(V))
3202 return isAligned(V, Align, DL);
Philip Reames5461d452015-04-23 17:36:48 +00003203
3204 // It's not always safe to follow a bitcast, for example:
3205 // bitcast i8* (alloca i8) to i32*
3206 // would result in a 4-byte load from a 1-byte alloca. However,
3207 // if we're casting from a pointer from a type of larger size
3208 // to a type of smaller size (or the same size), and the alignment
3209 // is at least as large as for the resulting pointer type, then
3210 // we can look through the bitcast.
3211 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) {
3212 Type *STy = BC->getSrcTy()->getPointerElementType(),
3213 *DTy = BC->getDestTy()->getPointerElementType();
3214 if (STy->isSized() && DTy->isSized() &&
3215 (DL.getTypeStoreSize(STy) >= DL.getTypeStoreSize(DTy)) &&
3216 (DL.getABITypeAlignment(STy) >= DL.getABITypeAlignment(DTy)))
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003217 return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, DL,
3218 CtxI, DT, TLI, Visited);
Philip Reames5461d452015-04-23 17:36:48 +00003219 }
3220
3221 // Global variables which can't collapse to null are ok.
3222 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003223 if (!GV->hasExternalWeakLinkage())
3224 return isAligned(V, Align, DL);
Philip Reames5461d452015-04-23 17:36:48 +00003225
3226 // byval arguments are okay.
3227 if (const Argument *A = dyn_cast<Argument>(V))
3228 if (A->hasByValAttr())
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003229 return isAligned(V, Align, DL);
3230
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003231 if (isDereferenceableFromAttribute(V, DL, CtxI, DT, TLI))
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003232 return isAligned(V, Align, DL);
Philip Reames5461d452015-04-23 17:36:48 +00003233
3234 // For GEPs, determine if the indexing lands within the allocated object.
3235 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Eduard Burtescu19eb0312016-01-19 17:28:00 +00003236 Type *Ty = GEP->getResultElementType();
Artur Pilipenko7fad7e52015-06-08 11:58:13 +00003237 const Value *Base = GEP->getPointerOperand();
3238
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003239 // Conservatively require that the base pointer be fully dereferenceable
3240 // and aligned.
Artur Pilipenko7fad7e52015-06-08 11:58:13 +00003241 if (!Visited.insert(Base).second)
Philip Reames5461d452015-04-23 17:36:48 +00003242 return false;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003243 if (!isDereferenceableAndAlignedPointer(Base, Align, DL, CtxI, DT, TLI,
3244 Visited))
Philip Reames5461d452015-04-23 17:36:48 +00003245 return false;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003246
Eduard Burtescu19eb0312016-01-19 17:28:00 +00003247 APInt Offset(DL.getPointerTypeSizeInBits(GEP->getType()), 0);
Artur Pilipenko7fad7e52015-06-08 11:58:13 +00003248 if (!GEP->accumulateConstantOffset(DL, Offset))
3249 return false;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003250
3251 // Check if the load is within the bounds of the underlying object
3252 // and offset is aligned.
Artur Pilipenko7fad7e52015-06-08 11:58:13 +00003253 uint64_t LoadSize = DL.getTypeStoreSize(Ty);
Eduard Burtescu19eb0312016-01-19 17:28:00 +00003254 Type *BaseType = GEP->getSourceElementType();
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003255 assert(isPowerOf2_32(Align) && "must be a power of 2!");
3256 return (Offset + LoadSize).ule(DL.getTypeAllocSize(BaseType)) &&
3257 !(Offset & APInt(Offset.getBitWidth(), Align-1));
Philip Reames5461d452015-04-23 17:36:48 +00003258 }
3259
3260 // For gc.relocate, look through relocations
Manuel Jacob83eefa62016-01-05 04:03:00 +00003261 if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
3262 return isDereferenceableAndAlignedPointer(
3263 RelocateInst->getDerivedPtr(), Align, DL, CtxI, DT, TLI, Visited);
Philip Reames5461d452015-04-23 17:36:48 +00003264
3265 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003266 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, DL,
3267 CtxI, DT, TLI, Visited);
Philip Reames5461d452015-04-23 17:36:48 +00003268
3269 // If we don't know, assume the worst.
3270 return false;
3271}
3272
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003273bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
3274 const DataLayout &DL,
3275 const Instruction *CtxI,
3276 const DominatorTree *DT,
3277 const TargetLibraryInfo *TLI) {
Philip Reames5461d452015-04-23 17:36:48 +00003278 // When dereferenceability information is provided by a dereferenceable
3279 // attribute, we know exactly how many bytes are dereferenceable. If we can
3280 // determine the exact offset to the attributed variable, we can use that
3281 // information here.
