blob: db12fcee3ef759fb99d910749e8394df356e0ceb [file] [log] [blame]
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001//===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
George Burgess IVe1100f52016-02-02 22:46:49 +00002//
Chandler Carruth2946cd72019-01-19 08:50:56 +00003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
George Burgess IVe1100f52016-02-02 22:46:49 +00006//
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00007//===----------------------------------------------------------------------===//
George Burgess IVe1100f52016-02-02 22:46:49 +00008//
9// This file implements the MemorySSA class.
10//
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000011//===----------------------------------------------------------------------===//
12
Daniel Berlin554dcd82017-04-11 20:06:36 +000013#include "llvm/Analysis/MemorySSA.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000014#include "llvm/ADT/DenseMap.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000015#include "llvm/ADT/DenseMapInfo.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000016#include "llvm/ADT/DenseSet.h"
17#include "llvm/ADT/DepthFirstIterator.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000018#include "llvm/ADT/Hashing.h"
19#include "llvm/ADT/None.h"
20#include "llvm/ADT/Optional.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000021#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/SmallPtrSet.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000023#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/iterator.h"
25#include "llvm/ADT/iterator_range.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000026#include "llvm/Analysis/AliasAnalysis.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000027#include "llvm/Analysis/IteratedDominanceFrontier.h"
28#include "llvm/Analysis/MemoryLocation.h"
Nico Weber432a3882018-04-30 14:59:11 +000029#include "llvm/Config/llvm-config.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000030#include "llvm/IR/AssemblyAnnotationWriter.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000031#include "llvm/IR/BasicBlock.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000032#include "llvm/IR/Dominators.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000033#include "llvm/IR/Function.h"
34#include "llvm/IR/Instruction.h"
35#include "llvm/IR/Instructions.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000036#include "llvm/IR/IntrinsicInst.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000037#include "llvm/IR/Intrinsics.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000038#include "llvm/IR/LLVMContext.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000039#include "llvm/IR/PassManager.h"
40#include "llvm/IR/Use.h"
41#include "llvm/Pass.h"
42#include "llvm/Support/AtomicOrdering.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/CommandLine.h"
45#include "llvm/Support/Compiler.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000046#include "llvm/Support/Debug.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000047#include "llvm/Support/ErrorHandling.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000048#include "llvm/Support/FormattedStream.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000049#include "llvm/Support/raw_ostream.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000050#include <algorithm>
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000051#include <cassert>
Alina Sbirlea63e97fa2019-07-31 17:41:04 +000052#include <cstdlib>
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000053#include <iterator>
54#include <memory>
55#include <utility>
56
57using namespace llvm;
George Burgess IVe1100f52016-02-02 22:46:49 +000058
59#define DEBUG_TYPE "memoryssa"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000060
Geoff Berryefb0dd12016-06-14 21:19:40 +000061INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
Geoff Berryb96d3b22016-06-01 21:30:40 +000062 true)
George Burgess IVe1100f52016-02-02 22:46:49 +000063INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
64INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
Geoff Berryefb0dd12016-06-14 21:19:40 +000065INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
66 true)
George Burgess IVe1100f52016-02-02 22:46:49 +000067
Chad Rosier232e29e2016-07-06 21:20:47 +000068INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
69 "Memory SSA Printer", false, false)
70INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
71INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
72 "Memory SSA Printer", false, false)
73
Daniel Berlinc43aa5a2016-08-02 16:24:03 +000074static cl::opt<unsigned> MaxCheckLimit(
75 "memssa-check-limit", cl::Hidden, cl::init(100),
76 cl::desc("The maximum number of stores/phis MemorySSA"
77 "will consider trying to walk past (default = 100)"));
78
Alina Sbirleacc2e8cc2018-08-15 17:34:55 +000079// Always verify MemorySSA if expensive checking is enabled.
80#ifdef EXPENSIVE_CHECKS
81bool llvm::VerifyMemorySSA = true;
82#else
83bool llvm::VerifyMemorySSA = false;
84#endif
Alina Sbirlea4fd1f262019-04-23 20:59:44 +000085/// Enables memory ssa as a dependency for loop passes in legacy pass manager.
86cl::opt<bool> llvm::EnableMSSALoopDependency(
Alina Sbirlea6da79ce2019-09-04 19:16:04 +000087 "enable-mssa-loop-dependency", cl::Hidden, cl::init(true),
Alina Sbirlea4fd1f262019-04-23 20:59:44 +000088 cl::desc("Enable MemorySSA dependency for loop pass manager"));
89
Alina Sbirleacc2e8cc2018-08-15 17:34:55 +000090static cl::opt<bool, true>
91 VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA),
92 cl::Hidden, cl::desc("Enable verification of MemorySSA."));
Chad Rosier232e29e2016-07-06 21:20:47 +000093
George Burgess IVe1100f52016-02-02 22:46:49 +000094namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000095
Adrian Prantl5f8f34e42018-05-01 15:54:18 +000096/// An assembly annotator class to print Memory SSA information in
George Burgess IVe1100f52016-02-02 22:46:49 +000097/// comments.
98class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
99 friend class MemorySSA;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000100
George Burgess IVe1100f52016-02-02 22:46:49 +0000101 const MemorySSA *MSSA;
102
103public:
104 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
105
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000106 void emitBasicBlockStartAnnot(const BasicBlock *BB,
107 formatted_raw_ostream &OS) override {
George Burgess IVe1100f52016-02-02 22:46:49 +0000108 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
109 OS << "; " << *MA << "\n";
110 }
111
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000112 void emitInstructionAnnot(const Instruction *I,
113 formatted_raw_ostream &OS) override {
George Burgess IVe1100f52016-02-02 22:46:49 +0000114 if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
115 OS << "; " << *MA << "\n";
116 }
117};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000118
119} // end namespace llvm
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000120
George Burgess IV5f308972016-07-19 01:29:15 +0000121namespace {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000122
Daniel Berlindff31de2016-08-02 21:57:52 +0000123/// Our current alias analysis API differentiates heavily between calls and
124/// non-calls, and functions called on one usually assert on the other.
125/// This class encapsulates the distinction to simplify other code that wants
126/// "Memory affecting instructions and related data" to use as a key.
127/// For example, this class is used as a densemap key in the use optimizer.
128class MemoryLocOrCall {
129public:
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000130 bool IsCall = false;
131
Daniel Berlindff31de2016-08-02 21:57:52 +0000132 MemoryLocOrCall(MemoryUseOrDef *MUD)
133 : MemoryLocOrCall(MUD->getMemoryInst()) {}
Sebastian Pop5068d7a2016-10-13 03:23:33 +0000134 MemoryLocOrCall(const MemoryUseOrDef *MUD)
135 : MemoryLocOrCall(MUD->getMemoryInst()) {}
Daniel Berlindff31de2016-08-02 21:57:52 +0000136
137 MemoryLocOrCall(Instruction *Inst) {
Chandler Carruth363ac682019-01-07 05:42:51 +0000138 if (auto *C = dyn_cast<CallBase>(Inst)) {
Daniel Berlindff31de2016-08-02 21:57:52 +0000139 IsCall = true;
Chandler Carruth363ac682019-01-07 05:42:51 +0000140 Call = C;
Daniel Berlindff31de2016-08-02 21:57:52 +0000141 } else {
142 IsCall = false;
143 // There is no such thing as a memorylocation for a fence inst, and it is
144 // unique in that regard.
145 if (!isa<FenceInst>(Inst))
146 Loc = MemoryLocation::get(Inst);
147 }
148 }
149
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000150 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
Daniel Berlindff31de2016-08-02 21:57:52 +0000151
Chandler Carruth363ac682019-01-07 05:42:51 +0000152 const CallBase *getCall() const {
Daniel Berlindff31de2016-08-02 21:57:52 +0000153 assert(IsCall);
Chandler Carruth363ac682019-01-07 05:42:51 +0000154 return Call;
Daniel Berlindff31de2016-08-02 21:57:52 +0000155 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000156
Daniel Berlindff31de2016-08-02 21:57:52 +0000157 MemoryLocation getLoc() const {
158 assert(!IsCall);
159 return Loc;
160 }
161
162 bool operator==(const MemoryLocOrCall &Other) const {
163 if (IsCall != Other.IsCall)
164 return false;
165
George Burgess IV3588fd42018-03-29 00:54:39 +0000166 if (!IsCall)
167 return Loc == Other.Loc;
168
Chandler Carruth363ac682019-01-07 05:42:51 +0000169 if (Call->getCalledValue() != Other.Call->getCalledValue())
George Burgess IV3588fd42018-03-29 00:54:39 +0000170 return false;
171
Chandler Carruth363ac682019-01-07 05:42:51 +0000172 return Call->arg_size() == Other.Call->arg_size() &&
173 std::equal(Call->arg_begin(), Call->arg_end(),
174 Other.Call->arg_begin());
Daniel Berlindff31de2016-08-02 21:57:52 +0000175 }
176
177private:
Daniel Berlinf5361132016-10-22 04:15:41 +0000178 union {
Chandler Carruth363ac682019-01-07 05:42:51 +0000179 const CallBase *Call;
Daniel Berlind602e042017-01-25 20:56:19 +0000180 MemoryLocation Loc;
Daniel Berlinf5361132016-10-22 04:15:41 +0000181 };
Daniel Berlindff31de2016-08-02 21:57:52 +0000182};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000183
184} // end anonymous namespace
Daniel Berlindff31de2016-08-02 21:57:52 +0000185
186namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000187
Daniel Berlindff31de2016-08-02 21:57:52 +0000188template <> struct DenseMapInfo<MemoryLocOrCall> {
189 static inline MemoryLocOrCall getEmptyKey() {
190 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
191 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000192
Daniel Berlindff31de2016-08-02 21:57:52 +0000193 static inline MemoryLocOrCall getTombstoneKey() {
194 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
195 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000196
Daniel Berlindff31de2016-08-02 21:57:52 +0000197 static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
George Burgess IV3588fd42018-03-29 00:54:39 +0000198 if (!MLOC.IsCall)
199 return hash_combine(
200 MLOC.IsCall,
201 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
202
203 hash_code hash =
204 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
Chandler Carruth363ac682019-01-07 05:42:51 +0000205 MLOC.getCall()->getCalledValue()));
George Burgess IV3588fd42018-03-29 00:54:39 +0000206
Chandler Carruth363ac682019-01-07 05:42:51 +0000207 for (const Value *Arg : MLOC.getCall()->args())
George Burgess IV3588fd42018-03-29 00:54:39 +0000208 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
209 return hash;
Daniel Berlindff31de2016-08-02 21:57:52 +0000210 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000211
Daniel Berlindff31de2016-08-02 21:57:52 +0000212 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
213 return LHS == RHS;
214 }
215};
Daniel Berlindf101192016-08-03 00:01:46 +0000216
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000217} // end namespace llvm
218
George Burgess IV82e355c2016-08-03 19:39:54 +0000219/// This does one-way checks to see if Use could theoretically be hoisted above
220/// MayClobber. This will not check the other way around.
221///
222/// This assumes that, for the purposes of MemorySSA, Use comes directly after
223/// MayClobber, with no potentially clobbering operations in between them.
224/// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
Alina Sbirleaca741a82017-12-22 19:54:03 +0000225static bool areLoadsReorderable(const LoadInst *Use,
226 const LoadInst *MayClobber) {
George Burgess IV82e355c2016-08-03 19:39:54 +0000227 bool VolatileUse = Use->isVolatile();
228 bool VolatileClobber = MayClobber->isVolatile();
229 // Volatile operations may never be reordered with other volatile operations.
230 if (VolatileUse && VolatileClobber)
Alina Sbirleaca741a82017-12-22 19:54:03 +0000231 return false;
232 // Otherwise, volatile doesn't matter here. From the language reference:
233 // 'optimizers may change the order of volatile operations relative to
234 // non-volatile operations.'"
George Burgess IV82e355c2016-08-03 19:39:54 +0000235
236 // If a load is seq_cst, it cannot be moved above other loads. If its ordering
237 // is weaker, it can be moved above other loads. We just need to be sure that
238 // MayClobber isn't an acquire load, because loads can't be moved above
239 // acquire loads.
240 //
241 // Note that this explicitly *does* allow the free reordering of monotonic (or
242 // weaker) loads of the same address.
243 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
244 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
245 AtomicOrdering::Acquire);
Alina Sbirleaca741a82017-12-22 19:54:03 +0000246 return !(SeqCstUse || MayClobberIsAcquire);
George Burgess IV82e355c2016-08-03 19:39:54 +0000247}
248
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000249namespace {
250
251struct ClobberAlias {
252 bool IsClobber;
253 Optional<AliasResult> AR;
254};
255
256} // end anonymous namespace
257
258// Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
259// ignored if IsClobber = false.
