blob: 7629e0c95c6a143885c136d5b4b620c15b5908cd [file] [log] [blame]
Chandler Carruth664e3542013-01-07 01:37:14 +00001//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements a TargetTransformInfo analysis pass specific to the
11/// X86 target machine. It uses the target's detailed information to provide
12/// more precise answers to certain TTI queries, while letting the target
13/// independent and default TTI implementations handle the rest.
14///
15//===----------------------------------------------------------------------===//
Alexey Bataevb271a582016-10-12 13:24:13 +000016/// About Cost Model numbers used below it's necessary to say the following:
17/// the numbers correspond to some "generic" X86 CPU instead of usage of
18/// concrete CPU model. Usually the numbers correspond to CPU where the feature
19/// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
20/// the lookups below the cost is based on Nehalem as that was the first CPU
21/// to support that feature level and thus has most likely the worst case cost.
22/// Some examples of other technologies/CPUs:
23/// SSE 3 - Pentium4 / Athlon64
24/// SSE 4.1 - Penryn
25/// SSE 4.2 - Nehalem
26/// AVX - Sandy Bridge
27/// AVX2 - Haswell
28/// AVX-512 - Xeon Phi / Skylake
29/// And some examples of instruction target dependent costs (latency)
30/// divss sqrtss rsqrtss
31/// AMD K7 11-16 19 3
32/// Piledriver 9-24 13-15 5
33/// Jaguar 14 16 2
34/// Pentium II,III 18 30 2
35/// Nehalem 7-14 7-18 3
36/// Haswell 10-13 11 5
37/// TODO: Develop and implement the target dependent cost model and
38/// specialize cost numbers for different Cost Model Targets such as throughput,
39/// code size, latency and uop count.
40//===----------------------------------------------------------------------===//
Chandler Carruth664e3542013-01-07 01:37:14 +000041
Chandler Carruth93dcdc42015-01-31 11:17:59 +000042#include "X86TargetTransformInfo.h"
Chandler Carruthd3e73552013-01-07 03:08:10 +000043#include "llvm/Analysis/TargetTransformInfo.h"
Chandler Carruth705b1852015-01-31 03:43:40 +000044#include "llvm/CodeGen/BasicTTIImpl.h"
Juergen Ributzkaf26beda2014-01-25 02:02:55 +000045#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth664e3542013-01-07 01:37:14 +000046#include "llvm/Support/Debug.h"
Renato Golind4c392e2013-01-24 23:01:00 +000047#include "llvm/Target/CostTable.h"
Chandler Carruth8a8cd2b2014-01-07 11:48:04 +000048#include "llvm/Target/TargetLowering.h"
Hans Wennborg083ca9b2015-10-06 23:24:35 +000049
Chandler Carruth664e3542013-01-07 01:37:14 +000050using namespace llvm;
51
Chandler Carruth84e68b22014-04-22 02:41:26 +000052#define DEBUG_TYPE "x86tti"
53
Chandler Carruth664e3542013-01-07 01:37:14 +000054//===----------------------------------------------------------------------===//
55//
56// X86 cost model.
57//
58//===----------------------------------------------------------------------===//
59
Chandler Carruth705b1852015-01-31 03:43:40 +000060TargetTransformInfo::PopcntSupportKind
61X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
Chandler Carruth664e3542013-01-07 01:37:14 +000062 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
63 // TODO: Currently the __builtin_popcount() implementation using SSE3
64 // instructions is inefficient. Once the problem is fixed, we should
Craig Topper0a63e1d2013-09-08 00:47:31 +000065 // call ST->hasSSE3() instead of ST->hasPOPCNT().
Chandler Carruth705b1852015-01-31 03:43:40 +000066 return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
Chandler Carruth664e3542013-01-07 01:37:14 +000067}
68
Chandler Carruth705b1852015-01-31 03:43:40 +000069unsigned X86TTIImpl::getNumberOfRegisters(bool Vector) {
Nadav Rotemb1791a72013-01-09 22:29:00 +000070 if (Vector && !ST->hasSSE1())
71 return 0;
72
Adam Nemet2820a5b2014-07-09 18:22:33 +000073 if (ST->is64Bit()) {
74 if (Vector && ST->hasAVX512())
75 return 32;
Chandler Carruth664e3542013-01-07 01:37:14 +000076 return 16;
Adam Nemet2820a5b2014-07-09 18:22:33 +000077 }
Chandler Carruth664e3542013-01-07 01:37:14 +000078 return 8;
79}
80
Chandler Carruth705b1852015-01-31 03:43:40 +000081unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) {
Nadav Rotemb1791a72013-01-09 22:29:00 +000082 if (Vector) {
Simon Pilgrim6f72eba2017-01-05 19:24:25 +000083 if (ST->hasAVX512())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +000084 return 512;
Simon Pilgrim6f72eba2017-01-05 19:24:25 +000085 if (ST->hasAVX())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +000086 return 256;
Simon Pilgrim6f72eba2017-01-05 19:24:25 +000087 if (ST->hasSSE1())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +000088 return 128;
Nadav Rotemb1791a72013-01-09 22:29:00 +000089 return 0;
90 }
91
92 if (ST->is64Bit())
93 return 64;
Nadav Rotemb1791a72013-01-09 22:29:00 +000094
Hans Wennborg083ca9b2015-10-06 23:24:35 +000095 return 32;
Nadav Rotemb1791a72013-01-09 22:29:00 +000096}
97
Wei Mi062c7442015-05-06 17:12:25 +000098unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
99 // If the loop will not be vectorized, don't interleave the loop.
100 // Let regular unroll to unroll the loop, which saves the overflow
101 // check and memory check cost.
102 if (VF == 1)
103 return 1;
104
Nadav Rotemb696c362013-01-09 01:15:42 +0000105 if (ST->isAtom())
106 return 1;
107
108 // Sandybridge and Haswell have multiple execution ports and pipelined
109 // vector units.
110 if (ST->hasAVX())
111 return 4;
112
113 return 2;
114}
115
Chandler Carruth93205eb2015-08-05 18:08:10 +0000116int X86TTIImpl::getArithmeticInstrCost(
Simon Pilgrim3e5b5252017-01-20 15:15:59 +0000117 unsigned Opcode, Type *Ty,
Mohammed Agabaria2c96c432017-01-11 08:23:37 +0000118 TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
119 TTI::OperandValueProperties Opd1PropInfo,
120 TTI::OperandValueProperties Opd2PropInfo,
121 ArrayRef<const Value *> Args) {
Chandler Carruth664e3542013-01-07 01:37:14 +0000122 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +0000123 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
Chandler Carruth664e3542013-01-07 01:37:14 +0000124
125 int ISD = TLI->InstructionOpcodeToISD(Opcode);
126 assert(ISD && "Invalid opcode");
127
Mohammed Agabaria2c96c432017-01-11 08:23:37 +0000128 static const CostTblEntry SLMCostTable[] = {
129 { ISD::MUL, MVT::v4i32, 11 }, // pmulld
130 { ISD::MUL, MVT::v8i16, 2 }, // pmullw
131 { ISD::MUL, MVT::v16i8, 14 }, // extend/pmullw/trunc sequence.
132 { ISD::FMUL, MVT::f64, 2 }, // mulsd
133 { ISD::FMUL, MVT::v2f64, 4 }, // mulpd
134 { ISD::FMUL, MVT::v4f32, 2 }, // mulps
135 { ISD::FDIV, MVT::f32, 17 }, // divss
136 { ISD::FDIV, MVT::v4f32, 39 }, // divps
137 { ISD::FDIV, MVT::f64, 32 }, // divsd
138 { ISD::FDIV, MVT::v2f64, 69 }, // divpd
139 { ISD::FADD, MVT::v2f64, 2 }, // addpd
140 { ISD::FSUB, MVT::v2f64, 2 }, // subpd
141 // v2i64/v4i64 mul is custom lowered as a series of long
142 // multiplies(3), shifts(3) and adds(2).
143 // slm muldq version throughput is 2
144 { ISD::MUL, MVT::v2i64, 11 },
145 };
146
147 if (ST->isSLM()) {
148 if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) {
149 // Check if the operands can be shrinked into a smaller datatype.
150 bool Op1Signed = false;
151 unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
152 bool Op2Signed = false;
153 unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
154
155 bool signedMode = Op1Signed | Op2Signed;
156 unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
157
158 if (OpMinSize <= 7)
159 return LT.first * 3; // pmullw/sext
160 if (!signedMode && OpMinSize <= 8)
161 return LT.first * 3; // pmullw/zext
162 if (OpMinSize <= 15)
163 return LT.first * 5; // pmullw/pmulhw/pshuf
164 if (!signedMode && OpMinSize <= 16)
165 return LT.first * 5; // pmullw/pmulhw/pshuf
166 }
167 if (const auto *Entry = CostTableLookup(SLMCostTable, ISD,
168 LT.second)) {
169 return LT.first * Entry->Cost;
170 }
171 }
172
Karthik Bhat7f33ff72014-08-25 04:56:54 +0000173 if (ISD == ISD::SDIV &&
174 Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
175 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
176 // On X86, vector signed division by constants power-of-two are
177 // normally expanded to the sequence SRA + SRL + ADD + SRA.
178 // The OperandValue properties many not be same as that of previous
179 // operation;conservatively assume OP_None.
Chandler Carruth93205eb2015-08-05 18:08:10 +0000180 int Cost = 2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info,
181 Op2Info, TargetTransformInfo::OP_None,
182 TargetTransformInfo::OP_None);
Karthik Bhat7f33ff72014-08-25 04:56:54 +0000183 Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
184 TargetTransformInfo::OP_None,
185 TargetTransformInfo::OP_None);
186 Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info,
187 TargetTransformInfo::OP_None,
188 TargetTransformInfo::OP_None);
189
190 return Cost;
191 }
192
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000193 static const CostTblEntry AVX512BWUniformConstCostTable[] = {
Simon Pilgrim9c589502017-01-08 14:14:36 +0000194 { ISD::SHL, MVT::v64i8, 2 }, // psllw + pand.
195 { ISD::SRL, MVT::v64i8, 2 }, // psrlw + pand.
196 { ISD::SRA, MVT::v64i8, 4 }, // psrlw, pand, pxor, psubb.
197
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000198 { ISD::SDIV, MVT::v32i16, 6 }, // vpmulhw sequence
199 { ISD::UDIV, MVT::v32i16, 6 }, // vpmulhuw sequence
200 };
201
202 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
203 ST->hasBWI()) {
204 if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
205 LT.second))
206 return LT.first * Entry->Cost;
207 }
208
209 static const CostTblEntry AVX512UniformConstCostTable[] = {
Simon Pilgrimd419b732017-01-14 19:24:23 +0000210 { ISD::SRA, MVT::v2i64, 1 },
211 { ISD::SRA, MVT::v4i64, 1 },
212 { ISD::SRA, MVT::v8i64, 1 },
213
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000214 { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
215 { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
216 };
217
218 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
219 ST->hasAVX512()) {
220 if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
221 LT.second))
222 return LT.first * Entry->Cost;
223 }
224
Craig Topper4b275762015-10-28 04:02:12 +0000225 static const CostTblEntry AVX2UniformConstCostTable[] = {
Simon Pilgrim9c589502017-01-08 14:14:36 +0000226 { ISD::SHL, MVT::v32i8, 2 }, // psllw + pand.
227 { ISD::SRL, MVT::v32i8, 2 }, // psrlw + pand.
228 { ISD::SRA, MVT::v32i8, 4 }, // psrlw, pand, pxor, psubb.
229
Simon Pilgrim8fbf1c12015-07-06 22:35:19 +0000230 { ISD::SRA, MVT::v4i64, 4 }, // 2 x psrad + shuffle.
231
Benjamin Kramer7c372272014-04-26 14:53:05 +0000232 { ISD::SDIV, MVT::v16i16, 6 }, // vpmulhw sequence
233 { ISD::UDIV, MVT::v16i16, 6 }, // vpmulhuw sequence
234 { ISD::SDIV, MVT::v8i32, 15 }, // vpmuldq sequence
235 { ISD::UDIV, MVT::v8i32, 15 }, // vpmuludq sequence
236 };
237
238 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
239 ST->hasAVX2()) {
Craig Topperee0c8592015-10-27 04:14:24 +0000240 if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
241 LT.second))
242 return LT.first * Entry->Cost;
Benjamin Kramer7c372272014-04-26 14:53:05 +0000243 }
244
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000245 static const CostTblEntry SSE2UniformConstCostTable[] = {
Simon Pilgrim9c589502017-01-08 14:14:36 +0000246 { ISD::SHL, MVT::v16i8, 2 }, // psllw + pand.
247 { ISD::SRL, MVT::v16i8, 2 }, // psrlw + pand.
248 { ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb.
249
250 { ISD::SHL, MVT::v32i8, 4 }, // 2*(psllw + pand).
251 { ISD::SRL, MVT::v32i8, 4 }, // 2*(psrlw + pand).
252 { ISD::SRA, MVT::v32i8, 8 }, // 2*(psrlw, pand, pxor, psubb).
253
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000254 { ISD::SDIV, MVT::v16i16, 12 }, // pmulhw sequence
255 { ISD::SDIV, MVT::v8i16, 6 }, // pmulhw sequence
256 { ISD::UDIV, MVT::v16i16, 12 }, // pmulhuw sequence
257 { ISD::UDIV, MVT::v8i16, 6 }, // pmulhuw sequence
258 { ISD::SDIV, MVT::v8i32, 38 }, // pmuludq sequence
259 { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence
260 { ISD::UDIV, MVT::v8i32, 30 }, // pmuludq sequence
261 { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence
262 };
263
264 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
265 ST->hasSSE2()) {
266 // pmuldq sequence.
267 if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
268 return LT.first * 30;
269 if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
270 return LT.first * 15;
271
272 if (const auto *Entry = CostTableLookup(SSE2UniformConstCostTable, ISD,
273 LT.second))
274 return LT.first * Entry->Cost;
275 }
276
Simon Pilgrim1fa54872017-01-08 13:12:03 +0000277 static const CostTblEntry AVX2UniformCostTable[] = {
278 // Uniform splats are cheaper for the following instructions.