3282 Type *VTy = V->getType();
3283 Type *Ty = VTy->getPointerElementType();
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003284
3285 // Require ABI alignment for loads without alignment specification
3286 if (Align == 0)
3287 Align = DL.getABITypeAlignment(Ty);
3288
Philip Reames5461d452015-04-23 17:36:48 +00003289 if (Ty->isSized()) {
3290 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0);
3291 const Value *BV = V->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003292
Philip Reames5461d452015-04-23 17:36:48 +00003293 if (Offset.isNonNegative())
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003294 if (isDereferenceableFromAttribute(BV, Offset, Ty, DL, CtxI, DT, TLI) &&
3295 isAligned(BV, Offset, Align, DL))
Philip Reames5461d452015-04-23 17:36:48 +00003296 return true;
3297 }
3298
3299 SmallPtrSet<const Value *, 32> Visited;
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003300 return ::isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT, TLI,
3301 Visited);
3302}
3303
3304bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL,
3305 const Instruction *CtxI,
3306 const DominatorTree *DT,
3307 const TargetLibraryInfo *TLI) {
3308 return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT, TLI);
Philip Reames5461d452015-04-23 17:36:48 +00003309}
3310
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003311bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3312 const Instruction *CtxI,
3313 const DominatorTree *DT,
3314 const TargetLibraryInfo *TLI) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003315 const Operator *Inst = dyn_cast<Operator>(V);
3316 if (!Inst)
3317 return false;
3318
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003319 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3320 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3321 if (C->canTrap())
3322 return false;
3323
3324 switch (Inst->getOpcode()) {
3325 default:
3326 return true;
3327 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003328 case Instruction::URem: {
3329 // x / y is undefined if y == 0.
3330 const APInt *V;
3331 if (match(Inst->getOperand(1), m_APInt(V)))
3332 return *V != 0;
3333 return false;
3334 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003335 case Instruction::SDiv:
3336 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003337 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003338 const APInt *Numerator, *Denominator;
3339 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3340 return false;
3341 // We cannot hoist this division if the denominator is 0.
3342 if (*Denominator == 0)
3343 return false;
3344 // It's safe to hoist if the denominator is not 0 or -1.
3345 if (*Denominator != -1)
3346 return true;
3347 // At this point we know that the denominator is -1. It is safe to hoist as
3348 // long we know that the numerator is not INT_MIN.
3349 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3350 return !Numerator->isMinSignedValue();
3351 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003352 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003353 }
3354 case Instruction::Load: {
3355 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003356 if (!LI->isUnordered() ||
3357 // Speculative load may create a race that did not exist in the source.
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003358 LI->getParent()->getParent()->hasFnAttribute(
3359 Attribute::SanitizeThread) ||
3360 // Speculative load may load data from dirty regions.
3361 LI->getParent()->getParent()->hasFnAttribute(
3362 Attribute::SanitizeAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003363 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003364 const DataLayout &DL = LI->getModule()->getDataLayout();
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003365 return isDereferenceableAndAlignedPointer(
3366 LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003367 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003368 case Instruction::Call: {
David Majnemer0a92f862015-08-28 21:13:39 +00003369 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3370 switch (II->getIntrinsicID()) {
3371 // These synthetic intrinsics have no side-effects and just mark
3372 // information about their operands.
3373 // FIXME: There are other no-op synthetic instructions that potentially
3374 // should be considered at least *safe* to speculate...
3375 case Intrinsic::dbg_declare:
3376 case Intrinsic::dbg_value:
3377 return true;
3378
3379 case Intrinsic::bswap:
3380 case Intrinsic::ctlz:
3381 case Intrinsic::ctpop:
3382 case Intrinsic::cttz:
3383 case Intrinsic::objectsize:
3384 case Intrinsic::sadd_with_overflow:
3385 case Intrinsic::smul_with_overflow:
3386 case Intrinsic::ssub_with_overflow:
3387 case Intrinsic::uadd_with_overflow:
3388 case Intrinsic::umul_with_overflow:
3389 case Intrinsic::usub_with_overflow:
3390 return true;
3391 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set
3392 // errno like libm sqrt would.
3393 case Intrinsic::sqrt:
3394 case Intrinsic::fma:
3395 case Intrinsic::fmuladd:
3396 case Intrinsic::fabs:
3397 case Intrinsic::minnum:
3398 case Intrinsic::maxnum:
3399 return true;
3400 // TODO: some fp intrinsics are marked as having the same error handling
3401 // as libm. They're safe to speculate when they won't error.
3402 // TODO: are convert_{from,to}_fp16 safe?
