blob: 98d372b3f09ff7fa42b2b49dd47dc4593d110582 [file] [log] [blame]
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001//===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file is a part of MemorySanitizer, a detector of uninitialized
11/// reads.
12///
13/// Status: early prototype.
14///
15/// The algorithm of the tool is similar to Memcheck
16/// (http://goo.gl/QKbem). We associate a few shadow bits with every
17/// byte of the application memory, poison the shadow of the malloc-ed
18/// or alloca-ed memory, load the shadow bits on every memory read,
19/// propagate the shadow bits through some of the arithmetic
20/// instruction (including MOV), store the shadow bits on every memory
21/// write, report a bug on some other instructions (e.g. JMP) if the
22/// associated shadow is poisoned.
23///
24/// But there are differences too. The first and the major one:
25/// compiler instrumentation instead of binary instrumentation. This
26/// gives us much better register allocation, possible compiler
27/// optimizations and a fast start-up. But this brings the major issue
28/// as well: msan needs to see all program events, including system
29/// calls and reads/writes in system libraries, so we either need to
30/// compile *everything* with msan or use a binary translation
31/// component (e.g. DynamoRIO) to instrument pre-built libraries.
32/// Another difference from Memcheck is that we use 8 shadow bits per
33/// byte of application memory and use a direct shadow mapping. This
34/// greatly simplifies the instrumentation code and avoids races on
35/// shadow updates (Memcheck is single-threaded so races are not a
36/// concern there. Memcheck uses 2 shadow bits per byte with a slow
37/// path storage that uses 8 bits per byte).
38///
39/// The default value of shadow is 0, which means "clean" (not poisoned).
40///
41/// Every module initializer should call __msan_init to ensure that the
42/// shadow memory is ready. On error, __msan_warning is called. Since
43/// parameters and return values may be passed via registers, we have a
44/// specialized thread-local shadow for return values
45/// (__msan_retval_tls) and parameters (__msan_param_tls).
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +000046///
47/// Origin tracking.
48///
49/// MemorySanitizer can track origins (allocation points) of all uninitialized
50/// values. This behavior is controlled with a flag (msan-track-origins) and is
51/// disabled by default.
52///
53/// Origins are 4-byte values created and interpreted by the runtime library.
54/// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
55/// of application memory. Propagation of origins is basically a bunch of
56/// "select" instructions that pick the origin of a dirty argument, if an
57/// instruction has one.
58///
59/// Every 4 aligned, consecutive bytes of application memory have one origin
60/// value associated with them. If these bytes contain uninitialized data
61/// coming from 2 different allocations, the last store wins. Because of this,
62/// MemorySanitizer reports can show unrelated origins, but this is unlikely in
Alexey Samsonov3efc87e2012-12-28 09:30:44 +000063/// practice.
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +000064///
65/// Origins are meaningless for fully initialized values, so MemorySanitizer
66/// avoids storing origin to memory when a fully initialized value is stored.
67/// This way it avoids needless overwritting origin of the 4-byte region on
68/// a short (i.e. 1 byte) clean store, and it is also good for performance.
Evgeniy Stepanov5522a702013-09-24 11:20:27 +000069///
70/// Atomic handling.
71///
72/// Ideally, every atomic store of application value should update the
73/// corresponding shadow location in an atomic way. Unfortunately, atomic store
74/// of two disjoint locations can not be done without severe slowdown.
75///
76/// Therefore, we implement an approximation that may err on the safe side.
77/// In this implementation, every atomically accessed location in the program
78/// may only change from (partially) uninitialized to fully initialized, but
79/// not the other way around. We load the shadow _after_ the application load,
80/// and we store the shadow _before_ the app store. Also, we always store clean
81/// shadow (if the application store is atomic). This way, if the store-load
82/// pair constitutes a happens-before arc, shadow store and load are correctly
83/// ordered such that the load will get either the value that was stored, or
84/// some later value (which is always clean).
85///
86/// This does not work very well with Compare-And-Swap (CAS) and
87/// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
88/// must store the new shadow before the app operation, and load the shadow
89/// after the app operation. Computers don't work this way. Current
90/// implementation ignores the load aspect of CAS/RMW, always returning a clean
91/// value. It implements the store part as a simple atomic store by storing a
92/// clean shadow.
93
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000094//===----------------------------------------------------------------------===//
95
Chandler Carruthed0881b2012-12-03 16:50:05 +000096#include "llvm/Transforms/Instrumentation.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000097#include "llvm/ADT/DepthFirstIterator.h"
98#include "llvm/ADT/SmallString.h"
99#include "llvm/ADT/SmallVector.h"
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000100#include "llvm/ADT/StringExtras.h"
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +0000101#include "llvm/ADT/Triple.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +0000102#include "llvm/IR/DataLayout.h"
103#include "llvm/IR/Function.h"
104#include "llvm/IR/IRBuilder.h"
105#include "llvm/IR/InlineAsm.h"
Chandler Carruth7da14f12014-03-06 03:23:41 +0000106#include "llvm/IR/InstVisitor.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +0000107#include "llvm/IR/IntrinsicInst.h"
108#include "llvm/IR/LLVMContext.h"
109#include "llvm/IR/MDBuilder.h"
110#include "llvm/IR/Module.h"
111#include "llvm/IR/Type.h"
Chandler Carrutha4ea2692014-03-04 11:26:31 +0000112#include "llvm/IR/ValueMap.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000113#include "llvm/Support/CommandLine.h"
114#include "llvm/Support/Compiler.h"
115#include "llvm/Support/Debug.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000116#include "llvm/Support/raw_ostream.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000117#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Evgeniy Stepanov4fbc0d082012-12-21 11:18:49 +0000118#include "llvm/Transforms/Utils/Local.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000119#include "llvm/Transforms/Utils/ModuleUtils.h"
Peter Collingbourne015370e2013-07-09 22:02:49 +0000120#include "llvm/Transforms/Utils/SpecialCaseList.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000121
122using namespace llvm;
123
Chandler Carruth964daaa2014-04-22 02:55:47 +0000124#define DEBUG_TYPE "msan"
125
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000126static const uint64_t kShadowMask32 = 1ULL << 31;
127static const uint64_t kShadowMask64 = 1ULL << 46;
128static const uint64_t kOriginOffset32 = 1ULL << 30;
129static const uint64_t kOriginOffset64 = 1ULL << 45;
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +0000130static const unsigned kMinOriginAlignment = 4;
131static const unsigned kShadowTLSAlignment = 8;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000132
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000133// Accesses sizes are powers of two: 1, 2, 4, 8.
134static const size_t kNumberOfAccessSizes = 4;
135
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +0000136/// \brief Track origins of uninitialized values.
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000137///
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +0000138/// Adds a section to MemorySanitizer report that points to the allocation
139/// (stack or heap) the uninitialized bits came from originally.
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000140static cl::opt<int> ClTrackOrigins("msan-track-origins",
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000141 cl::desc("Track origins (allocation sites) of poisoned memory"),
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000142 cl::Hidden, cl::init(0));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000143static cl::opt<bool> ClKeepGoing("msan-keep-going",
144 cl::desc("keep going after reporting a UMR"),
145 cl::Hidden, cl::init(false));
146static cl::opt<bool> ClPoisonStack("msan-poison-stack",
147 cl::desc("poison uninitialized stack variables"),
148 cl::Hidden, cl::init(true));
149static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
150 cl::desc("poison uninitialized stack variables with a call"),
151 cl::Hidden, cl::init(false));
152static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
153 cl::desc("poison uninitialized stack variables with the given patter"),
154 cl::Hidden, cl::init(0xff));
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000155static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
156 cl::desc("poison undef temps"),
157 cl::Hidden, cl::init(true));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000158
159static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
160 cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
161 cl::Hidden, cl::init(true));
162
Evgeniy Stepanovfac84032013-01-25 15:31:10 +0000163static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
164 cl::desc("exact handling of relational integer ICmp"),
Evgeniy Stepanov6f85ef32013-01-28 11:42:28 +0000165 cl::Hidden, cl::init(false));
Evgeniy Stepanovfac84032013-01-25 15:31:10 +0000166
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000167// This flag controls whether we check the shadow of the address
168// operand of load or store. Such bugs are very rare, since load from
169// a garbage address typically results in SEGV, but still happen
170// (e.g. only lower bits of address are garbage, or the access happens
171// early at program startup where malloc-ed memory is more likely to
172// be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
173static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
174 cl::desc("report accesses through a pointer which has poisoned shadow"),
175 cl::Hidden, cl::init(true));
176
177static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
178 cl::desc("print out instructions with default strict semantics"),
179 cl::Hidden, cl::init(false));
180
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000181static cl::opt<std::string> ClBlacklistFile("msan-blacklist",
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000182 cl::desc("File containing the list of functions where MemorySanitizer "
183 "should not report bugs"), cl::Hidden);
184
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000185static cl::opt<int> ClInstrumentationWithCallThreshold(
186 "msan-instrumentation-with-call-threshold",
187 cl::desc(
188 "If the function being instrumented requires more than "
189 "this number of checks and origin stores, use callbacks instead of "
190 "inline checks (-1 means never use callbacks)."),
Evgeniy Stepanov3939f542014-04-21 15:04:05 +0000191 cl::Hidden, cl::init(3500));
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000192
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000193// Experimental. Wraps all indirect calls in the instrumented code with
194// a call to the given function. This is needed to assist the dynamic
195// helper tool (MSanDR) to regain control on transition between instrumented and
196// non-instrumented code.
197static cl::opt<std::string> ClWrapIndirectCalls("msan-wrap-indirect-calls",
198 cl::desc("Wrap indirect calls with a given function"),
199 cl::Hidden);
200
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000201static cl::opt<bool> ClWrapIndirectCallsFast("msan-wrap-indirect-calls-fast",
202 cl::desc("Do not wrap indirect calls with target in the same module"),
203 cl::Hidden, cl::init(true));
204
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000205namespace {
206
207/// \brief An instrumentation pass implementing detection of uninitialized
208/// reads.
209///
210/// MemorySanitizer: instrument the code in module to find
211/// uninitialized reads.
212class MemorySanitizer : public FunctionPass {
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000213 public:
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000214 MemorySanitizer(int TrackOrigins = 0,
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000215 StringRef BlacklistFile = StringRef())
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000216 : FunctionPass(ID),
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000217 TrackOrigins(std::max(TrackOrigins, (int)ClTrackOrigins)),
Craig Topperf40110f2014-04-25 05:29:35 +0000218 DL(nullptr),
219 WarningFn(nullptr),
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000220 BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile : BlacklistFile),
221 WrapIndirectCalls(!ClWrapIndirectCalls.empty()) {}
Craig Topper3e4c6972014-03-05 09:10:37 +0000222 const char *getPassName() const override { return "MemorySanitizer"; }
223 bool runOnFunction(Function &F) override;
224 bool doInitialization(Module &M) override;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000225 static char ID; // Pass identification, replacement for typeid.
226
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000227 private:
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000228 void initializeCallbacks(Module &M);
229
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000230 /// \brief Track origins (allocation points) of uninitialized values.
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000231 int TrackOrigins;
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000232
Rafael Espindolaaeff8a92014-02-24 23:12:18 +0000233 const DataLayout *DL;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000234 LLVMContext *C;
235 Type *IntptrTy;
236 Type *OriginTy;
237 /// \brief Thread-local shadow storage for function parameters.
238 GlobalVariable *ParamTLS;
239 /// \brief Thread-local origin storage for function parameters.
240 GlobalVariable *ParamOriginTLS;
241 /// \brief Thread-local shadow storage for function return value.
242 GlobalVariable *RetvalTLS;
243 /// \brief Thread-local origin storage for function return value.
244 GlobalVariable *RetvalOriginTLS;
245 /// \brief Thread-local shadow storage for in-register va_arg function
246 /// parameters (x86_64-specific).
247 GlobalVariable *VAArgTLS;
248 /// \brief Thread-local shadow storage for va_arg overflow area
249 /// (x86_64-specific).
250 GlobalVariable *VAArgOverflowSizeTLS;
251 /// \brief Thread-local space used to pass origin value to the UMR reporting
252 /// function.
253 GlobalVariable *OriginTLS;
254
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000255 GlobalVariable *MsandrModuleStart;
256 GlobalVariable *MsandrModuleEnd;
257
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000258 /// \brief The run-time callback to print a warning.
259 Value *WarningFn;
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000260 // These arrays are indexed by log2(AccessSize).
261 Value *MaybeWarningFn[kNumberOfAccessSizes];
262 Value *MaybeStoreOriginFn[kNumberOfAccessSizes];
263
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000264 /// \brief Run-time helper that generates a new origin value for a stack
265 /// allocation.
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +0000266 Value *MsanSetAllocaOrigin4Fn;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000267 /// \brief Run-time helper that poisons stack on function entry.
268 Value *MsanPoisonStackFn;
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000269 /// \brief Run-time helper that records a store (or any event) of an
270 /// uninitialized value and returns an updated origin id encoding this info.
271 Value *MsanChainOriginFn;
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +0000272 /// \brief MSan runtime replacements for memmove, memcpy and memset.
273 Value *MemmoveFn, *MemcpyFn, *MemsetFn;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000274
275 /// \brief Address mask used in application-to-shadow address calculation.
276 /// ShadowAddr is computed as ApplicationAddr & ~ShadowMask.
277 uint64_t ShadowMask;
278 /// \brief Offset of the origin shadow from the "normal" shadow.
279 /// OriginAddr is computed as (ShadowAddr + OriginOffset) & ~3ULL
280 uint64_t OriginOffset;
281 /// \brief Branch weights for error reporting.
282 MDNode *ColdCallWeights;
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000283 /// \brief Branch weights for origin store.
284 MDNode *OriginStoreWeights;
Dmitri Gribenko9bf66a52013-05-09 21:16:18 +0000285 /// \brief Path to blacklist file.
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000286 SmallString<64> BlacklistFile;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000287 /// \brief The blacklist.