Alina Sbirleabfc779e2019-03-22 17:22:19 +0000260template <typename AliasAnalysisType>
261static ClobberAlias
262instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc,
263 const Instruction *UseInst, AliasAnalysisType &AA) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +0000264 Instruction *DefInst = MD->getMemoryInst();
265 assert(DefInst && "Defining instruction not actually an instruction");
Chandler Carruth363ac682019-01-07 05:42:51 +0000266 const auto *UseCall = dyn_cast<CallBase>(UseInst);
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000267 Optional<AliasResult> AR;
George Burgess IV5f308972016-07-19 01:29:15 +0000268
Daniel Berlindf101192016-08-03 00:01:46 +0000269 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
270 // These intrinsics will show up as affecting memory, but they are just
George Burgess IVff08c802018-08-10 05:14:43 +0000271 // markers, mostly.
272 //
273 // FIXME: We probably don't actually want MemorySSA to model these at all
274 // (including creating MemoryAccesses for them): we just end up inventing
275 // clobbers where they don't really exist at all. Please see D43269 for
276 // context.
Daniel Berlindf101192016-08-03 00:01:46 +0000277 switch (II->getIntrinsicID()) {
278 case Intrinsic::lifetime_start:
Chandler Carruth363ac682019-01-07 05:42:51 +0000279 if (UseCall)
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000280 return {false, NoAlias};
281 AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc);
George Burgess IVff08c802018-08-10 05:14:43 +0000282 return {AR != NoAlias, AR};
Daniel Berlindf101192016-08-03 00:01:46 +0000283 case Intrinsic::lifetime_end:
284 case Intrinsic::invariant_start:
285 case Intrinsic::invariant_end:
286 case Intrinsic::assume:
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000287 return {false, NoAlias};
Alina Sbirleaf7b40222019-09-10 22:35:27 +0000288 case Intrinsic::dbg_addr:
289 case Intrinsic::dbg_declare:
290 case Intrinsic::dbg_label:
291 case Intrinsic::dbg_value:
292 llvm_unreachable("debuginfo shouldn't have associated defs!");
Daniel Berlindf101192016-08-03 00:01:46 +0000293 default:
294 break;
295 }
296 }
297
Chandler Carruth363ac682019-01-07 05:42:51 +0000298 if (UseCall) {
299 ModRefInfo I = AA.getModRefInfo(DefInst, UseCall);
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000300 AR = isMustSet(I) ? MustAlias : MayAlias;
301 return {isModOrRefSet(I), AR};
Hans Wennborg70e22d12017-11-21 18:00:01 +0000302 }
George Burgess IV82e355c2016-08-03 19:39:54 +0000303
Alina Sbirleaca741a82017-12-22 19:54:03 +0000304 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
305 if (auto *UseLoad = dyn_cast<LoadInst>(UseInst))
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000306 return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias};
George Burgess IV82e355c2016-08-03 19:39:54 +0000307
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000308 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
309 AR = isMustSet(I) ? MustAlias : MayAlias;
310 return {isModSet(I), AR};
Daniel Berlindff31de2016-08-02 21:57:52 +0000311}
312
Alina Sbirleabfc779e2019-03-22 17:22:19 +0000313template <typename AliasAnalysisType>
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000314static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
315 const MemoryUseOrDef *MU,
316 const MemoryLocOrCall &UseMLOC,
Alina Sbirleabfc779e2019-03-22 17:22:19 +0000317 AliasAnalysisType &AA) {
Sebastian Pop5068d7a2016-10-13 03:23:33 +0000318 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
319 // to exist while MemoryLocOrCall is pushed through places.
320 if (UseMLOC.IsCall)
321 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
322 AA);
323 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
324 AA);
325}
326
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000327// Return true when MD may alias MU, return false otherwise.
Daniel Berlindcb004f2017-03-02 23:06:46 +0000328bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
329 AliasAnalysis &AA) {
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000330 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000331}
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000332
333namespace {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000334
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000335struct UpwardsMemoryQuery {
336 // True if our original query started off as a call
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000337 bool IsCall = false;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000338 // The pointer location we started the query with. This will be empty if
339 // IsCall is true.
340 MemoryLocation StartingLoc;
341 // This is the instruction we were querying about.
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000342 const Instruction *Inst = nullptr;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000343 // The MemoryAccess we actually got called with, used to test local domination
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000344 const MemoryAccess *OriginalAccess = nullptr;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000345 Optional<AliasResult> AR = MayAlias;
Alina Sbirleaf7230202019-01-07 18:40:27 +0000346 bool SkipSelfAccess = false;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000347
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000348 UpwardsMemoryQuery() = default;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000349
350 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
Chandler Carruth363ac682019-01-07 05:42:51 +0000351 : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) {
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000352 if (!IsCall)
353 StartingLoc = MemoryLocation::get(Inst);
354 }
355};
356
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000357} // end anonymous namespace
358
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000359static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
Alina Sbirleabfc779e2019-03-22 17:22:19 +0000360 BatchAAResults &AA) {
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000361 Instruction *Inst = MD->getMemoryInst();
362 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
363 switch (II->getIntrinsicID()) {
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000364 case Intrinsic::lifetime_end:
Alina Sbirleabfc779e2019-03-22 17:22:19 +0000365 return AA.alias(MemoryLocation(II->getArgOperand(1)), Loc) == MustAlias;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000366 default:
367 return false;
368 }
369 }
370 return false;
371}
372
Alina Sbirleabfc779e2019-03-22 17:22:19 +0000373template <typename AliasAnalysisType>
374static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA,
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000375 const Instruction *I) {
376 // If the memory can't be changed, then loads of the memory can't be
377 // clobbered.
Philip Reames42282452019-09-04 18:27:31 +0000378 return isa<LoadInst>(I) && (I->hasMetadata(LLVMContext::MD_invariant_load) ||
Alina Sbirleabfc779e2019-03-22 17:22:19 +0000379 AA.pointsToConstantMemory(MemoryLocation(
380 cast<LoadInst>(I)->getPointerOperand())));
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000381}
382
George Burgess IV5f308972016-07-19 01:29:15 +0000383/// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
384/// inbetween `Start` and `ClobberAt` can clobbers `Start`.
385///
386/// This is meant to be as simple and self-contained as possible. Because it
387/// uses no cache, etc., it can be relatively expensive.
388///
389/// \param Start The MemoryAccess that we want to walk from.
390/// \param ClobberAt A clobber for Start.
391/// \param StartLoc The MemoryLocation for Start.
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000392/// \param MSSA The MemorySSA instance that Start and ClobberAt belong to.
George Burgess IV5f308972016-07-19 01:29:15 +0000393/// \param Query The UpwardsMemoryQuery we used for our search.
394/// \param AA The AliasAnalysis we used for our search.
Alina Sbirlea65f385d2018-09-07 23:51:41 +0000395/// \param AllowImpreciseClobber Always false, unless we do relaxed verify.
Alina Sbirleabfc779e2019-03-22 17:22:19 +0000396
397template <typename AliasAnalysisType>
Alina Sbirlead77edc02019-02-11 19:51:21 +0000398LLVM_ATTRIBUTE_UNUSED static void
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000399checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt,
George Burgess IV5f308972016-07-19 01:29:15 +0000400 const MemoryLocation &StartLoc, const MemorySSA &MSSA,
Alina Sbirleabfc779e2019-03-22 17:22:19 +0000401 const UpwardsMemoryQuery &Query, AliasAnalysisType &AA,
Alina Sbirlea65f385d2018-09-07 23:51:41 +0000402 bool AllowImpreciseClobber = false) {
George Burgess IV5f308972016-07-19 01:29:15 +0000403 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
404
405 if (MSSA.isLiveOnEntryDef(Start)) {
406 assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
407 "liveOnEntry must clobber itself");
408 return;
409 }
410
George Burgess IV5f308972016-07-19 01:29:15 +0000411 bool FoundClobber = false;
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000412 DenseSet<ConstMemoryAccessPair> VisitedPhis;
413 SmallVector<ConstMemoryAccessPair, 8> Worklist;
George Burgess IV5f308972016-07-19 01:29:15 +0000414 Worklist.emplace_back(Start, StartLoc);
415 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
416 // is found, complain.
417 while (!Worklist.empty()) {
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000418 auto MAP = Worklist.pop_back_val();
George Burgess IV5f308972016-07-19 01:29:15 +0000419 // All we care about is that nothing from Start to ClobberAt clobbers Start.
420 // We learn nothing from revisiting nodes.
421 if (!VisitedPhis.insert(MAP).second)
422 continue;
423
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000424 for (const auto *MA : def_chain(MAP.first)) {
George Burgess IV5f308972016-07-19 01:29:15 +0000425 if (MA == ClobberAt) {
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000426 if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
George Burgess IV5f308972016-07-19 01:29:15 +0000427 // instructionClobbersQuery isn't essentially free, so don't use `|=`,
428 // since it won't let us short-circuit.
429 //
430 // Also, note that this can't be hoisted out of the `Worklist` loop,
431 // since MD may only act as a clobber for 1 of N MemoryLocations.
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000432 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
433 if (!FoundClobber) {
434 ClobberAlias CA =
435 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
436 if (CA.IsClobber) {
437 FoundClobber = true;
438 // Not used: CA.AR;
439 }
440 }
George Burgess IV5f308972016-07-19 01:29:15 +0000441 }
442 break;
443 }
444
445 // We should never hit liveOnEntry, unless it's the clobber.
446 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
447
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000448 if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
Alina Sbirlea5bce4d52018-08-29 22:38:51 +0000449 // If Start is a Def, skip self.
450 if (MD == Start)
451 continue;
452
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000453 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)
454 .IsClobber &&
George Burgess IV5f308972016-07-19 01:29:15 +0000455 "Found clobber before reaching ClobberAt!");
456 continue;
457 }
458
Alina Sbirlea5bce4d52018-08-29 22:38:51 +0000459 if (const auto *MU = dyn_cast<MemoryUse>(MA)) {
Alina Sbirlea6edcc9e2018-08-29 23:20:29 +0000460 (void)MU;
Alina Sbirlea5bce4d52018-08-29 22:38:51 +0000461 assert (MU == Start &&
462 "Can only find use in def chain if Start is a use");
463 continue;
464 }
465
George Burgess IV5f308972016-07-19 01:29:15 +0000466 assert(isa<MemoryPhi>(MA));
Alina Sbirleaf5403d82018-08-29 18:26:04 +0000467 Worklist.append(
468 upward_defs_begin({const_cast<MemoryAccess *>(MA), MAP.second}),
469 upward_defs_end());
George Burgess IV5f308972016-07-19 01:29:15 +0000470 }
471 }
472
Alina Sbirlea65f385d2018-09-07 23:51:41 +0000473 // If the verify is done following an optimization, it's possible that
474 // ClobberAt was a conservative clobbering, that we can now infer is not a
475 // true clobbering access. Don't fail the verify if that's the case.
476 // We do have accesses that claim they're optimized, but could be optimized
477 // further. Updating all these can be expensive, so allow it for now (FIXME).
478 if (AllowImpreciseClobber)
479 return;
480
George Burgess IV5f308972016-07-19 01:29:15 +0000481 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
482 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
483 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
484 "ClobberAt never acted as a clobber");
485}
486
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000487namespace {
488
George Burgess IV5f308972016-07-19 01:29:15 +0000489/// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
490/// in one class.
Alina Sbirleabfc779e2019-03-22 17:22:19 +0000491template <class AliasAnalysisType> class ClobberWalker {
George Burgess IV5f308972016-07-19 01:29:15 +0000492 /// Save a few bytes by using unsigned instead of size_t.
493 using ListIndex = unsigned;
494
495 /// Represents a span of contiguous MemoryDefs, potentially ending in a
496 /// MemoryPhi.
497 struct DefPath {
498 MemoryLocation Loc;
499 // Note that, because we always walk in reverse, Last will always dominate
500 // First. Also note that First and Last are inclusive.
501 MemoryAccess *First;
502 MemoryAccess *Last;
George Burgess IV5f308972016-07-19 01:29:15 +0000503 Optional<ListIndex> Previous;
504
505 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
506 Optional<ListIndex> Previous)
507 : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
508
509 DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
510 Optional<ListIndex> Previous)
511 : DefPath(Loc, Init, Init, Previous) {}
512 };
513
514 const MemorySSA &MSSA;
Alina Sbirleabfc779e2019-03-22 17:22:19 +0000515 AliasAnalysisType &AA;
George Burgess IV5f308972016-07-19 01:29:15 +0000516 DominatorTree &DT;
George Burgess IV5f308972016-07-19 01:29:15 +0000517 UpwardsMemoryQuery *Query;
Alina Sbirleaf085cc52019-03-29 21:56:09 +0000518 unsigned *UpwardWalkLimit;
George Burgess IV5f308972016-07-19 01:29:15 +0000519
520 // Phi optimization bookkeeping
521 SmallVector<DefPath, 32> Paths;
522 DenseSet<ConstMemoryAccessPair> VisitedPhis;
George Burgess IV5f308972016-07-19 01:29:15 +0000523
George Burgess IV5f308972016-07-19 01:29:15 +0000524 /// Find the nearest def or phi that `From` can legally be optimized to.