279 { ISD::SHL, MVT::v16i16, 1 }, // psllw.
280 { ISD::SRL, MVT::v16i16, 1 }, // psrlw.
281 { ISD::SRA, MVT::v16i16, 1 }, // psraw.
282 };
283
284 if (ST->hasAVX2() &&
285 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
286 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
287 if (const auto *Entry =
288 CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
289 return LT.first * Entry->Cost;
290 }
291
292 static const CostTblEntry SSE2UniformCostTable[] = {
293 // Uniform splats are cheaper for the following instructions.
294 { ISD::SHL, MVT::v8i16, 1 }, // psllw.
295 { ISD::SHL, MVT::v4i32, 1 }, // pslld
296 { ISD::SHL, MVT::v2i64, 1 }, // psllq.
297
298 { ISD::SRL, MVT::v8i16, 1 }, // psrlw.
299 { ISD::SRL, MVT::v4i32, 1 }, // psrld.
300 { ISD::SRL, MVT::v2i64, 1 }, // psrlq.
301
302 { ISD::SRA, MVT::v8i16, 1 }, // psraw.
303 { ISD::SRA, MVT::v4i32, 1 }, // psrad.
304 };
305
306 if (ST->hasSSE2() &&
307 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
308 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
309 if (const auto *Entry =
310 CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
311 return LT.first * Entry->Cost;
312 }
313
Simon Pilgrim820e1322016-10-27 15:27:00 +0000314 static const CostTblEntry AVX512DQCostTable[] = {
315 { ISD::MUL, MVT::v2i64, 1 },
316 { ISD::MUL, MVT::v4i64, 1 },
317 { ISD::MUL, MVT::v8i64, 1 }
318 };
319
320 // Look for AVX512DQ lowering tricks for custom cases.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000321 if (ST->hasDQI())
322 if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
Simon Pilgrim820e1322016-10-27 15:27:00 +0000323 return LT.first * Entry->Cost;
Simon Pilgrim820e1322016-10-27 15:27:00 +0000324
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000325 static const CostTblEntry AVX512BWCostTable[] = {
Simon Pilgrim6ed996c2017-01-15 20:44:00 +0000326 { ISD::SHL, MVT::v8i16, 1 }, // vpsllvw
327 { ISD::SRL, MVT::v8i16, 1 }, // vpsrlvw
328 { ISD::SRA, MVT::v8i16, 1 }, // vpsravw
329
330 { ISD::SHL, MVT::v16i16, 1 }, // vpsllvw
331 { ISD::SRL, MVT::v16i16, 1 }, // vpsrlvw
332 { ISD::SRA, MVT::v16i16, 1 }, // vpsravw
333
Simon Pilgrima4109d62017-01-07 17:54:10 +0000334 { ISD::SHL, MVT::v32i16, 1 }, // vpsllvw
335 { ISD::SRL, MVT::v32i16, 1 }, // vpsrlvw
336 { ISD::SRA, MVT::v32i16, 1 }, // vpsravw
337
Simon Pilgrim5a81fef2017-01-11 10:36:51 +0000338 { ISD::SHL, MVT::v64i8, 11 }, // vpblendvb sequence.
339 { ISD::SRL, MVT::v64i8, 11 }, // vpblendvb sequence.
340 { ISD::SRA, MVT::v64i8, 24 }, // vpblendvb sequence.
341
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000342 { ISD::MUL, MVT::v64i8, 11 }, // extend/pmullw/trunc sequence.
343 { ISD::MUL, MVT::v32i8, 4 }, // extend/pmullw/trunc sequence.
344 { ISD::MUL, MVT::v16i8, 4 }, // extend/pmullw/trunc sequence.
345
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000346 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
347 { ISD::SDIV, MVT::v64i8, 64*20 },
348 { ISD::SDIV, MVT::v32i16, 32*20 },
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000349 { ISD::UDIV, MVT::v64i8, 64*20 },
Simon Pilgrimd8333372017-01-06 11:12:53 +0000350 { ISD::UDIV, MVT::v32i16, 32*20 }
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000351 };
352
353 // Look for AVX512BW lowering tricks for custom cases.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000354 if (ST->hasBWI())
355 if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000356 return LT.first * Entry->Cost;
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000357
Craig Topper4b275762015-10-28 04:02:12 +0000358 static const CostTblEntry AVX512CostTable[] = {
Simon Pilgrimd8333372017-01-06 11:12:53 +0000359 { ISD::SHL, MVT::v16i32, 1 },
360 { ISD::SRL, MVT::v16i32, 1 },
361 { ISD::SRA, MVT::v16i32, 1 },
Simon Pilgrimd419b732017-01-14 19:24:23 +0000362
Simon Pilgrimd8333372017-01-06 11:12:53 +0000363 { ISD::SHL, MVT::v8i64, 1 },
364 { ISD::SRL, MVT::v8i64, 1 },
Simon Pilgrimd419b732017-01-14 19:24:23 +0000365
366 { ISD::SRA, MVT::v2i64, 1 },
367 { ISD::SRA, MVT::v4i64, 1 },
Simon Pilgrimd8333372017-01-06 11:12:53 +0000368 { ISD::SRA, MVT::v8i64, 1 },
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000369
Simon Pilgrimd8333372017-01-06 11:12:53 +0000370 { ISD::MUL, MVT::v32i8, 13 }, // extend/pmullw/trunc sequence.
371 { ISD::MUL, MVT::v16i8, 5 }, // extend/pmullw/trunc sequence.
372 { ISD::MUL, MVT::v16i32, 1 }, // pmulld
373 { ISD::MUL, MVT::v8i64, 8 }, // 3*pmuludq/3*shift/2*add
374
375 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
376 { ISD::SDIV, MVT::v16i32, 16*20 },
377 { ISD::SDIV, MVT::v8i64, 8*20 },
378 { ISD::UDIV, MVT::v16i32, 16*20 },
379 { ISD::UDIV, MVT::v8i64, 8*20 }
Elena Demikhovsky27012472014-09-16 07:57:37 +0000380 };
381
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000382 if (ST->hasAVX512())
Craig Topperee0c8592015-10-27 04:14:24 +0000383 if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
384 return LT.first * Entry->Cost;
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000385
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000386 static const CostTblEntry AVX2ShiftCostTable[] = {
Michael Liao70dd7f92013-03-20 22:01:10 +0000387 // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
388 // customize them to detect the cases where shift amount is a scalar one.
389 { ISD::SHL, MVT::v4i32, 1 },
390 { ISD::SRL, MVT::v4i32, 1 },
391 { ISD::SRA, MVT::v4i32, 1 },
392 { ISD::SHL, MVT::v8i32, 1 },
393 { ISD::SRL, MVT::v8i32, 1 },
394 { ISD::SRA, MVT::v8i32, 1 },
395 { ISD::SHL, MVT::v2i64, 1 },
396 { ISD::SRL, MVT::v2i64, 1 },
397 { ISD::SHL, MVT::v4i64, 1 },
398 { ISD::SRL, MVT::v4i64, 1 },
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000399 };
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000400
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000401 // Look for AVX2 lowering tricks.
402 if (ST->hasAVX2()) {
403 if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
404 (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
405 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
406 // On AVX2, a packed v16i16 shift left by a constant build_vector
407 // is lowered into a vector multiply (vpmullw).
408 return LT.first;
409
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000410 if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
Craig Topperee0c8592015-10-27 04:14:24 +0000411 return LT.first * Entry->Cost;
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000412 }
413
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000414 static const CostTblEntry XOPShiftCostTable[] = {
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000415 // 128bit shifts take 1cy, but right shifts require negation beforehand.
416 { ISD::SHL, MVT::v16i8, 1 },
417 { ISD::SRL, MVT::v16i8, 2 },
418 { ISD::SRA, MVT::v16i8, 2 },
419 { ISD::SHL, MVT::v8i16, 1 },
420 { ISD::SRL, MVT::v8i16, 2 },
421 { ISD::SRA, MVT::v8i16, 2 },
422 { ISD::SHL, MVT::v4i32, 1 },
423 { ISD::SRL, MVT::v4i32, 2 },
424 { ISD::SRA, MVT::v4i32, 2 },
425 { ISD::SHL, MVT::v2i64, 1 },
426 { ISD::SRL, MVT::v2i64, 2 },
427 { ISD::SRA, MVT::v2i64, 2 },
428 // 256bit shifts require splitting if AVX2 didn't catch them above.
429 { ISD::SHL, MVT::v32i8, 2 },
430 { ISD::SRL, MVT::v32i8, 4 },
431 { ISD::SRA, MVT::v32i8, 4 },
432 { ISD::SHL, MVT::v16i16, 2 },
433 { ISD::SRL, MVT::v16i16, 4 },
434 { ISD::SRA, MVT::v16i16, 4 },
435 { ISD::SHL, MVT::v8i32, 2 },
436 { ISD::SRL, MVT::v8i32, 4 },
437 { ISD::SRA, MVT::v8i32, 4 },
438 { ISD::SHL, MVT::v4i64, 2 },
439 { ISD::SRL, MVT::v4i64, 4 },
440 { ISD::SRA, MVT::v4i64, 4 },
441 };
442
443 // Look for XOP lowering tricks.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000444 if (ST->hasXOP())
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000445 if (const auto *Entry = CostTableLookup(XOPShiftCostTable, ISD, LT.second))
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000446 return LT.first * Entry->Cost;
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000447
Simon Pilgrim1fa54872017-01-08 13:12:03 +0000448 static const CostTblEntry SSE2UniformShiftCostTable[] = {
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000449 // Uniform splats are cheaper for the following instructions.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000450 { ISD::SHL, MVT::v16i16, 2 }, // psllw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000451 { ISD::SHL, MVT::v8i32, 2 }, // pslld
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000452 { ISD::SHL, MVT::v4i64, 2 }, // psllq.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000453
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000454 { ISD::SRL, MVT::v16i16, 2 }, // psrlw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000455 { ISD::SRL, MVT::v8i32, 2 }, // psrld.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000456 { ISD::SRL, MVT::v4i64, 2 }, // psrlq.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000457
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000458 { ISD::SRA, MVT::v16i16, 2 }, // psraw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000459 { ISD::SRA, MVT::v8i32, 2 }, // psrad.
Simon Pilgrim8fbf1c12015-07-06 22:35:19 +0000460 { ISD::SRA, MVT::v2i64, 4 }, // 2 x psrad + shuffle.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000461 { ISD::SRA, MVT::v4i64, 8 }, // 2 x psrad + shuffle.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000462 };
463
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000464 if (ST->hasSSE2() &&
465 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
466 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000467 if (const auto *Entry =
Simon Pilgrim1fa54872017-01-08 13:12:03 +0000468 CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
Craig Topperee0c8592015-10-27 04:14:24 +0000469 return LT.first * Entry->Cost;
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000470 }
471
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000472 if (ISD == ISD::SHL &&
473 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
Craig Toppereda02a92015-10-25 03:15:29 +0000474 MVT VT = LT.second;
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000475 // Vector shift left by non uniform constant can be lowered
Simon Pilgrime70644d2017-01-07 21:33:00 +0000476 // into vector multiply.
477 if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
478 ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000479 ISD = ISD::MUL;
480 }
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000481
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000482 static const CostTblEntry AVX2CostTable[] = {
483 { ISD::SHL, MVT::v32i8, 11 }, // vpblendvb sequence.
484 { ISD::SHL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
485
486 { ISD::SRL, MVT::v32i8, 11 }, // vpblendvb sequence.
487 { ISD::SRL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
488
489 { ISD::SRA, MVT::v32i8, 24 }, // vpblendvb sequence.
490 { ISD::SRA, MVT::v16i16, 10 }, // extend/vpsravd/pack sequence.
491 { ISD::SRA, MVT::v2i64, 4 }, // srl/xor/sub sequence.
492 { ISD::SRA, MVT::v4i64, 4 }, // srl/xor/sub sequence.
493
494 { ISD::SUB, MVT::v32i8, 1 }, // psubb
495 { ISD::ADD, MVT::v32i8, 1 }, // paddb
496 { ISD::SUB, MVT::v16i16, 1 }, // psubw
497 { ISD::ADD, MVT::v16i16, 1 }, // paddw
498 { ISD::SUB, MVT::v8i32, 1 }, // psubd
499 { ISD::ADD, MVT::v8i32, 1 }, // paddd
500 { ISD::SUB, MVT::v4i64, 1 }, // psubq
501 { ISD::ADD, MVT::v4i64, 1 }, // paddq
502
503 { ISD::MUL, MVT::v32i8, 17 }, // extend/pmullw/trunc sequence.
504 { ISD::MUL, MVT::v16i8, 7 }, // extend/pmullw/trunc sequence.
505 { ISD::MUL, MVT::v16i16, 1 }, // pmullw
506 { ISD::MUL, MVT::v8i32, 1 }, // pmulld
507 { ISD::MUL, MVT::v4i64, 8 }, // 3*pmuludq/3*shift/2*add
508
509 { ISD::FDIV, MVT::f32, 7 }, // Haswell from http://www.agner.org/
510 { ISD::FDIV, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
511 { ISD::FDIV, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
512 { ISD::FDIV, MVT::f64, 14 }, // Haswell from http://www.agner.org/
513 { ISD::FDIV, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
514 { ISD::FDIV, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
515 };
516
517 // Look for AVX2 lowering tricks for custom cases.
518 if (ST->hasAVX2())
519 if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
520 return LT.first * Entry->Cost;
521
Simon Pilgrim100eae12017-01-07 17:03:51 +0000522 static const CostTblEntry AVX1CostTable[] = {
523 // We don't have to scalarize unsupported ops. We can issue two half-sized
524 // operations and we only need to extract the upper YMM half.
525 // Two ops + 1 extract + 1 insert = 4.