Ahmed Charles56440fd2014-03-06 05:51:42 +0000288 std::unique_ptr<SpecialCaseList> BL;
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000289 /// \brief An empty volatile inline asm that prevents callback merge.
290 InlineAsm *EmptyAsm;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000291
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000292 bool WrapIndirectCalls;
293 /// \brief Run-time wrapper for indirect calls.
294 Value *IndirectCallWrapperFn;
295 // Argument and return type of IndirectCallWrapperFn: void (*f)(void).
296 Type *AnyFunctionPtrTy;
297
Evgeniy Stepanovda0072b2012-11-29 13:12:03 +0000298 friend struct MemorySanitizerVisitor;
299 friend struct VarArgAMD64Helper;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000300};
301} // namespace
302
303char MemorySanitizer::ID = 0;
304INITIALIZE_PASS(MemorySanitizer, "msan",
305 "MemorySanitizer: detects uninitialized reads.",
306 false, false)
307
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000308FunctionPass *llvm::createMemorySanitizerPass(int TrackOrigins,
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000309 StringRef BlacklistFile) {
310 return new MemorySanitizer(TrackOrigins, BlacklistFile);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000311}
312
313/// \brief Create a non-const global initialized with the given string.
314///
315/// Creates a writable global for Str so that we can pass it to the
316/// run-time lib. Runtime uses first 4 bytes of the string to store the
317/// frame ID, so the string needs to be mutable.
318static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
319 StringRef Str) {
320 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
321 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
322 GlobalValue::PrivateLinkage, StrConst, "");
323}
324
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000325
326/// \brief Insert extern declaration of runtime-provided functions and globals.
327void MemorySanitizer::initializeCallbacks(Module &M) {
328 // Only do this once.
329 if (WarningFn)
330 return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000331
332 IRBuilder<> IRB(*C);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000333 // Create the callback.
334 // FIXME: this function should have "Cold" calling conv,
335 // which is not yet implemented.
336 StringRef WarningFnName = ClKeepGoing ? "__msan_warning"
337 : "__msan_warning_noreturn";
338 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), NULL);
339
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000340 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
341 AccessSizeIndex++) {
342 unsigned AccessSize = 1 << AccessSizeIndex;
343 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize);
344 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction(
345 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
346 IRB.getInt32Ty(), NULL);
347
348 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize);
349 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction(
350 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
351 IRB.getInt8PtrTy(), IRB.getInt32Ty(), NULL);
352 }
353
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +0000354 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction(
355 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
356 IRB.getInt8PtrTy(), IntptrTy, NULL);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000357 MsanPoisonStackFn = M.getOrInsertFunction(
358 "__msan_poison_stack", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, NULL);
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000359 MsanChainOriginFn = M.getOrInsertFunction(
360 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty(), NULL);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000361 MemmoveFn = M.getOrInsertFunction(
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000362 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
363 IRB.getInt8PtrTy(), IntptrTy, NULL);
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +0000364 MemcpyFn = M.getOrInsertFunction(
365 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
366 IntptrTy, NULL);
367 MemsetFn = M.getOrInsertFunction(
368 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000369 IntptrTy, NULL);
370
371 // Create globals.
372 RetvalTLS = new GlobalVariable(
373 M, ArrayType::get(IRB.getInt64Ty(), 8), false,
Craig Topperf40110f2014-04-25 05:29:35 +0000374 GlobalVariable::ExternalLinkage, nullptr, "__msan_retval_tls", nullptr,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000375 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000376 RetvalOriginTLS = new GlobalVariable(
Craig Topperf40110f2014-04-25 05:29:35 +0000377 M, OriginTy, false, GlobalVariable::ExternalLinkage, nullptr,
378 "__msan_retval_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000379
380 ParamTLS = new GlobalVariable(
381 M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
Craig Topperf40110f2014-04-25 05:29:35 +0000382 GlobalVariable::ExternalLinkage, nullptr, "__msan_param_tls", nullptr,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000383 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000384 ParamOriginTLS = new GlobalVariable(
385 M, ArrayType::get(OriginTy, 1000), false, GlobalVariable::ExternalLinkage,
Craig Topperf40110f2014-04-25 05:29:35 +0000386 nullptr, "__msan_param_origin_tls", nullptr,
387 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000388
389 VAArgTLS = new GlobalVariable(
390 M, ArrayType::get(IRB.getInt64Ty(), 1000), false,
Craig Topperf40110f2014-04-25 05:29:35 +0000391 GlobalVariable::ExternalLinkage, nullptr, "__msan_va_arg_tls", nullptr,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000392 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000393 VAArgOverflowSizeTLS = new GlobalVariable(
Craig Topperf40110f2014-04-25 05:29:35 +0000394 M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, nullptr,
395 "__msan_va_arg_overflow_size_tls", nullptr,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000396 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000397 OriginTLS = new GlobalVariable(
Craig Topperf40110f2014-04-25 05:29:35 +0000398 M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, nullptr,
399 "__msan_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000400
401 // We insert an empty inline asm after __msan_report* to avoid callback merge.
402 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
403 StringRef(""), StringRef(""),
404 /*hasSideEffects=*/true);
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000405
406 if (WrapIndirectCalls) {
407 AnyFunctionPtrTy =
408 PointerType::getUnqual(FunctionType::get(IRB.getVoidTy(), false));
409 IndirectCallWrapperFn = M.getOrInsertFunction(
410 ClWrapIndirectCalls, AnyFunctionPtrTy, AnyFunctionPtrTy, NULL);
411 }
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000412
413 if (ClWrapIndirectCallsFast) {
414 MsandrModuleStart = new GlobalVariable(
415 M, IRB.getInt32Ty(), false, GlobalValue::ExternalLinkage,
Craig Topperf40110f2014-04-25 05:29:35 +0000416 nullptr, "__executable_start");
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000417 MsandrModuleStart->setVisibility(GlobalVariable::HiddenVisibility);
418 MsandrModuleEnd = new GlobalVariable(
419 M, IRB.getInt32Ty(), false, GlobalValue::ExternalLinkage,
Craig Topperf40110f2014-04-25 05:29:35 +0000420 nullptr, "_end");
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000421 MsandrModuleEnd->setVisibility(GlobalVariable::HiddenVisibility);
422 }
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000423}
424
425/// \brief Module-level initialization.
426///
427/// inserts a call to __msan_init to the module's constructor list.
428bool MemorySanitizer::doInitialization(Module &M) {
Rafael Espindola93512512014-02-25 17:30:31 +0000429 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
430 if (!DLP)
Evgeniy Stepanov119cb2e2014-04-23 12:51:32 +0000431 report_fatal_error("data layout missing");
Rafael Espindola93512512014-02-25 17:30:31 +0000432 DL = &DLP->getDataLayout();
433
Alexey Samsonove4b5fb82013-08-12 11:46:09 +0000434 BL.reset(SpecialCaseList::createOrDie(BlacklistFile));
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000435 C = &(M.getContext());
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000436 unsigned PtrSize = DL->getPointerSizeInBits(/* AddressSpace */0);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000437 switch (PtrSize) {
438 case 64:
439 ShadowMask = kShadowMask64;
440 OriginOffset = kOriginOffset64;
441 break;
442 case 32:
443 ShadowMask = kShadowMask32;
444 OriginOffset = kOriginOffset32;
445 break;
446 default:
447 report_fatal_error("unsupported pointer size");
448 break;
449 }
450
451 IRBuilder<> IRB(*C);
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000452 IntptrTy = IRB.getIntPtrTy(DL);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000453 OriginTy = IRB.getInt32Ty();
454
455 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000456 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000457
458 // Insert a call to __msan_init/__msan_track_origins into the module's CTORs.
459 appendToGlobalCtors(M, cast<Function>(M.getOrInsertFunction(
460 "__msan_init", IRB.getVoidTy(), NULL)), 0);
461
Evgeniy Stepanov888385e2013-05-31 12:04:29 +0000462 if (TrackOrigins)
463 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
464 IRB.getInt32(TrackOrigins), "__msan_track_origins");
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000465
Evgeniy Stepanov888385e2013-05-31 12:04:29 +0000466 if (ClKeepGoing)
467 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
468 IRB.getInt32(ClKeepGoing), "__msan_keep_going");
Evgeniy Stepanovdcf6bcb2013-01-22 13:26:53 +0000469
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000470 return true;
471}
472
473namespace {
474
475/// \brief A helper class that handles instrumentation of VarArg
476/// functions on a particular platform.
477///
478/// Implementations are expected to insert the instrumentation
479/// necessary to propagate argument shadow through VarArg function
480/// calls. Visit* methods are called during an InstVisitor pass over
481/// the function, and should avoid creating new basic blocks. A new
482/// instance of this class is created for each instrumented function.
483struct VarArgHelper {
484 /// \brief Visit a CallSite.
485 virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
486
487 /// \brief Visit a va_start call.
488 virtual void visitVAStartInst(VAStartInst &I) = 0;
489
490 /// \brief Visit a va_copy call.
491 virtual void visitVACopyInst(VACopyInst &I) = 0;
492
493 /// \brief Finalize function instrumentation.
494 ///
495 /// This method is called after visiting all interesting (see above)
496 /// instructions in a function.
497 virtual void finalizeInstrumentation() = 0;
Evgeniy Stepanovda0072b2012-11-29 13:12:03 +0000498
499 virtual ~VarArgHelper() {}
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000500};
501
502struct MemorySanitizerVisitor;
503
504VarArgHelper*
505CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
506 MemorySanitizerVisitor &Visitor);
507
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000508unsigned TypeSizeToSizeIndex(unsigned TypeSize) {
509 if (TypeSize <= 8) return 0;
510 return Log2_32_Ceil(TypeSize / 8);
511}
512
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000513/// This class does all the work for a given function. Store and Load
514/// instructions store and load corresponding shadow and origin
515/// values. Most instructions propagate shadow from arguments to their
516/// return values. Certain instructions (most importantly, BranchInst)
517/// test their argument shadow and print reports (with a runtime call) if it's
518/// non-zero.
519struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
520 Function &F;
521 MemorySanitizer &MS;
522 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
523 ValueMap<Value*, Value*> ShadowMap, OriginMap;
Ahmed Charles56440fd2014-03-06 05:51:42 +0000524 std::unique_ptr<VarArgHelper> VAHelper;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000525
526 // The following flags disable parts of MSan instrumentation based on
527 // blacklist contents and command-line options.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000528 bool InsertChecks;
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000529 bool LoadShadow;
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +0000530 bool PoisonStack;
531 bool PoisonUndef;
Evgeniy Stepanov604293f2013-09-16 13:24:32 +0000532 bool CheckReturnValue;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000533
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000534 struct ShadowOriginAndInsertPoint {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000535 Value *Shadow;
536 Value *Origin;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000537 Instruction *OrigIns;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000538 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000539 : Shadow(S), Origin(O), OrigIns(I) { }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000540 };
541 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000542 SmallVector<Instruction*, 16> StoreList;
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000543 SmallVector<CallSite, 16> IndirectCallList;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000544
545 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS)
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000546 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) {
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +0000547 bool SanitizeFunction = !MS.BL->isIn(F) && F.getAttributes().hasAttribute(
548 AttributeSet::FunctionIndex,
549 Attribute::SanitizeMemory);
550 InsertChecks = SanitizeFunction;
551 LoadShadow = SanitizeFunction;
552 PoisonStack = SanitizeFunction && ClPoisonStack;
553 PoisonUndef = SanitizeFunction && ClPoisonUndef;
Evgeniy Stepanov604293f2013-09-16 13:24:32 +0000554 // FIXME: Consider using SpecialCaseList to specify a list of functions that
555 // must always return fully initialized values. For now, we hardcode "main".
556 CheckReturnValue = SanitizeFunction && (F.getName() == "main");
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000557
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000558 DEBUG(if (!InsertChecks)
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000559 dbgs() << "MemorySanitizer is not inserting checks into '"
560 << F.getName() << "'\n");
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000561 }
562
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000563 Value *updateOrigin(Value *V, IRBuilder<> &IRB) {
564 if (MS.TrackOrigins <= 1) return V;
565 return IRB.CreateCall(MS.MsanChainOriginFn, V);
566 }
567
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000568 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin,
569 unsigned Alignment, bool AsCall) {
570 if (isa<StructType>(Shadow->getType())) {
571 IRB.CreateAlignedStore(updateOrigin(Origin, IRB), getOriginPtr(Addr, IRB),
572 Alignment);
573 } else {
574 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
575 // TODO(eugenis): handle non-zero constant shadow by inserting an
576 // unconditional check (can not simply fail compilation as this could
577 // be in the dead code).
578 if (isa<Constant>(ConvertedShadow)) return;
579 unsigned TypeSizeInBits =
580 MS.DL->getTypeSizeInBits(ConvertedShadow->getType());
581 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
582 if (AsCall && SizeIndex < kNumberOfAccessSizes) {
583 Value *Fn = MS.MaybeStoreOriginFn[SizeIndex];
584 Value *ConvertedShadow2 = IRB.CreateZExt(
585 ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
586 IRB.CreateCall3(Fn, ConvertedShadow2,
587 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
588 updateOrigin(Origin, IRB));
589 } else {
590 Value *Cmp = IRB.CreateICmpNE(
591 ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp");
592 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
593 Cmp, IRB.GetInsertPoint(), false, MS.OriginStoreWeights);
594 IRBuilder<> IRBNew(CheckTerm);
595 IRBNew.CreateAlignedStore(updateOrigin(Origin, IRBNew),
596 getOriginPtr(Addr, IRBNew), Alignment);
597 }
598 }
599 }
600
601 void materializeStores(bool InstrumentWithCalls) {
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000602 for (size_t i = 0, n = StoreList.size(); i < n; i++) {
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000603 StoreInst &I = *dyn_cast<StoreInst>(StoreList[i]);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000604
605 IRBuilder<> IRB(&I);
606 Value *Val = I.getValueOperand();
607 Value *Addr = I.getPointerOperand();
Evgeniy Stepanov5522a702013-09-24 11:20:27 +0000608 Value *Shadow = I.isAtomic() ? getCleanShadow(Val) : getShadow(Val);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000609 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
610
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000611 StoreInst *NewSI =
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000612 IRB.CreateAlignedStore(Shadow, ShadowPtr, I.getAlignment());
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000613 DEBUG(dbgs() << " STORE: " << *NewSI << "\n");
NAKAMURA Takumie0b1b462012-12-06 13:38:00 +0000614 (void)NewSI;
Evgeniy Stepanovc4415592013-01-22 12:30:52 +0000615
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000616 if (ClCheckAccessAddress) insertShadowCheck(Addr, &I);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000617
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000618 if (I.isAtomic()) I.setOrdering(addReleaseOrdering(I.getOrdering()));
Evgeniy Stepanov5522a702013-09-24 11:20:27 +0000619
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000620 if (MS.TrackOrigins) {
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +0000621 unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000622 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), Alignment,
623 InstrumentWithCalls);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000624 }
625 }
626 }
627
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000628 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin,
629 bool AsCall) {
630 IRBuilder<> IRB(OrigIns);
631 DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n");
632 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
633 DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n");
634 // See the comment in materializeStores().
