blob: 99b2edb38ef0d874b06289e1ffe3d621461d2365 [file] [log] [blame]
Tim Northover3b0846e2014-05-24 12:50:23 +00001//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AArch64TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "AArch64ISelLowering.h"
Tim Northover3c55cca2014-11-27 21:02:42 +000015#include "AArch64CallingConvention.h"
Benjamin Kramer1f8930e2014-07-25 11:42:14 +000016#include "AArch64MachineFunctionInfo.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000017#include "AArch64PerfectShuffle.h"
18#include "AArch64Subtarget.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000019#include "AArch64TargetMachine.h"
20#include "AArch64TargetObjectFile.h"
21#include "MCTargetDesc/AArch64AddressingModes.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/IR/Function.h"
David Blaikie457343d2015-05-21 21:12:43 +000028#include "llvm/IR/GetElementPtrTypeIterator.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000029#include "llvm/IR/Intrinsics.h"
30#include "llvm/IR/Type.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetOptions.h"
36using namespace llvm;
37
38#define DEBUG_TYPE "aarch64-lower"
39
40STATISTIC(NumTailCalls, "Number of tail calls");
41STATISTIC(NumShiftInserts, "Number of vector shift inserts");
42
Tim Northover3b0846e2014-05-24 12:50:23 +000043// Place holder until extr generation is tested fully.
44static cl::opt<bool>
45EnableAArch64ExtrGeneration("aarch64-extr-generation", cl::Hidden,
46 cl::desc("Allow AArch64 (or (shift)(shift))->extract"),
47 cl::init(true));
48
49static cl::opt<bool>
50EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
Kristof Beylsaea84612015-03-04 09:12:08 +000051 cl::desc("Allow AArch64 SLI/SRI formation"),
52 cl::init(false));
53
54// FIXME: The necessary dtprel relocations don't seem to be supported
55// well in the GNU bfd and gold linkers at the moment. Therefore, by
56// default, for now, fall back to GeneralDynamic code generation.
57cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration(
58 "aarch64-elf-ldtls-generation", cl::Hidden,
59 cl::desc("Allow AArch64 Local Dynamic TLS code generation"),
60 cl::init(false));
Tim Northover3b0846e2014-05-24 12:50:23 +000061
Matthias Braunaf7d7702015-07-16 20:02:37 +000062/// Value type used for condition codes.
63static const MVT MVT_CC = MVT::i32;
64
Eric Christopher905f12d2015-01-29 00:19:42 +000065AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM,
66 const AArch64Subtarget &STI)
67 : TargetLowering(TM), Subtarget(&STI) {
Tim Northover3b0846e2014-05-24 12:50:23 +000068
69 // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
70 // we have to make something up. Arbitrarily, choose ZeroOrOne.
71 setBooleanContents(ZeroOrOneBooleanContent);
72 // When comparing vectors the result sets the different elements in the
73 // vector to all-one or all-zero.
74 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
75
76 // Set up the register classes.
77 addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
78 addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
79
80 if (Subtarget->hasFPARMv8()) {
81 addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
82 addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
83 addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
84 addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
85 }
86
87 if (Subtarget->hasNEON()) {
88 addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
89 addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
90 // Someone set us up the NEON.
91 addDRTypeForNEON(MVT::v2f32);
92 addDRTypeForNEON(MVT::v8i8);
93 addDRTypeForNEON(MVT::v4i16);
94 addDRTypeForNEON(MVT::v2i32);
95 addDRTypeForNEON(MVT::v1i64);
96 addDRTypeForNEON(MVT::v1f64);
Oliver Stannard89d15422014-08-27 16:16:04 +000097 addDRTypeForNEON(MVT::v4f16);
Tim Northover3b0846e2014-05-24 12:50:23 +000098
99 addQRTypeForNEON(MVT::v4f32);
100 addQRTypeForNEON(MVT::v2f64);
101 addQRTypeForNEON(MVT::v16i8);
102 addQRTypeForNEON(MVT::v8i16);
103 addQRTypeForNEON(MVT::v4i32);
104 addQRTypeForNEON(MVT::v2i64);
Oliver Stannard89d15422014-08-27 16:16:04 +0000105 addQRTypeForNEON(MVT::v8f16);
Tim Northover3b0846e2014-05-24 12:50:23 +0000106 }
107
108 // Compute derived properties from the register classes
Eric Christopher23a3a7c2015-02-26 00:00:24 +0000109 computeRegisterProperties(Subtarget->getRegisterInfo());
Tim Northover3b0846e2014-05-24 12:50:23 +0000110
111 // Provide all sorts of operation actions
112 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
113 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
114 setOperationAction(ISD::SETCC, MVT::i32, Custom);
115 setOperationAction(ISD::SETCC, MVT::i64, Custom);
116 setOperationAction(ISD::SETCC, MVT::f32, Custom);
117 setOperationAction(ISD::SETCC, MVT::f64, Custom);
118 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
119 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
120 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
121 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
122 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
123 setOperationAction(ISD::SELECT, MVT::i32, Custom);
124 setOperationAction(ISD::SELECT, MVT::i64, Custom);
125 setOperationAction(ISD::SELECT, MVT::f32, Custom);
126 setOperationAction(ISD::SELECT, MVT::f64, Custom);
127 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
128 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
129 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
130 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
131 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
132 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
133
134 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
135 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
136 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
137
138 setOperationAction(ISD::FREM, MVT::f32, Expand);
139 setOperationAction(ISD::FREM, MVT::f64, Expand);
140 setOperationAction(ISD::FREM, MVT::f80, Expand);
141
142 // Custom lowering hooks are needed for XOR
143 // to fold it into CSINC/CSINV.
144 setOperationAction(ISD::XOR, MVT::i32, Custom);
145 setOperationAction(ISD::XOR, MVT::i64, Custom);
146
147 // Virtually no operation on f128 is legal, but LLVM can't expand them when
148 // there's a valid register class, so we need custom operations in most cases.
149 setOperationAction(ISD::FABS, MVT::f128, Expand);
150 setOperationAction(ISD::FADD, MVT::f128, Custom);
151 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
152 setOperationAction(ISD::FCOS, MVT::f128, Expand);
153 setOperationAction(ISD::FDIV, MVT::f128, Custom);
154 setOperationAction(ISD::FMA, MVT::f128, Expand);
155 setOperationAction(ISD::FMUL, MVT::f128, Custom);
156 setOperationAction(ISD::FNEG, MVT::f128, Expand);
157 setOperationAction(ISD::FPOW, MVT::f128, Expand);
158 setOperationAction(ISD::FREM, MVT::f128, Expand);
159 setOperationAction(ISD::FRINT, MVT::f128, Expand);
160 setOperationAction(ISD::FSIN, MVT::f128, Expand);
161 setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
162 setOperationAction(ISD::FSQRT, MVT::f128, Expand);
163 setOperationAction(ISD::FSUB, MVT::f128, Custom);
164 setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
165 setOperationAction(ISD::SETCC, MVT::f128, Custom);
166 setOperationAction(ISD::BR_CC, MVT::f128, Custom);
167 setOperationAction(ISD::SELECT, MVT::f128, Custom);
168 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
169 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
170
171 // Lowering for many of the conversions is actually specified by the non-f128
172 // type. The LowerXXX function will be trivial when f128 isn't involved.
173 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
174 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
175 setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
176 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
177 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
178 setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
179 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
180 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
181 setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
182 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
183 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
184 setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
185 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
186 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
187
188 // Variable arguments.
189 setOperationAction(ISD::VASTART, MVT::Other, Custom);
190 setOperationAction(ISD::VAARG, MVT::Other, Custom);
191 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
192 setOperationAction(ISD::VAEND, MVT::Other, Expand);
193
194 // Variable-sized objects.
195 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
196 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
197 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
198
Tim Northover3b0846e2014-05-24 12:50:23 +0000199 // Constant pool entries
200 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
201
202 // BlockAddress
203 setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
204
205 // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
206 setOperationAction(ISD::ADDC, MVT::i32, Custom);
207 setOperationAction(ISD::ADDE, MVT::i32, Custom);
208 setOperationAction(ISD::SUBC, MVT::i32, Custom);
209 setOperationAction(ISD::SUBE, MVT::i32, Custom);
210 setOperationAction(ISD::ADDC, MVT::i64, Custom);
211 setOperationAction(ISD::ADDE, MVT::i64, Custom);
212 setOperationAction(ISD::SUBC, MVT::i64, Custom);
213 setOperationAction(ISD::SUBE, MVT::i64, Custom);
214
215 // AArch64 lacks both left-rotate and popcount instructions.
216 setOperationAction(ISD::ROTL, MVT::i32, Expand);
217 setOperationAction(ISD::ROTL, MVT::i64, Expand);
Charlie Turner458e79b2015-10-27 10:25:20 +0000218 for (MVT VT : MVT::vector_valuetypes()) {
219 setOperationAction(ISD::ROTL, VT, Expand);
220 setOperationAction(ISD::ROTR, VT, Expand);
221 }
Tim Northover3b0846e2014-05-24 12:50:23 +0000222
223 // AArch64 doesn't have {U|S}MUL_LOHI.
224 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
225 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
226
227
228 // Expand the undefined-at-zero variants to cttz/ctlz to their defined-at-zero
229 // counterparts, which AArch64 supports directly.
230 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
231 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
232 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
233 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
234
235 setOperationAction(ISD::CTPOP, MVT::i32, Custom);
236 setOperationAction(ISD::CTPOP, MVT::i64, Custom);
237
238 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
239 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
Chad Rosierf3491492015-12-04 21:38:44 +0000240 for (MVT VT : MVT::vector_valuetypes()) {
241 setOperationAction(ISD::SDIVREM, VT, Expand);
242 setOperationAction(ISD::UDIVREM, VT, Expand);
243 }
Tim Northover3b0846e2014-05-24 12:50:23 +0000244 setOperationAction(ISD::SREM, MVT::i32, Expand);
245 setOperationAction(ISD::SREM, MVT::i64, Expand);
246 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
247 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
248 setOperationAction(ISD::UREM, MVT::i32, Expand);
249 setOperationAction(ISD::UREM, MVT::i64, Expand);
250
251 // Custom lower Add/Sub/Mul with overflow.
252 setOperationAction(ISD::SADDO, MVT::i32, Custom);
253 setOperationAction(ISD::SADDO, MVT::i64, Custom);
254 setOperationAction(ISD::UADDO, MVT::i32, Custom);
255 setOperationAction(ISD::UADDO, MVT::i64, Custom);
256 setOperationAction(ISD::SSUBO, MVT::i32, Custom);
257 setOperationAction(ISD::SSUBO, MVT::i64, Custom);
258 setOperationAction(ISD::USUBO, MVT::i32, Custom);
259 setOperationAction(ISD::USUBO, MVT::i64, Custom);
260 setOperationAction(ISD::SMULO, MVT::i32, Custom);
261 setOperationAction(ISD::SMULO, MVT::i64, Custom);
262 setOperationAction(ISD::UMULO, MVT::i32, Custom);
263 setOperationAction(ISD::UMULO, MVT::i64, Custom);
264
265 setOperationAction(ISD::FSIN, MVT::f32, Expand);
266 setOperationAction(ISD::FSIN, MVT::f64, Expand);
267 setOperationAction(ISD::FCOS, MVT::f32, Expand);
268 setOperationAction(ISD::FCOS, MVT::f64, Expand);
269 setOperationAction(ISD::FPOW, MVT::f32, Expand);
270 setOperationAction(ISD::FPOW, MVT::f64, Expand);
271 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
272 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
273
Ahmed Bougacha1ffe7c72015-04-10 00:08:48 +0000274 // f16 is a storage-only type, always promote it to f32.
275 setOperationAction(ISD::SETCC, MVT::f16, Promote);
276 setOperationAction(ISD::BR_CC, MVT::f16, Promote);
277 setOperationAction(ISD::SELECT_CC, MVT::f16, Promote);
278 setOperationAction(ISD::SELECT, MVT::f16, Promote);
279 setOperationAction(ISD::FADD, MVT::f16, Promote);
280 setOperationAction(ISD::FSUB, MVT::f16, Promote);
281 setOperationAction(ISD::FMUL, MVT::f16, Promote);
282 setOperationAction(ISD::FDIV, MVT::f16, Promote);
283 setOperationAction(ISD::FREM, MVT::f16, Promote);
284 setOperationAction(ISD::FMA, MVT::f16, Promote);
285 setOperationAction(ISD::FNEG, MVT::f16, Promote);
286 setOperationAction(ISD::FABS, MVT::f16, Promote);
287 setOperationAction(ISD::FCEIL, MVT::f16, Promote);
288 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);
289 setOperationAction(ISD::FCOS, MVT::f16, Promote);
290 setOperationAction(ISD::FFLOOR, MVT::f16, Promote);
291 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
292 setOperationAction(ISD::FPOW, MVT::f16, Promote);
293 setOperationAction(ISD::FPOWI, MVT::f16, Promote);
294 setOperationAction(ISD::FRINT, MVT::f16, Promote);
295 setOperationAction(ISD::FSIN, MVT::f16, Promote);
296 setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
297 setOperationAction(ISD::FSQRT, MVT::f16, Promote);
298 setOperationAction(ISD::FEXP, MVT::f16, Promote);
299 setOperationAction(ISD::FEXP2, MVT::f16, Promote);
300 setOperationAction(ISD::FLOG, MVT::f16, Promote);
301 setOperationAction(ISD::FLOG2, MVT::f16, Promote);
302 setOperationAction(ISD::FLOG10, MVT::f16, Promote);
303 setOperationAction(ISD::FROUND, MVT::f16, Promote);
304 setOperationAction(ISD::FTRUNC, MVT::f16, Promote);
305 setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
306 setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
James Molloy63be1982015-08-14 09:08:50 +0000307 setOperationAction(ISD::FMINNAN, MVT::f16, Promote);
308 setOperationAction(ISD::FMAXNAN, MVT::f16, Promote);
Oliver Stannardf5469be2014-08-18 14:22:39 +0000309
Oliver Stannard89d15422014-08-27 16:16:04 +0000310 // v4f16 is also a storage-only type, so promote it to v4f32 when that is
311 // known to be safe.
312 setOperationAction(ISD::FADD, MVT::v4f16, Promote);
313 setOperationAction(ISD::FSUB, MVT::v4f16, Promote);
314 setOperationAction(ISD::FMUL, MVT::v4f16, Promote);
315 setOperationAction(ISD::FDIV, MVT::v4f16, Promote);
316 setOperationAction(ISD::FP_EXTEND, MVT::v4f16, Promote);
317 setOperationAction(ISD::FP_ROUND, MVT::v4f16, Promote);
318 AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32);
319 AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32);
320 AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32);
321 AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32);
322 AddPromotedToType(ISD::FP_EXTEND, MVT::v4f16, MVT::v4f32);
323 AddPromotedToType(ISD::FP_ROUND, MVT::v4f16, MVT::v4f32);
324
325 // Expand all other v4f16 operations.
326 // FIXME: We could generate better code by promoting some operations to
327 // a pair of v4f32s
328 setOperationAction(ISD::FABS, MVT::v4f16, Expand);
329 setOperationAction(ISD::FCEIL, MVT::v4f16, Expand);
330 setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand);
331 setOperationAction(ISD::FCOS, MVT::v4f16, Expand);
332 setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand);
333 setOperationAction(ISD::FMA, MVT::v4f16, Expand);
334 setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand);
335 setOperationAction(ISD::FNEG, MVT::v4f16, Expand);
336 setOperationAction(ISD::FPOW, MVT::v4f16, Expand);
337 setOperationAction(ISD::FPOWI, MVT::v4f16, Expand);
338 setOperationAction(ISD::FREM, MVT::v4f16, Expand);
339 setOperationAction(ISD::FROUND, MVT::v4f16, Expand);
340 setOperationAction(ISD::FRINT, MVT::v4f16, Expand);
341 setOperationAction(ISD::FSIN, MVT::v4f16, Expand);
342 setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand);
343 setOperationAction(ISD::FSQRT, MVT::v4f16, Expand);
344 setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand);
345 setOperationAction(ISD::SETCC, MVT::v4f16, Expand);
346 setOperationAction(ISD::BR_CC, MVT::v4f16, Expand);
347 setOperationAction(ISD::SELECT, MVT::v4f16, Expand);
348 setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand);
349 setOperationAction(ISD::FEXP, MVT::v4f16, Expand);
350 setOperationAction(ISD::FEXP2, MVT::v4f16, Expand);
351 setOperationAction(ISD::FLOG, MVT::v4f16, Expand);
352 setOperationAction(ISD::FLOG2, MVT::v4f16, Expand);
353 setOperationAction(ISD::FLOG10, MVT::v4f16, Expand);
354
355
356 // v8f16 is also a storage-only type, so expand it.
357 setOperationAction(ISD::FABS, MVT::v8f16, Expand);
358 setOperationAction(ISD::FADD, MVT::v8f16, Expand);
359 setOperationAction(ISD::FCEIL, MVT::v8f16, Expand);
360 setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand);
361 setOperationAction(ISD::FCOS, MVT::v8f16, Expand);
362 setOperationAction(ISD::FDIV, MVT::v8f16, Expand);
363 setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand);
364 setOperationAction(ISD::FMA, MVT::v8f16, Expand);
365 setOperationAction(ISD::FMUL, MVT::v8f16, Expand);
366 setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand);
367 setOperationAction(ISD::FNEG, MVT::v8f16, Expand);
368 setOperationAction(ISD::FPOW, MVT::v8f16, Expand);
369 setOperationAction(ISD::FPOWI, MVT::v8f16, Expand);
370 setOperationAction(ISD::FREM, MVT::v8f16, Expand);
371 setOperationAction(ISD::FROUND, MVT::v8f16, Expand);
372 setOperationAction(ISD::FRINT, MVT::v8f16, Expand);
373 setOperationAction(ISD::FSIN, MVT::v8f16, Expand);
374 setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand);
375 setOperationAction(ISD::FSQRT, MVT::v8f16, Expand);
376 setOperationAction(ISD::FSUB, MVT::v8f16, Expand);
377 setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand);
378 setOperationAction(ISD::SETCC, MVT::v8f16, Expand);
379 setOperationAction(ISD::BR_CC, MVT::v8f16, Expand);
380 setOperationAction(ISD::SELECT, MVT::v8f16, Expand);
381 setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand);
382 setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand);
383 setOperationAction(ISD::FEXP, MVT::v8f16, Expand);
384 setOperationAction(ISD::FEXP2, MVT::v8f16, Expand);
385 setOperationAction(ISD::FLOG, MVT::v8f16, Expand);
386 setOperationAction(ISD::FLOG2, MVT::v8f16, Expand);
387 setOperationAction(ISD::FLOG10, MVT::v8f16, Expand);
388
Tim Northover3b0846e2014-05-24 12:50:23 +0000389 // AArch64 has implementations of a lot of rounding-like FP operations.
Benjamin Kramer57a3d082015-03-08 16:07:39 +0000390 for (MVT Ty : {MVT::f32, MVT::f64}) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000391 setOperationAction(ISD::FFLOOR, Ty, Legal);
392 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
393 setOperationAction(ISD::FCEIL, Ty, Legal);
394 setOperationAction(ISD::FRINT, Ty, Legal);
395 setOperationAction(ISD::FTRUNC, Ty, Legal);
396 setOperationAction(ISD::FROUND, Ty, Legal);
James Molloyb7b2a1e2015-08-11 12:06:37 +0000397 setOperationAction(ISD::FMINNUM, Ty, Legal);
398 setOperationAction(ISD::FMAXNUM, Ty, Legal);
James Molloy88edc822015-08-17 07:13:20 +0000399 setOperationAction(ISD::FMINNAN, Ty, Legal);
400 setOperationAction(ISD::FMAXNAN, Ty, Legal);
Tim Northover3b0846e2014-05-24 12:50:23 +0000401 }
402
403 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
404
Ahmed Bougachab0ff6432015-09-01 16:23:45 +0000405 // Lower READCYCLECOUNTER using an mrs from PMCCNTR_EL0.
406 // This requires the Performance Monitors extension.
407 if (Subtarget->hasPerfMon())
408 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
409
Tim Northover3b0846e2014-05-24 12:50:23 +0000410 if (Subtarget->isTargetMachO()) {
411 // For iOS, we don't want to the normal expansion of a libcall to
412 // sincos. We want to issue a libcall to __sincos_stret to avoid memory
413 // traffic.
414 setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
415 setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
416 } else {
417 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
418 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
419 }
420
Juergen Ributzka23266502014-12-10 19:43:32 +0000421 // Make floating-point constants legal for the large code model, so they don't
422 // become loads from the constant pool.
423 if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
424 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
425 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
426 }
427
Tim Northover3b0846e2014-05-24 12:50:23 +0000428 // AArch64 does not have floating-point extending loads, i1 sign-extending
429 // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000430 for (MVT VT : MVT::fp_valuetypes()) {
431 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
432 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
433 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
434 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
435 }
436 for (MVT VT : MVT::integer_valuetypes())
437 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);
438
Tim Northover3b0846e2014-05-24 12:50:23 +0000439 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
440 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
441 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
442 setTruncStoreAction(MVT::f128, MVT::f80, Expand);
443 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
444 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
445 setTruncStoreAction(MVT::f128, MVT::f16, Expand);
Tim Northoverf8bfe212014-07-18 13:07:05 +0000446
447 setOperationAction(ISD::BITCAST, MVT::i16, Custom);
448 setOperationAction(ISD::BITCAST, MVT::f16, Custom);
449
Tim Northover3b0846e2014-05-24 12:50:23 +0000450 // Indexed loads and stores are supported.
451 for (unsigned im = (unsigned)ISD::PRE_INC;
452 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
453 setIndexedLoadAction(im, MVT::i8, Legal);
454 setIndexedLoadAction(im, MVT::i16, Legal);
455 setIndexedLoadAction(im, MVT::i32, Legal);
456 setIndexedLoadAction(im, MVT::i64, Legal);
457 setIndexedLoadAction(im, MVT::f64, Legal);
458 setIndexedLoadAction(im, MVT::f32, Legal);
Ahmed Bougachae0e12db2015-08-04 01:29:38 +0000459 setIndexedLoadAction(im, MVT::f16, Legal);
Tim Northover3b0846e2014-05-24 12:50:23 +0000460 setIndexedStoreAction(im, MVT::i8, Legal);
461 setIndexedStoreAction(im, MVT::i16, Legal);
462 setIndexedStoreAction(im, MVT::i32, Legal);
463 setIndexedStoreAction(im, MVT::i64, Legal);
464 setIndexedStoreAction(im, MVT::f64, Legal);
465 setIndexedStoreAction(im, MVT::f32, Legal);
Ahmed Bougachae0e12db2015-08-04 01:29:38 +0000466 setIndexedStoreAction(im, MVT::f16, Legal);
Tim Northover3b0846e2014-05-24 12:50:23 +0000467 }
468
469 // Trap.
470 setOperationAction(ISD::TRAP, MVT::Other, Legal);
471
472 // We combine OR nodes for bitfield operations.
473 setTargetDAGCombine(ISD::OR);
474
475 // Vector add and sub nodes may conceal a high-half opportunity.
476 // Also, try to fold ADD into CSINC/CSINV..
477 setTargetDAGCombine(ISD::ADD);
478 setTargetDAGCombine(ISD::SUB);
479
480 setTargetDAGCombine(ISD::XOR);
481 setTargetDAGCombine(ISD::SINT_TO_FP);
482 setTargetDAGCombine(ISD::UINT_TO_FP);
483
Chad Rosierfa30c9b2015-10-07 17:39:18 +0000484 setTargetDAGCombine(ISD::FP_TO_SINT);
485 setTargetDAGCombine(ISD::FP_TO_UINT);
Chad Rosier7c6ac2b2015-10-07 17:51:37 +0000486 setTargetDAGCombine(ISD::FDIV);
Chad Rosierfa30c9b2015-10-07 17:39:18 +0000487
Tim Northover3b0846e2014-05-24 12:50:23 +0000488 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
489
490 setTargetDAGCombine(ISD::ANY_EXTEND);
491 setTargetDAGCombine(ISD::ZERO_EXTEND);
492 setTargetDAGCombine(ISD::SIGN_EXTEND);
493 setTargetDAGCombine(ISD::BITCAST);
494 setTargetDAGCombine(ISD::CONCAT_VECTORS);
495 setTargetDAGCombine(ISD::STORE);
Tim Northover339c83e2015-11-10 00:44:23 +0000496 if (Subtarget->supportsAddressTopByteIgnored())
497 setTargetDAGCombine(ISD::LOAD);
Tim Northover3b0846e2014-05-24 12:50:23 +0000498
499 setTargetDAGCombine(ISD::MUL);
500
501 setTargetDAGCombine(ISD::SELECT);
502 setTargetDAGCombine(ISD::VSELECT);
503
504 setTargetDAGCombine(ISD::INTRINSIC_VOID);
505 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
506 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
Chad Rosier6c36eff2015-09-03 18:13:57 +0000507 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
Tim Northover3b0846e2014-05-24 12:50:23 +0000508
509 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 8;
510 MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 4;
511 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 4;
512
513 setStackPointerRegisterToSaveRestore(AArch64::SP);
514
515 setSchedulingPreference(Sched::Hybrid);
516
517 // Enable TBZ/TBNZ
518 MaskAndBranchFoldingIsLegal = true;
Quentin Colombet6843ac42015-03-31 20:52:32 +0000519 EnableExtLdPromotion = true;
Tim Northover3b0846e2014-05-24 12:50:23 +0000520
521 setMinFunctionAlignment(2);
522
Tim Northover3b0846e2014-05-24 12:50:23 +0000523 setHasExtractBitsInsn(true);
524
Adhemerval Zanella7bc33192015-07-28 13:03:31 +0000525 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
526
Tim Northover3b0846e2014-05-24 12:50:23 +0000527 if (Subtarget->hasNEON()) {
528 // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
529 // silliness like this:
530 setOperationAction(ISD::FABS, MVT::v1f64, Expand);
531 setOperationAction(ISD::FADD, MVT::v1f64, Expand);
532 setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
533 setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
534 setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
535 setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
536 setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
537 setOperationAction(ISD::FMA, MVT::v1f64, Expand);
538 setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
539 setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
540 setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
541 setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
542 setOperationAction(ISD::FREM, MVT::v1f64, Expand);
543 setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
544 setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
545 setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
546 setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
547 setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
548 setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
549 setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
550 setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
551 setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
552 setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
553 setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
554 setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
555
556 setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
557 setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
558 setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
559 setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
560 setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
561
562 setOperationAction(ISD::MUL, MVT::v1i64, Expand);
563
564 // AArch64 doesn't have a direct vector ->f32 conversion instructions for
565 // elements smaller than i32, so promote the input to i32 first.
566 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Promote);
567 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Promote);
568 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Promote);
569 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Promote);
Pirama Arumuga Nainarb1881532015-04-23 17:16:27 +0000570 // i8 and i16 vector elements also need promotion to i32 for v8i8 or v8i16
571 // -> v8f16 conversions.
572 setOperationAction(ISD::SINT_TO_FP, MVT::v8i8, Promote);
573 setOperationAction(ISD::UINT_TO_FP, MVT::v8i8, Promote);
574 setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Promote);
575 setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Promote);
Tim Northover3b0846e2014-05-24 12:50:23 +0000576 // Similarly, there is no direct i32 -> f64 vector conversion instruction.
577 setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
578 setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
579 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
580 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
Pirama Arumuga Nainarb1881532015-04-23 17:16:27 +0000581 // Or, direct i32 -> f16 vector conversion. Set it so custom, so the
582 // conversion happens in two steps: v4i32 -> v4f32 -> v4f16
583 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Custom);
584 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom);
Tim Northover3b0846e2014-05-24 12:50:23 +0000585
586 // AArch64 doesn't have MUL.2d:
587 setOperationAction(ISD::MUL, MVT::v2i64, Expand);
Chad Rosierd9d0f862014-10-08 02:31:24 +0000588 // Custom handling for some quad-vector types to detect MULL.
589 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
590 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
591 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
592
Tim Northover3b0846e2014-05-24 12:50:23 +0000593 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
594 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
595 // Likewise, narrowing and extending vector loads/stores aren't handled
596 // directly.
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000597 for (MVT VT : MVT::vector_valuetypes()) {
598 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000599
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000600 setOperationAction(ISD::MULHS, VT, Expand);
601 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
602 setOperationAction(ISD::MULHU, VT, Expand);
603 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000604
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000605 setOperationAction(ISD::BSWAP, VT, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000606
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000607 for (MVT InnerVT : MVT::vector_valuetypes()) {
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000608 setTruncStoreAction(VT, InnerVT, Expand);
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000609 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
610 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
611 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
612 }
Tim Northover3b0846e2014-05-24 12:50:23 +0000613 }
614
615 // AArch64 has implementations of a lot of rounding-like FP operations.
Benjamin Kramer57a3d082015-03-08 16:07:39 +0000616 for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64}) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000617 setOperationAction(ISD::FFLOOR, Ty, Legal);
618 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
619 setOperationAction(ISD::FCEIL, Ty, Legal);
620 setOperationAction(ISD::FRINT, Ty, Legal);
621 setOperationAction(ISD::FTRUNC, Ty, Legal);
622 setOperationAction(ISD::FROUND, Ty, Legal);
623 }
624 }
James Molloyf089ab72014-08-06 10:42:18 +0000625
626 // Prefer likely predicted branches to selects on out-of-order cores.
627 if (Subtarget->isCortexA57())
628 PredictableSelectIsExpensive = true;
Tim Northover3b0846e2014-05-24 12:50:23 +0000629}
630
631void AArch64TargetLowering::addTypeForNEON(EVT VT, EVT PromotedBitwiseVT) {
Jiangning Liu08f4cda2014-08-29 01:31:42 +0000632 if (VT == MVT::v2f32 || VT == MVT::v4f16) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000633 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
634 AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i32);
635
636 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
637 AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i32);
Jiangning Liu08f4cda2014-08-29 01:31:42 +0000638 } else if (VT == MVT::v2f64 || VT == MVT::v4f32 || VT == MVT::v8f16) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000639 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
640 AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i64);
641
642 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
643 AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i64);
644 }
645
646 // Mark vector float intrinsics as expand.
647 if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
648 setOperationAction(ISD::FSIN, VT.getSimpleVT(), Expand);
649 setOperationAction(ISD::FCOS, VT.getSimpleVT(), Expand);
650 setOperationAction(ISD::FPOWI, VT.getSimpleVT(), Expand);
651 setOperationAction(ISD::FPOW, VT.getSimpleVT(), Expand);
652 setOperationAction(ISD::FLOG, VT.getSimpleVT(), Expand);
653 setOperationAction(ISD::FLOG2, VT.getSimpleVT(), Expand);
654 setOperationAction(ISD::FLOG10, VT.getSimpleVT(), Expand);
655 setOperationAction(ISD::FEXP, VT.getSimpleVT(), Expand);
656 setOperationAction(ISD::FEXP2, VT.getSimpleVT(), Expand);
Ahmed Bougachab0ae36f2015-08-04 00:42:34 +0000657
658 // But we do support custom-lowering for FCOPYSIGN.
659 setOperationAction(ISD::FCOPYSIGN, VT.getSimpleVT(), Custom);
Tim Northover3b0846e2014-05-24 12:50:23 +0000660 }
661
662 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
663 setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom);
664 setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
665 setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
666 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Custom);
667 setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
668 setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
669 setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
670 setOperationAction(ISD::AND, VT.getSimpleVT(), Custom);
671 setOperationAction(ISD::OR, VT.getSimpleVT(), Custom);
672 setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom);
673 setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
674
675 setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
676 setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
677 setOperationAction(ISD::VSELECT, VT.getSimpleVT(), Expand);
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000678 for (MVT InnerVT : MVT::all_valuetypes())
679 setLoadExtAction(ISD::EXTLOAD, InnerVT, VT.getSimpleVT(), Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000680
681 // CNT supports only B element sizes.
682 if (VT != MVT::v8i8 && VT != MVT::v16i8)
683 setOperationAction(ISD::CTPOP, VT.getSimpleVT(), Expand);
684
685 setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
686 setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
687 setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
688 setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
689 setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
690
691 setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom);
692 setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom);
693
James Molloyfaf4e3c2015-07-17 17:10:45 +0000694 // [SU][MIN|MAX] and [SU]ABSDIFF are available for all NEON types apart from
695 // i64.
James Molloycfb04432015-05-15 16:15:57 +0000696 if (!VT.isFloatingPoint() &&
697 VT.getSimpleVT() != MVT::v2i64 && VT.getSimpleVT() != MVT::v1i64)
James Molloyfaf4e3c2015-07-17 17:10:45 +0000698 for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX,
699 ISD::SABSDIFF, ISD::UABSDIFF})
James Molloycfb04432015-05-15 16:15:57 +0000700 setOperationAction(Opcode, VT.getSimpleVT(), Legal);
701
James Molloy63be1982015-08-14 09:08:50 +0000702 // F[MIN|MAX][NUM|NAN] are available for all FP NEON types (not f16 though!).
703 if (VT.isFloatingPoint() && VT.getVectorElementType() != MVT::f16)
James Molloyb7b2a1e2015-08-11 12:06:37 +0000704 for (unsigned Opcode : {ISD::FMINNAN, ISD::FMAXNAN,
705 ISD::FMINNUM, ISD::FMAXNUM})
James Molloyedf38f02015-08-11 12:06:33 +0000706 setOperationAction(Opcode, VT.getSimpleVT(), Legal);
707
Tim Northover3b0846e2014-05-24 12:50:23 +0000708 if (Subtarget->isLittleEndian()) {
709 for (unsigned im = (unsigned)ISD::PRE_INC;
710 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
711 setIndexedLoadAction(im, VT.getSimpleVT(), Legal);
712 setIndexedStoreAction(im, VT.getSimpleVT(), Legal);
713 }
714 }
715}
716
717void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
718 addRegisterClass(VT, &AArch64::FPR64RegClass);
719 addTypeForNEON(VT, MVT::v2i32);
720}
721
722void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
723 addRegisterClass(VT, &AArch64::FPR128RegClass);
724 addTypeForNEON(VT, MVT::v4i32);
725}
726
Mehdi Amini44ede332015-07-09 02:09:04 +0000727EVT AArch64TargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
728 EVT VT) const {
Tim Northover3b0846e2014-05-24 12:50:23 +0000729 if (!VT.isVector())
730 return MVT::i32;
731 return VT.changeVectorElementTypeToInteger();
732}
733
734/// computeKnownBitsForTargetNode - Determine which of the bits specified in
735/// Mask are known to be either zero or one and return them in the
736/// KnownZero/KnownOne bitsets.
737void AArch64TargetLowering::computeKnownBitsForTargetNode(
738 const SDValue Op, APInt &KnownZero, APInt &KnownOne,
739 const SelectionDAG &DAG, unsigned Depth) const {
740 switch (Op.getOpcode()) {
741 default:
742 break;
743 case AArch64ISD::CSEL: {
744 APInt KnownZero2, KnownOne2;
745 DAG.computeKnownBits(Op->getOperand(0), KnownZero, KnownOne, Depth + 1);
746 DAG.computeKnownBits(Op->getOperand(1), KnownZero2, KnownOne2, Depth + 1);
747 KnownZero &= KnownZero2;
748 KnownOne &= KnownOne2;
749 break;
750 }
751 case ISD::INTRINSIC_W_CHAIN: {
Jun Bum Lim4d3c5982015-09-08 16:11:22 +0000752 ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
Tim Northover3b0846e2014-05-24 12:50:23 +0000753 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
754 switch (IntID) {
755 default: return;
756 case Intrinsic::aarch64_ldaxr:
757 case Intrinsic::aarch64_ldxr: {
758 unsigned BitWidth = KnownOne.getBitWidth();
759 EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
760 unsigned MemBits = VT.getScalarType().getSizeInBits();
761 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
762 return;
763 }
764 }
765 break;
766 }
767 case ISD::INTRINSIC_WO_CHAIN:
768 case ISD::INTRINSIC_VOID: {
769 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
770 switch (IntNo) {
771 default:
772 break;
773 case Intrinsic::aarch64_neon_umaxv:
774 case Intrinsic::aarch64_neon_uminv: {
775 // Figure out the datatype of the vector operand. The UMINV instruction
776 // will zero extend the result, so we can mark as known zero all the
777 // bits larger than the element datatype. 32-bit or larget doesn't need
778 // this as those are legal types and will be handled by isel directly.
779 MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
780 unsigned BitWidth = KnownZero.getBitWidth();
781 if (VT == MVT::v8i8 || VT == MVT::v16i8) {
782 assert(BitWidth >= 8 && "Unexpected width!");
783 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
784 KnownZero |= Mask;
785 } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
786 assert(BitWidth >= 16 && "Unexpected width!");
787 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
788 KnownZero |= Mask;
789 }
790 break;
791 } break;
792 }
793 }
794 }
795}
796
Mehdi Aminieaabc512015-07-09 15:12:23 +0000797MVT AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
798 EVT) const {
Tim Northover3b0846e2014-05-24 12:50:23 +0000799 return MVT::i64;
800}
801
Akira Hatanakaf53b0402015-07-29 14:17:26 +0000802bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
803 unsigned AddrSpace,
804 unsigned Align,
805 bool *Fast) const {
806 if (Subtarget->requiresStrictAlign())
807 return false;
Sanjay Patelbbbf9a12015-09-25 21:49:48 +0000808
809 // FIXME: This is mostly true for Cyclone, but not necessarily others.
810 if (Fast) {
811 // FIXME: Define an attribute for slow unaligned accesses instead of
812 // relying on the CPU type as a proxy.
813 // On Cyclone, unaligned 128-bit stores are slow.
814 *Fast = !Subtarget->isCyclone() || VT.getStoreSize() != 16 ||
815 // See comments in performSTORECombine() for more details about
816 // these conditions.
817
818 // Code that uses clang vector extensions can mark that it
819 // wants unaligned accesses to be treated as fast by
820 // underspecifying alignment to be 1 or 2.
821 Align <= 2 ||
822
823 // Disregard v2i64. Memcpy lowering produces those and splitting
824 // them regresses performance on micro-benchmarks and olden/bh.
825 VT == MVT::v2i64;
826 }
Akira Hatanakaf53b0402015-07-29 14:17:26 +0000827 return true;
828}
829
Tim Northover3b0846e2014-05-24 12:50:23 +0000830FastISel *
831AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
832 const TargetLibraryInfo *libInfo) const {
833 return AArch64::createFastISel(funcInfo, libInfo);
834}
835
836const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
Matthias Braund04893f2015-05-07 21:33:59 +0000837 switch ((AArch64ISD::NodeType)Opcode) {
838 case AArch64ISD::FIRST_NUMBER: break;
Tim Northover3b0846e2014-05-24 12:50:23 +0000839 case AArch64ISD::CALL: return "AArch64ISD::CALL";
840 case AArch64ISD::ADRP: return "AArch64ISD::ADRP";
841 case AArch64ISD::ADDlow: return "AArch64ISD::ADDlow";
842 case AArch64ISD::LOADgot: return "AArch64ISD::LOADgot";
843 case AArch64ISD::RET_FLAG: return "AArch64ISD::RET_FLAG";
844 case AArch64ISD::BRCOND: return "AArch64ISD::BRCOND";
845 case AArch64ISD::CSEL: return "AArch64ISD::CSEL";
846 case AArch64ISD::FCSEL: return "AArch64ISD::FCSEL";
847 case AArch64ISD::CSINV: return "AArch64ISD::CSINV";
848 case AArch64ISD::CSNEG: return "AArch64ISD::CSNEG";
849 case AArch64ISD::CSINC: return "AArch64ISD::CSINC";
850 case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
Kristof Beylsaea84612015-03-04 09:12:08 +0000851 case AArch64ISD::TLSDESC_CALLSEQ: return "AArch64ISD::TLSDESC_CALLSEQ";
Tim Northover3b0846e2014-05-24 12:50:23 +0000852 case AArch64ISD::ADC: return "AArch64ISD::ADC";
853 case AArch64ISD::SBC: return "AArch64ISD::SBC";
854 case AArch64ISD::ADDS: return "AArch64ISD::ADDS";
855 case AArch64ISD::SUBS: return "AArch64ISD::SUBS";
856 case AArch64ISD::ADCS: return "AArch64ISD::ADCS";
857 case AArch64ISD::SBCS: return "AArch64ISD::SBCS";
858 case AArch64ISD::ANDS: return "AArch64ISD::ANDS";
Matthias Braunaf7d7702015-07-16 20:02:37 +0000859 case AArch64ISD::CCMP: return "AArch64ISD::CCMP";
860 case AArch64ISD::CCMN: return "AArch64ISD::CCMN";
861 case AArch64ISD::FCCMP: return "AArch64ISD::FCCMP";
Tim Northover3b0846e2014-05-24 12:50:23 +0000862 case AArch64ISD::FCMP: return "AArch64ISD::FCMP";
Tim Northover3b0846e2014-05-24 12:50:23 +0000863 case AArch64ISD::DUP: return "AArch64ISD::DUP";
864 case AArch64ISD::DUPLANE8: return "AArch64ISD::DUPLANE8";
865 case AArch64ISD::DUPLANE16: return "AArch64ISD::DUPLANE16";
866 case AArch64ISD::DUPLANE32: return "AArch64ISD::DUPLANE32";
867 case AArch64ISD::DUPLANE64: return "AArch64ISD::DUPLANE64";
868 case AArch64ISD::MOVI: return "AArch64ISD::MOVI";
869 case AArch64ISD::MOVIshift: return "AArch64ISD::MOVIshift";
870 case AArch64ISD::MOVIedit: return "AArch64ISD::MOVIedit";
871 case AArch64ISD::MOVImsl: return "AArch64ISD::MOVImsl";
872 case AArch64ISD::FMOV: return "AArch64ISD::FMOV";
873 case AArch64ISD::MVNIshift: return "AArch64ISD::MVNIshift";
874 case AArch64ISD::MVNImsl: return "AArch64ISD::MVNImsl";
875 case AArch64ISD::BICi: return "AArch64ISD::BICi";
876 case AArch64ISD::ORRi: return "AArch64ISD::ORRi";
877 case AArch64ISD::BSL: return "AArch64ISD::BSL";
878 case AArch64ISD::NEG: return "AArch64ISD::NEG";
879 case AArch64ISD::EXTR: return "AArch64ISD::EXTR";
880 case AArch64ISD::ZIP1: return "AArch64ISD::ZIP1";
881 case AArch64ISD::ZIP2: return "AArch64ISD::ZIP2";
882 case AArch64ISD::UZP1: return "AArch64ISD::UZP1";
883 case AArch64ISD::UZP2: return "AArch64ISD::UZP2";
884 case AArch64ISD::TRN1: return "AArch64ISD::TRN1";
885 case AArch64ISD::TRN2: return "AArch64ISD::TRN2";
886 case AArch64ISD::REV16: return "AArch64ISD::REV16";
887 case AArch64ISD::REV32: return "AArch64ISD::REV32";
888 case AArch64ISD::REV64: return "AArch64ISD::REV64";
889 case AArch64ISD::EXT: return "AArch64ISD::EXT";
890 case AArch64ISD::VSHL: return "AArch64ISD::VSHL";
891 case AArch64ISD::VLSHR: return "AArch64ISD::VLSHR";
892 case AArch64ISD::VASHR: return "AArch64ISD::VASHR";
893 case AArch64ISD::CMEQ: return "AArch64ISD::CMEQ";
894 case AArch64ISD::CMGE: return "AArch64ISD::CMGE";
895 case AArch64ISD::CMGT: return "AArch64ISD::CMGT";
896 case AArch64ISD::CMHI: return "AArch64ISD::CMHI";
897 case AArch64ISD::CMHS: return "AArch64ISD::CMHS";
898 case AArch64ISD::FCMEQ: return "AArch64ISD::FCMEQ";
899 case AArch64ISD::FCMGE: return "AArch64ISD::FCMGE";
900 case AArch64ISD::FCMGT: return "AArch64ISD::FCMGT";
901 case AArch64ISD::CMEQz: return "AArch64ISD::CMEQz";
902 case AArch64ISD::CMGEz: return "AArch64ISD::CMGEz";
903 case AArch64ISD::CMGTz: return "AArch64ISD::CMGTz";
904 case AArch64ISD::CMLEz: return "AArch64ISD::CMLEz";
905 case AArch64ISD::CMLTz: return "AArch64ISD::CMLTz";
906 case AArch64ISD::FCMEQz: return "AArch64ISD::FCMEQz";
907 case AArch64ISD::FCMGEz: return "AArch64ISD::FCMGEz";
908 case AArch64ISD::FCMGTz: return "AArch64ISD::FCMGTz";
909 case AArch64ISD::FCMLEz: return "AArch64ISD::FCMLEz";
910 case AArch64ISD::FCMLTz: return "AArch64ISD::FCMLTz";
Ahmed Bougachafab58922015-03-10 20:45:38 +0000911 case AArch64ISD::SADDV: return "AArch64ISD::SADDV";
912 case AArch64ISD::UADDV: return "AArch64ISD::UADDV";
913 case AArch64ISD::SMINV: return "AArch64ISD::SMINV";
914 case AArch64ISD::UMINV: return "AArch64ISD::UMINV";
915 case AArch64ISD::SMAXV: return "AArch64ISD::SMAXV";
916 case AArch64ISD::UMAXV: return "AArch64ISD::UMAXV";
Tim Northover3b0846e2014-05-24 12:50:23 +0000917 case AArch64ISD::NOT: return "AArch64ISD::NOT";
918 case AArch64ISD::BIT: return "AArch64ISD::BIT";
919 case AArch64ISD::CBZ: return "AArch64ISD::CBZ";
920 case AArch64ISD::CBNZ: return "AArch64ISD::CBNZ";
921 case AArch64ISD::TBZ: return "AArch64ISD::TBZ";
922 case AArch64ISD::TBNZ: return "AArch64ISD::TBNZ";
923 case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN";
Matthias Braund04893f2015-05-07 21:33:59 +0000924 case AArch64ISD::PREFETCH: return "AArch64ISD::PREFETCH";
Tim Northover3b0846e2014-05-24 12:50:23 +0000925 case AArch64ISD::SITOF: return "AArch64ISD::SITOF";
926 case AArch64ISD::UITOF: return "AArch64ISD::UITOF";
Asiri Rathnayake530b3ed2014-10-01 09:59:45 +0000927 case AArch64ISD::NVCAST: return "AArch64ISD::NVCAST";
Tim Northover3b0846e2014-05-24 12:50:23 +0000928 case AArch64ISD::SQSHL_I: return "AArch64ISD::SQSHL_I";
929 case AArch64ISD::UQSHL_I: return "AArch64ISD::UQSHL_I";
930 case AArch64ISD::SRSHR_I: return "AArch64ISD::SRSHR_I";
931 case AArch64ISD::URSHR_I: return "AArch64ISD::URSHR_I";
932 case AArch64ISD::SQSHLU_I: return "AArch64ISD::SQSHLU_I";
933 case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge";
934 case AArch64ISD::LD2post: return "AArch64ISD::LD2post";
935 case AArch64ISD::LD3post: return "AArch64ISD::LD3post";
936 case AArch64ISD::LD4post: return "AArch64ISD::LD4post";
937 case AArch64ISD::ST2post: return "AArch64ISD::ST2post";
938 case AArch64ISD::ST3post: return "AArch64ISD::ST3post";
939 case AArch64ISD::ST4post: return "AArch64ISD::ST4post";
940 case AArch64ISD::LD1x2post: return "AArch64ISD::LD1x2post";
941 case AArch64ISD::LD1x3post: return "AArch64ISD::LD1x3post";
942 case AArch64ISD::LD1x4post: return "AArch64ISD::LD1x4post";
943 case AArch64ISD::ST1x2post: return "AArch64ISD::ST1x2post";
944 case AArch64ISD::ST1x3post: return "AArch64ISD::ST1x3post";
945 case AArch64ISD::ST1x4post: return "AArch64ISD::ST1x4post";
946 case AArch64ISD::LD1DUPpost: return "AArch64ISD::LD1DUPpost";
947 case AArch64ISD::LD2DUPpost: return "AArch64ISD::LD2DUPpost";
948 case AArch64ISD::LD3DUPpost: return "AArch64ISD::LD3DUPpost";
949 case AArch64ISD::LD4DUPpost: return "AArch64ISD::LD4DUPpost";
950 case AArch64ISD::LD1LANEpost: return "AArch64ISD::LD1LANEpost";
951 case AArch64ISD::LD2LANEpost: return "AArch64ISD::LD2LANEpost";
952 case AArch64ISD::LD3LANEpost: return "AArch64ISD::LD3LANEpost";
953 case AArch64ISD::LD4LANEpost: return "AArch64ISD::LD4LANEpost";
954 case AArch64ISD::ST2LANEpost: return "AArch64ISD::ST2LANEpost";
955 case AArch64ISD::ST3LANEpost: return "AArch64ISD::ST3LANEpost";
956 case AArch64ISD::ST4LANEpost: return "AArch64ISD::ST4LANEpost";
Chad Rosierd9d0f862014-10-08 02:31:24 +0000957 case AArch64ISD::SMULL: return "AArch64ISD::SMULL";
958 case AArch64ISD::UMULL: return "AArch64ISD::UMULL";
Tim Northover3b0846e2014-05-24 12:50:23 +0000959 }
Matthias Braund04893f2015-05-07 21:33:59 +0000960 return nullptr;
Tim Northover3b0846e2014-05-24 12:50:23 +0000961}
962
963MachineBasicBlock *
964AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
965 MachineBasicBlock *MBB) const {
966 // We materialise the F128CSEL pseudo-instruction as some control flow and a
967 // phi node:
968
969 // OrigBB:
970 // [... previous instrs leading to comparison ...]
971 // b.ne TrueBB
972 // b EndBB
973 // TrueBB:
974 // ; Fallthrough
975 // EndBB:
976 // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
977
Tim Northover3b0846e2014-05-24 12:50:23 +0000978 MachineFunction *MF = MBB->getParent();
Eric Christopher905f12d2015-01-29 00:19:42 +0000979 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +0000980 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
981 DebugLoc DL = MI->getDebugLoc();
Duncan P. N. Exon Smithd3b9df02015-10-13 20:02:15 +0000982 MachineFunction::iterator It = ++MBB->getIterator();
Tim Northover3b0846e2014-05-24 12:50:23 +0000983
984 unsigned DestReg = MI->getOperand(0).getReg();
985 unsigned IfTrueReg = MI->getOperand(1).getReg();
986 unsigned IfFalseReg = MI->getOperand(2).getReg();
987 unsigned CondCode = MI->getOperand(3).getImm();
988 bool NZCVKilled = MI->getOperand(4).isKill();
989
990 MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
991 MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
992 MF->insert(It, TrueBB);
993 MF->insert(It, EndBB);
994
995 // Transfer rest of current basic-block to EndBB
996 EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
997 MBB->end());
998 EndBB->transferSuccessorsAndUpdatePHIs(MBB);
999
1000 BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
1001 BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
1002 MBB->addSuccessor(TrueBB);
1003 MBB->addSuccessor(EndBB);
1004
1005 // TrueBB falls through to the end.