Simon Pilgrim72599712017-01-07 18:19:25 +0000526 { ISD::MUL, MVT::v16i16, 4 },
527 { ISD::MUL, MVT::v8i32, 4 },
528 { ISD::SUB, MVT::v32i8, 4 },
529 { ISD::ADD, MVT::v32i8, 4 },
530 { ISD::SUB, MVT::v16i16, 4 },
531 { ISD::ADD, MVT::v16i16, 4 },
532 { ISD::SUB, MVT::v8i32, 4 },
533 { ISD::ADD, MVT::v8i32, 4 },
534 { ISD::SUB, MVT::v4i64, 4 },
535 { ISD::ADD, MVT::v4i64, 4 },
Simon Pilgrim100eae12017-01-07 17:03:51 +0000536
537 // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
538 // are lowered as a series of long multiplies(3), shifts(3) and adds(2)
539 // Because we believe v4i64 to be a legal type, we must also include the
540 // extract+insert in the cost table. Therefore, the cost here is 18
541 // instead of 8.
Simon Pilgrim72599712017-01-07 18:19:25 +0000542 { ISD::MUL, MVT::v4i64, 18 },
543
544 { ISD::MUL, MVT::v32i8, 26 }, // extend/pmullw/trunc sequence.
545
546 { ISD::FDIV, MVT::f32, 14 }, // SNB from http://www.agner.org/
547 { ISD::FDIV, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
548 { ISD::FDIV, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
549 { ISD::FDIV, MVT::f64, 22 }, // SNB from http://www.agner.org/
550 { ISD::FDIV, MVT::v2f64, 22 }, // SNB from http://www.agner.org/
551 { ISD::FDIV, MVT::v4f64, 44 }, // SNB from http://www.agner.org/
552
553 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
554 { ISD::SDIV, MVT::v32i8, 32*20 },
555 { ISD::SDIV, MVT::v16i16, 16*20 },
556 { ISD::SDIV, MVT::v8i32, 8*20 },
557 { ISD::SDIV, MVT::v4i64, 4*20 },
558 { ISD::UDIV, MVT::v32i8, 32*20 },
559 { ISD::UDIV, MVT::v16i16, 16*20 },
560 { ISD::UDIV, MVT::v8i32, 8*20 },
561 { ISD::UDIV, MVT::v4i64, 4*20 },
Simon Pilgrim100eae12017-01-07 17:03:51 +0000562 };
563
Simon Pilgrimdf7de7a2017-01-07 17:27:39 +0000564 if (ST->hasAVX())
Simon Pilgrim100eae12017-01-07 17:03:51 +0000565 if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
566 return LT.first * Entry->Cost;
567
Simon Pilgrim5b06e4d2017-01-05 19:19:39 +0000568 static const CostTblEntry SSE42CostTable[] = {
569 { ISD::FDIV, MVT::f32, 14 }, // Nehalem from http://www.agner.org/
570 { ISD::FDIV, MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
571 { ISD::FDIV, MVT::f64, 22 }, // Nehalem from http://www.agner.org/
572 { ISD::FDIV, MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
573 };
574
575 if (ST->hasSSE42())
576 if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
577 return LT.first * Entry->Cost;
578
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000579 static const CostTblEntry SSE41CostTable[] = {
580 { ISD::SHL, MVT::v16i8, 11 }, // pblendvb sequence.
581 { ISD::SHL, MVT::v32i8, 2*11 }, // pblendvb sequence.
582 { ISD::SHL, MVT::v8i16, 14 }, // pblendvb sequence.
583 { ISD::SHL, MVT::v16i16, 2*14 }, // pblendvb sequence.
Simon Pilgrim9681c402017-01-07 22:27:43 +0000584 { ISD::SHL, MVT::v4i32, 4 }, // pslld/paddd/cvttps2dq/pmulld
585 { ISD::SHL, MVT::v8i32, 2*4 }, // pslld/paddd/cvttps2dq/pmulld
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000586
587 { ISD::SRL, MVT::v16i8, 12 }, // pblendvb sequence.
588 { ISD::SRL, MVT::v32i8, 2*12 }, // pblendvb sequence.
589 { ISD::SRL, MVT::v8i16, 14 }, // pblendvb sequence.
590 { ISD::SRL, MVT::v16i16, 2*14 }, // pblendvb sequence.
591 { ISD::SRL, MVT::v4i32, 11 }, // Shift each lane + blend.
592 { ISD::SRL, MVT::v8i32, 2*11 }, // Shift each lane + blend.
593
594 { ISD::SRA, MVT::v16i8, 24 }, // pblendvb sequence.
595 { ISD::SRA, MVT::v32i8, 2*24 }, // pblendvb sequence.
596 { ISD::SRA, MVT::v8i16, 14 }, // pblendvb sequence.
597 { ISD::SRA, MVT::v16i16, 2*14 }, // pblendvb sequence.
598 { ISD::SRA, MVT::v4i32, 12 }, // Shift each lane + blend.
599 { ISD::SRA, MVT::v8i32, 2*12 }, // Shift each lane + blend.
Simon Pilgrim4c050c212017-01-05 19:42:43 +0000600
601 { ISD::MUL, MVT::v4i32, 1 } // pmulld
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000602 };
603
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000604 if (ST->hasSSE41())
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000605 if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
606 return LT.first * Entry->Cost;
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000607
Craig Topper4b275762015-10-28 04:02:12 +0000608 static const CostTblEntry SSE2CostTable[] = {
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000609 // We don't correctly identify costs of casts because they are marked as
610 // custom.
Simon Pilgrim59656802015-06-11 07:46:37 +0000611 { ISD::SHL, MVT::v16i8, 26 }, // cmpgtb sequence.
612 { ISD::SHL, MVT::v8i16, 32 }, // cmpgtb sequence.
613 { ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul.
Simon Pilgrim59764dc2015-07-18 20:06:30 +0000614 { ISD::SHL, MVT::v2i64, 4 }, // splat+shuffle sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000615 { ISD::SHL, MVT::v4i64, 2*4 }, // splat+shuffle sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000616
617 { ISD::SRL, MVT::v16i8, 26 }, // cmpgtb sequence.
618 { ISD::SRL, MVT::v8i16, 32 }, // cmpgtb sequence.
619 { ISD::SRL, MVT::v4i32, 16 }, // Shift each lane + blend.
Simon Pilgrim59764dc2015-07-18 20:06:30 +0000620 { ISD::SRL, MVT::v2i64, 4 }, // splat+shuffle sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000621 { ISD::SRL, MVT::v4i64, 2*4 }, // splat+shuffle sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000622
623 { ISD::SRA, MVT::v16i8, 54 }, // unpacked cmpgtb sequence.
624 { ISD::SRA, MVT::v8i16, 32 }, // cmpgtb sequence.
625 { ISD::SRA, MVT::v4i32, 16 }, // Shift each lane + blend.
Simon Pilgrim86478c62015-07-29 20:31:45 +0000626 { ISD::SRA, MVT::v2i64, 12 }, // srl/xor/sub sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000627 { ISD::SRA, MVT::v4i64, 2*12 }, // srl/xor/sub sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000628
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000629 { ISD::MUL, MVT::v16i8, 12 }, // extend/pmullw/trunc sequence.
Simon Pilgrime70644d2017-01-07 21:33:00 +0000630 { ISD::MUL, MVT::v8i16, 1 }, // pmullw
Simon Pilgrim4c050c212017-01-05 19:42:43 +0000631 { ISD::MUL, MVT::v4i32, 6 }, // 3*pmuludq/4*shuffle
Simon Pilgrima8bf9752017-01-05 19:01:50 +0000632 { ISD::MUL, MVT::v2i64, 8 }, // 3*pmuludq/3*shift/2*add
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000633
Alexey Bataevd07c7312016-10-31 12:10:53 +0000634 { ISD::FDIV, MVT::f32, 23 }, // Pentium IV from http://www.agner.org/
635 { ISD::FDIV, MVT::v4f32, 39 }, // Pentium IV from http://www.agner.org/
636 { ISD::FDIV, MVT::f64, 38 }, // Pentium IV from http://www.agner.org/
637 { ISD::FDIV, MVT::v2f64, 69 }, // Pentium IV from http://www.agner.org/
638
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000639 // It is not a good idea to vectorize division. We have to scalarize it and
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000640 // in the process we will often end up having to spilling regular
641 // registers. The overhead of division is going to dominate most kernels
642 // anyways so try hard to prevent vectorization of division - it is
643 // generally a bad idea. Assume somewhat arbitrarily that we have to be able
644 // to hide "20 cycles" for each lane.
645 { ISD::SDIV, MVT::v16i8, 16*20 },
Simon Pilgrime70644d2017-01-07 21:33:00 +0000646 { ISD::SDIV, MVT::v8i16, 8*20 },
647 { ISD::SDIV, MVT::v4i32, 4*20 },
648 { ISD::SDIV, MVT::v2i64, 2*20 },
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000649 { ISD::UDIV, MVT::v16i8, 16*20 },
Simon Pilgrime70644d2017-01-07 21:33:00 +0000650 { ISD::UDIV, MVT::v8i16, 8*20 },
651 { ISD::UDIV, MVT::v4i32, 4*20 },
652 { ISD::UDIV, MVT::v2i64, 2*20 },
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000653 };
654
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000655 if (ST->hasSSE2())
Craig Topperee0c8592015-10-27 04:14:24 +0000656 if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
657 return LT.first * Entry->Cost;
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000658
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000659 static const CostTblEntry SSE1CostTable[] = {
Alexey Bataevd07c7312016-10-31 12:10:53 +0000660 { ISD::FDIV, MVT::f32, 17 }, // Pentium III from http://www.agner.org/
661 { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
662 };
663
664 if (ST->hasSSE1())
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000665 if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
Alexey Bataevd07c7312016-10-31 12:10:53 +0000666 return LT.first * Entry->Cost;
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000667
Chandler Carruth664e3542013-01-07 01:37:14 +0000668 // Fallback to the default implementation.
Chandler Carruth705b1852015-01-31 03:43:40 +0000669 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
Chandler Carruth664e3542013-01-07 01:37:14 +0000670}
671
Chandler Carruth93205eb2015-08-05 18:08:10 +0000672int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
673 Type *SubTp) {
Simon Pilgrima62395a2017-01-05 14:33:32 +0000674 // 64-bit packed float vectors (v2f32) are widened to type v4f32.
675 // 64-bit packed integer vectors (v2i32) are promoted to type v2i64.
676 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
Karthik Bhate03a25d2014-06-20 04:32:48 +0000677
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000678 // For Broadcasts we are splatting the first element from the first input
679 // register, so only need to reference that input and all the output
680 // registers are the same.
681 if (Kind == TTI::SK_Broadcast)
682 LT.first = 1;
Simon Pilgrimbca02f92017-01-05 15:56:08 +0000683
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000684 // We are going to permute multiple sources and the result will be in multiple
685 // destinations. Providing an accurate cost only for splits where the element
686 // type remains the same.
687 if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
688 MVT LegalVT = LT.second;
689 if (LegalVT.getVectorElementType().getSizeInBits() ==
690 Tp->getVectorElementType()->getPrimitiveSizeInBits() &&
691 LegalVT.getVectorNumElements() < Tp->getVectorNumElements()) {
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000692
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000693 unsigned VecTySize = DL.getTypeStoreSize(Tp);
694 unsigned LegalVTSize = LegalVT.getStoreSize();
695 // Number of source vectors after legalization:
696 unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
697 // Number of destination vectors after legalization:
698 unsigned NumOfDests = LT.first;
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000699
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000700 Type *SingleOpTy = VectorType::get(Tp->getVectorElementType(),
701 LegalVT.getVectorNumElements());
Simon Pilgrimbca02f92017-01-05 15:56:08 +0000702
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000703 unsigned NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
704 return NumOfShuffles *
705 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, 0, nullptr);
706 }
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000707
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000708 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
709 }
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000710
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000711 // For 2-input shuffles, we must account for splitting the 2 inputs into many.
712 if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
Elena Demikhovsky21706cb2017-01-02 10:37:52 +0000713 // We assume that source and destination have the same vector type.
