blob: fa2f7d995c6943c680cec346af13be8a8ab40c8e [file] [log] [blame]
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerc0f58002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattnera5526832010-01-01 00:04:26 +000011// to promote better constant propagation, GCSE, LICM, PRE, etc.
Chris Lattnerc0f58002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattnerc0f58002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#include "llvm/Transforms/Scalar.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000024#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/PostOrderIterator.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SetVector.h"
28#include "llvm/ADT/Statistic.h"
James Molloyefbba722015-09-10 10:22:12 +000029#include "llvm/Analysis/GlobalsModRef.h"
Quentin Colombet6443cce2015-08-06 18:44:34 +000030#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth1305dc32014-03-04 11:45:46 +000031#include "llvm/IR/CFG.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000032#include "llvm/IR/Constants.h"
33#include "llvm/IR/DerivedTypes.h"
34#include "llvm/IR/Function.h"
35#include "llvm/IR/IRBuilder.h"
36#include "llvm/IR/Instructions.h"
37#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth4220e9c2014-03-04 11:17:44 +000038#include "llvm/IR/ValueHandle.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000039#include "llvm/Pass.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000040#include "llvm/Support/Debug.h"
Chris Lattnerb25de3f2009-08-23 04:37:46 +000041#include "llvm/Support/raw_ostream.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000042#include "llvm/Transforms/Utils/Local.h"
Chris Lattner1e506502005-05-07 21:59:39 +000043#include <algorithm>
Chris Lattner49525f82004-01-09 06:02:20 +000044using namespace llvm;
Brian Gaeke960707c2003-11-11 22:41:34 +000045
Chandler Carruth964daaa2014-04-22 02:55:47 +000046#define DEBUG_TYPE "reassociate"
47
Chris Lattner79a42ac2006-12-19 21:40:18 +000048STATISTIC(NumChanged, "Number of insts reassociated");
49STATISTIC(NumAnnihil, "Number of expr tree annihilated");
50STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnerbf3a0992002-10-01 22:38:41 +000051
Chris Lattner79a42ac2006-12-19 21:40:18 +000052namespace {
Chris Lattner2dd09db2009-09-02 06:11:42 +000053 struct ValueEntry {
Chris Lattner1e506502005-05-07 21:59:39 +000054 unsigned Rank;
55 Value *Op;
56 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
57 };
58 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
59 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
60 }
Chris Lattner4c065092006-03-04 09:31:13 +000061}
Chris Lattner1e506502005-05-07 21:59:39 +000062
Devang Patel702f45d2008-11-21 21:00:20 +000063#ifndef NDEBUG
Sanjay Patelc96ee082015-04-22 18:04:46 +000064/// Print out the expression identified in the Ops list.
Chris Lattner4c065092006-03-04 09:31:13 +000065///
Chris Lattner38abecb2009-12-31 18:40:32 +000066static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner4c065092006-03-04 09:31:13 +000067 Module *M = I->getParent()->getParent()->getParent();
David Greened17c3912010-01-05 01:27:24 +000068 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattnerbc1512c2009-12-31 07:17:37 +000069 << *Ops[0].Op->getType() << '\t';
Chris Lattner57693dd2008-08-19 04:45:19 +000070 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
David Greened17c3912010-01-05 01:27:24 +000071 dbgs() << "[ ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +000072 Ops[i].Op->printAsOperand(dbgs(), false, M);
David Greened17c3912010-01-05 01:27:24 +000073 dbgs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner57693dd2008-08-19 04:45:19 +000074 }
Chris Lattner4c065092006-03-04 09:31:13 +000075}
Devang Patelcb181bb2008-11-21 20:00:59 +000076#endif
Bill Wendlingc94d86c2012-05-02 23:43:23 +000077
Dan Gohmand78c4002008-05-13 00:00:25 +000078namespace {
Chandler Carruth739ef802012-04-26 05:30:30 +000079 /// \brief Utility class representing a base and exponent pair which form one
80 /// factor of some product.
81 struct Factor {
82 Value *Base;
83 unsigned Power;
84
85 Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
86
Chandler Carruth739ef802012-04-26 05:30:30 +000087 /// \brief Sort factors in descending order by their power.
88 struct PowerDescendingSorter {
89 bool operator()(const Factor &LHS, const Factor &RHS) {
90 return LHS.Power > RHS.Power;
91 }
92 };
93
94 /// \brief Compare factors for equal powers.
95 struct PowerEqual {
96 bool operator()(const Factor &LHS, const Factor &RHS) {
97 return LHS.Power == RHS.Power;
98 }
99 };
100 };
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000101
102 /// Utility class representing a non-constant Xor-operand. We classify
103 /// non-constant Xor-Operands into two categories:
104 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0
105 /// C2)
106 /// C2.1) The operand is in the form of "X | C", where C is a non-zero
107 /// constant.
108 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
109 /// operand as "E | 0"
110 class XorOpnd {
111 public:
112 XorOpnd(Value *V);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000113
Craig Topperf40110f2014-04-25 05:29:35 +0000114 bool isInvalid() const { return SymbolicPart == nullptr; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000115 bool isOrExpr() const { return isOr; }
116 Value *getValue() const { return OrigVal; }
117 Value *getSymbolicPart() const { return SymbolicPart; }
118 unsigned getSymbolicRank() const { return SymbolicRank; }
119 const APInt &getConstPart() const { return ConstPart; }
120
Craig Topperf40110f2014-04-25 05:29:35 +0000121 void Invalidate() { SymbolicPart = OrigVal = nullptr; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000122 void setSymbolicRank(unsigned R) { SymbolicRank = R; }
123
124 // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank.
125 // The purpose is twofold:
126 // 1) Cluster together the operands sharing the same symbolic-value.
127 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
128 // could potentially shorten crital path, and expose more loop-invariants.
129 // Note that values' rank are basically defined in RPO order (FIXME).
130 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
131 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
132 // "z" in the order of X-Y-Z is better than any other orders.
Shuxin Yang331f01d2013-04-08 22:00:43 +0000133 struct PtrSortFunctor {
134 bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) {
135 return LHS->getSymbolicRank() < RHS->getSymbolicRank();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000136 }
137 };
138 private:
139 Value *OrigVal;
140 Value *SymbolicPart;
141 APInt ConstPart;
142 unsigned SymbolicRank;
143 bool isOr;
144 };
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000145}
Chandler Carruth739ef802012-04-26 05:30:30 +0000146
147namespace {
Chris Lattner2dd09db2009-09-02 06:11:42 +0000148 class Reassociate : public FunctionPass {
Chris Lattner17229a72010-01-01 00:01:34 +0000149 DenseMap<BasicBlock*, unsigned> RankMap;
Craig Topper6e80c282012-03-26 06:58:25 +0000150 DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
Shuxin Yangc94c3bb2012-11-13 00:08:49 +0000151 SetVector<AssertingVH<Instruction> > RedoInsts;
Chris Lattner1e506502005-05-07 21:59:39 +0000152 bool MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000153 public:
Nick Lewyckye7da2d62007-05-06 13:37:16 +0000154 static char ID; // Pass identification, replacement for typeid
Owen Anderson6c18d1a2010-10-19 17:21:58 +0000155 Reassociate() : FunctionPass(ID) {
156 initializeReassociatePass(*PassRegistry::getPassRegistry());
157 }
Devang Patel09f162c2007-05-01 21:15:47 +0000158
Craig Topper3e4c6972014-03-05 09:10:37 +0000159 bool runOnFunction(Function &F) override;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000160
Craig Topper3e4c6972014-03-05 09:10:37 +0000161 void getAnalysisUsage(AnalysisUsage &AU) const override {
Chris Lattner820d9712002-10-21 20:00:28 +0000162 AU.setPreservesCFG();
James Molloyefbba722015-09-10 10:22:12 +0000163 AU.addPreserved<GlobalsAAWrapperPass>();
Chris Lattnerc0f58002002-05-08 22:19:27 +0000164 }
165 private:
Chris Lattner113f4f42002-06-25 16:13:24 +0000166 void BuildRankMap(Function &F);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000167 unsigned getRank(Value *V);
Chad Rosierf8b55f12014-11-14 17:05:59 +0000168 void canonicalizeOperands(Instruction *I);
Duncan Sands78386032012-06-15 08:37:50 +0000169 void ReassociateExpression(BinaryOperator *I);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000170 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattner38abecb2009-12-31 18:40:32 +0000171 Value *OptimizeExpression(BinaryOperator *I,
172 SmallVectorImpl<ValueEntry> &Ops);
173 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000174 Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
175 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd,
176 Value *&Res);
177 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
178 APInt &ConstOpnd, Value *&Res);
Chandler Carruth739ef802012-04-26 05:30:30 +0000179 bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
180 SmallVectorImpl<Factor> &Factors);
181 Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
182 SmallVectorImpl<Factor> &Factors);
183 Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattner4c065092006-03-04 09:31:13 +0000184 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
Duncan Sands3293f462012-06-08 20:15:33 +0000185 void EraseInst(Instruction *I);
186 void OptimizeInst(Instruction *I);
Chad Rosier094ac772014-11-11 22:58:35 +0000187 Instruction *canonicalizeNegConstExpr(Instruction *I);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000188 };
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000189}
Chris Lattnerc0f58002002-05-08 22:19:27 +0000190
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000191XorOpnd::XorOpnd(Value *V) {
Shuxin Yang6662fd02013-04-01 18:13:05 +0000192 assert(!isa<ConstantInt>(V) && "No ConstantInt");
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000193 OrigVal = V;
194 Instruction *I = dyn_cast<Instruction>(V);
195 SymbolicRank = 0;
196
197 if (I && (I->getOpcode() == Instruction::Or ||
198 I->getOpcode() == Instruction::And)) {
199 Value *V0 = I->getOperand(0);
200 Value *V1 = I->getOperand(1);
201 if (isa<ConstantInt>(V0))
202 std::swap(V0, V1);
203
204 if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
205 ConstPart = C->getValue();
206 SymbolicPart = V0;
207 isOr = (I->getOpcode() == Instruction::Or);
208 return;
209 }
210 }
211
212 // view the operand as "V | 0"
213 SymbolicPart = V;
214 ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
215 isOr = true;
216}
217
Dan Gohmand78c4002008-05-13 00:00:25 +0000218char Reassociate::ID = 0;
Owen Andersona57b97e2010-07-21 22:09:45 +0000219INITIALIZE_PASS(Reassociate, "reassociate",
Owen Andersondf7a4f22010-10-07 22:25:06 +0000220 "Reassociate expressions", false, false)
Dan Gohmand78c4002008-05-13 00:00:25 +0000221
Brian Gaeke960707c2003-11-11 22:41:34 +0000222// Public interface to the Reassociate pass
Chris Lattner49525f82004-01-09 06:02:20 +0000223FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000224
Sanjay Patelc96ee082015-04-22 18:04:46 +0000225/// Return true if V is an instruction of the specified opcode and if it
226/// only has one use.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000227static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
228 if (V->hasOneUse() && isa<Instruction>(V) &&
Chad Rosierac6a2f52014-11-06 16:46:37 +0000229 cast<Instruction>(V)->getOpcode() == Opcode &&
230 (!isa<FPMathOperator>(V) ||
231 cast<Instruction>(V)->hasUnsafeAlgebra()))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000232 return cast<BinaryOperator>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000233 return nullptr;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000234}
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000235
Chad Rosier11ab9412014-08-14 15:23:01 +0000236static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
237 unsigned Opcode2) {
238 if (V->hasOneUse() && isa<Instruction>(V) &&
239 (cast<Instruction>(V)->getOpcode() == Opcode1 ||
Chad Rosierac6a2f52014-11-06 16:46:37 +0000240 cast<Instruction>(V)->getOpcode() == Opcode2) &&
241 (!isa<FPMathOperator>(V) ||
242 cast<Instruction>(V)->hasUnsafeAlgebra()))
Chad Rosier11ab9412014-08-14 15:23:01 +0000243 return cast<BinaryOperator>(V);
244 return nullptr;
245}
246
Chris Lattner113f4f42002-06-25 16:13:24 +0000247void Reassociate::BuildRankMap(Function &F) {
Chris Lattner58c7eb62003-08-12 20:14:27 +0000248 unsigned i = 2;
Chris Lattner8ac196d2003-08-13 16:16:26 +0000249
Chad Rosierf59e5482014-11-14 15:01:38 +0000250 // Assign distinct ranks to function arguments.
251 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
Chris Lattnerf72ce6e2009-03-31 22:13:29 +0000252 ValueRankMap[&*I] = ++i;
Chad Rosierf59e5482014-11-14 15:01:38 +0000253 DEBUG(dbgs() << "Calculated Rank[" << I->getName() << "] = " << i << "\n");
254 }
Chris Lattner8ac196d2003-08-13 16:16:26 +0000255
Chris Lattner113f4f42002-06-25 16:13:24 +0000256 ReversePostOrderTraversal<Function*> RPOT(&F);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000257 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9f284e02005-05-08 20:57:04 +0000258 E = RPOT.end(); I != E; ++I) {
259 BasicBlock *BB = *I;
260 unsigned BBRank = RankMap[BB] = ++i << 16;
261
262 // Walk the basic block, adding precomputed ranks for any instructions that
263 // we cannot move. This ensures that the ranks for these instructions are
264 // all different in the block.