635 if (isa<Constant>(ConvertedShadow)) return;
636 unsigned TypeSizeInBits =
637 MS.DL->getTypeSizeInBits(ConvertedShadow->getType());
638 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
639 if (AsCall && SizeIndex < kNumberOfAccessSizes) {
640 Value *Fn = MS.MaybeWarningFn[SizeIndex];
641 Value *ConvertedShadow2 =
642 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
643 IRB.CreateCall2(Fn, ConvertedShadow2, MS.TrackOrigins && Origin
644 ? Origin
645 : (Value *)IRB.getInt32(0));
646 } else {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000647 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
648 getCleanShadow(ConvertedShadow), "_mscmp");
Evgeniy Stepanova9164e92013-12-19 13:29:56 +0000649 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
650 Cmp, OrigIns,
651 /* Unreachable */ !ClKeepGoing, MS.ColdCallWeights);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000652
653 IRB.SetInsertPoint(CheckTerm);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000654 if (MS.TrackOrigins) {
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000655 IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0),
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000656 MS.OriginTLS);
657 }
Evgeniy Stepanov2275a012014-03-19 12:56:38 +0000658 IRB.CreateCall(MS.WarningFn);
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000659 IRB.CreateCall(MS.EmptyAsm);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000660 DEBUG(dbgs() << " CHECK: " << *Cmp << "\n");
661 }
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000662 }
663
664 void materializeChecks(bool InstrumentWithCalls) {
665 for (size_t i = 0, n = InstrumentationList.size(); i < n; i++) {
666 Instruction *OrigIns = InstrumentationList[i].OrigIns;
667 Value *Shadow = InstrumentationList[i].Shadow;
668 Value *Origin = InstrumentationList[i].Origin;
669 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls);
670 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000671 DEBUG(dbgs() << "DONE:\n" << F);
672 }
673
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000674 void materializeIndirectCalls() {
675 for (size_t i = 0, n = IndirectCallList.size(); i < n; i++) {
676 CallSite CS = IndirectCallList[i];
677 Instruction *I = CS.getInstruction();
678 BasicBlock *B = I->getParent();
679 IRBuilder<> IRB(I);
680 Value *Fn0 = CS.getCalledValue();
681 Value *Fn = IRB.CreateBitCast(Fn0, MS.AnyFunctionPtrTy);
682
683 if (ClWrapIndirectCallsFast) {
684 // Check that call target is inside this module limits.
685 Value *Start =
686 IRB.CreateBitCast(MS.MsandrModuleStart, MS.AnyFunctionPtrTy);
687 Value *End = IRB.CreateBitCast(MS.MsandrModuleEnd, MS.AnyFunctionPtrTy);
688
689 Value *NotInThisModule = IRB.CreateOr(IRB.CreateICmpULT(Fn, Start),
690 IRB.CreateICmpUGE(Fn, End));
691
692 PHINode *NewFnPhi =
693 IRB.CreatePHI(Fn0->getType(), 2, "msandr.indirect_target");
694
695 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
Evgeniy Stepanova9164e92013-12-19 13:29:56 +0000696 NotInThisModule, NewFnPhi,
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000697 /* Unreachable */ false, MS.ColdCallWeights);
698
699 IRB.SetInsertPoint(CheckTerm);
700 // Slow path: call wrapper function to possibly transform the call
701 // target.
702 Value *NewFn = IRB.CreateBitCast(
703 IRB.CreateCall(MS.IndirectCallWrapperFn, Fn), Fn0->getType());
704
705 NewFnPhi->addIncoming(Fn0, B);
706 NewFnPhi->addIncoming(NewFn, dyn_cast<Instruction>(NewFn)->getParent());
707 CS.setCalledFunction(NewFnPhi);
708 } else {
709 Value *NewFn = IRB.CreateBitCast(
710 IRB.CreateCall(MS.IndirectCallWrapperFn, Fn), Fn0->getType());
711 CS.setCalledFunction(NewFn);
712 }
713 }
714 }
715
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000716 /// \brief Add MemorySanitizer instrumentation to a function.
717 bool runOnFunction() {
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000718 MS.initializeCallbacks(*F.getParent());
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000719 if (!MS.DL) return false;
Evgeniy Stepanov4fbc0d082012-12-21 11:18:49 +0000720
721 // In the presence of unreachable blocks, we may see Phi nodes with
722 // incoming nodes from such blocks. Since InstVisitor skips unreachable
723 // blocks, such nodes will not have any shadow value associated with them.
724 // It's easier to remove unreachable blocks than deal with missing shadow.
725 removeUnreachableBlocks(F);
726
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000727 // Iterate all BBs in depth-first order and create shadow instructions
728 // for all instructions (where applicable).
729 // For PHI nodes we create dummy shadow PHIs which will be finalized later.
David Blaikieceec2bd2014-04-11 01:50:01 +0000730 for (BasicBlock *BB : depth_first(&F.getEntryBlock()))
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000731 visit(*BB);
David Blaikieceec2bd2014-04-11 01:50:01 +0000732
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000733
734 // Finalize PHI nodes.
735 for (size_t i = 0, n = ShadowPHINodes.size(); i < n; i++) {
736 PHINode *PN = ShadowPHINodes[i];
737 PHINode *PNS = cast<PHINode>(getShadow(PN));
Craig Topperf40110f2014-04-25 05:29:35 +0000738 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000739 size_t NumValues = PN->getNumIncomingValues();
740 for (size_t v = 0; v < NumValues; v++) {
741 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
742 if (PNO)
743 PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
744 }
745 }
746
747 VAHelper->finalizeInstrumentation();
748
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000749 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 &&
750 InstrumentationList.size() + StoreList.size() >
751 (unsigned)ClInstrumentationWithCallThreshold;
752
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000753 // Delayed instrumentation of StoreInst.
Evgeniy Stepanov47ac9ba2012-12-06 11:58:59 +0000754 // This may add new checks to be inserted later.
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000755 materializeStores(InstrumentWithCalls);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000756
757 // Insert shadow value checks.
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000758 materializeChecks(InstrumentWithCalls);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000759
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000760 // Wrap indirect calls.
761 materializeIndirectCalls();
762
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000763 return true;
764 }
765
766 /// \brief Compute the shadow type that corresponds to a given Value.
767 Type *getShadowTy(Value *V) {
768 return getShadowTy(V->getType());
769 }
770
771 /// \brief Compute the shadow type that corresponds to a given Type.
772 Type *getShadowTy(Type *OrigTy) {
773 if (!OrigTy->isSized()) {
Craig Topperf40110f2014-04-25 05:29:35 +0000774 return nullptr;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000775 }
776 // For integer type, shadow is the same as the original type.
777 // This may return weird-sized types like i1.
778 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
779 return IT;
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +0000780 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000781 uint32_t EltSize = MS.DL->getTypeSizeInBits(VT->getElementType());
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +0000782 return VectorType::get(IntegerType::get(*MS.C, EltSize),
783 VT->getNumElements());
784 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000785 if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
786 SmallVector<Type*, 4> Elements;
787 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
788 Elements.push_back(getShadowTy(ST->getElementType(i)));
789 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
790 DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
791 return Res;
792 }
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000793 uint32_t TypeSize = MS.DL->getTypeSizeInBits(OrigTy);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000794 return IntegerType::get(*MS.C, TypeSize);
795 }
796
797 /// \brief Flatten a vector type.
798 Type *getShadowTyNoVec(Type *ty) {
799 if (VectorType *vt = dyn_cast<VectorType>(ty))
800 return IntegerType::get(*MS.C, vt->getBitWidth());
801 return ty;
802 }
803
804 /// \brief Convert a shadow value to it's flattened variant.
805 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
806 Type *Ty = V->getType();
807 Type *NoVecTy = getShadowTyNoVec(Ty);
808 if (Ty == NoVecTy) return V;
809 return IRB.CreateBitCast(V, NoVecTy);
810 }
811
812 /// \brief Compute the shadow address that corresponds to a given application
813 /// address.
814 ///
815 /// Shadow = Addr & ~ShadowMask.
816 Value *getShadowPtr(Value *Addr, Type *ShadowTy,
817 IRBuilder<> &IRB) {
818 Value *ShadowLong =
819 IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
820 ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
821 return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
822 }
823
824 /// \brief Compute the origin address that corresponds to a given application
825 /// address.
826 ///
827 /// OriginAddr = (ShadowAddr + OriginOffset) & ~3ULL
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000828 Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB) {
829 Value *ShadowLong =
830 IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
Evgeniy Stepanov62ba6112012-11-29 13:43:05 +0000831 ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000832 Value *Add =
833 IRB.CreateAdd(ShadowLong,
834 ConstantInt::get(MS.IntptrTy, MS.OriginOffset));
Evgeniy Stepanov62ba6112012-11-29 13:43:05 +0000835 Value *SecondAnd =
836 IRB.CreateAnd(Add, ConstantInt::get(MS.IntptrTy, ~3ULL));
837 return IRB.CreateIntToPtr(SecondAnd, PointerType::get(IRB.getInt32Ty(), 0));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000838 }
839
840 /// \brief Compute the shadow address for a given function argument.
841 ///
842 /// Shadow = ParamTLS+ArgOffset.
843 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
844 int ArgOffset) {
845 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
846 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
847 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
848 "_msarg");
849 }
850
851 /// \brief Compute the origin address for a given function argument.
852 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
853 int ArgOffset) {
Craig Topperf40110f2014-04-25 05:29:35 +0000854 if (!MS.TrackOrigins) return nullptr;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000855 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
856 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
857 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
858 "_msarg_o");
859 }
860
861 /// \brief Compute the shadow address for a retval.
862 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
863 Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy);
864 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
865 "_msret");
866 }
867
868 /// \brief Compute the origin address for a retval.
869 Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
870 // We keep a single origin for the entire retval. Might be too optimistic.
871 return MS.RetvalOriginTLS;
872 }
873
874 /// \brief Set SV to be the shadow value for V.
875 void setShadow(Value *V, Value *SV) {
876 assert(!ShadowMap.count(V) && "Values may only have one shadow");
877 ShadowMap[V] = SV;
878 }
879
880 /// \brief Set Origin to be the origin value for V.
881 void setOrigin(Value *V, Value *Origin) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000882 if (!MS.TrackOrigins) return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000883 assert(!OriginMap.count(V) && "Values may only have one origin");
884 DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n");
885 OriginMap[V] = Origin;
886 }
887
888 /// \brief Create a clean shadow value for a given value.
889 ///
890 /// Clean shadow (all zeroes) means all bits of the value are defined
891 /// (initialized).
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000892 Constant *getCleanShadow(Value *V) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000893 Type *ShadowTy = getShadowTy(V);
894 if (!ShadowTy)
Craig Topperf40110f2014-04-25 05:29:35 +0000895 return nullptr;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000896 return Constant::getNullValue(ShadowTy);
897 }
898
899 /// \brief Create a dirty shadow of a given shadow type.
900 Constant *getPoisonedShadow(Type *ShadowTy) {
901 assert(ShadowTy);
902 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
903 return Constant::getAllOnesValue(ShadowTy);
904 StructType *ST = cast<StructType>(ShadowTy);
905 SmallVector<Constant *, 4> Vals;
906 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
907 Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
908 return ConstantStruct::get(ST, Vals);
909 }
910
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000911 /// \brief Create a dirty shadow for a given value.
912 Constant *getPoisonedShadow(Value *V) {
913 Type *ShadowTy = getShadowTy(V);
914 if (!ShadowTy)
Craig Topperf40110f2014-04-25 05:29:35 +0000915 return nullptr;
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000916 return getPoisonedShadow(ShadowTy);
917 }
918
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000919 /// \brief Create a clean (zero) origin.
920 Value *getCleanOrigin() {
921 return Constant::getNullValue(MS.OriginTy);
922 }
923
924 /// \brief Get the shadow value for a given Value.
925 ///
926 /// This function either returns the value set earlier with setShadow,
927 /// or extracts if from ParamTLS (for function arguments).
928 Value *getShadow(Value *V) {
929 if (Instruction *I = dyn_cast<Instruction>(V)) {
930 // For instructions the shadow is already stored in the map.
931 Value *Shadow = ShadowMap[V];
932 if (!Shadow) {
933 DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000934 (void)I;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000935 assert(Shadow && "No shadow for a value");
936 }
937 return Shadow;
938 }
939 if (UndefValue *U = dyn_cast<UndefValue>(V)) {
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +0000940 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000941 DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000942 (void)U;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000943 return AllOnes;
944 }
945 if (Argument *A = dyn_cast<Argument>(V)) {
946 // For arguments we compute the shadow on demand and store it in the map.