3403 // TODO: can we list target-specific intrinsics here?
3404 default: break;
3405 }
3406 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003407 return false; // The called function could have undefined behavior or
David Majnemer0a92f862015-08-28 21:13:39 +00003408 // side-effects, even if marked readnone nounwind.
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003409 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003410 case Instruction::VAArg:
3411 case Instruction::Alloca:
3412 case Instruction::Invoke:
3413 case Instruction::PHI:
3414 case Instruction::Store:
3415 case Instruction::Ret:
3416 case Instruction::Br:
3417 case Instruction::IndirectBr:
3418 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003419 case Instruction::Unreachable:
3420 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003421 case Instruction::AtomicRMW:
3422 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003423 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003424 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003425 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003426 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003427 case Instruction::CatchRet:
3428 case Instruction::CleanupPad:
3429 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003430 return false; // Misc instructions which have effects
3431 }
3432}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003433
Quentin Colombet6443cce2015-08-06 18:44:34 +00003434bool llvm::mayBeMemoryDependent(const Instruction &I) {
3435 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3436}
3437
Sanjay Patelaee84212014-11-04 16:27:42 +00003438/// Return true if we know that the specified value is never null.
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003439bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
Chen Li0d043b52015-09-14 18:10:43 +00003440 assert(V->getType()->isPointerTy() && "V must be pointer type");
3441
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003442 // Alloca never returns null, malloc might.
3443 if (isa<AllocaInst>(V)) return true;
3444
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003445 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003446 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003447 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003448
Pete Cooper6b716212015-08-27 03:16:29 +00003449 // A global variable in address space 0 is non null unless extern weak.
3450 // Other address spaces may have null as a valid address for a global,
3451 // so we can't assume anything.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003452 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
Pete Cooper6b716212015-08-27 03:16:29 +00003453 return !GV->hasExternalWeakLinkage() &&
3454 GV->getType()->getAddressSpace() == 0;
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003455
Philip Reamescdb72f32014-10-20 22:40:55 +00003456 // A Load tagged w/nonnull metadata is never null.
3457 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00003458 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00003459
Benjamin Kramer3a09ef62015-04-10 14:50:08 +00003460 if (auto CS = ImmutableCallSite(V))
Hal Finkelb0407ba2014-07-18 15:51:28 +00003461 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00003462 return true;
3463
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003464 return false;
3465}
David Majnemer491331a2015-01-02 07:29:43 +00003466
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003467static bool isKnownNonNullFromDominatingCondition(const Value *V,
3468 const Instruction *CtxI,
3469 const DominatorTree *DT) {
Chen Li0d043b52015-09-14 18:10:43 +00003470 assert(V->getType()->isPointerTy() && "V must be pointer type");
3471
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003472 unsigned NumUsesExplored = 0;
3473 for (auto U : V->users()) {
3474 // Avoid massive lists
3475 if (NumUsesExplored >= DomConditionsMaxUses)
3476 break;
3477 NumUsesExplored++;
3478 // Consider only compare instructions uniquely controlling a branch
3479 const ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
3480 if (!Cmp)
3481 continue;
3482
3483 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse())
3484 continue;
3485
3486 for (auto *CmpU : Cmp->users()) {
3487 const BranchInst *BI = dyn_cast<BranchInst>(CmpU);
3488 if (!BI)
3489 continue;
3490
3491 assert(BI->isConditional() && "uses a comparison!");
3492
3493 BasicBlock *NonNullSuccessor = nullptr;
3494 CmpInst::Predicate Pred;
3495
3496 if (match(const_cast<ICmpInst*>(Cmp),
3497 m_c_ICmp(Pred, m_Specific(V), m_Zero()))) {
3498 if (Pred == ICmpInst::ICMP_EQ)
3499 NonNullSuccessor = BI->getSuccessor(1);
3500 else if (Pred == ICmpInst::ICMP_NE)
3501 NonNullSuccessor = BI->getSuccessor(0);
3502 }
3503
3504 if (NonNullSuccessor) {
3505 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3506 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3507 return true;
3508 }
3509 }
3510 }
3511
3512 return false;
3513}
3514
3515bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
3516 const DominatorTree *DT, const TargetLibraryInfo *TLI) {
3517 if (isKnownNonNull(V, TLI))
3518 return true;
3519
3520 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3521}
3522
David Majnemer491331a2015-01-02 07:29:43 +00003523OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003524 const DataLayout &DL,
Chandler Carruth66b31302015-01-04 12:03:27 +00003525 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003526 const Instruction *CxtI,
3527 const DominatorTree *DT) {
3528 // Multiplying n * m significant bits yields a result of n + m significant
3529 // bits. If the total number of significant bits does not exceed the
3530 // result bit width (minus 1), there is no overflow.