265 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
Quentin Colombet6443cce2015-08-06 18:44:34 +0000266 if (mayBeMemoryDependent(*I))
Chris Lattnerf72ce6e2009-03-31 22:13:29 +0000267 ValueRankMap[&*I] = ++BBRank;
Chris Lattner9f284e02005-05-08 20:57:04 +0000268 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000269}
270
271unsigned Reassociate::getRank(Value *V) {
Chris Lattnerf43e9742005-05-07 04:08:02 +0000272 Instruction *I = dyn_cast<Instruction>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000273 if (!I) {
Chris Lattner17229a72010-01-01 00:01:34 +0000274 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
275 return 0; // Otherwise it's a global or constant, rank 0.
276 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000277
Chris Lattner17229a72010-01-01 00:01:34 +0000278 if (unsigned Rank = ValueRankMap[I])
279 return Rank; // Rank already known?
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000280
Chris Lattnerf43e9742005-05-07 04:08:02 +0000281 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
282 // we can reassociate expressions for code motion! Since we do not recurse
283 // for PHI nodes, we cannot have infinite recursion here, because there
284 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000285 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
286 for (unsigned i = 0, e = I->getNumOperands();
287 i != e && Rank != MaxRank; ++i)
288 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000289
Chris Lattner6e2086d2005-05-08 00:08:33 +0000290 // If this is a not or neg instruction, do not count it for rank. This
291 // assures us that X and ~X will have the same rank.
Robert Lougher1858ba72015-03-13 20:53:01 +0000292 if (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
293 !BinaryOperator::isFNeg(I))
Chris Lattner6e2086d2005-05-08 00:08:33 +0000294 ++Rank;
295
Chad Rosierf59e5482014-11-14 15:01:38 +0000296 DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n");
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000297
Chris Lattner17229a72010-01-01 00:01:34 +0000298 return ValueRankMap[I] = Rank;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000299}
300
Chad Rosier9a1ac6e2014-11-17 15:52:51 +0000301// Canonicalize constants to RHS. Otherwise, sort the operands by rank.
Chad Rosierf8b55f12014-11-14 17:05:59 +0000302void Reassociate::canonicalizeOperands(Instruction *I) {
303 assert(isa<BinaryOperator>(I) && "Expected binary operator.");
304 assert(I->isCommutative() && "Expected commutative operator.");
305
306 Value *LHS = I->getOperand(0);
307 Value *RHS = I->getOperand(1);
308 unsigned LHSRank = getRank(LHS);
309 unsigned RHSRank = getRank(RHS);
310
Chad Rosier9a1ac6e2014-11-17 15:52:51 +0000311 if (isa<Constant>(RHS))
312 return;
313
Chad Rosierf8b55f12014-11-14 17:05:59 +0000314 if (isa<Constant>(LHS) || RHSRank < LHSRank)
315 cast<BinaryOperator>(I)->swapOperands();
316}
317
Chad Rosier11ab9412014-08-14 15:23:01 +0000318static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
319 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000320 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000321 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
322 else {
323 BinaryOperator *Res =
324 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
325 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
326 return Res;
327 }
328}
329
330static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
331 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000332 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000333 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
334 else {
335 BinaryOperator *Res =
336 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
337 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
338 return Res;
339 }
340}
341
342static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
343 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000344 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000345 return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
346 else {
347 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
348 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
349 return Res;
350 }
351}
352
Sanjay Patelc96ee082015-04-22 18:04:46 +0000353/// Replace 0-X with X*-1.
Duncan Sands3293f462012-06-08 20:15:33 +0000354static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000355 Type *Ty = Neg->getType();
Robert Lougher1858ba72015-03-13 20:53:01 +0000356 Constant *NegOne = Ty->isIntOrIntVectorTy() ?
357 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
Chris Lattner877b1142005-05-08 21:28:52 +0000358
Chad Rosier11ab9412014-08-14 15:23:01 +0000359 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
360 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +0000361 Res->takeName(Neg);
Chris Lattner877b1142005-05-08 21:28:52 +0000362 Neg->replaceAllUsesWith(Res);
Devang Patel80d1d3a2011-04-28 22:48:14 +0000363 Res->setDebugLoc(Neg->getDebugLoc());
Chris Lattner877b1142005-05-08 21:28:52 +0000364 return Res;
365}
366
Sanjay Patelc96ee082015-04-22 18:04:46 +0000367/// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
368/// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000369/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
370/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
371/// even x in Bitwidth-bit arithmetic.
372static unsigned CarmichaelShift(unsigned Bitwidth) {
373 if (Bitwidth < 3)
374 return Bitwidth - 1;
375 return Bitwidth - 2;
376}
377
Sanjay Patelc96ee082015-04-22 18:04:46 +0000378/// Add the extra weight 'RHS' to the existing weight 'LHS',
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000379/// reducing the combined weight using any special properties of the operation.
380/// The existing weight LHS represents the computation X op X op ... op X where
381/// X occurs LHS times. The combined weight represents X op X op ... op X with
382/// X occurring LHS + RHS times. If op is "Xor" for example then the combined
383/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
384/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
385static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
386 // If we were working with infinite precision arithmetic then the combined
387 // weight would be LHS + RHS. But we are using finite precision arithmetic,
388 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
389 // for nilpotent operations and addition, but not for idempotent operations
390 // and multiplication), so it is important to correctly reduce the combined
391 // weight back into range if wrapping would be wrong.
392
393 // If RHS is zero then the weight didn't change.
394 if (RHS.isMinValue())
395 return;
396 // If LHS is zero then the combined weight is RHS.
397 if (LHS.isMinValue()) {
398 LHS = RHS;
399 return;
400 }
401 // From this point on we know that neither LHS nor RHS is zero.
402
403 if (Instruction::isIdempotent(Opcode)) {
404 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
405 // weight of 1. Keeping weights at zero or one also means that wrapping is
406 // not a problem.
407 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
408 return; // Return a weight of 1.
409 }
410 if (Instruction::isNilpotent(Opcode)) {
411 // Nilpotent means X op X === 0, so reduce weights modulo 2.
412 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
413 LHS = 0; // 1 + 1 === 0 modulo 2.
414 return;
415 }
Chad Rosier11ab9412014-08-14 15:23:01 +0000416 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000417 // TODO: Reduce the weight by exploiting nsw/nuw?
418 LHS += RHS;
419 return;
420 }
421
Chad Rosier11ab9412014-08-14 15:23:01 +0000422 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
423 "Unknown associative operation!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000424 unsigned Bitwidth = LHS.getBitWidth();
425 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
426 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
427 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
428 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
429 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
430 // which by a happy accident means that they can always be represented using
431 // Bitwidth bits.
432 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
433 // the Carmichael number).
434 if (Bitwidth > 3) {
435 /// CM - The value of Carmichael's lambda function.
436 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
437 // Any weight W >= Threshold can be replaced with W - CM.
438 APInt Threshold = CM + Bitwidth;
439 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
440 // For Bitwidth 4 or more the following sum does not overflow.
441 LHS += RHS;
442 while (LHS.uge(Threshold))
443 LHS -= CM;
444 } else {
445 // To avoid problems with overflow do everything the same as above but using
446 // a larger type.
447 unsigned CM = 1U << CarmichaelShift(Bitwidth);
448 unsigned Threshold = CM + Bitwidth;
449 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
450 "Weights not reduced!");
451 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
452 while (Total >= Threshold)
453 Total -= CM;
454 LHS = Total;
455 }
456}
457
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000458typedef std::pair<Value*, APInt> RepeatedValue;
459
Sanjay Patelc96ee082015-04-22 18:04:46 +0000460/// Given an associative binary expression, return the leaf
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000461/// nodes in Ops along with their weights (how many times the leaf occurs). The
462/// original expression is the same as
463/// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
Nadav Rotem465834c2012-07-24 10:51:42 +0000464/// op
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000465/// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
466/// op
467/// ...
468/// op
469/// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
470///
Duncan Sandsac852c72012-11-15 09:58:38 +0000471/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000472///
473/// This routine may modify the function, in which case it returns 'true'. The
474/// changes it makes may well be destructive, changing the value computed by 'I'
475/// to something completely different. Thus if the routine returns 'true' then
476/// you MUST either replace I with a new expression computed from the Ops array,
477/// or use RewriteExprTree to put the values back in.
Chris Lattner1e506502005-05-07 21:59:39 +0000478///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000479/// A leaf node is either not a binary operation of the same kind as the root
480/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
481/// opcode), or is the same kind of binary operator but has a use which either
482/// does not belong to the expression, or does belong to the expression but is
483/// a leaf node. Every leaf node has at least one use that is a non-leaf node
484/// of the expression, while for non-leaf nodes (except for the root 'I') every
485/// use is a non-leaf node of the expression.
486///
487/// For example:
488/// expression graph node names
489///
490/// + | I
491/// / \ |
492/// + + | A, B
493/// / \ / \ |
494/// * + * | C, D, E
495/// / \ / \ / \ |
496/// + * | F, G
497///
498/// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000499/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000500///
501/// The expression is maximal: if some instruction is a binary operator of the
502/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
503/// then the instruction also belongs to the expression, is not a leaf node of
504/// it, and its operands also belong to the expression (but may be leaf nodes).
505///
506/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
507/// order to ensure that every non-root node in the expression has *exactly one*
508/// use by a non-leaf node of the expression. This destruction means that the
Duncan Sands3c05cd32012-05-26 16:42:52 +0000509/// caller MUST either replace 'I' with a new expression or use something like
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000510/// RewriteExprTree to put the values back in if the routine indicates that it
511/// made a change by returning 'true'.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000512///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000513/// In the above example either the right operand of A or the left operand of B
514/// will be replaced by undef. If it is B's operand then this gives:
515///
516/// + | I
517/// / \ |
518/// + + | A, B - operand of B replaced with undef
519/// / \ \ |
520/// * + * | C, D, E
521/// / \ / \ / \ |
522/// + * | F, G
523///
Duncan Sands3c05cd32012-05-26 16:42:52 +0000524/// Note that such undef operands can only be reached by passing through 'I'.
525/// For example, if you visit operands recursively starting from a leaf node
526/// then you will never see such an undef operand unless you get back to 'I',
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000527/// which requires passing through a phi node.
528///
529/// Note that this routine may also mutate binary operators of the wrong type
530/// that have all uses inside the expression (i.e. only used by non-leaf nodes
531/// of the expression) if it can turn them into binary operators of the right
532/// type and thus make the expression bigger.
533
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000534static bool LinearizeExprTree(BinaryOperator *I,
535 SmallVectorImpl<RepeatedValue> &Ops) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000536 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000537 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
538 unsigned Opcode = I->getOpcode();
Chad Rosier11ab9412014-08-14 15:23:01 +0000539 assert(I->isAssociative() && I->isCommutative() &&
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000540 "Expected an associative and commutative operation!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000541
542 // Visit all operands of the expression, keeping track of their weight (the
543 // number of paths from the expression root to the operand, or if you like
544 // the number of times that operand occurs in the linearized expression).
545 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
546 // while A has weight two.
547
548 // Worklist of non-leaf nodes (their operands are in the expression too) along
549 // with their weights, representing a certain number of paths to the operator.
550 // If an operator occurs in the worklist multiple times then we found multiple
551 // ways to get to it.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000552 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
553 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000554 bool Changed = false;
Chris Lattner1e506502005-05-07 21:59:39 +0000555
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000556 // Leaves of the expression are values that either aren't the right kind of
557 // operation (eg: a constant, or a multiply in an add tree), or are, but have
558 // some uses that are not inside the expression. For example, in I = X + X,
559 // X = A + B, the value X has two uses (by I) that are in the expression. If
560 // X has any other uses, for example in a return instruction, then we consider
561 // X to be a leaf, and won't analyze it further. When we first visit a value,
562 // if it has more than one use then at first we conservatively consider it to
563 // be a leaf. Later, as the expression is explored, we may discover some more
564 // uses of the value from inside the expression. If all uses turn out to be
565 // from within the expression (and the value is a binary operator of the right
566 // kind) then the value is no longer considered to be a leaf, and its operands
567 // are explored.
Chris Lattner1e506502005-05-07 21:59:39 +0000568
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000569 // Leaves - Keeps track of the set of putative leaves as well as the number of
570 // paths to each leaf seen so far.
Duncan Sands72aea012012-06-12 20:26:43 +0000571 typedef DenseMap<Value*, APInt> LeafMap;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000572 LeafMap Leaves; // Leaf -> Total weight so far.
573 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
574
575#ifndef NDEBUG
576 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
577#endif
578 while (!Worklist.empty()) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000579 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000580 I = P.first; // We examine the operands of this binary operator.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000581
582 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
583 Value *Op = I->getOperand(OpIdx);
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000584 APInt Weight = P.second; // Number of paths to this operand.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000585 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
586 assert(!Op->use_empty() && "No uses, so how did we get to it?!");
587
588 // If this is a binary operation of the right kind with only one use then
589 // add its operands to the expression.
590 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
David Blaikie70573dc2014-11-19 07:49:26 +0000591 assert(Visited.insert(Op).second && "Not first visit!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000592 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
593 Worklist.push_back(std::make_pair(BO, Weight));
594 continue;
595 }
596
597 // Appears to be a leaf. Is the operand already in the set of leaves?
598 LeafMap::iterator It = Leaves.find(Op);
599 if (It == Leaves.end()) {
600 // Not in the leaf map. Must be the first time we saw this operand.
David Blaikie70573dc2014-11-19 07:49:26 +0000601 assert(Visited.insert(Op).second && "Not first visit!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000602 if (!Op->hasOneUse()) {
603 // This value has uses not accounted for by the expression, so it is
604 // not safe to modify. Mark it as being a leaf.