947 Value **ShadowPtr = &ShadowMap[V];
948 if (*ShadowPtr)
949 return *ShadowPtr;
950 Function *F = A->getParent();
951 IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI());
952 unsigned ArgOffset = 0;
953 for (Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
954 AI != AE; ++AI) {
955 if (!AI->getType()->isSized()) {
956 DEBUG(dbgs() << "Arg is not sized\n");
957 continue;
958 }
959 unsigned Size = AI->hasByValAttr()
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000960 ? MS.DL->getTypeAllocSize(AI->getType()->getPointerElementType())
961 : MS.DL->getTypeAllocSize(AI->getType());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000962 if (A == AI) {
963 Value *Base = getShadowPtrForArgument(AI, EntryIRB, ArgOffset);
964 if (AI->hasByValAttr()) {
965 // ByVal pointer itself has clean shadow. We copy the actual
966 // argument shadow to the underlying memory.
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000967 // Figure out maximal valid memcpy alignment.
968 unsigned ArgAlign = AI->getParamAlignment();
969 if (ArgAlign == 0) {
970 Type *EltType = A->getType()->getPointerElementType();
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000971 ArgAlign = MS.DL->getABITypeAlignment(EltType);
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000972 }
973 unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000974 Value *Cpy = EntryIRB.CreateMemCpy(
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000975 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), Base, Size,
976 CopyAlign);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000977 DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000978 (void)Cpy;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000979 *ShadowPtr = getCleanShadow(V);
980 } else {
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000981 *ShadowPtr = EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000982 }
983 DEBUG(dbgs() << " ARG: " << *AI << " ==> " <<
984 **ShadowPtr << "\n");
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000985 if (MS.TrackOrigins) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000986 Value* OriginPtr = getOriginPtrForArgument(AI, EntryIRB, ArgOffset);
987 setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
988 }
989 }
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000990 ArgOffset += DataLayout::RoundUpAlignment(Size, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000991 }
992 assert(*ShadowPtr && "Could not find shadow for an argument");
993 return *ShadowPtr;
994 }
995 // For everything else the shadow is zero.
996 return getCleanShadow(V);
997 }
998
999 /// \brief Get the shadow for i-th argument of the instruction I.
1000 Value *getShadow(Instruction *I, int i) {
1001 return getShadow(I->getOperand(i));
1002 }
1003
1004 /// \brief Get the origin for a value.
1005 Value *getOrigin(Value *V) {
Craig Topperf40110f2014-04-25 05:29:35 +00001006 if (!MS.TrackOrigins) return nullptr;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001007 if (isa<Instruction>(V) || isa<Argument>(V)) {
1008 Value *Origin = OriginMap[V];
1009 if (!Origin) {
1010 DEBUG(dbgs() << "NO ORIGIN: " << *V << "\n");
1011 Origin = getCleanOrigin();
1012 }
1013 return Origin;
1014 }
1015 return getCleanOrigin();
1016 }
1017
1018 /// \brief Get the origin for i-th argument of the instruction I.
1019 Value *getOrigin(Instruction *I, int i) {
1020 return getOrigin(I->getOperand(i));
1021 }
1022
1023 /// \brief Remember the place where a shadow check should be inserted.
1024 ///
1025 /// This location will be later instrumented with a check that will print a
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001026 /// UMR warning in runtime if the shadow value is not 0.
1027 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
1028 assert(Shadow);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001029 if (!InsertChecks) return;
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +00001030#ifndef NDEBUG
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001031 Type *ShadowTy = Shadow->getType();
1032 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
1033 "Can only insert checks for integer and vector shadow types");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +00001034#endif
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001035 InstrumentationList.push_back(
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001036 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
1037 }
1038
1039 /// \brief Remember the place where a shadow check should be inserted.
1040 ///
1041 /// This location will be later instrumented with a check that will print a
1042 /// UMR warning in runtime if the value is not fully defined.
1043 void insertShadowCheck(Value *Val, Instruction *OrigIns) {
1044 assert(Val);
1045 Instruction *Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
1046 if (!Shadow) return;
1047 Instruction *Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
1048 insertShadowCheck(Shadow, Origin, OrigIns);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001049 }
1050
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001051 AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
1052 switch (a) {
1053 case NotAtomic:
1054 return NotAtomic;
1055 case Unordered:
1056 case Monotonic:
1057 case Release:
1058 return Release;
1059 case Acquire:
1060 case AcquireRelease:
1061 return AcquireRelease;
1062 case SequentiallyConsistent:
1063 return SequentiallyConsistent;
1064 }
Evgeniy Stepanov32be0342013-09-25 08:56:00 +00001065 llvm_unreachable("Unknown ordering");
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001066 }
1067
1068 AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
1069 switch (a) {
1070 case NotAtomic:
1071 return NotAtomic;
1072 case Unordered:
1073 case Monotonic:
1074 case Acquire:
1075 return Acquire;
1076 case Release:
1077 case AcquireRelease:
1078 return AcquireRelease;
1079 case SequentiallyConsistent:
1080 return SequentiallyConsistent;
1081 }
Evgeniy Stepanov32be0342013-09-25 08:56:00 +00001082 llvm_unreachable("Unknown ordering");
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001083 }
1084
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00001085 // ------------------- Visitors.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001086
1087 /// \brief Instrument LoadInst
1088 ///
1089 /// Loads the corresponding shadow and (optionally) origin.
1090 /// Optionally, checks that the load address is fully defined.
1091 void visitLoadInst(LoadInst &I) {
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +00001092 assert(I.getType()->isSized() && "Load type must have size");
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001093 IRBuilder<> IRB(I.getNextNode());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001094 Type *ShadowTy = getShadowTy(&I);
1095 Value *Addr = I.getPointerOperand();
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001096 if (LoadShadow) {
1097 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1098 setShadow(&I,
1099 IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld"));
1100 } else {
1101 setShadow(&I, getCleanShadow(&I));
1102 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001103
1104 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001105 insertShadowCheck(I.getPointerOperand(), &I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001106
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001107 if (I.isAtomic())
1108 I.setOrdering(addAcquireOrdering(I.getOrdering()));
1109
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +00001110 if (MS.TrackOrigins) {
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001111 if (LoadShadow) {
1112 unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
1113 setOrigin(&I,
1114 IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB), Alignment));
1115 } else {
1116 setOrigin(&I, getCleanOrigin());
1117 }
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +00001118 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001119 }
1120
1121 /// \brief Instrument StoreInst
1122 ///
1123 /// Stores the corresponding shadow and (optionally) origin.
1124 /// Optionally, checks that the store address is fully defined.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001125 void visitStoreInst(StoreInst &I) {
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +00001126 StoreList.push_back(&I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001127 }
1128
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001129 void handleCASOrRMW(Instruction &I) {
1130 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
1131
1132 IRBuilder<> IRB(&I);
1133 Value *Addr = I.getOperand(0);
1134 Value *ShadowPtr = getShadowPtr(Addr, I.getType(), IRB);
1135
1136 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001137 insertShadowCheck(Addr, &I);
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001138
1139 // Only test the conditional argument of cmpxchg instruction.
1140 // The other argument can potentially be uninitialized, but we can not
1141 // detect this situation reliably without possible false positives.
1142 if (isa<AtomicCmpXchgInst>(I))
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001143 insertShadowCheck(I.getOperand(1), &I);
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001144
1145 IRB.CreateStore(getCleanShadow(&I), ShadowPtr);
1146
1147 setShadow(&I, getCleanShadow(&I));
1148 }
1149
1150 void visitAtomicRMWInst(AtomicRMWInst &I) {
1151 handleCASOrRMW(I);
1152 I.setOrdering(addReleaseOrdering(I.getOrdering()));
1153 }
1154
1155 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
1156 handleCASOrRMW(I);
Tim Northovere94a5182014-03-11 10:48:52 +00001157 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001158 }
1159
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001160 // Vector manipulation.
1161 void visitExtractElementInst(ExtractElementInst &I) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001162 insertShadowCheck(I.getOperand(1), &I);
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001163 IRBuilder<> IRB(&I);
1164 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
1165 "_msprop"));
1166 setOrigin(&I, getOrigin(&I, 0));
1167 }
1168
1169 void visitInsertElementInst(InsertElementInst &I) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001170 insertShadowCheck(I.getOperand(2), &I);
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001171 IRBuilder<> IRB(&I);
1172 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
1173 I.getOperand(2), "_msprop"));
1174 setOriginForNaryOp(I);
1175 }
1176
1177 void visitShuffleVectorInst(ShuffleVectorInst &I) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001178 insertShadowCheck(I.getOperand(2), &I);
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001179 IRBuilder<> IRB(&I);
1180 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
1181 I.getOperand(2), "_msprop"));
1182 setOriginForNaryOp(I);
1183 }
1184
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001185 // Casts.
1186 void visitSExtInst(SExtInst &I) {
1187 IRBuilder<> IRB(&I);
1188 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
1189 setOrigin(&I, getOrigin(&I, 0));
1190 }
1191
1192 void visitZExtInst(ZExtInst &I) {
1193 IRBuilder<> IRB(&I);
1194 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
1195 setOrigin(&I, getOrigin(&I, 0));
1196 }
1197
1198 void visitTruncInst(TruncInst &I) {
1199 IRBuilder<> IRB(&I);
1200 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
1201 setOrigin(&I, getOrigin(&I, 0));
1202 }
1203
1204 void visitBitCastInst(BitCastInst &I) {
1205 IRBuilder<> IRB(&I);
1206 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
1207 setOrigin(&I, getOrigin(&I, 0));
1208 }
1209
1210 void visitPtrToIntInst(PtrToIntInst &I) {
1211 IRBuilder<> IRB(&I);
1212 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1213 "_msprop_ptrtoint"));
1214 setOrigin(&I, getOrigin(&I, 0));
1215 }
1216
1217 void visitIntToPtrInst(IntToPtrInst &I) {
1218 IRBuilder<> IRB(&I);
1219 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1220 "_msprop_inttoptr"));
1221 setOrigin(&I, getOrigin(&I, 0));
1222 }
1223
1224 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
1225 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
1226 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
1227 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
1228 void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
1229 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
1230
1231 /// \brief Propagate shadow for bitwise AND.
1232 ///
1233 /// This code is exact, i.e. if, for example, a bit in the left argument
1234 /// is defined and 0, then neither the value not definedness of the
1235 /// corresponding bit in B don't affect the resulting shadow.
1236 void visitAnd(BinaryOperator &I) {
1237 IRBuilder<> IRB(&I);
1238 // "And" of 0 and a poisoned value results in unpoisoned value.
1239 // 1&1 => 1; 0&1 => 0; p&1 => p;
1240 // 1&0 => 0; 0&0 => 0; p&0 => 0;
1241 // 1&p => p; 0&p => 0; p&p => p;
1242 // S = (S1 & S2) | (V1 & S2) | (S1 & V2)
1243 Value *S1 = getShadow(&I, 0);
1244 Value *S2 = getShadow(&I, 1);
1245 Value *V1 = I.getOperand(0);
1246 Value *V2 = I.getOperand(1);
1247 if (V1->getType() != S1->getType()) {
1248 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1249 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1250 }
1251 Value *S1S2 = IRB.CreateAnd(S1, S2);
1252 Value *V1S2 = IRB.CreateAnd(V1, S2);
1253 Value *S1V2 = IRB.CreateAnd(S1, V2);
1254 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1255 setOriginForNaryOp(I);
1256 }
1257
1258 void visitOr(BinaryOperator &I) {
1259 IRBuilder<> IRB(&I);
1260 // "Or" of 1 and a poisoned value results in unpoisoned value.
1261 // 1|1 => 1; 0|1 => 1; p|1 => 1;
1262 // 1|0 => 1; 0|0 => 0; p|0 => p;
1263 // 1|p => 1; 0|p => p; p|p => p;
1264 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
1265 Value *S1 = getShadow(&I, 0);
1266 Value *S2 = getShadow(&I, 1);
1267 Value *V1 = IRB.CreateNot(I.getOperand(0));
1268 Value *V2 = IRB.CreateNot(I.getOperand(1));
1269 if (V1->getType() != S1->getType()) {
1270 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1271 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1272 }
1273 Value *S1S2 = IRB.CreateAnd(S1, S2);
1274 Value *V1S2 = IRB.CreateAnd(V1, S2);
1275 Value *S1V2 = IRB.CreateAnd(S1, V2);
1276 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1277 setOriginForNaryOp(I);
1278 }
1279
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001280 /// \brief Default propagation of shadow and/or origin.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001281 ///
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001282 /// This class implements the general case of shadow propagation, used in all
1283 /// cases where we don't know and/or don't care about what the operation
1284 /// actually does. It converts all input shadow values to a common type
1285 /// (extending or truncating as necessary), and bitwise OR's them.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001286 ///
1287 /// This is much cheaper than inserting checks (i.e. requiring inputs to be
1288 /// fully initialized), and less prone to false positives.
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001289 ///
1290 /// This class also implements the general case of origin propagation. For a
1291 /// Nary operation, result origin is set to the origin of an argument that is
1292 /// not entirely initialized. If there is more than one such arguments, the
1293 /// rightmost of them is picked. It does not matter which one is picked if all
1294 /// arguments are initialized.
1295 template <bool CombineShadow>
1296 class Combiner {
1297 Value *Shadow;
1298 Value *Origin;
1299 IRBuilder<> &IRB;
1300 MemorySanitizerVisitor *MSV;
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00001301
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001302 public:
1303 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) :
Craig Topperf40110f2014-04-25 05:29:35 +00001304 Shadow(nullptr), Origin(nullptr), IRB(IRB), MSV(MSV) {}
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001305
1306 /// \brief Add a pair of shadow and origin values to the mix.
1307 Combiner &Add(Value *OpShadow, Value *OpOrigin) {
1308 if (CombineShadow) {
1309 assert(OpShadow);
1310 if (!Shadow)
1311 Shadow = OpShadow;
1312 else {
1313 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
1314 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
1315 }
1316 }
1317
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001318 if (MSV->MS.TrackOrigins) {
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001319 assert(OpOrigin);
1320 if (!Origin) {
1321 Origin = OpOrigin;
1322 } else {
1323 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
1324 Value *Cond = IRB.CreateICmpNE(FlatShadow,
1325 MSV->getCleanShadow(FlatShadow));
1326 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
1327 }
1328 }
1329 return *this;
1330 }
1331
1332 /// \brief Add an application value to the mix.
