blob: c3784fc77ffe2318b666c58424e4b8f3f7e79500 [file] [log] [blame]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the X86-specific support for the FastISel class. Much
11// of the target-specific code is generated by tablegen in the file
12// X86GenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "X86.h"
17#include "X86CallingConv.h"
18#include "X86InstrBuilder.h"
19#include "X86InstrInfo.h"
20#include "X86MachineFunctionInfo.h"
21#include "X86RegisterInfo.h"
22#include "X86Subtarget.h"
23#include "X86TargetMachine.h"
24#include "llvm/Analysis/BranchProbabilityInfo.h"
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000025#include "llvm/CodeGen/FastISel.h"
26#include "llvm/CodeGen/FunctionLoweringInfo.h"
27#include "llvm/CodeGen/MachineConstantPool.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/IR/CallSite.h"
31#include "llvm/IR/CallingConv.h"
Reid Kleckner28865802016-04-14 18:29:59 +000032#include "llvm/IR/DebugInfo.h"
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000033#include "llvm/IR/DerivedTypes.h"
34#include "llvm/IR/GetElementPtrTypeIterator.h"
35#include "llvm/IR/GlobalAlias.h"
36#include "llvm/IR/GlobalVariable.h"
37#include "llvm/IR/Instructions.h"
38#include "llvm/IR/IntrinsicInst.h"
39#include "llvm/IR/Operator.h"
David Majnemerca194852015-02-10 22:00:34 +000040#include "llvm/MC/MCAsmInfo.h"
Rafael Espindolace4c2bc2015-06-23 12:21:54 +000041#include "llvm/MC/MCSymbol.h"
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000042#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Target/TargetOptions.h"
44using namespace llvm;
45
46namespace {
47
48class X86FastISel final : public FastISel {
49 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
50 /// make the right decision when generating code for different targets.
51 const X86Subtarget *Subtarget;
52
53 /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
54 /// floating point ops.
55 /// When SSE is available, use it for f32 operations.
56 /// When SSE2 is available, use it for f64 operations.
57 bool X86ScalarSSEf64;
58 bool X86ScalarSSEf32;
59
60public:
61 explicit X86FastISel(FunctionLoweringInfo &funcInfo,
62 const TargetLibraryInfo *libInfo)
Eric Christophera1c535b2015-02-02 23:03:45 +000063 : FastISel(funcInfo, libInfo) {
64 Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000065 X86ScalarSSEf64 = Subtarget->hasSSE2();
66 X86ScalarSSEf32 = Subtarget->hasSSE1();
67 }
68
69 bool fastSelectInstruction(const Instruction *I) override;
70
71 /// \brief The specified machine instr operand is a vreg, and that
72 /// vreg is being provided by the specified load instruction. If possible,
73 /// try to fold the load as an operand to the instruction, returning true if
74 /// possible.
75 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
76 const LoadInst *LI) override;
77
78 bool fastLowerArguments() override;
79 bool fastLowerCall(CallLoweringInfo &CLI) override;
80 bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
81
82#include "X86GenFastISel.inc"
83
84private:
Benjamin Kramerbdc49562016-06-12 15:39:02 +000085 bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT,
86 const DebugLoc &DL);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000087
Pete Cooperd0dae3e2015-05-05 23:41:53 +000088 bool X86FastEmitLoad(EVT VT, X86AddressMode &AM, MachineMemOperand *MMO,
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +000089 unsigned &ResultReg, unsigned Alignment = 1);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000090
Pete Cooperd0dae3e2015-05-05 23:41:53 +000091 bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000092 MachineMemOperand *MMO = nullptr, bool Aligned = false);
93 bool X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
Pete Cooperd0dae3e2015-05-05 23:41:53 +000094 X86AddressMode &AM,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000095 MachineMemOperand *MMO = nullptr, bool Aligned = false);
96
97 bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
98 unsigned &ResultReg);
99
100 bool X86SelectAddress(const Value *V, X86AddressMode &AM);
101 bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
102
103 bool X86SelectLoad(const Instruction *I);
104
105 bool X86SelectStore(const Instruction *I);
106
107 bool X86SelectRet(const Instruction *I);
108
109 bool X86SelectCmp(const Instruction *I);
110
111 bool X86SelectZExt(const Instruction *I);
112
Craig Topper619b7592017-09-02 18:53:46 +0000113 bool X86SelectSExt(const Instruction *I);
114
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000115 bool X86SelectBranch(const Instruction *I);
116
117 bool X86SelectShift(const Instruction *I);
118
119 bool X86SelectDivRem(const Instruction *I);
120
121 bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I);
122
123 bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I);
124
125 bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I);
126
127 bool X86SelectSelect(const Instruction *I);
128
129 bool X86SelectTrunc(const Instruction *I);
130
Andrea Di Biagio62622d22015-02-10 12:04:41 +0000131 bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc,
132 const TargetRegisterClass *RC);
133
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000134 bool X86SelectFPExt(const Instruction *I);
135 bool X86SelectFPTrunc(const Instruction *I);
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +0000136 bool X86SelectSIToFP(const Instruction *I);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000137
138 const X86InstrInfo *getInstrInfo() const {
Eric Christophera1c535b2015-02-02 23:03:45 +0000139 return Subtarget->getInstrInfo();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000140 }
141 const X86TargetMachine *getTargetMachine() const {
142 return static_cast<const X86TargetMachine *>(&TM);
143 }
144
145 bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
146
147 unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT);
148 unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT);
149 unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT);
150 unsigned fastMaterializeConstant(const Constant *C) override;
151
152 unsigned fastMaterializeAlloca(const AllocaInst *C) override;
153
154 unsigned fastMaterializeFloatZero(const ConstantFP *CF) override;
155
156 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
157 /// computed in an SSE register, not on the X87 floating point stack.
158 bool isScalarFPTypeInSSEReg(EVT VT) const {
159 return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
160 (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
161 }
162
163 bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
164
165 bool IsMemcpySmall(uint64_t Len);
166
167 bool TryEmitSmallMemcpy(X86AddressMode DestAM,
168 X86AddressMode SrcAM, uint64_t Len);
169
170 bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
171 const Value *Cond);
Pete Cooperd0dae3e2015-05-05 23:41:53 +0000172
173 const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB,
174 X86AddressMode &AM);
Craig Topper7ef6ea32016-12-05 04:51:31 +0000175
176 unsigned fastEmitInst_rrrr(unsigned MachineInstOpcode,
177 const TargetRegisterClass *RC, unsigned Op0,
178 bool Op0IsKill, unsigned Op1, bool Op1IsKill,
179 unsigned Op2, bool Op2IsKill, unsigned Op3,
180 bool Op3IsKill);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000181};
182
183} // end anonymous namespace.
184
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000185static std::pair<unsigned, bool>
186getX86SSEConditionCode(CmpInst::Predicate Predicate) {
187 unsigned CC;
188 bool NeedSwap = false;
189
190 // SSE Condition code mapping:
191 // 0 - EQ
192 // 1 - LT
193 // 2 - LE
194 // 3 - UNORD
195 // 4 - NEQ
196 // 5 - NLT
197 // 6 - NLE
198 // 7 - ORD
199 switch (Predicate) {
200 default: llvm_unreachable("Unexpected predicate");
201 case CmpInst::FCMP_OEQ: CC = 0; break;
Justin Bognerb03fd122016-08-17 05:10:15 +0000202 case CmpInst::FCMP_OGT: NeedSwap = true; LLVM_FALLTHROUGH;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000203 case CmpInst::FCMP_OLT: CC = 1; break;
Justin Bognerb03fd122016-08-17 05:10:15 +0000204 case CmpInst::FCMP_OGE: NeedSwap = true; LLVM_FALLTHROUGH;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000205 case CmpInst::FCMP_OLE: CC = 2; break;
206 case CmpInst::FCMP_UNO: CC = 3; break;
207 case CmpInst::FCMP_UNE: CC = 4; break;
Justin Bognerb03fd122016-08-17 05:10:15 +0000208 case CmpInst::FCMP_ULE: NeedSwap = true; LLVM_FALLTHROUGH;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000209 case CmpInst::FCMP_UGE: CC = 5; break;
Justin Bognerb03fd122016-08-17 05:10:15 +0000210 case CmpInst::FCMP_ULT: NeedSwap = true; LLVM_FALLTHROUGH;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000211 case CmpInst::FCMP_UGT: CC = 6; break;
212 case CmpInst::FCMP_ORD: CC = 7; break;
213 case CmpInst::FCMP_UEQ:
214 case CmpInst::FCMP_ONE: CC = 8; break;
215 }
216
217 return std::make_pair(CC, NeedSwap);
218}
219
Pete Cooperd0dae3e2015-05-05 23:41:53 +0000220/// \brief Adds a complex addressing mode to the given machine instr builder.
221/// Note, this will constrain the index register. If its not possible to
222/// constrain the given index register, then a new one will be created. The
223/// IndexReg field of the addressing mode will be updated to match in this case.
224const MachineInstrBuilder &
225X86FastISel::addFullAddress(const MachineInstrBuilder &MIB,
226 X86AddressMode &AM) {
227 // First constrain the index register. It needs to be a GR64_NOSP.
228 AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg,
229 MIB->getNumOperands() +
230 X86::AddrIndexReg);
231 return ::addFullAddress(MIB, AM);
232}
233
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000234/// \brief Check if it is possible to fold the condition from the XALU intrinsic
235/// into the user. The condition code will only be updated on success.
236bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
237 const Value *Cond) {
238 if (!isa<ExtractValueInst>(Cond))
239 return false;
240
241 const auto *EV = cast<ExtractValueInst>(Cond);
242 if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
243 return false;
244
245 const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
246 MVT RetVT;
247 const Function *Callee = II->getCalledFunction();
248 Type *RetTy =
249 cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
250 if (!isTypeLegal(RetTy, RetVT))
251 return false;
252
253 if (RetVT != MVT::i32 && RetVT != MVT::i64)
254 return false;
255
256 X86::CondCode TmpCC;
257 switch (II->getIntrinsicID()) {
258 default: return false;
259 case Intrinsic::sadd_with_overflow:
260 case Intrinsic::ssub_with_overflow:
261 case Intrinsic::smul_with_overflow:
262 case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break;
263 case Intrinsic::uadd_with_overflow:
264 case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break;
265 }
266
267 // Check if both instructions are in the same basic block.
268 if (II->getParent() != I->getParent())
269 return false;
270
271 // Make sure nothing is in the way
Duncan P. N. Exon Smithd77de642015-10-19 21:48:29 +0000272 BasicBlock::const_iterator Start(I);
273 BasicBlock::const_iterator End(II);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000274 for (auto Itr = std::prev(Start); Itr != End; --Itr) {
275 // We only expect extractvalue instructions between the intrinsic and the
276 // instruction to be selected.
277 if (!isa<ExtractValueInst>(Itr))
278 return false;
279
280 // Check that the extractvalue operand comes from the intrinsic.
281 const auto *EVI = cast<ExtractValueInst>(Itr);
282 if (EVI->getAggregateOperand() != II)
283 return false;
284 }
285
286 CC = TmpCC;
287 return true;
288}
289
290bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
Mehdi Amini44ede332015-07-09 02:09:04 +0000291 EVT evt = TLI.getValueType(DL, Ty, /*HandleUnknown=*/true);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000292 if (evt == MVT::Other || !evt.isSimple())
293 // Unhandled type. Halt "fast" selection and bail.
294 return false;
295
296 VT = evt.getSimpleVT();
297 // For now, require SSE/SSE2 for performing floating-point operations,
298 // since x87 requires additional work.
299 if (VT == MVT::f64 && !X86ScalarSSEf64)
300 return false;
301 if (VT == MVT::f32 && !X86ScalarSSEf32)
302 return false;
303 // Similarly, no f80 support yet.
304 if (VT == MVT::f80)
305 return false;
306 // We only handle legal types. For example, on x86-32 the instruction
307 // selector contains all of the 64-bit instructions from x86-64,
308 // under the assumption that i64 won't be used if the target doesn't
309 // support it.
310 return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
311}
312
313#include "X86GenCallingConv.inc"
314
315/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
316/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
317/// Return true and the result register by reference if it is possible.
Pete Cooperd0dae3e2015-05-05 23:41:53 +0000318bool X86FastISel::X86FastEmitLoad(EVT VT, X86AddressMode &AM,
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +0000319 MachineMemOperand *MMO, unsigned &ResultReg,
320 unsigned Alignment) {
Simon Pilgrim35c06a02016-06-07 13:47:23 +0000321 bool HasSSE41 = Subtarget->hasSSE41();
Craig Topperca9c0802016-06-02 04:19:45 +0000322 bool HasAVX = Subtarget->hasAVX();
Simon Pilgrim35c06a02016-06-07 13:47:23 +0000323 bool HasAVX2 = Subtarget->hasAVX2();
Craig Topperdfc4fc92016-09-05 23:58:40 +0000324 bool HasAVX512 = Subtarget->hasAVX512();
325 bool HasVLX = Subtarget->hasVLX();
Simon Pilgrim35c06a02016-06-07 13:47:23 +0000326 bool IsNonTemporal = MMO && MMO->isNonTemporal();
327
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000328 // Get opcode and regclass of the output for the given load instruction.
329 unsigned Opc = 0;
330 const TargetRegisterClass *RC = nullptr;
331 switch (VT.getSimpleVT().SimpleTy) {
332 default: return false;
333 case MVT::i1:
334 case MVT::i8:
335 Opc = X86::MOV8rm;
336 RC = &X86::GR8RegClass;
337 break;
338 case MVT::i16:
339 Opc = X86::MOV16rm;
340 RC = &X86::GR16RegClass;
341 break;
342 case MVT::i32:
343 Opc = X86::MOV32rm;
344 RC = &X86::GR32RegClass;
345 break;
346 case MVT::i64:
347 // Must be in x86-64 mode.
348 Opc = X86::MOV64rm;
349 RC = &X86::GR64RegClass;
350 break;
351 case MVT::f32:
352 if (X86ScalarSSEf32) {
Craig Topperdfc4fc92016-09-05 23:58:40 +0000353 Opc = HasAVX512 ? X86::VMOVSSZrm : HasAVX ? X86::VMOVSSrm : X86::MOVSSrm;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000354 RC = &X86::FR32RegClass;
355 } else {
356 Opc = X86::LD_Fp32m;
357 RC = &X86::RFP32RegClass;
358 }
359 break;
360 case MVT::f64:
361 if (X86ScalarSSEf64) {
Craig Topperdfc4fc92016-09-05 23:58:40 +0000362 Opc = HasAVX512 ? X86::VMOVSDZrm : HasAVX ? X86::VMOVSDrm : X86::MOVSDrm;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000363 RC = &X86::FR64RegClass;
364 } else {
365 Opc = X86::LD_Fp64m;
366 RC = &X86::RFP64RegClass;
367 }
368 break;
369 case MVT::f80:
370 // No f80 support yet.
371 return false;
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +0000372 case MVT::v4f32:
Simon Pilgrim35c06a02016-06-07 13:47:23 +0000373 if (IsNonTemporal && Alignment >= 16 && HasSSE41)
Craig Topperdfc4fc92016-09-05 23:58:40 +0000374 Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
375 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
Simon Pilgrim35c06a02016-06-07 13:47:23 +0000376 else if (Alignment >= 16)
Craig Topperdfc4fc92016-09-05 23:58:40 +0000377 Opc = HasVLX ? X86::VMOVAPSZ128rm :
378 HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm;
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +0000379 else
Craig Topperdfc4fc92016-09-05 23:58:40 +0000380 Opc = HasVLX ? X86::VMOVUPSZ128rm :
381 HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm;
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +0000382 RC = &X86::VR128RegClass;
383 break;
384 case MVT::v2f64:
Simon Pilgrim35c06a02016-06-07 13:47:23 +0000385 if (IsNonTemporal && Alignment >= 16 && HasSSE41)
Craig Topperdfc4fc92016-09-05 23:58:40 +0000386 Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
387 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
Simon Pilgrim35c06a02016-06-07 13:47:23 +0000388 else if (Alignment >= 16)
Craig Topperdfc4fc92016-09-05 23:58:40 +0000389 Opc = HasVLX ? X86::VMOVAPDZ128rm :
390 HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm;
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +0000391 else
Craig Topperdfc4fc92016-09-05 23:58:40 +0000392 Opc = HasVLX ? X86::VMOVUPDZ128rm :
393 HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm;
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +0000394 RC = &X86::VR128RegClass;
395 break;
396 case MVT::v4i32:
397 case MVT::v2i64:
398 case MVT::v8i16:
399 case MVT::v16i8:
Simon Pilgrim35c06a02016-06-07 13:47:23 +0000400 if (IsNonTemporal && Alignment >= 16)
Craig Topperdfc4fc92016-09-05 23:58:40 +0000401 Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
402 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
Simon Pilgrim35c06a02016-06-07 13:47:23 +0000403 else if (Alignment >= 16)
Craig Topperdfc4fc92016-09-05 23:58:40 +0000404 Opc = HasVLX ? X86::VMOVDQA64Z128rm :
405 HasAVX ? X86::VMOVDQArm : X86::MOVDQArm;
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +0000406 else
Craig Topperdfc4fc92016-09-05 23:58:40 +0000407 Opc = HasVLX ? X86::VMOVDQU64Z128rm :
408 HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm;
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +0000409 RC = &X86::VR128RegClass;
410 break;
Craig Topperca9c0802016-06-02 04:19:45 +0000411 case MVT::v8f32:
412 assert(HasAVX);
Simon Pilgrim35c06a02016-06-07 13:47:23 +0000413 if (IsNonTemporal && Alignment >= 32 && HasAVX2)
Craig Topperdfc4fc92016-09-05 23:58:40 +0000414 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
Simon Pilgrimf7113fd2017-06-06 14:18:39 +0000415 else if (IsNonTemporal && Alignment >= 16)
416 return false; // Force split for X86::VMOVNTDQArm
Craig Topperdfc4fc92016-09-05 23:58:40 +0000417 else if (Alignment >= 32)
418 Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm;
Simon Pilgrim35c06a02016-06-07 13:47:23 +0000419 else
Craig Topperdfc4fc92016-09-05 23:58:40 +0000420 Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm;
Craig Topperca9c0802016-06-02 04:19:45 +0000421 RC = &X86::VR256RegClass;
422 break;
423 case MVT::v4f64:
424 assert(HasAVX);
Simon Pilgrim35c06a02016-06-07 13:47:23 +0000425 if (IsNonTemporal && Alignment >= 32 && HasAVX2)
426 Opc = X86::VMOVNTDQAYrm;
Simon Pilgrimf7113fd2017-06-06 14:18:39 +0000427 else if (IsNonTemporal && Alignment >= 16)
428 return false; // Force split for X86::VMOVNTDQArm
Craig Topperdfc4fc92016-09-05 23:58:40 +0000429 else if (Alignment >= 32)
430 Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm;
Simon Pilgrim35c06a02016-06-07 13:47:23 +0000431 else
Craig Topperdfc4fc92016-09-05 23:58:40 +0000432 Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm;
Craig Topperca9c0802016-06-02 04:19:45 +0000433 RC = &X86::VR256RegClass;
434 break;
435 case MVT::v8i32:
436 case MVT::v4i64:
437 case MVT::v16i16:
438 case MVT::v32i8:
439 assert(HasAVX);
Simon Pilgrim35c06a02016-06-07 13:47:23 +0000440 if (IsNonTemporal && Alignment >= 32 && HasAVX2)
441 Opc = X86::VMOVNTDQAYrm;
Simon Pilgrimf7113fd2017-06-06 14:18:39 +0000442 else if (IsNonTemporal && Alignment >= 16)
443 return false; // Force split for X86::VMOVNTDQArm
Craig Topperdfc4fc92016-09-05 23:58:40 +0000444 else if (Alignment >= 32)
445 Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm;
Simon Pilgrim35c06a02016-06-07 13:47:23 +0000446 else
Craig Topperdfc4fc92016-09-05 23:58:40 +0000447 Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm;
Craig Topperca9c0802016-06-02 04:19:45 +0000448 RC = &X86::VR256RegClass;
449 break;
Craig Topper048a08a2016-06-02 04:51:37 +0000450 case MVT::v16f32:
Craig Topperdfc4fc92016-09-05 23:58:40 +0000451 assert(HasAVX512);
Simon Pilgrim35c06a02016-06-07 13:47:23 +0000452 if (IsNonTemporal && Alignment >= 64)
453 Opc = X86::VMOVNTDQAZrm;
454 else
455 Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm;
Craig Topper048a08a2016-06-02 04:51:37 +0000456 RC = &X86::VR512RegClass;
457 break;
458 case MVT::v8f64:
Craig Topperdfc4fc92016-09-05 23:58:40 +0000459 assert(HasAVX512);
Simon Pilgrim35c06a02016-06-07 13:47:23 +0000460 if (IsNonTemporal && Alignment >= 64)
461 Opc = X86::VMOVNTDQAZrm;
462 else
463 Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm;
Craig Topper048a08a2016-06-02 04:51:37 +0000464 RC = &X86::VR512RegClass;
465 break;
466 case MVT::v8i64:
467 case MVT::v16i32:
468 case MVT::v32i16:
469 case MVT::v64i8:
Craig Topperdfc4fc92016-09-05 23:58:40 +0000470 assert(HasAVX512);
Craig Topper048a08a2016-06-02 04:51:37 +0000471 // Note: There are a lot more choices based on type with AVX-512, but
472 // there's really no advantage when the load isn't masked.