605 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
606 LeafOrder.push_back(Op);
607 Leaves[Op] = Weight;
608 continue;
609 }
610 // No uses outside the expression, try morphing it.
611 } else if (It != Leaves.end()) {
612 // Already in the leaf map.
613 assert(Visited.count(Op) && "In leaf map but not visited!");
614
615 // Update the number of paths to the leaf.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000616 IncorporateWeight(It->second, Weight, Opcode);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000617
Duncan Sands56514522012-07-26 09:26:40 +0000618#if 0 // TODO: Re-enable once PR13021 is fixed.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000619 // The leaf already has one use from inside the expression. As we want
620 // exactly one such use, drop this new use of the leaf.
621 assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
622 I->setOperand(OpIdx, UndefValue::get(I->getType()));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000623 Changed = true;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000624
625 // If the leaf is a binary operation of the right kind and we now see
626 // that its multiple original uses were in fact all by nodes belonging
627 // to the expression, then no longer consider it to be a leaf and add
628 // its operands to the expression.
629 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
630 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
631 Worklist.push_back(std::make_pair(BO, It->second));
632 Leaves.erase(It);
633 continue;
634 }
Duncan Sands56514522012-07-26 09:26:40 +0000635#endif
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000636
637 // If we still have uses that are not accounted for by the expression
638 // then it is not safe to modify the value.
639 if (!Op->hasOneUse())
640 continue;
641
642 // No uses outside the expression, try morphing it.
643 Weight = It->second;
644 Leaves.erase(It); // Since the value may be morphed below.
645 }
646
647 // At this point we have a value which, first of all, is not a binary
648 // expression of the right kind, and secondly, is only used inside the
649 // expression. This means that it can safely be modified. See if we
650 // can usefully morph it into an expression of the right kind.
651 assert((!isa<Instruction>(Op) ||
Chad Rosierac6a2f52014-11-06 16:46:37 +0000652 cast<Instruction>(Op)->getOpcode() != Opcode
653 || (isa<FPMathOperator>(Op) &&
654 !cast<Instruction>(Op)->hasUnsafeAlgebra())) &&
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000655 "Should have been handled above!");
656 assert(Op->hasOneUse() && "Has uses outside the expression tree!");
657
658 // If this is a multiply expression, turn any internal negations into
659 // multiplies by -1 so they can be reassociated.
Chad Rosier11ab9412014-08-14 15:23:01 +0000660 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
661 if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
662 (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
663 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
664 BO = LowerNegateToMultiply(BO);
665 DEBUG(dbgs() << *BO << '\n');
666 Worklist.push_back(std::make_pair(BO, Weight));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000667 Changed = true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000668 continue;
669 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000670
671 // Failed to morph into an expression of the right type. This really is
672 // a leaf.
673 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
674 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
675 LeafOrder.push_back(Op);
676 Leaves[Op] = Weight;
Chris Lattner877b1142005-05-08 21:28:52 +0000677 }
678 }
679
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000680 // The leaves, repeated according to their weights, represent the linearized
681 // form of the expression.
682 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
683 Value *V = LeafOrder[i];
684 LeafMap::iterator It = Leaves.find(V);
685 if (It == Leaves.end())
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000686 // Node initially thought to be a leaf wasn't.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000687 continue;
688 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000689 APInt Weight = It->second;
690 if (Weight.isMinValue())
691 // Leaf already output or weight reduction eliminated it.
692 continue;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000693 // Ensure the leaf is only output once.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000694 It->second = 0;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000695 Ops.push_back(std::make_pair(V, Weight));
Chris Lattnerc0f58002002-05-08 22:19:27 +0000696 }
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000697
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000698 // For nilpotent operations or addition there may be no operands, for example
699 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
700 // in both cases the weight reduces to 0 causing the value to be skipped.
701 if (Ops.empty()) {
Duncan Sandsac852c72012-11-15 09:58:38 +0000702 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
Duncan Sands318a89d2012-06-13 09:42:13 +0000703 assert(Identity && "Associative operation without identity!");
Benjamin Kramerf5e2fc42015-05-29 19:43:39 +0000704 Ops.emplace_back(Identity, APInt(Bitwidth, 1));
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000705 }
706
Chad Rosiere53e8c82014-11-18 20:21:54 +0000707 return Changed;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000708}
709
Sanjay Patelc96ee082015-04-22 18:04:46 +0000710/// Now that the operands for this expression tree are
711/// linearized and optimized, emit them in-order.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000712void Reassociate::RewriteExprTree(BinaryOperator *I,
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000713 SmallVectorImpl<ValueEntry> &Ops) {
714 assert(Ops.size() > 1 && "Single values should be used directly!");
Dan Gohman08d2c982011-02-02 02:02:34 +0000715
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000716 // Since our optimizations should never increase the number of operations, the
717 // new expression can usually be written reusing the existing binary operators
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000718 // from the original expression tree, without creating any new instructions,
719 // though the rewritten expression may have a completely different topology.
720 // We take care to not change anything if the new expression will be the same
721 // as the original. If more than trivial changes (like commuting operands)
722 // were made then we are obliged to clear out any optional subclass data like
723 // nsw flags.
Dan Gohman08d2c982011-02-02 02:02:34 +0000724
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000725 /// NodesToRewrite - Nodes from the original expression available for writing
726 /// the new expression into.
727 SmallVector<BinaryOperator*, 8> NodesToRewrite;
728 unsigned Opcode = I->getOpcode();
Duncan Sands98382862012-06-29 19:03:05 +0000729 BinaryOperator *Op = I;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000730
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000731 /// NotRewritable - The operands being written will be the leaves of the new
732 /// expression and must not be used as inner nodes (via NodesToRewrite) by
733 /// mistake. Inner nodes are always reassociable, and usually leaves are not
734 /// (if they were they would have been incorporated into the expression and so
735 /// would not be leaves), so most of the time there is no danger of this. But
736 /// in rare cases a leaf may become reassociable if an optimization kills uses
737 /// of it, or it may momentarily become reassociable during rewriting (below)
738 /// due it being removed as an operand of one of its uses. Ensure that misuse
739 /// of leaf nodes as inner nodes cannot occur by remembering all of the future
740 /// leaves and refusing to reuse any of them as inner nodes.
741 SmallPtrSet<Value*, 8> NotRewritable;
742 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
743 NotRewritable.insert(Ops[i].Op);
744
Duncan Sands3c05cd32012-05-26 16:42:52 +0000745 // ExpressionChanged - Non-null if the rewritten expression differs from the
746 // original in some non-trivial way, requiring the clearing of optional flags.
747 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
Craig Topperf40110f2014-04-25 05:29:35 +0000748 BinaryOperator *ExpressionChanged = nullptr;
Duncan Sands514db112012-06-27 14:19:00 +0000749 for (unsigned i = 0; ; ++i) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000750 // The last operation (which comes earliest in the IR) is special as both
751 // operands will come from Ops, rather than just one with the other being
752 // a subexpression.
753 if (i+2 == Ops.size()) {
754 Value *NewLHS = Ops[i].Op;
755 Value *NewRHS = Ops[i+1].Op;
756 Value *OldLHS = Op->getOperand(0);
757 Value *OldRHS = Op->getOperand(1);
758
Chad Rosier90a2f9b2014-11-19 23:21:20 +0000759 if (NewLHS == OldLHS && NewRHS == OldRHS)
760 // Nothing changed, leave it alone.
761 break;
762
763 if (NewLHS == OldRHS && NewRHS == OldLHS) {
764 // The order of the operands was reversed. Swap them.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000765 DEBUG(dbgs() << "RA: " << *Op << '\n');
Chad Rosier90a2f9b2014-11-19 23:21:20 +0000766 Op->swapOperands();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000767 DEBUG(dbgs() << "TO: " << *Op << '\n');
768 MadeChange = true;
769 ++NumChanged;
770 break;
771 }
772
773 // The new operation differs non-trivially from the original. Overwrite
774 // the old operands with the new ones.
775 DEBUG(dbgs() << "RA: " << *Op << '\n');
776 if (NewLHS != OldLHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000777 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
778 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000779 NodesToRewrite.push_back(BO);
780 Op->setOperand(0, NewLHS);
781 }
782 if (NewRHS != OldRHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000783 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
784 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000785 NodesToRewrite.push_back(BO);
786 Op->setOperand(1, NewRHS);
787 }
788 DEBUG(dbgs() << "TO: " << *Op << '\n');
789
Duncan Sands3c05cd32012-05-26 16:42:52 +0000790 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000791 MadeChange = true;
792 ++NumChanged;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000793
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000794 break;
Chris Lattner1e506502005-05-07 21:59:39 +0000795 }
Chris Lattner1e506502005-05-07 21:59:39 +0000796
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000797 // Not the last operation. The left-hand side will be a sub-expression
798 // while the right-hand side will be the current element of Ops.
799 Value *NewRHS = Ops[i].Op;
800 if (NewRHS != Op->getOperand(1)) {
801 DEBUG(dbgs() << "RA: " << *Op << '\n');
802 if (NewRHS == Op->getOperand(0)) {
803 // The new right-hand side was already present as the left operand. If
804 // we are lucky then swapping the operands will sort out both of them.
805 Op->swapOperands();
806 } else {
807 // Overwrite with the new right-hand side.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000808 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
809 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000810 NodesToRewrite.push_back(BO);
811 Op->setOperand(1, NewRHS);
Duncan Sands3c05cd32012-05-26 16:42:52 +0000812 ExpressionChanged = Op;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000813 }
814 DEBUG(dbgs() << "TO: " << *Op << '\n');
815 MadeChange = true;
816 ++NumChanged;
817 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000818
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000819 // Now deal with the left-hand side. If this is already an operation node
820 // from the original expression then just rewrite the rest of the expression
821 // into it.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000822 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
823 if (BO && !NotRewritable.count(BO)) {
Duncan Sands98382862012-06-29 19:03:05 +0000824 Op = BO;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000825 continue;
826 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000827
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000828 // Otherwise, grab a spare node from the original expression and use that as
Duncan Sands369c6d22012-06-29 13:25:06 +0000829 // the left-hand side. If there are no nodes left then the optimizers made
830 // an expression with more nodes than the original! This usually means that
831 // they did something stupid but it might mean that the problem was just too
832 // hard (finding the mimimal number of multiplications needed to realize a
833 // multiplication expression is NP-complete). Whatever the reason, smart or
834 // stupid, create a new node if there are none left.
Duncan Sands98382862012-06-29 19:03:05 +0000835 BinaryOperator *NewOp;
Duncan Sands369c6d22012-06-29 13:25:06 +0000836 if (NodesToRewrite.empty()) {
837 Constant *Undef = UndefValue::get(I->getType());
Duncan Sands98382862012-06-29 19:03:05 +0000838 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
839 Undef, Undef, "", I);
Robert Lougher1858ba72015-03-13 20:53:01 +0000840 if (NewOp->getType()->isFPOrFPVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000841 NewOp->setFastMathFlags(I->getFastMathFlags());
Duncan Sands98382862012-06-29 19:03:05 +0000842 } else {
843 NewOp = NodesToRewrite.pop_back_val();
Duncan Sands369c6d22012-06-29 13:25:06 +0000844 }
845
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000846 DEBUG(dbgs() << "RA: " << *Op << '\n');
Duncan Sands98382862012-06-29 19:03:05 +0000847 Op->setOperand(0, NewOp);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000848 DEBUG(dbgs() << "TO: " << *Op << '\n');
Duncan Sands3c05cd32012-05-26 16:42:52 +0000849 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000850 MadeChange = true;
851 ++NumChanged;
Duncan Sands98382862012-06-29 19:03:05 +0000852 Op = NewOp;
Chris Lattner1e506502005-05-07 21:59:39 +0000853 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000854
Duncan Sands3c05cd32012-05-26 16:42:52 +0000855 // If the expression changed non-trivially then clear out all subclass data
Duncan Sands514db112012-06-27 14:19:00 +0000856 // starting from the operator specified in ExpressionChanged, and compactify
857 // the operators to just before the expression root to guarantee that the
858 // expression tree is dominated by all of Ops.
859 if (ExpressionChanged)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000860 do {
Chad Rosier11ab9412014-08-14 15:23:01 +0000861 // Preserve FastMathFlags.
862 if (isa<FPMathOperator>(I)) {
863 FastMathFlags Flags = I->getFastMathFlags();
864 ExpressionChanged->clearSubclassOptionalData();
865 ExpressionChanged->setFastMathFlags(Flags);
866 } else
867 ExpressionChanged->clearSubclassOptionalData();
868
Duncan Sands3c05cd32012-05-26 16:42:52 +0000869 if (ExpressionChanged == I)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000870 break;
Duncan Sands514db112012-06-27 14:19:00 +0000871 ExpressionChanged->moveBefore(I);
Chandler Carruthcdf47882014-03-09 03:16:01 +0000872 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000873 } while (1);
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000874
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000875 // Throw away any left over nodes from the original expression.
876 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
Duncan Sands3293f462012-06-08 20:15:33 +0000877 RedoInsts.insert(NodesToRewrite[i]);
Chris Lattner1e506502005-05-07 21:59:39 +0000878}
879
Sanjay Patelc96ee082015-04-22 18:04:46 +0000880/// Insert instructions before the instruction pointed to by BI,
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000881/// that computes the negative version of the value specified. The negative
882/// version of the value is returned, and BI is left pointing at the instruction
883/// that should be processed next by the reassociation pass.