Elena Demikhovsky21706cb2017-01-02 10:37:52 +0000714 int NumOfDests = LT.first;
715 int NumOfShufflesPerDest = LT.first * 2 - 1;
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000716 LT.first = NumOfDests * NumOfShufflesPerDest;
Karthik Bhate03a25d2014-06-20 04:32:48 +0000717 }
718
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000719 static const CostTblEntry AVX512VBMIShuffleTbl[] = {
720 { TTI::SK_Reverse, MVT::v64i8, 1 }, // vpermb
721 { TTI::SK_Reverse, MVT::v32i8, 1 }, // vpermb
722
723 { TTI::SK_PermuteSingleSrc, MVT::v64i8, 1 }, // vpermb
724 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 1 }, // vpermb
725
726 { TTI::SK_PermuteTwoSrc, MVT::v64i8, 1 }, // vpermt2b
727 { TTI::SK_PermuteTwoSrc, MVT::v32i8, 1 }, // vpermt2b
728 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 1 } // vpermt2b
729 };
730
731 if (ST->hasVBMI())
732 if (const auto *Entry =
733 CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
734 return LT.first * Entry->Cost;
735
736 static const CostTblEntry AVX512BWShuffleTbl[] = {
737 { TTI::SK_Broadcast, MVT::v32i16, 1 }, // vpbroadcastw
738 { TTI::SK_Broadcast, MVT::v64i8, 1 }, // vpbroadcastb
739
740 { TTI::SK_Reverse, MVT::v32i16, 1 }, // vpermw
741 { TTI::SK_Reverse, MVT::v16i16, 1 }, // vpermw
Simon Pilgrima1b8e2c2017-01-07 15:37:50 +0000742 { TTI::SK_Reverse, MVT::v64i8, 2 }, // pshufb + vshufi64x2
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000743
744 { TTI::SK_PermuteSingleSrc, MVT::v32i16, 1 }, // vpermw
745 { TTI::SK_PermuteSingleSrc, MVT::v16i16, 1 }, // vpermw
746 { TTI::SK_PermuteSingleSrc, MVT::v8i16, 1 }, // vpermw
747 { TTI::SK_PermuteSingleSrc, MVT::v64i8, 8 }, // extend to v32i16
748 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 3 }, // vpermw + zext/trunc
749
750 { TTI::SK_PermuteTwoSrc, MVT::v32i16, 1 }, // vpermt2w
751 { TTI::SK_PermuteTwoSrc, MVT::v16i16, 1 }, // vpermt2w
752 { TTI::SK_PermuteTwoSrc, MVT::v8i16, 1 }, // vpermt2w
753 { TTI::SK_PermuteTwoSrc, MVT::v32i8, 3 }, // zext + vpermt2w + trunc
754 { TTI::SK_PermuteTwoSrc, MVT::v64i8, 19 }, // 6 * v32i8 + 1
755 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 3 } // zext + vpermt2w + trunc
756 };
757
758 if (ST->hasBWI())
759 if (const auto *Entry =
760 CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
761 return LT.first * Entry->Cost;
762
763 static const CostTblEntry AVX512ShuffleTbl[] = {
764 { TTI::SK_Broadcast, MVT::v8f64, 1 }, // vbroadcastpd
765 { TTI::SK_Broadcast, MVT::v16f32, 1 }, // vbroadcastps
766 { TTI::SK_Broadcast, MVT::v8i64, 1 }, // vpbroadcastq
767 { TTI::SK_Broadcast, MVT::v16i32, 1 }, // vpbroadcastd
768
769 { TTI::SK_Reverse, MVT::v8f64, 1 }, // vpermpd
770 { TTI::SK_Reverse, MVT::v16f32, 1 }, // vpermps
771 { TTI::SK_Reverse, MVT::v8i64, 1 }, // vpermq
772 { TTI::SK_Reverse, MVT::v16i32, 1 }, // vpermd
773
774 { TTI::SK_PermuteSingleSrc, MVT::v8f64, 1 }, // vpermpd
775 { TTI::SK_PermuteSingleSrc, MVT::v4f64, 1 }, // vpermpd
776 { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // vpermpd
777 { TTI::SK_PermuteSingleSrc, MVT::v16f32, 1 }, // vpermps
778 { TTI::SK_PermuteSingleSrc, MVT::v8f32, 1 }, // vpermps
779 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // vpermps
780 { TTI::SK_PermuteSingleSrc, MVT::v8i64, 1 }, // vpermq
781 { TTI::SK_PermuteSingleSrc, MVT::v4i64, 1 }, // vpermq
782 { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // vpermq
783 { TTI::SK_PermuteSingleSrc, MVT::v16i32, 1 }, // vpermd
784 { TTI::SK_PermuteSingleSrc, MVT::v8i32, 1 }, // vpermd
785 { TTI::SK_PermuteSingleSrc, MVT::v4i32, 1 }, // vpermd
786 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 1 }, // pshufb
787
788 { TTI::SK_PermuteTwoSrc, MVT::v8f64, 1 }, // vpermt2pd
789 { TTI::SK_PermuteTwoSrc, MVT::v16f32, 1 }, // vpermt2ps
790 { TTI::SK_PermuteTwoSrc, MVT::v8i64, 1 }, // vpermt2q
791 { TTI::SK_PermuteTwoSrc, MVT::v16i32, 1 }, // vpermt2d
792 { TTI::SK_PermuteTwoSrc, MVT::v4f64, 1 }, // vpermt2pd
793 { TTI::SK_PermuteTwoSrc, MVT::v8f32, 1 }, // vpermt2ps
794 { TTI::SK_PermuteTwoSrc, MVT::v4i64, 1 }, // vpermt2q
795 { TTI::SK_PermuteTwoSrc, MVT::v8i32, 1 }, // vpermt2d
796 { TTI::SK_PermuteTwoSrc, MVT::v2f64, 1 }, // vpermt2pd
797 { TTI::SK_PermuteTwoSrc, MVT::v4f32, 1 }, // vpermt2ps
798 { TTI::SK_PermuteTwoSrc, MVT::v2i64, 1 }, // vpermt2q
799 { TTI::SK_PermuteTwoSrc, MVT::v4i32, 1 } // vpermt2d
800 };
801
802 if (ST->hasAVX512())
803 if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
804 return LT.first * Entry->Cost;
805
806 static const CostTblEntry AVX2ShuffleTbl[] = {
807 { TTI::SK_Broadcast, MVT::v4f64, 1 }, // vbroadcastpd
808 { TTI::SK_Broadcast, MVT::v8f32, 1 }, // vbroadcastps
809 { TTI::SK_Broadcast, MVT::v4i64, 1 }, // vpbroadcastq
810 { TTI::SK_Broadcast, MVT::v8i32, 1 }, // vpbroadcastd
811 { TTI::SK_Broadcast, MVT::v16i16, 1 }, // vpbroadcastw
812 { TTI::SK_Broadcast, MVT::v32i8, 1 }, // vpbroadcastb
813
814 { TTI::SK_Reverse, MVT::v4f64, 1 }, // vpermpd
815 { TTI::SK_Reverse, MVT::v8f32, 1 }, // vpermps
816 { TTI::SK_Reverse, MVT::v4i64, 1 }, // vpermq
817 { TTI::SK_Reverse, MVT::v8i32, 1 }, // vpermd
818 { TTI::SK_Reverse, MVT::v16i16, 2 }, // vperm2i128 + pshufb
819 { TTI::SK_Reverse, MVT::v32i8, 2 }, // vperm2i128 + pshufb
820
821 { TTI::SK_Alternate, MVT::v16i16, 1 }, // vpblendw
Michael Kupersteine6d59fd2017-02-02 20:27:13 +0000822 { TTI::SK_Alternate, MVT::v32i8, 1 }, // vpblendvb
823
824 { TTI::SK_PermuteSingleSrc, MVT::v4i64, 1 }, // vpermq
825 { TTI::SK_PermuteSingleSrc, MVT::v8i32, 1 }, // vpermd
826 { TTI::SK_PermuteSingleSrc, MVT::v16i16, 4 }, // vperm2i128 + 2 * vpshufb
827 // + vpblendvb
828 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 4 } // vperm2i128 + 2 * vpshufb
829 // + vpblendvb
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000830 };
831
832 if (ST->hasAVX2())
833 if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
834 return LT.first * Entry->Cost;
835
836 static const CostTblEntry AVX1ShuffleTbl[] = {
837 { TTI::SK_Broadcast, MVT::v4f64, 2 }, // vperm2f128 + vpermilpd
838 { TTI::SK_Broadcast, MVT::v8f32, 2 }, // vperm2f128 + vpermilps
839 { TTI::SK_Broadcast, MVT::v4i64, 2 }, // vperm2f128 + vpermilpd
840 { TTI::SK_Broadcast, MVT::v8i32, 2 }, // vperm2f128 + vpermilps
841 { TTI::SK_Broadcast, MVT::v16i16, 3 }, // vpshuflw + vpshufd + vinsertf128
842 { TTI::SK_Broadcast, MVT::v32i8, 2 }, // vpshufb + vinsertf128
843
844 { TTI::SK_Reverse, MVT::v4f64, 2 }, // vperm2f128 + vpermilpd
845 { TTI::SK_Reverse, MVT::v8f32, 2 }, // vperm2f128 + vpermilps
846 { TTI::SK_Reverse, MVT::v4i64, 2 }, // vperm2f128 + vpermilpd
847 { TTI::SK_Reverse, MVT::v8i32, 2 }, // vperm2f128 + vpermilps
848 { TTI::SK_Reverse, MVT::v16i16, 4 }, // vextractf128 + 2*pshufb
849 // + vinsertf128
850 { TTI::SK_Reverse, MVT::v32i8, 4 }, // vextractf128 + 2*pshufb
851 // + vinsertf128
852
853 { TTI::SK_Alternate, MVT::v4i64, 1 }, // vblendpd
854 { TTI::SK_Alternate, MVT::v4f64, 1 }, // vblendpd
855 { TTI::SK_Alternate, MVT::v8i32, 1 }, // vblendps
856 { TTI::SK_Alternate, MVT::v8f32, 1 }, // vblendps
857 { TTI::SK_Alternate, MVT::v16i16, 3 }, // vpand + vpandn + vpor
858 { TTI::SK_Alternate, MVT::v32i8, 3 } // vpand + vpandn + vpor
859 };
860
861 if (ST->hasAVX())
862 if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
863 return LT.first * Entry->Cost;
864
865 static const CostTblEntry SSE41ShuffleTbl[] = {
866 { TTI::SK_Alternate, MVT::v2i64, 1 }, // pblendw
867 { TTI::SK_Alternate, MVT::v2f64, 1 }, // movsd
868 { TTI::SK_Alternate, MVT::v4i32, 1 }, // pblendw
869 { TTI::SK_Alternate, MVT::v4f32, 1 }, // blendps
870 { TTI::SK_Alternate, MVT::v8i16, 1 }, // pblendw
871 { TTI::SK_Alternate, MVT::v16i8, 1 } // pblendvb
872 };
873
874 if (ST->hasSSE41())
875 if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
876 return LT.first * Entry->Cost;
877
878 static const CostTblEntry SSSE3ShuffleTbl[] = {
879 { TTI::SK_Broadcast, MVT::v8i16, 1 }, // pshufb
880 { TTI::SK_Broadcast, MVT::v16i8, 1 }, // pshufb
881
882 { TTI::SK_Reverse, MVT::v8i16, 1 }, // pshufb
883 { TTI::SK_Reverse, MVT::v16i8, 1 }, // pshufb
884
885 { TTI::SK_Alternate, MVT::v8i16, 3 }, // pshufb + pshufb + por
Michael Kupersteine6d59fd2017-02-02 20:27:13 +0000886 { TTI::SK_Alternate, MVT::v16i8, 3 }, // pshufb + pshufb + por
887
888 { TTI::SK_PermuteSingleSrc, MVT::v8i16, 1 }, // pshufb
889 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 1 } // pshufb
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000890 };
891
892 if (ST->hasSSSE3())
893 if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
894 return LT.first * Entry->Cost;
895
896 static const CostTblEntry SSE2ShuffleTbl[] = {
897 { TTI::SK_Broadcast, MVT::v2f64, 1 }, // shufpd
898 { TTI::SK_Broadcast, MVT::v2i64, 1 }, // pshufd
899 { TTI::SK_Broadcast, MVT::v4i32, 1 }, // pshufd
900 { TTI::SK_Broadcast, MVT::v8i16, 2 }, // pshuflw + pshufd
901 { TTI::SK_Broadcast, MVT::v16i8, 3 }, // unpck + pshuflw + pshufd
902
903 { TTI::SK_Reverse, MVT::v2f64, 1 }, // shufpd
904 { TTI::SK_Reverse, MVT::v2i64, 1 }, // pshufd
905 { TTI::SK_Reverse, MVT::v4i32, 1 }, // pshufd
906 { TTI::SK_Reverse, MVT::v8i16, 3 }, // pshuflw + pshufhw + pshufd
907 { TTI::SK_Reverse, MVT::v16i8, 9 }, // 2*pshuflw + 2*pshufhw
908 // + 2*pshufd + 2*unpck + packus
909
910 { TTI::SK_Alternate, MVT::v2i64, 1 }, // movsd
911 { TTI::SK_Alternate, MVT::v2f64, 1 }, // movsd
912 { TTI::SK_Alternate, MVT::v4i32, 2 }, // 2*shufps
913 { TTI::SK_Alternate, MVT::v8i16, 3 }, // pand + pandn + por
Michael Kupersteine6d59fd2017-02-02 20:27:13 +0000914 { TTI::SK_Alternate, MVT::v16i8, 3 }, // pand + pandn + por
915
916 { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // pshufd
917 { TTI::SK_PermuteSingleSrc, MVT::v4i32, 1 } // pshufd
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000918 };
919
920 if (ST->hasSSE2())
921 if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
922 return LT.first * Entry->Cost;
923
924 static const CostTblEntry SSE1ShuffleTbl[] = {
925 { TTI::SK_Broadcast, MVT::v4f32, 1 }, // shufps
926 { TTI::SK_Reverse, MVT::v4f32, 1 }, // shufps
927 { TTI::SK_Alternate, MVT::v4f32, 2 } // 2*shufps
928 };
929
930 if (ST->hasSSE1())
931 if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
932 return LT.first * Entry->Cost;
933
Chandler Carruth705b1852015-01-31 03:43:40 +0000934 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
Chandler Carruth664e3542013-01-07 01:37:14 +0000935}
936
Chandler Carruth93205eb2015-08-05 18:08:10 +0000937int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
Chandler Carruth664e3542013-01-07 01:37:14 +0000938 int ISD = TLI->InstructionOpcodeToISD(Opcode);
939 assert(ISD && "Invalid opcode");
940
Cong Hou59898d82015-12-11 00:31:39 +0000941 // FIXME: Need a better design of the cost table to handle non-simple types of
942 // potential massive combinations (elem_num x src_type x dst_type).
943
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000944 static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
Simon Pilgrim841d7ca2016-11-24 14:46:55 +0000945 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
946 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +0000947 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
948 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +0000949 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
950 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
951
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000952 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000953 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000954 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000955 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +0000956 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000957 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000958
Simon Pilgrim841d7ca2016-11-24 14:46:55 +0000959 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +0000960 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f32, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +0000961 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f32, 1 },
Simon Pilgrim841d7ca2016-11-24 14:46:55 +0000962 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +0000963 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f64, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +0000964 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f64, 1 },
965
966 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 1 },
967 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f32, 1 },
968 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f32, 1 },
969 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
970 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f64, 1 },
971 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000972 };
973
Michael Kupersteinf0c59332016-07-11 21:39:44 +0000974 // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
975 // 256-bit wide vectors.