Simon Pilgrim35c06a02016-06-07 13:47:23 +0000473 if (IsNonTemporal && Alignment >= 64)
474 Opc = X86::VMOVNTDQAZrm;
475 else
476 Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm;
Craig Topper048a08a2016-06-02 04:51:37 +0000477 RC = &X86::VR512RegClass;
478 break;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000479 }
480
481 ResultReg = createResultReg(RC);
482 MachineInstrBuilder MIB =
483 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
484 addFullAddress(MIB, AM);
485 if (MMO)
486 MIB->addMemOperand(*FuncInfo.MF, MMO);
487 return true;
488}
489
490/// X86FastEmitStore - Emit a machine instruction to store a value Val of
491/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
492/// and a displacement offset, or a GlobalAddress,
493/// i.e. V. Return true if it is possible.
494bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
Pete Cooperd0dae3e2015-05-05 23:41:53 +0000495 X86AddressMode &AM,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000496 MachineMemOperand *MMO, bool Aligned) {
Simon Pilgrimb6702ea2017-04-10 16:58:07 +0000497 bool HasSSE1 = Subtarget->hasSSE1();
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000498 bool HasSSE2 = Subtarget->hasSSE2();
Simon Pilgrim5b65f282015-10-17 13:04:42 +0000499 bool HasSSE4A = Subtarget->hasSSE4A();
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000500 bool HasAVX = Subtarget->hasAVX();
Craig Topperdfc4fc92016-09-05 23:58:40 +0000501 bool HasAVX512 = Subtarget->hasAVX512();
502 bool HasVLX = Subtarget->hasVLX();
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000503 bool IsNonTemporal = MMO && MMO->isNonTemporal();
504
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000505 // Get opcode and regclass of the output for the given store instruction.
506 unsigned Opc = 0;
507 switch (VT.getSimpleVT().SimpleTy) {
508 case MVT::f80: // No f80 support yet.
509 default: return false;
510 case MVT::i1: {
511 // Mask out all but lowest bit.
512 unsigned AndResult = createResultReg(&X86::GR8RegClass);
513 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
514 TII.get(X86::AND8ri), AndResult)
515 .addReg(ValReg, getKillRegState(ValIsKill)).addImm(1);
516 ValReg = AndResult;
Justin Bognerb03fd122016-08-17 05:10:15 +0000517 LLVM_FALLTHROUGH; // handle i1 as i8.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000518 }
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000519 case MVT::i8: Opc = X86::MOV8mr; break;
520 case MVT::i16: Opc = X86::MOV16mr; break;
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000521 case MVT::i32:
522 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr;
523 break;
524 case MVT::i64:
525 // Must be in x86-64 mode.
526 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr;
527 break;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000528 case MVT::f32:
Simon Pilgrim5b65f282015-10-17 13:04:42 +0000529 if (X86ScalarSSEf32) {
530 if (IsNonTemporal && HasSSE4A)
531 Opc = X86::MOVNTSS;
532 else
Craig Topperdfc4fc92016-09-05 23:58:40 +0000533 Opc = HasAVX512 ? X86::VMOVSSZmr :
534 HasAVX ? X86::VMOVSSmr : X86::MOVSSmr;
Simon Pilgrim5b65f282015-10-17 13:04:42 +0000535 } else
536 Opc = X86::ST_Fp32m;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000537 break;
538 case MVT::f64:
Simon Pilgrim5b65f282015-10-17 13:04:42 +0000539 if (X86ScalarSSEf32) {
540 if (IsNonTemporal && HasSSE4A)
541 Opc = X86::MOVNTSD;
542 else
Craig Topperdfc4fc92016-09-05 23:58:40 +0000543 Opc = HasAVX512 ? X86::VMOVSDZmr :
544 HasAVX ? X86::VMOVSDmr : X86::MOVSDmr;
Simon Pilgrim5b65f282015-10-17 13:04:42 +0000545 } else
546 Opc = X86::ST_Fp64m;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000547 break;
Simon Pilgrimb6702ea2017-04-10 16:58:07 +0000548 case MVT::x86mmx:
549 Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr;
550 break;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000551 case MVT::v4f32:
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000552 if (Aligned) {
553 if (IsNonTemporal)
Craig Topperdfc4fc92016-09-05 23:58:40 +0000554 Opc = HasVLX ? X86::VMOVNTPSZ128mr :
555 HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr;
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000556 else
Craig Topperdfc4fc92016-09-05 23:58:40 +0000557 Opc = HasVLX ? X86::VMOVAPSZ128mr :
558 HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr;
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000559 } else
Craig Topperdfc4fc92016-09-05 23:58:40 +0000560 Opc = HasVLX ? X86::VMOVUPSZ128mr :
561 HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000562 break;
563 case MVT::v2f64:
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000564 if (Aligned) {
565 if (IsNonTemporal)
Craig Topperdfc4fc92016-09-05 23:58:40 +0000566 Opc = HasVLX ? X86::VMOVNTPDZ128mr :
567 HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr;
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000568 else
Craig Topperdfc4fc92016-09-05 23:58:40 +0000569 Opc = HasVLX ? X86::VMOVAPDZ128mr :
570 HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr;
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000571 } else
Craig Topperdfc4fc92016-09-05 23:58:40 +0000572 Opc = HasVLX ? X86::VMOVUPDZ128mr :
573 HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000574 break;
575 case MVT::v4i32:
576 case MVT::v2i64:
577 case MVT::v8i16:
578 case MVT::v16i8:
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000579 if (Aligned) {
580 if (IsNonTemporal)
Craig Topperdfc4fc92016-09-05 23:58:40 +0000581 Opc = HasVLX ? X86::VMOVNTDQZ128mr :
582 HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr;
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000583 else
Craig Topperdfc4fc92016-09-05 23:58:40 +0000584 Opc = HasVLX ? X86::VMOVDQA64Z128mr :
585 HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr;
Andrea Di Biagioc47edbe2015-10-14 10:03:13 +0000586 } else
Craig Topperdfc4fc92016-09-05 23:58:40 +0000587 Opc = HasVLX ? X86::VMOVDQU64Z128mr :
588 HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr;
Craig Topperca9c0802016-06-02 04:19:45 +0000589 break;
590 case MVT::v8f32:
591 assert(HasAVX);
Craig Topperdfc4fc92016-09-05 23:58:40 +0000592 if (Aligned) {
593 if (IsNonTemporal)
594 Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr;
595 else
596 Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr;
597 } else
598 Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr;
Craig Topperca9c0802016-06-02 04:19:45 +0000599 break;
600 case MVT::v4f64:
601 assert(HasAVX);
602 if (Aligned) {
Craig Topperdfc4fc92016-09-05 23:58:40 +0000603 if (IsNonTemporal)
604 Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr;
605 else
606 Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr;
Craig Topperca9c0802016-06-02 04:19:45 +0000607 } else
Craig Topperdfc4fc92016-09-05 23:58:40 +0000608 Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr;
Craig Topperca9c0802016-06-02 04:19:45 +0000609 break;
610 case MVT::v8i32:
611 case MVT::v4i64:
612 case MVT::v16i16:
613 case MVT::v32i8:
614 assert(HasAVX);
Craig Topperdfc4fc92016-09-05 23:58:40 +0000615 if (Aligned) {
616 if (IsNonTemporal)
617 Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr;
618 else
619 Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr;
620 } else
621 Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000622 break;
Craig Topper048a08a2016-06-02 04:51:37 +0000623 case MVT::v16f32:
Craig Topperdfc4fc92016-09-05 23:58:40 +0000624 assert(HasAVX512);
Craig Topper048a08a2016-06-02 04:51:37 +0000625 if (Aligned)
626 Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr;
627 else
628 Opc = X86::VMOVUPSZmr;
629 break;
630 case MVT::v8f64:
Craig Topperdfc4fc92016-09-05 23:58:40 +0000631 assert(HasAVX512);
Craig Topper048a08a2016-06-02 04:51:37 +0000632 if (Aligned) {
633 Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr;
634 } else
635 Opc = X86::VMOVUPDZmr;
636 break;
637 case MVT::v8i64:
638 case MVT::v16i32:
639 case MVT::v32i16:
640 case MVT::v64i8:
Craig Topperdfc4fc92016-09-05 23:58:40 +0000641 assert(HasAVX512);
Craig Topper048a08a2016-06-02 04:51:37 +0000642 // Note: There are a lot more choices based on type with AVX-512, but
643 // there's really no advantage when the store isn't masked.
644 if (Aligned)
645 Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr;
646 else
647 Opc = X86::VMOVDQU64Zmr;
648 break;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000649 }
650
Quentin Colombetbf200682016-04-27 22:33:42 +0000651 const MCInstrDesc &Desc = TII.get(Opc);
652 // Some of the instructions in the previous switch use FR128 instead
653 // of FR32 for ValReg. Make sure the register we feed the instruction
654 // matches its register class constraints.
655 // Note: This is fine to do a copy from FR32 to FR128, this is the
656 // same registers behind the scene and actually why it did not trigger
657 // any bugs before.
658 ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000659 MachineInstrBuilder MIB =
Quentin Colombetbf200682016-04-27 22:33:42 +0000660 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, Desc);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000661 addFullAddress(MIB, AM).addReg(ValReg, getKillRegState(ValIsKill));
662 if (MMO)
663 MIB->addMemOperand(*FuncInfo.MF, MMO);
664
665 return true;
666}
667
668bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
Pete Cooperd0dae3e2015-05-05 23:41:53 +0000669 X86AddressMode &AM,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000670 MachineMemOperand *MMO, bool Aligned) {
671 // Handle 'null' like i32/i64 0.
672 if (isa<ConstantPointerNull>(Val))
673 Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));
674
675 // If this is a store of a simple constant, fold the constant into the store.
676 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
677 unsigned Opc = 0;
678 bool Signed = true;
679 switch (VT.getSimpleVT().SimpleTy) {
680 default: break;
Justin Bognerb03fd122016-08-17 05:10:15 +0000681 case MVT::i1:
682 Signed = false;
683 LLVM_FALLTHROUGH; // Handle as i8.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000684 case MVT::i8: Opc = X86::MOV8mi; break;
685 case MVT::i16: Opc = X86::MOV16mi; break;
686 case MVT::i32: Opc = X86::MOV32mi; break;
687 case MVT::i64:
688 // Must be a 32-bit sign extended value.
689 if (isInt<32>(CI->getSExtValue()))
690 Opc = X86::MOV64mi32;
691 break;
692 }
693
694 if (Opc) {
695 MachineInstrBuilder MIB =
696 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
697 addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue()
698 : CI->getZExtValue());
699 if (MMO)
700 MIB->addMemOperand(*FuncInfo.MF, MMO);
701 return true;
702 }
703 }
704
705 unsigned ValReg = getRegForValue(Val);
706 if (ValReg == 0)
707 return false;
708
709 bool ValKill = hasTrivialKill(Val);
710 return X86FastEmitStore(VT, ValReg, ValKill, AM, MMO, Aligned);
711}
712
713/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
714/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
715/// ISD::SIGN_EXTEND).
716bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
717 unsigned Src, EVT SrcVT,
718 unsigned &ResultReg) {
719 unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
720 Src, /*TODO: Kill=*/false);
721 if (RR == 0)
722 return false;
723
724 ResultReg = RR;
725 return true;
726}
727
728bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
729 // Handle constant address.
730 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
731 // Can't handle alternate code models yet.
732 if (TM.getCodeModel() != CodeModel::Small)
733 return false;
734
735 // Can't handle TLS yet.
736 if (GV->isThreadLocal())
737 return false;
738
739 // RIP-relative addresses can't have additional register operands, so if
740 // we've already folded stuff into the addressing mode, just force the
741 // global value into its own register, which we can use as the basereg.
742 if (!Subtarget->isPICStyleRIPRel() ||
743 (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
744 // Okay, we've committed to selecting this global. Set up the address.
745 AM.GV = GV;
746
747 // Allow the subtarget to classify the global.
Rafael Espindolaab03eb02016-05-19 22:07:57 +0000748 unsigned char GVFlags = Subtarget->classifyGlobalReference(GV);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000749
750 // If this reference is relative to the pic base, set it now.
751 if (isGlobalRelativeToPICBase(GVFlags)) {
752 // FIXME: How do we know Base.Reg is free??
753 AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
754 }
755
756 // Unless the ABI requires an extra load, return a direct reference to
757 // the global.
758 if (!isGlobalStubReference(GVFlags)) {
759 if (Subtarget->isPICStyleRIPRel()) {
760 // Use rip-relative addressing if we can. Above we verified that the
761 // base and index registers are unused.
762 assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
763 AM.Base.Reg = X86::RIP;
764 }
765 AM.GVOpFlags = GVFlags;
766 return true;
767 }
768
769 // Ok, we need to do a load from a stub. If we've already loaded from
770 // this stub, reuse the loaded pointer, otherwise emit the load now.
771 DenseMap<const Value *, unsigned>::iterator I = LocalValueMap.find(V);
772 unsigned LoadReg;
773 if (I != LocalValueMap.end() && I->second != 0) {
774 LoadReg = I->second;
775 } else {
776 // Issue load from stub.
777 unsigned Opc = 0;
778 const TargetRegisterClass *RC = nullptr;
779 X86AddressMode StubAM;
780 StubAM.Base.Reg = AM.Base.Reg;
781 StubAM.GV = GV;
782 StubAM.GVOpFlags = GVFlags;
783
784 // Prepare for inserting code in the local-value area.
785 SavePoint SaveInsertPt = enterLocalValueArea();
786
Mehdi Amini44ede332015-07-09 02:09:04 +0000787 if (TLI.getPointerTy(DL) == MVT::i64) {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000788 Opc = X86::MOV64rm;
789 RC = &X86::GR64RegClass;
790
791 if (Subtarget->isPICStyleRIPRel())
792 StubAM.Base.Reg = X86::RIP;
793 } else {
794 Opc = X86::MOV32rm;
795 RC = &X86::GR32RegClass;
796 }
797
798 LoadReg = createResultReg(RC);
799 MachineInstrBuilder LoadMI =
800 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg);
801 addFullAddress(LoadMI, StubAM);
802
803 // Ok, back to normal mode.
804 leaveLocalValueArea(SaveInsertPt);
805
806 // Prevent loading GV stub multiple times in same MBB.
807 LocalValueMap[V] = LoadReg;
808 }
809
810 // Now construct the final address. Note that the Disp, Scale,
811 // and Index values may already be set here.
812 AM.Base.Reg = LoadReg;
813 AM.GV = nullptr;
814 return true;
815 }
816 }
817
818 // If all else fails, try to materialize the value in a register.
819 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
820 if (AM.Base.Reg == 0) {
821 AM.Base.Reg = getRegForValue(V);
822 return AM.Base.Reg != 0;
823 }
824 if (AM.IndexReg == 0) {
825 assert(AM.Scale == 1 && "Scale with no index!");
826 AM.IndexReg = getRegForValue(V);
827 return AM.IndexReg != 0;
828 }
829 }
830
831 return false;
832}
833
834/// X86SelectAddress - Attempt to fill in an address from the given value.
835///
836bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
837 SmallVector<const Value *, 32> GEPs;
838redo_gep:
839 const User *U = nullptr;
840 unsigned Opcode = Instruction::UserOp1;
841 if (const Instruction *I = dyn_cast<Instruction>(V)) {
842 // Don't walk into other basic blocks; it's possible we haven't
843 // visited them yet, so the instructions may not yet be assigned
844 // virtual registers.
845 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
846 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
847 Opcode = I->getOpcode();
848 U = I;
849 }
850 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
851 Opcode = C->getOpcode();
852 U = C;
853 }
854
855 if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
856 if (Ty->getAddressSpace() > 255)
857 // Fast instruction selection doesn't support the special
858 // address spaces.
859 return false;
860
861 switch (Opcode) {
862 default: break;
863 case Instruction::BitCast:
864 // Look past bitcasts.
865 return X86SelectAddress(U->getOperand(0), AM);
866
867 case Instruction::IntToPtr:
868 // Look past no-op inttoptrs.
Mehdi Amini44ede332015-07-09 02:09:04 +0000869 if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
870 TLI.getPointerTy(DL))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000871 return X86SelectAddress(U->getOperand(0), AM);
872 break;
873
874 case Instruction::PtrToInt:
875 // Look past no-op ptrtoints.
Mehdi Amini44ede332015-07-09 02:09:04 +0000876 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000877 return X86SelectAddress(U->getOperand(0), AM);
878 break;
879
880 case Instruction::Alloca: {
881 // Do static allocas.
882 const AllocaInst *A = cast<AllocaInst>(V);
883 DenseMap<const AllocaInst *, int>::iterator SI =
884 FuncInfo.StaticAllocaMap.find(A);
885 if (SI != FuncInfo.StaticAllocaMap.end()) {
886 AM.BaseType = X86AddressMode::FrameIndexBase;
887 AM.Base.FrameIndex = SI->second;
888 return true;
889 }
890 break;
891 }
892
893 case Instruction::Add: {
894 // Adds of constants are common and easy enough.
895 if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
896 uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
897 // They have to fit in the 32-bit signed displacement field though.
898 if (isInt<32>(Disp)) {
899 AM.Disp = (uint32_t)Disp;
900 return X86SelectAddress(U->getOperand(0), AM);
901 }
902 }
903 break;
904 }
905
906 case Instruction::GetElementPtr: {
907 X86AddressMode SavedAM = AM;
908
909 // Pattern-match simple GEPs.
910 uint64_t Disp = (int32_t)AM.Disp;
911 unsigned IndexReg = AM.IndexReg;
912 unsigned Scale = AM.Scale;
913 gep_type_iterator GTI = gep_type_begin(U);
914 // Iterate through the indices, folding what we can. Constants can be
915 // folded, and one dynamic index can be handled, if the scale is supported.
916 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
917 i != e; ++i, ++GTI) {
918 const Value *Op = *i;
Peter Collingbourneab85225b2016-12-02 02:24:42 +0000919 if (StructType *STy = GTI.getStructTypeOrNull()) {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000920 const StructLayout *SL = DL.getStructLayout(STy);
921 Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
922 continue;
923 }
924
925 // A array/variable index is always of the form i*S where S is the
926 // constant scale size. See if we can push the scale into immediates.
927 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
928 for (;;) {
929 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
930 // Constant-offset addressing.
931 Disp += CI->getSExtValue() * S;
932 break;
933 }
934 if (canFoldAddIntoGEP(U, Op)) {
935 // A compatible add with a constant operand. Fold the constant.
936 ConstantInt *CI =
937 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
938 Disp += CI->getSExtValue() * S;
939 // Iterate on the other operand.
940 Op = cast<AddOperator>(Op)->getOperand(0);
941 continue;
942 }
943 if (IndexReg == 0 &&
944 (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
945 (S == 1 || S == 2 || S == 4 || S == 8)) {
946 // Scaled-index addressing.
947 Scale = S;
948 IndexReg = getRegForGEPIndex(Op).first;
949 if (IndexReg == 0)
950 return false;
951 break;
952 }
953 // Unsupported.
954 goto unsupported_gep;
955 }
956 }
957
958 // Check for displacement overflow.
959 if (!isInt<32>(Disp))
960 break;
961
962 AM.IndexReg = IndexReg;
963 AM.Scale = Scale;
964 AM.Disp = (uint32_t)Disp;
965 GEPs.push_back(V);
966
967 if (const GetElementPtrInst *GEP =
968 dyn_cast<GetElementPtrInst>(U->getOperand(0))) {
969 // Ok, the GEP indices were covered by constant-offset and scaled-index
970 // addressing. Update the address state and move on to examining the base.