Owen Anderson2de9f542015-11-16 18:07:30 +0000884/// Also add intermediate instructions to the redo list that are modified while
885/// pushing the negates through adds. These will be revisited to see if
886/// additional opportunities have been exposed.
887static Value *NegateValue(Value *V, Instruction *BI,
888 SetVector<AssertingVH<Instruction>> &ToRedo) {
Mehdi Amini590a2702015-01-16 03:00:58 +0000889 if (Constant *C = dyn_cast<Constant>(V)) {
890 if (C->getType()->isFPOrFPVectorTy()) {
891 return ConstantExpr::getFNeg(C);
892 }
Chris Lattnerfed33972009-12-31 20:34:32 +0000893 return ConstantExpr::getNeg(C);
Mehdi Amini590a2702015-01-16 03:00:58 +0000894 }
895
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000896
Chris Lattner7bc532d2002-05-16 04:37:07 +0000897 // We are trying to expose opportunity for reassociation. One of the things
898 // that we want to do to achieve this is to push a negation as deep into an
899 // expression chain as possible, to expose the add instructions. In practice,
900 // this means that we turn this:
901 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
902 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
903 // the constants. We assume that instcombine will clean up the mess later if
Chris Lattnera5526832010-01-01 00:04:26 +0000904 // we introduce tons of unnecessary negation instructions.
Chris Lattner7bc532d2002-05-16 04:37:07 +0000905 //
Chad Rosier11ab9412014-08-14 15:23:01 +0000906 if (BinaryOperator *I =
907 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000908 // Push the negates through the add.
Owen Anderson2de9f542015-11-16 18:07:30 +0000909 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
910 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
David Majnemerf6e500a2015-06-24 21:27:36 +0000911 if (I->getOpcode() == Instruction::Add) {
912 I->setHasNoUnsignedWrap(false);
913 I->setHasNoSignedWrap(false);
914 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000915
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000916 // We must move the add instruction here, because the neg instructions do
917 // not dominate the old add instruction in general. By moving it, we are
918 // assured that the neg instructions we just inserted dominate the
919 // instruction we are about to insert after them.
920 //
921 I->moveBefore(BI);
922 I->setName(I->getName()+".neg");
Owen Anderson2de9f542015-11-16 18:07:30 +0000923
924 // Add the intermediate negates to the redo list as processing them later
925 // could expose more reassociating opportunities.
926 ToRedo.insert(I);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000927 return I;
928 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000929
Chris Lattnerfed33972009-12-31 20:34:32 +0000930 // Okay, we need to materialize a negated version of V with an instruction.
931 // Scan the use lists of V to see if we have one already.
Chandler Carruthcdf47882014-03-09 03:16:01 +0000932 for (User *U : V->users()) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000933 if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
934 continue;
Chris Lattnerfed33972009-12-31 20:34:32 +0000935
936 // We found one! Now we have to make sure that the definition dominates
937 // this use. We do this by moving it to the entry block (if it is a
938 // non-instruction value) or right after the definition. These negates will
939 // be zapped by reassociate later, so we don't need much finesse here.
Gabor Greif782f6242010-07-12 12:03:02 +0000940 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
Chris Lattnere199d2d2010-01-02 21:46:33 +0000941
942 // Verify that the negate is in this function, V might be a constant expr.
943 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
944 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000945
Chris Lattnerfed33972009-12-31 20:34:32 +0000946 BasicBlock::iterator InsertPt;
947 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
948 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
949 InsertPt = II->getNormalDest()->begin();
David Majnemer0bc0eef2015-08-15 02:46:08 +0000950 } else if (auto *CPI = dyn_cast<CatchPadInst>(InstInput)) {
951 InsertPt = CPI->getNormalDest()->begin();
Chris Lattnerfed33972009-12-31 20:34:32 +0000952 } else {
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +0000953 InsertPt = ++InstInput->getIterator();
Chris Lattnerfed33972009-12-31 20:34:32 +0000954 }
955 while (isa<PHINode>(InsertPt)) ++InsertPt;
956 } else {
957 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
958 }
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +0000959 TheNeg->moveBefore(&*InsertPt);
David Majnemerf6e500a2015-06-24 21:27:36 +0000960 if (TheNeg->getOpcode() == Instruction::Sub) {
961 TheNeg->setHasNoUnsignedWrap(false);
962 TheNeg->setHasNoSignedWrap(false);
963 } else {
964 TheNeg->andIRFlags(BI);
965 }
Owen Anderson2de9f542015-11-16 18:07:30 +0000966 ToRedo.insert(TheNeg);
Chris Lattnerfed33972009-12-31 20:34:32 +0000967 return TheNeg;
968 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000969
970 // Insert a 'neg' instruction that subtracts the value from zero to get the
971 // negation.
Owen Anderson2de9f542015-11-16 18:07:30 +0000972 BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
973 ToRedo.insert(NewNeg);
974 return NewNeg;
Chris Lattnerf43e9742005-05-07 04:08:02 +0000975}
976
Sanjay Patelc96ee082015-04-22 18:04:46 +0000977/// Return true if we should break up this subtract of X-Y into (X + -Y).
Nick Lewycky7935bcb2009-11-14 07:25:54 +0000978static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner902537c2008-02-17 20:44:51 +0000979 // If this is a negation, we can't split it up!
Chad Rosier11ab9412014-08-14 15:23:01 +0000980 if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
Chris Lattner902537c2008-02-17 20:44:51 +0000981 return false;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000982
Chad Rosierbd64d462014-10-09 20:06:29 +0000983 // Don't breakup X - undef.
984 if (isa<UndefValue>(Sub->getOperand(1)))
985 return false;
986
Chris Lattner902537c2008-02-17 20:44:51 +0000987 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattnera70d1382008-02-17 20:51:26 +0000988 // subtract or if this is only used by one.
Chad Rosier11ab9412014-08-14 15:23:01 +0000989 Value *V0 = Sub->getOperand(0);
990 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
991 isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +0000992 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000993 Value *V1 = Sub->getOperand(1);
994 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
995 isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +0000996 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000997 Value *VB = Sub->user_back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000998 if (Sub->hasOneUse() &&
Chad Rosier11ab9412014-08-14 15:23:01 +0000999 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
1000 isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
Chris Lattner902537c2008-02-17 20:44:51 +00001001 return true;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001002
Chris Lattner902537c2008-02-17 20:44:51 +00001003 return false;
1004}
1005
Sanjay Patelc96ee082015-04-22 18:04:46 +00001006/// If we have (X-Y), and if either X is an add, or if this is only used by an
1007/// add, transform this into (X+(0-Y)) to promote better reassociation.
Owen Anderson2de9f542015-11-16 18:07:30 +00001008static BinaryOperator *
1009BreakUpSubtract(Instruction *Sub, SetVector<AssertingVH<Instruction>> &ToRedo) {
Chris Lattnera5526832010-01-01 00:04:26 +00001010 // Convert a subtract into an add and a neg instruction. This allows sub
1011 // instructions to be commuted with other add instructions.
Chris Lattnerf43e9742005-05-07 04:08:02 +00001012 //
Chris Lattnera5526832010-01-01 00:04:26 +00001013 // Calculate the negative value of Operand 1 of the sub instruction,
1014 // and set it as the RHS of the add instruction we just made.
Chris Lattnerf43e9742005-05-07 04:08:02 +00001015 //
Owen Anderson2de9f542015-11-16 18:07:30 +00001016 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
Chad Rosier11ab9412014-08-14 15:23:01 +00001017 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
Duncan Sands3293f462012-06-08 20:15:33 +00001018 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
1019 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +00001020 New->takeName(Sub);
Chris Lattnerf43e9742005-05-07 04:08:02 +00001021
1022 // Everyone now refers to the add instruction.
1023 Sub->replaceAllUsesWith(New);
Devang Patel80d1d3a2011-04-28 22:48:14 +00001024 New->setDebugLoc(Sub->getDebugLoc());
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +00001025
David Greened17c3912010-01-05 01:27:24 +00001026 DEBUG(dbgs() << "Negated: " << *New << '\n');
Chris Lattnerf43e9742005-05-07 04:08:02 +00001027 return New;
Chris Lattner7bc532d2002-05-16 04:37:07 +00001028}
1029
Sanjay Patelc96ee082015-04-22 18:04:46 +00001030/// If this is a shift of a reassociable multiply or is used by one, change
1031/// this into a multiply by a constant to assist with further reassociation.
Duncan Sands3293f462012-06-08 20:15:33 +00001032static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
1033 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
1034 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001035
Duncan Sands3293f462012-06-08 20:15:33 +00001036 BinaryOperator *Mul =
1037 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
1038 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
1039 Mul->takeName(Shl);
Chad Rosierb3eb4522014-11-07 22:12:57 +00001040
1041 // Everyone now refers to the mul instruction.
Duncan Sands3293f462012-06-08 20:15:33 +00001042 Shl->replaceAllUsesWith(Mul);
1043 Mul->setDebugLoc(Shl->getDebugLoc());
Chad Rosierb3eb4522014-11-07 22:12:57 +00001044
1045 // We can safely preserve the nuw flag in all cases. It's also safe to turn a
1046 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special
1047 // handling.
1048 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
1049 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
1050 if (NSW && NUW)
1051 Mul->setHasNoSignedWrap(true);
1052 Mul->setHasNoUnsignedWrap(NUW);
Duncan Sands3293f462012-06-08 20:15:33 +00001053 return Mul;
Chris Lattnercea57992005-05-07 04:24:13 +00001054}
1055
Sanjay Patelc96ee082015-04-22 18:04:46 +00001056/// Scan backwards and forwards among values with the same rank as element i
1057/// to see if X exists. If X does not exist, return i. This is useful when
1058/// scanning for 'x' when we see '-x' because they both get the same rank.
Chris Lattner38abecb2009-12-31 18:40:32 +00001059static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
Chris Lattner5847e5e2005-05-08 18:59:37 +00001060 Value *X) {
1061 unsigned XRank = Ops[i].Rank;
1062 unsigned e = Ops.size();
Owen Anderson8373d332014-10-05 23:41:26 +00001063 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +00001064 if (Ops[j].Op == X)
1065 return j;
Owen Anderson8373d332014-10-05 23:41:26 +00001066 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1067 if (Instruction *I2 = dyn_cast<Instruction>(X))
1068 if (I1->isIdenticalTo(I2))
1069 return j;
1070 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001071 // Scan backwards.
Owen Anderson8373d332014-10-05 23:41:26 +00001072 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +00001073 if (Ops[j].Op == X)
1074 return j;
Owen Anderson8373d332014-10-05 23:41:26 +00001075 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1076 if (Instruction *I2 = dyn_cast<Instruction>(X))
1077 if (I1->isIdenticalTo(I2))
1078 return j;
1079 }
Chris Lattner5847e5e2005-05-08 18:59:37 +00001080 return i;
1081}
1082
Sanjay Patelc96ee082015-04-22 18:04:46 +00001083/// Emit a tree of add instructions, summing Ops together
Chris Lattner4c065092006-03-04 09:31:13 +00001084/// and returning the result. Insert the tree before I.
Bill Wendling274ba892012-05-02 09:59:45 +00001085static Value *EmitAddTreeOfValues(Instruction *I,
1086 SmallVectorImpl<WeakVH> &Ops){
Chris Lattner4c065092006-03-04 09:31:13 +00001087 if (Ops.size() == 1) return Ops.back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001088
Chris Lattner4c065092006-03-04 09:31:13 +00001089 Value *V1 = Ops.back();
1090 Ops.pop_back();
1091 Value *V2 = EmitAddTreeOfValues(I, Ops);
Chad Rosier11ab9412014-08-14 15:23:01 +00001092 return CreateAdd(V2, V1, "tmp", I, I);
Chris Lattner4c065092006-03-04 09:31:13 +00001093}
1094
Sanjay Patelc96ee082015-04-22 18:04:46 +00001095/// If V is an expression tree that is a multiplication sequence,
1096/// and if this sequence contains a multiply by Factor,
Chris Lattner4c065092006-03-04 09:31:13 +00001097/// remove Factor from the tree and return the new tree.
1098Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001099 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1100 if (!BO)
1101 return nullptr;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001102
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001103 SmallVector<RepeatedValue, 8> Tree;
1104 MadeChange |= LinearizeExprTree(BO, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00001105 SmallVector<ValueEntry, 8> Factors;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001106 Factors.reserve(Tree.size());
1107 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1108 RepeatedValue E = Tree[i];
1109 Factors.append(E.second.getZExtValue(),
1110 ValueEntry(getRank(E.first), E.first));
1111 }
Chris Lattner4c065092006-03-04 09:31:13 +00001112
1113 bool FoundFactor = false;
Chris Lattner0c59ac32010-01-01 01:13:15 +00001114 bool NeedsNegate = false;
1115 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Chris Lattner4c065092006-03-04 09:31:13 +00001116 if (Factors[i].Op == Factor) {
1117 FoundFactor = true;
1118 Factors.erase(Factors.begin()+i);
1119 break;
1120 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001121
Chris Lattner0c59ac32010-01-01 01:13:15 +00001122 // If this is a negative version of this factor, remove it.