1006 TrueBB->addSuccessor(EndBB);
1007
1008 if (!NZCVKilled) {
1009 TrueBB->addLiveIn(AArch64::NZCV);
1010 EndBB->addLiveIn(AArch64::NZCV);
1011 }
1012
1013 BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
1014 .addReg(IfTrueReg)
1015 .addMBB(TrueBB)
1016 .addReg(IfFalseReg)
1017 .addMBB(MBB);
1018
1019 MI->eraseFromParent();
1020 return EndBB;
1021}
1022
1023MachineBasicBlock *
1024AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
1025 MachineBasicBlock *BB) const {
1026 switch (MI->getOpcode()) {
1027 default:
1028#ifndef NDEBUG
1029 MI->dump();
1030#endif
Craig Topper35b2f752014-06-19 06:10:58 +00001031 llvm_unreachable("Unexpected instruction for custom inserter!");
Tim Northover3b0846e2014-05-24 12:50:23 +00001032
1033 case AArch64::F128CSEL:
1034 return EmitF128CSEL(MI, BB);
1035
1036 case TargetOpcode::STACKMAP:
1037 case TargetOpcode::PATCHPOINT:
1038 return emitPatchPoint(MI, BB);
1039 }
Tim Northover3b0846e2014-05-24 12:50:23 +00001040}
1041
1042//===----------------------------------------------------------------------===//
1043// AArch64 Lowering private implementation.
1044//===----------------------------------------------------------------------===//
1045
1046//===----------------------------------------------------------------------===//
1047// Lowering Code
1048//===----------------------------------------------------------------------===//
1049
1050/// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
1051/// CC
1052static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
1053 switch (CC) {
1054 default:
1055 llvm_unreachable("Unknown condition code!");
1056 case ISD::SETNE:
1057 return AArch64CC::NE;
1058 case ISD::SETEQ:
1059 return AArch64CC::EQ;
1060 case ISD::SETGT:
1061 return AArch64CC::GT;
1062 case ISD::SETGE:
1063 return AArch64CC::GE;
1064 case ISD::SETLT:
1065 return AArch64CC::LT;
1066 case ISD::SETLE:
1067 return AArch64CC::LE;
1068 case ISD::SETUGT:
1069 return AArch64CC::HI;
1070 case ISD::SETUGE:
1071 return AArch64CC::HS;
1072 case ISD::SETULT:
1073 return AArch64CC::LO;
1074 case ISD::SETULE:
1075 return AArch64CC::LS;
1076 }
1077}
1078
1079/// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
1080static void changeFPCCToAArch64CC(ISD::CondCode CC,
1081 AArch64CC::CondCode &CondCode,
1082 AArch64CC::CondCode &CondCode2) {
1083 CondCode2 = AArch64CC::AL;
1084 switch (CC) {
1085 default:
1086 llvm_unreachable("Unknown FP condition!");
1087 case ISD::SETEQ:
1088 case ISD::SETOEQ:
1089 CondCode = AArch64CC::EQ;
1090 break;
1091 case ISD::SETGT:
1092 case ISD::SETOGT:
1093 CondCode = AArch64CC::GT;
1094 break;
1095 case ISD::SETGE:
1096 case ISD::SETOGE:
1097 CondCode = AArch64CC::GE;
1098 break;
1099 case ISD::SETOLT:
1100 CondCode = AArch64CC::MI;
1101 break;
1102 case ISD::SETOLE:
1103 CondCode = AArch64CC::LS;
1104 break;
1105 case ISD::SETONE:
1106 CondCode = AArch64CC::MI;
1107 CondCode2 = AArch64CC::GT;
1108 break;
1109 case ISD::SETO:
1110 CondCode = AArch64CC::VC;
1111 break;
1112 case ISD::SETUO:
1113 CondCode = AArch64CC::VS;
1114 break;
1115 case ISD::SETUEQ:
1116 CondCode = AArch64CC::EQ;
1117 CondCode2 = AArch64CC::VS;
1118 break;
1119 case ISD::SETUGT:
1120 CondCode = AArch64CC::HI;
1121 break;
1122 case ISD::SETUGE:
1123 CondCode = AArch64CC::PL;
1124 break;
1125 case ISD::SETLT:
1126 case ISD::SETULT:
1127 CondCode = AArch64CC::LT;
1128 break;
1129 case ISD::SETLE:
1130 case ISD::SETULE:
1131 CondCode = AArch64CC::LE;
1132 break;
1133 case ISD::SETNE:
1134 case ISD::SETUNE:
1135 CondCode = AArch64CC::NE;
1136 break;
1137 }
1138}
1139
1140/// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
1141/// CC usable with the vector instructions. Fewer operations are available
1142/// without a real NZCV register, so we have to use less efficient combinations
1143/// to get the same effect.
1144static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
1145 AArch64CC::CondCode &CondCode,
1146 AArch64CC::CondCode &CondCode2,
1147 bool &Invert) {
1148 Invert = false;
1149 switch (CC) {
1150 default:
1151 // Mostly the scalar mappings work fine.
1152 changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1153 break;
1154 case ISD::SETUO:
1155 Invert = true; // Fallthrough
1156 case ISD::SETO:
1157 CondCode = AArch64CC::MI;
1158 CondCode2 = AArch64CC::GE;
1159 break;
1160 case ISD::SETUEQ:
1161 case ISD::SETULT:
1162 case ISD::SETULE:
1163 case ISD::SETUGT:
1164 case ISD::SETUGE:
1165 // All of the compare-mask comparisons are ordered, but we can switch
1166 // between the two by a double inversion. E.g. ULE == !OGT.
1167 Invert = true;
1168 changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2);
1169 break;
1170 }
1171}
1172
1173static bool isLegalArithImmed(uint64_t C) {
1174 // Matches AArch64DAGToDAGISel::SelectArithImmed().
1175 return (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
1176}
1177
1178static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1179 SDLoc dl, SelectionDAG &DAG) {
1180 EVT VT = LHS.getValueType();
1181
1182 if (VT.isFloatingPoint())
1183 return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
1184
1185 // The CMP instruction is just an alias for SUBS, and representing it as
1186 // SUBS means that it's possible to get CSE with subtract operations.
1187 // A later phase can perform the optimization of setting the destination
1188 // register to WZR/XZR if it ends up being unused.
1189 unsigned Opcode = AArch64ISD::SUBS;
1190
Artyom Skrobov314ee042015-11-25 19:41:11 +00001191 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001192 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1193 // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on
1194 // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags
1195 // can be set differently by this operation. It comes down to whether
1196 // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
1197 // everything is fine. If not then the optimization is wrong. Thus general
1198 // comparisons are only valid if op2 != 0.
1199
1200 // So, finally, the only LLVM-native comparisons that don't mention C and V
1201 // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
1202 // the absence of information about op2.
1203 Opcode = AArch64ISD::ADDS;
1204 RHS = RHS.getOperand(1);
Artyom Skrobov314ee042015-11-25 19:41:11 +00001205 } else if (LHS.getOpcode() == ISD::AND && isNullConstant(RHS) &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001206 !isUnsignedIntSetCC(CC)) {
1207 // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
1208 // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
1209 // of the signed comparisons.
1210 Opcode = AArch64ISD::ANDS;
1211 RHS = LHS.getOperand(1);
1212 LHS = LHS.getOperand(0);
1213 }
1214
Matthias Braunaf7d7702015-07-16 20:02:37 +00001215 return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT_CC), LHS, RHS)
Tim Northover3b0846e2014-05-24 12:50:23 +00001216 .getValue(1);
1217}
1218
Matthias Braunaf7d7702015-07-16 20:02:37 +00001219/// \defgroup AArch64CCMP CMP;CCMP matching
1220///
1221/// These functions deal with the formation of CMP;CCMP;... sequences.
1222/// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of
1223/// a comparison. They set the NZCV flags to a predefined value if their
1224/// predicate is false. This allows to express arbitrary conjunctions, for
1225/// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B))))"
1226/// expressed as:
1227/// cmp A
1228/// ccmp B, inv(CB), CA
1229/// check for CB flags
1230///
1231/// In general we can create code for arbitrary "... (and (and A B) C)"
1232/// sequences. We can also implement some "or" expressions, because "(or A B)"
1233/// is equivalent to "not (and (not A) (not B))" and we can implement some
1234/// negation operations:
1235/// We can negate the results of a single comparison by inverting the flags
1236/// used when the predicate fails and inverting the flags tested in the next
1237/// instruction; We can also negate the results of the whole previous
1238/// conditional compare sequence by inverting the flags tested in the next
1239/// instruction. However there is no way to negate the result of a partial
1240/// sequence.
1241///
1242/// Therefore on encountering an "or" expression we can negate the subtree on
1243/// one side and have to be able to push the negate to the leafs of the subtree
1244/// on the other side (see also the comments in code). As complete example:
1245/// "or (or (setCA (cmp A)) (setCB (cmp B)))
1246/// (and (setCC (cmp C)) (setCD (cmp D)))"
1247/// is transformed to
1248/// "not (and (not (and (setCC (cmp C)) (setCC (cmp D))))
1249/// (and (not (setCA (cmp A)) (not (setCB (cmp B))))))"
1250/// and implemented as:
1251/// cmp C
1252/// ccmp D, inv(CD), CC
1253/// ccmp A, CA, inv(CD)
1254/// ccmp B, CB, inv(CA)
1255/// check for CB flags
1256/// A counterexample is "or (and A B) (and C D)" which cannot be implemented
1257/// by conditional compare sequences.
1258/// @{
1259
Geoff Berrye41c2df2015-07-20 22:03:52 +00001260/// Create a conditional comparison; Use CCMP, CCMN or FCCMP as appropriate.
Matthias Braunaf7d7702015-07-16 20:02:37 +00001261static SDValue emitConditionalComparison(SDValue LHS, SDValue RHS,
1262 ISD::CondCode CC, SDValue CCOp,
1263 SDValue Condition, unsigned NZCV,
1264 SDLoc DL, SelectionDAG &DAG) {
1265 unsigned Opcode = 0;
1266 if (LHS.getValueType().isFloatingPoint())
1267 Opcode = AArch64ISD::FCCMP;
1268 else if (RHS.getOpcode() == ISD::SUB) {
1269 SDValue SubOp0 = RHS.getOperand(0);
Artyom Skrobov314ee042015-11-25 19:41:11 +00001270 if (isNullConstant(SubOp0) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
Matthias Braunaf7d7702015-07-16 20:02:37 +00001271 // See emitComparison() on why we can only do this for SETEQ and SETNE.
1272 Opcode = AArch64ISD::CCMN;
1273 RHS = RHS.getOperand(1);
1274 }
1275 }
1276 if (Opcode == 0)
1277 Opcode = AArch64ISD::CCMP;
1278
1279 SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32);
1280 return DAG.getNode(Opcode, DL, MVT_CC, LHS, RHS, NZCVOp, Condition, CCOp);
1281}
1282
1283/// Returns true if @p Val is a tree of AND/OR/SETCC operations.
1284/// CanPushNegate is set to true if we can push a negate operation through
1285/// the tree in a was that we are left with AND operations and negate operations
1286/// at the leafs only. i.e. "not (or (or x y) z)" can be changed to
1287/// "and (and (not x) (not y)) (not z)"; "not (or (and x y) z)" cannot be
1288/// brought into such a form.
1289static bool isConjunctionDisjunctionTree(const SDValue Val, bool &CanPushNegate,
1290 unsigned Depth = 0) {
1291 if (!Val.hasOneUse())
1292 return false;
1293 unsigned Opcode = Val->getOpcode();
1294 if (Opcode == ISD::SETCC) {
1295 CanPushNegate = true;
1296 return true;
1297 }
1298 // Protect against stack overflow.
1299 if (Depth > 15)
1300 return false;
1301 if (Opcode == ISD::AND || Opcode == ISD::OR) {
1302 SDValue O0 = Val->getOperand(0);
1303 SDValue O1 = Val->getOperand(1);
1304 bool CanPushNegateL;
1305 if (!isConjunctionDisjunctionTree(O0, CanPushNegateL, Depth+1))
1306 return false;
1307 bool CanPushNegateR;
1308 if (!isConjunctionDisjunctionTree(O1, CanPushNegateR, Depth+1))
1309 return false;
1310 // We cannot push a negate through an AND operation (it would become an OR),
1311 // we can however change a (not (or x y)) to (and (not x) (not y)) if we can
1312 // push the negate through the x/y subtrees.
1313 CanPushNegate = (Opcode == ISD::OR) && CanPushNegateL && CanPushNegateR;
1314 return true;
1315 }
1316 return false;
1317}
1318
1319/// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain
1320/// of CCMP/CFCMP ops. See @ref AArch64CCMP.
1321/// Tries to transform the given i1 producing node @p Val to a series compare
1322/// and conditional compare operations. @returns an NZCV flags producing node
1323/// and sets @p OutCC to the flags that should be tested or returns SDValue() if
1324/// transformation was not possible.
1325/// On recursive invocations @p PushNegate may be set to true to have negation
1326/// effects pushed to the tree leafs; @p Predicate is an NZCV flag predicate
1327/// for the comparisons in the current subtree; @p Depth limits the search
1328/// depth to avoid stack overflow.
1329static SDValue emitConjunctionDisjunctionTree(SelectionDAG &DAG, SDValue Val,
1330 AArch64CC::CondCode &OutCC, bool PushNegate = false,
1331 SDValue CCOp = SDValue(), AArch64CC::CondCode Predicate = AArch64CC::AL,
1332 unsigned Depth = 0) {
1333 // We're at a tree leaf, produce a conditional comparison operation.
1334 unsigned Opcode = Val->getOpcode();
1335 if (Opcode == ISD::SETCC) {
1336 SDValue LHS = Val->getOperand(0);
1337 SDValue RHS = Val->getOperand(1);
1338 ISD::CondCode CC = cast<CondCodeSDNode>(Val->getOperand(2))->get();
1339 bool isInteger = LHS.getValueType().isInteger();
1340 if (PushNegate)
1341 CC = getSetCCInverse(CC, isInteger);
1342 SDLoc DL(Val);
1343 // Determine OutCC and handle FP special case.
1344 if (isInteger) {
1345 OutCC = changeIntCCToAArch64CC(CC);
1346 } else {
1347 assert(LHS.getValueType().isFloatingPoint());
1348 AArch64CC::CondCode ExtraCC;
1349 changeFPCCToAArch64CC(CC, OutCC, ExtraCC);
1350 // Surpisingly some floating point conditions can't be tested with a
1351 // single condition code. Construct an additional comparison in this case.
1352 // See comment below on how we deal with OR conditions.
1353 if (ExtraCC != AArch64CC::AL) {
1354 SDValue ExtraCmp;
1355 if (!CCOp.getNode())
1356 ExtraCmp = emitComparison(LHS, RHS, CC, DL, DAG);
1357 else {
1358 SDValue ConditionOp = DAG.getConstant(Predicate, DL, MVT_CC);
1359 // Note that we want the inverse of ExtraCC, so NZCV is not inversed.
1360 unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(ExtraCC);
1361 ExtraCmp = emitConditionalComparison(LHS, RHS, CC, CCOp, ConditionOp,
1362 NZCV, DL, DAG);
1363 }
1364 CCOp = ExtraCmp;
1365 Predicate = AArch64CC::getInvertedCondCode(ExtraCC);
1366 OutCC = AArch64CC::getInvertedCondCode(OutCC);
1367 }
1368 }
1369
1370 // Produce a normal comparison if we are first in the chain
1371 if (!CCOp.getNode())
1372 return emitComparison(LHS, RHS, CC, DL, DAG);
1373 // Otherwise produce a ccmp.
1374 SDValue ConditionOp = DAG.getConstant(Predicate, DL, MVT_CC);
1375 AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC);
1376 unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC);
1377 return emitConditionalComparison(LHS, RHS, CC, CCOp, ConditionOp, NZCV, DL,
1378 DAG);
Matthias Braun266204b2015-08-20 23:33:31 +00001379 } else if ((Opcode != ISD::AND && Opcode != ISD::OR) || !Val->hasOneUse())
Matthias Braunaf7d7702015-07-16 20:02:37 +00001380 return SDValue();
1381
1382 assert((Opcode == ISD::OR || !PushNegate)
1383 && "Can only push negate through OR operation");
1384
1385 // Check if both sides can be transformed.
1386 SDValue LHS = Val->getOperand(0);
1387 SDValue RHS = Val->getOperand(1);
1388 bool CanPushNegateL;
1389 if (!isConjunctionDisjunctionTree(LHS, CanPushNegateL, Depth+1))
1390 return SDValue();
1391 bool CanPushNegateR;
1392 if (!isConjunctionDisjunctionTree(RHS, CanPushNegateR, Depth+1))
1393 return SDValue();
1394
1395 // Do we need to negate our operands?
1396 bool NegateOperands = Opcode == ISD::OR;
1397 // We can negate the results of all previous operations by inverting the
1398 // predicate flags giving us a free negation for one side. For the other side
1399 // we need to be able to push the negation to the leafs of the tree.
1400 if (NegateOperands) {
1401 if (!CanPushNegateL && !CanPushNegateR)
1402 return SDValue();
1403 // Order the side where we can push the negate through to LHS.
Matthias Braun46e56392015-08-20 23:33:34 +00001404 if (!CanPushNegateL && CanPushNegateR)
Matthias Braunaf7d7702015-07-16 20:02:37 +00001405 std::swap(LHS, RHS);
Matthias Braun46e56392015-08-20 23:33:34 +00001406 } else {
1407 bool NeedsNegOutL = LHS->getOpcode() == ISD::OR;
1408 bool NeedsNegOutR = RHS->getOpcode() == ISD::OR;
1409 if (NeedsNegOutL && NeedsNegOutR)
1410 return SDValue();
1411 // Order the side where we need to negate the output flags to RHS so it
1412 // gets emitted first.
1413 if (NeedsNegOutL)
1414 std::swap(LHS, RHS);
Matthias Braunaf7d7702015-07-16 20:02:37 +00001415 }
1416
1417 // Emit RHS. If we want to negate the tree we only need to push a negate
1418 // through if we are already in a PushNegate case, otherwise we can negate
1419 // the "flags to test" afterwards.
1420 AArch64CC::CondCode RHSCC;
1421 SDValue CmpR = emitConjunctionDisjunctionTree(DAG, RHS, RHSCC, PushNegate,
1422 CCOp, Predicate, Depth+1);
1423 if (NegateOperands && !PushNegate)
1424 RHSCC = AArch64CC::getInvertedCondCode(RHSCC);
1425 // Emit LHS. We must push the negate through if we need to negate it.
1426 SDValue CmpL = emitConjunctionDisjunctionTree(DAG, LHS, OutCC, NegateOperands,
1427 CmpR, RHSCC, Depth+1);
1428 // If we transformed an OR to and AND then we have to negate the result
1429 // (or absorb a PushNegate resulting in a double negation).
1430 if (Opcode == ISD::OR && !PushNegate)
1431 OutCC = AArch64CC::getInvertedCondCode(OutCC);
1432 return CmpL;
1433}
1434
1435/// @}
1436
Tim Northover3b0846e2014-05-24 12:50:23 +00001437static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1438 SDValue &AArch64cc, SelectionDAG &DAG, SDLoc dl) {
1439 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1440 EVT VT = RHS.getValueType();
1441 uint64_t C = RHSC->getZExtValue();
1442 if (!isLegalArithImmed(C)) {
1443 // Constant does not fit, try adjusting it by one?
1444 switch (CC) {
1445 default:
1446 break;
1447 case ISD::SETLT:
1448 case ISD::SETGE:
1449 if ((VT == MVT::i32 && C != 0x80000000 &&
1450 isLegalArithImmed((uint32_t)(C - 1))) ||
1451 (VT == MVT::i64 && C != 0x80000000ULL &&
1452 isLegalArithImmed(C - 1ULL))) {
1453 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1454 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001455 RHS = DAG.getConstant(C, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00001456 }
1457 break;
1458 case ISD::SETULT:
1459 case ISD::SETUGE:
1460 if ((VT == MVT::i32 && C != 0 &&
1461 isLegalArithImmed((uint32_t)(C - 1))) ||
1462 (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
1463 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1464 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001465 RHS = DAG.getConstant(C, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00001466 }
1467 break;
1468 case ISD::SETLE:
1469 case ISD::SETGT:
Oliver Stannard269a275c2014-11-03 15:28:40 +00001470 if ((VT == MVT::i32 && C != INT32_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001471 isLegalArithImmed((uint32_t)(C + 1))) ||
Oliver Stannard269a275c2014-11-03 15:28:40 +00001472 (VT == MVT::i64 && C != INT64_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001473 isLegalArithImmed(C + 1ULL))) {
1474 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1475 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001476 RHS = DAG.getConstant(C, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00001477 }
1478 break;
1479 case ISD::SETULE:
1480 case ISD::SETUGT:
Oliver Stannard269a275c2014-11-03 15:28:40 +00001481 if ((VT == MVT::i32 && C != UINT32_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001482 isLegalArithImmed((uint32_t)(C + 1))) ||
Oliver Stannard269a275c2014-11-03 15:28:40 +00001483 (VT == MVT::i64 && C != UINT64_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001484 isLegalArithImmed(C + 1ULL))) {
1485 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1486 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001487 RHS = DAG.getConstant(C, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00001488 }
1489 break;
1490 }
1491 }
1492 }
Matthias Braunaf7d7702015-07-16 20:02:37 +00001493 SDValue Cmp;
1494 AArch64CC::CondCode AArch64CC;
David Xuee978202014-08-28 04:59:53 +00001495 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
Matthias Braunaf7d7702015-07-16 20:02:37 +00001496 const ConstantSDNode *RHSC = cast<ConstantSDNode>(RHS);
1497
1498 // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
1499 // For the i8 operand, the largest immediate is 255, so this can be easily
1500 // encoded in the compare instruction. For the i16 operand, however, the
1501 // largest immediate cannot be encoded in the compare.
1502 // Therefore, use a sign extending load and cmn to avoid materializing the
1503 // -1 constant. For example,
1504 // movz w1, #65535
1505 // ldrh w0, [x0, #0]
1506 // cmp w0, w1
1507 // >
1508 // ldrsh w0, [x0, #0]
1509 // cmn w0, #1
1510 // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
1511 // if and only if (sext LHS) == (sext RHS). The checks are in place to
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001512 // ensure both the LHS and RHS are truly zero extended and to make sure the
Matthias Braunaf7d7702015-07-16 20:02:37 +00001513 // transformation is profitable.
1514 if ((RHSC->getZExtValue() >> 16 == 0) && isa<LoadSDNode>(LHS) &&
1515 cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
1516 cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
1517 LHS.getNode()->hasNUsesOfValue(1, 0)) {
1518 int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
1519 if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
1520 SDValue SExt =
1521 DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
1522 DAG.getValueType(MVT::i16));
1523 Cmp = emitComparison(SExt, DAG.getConstant(ValueofRHS, dl,
1524 RHS.getValueType()),
1525 CC, dl, DAG);
1526 AArch64CC = changeIntCCToAArch64CC(CC);
1527 }
1528 }
1529
1530 if (!Cmp && (RHSC->isNullValue() || RHSC->isOne())) {
1531 if ((Cmp = emitConjunctionDisjunctionTree(DAG, LHS, AArch64CC))) {
1532 if ((CC == ISD::SETNE) ^ RHSC->isNullValue())
1533 AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC);
David Xuee978202014-08-28 04:59:53 +00001534 }
1535 }
1536 }
Matthias Braunaf7d7702015-07-16 20:02:37 +00001537
1538 if (!Cmp) {
1539 Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
1540 AArch64CC = changeIntCCToAArch64CC(CC);
1541 }
1542 AArch64cc = DAG.getConstant(AArch64CC, dl, MVT_CC);
Tim Northover3b0846e2014-05-24 12:50:23 +00001543 return Cmp;
1544}
1545
1546static std::pair<SDValue, SDValue>
1547getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
1548 assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
1549 "Unsupported value type");
1550 SDValue Value, Overflow;
1551 SDLoc DL(Op);
1552 SDValue LHS = Op.getOperand(0);
1553 SDValue RHS = Op.getOperand(1);
1554 unsigned Opc = 0;
1555 switch (Op.getOpcode()) {
1556 default:
1557 llvm_unreachable("Unknown overflow instruction!");
1558 case ISD::SADDO:
1559 Opc = AArch64ISD::ADDS;
1560 CC = AArch64CC::VS;
1561 break;
1562 case ISD::UADDO:
1563 Opc = AArch64ISD::ADDS;
1564 CC = AArch64CC::HS;
1565 break;
1566 case ISD::SSUBO:
1567 Opc = AArch64ISD::SUBS;
1568 CC = AArch64CC::VS;
1569 break;
1570 case ISD::USUBO:
1571 Opc = AArch64ISD::SUBS;
1572 CC = AArch64CC::LO;
1573 break;
1574 // Multiply needs a little bit extra work.
1575 case ISD::SMULO:
1576 case ISD::UMULO: {
1577 CC = AArch64CC::NE;
David Blaikie186d2cb2015-03-24 16:24:01 +00001578 bool IsSigned = Op.getOpcode() == ISD::SMULO;
Tim Northover3b0846e2014-05-24 12:50:23 +00001579 if (Op.getValueType() == MVT::i32) {
1580 unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1581 // For a 32 bit multiply with overflow check we want the instruction
1582 // selector to generate a widening multiply (SMADDL/UMADDL). For that we
1583 // need to generate the following pattern:
1584 // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
1585 LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
1586 RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
1587 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1588 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001589 DAG.getConstant(0, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00001590 // On AArch64 the upper 32 bits are always zero extended for a 32 bit
1591 // operation. We need to clear out the upper 32 bits, because we used a
1592 // widening multiply that wrote all 64 bits. In the end this should be a
1593 // noop.
1594 Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
1595 if (IsSigned) {
1596 // The signed overflow check requires more than just a simple check for
1597 // any bit set in the upper 32 bits of the result. These bits could be
1598 // just the sign bits of a negative number. To perform the overflow
1599 // check we have to arithmetic shift right the 32nd bit of the result by
1600 // 31 bits. Then we compare the result to the upper 32 bits.
1601 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001602 DAG.getConstant(32, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00001603 UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
1604 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001605 DAG.getConstant(31, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00001606 // It is important that LowerBits is last, otherwise the arithmetic
1607 // shift will not be folded into the compare (SUBS).
1608 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
1609 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1610 .getValue(1);
1611 } else {
1612 // The overflow check for unsigned multiply is easy. We only need to
1613 // check if any of the upper 32 bits are set. This can be done with a
1614 // CMP (shifted register). For that we need to generate the following
1615 // pattern:
1616 // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
1617 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001618 DAG.getConstant(32, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00001619 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1620 Overflow =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001621 DAG.getNode(AArch64ISD::SUBS, DL, VTs,
1622 DAG.getConstant(0, DL, MVT::i64),
Tim Northover3b0846e2014-05-24 12:50:23 +00001623 UpperBits).getValue(1);
1624 }
1625 break;
1626 }
1627 assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
1628 // For the 64 bit multiply
1629 Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1630 if (IsSigned) {
1631 SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
1632 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001633 DAG.getConstant(63, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00001634 // It is important that LowerBits is last, otherwise the arithmetic
1635 // shift will not be folded into the compare (SUBS).
1636 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1637 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1638 .getValue(1);
1639 } else {
1640 SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
1641 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1642 Overflow =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001643 DAG.getNode(AArch64ISD::SUBS, DL, VTs,
1644 DAG.getConstant(0, DL, MVT::i64),
Tim Northover3b0846e2014-05-24 12:50:23 +00001645 UpperBits).getValue(1);
1646 }
1647 break;
1648 }
1649 } // switch (...)
1650
1651 if (Opc) {
1652 SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
1653
1654 // Emit the AArch64 operation with overflow check.
1655 Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
1656 Overflow = Value.getValue(1);
1657 }
1658 return std::make_pair(Value, Overflow);
1659}
1660
1661SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
1662 RTLIB::Libcall Call) const {
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00001663 SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
Craig Topper8fe40e02015-10-22 17:05:00 +00001664 return makeLibCall(DAG, Call, MVT::f128, Ops, false, SDLoc(Op)).first;
Tim Northover3b0846e2014-05-24 12:50:23 +00001665}
1666
1667static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
1668 SDValue Sel = Op.getOperand(0);
1669 SDValue Other = Op.getOperand(1);
1670
1671 // If neither operand is a SELECT_CC, give up.
1672 if (Sel.getOpcode() != ISD::SELECT_CC)
1673 std::swap(Sel, Other);
1674 if (Sel.getOpcode() != ISD::SELECT_CC)
1675 return Op;
1676
1677 // The folding we want to perform is:
1678 // (xor x, (select_cc a, b, cc, 0, -1) )
1679 // -->
1680 // (csel x, (xor x, -1), cc ...)
1681 //
1682 // The latter will get matched to a CSINV instruction.
1683
1684 ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
1685 SDValue LHS = Sel.getOperand(0);
1686 SDValue RHS = Sel.getOperand(1);
1687 SDValue TVal = Sel.getOperand(2);
1688 SDValue FVal = Sel.getOperand(3);
1689 SDLoc dl(Sel);
1690
1691 // FIXME: This could be generalized to non-integer comparisons.
1692 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
1693 return Op;
1694
1695 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
1696 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
1697
Eric Christopher572e03a2015-06-19 01:53:21 +00001698 // The values aren't constants, this isn't the pattern we're looking for.
Tim Northover3b0846e2014-05-24 12:50:23 +00001699 if (!CFVal || !CTVal)
1700 return Op;
1701
1702 // We can commute the SELECT_CC by inverting the condition. This
1703 // might be needed to make this fit into a CSINV pattern.
1704 if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
1705 std::swap(TVal, FVal);
1706 std::swap(CTVal, CFVal);
1707 CC = ISD::getSetCCInverse(CC, true);
1708 }
1709
1710 // If the constants line up, perform the transform!
1711 if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
1712 SDValue CCVal;
1713 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
1714
1715 FVal = Other;
1716 TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001717 DAG.getConstant(-1ULL, dl, Other.getValueType()));
Tim Northover3b0846e2014-05-24 12:50:23 +00001718
1719 return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
1720 CCVal, Cmp);
1721 }
1722
1723 return Op;
1724}
1725
1726static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
1727 EVT VT = Op.getValueType();
1728
1729 // Let legalize expand this if it isn't a legal type yet.
1730 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
1731 return SDValue();
1732
1733 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
1734
1735 unsigned Opc;
1736 bool ExtraOp = false;
1737 switch (Op.getOpcode()) {
1738 default:
Craig Topper2a30d782014-06-18 05:05:13 +00001739 llvm_unreachable("Invalid code");
Tim Northover3b0846e2014-05-24 12:50:23 +00001740 case ISD::ADDC:
1741 Opc = AArch64ISD::ADDS;
1742 break;
1743 case ISD::SUBC:
1744 Opc = AArch64ISD::SUBS;
1745 break;
1746 case ISD::ADDE:
1747 Opc = AArch64ISD::ADCS;
1748 ExtraOp = true;
1749 break;
1750 case ISD::SUBE:
1751 Opc = AArch64ISD::SBCS;
1752 ExtraOp = true;
1753 break;
1754 }
1755
1756 if (!ExtraOp)
1757 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
1758 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
1759 Op.getOperand(2));
1760}
1761
1762static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
1763 // Let legalize expand this if it isn't a legal type yet.
1764 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
1765 return SDValue();
1766
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001767 SDLoc dl(Op);
Tim Northover3b0846e2014-05-24 12:50:23 +00001768 AArch64CC::CondCode CC;
1769 // The actual operation that sets the overflow or carry flag.
1770 SDValue Value, Overflow;
1771 std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
1772
1773 // We use 0 and 1 as false and true values.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001774 SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
1775 SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00001776
1777 // We use an inverted condition, because the conditional select is inverted
1778 // too. This will allow it to be selected to a single instruction:
1779 // CSINC Wd, WZR, WZR, invert(cond).
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001780 SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
1781 Overflow = DAG.getNode(AArch64ISD::CSEL, dl, MVT::i32, FVal, TVal,
Tim Northover3b0846e2014-05-24 12:50:23 +00001782 CCVal, Overflow);
1783
1784 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001785 return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
Tim Northover3b0846e2014-05-24 12:50:23 +00001786}
1787
1788// Prefetch operands are:
1789// 1: Address to prefetch
1790// 2: bool isWrite
1791// 3: int locality (0 = no locality ... 3 = extreme locality)
1792// 4: bool isDataCache
1793static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
1794 SDLoc DL(Op);
1795 unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
1796 unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
Yi Konge56de692014-08-05 12:46:47 +00001797 unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00001798
1799 bool IsStream = !Locality;
1800 // When the locality number is set
1801 if (Locality) {
1802 // The front-end should have filtered out the out-of-range values
1803 assert(Locality <= 3 && "Prefetch locality out-of-range");
1804 // The locality degree is the opposite of the cache speed.
1805 // Put the number the other way around.
1806 // The encoding starts at 0 for level 1
1807 Locality = 3 - Locality;
1808 }
1809
1810 // built the mask value encoding the expected behavior.
1811 unsigned PrfOp = (IsWrite << 4) | // Load/Store bit
Yi Konge56de692014-08-05 12:46:47 +00001812 (!IsData << 3) | // IsDataCache bit
Tim Northover3b0846e2014-05-24 12:50:23 +00001813 (Locality << 1) | // Cache level bits
1814 (unsigned)IsStream; // Stream bit
1815 return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001816 DAG.getConstant(PrfOp, DL, MVT::i32), Op.getOperand(1));
Tim Northover3b0846e2014-05-24 12:50:23 +00001817}
1818
1819SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
1820 SelectionDAG &DAG) const {
1821 assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
1822
1823 RTLIB::Libcall LC;
1824 LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
1825
1826 return LowerF128Call(Op, DAG, LC);
1827}
1828
1829SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
1830 SelectionDAG &DAG) const {
1831 if (Op.getOperand(0).getValueType() != MVT::f128) {
1832 // It's legal except when f128 is involved
1833 return Op;
1834 }
1835
1836 RTLIB::Libcall LC;
1837 LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
1838
1839 // FP_ROUND node has a second operand indicating whether it is known to be
1840 // precise. That doesn't take part in the LibCall so we can't directly use
1841 // LowerF128Call.
1842 SDValue SrcVal = Op.getOperand(0);
Craig Topper8fe40e02015-10-22 17:05:00 +00001843 return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
1844 SDLoc(Op)).first;
Tim Northover3b0846e2014-05-24 12:50:23 +00001845}
1846
1847static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
1848 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1849 // Any additional optimization in this function should be recorded
1850 // in the cost tables.
1851 EVT InVT = Op.getOperand(0).getValueType();
1852 EVT VT = Op.getValueType();
Pirama Arumuga Nainar1317d5f2015-12-10 17:16:49 +00001853 unsigned NumElts = InVT.getVectorNumElements();
1854
1855 // f16 vectors are promoted to f32 before a conversion.
1856 if (InVT.getVectorElementType() == MVT::f16) {
1857 MVT NewVT = MVT::getVectorVT(MVT::f32, NumElts);
1858 SDLoc dl(Op);
1859 return DAG.getNode(
1860 Op.getOpcode(), dl, Op.getValueType(),
1861 DAG.getNode(ISD::FP_EXTEND, dl, NewVT, Op.getOperand(0)));
1862 }
Tim Northover3b0846e2014-05-24 12:50:23 +00001863
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001864 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00001865 SDLoc dl(Op);
1866 SDValue Cv =
1867 DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
1868 Op.getOperand(0));
1869 return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001870 }
1871
1872 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00001873 SDLoc dl(Op);
Oliver Stannard89d15422014-08-27 16:16:04 +00001874 MVT ExtVT =
1875 MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
1876 VT.getVectorNumElements());
1877 SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
Tim Northover3b0846e2014-05-24 12:50:23 +00001878 return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
1879 }
1880
1881 // Type changing conversions are illegal.
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001882 return Op;
Tim Northover3b0846e2014-05-24 12:50:23 +00001883}
1884
1885SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
1886 SelectionDAG &DAG) const {
1887 if (Op.getOperand(0).getValueType().isVector())
1888 return LowerVectorFP_TO_INT(Op, DAG);
1889
Ahmed Bougacha1ffe7c72015-04-10 00:08:48 +00001890 // f16 conversions are promoted to f32.
1891 if (Op.getOperand(0).getValueType() == MVT::f16) {
1892 SDLoc dl(Op);
1893 return DAG.getNode(
1894 Op.getOpcode(), dl, Op.getValueType(),
1895 DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Op.getOperand(0)));
1896 }
1897
Tim Northover3b0846e2014-05-24 12:50:23 +00001898 if (Op.getOperand(0).getValueType() != MVT::f128) {
1899 // It's legal except when f128 is involved
1900 return Op;
1901 }
1902
1903 RTLIB::Libcall LC;
1904 if (Op.getOpcode() == ISD::FP_TO_SINT)
1905 LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
1906 else
1907 LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
1908
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00001909 SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
Craig Topper8fe40e02015-10-22 17:05:00 +00001910 return makeLibCall(DAG, LC, Op.getValueType(), Ops, false, SDLoc(Op)).first;
Tim Northover3b0846e2014-05-24 12:50:23 +00001911}
1912
1913static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
1914 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1915 // Any additional optimization in this function should be recorded
1916 // in the cost tables.
1917 EVT VT = Op.getValueType();
1918 SDLoc dl(Op);
1919 SDValue In = Op.getOperand(0);
1920 EVT InVT = In.getValueType();
1921
Tim Northoveref0d7602014-06-15 09:27:06 +00001922 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
1923 MVT CastVT =
1924 MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
1925 InVT.getVectorNumElements());
1926 In = DAG.getNode(Op.getOpcode(), dl, CastVT, In);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001927 return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0, dl));
Tim Northover3b0846e2014-05-24 12:50:23 +00001928 }
1929
Tim Northoveref0d7602014-06-15 09:27:06 +00001930 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
1931 unsigned CastOpc =
1932 Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1933 EVT CastVT = VT.changeVectorElementTypeToInteger();
1934 In = DAG.getNode(CastOpc, dl, CastVT, In);
1935 return DAG.getNode(Op.getOpcode(), dl, VT, In);
Tim Northover3b0846e2014-05-24 12:50:23 +00001936 }
1937
Tim Northoveref0d7602014-06-15 09:27:06 +00001938 return Op;
Tim Northover3b0846e2014-05-24 12:50:23 +00001939}
1940
1941SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
1942 SelectionDAG &DAG) const {
1943 if (Op.getValueType().isVector())
1944 return LowerVectorINT_TO_FP(Op, DAG);
1945
Ahmed Bougacha1ffe7c72015-04-10 00:08:48 +00001946 // f16 conversions are promoted to f32.
1947 if (Op.getValueType() == MVT::f16) {
1948 SDLoc dl(Op);
1949 return DAG.getNode(
1950 ISD::FP_ROUND, dl, MVT::f16,
1951 DAG.getNode(Op.getOpcode(), dl, MVT::f32, Op.getOperand(0)),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001952 DAG.getIntPtrConstant(0, dl));
Ahmed Bougacha1ffe7c72015-04-10 00:08:48 +00001953 }
1954
Tim Northover3b0846e2014-05-24 12:50:23 +00001955 // i128 conversions are libcalls.
1956 if (Op.getOperand(0).getValueType() == MVT::i128)
1957 return SDValue();
1958
1959 // Other conversions are legal, unless it's to the completely software-based
1960 // fp128.
1961 if (Op.getValueType() != MVT::f128)
1962 return Op;
1963
1964 RTLIB::Libcall LC;
1965 if (Op.getOpcode() == ISD::SINT_TO_FP)
1966 LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
1967 else
1968 LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
1969
1970 return LowerF128Call(Op, DAG, LC);
1971}
1972
1973SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
1974 SelectionDAG &DAG) const {
1975 // For iOS, we want to call an alternative entry point: __sincos_stret,
1976 // which returns the values in two S / D registers.
1977 SDLoc dl(Op);
1978 SDValue Arg = Op.getOperand(0);
1979 EVT ArgVT = Arg.getValueType();
1980 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1981
1982 ArgListTy Args;
1983 ArgListEntry Entry;
1984
1985 Entry.Node = Arg;
1986 Entry.Ty = ArgTy;
1987 Entry.isSExt = false;
1988 Entry.isZExt = false;
1989 Args.push_back(Entry);
1990
1991 const char *LibcallName =
1992 (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
Mehdi Amini44ede332015-07-09 02:09:04 +00001993 SDValue Callee =
1994 DAG.getExternalSymbol(LibcallName, getPointerTy(DAG.getDataLayout()));
Tim Northover3b0846e2014-05-24 12:50:23 +00001995
Reid Kleckner343c3952014-11-20 23:51:47 +00001996 StructType *RetTy = StructType::get(ArgTy, ArgTy, nullptr);
Tim Northover3b0846e2014-05-24 12:50:23 +00001997 TargetLowering::CallLoweringInfo CLI(DAG);
1998 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
Juergen Ributzka3bd03c72014-07-01 22:01:54 +00001999 .setCallee(CallingConv::Fast, RetTy, Callee, std::move(Args), 0);
Tim Northover3b0846e2014-05-24 12:50:23 +00002000
2001 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2002 return CallResult.first;
2003}
2004
Tim Northoverf8bfe212014-07-18 13:07:05 +00002005static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) {
2006 if (Op.getValueType() != MVT::f16)
2007 return SDValue();
2008
2009 assert(Op.getOperand(0).getValueType() == MVT::i16);
2010 SDLoc DL(Op);
2011
2012 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
2013 Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
2014 return SDValue(
2015 DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002016 DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
Tim Northoverf8bfe212014-07-18 13:07:05 +00002017 0);
2018}
2019
Chad Rosierd9d0f862014-10-08 02:31:24 +00002020static EVT getExtensionTo64Bits(const EVT &OrigVT) {
2021 if (OrigVT.getSizeInBits() >= 64)
2022 return OrigVT;
2023
2024 assert(OrigVT.isSimple() && "Expecting a simple value type");
2025
2026 MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
2027 switch (OrigSimpleTy) {
2028 default: llvm_unreachable("Unexpected Vector Type");
2029 case MVT::v2i8:
2030 case MVT::v2i16:
2031 return MVT::v2i32;
2032 case MVT::v4i8:
2033 return MVT::v4i16;
2034 }
2035}
2036
2037static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG,
2038 const EVT &OrigTy,
2039 const EVT &ExtTy,
2040 unsigned ExtOpcode) {
2041 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
2042 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
2043 // 64-bits we need to insert a new extension so that it will be 64-bits.
2044 assert(ExtTy.is128BitVector() && "Unexpected extension size");
2045 if (OrigTy.getSizeInBits() >= 64)
2046 return N;
2047
2048 // Must extend size to at least 64 bits to be used as an operand for VMULL.
2049 EVT NewVT = getExtensionTo64Bits(OrigTy);
2050
2051 return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
2052}
2053
2054static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
2055 bool isSigned) {
2056 EVT VT = N->getValueType(0);
2057
2058 if (N->getOpcode() != ISD::BUILD_VECTOR)
2059 return false;
2060
Pete Cooper3af9a252015-06-26 18:17:36 +00002061 for (const SDValue &Elt : N->op_values()) {
Chad Rosierd9d0f862014-10-08 02:31:24 +00002062 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
2063 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
2064 unsigned HalfSize = EltSize / 2;
2065 if (isSigned) {
2066 if (!isIntN(HalfSize, C->getSExtValue()))
2067 return false;
2068 } else {
2069 if (!isUIntN(HalfSize, C->getZExtValue()))
2070 return false;
2071 }
2072 continue;
2073 }
2074 return false;
2075 }
2076
2077 return true;
2078}
2079
2080static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) {
2081 if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
2082 return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG,
2083 N->getOperand(0)->getValueType(0),
2084 N->getValueType(0),
2085 N->getOpcode());
2086
2087 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
2088 EVT VT = N->getValueType(0);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002089 SDLoc dl(N);
Chad Rosierd9d0f862014-10-08 02:31:24 +00002090 unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
2091 unsigned NumElts = VT.getVectorNumElements();
2092 MVT TruncVT = MVT::getIntegerVT(EltSize);
2093 SmallVector<SDValue, 8> Ops;
2094 for (unsigned i = 0; i != NumElts; ++i) {
2095 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
2096 const APInt &CInt = C->getAPIntValue();
2097 // Element types smaller than 32 bits are not legal, so use i32 elements.
2098 // The values are implicitly truncated so sext vs. zext doesn't matter.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002099 Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
Chad Rosierd9d0f862014-10-08 02:31:24 +00002100 }
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002101 return DAG.getNode(ISD::BUILD_VECTOR, dl,
Chad Rosierd9d0f862014-10-08 02:31:24 +00002102 MVT::getVectorVT(TruncVT, NumElts), Ops);
2103}
2104
2105static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
2106 if (N->getOpcode() == ISD::SIGN_EXTEND)
2107 return true;
2108 if (isExtendedBUILD_VECTOR(N, DAG, true))
2109 return true;
2110 return false;
2111}
2112
2113static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
2114 if (N->getOpcode() == ISD::ZERO_EXTEND)
2115 return true;
2116 if (isExtendedBUILD_VECTOR(N, DAG, false))
2117 return true;
2118 return false;
2119}
2120
2121static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
2122 unsigned Opcode = N->getOpcode();
2123 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
2124 SDNode *N0 = N->getOperand(0).getNode();
2125 SDNode *N1 = N->getOperand(1).getNode();
2126 return N0->hasOneUse() && N1->hasOneUse() &&
2127 isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
2128 }
2129 return false;
2130}
2131
2132static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
2133 unsigned Opcode = N->getOpcode();
2134 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
2135 SDNode *N0 = N->getOperand(0).getNode();
2136 SDNode *N1 = N->getOperand(1).getNode();
2137 return N0->hasOneUse() && N1->hasOneUse() &&
2138 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
2139 }
2140 return false;
2141}
2142
2143static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
2144 // Multiplications are only custom-lowered for 128-bit vectors so that
2145 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
2146 EVT VT = Op.getValueType();
2147 assert(VT.is128BitVector() && VT.isInteger() &&
2148 "unexpected type for custom-lowering ISD::MUL");
2149 SDNode *N0 = Op.getOperand(0).getNode();
2150 SDNode *N1 = Op.getOperand(1).getNode();
2151 unsigned NewOpc = 0;
2152 bool isMLA = false;
2153 bool isN0SExt = isSignExtended(N0, DAG);
2154 bool isN1SExt = isSignExtended(N1, DAG);
2155 if (isN0SExt && isN1SExt)
2156 NewOpc = AArch64ISD::SMULL;
2157 else {
2158 bool isN0ZExt = isZeroExtended(N0, DAG);
2159 bool isN1ZExt = isZeroExtended(N1, DAG);
2160 if (isN0ZExt && isN1ZExt)
2161 NewOpc = AArch64ISD::UMULL;
2162 else if (isN1SExt || isN1ZExt) {
2163 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
2164 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
2165 if (isN1SExt && isAddSubSExt(N0, DAG)) {
2166 NewOpc = AArch64ISD::SMULL;
2167 isMLA = true;
2168 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
2169 NewOpc = AArch64ISD::UMULL;
2170 isMLA = true;
2171 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
2172 std::swap(N0, N1);
2173 NewOpc = AArch64ISD::UMULL;
2174 isMLA = true;
2175 }
2176 }
2177
2178 if (!NewOpc) {
2179 if (VT == MVT::v2i64)
2180 // Fall through to expand this. It is not legal.
2181 return SDValue();
2182 else
2183 // Other vector multiplications are legal.
2184 return Op;
2185 }
2186 }
2187
2188 // Legalize to a S/UMULL instruction
2189 SDLoc DL(Op);
2190 SDValue Op0;
2191 SDValue Op1 = skipExtensionForVectorMULL(N1, DAG);
2192 if (!isMLA) {
2193 Op0 = skipExtensionForVectorMULL(N0, DAG);
2194 assert(Op0.getValueType().is64BitVector() &&
2195 Op1.getValueType().is64BitVector() &&
2196 "unexpected types for extended operands to VMULL");
2197 return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
2198 }
2199 // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
2200 // isel lowering to take advantage of no-stall back to back s/umul + s/umla.
2201 // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
2202 SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG);
2203 SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG);
2204 EVT Op1VT = Op1.getValueType();
2205 return DAG.getNode(N0->getOpcode(), DL, VT,
2206 DAG.getNode(NewOpc, DL, VT,
2207 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
2208 DAG.getNode(NewOpc, DL, VT,
2209 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
2210}
Tim Northoverf8bfe212014-07-18 13:07:05 +00002211
Adhemerval Zanella7bc33192015-07-28 13:03:31 +00002212SDValue AArch64TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
2213 SelectionDAG &DAG) const {
2214 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2215 SDLoc dl(Op);
2216 switch (IntNo) {
2217 default: return SDValue(); // Don't custom lower most intrinsics.