3531 // This means if we have enough leading zero bits in the operands
3532 // we can guarantee that the result does not overflow.
3533 // Ref: "Hacker's Delight" by Henry Warren
3534 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3535 APInt LHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003536 APInt LHSKnownOne(BitWidth, 0);
David Majnemer491331a2015-01-02 07:29:43 +00003537 APInt RHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003538 APInt RHSKnownOne(BitWidth, 0);
Chandler Carruth66b31302015-01-04 12:03:27 +00003539 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3540 DT);
3541 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3542 DT);
David Majnemer491331a2015-01-02 07:29:43 +00003543 // Note that underestimating the number of zero bits gives a more
3544 // conservative answer.
3545 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3546 RHSKnownZero.countLeadingOnes();
3547 // First handle the easy case: if we have enough zero bits there's
3548 // definitely no overflow.
3549 if (ZeroBits >= BitWidth)
3550 return OverflowResult::NeverOverflows;
3551
3552 // Get the largest possible values for each operand.
3553 APInt LHSMax = ~LHSKnownZero;
3554 APInt RHSMax = ~RHSKnownZero;
3555
3556 // We know the multiply operation doesn't overflow if the maximum values for
3557 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003558 bool MaxOverflow;
3559 LHSMax.umul_ov(RHSMax, MaxOverflow);
3560 if (!MaxOverflow)
3561 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003562
David Majnemerc8a576b2015-01-02 07:29:47 +00003563 // We know it always overflows if multiplying the smallest possible values for
3564 // the operands also results in overflow.
3565 bool MinOverflow;
3566 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3567 if (MinOverflow)
3568 return OverflowResult::AlwaysOverflows;
3569
3570 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003571}
David Majnemer5310c1e2015-01-07 00:39:50 +00003572
3573OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003574 const DataLayout &DL,
David Majnemer5310c1e2015-01-07 00:39:50 +00003575 AssumptionCache *AC,
3576 const Instruction *CxtI,
3577 const DominatorTree *DT) {
3578 bool LHSKnownNonNegative, LHSKnownNegative;
3579 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3580 AC, CxtI, DT);
3581 if (LHSKnownNonNegative || LHSKnownNegative) {
3582 bool RHSKnownNonNegative, RHSKnownNegative;
3583 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3584 AC, CxtI, DT);
3585
3586 if (LHSKnownNegative && RHSKnownNegative) {
3587 // The sign bit is set in both cases: this MUST overflow.
3588 // Create a simple add instruction, and insert it into the struct.
3589 return OverflowResult::AlwaysOverflows;
3590 }
3591
3592 if (LHSKnownNonNegative && RHSKnownNonNegative) {
3593 // The sign bit is clear in both cases: this CANNOT overflow.
3594 // Create a simple add instruction, and insert it into the struct.
3595 return OverflowResult::NeverOverflows;
3596 }
3597 }
3598
3599 return OverflowResult::MayOverflow;
3600}
James Molloy71b91c22015-05-11 14:42:20 +00003601
Jingyue Wu10fcea52015-08-20 18:27:04 +00003602static OverflowResult computeOverflowForSignedAdd(
3603 Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL,
3604 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) {
3605 if (Add && Add->hasNoSignedWrap()) {
3606 return OverflowResult::NeverOverflows;
3607 }
3608
3609 bool LHSKnownNonNegative, LHSKnownNegative;
3610 bool RHSKnownNonNegative, RHSKnownNegative;
3611 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3612 AC, CxtI, DT);
3613 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3614 AC, CxtI, DT);
3615
3616 if ((LHSKnownNonNegative && RHSKnownNegative) ||
3617 (LHSKnownNegative && RHSKnownNonNegative)) {
3618 // The sign bits are opposite: this CANNOT overflow.
3619 return OverflowResult::NeverOverflows;
3620 }
3621
3622 // The remaining code needs Add to be available. Early returns if not so.
3623 if (!Add)
3624 return OverflowResult::MayOverflow;
3625
3626 // If the sign of Add is the same as at least one of the operands, this add
3627 // CANNOT overflow. This is particularly useful when the sum is
3628 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3629 // operands.