971 V = GEP;
972 goto redo_gep;
973 } else if (X86SelectAddress(U->getOperand(0), AM)) {
974 return true;
975 }
976
977 // If we couldn't merge the gep value into this addr mode, revert back to
978 // our address and just match the value instead of completely failing.
979 AM = SavedAM;
980
David Majnemerd7708772016-06-24 04:05:21 +0000981 for (const Value *I : reverse(GEPs))
982 if (handleConstantAddresses(I, AM))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000983 return true;
984
985 return false;
986 unsupported_gep:
987 // Ok, the GEP indices weren't all covered.
988 break;
989 }
990 }
991
992 return handleConstantAddresses(V, AM);
993}
994
995/// X86SelectCallAddress - Attempt to fill in an address from the given value.
996///
997bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
998 const User *U = nullptr;
999 unsigned Opcode = Instruction::UserOp1;
1000 const Instruction *I = dyn_cast<Instruction>(V);
1001 // Record if the value is defined in the same basic block.
1002 //
1003 // This information is crucial to know whether or not folding an
1004 // operand is valid.
1005 // Indeed, FastISel generates or reuses a virtual register for all
1006 // operands of all instructions it selects. Obviously, the definition and
1007 // its uses must use the same virtual register otherwise the produced
1008 // code is incorrect.
1009 // Before instruction selection, FunctionLoweringInfo::set sets the virtual
1010 // registers for values that are alive across basic blocks. This ensures
1011 // that the values are consistently set between across basic block, even
1012 // if different instruction selection mechanisms are used (e.g., a mix of
1013 // SDISel and FastISel).
1014 // For values local to a basic block, the instruction selection process
1015 // generates these virtual registers with whatever method is appropriate
1016 // for its needs. In particular, FastISel and SDISel do not share the way
1017 // local virtual registers are set.
1018 // Therefore, this is impossible (or at least unsafe) to share values
1019 // between basic blocks unless they use the same instruction selection
1020 // method, which is not guarantee for X86.
1021 // Moreover, things like hasOneUse could not be used accurately, if we
1022 // allow to reference values across basic blocks whereas they are not
1023 // alive across basic blocks initially.
1024 bool InMBB = true;
1025 if (I) {
1026 Opcode = I->getOpcode();
1027 U = I;
1028 InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
1029 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
1030 Opcode = C->getOpcode();
1031 U = C;
1032 }
1033
1034 switch (Opcode) {
1035 default: break;
1036 case Instruction::BitCast:
1037 // Look past bitcasts if its operand is in the same BB.
1038 if (InMBB)
1039 return X86SelectCallAddress(U->getOperand(0), AM);
1040 break;
1041
1042 case Instruction::IntToPtr:
1043 // Look past no-op inttoptrs if its operand is in the same BB.
1044 if (InMBB &&
Mehdi Amini44ede332015-07-09 02:09:04 +00001045 TLI.getValueType(DL, U->getOperand(0)->getType()) ==
1046 TLI.getPointerTy(DL))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001047 return X86SelectCallAddress(U->getOperand(0), AM);
1048 break;
1049
1050 case Instruction::PtrToInt:
1051 // Look past no-op ptrtoints if its operand is in the same BB.
Mehdi Amini44ede332015-07-09 02:09:04 +00001052 if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001053 return X86SelectCallAddress(U->getOperand(0), AM);
1054 break;
1055 }
1056
1057 // Handle constant address.
1058 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1059 // Can't handle alternate code models yet.
1060 if (TM.getCodeModel() != CodeModel::Small)
1061 return false;
1062
1063 // RIP-relative addresses can't have additional register operands.
1064 if (Subtarget->isPICStyleRIPRel() &&
1065 (AM.Base.Reg != 0 || AM.IndexReg != 0))
1066 return false;
1067
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001068 // Can't handle TLS.
1069 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1070 if (GVar->isThreadLocal())
1071 return false;
1072
1073 // Okay, we've committed to selecting this global. Set up the basic address.
1074 AM.GV = GV;
1075
Reid Kleckner7662d502017-08-05 00:10:43 +00001076 // Return a direct reference to the global. Fastisel can handle calls to
1077 // functions that require loads, such as dllimport and nonlazybind
1078 // functions.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001079 if (Subtarget->isPICStyleRIPRel()) {
1080 // Use rip-relative addressing if we can. Above we verified that the
1081 // base and index registers are unused.
1082 assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
1083 AM.Base.Reg = X86::RIP;
Rafael Espindolac7e98132016-05-20 12:20:10 +00001084 } else {
1085 AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001086 }
1087
1088 return true;
1089 }
1090
1091 // If all else fails, try to materialize the value in a register.
1092 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
1093 if (AM.Base.Reg == 0) {
1094 AM.Base.Reg = getRegForValue(V);
1095 return AM.Base.Reg != 0;
1096 }
1097 if (AM.IndexReg == 0) {
1098 assert(AM.Scale == 1 && "Scale with no index!");
1099 AM.IndexReg = getRegForValue(V);
1100 return AM.IndexReg != 0;
1101 }
1102 }
1103
1104 return false;
1105}
1106
1107
1108/// X86SelectStore - Select and emit code to implement store instructions.
1109bool X86FastISel::X86SelectStore(const Instruction *I) {
1110 // Atomic stores need special handling.
1111 const StoreInst *S = cast<StoreInst>(I);
1112
1113 if (S->isAtomic())
1114 return false;
1115
Manman Ren57518142016-04-11 21:08:06 +00001116 const Value *PtrV = I->getOperand(1);
1117 if (TLI.supportSwiftError()) {
1118 // Swifterror values can come from either a function parameter with
1119 // swifterror attribute or an alloca with swifterror attribute.
1120 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
1121 if (Arg->hasSwiftErrorAttr())
1122 return false;
1123 }
1124
1125 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
1126 if (Alloca->isSwiftError())
1127 return false;
1128 }
1129 }
1130
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001131 const Value *Val = S->getValueOperand();
1132 const Value *Ptr = S->getPointerOperand();
1133
1134 MVT VT;
1135 if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true))
1136 return false;
1137
1138 unsigned Alignment = S->getAlignment();
1139 unsigned ABIAlignment = DL.getABITypeAlignment(Val->getType());
1140 if (Alignment == 0) // Ensure that codegen never sees alignment 0
1141 Alignment = ABIAlignment;
1142 bool Aligned = Alignment >= ABIAlignment;
1143
1144 X86AddressMode AM;
1145 if (!X86SelectAddress(Ptr, AM))
1146 return false;
1147
1148 return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned);
1149}
1150
1151/// X86SelectRet - Select and emit code to implement ret instructions.
1152bool X86FastISel::X86SelectRet(const Instruction *I) {
1153 const ReturnInst *Ret = cast<ReturnInst>(I);
1154 const Function &F = *I->getParent()->getParent();
1155 const X86MachineFunctionInfo *X86MFInfo =
1156 FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
1157
1158 if (!FuncInfo.CanLowerReturn)
1159 return false;
1160
Manman Ren57518142016-04-11 21:08:06 +00001161 if (TLI.supportSwiftError() &&
1162 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
1163 return false;
1164
Manman Rened967f32016-01-12 01:08:46 +00001165 if (TLI.supportSplitCSR(FuncInfo.MF))
1166 return false;
1167
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001168 CallingConv::ID CC = F.getCallingConv();
1169 if (CC != CallingConv::C &&
1170 CC != CallingConv::Fast &&
1171 CC != CallingConv::X86_FastCall &&
Nico Weberecdf45b2016-07-14 13:54:26 +00001172 CC != CallingConv::X86_StdCall &&
Nico Weberc7bf6462016-07-12 01:30:35 +00001173 CC != CallingConv::X86_ThisCall &&
Nico Weber8d66df12016-07-15 20:18:37 +00001174 CC != CallingConv::X86_64_SysV &&
Martin Storsjo2f24e932017-07-17 20:05:19 +00001175 CC != CallingConv::Win64)
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001176 return false;
1177
Nico Weberc7bf6462016-07-12 01:30:35 +00001178 // Don't handle popping bytes if they don't fit the ret's immediate.
1179 if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn()))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001180 return false;
1181
1182 // fastcc with -tailcallopt is intended to provide a guaranteed
1183 // tail call optimization. Fastisel doesn't know how to do that.
1184 if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
1185 return false;
1186
1187 // Let SDISel handle vararg functions.
1188 if (F.isVarArg())
1189 return false;
1190
1191 // Build a list of return value registers.
1192 SmallVector<unsigned, 4> RetRegs;
1193
1194 if (Ret->getNumOperands() > 0) {
1195 SmallVector<ISD::OutputArg, 4> Outs;
Mehdi Amini44ede332015-07-09 02:09:04 +00001196 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001197
1198 // Analyze operands of the call, assigning locations to each operand.
1199 SmallVector<CCValAssign, 16> ValLocs;
1200 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
1201 CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1202
1203 const Value *RV = Ret->getOperand(0);
1204 unsigned Reg = getRegForValue(RV);
1205 if (Reg == 0)
1206 return false;
1207
1208 // Only handle a single return value for now.
1209 if (ValLocs.size() != 1)
1210 return false;
1211
1212 CCValAssign &VA = ValLocs[0];
1213
1214 // Don't bother handling odd stuff for now.
1215 if (VA.getLocInfo() != CCValAssign::Full)
1216 return false;
1217 // Only handle register returns for now.
1218 if (!VA.isRegLoc())
1219 return false;
1220
1221 // The calling-convention tables for x87 returns don't tell
1222 // the whole story.
1223 if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
1224 return false;
1225
1226 unsigned SrcReg = Reg + VA.getValNo();
Mehdi Amini44ede332015-07-09 02:09:04 +00001227 EVT SrcVT = TLI.getValueType(DL, RV->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001228 EVT DstVT = VA.getValVT();
1229 // Special handling for extended integers.
1230 if (SrcVT != DstVT) {
1231 if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
1232 return false;
1233
1234 if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
1235 return false;
1236
1237 assert(DstVT == MVT::i32 && "X86 should always ext to i32");
1238
1239 if (SrcVT == MVT::i1) {
1240 if (Outs[0].Flags.isSExt())
1241 return false;
1242 SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false);
1243 SrcVT = MVT::i8;
1244 }
1245 unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
1246 ISD::SIGN_EXTEND;
1247 SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op,
1248 SrcReg, /*TODO: Kill=*/false);
1249 }
1250
1251 // Make the copy.
1252 unsigned DstReg = VA.getLocReg();
1253 const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
1254 // Avoid a cross-class copy. This is very unlikely.
1255 if (!SrcRC->contains(DstReg))
1256 return false;
1257 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1258 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
1259
1260 // Add register to return instruction.
1261 RetRegs.push_back(VA.getLocReg());
1262 }
1263
Manman Ren1c3f65a2016-04-26 18:08:06 +00001264 // Swift calling convention does not require we copy the sret argument
1265 // into %rax/%eax for the return, and SRetReturnReg is not set for Swift.
1266
Dimitry Andric227b9282016-01-03 17:22:03 +00001267 // All x86 ABIs require that for returning structs by value we copy
1268 // the sret argument into %rax/%eax (depending on ABI) for the return.
1269 // We saved the argument into a virtual register in the entry block,
Michael Kuperstein2ea81ba2015-12-28 14:39:21 +00001270 // so now we copy the value out and into %rax/%eax.
Manman Ren1c3f65a2016-04-26 18:08:06 +00001271 if (F.hasStructRetAttr() && CC != CallingConv::Swift) {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001272 unsigned Reg = X86MFInfo->getSRetReturnReg();
1273 assert(Reg &&
1274 "SRetReturnReg should have been set in LowerFormalArguments()!");
1275 unsigned RetReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
1276 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1277 TII.get(TargetOpcode::COPY), RetReg).addReg(Reg);
1278 RetRegs.push_back(RetReg);
1279 }
1280
1281 // Now emit the RET.
Nico Weberc7bf6462016-07-12 01:30:35 +00001282 MachineInstrBuilder MIB;
1283 if (X86MFInfo->getBytesToPopOnReturn()) {
1284 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1285 TII.get(Subtarget->is64Bit() ? X86::RETIQ : X86::RETIL))
1286 .addImm(X86MFInfo->getBytesToPopOnReturn());
1287 } else {
1288 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1289 TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL));
1290 }
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001291 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1292 MIB.addReg(RetRegs[i], RegState::Implicit);
1293 return true;
1294}
1295
1296/// X86SelectLoad - Select and emit code to implement load instructions.
1297///
1298bool X86FastISel::X86SelectLoad(const Instruction *I) {
1299 const LoadInst *LI = cast<LoadInst>(I);
1300
1301 // Atomic loads need special handling.
1302 if (LI->isAtomic())
1303 return false;
1304
Manman Ren57518142016-04-11 21:08:06 +00001305 const Value *SV = I->getOperand(0);
1306 if (TLI.supportSwiftError()) {
1307 // Swifterror values can come from either a function parameter with
1308 // swifterror attribute or an alloca with swifterror attribute.
1309 if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1310 if (Arg->hasSwiftErrorAttr())
1311 return false;
1312 }
1313
1314 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1315 if (Alloca->isSwiftError())
1316 return false;
1317 }
1318 }
1319
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001320 MVT VT;
1321 if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true))
1322 return false;
1323
1324 const Value *Ptr = LI->getPointerOperand();
1325
1326 X86AddressMode AM;
1327 if (!X86SelectAddress(Ptr, AM))
1328 return false;
1329
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +00001330 unsigned Alignment = LI->getAlignment();
1331 unsigned ABIAlignment = DL.getABITypeAlignment(LI->getType());
1332 if (Alignment == 0) // Ensure that codegen never sees alignment 0
1333 Alignment = ABIAlignment;
1334
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001335 unsigned ResultReg = 0;
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +00001336 if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg,
1337 Alignment))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001338 return false;
1339
1340 updateValueMap(I, ResultReg);
1341 return true;
1342}
1343
1344static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
1345 bool HasAVX = Subtarget->hasAVX();
1346 bool X86ScalarSSEf32 = Subtarget->hasSSE1();
1347 bool X86ScalarSSEf64 = Subtarget->hasSSE2();
1348
1349 switch (VT.getSimpleVT().SimpleTy) {
1350 default: return 0;
1351 case MVT::i8: return X86::CMP8rr;
1352 case MVT::i16: return X86::CMP16rr;
1353 case MVT::i32: return X86::CMP32rr;
1354 case MVT::i64: return X86::CMP64rr;
1355 case MVT::f32:
1356 return X86ScalarSSEf32 ? (HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) : 0;
1357 case MVT::f64:
1358 return X86ScalarSSEf64 ? (HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) : 0;
1359 }
1360}
1361
Rafael Espindola19141f22015-03-16 14:05:49 +00001362/// If we have a comparison with RHS as the RHS of the comparison, return an
1363/// opcode that works for the compare (e.g. CMP32ri) otherwise return 0.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001364static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
Rafael Espindola933f51a2015-03-16 14:25:08 +00001365 int64_t Val = RHSC->getSExtValue();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001366 switch (VT.getSimpleVT().SimpleTy) {
1367 // Otherwise, we can't fold the immediate into this comparison.
Rafael Espindola19141f22015-03-16 14:05:49 +00001368 default:
1369 return 0;
1370 case MVT::i8:
1371 return X86::CMP8ri;
1372 case MVT::i16:
Rafael Espindola933f51a2015-03-16 14:25:08 +00001373 if (isInt<8>(Val))
1374 return X86::CMP16ri8;
Rafael Espindola19141f22015-03-16 14:05:49 +00001375 return X86::CMP16ri;
1376 case MVT::i32:
Rafael Espindola933f51a2015-03-16 14:25:08 +00001377 if (isInt<8>(Val))
1378 return X86::CMP32ri8;
Rafael Espindola19141f22015-03-16 14:05:49 +00001379 return X86::CMP32ri;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001380 case MVT::i64:
Rafael Espindola933f51a2015-03-16 14:25:08 +00001381 if (isInt<8>(Val))
1382 return X86::CMP64ri8;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001383 // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
1384 // field.
Rafael Espindola933f51a2015-03-16 14:25:08 +00001385 if (isInt<32>(Val))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001386 return X86::CMP64ri32;
1387 return 0;
1388 }
1389}
1390
Benjamin Kramerbdc49562016-06-12 15:39:02 +00001391bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT,
1392 const DebugLoc &CurDbgLoc) {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001393 unsigned Op0Reg = getRegForValue(Op0);
1394 if (Op0Reg == 0) return false;
1395
1396 // Handle 'null' like i32/i64 0.
1397 if (isa<ConstantPointerNull>(Op1))
1398 Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));
1399
1400 // We have two options: compare with register or immediate. If the RHS of
1401 // the compare is an immediate that we can fold into this compare, use
1402 // CMPri, otherwise use CMPrr.
1403 if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1404 if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
1405 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc))
1406 .addReg(Op0Reg)
1407 .addImm(Op1C->getSExtValue());
1408 return true;
1409 }
1410 }
1411
1412 unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
1413 if (CompareOpc == 0) return false;
1414
1415 unsigned Op1Reg = getRegForValue(Op1);
1416 if (Op1Reg == 0) return false;
1417 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc))
1418 .addReg(Op0Reg)
1419 .addReg(Op1Reg);
1420
1421 return true;
1422}
1423
1424bool X86FastISel::X86SelectCmp(const Instruction *I) {
1425 const CmpInst *CI = cast<CmpInst>(I);
1426
1427 MVT VT;
1428 if (!isTypeLegal(I->getOperand(0)->getType(), VT))
1429 return false;
1430
Elena Demikhovskyad0a56f2016-07-06 14:15:43 +00001431 if (I->getType()->isIntegerTy(1) && Subtarget->hasAVX512())
1432 return false;
1433
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001434 // Try to optimize or fold the cmp.
1435 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1436 unsigned ResultReg = 0;
1437 switch (Predicate) {
1438 default: break;
1439 case CmpInst::FCMP_FALSE: {
1440 ResultReg = createResultReg(&X86::GR32RegClass);
1441 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0),
1442 ResultReg);
1443 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true,
1444 X86::sub_8bit);
1445 if (!ResultReg)
1446 return false;
1447 break;
1448 }
1449 case CmpInst::FCMP_TRUE: {
1450 ResultReg = createResultReg(&X86::GR8RegClass);
1451 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
1452 ResultReg).addImm(1);
1453 break;
1454 }
1455 }
1456
1457 if (ResultReg) {
1458 updateValueMap(I, ResultReg);
1459 return true;
1460 }
1461
1462 const Value *LHS = CI->getOperand(0);
1463 const Value *RHS = CI->getOperand(1);
1464
1465 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
1466 // We don't have to materialize a zero constant for this case and can just use
1467 // %x again on the RHS.
1468 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1469 const auto *RHSC = dyn_cast<ConstantFP>(RHS);
1470 if (RHSC && RHSC->isNullValue())
1471 RHS = LHS;
1472 }
1473
1474 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
Craig Topper428169a2016-09-05 07:14:21 +00001475 static const uint16_t SETFOpcTable[2][3] = {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001476 { X86::SETEr, X86::SETNPr, X86::AND8rr },
1477 { X86::SETNEr, X86::SETPr, X86::OR8rr }
1478 };
Craig Topper428169a2016-09-05 07:14:21 +00001479 const uint16_t *SETFOpc = nullptr;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001480 switch (Predicate) {
1481 default: break;
1482 case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break;
1483 case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break;
1484 }
1485
1486 ResultReg = createResultReg(&X86::GR8RegClass);
1487 if (SETFOpc) {
1488 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1489 return false;
1490
1491 unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
1492 unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
1493 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
1494 FlagReg1);
1495 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
1496 FlagReg2);
1497 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]),
1498 ResultReg).addReg(FlagReg1).addReg(FlagReg2);
1499 updateValueMap(I, ResultReg);
1500 return true;
1501 }
1502
1503 X86::CondCode CC;
1504 bool SwapArgs;
Igor Bregerdb754552017-05-11 06:36:37 +00001505 std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001506 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1507 unsigned Opc = X86::getSETFromCond(CC);
1508
1509 if (SwapArgs)
1510 std::swap(LHS, RHS);
1511
1512 // Emit a compare of LHS/RHS.
1513 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1514 return false;
1515
1516 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
1517 updateValueMap(I, ResultReg);
1518 return true;
1519}
1520
1521bool X86FastISel::X86SelectZExt(const Instruction *I) {
Mehdi Amini44ede332015-07-09 02:09:04 +00001522 EVT DstVT = TLI.getValueType(DL, I->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001523 if (!TLI.isTypeLegal(DstVT))
1524 return false;
1525
1526 unsigned ResultReg = getRegForValue(I->getOperand(0));
1527 if (ResultReg == 0)
1528 return false;
1529
1530 // Handle zero-extension from i1 to i8, which is common.