1333 Combiner &Add(Value *V) {
1334 Value *OpShadow = MSV->getShadow(V);
Craig Topperf40110f2014-04-25 05:29:35 +00001335 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr;
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001336 return Add(OpShadow, OpOrigin);
1337 }
1338
1339 /// \brief Set the current combined values as the given instruction's shadow
1340 /// and origin.
1341 void Done(Instruction *I) {
1342 if (CombineShadow) {
1343 assert(Shadow);
1344 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
1345 MSV->setShadow(I, Shadow);
1346 }
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001347 if (MSV->MS.TrackOrigins) {
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001348 assert(Origin);
1349 MSV->setOrigin(I, Origin);
1350 }
1351 }
1352 };
1353
1354 typedef Combiner<true> ShadowAndOriginCombiner;
1355 typedef Combiner<false> OriginCombiner;
1356
1357 /// \brief Propagate origin for arbitrary operation.
1358 void setOriginForNaryOp(Instruction &I) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001359 if (!MS.TrackOrigins) return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001360 IRBuilder<> IRB(&I);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001361 OriginCombiner OC(this, IRB);
1362 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1363 OC.Add(OI->get());
1364 OC.Done(&I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001365 }
1366
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001367 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +00001368 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
1369 "Vector of pointers is not a valid shadow type");
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001370 return Ty->isVectorTy() ?
1371 Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
1372 Ty->getPrimitiveSizeInBits();
1373 }
1374
1375 /// \brief Cast between two shadow types, extending or truncating as
1376 /// necessary.
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001377 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
1378 bool Signed = false) {
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001379 Type *srcTy = V->getType();
1380 if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001381 return IRB.CreateIntCast(V, dstTy, Signed);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001382 if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
1383 dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001384 return IRB.CreateIntCast(V, dstTy, Signed);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001385 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
1386 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
1387 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
1388 Value *V2 =
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001389 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001390 return IRB.CreateBitCast(V2, dstTy);
1391 // TODO: handle struct types.
1392 }
1393
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00001394 /// \brief Cast an application value to the type of its own shadow.
1395 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) {
1396 Type *ShadowTy = getShadowTy(V);
1397 if (V->getType() == ShadowTy)
1398 return V;
1399 if (V->getType()->isPtrOrPtrVectorTy())
1400 return IRB.CreatePtrToInt(V, ShadowTy);
1401 else
1402 return IRB.CreateBitCast(V, ShadowTy);
1403 }
1404
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001405 /// \brief Propagate shadow for arbitrary operation.
1406 void handleShadowOr(Instruction &I) {
1407 IRBuilder<> IRB(&I);
1408 ShadowAndOriginCombiner SC(this, IRB);
1409 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1410 SC.Add(OI->get());
1411 SC.Done(&I);
1412 }
1413
1414 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
1415 void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
1416 void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
1417 void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
1418 void visitSub(BinaryOperator &I) { handleShadowOr(I); }
1419 void visitXor(BinaryOperator &I) { handleShadowOr(I); }
1420 void visitMul(BinaryOperator &I) { handleShadowOr(I); }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001421
1422 void handleDiv(Instruction &I) {
1423 IRBuilder<> IRB(&I);
1424 // Strict on the second argument.
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001425 insertShadowCheck(I.getOperand(1), &I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001426 setShadow(&I, getShadow(&I, 0));
1427 setOrigin(&I, getOrigin(&I, 0));
1428 }
1429
1430 void visitUDiv(BinaryOperator &I) { handleDiv(I); }
1431 void visitSDiv(BinaryOperator &I) { handleDiv(I); }
1432 void visitFDiv(BinaryOperator &I) { handleDiv(I); }
1433 void visitURem(BinaryOperator &I) { handleDiv(I); }
1434 void visitSRem(BinaryOperator &I) { handleDiv(I); }
1435 void visitFRem(BinaryOperator &I) { handleDiv(I); }
1436
1437 /// \brief Instrument == and != comparisons.
1438 ///
1439 /// Sometimes the comparison result is known even if some of the bits of the
1440 /// arguments are not.
1441 void handleEqualityComparison(ICmpInst &I) {
1442 IRBuilder<> IRB(&I);
1443 Value *A = I.getOperand(0);
1444 Value *B = I.getOperand(1);
1445 Value *Sa = getShadow(A);
1446 Value *Sb = getShadow(B);
Evgeniy Stepanovd14e47b2013-01-15 16:44:52 +00001447
1448 // Get rid of pointers and vectors of pointers.
1449 // For ints (and vectors of ints), types of A and Sa match,
1450 // and this is a no-op.
1451 A = IRB.CreatePointerCast(A, Sa->getType());
1452 B = IRB.CreatePointerCast(B, Sb->getType());
1453
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001454 // A == B <==> (C = A^B) == 0
1455 // A != B <==> (C = A^B) != 0
1456 // Sc = Sa | Sb
1457 Value *C = IRB.CreateXor(A, B);
1458 Value *Sc = IRB.CreateOr(Sa, Sb);
1459 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
1460 // Result is defined if one of the following is true
1461 // * there is a defined 1 bit in C
1462 // * C is fully defined
1463 // Si = !(C & ~Sc) && Sc
1464 Value *Zero = Constant::getNullValue(Sc->getType());
1465 Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
1466 Value *Si =
1467 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
1468 IRB.CreateICmpEQ(
1469 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
1470 Si->setName("_msprop_icmp");
1471 setShadow(&I, Si);
1472 setOriginForNaryOp(I);
1473 }
1474
Evgeniy Stepanovfac84032013-01-25 15:31:10 +00001475 /// \brief Build the lowest possible value of V, taking into account V's
1476 /// uninitialized bits.
1477 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1478 bool isSigned) {
1479 if (isSigned) {
1480 // Split shadow into sign bit and other bits.
1481 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1482 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1483 // Maximise the undefined shadow bit, minimize other undefined bits.
1484 return
1485 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
1486 } else {
1487 // Minimize undefined bits.
1488 return IRB.CreateAnd(A, IRB.CreateNot(Sa));
1489 }
1490 }
1491
1492 /// \brief Build the highest possible value of V, taking into account V's
1493 /// uninitialized bits.
1494 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1495 bool isSigned) {
1496 if (isSigned) {
1497 // Split shadow into sign bit and other bits.
1498 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1499 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1500 // Minimise the undefined shadow bit, maximise other undefined bits.
1501 return
1502 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
1503 } else {
1504 // Maximize undefined bits.
1505 return IRB.CreateOr(A, Sa);
1506 }
1507 }
1508
1509 /// \brief Instrument relational comparisons.
1510 ///
1511 /// This function does exact shadow propagation for all relational
1512 /// comparisons of integers, pointers and vectors of those.
1513 /// FIXME: output seems suboptimal when one of the operands is a constant
1514 void handleRelationalComparisonExact(ICmpInst &I) {
1515 IRBuilder<> IRB(&I);
1516 Value *A = I.getOperand(0);
1517 Value *B = I.getOperand(1);
1518 Value *Sa = getShadow(A);
1519 Value *Sb = getShadow(B);
1520
1521 // Get rid of pointers and vectors of pointers.
1522 // For ints (and vectors of ints), types of A and Sa match,
1523 // and this is a no-op.
1524 A = IRB.CreatePointerCast(A, Sa->getType());
1525 B = IRB.CreatePointerCast(B, Sb->getType());
1526
Evgeniy Stepanov2cb0fa12013-01-25 15:35:29 +00001527 // Let [a0, a1] be the interval of possible values of A, taking into account
1528 // its undefined bits. Let [b0, b1] be the interval of possible values of B.
1529 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
Evgeniy Stepanovfac84032013-01-25 15:31:10 +00001530 bool IsSigned = I.isSigned();
1531 Value *S1 = IRB.CreateICmp(I.getPredicate(),
1532 getLowestPossibleValue(IRB, A, Sa, IsSigned),
1533 getHighestPossibleValue(IRB, B, Sb, IsSigned));
1534 Value *S2 = IRB.CreateICmp(I.getPredicate(),
1535 getHighestPossibleValue(IRB, A, Sa, IsSigned),
1536 getLowestPossibleValue(IRB, B, Sb, IsSigned));
1537 Value *Si = IRB.CreateXor(S1, S2);
1538 setShadow(&I, Si);
1539 setOriginForNaryOp(I);
1540 }
1541
Evgeniy Stepanov857d9d22012-11-29 14:25:47 +00001542 /// \brief Instrument signed relational comparisons.
1543 ///
1544 /// Handle (x<0) and (x>=0) comparisons (essentially, sign bit tests) by
1545 /// propagating the highest bit of the shadow. Everything else is delegated
1546 /// to handleShadowOr().
1547 void handleSignedRelationalComparison(ICmpInst &I) {
1548 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
1549 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
Craig Topperf40110f2014-04-25 05:29:35 +00001550 Value* op = nullptr;
Evgeniy Stepanov857d9d22012-11-29 14:25:47 +00001551 CmpInst::Predicate pre = I.getPredicate();
1552 if (constOp0 && constOp0->isNullValue() &&
1553 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE)) {
1554 op = I.getOperand(1);
1555 } else if (constOp1 && constOp1->isNullValue() &&
1556 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) {
1557 op = I.getOperand(0);
1558 }
1559 if (op) {
1560 IRBuilder<> IRB(&I);
1561 Value* Shadow =
1562 IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), "_msprop_icmpslt");
1563 setShadow(&I, Shadow);
1564 setOrigin(&I, getOrigin(op));
1565 } else {
1566 handleShadowOr(I);
1567 }
1568 }
1569
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001570 void visitICmpInst(ICmpInst &I) {
Evgeniy Stepanov6f85ef32013-01-28 11:42:28 +00001571 if (!ClHandleICmp) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001572 handleShadowOr(I);
Evgeniy Stepanov6f85ef32013-01-28 11:42:28 +00001573 return;
1574 }
1575 if (I.isEquality()) {
1576 handleEqualityComparison(I);
1577 return;
1578 }
1579
1580 assert(I.isRelational());
1581 if (ClHandleICmpExact) {
1582 handleRelationalComparisonExact(I);
1583 return;
1584 }
1585 if (I.isSigned()) {
1586 handleSignedRelationalComparison(I);
1587 return;
1588 }
1589
1590 assert(I.isUnsigned());
1591 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
1592 handleRelationalComparisonExact(I);
1593 return;
1594 }
1595
1596 handleShadowOr(I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001597 }
1598
1599 void visitFCmpInst(FCmpInst &I) {
1600 handleShadowOr(I);
1601 }
1602
1603 void handleShift(BinaryOperator &I) {
1604 IRBuilder<> IRB(&I);
1605 // If any of the S2 bits are poisoned, the whole thing is poisoned.
1606 // Otherwise perform the same shift on S1.
1607 Value *S1 = getShadow(&I, 0);
1608 Value *S2 = getShadow(&I, 1);
1609 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
1610 S2->getType());
1611 Value *V2 = I.getOperand(1);
1612 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
1613 setShadow(&I, IRB.CreateOr(Shift, S2Conv));
1614 setOriginForNaryOp(I);
1615 }
1616
1617 void visitShl(BinaryOperator &I) { handleShift(I); }
1618 void visitAShr(BinaryOperator &I) { handleShift(I); }
1619 void visitLShr(BinaryOperator &I) { handleShift(I); }
1620
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001621 /// \brief Instrument llvm.memmove
1622 ///
1623 /// At this point we don't know if llvm.memmove will be inlined or not.
1624 /// If we don't instrument it and it gets inlined,
1625 /// our interceptor will not kick in and we will lose the memmove.
1626 /// If we instrument the call here, but it does not get inlined,
1627 /// we will memove the shadow twice: which is bad in case
1628 /// of overlapping regions. So, we simply lower the intrinsic to a call.
1629 ///
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +00001630 /// Similar situation exists for memcpy and memset.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001631 void visitMemMoveInst(MemMoveInst &I) {
1632 IRBuilder<> IRB(&I);
1633 IRB.CreateCall3(
1634 MS.MemmoveFn,
1635 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1636 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1637 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1638 I.eraseFromParent();
1639 }
1640
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +00001641 // Similar to memmove: avoid copying shadow twice.
1642 // This is somewhat unfortunate as it may slowdown small constant memcpys.
1643 // FIXME: consider doing manual inline for small constant sizes and proper
1644 // alignment.
1645 void visitMemCpyInst(MemCpyInst &I) {
1646 IRBuilder<> IRB(&I);
1647 IRB.CreateCall3(
1648 MS.MemcpyFn,
1649 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1650 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1651 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1652 I.eraseFromParent();
1653 }
1654
1655 // Same as memcpy.
1656 void visitMemSetInst(MemSetInst &I) {
1657 IRBuilder<> IRB(&I);
1658 IRB.CreateCall3(
1659 MS.MemsetFn,
1660 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1661 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
1662 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1663 I.eraseFromParent();
1664 }
1665
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001666 void visitVAStartInst(VAStartInst &I) {
1667 VAHelper->visitVAStartInst(I);
1668 }
1669
1670 void visitVACopyInst(VACopyInst &I) {
1671 VAHelper->visitVACopyInst(I);
1672 }
1673
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001674 enum IntrinsicKind {
1675 IK_DoesNotAccessMemory,
1676 IK_OnlyReadsMemory,
1677 IK_WritesMemory
1678 };
1679
1680 static IntrinsicKind getIntrinsicKind(Intrinsic::ID iid) {
1681 const int DoesNotAccessMemory = IK_DoesNotAccessMemory;
1682 const int OnlyReadsArgumentPointees = IK_OnlyReadsMemory;
1683 const int OnlyReadsMemory = IK_OnlyReadsMemory;
1684 const int OnlyAccessesArgumentPointees = IK_WritesMemory;
1685 const int UnknownModRefBehavior = IK_WritesMemory;
1686#define GET_INTRINSIC_MODREF_BEHAVIOR
1687#define ModRefBehavior IntrinsicKind
Chandler Carruthdb25c6c2013-01-02 12:09:16 +00001688#include "llvm/IR/Intrinsics.gen"
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001689#undef ModRefBehavior
1690#undef GET_INTRINSIC_MODREF_BEHAVIOR
1691 }
1692
1693 /// \brief Handle vector store-like intrinsics.