3630 bool LHSOrRHSKnownNonNegative =
3631 (LHSKnownNonNegative || RHSKnownNonNegative);
3632 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3633 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3634 bool AddKnownNonNegative, AddKnownNegative;
3635 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3636 /*Depth=*/0, AC, CxtI, DT);
3637 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3638 (AddKnownNegative && LHSOrRHSKnownNegative)) {
3639 return OverflowResult::NeverOverflows;
3640 }
3641 }
3642
3643 return OverflowResult::MayOverflow;
3644}
3645
3646OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add,
3647 const DataLayout &DL,
3648 AssumptionCache *AC,
3649 const Instruction *CxtI,
3650 const DominatorTree *DT) {
3651 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3652 Add, DL, AC, CxtI, DT);
3653}
3654
3655OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS,
3656 const DataLayout &DL,
3657 AssumptionCache *AC,
3658 const Instruction *CxtI,
3659 const DominatorTree *DT) {
3660 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3661}
3662
Jingyue Wu42f1d672015-07-28 18:22:40 +00003663bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
3664 // FIXME: This conservative implementation can be relaxed. E.g. most
3665 // atomic operations are guaranteed to terminate on most platforms
3666 // and most functions terminate.
3667
3668 return !I->isAtomic() && // atomics may never succeed on some platforms
3669 !isa<CallInst>(I) && // could throw and might not terminate
3670 !isa<InvokeInst>(I) && // might not terminate and could throw to
3671 // non-successor (see bug 24185 for details).
3672 !isa<ResumeInst>(I) && // has no successors
3673 !isa<ReturnInst>(I); // has no successors
3674}
3675
3676bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3677 const Loop *L) {
3678 // The loop header is guaranteed to be executed for every iteration.
3679 //
3680 // FIXME: Relax this constraint to cover all basic blocks that are
3681 // guaranteed to be executed at every iteration.
3682 if (I->getParent() != L->getHeader()) return false;
3683
3684 for (const Instruction &LI : *L->getHeader()) {
3685 if (&LI == I) return true;
3686 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3687 }
3688 llvm_unreachable("Instruction not contained in its own parent basic block.");
3689}
3690
3691bool llvm::propagatesFullPoison(const Instruction *I) {
3692 switch (I->getOpcode()) {
3693 case Instruction::Add:
3694 case Instruction::Sub:
3695 case Instruction::Xor:
3696 case Instruction::Trunc:
3697 case Instruction::BitCast:
3698 case Instruction::AddrSpaceCast:
3699 // These operations all propagate poison unconditionally. Note that poison
3700 // is not any particular value, so xor or subtraction of poison with
3701 // itself still yields poison, not zero.
3702 return true;
3703
3704 case Instruction::AShr:
3705 case Instruction::SExt:
3706 // For these operations, one bit of the input is replicated across
3707 // multiple output bits. A replicated poison bit is still poison.
3708 return true;
3709
3710 case Instruction::Shl: {
3711 // Left shift *by* a poison value is poison. The number of
3712 // positions to shift is unsigned, so no negative values are
3713 // possible there. Left shift by zero places preserves poison. So
3714 // it only remains to consider left shift of poison by a positive
3715 // number of places.
3716 //
3717 // A left shift by a positive number of places leaves the lowest order bit
3718 // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3719 // make the poison operand violate that flag, yielding a fresh full-poison
3720 // value.
3721 auto *OBO = cast<OverflowingBinaryOperator>(I);
3722 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3723 }
3724
3725 case Instruction::Mul: {
3726 // A multiplication by zero yields a non-poison zero result, so we need to
3727 // rule out zero as an operand. Conservatively, multiplication by a
3728 // non-zero constant is not multiplication by zero.
3729 //
3730 // Multiplication by a non-zero constant can leave some bits
3731 // non-poisoned. For example, a multiplication by 2 leaves the lowest
3732 // order bit unpoisoned. So we need to consider that.
3733 //
3734 // Multiplication by 1 preserves poison. If the multiplication has a
3735 // no-wrap flag, then we can make the poison operand violate that flag
3736 // when multiplied by any integer other than 0 and 1.
3737 auto *OBO = cast<OverflowingBinaryOperator>(I);
3738 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3739 for (Value *V : OBO->operands()) {
3740 if (auto *CI = dyn_cast<ConstantInt>(V)) {
3741 // A ConstantInt cannot yield poison, so we can assume that it is
3742 // the other operand that is poison.