Chad Rosier11ab9412014-08-14 15:23:01 +00001123 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001124 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1125 if (FC1->getValue() == -FC2->getValue()) {
1126 FoundFactor = NeedsNegate = true;
1127 Factors.erase(Factors.begin()+i);
1128 break;
1129 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001130 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1131 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1132 APFloat F1(FC1->getValueAPF());
1133 APFloat F2(FC2->getValueAPF());
1134 F2.changeSign();
1135 if (F1.compare(F2) == APFloat::cmpEqual) {
1136 FoundFactor = NeedsNegate = true;
1137 Factors.erase(Factors.begin() + i);
1138 break;
1139 }
1140 }
1141 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001142 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001143
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001144 if (!FoundFactor) {
1145 // Make sure to restore the operands to the expression tree.
1146 RewriteExprTree(BO, Factors);
Craig Topperf40110f2014-04-25 05:29:35 +00001147 return nullptr;
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001148 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001149
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001150 BasicBlock::iterator InsertPt = ++BO->getIterator();
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001151
Chris Lattner1d897942009-12-31 19:34:45 +00001152 // If this was just a single multiply, remove the multiply and return the only
1153 // remaining operand.
1154 if (Factors.size() == 1) {
Duncan Sands3293f462012-06-08 20:15:33 +00001155 RedoInsts.insert(BO);
Chris Lattner0c59ac32010-01-01 01:13:15 +00001156 V = Factors[0].Op;
1157 } else {
1158 RewriteExprTree(BO, Factors);
1159 V = BO;
Chris Lattner1d897942009-12-31 19:34:45 +00001160 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001161
Chris Lattner0c59ac32010-01-01 01:13:15 +00001162 if (NeedsNegate)
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001163 V = CreateNeg(V, "neg", &*InsertPt, BO);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001164
Chris Lattner0c59ac32010-01-01 01:13:15 +00001165 return V;
Chris Lattner4c065092006-03-04 09:31:13 +00001166}
1167
Sanjay Patelc96ee082015-04-22 18:04:46 +00001168/// If V is a single-use multiply, recursively add its operands as factors,
1169/// otherwise add V to the list of factors.
Chris Lattnerc6c15232010-03-05 07:18:54 +00001170///
1171/// Ops is the top-level list of add operands we're trying to factor.
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001172static void FindSingleUseMultiplyFactors(Value *V,
Chris Lattnerc6c15232010-03-05 07:18:54 +00001173 SmallVectorImpl<Value*> &Factors,
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001174 const SmallVectorImpl<ValueEntry> &Ops) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001175 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001176 if (!BO) {
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001177 Factors.push_back(V);
1178 return;
1179 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001180
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001181 // Otherwise, add the LHS and RHS to the list of factors.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001182 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1183 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001184}
1185
Sanjay Patelc96ee082015-04-22 18:04:46 +00001186/// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1187/// This optimizes based on identities. If it can be reduced to a single Value,
1188/// it is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner38abecb2009-12-31 18:40:32 +00001189static Value *OptimizeAndOrXor(unsigned Opcode,
1190 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001191 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1192 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1193 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1194 // First, check for X and ~X in the operand list.
1195 assert(i < Ops.size());
1196 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
1197 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1198 unsigned FoundX = FindInOperandList(Ops, i, X);
1199 if (FoundX != i) {
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001200 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattner5f8a0052009-12-31 07:59:34 +00001201 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001202
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001203 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattner5f8a0052009-12-31 07:59:34 +00001204 return Constant::getAllOnesValue(X->getType());
Chris Lattner5f8a0052009-12-31 07:59:34 +00001205 }
1206 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001207
Chris Lattner5f8a0052009-12-31 07:59:34 +00001208 // Next, check for duplicate pairs of values, which we assume are next to
1209 // each other, due to our sorting criteria.
1210 assert(i < Ops.size());
1211 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1212 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattner60c2ca72009-12-31 19:49:01 +00001213 // Drop duplicate values for And and Or.
Chris Lattner5f8a0052009-12-31 07:59:34 +00001214 Ops.erase(Ops.begin()+i);
1215 --i; --e;
1216 ++NumAnnihil;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001217 continue;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001218 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001219
Chris Lattner60c2ca72009-12-31 19:49:01 +00001220 // Drop pairs of values for Xor.
1221 assert(Opcode == Instruction::Xor);
1222 if (e == 2)
1223 return Constant::getNullValue(Ops[0].Op->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001224
Chris Lattnera5526832010-01-01 00:04:26 +00001225 // Y ^ X^X -> Y
Chris Lattner60c2ca72009-12-31 19:49:01 +00001226 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1227 i -= 1; e -= 2;
1228 ++NumAnnihil;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001229 }
1230 }
Craig Topperf40110f2014-04-25 05:29:35 +00001231 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001232}
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001233
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001234/// Helper funciton of CombineXorOpnd(). It creates a bitwise-and
1235/// instruction with the given two operands, and return the resulting
1236/// instruction. There are two special cases: 1) if the constant operand is 0,
1237/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1238/// be returned.
1239static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1240 const APInt &ConstOpnd) {
1241 if (ConstOpnd != 0) {
1242 if (!ConstOpnd.isAllOnesValue()) {
1243 LLVMContext &Ctx = Opnd->getType()->getContext();
1244 Instruction *I;
1245 I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
1246 "and.ra", InsertBefore);
1247 I->setDebugLoc(InsertBefore->getDebugLoc());
1248 return I;
1249 }
1250 return Opnd;
1251 }
Craig Topperf40110f2014-04-25 05:29:35 +00001252 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001253}
1254
1255// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1256// into "R ^ C", where C would be 0, and R is a symbolic value.
1257//
1258// If it was successful, true is returned, and the "R" and "C" is returned
1259// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1260// and both "Res" and "ConstOpnd" remain unchanged.
1261//
1262bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1263 APInt &ConstOpnd, Value *&Res) {
1264 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1265 // = ((x | c1) ^ c1) ^ (c1 ^ c2)
1266 // = (x & ~c1) ^ (c1 ^ c2)
1267 // It is useful only when c1 == c2.
1268 if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
1269 if (!Opnd1->getValue()->hasOneUse())
1270 return false;
1271
1272 const APInt &C1 = Opnd1->getConstPart();
1273 if (C1 != ConstOpnd)
1274 return false;
1275
1276 Value *X = Opnd1->getSymbolicPart();
1277 Res = createAndInstr(I, X, ~C1);
1278 // ConstOpnd was C2, now C1 ^ C2.
1279 ConstOpnd ^= C1;
1280
1281 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1282 RedoInsts.insert(T);
1283 return true;
1284 }
1285 return false;
1286}
1287
1288
1289// Helper function of OptimizeXor(). It tries to simplify
1290// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1291// symbolic value.
1292//
1293// If it was successful, true is returned, and the "R" and "C" is returned
1294// via "Res" and "ConstOpnd", respectively (If the entire expression is
1295// evaluated to a constant, the Res is set to NULL); otherwise, false is
1296// returned, and both "Res" and "ConstOpnd" remain unchanged.
1297bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
1298 APInt &ConstOpnd, Value *&Res) {
1299 Value *X = Opnd1->getSymbolicPart();
1300 if (X != Opnd2->getSymbolicPart())
1301 return false;
1302
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001303 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1304 int DeadInstNum = 1;
1305 if (Opnd1->getValue()->hasOneUse())
1306 DeadInstNum++;
1307 if (Opnd2->getValue()->hasOneUse())
1308 DeadInstNum++;
1309
1310 // Xor-Rule 2:
1311 // (x | c1) ^ (x & c2)
1312 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1313 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
1314 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
1315 //
1316 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1317 if (Opnd2->isOrExpr())
1318 std::swap(Opnd1, Opnd2);
1319
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001320 const APInt &C1 = Opnd1->getConstPart();
1321 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001322 APInt C3((~C1) ^ C2);
1323
1324 // Do not increase code size!
1325 if (C3 != 0 && !C3.isAllOnesValue()) {
1326 int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1327 if (NewInstNum > DeadInstNum)
1328 return false;
1329 }
1330
1331 Res = createAndInstr(I, X, C3);
1332 ConstOpnd ^= C1;
1333
1334 } else if (Opnd1->isOrExpr()) {
1335 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1336 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001337 const APInt &C1 = Opnd1->getConstPart();
1338 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001339 APInt C3 = C1 ^ C2;
1340
1341 // Do not increase code size
1342 if (C3 != 0 && !C3.isAllOnesValue()) {
1343 int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1344 if (NewInstNum > DeadInstNum)
1345 return false;
1346 }
1347
1348 Res = createAndInstr(I, X, C3);
1349 ConstOpnd ^= C3;
1350 } else {
1351 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1352 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001353 const APInt &C1 = Opnd1->getConstPart();
1354 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001355 APInt C3 = C1 ^ C2;
1356 Res = createAndInstr(I, X, C3);
1357 }
1358
1359 // Put the original operands in the Redo list; hope they will be deleted
1360 // as dead code.
1361 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1362 RedoInsts.insert(T);
1363 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1364 RedoInsts.insert(T);
1365
1366 return true;
1367}
1368
1369/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1370/// to a single Value, it is returned, otherwise the Ops list is mutated as
1371/// necessary.
1372Value *Reassociate::OptimizeXor(Instruction *I,
1373 SmallVectorImpl<ValueEntry> &Ops) {
1374 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1375 return V;
1376
1377 if (Ops.size() == 1)
Craig Topperf40110f2014-04-25 05:29:35 +00001378 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001379
1380 SmallVector<XorOpnd, 8> Opnds;
Shuxin Yang331f01d2013-04-08 22:00:43 +00001381 SmallVector<XorOpnd*, 8> OpndPtrs;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001382 Type *Ty = Ops[0].Op->getType();
1383 APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
1384
1385 // Step 1: Convert ValueEntry to XorOpnd
1386 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1387 Value *V = Ops[i].Op;
1388 if (!isa<ConstantInt>(V)) {
1389 XorOpnd O(V);
1390 O.setSymbolicRank(getRank(O.getSymbolicPart()));
1391 Opnds.push_back(O);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001392 } else
1393 ConstOpnd ^= cast<ConstantInt>(V)->getValue();
1394 }
1395
Shuxin Yang331f01d2013-04-08 22:00:43 +00001396 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1397 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1398 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1399 // with the previous loop --- the iterator of the "Opnds" may be invalidated
1400 // when new elements are added to the vector.
1401 for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1402 OpndPtrs.push_back(&Opnds[i]);
1403
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001404 // Step 2: Sort the Xor-Operands in a way such that the operands containing
1405 // the same symbolic value cluster together. For instance, the input operand
1406 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1407 // ("x | 123", "x & 789", "y & 456").
Chandler Carruth7b8e1122014-02-25 21:54:50 +00001408 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor());
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001409
1410 // Step 3: Combine adjacent operands
Craig Topperf40110f2014-04-25 05:29:35 +00001411 XorOpnd *PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001412 bool Changed = false;
1413 for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
Shuxin Yang331f01d2013-04-08 22:00:43 +00001414 XorOpnd *CurrOpnd = OpndPtrs[i];
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001415 // The combined value
1416 Value *CV;
1417
1418 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1419 if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1420 Changed = true;
1421 if (CV)
1422 *CurrOpnd = XorOpnd(CV);
1423 else {
1424 CurrOpnd->Invalidate();
1425 continue;
1426 }
1427 }
1428
1429 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1430 PrevOpnd = CurrOpnd;
1431 continue;
1432 }
1433
1434 // step 3.2: When previous and current operands share the same symbolic
1435 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1436 //
1437 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1438 // Remove previous operand
1439 PrevOpnd->Invalidate();
1440 if (CV) {
1441 *CurrOpnd = XorOpnd(CV);
1442 PrevOpnd = CurrOpnd;
1443 } else {
1444 CurrOpnd->Invalidate();
Craig Topperf40110f2014-04-25 05:29:35 +00001445 PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001446 }
1447 Changed = true;
1448 }
1449 }
1450
1451 // Step 4: Reassemble the Ops
1452 if (Changed) {
1453 Ops.clear();
1454 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1455 XorOpnd &O = Opnds[i];
1456 if (O.isInvalid())
1457 continue;
1458 ValueEntry VE(getRank(O.getValue()), O.getValue());
1459 Ops.push_back(VE);
1460 }
1461 if (ConstOpnd != 0) {
1462 Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
1463 ValueEntry VE(getRank(C), C);
1464 Ops.push_back(VE);
1465 }
1466 int Sz = Ops.size();
1467 if (Sz == 1)
1468 return Ops.back().Op;
1469 else if (Sz == 0) {
1470 assert(ConstOpnd == 0);
1471 return ConstantInt::get(Ty->getContext(), ConstOpnd);
1472 }
1473 }
1474
Craig Topperf40110f2014-04-25 05:29:35 +00001475 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001476}
1477
Sanjay Patelc96ee082015-04-22 18:04:46 +00001478/// Optimize a series of operands to an 'add' instruction. This
Chris Lattner5f8a0052009-12-31 07:59:34 +00001479/// optimizes based on identities. If it can be reduced to a single Value, it
1480/// is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner38abecb2009-12-31 18:40:32 +00001481Value *Reassociate::OptimizeAdd(Instruction *I,
1482 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001483 // Scan the operand lists looking for X and -X pairs. If we find any, we
Benjamin Kramer49689442014-05-31 15:01:54 +00001484 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it,
1485 // scan for any
Chris Lattner60b71b52009-12-31 19:24:52 +00001486 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Benjamin Kramer49689442014-05-31 15:01:54 +00001487
Chris Lattner5f8a0052009-12-31 07:59:34 +00001488 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner60b71b52009-12-31 19:24:52 +00001489 Value *TheOp = Ops[i].Op;
1490 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattner60c2ca72009-12-31 19:49:01 +00001491 // instances of the operand together. Due to our sorting criteria, we know
1492 // that these need to be next to each other in the vector.