Daniel Berlind0420312017-04-01 09:01:12 +0000525 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
George Burgess IV5f308972016-07-19 01:29:15 +0000526 assert(From->getNumOperands() && "Phi with no operands?");
527
528 BasicBlock *BB = From->getBlock();
George Burgess IV5f308972016-07-19 01:29:15 +0000529 MemoryAccess *Result = MSSA.getLiveOnEntryDef();
530 DomTreeNode *Node = DT.getNode(BB);
531 while ((Node = Node->getIDom())) {
Daniel Berlin7500c562017-04-01 08:59:45 +0000532 auto *Defs = MSSA.getBlockDefs(Node->getBlock());
533 if (Defs)
Daniel Berlind0420312017-04-01 09:01:12 +0000534 return &*Defs->rbegin();
George Burgess IV5f308972016-07-19 01:29:15 +0000535 }
George Burgess IV5f308972016-07-19 01:29:15 +0000536 return Result;
537 }
538
539 /// Result of calling walkToPhiOrClobber.
540 struct UpwardsWalkResult {
541 /// The "Result" of the walk. Either a clobber, the last thing we walked, or
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000542 /// both. Include alias info when clobber found.
George Burgess IV5f308972016-07-19 01:29:15 +0000543 MemoryAccess *Result;
544 bool IsKnownClobber;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000545 Optional<AliasResult> AR;
George Burgess IV5f308972016-07-19 01:29:15 +0000546 };
547
548 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
549 /// This will update Desc.Last as it walks. It will (optionally) also stop at
550 /// StopAt.
551 ///
552 /// This does not test for whether StopAt is a clobber
Daniel Berlind0420312017-04-01 09:01:12 +0000553 UpwardsWalkResult
Alina Sbirleaf7230202019-01-07 18:40:27 +0000554 walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr,
555 const MemoryAccess *SkipStopAt = nullptr) const {
George Burgess IV5f308972016-07-19 01:29:15 +0000556 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
Alina Sbirleac8d6e042019-03-29 22:55:59 +0000557 assert(UpwardWalkLimit && "Need a valid walk limit");
Alina Sbirlea57769382019-04-12 18:48:46 +0000558 bool LimitAlreadyReached = false;
559 // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set
560 // it to 1. This will not do any alias() calls. It either returns in the
561 // first iteration in the loop below, or is set back to 0 if all def chains
562 // are free of MemoryDefs.
563 if (!*UpwardWalkLimit) {
564 *UpwardWalkLimit = 1;
565 LimitAlreadyReached = true;
566 }
George Burgess IV5f308972016-07-19 01:29:15 +0000567
568 for (MemoryAccess *Current : def_chain(Desc.Last)) {
569 Desc.Last = Current;
Alina Sbirleaf7230202019-01-07 18:40:27 +0000570 if (Current == StopAt || Current == SkipStopAt)
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000571 return {Current, false, MayAlias};
George Burgess IV5f308972016-07-19 01:29:15 +0000572
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000573 if (auto *MD = dyn_cast<MemoryDef>(Current)) {
574 if (MSSA.isLiveOnEntryDef(MD))
575 return {MD, true, MustAlias};
Alina Sbirleaf085cc52019-03-29 21:56:09 +0000576
577 if (!--*UpwardWalkLimit)
578 return {Current, true, MayAlias};
579
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000580 ClobberAlias CA =
581 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA);
582 if (CA.IsClobber)
583 return {MD, true, CA.AR};
584 }
George Burgess IV5f308972016-07-19 01:29:15 +0000585 }
586
Alina Sbirlea57769382019-04-12 18:48:46 +0000587 if (LimitAlreadyReached)
588 *UpwardWalkLimit = 0;
589
George Burgess IV5f308972016-07-19 01:29:15 +0000590 assert(isa<MemoryPhi>(Desc.Last) &&
591 "Ended at a non-clobber that's not a phi?");
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000592 return {Desc.Last, false, MayAlias};
George Burgess IV5f308972016-07-19 01:29:15 +0000593 }
594
595 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
596 ListIndex PriorNode) {
597 auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}),
598 upward_defs_end());
599 for (const MemoryAccessPair &P : UpwardDefs) {
600 PausedSearches.push_back(Paths.size());
601 Paths.emplace_back(P.second, P.first, PriorNode);
602 }
603 }
604
605 /// Represents a search that terminated after finding a clobber. This clobber
606 /// may or may not be present in the path of defs from LastNode..SearchStart,
607 /// since it may have been retrieved from cache.
608 struct TerminatedPath {
609 MemoryAccess *Clobber;
610 ListIndex LastNode;
611 };
612
613 /// Get an access that keeps us from optimizing to the given phi.
614 ///
615 /// PausedSearches is an array of indices into the Paths array. Its incoming
616 /// value is the indices of searches that stopped at the last phi optimization
617 /// target. It's left in an unspecified state.
618 ///
619 /// If this returns None, NewPaused is a vector of searches that terminated
620 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
George Burgess IV14633b52016-08-03 01:22:19 +0000621 Optional<TerminatedPath>
Daniel Berlind0420312017-04-01 09:01:12 +0000622 getBlockingAccess(const MemoryAccess *StopWhere,
George Burgess IV5f308972016-07-19 01:29:15 +0000623 SmallVectorImpl<ListIndex> &PausedSearches,
624 SmallVectorImpl<ListIndex> &NewPaused,
625 SmallVectorImpl<TerminatedPath> &Terminated) {
626 assert(!PausedSearches.empty() && "No searches to continue?");
627
628 // BFS vs DFS really doesn't make a difference here, so just do a DFS with
629 // PausedSearches as our stack.
630 while (!PausedSearches.empty()) {
631 ListIndex PathIndex = PausedSearches.pop_back_val();
632 DefPath &Node = Paths[PathIndex];
633
634 // If we've already visited this path with this MemoryLocation, we don't
635 // need to do so again.
636 //
637 // NOTE: That we just drop these paths on the ground makes caching
638 // behavior sporadic. e.g. given a diamond:
639 // A
640 // B C
641 // D
642 //
643 // ...If we walk D, B, A, C, we'll only cache the result of phi
644 // optimization for A, B, and D; C will be skipped because it dies here.
645 // This arguably isn't the worst thing ever, since:
646 // - We generally query things in a top-down order, so if we got below D
647 // without needing cache entries for {C, MemLoc}, then chances are
648 // that those cache entries would end up ultimately unused.
649 // - We still cache things for A, so C only needs to walk up a bit.
650 // If this behavior becomes problematic, we can fix without a ton of extra
651 // work.
652 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
653 continue;
654
Alina Sbirleaf7230202019-01-07 18:40:27 +0000655 const MemoryAccess *SkipStopWhere = nullptr;
656 if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) {
657 assert(isa<MemoryDef>(Query->OriginalAccess));
658 SkipStopWhere = Query->OriginalAccess;
659 }
660
Alina Sbirleaf085cc52019-03-29 21:56:09 +0000661 UpwardsWalkResult Res = walkToPhiOrClobber(Node,
662 /*StopAt=*/StopWhere,
Alina Sbirleaf7230202019-01-07 18:40:27 +0000663 /*SkipStopAt=*/SkipStopWhere);
George Burgess IV5f308972016-07-19 01:29:15 +0000664 if (Res.IsKnownClobber) {
Alina Sbirleaf7230202019-01-07 18:40:27 +0000665 assert(Res.Result != StopWhere && Res.Result != SkipStopWhere);
Alina Sbirleaf085cc52019-03-29 21:56:09 +0000666
George Burgess IV5f308972016-07-19 01:29:15 +0000667 // If this wasn't a cache hit, we hit a clobber when walking. That's a
668 // failure.
George Burgess IV14633b52016-08-03 01:22:19 +0000669 TerminatedPath Term{Res.Result, PathIndex};
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000670 if (!MSSA.dominates(Res.Result, StopWhere))
George Burgess IV14633b52016-08-03 01:22:19 +0000671 return Term;
George Burgess IV5f308972016-07-19 01:29:15 +0000672
673 // Otherwise, it's a valid thing to potentially optimize to.
George Burgess IV14633b52016-08-03 01:22:19 +0000674 Terminated.push_back(Term);
George Burgess IV5f308972016-07-19 01:29:15 +0000675 continue;
676 }
677
Alina Sbirleaf7230202019-01-07 18:40:27 +0000678 if (Res.Result == StopWhere || Res.Result == SkipStopWhere) {
George Burgess IV5f308972016-07-19 01:29:15 +0000679 // We've hit our target. Save this path off for if we want to continue
Alina Sbirleaf7230202019-01-07 18:40:27 +0000680 // walking. If we are in the mode of skipping the OriginalAccess, and
681 // we've reached back to the OriginalAccess, do not save path, we've
682 // just looped back to self.
683 if (Res.Result != SkipStopWhere)
684 NewPaused.push_back(PathIndex);
George Burgess IV5f308972016-07-19 01:29:15 +0000685 continue;
686 }
687
688 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
689 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
690 }
691
692 return None;
693 }
694
695 template <typename T, typename Walker>
696 struct generic_def_path_iterator
697 : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
698 std::forward_iterator_tag, T *> {
Hans Wennborg5519cb22019-03-25 09:27:42 +0000699 generic_def_path_iterator() {}
George Burgess IV5f308972016-07-19 01:29:15 +0000700 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
701
702 T &operator*() const { return curNode(); }
703
704 generic_def_path_iterator &operator++() {
705 N = curNode().Previous;
706 return *this;
707 }
708
709 bool operator==(const generic_def_path_iterator &O) const {
710 if (N.hasValue() != O.N.hasValue())
711 return false;
712 return !N.hasValue() || *N == *O.N;
713 }
714
715 private:
716 T &curNode() const { return W->Paths[*N]; }
717
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000718 Walker *W = nullptr;
719 Optional<ListIndex> N = None;
George Burgess IV5f308972016-07-19 01:29:15 +0000720 };
721
722 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
723 using const_def_path_iterator =
724 generic_def_path_iterator<const DefPath, const ClobberWalker>;
725
726 iterator_range<def_path_iterator> def_path(ListIndex From) {
727 return make_range(def_path_iterator(this, From), def_path_iterator());
728 }
729
730 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
731 return make_range(const_def_path_iterator(this, From),
732 const_def_path_iterator());
733 }
734
735 struct OptznResult {
736 /// The path that contains our result.
737 TerminatedPath PrimaryClobber;
738 /// The paths that we can legally cache back from, but that aren't
739 /// necessarily the result of the Phi optimization.
740 SmallVector<TerminatedPath, 4> OtherClobbers;
741 };
742
743 ListIndex defPathIndex(const DefPath &N) const {
744 // The assert looks nicer if we don't need to do &N
745 const DefPath *NP = &N;
746 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
747 "Out of bounds DefPath!");
748 return NP - &Paths.front();
749 }
750
751 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
752 /// that act as legal clobbers. Note that this won't return *all* clobbers.
753 ///
754 /// Phi optimization algorithm tl;dr:
755 /// - Find the earliest def/phi, A, we can optimize to
756 /// - Find if all paths from the starting memory access ultimately reach A
757 /// - If not, optimization isn't possible.
758 /// - Otherwise, walk from A to another clobber or phi, A'.
759 /// - If A' is a def, we're done.
760 /// - If A' is a phi, try to optimize it.
761 ///
762 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
763 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
764 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
765 const MemoryLocation &Loc) {
766 assert(Paths.empty() && VisitedPhis.empty() &&
767 "Reset the optimization state.");
768
769 Paths.emplace_back(Loc, Start, Phi, None);
770 // Stores how many "valid" optimization nodes we had prior to calling
771 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
772 auto PriorPathsSize = Paths.size();
773
774 SmallVector<ListIndex, 16> PausedSearches;
775 SmallVector<ListIndex, 8> NewPaused;
776 SmallVector<TerminatedPath, 4> TerminatedPaths;
777
778 addSearches(Phi, PausedSearches, 0);
779
780 // Moves the TerminatedPath with the "most dominated" Clobber to the end of
781 // Paths.
782 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
783 assert(!Paths.empty() && "Need a path to move");
George Burgess IV5f308972016-07-19 01:29:15 +0000784 auto Dom = Paths.begin();
785 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
786 if (!MSSA.dominates(I->Clobber, Dom->Clobber))
787 Dom = I;
788 auto Last = Paths.end() - 1;
789 if (Last != Dom)
790 std::iter_swap(Last, Dom);
791 };
792
793 MemoryPhi *Current = Phi;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000794 while (true) {
George Burgess IV5f308972016-07-19 01:29:15 +0000795 assert(!MSSA.isLiveOnEntryDef(Current) &&
796 "liveOnEntry wasn't treated as a clobber?");
797
Daniel Berlind0420312017-04-01 09:01:12 +0000798 const auto *Target = getWalkTarget(Current);
George Burgess IV5f308972016-07-19 01:29:15 +0000799 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
800 // optimization for the prior phi.
801 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
802 return MSSA.dominates(P.Clobber, Target);
803 }));
804
805 // FIXME: This is broken, because the Blocker may be reported to be
806 // liveOnEntry, and we'll happily wait for that to disappear (read: never)
George Burgess IV7f414b92016-08-22 23:40:01 +0000807 // For the moment, this is fine, since we do nothing with blocker info.