1694 ///
1695 /// Instrument intrinsics that look like a simple SIMD store: writes memory,
1696 /// has 1 pointer argument and 1 vector argument, returns void.
1697 bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
1698 IRBuilder<> IRB(&I);
1699 Value* Addr = I.getArgOperand(0);
1700 Value *Shadow = getShadow(&I, 1);
1701 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
1702
1703 // We don't know the pointer alignment (could be unaligned SSE store!).
1704 // Have to assume to worst case.
1705 IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
1706
1707 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001708 insertShadowCheck(Addr, &I);
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001709
1710 // FIXME: use ClStoreCleanOrigin
1711 // FIXME: factor out common code from materializeStores
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001712 if (MS.TrackOrigins)
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001713 IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB));
1714 return true;
1715 }
1716
1717 /// \brief Handle vector load-like intrinsics.
1718 ///
1719 /// Instrument intrinsics that look like a simple SIMD load: reads memory,
1720 /// has 1 pointer argument, returns a vector.
1721 bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
1722 IRBuilder<> IRB(&I);
1723 Value *Addr = I.getArgOperand(0);
1724
1725 Type *ShadowTy = getShadowTy(&I);
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001726 if (LoadShadow) {
1727 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1728 // We don't know the pointer alignment (could be unaligned SSE load!).
1729 // Have to assume to worst case.
1730 setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld"));
1731 } else {
1732 setShadow(&I, getCleanShadow(&I));
1733 }
1734
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001735 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001736 insertShadowCheck(Addr, &I);
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001737
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001738 if (MS.TrackOrigins) {
1739 if (LoadShadow)
1740 setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB)));
1741 else
1742 setOrigin(&I, getCleanOrigin());
1743 }
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001744 return true;
1745 }
1746
1747 /// \brief Handle (SIMD arithmetic)-like intrinsics.
1748 ///
1749 /// Instrument intrinsics with any number of arguments of the same type,
1750 /// equal to the return type. The type should be simple (no aggregates or
1751 /// pointers; vectors are fine).
1752 /// Caller guarantees that this intrinsic does not access memory.
1753 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
1754 Type *RetTy = I.getType();
1755 if (!(RetTy->isIntOrIntVectorTy() ||
1756 RetTy->isFPOrFPVectorTy() ||
1757 RetTy->isX86_MMXTy()))
1758 return false;
1759
1760 unsigned NumArgOperands = I.getNumArgOperands();
1761
1762 for (unsigned i = 0; i < NumArgOperands; ++i) {
1763 Type *Ty = I.getArgOperand(i)->getType();
1764 if (Ty != RetTy)
1765 return false;
1766 }
1767
1768 IRBuilder<> IRB(&I);
1769 ShadowAndOriginCombiner SC(this, IRB);
1770 for (unsigned i = 0; i < NumArgOperands; ++i)
1771 SC.Add(I.getArgOperand(i));
1772 SC.Done(&I);
1773
1774 return true;
1775 }
1776
1777 /// \brief Heuristically instrument unknown intrinsics.
1778 ///
1779 /// The main purpose of this code is to do something reasonable with all
1780 /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
1781 /// We recognize several classes of intrinsics by their argument types and
1782 /// ModRefBehaviour and apply special intrumentation when we are reasonably
1783 /// sure that we know what the intrinsic does.
1784 ///
1785 /// We special-case intrinsics where this approach fails. See llvm.bswap
1786 /// handling as an example of that.
1787 bool handleUnknownIntrinsic(IntrinsicInst &I) {
1788 unsigned NumArgOperands = I.getNumArgOperands();
1789 if (NumArgOperands == 0)
1790 return false;
1791
1792 Intrinsic::ID iid = I.getIntrinsicID();
1793 IntrinsicKind IK = getIntrinsicKind(iid);
1794 bool OnlyReadsMemory = IK == IK_OnlyReadsMemory;
1795 bool WritesMemory = IK == IK_WritesMemory;
1796 assert(!(OnlyReadsMemory && WritesMemory));
1797
1798 if (NumArgOperands == 2 &&
1799 I.getArgOperand(0)->getType()->isPointerTy() &&
1800 I.getArgOperand(1)->getType()->isVectorTy() &&
1801 I.getType()->isVoidTy() &&
1802 WritesMemory) {
1803 // This looks like a vector store.
1804 return handleVectorStoreIntrinsic(I);
1805 }
1806
1807 if (NumArgOperands == 1 &&
1808 I.getArgOperand(0)->getType()->isPointerTy() &&
1809 I.getType()->isVectorTy() &&
1810 OnlyReadsMemory) {
1811 // This looks like a vector load.
1812 return handleVectorLoadIntrinsic(I);
1813 }
1814
1815 if (!OnlyReadsMemory && !WritesMemory)
1816 if (maybeHandleSimpleNomemIntrinsic(I))
1817 return true;
1818
1819 // FIXME: detect and handle SSE maskstore/maskload
1820 return false;
1821 }
1822
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001823 void handleBswap(IntrinsicInst &I) {
1824 IRBuilder<> IRB(&I);
1825 Value *Op = I.getArgOperand(0);
1826 Type *OpType = Op->getType();
1827 Function *BswapFunc = Intrinsic::getDeclaration(
1828 F.getParent(), Intrinsic::bswap, ArrayRef<Type*>(&OpType, 1));
1829 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
1830 setOrigin(&I, getOrigin(Op));
1831 }
1832
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001833 // \brief Instrument vector convert instrinsic.
1834 //
1835 // This function instruments intrinsics like cvtsi2ss:
1836 // %Out = int_xxx_cvtyyy(%ConvertOp)
1837 // or
1838 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
1839 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
1840 // number \p Out elements, and (if has 2 arguments) copies the rest of the
1841 // elements from \p CopyOp.
1842 // In most cases conversion involves floating-point value which may trigger a
1843 // hardware exception when not fully initialized. For this reason we require
1844 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
1845 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p
1846 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
1847 // return a fully initialized value.
1848 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) {
1849 IRBuilder<> IRB(&I);
1850 Value *CopyOp, *ConvertOp;
1851
1852 switch (I.getNumArgOperands()) {
1853 case 2:
1854 CopyOp = I.getArgOperand(0);
1855 ConvertOp = I.getArgOperand(1);
1856 break;
1857 case 1:
1858 ConvertOp = I.getArgOperand(0);
Craig Topperf40110f2014-04-25 05:29:35 +00001859 CopyOp = nullptr;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001860 break;
1861 default:
1862 llvm_unreachable("Cvt intrinsic with unsupported number of arguments.");
1863 }
1864
1865 // The first *NumUsedElements* elements of ConvertOp are converted to the
1866 // same number of output elements. The rest of the output is copied from
1867 // CopyOp, or (if not available) filled with zeroes.
1868 // Combine shadow for elements of ConvertOp that are used in this operation,
1869 // and insert a check.
1870 // FIXME: consider propagating shadow of ConvertOp, at least in the case of
1871 // int->any conversion.
1872 Value *ConvertShadow = getShadow(ConvertOp);
Craig Topperf40110f2014-04-25 05:29:35 +00001873 Value *AggShadow = nullptr;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001874 if (ConvertOp->getType()->isVectorTy()) {
1875 AggShadow = IRB.CreateExtractElement(
1876 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
1877 for (int i = 1; i < NumUsedElements; ++i) {
1878 Value *MoreShadow = IRB.CreateExtractElement(
1879 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
1880 AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
1881 }
1882 } else {
1883 AggShadow = ConvertShadow;
1884 }
1885 assert(AggShadow->getType()->isIntegerTy());
1886 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
1887
1888 // Build result shadow by zero-filling parts of CopyOp shadow that come from
1889 // ConvertOp.
1890 if (CopyOp) {
1891 assert(CopyOp->getType() == I.getType());
1892 assert(CopyOp->getType()->isVectorTy());
1893 Value *ResultShadow = getShadow(CopyOp);
1894 Type *EltTy = ResultShadow->getType()->getVectorElementType();
1895 for (int i = 0; i < NumUsedElements; ++i) {
1896 ResultShadow = IRB.CreateInsertElement(
1897 ResultShadow, ConstantInt::getNullValue(EltTy),
1898 ConstantInt::get(IRB.getInt32Ty(), i));
1899 }
1900 setShadow(&I, ResultShadow);
1901 setOrigin(&I, getOrigin(CopyOp));
1902 } else {
1903 setShadow(&I, getCleanShadow(&I));
1904 }
1905 }
1906
Evgeniy Stepanov77be5322014-03-03 13:47:42 +00001907 // Given a scalar or vector, extract lower 64 bits (or less), and return all
1908 // zeroes if it is zero, and all ones otherwise.
1909 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
1910 if (S->getType()->isVectorTy())
1911 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true);
1912 assert(S->getType()->getPrimitiveSizeInBits() <= 64);
1913 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
1914 return CreateShadowCast(IRB, S2, T, /* Signed */ true);
1915 }
1916
1917 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) {
1918 Type *T = S->getType();
1919 assert(T->isVectorTy());
1920 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
1921 return IRB.CreateSExt(S2, T);
1922 }
1923
1924 // \brief Instrument vector shift instrinsic.
1925 //
1926 // This function instruments intrinsics like int_x86_avx2_psll_w.
1927 // Intrinsic shifts %In by %ShiftSize bits.
1928 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift
1929 // size, and the rest is ignored. Behavior is defined even if shift size is
1930 // greater than register (or field) width.
1931 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) {
1932 assert(I.getNumArgOperands() == 2);
1933 IRBuilder<> IRB(&I);
1934 // If any of the S2 bits are poisoned, the whole thing is poisoned.
1935 // Otherwise perform the same shift on S1.