2218 case Intrinsic::aarch64_thread_pointer: {
2219 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2220 return DAG.getNode(AArch64ISD::THREAD_POINTER, dl, PtrVT);
2221 }
Silviu Barangadb1ddb32015-08-26 11:11:14 +00002222 case Intrinsic::aarch64_neon_smax:
2223 return DAG.getNode(ISD::SMAX, dl, Op.getValueType(),
2224 Op.getOperand(1), Op.getOperand(2));
2225 case Intrinsic::aarch64_neon_umax:
2226 return DAG.getNode(ISD::UMAX, dl, Op.getValueType(),
2227 Op.getOperand(1), Op.getOperand(2));
2228 case Intrinsic::aarch64_neon_smin:
2229 return DAG.getNode(ISD::SMIN, dl, Op.getValueType(),
2230 Op.getOperand(1), Op.getOperand(2));
2231 case Intrinsic::aarch64_neon_umin:
2232 return DAG.getNode(ISD::UMIN, dl, Op.getValueType(),
2233 Op.getOperand(1), Op.getOperand(2));
Adhemerval Zanella7bc33192015-07-28 13:03:31 +00002234 }
2235}
2236
Tim Northover3b0846e2014-05-24 12:50:23 +00002237SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
2238 SelectionDAG &DAG) const {
2239 switch (Op.getOpcode()) {
2240 default:
2241 llvm_unreachable("unimplemented operand");
2242 return SDValue();
Tim Northoverf8bfe212014-07-18 13:07:05 +00002243 case ISD::BITCAST:
2244 return LowerBITCAST(Op, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00002245 case ISD::GlobalAddress:
2246 return LowerGlobalAddress(Op, DAG);
2247 case ISD::GlobalTLSAddress:
2248 return LowerGlobalTLSAddress(Op, DAG);
2249 case ISD::SETCC:
2250 return LowerSETCC(Op, DAG);
2251 case ISD::BR_CC:
2252 return LowerBR_CC(Op, DAG);
2253 case ISD::SELECT:
2254 return LowerSELECT(Op, DAG);
2255 case ISD::SELECT_CC:
2256 return LowerSELECT_CC(Op, DAG);
2257 case ISD::JumpTable:
2258 return LowerJumpTable(Op, DAG);
2259 case ISD::ConstantPool:
2260 return LowerConstantPool(Op, DAG);
2261 case ISD::BlockAddress:
2262 return LowerBlockAddress(Op, DAG);
2263 case ISD::VASTART:
2264 return LowerVASTART(Op, DAG);
2265 case ISD::VACOPY:
2266 return LowerVACOPY(Op, DAG);
2267 case ISD::VAARG:
2268 return LowerVAARG(Op, DAG);
2269 case ISD::ADDC:
2270 case ISD::ADDE:
2271 case ISD::SUBC:
2272 case ISD::SUBE:
2273 return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
2274 case ISD::SADDO:
2275 case ISD::UADDO:
2276 case ISD::SSUBO:
2277 case ISD::USUBO:
2278 case ISD::SMULO:
2279 case ISD::UMULO:
2280 return LowerXALUO(Op, DAG);
2281 case ISD::FADD:
2282 return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
2283 case ISD::FSUB:
2284 return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
2285 case ISD::FMUL:
2286 return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
2287 case ISD::FDIV:
2288 return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
2289 case ISD::FP_ROUND:
2290 return LowerFP_ROUND(Op, DAG);
2291 case ISD::FP_EXTEND:
2292 return LowerFP_EXTEND(Op, DAG);
2293 case ISD::FRAMEADDR:
2294 return LowerFRAMEADDR(Op, DAG);
2295 case ISD::RETURNADDR:
2296 return LowerRETURNADDR(Op, DAG);
2297 case ISD::INSERT_VECTOR_ELT:
2298 return LowerINSERT_VECTOR_ELT(Op, DAG);
2299 case ISD::EXTRACT_VECTOR_ELT:
2300 return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2301 case ISD::BUILD_VECTOR:
2302 return LowerBUILD_VECTOR(Op, DAG);
2303 case ISD::VECTOR_SHUFFLE:
2304 return LowerVECTOR_SHUFFLE(Op, DAG);
2305 case ISD::EXTRACT_SUBVECTOR:
2306 return LowerEXTRACT_SUBVECTOR(Op, DAG);
2307 case ISD::SRA:
2308 case ISD::SRL:
2309 case ISD::SHL:
2310 return LowerVectorSRA_SRL_SHL(Op, DAG);
2311 case ISD::SHL_PARTS:
2312 return LowerShiftLeftParts(Op, DAG);
2313 case ISD::SRL_PARTS:
2314 case ISD::SRA_PARTS:
2315 return LowerShiftRightParts(Op, DAG);
2316 case ISD::CTPOP:
2317 return LowerCTPOP(Op, DAG);
2318 case ISD::FCOPYSIGN:
2319 return LowerFCOPYSIGN(Op, DAG);
2320 case ISD::AND:
2321 return LowerVectorAND(Op, DAG);
2322 case ISD::OR:
2323 return LowerVectorOR(Op, DAG);
2324 case ISD::XOR:
2325 return LowerXOR(Op, DAG);
2326 case ISD::PREFETCH:
2327 return LowerPREFETCH(Op, DAG);
2328 case ISD::SINT_TO_FP:
2329 case ISD::UINT_TO_FP:
2330 return LowerINT_TO_FP(Op, DAG);
2331 case ISD::FP_TO_SINT:
2332 case ISD::FP_TO_UINT:
2333 return LowerFP_TO_INT(Op, DAG);
2334 case ISD::FSINCOS:
2335 return LowerFSINCOS(Op, DAG);
Chad Rosierd9d0f862014-10-08 02:31:24 +00002336 case ISD::MUL:
2337 return LowerMUL(Op, DAG);
Adhemerval Zanella7bc33192015-07-28 13:03:31 +00002338 case ISD::INTRINSIC_WO_CHAIN:
2339 return LowerINTRINSIC_WO_CHAIN(Op, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00002340 }
2341}
2342
2343/// getFunctionAlignment - Return the Log2 alignment of this function.
2344unsigned AArch64TargetLowering::getFunctionAlignment(const Function *F) const {
2345 return 2;
2346}
2347
2348//===----------------------------------------------------------------------===//
2349// Calling Convention Implementation
2350//===----------------------------------------------------------------------===//
2351
2352#include "AArch64GenCallingConv.inc"
2353
Robin Morisset039781e2014-08-29 21:53:01 +00002354/// Selects the correct CCAssignFn for a given CallingConvention value.
Tim Northover3b0846e2014-05-24 12:50:23 +00002355CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
2356 bool IsVarArg) const {
2357 switch (CC) {
2358 default:
2359 llvm_unreachable("Unsupported calling convention.");
2360 case CallingConv::WebKit_JS:
2361 return CC_AArch64_WebKit_JS;
Greg Fitzgeraldfa78d082015-01-19 17:40:05 +00002362 case CallingConv::GHC:
2363 return CC_AArch64_GHC;
Tim Northover3b0846e2014-05-24 12:50:23 +00002364 case CallingConv::C:
2365 case CallingConv::Fast:
2366 if (!Subtarget->isTargetDarwin())
2367 return CC_AArch64_AAPCS;
2368 return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS;
2369 }
2370}
2371
2372SDValue AArch64TargetLowering::LowerFormalArguments(
2373 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2374 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
2375 SmallVectorImpl<SDValue> &InVals) const {
2376 MachineFunction &MF = DAG.getMachineFunction();
2377 MachineFrameInfo *MFI = MF.getFrameInfo();
2378
2379 // Assign locations to all of the incoming arguments.
2380 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002381 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2382 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002383
2384 // At this point, Ins[].VT may already be promoted to i32. To correctly
2385 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2386 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2387 // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
2388 // we use a special version of AnalyzeFormalArguments to pass in ValVT and
2389 // LocVT.
2390 unsigned NumArgs = Ins.size();
2391 Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
2392 unsigned CurArgIdx = 0;
2393 for (unsigned i = 0; i != NumArgs; ++i) {
2394 MVT ValVT = Ins[i].VT;
Andrew Trick05938a52015-02-16 18:10:47 +00002395 if (Ins[i].isOrigArg()) {
2396 std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx);
2397 CurArgIdx = Ins[i].getOrigArgIndex();
Tim Northover3b0846e2014-05-24 12:50:23 +00002398
Andrew Trick05938a52015-02-16 18:10:47 +00002399 // Get type of the original argument.
Mehdi Amini44ede332015-07-09 02:09:04 +00002400 EVT ActualVT = getValueType(DAG.getDataLayout(), CurOrigArg->getType(),
2401 /*AllowUnknown*/ true);
Andrew Trick05938a52015-02-16 18:10:47 +00002402 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
2403 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
2404 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
2405 ValVT = MVT::i8;
2406 else if (ActualMVT == MVT::i16)
2407 ValVT = MVT::i16;
2408 }
Tim Northover3b0846e2014-05-24 12:50:23 +00002409 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
2410 bool Res =
Tim Northover47e003c2014-05-26 17:21:53 +00002411 AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
Tim Northover3b0846e2014-05-24 12:50:23 +00002412 assert(!Res && "Call operand has unhandled type");
2413 (void)Res;
2414 }
2415 assert(ArgLocs.size() == Ins.size());
2416 SmallVector<SDValue, 16> ArgValues;
2417 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2418 CCValAssign &VA = ArgLocs[i];
2419
2420 if (Ins[i].Flags.isByVal()) {
2421 // Byval is used for HFAs in the PCS, but the system should work in a
2422 // non-compliant manner for larger structs.
Mehdi Amini44ede332015-07-09 02:09:04 +00002423 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00002424 int Size = Ins[i].Flags.getByValSize();
2425 unsigned NumRegs = (Size + 7) / 8;
2426
2427 // FIXME: This works on big-endian for composite byvals, which are the common
2428 // case. It should also work for fundamental types too.
2429 unsigned FrameIdx =
2430 MFI->CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
Mehdi Amini44ede332015-07-09 02:09:04 +00002431 SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrVT);
Tim Northover3b0846e2014-05-24 12:50:23 +00002432 InVals.push_back(FrameIdxN);
2433
2434 continue;
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002435 }
2436
2437 if (VA.isRegLoc()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00002438 // Arguments stored in registers.
2439 EVT RegVT = VA.getLocVT();
2440
2441 SDValue ArgValue;
2442 const TargetRegisterClass *RC;
2443
2444 if (RegVT == MVT::i32)
2445 RC = &AArch64::GPR32RegClass;
2446 else if (RegVT == MVT::i64)
2447 RC = &AArch64::GPR64RegClass;
Oliver Stannard6eda6ff2014-07-11 13:33:46 +00002448 else if (RegVT == MVT::f16)
2449 RC = &AArch64::FPR16RegClass;
Tim Northover3b0846e2014-05-24 12:50:23 +00002450 else if (RegVT == MVT::f32)
2451 RC = &AArch64::FPR32RegClass;
2452 else if (RegVT == MVT::f64 || RegVT.is64BitVector())
2453 RC = &AArch64::FPR64RegClass;
2454 else if (RegVT == MVT::f128 || RegVT.is128BitVector())
2455 RC = &AArch64::FPR128RegClass;
2456 else
2457 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2458
2459 // Transform the arguments in physical registers into virtual ones.
2460 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2461 ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2462
2463 // If this is an 8, 16 or 32-bit value, it is really passed promoted
2464 // to 64 bits. Insert an assert[sz]ext to capture this, then
2465 // truncate to the right size.
2466 switch (VA.getLocInfo()) {
2467 default:
2468 llvm_unreachable("Unknown loc info!");
2469 case CCValAssign::Full:
2470 break;
2471 case CCValAssign::BCvt:
2472 ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
2473 break;
Tim Northover47e003c2014-05-26 17:21:53 +00002474 case CCValAssign::AExt:
Tim Northover3b0846e2014-05-24 12:50:23 +00002475 case CCValAssign::SExt:
Tim Northover3b0846e2014-05-24 12:50:23 +00002476 case CCValAssign::ZExt:
Tim Northover47e003c2014-05-26 17:21:53 +00002477 // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt
2478 // nodes after our lowering.
2479 assert(RegVT == Ins[i].VT && "incorrect register location selected");
Tim Northover3b0846e2014-05-24 12:50:23 +00002480 break;
2481 }
2482
2483 InVals.push_back(ArgValue);
2484
2485 } else { // VA.isRegLoc()
2486 assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
2487 unsigned ArgOffset = VA.getLocMemOffset();
Amara Emerson82da7d02014-08-15 14:29:57 +00002488 unsigned ArgSize = VA.getValVT().getSizeInBits() / 8;
Tim Northover3b0846e2014-05-24 12:50:23 +00002489
2490 uint32_t BEAlign = 0;
Tim Northover293d4142014-12-03 17:49:26 +00002491 if (!Subtarget->isLittleEndian() && ArgSize < 8 &&
2492 !Ins[i].Flags.isInConsecutiveRegs())
Tim Northover3b0846e2014-05-24 12:50:23 +00002493 BEAlign = 8 - ArgSize;
2494
2495 int FI = MFI->CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
2496
2497 // Create load nodes to retrieve arguments from the stack.
Mehdi Amini44ede332015-07-09 02:09:04 +00002498 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
Tim Northover3b0846e2014-05-24 12:50:23 +00002499 SDValue ArgValue;
2500
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002501 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
Tim Northover47e003c2014-05-26 17:21:53 +00002502 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002503 MVT MemVT = VA.getValVT();
2504
Tim Northover47e003c2014-05-26 17:21:53 +00002505 switch (VA.getLocInfo()) {
2506 default:
2507 break;
Tim Northover6890add2014-06-03 13:54:53 +00002508 case CCValAssign::BCvt:
2509 MemVT = VA.getLocVT();
2510 break;
Tim Northover47e003c2014-05-26 17:21:53 +00002511 case CCValAssign::SExt:
2512 ExtType = ISD::SEXTLOAD;
2513 break;
2514 case CCValAssign::ZExt:
2515 ExtType = ISD::ZEXTLOAD;
2516 break;
2517 case CCValAssign::AExt:
2518 ExtType = ISD::EXTLOAD;
2519 break;
Tim Northover3b0846e2014-05-24 12:50:23 +00002520 }
2521
Alex Lorenze40c8a22015-08-11 23:09:45 +00002522 ArgValue = DAG.getExtLoad(
2523 ExtType, DL, VA.getLocVT(), Chain, FIN,
2524 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
2525 MemVT, false, false, false, 0);
Tim Northover47e003c2014-05-26 17:21:53 +00002526
Tim Northover3b0846e2014-05-24 12:50:23 +00002527 InVals.push_back(ArgValue);
2528 }
2529 }
2530
2531 // varargs
2532 if (isVarArg) {
2533 if (!Subtarget->isTargetDarwin()) {
2534 // The AAPCS variadic function ABI is identical to the non-variadic
2535 // one. As a result there may be more arguments in registers and we should
2536 // save them for future reference.
2537 saveVarArgRegisters(CCInfo, DAG, DL, Chain);
2538 }
2539
2540 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
2541 // This will point to the next argument passed via stack.
2542 unsigned StackOffset = CCInfo.getNextStackOffset();
2543 // We currently pass all varargs at 8-byte alignment.
2544 StackOffset = ((StackOffset + 7) & ~7);
2545 AFI->setVarArgsStackIndex(MFI->CreateFixedObject(4, StackOffset, true));
2546 }
2547
2548 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2549 unsigned StackArgSize = CCInfo.getNextStackOffset();
2550 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2551 if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
2552 // This is a non-standard ABI so by fiat I say we're allowed to make full
2553 // use of the stack area to be popped, which must be aligned to 16 bytes in
2554 // any case:
2555 StackArgSize = RoundUpToAlignment(StackArgSize, 16);
2556
2557 // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
2558 // a multiple of 16.
2559 FuncInfo->setArgumentStackToRestore(StackArgSize);
2560
2561 // This realignment carries over to the available bytes below. Our own
2562 // callers will guarantee the space is free by giving an aligned value to
2563 // CALLSEQ_START.
2564 }
2565 // Even if we're not expected to free up the space, it's useful to know how
2566 // much is there while considering tail calls (because we can reuse it).
2567 FuncInfo->setBytesInStackArgArea(StackArgSize);
2568
2569 return Chain;
2570}
2571
2572void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
2573 SelectionDAG &DAG, SDLoc DL,
2574 SDValue &Chain) const {
2575 MachineFunction &MF = DAG.getMachineFunction();
2576 MachineFrameInfo *MFI = MF.getFrameInfo();
2577 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
Mehdi Amini44ede332015-07-09 02:09:04 +00002578 auto PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00002579
2580 SmallVector<SDValue, 8> MemOps;
2581
2582 static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
2583 AArch64::X3, AArch64::X4, AArch64::X5,
2584 AArch64::X6, AArch64::X7 };
2585 static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
Tim Northover3b6b7ca2015-02-21 02:11:17 +00002586 unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs);
Tim Northover3b0846e2014-05-24 12:50:23 +00002587
2588 unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
2589 int GPRIdx = 0;
2590 if (GPRSaveSize != 0) {
2591 GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
2592
Mehdi Amini44ede332015-07-09 02:09:04 +00002593 SDValue FIN = DAG.getFrameIndex(GPRIdx, PtrVT);
Tim Northover3b0846e2014-05-24 12:50:23 +00002594
2595 for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
2596 unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
2597 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
Alex Lorenze40c8a22015-08-11 23:09:45 +00002598 SDValue Store = DAG.getStore(
2599 Val.getValue(1), DL, Val, FIN,
2600 MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 8), false,
2601 false, 0);
Tim Northover3b0846e2014-05-24 12:50:23 +00002602 MemOps.push_back(Store);
Mehdi Amini44ede332015-07-09 02:09:04 +00002603 FIN =
2604 DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getConstant(8, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00002605 }
2606 }
2607 FuncInfo->setVarArgsGPRIndex(GPRIdx);
2608 FuncInfo->setVarArgsGPRSize(GPRSaveSize);
2609
2610 if (Subtarget->hasFPARMv8()) {
2611 static const MCPhysReg FPRArgRegs[] = {
2612 AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
2613 AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
2614 static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
Tim Northover3b6b7ca2015-02-21 02:11:17 +00002615 unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs);
Tim Northover3b0846e2014-05-24 12:50:23 +00002616
2617 unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
2618 int FPRIdx = 0;
2619 if (FPRSaveSize != 0) {
2620 FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
2621
Mehdi Amini44ede332015-07-09 02:09:04 +00002622 SDValue FIN = DAG.getFrameIndex(FPRIdx, PtrVT);
Tim Northover3b0846e2014-05-24 12:50:23 +00002623
2624 for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
2625 unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
2626 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
2627
Alex Lorenze40c8a22015-08-11 23:09:45 +00002628 SDValue Store = DAG.getStore(
2629 Val.getValue(1), DL, Val, FIN,
2630 MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 16),
2631 false, false, 0);
Tim Northover3b0846e2014-05-24 12:50:23 +00002632 MemOps.push_back(Store);
Mehdi Amini44ede332015-07-09 02:09:04 +00002633 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
2634 DAG.getConstant(16, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00002635 }
2636 }
2637 FuncInfo->setVarArgsFPRIndex(FPRIdx);
2638 FuncInfo->setVarArgsFPRSize(FPRSaveSize);
2639 }
2640
2641 if (!MemOps.empty()) {
2642 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
2643 }
2644}
2645
2646/// LowerCallResult - Lower the result values of a call into the
2647/// appropriate copies out of appropriate physical registers.
2648SDValue AArch64TargetLowering::LowerCallResult(
2649 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
2650 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
2651 SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
2652 SDValue ThisVal) const {
2653 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2654 ? RetCC_AArch64_WebKit_JS
2655 : RetCC_AArch64_AAPCS;
2656 // Assign locations to each value returned by this call.
2657 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002658 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2659 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002660 CCInfo.AnalyzeCallResult(Ins, RetCC);
2661
2662 // Copy all of the result registers out of their specified physreg.
2663 for (unsigned i = 0; i != RVLocs.size(); ++i) {
2664 CCValAssign VA = RVLocs[i];
2665
2666 // Pass 'this' value directly from the argument to return value, to avoid
2667 // reg unit interference
2668 if (i == 0 && isThisReturn) {
2669 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
2670 "unexpected return calling convention register assignment");
2671 InVals.push_back(ThisVal);
2672 continue;
2673 }
2674
2675 SDValue Val =
2676 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2677 Chain = Val.getValue(1);
2678 InFlag = Val.getValue(2);
2679
2680 switch (VA.getLocInfo()) {
2681 default:
2682 llvm_unreachable("Unknown loc info!");
2683 case CCValAssign::Full:
2684 break;
2685 case CCValAssign::BCvt:
2686 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2687 break;
2688 }
2689
2690 InVals.push_back(Val);
2691 }
2692
2693 return Chain;
2694}
2695
2696bool AArch64TargetLowering::isEligibleForTailCallOptimization(
2697 SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
2698 bool isCalleeStructRet, bool isCallerStructRet,
2699 const SmallVectorImpl<ISD::OutputArg> &Outs,
2700 const SmallVectorImpl<SDValue> &OutVals,
2701 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2702 // For CallingConv::C this function knows whether the ABI needs
2703 // changing. That's not true for other conventions so they will have to opt in
2704 // manually.
2705 if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
2706 return false;
2707
2708 const MachineFunction &MF = DAG.getMachineFunction();
2709 const Function *CallerF = MF.getFunction();
2710 CallingConv::ID CallerCC = CallerF->getCallingConv();
2711 bool CCMatch = CallerCC == CalleeCC;
2712
2713 // Byval parameters hand the function a pointer directly into the stack area
2714 // we want to reuse during a tail call. Working around this *is* possible (see
2715 // X86) but less efficient and uglier in LowerCall.
2716 for (Function::const_arg_iterator i = CallerF->arg_begin(),
2717 e = CallerF->arg_end();
2718 i != e; ++i)
2719 if (i->hasByValAttr())
2720 return false;
2721
2722 if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2723 if (IsTailCallConvention(CalleeCC) && CCMatch)
2724 return true;
2725 return false;
2726 }
2727
Oliver Stannard12993dd2014-08-18 12:42:15 +00002728 // Externally-defined functions with weak linkage should not be
2729 // tail-called on AArch64 when the OS does not support dynamic
2730 // pre-emption of symbols, as the AAELF spec requires normal calls
2731 // to undefined weak functions to be replaced with a NOP or jump to the
2732 // next instruction. The behaviour of branch instructions in this
2733 // situation (as used for tail calls) is implementation-defined, so we
2734 // cannot rely on the linker replacing the tail call with a return.
2735 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2736 const GlobalValue *GV = G->getGlobal();
Daniel Sandersc81f4502015-06-16 15:44:21 +00002737 const Triple &TT = getTargetMachine().getTargetTriple();
Saleem Abdulrasool67f72992015-01-03 21:35:00 +00002738 if (GV->hasExternalWeakLinkage() &&
2739 (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
Oliver Stannard12993dd2014-08-18 12:42:15 +00002740 return false;
2741 }
2742
Tim Northover3b0846e2014-05-24 12:50:23 +00002743 // Now we search for cases where we can use a tail call without changing the
2744 // ABI. Sibcall is used in some places (particularly gcc) to refer to this
2745 // concept.
2746
2747 // I want anyone implementing a new calling convention to think long and hard
2748 // about this assert.
2749 assert((!isVarArg || CalleeCC == CallingConv::C) &&
2750 "Unexpected variadic calling convention");
2751
2752 if (isVarArg && !Outs.empty()) {
2753 // At least two cases here: if caller is fastcc then we can't have any
2754 // memory arguments (we'd be expected to clean up the stack afterwards). If
2755 // caller is C then we could potentially use its argument area.
2756
2757 // FIXME: for now we take the most conservative of these in both cases:
2758 // disallow all variadic memory operands.
2759 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002760 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
2761 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002762
2763 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
Pete Cooper7be8f8f2015-08-03 19:04:32 +00002764 for (const CCValAssign &ArgLoc : ArgLocs)
2765 if (!ArgLoc.isRegLoc())
Tim Northover3b0846e2014-05-24 12:50:23 +00002766 return false;
2767 }
2768
2769 // If the calling conventions do not match, then we'd better make sure the
2770 // results are returned in the same way as what the caller expects.
2771 if (!CCMatch) {
2772 SmallVector<CCValAssign, 16> RVLocs1;
Eric Christopherb5217502014-08-06 18:45:26 +00002773 CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1,
2774 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002775 CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForCall(CalleeCC, isVarArg));
2776
2777 SmallVector<CCValAssign, 16> RVLocs2;
Eric Christopherb5217502014-08-06 18:45:26 +00002778 CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2,
2779 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002780 CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForCall(CallerCC, isVarArg));
2781
2782 if (RVLocs1.size() != RVLocs2.size())
2783 return false;
2784 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2785 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2786 return false;
2787 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2788 return false;
2789 if (RVLocs1[i].isRegLoc()) {
2790 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2791 return false;
2792 } else {
2793 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2794 return false;
2795 }
2796 }
2797 }
2798
2799 // Nothing more to check if the callee is taking no arguments
2800 if (Outs.empty())
2801 return true;
2802
2803 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002804 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
2805 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002806
2807 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2808
2809 const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2810
2811 // If the stack arguments for this call would fit into our own save area then
2812 // the call can be made tail.
2813 return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
2814}
2815
2816SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
2817 SelectionDAG &DAG,
2818 MachineFrameInfo *MFI,
2819 int ClobberedFI) const {
2820 SmallVector<SDValue, 8> ArgChains;
2821 int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
2822 int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
2823
2824 // Include the original chain at the beginning of the list. When this is
2825 // used by target LowerCall hooks, this helps legalize find the
2826 // CALLSEQ_BEGIN node.
2827 ArgChains.push_back(Chain);
2828
2829 // Add a chain value for each stack argument corresponding
2830 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
2831 UE = DAG.getEntryNode().getNode()->use_end();
2832 U != UE; ++U)
2833 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
2834 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
2835 if (FI->getIndex() < 0) {
2836 int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
2837 int64_t InLastByte = InFirstByte;
2838 InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
2839
2840 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
2841 (FirstByte <= InFirstByte && InFirstByte <= LastByte))
2842 ArgChains.push_back(SDValue(L, 1));
2843 }
2844
2845 // Build a tokenfactor for all the chains.
2846 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
2847}
2848
2849bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
2850 bool TailCallOpt) const {
2851 return CallCC == CallingConv::Fast && TailCallOpt;
2852}
2853
2854bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
2855 return CallCC == CallingConv::Fast;
2856}
2857
2858/// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
2859/// and add input and output parameter nodes.
2860SDValue
2861AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
2862 SmallVectorImpl<SDValue> &InVals) const {
2863 SelectionDAG &DAG = CLI.DAG;
2864 SDLoc &DL = CLI.DL;
2865 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2866 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2867 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2868 SDValue Chain = CLI.Chain;
2869 SDValue Callee = CLI.Callee;
2870 bool &IsTailCall = CLI.IsTailCall;
2871 CallingConv::ID CallConv = CLI.CallConv;
2872 bool IsVarArg = CLI.IsVarArg;
2873
2874 MachineFunction &MF = DAG.getMachineFunction();
2875 bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
2876 bool IsThisReturn = false;
2877
2878 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2879 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2880 bool IsSibCall = false;
2881
2882 if (IsTailCall) {
2883 // Check if it's really possible to do a tail call.
2884 IsTailCall = isEligibleForTailCallOptimization(
2885 Callee, CallConv, IsVarArg, IsStructRet,
2886 MF.getFunction()->hasStructRetAttr(), Outs, OutVals, Ins, DAG);
2887 if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
2888 report_fatal_error("failed to perform tail call elimination on a call "
2889 "site marked musttail");
2890
2891 // A sibling call is one where we're under the usual C ABI and not planning
2892 // to change that but can still do a tail call:
2893 if (!TailCallOpt && IsTailCall)
2894 IsSibCall = true;
2895
2896 if (IsTailCall)
2897 ++NumTailCalls;
2898 }
2899
2900 // Analyze operands of the call, assigning locations to each operand.
2901 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002902 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
2903 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002904
2905 if (IsVarArg) {
2906 // Handle fixed and variable vector arguments differently.
2907 // Variable vector arguments always go into memory.
2908 unsigned NumArgs = Outs.size();
2909
2910 for (unsigned i = 0; i != NumArgs; ++i) {
2911 MVT ArgVT = Outs[i].VT;
2912 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2913 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
2914 /*IsVarArg=*/ !Outs[i].IsFixed);
2915 bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2916 assert(!Res && "Call operand has unhandled type");
2917 (void)Res;
2918 }
2919 } else {
2920 // At this point, Outs[].VT may already be promoted to i32. To correctly
2921 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2922 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2923 // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
2924 // we use a special version of AnalyzeCallOperands to pass in ValVT and
2925 // LocVT.
2926 unsigned NumArgs = Outs.size();
2927 for (unsigned i = 0; i != NumArgs; ++i) {
2928 MVT ValVT = Outs[i].VT;
2929 // Get type of the original argument.
Mehdi Amini44ede332015-07-09 02:09:04 +00002930 EVT ActualVT = getValueType(DAG.getDataLayout(),
2931 CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
Tim Northover3b0846e2014-05-24 12:50:23 +00002932 /*AllowUnknown*/ true);
2933 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
2934 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2935 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
Tim Northover3b0846e2014-05-24 12:50:23 +00002936 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
Tim Northover47e003c2014-05-26 17:21:53 +00002937 ValVT = MVT::i8;
Tim Northover3b0846e2014-05-24 12:50:23 +00002938 else if (ActualMVT == MVT::i16)
Tim Northover47e003c2014-05-26 17:21:53 +00002939 ValVT = MVT::i16;
Tim Northover3b0846e2014-05-24 12:50:23 +00002940
2941 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
Tim Northover47e003c2014-05-26 17:21:53 +00002942 bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
Tim Northover3b0846e2014-05-24 12:50:23 +00002943 assert(!Res && "Call operand has unhandled type");
2944 (void)Res;
2945 }
2946 }
2947
2948 // Get a count of how many bytes are to be pushed on the stack.
2949 unsigned NumBytes = CCInfo.getNextStackOffset();
2950
2951 if (IsSibCall) {
2952 // Since we're not changing the ABI to make this a tail call, the memory
2953 // operands are already available in the caller's incoming argument space.
2954 NumBytes = 0;
2955 }
2956
2957 // FPDiff is the byte offset of the call's argument area from the callee's.
2958 // Stores to callee stack arguments will be placed in FixedStackSlots offset
2959 // by this amount for a tail call. In a sibling call it must be 0 because the
2960 // caller will deallocate the entire stack and the callee still expects its
2961 // arguments to begin at SP+0. Completely unused for non-tail calls.
2962 int FPDiff = 0;
2963
2964 if (IsTailCall && !IsSibCall) {
2965 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
2966
2967 // Since callee will pop argument stack as a tail call, we must keep the
2968 // popped size 16-byte aligned.
2969 NumBytes = RoundUpToAlignment(NumBytes, 16);
2970
2971 // FPDiff will be negative if this tail call requires more space than we
2972 // would automatically have in our incoming argument space. Positive if we
2973 // can actually shrink the stack.
2974 FPDiff = NumReusableBytes - NumBytes;
2975
2976 // The stack pointer must be 16-byte aligned at all times it's used for a
2977 // memory operation, which in practice means at *all* times and in
2978 // particular across call boundaries. Therefore our own arguments started at
2979 // a 16-byte aligned SP and the delta applied for the tail call should
2980 // satisfy the same constraint.
2981 assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
2982 }
2983
2984 // Adjust the stack pointer for the new arguments...
2985 // These operations are automatically eliminated by the prolog/epilog pass
2986 if (!IsSibCall)
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002987 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, DL,
2988 true),
2989 DL);
Tim Northover3b0846e2014-05-24 12:50:23 +00002990
Mehdi Amini44ede332015-07-09 02:09:04 +00002991 SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP,
2992 getPointerTy(DAG.getDataLayout()));
Tim Northover3b0846e2014-05-24 12:50:23 +00002993
2994 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2995 SmallVector<SDValue, 8> MemOpChains;
Mehdi Amini44ede332015-07-09 02:09:04 +00002996 auto PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00002997
2998 // Walk the register/memloc assignments, inserting copies/loads.
2999 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
3000 ++i, ++realArgIdx) {
3001 CCValAssign &VA = ArgLocs[i];
3002 SDValue Arg = OutVals[realArgIdx];
3003 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
3004
3005 // Promote the value if needed.
3006 switch (VA.getLocInfo()) {
3007 default:
3008 llvm_unreachable("Unknown loc info!");
3009 case CCValAssign::Full:
3010 break;
3011 case CCValAssign::SExt:
3012 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
3013 break;
3014 case CCValAssign::ZExt:
3015 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3016 break;
3017 case CCValAssign::AExt:
Tim Northover68ae5032014-05-26 17:22:07 +00003018 if (Outs[realArgIdx].ArgVT == MVT::i1) {
3019 // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
3020 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
3021 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
3022 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003023 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3024 break;
3025 case CCValAssign::BCvt:
3026 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3027 break;
3028 case CCValAssign::FPExt:
3029 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
3030 break;
3031 }
3032
3033 if (VA.isRegLoc()) {
3034 if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i64) {
3035 assert(VA.getLocVT() == MVT::i64 &&
3036 "unexpected calling convention register assignment");
3037 assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
3038 "unexpected use of 'returned'");
3039 IsThisReturn = true;
3040 }
3041 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3042 } else {
3043 assert(VA.isMemLoc());
3044
3045 SDValue DstAddr;
3046 MachinePointerInfo DstInfo;
3047
3048 // FIXME: This works on big-endian for composite byvals, which are the
3049 // common case. It should also work for fundamental types too.
3050 uint32_t BEAlign = 0;
3051 unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
Amara Emerson82da7d02014-08-15 14:29:57 +00003052 : VA.getValVT().getSizeInBits();
Tim Northover3b0846e2014-05-24 12:50:23 +00003053 OpSize = (OpSize + 7) / 8;
Tim Northover293d4142014-12-03 17:49:26 +00003054 if (!Subtarget->isLittleEndian() && !Flags.isByVal() &&
3055 !Flags.isInConsecutiveRegs()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00003056 if (OpSize < 8)
3057 BEAlign = 8 - OpSize;
3058 }
3059 unsigned LocMemOffset = VA.getLocMemOffset();
3060 int32_t Offset = LocMemOffset + BEAlign;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003061 SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
Mehdi Amini44ede332015-07-09 02:09:04 +00003062 PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
Tim Northover3b0846e2014-05-24 12:50:23 +00003063
3064 if (IsTailCall) {
3065 Offset = Offset + FPDiff;
3066 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
3067
Mehdi Amini44ede332015-07-09 02:09:04 +00003068 DstAddr = DAG.getFrameIndex(FI, PtrVT);
Alex Lorenze40c8a22015-08-11 23:09:45 +00003069 DstInfo =
3070 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
Tim Northover3b0846e2014-05-24 12:50:23 +00003071
3072 // Make sure any stack arguments overlapping with where we're storing
3073 // are loaded before this eventual operation. Otherwise they'll be
3074 // clobbered.
3075 Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
3076 } else {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003077 SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
Tim Northover3b0846e2014-05-24 12:50:23 +00003078
Mehdi Amini44ede332015-07-09 02:09:04 +00003079 DstAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
Alex Lorenze40c8a22015-08-11 23:09:45 +00003080 DstInfo = MachinePointerInfo::getStack(DAG.getMachineFunction(),
3081 LocMemOffset);
Tim Northover3b0846e2014-05-24 12:50:23 +00003082 }
3083
3084 if (Outs[i].Flags.isByVal()) {
3085 SDValue SizeNode =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003086 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00003087 SDValue Cpy = DAG.getMemcpy(
3088 Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
Krzysztof Parzyszeka46c36b2015-04-13 17:16:45 +00003089 /*isVol = */ false, /*AlwaysInline = */ false,
3090 /*isTailCall = */ false,
3091 DstInfo, MachinePointerInfo());
Tim Northover3b0846e2014-05-24 12:50:23 +00003092
3093 MemOpChains.push_back(Cpy);
3094 } else {
3095 // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
3096 // promoted to a legal register type i32, we should truncate Arg back to
3097 // i1/i8/i16.
Tim Northover6890add2014-06-03 13:54:53 +00003098 if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
3099 VA.getValVT() == MVT::i16)
3100 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
Tim Northover3b0846e2014-05-24 12:50:23 +00003101
3102 SDValue Store =
3103 DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, false, false, 0);
3104 MemOpChains.push_back(Store);
3105 }
3106 }
3107 }
3108
3109 if (!MemOpChains.empty())
3110 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3111
3112 // Build a sequence of copy-to-reg nodes chained together with token chain
3113 // and flag operands which copy the outgoing args into the appropriate regs.
3114 SDValue InFlag;
Pete Cooper7be8f8f2015-08-03 19:04:32 +00003115 for (auto &RegToPass : RegsToPass) {
3116 Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
3117 RegToPass.second, InFlag);
Tim Northover3b0846e2014-05-24 12:50:23 +00003118 InFlag = Chain.getValue(1);
3119 }
3120
3121 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3122 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3123 // node so that legalize doesn't hack it.
3124 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3125 Subtarget->isTargetMachO()) {
3126 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3127 const GlobalValue *GV = G->getGlobal();
3128 bool InternalLinkage = GV->hasInternalLinkage();
3129 if (InternalLinkage)
Mehdi Amini44ede332015-07-09 02:09:04 +00003130 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0);
Tim Northover3b0846e2014-05-24 12:50:23 +00003131 else {
Mehdi Amini44ede332015-07-09 02:09:04 +00003132 Callee =
3133 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_GOT);
3134 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
Tim Northover3b0846e2014-05-24 12:50:23 +00003135 }
3136 } else if (ExternalSymbolSDNode *S =
3137 dyn_cast<ExternalSymbolSDNode>(Callee)) {
3138 const char *Sym = S->getSymbol();
Mehdi Amini44ede332015-07-09 02:09:04 +00003139 Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, AArch64II::MO_GOT);
3140 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
Tim Northover3b0846e2014-05-24 12:50:23 +00003141 }
3142 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3143 const GlobalValue *GV = G->getGlobal();
Mehdi Amini44ede332015-07-09 02:09:04 +00003144 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0);
Tim Northover3b0846e2014-05-24 12:50:23 +00003145 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3146 const char *Sym = S->getSymbol();
Mehdi Amini44ede332015-07-09 02:09:04 +00003147 Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, 0);
Tim Northover3b0846e2014-05-24 12:50:23 +00003148 }
3149
3150 // We don't usually want to end the call-sequence here because we would tidy
3151 // the frame up *after* the call, however in the ABI-changing tail-call case
3152 // we've carefully laid out the parameters so that when sp is reset they'll be
3153 // in the correct location.
3154 if (IsTailCall && !IsSibCall) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003155 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
3156 DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
Tim Northover3b0846e2014-05-24 12:50:23 +00003157 InFlag = Chain.getValue(1);
3158 }
3159
3160 std::vector<SDValue> Ops;
3161 Ops.push_back(Chain);
3162 Ops.push_back(Callee);
3163
3164 if (IsTailCall) {
3165 // Each tail call may have to adjust the stack by a different amount, so
3166 // this information must travel along with the operation for eventual
3167 // consumption by emitEpilogue.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003168 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00003169 }
3170
3171 // Add argument registers to the end of the list so that they are known live
3172 // into the call.
Pete Cooper7be8f8f2015-08-03 19:04:32 +00003173 for (auto &RegToPass : RegsToPass)
3174 Ops.push_back(DAG.getRegister(RegToPass.first,
3175 RegToPass.second.getValueType()));
Tim Northover3b0846e2014-05-24 12:50:23 +00003176
3177 // Add a register mask operand representing the call-preserved registers.
3178 const uint32_t *Mask;
Eric Christopher905f12d2015-01-29 00:19:42 +00003179 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +00003180 if (IsThisReturn) {
3181 // For 'this' returns, use the X0-preserving mask if applicable
Eric Christopher9deb75d2015-03-11 22:42:13 +00003182 Mask = TRI->getThisReturnPreservedMask(MF, CallConv);
Tim Northover3b0846e2014-05-24 12:50:23 +00003183 if (!Mask) {
3184 IsThisReturn = false;
Eric Christopher9deb75d2015-03-11 22:42:13 +00003185 Mask = TRI->getCallPreservedMask(MF, CallConv);
Tim Northover3b0846e2014-05-24 12:50:23 +00003186 }
3187 } else
Eric Christopher9deb75d2015-03-11 22:42:13 +00003188 Mask = TRI->getCallPreservedMask(MF, CallConv);
Tim Northover3b0846e2014-05-24 12:50:23 +00003189
3190 assert(Mask && "Missing call preserved mask for calling convention");
3191 Ops.push_back(DAG.getRegisterMask(Mask));
3192
3193 if (InFlag.getNode())
3194 Ops.push_back(InFlag);
3195
3196 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3197
3198 // If we're doing a tall call, use a TC_RETURN here rather than an
3199 // actual call instruction.
Arnold Schwaighoferf54b73d2015-05-08 23:52:00 +00003200 if (IsTailCall) {
3201 MF.getFrameInfo()->setHasTailCall();
Tim Northover3b0846e2014-05-24 12:50:23 +00003202 return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
Arnold Schwaighoferf54b73d2015-05-08 23:52:00 +00003203 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003204
3205 // Returns a chain and a flag for retval copy to use.
3206 Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
3207 InFlag = Chain.getValue(1);
3208
3209 uint64_t CalleePopBytes = DoesCalleeRestoreStack(CallConv, TailCallOpt)
3210 ? RoundUpToAlignment(NumBytes, 16)
3211 : 0;
3212
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003213 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
3214 DAG.getIntPtrConstant(CalleePopBytes, DL, true),
Tim Northover3b0846e2014-05-24 12:50:23 +00003215 InFlag, DL);
3216 if (!Ins.empty())
3217 InFlag = Chain.getValue(1);
3218
3219 // Handle result values, copying them out of physregs into vregs that we
3220 // return.
3221 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3222 InVals, IsThisReturn,
3223 IsThisReturn ? OutVals[0] : SDValue());
3224}
3225
3226bool AArch64TargetLowering::CanLowerReturn(
3227 CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
3228 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
3229 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
3230 ? RetCC_AArch64_WebKit_JS
3231 : RetCC_AArch64_AAPCS;
3232 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00003233 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
Tim Northover3b0846e2014-05-24 12:50:23 +00003234 return CCInfo.CheckReturn(Outs, RetCC);
3235}
3236
3237SDValue
3238AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
3239 bool isVarArg,
3240 const SmallVectorImpl<ISD::OutputArg> &Outs,
3241 const SmallVectorImpl<SDValue> &OutVals,
3242 SDLoc DL, SelectionDAG &DAG) const {
3243 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
3244 ? RetCC_AArch64_WebKit_JS
3245 : RetCC_AArch64_AAPCS;
3246 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00003247 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
3248 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00003249 CCInfo.AnalyzeReturn(Outs, RetCC);
3250
3251 // Copy the result values into the output registers.
3252 SDValue Flag;
3253 SmallVector<SDValue, 4> RetOps(1, Chain);
3254 for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
3255 ++i, ++realRVLocIdx) {
3256 CCValAssign &VA = RVLocs[i];
3257 assert(VA.isRegLoc() && "Can only return in registers!");
3258 SDValue Arg = OutVals[realRVLocIdx];
3259
3260 switch (VA.getLocInfo()) {
3261 default:
3262 llvm_unreachable("Unknown loc info!");
3263 case CCValAssign::Full:
Tim Northover68ae5032014-05-26 17:22:07 +00003264 if (Outs[i].ArgVT == MVT::i1) {
3265 // AAPCS requires i1 to be zero-extended to i8 by the producer of the
3266 // value. This is strictly redundant on Darwin (which uses "zeroext
3267 // i1"), but will be optimised out before ISel.
3268 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
3269 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3270 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003271 break;
3272 case CCValAssign::BCvt:
3273 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3274 break;
3275 }
3276
3277 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
3278 Flag = Chain.getValue(1);
3279 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3280 }
3281
3282 RetOps[0] = Chain; // Update chain.
3283
3284 // Add the flag if we have it.
3285 if (Flag.getNode())
3286 RetOps.push_back(Flag);
3287
3288 return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
3289}
3290
3291//===----------------------------------------------------------------------===//
3292// Other Lowering Code
3293//===----------------------------------------------------------------------===//
3294
3295SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
3296 SelectionDAG &DAG) const {
Mehdi Amini44ede332015-07-09 02:09:04 +00003297 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00003298 SDLoc DL(Op);
Asiri Rathnayake369c0302014-09-10 13:54:38 +00003299 const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
3300 const GlobalValue *GV = GN->getGlobal();
Tim Northover3b0846e2014-05-24 12:50:23 +00003301 unsigned char OpFlags =
3302 Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
3303
3304 assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
3305 "unexpected offset in global node");
3306
3307 // This also catched the large code model case for Darwin.
3308 if ((OpFlags & AArch64II::MO_GOT) != 0) {
3309 SDValue GotAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
3310 // FIXME: Once remat is capable of dealing with instructions with register
3311 // operands, expand this into two nodes instead of using a wrapper node.
3312 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
3313 }
3314
Asiri Rathnayake369c0302014-09-10 13:54:38 +00003315 if ((OpFlags & AArch64II::MO_CONSTPOOL) != 0) {
3316 assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
3317 "use of MO_CONSTPOOL only supported on small model");
3318 SDValue Hi = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, AArch64II::MO_PAGE);
3319 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3320 unsigned char LoFlags = AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
3321 SDValue Lo = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, LoFlags);
3322 SDValue PoolAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
Alex Lorenze40c8a22015-08-11 23:09:45 +00003323 SDValue GlobalAddr = DAG.getLoad(
3324 PtrVT, DL, DAG.getEntryNode(), PoolAddr,
3325 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
3326 /*isVolatile=*/false,
3327 /*isNonTemporal=*/true,
3328 /*isInvariant=*/true, 8);
Asiri Rathnayake369c0302014-09-10 13:54:38 +00003329 if (GN->getOffset() != 0)
3330 return DAG.getNode(ISD::ADD, DL, PtrVT, GlobalAddr,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003331 DAG.getConstant(GN->getOffset(), DL, PtrVT));
Asiri Rathnayake369c0302014-09-10 13:54:38 +00003332 return GlobalAddr;
3333 }
3334
Tim Northover3b0846e2014-05-24 12:50:23 +00003335 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
3336 const unsigned char MO_NC = AArch64II::MO_NC;
3337 return DAG.getNode(
3338 AArch64ISD::WrapperLarge, DL, PtrVT,
3339 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G3),
3340 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
3341 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
3342 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
3343 } else {
3344 // Use ADRP/ADD or ADRP/LDR for everything else: the small model on ELF and
3345 // the only correct model on Darwin.
3346 SDValue Hi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3347 OpFlags | AArch64II::MO_PAGE);
3348 unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
3349 SDValue Lo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, LoFlags);
3350
3351 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3352 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3353 }
3354}
3355
3356/// \brief Convert a TLS address reference into the correct sequence of loads
3357/// and calls to compute the variable's address (for Darwin, currently) and
3358/// return an SDValue containing the final node.
3359
3360/// Darwin only has one TLS scheme which must be capable of dealing with the
3361/// fully general situation, in the worst case. This means:
3362/// + "extern __thread" declaration.
3363/// + Defined in a possibly unknown dynamic library.
3364///
3365/// The general system is that each __thread variable has a [3 x i64] descriptor
3366/// which contains information used by the runtime to calculate the address. The
3367/// only part of this the compiler needs to know about is the first xword, which
3368/// contains a function pointer that must be called with the address of the
3369/// entire descriptor in "x0".
3370///
3371/// Since this descriptor may be in a different unit, in general even the
3372/// descriptor must be accessed via an indirect load. The "ideal" code sequence
3373/// is:
3374/// adrp x0, _var@TLVPPAGE
3375/// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor
3376/// ldr x1, [x0] ; x1 contains 1st entry of descriptor,
3377/// ; the function pointer
3378/// blr x1 ; Uses descriptor address in x0
3379/// ; Address of _var is now in x0.
3380///
3381/// If the address of _var's descriptor *is* known to the linker, then it can
3382/// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
3383/// a slight efficiency gain.
3384SDValue
3385AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
3386 SelectionDAG &DAG) const {
3387 assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin");
3388
3389 SDLoc DL(Op);
Mehdi Amini44ede332015-07-09 02:09:04 +00003390 MVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00003391 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3392
3393 SDValue TLVPAddr =
3394 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3395 SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
3396
3397 // The first entry in the descriptor is a function pointer that we must call
3398 // to obtain the address of the variable.
3399 SDValue Chain = DAG.getEntryNode();
3400 SDValue FuncTLVGet =
Alex Lorenze40c8a22015-08-11 23:09:45 +00003401 DAG.getLoad(MVT::i64, DL, Chain, DescAddr,
3402 MachinePointerInfo::getGOT(DAG.getMachineFunction()), false,
3403 true, true, 8);
Tim Northover3b0846e2014-05-24 12:50:23 +00003404 Chain = FuncTLVGet.getValue(1);
3405
3406 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3407 MFI->setAdjustsStack(true);
3408
3409 // TLS calls preserve all registers except those that absolutely must be
3410 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
3411 // silly).
Eric Christopher6c901622015-01-28 03:51:33 +00003412 const uint32_t *Mask =
Eric Christopher905f12d2015-01-29 00:19:42 +00003413 Subtarget->getRegisterInfo()->getTLSCallPreservedMask();
Tim Northover3b0846e2014-05-24 12:50:23 +00003414
3415 // Finally, we can make the call. This is just a degenerate version of a
3416 // normal AArch64 call node: x0 takes the address of the descriptor, and
3417 // returns the address of the variable in this thread.
3418 Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
3419 Chain =
3420 DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
3421 Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
3422 DAG.getRegisterMask(Mask), Chain.getValue(1));
3423 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
3424}
3425
3426/// When accessing thread-local variables under either the general-dynamic or
3427/// local-dynamic system, we make a "TLS-descriptor" call. The variable will
3428/// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
Kristof Beylsaea84612015-03-04 09:12:08 +00003429/// is a function pointer to carry out the resolution.
Tim Northover3b0846e2014-05-24 12:50:23 +00003430///
Kristof Beylsaea84612015-03-04 09:12:08 +00003431/// The sequence is:
3432/// adrp x0, :tlsdesc:var
3433/// ldr x1, [x0, #:tlsdesc_lo12:var]
3434/// add x0, x0, #:tlsdesc_lo12:var
3435/// .tlsdesccall var
3436/// blr x1
3437/// (TPIDR_EL0 offset now in x0)
Tim Northover3b0846e2014-05-24 12:50:23 +00003438///
Kristof Beylsaea84612015-03-04 09:12:08 +00003439/// The above sequence must be produced unscheduled, to enable the linker to
3440/// optimize/relax this sequence.
3441/// Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the
3442/// above sequence, and expanded really late in the compilation flow, to ensure
3443/// the sequence is produced as per above.
3444SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr, SDLoc DL,
3445 SelectionDAG &DAG) const {
Mehdi Amini44ede332015-07-09 02:09:04 +00003446 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00003447
Kristof Beylsaea84612015-03-04 09:12:08 +00003448 SDValue Chain = DAG.getEntryNode();
Tim Northover3b0846e2014-05-24 12:50:23 +00003449 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Kristof Beylsaea84612015-03-04 09:12:08 +00003450
3451 SmallVector<SDValue, 2> Ops;
3452 Ops.push_back(Chain);
3453 Ops.push_back(SymAddr);
3454
3455 Chain = DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, Ops);
3456 SDValue Glue = Chain.getValue(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003457
3458 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
3459}
3460
3461SDValue
3462AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
3463 SelectionDAG &DAG) const {
3464 assert(Subtarget->isTargetELF() && "This function expects an ELF target");
3465 assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
3466 "ELF TLS only supported in small memory model");
Kristof Beylsaea84612015-03-04 09:12:08 +00003467 // Different choices can be made for the maximum size of the TLS area for a
3468 // module. For the small address model, the default TLS size is 16MiB and the
3469 // maximum TLS size is 4GiB.
3470 // FIXME: add -mtls-size command line option and make it control the 16MiB
3471 // vs. 4GiB code sequence generation.
Tim Northover3b0846e2014-05-24 12:50:23 +00003472 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3473
3474 TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +00003475
3476 if (DAG.getTarget().Options.EmulatedTLS)
3477 return LowerToTLSEmulatedModel(GA, DAG);
3478
Kristof Beylsaea84612015-03-04 09:12:08 +00003479 if (!EnableAArch64ELFLocalDynamicTLSGeneration) {
3480 if (Model == TLSModel::LocalDynamic)
3481 Model = TLSModel::GeneralDynamic;
3482 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003483
3484 SDValue TPOff;
Mehdi Amini44ede332015-07-09 02:09:04 +00003485 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00003486 SDLoc DL(Op);
3487 const GlobalValue *GV = GA->getGlobal();
3488
3489 SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
3490
3491 if (Model == TLSModel::LocalExec) {
3492 SDValue HiVar = DAG.getTargetGlobalAddress(
Kristof Beylsaea84612015-03-04 09:12:08 +00003493 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
Tim Northover3b0846e2014-05-24 12:50:23 +00003494 SDValue LoVar = DAG.getTargetGlobalAddress(
3495 GV, DL, PtrVT, 0,
Kristof Beylsaea84612015-03-04 09:12:08 +00003496 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
Tim Northover3b0846e2014-05-24 12:50:23 +00003497
Kristof Beylsaea84612015-03-04 09:12:08 +00003498 SDValue TPWithOff_lo =
3499 SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003500 HiVar,
3501 DAG.getTargetConstant(0, DL, MVT::i32)),
Kristof Beylsaea84612015-03-04 09:12:08 +00003502 0);
3503 SDValue TPWithOff =
3504 SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPWithOff_lo,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003505 LoVar,
3506 DAG.getTargetConstant(0, DL, MVT::i32)),
Kristof Beylsaea84612015-03-04 09:12:08 +00003507 0);
3508 return TPWithOff;
Tim Northover3b0846e2014-05-24 12:50:23 +00003509 } else if (Model == TLSModel::InitialExec) {
3510 TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3511 TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
3512 } else if (Model == TLSModel::LocalDynamic) {
3513 // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
3514 // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
3515 // the beginning of the module's TLS region, followed by a DTPREL offset
3516 // calculation.