Mehdi Amini44ede332015-07-09 02:09:04 +00001531 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
Craig Topper088ba172016-12-05 06:09:55 +00001532 if (SrcVT == MVT::i1) {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001533 // Set the high bits to zero.
1534 ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
1535 SrcVT = MVT::i8;
1536
1537 if (ResultReg == 0)
1538 return false;
1539 }
1540
1541 if (DstVT == MVT::i64) {
1542 // Handle extension to 64-bits via sub-register shenanigans.
1543 unsigned MovInst;
1544
1545 switch (SrcVT.SimpleTy) {
1546 case MVT::i8: MovInst = X86::MOVZX32rr8; break;
1547 case MVT::i16: MovInst = X86::MOVZX32rr16; break;
1548 case MVT::i32: MovInst = X86::MOV32rr; break;
1549 default: llvm_unreachable("Unexpected zext to i64 source type");
1550 }
1551
1552 unsigned Result32 = createResultReg(&X86::GR32RegClass);
1553 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32)
1554 .addReg(ResultReg);
1555
1556 ResultReg = createResultReg(&X86::GR64RegClass);
1557 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG),
1558 ResultReg)
1559 .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
Craig Topper619b7592017-09-02 18:53:46 +00001560 } else if (DstVT == MVT::i16) {
1561 // i8->i16 doesn't exist in the autogenerated isel table. Need to zero
1562 // extend to 32-bits and then extract down to 16-bits.
1563 unsigned Result32 = createResultReg(&X86::GR32RegClass);
1564 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVZX32rr8),
1565 Result32).addReg(ResultReg);
1566
1567 ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, /*Kill=*/true,
1568 X86::sub_16bit);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001569 } else if (DstVT != MVT::i8) {
1570 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
1571 ResultReg, /*Kill=*/true);
1572 if (ResultReg == 0)
1573 return false;
1574 }
1575
1576 updateValueMap(I, ResultReg);
1577 return true;
1578}
1579
Craig Topper619b7592017-09-02 18:53:46 +00001580bool X86FastISel::X86SelectSExt(const Instruction *I) {
1581 EVT DstVT = TLI.getValueType(DL, I->getType());
1582 if (!TLI.isTypeLegal(DstVT))
1583 return false;
1584
1585 unsigned ResultReg = getRegForValue(I->getOperand(0));
1586 if (ResultReg == 0)
1587 return false;
1588
1589 // Handle sign-extension from i1 to i8.
1590 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
1591 if (SrcVT == MVT::i1) {
1592 // Set the high bits to zero.
1593 unsigned ZExtReg = fastEmitZExtFromI1(MVT::i8, ResultReg,
1594 /*TODO: Kill=*/false);
1595 if (ZExtReg == 0)
1596 return false;
1597
1598 // Negate the result to make an 8-bit sign extended value.
1599 ResultReg = createResultReg(&X86::GR8RegClass);
1600 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::NEG8r),
1601 ResultReg).addReg(ZExtReg);
1602
1603 SrcVT = MVT::i8;
1604 }
1605
1606 if (DstVT == MVT::i16) {
1607 // i8->i16 doesn't exist in the autogenerated isel table. Need to sign
1608 // extend to 32-bits and then extract down to 16-bits.
1609 unsigned Result32 = createResultReg(&X86::GR32RegClass);
1610 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVSX32rr8),
1611 Result32).addReg(ResultReg);
1612
1613 ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, /*Kill=*/true,
1614 X86::sub_16bit);
1615 } else if (DstVT != MVT::i8) {
1616 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::SIGN_EXTEND,
1617 ResultReg, /*Kill=*/true);
1618 if (ResultReg == 0)
1619 return false;
1620 }
1621
1622 updateValueMap(I, ResultReg);
1623 return true;
1624}
1625
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001626bool X86FastISel::X86SelectBranch(const Instruction *I) {
1627 // Unconditional branches are selected by tablegen-generated code.
1628 // Handle a conditional branch.
1629 const BranchInst *BI = cast<BranchInst>(I);
1630 MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1631 MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1632
1633 // Fold the common case of a conditional branch with a comparison
1634 // in the same block (values defined on other blocks may not have
1635 // initialized registers).
1636 X86::CondCode CC;
1637 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1638 if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
Mehdi Amini44ede332015-07-09 02:09:04 +00001639 EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001640
1641 // Try to optimize or fold the cmp.
1642 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1643 switch (Predicate) {
1644 default: break;
1645 case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true;
1646 case CmpInst::FCMP_TRUE: fastEmitBranch(TrueMBB, DbgLoc); return true;
1647 }
1648
1649 const Value *CmpLHS = CI->getOperand(0);
1650 const Value *CmpRHS = CI->getOperand(1);
1651
1652 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x,
1653 // 0.0.
1654 // We don't have to materialize a zero constant for this case and can just
1655 // use %x again on the RHS.
1656 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1657 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
1658 if (CmpRHSC && CmpRHSC->isNullValue())
1659 CmpRHS = CmpLHS;
1660 }
1661
1662 // Try to take advantage of fallthrough opportunities.
1663 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1664 std::swap(TrueMBB, FalseMBB);
1665 Predicate = CmpInst::getInversePredicate(Predicate);
1666 }
1667
1668 // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition
1669 // code check. Instead two branch instructions are required to check all
1670 // the flags. First we change the predicate to a supported condition code,
1671 // which will be the first branch. Later one we will emit the second
1672 // branch.
1673 bool NeedExtraBranch = false;
1674 switch (Predicate) {
1675 default: break;
1676 case CmpInst::FCMP_OEQ:
Justin Bognerb03fd122016-08-17 05:10:15 +00001677 std::swap(TrueMBB, FalseMBB);
1678 LLVM_FALLTHROUGH;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001679 case CmpInst::FCMP_UNE:
1680 NeedExtraBranch = true;
1681 Predicate = CmpInst::FCMP_ONE;
1682 break;
1683 }
1684
1685 bool SwapArgs;
1686 unsigned BranchOpc;
Igor Bregerdb754552017-05-11 06:36:37 +00001687 std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001688 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1689
1690 BranchOpc = X86::GetCondBranchFromCond(CC);
1691 if (SwapArgs)
1692 std::swap(CmpLHS, CmpRHS);
1693
1694 // Emit a compare of the LHS and RHS, setting the flags.
1695 if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc()))
1696 return false;
1697
1698 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
1699 .addMBB(TrueMBB);
1700
1701 // X86 requires a second branch to handle UNE (and OEQ, which is mapped
1702 // to UNE above).
1703 if (NeedExtraBranch) {
1704 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JP_1))
1705 .addMBB(TrueMBB);
1706 }
1707
Matthias Braun17af6072015-08-26 01:38:00 +00001708 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001709 return true;
1710 }
1711 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1712 // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
1713 // typically happen for _Bool and C++ bools.
1714 MVT SourceVT;
1715 if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1716 isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
1717 unsigned TestOpc = 0;
1718 switch (SourceVT.SimpleTy) {
1719 default: break;
1720 case MVT::i8: TestOpc = X86::TEST8ri; break;
1721 case MVT::i16: TestOpc = X86::TEST16ri; break;
1722 case MVT::i32: TestOpc = X86::TEST32ri; break;
1723 case MVT::i64: TestOpc = X86::TEST64ri32; break;
1724 }
1725 if (TestOpc) {
1726 unsigned OpReg = getRegForValue(TI->getOperand(0));
1727 if (OpReg == 0) return false;
Guy Blank9ae797a2016-08-21 08:02:27 +00001728
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001729 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc))
1730 .addReg(OpReg).addImm(1);
1731
1732 unsigned JmpOpc = X86::JNE_1;
1733 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1734 std::swap(TrueMBB, FalseMBB);
1735 JmpOpc = X86::JE_1;
1736 }
1737
1738 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(JmpOpc))
1739 .addMBB(TrueMBB);
Matthias Braun17af6072015-08-26 01:38:00 +00001740
1741 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001742 return true;
1743 }
1744 }
1745 } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) {
1746 // Fake request the condition, otherwise the intrinsic might be completely
1747 // optimized away.
1748 unsigned TmpReg = getRegForValue(BI->getCondition());
1749 if (TmpReg == 0)
1750 return false;
1751
1752 unsigned BranchOpc = X86::GetCondBranchFromCond(CC);
1753
1754 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
1755 .addMBB(TrueMBB);
Matthias Braun17af6072015-08-26 01:38:00 +00001756 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001757 return true;
1758 }
1759
1760 // Otherwise do a clumsy setcc and re-test it.
1761 // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
1762 // in an explicit cast, so make sure to handle that correctly.
1763 unsigned OpReg = getRegForValue(BI->getCondition());
1764 if (OpReg == 0) return false;
1765
Guy Blank2bdc74a2016-09-28 11:22:17 +00001766 // In case OpReg is a K register, COPY to a GPR
1767 if (MRI.getRegClass(OpReg) == &X86::VK1RegClass) {
1768 unsigned KOpReg = OpReg;
Craig Topper058f2f62017-03-28 16:35:29 +00001769 OpReg = createResultReg(&X86::GR32RegClass);
Guy Blank2bdc74a2016-09-28 11:22:17 +00001770 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1771 TII.get(TargetOpcode::COPY), OpReg)
1772 .addReg(KOpReg);
Craig Topper058f2f62017-03-28 16:35:29 +00001773 OpReg = fastEmitInst_extractsubreg(MVT::i8, OpReg, /*Kill=*/true,
1774 X86::sub_8bit);
Guy Blank2bdc74a2016-09-28 11:22:17 +00001775 }
1776 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
1777 .addReg(OpReg)
1778 .addImm(1);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001779 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JNE_1))
1780 .addMBB(TrueMBB);
Matthias Braun17af6072015-08-26 01:38:00 +00001781 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001782 return true;
1783}
1784
1785bool X86FastISel::X86SelectShift(const Instruction *I) {
1786 unsigned CReg = 0, OpReg = 0;
1787 const TargetRegisterClass *RC = nullptr;
1788 if (I->getType()->isIntegerTy(8)) {
1789 CReg = X86::CL;
1790 RC = &X86::GR8RegClass;
1791 switch (I->getOpcode()) {
1792 case Instruction::LShr: OpReg = X86::SHR8rCL; break;
1793 case Instruction::AShr: OpReg = X86::SAR8rCL; break;
1794 case Instruction::Shl: OpReg = X86::SHL8rCL; break;
1795 default: return false;
1796 }
1797 } else if (I->getType()->isIntegerTy(16)) {
1798 CReg = X86::CX;
1799 RC = &X86::GR16RegClass;
1800 switch (I->getOpcode()) {
1801 case Instruction::LShr: OpReg = X86::SHR16rCL; break;
1802 case Instruction::AShr: OpReg = X86::SAR16rCL; break;
1803 case Instruction::Shl: OpReg = X86::SHL16rCL; break;
1804 default: return false;
1805 }
1806 } else if (I->getType()->isIntegerTy(32)) {
1807 CReg = X86::ECX;
1808 RC = &X86::GR32RegClass;
1809 switch (I->getOpcode()) {
1810 case Instruction::LShr: OpReg = X86::SHR32rCL; break;
1811 case Instruction::AShr: OpReg = X86::SAR32rCL; break;
1812 case Instruction::Shl: OpReg = X86::SHL32rCL; break;
1813 default: return false;
1814 }
1815 } else if (I->getType()->isIntegerTy(64)) {
1816 CReg = X86::RCX;
1817 RC = &X86::GR64RegClass;
1818 switch (I->getOpcode()) {
1819 case Instruction::LShr: OpReg = X86::SHR64rCL; break;
1820 case Instruction::AShr: OpReg = X86::SAR64rCL; break;
1821 case Instruction::Shl: OpReg = X86::SHL64rCL; break;
1822 default: return false;
1823 }
1824 } else {
1825 return false;
1826 }
1827
1828 MVT VT;
1829 if (!isTypeLegal(I->getType(), VT))
1830 return false;
1831
1832 unsigned Op0Reg = getRegForValue(I->getOperand(0));
1833 if (Op0Reg == 0) return false;
1834
1835 unsigned Op1Reg = getRegForValue(I->getOperand(1));
1836 if (Op1Reg == 0) return false;
1837 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
1838 CReg).addReg(Op1Reg);
1839
1840 // The shift instruction uses X86::CL. If we defined a super-register
1841 // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
1842 if (CReg != X86::CL)
1843 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1844 TII.get(TargetOpcode::KILL), X86::CL)
1845 .addReg(CReg, RegState::Kill);
1846
1847 unsigned ResultReg = createResultReg(RC);
1848 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg)
1849 .addReg(Op0Reg);
1850 updateValueMap(I, ResultReg);
1851 return true;
1852}
1853
1854bool X86FastISel::X86SelectDivRem(const Instruction *I) {
1855 const static unsigned NumTypes = 4; // i8, i16, i32, i64
1856 const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem
1857 const static bool S = true; // IsSigned
1858 const static bool U = false; // !IsSigned
1859 const static unsigned Copy = TargetOpcode::COPY;
1860 // For the X86 DIV/IDIV instruction, in most cases the dividend
1861 // (numerator) must be in a specific register pair highreg:lowreg,
1862 // producing the quotient in lowreg and the remainder in highreg.
1863 // For most data types, to set up the instruction, the dividend is
1864 // copied into lowreg, and lowreg is sign-extended or zero-extended
1865 // into highreg. The exception is i8, where the dividend is defined
1866 // as a single register rather than a register pair, and we
1867 // therefore directly sign-extend or zero-extend the dividend into
1868 // lowreg, instead of copying, and ignore the highreg.
1869 const static struct DivRemEntry {
1870 // The following portion depends only on the data type.
1871 const TargetRegisterClass *RC;
1872 unsigned LowInReg; // low part of the register pair
1873 unsigned HighInReg; // high part of the register pair
1874 // The following portion depends on both the data type and the operation.
1875 struct DivRemResult {
1876 unsigned OpDivRem; // The specific DIV/IDIV opcode to use.
1877 unsigned OpSignExtend; // Opcode for sign-extending lowreg into
1878 // highreg, or copying a zero into highreg.
1879 unsigned OpCopy; // Opcode for copying dividend into lowreg, or
1880 // zero/sign-extending into lowreg for i8.
1881 unsigned DivRemResultReg; // Register containing the desired result.
1882 bool IsOpSigned; // Whether to use signed or unsigned form.
1883 } ResultTable[NumOps];
1884 } OpTable[NumTypes] = {
1885 { &X86::GR8RegClass, X86::AX, 0, {
1886 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S }, // SDiv
1887 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S }, // SRem
1888 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U }, // UDiv
1889 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U }, // URem
1890 }
1891 }, // i8
1892 { &X86::GR16RegClass, X86::AX, X86::DX, {
1893 { X86::IDIV16r, X86::CWD, Copy, X86::AX, S }, // SDiv
1894 { X86::IDIV16r, X86::CWD, Copy, X86::DX, S }, // SRem
1895 { X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U }, // UDiv
1896 { X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U }, // URem
1897 }
1898 }, // i16
1899 { &X86::GR32RegClass, X86::EAX, X86::EDX, {
1900 { X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S }, // SDiv
1901 { X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S }, // SRem
1902 { X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U }, // UDiv
1903 { X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U }, // URem
1904 }
1905 }, // i32
1906 { &X86::GR64RegClass, X86::RAX, X86::RDX, {
1907 { X86::IDIV64r, X86::CQO, Copy, X86::RAX, S }, // SDiv
1908 { X86::IDIV64r, X86::CQO, Copy, X86::RDX, S }, // SRem
1909 { X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U }, // UDiv
1910 { X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U }, // URem
1911 }
1912 }, // i64
1913 };
1914
1915 MVT VT;
1916 if (!isTypeLegal(I->getType(), VT))
1917 return false;
1918
1919 unsigned TypeIndex, OpIndex;
1920 switch (VT.SimpleTy) {
1921 default: return false;
1922 case MVT::i8: TypeIndex = 0; break;
1923 case MVT::i16: TypeIndex = 1; break;
1924 case MVT::i32: TypeIndex = 2; break;
1925 case MVT::i64: TypeIndex = 3;
1926 if (!Subtarget->is64Bit())
1927 return false;
1928 break;
1929 }
1930
1931 switch (I->getOpcode()) {
1932 default: llvm_unreachable("Unexpected div/rem opcode");
1933 case Instruction::SDiv: OpIndex = 0; break;
1934 case Instruction::SRem: OpIndex = 1; break;
1935 case Instruction::UDiv: OpIndex = 2; break;
1936 case Instruction::URem: OpIndex = 3; break;
1937 }
1938
1939 const DivRemEntry &TypeEntry = OpTable[TypeIndex];
1940 const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
1941 unsigned Op0Reg = getRegForValue(I->getOperand(0));
1942 if (Op0Reg == 0)
1943 return false;
1944 unsigned Op1Reg = getRegForValue(I->getOperand(1));
1945 if (Op1Reg == 0)
1946 return false;
1947
1948 // Move op0 into low-order input register.
1949 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1950 TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
1951 // Zero-extend or sign-extend into high-order input register.
1952 if (OpEntry.OpSignExtend) {
1953 if (OpEntry.IsOpSigned)
1954 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1955 TII.get(OpEntry.OpSignExtend));
1956 else {
1957 unsigned Zero32 = createResultReg(&X86::GR32RegClass);
1958 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1959 TII.get(X86::MOV32r0), Zero32);
1960
1961 // Copy the zero into the appropriate sub/super/identical physical
1962 // register. Unfortunately the operations needed are not uniform enough
1963 // to fit neatly into the table above.
Craig Topper088ba172016-12-05 06:09:55 +00001964 if (VT == MVT::i16) {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001965 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1966 TII.get(Copy), TypeEntry.HighInReg)
1967 .addReg(Zero32, 0, X86::sub_16bit);
Craig Topper088ba172016-12-05 06:09:55 +00001968 } else if (VT == MVT::i32) {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001969 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1970 TII.get(Copy), TypeEntry.HighInReg)
1971 .addReg(Zero32);
Craig Topper088ba172016-12-05 06:09:55 +00001972 } else if (VT == MVT::i64) {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001973 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1974 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
1975 .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
1976 }
1977 }
1978 }
1979 // Generate the DIV/IDIV instruction.
1980 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1981 TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
1982 // For i8 remainder, we can't reference AH directly, as we'll end
1983 // up with bogus copies like %R9B = COPY %AH. Reference AX
1984 // instead to prevent AH references in a REX instruction.
1985 //
1986 // The current assumption of the fast register allocator is that isel
Craig Topperb7e4c942017-09-26 21:35:11 +00001987 // won't generate explicit references to the GR8_NOREX registers. If
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001988 // the allocator and/or the backend get enhanced to be more robust in
1989 // that regard, this can be, and should be, removed.
1990 unsigned ResultReg = 0;
1991 if ((I->getOpcode() == Instruction::SRem ||
1992 I->getOpcode() == Instruction::URem) &&
1993 OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
1994 unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass);
1995 unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass);
1996 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1997 TII.get(Copy), SourceSuperReg).addReg(X86::AX);
1998
1999 // Shift AX right by 8 bits instead of using AH.
2000 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri),
2001 ResultSuperReg).addReg(SourceSuperReg).addImm(8);
2002
2003 // Now reference the 8-bit subreg of the result.
2004 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
2005 /*Kill=*/true, X86::sub_8bit);
2006 }
2007 // Copy the result out of the physreg if we haven't already.
2008 if (!ResultReg) {
2009 ResultReg = createResultReg(TypeEntry.RC);
2010 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg)
2011 .addReg(OpEntry.DivRemResultReg);
2012 }
2013 updateValueMap(I, ResultReg);
2014
2015 return true;
2016}
2017
2018/// \brief Emit a conditional move instruction (if the are supported) to lower
2019/// the select.
2020bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {
2021 // Check if the subtarget supports these instructions.
2022 if (!Subtarget->hasCMov())
2023 return false;
2024
2025 // FIXME: Add support for i8.
2026 if (RetVT < MVT::i16 || RetVT > MVT::i64)
2027 return false;
2028
2029 const Value *Cond = I->getOperand(0);
2030 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2031 bool NeedTest = true;
2032 X86::CondCode CC = X86::COND_NE;
2033
2034 // Optimize conditions coming from a compare if both instructions are in the
2035 // same basic block (values defined in other basic blocks may not have
2036 // initialized registers).