1936 Value *S1 = getShadow(&I, 0);
1937 Value *S2 = getShadow(&I, 1);
1938 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2)
1939 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I));
1940 Value *V1 = I.getOperand(0);
1941 Value *V2 = I.getOperand(1);
1942 Value *Shift = IRB.CreateCall2(I.getCalledValue(),
1943 IRB.CreateBitCast(S1, V1->getType()), V2);
1944 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I));
1945 setShadow(&I, IRB.CreateOr(Shift, S2Conv));
1946 setOriginForNaryOp(I);
1947 }
1948
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001949 void visitIntrinsicInst(IntrinsicInst &I) {
1950 switch (I.getIntrinsicID()) {
1951 case llvm::Intrinsic::bswap:
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00001952 handleBswap(I);
1953 break;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001954 case llvm::Intrinsic::x86_avx512_cvtsd2usi64:
1955 case llvm::Intrinsic::x86_avx512_cvtsd2usi:
1956 case llvm::Intrinsic::x86_avx512_cvtss2usi64:
1957 case llvm::Intrinsic::x86_avx512_cvtss2usi:
1958 case llvm::Intrinsic::x86_avx512_cvttss2usi64:
1959 case llvm::Intrinsic::x86_avx512_cvttss2usi:
1960 case llvm::Intrinsic::x86_avx512_cvttsd2usi64:
1961 case llvm::Intrinsic::x86_avx512_cvttsd2usi:
1962 case llvm::Intrinsic::x86_avx512_cvtusi2sd:
1963 case llvm::Intrinsic::x86_avx512_cvtusi2ss:
1964 case llvm::Intrinsic::x86_avx512_cvtusi642sd:
1965 case llvm::Intrinsic::x86_avx512_cvtusi642ss:
1966 case llvm::Intrinsic::x86_sse2_cvtsd2si64:
1967 case llvm::Intrinsic::x86_sse2_cvtsd2si:
1968 case llvm::Intrinsic::x86_sse2_cvtsd2ss:
1969 case llvm::Intrinsic::x86_sse2_cvtsi2sd:
1970 case llvm::Intrinsic::x86_sse2_cvtsi642sd:
1971 case llvm::Intrinsic::x86_sse2_cvtss2sd:
1972 case llvm::Intrinsic::x86_sse2_cvttsd2si64:
1973 case llvm::Intrinsic::x86_sse2_cvttsd2si:
1974 case llvm::Intrinsic::x86_sse_cvtsi2ss:
1975 case llvm::Intrinsic::x86_sse_cvtsi642ss:
1976 case llvm::Intrinsic::x86_sse_cvtss2si64:
1977 case llvm::Intrinsic::x86_sse_cvtss2si:
1978 case llvm::Intrinsic::x86_sse_cvttss2si64:
1979 case llvm::Intrinsic::x86_sse_cvttss2si:
1980 handleVectorConvertIntrinsic(I, 1);
1981 break;
1982 case llvm::Intrinsic::x86_sse2_cvtdq2pd:
1983 case llvm::Intrinsic::x86_sse2_cvtps2pd:
1984 case llvm::Intrinsic::x86_sse_cvtps2pi:
1985 case llvm::Intrinsic::x86_sse_cvttps2pi:
1986 handleVectorConvertIntrinsic(I, 2);
1987 break;
Evgeniy Stepanov77be5322014-03-03 13:47:42 +00001988 case llvm::Intrinsic::x86_avx512_psll_dq:
1989 case llvm::Intrinsic::x86_avx512_psrl_dq:
1990 case llvm::Intrinsic::x86_avx2_psll_w:
1991 case llvm::Intrinsic::x86_avx2_psll_d:
1992 case llvm::Intrinsic::x86_avx2_psll_q:
1993 case llvm::Intrinsic::x86_avx2_pslli_w:
1994 case llvm::Intrinsic::x86_avx2_pslli_d:
1995 case llvm::Intrinsic::x86_avx2_pslli_q:
1996 case llvm::Intrinsic::x86_avx2_psll_dq:
1997 case llvm::Intrinsic::x86_avx2_psrl_w:
1998 case llvm::Intrinsic::x86_avx2_psrl_d:
1999 case llvm::Intrinsic::x86_avx2_psrl_q:
2000 case llvm::Intrinsic::x86_avx2_psra_w:
2001 case llvm::Intrinsic::x86_avx2_psra_d:
2002 case llvm::Intrinsic::x86_avx2_psrli_w:
2003 case llvm::Intrinsic::x86_avx2_psrli_d:
2004 case llvm::Intrinsic::x86_avx2_psrli_q:
2005 case llvm::Intrinsic::x86_avx2_psrai_w:
2006 case llvm::Intrinsic::x86_avx2_psrai_d:
2007 case llvm::Intrinsic::x86_avx2_psrl_dq:
2008 case llvm::Intrinsic::x86_sse2_psll_w:
2009 case llvm::Intrinsic::x86_sse2_psll_d:
2010 case llvm::Intrinsic::x86_sse2_psll_q:
2011 case llvm::Intrinsic::x86_sse2_pslli_w:
2012 case llvm::Intrinsic::x86_sse2_pslli_d:
2013 case llvm::Intrinsic::x86_sse2_pslli_q:
2014 case llvm::Intrinsic::x86_sse2_psll_dq:
2015 case llvm::Intrinsic::x86_sse2_psrl_w:
2016 case llvm::Intrinsic::x86_sse2_psrl_d:
2017 case llvm::Intrinsic::x86_sse2_psrl_q:
2018 case llvm::Intrinsic::x86_sse2_psra_w:
2019 case llvm::Intrinsic::x86_sse2_psra_d:
2020 case llvm::Intrinsic::x86_sse2_psrli_w:
2021 case llvm::Intrinsic::x86_sse2_psrli_d:
2022 case llvm::Intrinsic::x86_sse2_psrli_q:
2023 case llvm::Intrinsic::x86_sse2_psrai_w:
2024 case llvm::Intrinsic::x86_sse2_psrai_d:
2025 case llvm::Intrinsic::x86_sse2_psrl_dq:
2026 case llvm::Intrinsic::x86_mmx_psll_w:
2027 case llvm::Intrinsic::x86_mmx_psll_d:
2028 case llvm::Intrinsic::x86_mmx_psll_q:
2029 case llvm::Intrinsic::x86_mmx_pslli_w:
2030 case llvm::Intrinsic::x86_mmx_pslli_d:
2031 case llvm::Intrinsic::x86_mmx_pslli_q:
2032 case llvm::Intrinsic::x86_mmx_psrl_w:
2033 case llvm::Intrinsic::x86_mmx_psrl_d:
2034 case llvm::Intrinsic::x86_mmx_psrl_q:
2035 case llvm::Intrinsic::x86_mmx_psra_w:
2036 case llvm::Intrinsic::x86_mmx_psra_d:
2037 case llvm::Intrinsic::x86_mmx_psrli_w:
2038 case llvm::Intrinsic::x86_mmx_psrli_d:
2039 case llvm::Intrinsic::x86_mmx_psrli_q:
2040 case llvm::Intrinsic::x86_mmx_psrai_w:
2041 case llvm::Intrinsic::x86_mmx_psrai_d:
2042 handleVectorShiftIntrinsic(I, /* Variable */ false);
2043 break;
2044 case llvm::Intrinsic::x86_avx2_psllv_d:
2045 case llvm::Intrinsic::x86_avx2_psllv_d_256:
2046 case llvm::Intrinsic::x86_avx2_psllv_q:
2047 case llvm::Intrinsic::x86_avx2_psllv_q_256:
2048 case llvm::Intrinsic::x86_avx2_psrlv_d:
2049 case llvm::Intrinsic::x86_avx2_psrlv_d_256:
2050 case llvm::Intrinsic::x86_avx2_psrlv_q:
2051 case llvm::Intrinsic::x86_avx2_psrlv_q_256:
2052 case llvm::Intrinsic::x86_avx2_psrav_d:
2053 case llvm::Intrinsic::x86_avx2_psrav_d_256:
2054 handleVectorShiftIntrinsic(I, /* Variable */ true);
2055 break;
2056
2057 // Byte shifts are not implemented.
2058 // case llvm::Intrinsic::x86_avx512_psll_dq_bs:
2059 // case llvm::Intrinsic::x86_avx512_psrl_dq_bs:
2060 // case llvm::Intrinsic::x86_avx2_psll_dq_bs:
2061 // case llvm::Intrinsic::x86_avx2_psrl_dq_bs:
2062 // case llvm::Intrinsic::x86_sse2_psll_dq_bs:
2063 // case llvm::Intrinsic::x86_sse2_psrl_dq_bs:
2064
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00002065 default:
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00002066 if (!handleUnknownIntrinsic(I))
2067 visitInstruction(I);
Evgeniy Stepanov88b8dce2012-12-17 16:30:05 +00002068 break;
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00002069 }
2070 }
2071
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002072 void visitCallSite(CallSite CS) {
2073 Instruction &I = *CS.getInstruction();
2074 assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite");
2075 if (CS.isCall()) {
Evgeniy Stepanov7ad7e832012-11-29 14:32:03 +00002076 CallInst *Call = cast<CallInst>(&I);
2077
2078 // For inline asm, do the usual thing: check argument shadow and mark all
2079 // outputs as clean. Note that any side effects of the inline asm that are
2080 // not immediately visible in its constraints are not handled.
2081 if (Call->isInlineAsm()) {
2082 visitInstruction(I);
2083 return;
2084 }
2085
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002086 // Allow only tail calls with the same types, otherwise
2087 // we may have a false positive: shadow for a non-void RetVal
2088 // will get propagated to a void RetVal.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002089 if (Call->isTailCall() && Call->getType() != Call->getParent()->getType())
2090 Call->setTailCall(false);
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00002091
2092 assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
Evgeniy Stepanov383b61e2012-12-07 09:08:32 +00002093
2094 // We are going to insert code that relies on the fact that the callee
2095 // will become a non-readonly function after it is instrumented by us. To
2096 // prevent this code from being optimized out, mark that function
2097 // non-readonly in advance.
2098 if (Function *Func = Call->getCalledFunction()) {
2099 // Clear out readonly/readnone attributes.
2100 AttrBuilder B;
Bill Wendling3d7b0b82012-12-19 07:18:57 +00002101 B.addAttribute(Attribute::ReadOnly)
2102 .addAttribute(Attribute::ReadNone);
Bill Wendling430fa9b2013-01-23 00:45:55 +00002103 Func->removeAttributes(AttributeSet::FunctionIndex,
2104 AttributeSet::get(Func->getContext(),
2105 AttributeSet::FunctionIndex,
2106 B));
Evgeniy Stepanov383b61e2012-12-07 09:08:32 +00002107 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002108 }
2109 IRBuilder<> IRB(&I);
Evgeniy Stepanov37b86452013-09-19 15:22:35 +00002110
2111 if (MS.WrapIndirectCalls && !CS.getCalledFunction())
Evgeniy Stepanov585813e2013-11-14 12:29:04 +00002112 IndirectCallList.push_back(CS);
Evgeniy Stepanov37b86452013-09-19 15:22:35 +00002113
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002114 unsigned ArgOffset = 0;
2115 DEBUG(dbgs() << " CallSite: " << I << "\n");
2116 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
2117 ArgIt != End; ++ArgIt) {
2118 Value *A = *ArgIt;
2119 unsigned i = ArgIt - CS.arg_begin();
2120 if (!A->getType()->isSized()) {
2121 DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
2122 continue;
2123 }
2124 unsigned Size = 0;
Craig Topperf40110f2014-04-25 05:29:35 +00002125 Value *Store = nullptr;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002126 // Compute the Shadow for arg even if it is ByVal, because
2127 // in that case getShadow() will copy the actual arg shadow to
2128 // __msan_param_tls.
2129 Value *ArgShadow = getShadow(A);
2130 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
2131 DEBUG(dbgs() << " Arg#" << i << ": " << *A <<
2132 " Shadow: " << *ArgShadow << "\n");
Bill Wendling3d7b0b82012-12-19 07:18:57 +00002133 if (CS.paramHasAttr(i + 1, Attribute::ByVal)) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002134 assert(A->getType()->isPointerTy() &&
2135 "ByVal argument is not a pointer!");
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002136 Size = MS.DL->getTypeAllocSize(A->getType()->getPointerElementType());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002137 unsigned Alignment = CS.getParamAlignment(i + 1);
2138 Store = IRB.CreateMemCpy(ArgShadowBase,
2139 getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
2140 Size, Alignment);
2141 } else {
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002142 Size = MS.DL->getTypeAllocSize(A->getType());
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002143 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
2144 kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002145 }
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00002146 if (MS.TrackOrigins)
Evgeniy Stepanov49175b22012-12-14 13:43:11 +00002147 IRB.CreateStore(getOrigin(A),
2148 getOriginPtrForArgument(A, IRB, ArgOffset));
Edwin Vane82f80d42013-01-29 17:42:24 +00002149 (void)Store;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002150 assert(Size != 0 && Store != 0);
2151 DEBUG(dbgs() << " Param:" << *Store << "\n");
2152 ArgOffset += DataLayout::RoundUpAlignment(Size, 8);
2153 }
2154 DEBUG(dbgs() << " done with call args\n");
2155
2156 FunctionType *FT =
Evgeniy Stepanov37b86452013-09-19 15:22:35 +00002157 cast<FunctionType>(CS.getCalledValue()->getType()->getContainedType(0));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002158 if (FT->isVarArg()) {
2159 VAHelper->visitCallSite(CS, IRB);
2160 }
2161
2162 // Now, get the shadow for the RetVal.
2163 if (!I.getType()->isSized()) return;
2164 IRBuilder<> IRBBefore(&I);
Alp Tokercb402912014-01-24 17:20:08 +00002165 // Until we have full dynamic coverage, make sure the retval shadow is 0.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002166 Value *Base = getShadowPtrForRetval(&I, IRBBefore);
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002167 IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
Craig Topperf40110f2014-04-25 05:29:35 +00002168 Instruction *NextInsn = nullptr;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002169 if (CS.isCall()) {
2170 NextInsn = I.getNextNode();
2171 } else {
2172 BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
2173 if (!NormalDest->getSinglePredecessor()) {
2174 // FIXME: this case is tricky, so we are just conservative here.
2175 // Perhaps we need to split the edge between this BB and NormalDest,
2176 // but a naive attempt to use SplitEdge leads to a crash.
2177 setShadow(&I, getCleanShadow(&I));
2178 setOrigin(&I, getCleanOrigin());
2179 return;
2180 }
2181 NextInsn = NormalDest->getFirstInsertionPt();
2182 assert(NextInsn &&
2183 "Could not find insertion point for retval shadow load");
2184 }
2185 IRBuilder<> IRBAfter(NextInsn);
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002186 Value *RetvalShadow =
2187 IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter),
2188 kShadowTLSAlignment, "_msret");
2189 setShadow(&I, RetvalShadow);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00002190 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002191 setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter)));
2192 }
2193
2194 void visitReturnInst(ReturnInst &I) {
2195 IRBuilder<> IRB(&I);
Evgeniy Stepanov604293f2013-09-16 13:24:32 +00002196 Value *RetVal = I.getReturnValue();
2197 if (!RetVal) return;
2198 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
2199 if (CheckReturnValue) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00002200 insertShadowCheck(RetVal, &I);
Evgeniy Stepanov604293f2013-09-16 13:24:32 +00002201 Value *Shadow = getCleanShadow(RetVal);
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002202 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
Evgeniy Stepanov604293f2013-09-16 13:24:32 +00002203 } else {
2204 Value *Shadow = getShadow(RetVal);
2205 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
2206 // FIXME: make it conditional if ClStoreCleanOrigin==0
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00002207 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002208 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
2209 }
2210 }
2211
2212 void visitPHINode(PHINode &I) {
2213 IRBuilder<> IRB(&I);
2214 ShadowPHINodes.push_back(&I);
2215 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
2216 "_msphi_s"));
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00002217 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002218 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
2219 "_msphi_o"));
2220 }
2221
2222 void visitAllocaInst(AllocaInst &I) {
2223 setShadow(&I, getCleanShadow(&I));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002224 IRBuilder<> IRB(I.getNextNode());
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002225 uint64_t Size = MS.DL->getTypeAllocSize(I.getAllocatedType());
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +00002226 if (PoisonStack && ClPoisonStackWithCall) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002227 IRB.CreateCall2(MS.MsanPoisonStackFn,
2228 IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
2229 ConstantInt::get(MS.IntptrTy, Size));
2230 } else {
2231 Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB);
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +00002232 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
2233 IRB.CreateMemSet(ShadowBase, PoisonValue, Size, I.getAlignment());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002234 }
2235
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +00002236 if (PoisonStack && MS.TrackOrigins) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002237 setOrigin(&I, getCleanOrigin());
2238 SmallString<2048> StackDescriptionStorage;
2239 raw_svector_ostream StackDescription(StackDescriptionStorage);
2240 // We create a string with a description of the stack allocation and
2241 // pass it into __msan_set_alloca_origin.
2242 // It will be printed by the run-time if stack-originated UMR is found.
2243 // The first 4 bytes of the string are set to '----' and will be replaced
2244 // by __msan_va_arg_overflow_size_tls at the first call.
2245 StackDescription << "----" << I.getName() << "@" << F.getName();
2246 Value *Descr =
2247 createPrivateNonConstGlobalForString(*F.getParent(),
2248 StackDescription.str());
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +00002249
2250 IRB.CreateCall4(MS.MsanSetAllocaOrigin4Fn,
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002251 IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
2252 ConstantInt::get(MS.IntptrTy, Size),
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +00002253 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()),
2254 IRB.CreatePointerCast(&F, MS.IntptrTy));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002255 }
2256 }
2257
2258 void visitSelectInst(SelectInst& I) {
2259 IRBuilder<> IRB(&I);
Evgeniy Stepanov566f5912013-09-03 10:04:11 +00002260 // a = select b, c, d
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002261 Value *B = I.getCondition();
2262 Value *C = I.getTrueValue();
2263 Value *D = I.getFalseValue();
2264 Value *Sb = getShadow(B);
2265 Value *Sc = getShadow(C);
2266 Value *Sd = getShadow(D);
2267
2268 // Result shadow if condition shadow is 0.