3743 return !CI->isZero();
3744 }
3745 }
3746 }
3747 return false;
3748 }
3749
3750 case Instruction::GetElementPtr:
3751 // A GEP implicitly represents a sequence of additions, subtractions,
3752 // truncations, sign extensions and multiplications. The multiplications
3753 // are by the non-zero sizes of some set of types, so we do not have to be
3754 // concerned with multiplication by zero. If the GEP is in-bounds, then
3755 // these operations are implicitly no-signed-wrap so poison is propagated
3756 // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3757 return cast<GEPOperator>(I)->isInBounds();
3758
3759 default:
3760 return false;
3761 }
3762}
3763
3764const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3765 switch (I->getOpcode()) {
3766 case Instruction::Store:
3767 return cast<StoreInst>(I)->getPointerOperand();
3768
3769 case Instruction::Load:
3770 return cast<LoadInst>(I)->getPointerOperand();
3771
3772 case Instruction::AtomicCmpXchg:
3773 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3774
3775 case Instruction::AtomicRMW:
3776 return cast<AtomicRMWInst>(I)->getPointerOperand();
3777
3778 case Instruction::UDiv:
3779 case Instruction::SDiv:
3780 case Instruction::URem:
3781 case Instruction::SRem:
3782 return I->getOperand(1);
3783
3784 default:
3785 return nullptr;
3786 }
3787}
3788
3789bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3790 // We currently only look for uses of poison values within the same basic
3791 // block, as that makes it easier to guarantee that the uses will be
3792 // executed given that PoisonI is executed.
3793 //
3794 // FIXME: Expand this to consider uses beyond the same basic block. To do
3795 // this, look out for the distinction between post-dominance and strong
3796 // post-dominance.
3797 const BasicBlock *BB = PoisonI->getParent();
3798
3799 // Set of instructions that we have proved will yield poison if PoisonI
3800 // does.
3801 SmallSet<const Value *, 16> YieldsPoison;
3802 YieldsPoison.insert(PoisonI);
3803
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +00003804 for (BasicBlock::const_iterator I = PoisonI->getIterator(), E = BB->end();
3805 I != E; ++I) {
3806 if (&*I != PoisonI) {
3807 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&*I);
Jingyue Wu42f1d672015-07-28 18:22:40 +00003808 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) return true;
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +00003809 if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
3810 return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003811 }
3812
3813 // Mark poison that propagates from I through uses of I.
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +00003814 if (YieldsPoison.count(&*I)) {
Jingyue Wu42f1d672015-07-28 18:22:40 +00003815 for (const User *User : I->users()) {
3816 const Instruction *UserI = cast<Instruction>(User);
3817 if (UserI->getParent() == BB && propagatesFullPoison(UserI))
3818 YieldsPoison.insert(User);
3819 }
3820 }
3821 }
3822 return false;
3823}
3824
James Molloy134bec22015-08-11 09:12:57 +00003825static bool isKnownNonNaN(Value *V, FastMathFlags FMF) {
3826 if (FMF.noNaNs())
3827 return true;
3828
3829 if (auto *C = dyn_cast<ConstantFP>(V))
3830 return !C->isNaN();
3831 return false;
3832}
3833
3834static bool isKnownNonZero(Value *V) {
3835 if (auto *C = dyn_cast<ConstantFP>(V))
3836 return !C->isZero();
3837 return false;
3838}
3839
3840static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3841 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00003842 Value *CmpLHS, Value *CmpRHS,
3843 Value *TrueVal, Value *FalseVal,
3844 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003845 LHS = CmpLHS;
3846 RHS = CmpRHS;
3847
James Molloy134bec22015-08-11 09:12:57 +00003848 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
3849 // return inconsistent results between implementations.
3850 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3851 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3852 // Therefore we behave conservatively and only proceed if at least one of the
3853 // operands is known to not be zero, or if we don't care about signed zeroes.
3854 switch (Pred) {
3855 default: break;
3856 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3857 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3858 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3859 !isKnownNonZero(CmpRHS))
3860 return {SPF_UNKNOWN, SPNB_NA, false};
3861 }
3862
3863 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3864 bool Ordered = false;
3865
3866 // When given one NaN and one non-NaN input:
3867 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3868 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3869 // ordered comparison fails), which could be NaN or non-NaN.
3870 // so here we discover exactly what NaN behavior is required/accepted.
3871 if (CmpInst::isFPPredicate(Pred)) {
3872 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3873 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3874
3875 if (LHSSafe && RHSSafe) {
3876 // Both operands are known non-NaN.
3877 NaNBehavior = SPNB_RETURNS_ANY;
3878 } else if (CmpInst::isOrdered(Pred)) {
3879 // An ordered comparison will return false when given a NaN, so it
3880 // returns the RHS.
3881 Ordered = true;
3882 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003883 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003884 NaNBehavior = SPNB_RETURNS_NAN;
3885 else if (RHSSafe)
3886 NaNBehavior = SPNB_RETURNS_OTHER;
3887 else
3888 // Completely unsafe.
3889 return {SPF_UNKNOWN, SPNB_NA, false};
3890 } else {
3891 Ordered = false;
3892 // An unordered comparison will return true when given a NaN, so it
3893 // returns the LHS.