2037 const auto *CI = dyn_cast<CmpInst>(Cond);
2038 if (CI && (CI->getParent() == I->getParent())) {
2039 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2040
2041 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
Craig Topper428169a2016-09-05 07:14:21 +00002042 static const uint16_t SETFOpcTable[2][3] = {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002043 { X86::SETNPr, X86::SETEr , X86::TEST8rr },
2044 { X86::SETPr, X86::SETNEr, X86::OR8rr }
2045 };
Craig Topper428169a2016-09-05 07:14:21 +00002046 const uint16_t *SETFOpc = nullptr;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002047 switch (Predicate) {
2048 default: break;
2049 case CmpInst::FCMP_OEQ:
2050 SETFOpc = &SETFOpcTable[0][0];
2051 Predicate = CmpInst::ICMP_NE;
2052 break;
2053 case CmpInst::FCMP_UNE:
2054 SETFOpc = &SETFOpcTable[1][0];
2055 Predicate = CmpInst::ICMP_NE;
2056 break;
2057 }
2058
2059 bool NeedSwap;
Igor Bregerdb754552017-05-11 06:36:37 +00002060 std::tie(CC, NeedSwap) = X86::getX86ConditionCode(Predicate);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002061 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
2062
2063 const Value *CmpLHS = CI->getOperand(0);
2064 const Value *CmpRHS = CI->getOperand(1);
2065 if (NeedSwap)
2066 std::swap(CmpLHS, CmpRHS);
2067
Mehdi Amini44ede332015-07-09 02:09:04 +00002068 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002069 // Emit a compare of the LHS and RHS, setting the flags.
2070 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2071 return false;
2072
2073 if (SETFOpc) {
2074 unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
2075 unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
2076 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
2077 FlagReg1);
2078 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
2079 FlagReg2);
2080 auto const &II = TII.get(SETFOpc[2]);
2081 if (II.getNumDefs()) {
2082 unsigned TmpReg = createResultReg(&X86::GR8RegClass);
2083 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg)
2084 .addReg(FlagReg2).addReg(FlagReg1);
2085 } else {
2086 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2087 .addReg(FlagReg2).addReg(FlagReg1);
2088 }
2089 }
2090 NeedTest = false;
2091 } else if (foldX86XALUIntrinsic(CC, I, Cond)) {
2092 // Fake request the condition, otherwise the intrinsic might be completely
2093 // optimized away.
2094 unsigned TmpReg = getRegForValue(Cond);
2095 if (TmpReg == 0)
2096 return false;
2097
2098 NeedTest = false;
2099 }
2100
2101 if (NeedTest) {
2102 // Selects operate on i1, however, CondReg is 8 bits width and may contain
2103 // garbage. Indeed, only the less significant bit is supposed to be
2104 // accurate. If we read more than the lsb, we may see non-zero values
2105 // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for
2106 // the select. This is achieved by performing TEST against 1.
2107 unsigned CondReg = getRegForValue(Cond);
2108 if (CondReg == 0)
2109 return false;
2110 bool CondIsKill = hasTrivialKill(Cond);
2111
Guy Blank2bdc74a2016-09-28 11:22:17 +00002112 // In case OpReg is a K register, COPY to a GPR
2113 if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
2114 unsigned KCondReg = CondReg;
Craig Topper058f2f62017-03-28 16:35:29 +00002115 CondReg = createResultReg(&X86::GR32RegClass);
Guy Blank9ae797a2016-08-21 08:02:27 +00002116 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
Guy Blank2bdc74a2016-09-28 11:22:17 +00002117 TII.get(TargetOpcode::COPY), CondReg)
2118 .addReg(KCondReg, getKillRegState(CondIsKill));
Craig Topper058f2f62017-03-28 16:35:29 +00002119 CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Kill=*/true,
2120 X86::sub_8bit);
Guy Blank2bdc74a2016-09-28 11:22:17 +00002121 }
2122 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
2123 .addReg(CondReg, getKillRegState(CondIsKill))
2124 .addImm(1);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002125 }
2126
2127 const Value *LHS = I->getOperand(1);
2128 const Value *RHS = I->getOperand(2);
2129
2130 unsigned RHSReg = getRegForValue(RHS);
2131 bool RHSIsKill = hasTrivialKill(RHS);
2132
2133 unsigned LHSReg = getRegForValue(LHS);
2134 bool LHSIsKill = hasTrivialKill(LHS);
2135
2136 if (!LHSReg || !RHSReg)
2137 return false;
2138
Krzysztof Parzyszek44e25f32017-04-24 18:55:33 +00002139 const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo();
2140 unsigned Opc = X86::getCMovFromCond(CC, TRI.getRegSizeInBits(*RC)/8);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002141 unsigned ResultReg = fastEmitInst_rr(Opc, RC, RHSReg, RHSIsKill,
2142 LHSReg, LHSIsKill);
2143 updateValueMap(I, ResultReg);
2144 return true;
2145}
2146
Sanjay Patel302404b2015-03-05 21:46:54 +00002147/// \brief Emit SSE or AVX instructions to lower the select.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002148///
2149/// Try to use SSE1/SSE2 instructions to simulate a select without branches.
2150/// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary
Sanjay Patel302404b2015-03-05 21:46:54 +00002151/// SSE instructions are available. If AVX is available, try to use a VBLENDV.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002152bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {
2153 // Optimize conditions coming from a compare if both instructions are in the
2154 // same basic block (values defined in other basic blocks may not have
2155 // initialized registers).
2156 const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0));
2157 if (!CI || (CI->getParent() != I->getParent()))
2158 return false;
2159
2160 if (I->getType() != CI->getOperand(0)->getType() ||
2161 !((Subtarget->hasSSE1() && RetVT == MVT::f32) ||
2162 (Subtarget->hasSSE2() && RetVT == MVT::f64)))
2163 return false;
2164
2165 const Value *CmpLHS = CI->getOperand(0);
2166 const Value *CmpRHS = CI->getOperand(1);
2167 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2168
2169 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
2170 // We don't have to materialize a zero constant for this case and can just use
2171 // %x again on the RHS.
2172 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
2173 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
2174 if (CmpRHSC && CmpRHSC->isNullValue())
2175 CmpRHS = CmpLHS;
2176 }
2177
2178 unsigned CC;
2179 bool NeedSwap;
2180 std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate);
2181 if (CC > 7)
2182 return false;
2183
2184 if (NeedSwap)
2185 std::swap(CmpLHS, CmpRHS);
2186
Sanjay Patel302404b2015-03-05 21:46:54 +00002187 // Choose the SSE instruction sequence based on data type (float or double).
Craig Topper428169a2016-09-05 07:14:21 +00002188 static const uint16_t OpcTable[2][4] = {
Craig Topper6413f8a2016-12-06 04:58:39 +00002189 { X86::CMPSSrr, X86::ANDPSrr, X86::ANDNPSrr, X86::ORPSrr },
2190 { X86::CMPSDrr, X86::ANDPDrr, X86::ANDNPDrr, X86::ORPDrr }
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002191 };
2192
Craig Topper428169a2016-09-05 07:14:21 +00002193 const uint16_t *Opc = nullptr;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002194 switch (RetVT.SimpleTy) {
2195 default: return false;
Sanjay Patel302404b2015-03-05 21:46:54 +00002196 case MVT::f32: Opc = &OpcTable[0][0]; break;
2197 case MVT::f64: Opc = &OpcTable[1][0]; break;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002198 }
2199
2200 const Value *LHS = I->getOperand(1);
2201 const Value *RHS = I->getOperand(2);
2202
2203 unsigned LHSReg = getRegForValue(LHS);
2204 bool LHSIsKill = hasTrivialKill(LHS);
2205
2206 unsigned RHSReg = getRegForValue(RHS);
2207 bool RHSIsKill = hasTrivialKill(RHS);
2208
2209 unsigned CmpLHSReg = getRegForValue(CmpLHS);
2210 bool CmpLHSIsKill = hasTrivialKill(CmpLHS);
2211
2212 unsigned CmpRHSReg = getRegForValue(CmpRHS);
2213 bool CmpRHSIsKill = hasTrivialKill(CmpRHS);
2214
2215 if (!LHSReg || !RHSReg || !CmpLHS || !CmpRHS)
2216 return false;
2217
2218 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
Sanjay Patel302404b2015-03-05 21:46:54 +00002219 unsigned ResultReg;
Craig Topper7ef6ea32016-12-05 04:51:31 +00002220
2221 if (Subtarget->hasAVX512()) {
2222 // If we have AVX512 we can use a mask compare and masked movss/sd.
2223 const TargetRegisterClass *VR128X = &X86::VR128XRegClass;
2224 const TargetRegisterClass *VK1 = &X86::VK1RegClass;
2225
2226 unsigned CmpOpcode =
Craig Topper088ba172016-12-05 06:09:55 +00002227 (RetVT == MVT::f32) ? X86::VCMPSSZrr : X86::VCMPSDZrr;
Craig Topper7ef6ea32016-12-05 04:51:31 +00002228 unsigned CmpReg = fastEmitInst_rri(CmpOpcode, VK1, CmpLHSReg, CmpLHSIsKill,
2229 CmpRHSReg, CmpRHSIsKill, CC);
2230
2231 // Need an IMPLICIT_DEF for the input that is used to generate the upper
2232 // bits of the result register since its not based on any of the inputs.
2233 unsigned ImplicitDefReg = createResultReg(VR128X);
2234 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2235 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2236
2237 // Place RHSReg is the passthru of the masked movss/sd operation and put
2238 // LHS in the input. The mask input comes from the compare.
2239 unsigned MovOpcode =
Craig Topper088ba172016-12-05 06:09:55 +00002240 (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk;
Craig Topper7ef6ea32016-12-05 04:51:31 +00002241 unsigned MovReg = fastEmitInst_rrrr(MovOpcode, VR128X, RHSReg, RHSIsKill,
2242 CmpReg, true, ImplicitDefReg, true,
2243 LHSReg, LHSIsKill);
2244
2245 ResultReg = createResultReg(RC);
2246 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2247 TII.get(TargetOpcode::COPY), ResultReg).addReg(MovReg);
2248
2249 } else if (Subtarget->hasAVX()) {
Matthias Braun818c78d2015-08-31 18:25:11 +00002250 const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2251
Sanjay Patel302404b2015-03-05 21:46:54 +00002252 // If we have AVX, create 1 blendv instead of 3 logic instructions.
2253 // Blendv was introduced with SSE 4.1, but the 2 register form implicitly
2254 // uses XMM0 as the selection register. That may need just as many
2255 // instructions as the AND/ANDN/OR sequence due to register moves, so
2256 // don't bother.
2257 unsigned CmpOpcode =
Craig Topper088ba172016-12-05 06:09:55 +00002258 (RetVT == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr;
Sanjay Patel302404b2015-03-05 21:46:54 +00002259 unsigned BlendOpcode =
Craig Topper088ba172016-12-05 06:09:55 +00002260 (RetVT == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr;
2261
Craig Topper7ef6ea32016-12-05 04:51:31 +00002262 unsigned CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpLHSIsKill,
Sanjay Patel302404b2015-03-05 21:46:54 +00002263 CmpRHSReg, CmpRHSIsKill, CC);
Matthias Braun818c78d2015-08-31 18:25:11 +00002264 unsigned VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, RHSIsKill,
2265 LHSReg, LHSIsKill, CmpReg, true);
2266 ResultReg = createResultReg(RC);
2267 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2268 TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg);
Sanjay Patel302404b2015-03-05 21:46:54 +00002269 } else {
Craig Topper6413f8a2016-12-06 04:58:39 +00002270 const TargetRegisterClass *VR128 = &X86::VR128RegClass;
Sanjay Patel302404b2015-03-05 21:46:54 +00002271 unsigned CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill,
2272 CmpRHSReg, CmpRHSIsKill, CC);
Craig Topper6413f8a2016-12-06 04:58:39 +00002273 unsigned AndReg = fastEmitInst_rr(Opc[1], VR128, CmpReg, /*IsKill=*/false,
Sanjay Patel302404b2015-03-05 21:46:54 +00002274 LHSReg, LHSIsKill);
Craig Topper6413f8a2016-12-06 04:58:39 +00002275 unsigned AndNReg = fastEmitInst_rr(Opc[2], VR128, CmpReg, /*IsKill=*/true,
Sanjay Patel302404b2015-03-05 21:46:54 +00002276 RHSReg, RHSIsKill);
Craig Topper6413f8a2016-12-06 04:58:39 +00002277 unsigned OrReg = fastEmitInst_rr(Opc[3], VR128, AndNReg, /*IsKill=*/true,
2278 AndReg, /*IsKill=*/true);
2279 ResultReg = createResultReg(RC);
2280 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2281 TII.get(TargetOpcode::COPY), ResultReg).addReg(OrReg);
Sanjay Patel302404b2015-03-05 21:46:54 +00002282 }
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002283 updateValueMap(I, ResultReg);
2284 return true;
2285}
2286
2287bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) {
2288 // These are pseudo CMOV instructions and will be later expanded into control-
2289 // flow.
2290 unsigned Opc;
2291 switch (RetVT.SimpleTy) {
2292 default: return false;
2293 case MVT::i8: Opc = X86::CMOV_GR8; break;
2294 case MVT::i16: Opc = X86::CMOV_GR16; break;
2295 case MVT::i32: Opc = X86::CMOV_GR32; break;
2296 case MVT::f32: Opc = X86::CMOV_FR32; break;
2297 case MVT::f64: Opc = X86::CMOV_FR64; break;
2298 }
2299
2300 const Value *Cond = I->getOperand(0);
2301 X86::CondCode CC = X86::COND_NE;
2302
2303 // Optimize conditions coming from a compare if both instructions are in the
2304 // same basic block (values defined in other basic blocks may not have
2305 // initialized registers).
2306 const auto *CI = dyn_cast<CmpInst>(Cond);
2307 if (CI && (CI->getParent() == I->getParent())) {
2308 bool NeedSwap;
Igor Bregerdb754552017-05-11 06:36:37 +00002309 std::tie(CC, NeedSwap) = X86::getX86ConditionCode(CI->getPredicate());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002310 if (CC > X86::LAST_VALID_COND)
2311 return false;
2312
2313 const Value *CmpLHS = CI->getOperand(0);
2314 const Value *CmpRHS = CI->getOperand(1);
2315
2316 if (NeedSwap)
2317 std::swap(CmpLHS, CmpRHS);
2318
Mehdi Amini44ede332015-07-09 02:09:04 +00002319 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002320 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2321 return false;
2322 } else {
2323 unsigned CondReg = getRegForValue(Cond);
2324 if (CondReg == 0)
2325 return false;
2326 bool CondIsKill = hasTrivialKill(Cond);
Guy Blank9ae797a2016-08-21 08:02:27 +00002327
Guy Blank2bdc74a2016-09-28 11:22:17 +00002328 // In case OpReg is a K register, COPY to a GPR
2329 if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
2330 unsigned KCondReg = CondReg;
Craig Topper058f2f62017-03-28 16:35:29 +00002331 CondReg = createResultReg(&X86::GR32RegClass);
Guy Blank9ae797a2016-08-21 08:02:27 +00002332 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
Guy Blank2bdc74a2016-09-28 11:22:17 +00002333 TII.get(TargetOpcode::COPY), CondReg)
2334 .addReg(KCondReg, getKillRegState(CondIsKill));
Craig Topper058f2f62017-03-28 16:35:29 +00002335 CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Kill=*/true,
2336 X86::sub_8bit);
Guy Blank2bdc74a2016-09-28 11:22:17 +00002337 }
2338 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
2339 .addReg(CondReg, getKillRegState(CondIsKill))
2340 .addImm(1);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002341 }
2342
2343 const Value *LHS = I->getOperand(1);
2344 const Value *RHS = I->getOperand(2);
2345
2346 unsigned LHSReg = getRegForValue(LHS);
2347 bool LHSIsKill = hasTrivialKill(LHS);
2348
2349 unsigned RHSReg = getRegForValue(RHS);
2350 bool RHSIsKill = hasTrivialKill(RHS);
2351
2352 if (!LHSReg || !RHSReg)
2353 return false;
2354
2355 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2356
2357 unsigned ResultReg =
2358 fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC);
2359 updateValueMap(I, ResultReg);
2360 return true;
2361}
2362
2363bool X86FastISel::X86SelectSelect(const Instruction *I) {
2364 MVT RetVT;
2365 if (!isTypeLegal(I->getType(), RetVT))
2366 return false;
2367
2368 // Check if we can fold the select.
2369 if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) {
2370 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2371 const Value *Opnd = nullptr;
2372 switch (Predicate) {
2373 default: break;
2374 case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break;
2375 case CmpInst::FCMP_TRUE: Opnd = I->getOperand(1); break;
2376 }
2377 // No need for a select anymore - this is an unconditional move.
2378 if (Opnd) {
2379 unsigned OpReg = getRegForValue(Opnd);
2380 if (OpReg == 0)
2381 return false;
2382 bool OpIsKill = hasTrivialKill(Opnd);
2383 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2384 unsigned ResultReg = createResultReg(RC);
2385 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2386 TII.get(TargetOpcode::COPY), ResultReg)
2387 .addReg(OpReg, getKillRegState(OpIsKill));
2388 updateValueMap(I, ResultReg);
2389 return true;
2390 }
2391 }
2392
2393 // First try to use real conditional move instructions.
2394 if (X86FastEmitCMoveSelect(RetVT, I))
2395 return true;
2396
2397 // Try to use a sequence of SSE instructions to simulate a conditional move.
2398 if (X86FastEmitSSESelect(RetVT, I))
2399 return true;
2400
2401 // Fall-back to pseudo conditional move instructions, which will be later
2402 // converted to control-flow.
2403 if (X86FastEmitPseudoSelect(RetVT, I))
2404 return true;
2405
2406 return false;
2407}
2408
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002409bool X86FastISel::X86SelectSIToFP(const Instruction *I) {
Andrea Di Biagio98c36702015-04-20 11:56:59 +00002410 // The target-independent selection algorithm in FastISel already knows how
2411 // to select a SINT_TO_FP if the target is SSE but not AVX.
2412 // Early exit if the subtarget doesn't have AVX.
2413 if (!Subtarget->hasAVX())
2414 return false;
2415
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002416 if (!I->getOperand(0)->getType()->isIntegerTy(32))
2417 return false;
2418
2419 // Select integer to float/double conversion.
2420 unsigned OpReg = getRegForValue(I->getOperand(0));
2421 if (OpReg == 0)
2422 return false;
2423
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002424 const TargetRegisterClass *RC = nullptr;
2425 unsigned Opcode;
2426
Andrea Di Biagiodf93ccf2015-03-04 14:23:25 +00002427 if (I->getType()->isDoubleTy()) {
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002428 // sitofp int -> double
Andrea Di Biagiodf93ccf2015-03-04 14:23:25 +00002429 Opcode = X86::VCVTSI2SDrr;
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002430 RC = &X86::FR64RegClass;
Andrea Di Biagiodf93ccf2015-03-04 14:23:25 +00002431 } else if (I->getType()->isFloatTy()) {
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002432 // sitofp int -> float
Andrea Di Biagiodf93ccf2015-03-04 14:23:25 +00002433 Opcode = X86::VCVTSI2SSrr;
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002434 RC = &X86::FR32RegClass;
2435 } else
2436 return false;
2437
Andrea Di Biagiodf93ccf2015-03-04 14:23:25 +00002438 unsigned ImplicitDefReg = createResultReg(RC);
2439 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2440 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2441 unsigned ResultReg =
2442 fastEmitInst_rr(Opcode, RC, ImplicitDefReg, true, OpReg, false);
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002443 updateValueMap(I, ResultReg);
2444 return true;
2445}
2446
Andrea Di Biagio62622d22015-02-10 12:04:41 +00002447// Helper method used by X86SelectFPExt and X86SelectFPTrunc.