2269 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd);
2270 Value *Sa1;
Evgeniy Stepanove95d37c2013-09-03 13:05:29 +00002271 if (I.getType()->isAggregateType()) {
2272 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
2273 // an extra "select". This results in much more compact IR.
2274 // Sa = select Sb, poisoned, (select b, Sc, Sd)
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002275 Sa1 = getPoisonedShadow(getShadowTy(I.getType()));
Evgeniy Stepanove95d37c2013-09-03 13:05:29 +00002276 } else {
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002277 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ]
2278 // If Sb (condition is poisoned), look for bits in c and d that are equal
2279 // and both unpoisoned.
2280 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd.
2281
2282 // Cast arguments to shadow-compatible type.
2283 C = CreateAppToShadowCast(IRB, C);
2284 D = CreateAppToShadowCast(IRB, D);
2285
2286 // Result shadow if condition shadow is 1.
2287 Sa1 = IRB.CreateOr(IRB.CreateXor(C, D), IRB.CreateOr(Sc, Sd));
Evgeniy Stepanove95d37c2013-09-03 13:05:29 +00002288 }
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002289 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select");
2290 setShadow(&I, Sa);
Evgeniy Stepanovec837122012-12-25 14:56:21 +00002291 if (MS.TrackOrigins) {
2292 // Origins are always i32, so any vector conditions must be flattened.
2293 // FIXME: consider tracking vector origins for app vectors?
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002294 if (B->getType()->isVectorTy()) {
2295 Type *FlatTy = getShadowTyNoVec(B->getType());
2296 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy),
Evgeniy Stepanovcb5bdff2013-11-21 12:00:24 +00002297 ConstantInt::getNullValue(FlatTy));
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002298 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy),
Evgeniy Stepanovcb5bdff2013-11-21 12:00:24 +00002299 ConstantInt::getNullValue(FlatTy));
Evgeniy Stepanovec837122012-12-25 14:56:21 +00002300 }
Evgeniy Stepanovcb5bdff2013-11-21 12:00:24 +00002301 // a = select b, c, d
2302 // Oa = Sb ? Ob : (b ? Oc : Od)
2303 setOrigin(&I, IRB.CreateSelect(
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002304 Sb, getOrigin(I.getCondition()),
2305 IRB.CreateSelect(B, getOrigin(C), getOrigin(D))));
Evgeniy Stepanovec837122012-12-25 14:56:21 +00002306 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002307 }
2308
2309 void visitLandingPadInst(LandingPadInst &I) {
2310 // Do nothing.
2311 // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1
2312 setShadow(&I, getCleanShadow(&I));
2313 setOrigin(&I, getCleanOrigin());
2314 }
2315
2316 void visitGetElementPtrInst(GetElementPtrInst &I) {
2317 handleShadowOr(I);
2318 }
2319
2320 void visitExtractValueInst(ExtractValueInst &I) {
2321 IRBuilder<> IRB(&I);
2322 Value *Agg = I.getAggregateOperand();
2323 DEBUG(dbgs() << "ExtractValue: " << I << "\n");
2324 Value *AggShadow = getShadow(Agg);
2325 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
2326 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
2327 DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n");
2328 setShadow(&I, ResShadow);
Evgeniy Stepanov560e08932013-11-11 13:37:10 +00002329 setOriginForNaryOp(I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002330 }
2331
2332 void visitInsertValueInst(InsertValueInst &I) {
2333 IRBuilder<> IRB(&I);
2334 DEBUG(dbgs() << "InsertValue: " << I << "\n");
2335 Value *AggShadow = getShadow(I.getAggregateOperand());
2336 Value *InsShadow = getShadow(I.getInsertedValueOperand());
2337 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
2338 DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n");
2339 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
2340 DEBUG(dbgs() << " Res: " << *Res << "\n");
2341 setShadow(&I, Res);
Evgeniy Stepanov560e08932013-11-11 13:37:10 +00002342 setOriginForNaryOp(I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002343 }
2344
2345 void dumpInst(Instruction &I) {
2346 if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2347 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
2348 } else {
2349 errs() << "ZZZ " << I.getOpcodeName() << "\n";
2350 }
2351 errs() << "QQQ " << I << "\n";
2352 }
2353
2354 void visitResumeInst(ResumeInst &I) {
2355 DEBUG(dbgs() << "Resume: " << I << "\n");
2356 // Nothing to do here.
2357 }
2358
2359 void visitInstruction(Instruction &I) {
2360 // Everything else: stop propagating and check for poisoned shadow.
2361 if (ClDumpStrictInstructions)
2362 dumpInst(I);
2363 DEBUG(dbgs() << "DEFAULT: " << I << "\n");
2364 for (size_t i = 0, n = I.getNumOperands(); i < n; i++)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00002365 insertShadowCheck(I.getOperand(i), &I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002366 setShadow(&I, getCleanShadow(&I));
2367 setOrigin(&I, getCleanOrigin());
2368 }
2369};
2370
2371/// \brief AMD64-specific implementation of VarArgHelper.
2372struct VarArgAMD64Helper : public VarArgHelper {
2373 // An unfortunate workaround for asymmetric lowering of va_arg stuff.
2374 // See a comment in visitCallSite for more details.
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00002375 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002376 static const unsigned AMD64FpEndOffset = 176;
2377
2378 Function &F;
2379 MemorySanitizer &MS;
2380 MemorySanitizerVisitor &MSV;
2381 Value *VAArgTLSCopy;
2382 Value *VAArgOverflowSize;
2383
2384 SmallVector<CallInst*, 16> VAStartInstrumentationList;
2385
2386 VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
2387 MemorySanitizerVisitor &MSV)
Craig Topperf40110f2014-04-25 05:29:35 +00002388 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr),
2389 VAArgOverflowSize(nullptr) {}
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002390
2391 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
2392
2393 ArgKind classifyArgument(Value* arg) {
2394 // A very rough approximation of X86_64 argument classification rules.
2395 Type *T = arg->getType();
2396 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
2397 return AK_FloatingPoint;
2398 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
2399 return AK_GeneralPurpose;
2400 if (T->isPointerTy())
2401 return AK_GeneralPurpose;
2402 return AK_Memory;
2403 }
2404
2405 // For VarArg functions, store the argument shadow in an ABI-specific format
2406 // that corresponds to va_list layout.
2407 // We do this because Clang lowers va_arg in the frontend, and this pass
2408 // only sees the low level code that deals with va_list internals.
2409 // A much easier alternative (provided that Clang emits va_arg instructions)
2410 // would have been to associate each live instance of va_list with a copy of
2411 // MSanParamTLS, and extract shadow on va_arg() call in the argument list
2412 // order.
Craig Topper3e4c6972014-03-05 09:10:37 +00002413 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002414 unsigned GpOffset = 0;
2415 unsigned FpOffset = AMD64GpEndOffset;
2416 unsigned OverflowOffset = AMD64FpEndOffset;
2417 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
2418 ArgIt != End; ++ArgIt) {
2419 Value *A = *ArgIt;
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002420 unsigned ArgNo = CS.getArgumentNo(ArgIt);
2421 bool IsByVal = CS.paramHasAttr(ArgNo + 1, Attribute::ByVal);
2422 if (IsByVal) {
2423 // ByVal arguments always go to the overflow area.
2424 assert(A->getType()->isPointerTy());
2425 Type *RealTy = A->getType()->getPointerElementType();
2426 uint64_t ArgSize = MS.DL->getTypeAllocSize(RealTy);
2427 Value *Base = getShadowPtrForVAArgument(RealTy, IRB, OverflowOffset);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002428 OverflowOffset += DataLayout::RoundUpAlignment(ArgSize, 8);
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002429 IRB.CreateMemCpy(Base, MSV.getShadowPtr(A, IRB.getInt8Ty(), IRB),
2430 ArgSize, kShadowTLSAlignment);
2431 } else {
2432 ArgKind AK = classifyArgument(A);
2433 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
2434 AK = AK_Memory;
2435 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
2436 AK = AK_Memory;
2437 Value *Base;
2438 switch (AK) {
2439 case AK_GeneralPurpose:
2440 Base = getShadowPtrForVAArgument(A->getType(), IRB, GpOffset);
2441 GpOffset += 8;
2442 break;
2443 case AK_FloatingPoint:
2444 Base = getShadowPtrForVAArgument(A->getType(), IRB, FpOffset);
2445 FpOffset += 16;
2446 break;
2447 case AK_Memory:
2448 uint64_t ArgSize = MS.DL->getTypeAllocSize(A->getType());
2449 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset);
2450 OverflowOffset += DataLayout::RoundUpAlignment(ArgSize, 8);
2451 }
2452 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002453 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002454 }
2455 Constant *OverflowSize =
2456 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
2457 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
2458 }
2459
2460 /// \brief Compute the shadow address for a given va_arg.
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002461 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002462 int ArgOffset) {
2463 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
2464 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002465 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002466 "_msarg");
2467 }
2468
Craig Topper3e4c6972014-03-05 09:10:37 +00002469 void visitVAStartInst(VAStartInst &I) override {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002470 IRBuilder<> IRB(&I);
2471 VAStartInstrumentationList.push_back(&I);
2472 Value *VAListTag = I.getArgOperand(0);
2473 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2474
2475 // Unpoison the whole __va_list_tag.
2476 // FIXME: magic ABI constants.
2477 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
Peter Collingbournef7d65c42013-01-10 22:36:33 +00002478 /* size */24, /* alignment */8, false);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002479 }
2480
Craig Topper3e4c6972014-03-05 09:10:37 +00002481 void visitVACopyInst(VACopyInst &I) override {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002482 IRBuilder<> IRB(&I);
2483 Value *VAListTag = I.getArgOperand(0);
2484 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2485
2486 // Unpoison the whole __va_list_tag.
2487 // FIXME: magic ABI constants.
2488 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
Peter Collingbournef7d65c42013-01-10 22:36:33 +00002489 /* size */24, /* alignment */8, false);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002490 }
2491
Craig Topper3e4c6972014-03-05 09:10:37 +00002492 void finalizeInstrumentation() override {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002493 assert(!VAArgOverflowSize && !VAArgTLSCopy &&
2494 "finalizeInstrumentation called twice");
2495 if (!VAStartInstrumentationList.empty()) {
2496 // If there is a va_start in this function, make a backup copy of
2497 // va_arg_tls somewhere in the function entry block.
2498 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
2499 VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
2500 Value *CopySize =
2501 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
2502 VAArgOverflowSize);
2503 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
2504 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
2505 }
2506
2507 // Instrument va_start.
2508 // Copy va_list shadow from the backup copy of the TLS contents.
2509 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
2510 CallInst *OrigInst = VAStartInstrumentationList[i];
2511 IRBuilder<> IRB(OrigInst->getNextNode());
2512 Value *VAListTag = OrigInst->getArgOperand(0);
2513
2514 Value *RegSaveAreaPtrPtr =
2515 IRB.CreateIntToPtr(
2516 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
2517 ConstantInt::get(MS.IntptrTy, 16)),
2518 Type::getInt64PtrTy(*MS.C));
2519 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
2520 Value *RegSaveAreaShadowPtr =
2521 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
2522 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy,
2523 AMD64FpEndOffset, 16);
2524
2525 Value *OverflowArgAreaPtrPtr =
2526 IRB.CreateIntToPtr(
2527 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
2528 ConstantInt::get(MS.IntptrTy, 8)),
2529 Type::getInt64PtrTy(*MS.C));
2530 Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr);
2531 Value *OverflowArgAreaShadowPtr =
2532 MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB);
Evgeniy Stepanovd42863c2013-08-23 12:11:00 +00002533 Value *SrcPtr = IRB.CreateConstGEP1_32(VAArgTLSCopy, AMD64FpEndOffset);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002534 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16);
2535 }
2536 }
2537};
2538
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002539/// \brief A no-op implementation of VarArgHelper.
2540struct VarArgNoOpHelper : public VarArgHelper {
2541 VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
2542 MemorySanitizerVisitor &MSV) {}
2543
Craig Topper3e4c6972014-03-05 09:10:37 +00002544 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {}
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002545
Craig Topper3e4c6972014-03-05 09:10:37 +00002546 void visitVAStartInst(VAStartInst &I) override {}
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002547
Craig Topper3e4c6972014-03-05 09:10:37 +00002548 void visitVACopyInst(VACopyInst &I) override {}
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002549
Craig Topper3e4c6972014-03-05 09:10:37 +00002550 void finalizeInstrumentation() override {}
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002551};
2552
2553VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002554 MemorySanitizerVisitor &Visitor) {
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002555 // VarArg handling is only implemented on AMD64. False positives are possible
2556 // on other platforms.
2557 llvm::Triple TargetTriple(Func.getParent()->getTargetTriple());
2558 if (TargetTriple.getArch() == llvm::Triple::x86_64)
2559 return new VarArgAMD64Helper(Func, Msan, Visitor);
2560 else
2561 return new VarArgNoOpHelper(Func, Msan, Visitor);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002562}
2563
2564} // namespace
2565
2566bool MemorySanitizer::runOnFunction(Function &F) {
2567 MemorySanitizerVisitor Visitor(F, *this);
2568
2569 // Clear out readonly/readnone attributes.
2570 AttrBuilder B;
Bill Wendling3d7b0b82012-12-19 07:18:57 +00002571 B.addAttribute(Attribute::ReadOnly)
2572 .addAttribute(Attribute::ReadNone);
Bill Wendling430fa9b2013-01-23 00:45:55 +00002573 F.removeAttributes(AttributeSet::FunctionIndex,
2574 AttributeSet::get(F.getContext(),
2575 AttributeSet::FunctionIndex, B));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002576
2577 return Visitor.runOnFunction();
2578}