3894 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003895 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003896 NaNBehavior = SPNB_RETURNS_OTHER;
3897 else if (RHSSafe)
3898 NaNBehavior = SPNB_RETURNS_NAN;
3899 else
3900 // Completely unsafe.
3901 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003902 }
3903 }
3904
James Molloy71b91c22015-05-11 14:42:20 +00003905 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00003906 std::swap(CmpLHS, CmpRHS);
3907 Pred = CmpInst::getSwappedPredicate(Pred);
3908 if (NaNBehavior == SPNB_RETURNS_NAN)
3909 NaNBehavior = SPNB_RETURNS_OTHER;
3910 else if (NaNBehavior == SPNB_RETURNS_OTHER)
3911 NaNBehavior = SPNB_RETURNS_NAN;
3912 Ordered = !Ordered;
3913 }
3914
3915 // ([if]cmp X, Y) ? X : Y
3916 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003917 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00003918 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00003919 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00003920 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003921 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00003922 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003923 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00003924 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003925 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00003926 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
3927 case FCmpInst::FCMP_UGT:
3928 case FCmpInst::FCMP_UGE:
3929 case FCmpInst::FCMP_OGT:
3930 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
3931 case FCmpInst::FCMP_ULT:
3932 case FCmpInst::FCMP_ULE:
3933 case FCmpInst::FCMP_OLT:
3934 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00003935 }
3936 }
3937
3938 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
3939 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
3940 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
3941
3942 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
3943 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
3944 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003945 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003946 }
3947
3948 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
3949 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
3950 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003951 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003952 }
3953 }
3954
3955 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
3956 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
3957 if (C1->getType() == C2->getType() && ~C1->getValue() == C2->getValue() &&
3958 (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
3959 match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
3960 LHS = TrueVal;
3961 RHS = FalseVal;
James Molloy134bec22015-08-11 09:12:57 +00003962 return {SPF_SMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003963 }
3964 }
3965 }
3966
3967 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
3968
James Molloy134bec22015-08-11 09:12:57 +00003969 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003970}
James Molloy270ef8c2015-05-15 16:04:50 +00003971
James Molloy569cea62015-09-02 17:25:25 +00003972static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
3973 Instruction::CastOps *CastOp) {
James Molloy270ef8c2015-05-15 16:04:50 +00003974 CastInst *CI = dyn_cast<CastInst>(V1);
3975 Constant *C = dyn_cast<Constant>(V2);
James Molloy569cea62015-09-02 17:25:25 +00003976 CastInst *CI2 = dyn_cast<CastInst>(V2);
3977 if (!CI)
James Molloy270ef8c2015-05-15 16:04:50 +00003978 return nullptr;
3979 *CastOp = CI->getOpcode();
3980
James Molloy569cea62015-09-02 17:25:25 +00003981 if (CI2) {
3982 // If V1 and V2 are both the same cast from the same type, we can look
3983 // through V1.
3984 if (CI2->getOpcode() == CI->getOpcode() &&
3985 CI2->getSrcTy() == CI->getSrcTy())
3986 return CI2->getOperand(0);
3987 return nullptr;
3988 } else if (!C) {
3989 return nullptr;
3990 }
3991
James Molloy2b21a7c2015-05-20 18:41:25 +00003992 if (isa<SExtInst>(CI) && CmpI->isSigned()) {
3993 Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy());
3994 // This is only valid if the truncated value can be sign-extended
3995 // back to the original value.
3996 if (ConstantExpr::getSExt(T, C->getType()) == C)
3997 return T;
3998 return nullptr;
3999 }
4000 if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
James Molloy270ef8c2015-05-15 16:04:50 +00004001 return ConstantExpr::getTrunc(C, CI->getSrcTy());
4002
4003 if (isa<TruncInst>(CI))
4004 return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
4005
James Molloy134bec22015-08-11 09:12:57 +00004006 if (isa<FPToUIInst>(CI))
4007 return ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
4008
4009 if (isa<FPToSIInst>(CI))
4010 return ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
4011
4012 if (isa<UIToFPInst>(CI))
4013 return ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
4014
4015 if (isa<SIToFPInst>(CI))
4016 return ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
4017
4018 if (isa<FPTruncInst>(CI))
4019 return ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
4020
4021 if (isa<FPExtInst>(CI))
4022 return ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
4023
James Molloy270ef8c2015-05-15 16:04:50 +00004024 return nullptr;
4025}
4026
James Molloy134bec22015-08-11 09:12:57 +00004027SelectPatternResult llvm::matchSelectPattern(Value *V,
James Molloy270ef8c2015-05-15 16:04:50 +00004028 Value *&LHS, Value *&RHS,
4029 Instruction::CastOps *CastOp) {
4030 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00004031 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004032
James Molloy134bec22015-08-11 09:12:57 +00004033 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4034 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004035
James Molloy134bec22015-08-11 09:12:57 +00004036 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00004037 Value *CmpLHS = CmpI->getOperand(0);
4038 Value *CmpRHS = CmpI->getOperand(1);
4039 Value *TrueVal = SI->getTrueValue();
4040 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00004041 FastMathFlags FMF;
4042 if (isa<FPMathOperator>(CmpI))
4043 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00004044
4045 // Bail out early.