1493 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1494 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner60b71b52009-12-31 19:24:52 +00001495 unsigned NumFound = 0;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001496 do {
1497 Ops.erase(Ops.begin()+i);
Chris Lattner60b71b52009-12-31 19:24:52 +00001498 ++NumFound;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001499 } while (i != Ops.size() && Ops[i].Op == TheOp);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001500
Chad Rosier78943bc2014-12-12 14:44:12 +00001501 DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
Chris Lattner60b71b52009-12-31 19:24:52 +00001502 ++NumFactor;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001503
Chris Lattner60b71b52009-12-31 19:24:52 +00001504 // Insert a new multiply.
Chad Rosier11ab9412014-08-14 15:23:01 +00001505 Type *Ty = TheOp->getType();
Robert Lougher1858ba72015-03-13 20:53:01 +00001506 Constant *C = Ty->isIntOrIntVectorTy() ?
1507 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
Chad Rosier11ab9412014-08-14 15:23:01 +00001508 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001509
Chris Lattner60b71b52009-12-31 19:24:52 +00001510 // Now that we have inserted a multiply, optimize it. This allows us to
1511 // handle cases that require multiple factoring steps, such as this:
1512 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
Chad Rosier11ab9412014-08-14 15:23:01 +00001513 RedoInsts.insert(Mul);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001514
Chris Lattner60b71b52009-12-31 19:24:52 +00001515 // If every add operand was a duplicate, return the multiply.
1516 if (Ops.empty())
1517 return Mul;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001518
Chris Lattner60b71b52009-12-31 19:24:52 +00001519 // Otherwise, we had some input that didn't have the dupe, such as
1520 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1521 // things being added by this operation.
1522 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001523
Chris Lattner60c2ca72009-12-31 19:49:01 +00001524 --i;
1525 e = Ops.size();
1526 continue;
Chris Lattner60b71b52009-12-31 19:24:52 +00001527 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001528
Benjamin Kramer49689442014-05-31 15:01:54 +00001529 // Check for X and -X or X and ~X in the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001530 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
1531 !BinaryOperator::isNot(TheOp))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001532 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001533
Benjamin Kramer49689442014-05-31 15:01:54 +00001534 Value *X = nullptr;
Chad Rosier11ab9412014-08-14 15:23:01 +00001535 if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
Benjamin Kramer49689442014-05-31 15:01:54 +00001536 X = BinaryOperator::getNegArgument(TheOp);
1537 else if (BinaryOperator::isNot(TheOp))
1538 X = BinaryOperator::getNotArgument(TheOp);
1539
Chris Lattner5f8a0052009-12-31 07:59:34 +00001540 unsigned FoundX = FindInOperandList(Ops, i, X);
1541 if (FoundX == i)
1542 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001543
Chris Lattner5f8a0052009-12-31 07:59:34 +00001544 // Remove X and -X from the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001545 if (Ops.size() == 2 &&
1546 (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001547 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001548
Benjamin Kramer49689442014-05-31 15:01:54 +00001549 // Remove X and ~X from the operand list.
1550 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
1551 return Constant::getAllOnesValue(X->getType());
1552
Chris Lattner5f8a0052009-12-31 07:59:34 +00001553 Ops.erase(Ops.begin()+i);
1554 if (i < FoundX)
1555 --FoundX;
1556 else
1557 --i; // Need to back up an extra one.
1558 Ops.erase(Ops.begin()+FoundX);
1559 ++NumAnnihil;
1560 --i; // Revisit element.
1561 e -= 2; // Removed two elements.
Benjamin Kramer49689442014-05-31 15:01:54 +00001562
1563 // if X and ~X we append -1 to the operand list.
1564 if (BinaryOperator::isNot(TheOp)) {
1565 Value *V = Constant::getAllOnesValue(X->getType());
1566 Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1567 e += 1;
1568 }
Chris Lattner5f8a0052009-12-31 07:59:34 +00001569 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001570
Chris Lattner177140a2009-12-31 18:17:13 +00001571 // Scan the operand list, checking to see if there are any common factors
1572 // between operands. Consider something like A*A+A*B*C+D. We would like to
1573 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1574 // To efficiently find this, we count the number of times a factor occurs
1575 // for any ADD operands that are MULs.
1576 DenseMap<Value*, unsigned> FactorOccurrences;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001577
Chris Lattner177140a2009-12-31 18:17:13 +00001578 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1579 // where they are actually the same multiply.
Chris Lattner177140a2009-12-31 18:17:13 +00001580 unsigned MaxOcc = 0;
Craig Topperf40110f2014-04-25 05:29:35 +00001581 Value *MaxOccVal = nullptr;
Chris Lattner177140a2009-12-31 18:17:13 +00001582 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001583 BinaryOperator *BOp =
1584 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001585 if (!BOp)
Chris Lattner177140a2009-12-31 18:17:13 +00001586 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001587
Chris Lattner177140a2009-12-31 18:17:13 +00001588 // Compute all of the factors of this added value.
1589 SmallVector<Value*, 8> Factors;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001590 FindSingleUseMultiplyFactors(BOp, Factors, Ops);
Chris Lattner177140a2009-12-31 18:17:13 +00001591 assert(Factors.size() > 1 && "Bad linearize!");
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001592
Chris Lattner177140a2009-12-31 18:17:13 +00001593 // Add one to FactorOccurrences for each unique factor in this op.
Chris Lattner0c59ac32010-01-01 01:13:15 +00001594 SmallPtrSet<Value*, 8> Duplicates;
1595 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1596 Value *Factor = Factors[i];
David Blaikie70573dc2014-11-19 07:49:26 +00001597 if (!Duplicates.insert(Factor).second)
Chad Rosier11ab9412014-08-14 15:23:01 +00001598 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001599
Chris Lattner0c59ac32010-01-01 01:13:15 +00001600 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001601 if (Occ > MaxOcc) {
1602 MaxOcc = Occ;
1603 MaxOccVal = Factor;
1604 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001605
Chris Lattner0c59ac32010-01-01 01:13:15 +00001606 // If Factor is a negative constant, add the negated value as a factor
1607 // because we can percolate the negate out. Watch for minint, which
1608 // cannot be positivified.
Chad Rosier11ab9412014-08-14 15:23:01 +00001609 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
Chris Lattnerb1a15122011-07-15 06:08:15 +00001610 if (CI->isNegative() && !CI->isMinValue(true)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001611 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1612 assert(!Duplicates.count(Factor) &&
1613 "Shouldn't have two constant factors, missed a canonicalize");
Chris Lattner0c59ac32010-01-01 01:13:15 +00001614 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001615 if (Occ > MaxOcc) {
1616 MaxOcc = Occ;
1617 MaxOccVal = Factor;
1618 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001619 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001620 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1621 if (CF->isNegative()) {
1622 APFloat F(CF->getValueAPF());
1623 F.changeSign();
1624 Factor = ConstantFP::get(CF->getContext(), F);
1625 assert(!Duplicates.count(Factor) &&
1626 "Shouldn't have two constant factors, missed a canonicalize");
1627 unsigned Occ = ++FactorOccurrences[Factor];
1628 if (Occ > MaxOcc) {
1629 MaxOcc = Occ;
1630 MaxOccVal = Factor;
1631 }
1632 }
1633 }
Chris Lattner177140a2009-12-31 18:17:13 +00001634 }
1635 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001636
Chris Lattner177140a2009-12-31 18:17:13 +00001637 // If any factor occurred more than one time, we can pull it out.
1638 if (MaxOcc > 1) {
Chad Rosier78943bc2014-12-12 14:44:12 +00001639 DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
Chris Lattner177140a2009-12-31 18:17:13 +00001640 ++NumFactor;
1641
1642 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1643 // this, we could otherwise run into situations where removing a factor
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001644 // from an expression will drop a use of maxocc, and this can cause
Chris Lattner177140a2009-12-31 18:17:13 +00001645 // RemoveFactorFromExpression on successive values to behave differently.
Chad Rosier11ab9412014-08-14 15:23:01 +00001646 Instruction *DummyInst =
Robert Lougher1858ba72015-03-13 20:53:01 +00001647 I->getType()->isIntOrIntVectorTy()
Chad Rosier11ab9412014-08-14 15:23:01 +00001648 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1649 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1650
Bill Wendling274ba892012-05-02 09:59:45 +00001651 SmallVector<WeakVH, 4> NewMulOps;
Duncan Sands69bdb582011-01-26 10:08:38 +00001652 for (unsigned i = 0; i != Ops.size(); ++i) {
Chris Lattnerab7087a2010-01-09 06:01:36 +00001653 // Only try to remove factors from expressions we're allowed to.
Chad Rosier11ab9412014-08-14 15:23:01 +00001654 BinaryOperator *BOp =
1655 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001656 if (!BOp)
Chris Lattnerab7087a2010-01-09 06:01:36 +00001657 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001658
Chris Lattner177140a2009-12-31 18:17:13 +00001659 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
Duncan Sands69bdb582011-01-26 10:08:38 +00001660 // The factorized operand may occur several times. Convert them all in
1661 // one fell swoop.
1662 for (unsigned j = Ops.size(); j != i;) {
1663 --j;
1664 if (Ops[j].Op == Ops[i].Op) {
1665 NewMulOps.push_back(V);
1666 Ops.erase(Ops.begin()+j);
1667 }
1668 }
1669 --i;
Chris Lattner177140a2009-12-31 18:17:13 +00001670 }
1671 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001672
Chris Lattner177140a2009-12-31 18:17:13 +00001673 // No need for extra uses anymore.
1674 delete DummyInst;
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001675
Chris Lattner177140a2009-12-31 18:17:13 +00001676 unsigned NumAddedValues = NewMulOps.size();
1677 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001678
Chris Lattner60b71b52009-12-31 19:24:52 +00001679 // Now that we have inserted the add tree, optimize it. This allows us to
1680 // handle cases that require multiple factoring steps, such as this:
Chris Lattner177140a2009-12-31 18:17:13 +00001681 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattnerac615502009-12-31 18:18:46 +00001682 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001683 (void)NumAddedValues;
Duncan Sands3293f462012-06-08 20:15:33 +00001684 if (Instruction *VI = dyn_cast<Instruction>(V))
1685 RedoInsts.insert(VI);
Chris Lattner60b71b52009-12-31 19:24:52 +00001686
1687 // Create the multiply.
Chad Rosier11ab9412014-08-14 15:23:01 +00001688 Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I);
Chris Lattner60b71b52009-12-31 19:24:52 +00001689
Chris Lattner60c2ca72009-12-31 19:49:01 +00001690 // Rerun associate on the multiply in case the inner expression turned into
1691 // a multiply. We want to make sure that we keep things in canonical form.
Duncan Sands3293f462012-06-08 20:15:33 +00001692 RedoInsts.insert(V2);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001693
Chris Lattner177140a2009-12-31 18:17:13 +00001694 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1695 // entire result expression is just the multiply "A*(B+C)".
1696 if (Ops.empty())
1697 return V2;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001698
Chris Lattnerac615502009-12-31 18:18:46 +00001699 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner177140a2009-12-31 18:17:13 +00001700 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattnerac615502009-12-31 18:18:46 +00001701 // things being added by this operation.
Chris Lattner177140a2009-12-31 18:17:13 +00001702 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1703 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001704
Craig Topperf40110f2014-04-25 05:29:35 +00001705 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001706}
Chris Lattner4c065092006-03-04 09:31:13 +00001707
Chandler Carruth739ef802012-04-26 05:30:30 +00001708/// \brief Build up a vector of value/power pairs factoring a product.
1709///
1710/// Given a series of multiplication operands, build a vector of factors and
1711/// the powers each is raised to when forming the final product. Sort them in
1712/// the order of descending power.
1713///
1714/// (x*x) -> [(x, 2)]
1715/// ((x*x)*x) -> [(x, 3)]
1716/// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1717///
1718/// \returns Whether any factors have a power greater than one.
1719bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1720 SmallVectorImpl<Factor> &Factors) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001721 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1722 // Compute the sum of powers of simplifiable factors.
Chandler Carruth739ef802012-04-26 05:30:30 +00001723 unsigned FactorPowerSum = 0;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001724 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1725 Value *Op = Ops[Idx-1].Op;
1726
1727 // Count the number of occurrences of this value.
1728 unsigned Count = 1;
1729 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1730 ++Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001731 // Track for simplification all factors which occur 2 or more times.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001732 if (Count > 1)
1733 FactorPowerSum += Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001734 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001735
Chandler Carruth739ef802012-04-26 05:30:30 +00001736 // We can only simplify factors if the sum of the powers of our simplifiable
1737 // factors is 4 or higher. When that is the case, we will *always* have
1738 // a simplification. This is an important invariant to prevent cyclicly
1739 // trying to simplify already minimal formations.
1740 if (FactorPowerSum < 4)
1741 return false;
1742
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001743 // Now gather the simplifiable factors, removing them from Ops.
1744 FactorPowerSum = 0;
1745 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1746 Value *Op = Ops[Idx-1].Op;
Chandler Carruth739ef802012-04-26 05:30:30 +00001747
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001748 // Count the number of occurrences of this value.