3517
3518 // These accesses will need deduplicating if there's more than one.
3519 AArch64FunctionInfo *MFI =
3520 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
3521 MFI->incNumLocalDynamicTLSAccesses();
3522
Tim Northover3b0846e2014-05-24 12:50:23 +00003523 // The call needs a relocation too for linker relaxation. It doesn't make
3524 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3525 // the address.
3526 SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
3527 AArch64II::MO_TLS);
3528
3529 // Now we can calculate the offset from TPIDR_EL0 to this module's
3530 // thread-local area.
Kristof Beylsaea84612015-03-04 09:12:08 +00003531 TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00003532
3533 // Now use :dtprel_whatever: operations to calculate this variable's offset
3534 // in its thread-storage area.
3535 SDValue HiVar = DAG.getTargetGlobalAddress(
Kristof Beylsaea84612015-03-04 09:12:08 +00003536 GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
Tim Northover3b0846e2014-05-24 12:50:23 +00003537 SDValue LoVar = DAG.getTargetGlobalAddress(
3538 GV, DL, MVT::i64, 0,
Tim Northover3b0846e2014-05-24 12:50:23 +00003539 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3540
Kristof Beylsaea84612015-03-04 09:12:08 +00003541 TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003542 DAG.getTargetConstant(0, DL, MVT::i32)),
Kristof Beylsaea84612015-03-04 09:12:08 +00003543 0);
3544 TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003545 DAG.getTargetConstant(0, DL, MVT::i32)),
Kristof Beylsaea84612015-03-04 09:12:08 +00003546 0);
3547 } else if (Model == TLSModel::GeneralDynamic) {
Tim Northover3b0846e2014-05-24 12:50:23 +00003548 // The call needs a relocation too for linker relaxation. It doesn't make
3549 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3550 // the address.
3551 SDValue SymAddr =
3552 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3553
3554 // Finally we can make a call to calculate the offset from tpidr_el0.
Kristof Beylsaea84612015-03-04 09:12:08 +00003555 TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00003556 } else
3557 llvm_unreachable("Unsupported ELF TLS access model");
3558
3559 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
3560}
3561
3562SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
3563 SelectionDAG &DAG) const {
3564 if (Subtarget->isTargetDarwin())
3565 return LowerDarwinGlobalTLSAddress(Op, DAG);
3566 else if (Subtarget->isTargetELF())
3567 return LowerELFGlobalTLSAddress(Op, DAG);
3568
3569 llvm_unreachable("Unexpected platform trying to use TLS");
3570}
3571SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3572 SDValue Chain = Op.getOperand(0);
3573 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3574 SDValue LHS = Op.getOperand(2);
3575 SDValue RHS = Op.getOperand(3);
3576 SDValue Dest = Op.getOperand(4);
3577 SDLoc dl(Op);
3578
3579 // Handle f128 first, since lowering it will result in comparing the return
3580 // value of a libcall against zero, which is just what the rest of LowerBR_CC
3581 // is expecting to deal with.
3582 if (LHS.getValueType() == MVT::f128) {
3583 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3584
3585 // If softenSetCCOperands returned a scalar, we need to compare the result
3586 // against zero to select between true and false values.
3587 if (!RHS.getNode()) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003588 RHS = DAG.getConstant(0, dl, LHS.getValueType());
Tim Northover3b0846e2014-05-24 12:50:23 +00003589 CC = ISD::SETNE;
3590 }
3591 }
3592
3593 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
3594 // instruction.
3595 unsigned Opc = LHS.getOpcode();
Artyom Skrobov314ee042015-11-25 19:41:11 +00003596 if (LHS.getResNo() == 1 && isOneConstant(RHS) &&
Tim Northover3b0846e2014-05-24 12:50:23 +00003597 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3598 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
3599 assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
3600 "Unexpected condition code.");
3601 // Only lower legal XALUO ops.
3602 if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
3603 return SDValue();
3604
3605 // The actual operation with overflow check.
3606 AArch64CC::CondCode OFCC;
3607 SDValue Value, Overflow;
3608 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
3609
3610 if (CC == ISD::SETNE)
3611 OFCC = getInvertedCondCode(OFCC);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003612 SDValue CCVal = DAG.getConstant(OFCC, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003613
Ahmed Bougachadf956a22015-02-06 23:15:39 +00003614 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
3615 Overflow);
Tim Northover3b0846e2014-05-24 12:50:23 +00003616 }
3617
3618 if (LHS.getValueType().isInteger()) {
3619 assert((LHS.getValueType() == RHS.getValueType()) &&
3620 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3621
3622 // If the RHS of the comparison is zero, we can potentially fold this
3623 // to a specialized branch.
3624 const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
3625 if (RHSC && RHSC->getZExtValue() == 0) {
3626 if (CC == ISD::SETEQ) {
3627 // See if we can use a TBZ to fold in an AND as well.
3628 // TBZ has a smaller branch displacement than CBZ. If the offset is
3629 // out of bounds, a late MI-layer pass rewrites branches.
3630 // 403.gcc is an example that hits this case.
3631 if (LHS.getOpcode() == ISD::AND &&
3632 isa<ConstantSDNode>(LHS.getOperand(1)) &&
3633 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3634 SDValue Test = LHS.getOperand(0);
3635 uint64_t Mask = LHS.getConstantOperandVal(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003636 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003637 DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
3638 Dest);
Tim Northover3b0846e2014-05-24 12:50:23 +00003639 }
3640
3641 return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
3642 } else if (CC == ISD::SETNE) {
3643 // See if we can use a TBZ to fold in an AND as well.
3644 // TBZ has a smaller branch displacement than CBZ. If the offset is
3645 // out of bounds, a late MI-layer pass rewrites branches.
3646 // 403.gcc is an example that hits this case.
3647 if (LHS.getOpcode() == ISD::AND &&
3648 isa<ConstantSDNode>(LHS.getOperand(1)) &&
3649 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3650 SDValue Test = LHS.getOperand(0);
3651 uint64_t Mask = LHS.getConstantOperandVal(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003652 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003653 DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
3654 Dest);
Tim Northover3b0846e2014-05-24 12:50:23 +00003655 }
3656
3657 return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
Chad Rosier579c02c2014-08-01 14:48:56 +00003658 } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
3659 // Don't combine AND since emitComparison converts the AND to an ANDS
3660 // (a.k.a. TST) and the test in the test bit and branch instruction
3661 // becomes redundant. This would also increase register pressure.
3662 uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3663 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003664 DAG.getConstant(Mask, dl, MVT::i64), Dest);
Tim Northover3b0846e2014-05-24 12:50:23 +00003665 }
3666 }
Chad Rosier579c02c2014-08-01 14:48:56 +00003667 if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
3668 LHS.getOpcode() != ISD::AND) {
3669 // Don't combine AND since emitComparison converts the AND to an ANDS
3670 // (a.k.a. TST) and the test in the test bit and branch instruction
3671 // becomes redundant. This would also increase register pressure.
3672 uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3673 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003674 DAG.getConstant(Mask, dl, MVT::i64), Dest);
Chad Rosier579c02c2014-08-01 14:48:56 +00003675 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003676
3677 SDValue CCVal;
3678 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3679 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
3680 Cmp);
3681 }
3682
3683 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3684
3685 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
3686 // clean. Some of them require two branches to implement.
3687 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3688 AArch64CC::CondCode CC1, CC2;
3689 changeFPCCToAArch64CC(CC, CC1, CC2);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003690 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003691 SDValue BR1 =
3692 DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
3693 if (CC2 != AArch64CC::AL) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003694 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003695 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
3696 Cmp);
3697 }
3698
3699 return BR1;
3700}
3701
3702SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
3703 SelectionDAG &DAG) const {
3704 EVT VT = Op.getValueType();
3705 SDLoc DL(Op);
3706
3707 SDValue In1 = Op.getOperand(0);
3708 SDValue In2 = Op.getOperand(1);
3709 EVT SrcVT = In2.getValueType();
Ahmed Bougacha2a97b1b2015-08-13 01:13:56 +00003710
3711 if (SrcVT.bitsLT(VT))
3712 In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
3713 else if (SrcVT.bitsGT(VT))
3714 In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0, DL));
Tim Northover3b0846e2014-05-24 12:50:23 +00003715
3716 EVT VecVT;
3717 EVT EltVT;
Benjamin Kramer5fbfe2f2015-02-28 13:20:15 +00003718 uint64_t EltMask;
3719 SDValue VecVal1, VecVal2;
Tim Northover3b0846e2014-05-24 12:50:23 +00003720 if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
3721 EltVT = MVT::i32;
Ahmed Bougachab0ae36f2015-08-04 00:42:34 +00003722 VecVT = (VT == MVT::v2f32 ? MVT::v2i32 : MVT::v4i32);
Benjamin Kramer5fbfe2f2015-02-28 13:20:15 +00003723 EltMask = 0x80000000ULL;
Tim Northover3b0846e2014-05-24 12:50:23 +00003724
3725 if (!VT.isVector()) {
3726 VecVal1 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3727 DAG.getUNDEF(VecVT), In1);
3728 VecVal2 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3729 DAG.getUNDEF(VecVT), In2);
3730 } else {
3731 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3732 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3733 }
3734 } else if (VT == MVT::f64 || VT == MVT::v2f64) {
3735 EltVT = MVT::i64;
3736 VecVT = MVT::v2i64;
3737
Eric Christopher572e03a2015-06-19 01:53:21 +00003738 // We want to materialize a mask with the high bit set, but the AdvSIMD
Tim Northover3b0846e2014-05-24 12:50:23 +00003739 // immediate moves cannot materialize that in a single instruction for
3740 // 64-bit elements. Instead, materialize zero and then negate it.
Benjamin Kramer5fbfe2f2015-02-28 13:20:15 +00003741 EltMask = 0;
Tim Northover3b0846e2014-05-24 12:50:23 +00003742
3743 if (!VT.isVector()) {
3744 VecVal1 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3745 DAG.getUNDEF(VecVT), In1);
3746 VecVal2 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3747 DAG.getUNDEF(VecVT), In2);
3748 } else {
3749 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3750 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3751 }
3752 } else {
3753 llvm_unreachable("Invalid type for copysign!");
3754 }
3755
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003756 SDValue BuildVec = DAG.getConstant(EltMask, DL, VecVT);
Tim Northover3b0846e2014-05-24 12:50:23 +00003757
3758 // If we couldn't materialize the mask above, then the mask vector will be
3759 // the zero vector, and we need to negate it here.
3760 if (VT == MVT::f64 || VT == MVT::v2f64) {
3761 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
3762 BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
3763 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
3764 }
3765
3766 SDValue Sel =
3767 DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
3768
3769 if (VT == MVT::f32)
3770 return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
3771 else if (VT == MVT::f64)
3772 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
3773 else
3774 return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
3775}
3776
3777SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
Duncan P. N. Exon Smith003bb7d2015-02-14 02:09:06 +00003778 if (DAG.getMachineFunction().getFunction()->hasFnAttribute(
3779 Attribute::NoImplicitFloat))
Tim Northover3b0846e2014-05-24 12:50:23 +00003780 return SDValue();
3781
Weiming Zhao7a2d1562014-11-19 00:29:14 +00003782 if (!Subtarget->hasNEON())
3783 return SDValue();
3784
Tim Northover3b0846e2014-05-24 12:50:23 +00003785 // While there is no integer popcount instruction, it can
3786 // be more efficiently lowered to the following sequence that uses
3787 // AdvSIMD registers/instructions as long as the copies to/from
3788 // the AdvSIMD registers are cheap.
3789 // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd
3790 // CNT V0.8B, V0.8B // 8xbyte pop-counts
3791 // ADDV B0, V0.8B // sum 8xbyte pop-counts
3792 // UMOV X0, V0.B[0] // copy byte result back to integer reg
3793 SDValue Val = Op.getOperand(0);
3794 SDLoc DL(Op);
3795 EVT VT = Op.getValueType();
Tim Northover3b0846e2014-05-24 12:50:23 +00003796
Hao Liue0335d72015-01-30 02:13:53 +00003797 if (VT == MVT::i32)
3798 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
3799 Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
Tim Northover3b0846e2014-05-24 12:50:23 +00003800
Hao Liue0335d72015-01-30 02:13:53 +00003801 SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val);
Tim Northover3b0846e2014-05-24 12:50:23 +00003802 SDValue UaddLV = DAG.getNode(
3803 ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003804 DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop);
Tim Northover3b0846e2014-05-24 12:50:23 +00003805
3806 if (VT == MVT::i64)
3807 UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
3808 return UaddLV;
3809}
3810
3811SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3812
3813 if (Op.getValueType().isVector())
3814 return LowerVSETCC(Op, DAG);
3815
3816 SDValue LHS = Op.getOperand(0);
3817 SDValue RHS = Op.getOperand(1);
3818 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3819 SDLoc dl(Op);
3820
3821 // We chose ZeroOrOneBooleanContents, so use zero and one.
3822 EVT VT = Op.getValueType();
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003823 SDValue TVal = DAG.getConstant(1, dl, VT);
3824 SDValue FVal = DAG.getConstant(0, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00003825
3826 // Handle f128 first, since one possible outcome is a normal integer
3827 // comparison which gets picked up by the next if statement.
3828 if (LHS.getValueType() == MVT::f128) {
3829 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3830
3831 // If softenSetCCOperands returned a scalar, use it.
3832 if (!RHS.getNode()) {
3833 assert(LHS.getValueType() == Op.getValueType() &&
3834 "Unexpected setcc expansion!");
3835 return LHS;
3836 }
3837 }
3838
3839 if (LHS.getValueType().isInteger()) {
3840 SDValue CCVal;
3841 SDValue Cmp =
3842 getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
3843
3844 // Note that we inverted the condition above, so we reverse the order of
3845 // the true and false operands here. This will allow the setcc to be
3846 // matched to a single CSINC instruction.
3847 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
3848 }
3849
3850 // Now we know we're dealing with FP values.
3851 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3852
3853 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
3854 // and do the comparison.
3855 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3856
3857 AArch64CC::CondCode CC1, CC2;
3858 changeFPCCToAArch64CC(CC, CC1, CC2);
3859 if (CC2 == AArch64CC::AL) {
3860 changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003861 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003862
3863 // Note that we inverted the condition above, so we reverse the order of
3864 // the true and false operands here. This will allow the setcc to be
3865 // matched to a single CSINC instruction.
3866 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
3867 } else {
3868 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
3869 // totally clean. Some of them require two CSELs to implement. As is in
3870 // this case, we emit the first CSEL and then emit a second using the output
3871 // of the first as the RHS. We're effectively OR'ing the two CC's together.
3872
3873 // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003874 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003875 SDValue CS1 =
3876 DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3877
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003878 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003879 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3880 }
3881}
3882
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00003883SDValue AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC, SDValue LHS,
3884 SDValue RHS, SDValue TVal,
3885 SDValue FVal, SDLoc dl,
Tim Northover3b0846e2014-05-24 12:50:23 +00003886 SelectionDAG &DAG) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00003887 // Handle f128 first, because it will result in a comparison of some RTLIB
3888 // call result against zero.
3889 if (LHS.getValueType() == MVT::f128) {
3890 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3891
3892 // If softenSetCCOperands returned a scalar, we need to compare the result
3893 // against zero to select between true and false values.
3894 if (!RHS.getNode()) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003895 RHS = DAG.getConstant(0, dl, LHS.getValueType());
Tim Northover3b0846e2014-05-24 12:50:23 +00003896 CC = ISD::SETNE;
3897 }
3898 }
3899
Ahmed Bougacha88ddeae2015-11-17 16:45:40 +00003900 // Also handle f16, for which we need to do a f32 comparison.
3901 if (LHS.getValueType() == MVT::f16) {
3902 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
3903 RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
3904 }
3905
3906 // Next, handle integers.
Tim Northover3b0846e2014-05-24 12:50:23 +00003907 if (LHS.getValueType().isInteger()) {
3908 assert((LHS.getValueType() == RHS.getValueType()) &&
3909 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3910
3911 unsigned Opcode = AArch64ISD::CSEL;
3912
3913 // If both the TVal and the FVal are constants, see if we can swap them in
3914 // order to for a CSINV or CSINC out of them.
3915 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
3916 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
3917
3918 if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
3919 std::swap(TVal, FVal);
3920 std::swap(CTVal, CFVal);
3921 CC = ISD::getSetCCInverse(CC, true);
3922 } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
3923 std::swap(TVal, FVal);
3924 std::swap(CTVal, CFVal);
3925 CC = ISD::getSetCCInverse(CC, true);
3926 } else if (TVal.getOpcode() == ISD::XOR) {
3927 // If TVal is a NOT we want to swap TVal and FVal so that we can match
3928 // with a CSINV rather than a CSEL.
Artyom Skrobov314ee042015-11-25 19:41:11 +00003929 if (isAllOnesConstant(TVal.getOperand(1))) {
Tim Northover3b0846e2014-05-24 12:50:23 +00003930 std::swap(TVal, FVal);
3931 std::swap(CTVal, CFVal);
3932 CC = ISD::getSetCCInverse(CC, true);
3933 }
3934 } else if (TVal.getOpcode() == ISD::SUB) {
3935 // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
3936 // that we can match with a CSNEG rather than a CSEL.
Artyom Skrobov314ee042015-11-25 19:41:11 +00003937 if (isNullConstant(TVal.getOperand(0))) {
Tim Northover3b0846e2014-05-24 12:50:23 +00003938 std::swap(TVal, FVal);
3939 std::swap(CTVal, CFVal);
3940 CC = ISD::getSetCCInverse(CC, true);
3941 }
3942 } else if (CTVal && CFVal) {
3943 const int64_t TrueVal = CTVal->getSExtValue();
3944 const int64_t FalseVal = CFVal->getSExtValue();
3945 bool Swap = false;
3946
3947 // If both TVal and FVal are constants, see if FVal is the
3948 // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
3949 // instead of a CSEL in that case.
3950 if (TrueVal == ~FalseVal) {
3951 Opcode = AArch64ISD::CSINV;
3952 } else if (TrueVal == -FalseVal) {
3953 Opcode = AArch64ISD::CSNEG;
3954 } else if (TVal.getValueType() == MVT::i32) {
3955 // If our operands are only 32-bit wide, make sure we use 32-bit
3956 // arithmetic for the check whether we can use CSINC. This ensures that
3957 // the addition in the check will wrap around properly in case there is
3958 // an overflow (which would not be the case if we do the check with
3959 // 64-bit arithmetic).
3960 const uint32_t TrueVal32 = CTVal->getZExtValue();
3961 const uint32_t FalseVal32 = CFVal->getZExtValue();
3962
3963 if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
3964 Opcode = AArch64ISD::CSINC;
3965
3966 if (TrueVal32 > FalseVal32) {
3967 Swap = true;
3968 }
3969 }
3970 // 64-bit check whether we can use CSINC.
3971 } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
3972 Opcode = AArch64ISD::CSINC;
3973
3974 if (TrueVal > FalseVal) {
3975 Swap = true;
3976 }
3977 }
3978
3979 // Swap TVal and FVal if necessary.
3980 if (Swap) {
3981 std::swap(TVal, FVal);
3982 std::swap(CTVal, CFVal);
3983 CC = ISD::getSetCCInverse(CC, true);
3984 }
3985
3986 if (Opcode != AArch64ISD::CSEL) {
3987 // Drop FVal since we can get its value by simply inverting/negating
3988 // TVal.
3989 FVal = TVal;
3990 }
3991 }
3992
3993 SDValue CCVal;
3994 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3995
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00003996 EVT VT = TVal.getValueType();
Tim Northover3b0846e2014-05-24 12:50:23 +00003997 return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
3998 }
3999
4000 // Now we know we're dealing with FP values.
4001 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
4002 assert(LHS.getValueType() == RHS.getValueType());
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00004003 EVT VT = TVal.getValueType();
Tim Northover3b0846e2014-05-24 12:50:23 +00004004 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
4005
4006 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
4007 // clean. Some of them require two CSELs to implement.
4008 AArch64CC::CondCode CC1, CC2;
4009 changeFPCCToAArch64CC(CC, CC1, CC2);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004010 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00004011 SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
4012
4013 // If we need a second CSEL, emit it, using the output of the first as the
4014 // RHS. We're effectively OR'ing the two CC's together.
4015 if (CC2 != AArch64CC::AL) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004016 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00004017 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
4018 }
4019
4020 // Otherwise, return the output of the first CSEL.
4021 return CS1;
4022}
4023
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00004024SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
4025 SelectionDAG &DAG) const {
4026 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4027 SDValue LHS = Op.getOperand(0);
4028 SDValue RHS = Op.getOperand(1);
4029 SDValue TVal = Op.getOperand(2);
4030 SDValue FVal = Op.getOperand(3);
4031 SDLoc DL(Op);
4032 return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
4033}
4034
4035SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
4036 SelectionDAG &DAG) const {
4037 SDValue CCVal = Op->getOperand(0);
4038 SDValue TVal = Op->getOperand(1);
4039 SDValue FVal = Op->getOperand(2);
4040 SDLoc DL(Op);
4041
4042 unsigned Opc = CCVal.getOpcode();
4043 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
4044 // instruction.
4045 if (CCVal.getResNo() == 1 &&
4046 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4047 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
4048 // Only lower legal XALUO ops.
4049 if (!DAG.getTargetLoweringInfo().isTypeLegal(CCVal->getValueType(0)))
4050 return SDValue();
4051
4052 AArch64CC::CondCode OFCC;
4053 SDValue Value, Overflow;
4054 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CCVal.getValue(0), DAG);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004055 SDValue CCVal = DAG.getConstant(OFCC, DL, MVT::i32);
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00004056
4057 return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
4058 CCVal, Overflow);
4059 }
4060
4061 // Lower it the same way as we would lower a SELECT_CC node.
4062 ISD::CondCode CC;
4063 SDValue LHS, RHS;
4064 if (CCVal.getOpcode() == ISD::SETCC) {
4065 LHS = CCVal.getOperand(0);
4066 RHS = CCVal.getOperand(1);
4067 CC = cast<CondCodeSDNode>(CCVal->getOperand(2))->get();
4068 } else {
4069 LHS = CCVal;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004070 RHS = DAG.getConstant(0, DL, CCVal.getValueType());
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00004071 CC = ISD::SETNE;
4072 }
4073 return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
4074}
4075
Tim Northover3b0846e2014-05-24 12:50:23 +00004076SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
4077 SelectionDAG &DAG) const {
4078 // Jump table entries as PC relative offsets. No additional tweaking
4079 // is necessary here. Just get the address of the jump table.
4080 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
Mehdi Amini44ede332015-07-09 02:09:04 +00004081 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00004082 SDLoc DL(Op);
4083
4084 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
4085 !Subtarget->isTargetMachO()) {
4086 const unsigned char MO_NC = AArch64II::MO_NC;
4087 return DAG.getNode(
4088 AArch64ISD::WrapperLarge, DL, PtrVT,
4089 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G3),
4090 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G2 | MO_NC),
4091 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G1 | MO_NC),
4092 DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
4093 AArch64II::MO_G0 | MO_NC));
4094 }
4095
4096 SDValue Hi =
4097 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_PAGE);
4098 SDValue Lo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
4099 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4100 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
4101 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
4102}
4103
4104SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
4105 SelectionDAG &DAG) const {
4106 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
Mehdi Amini44ede332015-07-09 02:09:04 +00004107 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00004108 SDLoc DL(Op);
4109
4110 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
4111 // Use the GOT for the large code model on iOS.
4112 if (Subtarget->isTargetMachO()) {
4113 SDValue GotAddr = DAG.getTargetConstantPool(
4114 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
4115 AArch64II::MO_GOT);
4116 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
4117 }
4118
4119 const unsigned char MO_NC = AArch64II::MO_NC;
4120 return DAG.getNode(
4121 AArch64ISD::WrapperLarge, DL, PtrVT,
4122 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4123 CP->getOffset(), AArch64II::MO_G3),
4124 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4125 CP->getOffset(), AArch64II::MO_G2 | MO_NC),
4126 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4127 CP->getOffset(), AArch64II::MO_G1 | MO_NC),
4128 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4129 CP->getOffset(), AArch64II::MO_G0 | MO_NC));
4130 } else {
4131 // Use ADRP/ADD or ADRP/LDR for everything else: the small memory model on
4132 // ELF, the only valid one on Darwin.
4133 SDValue Hi =
4134 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4135 CP->getOffset(), AArch64II::MO_PAGE);
4136 SDValue Lo = DAG.getTargetConstantPool(
4137 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
4138 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4139
4140 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
4141 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
4142 }
4143}
4144
4145SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
4146 SelectionDAG &DAG) const {
4147 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
Mehdi Amini44ede332015-07-09 02:09:04 +00004148 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00004149 SDLoc DL(Op);
4150 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
4151 !Subtarget->isTargetMachO()) {
4152 const unsigned char MO_NC = AArch64II::MO_NC;
4153 return DAG.getNode(
4154 AArch64ISD::WrapperLarge, DL, PtrVT,
4155 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G3),
4156 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
4157 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
4158 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
4159 } else {
4160 SDValue Hi = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGE);
4161 SDValue Lo = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGEOFF |
4162 AArch64II::MO_NC);
4163 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
4164 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
4165 }
4166}
4167
4168SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
4169 SelectionDAG &DAG) const {
4170 AArch64FunctionInfo *FuncInfo =
4171 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
4172
4173 SDLoc DL(Op);
Mehdi Amini44ede332015-07-09 02:09:04 +00004174 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(),
4175 getPointerTy(DAG.getDataLayout()));
Tim Northover3b0846e2014-05-24 12:50:23 +00004176 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4177 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
4178 MachinePointerInfo(SV), false, false, 0);
4179}
4180
4181SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
4182 SelectionDAG &DAG) const {
4183 // The layout of the va_list struct is specified in the AArch64 Procedure Call
4184 // Standard, section B.3.
4185 MachineFunction &MF = DAG.getMachineFunction();
4186 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
Mehdi Amini44ede332015-07-09 02:09:04 +00004187 auto PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00004188 SDLoc DL(Op);
4189
4190 SDValue Chain = Op.getOperand(0);
4191 SDValue VAList = Op.getOperand(1);
4192 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4193 SmallVector<SDValue, 4> MemOps;
4194
4195 // void *__stack at offset 0
Mehdi Amini44ede332015-07-09 02:09:04 +00004196 SDValue Stack = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), PtrVT);
Tim Northover3b0846e2014-05-24 12:50:23 +00004197 MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
4198 MachinePointerInfo(SV), false, false, 8));
4199
4200 // void *__gr_top at offset 8
4201 int GPRSize = FuncInfo->getVarArgsGPRSize();
4202 if (GPRSize > 0) {
4203 SDValue GRTop, GRTopAddr;
4204
Mehdi Amini44ede332015-07-09 02:09:04 +00004205 GRTopAddr =
4206 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(8, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00004207
Mehdi Amini44ede332015-07-09 02:09:04 +00004208 GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), PtrVT);
4209 GRTop = DAG.getNode(ISD::ADD, DL, PtrVT, GRTop,
4210 DAG.getConstant(GPRSize, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00004211
4212 MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
4213 MachinePointerInfo(SV, 8), false, false, 8));
4214 }
4215
4216 // void *__vr_top at offset 16
4217 int FPRSize = FuncInfo->getVarArgsFPRSize();
4218 if (FPRSize > 0) {
4219 SDValue VRTop, VRTopAddr;
Mehdi Amini44ede332015-07-09 02:09:04 +00004220 VRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
4221 DAG.getConstant(16, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00004222
Mehdi Amini44ede332015-07-09 02:09:04 +00004223 VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), PtrVT);
4224 VRTop = DAG.getNode(ISD::ADD, DL, PtrVT, VRTop,
4225 DAG.getConstant(FPRSize, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00004226
4227 MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
4228 MachinePointerInfo(SV, 16), false, false, 8));
4229 }
4230
4231 // int __gr_offs at offset 24
Mehdi Amini44ede332015-07-09 02:09:04 +00004232 SDValue GROffsAddr =
4233 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(24, DL, PtrVT));
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004234 MemOps.push_back(DAG.getStore(Chain, DL,
4235 DAG.getConstant(-GPRSize, DL, MVT::i32),
Tim Northover3b0846e2014-05-24 12:50:23 +00004236 GROffsAddr, MachinePointerInfo(SV, 24), false,
4237 false, 4));
4238
4239 // int __vr_offs at offset 28
Mehdi Amini44ede332015-07-09 02:09:04 +00004240 SDValue VROffsAddr =
4241 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(28, DL, PtrVT));
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004242 MemOps.push_back(DAG.getStore(Chain, DL,
4243 DAG.getConstant(-FPRSize, DL, MVT::i32),
Tim Northover3b0846e2014-05-24 12:50:23 +00004244 VROffsAddr, MachinePointerInfo(SV, 28), false,
4245 false, 4));
4246
4247 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
4248}
4249
4250SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
4251 SelectionDAG &DAG) const {
4252 return Subtarget->isTargetDarwin() ? LowerDarwin_VASTART(Op, DAG)
4253 : LowerAAPCS_VASTART(Op, DAG);
4254}
4255
4256SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
4257 SelectionDAG &DAG) const {
4258 // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
4259 // pointer.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004260 SDLoc DL(Op);
Tim Northover3b0846e2014-05-24 12:50:23 +00004261 unsigned VaListSize = Subtarget->isTargetDarwin() ? 8 : 32;
4262 const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
4263 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
4264
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004265 return DAG.getMemcpy(Op.getOperand(0), DL, Op.getOperand(1),
4266 Op.getOperand(2),
4267 DAG.getConstant(VaListSize, DL, MVT::i32),
Krzysztof Parzyszeka46c36b2015-04-13 17:16:45 +00004268 8, false, false, false, MachinePointerInfo(DestSV),
Tim Northover3b0846e2014-05-24 12:50:23 +00004269 MachinePointerInfo(SrcSV));
4270}
4271
4272SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
4273 assert(Subtarget->isTargetDarwin() &&
4274 "automatic va_arg instruction only works on Darwin");
4275
4276 const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4277 EVT VT = Op.getValueType();
4278 SDLoc DL(Op);
4279 SDValue Chain = Op.getOperand(0);
4280 SDValue Addr = Op.getOperand(1);
4281 unsigned Align = Op.getConstantOperandVal(3);
Mehdi Amini44ede332015-07-09 02:09:04 +00004282 auto PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00004283
Mehdi Amini44ede332015-07-09 02:09:04 +00004284 SDValue VAList = DAG.getLoad(PtrVT, DL, Chain, Addr, MachinePointerInfo(V),
4285 false, false, false, 0);
Tim Northover3b0846e2014-05-24 12:50:23 +00004286 Chain = VAList.getValue(1);
4287
4288 if (Align > 8) {
4289 assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
Mehdi Amini44ede332015-07-09 02:09:04 +00004290 VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
4291 DAG.getConstant(Align - 1, DL, PtrVT));
4292 VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList,
4293 DAG.getConstant(-(int64_t)Align, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00004294 }
4295
4296 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
Mehdi Amini44ede332015-07-09 02:09:04 +00004297 uint64_t ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy);
Tim Northover3b0846e2014-05-24 12:50:23 +00004298
4299 // Scalar integer and FP values smaller than 64 bits are implicitly extended
4300 // up to 64 bits. At the very least, we have to increase the striding of the
4301 // vaargs list to match this, and for FP values we need to introduce
4302 // FP_ROUND nodes as well.
4303 if (VT.isInteger() && !VT.isVector())
4304 ArgSize = 8;
4305 bool NeedFPTrunc = false;
4306 if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
4307 ArgSize = 8;
4308 NeedFPTrunc = true;
4309 }
4310
4311 // Increment the pointer, VAList, to the next vaarg
Mehdi Amini44ede332015-07-09 02:09:04 +00004312 SDValue VANext = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
4313 DAG.getConstant(ArgSize, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00004314 // Store the incremented VAList to the legalized pointer
4315 SDValue APStore = DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V),
4316 false, false, 0);
4317
4318 // Load the actual argument out of the pointer VAList
4319 if (NeedFPTrunc) {
4320 // Load the value as an f64.
4321 SDValue WideFP = DAG.getLoad(MVT::f64, DL, APStore, VAList,
4322 MachinePointerInfo(), false, false, false, 0);
4323 // Round the value down to an f32.
4324 SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004325 DAG.getIntPtrConstant(1, DL));
Tim Northover3b0846e2014-05-24 12:50:23 +00004326 SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
4327 // Merge the rounded value with the chain output of the load.
4328 return DAG.getMergeValues(Ops, DL);
4329 }
4330
4331 return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo(), false,
4332 false, false, 0);
4333}
4334
4335SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
4336 SelectionDAG &DAG) const {
4337 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4338 MFI->setFrameAddressIsTaken(true);
4339
4340 EVT VT = Op.getValueType();
4341 SDLoc DL(Op);
4342 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4343 SDValue FrameAddr =
4344 DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
4345 while (Depth--)
4346 FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
4347 MachinePointerInfo(), false, false, false, 0);
4348 return FrameAddr;
4349}
4350
4351// FIXME? Maybe this could be a TableGen attribute on some registers and
4352// this table could be generated automatically from RegInfo.
Pat Gavlina717f252015-07-09 17:40:29 +00004353unsigned AArch64TargetLowering::getRegisterByName(const char* RegName, EVT VT,
4354 SelectionDAG &DAG) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00004355 unsigned Reg = StringSwitch<unsigned>(RegName)
4356 .Case("sp", AArch64::SP)
4357 .Default(0);
4358 if (Reg)
4359 return Reg;
Luke Cheeseman85fd06d2015-06-01 12:02:47 +00004360 report_fatal_error(Twine("Invalid register name \""
4361 + StringRef(RegName) + "\"."));
Tim Northover3b0846e2014-05-24 12:50:23 +00004362}
4363
4364SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
4365 SelectionDAG &DAG) const {
4366 MachineFunction &MF = DAG.getMachineFunction();
4367 MachineFrameInfo *MFI = MF.getFrameInfo();
4368 MFI->setReturnAddressIsTaken(true);
4369
4370 EVT VT = Op.getValueType();
4371 SDLoc DL(Op);
4372 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4373 if (Depth) {
4374 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
Mehdi Amini44ede332015-07-09 02:09:04 +00004375 SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout()));
Tim Northover3b0846e2014-05-24 12:50:23 +00004376 return DAG.getLoad(VT, DL, DAG.getEntryNode(),
4377 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
4378 MachinePointerInfo(), false, false, false, 0);
4379 }
4380
4381 // Return LR, which contains the return address. Mark it an implicit live-in.
4382 unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
4383 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
4384}
4385
4386/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
4387/// i64 values and take a 2 x i64 value to shift plus a shift amount.
4388SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
4389 SelectionDAG &DAG) const {
4390 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4391 EVT VT = Op.getValueType();
4392 unsigned VTBits = VT.getSizeInBits();
4393 SDLoc dl(Op);
4394 SDValue ShOpLo = Op.getOperand(0);
4395 SDValue ShOpHi = Op.getOperand(1);
4396 SDValue ShAmt = Op.getOperand(2);
Tim Northover3b0846e2014-05-24 12:50:23 +00004397 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
4398
4399 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
4400
4401 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004402 DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
Tim Northoverf3be9d52015-12-02 00:33:54 +00004403 SDValue HiBitsForLo = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
4404
4405 // Unfortunately, if ShAmt == 0, we just calculated "(SHL ShOpHi, 64)" which
4406 // is "undef". We wanted 0, so CSEL it directly.
4407 SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
4408 ISD::SETEQ, dl, DAG);
4409 SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
4410 HiBitsForLo =
4411 DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
4412 HiBitsForLo, CCVal, Cmp);
4413
Tim Northover3b0846e2014-05-24 12:50:23 +00004414 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004415 DAG.getConstant(VTBits, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00004416
Tim Northoverf3be9d52015-12-02 00:33:54 +00004417 SDValue LoBitsForLo = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
4418 SDValue LoForNormalShift =
4419 DAG.getNode(ISD::OR, dl, VT, LoBitsForLo, HiBitsForLo);
Tim Northover3b0846e2014-05-24 12:50:23 +00004420
Tim Northoverf3be9d52015-12-02 00:33:54 +00004421 Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
4422 dl, DAG);
4423 CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
4424 SDValue LoForBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
4425 SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
4426 LoForNormalShift, CCVal, Cmp);
Tim Northover3b0846e2014-05-24 12:50:23 +00004427
4428 // AArch64 shifts larger than the register width are wrapped rather than
4429 // clamped, so we can't just emit "hi >> x".
Tim Northoverf3be9d52015-12-02 00:33:54 +00004430 SDValue HiForNormalShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
4431 SDValue HiForBigShift =
4432 Opc == ISD::SRA
4433 ? DAG.getNode(Opc, dl, VT, ShOpHi,
4434 DAG.getConstant(VTBits - 1, dl, MVT::i64))
4435 : DAG.getConstant(0, dl, VT);
4436 SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
4437 HiForNormalShift, CCVal, Cmp);
Tim Northover3b0846e2014-05-24 12:50:23 +00004438
4439 SDValue Ops[2] = { Lo, Hi };
4440 return DAG.getMergeValues(Ops, dl);
4441}
4442
Tim Northoverf3be9d52015-12-02 00:33:54 +00004443
Tim Northover3b0846e2014-05-24 12:50:23 +00004444/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
4445/// i64 values and take a 2 x i64 value to shift plus a shift amount.
4446SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
Tim Northoverf3be9d52015-12-02 00:33:54 +00004447 SelectionDAG &DAG) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00004448 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4449 EVT VT = Op.getValueType();
4450 unsigned VTBits = VT.getSizeInBits();
4451 SDLoc dl(Op);
4452 SDValue ShOpLo = Op.getOperand(0);
4453 SDValue ShOpHi = Op.getOperand(1);
4454 SDValue ShAmt = Op.getOperand(2);
Tim Northover3b0846e2014-05-24 12:50:23 +00004455
4456 assert(Op.getOpcode() == ISD::SHL_PARTS);
4457 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004458 DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
Tim Northoverf3be9d52015-12-02 00:33:54 +00004459 SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
4460
4461 // Unfortunately, if ShAmt == 0, we just calculated "(SRL ShOpLo, 64)" which
4462 // is "undef". We wanted 0, so CSEL it directly.
4463 SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
4464 ISD::SETEQ, dl, DAG);
4465 SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
4466 LoBitsForHi =
4467 DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
4468 LoBitsForHi, CCVal, Cmp);
4469
Tim Northover3b0846e2014-05-24 12:50:23 +00004470 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004471 DAG.getConstant(VTBits, dl, MVT::i64));
Tim Northoverf3be9d52015-12-02 00:33:54 +00004472 SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
4473 SDValue HiForNormalShift =
4474 DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi);
Tim Northover3b0846e2014-05-24 12:50:23 +00004475
Tim Northoverf3be9d52015-12-02 00:33:54 +00004476 SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
Tim Northover3b0846e2014-05-24 12:50:23 +00004477
Tim Northoverf3be9d52015-12-02 00:33:54 +00004478 Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
4479 dl, DAG);
4480 CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
4481 SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
4482 HiForNormalShift, CCVal, Cmp);
Tim Northover3b0846e2014-05-24 12:50:23 +00004483
4484 // AArch64 shifts of larger than register sizes are wrapped rather than
4485 // clamped, so we can't just emit "lo << a" if a is too big.
Tim Northoverf3be9d52015-12-02 00:33:54 +00004486 SDValue LoForBigShift = DAG.getConstant(0, dl, VT);
4487 SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4488 SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
4489 LoForNormalShift, CCVal, Cmp);
Tim Northover3b0846e2014-05-24 12:50:23 +00004490
4491 SDValue Ops[2] = { Lo, Hi };
4492 return DAG.getMergeValues(Ops, dl);
4493}
4494
4495bool AArch64TargetLowering::isOffsetFoldingLegal(
4496 const GlobalAddressSDNode *GA) const {
4497 // The AArch64 target doesn't support folding offsets into global addresses.
4498 return false;
4499}
4500
4501bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
4502 // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases.
4503 // FIXME: We should be able to handle f128 as well with a clever lowering.
4504 if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32))
4505 return true;
4506
4507 if (VT == MVT::f64)
4508 return AArch64_AM::getFP64Imm(Imm) != -1;
4509 else if (VT == MVT::f32)
4510 return AArch64_AM::getFP32Imm(Imm) != -1;
4511 return false;
4512}
4513
4514//===----------------------------------------------------------------------===//
4515// AArch64 Optimization Hooks
4516//===----------------------------------------------------------------------===//
4517
4518//===----------------------------------------------------------------------===//
4519// AArch64 Inline Assembly Support
4520//===----------------------------------------------------------------------===//
4521
4522// Table of Constraints
4523// TODO: This is the current set of constraints supported by ARM for the
4524// compiler, not all of them may make sense, e.g. S may be difficult to support.
4525//
4526// r - A general register
4527// w - An FP/SIMD register of some size in the range v0-v31
4528// x - An FP/SIMD register of some size in the range v0-v15
4529// I - Constant that can be used with an ADD instruction
4530// J - Constant that can be used with a SUB instruction
4531// K - Constant that can be used with a 32-bit logical instruction
4532// L - Constant that can be used with a 64-bit logical instruction
4533// M - Constant that can be used as a 32-bit MOV immediate
4534// N - Constant that can be used as a 64-bit MOV immediate
4535// Q - A memory reference with base register and no offset
4536// S - A symbolic address
4537// Y - Floating point constant zero
4538// Z - Integer constant zero
4539//
4540// Note that general register operands will be output using their 64-bit x
4541// register name, whatever the size of the variable, unless the asm operand
4542// is prefixed by the %w modifier. Floating-point and SIMD register operands
4543// will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
4544// %q modifier.
4545
4546/// getConstraintType - Given a constraint letter, return the type of
4547/// constraint it is for this target.
4548AArch64TargetLowering::ConstraintType
Benjamin Kramer9bfb6272015-07-05 19:29:18 +00004549AArch64TargetLowering::getConstraintType(StringRef Constraint) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00004550 if (Constraint.size() == 1) {
4551 switch (Constraint[0]) {
4552 default:
4553 break;
4554 case 'z':
4555 return C_Other;
4556 case 'x':
4557 case 'w':
4558 return C_RegisterClass;
4559 // An address with a single base register. Due to the way we
4560 // currently handle addresses it is the same as 'r'.
4561 case 'Q':
4562 return C_Memory;
4563 }
4564 }
4565 return TargetLowering::getConstraintType(Constraint);
4566}
4567
4568/// Examine constraint type and operand type and determine a weight value.
4569/// This object must already have been set up with the operand type
4570/// and the current alternative constraint selected.
4571TargetLowering::ConstraintWeight
4572AArch64TargetLowering::getSingleConstraintMatchWeight(
4573 AsmOperandInfo &info, const char *constraint) const {
4574 ConstraintWeight weight = CW_Invalid;
4575 Value *CallOperandVal = info.CallOperandVal;
4576 // If we don't have a value, we can't do a match,
4577 // but allow it at the lowest weight.
4578 if (!CallOperandVal)
4579 return CW_Default;
4580 Type *type = CallOperandVal->getType();
4581 // Look at the constraint type.
4582 switch (*constraint) {
4583 default:
4584 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
4585 break;
4586 case 'x':
4587 case 'w':
4588 if (type->isFloatingPointTy() || type->isVectorTy())
4589 weight = CW_Register;
4590 break;
4591 case 'z':
4592 weight = CW_Constant;
4593 break;
4594 }
4595 return weight;
4596}
4597
4598std::pair<unsigned, const TargetRegisterClass *>
4599AArch64TargetLowering::getRegForInlineAsmConstraint(
Benjamin Kramer9bfb6272015-07-05 19:29:18 +00004600 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00004601 if (Constraint.size() == 1) {
4602 switch (Constraint[0]) {
4603 case 'r':
4604 if (VT.getSizeInBits() == 64)
4605 return std::make_pair(0U, &AArch64::GPR64commonRegClass);
4606 return std::make_pair(0U, &AArch64::GPR32commonRegClass);
4607 case 'w':
4608 if (VT == MVT::f32)
4609 return std::make_pair(0U, &AArch64::FPR32RegClass);
4610 if (VT.getSizeInBits() == 64)
4611 return std::make_pair(0U, &AArch64::FPR64RegClass);
4612 if (VT.getSizeInBits() == 128)
4613 return std::make_pair(0U, &AArch64::FPR128RegClass);
4614 break;
4615 // The instructions that this constraint is designed for can
4616 // only take 128-bit registers so just use that regclass.
4617 case 'x':
4618 if (VT.getSizeInBits() == 128)
4619 return std::make_pair(0U, &AArch64::FPR128_loRegClass);
4620 break;
4621 }
4622 }
4623 if (StringRef("{cc}").equals_lower(Constraint))
4624 return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
4625
4626 // Use the default implementation in TargetLowering to convert the register
4627 // constraint into a member of a register class.
4628 std::pair<unsigned, const TargetRegisterClass *> Res;
Eric Christopher11e4df72015-02-26 22:38:43 +00004629 Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00004630
4631 // Not found as a standard register?
4632 if (!Res.second) {
4633 unsigned Size = Constraint.size();
4634 if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
4635 tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
Benjamin Kramer9bfb6272015-07-05 19:29:18 +00004636 int RegNo;
4637 bool Failed = Constraint.slice(2, Size - 1).getAsInteger(10, RegNo);
4638 if (!Failed && RegNo >= 0 && RegNo <= 31) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004639 // v0 - v31 are aliases of q0 - q31.
4640 // By default we'll emit v0-v31 for this unless there's a modifier where
4641 // we'll emit the correct register as well.
4642 Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
4643 Res.second = &AArch64::FPR128RegClass;
4644 }
4645 }
4646 }
4647
4648 return Res;
4649}
4650
4651/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4652/// vector. If it is invalid, don't add anything to Ops.
4653void AArch64TargetLowering::LowerAsmOperandForConstraint(
4654 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
4655 SelectionDAG &DAG) const {
4656 SDValue Result;
4657
4658 // Currently only support length 1 constraints.
4659 if (Constraint.length() != 1)
4660 return;
4661
4662 char ConstraintLetter = Constraint[0];
4663 switch (ConstraintLetter) {
4664 default:
4665 break;
4666
4667 // This set of constraints deal with valid constants for various instructions.
4668 // Validate and return a target constant for them if we can.
4669 case 'z': {
4670 // 'z' maps to xzr or wzr so it needs an input of 0.
Artyom Skrobov314ee042015-11-25 19:41:11 +00004671 if (!isNullConstant(Op))
Tim Northover3b0846e2014-05-24 12:50:23 +00004672 return;
4673
4674 if (Op.getValueType() == MVT::i64)
4675 Result = DAG.getRegister(AArch64::XZR, MVT::i64);
4676 else
4677 Result = DAG.getRegister(AArch64::WZR, MVT::i32);
4678 break;
4679 }
4680
4681 case 'I':
4682 case 'J':
4683 case 'K':
4684 case 'L':
4685 case 'M':
4686 case 'N':
4687 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4688 if (!C)
4689 return;
4690
4691 // Grab the value and do some validation.
4692 uint64_t CVal = C->getZExtValue();
4693 switch (ConstraintLetter) {
4694 // The I constraint applies only to simple ADD or SUB immediate operands:
4695 // i.e. 0 to 4095 with optional shift by 12
4696 // The J constraint applies only to ADD or SUB immediates that would be
4697 // valid when negated, i.e. if [an add pattern] were to be output as a SUB
4698 // instruction [or vice versa], in other words -1 to -4095 with optional
4699 // left shift by 12.
4700 case 'I':
4701 if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
4702 break;
4703 return;
4704 case 'J': {
4705 uint64_t NVal = -C->getSExtValue();
Tim Northover2c46beb2014-07-27 07:10:29 +00004706 if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
4707 CVal = C->getSExtValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00004708 break;
Tim Northover2c46beb2014-07-27 07:10:29 +00004709 }
Tim Northover3b0846e2014-05-24 12:50:23 +00004710 return;
4711 }
4712 // The K and L constraints apply *only* to logical immediates, including
4713 // what used to be the MOVI alias for ORR (though the MOVI alias has now
4714 // been removed and MOV should be used). So these constraints have to
4715 // distinguish between bit patterns that are valid 32-bit or 64-bit
4716 // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
4717 // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
4718 // versa.
4719 case 'K':
4720 if (AArch64_AM::isLogicalImmediate(CVal, 32))
4721 break;
4722 return;
4723 case 'L':
4724 if (AArch64_AM::isLogicalImmediate(CVal, 64))
4725 break;
4726 return;
4727 // The M and N constraints are a superset of K and L respectively, for use
4728 // with the MOV (immediate) alias. As well as the logical immediates they
4729 // also match 32 or 64-bit immediates that can be loaded either using a
4730 // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
4731 // (M) or 64-bit 0x1234000000000000 (N) etc.
4732 // As a note some of this code is liberally stolen from the asm parser.
4733 case 'M': {
4734 if (!isUInt<32>(CVal))
4735 return;
4736 if (AArch64_AM::isLogicalImmediate(CVal, 32))
4737 break;
4738 if ((CVal & 0xFFFF) == CVal)
4739 break;
4740 if ((CVal & 0xFFFF0000ULL) == CVal)
4741 break;
4742 uint64_t NCVal = ~(uint32_t)CVal;
4743 if ((NCVal & 0xFFFFULL) == NCVal)
4744 break;
4745 if ((NCVal & 0xFFFF0000ULL) == NCVal)
4746 break;
4747 return;
4748 }
4749 case 'N': {
4750 if (AArch64_AM::isLogicalImmediate(CVal, 64))
4751 break;
4752 if ((CVal & 0xFFFFULL) == CVal)
4753 break;
4754 if ((CVal & 0xFFFF0000ULL) == CVal)
4755 break;
4756 if ((CVal & 0xFFFF00000000ULL) == CVal)
4757 break;
4758 if ((CVal & 0xFFFF000000000000ULL) == CVal)
4759 break;
4760 uint64_t NCVal = ~CVal;
4761 if ((NCVal & 0xFFFFULL) == NCVal)
4762 break;
4763 if ((NCVal & 0xFFFF0000ULL) == NCVal)
4764 break;
4765 if ((NCVal & 0xFFFF00000000ULL) == NCVal)
4766 break;
4767 if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
4768 break;
4769 return;
4770 }
4771 default:
4772 return;
4773 }
4774
4775 // All assembler immediates are 64-bit integers.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004776 Result = DAG.getTargetConstant(CVal, SDLoc(Op), MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00004777 break;
4778 }
4779
4780 if (Result.getNode()) {
4781 Ops.push_back(Result);
4782 return;
4783 }
4784
4785 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
4786}
4787
4788//===----------------------------------------------------------------------===//
4789// AArch64 Advanced SIMD Support
4790//===----------------------------------------------------------------------===//
4791
4792/// WidenVector - Given a value in the V64 register class, produce the
4793/// equivalent value in the V128 register class.
4794static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
4795 EVT VT = V64Reg.getValueType();
4796 unsigned NarrowSize = VT.getVectorNumElements();
4797 MVT EltTy = VT.getVectorElementType().getSimpleVT();
4798 MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
4799 SDLoc DL(V64Reg);
4800
4801 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004802 V64Reg, DAG.getConstant(0, DL, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00004803}
4804
4805/// getExtFactor - Determine the adjustment factor for the position when
4806/// generating an "extract from vector registers" instruction.