George Burgess IV14633b52016-08-03 01:22:19 +0000808 if (Optional<TerminatedPath> Blocker = getBlockingAccess(
George Burgess IV5f308972016-07-19 01:29:15 +0000809 Target, PausedSearches, NewPaused, TerminatedPaths)) {
George Burgess IV5f308972016-07-19 01:29:15 +0000810
811 // Find the node we started at. We can't search based on N->Last, since
812 // we may have gone around a loop with a different MemoryLocation.
George Burgess IV14633b52016-08-03 01:22:19 +0000813 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
George Burgess IV5f308972016-07-19 01:29:15 +0000814 return defPathIndex(N) < PriorPathsSize;
815 });
816 assert(Iter != def_path_iterator());
817
818 DefPath &CurNode = *Iter;
819 assert(CurNode.Last == Current);
George Burgess IV5f308972016-07-19 01:29:15 +0000820
821 // Two things:
822 // A. We can't reliably cache all of NewPaused back. Consider a case
823 // where we have two paths in NewPaused; one of which can't optimize
824 // above this phi, whereas the other can. If we cache the second path
825 // back, we'll end up with suboptimal cache entries. We can handle
826 // cases like this a bit better when we either try to find all
827 // clobbers that block phi optimization, or when our cache starts
828 // supporting unfinished searches.
829 // B. We can't reliably cache TerminatedPaths back here without doing
830 // extra checks; consider a case like:
831 // T
832 // / \
833 // D C
834 // \ /
835 // S
836 // Where T is our target, C is a node with a clobber on it, D is a
837 // diamond (with a clobber *only* on the left or right node, N), and
838 // S is our start. Say we walk to D, through the node opposite N
839 // (read: ignoring the clobber), and see a cache entry in the top
840 // node of D. That cache entry gets put into TerminatedPaths. We then
841 // walk up to C (N is later in our worklist), find the clobber, and
842 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache
843 // the bottom part of D to the cached clobber, ignoring the clobber
844 // in N. Again, this problem goes away if we start tracking all
845 // blockers for a given phi optimization.
846 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
847 return {Result, {}};
848 }
849
850 // If there's nothing left to search, then all paths led to valid clobbers
851 // that we got from our cache; pick the nearest to the start, and allow
852 // the rest to be cached back.
853 if (NewPaused.empty()) {
854 MoveDominatedPathToEnd(TerminatedPaths);
855 TerminatedPath Result = TerminatedPaths.pop_back_val();
856 return {Result, std::move(TerminatedPaths)};
857 }
858
859 MemoryAccess *DefChainEnd = nullptr;
860 SmallVector<TerminatedPath, 4> Clobbers;
861 for (ListIndex Paused : NewPaused) {
862 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
863 if (WR.IsKnownClobber)
864 Clobbers.push_back({WR.Result, Paused});
865 else
866 // Micro-opt: If we hit the end of the chain, save it.
867 DefChainEnd = WR.Result;
868 }
869
870 if (!TerminatedPaths.empty()) {
871 // If we couldn't find the dominating phi/liveOnEntry in the above loop,
872 // do it now.
873 if (!DefChainEnd)
Daniel Berlind0420312017-04-01 09:01:12 +0000874 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
George Burgess IV5f308972016-07-19 01:29:15 +0000875 DefChainEnd = MA;
876
877 // If any of the terminated paths don't dominate the phi we'll try to
878 // optimize, we need to figure out what they are and quit.
879 const BasicBlock *ChainBB = DefChainEnd->getBlock();
880 for (const TerminatedPath &TP : TerminatedPaths) {
881 // Because we know that DefChainEnd is as "high" as we can go, we
882 // don't need local dominance checks; BB dominance is sufficient.
883 if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
884 Clobbers.push_back(TP);
885 }
886 }
887
888 // If we have clobbers in the def chain, find the one closest to Current
889 // and quit.
890 if (!Clobbers.empty()) {
891 MoveDominatedPathToEnd(Clobbers);
892 TerminatedPath Result = Clobbers.pop_back_val();
893 return {Result, std::move(Clobbers)};
894 }
895
896 assert(all_of(NewPaused,
897 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
898
899 // Because liveOnEntry is a clobber, this must be a phi.
900 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
901
902 PriorPathsSize = Paths.size();
903 PausedSearches.clear();
904 for (ListIndex I : NewPaused)
905 addSearches(DefChainPhi, PausedSearches, I);
906 NewPaused.clear();
907
908 Current = DefChainPhi;
909 }
910 }
911
George Burgess IV5f308972016-07-19 01:29:15 +0000912 void verifyOptResult(const OptznResult &R) const {
913 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
914 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
915 }));
916 }
917
918 void resetPhiOptznState() {
919 Paths.clear();
920 VisitedPhis.clear();
921 }
922
923public:
Alina Sbirleabfc779e2019-03-22 17:22:19 +0000924 ClobberWalker(const MemorySSA &MSSA, AliasAnalysisType &AA, DominatorTree &DT)
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000925 : MSSA(MSSA), AA(AA), DT(DT) {}
George Burgess IV5f308972016-07-19 01:29:15 +0000926
Alina Sbirleabfc779e2019-03-22 17:22:19 +0000927 AliasAnalysisType *getAA() { return &AA; }
George Burgess IV5f308972016-07-19 01:29:15 +0000928 /// Finds the nearest clobber for the given query, optimizing phis if
929 /// possible.
Alina Sbirleaf085cc52019-03-29 21:56:09 +0000930 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q,
931 unsigned &UpWalkLimit) {
George Burgess IV5f308972016-07-19 01:29:15 +0000932 Query = &Q;
Alina Sbirleaf085cc52019-03-29 21:56:09 +0000933 UpwardWalkLimit = &UpWalkLimit;
934 // Starting limit must be > 0.
935 if (!UpWalkLimit)
936 UpWalkLimit++;
George Burgess IV5f308972016-07-19 01:29:15 +0000937
938 MemoryAccess *Current = Start;
939 // This walker pretends uses don't exist. If we're handed one, silently grab
940 // its def. (This has the nice side-effect of ensuring we never cache uses)
941 if (auto *MU = dyn_cast<MemoryUse>(Start))
942 Current = MU->getDefiningAccess();
943
944 DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
945 // Fast path for the overly-common case (no crazy phi optimization
946 // necessary)
947 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
George Burgess IV93ea19b2016-07-24 07:03:49 +0000948 MemoryAccess *Result;
George Burgess IV5f308972016-07-19 01:29:15 +0000949 if (WalkResult.IsKnownClobber) {
George Burgess IV93ea19b2016-07-24 07:03:49 +0000950 Result = WalkResult.Result;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000951 Q.AR = WalkResult.AR;
George Burgess IV93ea19b2016-07-24 07:03:49 +0000952 } else {
953 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
954 Current, Q.StartingLoc);
955 verifyOptResult(OptRes);
George Burgess IV93ea19b2016-07-24 07:03:49 +0000956 resetPhiOptznState();
957 Result = OptRes.PrimaryClobber.Clobber;
George Burgess IV5f308972016-07-19 01:29:15 +0000958 }
959
George Burgess IV5f308972016-07-19 01:29:15 +0000960#ifdef EXPENSIVE_CHECKS
Alina Sbirleaf085cc52019-03-29 21:56:09 +0000961 if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0)
Alina Sbirleae41f4b32019-01-10 21:47:15 +0000962 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
George Burgess IV5f308972016-07-19 01:29:15 +0000963#endif
George Burgess IV93ea19b2016-07-24 07:03:49 +0000964 return Result;
George Burgess IV5f308972016-07-19 01:29:15 +0000965 }
966};
967
968struct RenamePassData {
969 DomTreeNode *DTN;
970 DomTreeNode::const_iterator ChildIt;
971 MemoryAccess *IncomingVal;
972
973 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
974 MemoryAccess *M)
975 : DTN(D), ChildIt(It), IncomingVal(M) {}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000976
George Burgess IV5f308972016-07-19 01:29:15 +0000977 void swap(RenamePassData &RHS) {
978 std::swap(DTN, RHS.DTN);
979 std::swap(ChildIt, RHS.ChildIt);
980 std::swap(IncomingVal, RHS.IncomingVal);
981 }
982};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000983
984} // end anonymous namespace
George Burgess IV5f308972016-07-19 01:29:15 +0000985
986namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000987
Alina Sbirleabfc779e2019-03-22 17:22:19 +0000988template <class AliasAnalysisType> class MemorySSA::ClobberWalkerBase {
989 ClobberWalker<AliasAnalysisType> Walker;
Alina Sbirleabc8aa242019-01-07 19:22:37 +0000990 MemorySSA *MSSA;
991
992public:
Alina Sbirleabfc779e2019-03-22 17:22:19 +0000993 ClobberWalkerBase(MemorySSA *M, AliasAnalysisType *A, DominatorTree *D)
Alina Sbirleabc8aa242019-01-07 19:22:37 +0000994 : Walker(*M, *A, *D), MSSA(M) {}
995
996 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *,
Alina Sbirleaf085cc52019-03-29 21:56:09 +0000997 const MemoryLocation &,
998 unsigned &);
999 // Third argument (bool), defines whether the clobber search should skip the
Alina Sbirleabc8aa242019-01-07 19:22:37 +00001000 // original queried access. If true, there will be a follow-up query searching
1001 // for a clobber access past "self". Note that the Optimized access is not
1002 // updated if a new clobber is found by this SkipSelf search. If this
1003 // additional query becomes heavily used we may decide to cache the result.
1004 // Walker instantiations will decide how to set the SkipSelf bool.
Alina Sbirleaf085cc52019-03-29 21:56:09 +00001005 MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, unsigned &, bool);
Alina Sbirleabc8aa242019-01-07 19:22:37 +00001006};
1007
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001008/// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
George Burgess IV45f263d2018-05-26 02:28:55 +00001009/// longer does caching on its own, but the name has been retained for the
1010/// moment.