976
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000977 static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
Elena Demikhovsky27012472014-09-16 07:57:37 +0000978 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 1 },
979 { ISD::FP_EXTEND, MVT::v8f64, MVT::v16f32, 3 },
980 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000981
982 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 1 },
983 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 1 },
984 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 1 },
985 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000986
987 // v16i1 -> v16i32 - load + broadcast
988 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
989 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000990 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
991 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
992 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
993 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000994 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
995 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000996 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
997 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000998
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000999 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +00001000 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001001 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +00001002 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001003 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +00001004 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
1005 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +00001006 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001007 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 26 },
1008 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 26 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001009
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001010 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001011 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001012 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001013 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
1014 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 2 },
1015 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
1016 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001017 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 5 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001018 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
1019 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 2 },
1020 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
1021 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001022 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 2 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001023 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001024 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
1025 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
1026 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
1027 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
1028 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001029 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 5 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001030 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 },
1031 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 12 },
1032 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 26 },
1033
1034 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
1035 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
1036 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 1 },
1037 { ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f32, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +00001038 };
1039
Craig Topper4b275762015-10-28 04:02:12 +00001040 static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
Tim Northoverf0e21612014-02-06 18:18:36 +00001041 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
1042 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001043 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
1044 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001045 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
1046 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001047 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
1048 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
1049 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
1050 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001051 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
1052 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001053 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
1054 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001055 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
1056 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
1057
1058 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 2 },
1059 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2 },
1060 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 },
1061 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2 },
1062 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 2 },
1063 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 4 },
Elena Demikhovsky27012472014-09-16 07:57:37 +00001064
1065 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 3 },
1066 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 3 },
Quentin Colombet360460b2014-11-11 02:23:47 +00001067
1068 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 8 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001069 };
1070
Craig Topper4b275762015-10-28 04:02:12 +00001071 static const TypeConversionCostTblEntry AVXConversionTbl[] = {
Tim Northoverf0e21612014-02-06 18:18:36 +00001072 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 6 },
1073 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001074 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 7 },
1075 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001076 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 6 },
1077 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001078 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 7 },
1079 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 4 },
1080 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1081 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001082 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 6 },
1083 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001084 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
1085 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001086 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
1087 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
1088
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001089 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 4 },
1090 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
1091 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001092 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 4 },
1093 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 4 },
1094 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001095 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 9 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001096
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001097 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001098 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001099 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 },
1100 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001101 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i8, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001102 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 8 },
1103 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001104 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001105 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
1106 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001107 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001108 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001109
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001110 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001111 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001112 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 },
1113 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 2 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001114 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001115 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 5 },
1116 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001117 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001118 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001119 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001120 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 6 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001121 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001122 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 9 },
Quentin Colombet85b904d2014-03-27 22:27:41 +00001123 // The generic code to compute the scalar overhead is currently broken.
1124 // Workaround this limitation by estimating the scalarization overhead
1125 // here. We have roughly 10 instructions per scalar element.
1126 // Multiply that by the vector width.
1127 // FIXME: remove that when PR19268 is fixed.
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001128 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 10 },
1129 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 20 },
1130 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 },
1131 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001132
Renato Goline1fb0592013-01-20 20:57:20 +00001133 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001134 { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 7 },
Adam Nemet6dafe972014-03-30 18:07:13 +00001135 // This node is expanded into scalarized operations but BasicTTI is overly
1136 // optimistic estimating its cost. It computes 3 per element (one
1137 // vector-extract, one scalar conversion and one vector-insert). The
1138 // problem is that the inserts form a read-modify-write chain so latency
1139 // should be factored in too. Inflating the cost per element by 1.
1140 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 8*4 },
Adam Nemet10c4ce22014-03-31 21:54:48 +00001141 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 4*4 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001142
1143 { ISD::FP_EXTEND, MVT::v4f64, MVT::v4f32, 1 },
1144 { ISD::FP_ROUND, MVT::v4f32, MVT::v4f64, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001145 };
1146
Cong Hou59898d82015-12-11 00:31:39 +00001147 static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001148 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 2 },
1149 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001150 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 2 },
1151 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 2 },
1152 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
1153 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001154
Cong Hou59898d82015-12-11 00:31:39 +00001155 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
1156 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001157 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
1158 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
1159 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1160 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1161 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
1162 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
1163 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1164 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1165 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
1166 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
1167 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1168 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1169 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
1170 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
1171 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1172 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
Cong Hou59898d82015-12-11 00:31:39 +00001173
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001174 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 2 },
1175 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 1 },
1176 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 1 },
Cong Hou59898d82015-12-11 00:31:39 +00001177 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
Cong Hou59898d82015-12-11 00:31:39 +00001178 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001179 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001180 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 6 },
1181
Cong Hou59898d82015-12-11 00:31:39 +00001182 };
1183
1184 static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001185 // These are somewhat magic numbers justified by looking at the output of
1186 // Intel's IACA, running some kernels and making sure when we take
1187 // legalization into account the throughput will be overestimated.
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001188 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001189 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1190 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1191 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
Sanjay Patel04b34962016-07-06 19:15:54 +00001192 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001193 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1194 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1195 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
Cong Hou59898d82015-12-11 00:31:39 +00001196
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001197 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1198 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1199 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1200 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1201 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1202 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
1203 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
1204 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001205
Simon Pilgrim4ddc92b2016-10-18 07:42:15 +00001206 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 3 },
1207
Cong Hou59898d82015-12-11 00:31:39 +00001208 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
1209 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001210 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
1211 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 3 },
1212 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
1213 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 8 },
1214 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1215 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 2 },
1216 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
1217 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
1218 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 3 },
1219 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1220 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 9 },
1221 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 12 },
1222 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1223 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 2 },
1224 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
1225 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 10 },
1226 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 3 },
1227 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
1228 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001229 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001230 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 3 },
1231 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 5 },
Cong Hou59898d82015-12-11 00:31:39 +00001232
Cong Hou59898d82015-12-11 00:31:39 +00001233 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001234 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 2 },
1235 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 },
1236 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 3 },
1237 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 3 },
1238 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
1239 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 7 },
1240 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
1241 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 10 },
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001242 };
1243
Chandler Carruth93205eb2015-08-05 18:08:10 +00001244 std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
1245 std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001246
1247 if (ST->hasSSE2() && !ST->hasAVX()) {
Cong Hou59898d82015-12-11 00:31:39 +00001248 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
Craig Topperee0c8592015-10-27 04:14:24 +00001249 LTDest.second, LTSrc.second))
1250 return LTSrc.first * Entry->Cost;
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001251 }
1252
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001253 EVT SrcTy = TLI->getValueType(DL, Src);
1254 EVT DstTy = TLI->getValueType(DL, Dst);
1255
1256 // The function getSimpleVT only handles simple value types.
1257 if (!SrcTy.isSimple() || !DstTy.isSimple())
1258 return BaseT::getCastInstrCost(Opcode, Dst, Src);
1259
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001260 if (ST->hasDQI())
1261 if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
1262 DstTy.getSimpleVT(),
1263 SrcTy.getSimpleVT()))
1264 return Entry->Cost;
1265
1266 if (ST->hasAVX512())
1267 if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
1268 DstTy.getSimpleVT(),
1269 SrcTy.getSimpleVT()))
1270 return Entry->Cost;
1271
Tim Northoverf0e21612014-02-06 18:18:36 +00001272 if (ST->hasAVX2()) {
Craig Topperee0c8592015-10-27 04:14:24 +00001273 if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
1274 DstTy.getSimpleVT(),
1275 SrcTy.getSimpleVT()))
1276 return Entry->Cost;
Tim Northoverf0e21612014-02-06 18:18:36 +00001277 }
1278
Chandler Carruth664e3542013-01-07 01:37:14 +00001279 if (ST->hasAVX()) {
Craig Topperee0c8592015-10-27 04:14:24 +00001280 if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
1281 DstTy.getSimpleVT(),
1282 SrcTy.getSimpleVT()))
1283 return Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001284 }
1285
Cong Hou59898d82015-12-11 00:31:39 +00001286 if (ST->hasSSE41()) {
1287 if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
1288 DstTy.getSimpleVT(),
1289 SrcTy.getSimpleVT()))
1290 return Entry->Cost;
1291 }
1292
1293 if (ST->hasSSE2()) {
1294 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
1295 DstTy.getSimpleVT(),
1296 SrcTy.getSimpleVT()))
1297 return Entry->Cost;
1298 }
1299
Chandler Carruth705b1852015-01-31 03:43:40 +00001300 return BaseT::getCastInstrCost(Opcode, Dst, Src);
Chandler Carruth664e3542013-01-07 01:37:14 +00001301}
1302
Chandler Carruth93205eb2015-08-05 18:08:10 +00001303int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) {
Chandler Carruth664e3542013-01-07 01:37:14 +00001304 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001305 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
Chandler Carruth664e3542013-01-07 01:37:14 +00001306
1307 MVT MTy = LT.second;
1308
1309 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1310 assert(ISD && "Invalid opcode");
1311
Simon Pilgrimeec3a952016-05-09 21:14:38 +00001312 static const CostTblEntry SSE2CostTbl[] = {
1313 { ISD::SETCC, MVT::v2i64, 8 },
1314 { ISD::SETCC, MVT::v4i32, 1 },
1315 { ISD::SETCC, MVT::v8i16, 1 },
1316 { ISD::SETCC, MVT::v16i8, 1 },
1317 };
1318
Craig Topper4b275762015-10-28 04:02:12 +00001319 static const CostTblEntry SSE42CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001320 { ISD::SETCC, MVT::v2f64, 1 },
1321 { ISD::SETCC, MVT::v4f32, 1 },
1322 { ISD::SETCC, MVT::v2i64, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001323 };
1324
Craig Topper4b275762015-10-28 04:02:12 +00001325 static const CostTblEntry AVX1CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001326 { ISD::SETCC, MVT::v4f64, 1 },
1327 { ISD::SETCC, MVT::v8f32, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001328 // AVX1 does not support 8-wide integer compare.