4807static unsigned getExtFactor(SDValue &V) {
4808 EVT EltType = V.getValueType().getVectorElementType();
4809 return EltType.getSizeInBits() / 8;
4810}
4811
4812/// NarrowVector - Given a value in the V128 register class, produce the
4813/// equivalent value in the V64 register class.
4814static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
4815 EVT VT = V128Reg.getValueType();
4816 unsigned WideSize = VT.getVectorNumElements();
4817 MVT EltTy = VT.getVectorElementType().getSimpleVT();
4818 MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
4819 SDLoc DL(V128Reg);
4820
4821 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
4822}
4823
4824// Gather data to see if the operation can be modelled as a
4825// shuffle in combination with VEXTs.
4826SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
4827 SelectionDAG &DAG) const {
Kevin Qinf0ec9af2014-06-18 05:54:42 +00004828 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
Tim Northover3b0846e2014-05-24 12:50:23 +00004829 SDLoc dl(Op);
4830 EVT VT = Op.getValueType();
4831 unsigned NumElts = VT.getVectorNumElements();
4832
Tim Northover7324e842014-07-24 15:39:55 +00004833 struct ShuffleSourceInfo {
4834 SDValue Vec;
4835 unsigned MinElt;
4836 unsigned MaxElt;
Tim Northover3b0846e2014-05-24 12:50:23 +00004837
Tim Northover7324e842014-07-24 15:39:55 +00004838 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
4839 // be compatible with the shuffle we intend to construct. As a result
4840 // ShuffleVec will be some sliding window into the original Vec.
4841 SDValue ShuffleVec;
4842
4843 // Code should guarantee that element i in Vec starts at element "WindowBase
4844 // + i * WindowScale in ShuffleVec".
4845 int WindowBase;
4846 int WindowScale;
4847
4848 bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
4849 ShuffleSourceInfo(SDValue Vec)
4850 : Vec(Vec), MinElt(UINT_MAX), MaxElt(0), ShuffleVec(Vec), WindowBase(0),
4851 WindowScale(1) {}
4852 };
4853
4854 // First gather all vectors used as an immediate source for this BUILD_VECTOR
4855 // node.
4856 SmallVector<ShuffleSourceInfo, 2> Sources;
Tim Northover3b0846e2014-05-24 12:50:23 +00004857 for (unsigned i = 0; i < NumElts; ++i) {
4858 SDValue V = Op.getOperand(i);
4859 if (V.getOpcode() == ISD::UNDEF)
4860 continue;
4861 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4862 // A shuffle can only come from building a vector from various
4863 // elements of other vectors.
4864 return SDValue();
4865 }
4866
Tim Northover7324e842014-07-24 15:39:55 +00004867 // Add this element source to the list if it's not already there.
Tim Northover3b0846e2014-05-24 12:50:23 +00004868 SDValue SourceVec = V.getOperand(0);
Tim Northover7324e842014-07-24 15:39:55 +00004869 auto Source = std::find(Sources.begin(), Sources.end(), SourceVec);
4870 if (Source == Sources.end())
James Molloyf497d552014-10-17 17:06:31 +00004871 Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
Tim Northover3b0846e2014-05-24 12:50:23 +00004872
Tim Northover7324e842014-07-24 15:39:55 +00004873 // Update the minimum and maximum lane number seen.
4874 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4875 Source->MinElt = std::min(Source->MinElt, EltNo);
4876 Source->MaxElt = std::max(Source->MaxElt, EltNo);
Tim Northover3b0846e2014-05-24 12:50:23 +00004877 }
4878
4879 // Currently only do something sane when at most two source vectors
Tim Northover7324e842014-07-24 15:39:55 +00004880 // are involved.
4881 if (Sources.size() > 2)
Tim Northover3b0846e2014-05-24 12:50:23 +00004882 return SDValue();
4883
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004884 // Find out the smallest element size among result and two sources, and use
4885 // it as element size to build the shuffle_vector.
4886 EVT SmallestEltTy = VT.getVectorElementType();
Tim Northover7324e842014-07-24 15:39:55 +00004887 for (auto &Source : Sources) {
4888 EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004889 if (SrcEltTy.bitsLT(SmallestEltTy)) {
4890 SmallestEltTy = SrcEltTy;
4891 }
4892 }
4893 unsigned ResMultiplier =
4894 VT.getVectorElementType().getSizeInBits() / SmallestEltTy.getSizeInBits();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004895 NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
4896 EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
Tim Northover3b0846e2014-05-24 12:50:23 +00004897
Tim Northover7324e842014-07-24 15:39:55 +00004898 // If the source vector is too wide or too narrow, we may nevertheless be able
4899 // to construct a compatible shuffle either by concatenating it with UNDEF or
4900 // extracting a suitable range of elements.
4901 for (auto &Src : Sources) {
4902 EVT SrcVT = Src.ShuffleVec.getValueType();
Kevin Qinf0ec9af2014-06-18 05:54:42 +00004903
Tim Northover7324e842014-07-24 15:39:55 +00004904 if (SrcVT.getSizeInBits() == VT.getSizeInBits())
Tim Northover3b0846e2014-05-24 12:50:23 +00004905 continue;
Tim Northover7324e842014-07-24 15:39:55 +00004906
4907 // This stage of the search produces a source with the same element type as
4908 // the original, but with a total width matching the BUILD_VECTOR output.
4909 EVT EltVT = SrcVT.getVectorElementType();
James Molloyf497d552014-10-17 17:06:31 +00004910 unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
4911 EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
Tim Northover7324e842014-07-24 15:39:55 +00004912
4913 if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
4914 assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits());
Tim Northover3b0846e2014-05-24 12:50:23 +00004915 // We can pad out the smaller vector for free, so if it's part of a
4916 // shuffle...
Tim Northover7324e842014-07-24 15:39:55 +00004917 Src.ShuffleVec =
4918 DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
4919 DAG.getUNDEF(Src.ShuffleVec.getValueType()));
Tim Northover3b0846e2014-05-24 12:50:23 +00004920 continue;
4921 }
4922
Tim Northover7324e842014-07-24 15:39:55 +00004923 assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits());
Tim Northover3b0846e2014-05-24 12:50:23 +00004924
James Molloyf497d552014-10-17 17:06:31 +00004925 if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004926 // Span too large for a VEXT to cope
4927 return SDValue();
4928 }
4929
James Molloyf497d552014-10-17 17:06:31 +00004930 if (Src.MinElt >= NumSrcElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004931 // The extraction can just take the second half
Tim Northover7324e842014-07-24 15:39:55 +00004932 Src.ShuffleVec =
4933 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004934 DAG.getConstant(NumSrcElts, dl, MVT::i64));
James Molloyf497d552014-10-17 17:06:31 +00004935 Src.WindowBase = -NumSrcElts;
4936 } else if (Src.MaxElt < NumSrcElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004937 // The extraction can just take the first half
Tim Northover5e84fe32014-12-06 00:33:37 +00004938 Src.ShuffleVec =
4939 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004940 DAG.getConstant(0, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00004941 } else {
4942 // An actual VEXT is needed
Tim Northover5e84fe32014-12-06 00:33:37 +00004943 SDValue VEXTSrc1 =
4944 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004945 DAG.getConstant(0, dl, MVT::i64));
Tim Northover7324e842014-07-24 15:39:55 +00004946 SDValue VEXTSrc2 =
4947 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004948 DAG.getConstant(NumSrcElts, dl, MVT::i64));
Tim Northover7324e842014-07-24 15:39:55 +00004949 unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);
4950
4951 Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004952 VEXTSrc2,
4953 DAG.getConstant(Imm, dl, MVT::i32));
Tim Northover7324e842014-07-24 15:39:55 +00004954 Src.WindowBase = -Src.MinElt;
Tim Northover3b0846e2014-05-24 12:50:23 +00004955 }
4956 }
4957
Tim Northover7324e842014-07-24 15:39:55 +00004958 // Another possible incompatibility occurs from the vector element types. We
4959 // can fix this by bitcasting the source vectors to the same type we intend
4960 // for the shuffle.
4961 for (auto &Src : Sources) {
4962 EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
4963 if (SrcEltTy == SmallestEltTy)
4964 continue;
4965 assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
4966 Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
4967 Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
4968 Src.WindowBase *= Src.WindowScale;
4969 }
Tim Northover3b0846e2014-05-24 12:50:23 +00004970
Tim Northover7324e842014-07-24 15:39:55 +00004971 // Final sanity check before we try to actually produce a shuffle.
4972 DEBUG(
4973 for (auto Src : Sources)
4974 assert(Src.ShuffleVec.getValueType() == ShuffleVT);
4975 );
4976
4977 // The stars all align, our next step is to produce the mask for the shuffle.
4978 SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
4979 int BitsPerShuffleLane = ShuffleVT.getVectorElementType().getSizeInBits();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00004980 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004981 SDValue Entry = Op.getOperand(i);
Tim Northover7324e842014-07-24 15:39:55 +00004982 if (Entry.getOpcode() == ISD::UNDEF)
4983 continue;
Tim Northover3b0846e2014-05-24 12:50:23 +00004984
Tim Northover7324e842014-07-24 15:39:55 +00004985 auto Src = std::find(Sources.begin(), Sources.end(), Entry.getOperand(0));
4986 int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
4987
4988 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
4989 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
4990 // segment.
4991 EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
4992 int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
4993 VT.getVectorElementType().getSizeInBits());
4994 int LanesDefined = BitsDefined / BitsPerShuffleLane;
4995
4996 // This source is expected to fill ResMultiplier lanes of the final shuffle,
4997 // starting at the appropriate offset.
4998 int *LaneMask = &Mask[i * ResMultiplier];
4999
5000 int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
5001 ExtractBase += NumElts * (Src - Sources.begin());
5002 for (int j = 0; j < LanesDefined; ++j)
5003 LaneMask[j] = ExtractBase + j;
Tim Northover3b0846e2014-05-24 12:50:23 +00005004 }
5005
5006 // Final check before we try to produce nonsense...
Tim Northover7324e842014-07-24 15:39:55 +00005007 if (!isShuffleMaskLegal(Mask, ShuffleVT))
5008 return SDValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00005009
Tim Northover7324e842014-07-24 15:39:55 +00005010 SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
5011 for (unsigned i = 0; i < Sources.size(); ++i)
5012 ShuffleOps[i] = Sources[i].ShuffleVec;
5013
5014 SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
5015 ShuffleOps[1], &Mask[0]);
5016 return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
Tim Northover3b0846e2014-05-24 12:50:23 +00005017}
5018
5019// check if an EXT instruction can handle the shuffle mask when the
5020// vector sources of the shuffle are the same.
5021static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
5022 unsigned NumElts = VT.getVectorNumElements();
5023
5024 // Assume that the first shuffle index is not UNDEF. Fail if it is.
5025 if (M[0] < 0)
5026 return false;
5027
5028 Imm = M[0];
5029
5030 // If this is a VEXT shuffle, the immediate value is the index of the first
5031 // element. The other shuffle indices must be the successive elements after
5032 // the first one.
5033 unsigned ExpectedElt = Imm;
5034 for (unsigned i = 1; i < NumElts; ++i) {
5035 // Increment the expected index. If it wraps around, just follow it
5036 // back to index zero and keep going.
5037 ++ExpectedElt;
5038 if (ExpectedElt == NumElts)
5039 ExpectedElt = 0;
5040
5041 if (M[i] < 0)
5042 continue; // ignore UNDEF indices
5043 if (ExpectedElt != static_cast<unsigned>(M[i]))
5044 return false;
5045 }
5046
5047 return true;
5048}
5049
5050// check if an EXT instruction can handle the shuffle mask when the
5051// vector sources of the shuffle are different.
5052static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
5053 unsigned &Imm) {
5054 // Look for the first non-undef element.
5055 const int *FirstRealElt = std::find_if(M.begin(), M.end(),
5056 [](int Elt) {return Elt >= 0;});
5057
5058 // Benefit form APInt to handle overflow when calculating expected element.
5059 unsigned NumElts = VT.getVectorNumElements();
5060 unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
5061 APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
5062 // The following shuffle indices must be the successive elements after the
5063 // first real element.
5064 const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
5065 [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
5066 if (FirstWrongElt != M.end())
5067 return false;
5068
5069 // The index of an EXT is the first element if it is not UNDEF.
5070 // Watch out for the beginning UNDEFs. The EXT index should be the expected
5071 // value of the first element. E.g.
5072 // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
5073 // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
5074 // ExpectedElt is the last mask index plus 1.
5075 Imm = ExpectedElt.getZExtValue();
5076
5077 // There are two difference cases requiring to reverse input vectors.
5078 // For example, for vector <4 x i32> we have the following cases,
5079 // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
5080 // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
5081 // For both cases, we finally use mask <5, 6, 7, 0>, which requires
5082 // to reverse two input vectors.
5083 if (Imm < NumElts)
5084 ReverseEXT = true;
5085 else
5086 Imm -= NumElts;
5087
5088 return true;
5089}
5090
5091/// isREVMask - Check if a vector shuffle corresponds to a REV
5092/// instruction with the specified blocksize. (The order of the elements
5093/// within each block of the vector is reversed.)
5094static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
5095 assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
5096 "Only possible block sizes for REV are: 16, 32, 64");
5097
5098 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5099 if (EltSz == 64)
5100 return false;
5101
5102 unsigned NumElts = VT.getVectorNumElements();
5103 unsigned BlockElts = M[0] + 1;
5104 // If the first shuffle index is UNDEF, be optimistic.
5105 if (M[0] < 0)
5106 BlockElts = BlockSize / EltSz;
5107
5108 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
5109 return false;
5110
5111 for (unsigned i = 0; i < NumElts; ++i) {
5112 if (M[i] < 0)
5113 continue; // ignore UNDEF indices
5114 if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
5115 return false;
5116 }
5117
5118 return true;
5119}
5120
5121static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5122 unsigned NumElts = VT.getVectorNumElements();
5123 WhichResult = (M[0] == 0 ? 0 : 1);
5124 unsigned Idx = WhichResult * NumElts / 2;
5125 for (unsigned i = 0; i != NumElts; i += 2) {
5126 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
5127 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
5128 return false;
5129 Idx += 1;
5130 }
5131
5132 return true;
5133}
5134
5135static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5136 unsigned NumElts = VT.getVectorNumElements();
5137 WhichResult = (M[0] == 0 ? 0 : 1);
5138 for (unsigned i = 0; i != NumElts; ++i) {
5139 if (M[i] < 0)
5140 continue; // ignore UNDEF indices
5141 if ((unsigned)M[i] != 2 * i + WhichResult)
5142 return false;
5143 }
5144
5145 return true;
5146}
5147
5148static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5149 unsigned NumElts = VT.getVectorNumElements();
5150 WhichResult = (M[0] == 0 ? 0 : 1);
5151 for (unsigned i = 0; i < NumElts; i += 2) {
5152 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
5153 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
5154 return false;
5155 }
5156 return true;
5157}
5158
5159/// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
5160/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5161/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
5162static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5163 unsigned NumElts = VT.getVectorNumElements();
5164 WhichResult = (M[0] == 0 ? 0 : 1);
5165 unsigned Idx = WhichResult * NumElts / 2;
5166 for (unsigned i = 0; i != NumElts; i += 2) {
5167 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
5168 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
5169 return false;
5170 Idx += 1;
5171 }
5172
5173 return true;
5174}
5175
5176/// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
5177/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5178/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
5179static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5180 unsigned Half = VT.getVectorNumElements() / 2;
5181 WhichResult = (M[0] == 0 ? 0 : 1);
5182 for (unsigned j = 0; j != 2; ++j) {
5183 unsigned Idx = WhichResult;
5184 for (unsigned i = 0; i != Half; ++i) {
5185 int MIdx = M[i + j * Half];
5186 if (MIdx >= 0 && (unsigned)MIdx != Idx)
5187 return false;
5188 Idx += 2;
5189 }
5190 }
5191
5192 return true;
5193}
5194
5195/// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
5196/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5197/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
5198static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5199 unsigned NumElts = VT.getVectorNumElements();
5200 WhichResult = (M[0] == 0 ? 0 : 1);
5201 for (unsigned i = 0; i < NumElts; i += 2) {
5202 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
5203 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
5204 return false;
5205 }
5206 return true;
5207}
5208
5209static bool isINSMask(ArrayRef<int> M, int NumInputElements,
5210 bool &DstIsLeft, int &Anomaly) {
5211 if (M.size() != static_cast<size_t>(NumInputElements))
5212 return false;
5213
5214 int NumLHSMatch = 0, NumRHSMatch = 0;
5215 int LastLHSMismatch = -1, LastRHSMismatch = -1;
5216
5217 for (int i = 0; i < NumInputElements; ++i) {
5218 if (M[i] == -1) {
5219 ++NumLHSMatch;
5220 ++NumRHSMatch;
5221 continue;
5222 }
5223
5224 if (M[i] == i)
5225 ++NumLHSMatch;
5226 else
5227 LastLHSMismatch = i;
5228
5229 if (M[i] == i + NumInputElements)
5230 ++NumRHSMatch;
5231 else
5232 LastRHSMismatch = i;
5233 }
5234
5235 if (NumLHSMatch == NumInputElements - 1) {
5236 DstIsLeft = true;
5237 Anomaly = LastLHSMismatch;
5238 return true;
5239 } else if (NumRHSMatch == NumInputElements - 1) {
5240 DstIsLeft = false;
5241 Anomaly = LastRHSMismatch;
5242 return true;
5243 }
5244
5245 return false;
5246}
5247
5248static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
5249 if (VT.getSizeInBits() != 128)
5250 return false;
5251
5252 unsigned NumElts = VT.getVectorNumElements();
5253
5254 for (int I = 0, E = NumElts / 2; I != E; I++) {
5255 if (Mask[I] != I)
5256 return false;
5257 }
5258
5259 int Offset = NumElts / 2;
5260 for (int I = NumElts / 2, E = NumElts; I != E; I++) {
5261 if (Mask[I] != I + SplitLHS * Offset)
5262 return false;
5263 }
5264
5265 return true;
5266}
5267
5268static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
5269 SDLoc DL(Op);
5270 EVT VT = Op.getValueType();
5271 SDValue V0 = Op.getOperand(0);
5272 SDValue V1 = Op.getOperand(1);
5273 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
5274
5275 if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
5276 VT.getVectorElementType() != V1.getValueType().getVectorElementType())
5277 return SDValue();
5278
5279 bool SplitV0 = V0.getValueType().getSizeInBits() == 128;
5280
5281 if (!isConcatMask(Mask, VT, SplitV0))
5282 return SDValue();
5283
5284 EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
5285 VT.getVectorNumElements() / 2);
5286 if (SplitV0) {
5287 V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005288 DAG.getConstant(0, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00005289 }
5290 if (V1.getValueType().getSizeInBits() == 128) {
5291 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005292 DAG.getConstant(0, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00005293 }
5294 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
5295}
5296
5297/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
5298/// the specified operations to build the shuffle.
5299static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
5300 SDValue RHS, SelectionDAG &DAG,
5301 SDLoc dl) {
5302 unsigned OpNum = (PFEntry >> 26) & 0x0F;
5303 unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
5304 unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
5305
5306 enum {
5307 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
5308 OP_VREV,
5309 OP_VDUP0,
5310 OP_VDUP1,
5311 OP_VDUP2,
5312 OP_VDUP3,
5313 OP_VEXT1,
5314 OP_VEXT2,
5315 OP_VEXT3,
5316 OP_VUZPL, // VUZP, left result
5317 OP_VUZPR, // VUZP, right result
5318 OP_VZIPL, // VZIP, left result
5319 OP_VZIPR, // VZIP, right result
5320 OP_VTRNL, // VTRN, left result
5321 OP_VTRNR // VTRN, right result
5322 };
5323
5324 if (OpNum == OP_COPY) {
5325 if (LHSID == (1 * 9 + 2) * 9 + 3)
5326 return LHS;
5327 assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
5328 return RHS;
5329 }
5330
5331 SDValue OpLHS, OpRHS;
5332 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
5333 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
5334 EVT VT = OpLHS.getValueType();
5335
5336 switch (OpNum) {
5337 default:
5338 llvm_unreachable("Unknown shuffle opcode!");
5339 case OP_VREV:
5340 // VREV divides the vector in half and swaps within the half.
5341 if (VT.getVectorElementType() == MVT::i32 ||
5342 VT.getVectorElementType() == MVT::f32)
5343 return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
5344 // vrev <4 x i16> -> REV32
Oliver Stannard89d15422014-08-27 16:16:04 +00005345 if (VT.getVectorElementType() == MVT::i16 ||
5346 VT.getVectorElementType() == MVT::f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005347 return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
5348 // vrev <4 x i8> -> REV16
5349 assert(VT.getVectorElementType() == MVT::i8);
5350 return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
5351 case OP_VDUP0:
5352 case OP_VDUP1:
5353 case OP_VDUP2:
5354 case OP_VDUP3: {
5355 EVT EltTy = VT.getVectorElementType();
5356 unsigned Opcode;
5357 if (EltTy == MVT::i8)
5358 Opcode = AArch64ISD::DUPLANE8;
Ahmed Bougacha941420d2015-04-16 23:57:07 +00005359 else if (EltTy == MVT::i16 || EltTy == MVT::f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005360 Opcode = AArch64ISD::DUPLANE16;
5361 else if (EltTy == MVT::i32 || EltTy == MVT::f32)
5362 Opcode = AArch64ISD::DUPLANE32;
5363 else if (EltTy == MVT::i64 || EltTy == MVT::f64)
5364 Opcode = AArch64ISD::DUPLANE64;
5365 else
5366 llvm_unreachable("Invalid vector element type?");
5367
5368 if (VT.getSizeInBits() == 64)
5369 OpLHS = WidenVector(OpLHS, DAG);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005370 SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00005371 return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
5372 }
5373 case OP_VEXT1:
5374 case OP_VEXT2:
5375 case OP_VEXT3: {
5376 unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
5377 return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005378 DAG.getConstant(Imm, dl, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00005379 }
5380 case OP_VUZPL:
5381 return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
5382 OpRHS);
5383 case OP_VUZPR:
5384 return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
5385 OpRHS);
5386 case OP_VZIPL:
5387 return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
5388 OpRHS);
5389 case OP_VZIPR:
5390 return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
5391 OpRHS);
5392 case OP_VTRNL:
5393 return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
5394 OpRHS);
5395 case OP_VTRNR:
5396 return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
5397 OpRHS);
5398 }
5399}
5400
5401static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
5402 SelectionDAG &DAG) {
5403 // Check to see if we can use the TBL instruction.
5404 SDValue V1 = Op.getOperand(0);
5405 SDValue V2 = Op.getOperand(1);
5406 SDLoc DL(Op);
5407
5408 EVT EltVT = Op.getValueType().getVectorElementType();
5409 unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
5410
5411 SmallVector<SDValue, 8> TBLMask;
5412 for (int Val : ShuffleMask) {
5413 for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
5414 unsigned Offset = Byte + Val * BytesPerElt;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005415 TBLMask.push_back(DAG.getConstant(Offset, DL, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00005416 }
5417 }
5418
5419 MVT IndexVT = MVT::v8i8;
5420 unsigned IndexLen = 8;
5421 if (Op.getValueType().getSizeInBits() == 128) {
5422 IndexVT = MVT::v16i8;
5423 IndexLen = 16;
5424 }
5425
5426 SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
5427 SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
5428
5429 SDValue Shuffle;
5430 if (V2.getNode()->getOpcode() == ISD::UNDEF) {
5431 if (IndexLen == 8)
5432 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
5433 Shuffle = DAG.getNode(
5434 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005435 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
Tim Northover3b0846e2014-05-24 12:50:23 +00005436 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5437 makeArrayRef(TBLMask.data(), IndexLen)));
5438 } else {
5439 if (IndexLen == 8) {
5440 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
5441 Shuffle = DAG.getNode(
5442 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005443 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
Tim Northover3b0846e2014-05-24 12:50:23 +00005444 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5445 makeArrayRef(TBLMask.data(), IndexLen)));
5446 } else {
5447 // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
5448 // cannot currently represent the register constraints on the input
5449 // table registers.
5450 // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
5451 // DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5452 // &TBLMask[0], IndexLen));
5453 Shuffle = DAG.getNode(
5454 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005455 DAG.getConstant(Intrinsic::aarch64_neon_tbl2, DL, MVT::i32),
5456 V1Cst, V2Cst,
Tim Northover3b0846e2014-05-24 12:50:23 +00005457 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT,
5458 makeArrayRef(TBLMask.data(), IndexLen)));
5459 }
5460 }
5461 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
5462}
5463
5464static unsigned getDUPLANEOp(EVT EltType) {
5465 if (EltType == MVT::i8)
5466 return AArch64ISD::DUPLANE8;
Oliver Stannard89d15422014-08-27 16:16:04 +00005467 if (EltType == MVT::i16 || EltType == MVT::f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005468 return AArch64ISD::DUPLANE16;
5469 if (EltType == MVT::i32 || EltType == MVT::f32)
5470 return AArch64ISD::DUPLANE32;
5471 if (EltType == MVT::i64 || EltType == MVT::f64)
5472 return AArch64ISD::DUPLANE64;
5473
5474 llvm_unreachable("Invalid vector element type?");
5475}
5476
5477SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
5478 SelectionDAG &DAG) const {
5479 SDLoc dl(Op);
5480 EVT VT = Op.getValueType();
5481
5482 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
5483
5484 // Convert shuffles that are directly supported on NEON to target-specific
5485 // DAG nodes, instead of keeping them as shuffles and matching them again
5486 // during code selection. This is more efficient and avoids the possibility
5487 // of inconsistencies between legalization and selection.
5488 ArrayRef<int> ShuffleMask = SVN->getMask();
5489
5490 SDValue V1 = Op.getOperand(0);
5491 SDValue V2 = Op.getOperand(1);
5492
5493 if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0],
5494 V1.getValueType().getSimpleVT())) {
5495 int Lane = SVN->getSplatIndex();
5496 // If this is undef splat, generate it via "just" vdup, if possible.
5497 if (Lane == -1)
5498 Lane = 0;
5499
5500 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
5501 return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
5502 V1.getOperand(0));
5503 // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
5504 // constant. If so, we can just reference the lane's definition directly.
5505 if (V1.getOpcode() == ISD::BUILD_VECTOR &&
5506 !isa<ConstantSDNode>(V1.getOperand(Lane)))
5507 return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
5508
5509 // Otherwise, duplicate from the lane of the input vector.
5510 unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
5511
5512 // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
5513 // to make a vector of the same size as this SHUFFLE. We can ignore the
5514 // extract entirely, and canonicalise the concat using WidenVector.
5515 if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
5516 Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
5517 V1 = V1.getOperand(0);
5518 } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
5519 unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
5520 Lane -= Idx * VT.getVectorNumElements() / 2;
5521 V1 = WidenVector(V1.getOperand(Idx), DAG);
5522 } else if (VT.getSizeInBits() == 64)
5523 V1 = WidenVector(V1, DAG);
5524
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005525 return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00005526 }
5527
5528 if (isREVMask(ShuffleMask, VT, 64))
5529 return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
5530 if (isREVMask(ShuffleMask, VT, 32))
5531 return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
5532 if (isREVMask(ShuffleMask, VT, 16))
5533 return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
5534
5535 bool ReverseEXT = false;
5536 unsigned Imm;
5537 if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
5538 if (ReverseEXT)
5539 std::swap(V1, V2);
5540 Imm *= getExtFactor(V1);
5541 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005542 DAG.getConstant(Imm, dl, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00005543 } else if (V2->getOpcode() == ISD::UNDEF &&
5544 isSingletonEXTMask(ShuffleMask, VT, Imm)) {
5545 Imm *= getExtFactor(V1);
5546 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005547 DAG.getConstant(Imm, dl, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00005548 }
5549
5550 unsigned WhichResult;
5551 if (isZIPMask(ShuffleMask, VT, WhichResult)) {
5552 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5553 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5554 }
5555 if (isUZPMask(ShuffleMask, VT, WhichResult)) {
5556 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5557 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5558 }
5559 if (isTRNMask(ShuffleMask, VT, WhichResult)) {
5560 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5561 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5562 }
5563
5564 if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5565 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5566 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5567 }
5568 if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5569 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5570 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5571 }
5572 if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5573 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5574 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5575 }
5576
5577 SDValue Concat = tryFormConcatFromShuffle(Op, DAG);
5578 if (Concat.getNode())
5579 return Concat;
5580
5581 bool DstIsLeft;
5582 int Anomaly;
5583 int NumInputElements = V1.getValueType().getVectorNumElements();
5584 if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
5585 SDValue DstVec = DstIsLeft ? V1 : V2;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005586 SDValue DstLaneV = DAG.getConstant(Anomaly, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00005587
5588 SDValue SrcVec = V1;
5589 int SrcLane = ShuffleMask[Anomaly];
5590 if (SrcLane >= NumInputElements) {
5591 SrcVec = V2;
5592 SrcLane -= VT.getVectorNumElements();
5593 }
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005594 SDValue SrcLaneV = DAG.getConstant(SrcLane, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00005595
5596 EVT ScalarVT = VT.getVectorElementType();
Oliver Stannard89d15422014-08-27 16:16:04 +00005597
5598 if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00005599 ScalarVT = MVT::i32;
5600
5601 return DAG.getNode(
5602 ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
5603 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
5604 DstLaneV);
5605 }
5606
5607 // If the shuffle is not directly supported and it has 4 elements, use
5608 // the PerfectShuffle-generated table to synthesize it from other shuffles.
5609 unsigned NumElts = VT.getVectorNumElements();
5610 if (NumElts == 4) {
5611 unsigned PFIndexes[4];
5612 for (unsigned i = 0; i != 4; ++i) {
5613 if (ShuffleMask[i] < 0)
5614 PFIndexes[i] = 8;
5615 else
5616 PFIndexes[i] = ShuffleMask[i];
5617 }
5618
5619 // Compute the index in the perfect shuffle table.
5620 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
5621 PFIndexes[2] * 9 + PFIndexes[3];
5622 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5623 unsigned Cost = (PFEntry >> 30);
5624
5625 if (Cost <= 4)
5626 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5627 }
5628
5629 return GenerateTBL(Op, ShuffleMask, DAG);
5630}
5631
5632static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
5633 APInt &UndefBits) {
5634 EVT VT = BVN->getValueType(0);
5635 APInt SplatBits, SplatUndef;
5636 unsigned SplatBitSize;
5637 bool HasAnyUndefs;
5638 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
5639 unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
5640
5641 for (unsigned i = 0; i < NumSplats; ++i) {
5642 CnstBits <<= SplatBitSize;
5643 UndefBits <<= SplatBitSize;
5644 CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
5645 UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
5646 }
5647
5648 return true;
5649 }
5650
5651 return false;
5652}
5653
5654SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
5655 SelectionDAG &DAG) const {
5656 BuildVectorSDNode *BVN =
5657 dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5658 SDValue LHS = Op.getOperand(0);
5659 SDLoc dl(Op);
5660 EVT VT = Op.getValueType();
5661
5662 if (!BVN)
5663 return Op;
5664
5665 APInt CnstBits(VT.getSizeInBits(), 0);
5666 APInt UndefBits(VT.getSizeInBits(), 0);
5667 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5668 // We only have BIC vector immediate instruction, which is and-not.
5669 CnstBits = ~CnstBits;
5670
5671 // We make use of a little bit of goto ickiness in order to avoid having to
5672 // duplicate the immediate matching logic for the undef toggled case.
5673 bool SecondTry = false;
5674 AttemptModImm:
5675
5676 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5677 CnstBits = CnstBits.zextOrTrunc(64);
5678 uint64_t CnstVal = CnstBits.getZExtValue();
5679
5680 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5681 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5682 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5683 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005684 DAG.getConstant(CnstVal, dl, MVT::i32),
5685 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005686 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005687 }
5688
5689 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5690 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5691 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5692 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005693 DAG.getConstant(CnstVal, dl, MVT::i32),
5694 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005695 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005696 }
5697
5698 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5699 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5700 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5701 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005702 DAG.getConstant(CnstVal, dl, MVT::i32),
5703 DAG.getConstant(16, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005704 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005705 }
5706
5707 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5708 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5709 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5710 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005711 DAG.getConstant(CnstVal, dl, MVT::i32),
5712 DAG.getConstant(24, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005713 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005714 }
5715
5716 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5717 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5718 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5719 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005720 DAG.getConstant(CnstVal, dl, MVT::i32),
5721 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005722 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005723 }
5724
5725 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5726 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5727 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5728 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005729 DAG.getConstant(CnstVal, dl, MVT::i32),
5730 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005731 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005732 }
5733 }
5734
5735 if (SecondTry)
5736 goto FailedModImm;
5737 SecondTry = true;
5738 CnstBits = ~UndefBits;
5739 goto AttemptModImm;
5740 }
5741
5742// We can always fall back to a non-immediate AND.
5743FailedModImm:
5744 return Op;
5745}
5746
5747// Specialized code to quickly find if PotentialBVec is a BuildVector that
5748// consists of only the same constant int value, returned in reference arg
5749// ConstVal
5750static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
5751 uint64_t &ConstVal) {
5752 BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
5753 if (!Bvec)
5754 return false;
5755 ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
5756 if (!FirstElt)
5757 return false;
5758 EVT VT = Bvec->getValueType(0);
5759 unsigned NumElts = VT.getVectorNumElements();
5760 for (unsigned i = 1; i < NumElts; ++i)
5761 if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
5762 return false;
5763 ConstVal = FirstElt->getZExtValue();
5764 return true;
5765}
5766
5767static unsigned getIntrinsicID(const SDNode *N) {
5768 unsigned Opcode = N->getOpcode();
5769 switch (Opcode) {
5770 default:
5771 return Intrinsic::not_intrinsic;
5772 case ISD::INTRINSIC_WO_CHAIN: {
5773 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5774 if (IID < Intrinsic::num_intrinsics)
5775 return IID;
5776 return Intrinsic::not_intrinsic;
5777 }
5778 }
5779}
5780
5781// Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
5782// to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
5783// BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
5784// Also, logical shift right -> sri, with the same structure.
5785static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
5786 EVT VT = N->getValueType(0);
5787
5788 if (!VT.isVector())
5789 return SDValue();
5790
5791 SDLoc DL(N);
5792
5793 // Is the first op an AND?
5794 const SDValue And = N->getOperand(0);
5795 if (And.getOpcode() != ISD::AND)
5796 return SDValue();
5797
5798 // Is the second op an shl or lshr?
5799 SDValue Shift = N->getOperand(1);
5800 // This will have been turned into: AArch64ISD::VSHL vector, #shift
5801 // or AArch64ISD::VLSHR vector, #shift
5802 unsigned ShiftOpc = Shift.getOpcode();
5803 if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
5804 return SDValue();
5805 bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
5806
5807 // Is the shift amount constant?
5808 ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
5809 if (!C2node)
5810 return SDValue();
5811
5812 // Is the and mask vector all constant?
5813 uint64_t C1;
5814 if (!isAllConstantBuildVector(And.getOperand(1), C1))
5815 return SDValue();
5816
5817 // Is C1 == ~C2, taking into account how much one can shift elements of a
5818 // particular size?
5819 uint64_t C2 = C2node->getZExtValue();
5820 unsigned ElemSizeInBits = VT.getVectorElementType().getSizeInBits();
5821 if (C2 > ElemSizeInBits)
5822 return SDValue();
5823 unsigned ElemMask = (1 << ElemSizeInBits) - 1;
5824 if ((C1 & ElemMask) != (~C2 & ElemMask))
5825 return SDValue();
5826
5827 SDValue X = And.getOperand(0);
5828 SDValue Y = Shift.getOperand(0);
5829
5830 unsigned Intrin =
5831 IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
5832 SDValue ResultSLI =
5833 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005834 DAG.getConstant(Intrin, DL, MVT::i32), X, Y,
5835 Shift.getOperand(1));
Tim Northover3b0846e2014-05-24 12:50:23 +00005836
5837 DEBUG(dbgs() << "aarch64-lower: transformed: \n");
5838 DEBUG(N->dump(&DAG));
5839 DEBUG(dbgs() << "into: \n");
5840 DEBUG(ResultSLI->dump(&DAG));
5841
5842 ++NumShiftInserts;
5843 return ResultSLI;
5844}
5845
5846SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
5847 SelectionDAG &DAG) const {
5848 // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
5849 if (EnableAArch64SlrGeneration) {
5850 SDValue Res = tryLowerToSLI(Op.getNode(), DAG);
5851 if (Res.getNode())
5852 return Res;
5853 }
5854
5855 BuildVectorSDNode *BVN =
5856 dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
5857 SDValue LHS = Op.getOperand(1);
5858 SDLoc dl(Op);
5859 EVT VT = Op.getValueType();
5860
5861 // OR commutes, so try swapping the operands.
5862 if (!BVN) {
5863 LHS = Op.getOperand(0);
5864 BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5865 }
5866 if (!BVN)
5867 return Op;
5868
5869 APInt CnstBits(VT.getSizeInBits(), 0);
5870 APInt UndefBits(VT.getSizeInBits(), 0);
5871 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5872 // We make use of a little bit of goto ickiness in order to avoid having to
5873 // duplicate the immediate matching logic for the undef toggled case.
5874 bool SecondTry = false;
5875 AttemptModImm:
5876
5877 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5878 CnstBits = CnstBits.zextOrTrunc(64);
5879 uint64_t CnstVal = CnstBits.getZExtValue();
5880
5881 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5882 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5883 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5884 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005885 DAG.getConstant(CnstVal, dl, MVT::i32),
5886 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005887 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005888 }
5889
5890 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5891 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5892 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5893 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005894 DAG.getConstant(CnstVal, dl, MVT::i32),
5895 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005896 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005897 }
5898
5899 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5900 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5901 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5902 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005903 DAG.getConstant(CnstVal, dl, MVT::i32),
5904 DAG.getConstant(16, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005905 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005906 }
5907
5908 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5909 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5910 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5911 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005912 DAG.getConstant(CnstVal, dl, MVT::i32),
5913 DAG.getConstant(24, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005914 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005915 }
5916
5917 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5918 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5919 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5920 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005921 DAG.getConstant(CnstVal, dl, MVT::i32),
5922 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005923 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005924 }
5925
5926 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5927 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5928 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5929 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005930 DAG.getConstant(CnstVal, dl, MVT::i32),
5931 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005932 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005933 }
5934 }
5935
5936 if (SecondTry)
5937 goto FailedModImm;
5938 SecondTry = true;
5939 CnstBits = UndefBits;
5940 goto AttemptModImm;
5941 }
5942
5943// We can always fall back to a non-immediate OR.
5944FailedModImm:
5945 return Op;
5946}
5947
Kevin Qin4473c192014-07-07 02:45:40 +00005948// Normalize the operands of BUILD_VECTOR. The value of constant operands will
5949// be truncated to fit element width.
5950static SDValue NormalizeBuildVector(SDValue Op,
5951 SelectionDAG &DAG) {
5952 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
Tim Northover3b0846e2014-05-24 12:50:23 +00005953 SDLoc dl(Op);
5954 EVT VT = Op.getValueType();
Kevin Qin4473c192014-07-07 02:45:40 +00005955 EVT EltTy= VT.getVectorElementType();
5956
5957 if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
5958 return Op;
5959
5960 SmallVector<SDValue, 16> Ops;
Pete Cooper7be8f8f2015-08-03 19:04:32 +00005961 for (SDValue Lane : Op->ops()) {
5962 if (auto *CstLane = dyn_cast<ConstantSDNode>(Lane)) {
Kevin Qin4473c192014-07-07 02:45:40 +00005963 APInt LowBits(EltTy.getSizeInBits(),
Pete Cooper7be8f8f2015-08-03 19:04:32 +00005964 CstLane->getZExtValue());
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005965 Lane = DAG.getConstant(LowBits.getZExtValue(), dl, MVT::i32);
Kevin Qin4473c192014-07-07 02:45:40 +00005966 }
5967 Ops.push_back(Lane);
5968 }
5969 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
5970}
5971
5972SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
5973 SelectionDAG &DAG) const {
5974 SDLoc dl(Op);
5975 EVT VT = Op.getValueType();
5976 Op = NormalizeBuildVector(Op, DAG);
5977 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
Tim Northover3b0846e2014-05-24 12:50:23 +00005978
5979 APInt CnstBits(VT.getSizeInBits(), 0);
5980 APInt UndefBits(VT.getSizeInBits(), 0);
5981 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5982 // We make use of a little bit of goto ickiness in order to avoid having to
5983 // duplicate the immediate matching logic for the undef toggled case.
5984 bool SecondTry = false;
5985 AttemptModImm:
5986
5987 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5988 CnstBits = CnstBits.zextOrTrunc(64);
5989 uint64_t CnstVal = CnstBits.getZExtValue();
5990
5991 // Certain magic vector constants (used to express things like NOT
5992 // and NEG) are passed through unmodified. This allows codegen patterns
5993 // for these operations to match. Special-purpose patterns will lower
5994 // these immediates to MOVIs if it proves necessary.
5995 if (VT.isInteger() && (CnstVal == 0 || CnstVal == ~0ULL))
5996 return Op;
5997
5998 // The many faces of MOVI...
5999 if (AArch64_AM::isAdvSIMDModImmType10(CnstVal)) {
6000 CnstVal = AArch64_AM::encodeAdvSIMDModImmType10(CnstVal);
6001 if (VT.getSizeInBits() == 128) {
6002 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::v2i64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006003 DAG.getConstant(CnstVal, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006004 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006005 }
6006
6007 // Support the V64 version via subregister insertion.
6008 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::f64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006009 DAG.getConstant(CnstVal, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006010 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006011 }
6012
6013 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
6014 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
6015 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6016 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006017 DAG.getConstant(CnstVal, dl, MVT::i32),
6018 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006019 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006020 }
6021
6022 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
6023 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
6024 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6025 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006026 DAG.getConstant(CnstVal, dl, MVT::i32),
6027 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006028 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006029 }
6030
6031 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
6032 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
6033 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6034 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006035 DAG.getConstant(CnstVal, dl, MVT::i32),
6036 DAG.getConstant(16, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006037 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006038 }
6039
6040 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
6041 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
6042 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6043 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006044 DAG.getConstant(CnstVal, dl, MVT::i32),
6045 DAG.getConstant(24, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006046 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006047 }
6048
6049 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
6050 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
6051 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6052 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006053 DAG.getConstant(CnstVal, dl, MVT::i32),
6054 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006055 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006056 }
6057
6058 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
6059 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
6060 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6061 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006062 DAG.getConstant(CnstVal, dl, MVT::i32),
6063 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006064 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006065 }
6066
6067 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
6068 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
6069 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6070 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006071 DAG.getConstant(CnstVal, dl, MVT::i32),
6072 DAG.getConstant(264, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006073 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006074 }
6075
6076 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
6077 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
6078 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6079 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006080 DAG.getConstant(CnstVal, dl, MVT::i32),
6081 DAG.getConstant(272, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006082 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006083 }
6084
6085 if (AArch64_AM::isAdvSIMDModImmType9(CnstVal)) {
6086 CnstVal = AArch64_AM::encodeAdvSIMDModImmType9(CnstVal);
6087 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
6088 SDValue Mov = DAG.getNode(AArch64ISD::MOVI, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006089 DAG.getConstant(CnstVal, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006090 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006091 }
6092
6093 // The few faces of FMOV...
6094 if (AArch64_AM::isAdvSIMDModImmType11(CnstVal)) {
6095 CnstVal = AArch64_AM::encodeAdvSIMDModImmType11(CnstVal);
6096 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4f32 : MVT::v2f32;
6097 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006098 DAG.getConstant(CnstVal, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006099 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006100 }
6101
6102 if (AArch64_AM::isAdvSIMDModImmType12(CnstVal) &&
6103 VT.getSizeInBits() == 128) {
6104 CnstVal = AArch64_AM::encodeAdvSIMDModImmType12(CnstVal);
6105 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MVT::v2f64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006106 DAG.getConstant(CnstVal, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006107 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006108 }
6109
6110 // The many faces of MVNI...
6111 CnstVal = ~CnstVal;
6112 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
6113 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
6114 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6115 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006116 DAG.getConstant(CnstVal, dl, MVT::i32),
6117 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006118 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006119 }
6120
6121 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
6122 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
6123 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6124 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006125 DAG.getConstant(CnstVal, dl, MVT::i32),
6126 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006127 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006128 }
6129
6130 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
6131 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
6132 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6133 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006134 DAG.getConstant(CnstVal, dl, MVT::i32),
6135 DAG.getConstant(16, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006136 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006137 }
6138
6139 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
6140 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
6141 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6142 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006143 DAG.getConstant(CnstVal, dl, MVT::i32),
6144 DAG.getConstant(24, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006145 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006146 }
6147
6148 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
6149 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
6150 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6151 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006152 DAG.getConstant(CnstVal, dl, MVT::i32),
6153 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006154 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006155 }
6156
6157 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
6158 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
6159 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6160 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006161 DAG.getConstant(CnstVal, dl, MVT::i32),
6162 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006163 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006164 }
6165
6166 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
6167 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
6168 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6169 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006170 DAG.getConstant(CnstVal, dl, MVT::i32),
6171 DAG.getConstant(264, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006172 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006173 }
6174
6175 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
6176 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
6177 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6178 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006179 DAG.getConstant(CnstVal, dl, MVT::i32),
6180 DAG.getConstant(272, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006181 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006182 }
6183 }
6184
6185 if (SecondTry)
6186 goto FailedModImm;
6187 SecondTry = true;
6188 CnstBits = UndefBits;
6189 goto AttemptModImm;
6190 }
6191FailedModImm:
6192
6193 // Scan through the operands to find some interesting properties we can
6194 // exploit:
6195 // 1) If only one value is used, we can use a DUP, or
6196 // 2) if only the low element is not undef, we can just insert that, or
6197 // 3) if only one constant value is used (w/ some non-constant lanes),
6198 // we can splat the constant value into the whole vector then fill
6199 // in the non-constant lanes.
6200 // 4) FIXME: If different constant values are used, but we can intelligently
6201 // select the values we'll be overwriting for the non-constant
6202 // lanes such that we can directly materialize the vector
6203 // some other way (MOVI, e.g.), we can be sneaky.
6204 unsigned NumElts = VT.getVectorNumElements();
6205 bool isOnlyLowElement = true;
6206 bool usesOnlyOneValue = true;
6207 bool usesOnlyOneConstantValue = true;
6208 bool isConstant = true;
6209 unsigned NumConstantLanes = 0;
6210 SDValue Value;
6211 SDValue ConstantValue;
6212 for (unsigned i = 0; i < NumElts; ++i) {
6213 SDValue V = Op.getOperand(i);
6214 if (V.getOpcode() == ISD::UNDEF)
6215 continue;
6216 if (i > 0)
6217 isOnlyLowElement = false;
6218 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
6219 isConstant = false;
6220
6221 if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
6222 ++NumConstantLanes;
6223 if (!ConstantValue.getNode())
6224 ConstantValue = V;
6225 else if (ConstantValue != V)
6226 usesOnlyOneConstantValue = false;
6227 }
6228
6229 if (!Value.getNode())
6230 Value = V;
6231 else if (V != Value)
6232 usesOnlyOneValue = false;
6233 }
6234
6235 if (!Value.getNode())
6236 return DAG.getUNDEF(VT);
6237
6238 if (isOnlyLowElement)
6239 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
6240
6241 // Use DUP for non-constant splats. For f32 constant splats, reduce to
6242 // i32 and try again.
6243 if (usesOnlyOneValue) {
6244 if (!isConstant) {
6245 if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
6246 Value.getValueType() != VT)
6247 return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
6248
6249 // This is actually a DUPLANExx operation, which keeps everything vectory.
6250
6251 // DUPLANE works on 128-bit vectors, widen it if necessary.
6252 SDValue Lane = Value.getOperand(1);
6253 Value = Value.getOperand(0);
6254 if (Value.getValueType().getSizeInBits() == 64)
6255 Value = WidenVector(Value, DAG);
6256
6257 unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
6258 return DAG.getNode(Opcode, dl, VT, Value, Lane);
6259 }
6260
6261 if (VT.getVectorElementType().isFloatingPoint()) {
6262 SmallVector<SDValue, 8> Ops;
Pirama Arumuga Nainar12aeefc2015-03-17 23:10:29 +00006263 EVT EltTy = VT.getVectorElementType();
6264 assert ((EltTy == MVT::f16 || EltTy == MVT::f32 || EltTy == MVT::f64) &&
6265 "Unsupported floating-point vector type");
6266 MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits());
Tim Northover3b0846e2014-05-24 12:50:23 +00006267 for (unsigned i = 0; i < NumElts; ++i)
6268 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
6269 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
6270 SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
6271 Val = LowerBUILD_VECTOR(Val, DAG);
6272 if (Val.getNode())
6273 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
6274 }
6275 }
6276
6277 // If there was only one constant value used and for more than one lane,
6278 // start by splatting that value, then replace the non-constant lanes. This
6279 // is better than the default, which will perform a separate initialization
6280 // for each lane.
6281 if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
6282 SDValue Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
6283 // Now insert the non-constant lanes.
6284 for (unsigned i = 0; i < NumElts; ++i) {
6285 SDValue V = Op.getOperand(i);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006286 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00006287 if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) {
6288 // Note that type legalization likely mucked about with the VT of the
6289 // source operand, so we may have to convert it here before inserting.
6290 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
6291 }
6292 }
6293 return Val;
6294 }
6295
6296 // If all elements are constants and the case above didn't get hit, fall back
6297 // to the default expansion, which will generate a load from the constant
6298 // pool.
6299 if (isConstant)
6300 return SDValue();
6301
6302 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
6303 if (NumElts >= 4) {
Ahmed Bougacha239d6352015-08-04 00:48:02 +00006304 if (SDValue shuffle = ReconstructShuffle(Op, DAG))
Tim Northover3b0846e2014-05-24 12:50:23 +00006305 return shuffle;
6306 }
6307
6308 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
6309 // know the default expansion would otherwise fall back on something even
6310 // worse. For a vector with one or two non-undef values, that's
6311 // scalar_to_vector for the elements followed by a shuffle (provided the
6312 // shuffle is valid for the target) and materialization element by element
6313 // on the stack followed by a load for everything else.
6314 if (!isConstant && !usesOnlyOneValue) {
6315 SDValue Vec = DAG.getUNDEF(VT);
6316 SDValue Op0 = Op.getOperand(0);
6317 unsigned ElemSize = VT.getVectorElementType().getSizeInBits();
6318 unsigned i = 0;
6319 // For 32 and 64 bit types, use INSERT_SUBREG for lane zero to
6320 // a) Avoid a RMW dependency on the full vector register, and
6321 // b) Allow the register coalescer to fold away the copy if the
6322 // value is already in an S or D register.
Matthias Braun0acbd082015-08-31 18:25:15 +00006323 // Do not do this for UNDEF/LOAD nodes because we have better patterns
6324 // for those avoiding the SCALAR_TO_VECTOR/BUILD_VECTOR.