Alina Sbirleabfc779e2019-03-22 17:22:19 +00001011template <class AliasAnalysisType>
George Burgess IVfd1f2f82016-06-24 21:02:12 +00001012class MemorySSA::CachingWalker final : public MemorySSAWalker {
Alina Sbirleabfc779e2019-03-22 17:22:19 +00001013 ClobberWalkerBase<AliasAnalysisType> *Walker;
George Burgess IV5f308972016-07-19 01:29:15 +00001014
George Burgess IVfd1f2f82016-06-24 21:02:12 +00001015public:
Alina Sbirleabfc779e2019-03-22 17:22:19 +00001016 CachingWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W)
Alina Sbirleabc8aa242019-01-07 19:22:37 +00001017 : MemorySSAWalker(M), Walker(W) {}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001018 ~CachingWalker() override = default;
George Burgess IVfd1f2f82016-06-24 21:02:12 +00001019
George Burgess IV400ae402016-07-20 19:51:34 +00001020 using MemorySSAWalker::getClobberingMemoryAccess;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001021
Alina Sbirleaf085cc52019-03-29 21:56:09 +00001022 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) {
1023 return Walker->getClobberingMemoryAccessBase(MA, UWL, false);
1024 }
1025 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1026 const MemoryLocation &Loc,
1027 unsigned &UWL) {
1028 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL);
1029 }
1030
Alina Sbirleabfc779e2019-03-22 17:22:19 +00001031 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override {
Alina Sbirleaf085cc52019-03-29 21:56:09 +00001032 unsigned UpwardWalkLimit = MaxCheckLimit;
1033 return getClobberingMemoryAccess(MA, UpwardWalkLimit);
Alina Sbirleabfc779e2019-03-22 17:22:19 +00001034 }
Alina Sbirleabc8aa242019-01-07 19:22:37 +00001035 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
Alina Sbirleabfc779e2019-03-22 17:22:19 +00001036 const MemoryLocation &Loc) override {
Alina Sbirleaf085cc52019-03-29 21:56:09 +00001037 unsigned UpwardWalkLimit = MaxCheckLimit;
1038 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit);
Alina Sbirleabfc779e2019-03-22 17:22:19 +00001039 }
Alina Sbirleabc8aa242019-01-07 19:22:37 +00001040
1041 void invalidateInfo(MemoryAccess *MA) override {
1042 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1043 MUD->resetOptimized();
1044 }
George Burgess IVfd1f2f82016-06-24 21:02:12 +00001045};
George Burgess IVe1100f52016-02-02 22:46:49 +00001046
Alina Sbirleabfc779e2019-03-22 17:22:19 +00001047template <class AliasAnalysisType>
Alina Sbirlea12bbb4f2019-01-07 19:38:47 +00001048class MemorySSA::SkipSelfWalker final : public MemorySSAWalker {
Alina Sbirleabfc779e2019-03-22 17:22:19 +00001049 ClobberWalkerBase<AliasAnalysisType> *Walker;
Alina Sbirlea12bbb4f2019-01-07 19:38:47 +00001050
1051public:
Alina Sbirleabfc779e2019-03-22 17:22:19 +00001052 SkipSelfWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W)
Alina Sbirlea12bbb4f2019-01-07 19:38:47 +00001053 : MemorySSAWalker(M), Walker(W) {}
1054 ~SkipSelfWalker() override = default;
1055
1056 using MemorySSAWalker::getClobberingMemoryAccess;
1057
Alina Sbirleaf085cc52019-03-29 21:56:09 +00001058 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) {
1059 return Walker->getClobberingMemoryAccessBase(MA, UWL, true);
1060 }
1061 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1062 const MemoryLocation &Loc,
1063 unsigned &UWL) {
1064 return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL);
1065 }
1066
Alina Sbirleabfc779e2019-03-22 17:22:19 +00001067 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override {
Alina Sbirleaf085cc52019-03-29 21:56:09 +00001068 unsigned UpwardWalkLimit = MaxCheckLimit;
1069 return getClobberingMemoryAccess(MA, UpwardWalkLimit);
Alina Sbirleabfc779e2019-03-22 17:22:19 +00001070 }
Alina Sbirlea12bbb4f2019-01-07 19:38:47 +00001071 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
Alina Sbirleabfc779e2019-03-22 17:22:19 +00001072 const MemoryLocation &Loc) override {
Alina Sbirleaf085cc52019-03-29 21:56:09 +00001073 unsigned UpwardWalkLimit = MaxCheckLimit;
1074 return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit);
Alina Sbirleabfc779e2019-03-22 17:22:19 +00001075 }
Alina Sbirlea12bbb4f2019-01-07 19:38:47 +00001076
1077 void invalidateInfo(MemoryAccess *MA) override {
1078 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1079 MUD->resetOptimized();
1080 }
Alina Sbirlea12bbb4f2019-01-07 19:38:47 +00001081};
1082
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001083} // end namespace llvm
1084
Daniel Berlin78cbd282017-02-20 22:26:03 +00001085void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
1086 bool RenameAllUses) {
George Burgess IVe1100f52016-02-02 22:46:49 +00001087 // Pass through values to our successors
1088 for (const BasicBlock *S : successors(BB)) {
1089 auto It = PerBlockAccesses.find(S);
1090 // Rename the phi nodes in our successor block
1091 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1092 continue;
Daniel Berlinada263d2016-06-20 20:21:33 +00001093 AccessList *Accesses = It->second.get();
George Burgess IVe1100f52016-02-02 22:46:49 +00001094 auto *Phi = cast<MemoryPhi>(&Accesses->front());
Daniel Berlin78cbd282017-02-20 22:26:03 +00001095 if (RenameAllUses) {
Alina Sbirlea3d037692019-08-30 23:02:53 +00001096 bool ReplacementDone = false;
1097 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I)
1098 if (Phi->getIncomingBlock(I) == BB) {
1099 Phi->setIncomingValue(I, IncomingVal);
1100 ReplacementDone = true;
1101 }
1102 (void) ReplacementDone;
1103 assert(ReplacementDone && "Incomplete phi during partial rename");
Daniel Berlin78cbd282017-02-20 22:26:03 +00001104 } else
1105 Phi->addIncoming(IncomingVal, BB);
George Burgess IVe1100f52016-02-02 22:46:49 +00001106 }
Daniel Berlin78cbd282017-02-20 22:26:03 +00001107}
George Burgess IVe1100f52016-02-02 22:46:49 +00001108
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001109/// Rename a single basic block into MemorySSA form.
Daniel Berlin78cbd282017-02-20 22:26:03 +00001110/// Uses the standard SSA renaming algorithm.
1111/// \returns The new incoming value.
1112MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
1113 bool RenameAllUses) {
1114 auto It = PerBlockAccesses.find(BB);
1115 // Skip most processing if the list is empty.
1116 if (It != PerBlockAccesses.end()) {
1117 AccessList *Accesses = It->second.get();
1118 for (MemoryAccess &L : *Accesses) {
1119 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
1120 if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
1121 MUD->setDefiningAccess(IncomingVal);
1122 if (isa<MemoryDef>(&L))
1123 IncomingVal = &L;
1124 } else {
1125 IncomingVal = &L;
1126 }
1127 }
1128 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001129 return IncomingVal;
1130}
1131
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001132/// This is the standard SSA renaming algorithm.
George Burgess IVe1100f52016-02-02 22:46:49 +00001133///
1134/// We walk the dominator tree in preorder, renaming accesses, and then filling
1135/// in phi nodes in our successors.
1136void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
Daniel Berlin78cbd282017-02-20 22:26:03 +00001137 SmallPtrSetImpl<BasicBlock *> &Visited,
1138 bool SkipVisited, bool RenameAllUses) {
Alina Sbirlea0363c3b2019-05-02 23:41:58 +00001139 assert(Root && "Trying to rename accesses in an unreachable block");
1140
George Burgess IVe1100f52016-02-02 22:46:49 +00001141 SmallVector<RenamePassData, 32> WorkStack;
Daniel Berlin78cbd282017-02-20 22:26:03 +00001142 // Skip everything if we already renamed this block and we are skipping.
1143 // Note: You can't sink this into the if, because we need it to occur
1144 // regardless of whether we skip blocks or not.
1145 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
1146 if (SkipVisited && AlreadyVisited)
1147 return;
1148
1149 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
1150 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
George Burgess IVe1100f52016-02-02 22:46:49 +00001151 WorkStack.push_back({Root, Root->begin(), IncomingVal});
George Burgess IVe1100f52016-02-02 22:46:49 +00001152
1153 while (!WorkStack.empty()) {
1154 DomTreeNode *Node = WorkStack.back().DTN;
1155 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
1156 IncomingVal = WorkStack.back().IncomingVal;
1157
1158 if (ChildIt == Node->end()) {
1159 WorkStack.pop_back();
1160 } else {
1161 DomTreeNode *Child = *ChildIt;
1162 ++WorkStack.back().ChildIt;
1163 BasicBlock *BB = Child->getBlock();
Daniel Berlin78cbd282017-02-20 22:26:03 +00001164 // Note: You can't sink this into the if, because we need it to occur
1165 // regardless of whether we skip blocks or not.
1166 AlreadyVisited = !Visited.insert(BB).second;
1167 if (SkipVisited && AlreadyVisited) {
1168 // We already visited this during our renaming, which can happen when
1169 // being asked to rename multiple blocks. Figure out the incoming val,
1170 // which is the last def.
1171 // Incoming value can only change if there is a block def, and in that
1172 // case, it's the last block def in the list.
1173 if (auto *BlockDefs = getWritableBlockDefs(BB))
1174 IncomingVal = &*BlockDefs->rbegin();
1175 } else
1176 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
1177 renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
George Burgess IVe1100f52016-02-02 22:46:49 +00001178 WorkStack.push_back({Child, Child->begin(), IncomingVal});
1179 }
1180 }
1181}
1182
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001183/// This handles unreachable block accesses by deleting phi nodes in
George Burgess IVe1100f52016-02-02 22:46:49 +00001184/// unreachable blocks, and marking all other unreachable MemoryAccess's as
1185/// being uses of the live on entry definition.
1186void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
1187 assert(!DT->isReachableFromEntry(BB) &&
1188 "Reachable block found while handling unreachable blocks");
1189
Daniel Berlinfc7e6512016-07-06 05:32:05 +00001190 // Make sure phi nodes in our reachable successors end up with a
1191 // LiveOnEntryDef for our incoming edge, even though our block is forward
1192 // unreachable. We could just disconnect these blocks from the CFG fully,
1193 // but we do not right now.
1194 for (const BasicBlock *S : successors(BB)) {
1195 if (!DT->isReachableFromEntry(S))
1196 continue;
1197 auto It = PerBlockAccesses.find(S);
1198 // Rename the phi nodes in our successor block
1199 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1200 continue;
1201 AccessList *Accesses = It->second.get();
1202 auto *Phi = cast<MemoryPhi>(&Accesses->front());
1203 Phi->addIncoming(LiveOnEntryDef.get(), BB);
1204 }
1205
George Burgess IVe1100f52016-02-02 22:46:49 +00001206 auto It = PerBlockAccesses.find(BB);
1207 if (It == PerBlockAccesses.end())
1208 return;
1209
1210 auto &Accesses = It->second;
1211 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
1212 auto Next = std::next(AI);
1213 // If we have a phi, just remove it. We are going to replace all
1214 // users with live on entry.
1215 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
1216 UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
1217 else
1218 Accesses->erase(AI);
1219 AI = Next;
1220 }
1221}
1222
Geoff Berryb96d3b22016-06-01 21:30:40 +00001223MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
Alina Sbirleabfc779e2019-03-22 17:22:19 +00001224 : AA(nullptr), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
Alina Sbirlea12bbb4f2019-01-07 19:38:47 +00001225 SkipWalker(nullptr), NextID(0) {
Alina Sbirleabfc779e2019-03-22 17:22:19 +00001226 // Build MemorySSA using a batch alias analysis. This reuses the internal
1227 // state that AA collects during an alias()/getModRefInfo() call. This is
1228 // safe because there are no CFG changes while building MemorySSA and can
1229 // significantly reduce the time spent by the compiler in AA, because we will
1230 // make queries about all the instructions in the Function.
1231 BatchAAResults BatchAA(*AA);
1232 buildMemorySSA(BatchAA);
1233 // Intentionally leave AA to nullptr while building so we don't accidently
1234 // use non-batch AliasAnalysis.
1235 this->AA = AA;
1236 // Also create the walker here.
1237 getWalker();
Geoff Berryb96d3b22016-06-01 21:30:40 +00001238}
1239
George Burgess IVe1100f52016-02-02 22:46:49 +00001240MemorySSA::~MemorySSA() {
1241 // Drop all our references
1242 for (const auto &Pair : PerBlockAccesses)
1243 for (MemoryAccess &MA : *Pair.second)
1244 MA.dropAllReferences();
1245}
1246
Daniel Berlin14300262016-06-21 18:39:20 +00001247MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
George Burgess IVe1100f52016-02-02 22:46:49 +00001248 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
1249
1250 if (Res.second)
Jonas Devlieghere0eaee542019-08-15 15:54:37 +00001251 Res.first->second = std::make_unique<AccessList>();
George Burgess IVe1100f52016-02-02 22:46:49 +00001252 return Res.first->second.get();
1253}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001254
Daniel Berlind602e042017-01-25 20:56:19 +00001255MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
1256 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
1257
1258 if (Res.second)
Jonas Devlieghere0eaee542019-08-15 15:54:37 +00001259 Res.first->second = std::make_unique<DefsList>();
Daniel Berlind602e042017-01-25 20:56:19 +00001260 return Res.first->second.get();
1261}
George Burgess IVe1100f52016-02-02 22:46:49 +00001262
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001263namespace llvm {
1264
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001265/// This class is a batch walker of all MemoryUse's in the program, and points
1266/// their defining access at the thing that actually clobbers them. Because it
1267/// is a batch walker that touches everything, it does not operate like the
1268/// other walkers. This walker is basically performing a top-down SSA renaming
1269/// pass, where the version stack is used as the cache. This enables it to be
1270/// significantly more time and memory efficient than using the regular walker,
1271/// which is walking bottom-up.
1272class MemorySSA::OptimizeUses {
1273public:
Alina Sbirleaf085cc52019-03-29 21:56:09 +00001274 OptimizeUses(MemorySSA *MSSA, CachingWalker<BatchAAResults> *Walker,
1275 BatchAAResults *BAA, DominatorTree *DT)
Alina Sbirleabfc779e2019-03-22 17:22:19 +00001276 : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {}
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001277
1278 void optimizeUses();
1279
1280private:
1281 /// This represents where a given memorylocation is in the stack.
1282 struct MemlocStackInfo {
1283 // This essentially is keeping track of versions of the stack. Whenever
1284 // the stack changes due to pushes or pops, these versions increase.
1285 unsigned long StackEpoch;
1286 unsigned long PopEpoch;
1287 // This is the lower bound of places on the stack to check. It is equal to
1288 // the place the last stack walk ended.
1289 // Note: Correctness depends on this being initialized to 0, which densemap
1290 // does
1291 unsigned long LowerBound;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001292 const BasicBlock *LowerBoundBlock;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001293 // This is where the last walk for this memory location ended.
1294 unsigned long LastKill;
1295 bool LastKillValid;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001296 Optional<AliasResult> AR;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001297 };
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001298
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001299 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
1300 SmallVectorImpl<MemoryAccess *> &,
1301 DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001302
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001303 MemorySSA *MSSA;
Alina Sbirleaf085cc52019-03-29 21:56:09 +00001304 CachingWalker<BatchAAResults> *Walker;
Alina Sbirleabfc779e2019-03-22 17:22:19 +00001305 BatchAAResults *AA;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001306 DominatorTree *DT;
1307};
1308
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001309} // end namespace llvm
1310
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001311/// Optimize the uses in a given block This is basically the SSA renaming
1312/// algorithm, with one caveat: We are able to use a single stack for all
1313/// MemoryUses. This is because the set of *possible* reaching MemoryDefs is
1314/// the same for every MemoryUse. The *actual* clobbering MemoryDef is just
1315/// going to be some position in that stack of possible ones.