2448bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I,
2449 unsigned TargetOpc,
2450 const TargetRegisterClass *RC) {
2451 assert((I->getOpcode() == Instruction::FPExt ||
2452 I->getOpcode() == Instruction::FPTrunc) &&
2453 "Instruction must be an FPExt or FPTrunc!");
2454
2455 unsigned OpReg = getRegForValue(I->getOperand(0));
2456 if (OpReg == 0)
2457 return false;
2458
Ayman Musa9b802e42017-03-01 10:20:48 +00002459 unsigned ImplicitDefReg;
2460 if (Subtarget->hasAVX()) {
2461 ImplicitDefReg = createResultReg(RC);
2462 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2463 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2464
2465 }
2466
Andrea Di Biagio62622d22015-02-10 12:04:41 +00002467 unsigned ResultReg = createResultReg(RC);
2468 MachineInstrBuilder MIB;
2469 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpc),
2470 ResultReg);
Ayman Musa4b2c9682017-02-23 13:15:44 +00002471
Ayman Musa9b802e42017-03-01 10:20:48 +00002472 if (Subtarget->hasAVX())
Ayman Musa4b2c9682017-02-23 13:15:44 +00002473 MIB.addReg(ImplicitDefReg);
Ayman Musa9b802e42017-03-01 10:20:48 +00002474
Andrea Di Biagio62622d22015-02-10 12:04:41 +00002475 MIB.addReg(OpReg);
2476 updateValueMap(I, ResultReg);
2477 return true;
2478}
2479
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002480bool X86FastISel::X86SelectFPExt(const Instruction *I) {
Andrea Di Biagio62622d22015-02-10 12:04:41 +00002481 if (X86ScalarSSEf64 && I->getType()->isDoubleTy() &&
2482 I->getOperand(0)->getType()->isFloatTy()) {
2483 // fpext from float to double.
2484 unsigned Opc = Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr;
2485 return X86SelectFPExtOrFPTrunc(I, Opc, &X86::FR64RegClass);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002486 }
2487
2488 return false;
2489}
2490
2491bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
Andrea Di Biagio62622d22015-02-10 12:04:41 +00002492 if (X86ScalarSSEf64 && I->getType()->isFloatTy() &&
2493 I->getOperand(0)->getType()->isDoubleTy()) {
2494 // fptrunc from double to float.
2495 unsigned Opc = Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr;
2496 return X86SelectFPExtOrFPTrunc(I, Opc, &X86::FR32RegClass);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002497 }
2498
2499 return false;
2500}
2501
2502bool X86FastISel::X86SelectTrunc(const Instruction *I) {
Mehdi Amini44ede332015-07-09 02:09:04 +00002503 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
2504 EVT DstVT = TLI.getValueType(DL, I->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002505
2506 // This code only handles truncation to byte.
Craig Topperf7ae1012017-08-30 18:08:58 +00002507 if (DstVT != MVT::i8 && DstVT != MVT::i1)
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002508 return false;
2509 if (!TLI.isTypeLegal(SrcVT))
2510 return false;
2511
2512 unsigned InputReg = getRegForValue(I->getOperand(0));
2513 if (!InputReg)
2514 // Unhandled operand. Halt "fast" selection and bail.
2515 return false;
2516
2517 if (SrcVT == MVT::i8) {
2518 // Truncate from i8 to i1; no code needed.
2519 updateValueMap(I, InputReg);
2520 return true;
2521 }
2522
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002523 // Issue an extract_subreg.
2524 unsigned ResultReg = fastEmitInst_extractsubreg(MVT::i8,
Craig Toppere92327e2017-09-18 19:21:21 +00002525 InputReg, false,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002526 X86::sub_8bit);
2527 if (!ResultReg)
2528 return false;
2529
2530 updateValueMap(I, ResultReg);
2531 return true;
2532}
2533
2534bool X86FastISel::IsMemcpySmall(uint64_t Len) {
2535 return Len <= (Subtarget->is64Bit() ? 32 : 16);
2536}
2537
2538bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
2539 X86AddressMode SrcAM, uint64_t Len) {
2540
2541 // Make sure we don't bloat code by inlining very large memcpy's.
2542 if (!IsMemcpySmall(Len))
2543 return false;
2544
2545 bool i64Legal = Subtarget->is64Bit();
2546
2547 // We don't care about alignment here since we just emit integer accesses.
2548 while (Len) {
2549 MVT VT;
2550 if (Len >= 8 && i64Legal)
2551 VT = MVT::i64;
2552 else if (Len >= 4)
2553 VT = MVT::i32;
2554 else if (Len >= 2)
2555 VT = MVT::i16;
2556 else
2557 VT = MVT::i8;
2558
2559 unsigned Reg;
2560 bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg);
2561 RV &= X86FastEmitStore(VT, Reg, /*Kill=*/true, DestAM);
2562 assert(RV && "Failed to emit load or store??");
2563
2564 unsigned Size = VT.getSizeInBits()/8;
2565 Len -= Size;
2566 DestAM.Disp += Size;
2567 SrcAM.Disp += Size;
2568 }
2569
2570 return true;
2571}
2572
2573bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
2574 // FIXME: Handle more intrinsics.
2575 switch (II->getIntrinsicID()) {
2576 default: return false;
Andrea Di Biagio70351782015-02-20 19:37:14 +00002577 case Intrinsic::convert_from_fp16:
2578 case Intrinsic::convert_to_fp16: {
Eric Christopher824f42f2015-05-12 01:26:05 +00002579 if (Subtarget->useSoftFloat() || !Subtarget->hasF16C())
Andrea Di Biagio70351782015-02-20 19:37:14 +00002580 return false;
2581
2582 const Value *Op = II->getArgOperand(0);
2583 unsigned InputReg = getRegForValue(Op);
2584 if (InputReg == 0)
2585 return false;
2586
2587 // F16C only allows converting from float to half and from half to float.
2588 bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16;
2589 if (IsFloatToHalf) {
2590 if (!Op->getType()->isFloatTy())
2591 return false;
2592 } else {
2593 if (!II->getType()->isFloatTy())
2594 return false;
2595 }
2596
2597 unsigned ResultReg = 0;
2598 const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16);
2599 if (IsFloatToHalf) {
2600 // 'InputReg' is implicitly promoted from register class FR32 to
2601 // register class VR128 by method 'constrainOperandRegClass' which is
2602 // directly called by 'fastEmitInst_ri'.
2603 // Instruction VCVTPS2PHrr takes an extra immediate operand which is
Ahmed Bougacha68a8efa2016-02-02 01:44:03 +00002604 // used to provide rounding control: use MXCSR.RC, encoded as 0b100.
2605 // It's consistent with the other FP instructions, which are usually
2606 // controlled by MXCSR.
2607 InputReg = fastEmitInst_ri(X86::VCVTPS2PHrr, RC, InputReg, false, 4);
Andrea Di Biagio70351782015-02-20 19:37:14 +00002608
2609 // Move the lower 32-bits of ResultReg to another register of class GR32.
2610 ResultReg = createResultReg(&X86::GR32RegClass);
2611 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2612 TII.get(X86::VMOVPDI2DIrr), ResultReg)
2613 .addReg(InputReg, RegState::Kill);
2614
2615 // The result value is in the lower 16-bits of ResultReg.
2616 unsigned RegIdx = X86::sub_16bit;
2617 ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, true, RegIdx);
2618 } else {
2619 assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!");
2620 // Explicitly sign-extend the input to 32-bit.
2621 InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::SIGN_EXTEND, InputReg,
2622 /*Kill=*/false);
2623
2624 // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr.
2625 InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR,
2626 InputReg, /*Kill=*/true);
2627
2628 InputReg = fastEmitInst_r(X86::VCVTPH2PSrr, RC, InputReg, /*Kill=*/true);
2629
2630 // The result value is in the lower 32-bits of ResultReg.
2631 // Emit an explicit copy from register class VR128 to register class FR32.
2632 ResultReg = createResultReg(&X86::FR32RegClass);
2633 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2634 TII.get(TargetOpcode::COPY), ResultReg)
2635 .addReg(InputReg, RegState::Kill);
2636 }
2637
2638 updateValueMap(II, ResultReg);
2639 return true;
2640 }
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002641 case Intrinsic::frameaddress: {
David Majnemerca194852015-02-10 22:00:34 +00002642 MachineFunction *MF = FuncInfo.MF;
2643 if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI())
2644 return false;
2645
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002646 Type *RetTy = II->getCalledFunction()->getReturnType();
2647
2648 MVT VT;
2649 if (!isTypeLegal(RetTy, VT))
2650 return false;
2651
2652 unsigned Opc;
2653 const TargetRegisterClass *RC = nullptr;
2654
2655 switch (VT.SimpleTy) {
2656 default: llvm_unreachable("Invalid result type for frameaddress.");
2657 case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break;
2658 case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break;
2659 }
2660
2661 // This needs to be set before we call getPtrSizedFrameRegister, otherwise
2662 // we get the wrong frame register.
Matthias Braun941a7052016-07-28 18:40:00 +00002663 MachineFrameInfo &MFI = MF->getFrameInfo();
2664 MFI.setFrameAddressIsTaken(true);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002665
Eric Christophera1c535b2015-02-02 23:03:45 +00002666 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
David Majnemerca194852015-02-10 22:00:34 +00002667 unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002668 assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
2669 (FrameReg == X86::EBP && VT == MVT::i32)) &&
2670 "Invalid Frame Register!");
2671
2672 // Always make a copy of the frame register to to a vreg first, so that we
2673 // never directly reference the frame register (the TwoAddressInstruction-
2674 // Pass doesn't like that).
2675 unsigned SrcReg = createResultReg(RC);
2676 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2677 TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg);
2678
2679 // Now recursively load from the frame address.
2680 // movq (%rbp), %rax
2681 // movq (%rax), %rax
2682 // movq (%rax), %rax
2683 // ...
2684 unsigned DestReg;
2685 unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
2686 while (Depth--) {
2687 DestReg = createResultReg(RC);
2688 addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2689 TII.get(Opc), DestReg), SrcReg);
2690 SrcReg = DestReg;
2691 }
2692
2693 updateValueMap(II, SrcReg);
2694 return true;
2695 }
2696 case Intrinsic::memcpy: {
2697 const MemCpyInst *MCI = cast<MemCpyInst>(II);
2698 // Don't handle volatile or variable length memcpys.
2699 if (MCI->isVolatile())
2700 return false;
2701
2702 if (isa<ConstantInt>(MCI->getLength())) {
2703 // Small memcpy's are common enough that we want to do them
2704 // without a call if possible.
2705 uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue();
2706 if (IsMemcpySmall(Len)) {
2707 X86AddressMode DestAM, SrcAM;
2708 if (!X86SelectAddress(MCI->getRawDest(), DestAM) ||
2709 !X86SelectAddress(MCI->getRawSource(), SrcAM))
2710 return false;
2711 TryEmitSmallMemcpy(DestAM, SrcAM, Len);
2712 return true;
2713 }
2714 }
2715
2716 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2717 if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth))
2718 return false;
2719
2720 if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)
2721 return false;
2722
Pete Cooper67cf9a72015-11-19 05:56:52 +00002723 return lowerCallTo(II, "memcpy", II->getNumArgOperands() - 2);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002724 }
2725 case Intrinsic::memset: {
2726 const MemSetInst *MSI = cast<MemSetInst>(II);
2727
2728 if (MSI->isVolatile())
2729 return false;
2730
2731 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2732 if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth))
2733 return false;
2734
2735 if (MSI->getDestAddressSpace() > 255)
2736 return false;
2737
Pete Cooper67cf9a72015-11-19 05:56:52 +00002738 return lowerCallTo(II, "memset", II->getNumArgOperands() - 2);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002739 }
2740 case Intrinsic::stackprotector: {
2741 // Emit code to store the stack guard onto the stack.
Mehdi Amini44ede332015-07-09 02:09:04 +00002742 EVT PtrTy = TLI.getPointerTy(DL);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002743
2744 const Value *Op1 = II->getArgOperand(0); // The guard's value.
2745 const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1));
2746
2747 MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
2748
2749 // Grab the frame index.
2750 X86AddressMode AM;
2751 if (!X86SelectAddress(Slot, AM)) return false;
2752 if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
2753 return true;
2754 }
2755 case Intrinsic::dbg_declare: {
2756 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
2757 X86AddressMode AM;
2758 assert(DI->getAddress() && "Null address should be checked earlier!");
2759 if (!X86SelectAddress(DI->getAddress(), AM))
2760 return false;
2761 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
2762 // FIXME may need to add RegState::Debug to any registers produced,
2763 // although ESP/EBP should be the only ones at the moment.
Duncan P. N. Exon Smith3bef6a32015-04-03 19:20:26 +00002764 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
2765 "Expected inlined-at fields to agree");
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002766 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM)
2767 .addImm(0)
2768 .addMetadata(DI->getVariable())
2769 .addMetadata(DI->getExpression());
2770 return true;
2771 }
2772 case Intrinsic::trap: {
2773 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP));
2774 return true;
2775 }
2776 case Intrinsic::sqrt: {
2777 if (!Subtarget->hasSSE1())
2778 return false;
2779
2780 Type *RetTy = II->getCalledFunction()->getReturnType();
2781
2782 MVT VT;
2783 if (!isTypeLegal(RetTy, VT))
2784 return false;
2785
2786 // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT
2787 // is not generated by FastISel yet.
2788 // FIXME: Update this code once tablegen can handle it.
Craig Toppercf65c622016-03-02 04:42:31 +00002789 static const uint16_t SqrtOpc[2][2] = {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002790 {X86::SQRTSSr, X86::VSQRTSSr},
2791 {X86::SQRTSDr, X86::VSQRTSDr}
2792 };
2793 bool HasAVX = Subtarget->hasAVX();
2794 unsigned Opc;
2795 const TargetRegisterClass *RC;
2796 switch (VT.SimpleTy) {
2797 default: return false;
2798 case MVT::f32: Opc = SqrtOpc[0][HasAVX]; RC = &X86::FR32RegClass; break;
2799 case MVT::f64: Opc = SqrtOpc[1][HasAVX]; RC = &X86::FR64RegClass; break;
2800 }
2801
2802 const Value *SrcVal = II->getArgOperand(0);
2803 unsigned SrcReg = getRegForValue(SrcVal);
2804
2805 if (SrcReg == 0)
2806 return false;
2807
2808 unsigned ImplicitDefReg = 0;
2809 if (HasAVX) {
2810 ImplicitDefReg = createResultReg(RC);
2811 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2812 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2813 }
2814
2815 unsigned ResultReg = createResultReg(RC);
2816 MachineInstrBuilder MIB;
2817 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
2818 ResultReg);
2819
2820 if (ImplicitDefReg)
2821 MIB.addReg(ImplicitDefReg);
2822
2823 MIB.addReg(SrcReg);
2824
2825 updateValueMap(II, ResultReg);
2826 return true;
2827 }
2828 case Intrinsic::sadd_with_overflow:
2829 case Intrinsic::uadd_with_overflow:
2830 case Intrinsic::ssub_with_overflow:
2831 case Intrinsic::usub_with_overflow:
2832 case Intrinsic::smul_with_overflow:
2833 case Intrinsic::umul_with_overflow: {
2834 // This implements the basic lowering of the xalu with overflow intrinsics
2835 // into add/sub/mul followed by either seto or setb.
2836 const Function *Callee = II->getCalledFunction();
2837 auto *Ty = cast<StructType>(Callee->getReturnType());
2838 Type *RetTy = Ty->getTypeAtIndex(0U);
Zvi Rackover6f76f462016-11-15 13:50:35 +00002839 assert(Ty->getTypeAtIndex(1)->isIntegerTy() &&
2840 Ty->getTypeAtIndex(1)->getScalarSizeInBits() == 1 &&
2841 "Overflow value expected to be an i1");
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002842
2843 MVT VT;
2844 if (!isTypeLegal(RetTy, VT))
2845 return false;
2846
2847 if (VT < MVT::i8 || VT > MVT::i64)
2848 return false;
2849
2850 const Value *LHS = II->getArgOperand(0);
2851 const Value *RHS = II->getArgOperand(1);
2852
2853 // Canonicalize immediate to the RHS.
2854 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
2855 isCommutativeIntrinsic(II))
2856 std::swap(LHS, RHS);
2857
2858 bool UseIncDec = false;
2859 if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isOne())
2860 UseIncDec = true;
2861
2862 unsigned BaseOpc, CondOpc;
2863 switch (II->getIntrinsicID()) {
2864 default: llvm_unreachable("Unexpected intrinsic!");
2865 case Intrinsic::sadd_with_overflow:
2866 BaseOpc = UseIncDec ? unsigned(X86ISD::INC) : unsigned(ISD::ADD);
2867 CondOpc = X86::SETOr;
2868 break;
2869 case Intrinsic::uadd_with_overflow:
2870 BaseOpc = ISD::ADD; CondOpc = X86::SETBr; break;
2871 case Intrinsic::ssub_with_overflow:
2872 BaseOpc = UseIncDec ? unsigned(X86ISD::DEC) : unsigned(ISD::SUB);
2873 CondOpc = X86::SETOr;
2874 break;
2875 case Intrinsic::usub_with_overflow:
2876 BaseOpc = ISD::SUB; CondOpc = X86::SETBr; break;
2877 case Intrinsic::smul_with_overflow:
2878 BaseOpc = X86ISD::SMUL; CondOpc = X86::SETOr; break;
2879 case Intrinsic::umul_with_overflow:
2880 BaseOpc = X86ISD::UMUL; CondOpc = X86::SETOr; break;
2881 }
2882
2883 unsigned LHSReg = getRegForValue(LHS);
2884 if (LHSReg == 0)
2885 return false;
2886 bool LHSIsKill = hasTrivialKill(LHS);
2887
2888 unsigned ResultReg = 0;
2889 // Check if we have an immediate version.
2890 if (const auto *CI = dyn_cast<ConstantInt>(RHS)) {
Craig Topper66111882016-06-02 04:19:42 +00002891 static const uint16_t Opc[2][4] = {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002892 { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r },
2893 { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r }
2894 };
2895
2896 if (BaseOpc == X86ISD::INC || BaseOpc == X86ISD::DEC) {
2897 ResultReg = createResultReg(TLI.getRegClassFor(VT));
2898 bool IsDec = BaseOpc == X86ISD::DEC;
2899 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2900 TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg)
2901 .addReg(LHSReg, getKillRegState(LHSIsKill));
2902 } else
2903 ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill,
2904 CI->getZExtValue());
2905 }
2906
2907 unsigned RHSReg;
2908 bool RHSIsKill;
2909 if (!ResultReg) {
2910 RHSReg = getRegForValue(RHS);
2911 if (RHSReg == 0)
2912 return false;
2913 RHSIsKill = hasTrivialKill(RHS);
2914 ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg,
2915 RHSIsKill);
2916 }
2917
2918 // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit
2919 // it manually.
2920 if (BaseOpc == X86ISD::UMUL && !ResultReg) {
Craig Toppercf65c622016-03-02 04:42:31 +00002921 static const uint16_t MULOpc[] =
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002922 { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r };
Craig Toppercf65c622016-03-02 04:42:31 +00002923 static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX };
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002924 // First copy the first operand into RAX, which is an implicit input to
2925 // the X86::MUL*r instruction.
2926 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2927 TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8])
2928 .addReg(LHSReg, getKillRegState(LHSIsKill));
2929 ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],
2930 TLI.getRegClassFor(VT), RHSReg, RHSIsKill);
2931 } else if (BaseOpc == X86ISD::SMUL && !ResultReg) {
Craig Toppercf65c622016-03-02 04:42:31 +00002932 static const uint16_t MULOpc[] =
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002933 { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr };
2934 if (VT == MVT::i8) {
2935 // Copy the first operand into AL, which is an implicit input to the
2936 // X86::IMUL8r instruction.
2937 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2938 TII.get(TargetOpcode::COPY), X86::AL)
2939 .addReg(LHSReg, getKillRegState(LHSIsKill));
2940 ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg,
2941 RHSIsKill);
2942 } else
2943 ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],
2944 TLI.getRegClassFor(VT), LHSReg, LHSIsKill,
2945 RHSReg, RHSIsKill);
2946 }
2947
2948 if (!ResultReg)
2949 return false;
2950
Zvi Rackoverf0b9b57b2016-11-15 13:29:23 +00002951 // Assign to a GPR since the overflow return value is lowered to a SETcc.