6325 if (Op0.getOpcode() != ISD::UNDEF && Op0.getOpcode() != ISD::LOAD &&
6326 (ElemSize == 32 || ElemSize == 64)) {
Tim Northover3b0846e2014-05-24 12:50:23 +00006327 unsigned SubIdx = ElemSize == 32 ? AArch64::ssub : AArch64::dsub;
6328 MachineSDNode *N =
6329 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VT, Vec, Op0,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006330 DAG.getTargetConstant(SubIdx, dl, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00006331 Vec = SDValue(N, 0);
6332 ++i;
6333 }
6334 for (; i < NumElts; ++i) {
6335 SDValue V = Op.getOperand(i);
6336 if (V.getOpcode() == ISD::UNDEF)
6337 continue;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006338 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00006339 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
6340 }
6341 return Vec;
6342 }
6343
6344 // Just use the default expansion. We failed to find a better alternative.
6345 return SDValue();
6346}
6347
6348SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
6349 SelectionDAG &DAG) const {
6350 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
6351
Tim Northovere4b8e132014-07-15 10:00:26 +00006352 // Check for non-constant or out of range lane.
6353 EVT VT = Op.getOperand(0).getValueType();
6354 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
6355 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
Tim Northover3b0846e2014-05-24 12:50:23 +00006356 return SDValue();
6357
Tim Northover3b0846e2014-05-24 12:50:23 +00006358
6359 // Insertion/extraction are legal for V128 types.
6360 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
Oliver Stannard89d15422014-08-27 16:16:04 +00006361 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
6362 VT == MVT::v8f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006363 return Op;
6364
6365 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
Oliver Stannard89d15422014-08-27 16:16:04 +00006366 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006367 return SDValue();
6368
6369 // For V64 types, we perform insertion by expanding the value
6370 // to a V128 type and perform the insertion on that.
6371 SDLoc DL(Op);
6372 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
6373 EVT WideTy = WideVec.getValueType();
6374
6375 SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
6376 Op.getOperand(1), Op.getOperand(2));
6377 // Re-narrow the resultant vector.
6378 return NarrowVector(Node, DAG);
6379}
6380
6381SDValue
6382AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6383 SelectionDAG &DAG) const {
6384 assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
6385
Tim Northovere4b8e132014-07-15 10:00:26 +00006386 // Check for non-constant or out of range lane.
6387 EVT VT = Op.getOperand(0).getValueType();
6388 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6389 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
Tim Northover3b0846e2014-05-24 12:50:23 +00006390 return SDValue();
6391
Tim Northover3b0846e2014-05-24 12:50:23 +00006392
6393 // Insertion/extraction are legal for V128 types.
6394 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
Oliver Stannard89d15422014-08-27 16:16:04 +00006395 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
6396 VT == MVT::v8f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006397 return Op;
6398
6399 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
Oliver Stannard89d15422014-08-27 16:16:04 +00006400 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006401 return SDValue();
6402
6403 // For V64 types, we perform extraction by expanding the value
6404 // to a V128 type and perform the extraction on that.
6405 SDLoc DL(Op);
6406 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
6407 EVT WideTy = WideVec.getValueType();
6408
6409 EVT ExtrTy = WideTy.getVectorElementType();
6410 if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
6411 ExtrTy = MVT::i32;
6412
6413 // For extractions, we just return the result directly.
6414 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
6415 Op.getOperand(1));
6416}
6417
6418SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
6419 SelectionDAG &DAG) const {
6420 EVT VT = Op.getOperand(0).getValueType();
6421 SDLoc dl(Op);
6422 // Just in case...
6423 if (!VT.isVector())
6424 return SDValue();
6425
6426 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6427 if (!Cst)
6428 return SDValue();
6429 unsigned Val = Cst->getZExtValue();
6430
6431 unsigned Size = Op.getValueType().getSizeInBits();
Charlie Turner7b7b06f2015-11-09 12:45:11 +00006432
6433 // This will get lowered to an appropriate EXTRACT_SUBREG in ISel.
6434 if (Val == 0)
6435 return Op;
6436
Tim Northover3b0846e2014-05-24 12:50:23 +00006437 // If this is extracting the upper 64-bits of a 128-bit vector, we match
6438 // that directly.
6439 if (Size == 64 && Val * VT.getVectorElementType().getSizeInBits() == 64)
6440 return Op;
6441
6442 return SDValue();
6443}
6444
6445bool AArch64TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
6446 EVT VT) const {
6447 if (VT.getVectorNumElements() == 4 &&
6448 (VT.is128BitVector() || VT.is64BitVector())) {
6449 unsigned PFIndexes[4];
6450 for (unsigned i = 0; i != 4; ++i) {
6451 if (M[i] < 0)
6452 PFIndexes[i] = 8;
6453 else
6454 PFIndexes[i] = M[i];
6455 }
6456
6457 // Compute the index in the perfect shuffle table.
6458 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
6459 PFIndexes[2] * 9 + PFIndexes[3];
6460 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6461 unsigned Cost = (PFEntry >> 30);
6462
6463 if (Cost <= 4)
6464 return true;
6465 }
6466
6467 bool DummyBool;
6468 int DummyInt;
6469 unsigned DummyUnsigned;
6470
6471 return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
6472 isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
6473 isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
6474 // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
6475 isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
6476 isZIPMask(M, VT, DummyUnsigned) ||
6477 isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
6478 isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
6479 isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
6480 isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
6481 isConcatMask(M, VT, VT.getSizeInBits() == 128));
6482}
6483
6484/// getVShiftImm - Check if this is a valid build_vector for the immediate
6485/// operand of a vector shift operation, where all the elements of the
6486/// build_vector must have the same constant integer value.
6487static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
6488 // Ignore bit_converts.
6489 while (Op.getOpcode() == ISD::BITCAST)
6490 Op = Op.getOperand(0);
6491 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6492 APInt SplatBits, SplatUndef;
6493 unsigned SplatBitSize;
6494 bool HasAnyUndefs;
6495 if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
6496 HasAnyUndefs, ElementBits) ||
6497 SplatBitSize > ElementBits)
6498 return false;
6499 Cnt = SplatBits.getSExtValue();
6500 return true;
6501}
6502
6503/// isVShiftLImm - Check if this is a valid build_vector for the immediate
6504/// operand of a vector shift left operation. That value must be in the range:
6505/// 0 <= Value < ElementBits for a left shift; or
6506/// 0 <= Value <= ElementBits for a long left shift.
6507static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
6508 assert(VT.isVector() && "vector shift count is not a vector type");
Luke Cheesemanb5c627a2015-07-24 09:31:48 +00006509 int64_t ElementBits = VT.getVectorElementType().getSizeInBits();
Tim Northover3b0846e2014-05-24 12:50:23 +00006510 if (!getVShiftImm(Op, ElementBits, Cnt))
6511 return false;
6512 return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
6513}
6514
6515/// isVShiftRImm - Check if this is a valid build_vector for the immediate
Luke Cheesemanb5c627a2015-07-24 09:31:48 +00006516/// operand of a vector shift right operation. The value must be in the range:
6517/// 1 <= Value <= ElementBits for a right shift; or
6518static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, int64_t &Cnt) {
Tim Northover3b0846e2014-05-24 12:50:23 +00006519 assert(VT.isVector() && "vector shift count is not a vector type");
Luke Cheesemanb5c627a2015-07-24 09:31:48 +00006520 int64_t ElementBits = VT.getVectorElementType().getSizeInBits();
Tim Northover3b0846e2014-05-24 12:50:23 +00006521 if (!getVShiftImm(Op, ElementBits, Cnt))
6522 return false;
Tim Northover3b0846e2014-05-24 12:50:23 +00006523 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
6524}
6525
6526SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
6527 SelectionDAG &DAG) const {
6528 EVT VT = Op.getValueType();
6529 SDLoc DL(Op);
6530 int64_t Cnt;
6531
6532 if (!Op.getOperand(1).getValueType().isVector())
6533 return Op;
6534 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
6535
6536 switch (Op.getOpcode()) {
6537 default:
6538 llvm_unreachable("unexpected shift opcode");
6539
6540 case ISD::SHL:
6541 if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006542 return DAG.getNode(AArch64ISD::VSHL, DL, VT, Op.getOperand(0),
6543 DAG.getConstant(Cnt, DL, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00006544 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006545 DAG.getConstant(Intrinsic::aarch64_neon_ushl, DL,
6546 MVT::i32),
Tim Northover3b0846e2014-05-24 12:50:23 +00006547 Op.getOperand(0), Op.getOperand(1));
6548 case ISD::SRA:
6549 case ISD::SRL:
6550 // Right shift immediate
Luke Cheesemanb5c627a2015-07-24 09:31:48 +00006551 if (isVShiftRImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) {
Tim Northover3b0846e2014-05-24 12:50:23 +00006552 unsigned Opc =
6553 (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006554 return DAG.getNode(Opc, DL, VT, Op.getOperand(0),
6555 DAG.getConstant(Cnt, DL, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00006556 }
6557
6558 // Right shift register. Note, there is not a shift right register
6559 // instruction, but the shift left register instruction takes a signed
6560 // value, where negative numbers specify a right shift.
6561 unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
6562 : Intrinsic::aarch64_neon_ushl;
6563 // negate the shift amount
6564 SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
6565 SDValue NegShiftLeft =
6566 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006567 DAG.getConstant(Opc, DL, MVT::i32), Op.getOperand(0),
6568 NegShift);
Tim Northover3b0846e2014-05-24 12:50:23 +00006569 return NegShiftLeft;
6570 }
6571
6572 return SDValue();
6573}
6574
6575static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
6576 AArch64CC::CondCode CC, bool NoNans, EVT VT,
6577 SDLoc dl, SelectionDAG &DAG) {
6578 EVT SrcVT = LHS.getValueType();
Tim Northover45aa89c2015-02-08 00:50:47 +00006579 assert(VT.getSizeInBits() == SrcVT.getSizeInBits() &&
6580 "function only supposed to emit natural comparisons");
Tim Northover3b0846e2014-05-24 12:50:23 +00006581
6582 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
6583 APInt CnstBits(VT.getSizeInBits(), 0);
6584 APInt UndefBits(VT.getSizeInBits(), 0);
6585 bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
6586 bool IsZero = IsCnst && (CnstBits == 0);
6587
6588 if (SrcVT.getVectorElementType().isFloatingPoint()) {
6589 switch (CC) {
6590 default:
6591 return SDValue();
6592 case AArch64CC::NE: {
6593 SDValue Fcmeq;
6594 if (IsZero)
6595 Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6596 else
6597 Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6598 return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
6599 }
6600 case AArch64CC::EQ:
6601 if (IsZero)
6602 return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6603 return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6604 case AArch64CC::GE:
6605 if (IsZero)
6606 return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
6607 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
6608 case AArch64CC::GT:
6609 if (IsZero)
6610 return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
6611 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
6612 case AArch64CC::LS:
6613 if (IsZero)
6614 return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
6615 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
6616 case AArch64CC::LT:
6617 if (!NoNans)
6618 return SDValue();
6619 // If we ignore NaNs then we can use to the MI implementation.
6620 // Fallthrough.
6621 case AArch64CC::MI:
6622 if (IsZero)
6623 return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
6624 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
6625 }
6626 }
6627
6628 switch (CC) {
6629 default:
6630 return SDValue();
6631 case AArch64CC::NE: {
6632 SDValue Cmeq;
6633 if (IsZero)
6634 Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6635 else
6636 Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6637 return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
6638 }
6639 case AArch64CC::EQ:
6640 if (IsZero)
6641 return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6642 return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6643 case AArch64CC::GE:
6644 if (IsZero)
6645 return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
6646 return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
6647 case AArch64CC::GT:
6648 if (IsZero)
6649 return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
6650 return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
6651 case AArch64CC::LE:
6652 if (IsZero)
6653 return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
6654 return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
6655 case AArch64CC::LS:
6656 return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
6657 case AArch64CC::LO:
6658 return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
6659 case AArch64CC::LT:
6660 if (IsZero)
6661 return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
6662 return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
6663 case AArch64CC::HI:
6664 return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
6665 case AArch64CC::HS:
6666 return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
6667 }
6668}
6669
6670SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
6671 SelectionDAG &DAG) const {
6672 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6673 SDValue LHS = Op.getOperand(0);
6674 SDValue RHS = Op.getOperand(1);
Tim Northover45aa89c2015-02-08 00:50:47 +00006675 EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger();
Tim Northover3b0846e2014-05-24 12:50:23 +00006676 SDLoc dl(Op);
6677
6678 if (LHS.getValueType().getVectorElementType().isInteger()) {
6679 assert(LHS.getValueType() == RHS.getValueType());
6680 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
Tim Northover45aa89c2015-02-08 00:50:47 +00006681 SDValue Cmp =
6682 EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG);
6683 return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
Tim Northover3b0846e2014-05-24 12:50:23 +00006684 }
6685
6686 assert(LHS.getValueType().getVectorElementType() == MVT::f32 ||
6687 LHS.getValueType().getVectorElementType() == MVT::f64);
6688
6689 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
6690 // clean. Some of them require two branches to implement.
6691 AArch64CC::CondCode CC1, CC2;
6692 bool ShouldInvert;
6693 changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
6694
6695 bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
6696 SDValue Cmp =
Tim Northover45aa89c2015-02-08 00:50:47 +00006697 EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00006698 if (!Cmp.getNode())
6699 return SDValue();
6700
6701 if (CC2 != AArch64CC::AL) {
6702 SDValue Cmp2 =
Tim Northover45aa89c2015-02-08 00:50:47 +00006703 EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00006704 if (!Cmp2.getNode())
6705 return SDValue();
6706
Tim Northover45aa89c2015-02-08 00:50:47 +00006707 Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2);
Tim Northover3b0846e2014-05-24 12:50:23 +00006708 }
6709
Tim Northover45aa89c2015-02-08 00:50:47 +00006710 Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
6711
Tim Northover3b0846e2014-05-24 12:50:23 +00006712 if (ShouldInvert)
6713 return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
6714
6715 return Cmp;
6716}
6717
6718/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
6719/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
6720/// specified in the intrinsic calls.
6721bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
6722 const CallInst &I,
6723 unsigned Intrinsic) const {
Mehdi Aminia749f2a2015-07-09 02:09:52 +00006724 auto &DL = I.getModule()->getDataLayout();
Tim Northover3b0846e2014-05-24 12:50:23 +00006725 switch (Intrinsic) {
6726 case Intrinsic::aarch64_neon_ld2:
6727 case Intrinsic::aarch64_neon_ld3:
6728 case Intrinsic::aarch64_neon_ld4:
6729 case Intrinsic::aarch64_neon_ld1x2:
6730 case Intrinsic::aarch64_neon_ld1x3:
6731 case Intrinsic::aarch64_neon_ld1x4:
6732 case Intrinsic::aarch64_neon_ld2lane:
6733 case Intrinsic::aarch64_neon_ld3lane:
6734 case Intrinsic::aarch64_neon_ld4lane:
6735 case Intrinsic::aarch64_neon_ld2r:
6736 case Intrinsic::aarch64_neon_ld3r:
6737 case Intrinsic::aarch64_neon_ld4r: {
6738 Info.opc = ISD::INTRINSIC_W_CHAIN;
6739 // Conservatively set memVT to the entire set of vectors loaded.
Ahmed Bougacha97564c32015-12-09 01:19:50 +00006740 uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
Tim Northover3b0846e2014-05-24 12:50:23 +00006741 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6742 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6743 Info.offset = 0;
6744 Info.align = 0;
6745 Info.vol = false; // volatile loads with NEON intrinsics not supported
6746 Info.readMem = true;
6747 Info.writeMem = false;
6748 return true;
6749 }
6750 case Intrinsic::aarch64_neon_st2:
6751 case Intrinsic::aarch64_neon_st3:
6752 case Intrinsic::aarch64_neon_st4:
6753 case Intrinsic::aarch64_neon_st1x2:
6754 case Intrinsic::aarch64_neon_st1x3:
6755 case Intrinsic::aarch64_neon_st1x4:
6756 case Intrinsic::aarch64_neon_st2lane:
6757 case Intrinsic::aarch64_neon_st3lane:
6758 case Intrinsic::aarch64_neon_st4lane: {
6759 Info.opc = ISD::INTRINSIC_VOID;
6760 // Conservatively set memVT to the entire set of vectors stored.
6761 unsigned NumElts = 0;
6762 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
6763 Type *ArgTy = I.getArgOperand(ArgI)->getType();
6764 if (!ArgTy->isVectorTy())
6765 break;
Ahmed Bougacha97564c32015-12-09 01:19:50 +00006766 NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
Tim Northover3b0846e2014-05-24 12:50:23 +00006767 }
6768 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6769 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6770 Info.offset = 0;
6771 Info.align = 0;
6772 Info.vol = false; // volatile stores with NEON intrinsics not supported
6773 Info.readMem = false;
6774 Info.writeMem = true;
6775 return true;
6776 }
6777 case Intrinsic::aarch64_ldaxr:
6778 case Intrinsic::aarch64_ldxr: {
6779 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
6780 Info.opc = ISD::INTRINSIC_W_CHAIN;
6781 Info.memVT = MVT::getVT(PtrTy->getElementType());
6782 Info.ptrVal = I.getArgOperand(0);
6783 Info.offset = 0;
Mehdi Aminia749f2a2015-07-09 02:09:52 +00006784 Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
Tim Northover3b0846e2014-05-24 12:50:23 +00006785 Info.vol = true;
6786 Info.readMem = true;
6787 Info.writeMem = false;
6788 return true;
6789 }
6790 case Intrinsic::aarch64_stlxr:
6791 case Intrinsic::aarch64_stxr: {
6792 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
6793 Info.opc = ISD::INTRINSIC_W_CHAIN;
6794 Info.memVT = MVT::getVT(PtrTy->getElementType());
6795 Info.ptrVal = I.getArgOperand(1);
6796 Info.offset = 0;
Mehdi Aminia749f2a2015-07-09 02:09:52 +00006797 Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
Tim Northover3b0846e2014-05-24 12:50:23 +00006798 Info.vol = true;
6799 Info.readMem = false;
6800 Info.writeMem = true;
6801 return true;
6802 }
6803 case Intrinsic::aarch64_ldaxp:
6804 case Intrinsic::aarch64_ldxp: {
6805 Info.opc = ISD::INTRINSIC_W_CHAIN;
6806 Info.memVT = MVT::i128;
6807 Info.ptrVal = I.getArgOperand(0);
6808 Info.offset = 0;
6809 Info.align = 16;
6810 Info.vol = true;
6811 Info.readMem = true;
6812 Info.writeMem = false;
6813 return true;
6814 }
6815 case Intrinsic::aarch64_stlxp:
6816 case Intrinsic::aarch64_stxp: {
6817 Info.opc = ISD::INTRINSIC_W_CHAIN;
6818 Info.memVT = MVT::i128;
6819 Info.ptrVal = I.getArgOperand(2);
6820 Info.offset = 0;
6821 Info.align = 16;
6822 Info.vol = true;
6823 Info.readMem = false;
6824 Info.writeMem = true;
6825 return true;
6826 }
6827 default:
6828 break;
6829 }
6830
6831 return false;
6832}
6833
6834// Truncations from 64-bit GPR to 32-bit GPR is free.
6835bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
6836 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6837 return false;
6838 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6839 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006840 return NumBits1 > NumBits2;
Tim Northover3b0846e2014-05-24 12:50:23 +00006841}
6842bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
Hao Liu40914502014-05-29 09:19:07 +00006843 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00006844 return false;
6845 unsigned NumBits1 = VT1.getSizeInBits();
6846 unsigned NumBits2 = VT2.getSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006847 return NumBits1 > NumBits2;
Tim Northover3b0846e2014-05-24 12:50:23 +00006848}
6849
Chad Rosier54390052015-02-23 19:15:16 +00006850/// Check if it is profitable to hoist instruction in then/else to if.
6851/// Not profitable if I and it's user can form a FMA instruction
6852/// because we prefer FMSUB/FMADD.
6853bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const {
6854 if (I->getOpcode() != Instruction::FMul)
6855 return true;
6856
6857 if (I->getNumUses() != 1)
6858 return true;
6859
6860 Instruction *User = I->user_back();
6861
6862 if (User &&
6863 !(User->getOpcode() == Instruction::FSub ||
6864 User->getOpcode() == Instruction::FAdd))
6865 return true;
6866
6867 const TargetOptions &Options = getTargetMachine().Options;
Mehdi Amini44ede332015-07-09 02:09:04 +00006868 const DataLayout &DL = I->getModule()->getDataLayout();
6869 EVT VT = getValueType(DL, User->getOperand(0)->getType());
Chad Rosier54390052015-02-23 19:15:16 +00006870
6871 if (isFMAFasterThanFMulAndFAdd(VT) &&
6872 isOperationLegalOrCustom(ISD::FMA, VT) &&
6873 (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath))
6874 return false;
6875
6876 return true;
6877}
6878
Tim Northover3b0846e2014-05-24 12:50:23 +00006879// All 32-bit GPR operations implicitly zero the high-half of the corresponding
6880// 64-bit GPR.
6881bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
6882 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6883 return false;
6884 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6885 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006886 return NumBits1 == 32 && NumBits2 == 64;
Tim Northover3b0846e2014-05-24 12:50:23 +00006887}
6888bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
Hao Liu40914502014-05-29 09:19:07 +00006889 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00006890 return false;
6891 unsigned NumBits1 = VT1.getSizeInBits();
6892 unsigned NumBits2 = VT2.getSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00006893 return NumBits1 == 32 && NumBits2 == 64;
Tim Northover3b0846e2014-05-24 12:50:23 +00006894}
6895
6896bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
6897 EVT VT1 = Val.getValueType();
6898 if (isZExtFree(VT1, VT2)) {
6899 return true;
6900 }
6901
6902 if (Val.getOpcode() != ISD::LOAD)
6903 return false;
6904
6905 // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
Hao Liu40914502014-05-29 09:19:07 +00006906 return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
6907 VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
6908 VT1.getSizeInBits() <= 32);
Tim Northover3b0846e2014-05-24 12:50:23 +00006909}
6910
Quentin Colombet6843ac42015-03-31 20:52:32 +00006911bool AArch64TargetLowering::isExtFreeImpl(const Instruction *Ext) const {
6912 if (isa<FPExtInst>(Ext))
6913 return false;
6914
6915 // Vector types are next free.
6916 if (Ext->getType()->isVectorTy())
6917 return false;
6918
6919 for (const Use &U : Ext->uses()) {
6920 // The extension is free if we can fold it with a left shift in an
6921 // addressing mode or an arithmetic operation: add, sub, and cmp.
6922
6923 // Is there a shift?
6924 const Instruction *Instr = cast<Instruction>(U.getUser());
6925
6926 // Is this a constant shift?
6927 switch (Instr->getOpcode()) {
6928 case Instruction::Shl:
6929 if (!isa<ConstantInt>(Instr->getOperand(1)))
6930 return false;
6931 break;
6932 case Instruction::GetElementPtr: {
6933 gep_type_iterator GTI = gep_type_begin(Instr);
Mehdi Aminia749f2a2015-07-09 02:09:52 +00006934 auto &DL = Ext->getModule()->getDataLayout();
Quentin Colombet6843ac42015-03-31 20:52:32 +00006935 std::advance(GTI, U.getOperandNo());
6936 Type *IdxTy = *GTI;
6937 // This extension will end up with a shift because of the scaling factor.
6938 // 8-bit sized types have a scaling factor of 1, thus a shift amount of 0.
6939 // Get the shift amount based on the scaling factor:
6940 // log2(sizeof(IdxTy)) - log2(8).
6941 uint64_t ShiftAmt =
Mehdi Aminia749f2a2015-07-09 02:09:52 +00006942 countTrailingZeros(DL.getTypeStoreSizeInBits(IdxTy)) - 3;
Quentin Colombet6843ac42015-03-31 20:52:32 +00006943 // Is the constant foldable in the shift of the addressing mode?
6944 // I.e., shift amount is between 1 and 4 inclusive.
6945 if (ShiftAmt == 0 || ShiftAmt > 4)
6946 return false;
6947 break;
6948 }
6949 case Instruction::Trunc:
6950 // Check if this is a noop.
6951 // trunc(sext ty1 to ty2) to ty1.
6952 if (Instr->getType() == Ext->getOperand(0)->getType())
6953 continue;
6954 // FALL THROUGH.
6955 default:
6956 return false;
6957 }
6958
6959 // At this point we can use the bfm family, so this extension is free
6960 // for that use.
6961 }
6962 return true;
6963}
6964
Tim Northover3b0846e2014-05-24 12:50:23 +00006965bool AArch64TargetLowering::hasPairedLoad(Type *LoadedType,
6966 unsigned &RequiredAligment) const {
6967 if (!LoadedType->isIntegerTy() && !LoadedType->isFloatTy())
6968 return false;
6969 // Cyclone supports unaligned accesses.
6970 RequiredAligment = 0;
6971 unsigned NumBits = LoadedType->getPrimitiveSizeInBits();
6972 return NumBits == 32 || NumBits == 64;
6973}
6974
6975bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
6976 unsigned &RequiredAligment) const {
6977 if (!LoadedType.isSimple() ||
6978 (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
6979 return false;
6980 // Cyclone supports unaligned accesses.
6981 RequiredAligment = 0;
6982 unsigned NumBits = LoadedType.getSizeInBits();
6983 return NumBits == 32 || NumBits == 64;
6984}
6985
Hao Liu7ec8ee32015-06-26 02:32:07 +00006986/// \brief Lower an interleaved load into a ldN intrinsic.
6987///
6988/// E.g. Lower an interleaved load (Factor = 2):
6989/// %wide.vec = load <8 x i32>, <8 x i32>* %ptr
6990/// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
6991/// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
6992///
6993/// Into:
6994/// %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr)
6995/// %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0
6996/// %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1
6997bool AArch64TargetLowering::lowerInterleavedLoad(
6998 LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
6999 ArrayRef<unsigned> Indices, unsigned Factor) const {
7000 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
7001 "Invalid interleave factor");
7002 assert(!Shuffles.empty() && "Empty shufflevector input");
7003 assert(Shuffles.size() == Indices.size() &&
7004 "Unmatched number of shufflevectors and indices");
7005
Mehdi Aminia749f2a2015-07-09 02:09:52 +00007006 const DataLayout &DL = LI->getModule()->getDataLayout();
Hao Liu7ec8ee32015-06-26 02:32:07 +00007007
7008 VectorType *VecTy = Shuffles[0]->getType();
Ahmed Bougacha97564c32015-12-09 01:19:50 +00007009 unsigned VecSize = DL.getTypeSizeInBits(VecTy);
Hao Liu7ec8ee32015-06-26 02:32:07 +00007010
Jeroen Ketemaaebca092015-10-07 14:53:29 +00007011 // Skip if we do not have NEON and skip illegal vector types.
7012 if (!Subtarget->hasNEON() || (VecSize != 64 && VecSize != 128))
Hao Liu7ec8ee32015-06-26 02:32:07 +00007013 return false;
7014
7015 // A pointer vector can not be the return type of the ldN intrinsics. Need to
7016 // load integer vectors first and then convert to pointer vectors.
7017 Type *EltTy = VecTy->getVectorElementType();
7018 if (EltTy->isPointerTy())
Mehdi Aminia749f2a2015-07-09 02:09:52 +00007019 VecTy =
7020 VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
Hao Liu7ec8ee32015-06-26 02:32:07 +00007021
7022 Type *PtrTy = VecTy->getPointerTo(LI->getPointerAddressSpace());
7023 Type *Tys[2] = {VecTy, PtrTy};
7024 static const Intrinsic::ID LoadInts[3] = {Intrinsic::aarch64_neon_ld2,
7025 Intrinsic::aarch64_neon_ld3,
7026 Intrinsic::aarch64_neon_ld4};
7027 Function *LdNFunc =
7028 Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
7029
7030 IRBuilder<> Builder(LI);
7031 Value *Ptr = Builder.CreateBitCast(LI->getPointerOperand(), PtrTy);
7032
7033 CallInst *LdN = Builder.CreateCall(LdNFunc, Ptr, "ldN");
7034
7035 // Replace uses of each shufflevector with the corresponding vector loaded
7036 // by ldN.
7037 for (unsigned i = 0; i < Shuffles.size(); i++) {
7038 ShuffleVectorInst *SVI = Shuffles[i];
7039 unsigned Index = Indices[i];
7040
7041 Value *SubVec = Builder.CreateExtractValue(LdN, Index);
7042
7043 // Convert the integer vector to pointer vector if the element is pointer.
7044 if (EltTy->isPointerTy())
7045 SubVec = Builder.CreateIntToPtr(SubVec, SVI->getType());
7046
7047 SVI->replaceAllUsesWith(SubVec);
7048 }
7049
7050 return true;
7051}
7052
7053/// \brief Get a mask consisting of sequential integers starting from \p Start.
7054///
7055/// I.e. <Start, Start + 1, ..., Start + NumElts - 1>
7056static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned Start,
7057 unsigned NumElts) {
7058 SmallVector<Constant *, 16> Mask;
7059 for (unsigned i = 0; i < NumElts; i++)
7060 Mask.push_back(Builder.getInt32(Start + i));
7061
7062 return ConstantVector::get(Mask);
7063}
7064
7065/// \brief Lower an interleaved store into a stN intrinsic.
7066///
7067/// E.g. Lower an interleaved store (Factor = 3):
7068/// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
7069/// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
7070/// store <12 x i32> %i.vec, <12 x i32>* %ptr
7071///
7072/// Into:
7073/// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
7074/// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
7075/// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
7076/// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
7077///
7078/// Note that the new shufflevectors will be removed and we'll only generate one
7079/// st3 instruction in CodeGen.
7080bool AArch64TargetLowering::lowerInterleavedStore(StoreInst *SI,
7081 ShuffleVectorInst *SVI,
7082 unsigned Factor) const {
7083 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
7084 "Invalid interleave factor");
7085
7086 VectorType *VecTy = SVI->getType();
7087 assert(VecTy->getVectorNumElements() % Factor == 0 &&
7088 "Invalid interleaved store");
7089
7090 unsigned NumSubElts = VecTy->getVectorNumElements() / Factor;
7091 Type *EltTy = VecTy->getVectorElementType();
7092 VectorType *SubVecTy = VectorType::get(EltTy, NumSubElts);
7093
Mehdi Aminia749f2a2015-07-09 02:09:52 +00007094 const DataLayout &DL = SI->getModule()->getDataLayout();
Ahmed Bougacha97564c32015-12-09 01:19:50 +00007095 unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy);
Hao Liu7ec8ee32015-06-26 02:32:07 +00007096
Jeroen Ketemaaebca092015-10-07 14:53:29 +00007097 // Skip if we do not have NEON and skip illegal vector types.
7098 if (!Subtarget->hasNEON() || (SubVecSize != 64 && SubVecSize != 128))
Hao Liu7ec8ee32015-06-26 02:32:07 +00007099 return false;
7100
7101 Value *Op0 = SVI->getOperand(0);
7102 Value *Op1 = SVI->getOperand(1);
7103 IRBuilder<> Builder(SI);
7104
7105 // StN intrinsics don't support pointer vectors as arguments. Convert pointer
7106 // vectors to integer vectors.
7107 if (EltTy->isPointerTy()) {
Mehdi Aminia749f2a2015-07-09 02:09:52 +00007108 Type *IntTy = DL.getIntPtrType(EltTy);
Hao Liu7ec8ee32015-06-26 02:32:07 +00007109 unsigned NumOpElts =
7110 dyn_cast<VectorType>(Op0->getType())->getVectorNumElements();
7111
7112 // Convert to the corresponding integer vector.
7113 Type *IntVecTy = VectorType::get(IntTy, NumOpElts);
7114 Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
7115 Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
7116
7117 SubVecTy = VectorType::get(IntTy, NumSubElts);
7118 }
7119
7120 Type *PtrTy = SubVecTy->getPointerTo(SI->getPointerAddressSpace());
7121 Type *Tys[2] = {SubVecTy, PtrTy};
7122 static const Intrinsic::ID StoreInts[3] = {Intrinsic::aarch64_neon_st2,
7123 Intrinsic::aarch64_neon_st3,
7124 Intrinsic::aarch64_neon_st4};
7125 Function *StNFunc =
7126 Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys);
7127
7128 SmallVector<Value *, 5> Ops;
7129
7130 // Split the shufflevector operands into sub vectors for the new stN call.
7131 for (unsigned i = 0; i < Factor; i++)
7132 Ops.push_back(Builder.CreateShuffleVector(
7133 Op0, Op1, getSequentialMask(Builder, NumSubElts * i, NumSubElts)));
7134
7135 Ops.push_back(Builder.CreateBitCast(SI->getPointerOperand(), PtrTy));
7136 Builder.CreateCall(StNFunc, Ops);
7137 return true;
7138}
7139
Tim Northover3b0846e2014-05-24 12:50:23 +00007140static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
7141 unsigned AlignCheck) {
7142 return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
7143 (DstAlign == 0 || DstAlign % AlignCheck == 0));
7144}
7145
7146EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
7147 unsigned SrcAlign, bool IsMemset,
7148 bool ZeroMemset,
7149 bool MemcpyStrSrc,
7150 MachineFunction &MF) const {
7151 // Don't use AdvSIMD to implement 16-byte memset. It would have taken one
7152 // instruction to materialize the v2i64 zero and one store (with restrictive
7153 // addressing mode). Just do two i64 store of zero-registers.
7154 bool Fast;
7155 const Function *F = MF.getFunction();
7156 if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 &&
Duncan P. N. Exon Smith003bb7d2015-02-14 02:09:06 +00007157 !F->hasFnAttribute(Attribute::NoImplicitFloat) &&
Tim Northover3b0846e2014-05-24 12:50:23 +00007158 (memOpAlign(SrcAlign, DstAlign, 16) ||
Matt Arsenault6f2a5262014-07-27 17:46:40 +00007159 (allowsMisalignedMemoryAccesses(MVT::f128, 0, 1, &Fast) && Fast)))
Tim Northover3b0846e2014-05-24 12:50:23 +00007160 return MVT::f128;
7161
Lang Hames90333852015-04-09 03:40:33 +00007162 if (Size >= 8 &&
7163 (memOpAlign(SrcAlign, DstAlign, 8) ||
7164 (allowsMisalignedMemoryAccesses(MVT::i64, 0, 1, &Fast) && Fast)))
7165 return MVT::i64;
7166
7167 if (Size >= 4 &&
7168 (memOpAlign(SrcAlign, DstAlign, 4) ||
7169 (allowsMisalignedMemoryAccesses(MVT::i32, 0, 1, &Fast) && Fast)))
Lang Hames522bf132015-04-09 05:34:57 +00007170 return MVT::i32;
Lang Hames90333852015-04-09 03:40:33 +00007171
7172 return MVT::Other;
Tim Northover3b0846e2014-05-24 12:50:23 +00007173}
7174
7175// 12-bit optionally shifted immediates are legal for adds.
7176bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
7177 if ((Immed >> 12) == 0 || ((Immed & 0xfff) == 0 && Immed >> 24 == 0))
7178 return true;
7179 return false;
7180}
7181
7182// Integer comparisons are implemented with ADDS/SUBS, so the range of valid
7183// immediates is the same as for an add or a sub.
7184bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
7185 if (Immed < 0)
7186 Immed *= -1;
7187 return isLegalAddImmediate(Immed);
7188}
7189
7190/// isLegalAddressingMode - Return true if the addressing mode represented
7191/// by AM is legal for this target, for a load/store of the specified type.
Mehdi Amini0cdec1e2015-07-09 02:09:40 +00007192bool AArch64TargetLowering::isLegalAddressingMode(const DataLayout &DL,
7193 const AddrMode &AM, Type *Ty,
Matt Arsenaultbd7d80a2015-06-01 05:31:59 +00007194 unsigned AS) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00007195 // AArch64 has five basic addressing modes:
7196 // reg
7197 // reg + 9-bit signed offset
7198 // reg + SIZE_IN_BYTES * 12-bit unsigned offset
7199 // reg1 + reg2
7200 // reg + SIZE_IN_BYTES * reg
7201
7202 // No global is ever allowed as a base.
7203 if (AM.BaseGV)
7204 return false;
7205
7206 // No reg+reg+imm addressing.
7207 if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
7208 return false;
7209
7210 // check reg + imm case:
7211 // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
7212 uint64_t NumBytes = 0;
7213 if (Ty->isSized()) {
Mehdi Amini0cdec1e2015-07-09 02:09:40 +00007214 uint64_t NumBits = DL.getTypeSizeInBits(Ty);
Tim Northover3b0846e2014-05-24 12:50:23 +00007215 NumBytes = NumBits / 8;
7216 if (!isPowerOf2_64(NumBits))
7217 NumBytes = 0;
7218 }
7219
7220 if (!AM.Scale) {
7221 int64_t Offset = AM.BaseOffs;
7222
7223 // 9-bit signed offset
7224 if (Offset >= -(1LL << 9) && Offset <= (1LL << 9) - 1)
7225 return true;
7226
7227 // 12-bit unsigned offset
7228 unsigned shift = Log2_64(NumBytes);
7229 if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
7230 // Must be a multiple of NumBytes (NumBytes is a power of 2)
7231 (Offset >> shift) << shift == Offset)
7232 return true;
7233 return false;
7234 }
7235
7236 // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
7237
7238 if (!AM.Scale || AM.Scale == 1 ||
7239 (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes))
7240 return true;
7241 return false;
7242}
7243
Mehdi Amini0cdec1e2015-07-09 02:09:40 +00007244int AArch64TargetLowering::getScalingFactorCost(const DataLayout &DL,
7245 const AddrMode &AM, Type *Ty,
Matt Arsenaultbd7d80a2015-06-01 05:31:59 +00007246 unsigned AS) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00007247 // Scaling factors are not free at all.
7248 // Operands | Rt Latency
7249 // -------------------------------------------
7250 // Rt, [Xn, Xm] | 4
7251 // -------------------------------------------
7252 // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
7253 // Rt, [Xn, Wm, <extend> #imm] |
Mehdi Amini0cdec1e2015-07-09 02:09:40 +00007254 if (isLegalAddressingMode(DL, AM, Ty, AS))
Tim Northover3b0846e2014-05-24 12:50:23 +00007255 // Scale represents reg2 * scale, thus account for 1 if
7256 // it is not equal to 0 or 1.
7257 return AM.Scale != 0 && AM.Scale != 1;
7258 return -1;
7259}
7260
7261bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
7262 VT = VT.getScalarType();
7263
7264 if (!VT.isSimple())
7265 return false;
7266
7267 switch (VT.getSimpleVT().SimpleTy) {
7268 case MVT::f32:
7269 case MVT::f64:
7270 return true;
7271 default:
7272 break;
7273 }
7274
7275 return false;
7276}
7277
7278const MCPhysReg *
7279AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
7280 // LR is a callee-save register, but we must treat it as clobbered by any call
7281 // site. Hence we include LR in the scratch registers, which are in turn added
7282 // as implicit-defs for stackmaps and patchpoints.
7283 static const MCPhysReg ScratchRegs[] = {
7284 AArch64::X16, AArch64::X17, AArch64::LR, 0
7285 };
7286 return ScratchRegs;
7287}
7288
7289bool
7290AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const {
7291 EVT VT = N->getValueType(0);
7292 // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
7293 // it with shift to let it be lowered to UBFX.
7294 if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
7295 isa<ConstantSDNode>(N->getOperand(1))) {
7296 uint64_t TruncMask = N->getConstantOperandVal(1);
7297 if (isMask_64(TruncMask) &&
7298 N->getOperand(0).getOpcode() == ISD::SRL &&
7299 isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
7300 return false;
7301 }
7302 return true;
7303}
7304
7305bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
7306 Type *Ty) const {
7307 assert(Ty->isIntegerTy());
7308
7309 unsigned BitSize = Ty->getPrimitiveSizeInBits();
7310 if (BitSize == 0)
7311 return false;
7312
7313 int64_t Val = Imm.getSExtValue();
7314 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
7315 return true;
7316
7317 if ((int64_t)Val < 0)
7318 Val = ~Val;
7319 if (BitSize == 32)
7320 Val &= (1LL << 32) - 1;
7321
7322 unsigned LZ = countLeadingZeros((uint64_t)Val);
7323 unsigned Shift = (63 - LZ) / 16;
7324 // MOVZ is free so return true for one or fewer MOVK.
David Blaikie186d2cb2015-03-24 16:24:01 +00007325 return Shift < 3;
Tim Northover3b0846e2014-05-24 12:50:23 +00007326}
7327
7328// Generate SUBS and CSEL for integer abs.
7329static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
7330 EVT VT = N->getValueType(0);
7331
7332 SDValue N0 = N->getOperand(0);
7333 SDValue N1 = N->getOperand(1);
7334 SDLoc DL(N);
7335
7336 // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
7337 // and change it to SUB and CSEL.
7338 if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
7339 N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
7340 N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
7341 if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
7342 if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007343 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
Tim Northover3b0846e2014-05-24 12:50:23 +00007344 N0.getOperand(0));
7345 // Generate SUBS & CSEL.
7346 SDValue Cmp =
7347 DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007348 N0.getOperand(0), DAG.getConstant(0, DL, VT));
Tim Northover3b0846e2014-05-24 12:50:23 +00007349 return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007350 DAG.getConstant(AArch64CC::PL, DL, MVT::i32),
Tim Northover3b0846e2014-05-24 12:50:23 +00007351 SDValue(Cmp.getNode(), 1));
7352 }
7353 return SDValue();
7354}
7355
7356// performXorCombine - Attempts to handle integer ABS.
7357static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
7358 TargetLowering::DAGCombinerInfo &DCI,
7359 const AArch64Subtarget *Subtarget) {
7360 if (DCI.isBeforeLegalizeOps())
7361 return SDValue();
7362
7363 return performIntegerAbsCombine(N, DAG);
7364}
7365
Chad Rosier17020f92014-07-23 14:57:52 +00007366SDValue
7367AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
7368 SelectionDAG &DAG,
7369 std::vector<SDNode *> *Created) const {
7370 // fold (sdiv X, pow2)
7371 EVT VT = N->getValueType(0);
7372 if ((VT != MVT::i32 && VT != MVT::i64) ||
7373 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
7374 return SDValue();
7375
7376 SDLoc DL(N);
7377 SDValue N0 = N->getOperand(0);
7378 unsigned Lg2 = Divisor.countTrailingZeros();
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007379 SDValue Zero = DAG.getConstant(0, DL, VT);
7380 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
Chad Rosier17020f92014-07-23 14:57:52 +00007381
7382 // Add (N0 < 0) ? Pow2 - 1 : 0;
7383 SDValue CCVal;
7384 SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL);
7385 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
7386 SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp);
7387
7388 if (Created) {
7389 Created->push_back(Cmp.getNode());
7390 Created->push_back(Add.getNode());
7391 Created->push_back(CSel.getNode());
7392 }
7393
7394 // Divide by pow2.
7395 SDValue SRA =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007396 DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, DL, MVT::i64));
Chad Rosier17020f92014-07-23 14:57:52 +00007397
7398 // If we're dividing by a positive value, we're done. Otherwise, we must
7399 // negate the result.
7400 if (Divisor.isNonNegative())
7401 return SRA;
7402
7403 if (Created)
7404 Created->push_back(SRA.getNode());
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007405 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
Chad Rosier17020f92014-07-23 14:57:52 +00007406}
7407
Tim Northover3b0846e2014-05-24 12:50:23 +00007408static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
7409 TargetLowering::DAGCombinerInfo &DCI,
7410 const AArch64Subtarget *Subtarget) {
7411 if (DCI.isBeforeLegalizeOps())
7412 return SDValue();
7413
7414 // Multiplication of a power of two plus/minus one can be done more
7415 // cheaply as as shift+add/sub. For now, this is true unilaterally. If
7416 // future CPUs have a cheaper MADD instruction, this may need to be
7417 // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
7418 // 64-bit is 5 cycles, so this is always a win.
7419 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
7420 APInt Value = C->getAPIntValue();
7421 EVT VT = N->getValueType(0);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007422 SDLoc DL(N);
Chad Rosiere6b87612014-06-30 14:51:14 +00007423 if (Value.isNonNegative()) {
7424 // (mul x, 2^N + 1) => (add (shl x, N), x)
7425 APInt VM1 = Value - 1;
7426 if (VM1.isPowerOf2()) {
7427 SDValue ShiftedVal =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007428 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
7429 DAG.getConstant(VM1.logBase2(), DL, MVT::i64));
7430 return DAG.getNode(ISD::ADD, DL, VT, ShiftedVal,
Chad Rosiere6b87612014-06-30 14:51:14 +00007431 N->getOperand(0));
7432 }
7433 // (mul x, 2^N - 1) => (sub (shl x, N), x)
7434 APInt VP1 = Value + 1;
7435 if (VP1.isPowerOf2()) {
7436 SDValue ShiftedVal =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007437 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
7438 DAG.getConstant(VP1.logBase2(), DL, MVT::i64));
7439 return DAG.getNode(ISD::SUB, DL, VT, ShiftedVal,
Chad Rosiere6b87612014-06-30 14:51:14 +00007440 N->getOperand(0));
7441 }
7442 } else {
Chad Rosier8e38f302015-03-03 17:31:01 +00007443 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
7444 APInt VNP1 = -Value + 1;
7445 if (VNP1.isPowerOf2()) {
7446 SDValue ShiftedVal =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007447 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
7448 DAG.getConstant(VNP1.logBase2(), DL, MVT::i64));
7449 return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0),
Chad Rosier8e38f302015-03-03 17:31:01 +00007450 ShiftedVal);
7451 }
Chad Rosiere6b87612014-06-30 14:51:14 +00007452 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
7453 APInt VNM1 = -Value - 1;
7454 if (VNM1.isPowerOf2()) {
7455 SDValue ShiftedVal =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007456 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
7457 DAG.getConstant(VNM1.logBase2(), DL, MVT::i64));
Chad Rosiere6b87612014-06-30 14:51:14 +00007458 SDValue Add =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007459 DAG.getNode(ISD::ADD, DL, VT, ShiftedVal, N->getOperand(0));
7460 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Add);
Chad Rosiere6b87612014-06-30 14:51:14 +00007461 }
Chad Rosierd96e9f12014-06-09 01:25:51 +00007462 }
Tim Northover3b0846e2014-05-24 12:50:23 +00007463 }
7464 return SDValue();
7465}
7466
Jim Grosbachf7502c42014-07-18 00:40:52 +00007467static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
7468 SelectionDAG &DAG) {
7469 // Take advantage of vector comparisons producing 0 or -1 in each lane to
7470 // optimize away operation when it's from a constant.
7471 //
7472 // The general transformation is:
7473 // UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
7474 // AND(VECTOR_CMP(x,y), constant2)
7475 // constant2 = UNARYOP(constant)
7476
Jim Grosbach8f6f0852014-07-23 20:41:38 +00007477 // Early exit if this isn't a vector operation, the operand of the
7478 // unary operation isn't a bitwise AND, or if the sizes of the operations
7479 // aren't the same.
Jim Grosbachf7502c42014-07-18 00:40:52 +00007480 EVT VT = N->getValueType(0);
7481 if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
Jim Grosbach8f6f0852014-07-23 20:41:38 +00007482 N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
7483 VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
Jim Grosbachf7502c42014-07-18 00:40:52 +00007484 return SDValue();
7485
Jim Grosbach724e4382014-07-23 20:41:43 +00007486 // Now check that the other operand of the AND is a constant. We could
Jim Grosbachf7502c42014-07-18 00:40:52 +00007487 // make the transformation for non-constant splats as well, but it's unclear
7488 // that would be a benefit as it would not eliminate any operations, just
7489 // perform one more step in scalar code before moving to the vector unit.
7490 if (BuildVectorSDNode *BV =
7491 dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
Jim Grosbach724e4382014-07-23 20:41:43 +00007492 // Bail out if the vector isn't a constant.
7493 if (!BV->isConstant())
Jim Grosbachf7502c42014-07-18 00:40:52 +00007494 return SDValue();
7495
7496 // Everything checks out. Build up the new and improved node.
7497 SDLoc DL(N);
7498 EVT IntVT = BV->getValueType(0);
7499 // Create a new constant of the appropriate type for the transformed
7500 // DAG.
7501 SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
7502 // The AND node needs bitcasts to/from an integer vector type around it.
7503 SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
7504 SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
7505 N->getOperand(0)->getOperand(0), MaskConst);
7506 SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
7507 return Res;
7508 }
7509
7510 return SDValue();
7511}
7512
Weiming Zhaocc4bf3f2014-12-04 20:25:50 +00007513static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG,
7514 const AArch64Subtarget *Subtarget) {
Jim Grosbachf7502c42014-07-18 00:40:52 +00007515 // First try to optimize away the conversion when it's conditionally from
7516 // a constant. Vectors only.
Ahmed Bougacha239d6352015-08-04 00:48:02 +00007517 if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG))
Jim Grosbachf7502c42014-07-18 00:40:52 +00007518 return Res;
7519
Tim Northover3b0846e2014-05-24 12:50:23 +00007520 EVT VT = N->getValueType(0);
7521 if (VT != MVT::f32 && VT != MVT::f64)
7522 return SDValue();
Jim Grosbachf7502c42014-07-18 00:40:52 +00007523
Tim Northover3b0846e2014-05-24 12:50:23 +00007524 // Only optimize when the source and destination types have the same width.
7525 if (VT.getSizeInBits() != N->getOperand(0).getValueType().getSizeInBits())
7526 return SDValue();
7527
7528 // If the result of an integer load is only used by an integer-to-float
7529 // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
Chad Rosier1f385612015-10-02 16:42:59 +00007530 // This eliminates an "integer-to-vector-move" UOP and improves throughput.
Tim Northover3b0846e2014-05-24 12:50:23 +00007531 SDValue N0 = N->getOperand(0);
Weiming Zhaocc4bf3f2014-12-04 20:25:50 +00007532 if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
Tim Northover3b0846e2014-05-24 12:50:23 +00007533 // Do not change the width of a volatile load.
7534 !cast<LoadSDNode>(N0)->isVolatile()) {
7535 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
7536 SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
7537 LN0->getPointerInfo(), LN0->isVolatile(),
7538 LN0->isNonTemporal(), LN0->isInvariant(),
7539 LN0->getAlignment());
7540
7541 // Make sure successors of the original load stay after it by updating them
7542 // to use the new Chain.
7543 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
7544
7545 unsigned Opcode =
7546 (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
7547 return DAG.getNode(Opcode, SDLoc(N), VT, Load);
7548 }
7549
7550 return SDValue();
7551}
7552
Chad Rosierfa30c9b2015-10-07 17:39:18 +00007553/// Fold a floating-point multiply by power of two into floating-point to
7554/// fixed-point conversion.
7555static SDValue performFpToIntCombine(SDNode *N, SelectionDAG &DAG,
7556 const AArch64Subtarget *Subtarget) {
7557 if (!Subtarget->hasNEON())
7558 return SDValue();
7559
7560 SDValue Op = N->getOperand(0);
7561 if (!Op.getValueType().isVector() || Op.getOpcode() != ISD::FMUL)
7562 return SDValue();
7563
7564 SDValue ConstVec = Op->getOperand(1);
7565 if (!isa<BuildVectorSDNode>(ConstVec))
7566 return SDValue();
7567
7568 MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
7569 uint32_t FloatBits = FloatTy.getSizeInBits();
7570 if (FloatBits != 32 && FloatBits != 64)
7571 return SDValue();
7572
7573 MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
7574 uint32_t IntBits = IntTy.getSizeInBits();
7575 if (IntBits != 16 && IntBits != 32 && IntBits != 64)
7576 return SDValue();
7577
7578 // Avoid conversions where iN is larger than the float (e.g., float -> i64).