1316///
1317/// We track the stack positions that each MemoryLocation needs
1318/// to check, and last ended at. This is because we only want to check the
1319/// things that changed since last time. The same MemoryLocation should
1320/// get clobbered by the same store (getModRefInfo does not use invariantness or
1321/// things like this, and if they start, we can modify MemoryLocOrCall to
1322/// include relevant data)
1323void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1324 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
1325 SmallVectorImpl<MemoryAccess *> &VersionStack,
1326 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
1327
1328 /// If no accesses, nothing to do.
1329 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
1330 if (Accesses == nullptr)
1331 return;
1332
1333 // Pop everything that doesn't dominate the current block off the stack,
1334 // increment the PopEpoch to account for this.
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001335 while (true) {
1336 assert(
1337 !VersionStack.empty() &&
1338 "Version stack should have liveOnEntry sentinel dominating everything");
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001339 BasicBlock *BackBlock = VersionStack.back()->getBlock();
1340 if (DT->dominates(BackBlock, BB))
1341 break;
1342 while (VersionStack.back()->getBlock() == BackBlock)
1343 VersionStack.pop_back();
1344 ++PopEpoch;
1345 }
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001346
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001347 for (MemoryAccess &MA : *Accesses) {
1348 auto *MU = dyn_cast<MemoryUse>(&MA);
1349 if (!MU) {
1350 VersionStack.push_back(&MA);
1351 ++StackEpoch;
1352 continue;
1353 }
1354
George Burgess IV024f3d22016-08-03 19:57:02 +00001355 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001356 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None);
George Burgess IV024f3d22016-08-03 19:57:02 +00001357 continue;
1358 }
1359
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001360 MemoryLocOrCall UseMLOC(MU);
1361 auto &LocInfo = LocStackInfo[UseMLOC];
Daniel Berlin26fcea92016-08-02 20:02:21 +00001362 // If the pop epoch changed, it means we've removed stuff from top of
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001363 // stack due to changing blocks. We may have to reset the lower bound or
1364 // last kill info.
1365 if (LocInfo.PopEpoch != PopEpoch) {
1366 LocInfo.PopEpoch = PopEpoch;
1367 LocInfo.StackEpoch = StackEpoch;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001368 // If the lower bound was in something that no longer dominates us, we
1369 // have to reset it.
1370 // We can't simply track stack size, because the stack may have had
1371 // pushes/pops in the meantime.
1372 // XXX: This is non-optimal, but only is slower cases with heavily
1373 // branching dominator trees. To get the optimal number of queries would
1374 // be to make lowerbound and lastkill a per-loc stack, and pop it until
1375 // the top of that stack dominates us. This does not seem worth it ATM.
1376 // A much cheaper optimization would be to always explore the deepest
1377 // branch of the dominator tree first. This will guarantee this resets on
1378 // the smallest set of blocks.
1379 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
Daniel Berlin1e98c042016-09-26 17:22:54 +00001380 !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001381 // Reset the lower bound of things to check.
1382 // TODO: Some day we should be able to reset to last kill, rather than
1383 // 0.
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001384 LocInfo.LowerBound = 0;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001385 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001386 LocInfo.LastKillValid = false;
1387 }
1388 } else if (LocInfo.StackEpoch != StackEpoch) {
1389 // If all that has changed is the StackEpoch, we only have to check the
1390 // new things on the stack, because we've checked everything before. In
1391 // this case, the lower bound of things to check remains the same.
1392 LocInfo.PopEpoch = PopEpoch;
1393 LocInfo.StackEpoch = StackEpoch;
1394 }
1395 if (!LocInfo.LastKillValid) {
1396 LocInfo.LastKill = VersionStack.size() - 1;
1397 LocInfo.LastKillValid = true;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001398 LocInfo.AR = MayAlias;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001399 }
1400
1401 // At this point, we should have corrected last kill and LowerBound to be
1402 // in bounds.
1403 assert(LocInfo.LowerBound < VersionStack.size() &&
1404 "Lower bound out of range");
1405 assert(LocInfo.LastKill < VersionStack.size() &&
1406 "Last kill info out of range");
1407 // In any case, the new upper bound is the top of the stack.
1408 unsigned long UpperBound = VersionStack.size() - 1;
1409
1410 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001411 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
1412 << *(MU->getMemoryInst()) << ")"
1413 << " because there are "
1414 << UpperBound - LocInfo.LowerBound
1415 << " stores to disambiguate\n");
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001416 // Because we did not walk, LastKill is no longer valid, as this may
1417 // have been a kill.
1418 LocInfo.LastKillValid = false;
1419 continue;
1420 }
1421 bool FoundClobberResult = false;
Alina Sbirleaf085cc52019-03-29 21:56:09 +00001422 unsigned UpwardWalkLimit = MaxCheckLimit;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001423 while (UpperBound > LocInfo.LowerBound) {
1424 if (isa<MemoryPhi>(VersionStack[UpperBound])) {
1425 // For phis, use the walker, see where we ended up, go there
Alina Sbirleaf085cc52019-03-29 21:56:09 +00001426 MemoryAccess *Result =
1427 Walker->getClobberingMemoryAccess(MU, UpwardWalkLimit);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001428 // We are guaranteed to find it or something is wrong
1429 while (VersionStack[UpperBound] != Result) {
1430 assert(UpperBound != 0);
1431 --UpperBound;
1432 }
1433 FoundClobberResult = true;
1434 break;
1435 }
1436
1437 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
Daniel Berlindf101192016-08-03 00:01:46 +00001438 // If the lifetime of the pointer ends at this instruction, it's live on
1439 // entry.
1440 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
1441 // Reset UpperBound to liveOnEntryDef's place in the stack
1442 UpperBound = 0;
1443 FoundClobberResult = true;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001444 LocInfo.AR = MustAlias;
Daniel Berlindf101192016-08-03 00:01:46 +00001445 break;
1446 }
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001447 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA);
1448 if (CA.IsClobber) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001449 FoundClobberResult = true;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001450 LocInfo.AR = CA.AR;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001451 break;
1452 }
1453 --UpperBound;
1454 }
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001455
1456 // Note: Phis always have AliasResult AR set to MayAlias ATM.
1457
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001458 // At the end of this loop, UpperBound is either a clobber, or lower bound
1459 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1460 if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001461 // We were last killed now by where we got to
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001462 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound]))
1463 LocInfo.AR = None;
1464 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001465 LocInfo.LastKill = UpperBound;
1466 } else {
1467 // Otherwise, we checked all the new ones, and now we know we can get to
1468 // LastKill.
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001469 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001470 }
1471 LocInfo.LowerBound = VersionStack.size() - 1;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001472 LocInfo.LowerBoundBlock = BB;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001473 }
1474}
1475
1476/// Optimize uses to point to their actual clobbering definitions.
1477void MemorySSA::OptimizeUses::optimizeUses() {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001478 SmallVector<MemoryAccess *, 16> VersionStack;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001479 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001480 VersionStack.push_back(MSSA->getLiveOnEntryDef());
1481
1482 unsigned long StackEpoch = 1;
1483 unsigned long PopEpoch = 1;
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001484 // We perform a non-recursive top-down dominator tree walk.
Daniel Berlin7ac3d742016-08-05 22:09:14 +00001485 for (const auto *DomNode : depth_first(DT->getRootNode()))
1486 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
1487 LocStackInfo);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001488}
1489
Daniel Berlin3d512a22016-08-22 19:14:30 +00001490void MemorySSA::placePHINodes(
Michael Zolotukhin67cfbaa2018-05-15 18:40:29 +00001491 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) {
Daniel Berlin3d512a22016-08-22 19:14:30 +00001492 // Determine where our MemoryPhi's should go
1493 ForwardIDFCalculator IDFs(*DT);
1494 IDFs.setDefiningBlocks(DefiningBlocks);
Daniel Berlin3d512a22016-08-22 19:14:30 +00001495 SmallVector<BasicBlock *, 32> IDFBlocks;
1496 IDFs.calculate(IDFBlocks);
1497
1498 // Now place MemoryPhi nodes.
Daniel Berlind602e042017-01-25 20:56:19 +00001499 for (auto &BB : IDFBlocks)
1500 createMemoryPhi(BB);
Daniel Berlin3d512a22016-08-22 19:14:30 +00001501}
1502
Alina Sbirleabfc779e2019-03-22 17:22:19 +00001503void MemorySSA::buildMemorySSA(BatchAAResults &BAA) {
George Burgess IVe1100f52016-02-02 22:46:49 +00001504 // We create an access to represent "live on entry", for things like
1505 // arguments or users of globals, where the memory they use is defined before
1506 // the beginning of the function. We do not actually insert it into the IR.
1507 // We do not define a live on exit for the immediate uses, and thus our
1508 // semantics do *not* imply that something with no immediate uses can simply
1509 // be removed.
1510 BasicBlock &StartingPoint = F.getEntryBlock();
George Burgess IV612cf212018-02-27 06:43:19 +00001511 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
1512 &StartingPoint, NextID++));
George Burgess IVe1100f52016-02-02 22:46:49 +00001513
1514 // We maintain lists of memory accesses per-block, trading memory for time. We
1515 // could just look up the memory access for every possible instruction in the
1516 // stream.
1517 SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
George Burgess IVe1100f52016-02-02 22:46:49 +00001518 // Go through each block, figure out where defs occur, and chain together all
1519 // the accesses.
1520 for (BasicBlock &B : F) {
Daniel Berlin7898ca62016-02-07 01:52:15 +00001521 bool InsertIntoDef = false;
Daniel Berlinada263d2016-06-20 20:21:33 +00001522 AccessList *Accesses = nullptr;
Daniel Berlind602e042017-01-25 20:56:19 +00001523 DefsList *Defs = nullptr;
George Burgess IVe1100f52016-02-02 22:46:49 +00001524 for (Instruction &I : B) {
Alina Sbirleabfc779e2019-03-22 17:22:19 +00001525 MemoryUseOrDef *MUD = createNewAccess(&I, &BAA);
George Burgess IVb42b7622016-03-11 19:34:03 +00001526 if (!MUD)
George Burgess IVe1100f52016-02-02 22:46:49 +00001527 continue;
Daniel Berlin1b51a292016-02-07 01:52:19 +00001528
George Burgess IVe1100f52016-02-02 22:46:49 +00001529 if (!Accesses)
1530 Accesses = getOrCreateAccessList(&B);
George Burgess IVb42b7622016-03-11 19:34:03 +00001531 Accesses->push_back(MUD);
Daniel Berlind602e042017-01-25 20:56:19 +00001532 if (isa<MemoryDef>(MUD)) {
1533 InsertIntoDef = true;
1534 if (!Defs)
1535 Defs = getOrCreateDefsList(&B);
1536 Defs->push_back(*MUD);
1537 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001538 }
Daniel Berlin7898ca62016-02-07 01:52:15 +00001539 if (InsertIntoDef)
1540 DefiningBlocks.insert(&B);
Daniel Berlin1b51a292016-02-07 01:52:19 +00001541 }
Michael Zolotukhin67cfbaa2018-05-15 18:40:29 +00001542 placePHINodes(DefiningBlocks);
George Burgess IVe1100f52016-02-02 22:46:49 +00001543
1544 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1545 // filled in with all blocks.
1546 SmallPtrSet<BasicBlock *, 16> Visited;
1547 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
1548
Alina Sbirleabfc779e2019-03-22 17:22:19 +00001549 ClobberWalkerBase<BatchAAResults> WalkerBase(this, &BAA, DT);
1550 CachingWalker<BatchAAResults> WalkerLocal(this, &WalkerBase);
1551 OptimizeUses(this, &WalkerLocal, &BAA, DT).optimizeUses();
George Burgess IV5f308972016-07-19 01:29:15 +00001552
George Burgess IVe1100f52016-02-02 22:46:49 +00001553 // Mark the uses in unreachable blocks as live on entry, so that they go
1554 // somewhere.