2952 unsigned ResultReg2 = createResultReg(&X86::GR8RegClass);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002953 assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers.");
2954 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CondOpc),
2955 ResultReg2);
2956
2957 updateValueMap(II, ResultReg, 2);
2958 return true;
2959 }
2960 case Intrinsic::x86_sse_cvttss2si:
2961 case Intrinsic::x86_sse_cvttss2si64:
2962 case Intrinsic::x86_sse2_cvttsd2si:
2963 case Intrinsic::x86_sse2_cvttsd2si64: {
2964 bool IsInputDouble;
2965 switch (II->getIntrinsicID()) {
2966 default: llvm_unreachable("Unexpected intrinsic.");
2967 case Intrinsic::x86_sse_cvttss2si:
2968 case Intrinsic::x86_sse_cvttss2si64:
2969 if (!Subtarget->hasSSE1())
2970 return false;
2971 IsInputDouble = false;
2972 break;
2973 case Intrinsic::x86_sse2_cvttsd2si:
2974 case Intrinsic::x86_sse2_cvttsd2si64:
2975 if (!Subtarget->hasSSE2())
2976 return false;
2977 IsInputDouble = true;
2978 break;
2979 }
2980
2981 Type *RetTy = II->getCalledFunction()->getReturnType();
2982 MVT VT;
2983 if (!isTypeLegal(RetTy, VT))
2984 return false;
2985
Craig Topper66111882016-06-02 04:19:42 +00002986 static const uint16_t CvtOpc[2][2][2] = {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002987 { { X86::CVTTSS2SIrr, X86::VCVTTSS2SIrr },
2988 { X86::CVTTSS2SI64rr, X86::VCVTTSS2SI64rr } },
2989 { { X86::CVTTSD2SIrr, X86::VCVTTSD2SIrr },
2990 { X86::CVTTSD2SI64rr, X86::VCVTTSD2SI64rr } }
2991 };
2992 bool HasAVX = Subtarget->hasAVX();
2993 unsigned Opc;
2994 switch (VT.SimpleTy) {
2995 default: llvm_unreachable("Unexpected result type.");
2996 case MVT::i32: Opc = CvtOpc[IsInputDouble][0][HasAVX]; break;
2997 case MVT::i64: Opc = CvtOpc[IsInputDouble][1][HasAVX]; break;
2998 }
2999
3000 // Check if we can fold insertelement instructions into the convert.
3001 const Value *Op = II->getArgOperand(0);
3002 while (auto *IE = dyn_cast<InsertElementInst>(Op)) {
3003 const Value *Index = IE->getOperand(2);
3004 if (!isa<ConstantInt>(Index))
3005 break;
3006 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
3007
3008 if (Idx == 0) {
3009 Op = IE->getOperand(1);
3010 break;
3011 }
3012 Op = IE->getOperand(0);
3013 }
3014
3015 unsigned Reg = getRegForValue(Op);
3016 if (Reg == 0)
3017 return false;
3018
3019 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
3020 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
3021 .addReg(Reg);
3022
3023 updateValueMap(II, ResultReg);
3024 return true;
3025 }
3026 }
3027}
3028
3029bool X86FastISel::fastLowerArguments() {
3030 if (!FuncInfo.CanLowerReturn)
3031 return false;
3032
3033 const Function *F = FuncInfo.Fn;
3034 if (F->isVarArg())
3035 return false;
3036
3037 CallingConv::ID CC = F->getCallingConv();
3038 if (CC != CallingConv::C)
3039 return false;
3040
3041 if (Subtarget->isCallingConvWin64(CC))
3042 return false;
3043
3044 if (!Subtarget->is64Bit())
3045 return false;
3046
Davide Italianoa63981a2017-07-12 15:26:06 +00003047 if (Subtarget->useSoftFloat())
3048 return false;
3049
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003050 // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
3051 unsigned GPRCnt = 0;
3052 unsigned FPRCnt = 0;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003053 for (auto const &Arg : F->args()) {
Reid Kleckner6652a522017-04-28 18:37:16 +00003054 if (Arg.hasAttribute(Attribute::ByVal) ||
3055 Arg.hasAttribute(Attribute::InReg) ||
3056 Arg.hasAttribute(Attribute::StructRet) ||
3057 Arg.hasAttribute(Attribute::SwiftSelf) ||
3058 Arg.hasAttribute(Attribute::SwiftError) ||
3059 Arg.hasAttribute(Attribute::Nest))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003060 return false;
3061
3062 Type *ArgTy = Arg.getType();
3063 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3064 return false;
3065
Mehdi Amini44ede332015-07-09 02:09:04 +00003066 EVT ArgVT = TLI.getValueType(DL, ArgTy);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003067 if (!ArgVT.isSimple()) return false;
3068 switch (ArgVT.getSimpleVT().SimpleTy) {
3069 default: return false;
3070 case MVT::i32:
3071 case MVT::i64:
3072 ++GPRCnt;
3073 break;
3074 case MVT::f32:
3075 case MVT::f64:
3076 if (!Subtarget->hasSSE1())
3077 return false;
3078 ++FPRCnt;
3079 break;
3080 }
3081
3082 if (GPRCnt > 6)
3083 return false;
3084
3085 if (FPRCnt > 8)
3086 return false;
3087 }
3088
3089 static const MCPhysReg GPR32ArgRegs[] = {
3090 X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
3091 };
3092 static const MCPhysReg GPR64ArgRegs[] = {
3093 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
3094 };
3095 static const MCPhysReg XMMArgRegs[] = {
3096 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3097 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3098 };
3099
3100 unsigned GPRIdx = 0;
3101 unsigned FPRIdx = 0;
3102 for (auto const &Arg : F->args()) {
Mehdi Amini44ede332015-07-09 02:09:04 +00003103 MVT VT = TLI.getSimpleValueType(DL, Arg.getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003104 const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
3105 unsigned SrcReg;
3106 switch (VT.SimpleTy) {
3107 default: llvm_unreachable("Unexpected value type.");
3108 case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break;
3109 case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break;
Justin Bognercd1d5aa2016-08-17 20:30:52 +00003110 case MVT::f32: LLVM_FALLTHROUGH;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003111 case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break;
3112 }
3113 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3114 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3115 // Without this, EmitLiveInCopies may eliminate the livein if its only
3116 // use is a bitcast (which isn't turned into an instruction).
3117 unsigned ResultReg = createResultReg(RC);
3118 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3119 TII.get(TargetOpcode::COPY), ResultReg)
3120 .addReg(DstReg, getKillRegState(true));
3121 updateValueMap(&Arg, ResultReg);
3122 }
3123 return true;
3124}
3125
Nico Weberaf7e8462016-07-14 01:52:51 +00003126static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget,
3127 CallingConv::ID CC,
3128 ImmutableCallSite *CS) {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003129 if (Subtarget->is64Bit())
3130 return 0;
3131 if (Subtarget->getTargetTriple().isOSMSVCRT())
3132 return 0;
3133 if (CC == CallingConv::Fast || CC == CallingConv::GHC ||
3134 CC == CallingConv::HiPE)
3135 return 0;
Sanjoy Dasb11b4402015-11-04 20:33:45 +00003136
3137 if (CS)
Reid Klecknerfb502d22017-04-14 20:19:02 +00003138 if (CS->arg_empty() || !CS->paramHasAttr(0, Attribute::StructRet) ||
3139 CS->paramHasAttr(0, Attribute::InReg) || Subtarget->isTargetMCU())
Sanjoy Dasb11b4402015-11-04 20:33:45 +00003140 return 0;
3141
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003142 return 4;
3143}
3144
3145bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) {
3146 auto &OutVals = CLI.OutVals;
3147 auto &OutFlags = CLI.OutFlags;
3148 auto &OutRegs = CLI.OutRegs;
3149 auto &Ins = CLI.Ins;
3150 auto &InRegs = CLI.InRegs;
3151 CallingConv::ID CC = CLI.CallConv;
3152 bool &IsTailCall = CLI.IsTailCall;
3153 bool IsVarArg = CLI.IsVarArg;
3154 const Value *Callee = CLI.Callee;
Rafael Espindolace4c2bc2015-06-23 12:21:54 +00003155 MCSymbol *Symbol = CLI.Symbol;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003156
3157 bool Is64Bit = Subtarget->is64Bit();
3158 bool IsWin64 = Subtarget->isCallingConvWin64(CC);
3159
Oren Ben Simhondbd4bba2017-05-03 13:07:19 +00003160 const CallInst *CI =
3161 CLI.CS ? dyn_cast<CallInst>(CLI.CS->getInstruction()) : nullptr;
3162 const Function *CalledFn = CI ? CI->getCalledFunction() : nullptr;
3163
3164 // Functions with no_caller_saved_registers that need special handling.
3165 if ((CI && CI->hasFnAttr("no_caller_saved_registers")) ||
3166 (CalledFn && CalledFn->hasFnAttribute("no_caller_saved_registers")))
3167 return false;
3168
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003169 // Handle only C, fastcc, and webkit_js calling conventions for now.
3170 switch (CC) {
3171 default: return false;
3172 case CallingConv::C:
3173 case CallingConv::Fast:
3174 case CallingConv::WebKit_JS:
Manman Renf8bdd882016-04-05 22:41:47 +00003175 case CallingConv::Swift:
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003176 case CallingConv::X86_FastCall:
Nico Weberecdf45b2016-07-14 13:54:26 +00003177 case CallingConv::X86_StdCall:
Nico Weberaf7e8462016-07-14 01:52:51 +00003178 case CallingConv::X86_ThisCall:
Martin Storsjo2f24e932017-07-17 20:05:19 +00003179 case CallingConv::Win64:
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003180 case CallingConv::X86_64_SysV:
3181 break;
3182 }
3183
3184 // Allow SelectionDAG isel to handle tail calls.
3185 if (IsTailCall)
3186 return false;
3187
3188 // fastcc with -tailcallopt is intended to provide a guaranteed
3189 // tail call optimization. Fastisel doesn't know how to do that.
3190 if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
3191 return false;
3192
3193 // Don't know how to handle Win64 varargs yet. Nothing special needed for
3194 // x86-32. Special handling for x86-64 is implemented.
3195 if (IsVarArg && IsWin64)
3196 return false;
3197
3198 // Don't know about inalloca yet.
3199 if (CLI.CS && CLI.CS->hasInAllocaArgument())
3200 return false;
3201
Manman Ren57518142016-04-11 21:08:06 +00003202 for (auto Flag : CLI.OutFlags)
3203 if (Flag.isSwiftError())
3204 return false;
3205
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003206 SmallVector<MVT, 16> OutVTs;
3207 SmallVector<unsigned, 16> ArgRegs;
3208
3209 // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra
3210 // instruction. This is safe because it is common to all FastISel supported
3211 // calling conventions on x86.
3212 for (int i = 0, e = OutVals.size(); i != e; ++i) {
3213 Value *&Val = OutVals[i];
3214 ISD::ArgFlagsTy Flags = OutFlags[i];
3215 if (auto *CI = dyn_cast<ConstantInt>(Val)) {
3216 if (CI->getBitWidth() < 32) {
3217 if (Flags.isSExt())
3218 Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext()));
3219 else
3220 Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext()));
3221 }
3222 }
3223
3224 // Passing bools around ends up doing a trunc to i1 and passing it.
3225 // Codegen this as an argument + "and 1".
3226 MVT VT;
3227 auto *TI = dyn_cast<TruncInst>(Val);
3228 unsigned ResultReg;
3229 if (TI && TI->getType()->isIntegerTy(1) && CLI.CS &&
3230 (TI->getParent() == CLI.CS->getInstruction()->getParent()) &&
3231 TI->hasOneUse()) {
3232 Value *PrevVal = TI->getOperand(0);
3233 ResultReg = getRegForValue(PrevVal);
3234
3235 if (!ResultReg)
3236 return false;
3237
3238 if (!isTypeLegal(PrevVal->getType(), VT))
3239 return false;
3240
3241 ResultReg =
3242 fastEmit_ri(VT, VT, ISD::AND, ResultReg, hasTrivialKill(PrevVal), 1);
3243 } else {
3244 if (!isTypeLegal(Val->getType(), VT))
3245 return false;
3246 ResultReg = getRegForValue(Val);
3247 }
3248
3249 if (!ResultReg)
3250 return false;
3251
3252 ArgRegs.push_back(ResultReg);
3253 OutVTs.push_back(VT);
3254 }
3255
3256 // Analyze operands of the call, assigning locations to each operand.
3257 SmallVector<CCValAssign, 16> ArgLocs;
3258 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext());
3259
3260 // Allocate shadow area for Win64
3261 if (IsWin64)
3262 CCInfo.AllocateStack(32, 8);
3263
3264 CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);
3265
3266 // Get a count of how many bytes are to be pushed on the stack.
Jeroen Ketema740f9d72015-09-29 10:12:57 +00003267 unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003268
3269 // Issue CALLSEQ_START
3270 unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
3271 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
Serge Pavlovd526b132017-05-09 13:35:13 +00003272 .addImm(NumBytes).addImm(0).addImm(0);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003273
3274 // Walk the register/memloc assignments, inserting copies/loads.
Eric Christophera1c535b2015-02-02 23:03:45 +00003275 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003276 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3277 CCValAssign const &VA = ArgLocs[i];
3278 const Value *ArgVal = OutVals[VA.getValNo()];
3279 MVT ArgVT = OutVTs[VA.getValNo()];
3280
3281 if (ArgVT == MVT::x86mmx)
3282 return false;
3283
3284 unsigned ArgReg = ArgRegs[VA.getValNo()];
3285
3286 // Promote the value if needed.
3287 switch (VA.getLocInfo()) {
3288 case CCValAssign::Full: break;
3289 case CCValAssign::SExt: {
3290 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3291 "Unexpected extend");
David Majnemer2c5aeab2016-05-04 00:22:23 +00003292
Craig Topper088ba172016-12-05 06:09:55 +00003293 if (ArgVT == MVT::i1)
David Majnemer2c5aeab2016-05-04 00:22:23 +00003294 return false;
3295
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003296 bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3297 ArgVT, ArgReg);
3298 assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
3299 ArgVT = VA.getLocVT();
3300 break;
3301 }
3302 case CCValAssign::ZExt: {
3303 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3304 "Unexpected extend");
David Majnemer2c5aeab2016-05-04 00:22:23 +00003305
3306 // Handle zero-extension from i1 to i8, which is common.
Craig Topper088ba172016-12-05 06:09:55 +00003307 if (ArgVT == MVT::i1) {
David Majnemer2c5aeab2016-05-04 00:22:23 +00003308 // Set the high bits to zero.
3309 ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg, /*TODO: Kill=*/false);
3310 ArgVT = MVT::i8;
3311
3312 if (ArgReg == 0)
3313 return false;
3314 }
3315
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003316 bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3317 ArgVT, ArgReg);
3318 assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
3319 ArgVT = VA.getLocVT();
3320 break;
3321 }
3322 case CCValAssign::AExt: {
3323 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3324 "Unexpected extend");
3325 bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg,
3326 ArgVT, ArgReg);
3327 if (!Emitted)
3328 Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3329 ArgVT, ArgReg);
3330 if (!Emitted)
3331 Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3332 ArgVT, ArgReg);
3333
3334 assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
3335 ArgVT = VA.getLocVT();
3336 break;
3337 }
3338 case CCValAssign::BCvt: {
3339 ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg,
3340 /*TODO: Kill=*/false);
3341 assert(ArgReg && "Failed to emit a bitcast!");
3342 ArgVT = VA.getLocVT();
3343 break;
3344 }
3345 case CCValAssign::VExt:
3346 // VExt has not been implemented, so this should be impossible to reach
3347 // for now. However, fallback to Selection DAG isel once implemented.
3348 return false;
3349 case CCValAssign::AExtUpper:
3350 case CCValAssign::SExtUpper:
3351 case CCValAssign::ZExtUpper:
3352 case CCValAssign::FPExt:
3353 llvm_unreachable("Unexpected loc info!");
3354 case CCValAssign::Indirect:
3355 // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
3356 // support this.
3357 return false;
3358 }
3359
3360 if (VA.isRegLoc()) {
3361 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3362 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
3363 OutRegs.push_back(VA.getLocReg());
3364 } else {
3365 assert(VA.isMemLoc());
3366
3367 // Don't emit stores for undef values.
3368 if (isa<UndefValue>(ArgVal))
3369 continue;
3370
3371 unsigned LocMemOffset = VA.getLocMemOffset();
3372 X86AddressMode AM;
3373 AM.Base.Reg = RegInfo->getStackRegister();
3374 AM.Disp = LocMemOffset;
3375 ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()];
3376 unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
3377 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
Alex Lorenze40c8a22015-08-11 23:09:45 +00003378 MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset),
3379 MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003380 if (Flags.isByVal()) {
3381 X86AddressMode SrcAM;
3382 SrcAM.Base.Reg = ArgReg;
3383 if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()))
3384 return false;
3385 } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
3386 // If this is a really simple value, emit this with the Value* version
3387 // of X86FastEmitStore. If it isn't simple, we don't want to do this,
3388 // as it can cause us to reevaluate the argument.
3389 if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO))
3390 return false;
3391 } else {
3392 bool ValIsKill = hasTrivialKill(ArgVal);
3393 if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO))
3394 return false;
3395 }
3396 }
3397 }
3398
3399 // ELF / PIC requires GOT in the EBX register before function calls via PLT
3400 // GOT pointer.
3401 if (Subtarget->isPICStyleGOT()) {
3402 unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3403 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3404 TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
3405 }
3406
3407 if (Is64Bit && IsVarArg && !IsWin64) {
3408 // From AMD64 ABI document:
3409 // For calls that may call functions that use varargs or stdargs
3410 // (prototype-less calls or calls to functions containing ellipsis (...) in
3411 // the declaration) %al is used as hidden argument to specify the number
3412 // of SSE registers used. The contents of %al do not need to match exactly
3413 // the number of registers, but must be an ubound on the number of SSE
3414 // registers used and is in the range 0 - 8 inclusive.
3415
3416 // Count the number of XMM registers allocated.
3417 static const MCPhysReg XMMArgRegs[] = {
3418 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3419 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3420 };
Tim Northover3b6b7ca2015-02-21 02:11:17 +00003421 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003422 assert((Subtarget->hasSSE1() || !NumXMMRegs)
3423 && "SSE registers cannot be used when SSE is disabled");
3424 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
3425 X86::AL).addImm(NumXMMRegs);
3426 }
3427
3428 // Materialize callee address in a register. FIXME: GV address can be
3429 // handled with a CALLpcrel32 instead.
3430 X86AddressMode CalleeAM;
3431 if (!X86SelectCallAddress(Callee, CalleeAM))
3432 return false;
3433
3434 unsigned CalleeOp = 0;
3435 const GlobalValue *GV = nullptr;
3436 if (CalleeAM.GV != nullptr) {
3437 GV = CalleeAM.GV;
3438 } else if (CalleeAM.Base.Reg != 0) {
3439 CalleeOp = CalleeAM.Base.Reg;
3440 } else
3441 return false;
3442
3443 // Issue the call.
3444 MachineInstrBuilder MIB;
3445 if (CalleeOp) {
3446 // Register-indirect call.
3447 unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r;
3448 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc))
3449 .addReg(CalleeOp);
3450 } else {
3451 // Direct call.
3452 assert(GV && "Not a direct call");
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003453 // See if we need any target-specific flags on the GV operand.
Rafael Espindola46107b92016-05-19 18:49:29 +00003454 unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV);
Asaf Badouh89406d12016-04-20 08:32:57 +00003455 // Ignore NonLazyBind attribute in FastISel
3456 if (OpFlags == X86II::MO_GOTPCREL)
3457 OpFlags = 0;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003458
Reid Kleckner7662d502017-08-05 00:10:43 +00003459 // This will be a direct call, or an indirect call through memory for
3460 // NonLazyBind calls or dllimport calls.
3461 bool NeedLoad = OpFlags == X86II::MO_DLLIMPORT;
3462 unsigned CallOpc = NeedLoad
3463 ? (Is64Bit ? X86::CALL64m : X86::CALL32m)
3464 : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32);
3465
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003466 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc));
Reid Kleckner7662d502017-08-05 00:10:43 +00003467 if (NeedLoad)
3468 MIB.addReg(Is64Bit ? X86::RIP : 0).addImm(1).addReg(0);
Rafael Espindolace4c2bc2015-06-23 12:21:54 +00003469 if (Symbol)
3470 MIB.addSym(Symbol, OpFlags);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003471 else
3472 MIB.addGlobalAddress(GV, 0, OpFlags);
Reid Kleckner7662d502017-08-05 00:10:43 +00003473 if (NeedLoad)
3474 MIB.addReg(0);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003475 }
3476
3477 // Add a register mask operand representing the call-preserved registers.
3478 // Proper defs for return values will be added by setPhysRegsDeadExcept().
Eric Christopher9deb75d2015-03-11 22:42:13 +00003479 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003480
3481 // Add an implicit use GOT pointer in EBX.
3482 if (Subtarget->isPICStyleGOT())
3483 MIB.addReg(X86::EBX, RegState::Implicit);
3484
3485 if (Is64Bit && IsVarArg && !IsWin64)
3486 MIB.addReg(X86::AL, RegState::Implicit);
3487
3488 // Add implicit physical register uses to the call.
3489 for (auto Reg : OutRegs)
3490 MIB.addReg(Reg, RegState::Implicit);
3491
3492 // Issue CALLSEQ_END
3493 unsigned NumBytesForCalleeToPop =
Nico Weberaf7e8462016-07-14 01:52:51 +00003494 X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg,
3495 TM.Options.GuaranteedTailCallOpt)
3496 ? NumBytes // Callee pops everything.