7579 if (IntBits > FloatBits)
7580 return SDValue();
7581
7582 BitVector UndefElements;
7583 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
7584 int32_t Bits = IntBits == 64 ? 64 : 32;
7585 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, Bits + 1);
7586 if (C == -1 || C == 0 || C > Bits)
7587 return SDValue();
7588
7589 MVT ResTy;
7590 unsigned NumLanes = Op.getValueType().getVectorNumElements();
7591 switch (NumLanes) {
7592 default:
7593 return SDValue();
7594 case 2:
7595 ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
7596 break;
7597 case 4:
7598 ResTy = MVT::v4i32;
7599 break;
7600 }
7601
7602 SDLoc DL(N);
7603 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
7604 unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfp2fxs
7605 : Intrinsic::aarch64_neon_vcvtfp2fxu;
7606 SDValue FixConv =
7607 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ResTy,
7608 DAG.getConstant(IntrinsicOpcode, DL, MVT::i32),
7609 Op->getOperand(0), DAG.getConstant(C, DL, MVT::i32));
7610 // We can handle smaller integers by generating an extra trunc.
7611 if (IntBits < FloatBits)
7612 FixConv = DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), FixConv);
7613
7614 return FixConv;
7615}
7616
Chad Rosier7c6ac2b2015-10-07 17:51:37 +00007617/// Fold a floating-point divide by power of two into fixed-point to
7618/// floating-point conversion.
7619static SDValue performFDivCombine(SDNode *N, SelectionDAG &DAG,
7620 const AArch64Subtarget *Subtarget) {
7621 if (!Subtarget->hasNEON())
7622 return SDValue();
7623
7624 SDValue Op = N->getOperand(0);
7625 unsigned Opc = Op->getOpcode();
7626 if (!Op.getValueType().isVector() ||
7627 (Opc != ISD::SINT_TO_FP && Opc != ISD::UINT_TO_FP))
7628 return SDValue();
7629
7630 SDValue ConstVec = N->getOperand(1);
7631 if (!isa<BuildVectorSDNode>(ConstVec))
7632 return SDValue();
7633
7634 MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
7635 int32_t IntBits = IntTy.getSizeInBits();
7636 if (IntBits != 16 && IntBits != 32 && IntBits != 64)
7637 return SDValue();
7638
7639 MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
7640 int32_t FloatBits = FloatTy.getSizeInBits();
7641 if (FloatBits != 32 && FloatBits != 64)
7642 return SDValue();
7643
7644 // Avoid conversions where iN is larger than the float (e.g., i64 -> float).
7645 if (IntBits > FloatBits)
7646 return SDValue();
7647
7648 BitVector UndefElements;
7649 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
7650 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, FloatBits + 1);
7651 if (C == -1 || C == 0 || C > FloatBits)
7652 return SDValue();
7653
7654 MVT ResTy;
7655 unsigned NumLanes = Op.getValueType().getVectorNumElements();
7656 switch (NumLanes) {
7657 default:
7658 return SDValue();
7659 case 2:
7660 ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
7661 break;
7662 case 4:
7663 ResTy = MVT::v4i32;
7664 break;
7665 }
7666
7667 SDLoc DL(N);
7668 SDValue ConvInput = Op.getOperand(0);
7669 bool IsSigned = Opc == ISD::SINT_TO_FP;
7670 if (IntBits < FloatBits)
7671 ConvInput = DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL,
7672 ResTy, ConvInput);
7673
7674 unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfxs2fp
7675 : Intrinsic::aarch64_neon_vcvtfxu2fp;
7676 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(),
7677 DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), ConvInput,
7678 DAG.getConstant(C, DL, MVT::i32));
7679}
7680
Tim Northover3b0846e2014-05-24 12:50:23 +00007681/// An EXTR instruction is made up of two shifts, ORed together. This helper
7682/// searches for and classifies those shifts.
7683static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
7684 bool &FromHi) {
7685 if (N.getOpcode() == ISD::SHL)
7686 FromHi = false;
7687 else if (N.getOpcode() == ISD::SRL)
7688 FromHi = true;
7689 else
7690 return false;
7691
7692 if (!isa<ConstantSDNode>(N.getOperand(1)))
7693 return false;
7694
7695 ShiftAmount = N->getConstantOperandVal(1);
7696 Src = N->getOperand(0);
7697 return true;
7698}
7699
7700/// EXTR instruction extracts a contiguous chunk of bits from two existing
7701/// registers viewed as a high/low pair. This function looks for the pattern:
7702/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
7703/// EXTR. Can't quite be done in TableGen because the two immediates aren't
7704/// independent.
7705static SDValue tryCombineToEXTR(SDNode *N,
7706 TargetLowering::DAGCombinerInfo &DCI) {
7707 SelectionDAG &DAG = DCI.DAG;
7708 SDLoc DL(N);
7709 EVT VT = N->getValueType(0);
7710
7711 assert(N->getOpcode() == ISD::OR && "Unexpected root");
7712
7713 if (VT != MVT::i32 && VT != MVT::i64)
7714 return SDValue();
7715
7716 SDValue LHS;
7717 uint32_t ShiftLHS = 0;
7718 bool LHSFromHi = 0;
7719 if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
7720 return SDValue();
7721
7722 SDValue RHS;
7723 uint32_t ShiftRHS = 0;
7724 bool RHSFromHi = 0;
7725 if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
7726 return SDValue();
7727
7728 // If they're both trying to come from the high part of the register, they're
7729 // not really an EXTR.
7730 if (LHSFromHi == RHSFromHi)
7731 return SDValue();
7732
7733 if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
7734 return SDValue();
7735
7736 if (LHSFromHi) {
7737 std::swap(LHS, RHS);
7738 std::swap(ShiftLHS, ShiftRHS);
7739 }
7740
7741 return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007742 DAG.getConstant(ShiftRHS, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007743}
7744
7745static SDValue tryCombineToBSL(SDNode *N,
7746 TargetLowering::DAGCombinerInfo &DCI) {
7747 EVT VT = N->getValueType(0);
7748 SelectionDAG &DAG = DCI.DAG;
7749 SDLoc DL(N);
7750
7751 if (!VT.isVector())
7752 return SDValue();
7753
7754 SDValue N0 = N->getOperand(0);
7755 if (N0.getOpcode() != ISD::AND)
7756 return SDValue();
7757
7758 SDValue N1 = N->getOperand(1);
7759 if (N1.getOpcode() != ISD::AND)
7760 return SDValue();
7761
7762 // We only have to look for constant vectors here since the general, variable
7763 // case can be handled in TableGen.
7764 unsigned Bits = VT.getVectorElementType().getSizeInBits();
7765 uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
7766 for (int i = 1; i >= 0; --i)
7767 for (int j = 1; j >= 0; --j) {
7768 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
7769 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
7770 if (!BVN0 || !BVN1)
7771 continue;
7772
7773 bool FoundMatch = true;
7774 for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
7775 ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
7776 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
7777 if (!CN0 || !CN1 ||
7778 CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
7779 FoundMatch = false;
7780 break;
7781 }
7782 }
7783
7784 if (FoundMatch)
7785 return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
7786 N0->getOperand(1 - i), N1->getOperand(1 - j));
7787 }
7788
7789 return SDValue();
7790}
7791
7792static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
7793 const AArch64Subtarget *Subtarget) {
7794 // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
7795 if (!EnableAArch64ExtrGeneration)
7796 return SDValue();
7797 SelectionDAG &DAG = DCI.DAG;
7798 EVT VT = N->getValueType(0);
7799
7800 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7801 return SDValue();
7802
7803 SDValue Res = tryCombineToEXTR(N, DCI);
7804 if (Res.getNode())
7805 return Res;
7806
7807 Res = tryCombineToBSL(N, DCI);
7808 if (Res.getNode())
7809 return Res;
7810
7811 return SDValue();
7812}
7813
7814static SDValue performBitcastCombine(SDNode *N,
7815 TargetLowering::DAGCombinerInfo &DCI,
7816 SelectionDAG &DAG) {
7817 // Wait 'til after everything is legalized to try this. That way we have
7818 // legal vector types and such.
7819 if (DCI.isBeforeLegalizeOps())
7820 return SDValue();
7821
7822 // Remove extraneous bitcasts around an extract_subvector.
7823 // For example,
7824 // (v4i16 (bitconvert
7825 // (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
7826 // becomes
7827 // (extract_subvector ((v8i16 ...), (i64 4)))
7828
7829 // Only interested in 64-bit vectors as the ultimate result.
7830 EVT VT = N->getValueType(0);
7831 if (!VT.isVector())
7832 return SDValue();
7833 if (VT.getSimpleVT().getSizeInBits() != 64)
7834 return SDValue();
7835 // Is the operand an extract_subvector starting at the beginning or halfway
7836 // point of the vector? A low half may also come through as an
7837 // EXTRACT_SUBREG, so look for that, too.
7838 SDValue Op0 = N->getOperand(0);
7839 if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
7840 !(Op0->isMachineOpcode() &&
7841 Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG))
7842 return SDValue();
7843 uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
7844 if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
7845 if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
7846 return SDValue();
7847 } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) {
7848 if (idx != AArch64::dsub)
7849 return SDValue();
7850 // The dsub reference is equivalent to a lane zero subvector reference.
7851 idx = 0;
7852 }
7853 // Look through the bitcast of the input to the extract.
7854 if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
7855 return SDValue();
7856 SDValue Source = Op0->getOperand(0)->getOperand(0);
7857 // If the source type has twice the number of elements as our destination
7858 // type, we know this is an extract of the high or low half of the vector.
7859 EVT SVT = Source->getValueType(0);
7860 if (SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
7861 return SDValue();
7862
7863 DEBUG(dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
7864
7865 // Create the simplified form to just extract the low or high half of the
7866 // vector directly rather than bothering with the bitcasts.
7867 SDLoc dl(N);
7868 unsigned NumElements = VT.getVectorNumElements();
7869 if (idx) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007870 SDValue HalfIdx = DAG.getConstant(NumElements, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00007871 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
7872 } else {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007873 SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00007874 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
7875 Source, SubReg),
7876 0);
7877 }
7878}
7879
7880static SDValue performConcatVectorsCombine(SDNode *N,
7881 TargetLowering::DAGCombinerInfo &DCI,
7882 SelectionDAG &DAG) {
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007883 SDLoc dl(N);
7884 EVT VT = N->getValueType(0);
7885 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
7886
Ahmed Bougachae0afb1f2015-03-17 03:23:09 +00007887 // Optimize concat_vectors of truncated vectors, where the intermediate
7888 // type is illegal, to avoid said illegality, e.g.,
7889 // (v4i16 (concat_vectors (v2i16 (truncate (v2i64))),
7890 // (v2i16 (truncate (v2i64)))))
7891 // ->
Ahmed Bougachae6bb09a2015-03-21 01:08:39 +00007892 // (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))),
7893 // (v4i32 (bitcast (v2i64))),
7894 // <0, 2, 4, 6>)))
Ahmed Bougachae0afb1f2015-03-17 03:23:09 +00007895 // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed
7896 // on both input and result type, so we might generate worse code.
7897 // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8.
7898 if (N->getNumOperands() == 2 &&
7899 N0->getOpcode() == ISD::TRUNCATE &&
7900 N1->getOpcode() == ISD::TRUNCATE) {
7901 SDValue N00 = N0->getOperand(0);
7902 SDValue N10 = N1->getOperand(0);
7903 EVT N00VT = N00.getValueType();
7904
7905 if (N00VT == N10.getValueType() &&
7906 (N00VT == MVT::v2i64 || N00VT == MVT::v4i32) &&
7907 N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) {
Ahmed Bougachae6bb09a2015-03-21 01:08:39 +00007908 MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16);
7909 SmallVector<int, 8> Mask(MidVT.getVectorNumElements());
7910 for (size_t i = 0; i < Mask.size(); ++i)
7911 Mask[i] = i * 2;
7912 return DAG.getNode(ISD::TRUNCATE, dl, VT,
7913 DAG.getVectorShuffle(
7914 MidVT, dl,
7915 DAG.getNode(ISD::BITCAST, dl, MidVT, N00),
7916 DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask));
Ahmed Bougachae0afb1f2015-03-17 03:23:09 +00007917 }
7918 }
7919
Tim Northover3b0846e2014-05-24 12:50:23 +00007920 // Wait 'til after everything is legalized to try this. That way we have
7921 // legal vector types and such.
7922 if (DCI.isBeforeLegalizeOps())
7923 return SDValue();
7924
Tim Northover3b0846e2014-05-24 12:50:23 +00007925 // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
7926 // splat. The indexed instructions are going to be expecting a DUPLANE64, so
7927 // canonicalise to that.
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007928 if (N0 == N1 && VT.getVectorNumElements() == 2) {
Tim Northover3b0846e2014-05-24 12:50:23 +00007929 assert(VT.getVectorElementType().getSizeInBits() == 64);
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007930 return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007931 DAG.getConstant(0, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00007932 }
7933
7934 // Canonicalise concat_vectors so that the right-hand vector has as few
7935 // bit-casts as possible before its real operation. The primary matching
7936 // destination for these operations will be the narrowing "2" instructions,
7937 // which depend on the operation being performed on this right-hand vector.
7938 // For example,
7939 // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS))))
7940 // becomes
7941 // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
7942
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007943 if (N1->getOpcode() != ISD::BITCAST)
Tim Northover3b0846e2014-05-24 12:50:23 +00007944 return SDValue();
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007945 SDValue RHS = N1->getOperand(0);
Tim Northover3b0846e2014-05-24 12:50:23 +00007946 MVT RHSTy = RHS.getValueType().getSimpleVT();
7947 // If the RHS is not a vector, this is not the pattern we're looking for.
7948 if (!RHSTy.isVector())
7949 return SDValue();
7950
7951 DEBUG(dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
7952
7953 MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
7954 RHSTy.getVectorNumElements() * 2);
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00007955 return DAG.getNode(ISD::BITCAST, dl, VT,
7956 DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
7957 DAG.getNode(ISD::BITCAST, dl, RHSTy, N0),
7958 RHS));
Tim Northover3b0846e2014-05-24 12:50:23 +00007959}
7960
7961static SDValue tryCombineFixedPointConvert(SDNode *N,
7962 TargetLowering::DAGCombinerInfo &DCI,
7963 SelectionDAG &DAG) {
7964 // Wait 'til after everything is legalized to try this. That way we have
7965 // legal vector types and such.
7966 if (DCI.isBeforeLegalizeOps())
7967 return SDValue();
7968 // Transform a scalar conversion of a value from a lane extract into a
7969 // lane extract of a vector conversion. E.g., from foo1 to foo2:
7970 // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
7971 // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
7972 //
7973 // The second form interacts better with instruction selection and the
7974 // register allocator to avoid cross-class register copies that aren't
7975 // coalescable due to a lane reference.
7976
7977 // Check the operand and see if it originates from a lane extract.
7978 SDValue Op1 = N->getOperand(1);
7979 if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
7980 // Yep, no additional predication needed. Perform the transform.
7981 SDValue IID = N->getOperand(0);
7982 SDValue Shift = N->getOperand(2);
7983 SDValue Vec = Op1.getOperand(0);
7984 SDValue Lane = Op1.getOperand(1);
7985 EVT ResTy = N->getValueType(0);
7986 EVT VecResTy;
7987 SDLoc DL(N);
7988
7989 // The vector width should be 128 bits by the time we get here, even
7990 // if it started as 64 bits (the extract_vector handling will have
7991 // done so).
7992 assert(Vec.getValueType().getSizeInBits() == 128 &&
7993 "unexpected vector size on extract_vector_elt!");
7994 if (Vec.getValueType() == MVT::v4i32)
7995 VecResTy = MVT::v4f32;
7996 else if (Vec.getValueType() == MVT::v2i64)
7997 VecResTy = MVT::v2f64;
7998 else
Craig Topper2a30d782014-06-18 05:05:13 +00007999 llvm_unreachable("unexpected vector type!");
Tim Northover3b0846e2014-05-24 12:50:23 +00008000
8001 SDValue Convert =
8002 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
8003 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
8004 }
8005 return SDValue();
8006}
8007
8008// AArch64 high-vector "long" operations are formed by performing the non-high
8009// version on an extract_subvector of each operand which gets the high half:
8010//
8011// (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
8012//
8013// However, there are cases which don't have an extract_high explicitly, but
8014// have another operation that can be made compatible with one for free. For
8015// example:
8016//
8017// (dupv64 scalar) --> (extract_high (dup128 scalar))
8018//
8019// This routine does the actual conversion of such DUPs, once outer routines
8020// have determined that everything else is in order.
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00008021// It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold
8022// similarly here.
Tim Northover3b0846e2014-05-24 12:50:23 +00008023static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
Tim Northover3b0846e2014-05-24 12:50:23 +00008024 switch (N.getOpcode()) {
8025 case AArch64ISD::DUP:
Tim Northover3b0846e2014-05-24 12:50:23 +00008026 case AArch64ISD::DUPLANE8:
8027 case AArch64ISD::DUPLANE16:
8028 case AArch64ISD::DUPLANE32:
8029 case AArch64ISD::DUPLANE64:
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00008030 case AArch64ISD::MOVI:
8031 case AArch64ISD::MOVIshift:
8032 case AArch64ISD::MOVIedit:
8033 case AArch64ISD::MOVImsl:
8034 case AArch64ISD::MVNIshift:
8035 case AArch64ISD::MVNImsl:
Tim Northover3b0846e2014-05-24 12:50:23 +00008036 break;
8037 default:
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00008038 // FMOV could be supported, but isn't very useful, as it would only occur
8039 // if you passed a bitcast' floating point immediate to an eligible long
8040 // integer op (addl, smull, ...).
Tim Northover3b0846e2014-05-24 12:50:23 +00008041 return SDValue();
8042 }
8043
8044 MVT NarrowTy = N.getSimpleValueType();
8045 if (!NarrowTy.is64BitVector())
8046 return SDValue();
8047
8048 MVT ElementTy = NarrowTy.getVectorElementType();
8049 unsigned NumElems = NarrowTy.getVectorNumElements();
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00008050 MVT NewVT = MVT::getVectorVT(ElementTy, NumElems * 2);
Tim Northover3b0846e2014-05-24 12:50:23 +00008051
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008052 SDLoc dl(N);
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00008053 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NarrowTy,
8054 DAG.getNode(N->getOpcode(), dl, NewVT, N->ops()),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008055 DAG.getConstant(NumElems, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00008056}
8057
8058static bool isEssentiallyExtractSubvector(SDValue N) {
8059 if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR)
8060 return true;
8061
8062 return N.getOpcode() == ISD::BITCAST &&
8063 N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR;
8064}
8065
8066/// \brief Helper structure to keep track of ISD::SET_CC operands.
8067struct GenericSetCCInfo {
8068 const SDValue *Opnd0;
8069 const SDValue *Opnd1;
8070 ISD::CondCode CC;
8071};
8072
8073/// \brief Helper structure to keep track of a SET_CC lowered into AArch64 code.
8074struct AArch64SetCCInfo {
8075 const SDValue *Cmp;
8076 AArch64CC::CondCode CC;
8077};
8078
8079/// \brief Helper structure to keep track of SetCC information.
8080union SetCCInfo {
8081 GenericSetCCInfo Generic;
8082 AArch64SetCCInfo AArch64;
8083};
8084
8085/// \brief Helper structure to be able to read SetCC information. If set to
8086/// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
8087/// GenericSetCCInfo.
8088struct SetCCInfoAndKind {
8089 SetCCInfo Info;
8090 bool IsAArch64;
8091};
8092
8093/// \brief Check whether or not \p Op is a SET_CC operation, either a generic or
8094/// an
8095/// AArch64 lowered one.
8096/// \p SetCCInfo is filled accordingly.
8097/// \post SetCCInfo is meanginfull only when this function returns true.
8098/// \return True when Op is a kind of SET_CC operation.
8099static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
8100 // If this is a setcc, this is straight forward.
8101 if (Op.getOpcode() == ISD::SETCC) {
8102 SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
8103 SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
8104 SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8105 SetCCInfo.IsAArch64 = false;
8106 return true;
8107 }
8108 // Otherwise, check if this is a matching csel instruction.
8109 // In other words:
8110 // - csel 1, 0, cc
8111 // - csel 0, 1, !cc
8112 if (Op.getOpcode() != AArch64ISD::CSEL)
8113 return false;
8114 // Set the information about the operands.
8115 // TODO: we want the operands of the Cmp not the csel
8116 SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
8117 SetCCInfo.IsAArch64 = true;
8118 SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
8119 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
8120
8121 // Check that the operands matches the constraints:
8122 // (1) Both operands must be constants.
8123 // (2) One must be 1 and the other must be 0.
8124 ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
8125 ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8126
8127 // Check (1).
8128 if (!TValue || !FValue)
8129 return false;
8130
8131 // Check (2).
8132 if (!TValue->isOne()) {
8133 // Update the comparison when we are interested in !cc.
8134 std::swap(TValue, FValue);
8135 SetCCInfo.Info.AArch64.CC =
8136 AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
8137 }
8138 return TValue->isOne() && FValue->isNullValue();
8139}
8140
8141// Returns true if Op is setcc or zext of setcc.
8142static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
8143 if (isSetCC(Op, Info))
8144 return true;
8145 return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
8146 isSetCC(Op->getOperand(0), Info));
8147}
8148
8149// The folding we want to perform is:
8150// (add x, [zext] (setcc cc ...) )
8151// -->
8152// (csel x, (add x, 1), !cc ...)
8153//
8154// The latter will get matched to a CSINC instruction.
8155static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
8156 assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
8157 SDValue LHS = Op->getOperand(0);
8158 SDValue RHS = Op->getOperand(1);
8159 SetCCInfoAndKind InfoAndKind;
8160
8161 // If neither operand is a SET_CC, give up.
8162 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
8163 std::swap(LHS, RHS);
8164 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
8165 return SDValue();
8166 }
8167
8168 // FIXME: This could be generatized to work for FP comparisons.
8169 EVT CmpVT = InfoAndKind.IsAArch64
8170 ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
8171 : InfoAndKind.Info.Generic.Opnd0->getValueType();
8172 if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
8173 return SDValue();
8174
8175 SDValue CCVal;
8176 SDValue Cmp;
8177 SDLoc dl(Op);
8178 if (InfoAndKind.IsAArch64) {
8179 CCVal = DAG.getConstant(
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008180 AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), dl,
8181 MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00008182 Cmp = *InfoAndKind.Info.AArch64.Cmp;
8183 } else
8184 Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0,
8185 *InfoAndKind.Info.Generic.Opnd1,
8186 ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
8187 CCVal, DAG, dl);
8188
8189 EVT VT = Op->getValueType(0);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008190 LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, dl, VT));
Tim Northover3b0846e2014-05-24 12:50:23 +00008191 return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
8192}
8193
8194// The basic add/sub long vector instructions have variants with "2" on the end
8195// which act on the high-half of their inputs. They are normally matched by
8196// patterns like:
8197//
8198// (add (zeroext (extract_high LHS)),
8199// (zeroext (extract_high RHS)))
8200// -> uaddl2 vD, vN, vM
8201//
8202// However, if one of the extracts is something like a duplicate, this
8203// instruction can still be used profitably. This function puts the DAG into a
8204// more appropriate form for those patterns to trigger.
8205static SDValue performAddSubLongCombine(SDNode *N,
8206 TargetLowering::DAGCombinerInfo &DCI,
8207 SelectionDAG &DAG) {
8208 if (DCI.isBeforeLegalizeOps())
8209 return SDValue();
8210
8211 MVT VT = N->getSimpleValueType(0);
8212 if (!VT.is128BitVector()) {
8213 if (N->getOpcode() == ISD::ADD)
8214 return performSetccAddFolding(N, DAG);
8215 return SDValue();
8216 }
8217
8218 // Make sure both branches are extended in the same way.
8219 SDValue LHS = N->getOperand(0);
8220 SDValue RHS = N->getOperand(1);
8221 if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
8222 LHS.getOpcode() != ISD::SIGN_EXTEND) ||
8223 LHS.getOpcode() != RHS.getOpcode())
8224 return SDValue();
8225
8226 unsigned ExtType = LHS.getOpcode();
8227
8228 // It's not worth doing if at least one of the inputs isn't already an
8229 // extract, but we don't know which it'll be so we have to try both.
8230 if (isEssentiallyExtractSubvector(LHS.getOperand(0))) {
8231 RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
8232 if (!RHS.getNode())
8233 return SDValue();
8234
8235 RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
8236 } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) {
8237 LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
8238 if (!LHS.getNode())
8239 return SDValue();
8240
8241 LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
8242 }
8243
8244 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
8245}
8246
8247// Massage DAGs which we can use the high-half "long" operations on into
8248// something isel will recognize better. E.g.
8249//
8250// (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
8251// (aarch64_neon_umull (extract_high (v2i64 vec)))
8252// (extract_high (v2i64 (dup128 scalar)))))
8253//
James Molloyfaf4e3c2015-07-17 17:10:45 +00008254static SDValue tryCombineLongOpWithDup(SDNode *N,
Tim Northover3b0846e2014-05-24 12:50:23 +00008255 TargetLowering::DAGCombinerInfo &DCI,
8256 SelectionDAG &DAG) {
8257 if (DCI.isBeforeLegalizeOps())
8258 return SDValue();
8259
James Molloyfaf4e3c2015-07-17 17:10:45 +00008260 bool IsIntrinsic = N->getOpcode() == ISD::INTRINSIC_WO_CHAIN;
8261 SDValue LHS = N->getOperand(IsIntrinsic ? 1 : 0);
8262 SDValue RHS = N->getOperand(IsIntrinsic ? 2 : 1);
Tim Northover3b0846e2014-05-24 12:50:23 +00008263 assert(LHS.getValueType().is64BitVector() &&
8264 RHS.getValueType().is64BitVector() &&
8265 "unexpected shape for long operation");
8266
8267 // Either node could be a DUP, but it's not worth doing both of them (you'd
8268 // just as well use the non-high version) so look for a corresponding extract
8269 // operation on the other "wing".
8270 if (isEssentiallyExtractSubvector(LHS)) {
8271 RHS = tryExtendDUPToExtractHigh(RHS, DAG);
8272 if (!RHS.getNode())
8273 return SDValue();
8274 } else if (isEssentiallyExtractSubvector(RHS)) {
8275 LHS = tryExtendDUPToExtractHigh(LHS, DAG);
8276 if (!LHS.getNode())
8277 return SDValue();
8278 }
8279
James Molloyfaf4e3c2015-07-17 17:10:45 +00008280 // N could either be an intrinsic or a sabsdiff/uabsdiff node.
8281 if (IsIntrinsic)
8282 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
8283 N->getOperand(0), LHS, RHS);
8284 else
8285 return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0),
8286 LHS, RHS);
Tim Northover3b0846e2014-05-24 12:50:23 +00008287}
8288
8289static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
8290 MVT ElemTy = N->getSimpleValueType(0).getScalarType();
8291 unsigned ElemBits = ElemTy.getSizeInBits();
8292
8293 int64_t ShiftAmount;
8294 if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
8295 APInt SplatValue, SplatUndef;
8296 unsigned SplatBitSize;
8297 bool HasAnyUndefs;
8298 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
8299 HasAnyUndefs, ElemBits) ||
8300 SplatBitSize != ElemBits)
8301 return SDValue();
8302
8303 ShiftAmount = SplatValue.getSExtValue();
8304 } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
8305 ShiftAmount = CVN->getSExtValue();
8306 } else
8307 return SDValue();
8308
8309 unsigned Opcode;
8310 bool IsRightShift;
8311 switch (IID) {
8312 default:
8313 llvm_unreachable("Unknown shift intrinsic");
8314 case Intrinsic::aarch64_neon_sqshl:
8315 Opcode = AArch64ISD::SQSHL_I;
8316 IsRightShift = false;
8317 break;
8318 case Intrinsic::aarch64_neon_uqshl:
8319 Opcode = AArch64ISD::UQSHL_I;
8320 IsRightShift = false;
8321 break;
8322 case Intrinsic::aarch64_neon_srshl:
8323 Opcode = AArch64ISD::SRSHR_I;
8324 IsRightShift = true;
8325 break;
8326 case Intrinsic::aarch64_neon_urshl:
8327 Opcode = AArch64ISD::URSHR_I;
8328 IsRightShift = true;
8329 break;
8330 case Intrinsic::aarch64_neon_sqshlu:
8331 Opcode = AArch64ISD::SQSHLU_I;
8332 IsRightShift = false;
8333 break;
8334 }
8335
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008336 if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) {
8337 SDLoc dl(N);
8338 return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
8339 DAG.getConstant(-ShiftAmount, dl, MVT::i32));
8340 } else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) {
8341 SDLoc dl(N);
8342 return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
8343 DAG.getConstant(ShiftAmount, dl, MVT::i32));
8344 }
Tim Northover3b0846e2014-05-24 12:50:23 +00008345
8346 return SDValue();
8347}
8348
8349// The CRC32[BH] instructions ignore the high bits of their data operand. Since
8350// the intrinsics must be legal and take an i32, this means there's almost
8351// certainly going to be a zext in the DAG which we can eliminate.
8352static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
8353 SDValue AndN = N->getOperand(2);
8354 if (AndN.getOpcode() != ISD::AND)
8355 return SDValue();
8356
8357 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
8358 if (!CMask || CMask->getZExtValue() != Mask)
8359 return SDValue();
8360
8361 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
8362 N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
8363}
8364
Ahmed Bougachafab58922015-03-10 20:45:38 +00008365static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N,
8366 SelectionDAG &DAG) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008367 SDLoc dl(N);
8368 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0),
8369 DAG.getNode(Opc, dl,
Ahmed Bougachafab58922015-03-10 20:45:38 +00008370 N->getOperand(1).getSimpleValueType(),
8371 N->getOperand(1)),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008372 DAG.getConstant(0, dl, MVT::i64));
Ahmed Bougachafab58922015-03-10 20:45:38 +00008373}
8374
Tim Northover3b0846e2014-05-24 12:50:23 +00008375static SDValue performIntrinsicCombine(SDNode *N,
8376 TargetLowering::DAGCombinerInfo &DCI,
8377 const AArch64Subtarget *Subtarget) {
8378 SelectionDAG &DAG = DCI.DAG;
8379 unsigned IID = getIntrinsicID(N);
8380 switch (IID) {
8381 default:
8382 break;
8383 case Intrinsic::aarch64_neon_vcvtfxs2fp:
8384 case Intrinsic::aarch64_neon_vcvtfxu2fp:
8385 return tryCombineFixedPointConvert(N, DCI, DAG);
Ahmed Bougachafab58922015-03-10 20:45:38 +00008386 case Intrinsic::aarch64_neon_saddv:
8387 return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG);
8388 case Intrinsic::aarch64_neon_uaddv:
8389 return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG);
8390 case Intrinsic::aarch64_neon_sminv:
8391 return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG);
8392 case Intrinsic::aarch64_neon_uminv:
8393 return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG);
8394 case Intrinsic::aarch64_neon_smaxv:
8395 return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG);
8396 case Intrinsic::aarch64_neon_umaxv:
8397 return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00008398 case Intrinsic::aarch64_neon_fmax:
James Molloyedf38f02015-08-11 12:06:33 +00008399 return DAG.getNode(ISD::FMAXNAN, SDLoc(N), N->getValueType(0),
Tim Northover3b0846e2014-05-24 12:50:23 +00008400 N->getOperand(1), N->getOperand(2));
8401 case Intrinsic::aarch64_neon_fmin:
James Molloyedf38f02015-08-11 12:06:33 +00008402 return DAG.getNode(ISD::FMINNAN, SDLoc(N), N->getValueType(0),
Tim Northover3b0846e2014-05-24 12:50:23 +00008403 N->getOperand(1), N->getOperand(2));
James Molloyfaf4e3c2015-07-17 17:10:45 +00008404 case Intrinsic::aarch64_neon_sabd:
8405 return DAG.getNode(ISD::SABSDIFF, SDLoc(N), N->getValueType(0),
8406 N->getOperand(1), N->getOperand(2));
8407 case Intrinsic::aarch64_neon_uabd:
8408 return DAG.getNode(ISD::UABSDIFF, SDLoc(N), N->getValueType(0),
8409 N->getOperand(1), N->getOperand(2));
James Molloyb7b2a1e2015-08-11 12:06:37 +00008410 case Intrinsic::aarch64_neon_fmaxnm:
8411 return DAG.getNode(ISD::FMAXNUM, SDLoc(N), N->getValueType(0),
8412 N->getOperand(1), N->getOperand(2));
8413 case Intrinsic::aarch64_neon_fminnm:
8414 return DAG.getNode(ISD::FMINNUM, SDLoc(N), N->getValueType(0),
8415 N->getOperand(1), N->getOperand(2));
Tim Northover3b0846e2014-05-24 12:50:23 +00008416 case Intrinsic::aarch64_neon_smull:
8417 case Intrinsic::aarch64_neon_umull:
8418 case Intrinsic::aarch64_neon_pmull:
8419 case Intrinsic::aarch64_neon_sqdmull:
James Molloyfaf4e3c2015-07-17 17:10:45 +00008420 return tryCombineLongOpWithDup(N, DCI, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00008421 case Intrinsic::aarch64_neon_sqshl:
8422 case Intrinsic::aarch64_neon_uqshl:
8423 case Intrinsic::aarch64_neon_sqshlu:
8424 case Intrinsic::aarch64_neon_srshl:
8425 case Intrinsic::aarch64_neon_urshl:
8426 return tryCombineShiftImm(IID, N, DAG);
8427 case Intrinsic::aarch64_crc32b:
8428 case Intrinsic::aarch64_crc32cb:
8429 return tryCombineCRC32(0xff, N, DAG);
8430 case Intrinsic::aarch64_crc32h:
8431 case Intrinsic::aarch64_crc32ch:
8432 return tryCombineCRC32(0xffff, N, DAG);
8433 }
8434 return SDValue();
8435}
8436
8437static SDValue performExtendCombine(SDNode *N,
8438 TargetLowering::DAGCombinerInfo &DCI,
8439 SelectionDAG &DAG) {
8440 // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
8441 // we can convert that DUP into another extract_high (of a bigger DUP), which
8442 // helps the backend to decide that an sabdl2 would be useful, saving a real
8443 // extract_high operation.
8444 if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
James Molloyfaf4e3c2015-07-17 17:10:45 +00008445 (N->getOperand(0).getOpcode() == ISD::SABSDIFF ||
8446 N->getOperand(0).getOpcode() == ISD::UABSDIFF)) {
Tim Northover3b0846e2014-05-24 12:50:23 +00008447 SDNode *ABDNode = N->getOperand(0).getNode();
James Molloyfaf4e3c2015-07-17 17:10:45 +00008448 SDValue NewABD = tryCombineLongOpWithDup(ABDNode, DCI, DAG);
8449 if (!NewABD.getNode())
8450 return SDValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00008451
James Molloyfaf4e3c2015-07-17 17:10:45 +00008452 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
8453 NewABD);
Tim Northover3b0846e2014-05-24 12:50:23 +00008454 }
8455
8456 // This is effectively a custom type legalization for AArch64.
8457 //
8458 // Type legalization will split an extend of a small, legal, type to a larger
8459 // illegal type by first splitting the destination type, often creating
8460 // illegal source types, which then get legalized in isel-confusing ways,
8461 // leading to really terrible codegen. E.g.,
8462 // %result = v8i32 sext v8i8 %value
8463 // becomes
8464 // %losrc = extract_subreg %value, ...
8465 // %hisrc = extract_subreg %value, ...
8466 // %lo = v4i32 sext v4i8 %losrc
8467 // %hi = v4i32 sext v4i8 %hisrc
8468 // Things go rapidly downhill from there.
8469 //
8470 // For AArch64, the [sz]ext vector instructions can only go up one element
8471 // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
8472 // take two instructions.
8473 //
8474 // This implies that the most efficient way to do the extend from v8i8
8475 // to two v4i32 values is to first extend the v8i8 to v8i16, then do
8476 // the normal splitting to happen for the v8i16->v8i32.
8477
8478 // This is pre-legalization to catch some cases where the default
8479 // type legalization will create ill-tempered code.
8480 if (!DCI.isBeforeLegalizeOps())
8481 return SDValue();
8482
8483 // We're only interested in cleaning things up for non-legal vector types
8484 // here. If both the source and destination are legal, things will just
8485 // work naturally without any fiddling.
8486 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8487 EVT ResVT = N->getValueType(0);
8488 if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
8489 return SDValue();
8490 // If the vector type isn't a simple VT, it's beyond the scope of what
8491 // we're worried about here. Let legalization do its thing and hope for
8492 // the best.
Jim Grosbachec2b0d02014-08-28 22:08:28 +00008493 SDValue Src = N->getOperand(0);
8494 EVT SrcVT = Src->getValueType(0);
8495 if (!ResVT.isSimple() || !SrcVT.isSimple())
Tim Northover3b0846e2014-05-24 12:50:23 +00008496 return SDValue();
8497
Tim Northover3b0846e2014-05-24 12:50:23 +00008498 // If the source VT is a 64-bit vector, we can play games and get the
8499 // better results we want.
8500 if (SrcVT.getSizeInBits() != 64)
8501 return SDValue();
8502
8503 unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits();
8504 unsigned ElementCount = SrcVT.getVectorNumElements();
8505 SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
8506 SDLoc DL(N);
8507 Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
8508
8509 // Now split the rest of the operation into two halves, each with a 64
8510 // bit source.
8511 EVT LoVT, HiVT;
8512 SDValue Lo, Hi;
8513 unsigned NumElements = ResVT.getVectorNumElements();
8514 assert(!(NumElements & 1) && "Splitting vector, but not in half!");
8515 LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
8516 ResVT.getVectorElementType(), NumElements / 2);
8517
8518 EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
8519 LoVT.getVectorNumElements());
8520 Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008521 DAG.getConstant(0, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00008522 Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008523 DAG.getConstant(InNVT.getVectorNumElements(), DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00008524 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
8525 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
8526
8527 // Now combine the parts back together so we still have a single result
8528 // like the combiner expects.
8529 return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
8530}
8531
8532/// Replace a splat of a scalar to a vector store by scalar stores of the scalar
8533/// value. The load store optimizer pass will merge them to store pair stores.
8534/// This has better performance than a splat of the scalar followed by a split
8535/// vector store. Even if the stores are not merged it is four stores vs a dup,
8536/// followed by an ext.b and two stores.
8537static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode *St) {
8538 SDValue StVal = St->getValue();
8539 EVT VT = StVal.getValueType();
8540
8541 // Don't replace floating point stores, they possibly won't be transformed to
8542 // stp because of the store pair suppress pass.
8543 if (VT.isFloatingPoint())
8544 return SDValue();
8545
8546 // Check for insert vector elements.
8547 if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
8548 return SDValue();
8549
8550 // We can express a splat as store pair(s) for 2 or 4 elements.
8551 unsigned NumVecElts = VT.getVectorNumElements();
8552 if (NumVecElts != 4 && NumVecElts != 2)
8553 return SDValue();
8554 SDValue SplatVal = StVal.getOperand(1);
8555 unsigned RemainInsertElts = NumVecElts - 1;
8556
8557 // Check that this is a splat.
8558 while (--RemainInsertElts) {
8559 SDValue NextInsertElt = StVal.getOperand(0);
8560 if (NextInsertElt.getOpcode() != ISD::INSERT_VECTOR_ELT)
8561 return SDValue();
8562 if (NextInsertElt.getOperand(1) != SplatVal)
8563 return SDValue();
8564 StVal = NextInsertElt;
8565 }
8566 unsigned OrigAlignment = St->getAlignment();
8567 unsigned EltOffset = NumVecElts == 4 ? 4 : 8;
8568 unsigned Alignment = std::min(OrigAlignment, EltOffset);
8569
8570 // Create scalar stores. This is at least as good as the code sequence for a
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00008571 // split unaligned store which is a dup.s, ext.b, and two stores.
Tim Northover3b0846e2014-05-24 12:50:23 +00008572 // Most of the time the three stores should be replaced by store pair
8573 // instructions (stp).
8574 SDLoc DL(St);
8575 SDValue BasePtr = St->getBasePtr();
8576 SDValue NewST1 =
8577 DAG.getStore(St->getChain(), DL, SplatVal, BasePtr, St->getPointerInfo(),
8578 St->isVolatile(), St->isNonTemporal(), St->getAlignment());
8579
8580 unsigned Offset = EltOffset;
8581 while (--NumVecElts) {
8582 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008583 DAG.getConstant(Offset, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00008584 NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
8585 St->getPointerInfo(), St->isVolatile(),
8586 St->isNonTemporal(), Alignment);
8587 Offset += EltOffset;
8588 }
8589 return NewST1;
8590}
8591
Tim Northover339c83e2015-11-10 00:44:23 +00008592static SDValue split16BStores(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
8593 SelectionDAG &DAG,
8594 const AArch64Subtarget *Subtarget) {
Tim Northover3b0846e2014-05-24 12:50:23 +00008595 if (!DCI.isBeforeLegalize())
8596 return SDValue();
8597
8598 StoreSDNode *S = cast<StoreSDNode>(N);
8599 if (S->isVolatile())
8600 return SDValue();
8601
Sanjay Patelbbbf9a12015-09-25 21:49:48 +00008602 // FIXME: The logic for deciding if an unaligned store should be split should
8603 // be included in TLI.allowsMisalignedMemoryAccesses(), and there should be
8604 // a call to that function here.
8605
Tim Northover3b0846e2014-05-24 12:50:23 +00008606 // Cyclone has bad performance on unaligned 16B stores when crossing line and
Sanjay Patel08efcd92015-01-28 22:37:32 +00008607 // page boundaries. We want to split such stores.
Tim Northover3b0846e2014-05-24 12:50:23 +00008608 if (!Subtarget->isCyclone())
8609 return SDValue();
8610
Sanjay Patel924879a2015-08-04 15:49:57 +00008611 // Don't split at -Oz.
8612 if (DAG.getMachineFunction().getFunction()->optForMinSize())
Tim Northover3b0846e2014-05-24 12:50:23 +00008613 return SDValue();
8614
8615 SDValue StVal = S->getValue();
8616 EVT VT = StVal.getValueType();
8617
8618 // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
8619 // those up regresses performance on micro-benchmarks and olden/bh.
8620 if (!VT.isVector() || VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
8621 return SDValue();
8622
8623 // Split unaligned 16B stores. They are terrible for performance.
8624 // Don't split stores with alignment of 1 or 2. Code that uses clang vector
8625 // extensions can use this to mark that it does not want splitting to happen
8626 // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
8627 // eliminating alignment hazards is only 1 in 8 for alignment of 2.
8628 if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
8629 S->getAlignment() <= 2)
8630 return SDValue();
8631
8632 // If we get a splat of a scalar convert this vector store to a store of
8633 // scalars. They will be merged into store pairs thereby removing two
8634 // instructions.
Ahmed Bougacha239d6352015-08-04 00:48:02 +00008635 if (SDValue ReplacedSplat = replaceSplatVectorStore(DAG, S))
Tim Northover3b0846e2014-05-24 12:50:23 +00008636 return ReplacedSplat;
8637
8638 SDLoc DL(S);
8639 unsigned NumElts = VT.getVectorNumElements() / 2;
8640 // Split VT into two.
8641 EVT HalfVT =
8642 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts);
8643 SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008644 DAG.getConstant(0, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00008645 SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008646 DAG.getConstant(NumElts, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00008647 SDValue BasePtr = S->getBasePtr();
8648 SDValue NewST1 =
8649 DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
8650 S->isVolatile(), S->isNonTemporal(), S->getAlignment());
8651 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008652 DAG.getConstant(8, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00008653 return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
8654 S->getPointerInfo(), S->isVolatile(), S->isNonTemporal(),
8655 S->getAlignment());
8656}
8657
8658/// Target-specific DAG combine function for post-increment LD1 (lane) and
8659/// post-increment LD1R.
8660static SDValue performPostLD1Combine(SDNode *N,
8661 TargetLowering::DAGCombinerInfo &DCI,
8662 bool IsLaneOp) {
8663 if (DCI.isBeforeLegalizeOps())
8664 return SDValue();
8665
8666 SelectionDAG &DAG = DCI.DAG;
8667 EVT VT = N->getValueType(0);
8668
8669 unsigned LoadIdx = IsLaneOp ? 1 : 0;
8670 SDNode *LD = N->getOperand(LoadIdx).getNode();
8671 // If it is not LOAD, can not do such combine.
8672 if (LD->getOpcode() != ISD::LOAD)
8673 return SDValue();
8674
8675 LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
8676 EVT MemVT = LoadSDN->getMemoryVT();
8677 // Check if memory operand is the same type as the vector element.
8678 if (MemVT != VT.getVectorElementType())
8679 return SDValue();
8680
8681 // Check if there are other uses. If so, do not combine as it will introduce
8682 // an extra load.
8683 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
8684 ++UI) {
8685 if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
8686 continue;
8687 if (*UI != N)
8688 return SDValue();
8689 }
8690
8691 SDValue Addr = LD->getOperand(1);
8692 SDValue Vector = N->getOperand(0);
8693 // Search for a use of the address operand that is an increment.
8694 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
8695 Addr.getNode()->use_end(); UI != UE; ++UI) {
8696 SDNode *User = *UI;
8697 if (User->getOpcode() != ISD::ADD
8698 || UI.getUse().getResNo() != Addr.getResNo())
8699 continue;
8700
8701 // Check that the add is independent of the load. Otherwise, folding it
8702 // would create a cycle.
8703 if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User))
8704 continue;
8705 // Also check that add is not used in the vector operand. This would also
8706 // create a cycle.
8707 if (User->isPredecessorOf(Vector.getNode()))
8708 continue;
8709
8710 // If the increment is a constant, it must match the memory ref size.
8711 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
8712 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
8713 uint32_t IncVal = CInc->getZExtValue();
8714 unsigned NumBytes = VT.getScalarSizeInBits() / 8;
8715 if (IncVal != NumBytes)
8716 continue;
8717 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
8718 }
8719
Ahmed Bougacha2448ef52015-04-17 21:02:30 +00008720 // Finally, check that the vector doesn't depend on the load.
8721 // Again, this would create a cycle.
8722 // The load depending on the vector is fine, as that's the case for the
8723 // LD1*post we'll eventually generate anyway.
8724 if (LoadSDN->isPredecessorOf(Vector.getNode()))
8725 continue;
8726
Tim Northover3b0846e2014-05-24 12:50:23 +00008727 SmallVector<SDValue, 8> Ops;
8728 Ops.push_back(LD->getOperand(0)); // Chain
8729 if (IsLaneOp) {
8730 Ops.push_back(Vector); // The vector to be inserted
8731 Ops.push_back(N->getOperand(2)); // The lane to be inserted in the vector
8732 }
8733 Ops.push_back(Addr);
8734 Ops.push_back(Inc);
8735
8736 EVT Tys[3] = { VT, MVT::i64, MVT::Other };
Craig Toppere1d12942014-08-27 05:25:25 +00008737 SDVTList SDTys = DAG.getVTList(Tys);
Tim Northover3b0846e2014-05-24 12:50:23 +00008738 unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
8739 SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
8740 MemVT,
8741 LoadSDN->getMemOperand());
8742
8743 // Update the uses.
Ahmed Bougacha4c2b0782015-02-19 23:13:10 +00008744 SmallVector<SDValue, 2> NewResults;
Tim Northover3b0846e2014-05-24 12:50:23 +00008745 NewResults.push_back(SDValue(LD, 0)); // The result of load
8746 NewResults.push_back(SDValue(UpdN.getNode(), 2)); // Chain
8747 DCI.CombineTo(LD, NewResults);
8748 DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result
8749 DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register
8750
8751 break;
8752 }
8753 return SDValue();
8754}
8755
Tim Northover339c83e2015-11-10 00:44:23 +00008756/// Simplify \Addr given that the top byte of it is ignored by HW during
8757/// address translation.
8758static bool performTBISimplification(SDValue Addr,
8759 TargetLowering::DAGCombinerInfo &DCI,
8760 SelectionDAG &DAG) {
8761 APInt DemandedMask = APInt::getLowBitsSet(64, 56);
8762 APInt KnownZero, KnownOne;
8763 TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
8764 DCI.isBeforeLegalizeOps());
8765 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8766 if (TLI.SimplifyDemandedBits(Addr, DemandedMask, KnownZero, KnownOne, TLO)) {
8767 DCI.CommitTargetLoweringOpt(TLO);
8768 return true;
8769 }
8770 return false;
8771}
8772
8773static SDValue performSTORECombine(SDNode *N,
8774 TargetLowering::DAGCombinerInfo &DCI,
8775 SelectionDAG &DAG,
8776 const AArch64Subtarget *Subtarget) {
8777 SDValue Split = split16BStores(N, DCI, DAG, Subtarget);
8778 if (Split.getNode())
8779 return Split;
8780
8781 if (Subtarget->supportsAddressTopByteIgnored() &&
8782 performTBISimplification(N->getOperand(2), DCI, DAG))
8783 return SDValue(N, 0);
8784
8785 return SDValue();
8786}
8787
8788 /// This function handles the log2-shuffle pattern produced by the
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008789/// LoopVectorizer for the across vector reduction. It consists of
8790/// log2(NumVectorElements) steps and, in each step, 2^(s) elements
8791/// are reduced, where s is an induction variable from 0 to
8792/// log2(NumVectorElements).
8793static SDValue tryMatchAcrossLaneShuffleForReduction(SDNode *N, SDValue OpV,
8794 unsigned Op,
8795 SelectionDAG &DAG) {
8796 EVT VTy = OpV->getOperand(0).getValueType();
8797 if (!VTy.isVector())
Chad Rosier6c36eff2015-09-03 18:13:57 +00008798 return SDValue();
8799
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008800 int NumVecElts = VTy.getVectorNumElements();
Jun Bum Lim0aace132015-10-09 14:11:25 +00008801 if (Op == ISD::FMAXNUM || Op == ISD::FMINNUM) {
8802 if (NumVecElts != 4)
8803 return SDValue();
8804 } else {
8805 if (NumVecElts != 4 && NumVecElts != 8 && NumVecElts != 16)
8806 return SDValue();
8807 }
Chad Rosier6c36eff2015-09-03 18:13:57 +00008808
8809 int NumExpectedSteps = APInt(8, NumVecElts).logBase2();
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008810 SDValue PreOp = OpV;
Chad Rosier6c36eff2015-09-03 18:13:57 +00008811 // Iterate over each step of the across vector reduction.
8812 for (int CurStep = 0; CurStep != NumExpectedSteps; ++CurStep) {
Chad Rosier6c36eff2015-09-03 18:13:57 +00008813 SDValue CurOp = PreOp.getOperand(0);
8814 SDValue Shuffle = PreOp.getOperand(1);
8815 if (Shuffle.getOpcode() != ISD::VECTOR_SHUFFLE) {
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008816 // Try to swap the 1st and 2nd operand as add and min/max instructions
8817 // are commutative.
Chad Rosier6c36eff2015-09-03 18:13:57 +00008818 CurOp = PreOp.getOperand(1);
8819 Shuffle = PreOp.getOperand(0);
8820 if (Shuffle.getOpcode() != ISD::VECTOR_SHUFFLE)
8821 return SDValue();
8822 }
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008823
8824 // Check if the input vector is fed by the operator we want to handle,
8825 // except the last step; the very first input vector is not necessarily
8826 // the same operator we are handling.