1555 for (auto &BB : F)
1556 if (!Visited.count(&BB))
1557 markUnreachableAsLiveOnEntry(&BB);
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001558}
George Burgess IVe1100f52016-02-02 22:46:49 +00001559
George Burgess IV5f308972016-07-19 01:29:15 +00001560MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
1561
Alina Sbirleabfc779e2019-03-22 17:22:19 +00001562MemorySSA::CachingWalker<AliasAnalysis> *MemorySSA::getWalkerImpl() {
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001563 if (Walker)
1564 return Walker.get();
1565
Alina Sbirleabc8aa242019-01-07 19:22:37 +00001566 if (!WalkerBase)
Alina Sbirleabfc779e2019-03-22 17:22:19 +00001567 WalkerBase =
Jonas Devlieghere0eaee542019-08-15 15:54:37 +00001568 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT);
Alina Sbirleabc8aa242019-01-07 19:22:37 +00001569
Alina Sbirleabfc779e2019-03-22 17:22:19 +00001570 Walker =
Jonas Devlieghere0eaee542019-08-15 15:54:37 +00001571 std::make_unique<CachingWalker<AliasAnalysis>>(this, WalkerBase.get());
Geoff Berryb96d3b22016-06-01 21:30:40 +00001572 return Walker.get();
George Burgess IVe1100f52016-02-02 22:46:49 +00001573}
1574
Alina Sbirlea12bbb4f2019-01-07 19:38:47 +00001575MemorySSAWalker *MemorySSA::getSkipSelfWalker() {
1576 if (SkipWalker)
1577 return SkipWalker.get();
1578
1579 if (!WalkerBase)
Alina Sbirleabfc779e2019-03-22 17:22:19 +00001580 WalkerBase =
Jonas Devlieghere0eaee542019-08-15 15:54:37 +00001581 std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT);
Alina Sbirlea12bbb4f2019-01-07 19:38:47 +00001582
Alina Sbirleabfc779e2019-03-22 17:22:19 +00001583 SkipWalker =
Jonas Devlieghere0eaee542019-08-15 15:54:37 +00001584 std::make_unique<SkipSelfWalker<AliasAnalysis>>(this, WalkerBase.get());
Alina Sbirlea12bbb4f2019-01-07 19:38:47 +00001585 return SkipWalker.get();
1586 }
1587
1588
Daniel Berlind602e042017-01-25 20:56:19 +00001589// This is a helper function used by the creation routines. It places NewAccess
1590// into the access and defs lists for a given basic block, at the given
1591// insertion point.
1592void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
1593 const BasicBlock *BB,
1594 InsertionPlace Point) {
1595 auto *Accesses = getOrCreateAccessList(BB);
1596 if (Point == Beginning) {
1597 // If it's a phi node, it goes first, otherwise, it goes after any phi
1598 // nodes.
1599 if (isa<MemoryPhi>(NewAccess)) {
1600 Accesses->push_front(NewAccess);
1601 auto *Defs = getOrCreateDefsList(BB);
1602 Defs->push_front(*NewAccess);
1603 } else {
1604 auto AI = find_if_not(
1605 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1606 Accesses->insert(AI, NewAccess);
1607 if (!isa<MemoryUse>(NewAccess)) {
1608 auto *Defs = getOrCreateDefsList(BB);
1609 auto DI = find_if_not(
1610 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1611 Defs->insert(DI, *NewAccess);
1612 }
1613 }
1614 } else {
1615 Accesses->push_back(NewAccess);
1616 if (!isa<MemoryUse>(NewAccess)) {
1617 auto *Defs = getOrCreateDefsList(BB);
1618 Defs->push_back(*NewAccess);
1619 }
1620 }
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001621 BlockNumberingValid.erase(BB);
Daniel Berlind602e042017-01-25 20:56:19 +00001622}
1623
1624void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
1625 AccessList::iterator InsertPt) {
1626 auto *Accesses = getWritableBlockAccesses(BB);
1627 bool WasEnd = InsertPt == Accesses->end();
1628 Accesses->insert(AccessList::iterator(InsertPt), What);
1629 if (!isa<MemoryUse>(What)) {
1630 auto *Defs = getOrCreateDefsList(BB);
1631 // If we got asked to insert at the end, we have an easy job, just shove it
1632 // at the end. If we got asked to insert before an existing def, we also get
Zhaoshi Zhenga5531f22018-04-04 21:08:11 +00001633 // an iterator. If we got asked to insert before a use, we have to hunt for
Daniel Berlind602e042017-01-25 20:56:19 +00001634 // the next def.
1635 if (WasEnd) {
1636 Defs->push_back(*What);
1637 } else if (isa<MemoryDef>(InsertPt)) {
1638 Defs->insert(InsertPt->getDefsIterator(), *What);
1639 } else {
1640 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
1641 ++InsertPt;
1642 // Either we found a def, or we are inserting at the end
1643 if (InsertPt == Accesses->end())
1644 Defs->push_back(*What);
1645 else
1646 Defs->insert(InsertPt->getDefsIterator(), *What);
1647 }
1648 }
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001649 BlockNumberingValid.erase(BB);
Daniel Berlind602e042017-01-25 20:56:19 +00001650}
1651
George Burgess IV5676a5d2018-08-22 22:34:38 +00001652void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) {
1653 // Keep it in the lookup tables, remove from the lists
1654 removeFromLists(What, false);
1655
1656 // Note that moving should implicitly invalidate the optimized state of a
1657 // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a
1658 // MemoryDef.
1659 if (auto *MD = dyn_cast<MemoryDef>(What))
1660 MD->resetOptimized();
1661 What->setBlock(BB);
1662}
1663
Zhaoshi Zhenga5531f22018-04-04 21:08:11 +00001664// Move What before Where in the IR. The end result is that What will belong to
Daniel Berlin60ead052017-01-28 01:23:13 +00001665// the right lists and have the right Block set, but will not otherwise be
1666// correct. It will not have the right defining access, and if it is a def,
1667// things below it will not properly be updated.
1668void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1669 AccessList::iterator Where) {
George Burgess IV5676a5d2018-08-22 22:34:38 +00001670 prepareForMoveTo(What, BB);
Daniel Berlin60ead052017-01-28 01:23:13 +00001671 insertIntoListsBefore(What, BB, Where);
1672}
1673
Alina Sbirlea0f533552018-07-11 22:11:46 +00001674void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB,
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001675 InsertionPlace Point) {
Alina Sbirlea0f533552018-07-11 22:11:46 +00001676 if (isa<MemoryPhi>(What)) {
1677 assert(Point == Beginning &&
1678 "Can only move a Phi at the beginning of the block");
1679 // Update lookup table entry
1680 ValueToMemoryAccess.erase(What->getBlock());
1681 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second;
1682 (void)Inserted;
1683 assert(Inserted && "Cannot move a Phi to a block that already has one");
1684 }
1685
George Burgess IV5676a5d2018-08-22 22:34:38 +00001686 prepareForMoveTo(What, BB);
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001687 insertIntoListsForBlock(What, BB, Point);
1688}
1689
Daniel Berlin14300262016-06-21 18:39:20 +00001690MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
1691 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
Daniel Berlin14300262016-06-21 18:39:20 +00001692 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001693 // Phi's always are placed at the front of the block.
Daniel Berlind602e042017-01-25 20:56:19 +00001694 insertIntoListsForBlock(Phi, BB, Beginning);
Daniel Berlin5130cc82016-07-31 21:08:20 +00001695 ValueToMemoryAccess[BB] = Phi;
Daniel Berlin14300262016-06-21 18:39:20 +00001696 return Phi;
1697}
1698
1699MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
Alina Sbirlea79800992018-09-10 20:13:01 +00001700 MemoryAccess *Definition,
Alina Sbirlea4bc625c2019-07-30 20:10:33 +00001701 const MemoryUseOrDef *Template,
1702 bool CreationMustSucceed) {
Daniel Berlin14300262016-06-21 18:39:20 +00001703 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
Alina Sbirleabfc779e2019-03-22 17:22:19 +00001704 MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template);
Alina Sbirlea4bc625c2019-07-30 20:10:33 +00001705 if (CreationMustSucceed)
1706 assert(NewAccess != nullptr && "Tried to create a memory access for a "
1707 "non-memory touching instruction");
1708 if (NewAccess)
1709 NewAccess->setDefiningAccess(Definition);
Daniel Berlin14300262016-06-21 18:39:20 +00001710 return NewAccess;
1711}
1712
Daniel Berlind952cea2017-04-07 01:28:36 +00001713// Return true if the instruction has ordering constraints.
1714// Note specifically that this only considers stores and loads
1715// because others are still considered ModRef by getModRefInfo.
1716static inline bool isOrdered(const Instruction *I) {
1717 if (auto *SI = dyn_cast<StoreInst>(I)) {
1718 if (!SI->isUnordered())
1719 return true;
1720 } else if (auto *LI = dyn_cast<LoadInst>(I)) {
1721 if (!LI->isUnordered())
1722 return true;
1723 }
1724 return false;
1725}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001726
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001727/// Helper function to create new memory accesses
Alina Sbirleabfc779e2019-03-22 17:22:19 +00001728template <typename AliasAnalysisType>
Alina Sbirlea79800992018-09-10 20:13:01 +00001729MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I,
Alina Sbirleabfc779e2019-03-22 17:22:19 +00001730 AliasAnalysisType *AAP,
Alina Sbirlea79800992018-09-10 20:13:01 +00001731 const MemoryUseOrDef *Template) {
Peter Collingbourneb9aa1f42016-05-26 04:58:46 +00001732 // The assume intrinsic has a control dependency which we model by claiming
Alina Sbirleaf7b40222019-09-10 22:35:27 +00001733 // that it writes arbitrarily. Debuginfo intrinsics may be considered
1734 // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory
1735 // dependencies here.
Peter Collingbourneb9aa1f42016-05-26 04:58:46 +00001736 // FIXME: Replace this special casing with a more accurate modelling of
1737 // assume's control dependency.
1738 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
Alina Sbirleaf7b40222019-09-10 22:35:27 +00001739 if (II->getIntrinsicID() == Intrinsic::assume || isa<DbgInfoIntrinsic>(II))
Peter Collingbourneb9aa1f42016-05-26 04:58:46 +00001740 return nullptr;
1741
Alina Sbirlea79800992018-09-10 20:13:01 +00001742 bool Def, Use;
1743 if (Template) {
1744 Def = dyn_cast_or_null<MemoryDef>(Template) != nullptr;
1745 Use = dyn_cast_or_null<MemoryUse>(Template) != nullptr;
1746#if !defined(NDEBUG)
Alina Sbirleabfc779e2019-03-22 17:22:19 +00001747 ModRefInfo ModRef = AAP->getModRefInfo(I, None);
Alina Sbirlea79800992018-09-10 20:13:01 +00001748 bool DefCheck, UseCheck;
1749 DefCheck = isModSet(ModRef) || isOrdered(I);
1750 UseCheck = isRefSet(ModRef);
1751 assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template");
1752#endif
1753 } else {
1754 // Find out what affect this instruction has on memory.
Alina Sbirleabfc779e2019-03-22 17:22:19 +00001755 ModRefInfo ModRef = AAP->getModRefInfo(I, None);
Alina Sbirlea79800992018-09-10 20:13:01 +00001756 // The isOrdered check is used to ensure that volatiles end up as defs
1757 // (atomics end up as ModRef right now anyway). Until we separate the
1758 // ordering chain from the memory chain, this enables people to see at least
1759 // some relative ordering to volatiles. Note that getClobberingMemoryAccess
1760 // will still give an answer that bypasses other volatile loads. TODO:
1761 // Separate memory aliasing and ordering into two different chains so that
1762 // we can precisely represent both "what memory will this read/write/is
1763 // clobbered by" and "what instructions can I move this past".
1764 Def = isModSet(ModRef) || isOrdered(I);
1765 Use = isRefSet(ModRef);
1766 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001767
1768 // It's possible for an instruction to not modify memory at all. During
1769 // construction, we ignore them.
Peter Collingbourneffecb142016-05-26 01:19:17 +00001770 if (!Def && !Use)
George Burgess IVe1100f52016-02-02 22:46:49 +00001771 return nullptr;
1772
George Burgess IVb42b7622016-03-11 19:34:03 +00001773 MemoryUseOrDef *MUD;
George Burgess IVe1100f52016-02-02 22:46:49 +00001774 if (Def)
George Burgess IVb42b7622016-03-11 19:34:03 +00001775 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
George Burgess IVe1100f52016-02-02 22:46:49 +00001776 else
George Burgess IVb42b7622016-03-11 19:34:03 +00001777 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
Daniel Berlin5130cc82016-07-31 21:08:20 +00001778 ValueToMemoryAccess[I] = MUD;
George Burgess IVb42b7622016-03-11 19:34:03 +00001779 return MUD;
George Burgess IVe1100f52016-02-02 22:46:49 +00001780}
1781
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001782/// Returns true if \p Replacer dominates \p Replacee .
George Burgess IVe1100f52016-02-02 22:46:49 +00001783bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
1784 const MemoryAccess *Replacee) const {
1785 if (isa<MemoryUseOrDef>(Replacee))
1786 return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
1787 const auto *MP = cast<MemoryPhi>(Replacee);
1788 // For a phi node, the use occurs in the predecessor block of the phi node.
1789 // Since we may occur multiple times in the phi node, we have to check each
1790 // operand to ensure Replacer dominates each operand where Replacee occurs.
1791 for (const Use &Arg : MP->operands()) {
George Burgess IVb5a229f2016-02-02 23:15:26 +00001792 if (Arg.get() != Replacee &&
George Burgess IVe1100f52016-02-02 22:46:49 +00001793 !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
1794 return false;
1795 }
1796 return true;
1797}
1798
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001799/// Properly remove \p MA from all of MemorySSA's lookup tables.