3497 : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CS);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003498 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
3499 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
3500 .addImm(NumBytes).addImm(NumBytesForCalleeToPop);
3501
3502 // Now handle call return values.
3503 SmallVector<CCValAssign, 16> RVLocs;
3504 CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs,
3505 CLI.RetTy->getContext());
3506 CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
3507
3508 // Copy all of the result registers out of their specified physreg.
3509 unsigned ResultReg = FuncInfo.CreateRegs(CLI.RetTy);
3510 for (unsigned i = 0; i != RVLocs.size(); ++i) {
3511 CCValAssign &VA = RVLocs[i];
3512 EVT CopyVT = VA.getValVT();
3513 unsigned CopyReg = ResultReg + i;
Craig Topper533b1bd2017-03-30 21:02:52 +00003514 unsigned SrcReg = VA.getLocReg();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003515
3516 // If this is x86-64, and we disabled SSE, we can't return FP values
3517 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
3518 ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
3519 report_fatal_error("SSE register return with SSE disabled");
3520 }
3521
Craig Topper3001b352017-03-30 21:05:33 +00003522 // If the return value is an i1 and AVX-512 is enabled, we need
3523 // to do a fixup to make the copy legal.
Craig Topper533b1bd2017-03-30 21:02:52 +00003524 if (CopyVT == MVT::i1 && SrcReg == X86::AL && Subtarget->hasAVX512()) {
3525 // Need to copy to a GR32 first.
3526 // TODO: MOVZX isn't great here. We don't care about the upper bits.
3527 SrcReg = createResultReg(&X86::GR32RegClass);
3528 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3529 TII.get(X86::MOVZX32rr8), SrcReg).addReg(X86::AL);
3530 }
3531
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003532 // If we prefer to use the value in xmm registers, copy it out as f80 and
3533 // use a truncate to move it from fp stack reg to xmm reg.
Craig Topper533b1bd2017-03-30 21:02:52 +00003534 if ((SrcReg == X86::FP0 || SrcReg == X86::FP1) &&
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003535 isScalarFPTypeInSSEReg(VA.getValVT())) {
3536 CopyVT = MVT::f80;
3537 CopyReg = createResultReg(&X86::RFP80RegClass);
3538 }
3539
3540 // Copy out the result.
3541 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
Craig Topper533b1bd2017-03-30 21:02:52 +00003542 TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003543 InRegs.push_back(VA.getLocReg());
3544
3545 // Round the f80 to the right size, which also moves it to the appropriate
3546 // xmm register. This is accomplished by storing the f80 value in memory
3547 // and then loading it back.
3548 if (CopyVT != VA.getValVT()) {
3549 EVT ResVT = VA.getValVT();
3550 unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
3551 unsigned MemSize = ResVT.getSizeInBits()/8;
3552 int FI = MFI.CreateStackObject(MemSize, MemSize, false);
3553 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3554 TII.get(Opc)), FI)
3555 .addReg(CopyReg);
3556 Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
3557 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3558 TII.get(Opc), ResultReg + i), FI);
3559 }
3560 }
3561
3562 CLI.ResultReg = ResultReg;
3563 CLI.NumResultRegs = RVLocs.size();
3564 CLI.Call = MIB;
3565
3566 return true;
3567}
3568
3569bool
3570X86FastISel::fastSelectInstruction(const Instruction *I) {
3571 switch (I->getOpcode()) {
3572 default: break;
3573 case Instruction::Load:
3574 return X86SelectLoad(I);
3575 case Instruction::Store:
3576 return X86SelectStore(I);
3577 case Instruction::Ret:
3578 return X86SelectRet(I);
3579 case Instruction::ICmp:
3580 case Instruction::FCmp:
3581 return X86SelectCmp(I);
3582 case Instruction::ZExt:
3583 return X86SelectZExt(I);
Craig Topper619b7592017-09-02 18:53:46 +00003584 case Instruction::SExt:
3585 return X86SelectSExt(I);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003586 case Instruction::Br:
3587 return X86SelectBranch(I);
3588 case Instruction::LShr:
3589 case Instruction::AShr:
3590 case Instruction::Shl:
3591 return X86SelectShift(I);
3592 case Instruction::SDiv:
3593 case Instruction::UDiv:
3594 case Instruction::SRem:
3595 case Instruction::URem:
3596 return X86SelectDivRem(I);
3597 case Instruction::Select:
3598 return X86SelectSelect(I);
3599 case Instruction::Trunc:
3600 return X86SelectTrunc(I);
3601 case Instruction::FPExt:
3602 return X86SelectFPExt(I);
3603 case Instruction::FPTrunc:
3604 return X86SelectFPTrunc(I);
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00003605 case Instruction::SIToFP:
3606 return X86SelectSIToFP(I);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003607 case Instruction::IntToPtr: // Deliberate fall-through.
3608 case Instruction::PtrToInt: {
Mehdi Amini44ede332015-07-09 02:09:04 +00003609 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
3610 EVT DstVT = TLI.getValueType(DL, I->getType());
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003611 if (DstVT.bitsGT(SrcVT))
3612 return X86SelectZExt(I);
3613 if (DstVT.bitsLT(SrcVT))
3614 return X86SelectTrunc(I);
3615 unsigned Reg = getRegForValue(I->getOperand(0));
3616 if (Reg == 0) return false;
3617 updateValueMap(I, Reg);
3618 return true;
3619 }
Andrea Di Biagio77f62652015-10-02 16:08:05 +00003620 case Instruction::BitCast: {
3621 // Select SSE2/AVX bitcasts between 128/256 bit vector types.
3622 if (!Subtarget->hasSSE2())
3623 return false;
3624
3625 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
3626 EVT DstVT = TLI.getValueType(DL, I->getType());
3627
3628 if (!SrcVT.isSimple() || !DstVT.isSimple())
3629 return false;
3630
Craig Topperdb8467a2016-12-05 05:50:51 +00003631 MVT SVT = SrcVT.getSimpleVT();
3632 MVT DVT = DstVT.getSimpleVT();
3633
3634 if (!SVT.is128BitVector() &&
3635 !(Subtarget->hasAVX() && SVT.is256BitVector()) &&
3636 !(Subtarget->hasAVX512() && SVT.is512BitVector() &&
3637 (Subtarget->hasBWI() || (SVT.getScalarSizeInBits() >= 32 &&
3638 DVT.getScalarSizeInBits() >= 32))))
Andrea Di Biagio77f62652015-10-02 16:08:05 +00003639 return false;
3640
3641 unsigned Reg = getRegForValue(I->getOperand(0));
3642 if (Reg == 0)
3643 return false;
3644
3645 // No instruction is needed for conversion. Reuse the register used by
3646 // the fist operand.
3647 updateValueMap(I, Reg);
3648 return true;
3649 }
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003650 }
3651
3652 return false;
3653}
3654
3655unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) {
3656 if (VT > MVT::i64)
3657 return 0;
3658
3659 uint64_t Imm = CI->getZExtValue();
3660 if (Imm == 0) {
3661 unsigned SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass);
3662 switch (VT.SimpleTy) {
3663 default: llvm_unreachable("Unexpected value type");
3664 case MVT::i1:
3665 case MVT::i8:
3666 return fastEmitInst_extractsubreg(MVT::i8, SrcReg, /*Kill=*/true,
3667 X86::sub_8bit);
3668 case MVT::i16:
3669 return fastEmitInst_extractsubreg(MVT::i16, SrcReg, /*Kill=*/true,
3670 X86::sub_16bit);
3671 case MVT::i32:
3672 return SrcReg;
3673 case MVT::i64: {
3674 unsigned ResultReg = createResultReg(&X86::GR64RegClass);
3675 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3676 TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3677 .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3678 return ResultReg;
3679 }
3680 }
3681 }
3682
3683 unsigned Opc = 0;
3684 switch (VT.SimpleTy) {
3685 default: llvm_unreachable("Unexpected value type");
Craig Topper058f2f62017-03-28 16:35:29 +00003686 case MVT::i1:
3687 // TODO: Support this properly.
3688 if (Subtarget->hasAVX512())
3689 return 0;
3690 VT = MVT::i8;
3691 LLVM_FALLTHROUGH;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003692 case MVT::i8: Opc = X86::MOV8ri; break;
3693 case MVT::i16: Opc = X86::MOV16ri; break;
3694 case MVT::i32: Opc = X86::MOV32ri; break;
3695 case MVT::i64: {
3696 if (isUInt<32>(Imm))
3697 Opc = X86::MOV32ri;
3698 else if (isInt<32>(Imm))
3699 Opc = X86::MOV64ri32;
3700 else
3701 Opc = X86::MOV64ri;
3702 break;
3703 }
3704 }
3705 if (VT == MVT::i64 && Opc == X86::MOV32ri) {
3706 unsigned SrcReg = fastEmitInst_i(Opc, &X86::GR32RegClass, Imm);
3707 unsigned ResultReg = createResultReg(&X86::GR64RegClass);
3708 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3709 TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3710 .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3711 return ResultReg;
3712 }
3713 return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
3714}
3715
3716unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) {
3717 if (CFP->isNullValue())
3718 return fastMaterializeFloatZero(CFP);
3719
3720 // Can't handle alternate code models yet.
3721 CodeModel::Model CM = TM.getCodeModel();
3722 if (CM != CodeModel::Small && CM != CodeModel::Large)
3723 return 0;
3724
3725 // Get opcode and regclass of the output for the given load instruction.
3726 unsigned Opc = 0;
3727 const TargetRegisterClass *RC = nullptr;
3728 switch (VT.SimpleTy) {
3729 default: return 0;
3730 case MVT::f32:
3731 if (X86ScalarSSEf32) {
3732 Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
3733 RC = &X86::FR32RegClass;
3734 } else {
3735 Opc = X86::LD_Fp32m;
3736 RC = &X86::RFP32RegClass;
3737 }
3738 break;
3739 case MVT::f64:
3740 if (X86ScalarSSEf64) {
3741 Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
3742 RC = &X86::FR64RegClass;
3743 } else {
3744 Opc = X86::LD_Fp64m;
3745 RC = &X86::RFP64RegClass;
3746 }
3747 break;
3748 case MVT::f80:
3749 // No f80 support yet.
3750 return 0;
3751 }
3752
3753 // MachineConstantPool wants an explicit alignment.
3754 unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
3755 if (Align == 0) {
3756 // Alignment of vector types. FIXME!
3757 Align = DL.getTypeAllocSize(CFP->getType());
3758 }
3759
3760 // x86-32 PIC requires a PIC base register for constant pools.
3761 unsigned PICBase = 0;
Rafael Espindolac7e98132016-05-20 12:20:10 +00003762 unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr);
3763 if (OpFlag == X86II::MO_PIC_BASE_OFFSET)
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003764 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
Rafael Espindolac7e98132016-05-20 12:20:10 +00003765 else if (OpFlag == X86II::MO_GOTOFF)
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003766 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
Rafael Espindolac7e98132016-05-20 12:20:10 +00003767 else if (Subtarget->is64Bit() && TM.getCodeModel() == CodeModel::Small)
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003768 PICBase = X86::RIP;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003769
3770 // Create the load from the constant pool.
3771 unsigned CPI = MCP.getConstantPoolIndex(CFP, Align);
3772 unsigned ResultReg = createResultReg(RC);
3773
3774 if (CM == CodeModel::Large) {
3775 unsigned AddrReg = createResultReg(&X86::GR64RegClass);
3776 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3777 AddrReg)
3778 .addConstantPoolIndex(CPI, 0, OpFlag);
3779 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3780 TII.get(Opc), ResultReg);
3781 addDirectMem(MIB, AddrReg);
3782 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
Alex Lorenze40c8a22015-08-11 23:09:45 +00003783 MachinePointerInfo::getConstantPool(*FuncInfo.MF),
3784 MachineMemOperand::MOLoad, DL.getPointerSize(), Align);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003785 MIB->addMemOperand(*FuncInfo.MF, MMO);
3786 return ResultReg;
3787 }
3788
3789 addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3790 TII.get(Opc), ResultReg),
3791 CPI, PICBase, OpFlag);
3792 return ResultReg;
3793}
3794
3795unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) {
3796 // Can't handle alternate code models yet.
3797 if (TM.getCodeModel() != CodeModel::Small)
3798 return 0;
3799
3800 // Materialize addresses with LEA/MOV instructions.
3801 X86AddressMode AM;
3802 if (X86SelectAddress(GV, AM)) {
3803 // If the expression is just a basereg, then we're done, otherwise we need
3804 // to emit an LEA.
3805 if (AM.BaseType == X86AddressMode::RegBase &&
3806 AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
3807 return AM.Base.Reg;
3808
3809 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
3810 if (TM.getRelocationModel() == Reloc::Static &&
Mehdi Amini44ede332015-07-09 02:09:04 +00003811 TLI.getPointerTy(DL) == MVT::i64) {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003812 // The displacement code could be more than 32 bits away so we need to use
3813 // an instruction with a 64 bit immediate
3814 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3815 ResultReg)
3816 .addGlobalAddress(GV);
3817 } else {
Mehdi Amini44ede332015-07-09 02:09:04 +00003818 unsigned Opc =
3819 TLI.getPointerTy(DL) == MVT::i32
3820 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3821 : X86::LEA64r;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003822 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3823 TII.get(Opc), ResultReg), AM);
3824 }
3825 return ResultReg;
3826 }
3827 return 0;
3828}
3829
3830unsigned X86FastISel::fastMaterializeConstant(const Constant *C) {
Mehdi Amini44ede332015-07-09 02:09:04 +00003831 EVT CEVT = TLI.getValueType(DL, C->getType(), true);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003832
3833 // Only handle simple types.
3834 if (!CEVT.isSimple())
3835 return 0;
3836 MVT VT = CEVT.getSimpleVT();
3837
3838 if (const auto *CI = dyn_cast<ConstantInt>(C))
3839 return X86MaterializeInt(CI, VT);
3840 else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
3841 return X86MaterializeFP(CFP, VT);
3842 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
3843 return X86MaterializeGV(GV, VT);
3844
3845 return 0;
3846}
3847
3848unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) {
3849 // Fail on dynamic allocas. At this point, getRegForValue has already
3850 // checked its CSE maps, so if we're here trying to handle a dynamic
3851 // alloca, we're not going to succeed. X86SelectAddress has a
3852 // check for dynamic allocas, because it's called directly from
3853 // various places, but targetMaterializeAlloca also needs a check
3854 // in order to avoid recursion between getRegForValue,
3855 // X86SelectAddrss, and targetMaterializeAlloca.
3856 if (!FuncInfo.StaticAllocaMap.count(C))
3857 return 0;
3858 assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");
3859
3860 X86AddressMode AM;
3861 if (!X86SelectAddress(C, AM))
3862 return 0;
Mehdi Amini44ede332015-07-09 02:09:04 +00003863 unsigned Opc =
3864 TLI.getPointerTy(DL) == MVT::i32
3865 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3866 : X86::LEA64r;
3867 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003868 unsigned ResultReg = createResultReg(RC);
3869 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3870 TII.get(Opc), ResultReg), AM);
3871 return ResultReg;
3872}
3873
3874unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) {
3875 MVT VT;
3876 if (!isTypeLegal(CF->getType(), VT))
3877 return 0;
3878
3879 // Get opcode and regclass for the given zero.
3880 unsigned Opc = 0;
3881 const TargetRegisterClass *RC = nullptr;
3882 switch (VT.SimpleTy) {
3883 default: return 0;
3884 case MVT::f32:
3885 if (X86ScalarSSEf32) {
3886 Opc = X86::FsFLD0SS;
3887 RC = &X86::FR32RegClass;
3888 } else {
3889 Opc = X86::LD_Fp032;
3890 RC = &X86::RFP32RegClass;
3891 }
3892 break;
3893 case MVT::f64:
3894 if (X86ScalarSSEf64) {
3895 Opc = X86::FsFLD0SD;
3896 RC = &X86::FR64RegClass;
3897 } else {
3898 Opc = X86::LD_Fp064;
3899 RC = &X86::RFP64RegClass;
3900 }
3901 break;
3902 case MVT::f80:
3903 // No f80 support yet.
3904 return 0;
3905 }
3906
3907 unsigned ResultReg = createResultReg(RC);
3908 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
3909 return ResultReg;
3910}
3911
3912
3913bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
3914 const LoadInst *LI) {
3915 const Value *Ptr = LI->getPointerOperand();
3916 X86AddressMode AM;
3917 if (!X86SelectAddress(Ptr, AM))
3918 return false;
3919
3920 const X86InstrInfo &XII = (const X86InstrInfo &)TII;
3921
3922 unsigned Size = DL.getTypeAllocSize(LI->getType());
3923 unsigned Alignment = LI->getAlignment();
3924
3925 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3926 Alignment = DL.getABITypeAlignment(LI->getType());
3927
3928 SmallVector<MachineOperand, 8> AddrOps;
3929 AM.getFullAddress(AddrOps);
3930
Keno Fischere70b31f2015-06-08 20:09:58 +00003931 MachineInstr *Result = XII.foldMemoryOperandImpl(
Duncan P. N. Exon Smith9cfc75c2016-06-30 00:01:54 +00003932 *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, Alignment,
Keno Fischere70b31f2015-06-08 20:09:58 +00003933 /*AllowCommute=*/true);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003934 if (!Result)
3935 return false;
3936
Pete Cooperd31583d2015-05-06 21:37:19 +00003937 // The index register could be in the wrong register class. Unfortunately,
3938 // foldMemoryOperandImpl could have commuted the instruction so its not enough
3939 // to just look at OpNo + the offset to the index reg. We actually need to
3940 // scan the instruction to find the index reg and see if its the correct reg
3941 // class.
Matthias Braune41e1462015-05-29 02:56:46 +00003942 unsigned OperandNo = 0;
3943 for (MachineInstr::mop_iterator I = Result->operands_begin(),
3944 E = Result->operands_end(); I != E; ++I, ++OperandNo) {
3945 MachineOperand &MO = *I;
3946 if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg)
Pete Cooperd31583d2015-05-06 21:37:19 +00003947 continue;
3948 // Found the index reg, now try to rewrite it.
Pete Cooperd31583d2015-05-06 21:37:19 +00003949 unsigned IndexReg = constrainOperandRegClass(Result->getDesc(),
Matthias Braune41e1462015-05-29 02:56:46 +00003950 MO.getReg(), OperandNo);
3951 if (IndexReg == MO.getReg())
Pete Cooperd31583d2015-05-06 21:37:19 +00003952 continue;
Matthias Braune41e1462015-05-29 02:56:46 +00003953 MO.setReg(IndexReg);
Pete Cooperd31583d2015-05-06 21:37:19 +00003954 }
3955
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003956 Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003957 MI->eraseFromParent();
3958 return true;
3959}
3960
Craig Topper7ef6ea32016-12-05 04:51:31 +00003961unsigned X86FastISel::fastEmitInst_rrrr(unsigned MachineInstOpcode,
3962 const TargetRegisterClass *RC,
3963 unsigned Op0, bool Op0IsKill,
3964 unsigned Op1, bool Op1IsKill,
3965 unsigned Op2, bool Op2IsKill,
3966 unsigned Op3, bool Op3IsKill) {
3967 const MCInstrDesc &II = TII.get(MachineInstOpcode);
3968
3969 unsigned ResultReg = createResultReg(RC);
3970 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
3971 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
3972 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
Craig Topperd3762582017-10-02 05:46:53 +00003973 Op3 = constrainOperandRegClass(II, Op3, II.getNumDefs() + 3);
Craig Topper7ef6ea32016-12-05 04:51:31 +00003974
3975 if (II.getNumDefs() >= 1)
3976 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
3977 .addReg(Op0, getKillRegState(Op0IsKill))
3978 .addReg(Op1, getKillRegState(Op1IsKill))
3979 .addReg(Op2, getKillRegState(Op2IsKill))
3980 .addReg(Op3, getKillRegState(Op3IsKill));
3981 else {
3982 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
3983 .addReg(Op0, getKillRegState(Op0IsKill))
3984 .addReg(Op1, getKillRegState(Op1IsKill))
3985 .addReg(Op2, getKillRegState(Op2IsKill))
3986 .addReg(Op3, getKillRegState(Op3IsKill));
3987 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3988 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
3989 }
3990 return ResultReg;
3991}
3992
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003993
3994namespace llvm {
3995 FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,
3996 const TargetLibraryInfo *libInfo) {
3997 return new X86FastISel(funcInfo, libInfo);
3998 }
3999}