Renato Goline1fb0592013-01-20 20:57:20 +00001329 { ISD::SETCC, MVT::v4i64, 4 },
1330 { ISD::SETCC, MVT::v8i32, 4 },
1331 { ISD::SETCC, MVT::v16i16, 4 },
1332 { ISD::SETCC, MVT::v32i8, 4 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001333 };
1334
Craig Topper4b275762015-10-28 04:02:12 +00001335 static const CostTblEntry AVX2CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001336 { ISD::SETCC, MVT::v4i64, 1 },
1337 { ISD::SETCC, MVT::v8i32, 1 },
1338 { ISD::SETCC, MVT::v16i16, 1 },
1339 { ISD::SETCC, MVT::v32i8, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001340 };
1341
Craig Topper4b275762015-10-28 04:02:12 +00001342 static const CostTblEntry AVX512CostTbl[] = {
Elena Demikhovsky27012472014-09-16 07:57:37 +00001343 { ISD::SETCC, MVT::v8i64, 1 },
1344 { ISD::SETCC, MVT::v16i32, 1 },
1345 { ISD::SETCC, MVT::v8f64, 1 },
1346 { ISD::SETCC, MVT::v16f32, 1 },
1347 };
1348
Craig Topperee0c8592015-10-27 04:14:24 +00001349 if (ST->hasAVX512())
1350 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
1351 return LT.first * Entry->Cost;
Elena Demikhovsky27012472014-09-16 07:57:37 +00001352
Craig Topperee0c8592015-10-27 04:14:24 +00001353 if (ST->hasAVX2())
1354 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1355 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001356
Craig Topperee0c8592015-10-27 04:14:24 +00001357 if (ST->hasAVX())
1358 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1359 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001360
Craig Topperee0c8592015-10-27 04:14:24 +00001361 if (ST->hasSSE42())
1362 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1363 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001364
Simon Pilgrimeec3a952016-05-09 21:14:38 +00001365 if (ST->hasSSE2())
1366 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1367 return LT.first * Entry->Cost;
1368
Chandler Carruth705b1852015-01-31 03:43:40 +00001369 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
Chandler Carruth664e3542013-01-07 01:37:14 +00001370}
1371
Simon Pilgrim14000b32016-05-24 08:17:50 +00001372int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
1373 ArrayRef<Type *> Tys, FastMathFlags FMF) {
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001374 // Costs should match the codegen from:
1375 // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
1376 // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001377 // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001378 // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001379 // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
Simon Pilgrim14000b32016-05-24 08:17:50 +00001380 static const CostTblEntry XOPCostTbl[] = {
1381 { ISD::BITREVERSE, MVT::v4i64, 4 },
1382 { ISD::BITREVERSE, MVT::v8i32, 4 },
1383 { ISD::BITREVERSE, MVT::v16i16, 4 },
1384 { ISD::BITREVERSE, MVT::v32i8, 4 },
1385 { ISD::BITREVERSE, MVT::v2i64, 1 },
1386 { ISD::BITREVERSE, MVT::v4i32, 1 },
1387 { ISD::BITREVERSE, MVT::v8i16, 1 },
1388 { ISD::BITREVERSE, MVT::v16i8, 1 },
1389 { ISD::BITREVERSE, MVT::i64, 3 },
1390 { ISD::BITREVERSE, MVT::i32, 3 },
1391 { ISD::BITREVERSE, MVT::i16, 3 },
1392 { ISD::BITREVERSE, MVT::i8, 3 }
1393 };
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001394 static const CostTblEntry AVX2CostTbl[] = {
1395 { ISD::BITREVERSE, MVT::v4i64, 5 },
1396 { ISD::BITREVERSE, MVT::v8i32, 5 },
1397 { ISD::BITREVERSE, MVT::v16i16, 5 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001398 { ISD::BITREVERSE, MVT::v32i8, 5 },
1399 { ISD::BSWAP, MVT::v4i64, 1 },
1400 { ISD::BSWAP, MVT::v8i32, 1 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001401 { ISD::BSWAP, MVT::v16i16, 1 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001402 { ISD::CTLZ, MVT::v4i64, 23 },
1403 { ISD::CTLZ, MVT::v8i32, 18 },
1404 { ISD::CTLZ, MVT::v16i16, 14 },
1405 { ISD::CTLZ, MVT::v32i8, 9 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001406 { ISD::CTPOP, MVT::v4i64, 7 },
1407 { ISD::CTPOP, MVT::v8i32, 11 },
1408 { ISD::CTPOP, MVT::v16i16, 9 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001409 { ISD::CTPOP, MVT::v32i8, 6 },
1410 { ISD::CTTZ, MVT::v4i64, 10 },
1411 { ISD::CTTZ, MVT::v8i32, 14 },
1412 { ISD::CTTZ, MVT::v16i16, 12 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001413 { ISD::CTTZ, MVT::v32i8, 9 },
1414 { ISD::FSQRT, MVT::f32, 7 }, // Haswell from http://www.agner.org/
1415 { ISD::FSQRT, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
1416 { ISD::FSQRT, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
1417 { ISD::FSQRT, MVT::f64, 14 }, // Haswell from http://www.agner.org/
1418 { ISD::FSQRT, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
1419 { ISD::FSQRT, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001420 };
1421 static const CostTblEntry AVX1CostTbl[] = {
1422 { ISD::BITREVERSE, MVT::v4i64, 10 },
1423 { ISD::BITREVERSE, MVT::v8i32, 10 },
1424 { ISD::BITREVERSE, MVT::v16i16, 10 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001425 { ISD::BITREVERSE, MVT::v32i8, 10 },
1426 { ISD::BSWAP, MVT::v4i64, 4 },
1427 { ISD::BSWAP, MVT::v8i32, 4 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001428 { ISD::BSWAP, MVT::v16i16, 4 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001429 { ISD::CTLZ, MVT::v4i64, 46 },
1430 { ISD::CTLZ, MVT::v8i32, 36 },
1431 { ISD::CTLZ, MVT::v16i16, 28 },
1432 { ISD::CTLZ, MVT::v32i8, 18 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001433 { ISD::CTPOP, MVT::v4i64, 14 },
1434 { ISD::CTPOP, MVT::v8i32, 22 },
1435 { ISD::CTPOP, MVT::v16i16, 18 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001436 { ISD::CTPOP, MVT::v32i8, 12 },
1437 { ISD::CTTZ, MVT::v4i64, 20 },
1438 { ISD::CTTZ, MVT::v8i32, 28 },
1439 { ISD::CTTZ, MVT::v16i16, 24 },
1440 { ISD::CTTZ, MVT::v32i8, 18 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001441 { ISD::FSQRT, MVT::f32, 14 }, // SNB from http://www.agner.org/
1442 { ISD::FSQRT, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
1443 { ISD::FSQRT, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
1444 { ISD::FSQRT, MVT::f64, 21 }, // SNB from http://www.agner.org/
1445 { ISD::FSQRT, MVT::v2f64, 21 }, // SNB from http://www.agner.org/
1446 { ISD::FSQRT, MVT::v4f64, 43 }, // SNB from http://www.agner.org/
1447 };
1448 static const CostTblEntry SSE42CostTbl[] = {
1449 { ISD::FSQRT, MVT::f32, 18 }, // Nehalem from http://www.agner.org/
1450 { ISD::FSQRT, MVT::v4f32, 18 }, // Nehalem from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001451 };
1452 static const CostTblEntry SSSE3CostTbl[] = {
1453 { ISD::BITREVERSE, MVT::v2i64, 5 },
1454 { ISD::BITREVERSE, MVT::v4i32, 5 },
1455 { ISD::BITREVERSE, MVT::v8i16, 5 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001456 { ISD::BITREVERSE, MVT::v16i8, 5 },
1457 { ISD::BSWAP, MVT::v2i64, 1 },
1458 { ISD::BSWAP, MVT::v4i32, 1 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001459 { ISD::BSWAP, MVT::v8i16, 1 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001460 { ISD::CTLZ, MVT::v2i64, 23 },
1461 { ISD::CTLZ, MVT::v4i32, 18 },
1462 { ISD::CTLZ, MVT::v8i16, 14 },
1463 { ISD::CTLZ, MVT::v16i8, 9 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001464 { ISD::CTPOP, MVT::v2i64, 7 },
1465 { ISD::CTPOP, MVT::v4i32, 11 },
1466 { ISD::CTPOP, MVT::v8i16, 9 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001467 { ISD::CTPOP, MVT::v16i8, 6 },
1468 { ISD::CTTZ, MVT::v2i64, 10 },
1469 { ISD::CTTZ, MVT::v4i32, 14 },
1470 { ISD::CTTZ, MVT::v8i16, 12 },
1471 { ISD::CTTZ, MVT::v16i8, 9 }
Simon Pilgrim356e8232016-06-20 23:08:21 +00001472 };
1473 static const CostTblEntry SSE2CostTbl[] = {
1474 { ISD::BSWAP, MVT::v2i64, 7 },
1475 { ISD::BSWAP, MVT::v4i32, 7 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001476 { ISD::BSWAP, MVT::v8i16, 7 },
Simon Pilgrimd02c5522016-11-08 14:10:28 +00001477 { ISD::CTLZ, MVT::v2i64, 25 },
1478 { ISD::CTLZ, MVT::v4i32, 26 },
1479 { ISD::CTLZ, MVT::v8i16, 20 },
1480 { ISD::CTLZ, MVT::v16i8, 17 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001481 { ISD::CTPOP, MVT::v2i64, 12 },
1482 { ISD::CTPOP, MVT::v4i32, 15 },
1483 { ISD::CTPOP, MVT::v8i16, 13 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001484 { ISD::CTPOP, MVT::v16i8, 10 },
1485 { ISD::CTTZ, MVT::v2i64, 14 },
1486 { ISD::CTTZ, MVT::v4i32, 18 },
1487 { ISD::CTTZ, MVT::v8i16, 16 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001488 { ISD::CTTZ, MVT::v16i8, 13 },
1489 { ISD::FSQRT, MVT::f64, 32 }, // Nehalem from http://www.agner.org/
1490 { ISD::FSQRT, MVT::v2f64, 32 }, // Nehalem from http://www.agner.org/
1491 };
1492 static const CostTblEntry SSE1CostTbl[] = {
1493 { ISD::FSQRT, MVT::f32, 28 }, // Pentium III from http://www.agner.org/
1494 { ISD::FSQRT, MVT::v4f32, 56 }, // Pentium III from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001495 };
Simon Pilgrim14000b32016-05-24 08:17:50 +00001496
1497 unsigned ISD = ISD::DELETED_NODE;
1498 switch (IID) {
1499 default:
1500 break;
1501 case Intrinsic::bitreverse:
1502 ISD = ISD::BITREVERSE;
1503 break;
Simon Pilgrim356e8232016-06-20 23:08:21 +00001504 case Intrinsic::bswap:
1505 ISD = ISD::BSWAP;
1506 break;
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001507 case Intrinsic::ctlz:
1508 ISD = ISD::CTLZ;
1509 break;
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001510 case Intrinsic::ctpop:
1511 ISD = ISD::CTPOP;
1512 break;
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001513 case Intrinsic::cttz:
1514 ISD = ISD::CTTZ;
1515 break;
Alexey Bataevd07c7312016-10-31 12:10:53 +00001516 case Intrinsic::sqrt:
1517 ISD = ISD::FSQRT;
1518 break;
Simon Pilgrim14000b32016-05-24 08:17:50 +00001519 }
1520
1521 // Legalize the type.
1522 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
1523 MVT MTy = LT.second;
1524
1525 // Attempt to lookup cost.
1526 if (ST->hasXOP())
1527 if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
1528 return LT.first * Entry->Cost;
1529
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001530 if (ST->hasAVX2())
1531 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1532 return LT.first * Entry->Cost;
1533
1534 if (ST->hasAVX())
1535 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1536 return LT.first * Entry->Cost;
1537
Alexey Bataevd07c7312016-10-31 12:10:53 +00001538 if (ST->hasSSE42())
1539 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1540 return LT.first * Entry->Cost;
1541
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001542 if (ST->hasSSSE3())
1543 if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
1544 return LT.first * Entry->Cost;
1545
Simon Pilgrim356e8232016-06-20 23:08:21 +00001546 if (ST->hasSSE2())
1547 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1548 return LT.first * Entry->Cost;
1549
Alexey Bataevd07c7312016-10-31 12:10:53 +00001550 if (ST->hasSSE1())
1551 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
1552 return LT.first * Entry->Cost;
1553
Simon Pilgrim14000b32016-05-24 08:17:50 +00001554 return BaseT::getIntrinsicInstrCost(IID, RetTy, Tys, FMF);
1555}
1556
1557int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
1558 ArrayRef<Value *> Args, FastMathFlags FMF) {
1559 return BaseT::getIntrinsicInstrCost(IID, RetTy, Args, FMF);
1560}
1561
Chandler Carruth93205eb2015-08-05 18:08:10 +00001562int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
Chandler Carruth664e3542013-01-07 01:37:14 +00001563 assert(Val->isVectorTy() && "This must be a vector type");
1564
Sanjay Patelaedc3472016-05-25 17:27:54 +00001565 Type *ScalarType = Val->getScalarType();
1566
Chandler Carruth664e3542013-01-07 01:37:14 +00001567 if (Index != -1U) {
1568 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001569 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
Chandler Carruth664e3542013-01-07 01:37:14 +00001570
1571 // This type is legalized to a scalar type.
1572 if (!LT.second.isVector())
1573 return 0;
1574
1575 // The type may be split. Normalize the index to the new type.
1576 unsigned Width = LT.second.getVectorNumElements();
1577 Index = Index % Width;
1578
1579 // Floating point scalars are already located in index #0.
Sanjay Patelaedc3472016-05-25 17:27:54 +00001580 if (ScalarType->isFloatingPointTy() && Index == 0)
Chandler Carruth664e3542013-01-07 01:37:14 +00001581 return 0;
1582 }
1583
Sanjay Patelaedc3472016-05-25 17:27:54 +00001584 // Add to the base cost if we know that the extracted element of a vector is
1585 // destined to be moved to and used in the integer register file.
1586 int RegisterFileMoveCost = 0;
1587 if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
1588 RegisterFileMoveCost = 1;
1589
1590 return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001591}
1592
Chandler Carruth93205eb2015-08-05 18:08:10 +00001593int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
1594 unsigned AddressSpace) {
Alp Tokerf907b892013-12-05 05:44:44 +00001595 // Handle non-power-of-two vectors such as <3 x float>
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001596 if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
1597 unsigned NumElem = VTy->getVectorNumElements();
1598
1599 // Handle a few common cases:
1600 // <3 x float>
1601 if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
1602 // Cost = 64 bit store + extract + 32 bit store.
1603 return 3;
1604
1605 // <3 x double>
1606 if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
1607 // Cost = 128 bit store + unpack + 64 bit store.
1608 return 3;
1609
Alp Tokerf907b892013-12-05 05:44:44 +00001610 // Assume that all other non-power-of-two numbers are scalarized.
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001611 if (!isPowerOf2_32(NumElem)) {
Chandler Carruth93205eb2015-08-05 18:08:10 +00001612 int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
1613 AddressSpace);
1614 int SplitCost = getScalarizationOverhead(Src, Opcode == Instruction::Load,
1615 Opcode == Instruction::Store);
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001616 return NumElem * Cost + SplitCost;
1617 }
1618 }
1619
Chandler Carruth664e3542013-01-07 01:37:14 +00001620 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001621 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
Chandler Carruth664e3542013-01-07 01:37:14 +00001622 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
1623 "Invalid Opcode");
1624
1625 // Each load/store unit costs 1.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001626 int Cost = LT.first * 1;
Chandler Carruth664e3542013-01-07 01:37:14 +00001627
Sanjay Patel9f6c4d52016-03-09 22:23:33 +00001628 // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
1629 // proxy for a double-pumped AVX memory interface such as on Sandybridge.
1630 if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
1631 Cost *= 2;
Chandler Carruth664e3542013-01-07 01:37:14 +00001632
1633 return Cost;
1634}
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001635
Chandler Carruth93205eb2015-08-05 18:08:10 +00001636int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
1637 unsigned Alignment,
1638 unsigned AddressSpace) {
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001639 VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
1640 if (!SrcVTy)
1641 // To calculate scalar take the regular cost, without mask
1642 return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace);
1643
1644 unsigned NumElem = SrcVTy->getVectorNumElements();
1645 VectorType *MaskTy =
Mehdi Amini867e9142016-04-14 04:36:40 +00001646 VectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
Elena Demikhovsky20662e32015-10-19 07:43:38 +00001647 if ((Opcode == Instruction::Load && !isLegalMaskedLoad(SrcVTy)) ||
1648 (Opcode == Instruction::Store && !isLegalMaskedStore(SrcVTy)) ||
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001649 !isPowerOf2_32(NumElem)) {
1650 // Scalarization
Chandler Carruth93205eb2015-08-05 18:08:10 +00001651 int MaskSplitCost = getScalarizationOverhead(MaskTy, false, true);
1652 int ScalarCompareCost = getCmpSelInstrCost(
Mehdi Amini867e9142016-04-14 04:36:40 +00001653 Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr);
Chandler Carruth93205eb2015-08-05 18:08:10 +00001654 int BranchCost = getCFInstrCost(Instruction::Br);
1655 int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001656
Chandler Carruth93205eb2015-08-05 18:08:10 +00001657 int ValueSplitCost = getScalarizationOverhead(
1658 SrcVTy, Opcode == Instruction::Load, Opcode == Instruction::Store);
1659 int MemopCost =
Chandler Carruth705b1852015-01-31 03:43:40 +00001660 NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
1661 Alignment, AddressSpace);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001662 return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
1663 }
1664
1665 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001666 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
Cong Houda4e8ae2015-10-28 18:15:46 +00001667 auto VT = TLI->getValueType(DL, SrcVTy);
Chandler Carruth93205eb2015-08-05 18:08:10 +00001668 int Cost = 0;
Cong Houda4e8ae2015-10-28 18:15:46 +00001669 if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001670 LT.second.getVectorNumElements() == NumElem)
1671 // Promotion requires expand/truncate for data and a shuffle for mask.