1749 unsigned Count = 1;
1750 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1751 ++Count;
1752 if (Count == 1)
1753 continue;
Benjamin Kramerbde91762012-06-02 10:20:22 +00001754 // Move an even number of occurrences to Factors.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001755 Count &= ~1U;
1756 Idx -= Count;
1757 FactorPowerSum += Count;
1758 Factors.push_back(Factor(Op, Count));
1759 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
Chandler Carruth739ef802012-04-26 05:30:30 +00001760 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001761
Chandler Carruth739ef802012-04-26 05:30:30 +00001762 // None of the adjustments above should have reduced the sum of factor powers
1763 // below our mininum of '4'.
1764 assert(FactorPowerSum >= 4);
1765
Chandler Carruth7b8e1122014-02-25 21:54:50 +00001766 std::stable_sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
Chandler Carruth739ef802012-04-26 05:30:30 +00001767 return true;
1768}
1769
1770/// \brief Build a tree of multiplies, computing the product of Ops.
1771static Value *buildMultiplyTree(IRBuilder<> &Builder,
1772 SmallVectorImpl<Value*> &Ops) {
1773 if (Ops.size() == 1)
1774 return Ops.back();
1775
1776 Value *LHS = Ops.pop_back_val();
1777 do {
Robert Lougher1858ba72015-03-13 20:53:01 +00001778 if (LHS->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +00001779 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1780 else
1781 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
Chandler Carruth739ef802012-04-26 05:30:30 +00001782 } while (!Ops.empty());
1783
1784 return LHS;
1785}
1786
1787/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1788///
1789/// Given a vector of values raised to various powers, where no two values are
1790/// equal and the powers are sorted in decreasing order, compute the minimal
1791/// DAG of multiplies to compute the final product, and return that product
1792/// value.
1793Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1794 SmallVectorImpl<Factor> &Factors) {
1795 assert(Factors[0].Power);
1796 SmallVector<Value *, 4> OuterProduct;
1797 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1798 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1799 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1800 LastIdx = Idx;
1801 continue;
1802 }
1803
1804 // We want to multiply across all the factors with the same power so that
1805 // we can raise them to that power as a single entity. Build a mini tree
1806 // for that.
1807 SmallVector<Value *, 4> InnerProduct;
1808 InnerProduct.push_back(Factors[LastIdx].Base);
1809 do {
1810 InnerProduct.push_back(Factors[Idx].Base);
1811 ++Idx;
1812 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1813
1814 // Reset the base value of the first factor to the new expression tree.
1815 // We'll remove all the factors with the same power in a second pass.
Duncan Sands3293f462012-06-08 20:15:33 +00001816 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1817 if (Instruction *MI = dyn_cast<Instruction>(M))
1818 RedoInsts.insert(MI);
Chandler Carruth739ef802012-04-26 05:30:30 +00001819
1820 LastIdx = Idx;
1821 }
1822 // Unique factors with equal powers -- we've folded them into the first one's
1823 // base.
1824 Factors.erase(std::unique(Factors.begin(), Factors.end(),
1825 Factor::PowerEqual()),
1826 Factors.end());
1827
1828 // Iteratively collect the base of each factor with an add power into the
1829 // outer product, and halve each power in preparation for squaring the
1830 // expression.
1831 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1832 if (Factors[Idx].Power & 1)
1833 OuterProduct.push_back(Factors[Idx].Base);
1834 Factors[Idx].Power >>= 1;
1835 }
1836 if (Factors[0].Power) {
1837 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1838 OuterProduct.push_back(SquareRoot);
1839 OuterProduct.push_back(SquareRoot);
1840 }
1841 if (OuterProduct.size() == 1)
1842 return OuterProduct.front();
1843
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001844 Value *V = buildMultiplyTree(Builder, OuterProduct);
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001845 return V;
Chandler Carruth739ef802012-04-26 05:30:30 +00001846}
1847
1848Value *Reassociate::OptimizeMul(BinaryOperator *I,
1849 SmallVectorImpl<ValueEntry> &Ops) {
1850 // We can only optimize the multiplies when there is a chain of more than
1851 // three, such that a balanced tree might require fewer total multiplies.
1852 if (Ops.size() < 4)
Craig Topperf40110f2014-04-25 05:29:35 +00001853 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001854
1855 // Try to turn linear trees of multiplies without other uses of the
1856 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1857 // re-use.
1858 SmallVector<Factor, 4> Factors;
1859 if (!collectMultiplyFactors(Ops, Factors))
Craig Topperf40110f2014-04-25 05:29:35 +00001860 return nullptr; // All distinct factors, so nothing left for us to do.
Chandler Carruth739ef802012-04-26 05:30:30 +00001861
1862 IRBuilder<> Builder(I);
1863 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1864 if (Ops.empty())
1865 return V;
1866
1867 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1868 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
Craig Topperf40110f2014-04-25 05:29:35 +00001869 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001870}
1871
Chris Lattner4c065092006-03-04 09:31:13 +00001872Value *Reassociate::OptimizeExpression(BinaryOperator *I,
Chris Lattner38abecb2009-12-31 18:40:32 +00001873 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere1850b82005-05-08 00:19:31 +00001874 // Now that we have the linearized expression tree, try to optimize it.
1875 // Start by folding any constants that we found.
Craig Topperf40110f2014-04-25 05:29:35 +00001876 Constant *Cst = nullptr;
Chris Lattner4c065092006-03-04 09:31:13 +00001877 unsigned Opcode = I->getOpcode();
Duncan Sandsac852c72012-11-15 09:58:38 +00001878 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1879 Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1880 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1881 }
1882 // If there was nothing but constants then we are done.
1883 if (Ops.empty())
1884 return Cst;
1885
1886 // Put the combined constant back at the end of the operand list, except if
1887 // there is no point. For example, an add of 0 gets dropped here, while a
1888 // multiplication by zero turns the whole expression into zero.
1889 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1890 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1891 return Cst;
1892 Ops.push_back(ValueEntry(0, Cst));
1893 }
1894
1895 if (Ops.size() == 1) return Ops[0].Op;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001896
Chris Lattner9039ff82009-12-31 07:33:14 +00001897 // Handle destructive annihilation due to identities between elements in the
Chris Lattnere1850b82005-05-08 00:19:31 +00001898 // argument list here.
Chandler Carruth739ef802012-04-26 05:30:30 +00001899 unsigned NumOps = Ops.size();
Chris Lattner5847e5e2005-05-08 18:59:37 +00001900 switch (Opcode) {
1901 default: break;
1902 case Instruction::And:
1903 case Instruction::Or:
Chris Lattner5f8a0052009-12-31 07:59:34 +00001904 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1905 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001906 break;
1907
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001908 case Instruction::Xor:
1909 if (Value *Result = OptimizeXor(I, Ops))
1910 return Result;
1911 break;
1912
Chandler Carruth739ef802012-04-26 05:30:30 +00001913 case Instruction::Add:
Chad Rosier11ab9412014-08-14 15:23:01 +00001914 case Instruction::FAdd:
Chris Lattner177140a2009-12-31 18:17:13 +00001915 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001916 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001917 break;
Chandler Carruth739ef802012-04-26 05:30:30 +00001918
1919 case Instruction::Mul:
Chad Rosier11ab9412014-08-14 15:23:01 +00001920 case Instruction::FMul:
Chandler Carruth739ef802012-04-26 05:30:30 +00001921 if (Value *Result = OptimizeMul(I, Ops))
1922 return Result;
1923 break;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001924 }
1925
Duncan Sands3293f462012-06-08 20:15:33 +00001926 if (Ops.size() != NumOps)
Chris Lattner4c065092006-03-04 09:31:13 +00001927 return OptimizeExpression(I, Ops);
Craig Topperf40110f2014-04-25 05:29:35 +00001928 return nullptr;
Chris Lattnere1850b82005-05-08 00:19:31 +00001929}
1930
Sanjay Patelc96ee082015-04-22 18:04:46 +00001931/// Zap the given instruction, adding interesting operands to the work list.
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001932void Reassociate::EraseInst(Instruction *I) {
Duncan Sands3293f462012-06-08 20:15:33 +00001933 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1934 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1935 // Erase the dead instruction.
1936 ValueRankMap.erase(I);
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001937 RedoInsts.remove(I);
Duncan Sands3293f462012-06-08 20:15:33 +00001938 I->eraseFromParent();
1939 // Optimize its operands.
Duncan Sands78386032012-06-15 08:37:50 +00001940 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
Duncan Sands3293f462012-06-08 20:15:33 +00001941 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1942 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1943 // If this is a node in an expression tree, climb to the expression root
1944 // and add that since that's where optimization actually happens.
1945 unsigned Opcode = Op->getOpcode();
Chandler Carruthcdf47882014-03-09 03:16:01 +00001946 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
David Blaikie70573dc2014-11-19 07:49:26 +00001947 Visited.insert(Op).second)
Chandler Carruthcdf47882014-03-09 03:16:01 +00001948 Op = Op->user_back();
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001949 RedoInsts.insert(Op);
Duncan Sands3293f462012-06-08 20:15:33 +00001950 }
1951}
1952
Chad Rosier094ac772014-11-11 22:58:35 +00001953// Canonicalize expressions of the following form:
1954// x + (-Constant * y) -> x - (Constant * y)
1955// x - (-Constant * y) -> x + (Constant * y)
1956Instruction *Reassociate::canonicalizeNegConstExpr(Instruction *I) {
1957 if (!I->hasOneUse() || I->getType()->isVectorTy())
1958 return nullptr;
1959
David Majnemer587336d2015-05-28 06:16:39 +00001960 // Must be a fmul or fdiv instruction.
Chad Rosier094ac772014-11-11 22:58:35 +00001961 unsigned Opcode = I->getOpcode();
David Majnemer587336d2015-05-28 06:16:39 +00001962 if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv)
Chad Rosier094ac772014-11-11 22:58:35 +00001963 return nullptr;
1964
David Majnemer587336d2015-05-28 06:16:39 +00001965 auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
1966 auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
1967
1968 // Both operands are constant, let it get constant folded away.
1969 if (C0 && C1)
Chad Rosier094ac772014-11-11 22:58:35 +00001970 return nullptr;
1971
David Majnemer587336d2015-05-28 06:16:39 +00001972 ConstantFP *CF = C0 ? C0 : C1;
1973
1974 // Must have one constant operand.
1975 if (!CF)
1976 return nullptr;
1977
1978 // Must be a negative ConstantFP.
1979 if (!CF->isNegative())
Chad Rosier094ac772014-11-11 22:58:35 +00001980 return nullptr;
1981
1982 // User must be a binary operator with one or more uses.
1983 Instruction *User = I->user_back();
David Majnemer587336d2015-05-28 06:16:39 +00001984 if (!isa<BinaryOperator>(User) || !User->hasNUsesOrMore(1))
Chad Rosier094ac772014-11-11 22:58:35 +00001985 return nullptr;
1986
1987 unsigned UserOpcode = User->getOpcode();
David Majnemer587336d2015-05-28 06:16:39 +00001988 if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub)
Chad Rosier094ac772014-11-11 22:58:35 +00001989 return nullptr;
1990
1991 // Subtraction is not commutative. Explicitly, the following transform is
1992 // not valid: (-Constant * y) - x -> x + (Constant * y)
1993 if (!User->isCommutative() && User->getOperand(1) != I)
1994 return nullptr;
1995
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001996 // Change the sign of the constant.
David Majnemer587336d2015-05-28 06:16:39 +00001997 APFloat Val = CF->getValueAPF();
1998 Val.changeSign();
1999 I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val));
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002000
Chad Rosier094ac772014-11-11 22:58:35 +00002001 // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
2002 // ((-Const*y) + x) -> (x + (-Const*y)).
2003 if (User->getOperand(0) == I && User->isCommutative())
2004 cast<BinaryOperator>(User)->swapOperands();
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002005
Chad Rosier094ac772014-11-11 22:58:35 +00002006 Value *Op0 = User->getOperand(0);
2007 Value *Op1 = User->getOperand(1);
2008 BinaryOperator *NI;
David Majnemer587336d2015-05-28 06:16:39 +00002009 switch (UserOpcode) {
Chad Rosier094ac772014-11-11 22:58:35 +00002010 default:
2011 llvm_unreachable("Unexpected Opcode!");
Chad Rosier094ac772014-11-11 22:58:35 +00002012 case Instruction::FAdd:
2013 NI = BinaryOperator::CreateFSub(Op0, Op1);
2014 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
2015 break;
2016 case Instruction::FSub:
2017 NI = BinaryOperator::CreateFAdd(Op0, Op1);
2018 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
2019 break;
2020 }
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002021
Chad Rosier094ac772014-11-11 22:58:35 +00002022 NI->insertBefore(User);
2023 NI->setName(User->getName());
2024 User->replaceAllUsesWith(NI);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002025 NI->setDebugLoc(I->getDebugLoc());
Chad Rosier094ac772014-11-11 22:58:35 +00002026 RedoInsts.insert(I);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002027 MadeChange = true;
Chad Rosier094ac772014-11-11 22:58:35 +00002028 return NI;
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002029}
2030
Sanjay Patelc96ee082015-04-22 18:04:46 +00002031/// Inspect and optimize the given instruction. Note that erasing
Duncan Sands3293f462012-06-08 20:15:33 +00002032/// instructions is not allowed.
2033void Reassociate::OptimizeInst(Instruction *I) {
2034 // Only consider operations that we understand.