4046 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00004047 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00004048
4049 // Deal with type mismatches.
4050 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00004051 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004052 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004053 cast<CastInst>(TrueVal)->getOperand(0), C,
4054 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00004055 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00004056 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00004057 C, cast<CastInst>(FalseVal)->getOperand(0),
4058 LHS, RHS);
4059 }
James Molloy134bec22015-08-11 09:12:57 +00004060 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00004061 LHS, RHS);
4062}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00004063
4064ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) {
4065 const unsigned NumRanges = Ranges.getNumOperands() / 2;
4066 assert(NumRanges >= 1 && "Must have at least one range!");
4067 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
4068
4069 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
4070 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
4071
4072 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
4073
4074 for (unsigned i = 1; i < NumRanges; ++i) {
4075 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
4076 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
4077
4078 // Note: unionWith will potentially create a range that contains values not
4079 // contained in any of the original N ranges.
4080 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
4081 }
4082
4083 return CR;
4084}
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004085
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004086/// Return true if "icmp Pred LHS RHS" is always true.
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004087static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
4088 const DataLayout &DL, unsigned Depth,
4089 AssumptionCache *AC, const Instruction *CxtI,
4090 const DominatorTree *DT) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004091 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004092 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4093 return true;
4094
4095 switch (Pred) {
4096 default:
4097 return false;
4098
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004099 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004100 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004101
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004102 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004103 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004104 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004105 return false;
4106 }
4107
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004108 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00004109 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004110
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004111 // LHS u<= LHS +_{nuw} C for any C
4112 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00004113 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00004114
4115 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
4116 auto MatchNUWAddsToSameValue = [&](Value *A, Value *B, Value *&X,
4117 const APInt *&CA, const APInt *&CB) {
4118 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4119 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4120 return true;
4121
4122 // If X & C == 0 then (X | C) == X +_{nuw} C
4123 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4124 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
4125 unsigned BitWidth = CA->getBitWidth();
4126 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4127 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
4128
4129 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
4130 return true;
4131 }
4132
4133 return false;
4134 };
4135
4136 Value *X;
4137 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00004138 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4139 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00004140
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004141 return false;
4142 }
4143 }
4144}
4145
4146/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
4147/// ALHS ARHS" is true.
4148static bool isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS,
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004149 Value *ARHS, Value *BLHS, Value *BRHS,
4150 const DataLayout &DL, unsigned Depth,
4151 AssumptionCache *AC, const Instruction *CxtI,
4152 const DominatorTree *DT) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004153 switch (Pred) {
4154 default:
4155 return false;
4156
4157 case CmpInst::ICMP_SLT:
4158 case CmpInst::ICMP_SLE:
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004159 return isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
4160 DT) &&
4161 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI,
4162 DT);
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004163
4164 case CmpInst::ICMP_ULT:
4165 case CmpInst::ICMP_ULE:
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004166 return isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
4167 DT) &&
4168 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI,
4169 DT);
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004170 }
4171}
4172
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004173bool llvm::isImpliedCondition(Value *LHS, Value *RHS, const DataLayout &DL,
4174 unsigned Depth, AssumptionCache *AC,
4175 const Instruction *CxtI,
4176 const DominatorTree *DT) {
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004177 assert(LHS->getType() == RHS->getType() && "mismatched type");
4178 Type *OpTy = LHS->getType();
4179 assert(OpTy->getScalarType()->isIntegerTy(1));
4180
4181 // LHS ==> RHS by definition
4182 if (LHS == RHS) return true;
4183
4184 if (OpTy->isVectorTy())
4185 // TODO: extending the code below to handle vectors
4186 return false;
4187 assert(OpTy->isIntegerTy(1) && "implied by above");
4188
4189 ICmpInst::Predicate APred, BPred;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004190 Value *ALHS, *ARHS;
4191 Value *BLHS, *BRHS;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004192
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004193 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4194 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
4195 return false;
4196
4197 if (APred == BPred)
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004198 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4199 CxtI, DT);
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004200
4201 return false;
4202}