Hans Wennborg083ca9b2015-10-06 23:24:35 +00001672 Cost += getShuffleCost(TTI::SK_Alternate, SrcVTy, 0, nullptr) +
1673 getShuffleCost(TTI::SK_Alternate, MaskTy, 0, nullptr);
Chandler Carruth705b1852015-01-31 03:43:40 +00001674
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001675 else if (LT.second.getVectorNumElements() > NumElem) {
1676 VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(),
1677 LT.second.getVectorNumElements());
1678 // Expanding requires fill mask with zeroes
Chandler Carruth705b1852015-01-31 03:43:40 +00001679 Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001680 }
1681 if (!ST->hasAVX512())
1682 return Cost + LT.first*4; // Each maskmov costs 4
1683
1684 // AVX-512 masked load/store is cheapper
1685 return Cost+LT.first;
1686}
1687
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001688int X86TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
1689 const SCEV *Ptr) {
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001690 // Address computations in vectorized code with non-consecutive addresses will
1691 // likely result in more instructions compared to scalar code where the
1692 // computation can more often be merged into the index mode. The resulting
1693 // extra micro-ops can significantly decrease throughput.
1694 unsigned NumVectorInstToHideOverhead = 10;
1695
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001696 // Cost modeling of Strided Access Computation is hidden by the indexing
1697 // modes of X86 regardless of the stride value. We dont believe that there
1698 // is a difference between constant strided access in gerenal and constant
1699 // strided value which is less than or equal to 64.
1700 // Even in the case of (loop invariant) stride whose value is not known at
1701 // compile time, the address computation will not incur more than one extra
1702 // ADD instruction.
1703 if (Ty->isVectorTy() && SE) {
1704 if (!BaseT::isStridedAccess(Ptr))
1705 return NumVectorInstToHideOverhead;
1706 if (!BaseT::getConstantStrideStep(SE, Ptr))
1707 return 1;
1708 }
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001709
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001710 return BaseT::getAddressComputationCost(Ty, SE, Ptr);
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001711}
Yi Jiang5c343de2013-09-19 17:48:48 +00001712
Chandler Carruth93205eb2015-08-05 18:08:10 +00001713int X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy,
1714 bool IsPairwise) {
Michael Liao5bf95782014-12-04 05:20:33 +00001715
Chandler Carruth93205eb2015-08-05 18:08:10 +00001716 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
Michael Liao5bf95782014-12-04 05:20:33 +00001717
Yi Jiang5c343de2013-09-19 17:48:48 +00001718 MVT MTy = LT.second;
Michael Liao5bf95782014-12-04 05:20:33 +00001719
Yi Jiang5c343de2013-09-19 17:48:48 +00001720 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1721 assert(ISD && "Invalid opcode");
Michael Liao5bf95782014-12-04 05:20:33 +00001722
1723 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
1724 // and make it as the cost.
1725
Craig Topper4b275762015-10-28 04:02:12 +00001726 static const CostTblEntry SSE42CostTblPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001727 { ISD::FADD, MVT::v2f64, 2 },
1728 { ISD::FADD, MVT::v4f32, 4 },
1729 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
1730 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
1731 { ISD::ADD, MVT::v8i16, 5 },
1732 };
Michael Liao5bf95782014-12-04 05:20:33 +00001733
Craig Topper4b275762015-10-28 04:02:12 +00001734 static const CostTblEntry AVX1CostTblPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001735 { ISD::FADD, MVT::v4f32, 4 },
1736 { ISD::FADD, MVT::v4f64, 5 },
1737 { ISD::FADD, MVT::v8f32, 7 },
1738 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
1739 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
1740 { ISD::ADD, MVT::v4i64, 5 }, // The data reported by the IACA tool is "4.8".
1741 { ISD::ADD, MVT::v8i16, 5 },
1742 { ISD::ADD, MVT::v8i32, 5 },
1743 };
1744
Craig Topper4b275762015-10-28 04:02:12 +00001745 static const CostTblEntry SSE42CostTblNoPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001746 { ISD::FADD, MVT::v2f64, 2 },
1747 { ISD::FADD, MVT::v4f32, 4 },
1748 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
1749 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3".
1750 { ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3".
1751 };
Michael Liao5bf95782014-12-04 05:20:33 +00001752
Craig Topper4b275762015-10-28 04:02:12 +00001753 static const CostTblEntry AVX1CostTblNoPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001754 { ISD::FADD, MVT::v4f32, 3 },
1755 { ISD::FADD, MVT::v4f64, 3 },
1756 { ISD::FADD, MVT::v8f32, 4 },
1757 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
1758 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "2.8".
1759 { ISD::ADD, MVT::v4i64, 3 },
1760 { ISD::ADD, MVT::v8i16, 4 },
1761 { ISD::ADD, MVT::v8i32, 5 },
1762 };
Michael Liao5bf95782014-12-04 05:20:33 +00001763
Yi Jiang5c343de2013-09-19 17:48:48 +00001764 if (IsPairwise) {
Craig Topperee0c8592015-10-27 04:14:24 +00001765 if (ST->hasAVX())
1766 if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
1767 return LT.first * Entry->Cost;
Michael Liao5bf95782014-12-04 05:20:33 +00001768
Craig Topperee0c8592015-10-27 04:14:24 +00001769 if (ST->hasSSE42())
1770 if (const auto *Entry = CostTableLookup(SSE42CostTblPairWise, ISD, MTy))
1771 return LT.first * Entry->Cost;
Yi Jiang5c343de2013-09-19 17:48:48 +00001772 } else {
Craig Topperee0c8592015-10-27 04:14:24 +00001773 if (ST->hasAVX())
1774 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
1775 return LT.first * Entry->Cost;
Michael Liao5bf95782014-12-04 05:20:33 +00001776
Craig Topperee0c8592015-10-27 04:14:24 +00001777 if (ST->hasSSE42())
1778 if (const auto *Entry = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy))
1779 return LT.first * Entry->Cost;
Yi Jiang5c343de2013-09-19 17:48:48 +00001780 }
1781
Chandler Carruth705b1852015-01-31 03:43:40 +00001782 return BaseT::getReductionCost(Opcode, ValTy, IsPairwise);
Yi Jiang5c343de2013-09-19 17:48:48 +00001783}
1784
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001785/// \brief Calculate the cost of materializing a 64-bit value. This helper
1786/// method might only calculate a fraction of a larger immediate. Therefore it
1787/// is valid to return a cost of ZERO.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001788int X86TTIImpl::getIntImmCost(int64_t Val) {
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001789 if (Val == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001790 return TTI::TCC_Free;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001791
1792 if (isInt<32>(Val))
Chandler Carruth705b1852015-01-31 03:43:40 +00001793 return TTI::TCC_Basic;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001794
Chandler Carruth705b1852015-01-31 03:43:40 +00001795 return 2 * TTI::TCC_Basic;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001796}
1797
Chandler Carruth93205eb2015-08-05 18:08:10 +00001798int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001799 assert(Ty->isIntegerTy());
1800
1801 unsigned BitSize = Ty->getPrimitiveSizeInBits();
1802 if (BitSize == 0)
1803 return ~0U;
1804
Juergen Ributzka43176172014-05-19 21:00:53 +00001805 // Never hoist constants larger than 128bit, because this might lead to
1806 // incorrect code generation or assertions in codegen.
1807 // Fixme: Create a cost model for types larger than i128 once the codegen
1808 // issues have been fixed.
1809 if (BitSize > 128)
Chandler Carruth705b1852015-01-31 03:43:40 +00001810 return TTI::TCC_Free;
Juergen Ributzka43176172014-05-19 21:00:53 +00001811
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001812 if (Imm == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001813 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001814
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001815 // Sign-extend all constants to a multiple of 64-bit.
1816 APInt ImmVal = Imm;
1817 if (BitSize & 0x3f)
1818 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
1819
1820 // Split the constant into 64-bit chunks and calculate the cost for each
1821 // chunk.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001822 int Cost = 0;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001823 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
1824 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
1825 int64_t Val = Tmp.getSExtValue();
1826 Cost += getIntImmCost(Val);
1827 }
Sanjay Patel4c7d0942016-04-05 19:27:39 +00001828 // We need at least one instruction to materialize the constant.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001829 return std::max(1, Cost);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001830}
1831
Chandler Carruth93205eb2015-08-05 18:08:10 +00001832int X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
1833 Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001834 assert(Ty->isIntegerTy());
1835
1836 unsigned BitSize = Ty->getPrimitiveSizeInBits();
Juergen Ributzka43176172014-05-19 21:00:53 +00001837 // There is no cost model for constants with a bit size of 0. Return TCC_Free
1838 // here, so that constant hoisting will ignore this constant.
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001839 if (BitSize == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001840 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001841
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001842 unsigned ImmIdx = ~0U;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001843 switch (Opcode) {
Chandler Carruth705b1852015-01-31 03:43:40 +00001844 default:
1845 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001846 case Instruction::GetElementPtr:
Juergen Ributzka27435b32014-04-02 21:45:36 +00001847 // Always hoist the base address of a GetElementPtr. This prevents the
1848 // creation of new constants for every base constant that gets constant
1849 // folded with the offset.
Juergen Ributzka631c4912014-03-25 18:01:25 +00001850 if (Idx == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001851 return 2 * TTI::TCC_Basic;
1852 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001853 case Instruction::Store:
1854 ImmIdx = 0;
1855 break;
Craig Topper074e8452015-12-20 18:41:54 +00001856 case Instruction::ICmp:
1857 // This is an imperfect hack to prevent constant hoisting of
1858 // compares that might be trying to check if a 64-bit value fits in
1859 // 32-bits. The backend can optimize these cases using a right shift by 32.
1860 // Ideally we would check the compare predicate here. There also other
1861 // similar immediates the backend can use shifts for.
1862 if (Idx == 1 && Imm.getBitWidth() == 64) {
1863 uint64_t ImmVal = Imm.getZExtValue();
1864 if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
1865 return TTI::TCC_Free;
1866 }
1867 ImmIdx = 1;
1868 break;
Craig Topper79dd1bf2015-10-06 02:50:24 +00001869 case Instruction::And:
1870 // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
1871 // by using a 32-bit operation with implicit zero extension. Detect such
1872 // immediates here as the normal path expects bit 31 to be sign extended.
1873 if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
1874 return TTI::TCC_Free;
Justin Bognerb03fd122016-08-17 05:10:15 +00001875 LLVM_FALLTHROUGH;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001876 case Instruction::Add:
1877 case Instruction::Sub:
1878 case Instruction::Mul:
1879 case Instruction::UDiv:
1880 case Instruction::SDiv:
1881 case Instruction::URem:
1882 case Instruction::SRem:
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001883 case Instruction::Or:
1884 case Instruction::Xor:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001885 ImmIdx = 1;
1886 break;
Michael Zolotukhin1f4a9602014-04-30 19:17:32 +00001887 // Always return TCC_Free for the shift value of a shift instruction.
1888 case Instruction::Shl:
1889 case Instruction::LShr:
1890 case Instruction::AShr:
1891 if (Idx == 1)
Chandler Carruth705b1852015-01-31 03:43:40 +00001892 return TTI::TCC_Free;
Michael Zolotukhin1f4a9602014-04-30 19:17:32 +00001893 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001894 case Instruction::Trunc:
1895 case Instruction::ZExt:
1896 case Instruction::SExt:
1897 case Instruction::IntToPtr:
1898 case Instruction::PtrToInt:
1899 case Instruction::BitCast:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001900 case Instruction::PHI:
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001901 case Instruction::Call:
1902 case Instruction::Select:
1903 case Instruction::Ret:
1904 case Instruction::Load:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001905 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001906 }
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001907
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001908 if (Idx == ImmIdx) {
Chandler Carruth93205eb2015-08-05 18:08:10 +00001909 int NumConstants = (BitSize + 63) / 64;
1910 int Cost = X86TTIImpl::getIntImmCost(Imm, Ty);
Chandler Carruth705b1852015-01-31 03:43:40 +00001911 return (Cost <= NumConstants * TTI::TCC_Basic)
Chandler Carruth93205eb2015-08-05 18:08:10 +00001912 ? static_cast<int>(TTI::TCC_Free)
Chandler Carruth705b1852015-01-31 03:43:40 +00001913 : Cost;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001914 }
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001915
Chandler Carruth705b1852015-01-31 03:43:40 +00001916 return X86TTIImpl::getIntImmCost(Imm, Ty);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001917}
1918
Chandler Carruth93205eb2015-08-05 18:08:10 +00001919int X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
1920 Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001921 assert(Ty->isIntegerTy());
1922
1923 unsigned BitSize = Ty->getPrimitiveSizeInBits();
Juergen Ributzka43176172014-05-19 21:00:53 +00001924 // There is no cost model for constants with a bit size of 0. Return TCC_Free
1925 // here, so that constant hoisting will ignore this constant.
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001926 if (BitSize == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001927 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001928
1929 switch (IID) {
Chandler Carruth705b1852015-01-31 03:43:40 +00001930 default:
1931 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001932 case Intrinsic::sadd_with_overflow:
1933 case Intrinsic::uadd_with_overflow:
1934 case Intrinsic::ssub_with_overflow:
1935 case Intrinsic::usub_with_overflow:
1936 case Intrinsic::smul_with_overflow:
1937 case Intrinsic::umul_with_overflow:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001938 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
Chandler Carruth705b1852015-01-31 03:43:40 +00001939 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001940 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001941 case Intrinsic::experimental_stackmap:
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001942 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
Chandler Carruth705b1852015-01-31 03:43:40 +00001943 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001944 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001945 case Intrinsic::experimental_patchpoint_void:
1946 case Intrinsic::experimental_patchpoint_i64:
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001947 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
Chandler Carruth705b1852015-01-31 03:43:40 +00001948 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001949 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001950 }
Chandler Carruth705b1852015-01-31 03:43:40 +00001951 return X86TTIImpl::getIntImmCost(Imm, Ty);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001952}
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00001953
Elena Demikhovsky54946982015-12-28 20:10:59 +00001954// Return an average cost of Gather / Scatter instruction, maybe improved later
1955int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, Value *Ptr,
1956 unsigned Alignment, unsigned AddressSpace) {
1957
1958 assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
1959 unsigned VF = SrcVTy->getVectorNumElements();
1960
1961 // Try to reduce index size from 64 bit (default for GEP)
1962 // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
1963 // operation will use 16 x 64 indices which do not fit in a zmm and needs
1964 // to split. Also check that the base pointer is the same for all lanes,
1965 // and that there's at most one variable index.