2035 if (!isa<BinaryOperator>(I))
2036 return;
2037
Chad Rosier11ab9412014-08-14 15:23:01 +00002038 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
Duncan Sands3293f462012-06-08 20:15:33 +00002039 // If an operand of this shift is a reassociable multiply, or if the shift
2040 // is used by a reassociable multiply or add, turn into a multiply.
2041 if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
2042 (I->hasOneUse() &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00002043 (isReassociableOp(I->user_back(), Instruction::Mul) ||
2044 isReassociableOp(I->user_back(), Instruction::Add)))) {
Duncan Sands3293f462012-06-08 20:15:33 +00002045 Instruction *NI = ConvertShiftToMul(I);
2046 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002047 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002048 I = NI;
Chris Lattner877b1142005-05-08 21:28:52 +00002049 }
Chris Lattner8fdf75c2002-10-31 17:12:59 +00002050
Chad Rosier094ac772014-11-11 22:58:35 +00002051 // Canonicalize negative constants out of expressions.
2052 if (Instruction *Res = canonicalizeNegConstExpr(I))
2053 I = Res;
2054
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002055 // Commute binary operators, to canonicalize the order of their operands.
2056 // This can potentially expose more CSE opportunities, and makes writing other
2057 // transformations simpler.
2058 if (I->isCommutative())
2059 canonicalizeOperands(I);
Chad Rosier11ab9412014-08-14 15:23:01 +00002060
Robert Lougher1858ba72015-03-13 20:53:01 +00002061 // TODO: We should optimize vector Xor instructions, but they are
2062 // currently unsupported.
2063 if (I->getType()->isVectorTy() && I->getOpcode() == Instruction::Xor)
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002064 return;
Owen Andersonf4f80e12012-05-07 20:47:23 +00002065
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002066 // Don't optimize floating point instructions that don't have unsafe algebra.
Owen Anderson630077e2015-11-20 08:16:13 +00002067 if (I->getType()->isFPOrFPVectorTy() && !I->hasUnsafeAlgebra())
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002068 return;
Owen Andersonf4f80e12012-05-07 20:47:23 +00002069
Dan Gohman1c6c3482011-04-12 00:11:56 +00002070 // Do not reassociate boolean (i1) expressions. We want to preserve the
2071 // original order of evaluation for short-circuited comparisons that
2072 // SimplifyCFG has folded to AND/OR expressions. If the expression
2073 // is not further optimized, it is likely to be transformed back to a
2074 // short-circuited form for code gen, and the source order may have been
2075 // optimized for the most likely conditions.
Duncan Sands3293f462012-06-08 20:15:33 +00002076 if (I->getType()->isIntegerTy(1))
Dan Gohman1c6c3482011-04-12 00:11:56 +00002077 return;
Chris Lattner7bc532d2002-05-16 04:37:07 +00002078
Dan Gohman1c6c3482011-04-12 00:11:56 +00002079 // If this is a subtract instruction which is not already in negate form,
2080 // see if we can convert it to X+-Y.
Duncan Sands3293f462012-06-08 20:15:33 +00002081 if (I->getOpcode() == Instruction::Sub) {
2082 if (ShouldBreakUpSubtract(I)) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002083 Instruction *NI = BreakUpSubtract(I, RedoInsts);
Duncan Sands3293f462012-06-08 20:15:33 +00002084 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002085 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002086 I = NI;
2087 } else if (BinaryOperator::isNeg(I)) {
Dan Gohman1c6c3482011-04-12 00:11:56 +00002088 // Otherwise, this is a negation. See if the operand is a multiply tree
2089 // and if this is not an inner node of a multiply tree.
Duncan Sands3293f462012-06-08 20:15:33 +00002090 if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2091 (!I->hasOneUse() ||
Chandler Carruthcdf47882014-03-09 03:16:01 +00002092 !isReassociableOp(I->user_back(), Instruction::Mul))) {
Duncan Sands3293f462012-06-08 20:15:33 +00002093 Instruction *NI = LowerNegateToMultiply(I);
Owen Anderson2de9f542015-11-16 18:07:30 +00002094 // If the negate was simplified, revisit the users to see if we can
2095 // reassociate further.
2096 for (User *U : NI->users()) {
2097 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2098 RedoInsts.insert(Tmp);
2099 }
Duncan Sands3293f462012-06-08 20:15:33 +00002100 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002101 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002102 I = NI;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002103 }
2104 }
Chad Rosier11ab9412014-08-14 15:23:01 +00002105 } else if (I->getOpcode() == Instruction::FSub) {
2106 if (ShouldBreakUpSubtract(I)) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002107 Instruction *NI = BreakUpSubtract(I, RedoInsts);
Chad Rosier11ab9412014-08-14 15:23:01 +00002108 RedoInsts.insert(I);
2109 MadeChange = true;
2110 I = NI;
2111 } else if (BinaryOperator::isFNeg(I)) {
2112 // Otherwise, this is a negation. See if the operand is a multiply tree
2113 // and if this is not an inner node of a multiply tree.
2114 if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
2115 (!I->hasOneUse() ||
2116 !isReassociableOp(I->user_back(), Instruction::FMul))) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002117 // If the negate was simplified, revisit the users to see if we can
2118 // reassociate further.
Chad Rosier11ab9412014-08-14 15:23:01 +00002119 Instruction *NI = LowerNegateToMultiply(I);
Owen Anderson2de9f542015-11-16 18:07:30 +00002120 for (User *U : NI->users()) {
2121 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2122 RedoInsts.insert(Tmp);
2123 }
Chad Rosier11ab9412014-08-14 15:23:01 +00002124 RedoInsts.insert(I);
2125 MadeChange = true;
2126 I = NI;
2127 }
2128 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002129 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002130
Duncan Sands3293f462012-06-08 20:15:33 +00002131 // If this instruction is an associative binary operator, process it.
2132 if (!I->isAssociative()) return;
2133 BinaryOperator *BO = cast<BinaryOperator>(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002134
2135 // If this is an interior node of a reassociable tree, ignore it until we
2136 // get to the root of the tree, to avoid N^2 analysis.
Nadav Rotem10888112012-07-23 13:44:15 +00002137 unsigned Opcode = BO->getOpcode();
Owen Anderson2de9f542015-11-16 18:07:30 +00002138 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2139 // During the initial run we will get to the root of the tree.
2140 // But if we get here while we are redoing instructions, there is no
2141 // guarantee that the root will be visited. So Redo later
2142 if (BO->user_back() != BO)
2143 RedoInsts.insert(BO->user_back());
Dan Gohman1c6c3482011-04-12 00:11:56 +00002144 return;
Owen Anderson2de9f542015-11-16 18:07:30 +00002145 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002146
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002147 // If this is an add tree that is used by a sub instruction, ignore it
Dan Gohman1c6c3482011-04-12 00:11:56 +00002148 // until we process the subtract.
Duncan Sands3293f462012-06-08 20:15:33 +00002149 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00002150 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
Dan Gohman1c6c3482011-04-12 00:11:56 +00002151 return;
Chad Rosier11ab9412014-08-14 15:23:01 +00002152 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2153 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2154 return;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002155
Duncan Sands3293f462012-06-08 20:15:33 +00002156 ReassociateExpression(BO);
Chris Lattner2fc319d2006-03-14 07:11:11 +00002157}
Chris Lattner1e506502005-05-07 21:59:39 +00002158
Duncan Sands78386032012-06-15 08:37:50 +00002159void Reassociate::ReassociateExpression(BinaryOperator *I) {
Chris Lattner60b71b52009-12-31 19:24:52 +00002160 // First, walk the expression tree, linearizing the tree, collecting the
2161 // operand information.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002162 SmallVector<RepeatedValue, 8> Tree;
2163 MadeChange |= LinearizeExprTree(I, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00002164 SmallVector<ValueEntry, 8> Ops;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002165 Ops.reserve(Tree.size());
2166 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2167 RepeatedValue E = Tree[i];
2168 Ops.append(E.second.getZExtValue(),
2169 ValueEntry(getRank(E.first), E.first));
2170 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002171
Duncan Sandsc94ac6f2012-05-26 07:47:48 +00002172 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2173
Chris Lattner2fc319d2006-03-14 07:11:11 +00002174 // Now that we have linearized the tree to a list and have gathered all of
2175 // the operands and their ranks, sort the operands by their rank. Use a
2176 // stable_sort so that values with equal ranks will have their relative
2177 // positions maintained (and so the compiler is deterministic). Note that
2178 // this sorts so that the highest ranking values end up at the beginning of
2179 // the vector.
2180 std::stable_sort(Ops.begin(), Ops.end());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002181
Sanjay Patelc96ee082015-04-22 18:04:46 +00002182 // Now that we have the expression tree in a convenient
Chris Lattner2fc319d2006-03-14 07:11:11 +00002183 // sorted form, optimize it globally if possible.
2184 if (Value *V = OptimizeExpression(I, Ops)) {
Duncan Sands78386032012-06-15 08:37:50 +00002185 if (V == I)
2186 // Self-referential expression in unreachable code.
2187 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002188 // This expression tree simplified to something that isn't a tree,
2189 // eliminate it.
David Greened17c3912010-01-05 01:27:24 +00002190 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner2fc319d2006-03-14 07:11:11 +00002191 I->replaceAllUsesWith(V);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002192 if (Instruction *VI = dyn_cast<Instruction>(V))
2193 VI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002194 RedoInsts.insert(I);
Chris Lattnerba1f36a2009-12-31 17:51:05 +00002195 ++NumAnnihil;
Duncan Sands78386032012-06-15 08:37:50 +00002196 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002197 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002198
Chris Lattner2fc319d2006-03-14 07:11:11 +00002199 // We want to sink immediates as deeply as possible except in the case where
2200 // this is a multiply tree used only by an add, and the immediate is a -1.
2201 // In this case we reassociate to put the negation on the outside so that we
2202 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
Chad Rosier11ab9412014-08-14 15:23:01 +00002203 if (I->hasOneUse()) {
2204 if (I->getOpcode() == Instruction::Mul &&
2205 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2206 isa<ConstantInt>(Ops.back().Op) &&
2207 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
2208 ValueEntry Tmp = Ops.pop_back_val();
2209 Ops.insert(Ops.begin(), Tmp);
2210 } else if (I->getOpcode() == Instruction::FMul &&
2211 cast<Instruction>(I->user_back())->getOpcode() ==
2212 Instruction::FAdd &&
2213 isa<ConstantFP>(Ops.back().Op) &&
2214 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2215 ValueEntry Tmp = Ops.pop_back_val();
2216 Ops.insert(Ops.begin(), Tmp);
2217 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002218 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002219
David Greened17c3912010-01-05 01:27:24 +00002220 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002221
Chris Lattner2fc319d2006-03-14 07:11:11 +00002222 if (Ops.size() == 1) {
Duncan Sands78386032012-06-15 08:37:50 +00002223 if (Ops[0].Op == I)
2224 // Self-referential expression in unreachable code.
2225 return;
2226
Chris Lattner2fc319d2006-03-14 07:11:11 +00002227 // This expression tree simplified to something that isn't a tree,
2228 // eliminate it.
2229 I->replaceAllUsesWith(Ops[0].Op);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002230 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2231 OI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002232 RedoInsts.insert(I);
Duncan Sands78386032012-06-15 08:37:50 +00002233 return;
Chris Lattnerc0f58002002-05-08 22:19:27 +00002234 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002235
Chris Lattner60b71b52009-12-31 19:24:52 +00002236 // Now that we ordered and optimized the expressions, splat them back into
2237 // the expression tree, removing any unneeded nodes.
2238 RewriteExprTree(I, Ops);
Chris Lattnerc0f58002002-05-08 22:19:27 +00002239}
2240
Chris Lattner113f4f42002-06-25 16:13:24 +00002241bool Reassociate::runOnFunction(Function &F) {
Paul Robinsonaf4e64d2014-02-06 00:07:05 +00002242 if (skipOptnoneFunction(F))
2243 return false;
2244
Duncan Sands3293f462012-06-08 20:15:33 +00002245 // Calculate the rank map for F
Chris Lattnerc0f58002002-05-08 22:19:27 +00002246 BuildRankMap(F);
2247
Chris Lattner1e506502005-05-07 21:59:39 +00002248 MadeChange = false;
Duncan Sands3293f462012-06-08 20:15:33 +00002249 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
2250 // Optimize every instruction in the basic block.
2251 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002252 if (isInstructionTriviallyDead(&*II)) {
2253 EraseInst(&*II++);
Duncan Sands3293f462012-06-08 20:15:33 +00002254 } else {
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002255 OptimizeInst(&*II);
Duncan Sands3293f462012-06-08 20:15:33 +00002256 assert(II->getParent() == BI && "Moved to a different block!");
2257 ++II;
2258 }
Duncan Sands9a5cf922012-06-08 13:37:30 +00002259
Duncan Sands3293f462012-06-08 20:15:33 +00002260 // If this produced extra instructions to optimize, handle them now.
2261 while (!RedoInsts.empty()) {
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00002262 Instruction *I = RedoInsts.pop_back_val();
Duncan Sands3293f462012-06-08 20:15:33 +00002263 if (isInstructionTriviallyDead(I))
2264 EraseInst(I);
2265 else
2266 OptimizeInst(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002267 }
Duncan Sands3293f462012-06-08 20:15:33 +00002268 }
Chris Lattnerc0f58002002-05-08 22:19:27 +00002269
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00002270 // We are done with the rank map.
2271 RankMap.clear();
2272 ValueRankMap.clear();
2273
Chris Lattner1e506502005-05-07 21:59:39 +00002274 return MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +00002275}