8827 if (CurOp.getOpcode() != Op && (CurStep != (NumExpectedSteps - 1)))
8828 return SDValue();
8829
Chad Rosier6c36eff2015-09-03 18:13:57 +00008830 // Check if it forms one step of the across vector reduction.
8831 // E.g.,
8832 // %cur = add %1, %0
8833 // %shuffle = vector_shuffle %cur, <2, 3, u, u>
8834 // %pre = add %cur, %shuffle
8835 if (Shuffle.getOperand(0) != CurOp)
8836 return SDValue();
8837
8838 int NumMaskElts = 1 << CurStep;
8839 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Shuffle)->getMask();
8840 // Check mask values in each step.
8841 // We expect the shuffle mask in each step follows a specific pattern
8842 // denoted here by the <M, U> form, where M is a sequence of integers
8843 // starting from NumMaskElts, increasing by 1, and the number integers
8844 // in M should be NumMaskElts. U is a sequence of UNDEFs and the number
8845 // of undef in U should be NumVecElts - NumMaskElts.
8846 // E.g., for <8 x i16>, mask values in each step should be :
8847 // step 0 : <1,u,u,u,u,u,u,u>
8848 // step 1 : <2,3,u,u,u,u,u,u>
8849 // step 2 : <4,5,6,7,u,u,u,u>
8850 for (int i = 0; i < NumVecElts; ++i)
8851 if ((i < NumMaskElts && Mask[i] != (NumMaskElts + i)) ||
8852 (i >= NumMaskElts && !(Mask[i] < 0)))
8853 return SDValue();
8854
8855 PreOp = CurOp;
8856 }
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008857 unsigned Opcode;
Jun Bum Lim0aace132015-10-09 14:11:25 +00008858 bool IsIntrinsic = false;
8859
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008860 switch (Op) {
8861 default:
8862 llvm_unreachable("Unexpected operator for across vector reduction");
8863 case ISD::ADD:
8864 Opcode = AArch64ISD::UADDV;
8865 break;
8866 case ISD::SMAX:
8867 Opcode = AArch64ISD::SMAXV;
8868 break;
8869 case ISD::UMAX:
8870 Opcode = AArch64ISD::UMAXV;
8871 break;
8872 case ISD::SMIN:
8873 Opcode = AArch64ISD::SMINV;
8874 break;
8875 case ISD::UMIN:
8876 Opcode = AArch64ISD::UMINV;
8877 break;
Jun Bum Lim0aace132015-10-09 14:11:25 +00008878 case ISD::FMAXNUM:
8879 Opcode = Intrinsic::aarch64_neon_fmaxnmv;
8880 IsIntrinsic = true;
8881 break;
8882 case ISD::FMINNUM:
8883 Opcode = Intrinsic::aarch64_neon_fminnmv;
8884 IsIntrinsic = true;
8885 break;
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008886 }
Chad Rosier6c36eff2015-09-03 18:13:57 +00008887 SDLoc DL(N);
Jun Bum Lim0aace132015-10-09 14:11:25 +00008888
8889 return IsIntrinsic
8890 ? DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, N->getValueType(0),
8891 DAG.getConstant(Opcode, DL, MVT::i32), PreOp)
8892 : DAG.getNode(
8893 ISD::EXTRACT_VECTOR_ELT, DL, N->getValueType(0),
8894 DAG.getNode(Opcode, DL, PreOp.getSimpleValueType(), PreOp),
8895 DAG.getConstant(0, DL, MVT::i64));
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008896}
8897
8898/// Target-specific DAG combine for the across vector min/max reductions.
8899/// This function specifically handles the final clean-up step of the vector
8900/// min/max reductions produced by the LoopVectorizer. It is the log2-shuffle
8901/// pattern, which narrows down and finds the final min/max value from all
8902/// elements of the vector.
8903/// For example, for a <16 x i8> vector :
8904/// svn0 = vector_shuffle %0, undef<8,9,10,11,12,13,14,15,u,u,u,u,u,u,u,u>
8905/// %smax0 = smax %arr, svn0
8906/// %svn1 = vector_shuffle %smax0, undef<4,5,6,7,u,u,u,u,u,u,u,u,u,u,u,u>
8907/// %smax1 = smax %smax0, %svn1
8908/// %svn2 = vector_shuffle %smax1, undef<2,3,u,u,u,u,u,u,u,u,u,u,u,u,u,u>
8909/// %smax2 = smax %smax1, svn2
8910/// %svn3 = vector_shuffle %smax2, undef<1,u,u,u,u,u,u,u,u,u,u,u,u,u,u,u>
8911/// %sc = setcc %smax2, %svn3, gt
8912/// %n0 = extract_vector_elt %sc, #0
8913/// %n1 = extract_vector_elt %smax2, #0
8914/// %n2 = extract_vector_elt $smax2, #1
8915/// %result = select %n0, %n1, n2
8916/// becomes :
8917/// %1 = smaxv %0
8918/// %result = extract_vector_elt %1, 0
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008919static SDValue
8920performAcrossLaneMinMaxReductionCombine(SDNode *N, SelectionDAG &DAG,
8921 const AArch64Subtarget *Subtarget) {
8922 if (!Subtarget->hasNEON())
8923 return SDValue();
8924
8925 SDValue N0 = N->getOperand(0);
8926 SDValue IfTrue = N->getOperand(1);
8927 SDValue IfFalse = N->getOperand(2);
8928
8929 // Check if the SELECT merges up the final result of the min/max
8930 // from a vector.
8931 if (N0.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
8932 IfTrue.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
8933 IfFalse.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8934 return SDValue();
8935
8936 // Expect N0 is fed by SETCC.
8937 SDValue SetCC = N0.getOperand(0);
8938 EVT SetCCVT = SetCC.getValueType();
8939 if (SetCC.getOpcode() != ISD::SETCC || !SetCCVT.isVector() ||
8940 SetCCVT.getVectorElementType() != MVT::i1)
8941 return SDValue();
8942
8943 SDValue VectorOp = SetCC.getOperand(0);
8944 unsigned Op = VectorOp->getOpcode();
8945 // Check if the input vector is fed by the operator we want to handle.
Jun Bum Lim0aace132015-10-09 14:11:25 +00008946 if (Op != ISD::SMAX && Op != ISD::UMAX && Op != ISD::SMIN &&
8947 Op != ISD::UMIN && Op != ISD::FMAXNUM && Op != ISD::FMINNUM)
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008948 return SDValue();
8949
8950 EVT VTy = VectorOp.getValueType();
8951 if (!VTy.isVector())
8952 return SDValue();
8953
Jun Bum Lim0aace132015-10-09 14:11:25 +00008954 if (VTy.getSizeInBits() < 64)
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008955 return SDValue();
8956
Jun Bum Lim0aace132015-10-09 14:11:25 +00008957 EVT EltTy = VTy.getVectorElementType();
8958 if (Op == ISD::FMAXNUM || Op == ISD::FMINNUM) {
8959 if (EltTy != MVT::f32)
8960 return SDValue();
8961 } else {
8962 if (EltTy != MVT::i32 && EltTy != MVT::i16 && EltTy != MVT::i8)
8963 return SDValue();
8964 }
8965
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008966 // Check if extracting from the same vector.
8967 // For example,
8968 // %sc = setcc %vector, %svn1, gt
8969 // %n0 = extract_vector_elt %sc, #0
8970 // %n1 = extract_vector_elt %vector, #0
8971 // %n2 = extract_vector_elt $vector, #1
8972 if (!(VectorOp == IfTrue->getOperand(0) &&
8973 VectorOp == IfFalse->getOperand(0)))
8974 return SDValue();
8975
8976 // Check if the condition code is matched with the operator type.
8977 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
8978 if ((Op == ISD::SMAX && CC != ISD::SETGT && CC != ISD::SETGE) ||
8979 (Op == ISD::UMAX && CC != ISD::SETUGT && CC != ISD::SETUGE) ||
8980 (Op == ISD::SMIN && CC != ISD::SETLT && CC != ISD::SETLE) ||
Jun Bum Lim0aace132015-10-09 14:11:25 +00008981 (Op == ISD::UMIN && CC != ISD::SETULT && CC != ISD::SETULE) ||
8982 (Op == ISD::FMAXNUM && CC != ISD::SETOGT && CC != ISD::SETOGE &&
8983 CC != ISD::SETUGT && CC != ISD::SETUGE && CC != ISD::SETGT &&
8984 CC != ISD::SETGE) ||
8985 (Op == ISD::FMINNUM && CC != ISD::SETOLT && CC != ISD::SETOLE &&
8986 CC != ISD::SETULT && CC != ISD::SETULE && CC != ISD::SETLT &&
8987 CC != ISD::SETLE))
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008988 return SDValue();
8989
8990 // Expect to check only lane 0 from the vector SETCC.
Artyom Skrobov314ee042015-11-25 19:41:11 +00008991 if (!isNullConstant(N0.getOperand(1)))
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008992 return SDValue();
8993
8994 // Expect to extract the true value from lane 0.
Artyom Skrobov314ee042015-11-25 19:41:11 +00008995 if (!isNullConstant(IfTrue.getOperand(1)))
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00008996 return SDValue();
8997
8998 // Expect to extract the false value from lane 1.
Artyom Skrobov314ee042015-11-25 19:41:11 +00008999 if (!isOneConstant(IfFalse.getOperand(1)))
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009000 return SDValue();
9001
9002 return tryMatchAcrossLaneShuffleForReduction(N, SetCC, Op, DAG);
9003}
9004
9005/// Target-specific DAG combine for the across vector add reduction.
9006/// This function specifically handles the final clean-up step of the vector
9007/// add reduction produced by the LoopVectorizer. It is the log2-shuffle
9008/// pattern, which adds all elements of a vector together.
9009/// For example, for a <4 x i32> vector :
9010/// %1 = vector_shuffle %0, <2,3,u,u>
9011/// %2 = add %0, %1
9012/// %3 = vector_shuffle %2, <1,u,u,u>
9013/// %4 = add %2, %3
9014/// %result = extract_vector_elt %4, 0
9015/// becomes :
9016/// %0 = uaddv %0
9017/// %result = extract_vector_elt %0, 0
9018static SDValue
9019performAcrossLaneAddReductionCombine(SDNode *N, SelectionDAG &DAG,
9020 const AArch64Subtarget *Subtarget) {
9021 if (!Subtarget->hasNEON())
9022 return SDValue();
9023 SDValue N0 = N->getOperand(0);
9024 SDValue N1 = N->getOperand(1);
9025
9026 // Check if the input vector is fed by the ADD.
9027 if (N0->getOpcode() != ISD::ADD)
9028 return SDValue();
9029
9030 // The vector extract idx must constant zero because we only expect the final
9031 // result of the reduction is placed in lane 0.
Artyom Skrobov314ee042015-11-25 19:41:11 +00009032 if (!isNullConstant(N1))
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009033 return SDValue();
9034
9035 EVT VTy = N0.getValueType();
9036 if (!VTy.isVector())
9037 return SDValue();
9038
9039 EVT EltTy = VTy.getVectorElementType();
9040 if (EltTy != MVT::i32 && EltTy != MVT::i16 && EltTy != MVT::i8)
9041 return SDValue();
9042
Jun Bum Lim0aace132015-10-09 14:11:25 +00009043 if (VTy.getSizeInBits() < 64)
9044 return SDValue();
9045
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009046 return tryMatchAcrossLaneShuffleForReduction(N, N0, ISD::ADD, DAG);
Chad Rosier6c36eff2015-09-03 18:13:57 +00009047}
9048
Tim Northover3b0846e2014-05-24 12:50:23 +00009049/// Target-specific DAG combine function for NEON load/store intrinsics
9050/// to merge base address updates.
9051static SDValue performNEONPostLDSTCombine(SDNode *N,
9052 TargetLowering::DAGCombinerInfo &DCI,
9053 SelectionDAG &DAG) {
9054 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9055 return SDValue();
9056
9057 unsigned AddrOpIdx = N->getNumOperands() - 1;
9058 SDValue Addr = N->getOperand(AddrOpIdx);
9059
9060 // Search for a use of the address operand that is an increment.
9061 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
9062 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
9063 SDNode *User = *UI;
9064 if (User->getOpcode() != ISD::ADD ||
9065 UI.getUse().getResNo() != Addr.getResNo())
9066 continue;
9067
9068 // Check that the add is independent of the load/store. Otherwise, folding
9069 // it would create a cycle.
9070 if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
9071 continue;
9072
9073 // Find the new opcode for the updating load/store.
9074 bool IsStore = false;
9075 bool IsLaneOp = false;
9076 bool IsDupOp = false;
9077 unsigned NewOpc = 0;
9078 unsigned NumVecs = 0;
9079 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9080 switch (IntNo) {
9081 default: llvm_unreachable("unexpected intrinsic for Neon base update");
9082 case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post;
9083 NumVecs = 2; break;
9084 case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post;
9085 NumVecs = 3; break;
9086 case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post;
9087 NumVecs = 4; break;
9088 case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post;
9089 NumVecs = 2; IsStore = true; break;
9090 case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post;
9091 NumVecs = 3; IsStore = true; break;
9092 case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post;
9093 NumVecs = 4; IsStore = true; break;
9094 case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post;
9095 NumVecs = 2; break;
9096 case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post;
9097 NumVecs = 3; break;
9098 case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post;
9099 NumVecs = 4; break;
9100 case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post;
9101 NumVecs = 2; IsStore = true; break;
9102 case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post;
9103 NumVecs = 3; IsStore = true; break;
9104 case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post;
9105 NumVecs = 4; IsStore = true; break;
9106 case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost;
9107 NumVecs = 2; IsDupOp = true; break;
9108 case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost;
9109 NumVecs = 3; IsDupOp = true; break;
9110 case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost;
9111 NumVecs = 4; IsDupOp = true; break;
9112 case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost;
9113 NumVecs = 2; IsLaneOp = true; break;
9114 case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost;
9115 NumVecs = 3; IsLaneOp = true; break;
9116 case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost;
9117 NumVecs = 4; IsLaneOp = true; break;
9118 case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost;
9119 NumVecs = 2; IsStore = true; IsLaneOp = true; break;
9120 case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost;
9121 NumVecs = 3; IsStore = true; IsLaneOp = true; break;
9122 case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost;
9123 NumVecs = 4; IsStore = true; IsLaneOp = true; break;
9124 }
9125
9126 EVT VecTy;
9127 if (IsStore)
9128 VecTy = N->getOperand(2).getValueType();
9129 else
9130 VecTy = N->getValueType(0);
9131
9132 // If the increment is a constant, it must match the memory ref size.
9133 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
9134 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
9135 uint32_t IncVal = CInc->getZExtValue();
9136 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
9137 if (IsLaneOp || IsDupOp)
9138 NumBytes /= VecTy.getVectorNumElements();
9139 if (IncVal != NumBytes)
9140 continue;
9141 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
9142 }
9143 SmallVector<SDValue, 8> Ops;
9144 Ops.push_back(N->getOperand(0)); // Incoming chain
9145 // Load lane and store have vector list as input.
9146 if (IsLaneOp || IsStore)
9147 for (unsigned i = 2; i < AddrOpIdx; ++i)
9148 Ops.push_back(N->getOperand(i));
9149 Ops.push_back(Addr); // Base register
9150 Ops.push_back(Inc);
9151
9152 // Return Types.
9153 EVT Tys[6];
9154 unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
9155 unsigned n;
9156 for (n = 0; n < NumResultVecs; ++n)
9157 Tys[n] = VecTy;
9158 Tys[n++] = MVT::i64; // Type of write back register
9159 Tys[n] = MVT::Other; // Type of the chain
Craig Toppere1d12942014-08-27 05:25:25 +00009160 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
Tim Northover3b0846e2014-05-24 12:50:23 +00009161
9162 MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
9163 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
9164 MemInt->getMemoryVT(),
9165 MemInt->getMemOperand());
9166
9167 // Update the uses.
9168 std::vector<SDValue> NewResults;
9169 for (unsigned i = 0; i < NumResultVecs; ++i) {
9170 NewResults.push_back(SDValue(UpdN.getNode(), i));
9171 }
9172 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
9173 DCI.CombineTo(N, NewResults);
9174 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
9175
9176 break;
9177 }
9178 return SDValue();
9179}
9180
Louis Gerbarg03c627e2014-08-29 21:00:22 +00009181// Checks to see if the value is the prescribed width and returns information
9182// about its extension mode.
9183static
9184bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) {
9185 ExtType = ISD::NON_EXTLOAD;
9186 switch(V.getNode()->getOpcode()) {
9187 default:
9188 return false;
9189 case ISD::LOAD: {
9190 LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
9191 if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8)
9192 || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) {
9193 ExtType = LoadNode->getExtensionType();
9194 return true;
9195 }
9196 return false;
9197 }
9198 case ISD::AssertSext: {
9199 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
9200 if ((TypeNode->getVT() == MVT::i8 && width == 8)
9201 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
9202 ExtType = ISD::SEXTLOAD;
9203 return true;
9204 }
9205 return false;
9206 }
9207 case ISD::AssertZext: {
9208 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
9209 if ((TypeNode->getVT() == MVT::i8 && width == 8)
9210 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
9211 ExtType = ISD::ZEXTLOAD;
9212 return true;
9213 }
9214 return false;
9215 }
9216 case ISD::Constant:
9217 case ISD::TargetConstant: {
Reid Kleckner39ad7c92014-08-29 22:14:26 +00009218 if (std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) <
Aaron Ballman8ca53882014-09-02 12:19:02 +00009219 1LL << (width - 1))
Louis Gerbarg03c627e2014-08-29 21:00:22 +00009220 return true;
9221 return false;
9222 }
9223 }
9224
9225 return true;
9226}
9227
9228// This function does a whole lot of voodoo to determine if the tests are
9229// equivalent without and with a mask. Essentially what happens is that given a
9230// DAG resembling:
9231//
9232// +-------------+ +-------------+ +-------------+ +-------------+
9233// | Input | | AddConstant | | CompConstant| | CC |
9234// +-------------+ +-------------+ +-------------+ +-------------+
9235// | | | |
9236// V V | +----------+
9237// +-------------+ +----+ | |
9238// | ADD | |0xff| | |
9239// +-------------+ +----+ | |
9240// | | | |
9241// V V | |
9242// +-------------+ | |
9243// | AND | | |
9244// +-------------+ | |
9245// | | |
9246// +-----+ | |
9247// | | |
9248// V V V
9249// +-------------+
9250// | CMP |
9251// +-------------+
9252//
9253// The AND node may be safely removed for some combinations of inputs. In
9254// particular we need to take into account the extension type of the Input,
9255// the exact values of AddConstant, CompConstant, and CC, along with the nominal
9256// width of the input (this can work for any width inputs, the above graph is
9257// specific to 8 bits.
9258//
9259// The specific equations were worked out by generating output tables for each
9260// AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
9261// problem was simplified by working with 4 bit inputs, which means we only
9262// needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
9263// extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
9264// patterns present in both extensions (0,7). For every distinct set of
9265// AddConstant and CompConstants bit patterns we can consider the masked and
9266// unmasked versions to be equivalent if the result of this function is true for
9267// all 16 distinct bit patterns of for the current extension type of Input (w0).
9268//
9269// sub w8, w0, w1
9270// and w10, w8, #0x0f
9271// cmp w8, w2
9272// cset w9, AArch64CC
9273// cmp w10, w2
9274// cset w11, AArch64CC
9275// cmp w9, w11
9276// cset w0, eq
9277// ret
9278//
9279// Since the above function shows when the outputs are equivalent it defines
9280// when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
9281// would be expensive to run during compiles. The equations below were written
9282// in a test harness that confirmed they gave equivalent outputs to the above
9283// for all inputs function, so they can be used determine if the removal is
9284// legal instead.
9285//
9286// isEquivalentMaskless() is the code for testing if the AND can be removed
9287// factored out of the DAG recognition as the DAG can take several forms.
9288
9289static
9290bool isEquivalentMaskless(unsigned CC, unsigned width,
9291 ISD::LoadExtType ExtType, signed AddConstant,
9292 signed CompConstant) {
9293 // By being careful about our equations and only writing the in term
9294 // symbolic values and well known constants (0, 1, -1, MaxUInt) we can
9295 // make them generally applicable to all bit widths.
9296 signed MaxUInt = (1 << width);
9297
9298 // For the purposes of these comparisons sign extending the type is
9299 // equivalent to zero extending the add and displacing it by half the integer
9300 // width. Provided we are careful and make sure our equations are valid over
9301 // the whole range we can just adjust the input and avoid writing equations
9302 // for sign extended inputs.
9303 if (ExtType == ISD::SEXTLOAD)
9304 AddConstant -= (1 << (width-1));
9305
9306 switch(CC) {
9307 case AArch64CC::LE:
9308 case AArch64CC::GT: {
9309 if ((AddConstant == 0) ||
9310 (CompConstant == MaxUInt - 1 && AddConstant < 0) ||
9311 (AddConstant >= 0 && CompConstant < 0) ||
9312 (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant))
9313 return true;
9314 } break;
9315 case AArch64CC::LT:
9316 case AArch64CC::GE: {
9317 if ((AddConstant == 0) ||
9318 (AddConstant >= 0 && CompConstant <= 0) ||
9319 (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant))
9320 return true;
9321 } break;
9322 case AArch64CC::HI:
9323 case AArch64CC::LS: {
9324 if ((AddConstant >= 0 && CompConstant < 0) ||
9325 (AddConstant <= 0 && CompConstant >= -1 &&
9326 CompConstant < AddConstant + MaxUInt))
9327 return true;
9328 } break;
9329 case AArch64CC::PL:
9330 case AArch64CC::MI: {
9331 if ((AddConstant == 0) ||
9332 (AddConstant > 0 && CompConstant <= 0) ||
9333 (AddConstant < 0 && CompConstant <= AddConstant))
9334 return true;
9335 } break;
9336 case AArch64CC::LO:
9337 case AArch64CC::HS: {
9338 if ((AddConstant >= 0 && CompConstant <= 0) ||
9339 (AddConstant <= 0 && CompConstant >= 0 &&
9340 CompConstant <= AddConstant + MaxUInt))
9341 return true;
9342 } break;
9343 case AArch64CC::EQ:
9344 case AArch64CC::NE: {
9345 if ((AddConstant > 0 && CompConstant < 0) ||
9346 (AddConstant < 0 && CompConstant >= 0 &&
9347 CompConstant < AddConstant + MaxUInt) ||
9348 (AddConstant >= 0 && CompConstant >= 0 &&
9349 CompConstant >= AddConstant) ||
9350 (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant))
9351
9352 return true;
9353 } break;
9354 case AArch64CC::VS:
9355 case AArch64CC::VC:
9356 case AArch64CC::AL:
9357 case AArch64CC::NV:
9358 return true;
9359 case AArch64CC::Invalid:
9360 break;
9361 }
9362
9363 return false;
9364}
9365
9366static
9367SDValue performCONDCombine(SDNode *N,
9368 TargetLowering::DAGCombinerInfo &DCI,
9369 SelectionDAG &DAG, unsigned CCIndex,
9370 unsigned CmpIndex) {
9371 unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue();
9372 SDNode *SubsNode = N->getOperand(CmpIndex).getNode();
9373 unsigned CondOpcode = SubsNode->getOpcode();
9374
9375 if (CondOpcode != AArch64ISD::SUBS)
9376 return SDValue();
9377
9378 // There is a SUBS feeding this condition. Is it fed by a mask we can
9379 // use?
9380
9381 SDNode *AndNode = SubsNode->getOperand(0).getNode();
9382 unsigned MaskBits = 0;
9383
9384 if (AndNode->getOpcode() != ISD::AND)
9385 return SDValue();
9386
9387 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) {
9388 uint32_t CNV = CN->getZExtValue();
9389 if (CNV == 255)
9390 MaskBits = 8;
9391 else if (CNV == 65535)
9392 MaskBits = 16;
9393 }
9394
9395 if (!MaskBits)
9396 return SDValue();
9397
9398 SDValue AddValue = AndNode->getOperand(0);
9399
9400 if (AddValue.getOpcode() != ISD::ADD)
9401 return SDValue();
9402
9403 // The basic dag structure is correct, grab the inputs and validate them.
9404
9405 SDValue AddInputValue1 = AddValue.getNode()->getOperand(0);
9406 SDValue AddInputValue2 = AddValue.getNode()->getOperand(1);
9407 SDValue SubsInputValue = SubsNode->getOperand(1);
9408
9409 // The mask is present and the provenance of all the values is a smaller type,
9410 // lets see if the mask is superfluous.
9411
9412 if (!isa<ConstantSDNode>(AddInputValue2.getNode()) ||
9413 !isa<ConstantSDNode>(SubsInputValue.getNode()))
9414 return SDValue();
9415
9416 ISD::LoadExtType ExtType;
9417
9418 if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) ||
9419 !checkValueWidth(AddInputValue2, MaskBits, ExtType) ||
9420 !checkValueWidth(AddInputValue1, MaskBits, ExtType) )
9421 return SDValue();
9422
9423 if(!isEquivalentMaskless(CC, MaskBits, ExtType,
9424 cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(),
9425 cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue()))
9426 return SDValue();
9427
9428 // The AND is not necessary, remove it.
9429
9430 SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0),
9431 SubsNode->getValueType(1));
9432 SDValue Ops[] = { AddValue, SubsNode->getOperand(1) };
9433
9434 SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops);
9435 DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode());
9436
9437 return SDValue(N, 0);
9438}
9439
Tim Northover3b0846e2014-05-24 12:50:23 +00009440// Optimize compare with zero and branch.
9441static SDValue performBRCONDCombine(SDNode *N,
9442 TargetLowering::DAGCombinerInfo &DCI,
9443 SelectionDAG &DAG) {
Louis Gerbarg03c627e2014-08-29 21:00:22 +00009444 SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3);
9445 if (NV.getNode())
9446 N = NV.getNode();
Tim Northover3b0846e2014-05-24 12:50:23 +00009447 SDValue Chain = N->getOperand(0);
9448 SDValue Dest = N->getOperand(1);
9449 SDValue CCVal = N->getOperand(2);
9450 SDValue Cmp = N->getOperand(3);
9451
9452 assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
9453 unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
9454 if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
9455 return SDValue();
9456
9457 unsigned CmpOpc = Cmp.getOpcode();
9458 if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
9459 return SDValue();
9460
9461 // Only attempt folding if there is only one use of the flag and no use of the
9462 // value.
9463 if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
9464 return SDValue();
9465
9466 SDValue LHS = Cmp.getOperand(0);
9467 SDValue RHS = Cmp.getOperand(1);
9468
9469 assert(LHS.getValueType() == RHS.getValueType() &&
9470 "Expected the value type to be the same for both operands!");
9471 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
9472 return SDValue();
9473
Artyom Skrobov314ee042015-11-25 19:41:11 +00009474 if (isNullConstant(LHS))
Tim Northover3b0846e2014-05-24 12:50:23 +00009475 std::swap(LHS, RHS);
9476
Artyom Skrobov314ee042015-11-25 19:41:11 +00009477 if (!isNullConstant(RHS))
Tim Northover3b0846e2014-05-24 12:50:23 +00009478 return SDValue();
9479
9480 if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
9481 LHS.getOpcode() == ISD::SRL)
9482 return SDValue();
9483
9484 // Fold the compare into the branch instruction.
9485 SDValue BR;
9486 if (CC == AArch64CC::EQ)
9487 BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
9488 else
9489 BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
9490
9491 // Do not add new nodes to DAG combiner worklist.
9492 DCI.CombineTo(N, BR, false);
9493
9494 return SDValue();
9495}
9496
9497// vselect (v1i1 setcc) ->
9498// vselect (v1iXX setcc) (XX is the size of the compared operand type)
9499// FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
9500// condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
9501// such VSELECT.
9502static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
9503 SDValue N0 = N->getOperand(0);
9504 EVT CCVT = N0.getValueType();
9505
9506 if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
9507 CCVT.getVectorElementType() != MVT::i1)
9508 return SDValue();
9509
9510 EVT ResVT = N->getValueType(0);
9511 EVT CmpVT = N0.getOperand(0).getValueType();
9512 // Only combine when the result type is of the same size as the compared
9513 // operands.
9514 if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
9515 return SDValue();
9516
9517 SDValue IfTrue = N->getOperand(1);
9518 SDValue IfFalse = N->getOperand(2);
9519 SDValue SetCC =
9520 DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
9521 N0.getOperand(0), N0.getOperand(1),
9522 cast<CondCodeSDNode>(N0.getOperand(2))->get());
9523 return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
9524 IfTrue, IfFalse);
9525}
9526
9527/// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
9528/// the compare-mask instructions rather than going via NZCV, even if LHS and
9529/// RHS are really scalar. This replaces any scalar setcc in the above pattern
9530/// with a vector one followed by a DUP shuffle on the result.
Ahmed Bougachac004c602015-04-27 21:43:12 +00009531static SDValue performSelectCombine(SDNode *N,
9532 TargetLowering::DAGCombinerInfo &DCI) {
9533 SelectionDAG &DAG = DCI.DAG;
Tim Northover3b0846e2014-05-24 12:50:23 +00009534 SDValue N0 = N->getOperand(0);
9535 EVT ResVT = N->getValueType(0);
Tim Northover3c0915e2014-08-29 15:34:58 +00009536
Ahmed Bougachac004c602015-04-27 21:43:12 +00009537 if (N0.getOpcode() != ISD::SETCC)
Tim Northover3c0915e2014-08-29 15:34:58 +00009538 return SDValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00009539
Ahmed Bougachac004c602015-04-27 21:43:12 +00009540 // Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered
9541 // scalar SetCCResultType. We also don't expect vectors, because we assume
9542 // that selects fed by vector SETCCs are canonicalized to VSELECT.
9543 assert((N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) &&
9544 "Scalar-SETCC feeding SELECT has unexpected result type!");
9545
Tim Northoverc1c05ae2014-08-29 13:05:18 +00009546 // If NumMaskElts == 0, the comparison is larger than select result. The
9547 // largest real NEON comparison is 64-bits per lane, which means the result is
9548 // at most 32-bits and an illegal vector. Just bail out for now.
Tim Northover3c0915e2014-08-29 15:34:58 +00009549 EVT SrcVT = N0.getOperand(0).getValueType();
Ahmed Bougachad0ce0582014-12-01 20:59:00 +00009550
9551 // Don't try to do this optimization when the setcc itself has i1 operands.
9552 // There are no legal vectors of i1, so this would be pointless.
9553 if (SrcVT == MVT::i1)
9554 return SDValue();
9555
Tim Northover3c0915e2014-08-29 15:34:58 +00009556 int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits();
Tim Northoverc1c05ae2014-08-29 13:05:18 +00009557 if (!ResVT.isVector() || NumMaskElts == 0)
Tim Northover3b0846e2014-05-24 12:50:23 +00009558 return SDValue();
9559
Tim Northoverc1c05ae2014-08-29 13:05:18 +00009560 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts);
Tim Northover3b0846e2014-05-24 12:50:23 +00009561 EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
9562
Ahmed Bougacha89bba612015-04-27 21:01:20 +00009563 // Also bail out if the vector CCVT isn't the same size as ResVT.
9564 // This can happen if the SETCC operand size doesn't divide the ResVT size
9565 // (e.g., f64 vs v3f32).
9566 if (CCVT.getSizeInBits() != ResVT.getSizeInBits())
9567 return SDValue();
9568
Ahmed Bougachac004c602015-04-27 21:43:12 +00009569 // Make sure we didn't create illegal types, if we're not supposed to.
9570 assert(DCI.isBeforeLegalize() ||
9571 DAG.getTargetLoweringInfo().isTypeLegal(SrcVT));
9572
Tim Northover3b0846e2014-05-24 12:50:23 +00009573 // First perform a vector comparison, where lane 0 is the one we're interested
9574 // in.
Tim Northoverc1c05ae2014-08-29 13:05:18 +00009575 SDLoc DL(N0);
Tim Northover3b0846e2014-05-24 12:50:23 +00009576 SDValue LHS =
9577 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
9578 SDValue RHS =
9579 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
9580 SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
9581
9582 // Now duplicate the comparison mask we want across all other lanes.
9583 SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
9584 SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask.data());
Tim Northoverc1c05ae2014-08-29 13:05:18 +00009585 Mask = DAG.getNode(ISD::BITCAST, DL,
9586 ResVT.changeVectorElementTypeToInteger(), Mask);
Tim Northover3b0846e2014-05-24 12:50:23 +00009587
9588 return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
9589}
9590
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00009591/// Get rid of unnecessary NVCASTs (that don't change the type).
9592static SDValue performNVCASTCombine(SDNode *N) {
9593 if (N->getValueType(0) == N->getOperand(0).getValueType())
9594 return N->getOperand(0);
9595
9596 return SDValue();
9597}
9598
Tim Northover3b0846e2014-05-24 12:50:23 +00009599SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
9600 DAGCombinerInfo &DCI) const {
9601 SelectionDAG &DAG = DCI.DAG;
9602 switch (N->getOpcode()) {
9603 default:
9604 break;
9605 case ISD::ADD:
9606 case ISD::SUB:
9607 return performAddSubLongCombine(N, DCI, DAG);
9608 case ISD::XOR:
9609 return performXorCombine(N, DAG, DCI, Subtarget);
9610 case ISD::MUL:
9611 return performMulCombine(N, DAG, DCI, Subtarget);
9612 case ISD::SINT_TO_FP:
9613 case ISD::UINT_TO_FP:
Weiming Zhaocc4bf3f2014-12-04 20:25:50 +00009614 return performIntToFpCombine(N, DAG, Subtarget);
Chad Rosierfa30c9b2015-10-07 17:39:18 +00009615 case ISD::FP_TO_SINT:
9616 case ISD::FP_TO_UINT:
9617 return performFpToIntCombine(N, DAG, Subtarget);
Chad Rosier7c6ac2b2015-10-07 17:51:37 +00009618 case ISD::FDIV:
9619 return performFDivCombine(N, DAG, Subtarget);
Tim Northover3b0846e2014-05-24 12:50:23 +00009620 case ISD::OR:
9621 return performORCombine(N, DCI, Subtarget);
9622 case ISD::INTRINSIC_WO_CHAIN:
9623 return performIntrinsicCombine(N, DCI, Subtarget);
9624 case ISD::ANY_EXTEND:
9625 case ISD::ZERO_EXTEND:
9626 case ISD::SIGN_EXTEND:
9627 return performExtendCombine(N, DCI, DAG);
9628 case ISD::BITCAST:
9629 return performBitcastCombine(N, DCI, DAG);
9630 case ISD::CONCAT_VECTORS:
9631 return performConcatVectorsCombine(N, DCI, DAG);
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009632 case ISD::SELECT: {
9633 SDValue RV = performSelectCombine(N, DCI);
9634 if (!RV.getNode())
9635 RV = performAcrossLaneMinMaxReductionCombine(N, DAG, Subtarget);
9636 return RV;
9637 }
Tim Northover3b0846e2014-05-24 12:50:23 +00009638 case ISD::VSELECT:
9639 return performVSelectCombine(N, DCI.DAG);
Tim Northover339c83e2015-11-10 00:44:23 +00009640 case ISD::LOAD:
9641 if (performTBISimplification(N->getOperand(1), DCI, DAG))
9642 return SDValue(N, 0);
9643 break;
Tim Northover3b0846e2014-05-24 12:50:23 +00009644 case ISD::STORE:
9645 return performSTORECombine(N, DCI, DAG, Subtarget);
9646 case AArch64ISD::BRCOND:
9647 return performBRCONDCombine(N, DCI, DAG);
Louis Gerbarg03c627e2014-08-29 21:00:22 +00009648 case AArch64ISD::CSEL:
9649 return performCONDCombine(N, DCI, DAG, 2, 3);
Tim Northover3b0846e2014-05-24 12:50:23 +00009650 case AArch64ISD::DUP:
9651 return performPostLD1Combine(N, DCI, false);
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00009652 case AArch64ISD::NVCAST:
9653 return performNVCASTCombine(N);
Tim Northover3b0846e2014-05-24 12:50:23 +00009654 case ISD::INSERT_VECTOR_ELT:
9655 return performPostLD1Combine(N, DCI, true);
Chad Rosier6c36eff2015-09-03 18:13:57 +00009656 case ISD::EXTRACT_VECTOR_ELT:
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009657 return performAcrossLaneAddReductionCombine(N, DAG, Subtarget);
Tim Northover3b0846e2014-05-24 12:50:23 +00009658 case ISD::INTRINSIC_VOID:
9659 case ISD::INTRINSIC_W_CHAIN:
9660 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9661 case Intrinsic::aarch64_neon_ld2:
9662 case Intrinsic::aarch64_neon_ld3:
9663 case Intrinsic::aarch64_neon_ld4:
9664 case Intrinsic::aarch64_neon_ld1x2:
9665 case Intrinsic::aarch64_neon_ld1x3:
9666 case Intrinsic::aarch64_neon_ld1x4:
9667 case Intrinsic::aarch64_neon_ld2lane:
9668 case Intrinsic::aarch64_neon_ld3lane:
9669 case Intrinsic::aarch64_neon_ld4lane:
9670 case Intrinsic::aarch64_neon_ld2r:
9671 case Intrinsic::aarch64_neon_ld3r:
9672 case Intrinsic::aarch64_neon_ld4r:
9673 case Intrinsic::aarch64_neon_st2:
9674 case Intrinsic::aarch64_neon_st3:
9675 case Intrinsic::aarch64_neon_st4:
9676 case Intrinsic::aarch64_neon_st1x2:
9677 case Intrinsic::aarch64_neon_st1x3:
9678 case Intrinsic::aarch64_neon_st1x4:
9679 case Intrinsic::aarch64_neon_st2lane:
9680 case Intrinsic::aarch64_neon_st3lane:
9681 case Intrinsic::aarch64_neon_st4lane:
9682 return performNEONPostLDSTCombine(N, DCI, DAG);
9683 default:
9684 break;
9685 }
9686 }
9687 return SDValue();
9688}
9689
9690// Check if the return value is used as only a return value, as otherwise
9691// we can't perform a tail-call. In particular, we need to check for
9692// target ISD nodes that are returns and any other "odd" constructs
9693// that the generic analysis code won't necessarily catch.
9694bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
9695 SDValue &Chain) const {
9696 if (N->getNumValues() != 1)
9697 return false;
9698 if (!N->hasNUsesOfValue(1, 0))
9699 return false;
9700
9701 SDValue TCChain = Chain;
9702 SDNode *Copy = *N->use_begin();
9703 if (Copy->getOpcode() == ISD::CopyToReg) {
9704 // If the copy has a glue operand, we conservatively assume it isn't safe to
9705 // perform a tail call.
9706 if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
9707 MVT::Glue)
9708 return false;
9709 TCChain = Copy->getOperand(0);
9710 } else if (Copy->getOpcode() != ISD::FP_EXTEND)
9711 return false;
9712
9713 bool HasRet = false;
9714 for (SDNode *Node : Copy->uses()) {
9715 if (Node->getOpcode() != AArch64ISD::RET_FLAG)
9716 return false;
9717 HasRet = true;
9718 }
9719
9720 if (!HasRet)
9721 return false;
9722
9723 Chain = TCChain;
9724 return true;
9725}
9726
9727// Return whether the an instruction can potentially be optimized to a tail
9728// call. This will cause the optimizers to attempt to move, or duplicate,
9729// return instructions to help enable tail call optimizations for this
9730// instruction.
9731bool AArch64TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
9732 if (!CI->isTailCall())
9733 return false;
9734
9735 return true;
9736}
9737
9738bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
9739 SDValue &Offset,
9740 ISD::MemIndexedMode &AM,
9741 bool &IsInc,
9742 SelectionDAG &DAG) const {
9743 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
9744 return false;
9745
9746 Base = Op->getOperand(0);
9747 // All of the indexed addressing mode instructions take a signed
9748 // 9 bit immediate offset.
9749 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
9750 int64_t RHSC = (int64_t)RHS->getZExtValue();
9751 if (RHSC >= 256 || RHSC <= -256)
9752 return false;
9753 IsInc = (Op->getOpcode() == ISD::ADD);
9754 Offset = Op->getOperand(1);
9755 return true;
9756 }
9757 return false;
9758}
9759
9760bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
9761 SDValue &Offset,
9762 ISD::MemIndexedMode &AM,
9763 SelectionDAG &DAG) const {
9764 EVT VT;
9765 SDValue Ptr;
9766 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
9767 VT = LD->getMemoryVT();
9768 Ptr = LD->getBasePtr();
9769 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
9770 VT = ST->getMemoryVT();
9771 Ptr = ST->getBasePtr();
9772 } else
9773 return false;
9774
9775 bool IsInc;
9776 if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
9777 return false;
9778 AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
9779 return true;
9780}
9781
9782bool AArch64TargetLowering::getPostIndexedAddressParts(
9783 SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
9784 ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
9785 EVT VT;
9786 SDValue Ptr;
9787 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
9788 VT = LD->getMemoryVT();
9789 Ptr = LD->getBasePtr();
9790 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
9791 VT = ST->getMemoryVT();
9792 Ptr = ST->getBasePtr();
9793 } else
9794 return false;
9795
9796 bool IsInc;
9797 if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
9798 return false;
9799 // Post-indexing updates the base, so it's not a valid transform
9800 // if that's not the same as the load's pointer.
9801 if (Ptr != Base)
9802 return false;
9803 AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
9804 return true;
9805}
9806
Tim Northoverf8bfe212014-07-18 13:07:05 +00009807static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
9808 SelectionDAG &DAG) {
Tim Northoverf8bfe212014-07-18 13:07:05 +00009809 SDLoc DL(N);
9810 SDValue Op = N->getOperand(0);
Ahmed Bougacha87946322014-12-01 20:52:32 +00009811
9812 if (N->getValueType(0) != MVT::i16 || Op.getValueType() != MVT::f16)
9813 return;
9814
Tim Northoverf8bfe212014-07-18 13:07:05 +00009815 Op = SDValue(
9816 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
9817 DAG.getUNDEF(MVT::i32), Op,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00009818 DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
Tim Northoverf8bfe212014-07-18 13:07:05 +00009819 0);
9820 Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
9821 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
9822}
9823
Charlie Turner434d4592015-10-16 15:38:25 +00009824static void ReplaceReductionResults(SDNode *N,
9825 SmallVectorImpl<SDValue> &Results,
9826 SelectionDAG &DAG, unsigned InterOp,
9827 unsigned AcrossOp) {
9828 EVT LoVT, HiVT;
9829 SDValue Lo, Hi;
9830 SDLoc dl(N);
9831 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
9832 std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
9833 SDValue InterVal = DAG.getNode(InterOp, dl, LoVT, Lo, Hi);
9834 SDValue SplitVal = DAG.getNode(AcrossOp, dl, LoVT, InterVal);
9835 Results.push_back(SplitVal);
9836}
9837
Tim Northover3b0846e2014-05-24 12:50:23 +00009838void AArch64TargetLowering::ReplaceNodeResults(
9839 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
9840 switch (N->getOpcode()) {
9841 default:
9842 llvm_unreachable("Don't know how to custom expand this");
Tim Northoverf8bfe212014-07-18 13:07:05 +00009843 case ISD::BITCAST:
9844 ReplaceBITCASTResults(N, Results, DAG);
9845 return;
Charlie Turner434d4592015-10-16 15:38:25 +00009846 case AArch64ISD::SADDV:
9847 ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::SADDV);
9848 return;
9849 case AArch64ISD::UADDV:
9850 ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::UADDV);
9851 return;
9852 case AArch64ISD::SMINV:
9853 ReplaceReductionResults(N, Results, DAG, ISD::SMIN, AArch64ISD::SMINV);
9854 return;
9855 case AArch64ISD::UMINV:
9856 ReplaceReductionResults(N, Results, DAG, ISD::UMIN, AArch64ISD::UMINV);
9857 return;
9858 case AArch64ISD::SMAXV:
9859 ReplaceReductionResults(N, Results, DAG, ISD::SMAX, AArch64ISD::SMAXV);
9860 return;
9861 case AArch64ISD::UMAXV:
9862 ReplaceReductionResults(N, Results, DAG, ISD::UMAX, AArch64ISD::UMAXV);
9863 return;
Tim Northover3b0846e2014-05-24 12:50:23 +00009864 case ISD::FP_TO_UINT:
9865 case ISD::FP_TO_SINT:
9866 assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
9867 // Let normal code take care of it by not adding anything to Results.
9868 return;
9869 }
9870}
9871
Akira Hatanakae5b6e0d2014-07-25 19:31:34 +00009872bool AArch64TargetLowering::useLoadStackGuardNode() const {
9873 return true;
9874}
9875
Sanjay Patel1dd15592015-07-28 23:05:48 +00009876unsigned AArch64TargetLowering::combineRepeatedFPDivisors() const {
Hao Liu44e5d7a2014-11-21 06:39:58 +00009877 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
9878 // reciprocal if there are three or more FDIVs.
Sanjay Patel1dd15592015-07-28 23:05:48 +00009879 return 3;
Hao Liu44e5d7a2014-11-21 06:39:58 +00009880}
9881
Chandler Carruth9d010ff2014-07-03 00:23:43 +00009882TargetLoweringBase::LegalizeTypeAction
9883AArch64TargetLowering::getPreferredVectorAction(EVT VT) const {
9884 MVT SVT = VT.getSimpleVT();
9885 // During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8,
9886 // v4i16, v2i32 instead of to promote.
9887 if (SVT == MVT::v1i8 || SVT == MVT::v1i16 || SVT == MVT::v1i32
9888 || SVT == MVT::v1f32)
9889 return TypeWidenVector;
9890
9891 return TargetLoweringBase::getPreferredVectorAction(VT);
9892}
9893
Robin Morisseted3d48f2014-09-03 21:29:59 +00009894// Loads and stores less than 128-bits are already atomic; ones above that
9895// are doomed anyway, so defer to the default libcall and blame the OS when
9896// things go wrong.
9897bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
9898 unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
9899 return Size == 128;
9900}
9901
9902// Loads and stores less than 128-bits are already atomic; ones above that
9903// are doomed anyway, so defer to the default libcall and blame the OS when
9904// things go wrong.
Ahmed Bougacha52468672015-09-11 17:08:28 +00009905TargetLowering::AtomicExpansionKind
9906AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
Robin Morisseted3d48f2014-09-03 21:29:59 +00009907 unsigned Size = LI->getType()->getPrimitiveSizeInBits();
Ahmed Bougacha52468672015-09-11 17:08:28 +00009908 return Size == 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None;
Robin Morisseted3d48f2014-09-03 21:29:59 +00009909}
9910
9911// For the real atomic operations, we have ldxr/stxr up to 128 bits,
Ahmed Bougacha52468672015-09-11 17:08:28 +00009912TargetLowering::AtomicExpansionKind
JF Bastienf14889e2015-03-04 15:47:57 +00009913AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
Robin Morisseted3d48f2014-09-03 21:29:59 +00009914 unsigned Size = AI->getType()->getPrimitiveSizeInBits();
Ahmed Bougacha9d677132015-09-11 17:08:17 +00009915 return Size <= 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None;
Robin Morisseted3d48f2014-09-03 21:29:59 +00009916}
9917
Ahmed Bougacha52468672015-09-11 17:08:28 +00009918bool AArch64TargetLowering::shouldExpandAtomicCmpXchgInIR(
9919 AtomicCmpXchgInst *AI) const {
Robin Morisset25c8e312014-09-17 00:06:58 +00009920 return true;
9921}
9922
Tim Northover3b0846e2014-05-24 12:50:23 +00009923Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
9924 AtomicOrdering Ord) const {
9925 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
9926 Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
Robin Morissetb155f522014-08-18 16:48:58 +00009927 bool IsAcquire = isAtLeastAcquire(Ord);
Tim Northover3b0846e2014-05-24 12:50:23 +00009928
9929 // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
9930 // intrinsic must return {i64, i64} and we have to recombine them into a
9931 // single i128 here.
9932 if (ValTy->getPrimitiveSizeInBits() == 128) {
9933 Intrinsic::ID Int =
9934 IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
9935 Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int);
9936
9937 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
9938 Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
9939
9940 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
9941 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
9942 Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
9943 Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
9944 return Builder.CreateOr(
9945 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
9946 }
9947
9948 Type *Tys[] = { Addr->getType() };
9949 Intrinsic::ID Int =
9950 IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
9951 Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int, Tys);
9952
9953 return Builder.CreateTruncOrBitCast(
9954 Builder.CreateCall(Ldxr, Addr),
9955 cast<PointerType>(Addr->getType())->getElementType());
9956}
9957
Ahmed Bougacha07a844d2015-09-22 17:21:44 +00009958void AArch64TargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
9959 IRBuilder<> &Builder) const {
9960 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
9961 Builder.CreateCall(
9962 llvm::Intrinsic::getDeclaration(M, Intrinsic::aarch64_clrex));
9963}
9964
Tim Northover3b0846e2014-05-24 12:50:23 +00009965Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
9966 Value *Val, Value *Addr,
9967 AtomicOrdering Ord) const {
9968 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Robin Morissetb155f522014-08-18 16:48:58 +00009969 bool IsRelease = isAtLeastRelease(Ord);
Tim Northover3b0846e2014-05-24 12:50:23 +00009970
9971 // Since the intrinsics must have legal type, the i128 intrinsics take two
9972 // parameters: "i64, i64". We must marshal Val into the appropriate form
9973 // before the call.
9974 if (Val->getType()->getPrimitiveSizeInBits() == 128) {
9975 Intrinsic::ID Int =
9976 IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
9977 Function *Stxr = Intrinsic::getDeclaration(M, Int);
9978 Type *Int64Ty = Type::getInt64Ty(M->getContext());
9979
9980 Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
9981 Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
9982 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
David Blaikieff6409d2015-05-18 22:13:54 +00009983 return Builder.CreateCall(Stxr, {Lo, Hi, Addr});
Tim Northover3b0846e2014-05-24 12:50:23 +00009984 }
9985
9986 Intrinsic::ID Int =
9987 IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
9988 Type *Tys[] = { Addr->getType() };
9989 Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
9990
David Blaikieff6409d2015-05-18 22:13:54 +00009991 return Builder.CreateCall(Stxr,
9992 {Builder.CreateZExtOrBitCast(
9993 Val, Stxr->getFunctionType()->getParamType(0)),
9994 Addr});
Tim Northover3b0846e2014-05-24 12:50:23 +00009995}
Tim Northover3c55cca2014-11-27 21:02:42 +00009996
9997bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
9998 Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
9999 return Ty->isArrayTy();
10000}
Matthias Braunaf7d7702015-07-16 20:02:37 +000010001
10002bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &,
10003 EVT) const {
10004 return false;
10005}
Evgeniy Stepanovd1aad262015-10-26 18:28:25 +000010006
10007Value *AArch64TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
10008 if (!Subtarget->isTargetAndroid())
10009 return TargetLowering::getSafeStackPointerLocation(IRB);
10010
10011 // Android provides a fixed TLS slot for the SafeStack pointer. See the
10012 // definition of TLS_SLOT_SAFESTACK in
10013 // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
10014 const unsigned TlsOffset = 0x48;
10015 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
10016 Function *ThreadPointerFunc =
10017 Intrinsic::getDeclaration(M, Intrinsic::aarch64_thread_pointer);
10018 return IRB.CreatePointerCast(
10019 IRB.CreateConstGEP1_32(IRB.CreateCall(ThreadPointerFunc), TlsOffset),
10020 Type::getInt8PtrTy(IRB.getContext())->getPointerTo(0));
10021}