1966 auto getIndexSizeInBits = [](Value *Ptr, const DataLayout& DL) {
1967 unsigned IndexSize = DL.getPointerSizeInBits();
1968 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1969 if (IndexSize < 64 || !GEP)
1970 return IndexSize;
Simon Pilgrim14000b32016-05-24 08:17:50 +00001971
Elena Demikhovsky54946982015-12-28 20:10:59 +00001972 unsigned NumOfVarIndices = 0;
1973 Value *Ptrs = GEP->getPointerOperand();
1974 if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
1975 return IndexSize;
1976 for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
1977 if (isa<Constant>(GEP->getOperand(i)))
1978 continue;
1979 Type *IndxTy = GEP->getOperand(i)->getType();
1980 if (IndxTy->isVectorTy())
1981 IndxTy = IndxTy->getVectorElementType();
1982 if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
1983 !isa<SExtInst>(GEP->getOperand(i))) ||
1984 ++NumOfVarIndices > 1)
1985 return IndexSize; // 64
1986 }
1987 return (unsigned)32;
1988 };
1989
1990
1991 // Trying to reduce IndexSize to 32 bits for vector 16.
1992 // By default the IndexSize is equal to pointer size.
1993 unsigned IndexSize = (VF >= 16) ? getIndexSizeInBits(Ptr, DL) :
1994 DL.getPointerSizeInBits();
1995
Mehdi Amini867e9142016-04-14 04:36:40 +00001996 Type *IndexVTy = VectorType::get(IntegerType::get(SrcVTy->getContext(),
Elena Demikhovsky54946982015-12-28 20:10:59 +00001997 IndexSize), VF);
1998 std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
1999 std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
2000 int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
2001 if (SplitFactor > 1) {
2002 // Handle splitting of vector of pointers
2003 Type *SplitSrcTy = VectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
2004 return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
2005 AddressSpace);
2006 }
2007
2008 // The gather / scatter cost is given by Intel architects. It is a rough
2009 // number since we are looking at one instruction in a time.
2010 const int GSOverhead = 2;
2011 return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
2012 Alignment, AddressSpace);
2013}
2014
2015/// Return the cost of full scalarization of gather / scatter operation.
2016///
2017/// Opcode - Load or Store instruction.
2018/// SrcVTy - The type of the data vector that should be gathered or scattered.
2019/// VariableMask - The mask is non-constant at compile time.
2020/// Alignment - Alignment for one element.
2021/// AddressSpace - pointer[s] address space.
2022///
2023int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
2024 bool VariableMask, unsigned Alignment,
2025 unsigned AddressSpace) {
2026 unsigned VF = SrcVTy->getVectorNumElements();
2027
2028 int MaskUnpackCost = 0;
2029 if (VariableMask) {
2030 VectorType *MaskTy =
Mehdi Amini867e9142016-04-14 04:36:40 +00002031 VectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
Elena Demikhovsky54946982015-12-28 20:10:59 +00002032 MaskUnpackCost = getScalarizationOverhead(MaskTy, false, true);
2033 int ScalarCompareCost =
Mehdi Amini867e9142016-04-14 04:36:40 +00002034 getCmpSelInstrCost(Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()),
Elena Demikhovsky54946982015-12-28 20:10:59 +00002035 nullptr);
2036 int BranchCost = getCFInstrCost(Instruction::Br);
2037 MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
2038 }
2039
2040 // The cost of the scalar loads/stores.
2041 int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
2042 Alignment, AddressSpace);
2043
2044 int InsertExtractCost = 0;
2045 if (Opcode == Instruction::Load)
2046 for (unsigned i = 0; i < VF; ++i)
2047 // Add the cost of inserting each scalar load into the vector
2048 InsertExtractCost +=
2049 getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
2050 else
2051 for (unsigned i = 0; i < VF; ++i)
2052 // Add the cost of extracting each element out of the data vector
2053 InsertExtractCost +=
2054 getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
2055
2056 return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
2057}
2058
2059/// Calculate the cost of Gather / Scatter operation
2060int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy,
2061 Value *Ptr, bool VariableMask,
2062 unsigned Alignment) {
2063 assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
2064 unsigned VF = SrcVTy->getVectorNumElements();
2065 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
2066 if (!PtrTy && Ptr->getType()->isVectorTy())
2067 PtrTy = dyn_cast<PointerType>(Ptr->getType()->getVectorElementType());
2068 assert(PtrTy && "Unexpected type for Ptr argument");
2069 unsigned AddressSpace = PtrTy->getAddressSpace();
2070
2071 bool Scalarize = false;
2072 if ((Opcode == Instruction::Load && !isLegalMaskedGather(SrcVTy)) ||
2073 (Opcode == Instruction::Store && !isLegalMaskedScatter(SrcVTy)))
2074 Scalarize = true;
2075 // Gather / Scatter for vector 2 is not profitable on KNL / SKX
2076 // Vector-4 of gather/scatter instruction does not exist on KNL.
2077 // We can extend it to 8 elements, but zeroing upper bits of
2078 // the mask vector will add more instructions. Right now we give the scalar
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002079 // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
2080 // is better in the VariableMask case.
Elena Demikhovsky54946982015-12-28 20:10:59 +00002081 if (VF == 2 || (VF == 4 && !ST->hasVLX()))
2082 Scalarize = true;
2083
2084 if (Scalarize)
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002085 return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
2086 AddressSpace);
Elena Demikhovsky54946982015-12-28 20:10:59 +00002087
2088 return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
2089}
2090
Elena Demikhovsky20662e32015-10-19 07:43:38 +00002091bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy) {
2092 Type *ScalarTy = DataTy->getScalarType();
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +00002093 int DataWidth = isa<PointerType>(ScalarTy) ?
2094 DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00002095
Igor Bregerf44b79d2016-08-02 09:15:28 +00002096 return ((DataWidth == 32 || DataWidth == 64) && ST->hasAVX()) ||
2097 ((DataWidth == 8 || DataWidth == 16) && ST->hasBWI());
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00002098}
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00002099
Elena Demikhovsky20662e32015-10-19 07:43:38 +00002100bool X86TTIImpl::isLegalMaskedStore(Type *DataType) {
2101 return isLegalMaskedLoad(DataType);
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00002102}
2103
Elena Demikhovsky09285852015-10-25 15:37:55 +00002104bool X86TTIImpl::isLegalMaskedGather(Type *DataTy) {
2105 // This function is called now in two cases: from the Loop Vectorizer
2106 // and from the Scalarizer.
2107 // When the Loop Vectorizer asks about legality of the feature,
2108 // the vectorization factor is not calculated yet. The Loop Vectorizer
2109 // sends a scalar type and the decision is based on the width of the
2110 // scalar element.
2111 // Later on, the cost model will estimate usage this intrinsic based on
2112 // the vector type.
2113 // The Scalarizer asks again about legality. It sends a vector type.
2114 // In this case we can reject non-power-of-2 vectors.
2115 if (isa<VectorType>(DataTy) && !isPowerOf2_32(DataTy->getVectorNumElements()))
2116 return false;
2117 Type *ScalarTy = DataTy->getScalarType();
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +00002118 int DataWidth = isa<PointerType>(ScalarTy) ?
2119 DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
Elena Demikhovsky09285852015-10-25 15:37:55 +00002120
2121 // AVX-512 allows gather and scatter
Igor Bregerf44b79d2016-08-02 09:15:28 +00002122 return (DataWidth == 32 || DataWidth == 64) && ST->hasAVX512();
Elena Demikhovsky09285852015-10-25 15:37:55 +00002123}
2124
2125bool X86TTIImpl::isLegalMaskedScatter(Type *DataType) {
2126 return isLegalMaskedGather(DataType);
2127}
2128
Eric Christopherd566fb12015-07-29 22:09:48 +00002129bool X86TTIImpl::areInlineCompatible(const Function *Caller,
2130 const Function *Callee) const {
Eric Christophere1002262015-07-02 01:11:50 +00002131 const TargetMachine &TM = getTLI()->getTargetMachine();
2132
2133 // Work this as a subsetting of subtarget features.
2134 const FeatureBitset &CallerBits =
2135 TM.getSubtargetImpl(*Caller)->getFeatureBits();
2136 const FeatureBitset &CalleeBits =
2137 TM.getSubtargetImpl(*Callee)->getFeatureBits();
2138
2139 // FIXME: This is likely too limiting as it will include subtarget features
2140 // that we might not care about for inlining, but it is conservatively
2141 // correct.
2142 return (CallerBits & CalleeBits) == CalleeBits;
2143}
Michael Kupersteinb2443ed2016-10-20 21:04:31 +00002144
2145bool X86TTIImpl::enableInterleavedAccessVectorization() {
2146 // TODO: We expect this to be beneficial regardless of arch,
2147 // but there are currently some unexplained performance artifacts on Atom.
2148 // As a temporary solution, disable on Atom.
Mohammed Agabaria20caee92017-01-25 09:14:48 +00002149 return !(ST->isAtom());
Michael Kupersteinb2443ed2016-10-20 21:04:31 +00002150}
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002151
2152// Get estimation for interleaved load/store operations and strided load.
2153// \p Indices contains indices for strided load.
2154// \p Factor - the factor of interleaving.
2155// AVX-512 provides 3-src shuffles that significantly reduces the cost.
2156int X86TTIImpl::getInterleavedMemoryOpCostAVX512(unsigned Opcode, Type *VecTy,
2157 unsigned Factor,
2158 ArrayRef<unsigned> Indices,
2159 unsigned Alignment,
2160 unsigned AddressSpace) {
2161
2162 // VecTy for interleave memop is <VF*Factor x Elt>.
2163 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
2164 // VecTy = <12 x i32>.
2165
2166 // Calculate the number of memory operations (NumOfMemOps), required
2167 // for load/store the VecTy.
2168 MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
2169 unsigned VecTySize = DL.getTypeStoreSize(VecTy);
2170 unsigned LegalVTSize = LegalVT.getStoreSize();
2171 unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
2172
2173 // Get the cost of one memory operation.
2174 Type *SingleMemOpTy = VectorType::get(VecTy->getVectorElementType(),
2175 LegalVT.getVectorNumElements());
2176 unsigned MemOpCost =
2177 getMemoryOpCost(Opcode, SingleMemOpTy, Alignment, AddressSpace);
2178
2179 if (Opcode == Instruction::Load) {
2180 // Kind of shuffle depends on number of loaded values.
2181 // If we load the entire data in one register, we can use a 1-src shuffle.
2182 // Otherwise, we'll merge 2 sources in each operation.
2183 TTI::ShuffleKind ShuffleKind =
2184 (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
2185
2186 unsigned ShuffleCost =
2187 getShuffleCost(ShuffleKind, SingleMemOpTy, 0, nullptr);
2188
2189 unsigned NumOfLoadsInInterleaveGrp =
2190 Indices.size() ? Indices.size() : Factor;
2191 Type *ResultTy = VectorType::get(VecTy->getVectorElementType(),
2192 VecTy->getVectorNumElements() / Factor);
2193 unsigned NumOfResults =
2194 getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
2195 NumOfLoadsInInterleaveGrp;
2196
2197 // About a half of the loads may be folded in shuffles when we have only
2198 // one result. If we have more than one result, we do not fold loads at all.
2199 unsigned NumOfUnfoldedLoads =
2200 NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
2201
2202 // Get a number of shuffle operations per result.
2203 unsigned NumOfShufflesPerResult =
2204 std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
2205
2206 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
2207 // When we have more than one destination, we need additional instructions
2208 // to keep sources.
2209 unsigned NumOfMoves = 0;
2210 if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
2211 NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
2212
2213 int Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
2214 NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
2215
2216 return Cost;
2217 }
2218
2219 // Store.
2220 assert(Opcode == Instruction::Store &&
2221 "Expected Store Instruction at this point");
2222
2223 // There is no strided stores meanwhile. And store can't be folded in
2224 // shuffle.
2225 unsigned NumOfSources = Factor; // The number of values to be merged.
2226 unsigned ShuffleCost =
2227 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, 0, nullptr);
2228 unsigned NumOfShufflesPerStore = NumOfSources - 1;
2229
2230 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
2231 // We need additional instructions to keep sources.
2232 unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
2233 int Cost = NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
2234 NumOfMoves;
2235 return Cost;
2236}
2237
2238int X86TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
2239 unsigned Factor,
2240 ArrayRef<unsigned> Indices,
2241 unsigned Alignment,
2242 unsigned AddressSpace) {
2243 auto isSupportedOnAVX512 = [](Type *VecTy, bool &RequiresBW) {
2244 RequiresBW = false;
2245 Type *EltTy = VecTy->getVectorElementType();
2246 if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
2247 EltTy->isIntegerTy(32) || EltTy->isPointerTy())
2248 return true;
2249 if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8)) {
2250 RequiresBW = true;
2251 return true;
2252 }
2253 return false;
2254 };
2255 bool RequiresBW;
2256 bool HasAVX512Solution = isSupportedOnAVX512(VecTy, RequiresBW);
2257 if (ST->hasAVX512() && HasAVX512Solution && (!RequiresBW || ST->hasBWI()))
2258 return getInterleavedMemoryOpCostAVX512(Opcode, VecTy, Factor, Indices,
2259 Alignment, AddressSpace);
2260 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2261 Alignment, AddressSpace);
2262}