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001800void MemorySSA::removeFromLookups(MemoryAccess *MA) {
1801 assert(MA->use_empty() &&
1802 "Trying to remove memory access that still has uses");
Daniel Berlin5c46b942016-07-19 22:49:43 +00001803 BlockNumbering.erase(MA);
George Burgess IV2cbf9732018-06-22 22:34:07 +00001804 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001805 MUD->setDefiningAccess(nullptr);
1806 // Invalidate our walker's cache if necessary
1807 if (!isa<MemoryUse>(MA))
Alina Sbirleabfc779e2019-03-22 17:22:19 +00001808 getWalker()->invalidateInfo(MA);
George Burgess IV2cbf9732018-06-22 22:34:07 +00001809
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001810 Value *MemoryInst;
George Burgess IV2cbf9732018-06-22 22:34:07 +00001811 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001812 MemoryInst = MUD->getMemoryInst();
George Burgess IV2cbf9732018-06-22 22:34:07 +00001813 else
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001814 MemoryInst = MA->getBlock();
George Burgess IV2cbf9732018-06-22 22:34:07 +00001815
Daniel Berlin5130cc82016-07-31 21:08:20 +00001816 auto VMA = ValueToMemoryAccess.find(MemoryInst);
1817 if (VMA->second == MA)
1818 ValueToMemoryAccess.erase(VMA);
Daniel Berlin60ead052017-01-28 01:23:13 +00001819}
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001820
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001821/// Properly remove \p MA from all of MemorySSA's lists.
Daniel Berlin60ead052017-01-28 01:23:13 +00001822///
1823/// Because of the way the intrusive list and use lists work, it is important to
1824/// do removal in the right order.
1825/// ShouldDelete defaults to true, and will cause the memory access to also be
1826/// deleted, not just removed.
1827void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001828 BasicBlock *BB = MA->getBlock();
Daniel Berlind602e042017-01-25 20:56:19 +00001829 // The access list owns the reference, so we erase it from the non-owning list
1830 // first.
1831 if (!isa<MemoryUse>(MA)) {
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001832 auto DefsIt = PerBlockDefs.find(BB);
Daniel Berlind602e042017-01-25 20:56:19 +00001833 std::unique_ptr<DefsList> &Defs = DefsIt->second;
1834 Defs->remove(*MA);
1835 if (Defs->empty())
1836 PerBlockDefs.erase(DefsIt);
1837 }
1838
Daniel Berlin60ead052017-01-28 01:23:13 +00001839 // The erase call here will delete it. If we don't want it deleted, we call
1840 // remove instead.
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001841 auto AccessIt = PerBlockAccesses.find(BB);
Daniel Berlinada263d2016-06-20 20:21:33 +00001842 std::unique_ptr<AccessList> &Accesses = AccessIt->second;
Daniel Berlin60ead052017-01-28 01:23:13 +00001843 if (ShouldDelete)
1844 Accesses->erase(MA);
1845 else
1846 Accesses->remove(MA);
1847
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001848 if (Accesses->empty()) {
George Burgess IVe0e6e482016-03-02 02:35:04 +00001849 PerBlockAccesses.erase(AccessIt);
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001850 BlockNumberingValid.erase(BB);
1851 }
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001852}
1853
George Burgess IVe1100f52016-02-02 22:46:49 +00001854void MemorySSA::print(raw_ostream &OS) const {
1855 MemorySSAAnnotatedWriter Writer(this);
1856 F.print(OS, &Writer);
1857}
1858
Aaron Ballman615eb472017-10-15 14:32:27 +00001859#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Daniel Berlin78cbd282017-02-20 22:26:03 +00001860LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
Matthias Braun8c209aa2017-01-28 02:02:38 +00001861#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001862
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001863void MemorySSA::verifyMemorySSA() const {
1864 verifyDefUses(F);
1865 verifyDomination(F);
Daniel Berlin14300262016-06-21 18:39:20 +00001866 verifyOrdering(F);
George Burgess IV97ec6242018-06-25 05:30:36 +00001867 verifyDominationNumbers(F);
Alina Sbirlea63e97fa2019-07-31 17:41:04 +00001868 verifyPrevDefInPhis(F);
Alina Sbirlead77edc02019-02-11 19:51:21 +00001869 // Previously, the verification used to also verify that the clobberingAccess
1870 // cached by MemorySSA is the same as the clobberingAccess found at a later
1871 // query to AA. This does not hold true in general due to the current fragility
1872 // of BasicAA which has arbitrary caps on the things it analyzes before giving
1873 // up. As a result, transformations that are correct, will lead to BasicAA
1874 // returning different Alias answers before and after that transformation.
1875 // Invalidating MemorySSA is not an option, as the results in BasicAA can be so
1876 // random, in the worst case we'd need to rebuild MemorySSA from scratch after
1877 // every transformation, which defeats the purpose of using it. For such an
1878 // example, see test4 added in D51960.
Daniel Berlin14300262016-06-21 18:39:20 +00001879}
1880
Alina Sbirlea63e97fa2019-07-31 17:41:04 +00001881void MemorySSA::verifyPrevDefInPhis(Function &F) const {
Alina Sbirlea594f0e02019-09-04 00:44:54 +00001882#if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS)
Alina Sbirlea63e97fa2019-07-31 17:41:04 +00001883 for (const BasicBlock &BB : F) {
1884 if (MemoryPhi *Phi = getMemoryAccess(&BB)) {
1885 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
1886 auto *Pred = Phi->getIncomingBlock(I);
1887 auto *IncAcc = Phi->getIncomingValue(I);
1888 // If Pred has no unreachable predecessors, get last def looking at
1889 // IDoms. If, while walkings IDoms, any of these has an unreachable
Alina Sbirlea1a3fdaf2019-08-19 18:57:40 +00001890 // predecessor, then the incoming def can be any access.
Alina Sbirlea63e97fa2019-07-31 17:41:04 +00001891 if (auto *DTNode = DT->getNode(Pred)) {
1892 while (DTNode) {
1893 if (auto *DefList = getBlockDefs(DTNode->getBlock())) {
1894 auto *LastAcc = &*(--DefList->end());
1895 assert(LastAcc == IncAcc &&
1896 "Incorrect incoming access into phi.");
1897 break;
1898 }
1899 DTNode = DTNode->getIDom();
1900 }
Alina Sbirlea1a3fdaf2019-08-19 18:57:40 +00001901 } else {
Alina Sbirlea63e97fa2019-07-31 17:41:04 +00001902 // If Pred has unreachable predecessors, but has at least a Def, the
1903 // incoming access can be the last Def in Pred, or it could have been
Alina Sbirlea1a3fdaf2019-08-19 18:57:40 +00001904 // optimized to LoE. After an update, though, the LoE may have been
1905 // replaced by another access, so IncAcc may be any access.
Alina Sbirlea63e97fa2019-07-31 17:41:04 +00001906 // If Pred has unreachable predecessors and no Defs, incoming access
Alina Sbirlea1a3fdaf2019-08-19 18:57:40 +00001907 // should be LoE; However, after an update, it may be any access.
Alina Sbirlea63e97fa2019-07-31 17:41:04 +00001908 }
1909 }
1910 }
1911 }
1912#endif
1913}
1914
George Burgess IV97ec6242018-06-25 05:30:36 +00001915/// Verify that all of the blocks we believe to have valid domination numbers
1916/// actually have valid domination numbers.
1917void MemorySSA::verifyDominationNumbers(const Function &F) const {
1918#ifndef NDEBUG
1919 if (BlockNumberingValid.empty())
1920 return;
1921
1922 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid;
1923 for (const BasicBlock &BB : F) {
1924 if (!ValidBlocks.count(&BB))
1925 continue;
1926
1927 ValidBlocks.erase(&BB);
1928
1929 const AccessList *Accesses = getBlockAccesses(&BB);
1930 // It's correct to say an empty block has valid numbering.
1931 if (!Accesses)
1932 continue;
1933
1934 // Block numbering starts at 1.
1935 unsigned long LastNumber = 0;
1936 for (const MemoryAccess &MA : *Accesses) {
1937 auto ThisNumberIter = BlockNumbering.find(&MA);
1938 assert(ThisNumberIter != BlockNumbering.end() &&
1939 "MemoryAccess has no domination number in a valid block!");
1940
1941 unsigned long ThisNumber = ThisNumberIter->second;
1942 assert(ThisNumber > LastNumber &&
1943 "Domination numbers should be strictly increasing!");
1944 LastNumber = ThisNumber;
1945 }
1946 }
1947
1948 assert(ValidBlocks.empty() &&
1949 "All valid BasicBlocks should exist in F -- dangling pointers?");
1950#endif
1951}
1952
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001953/// Verify that the order and existence of MemoryAccesses matches the
Daniel Berlin14300262016-06-21 18:39:20 +00001954/// order and existence of memory affecting instructions.
1955void MemorySSA::verifyOrdering(Function &F) const {
George Burgess IV6a9aa022018-08-28 00:32:32 +00001956#ifndef NDEBUG
Daniel Berlin14300262016-06-21 18:39:20 +00001957 // Walk all the blocks, comparing what the lookups think and what the access
1958 // lists think, as well as the order in the blocks vs the order in the access
1959 // lists.
1960 SmallVector<MemoryAccess *, 32> ActualAccesses;
Daniel Berlind602e042017-01-25 20:56:19 +00001961 SmallVector<MemoryAccess *, 32> ActualDefs;
Daniel Berlin14300262016-06-21 18:39:20 +00001962 for (BasicBlock &B : F) {
1963 const AccessList *AL = getBlockAccesses(&B);
Daniel Berlind602e042017-01-25 20:56:19 +00001964 const auto *DL = getBlockDefs(&B);
Daniel Berlin14300262016-06-21 18:39:20 +00001965 MemoryAccess *Phi = getMemoryAccess(&B);
Daniel Berlind602e042017-01-25 20:56:19 +00001966 if (Phi) {
Daniel Berlin14300262016-06-21 18:39:20 +00001967 ActualAccesses.push_back(Phi);
Daniel Berlind602e042017-01-25 20:56:19 +00001968 ActualDefs.push_back(Phi);
1969 }
1970
Daniel Berlin14300262016-06-21 18:39:20 +00001971 for (Instruction &I : B) {
1972 MemoryAccess *MA = getMemoryAccess(&I);
Daniel Berlind602e042017-01-25 20:56:19 +00001973 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
1974 "We have memory affecting instructions "
1975 "in this block but they are not in the "
1976 "access list or defs list");
1977 if (MA) {
Daniel Berlin14300262016-06-21 18:39:20 +00001978 ActualAccesses.push_back(MA);
Daniel Berlind602e042017-01-25 20:56:19 +00001979 if (isa<MemoryDef>(MA))
1980 ActualDefs.push_back(MA);
1981 }
Daniel Berlin14300262016-06-21 18:39:20 +00001982 }
1983 // Either we hit the assert, really have no accesses, or we have both
Daniel Berlind602e042017-01-25 20:56:19 +00001984 // accesses and an access list.
1985 // Same with defs.
1986 if (!AL && !DL)
Daniel Berlin14300262016-06-21 18:39:20 +00001987 continue;
1988 assert(AL->size() == ActualAccesses.size() &&
1989 "We don't have the same number of accesses in the block as on the "
1990 "access list");
Davide Italiano6c77de02017-01-30 03:16:43 +00001991 assert((DL || ActualDefs.size() == 0) &&
1992 "Either we should have a defs list, or we should have no defs");
Daniel Berlind602e042017-01-25 20:56:19 +00001993 assert((!DL || DL->size() == ActualDefs.size()) &&
1994 "We don't have the same number of defs in the block as on the "
1995 "def list");
Daniel Berlin14300262016-06-21 18:39:20 +00001996 auto ALI = AL->begin();
1997 auto AAI = ActualAccesses.begin();
1998 while (ALI != AL->end() && AAI != ActualAccesses.end()) {
1999 assert(&*ALI == *AAI && "Not the same accesses in the same order");
2000 ++ALI;
2001 ++AAI;
2002 }
2003 ActualAccesses.clear();
Daniel Berlind602e042017-01-25 20:56:19 +00002004 if (DL) {
2005 auto DLI = DL->begin();
2006 auto ADI = ActualDefs.begin();
2007 while (DLI != DL->end() && ADI != ActualDefs.end()) {
2008 assert(&*DLI == *ADI && "Not the same defs in the same order");
2009 ++DLI;
2010 ++ADI;
2011 }
2012 }
2013 ActualDefs.clear();
Daniel Berlin14300262016-06-21 18:39:20 +00002014 }
George Burgess IV6a9aa022018-08-28 00:32:32 +00002015#endif
Daniel Berlin932b4cb2016-02-10 17:39:43 +00002016}
2017
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00002018/// Verify the domination properties of MemorySSA by checking that each
George Burgess IVe1100f52016-02-02 22:46:49 +00002019/// definition dominates all of its uses.
Daniel Berlin932b4cb2016-02-10 17:39:43 +00002020void MemorySSA::verifyDomination(Function &F) const {
Daniel Berlin7af95872016-08-05 21:47:20 +00002021#ifndef NDEBUG
George Burgess IVe1100f52016-02-02 22:46:49 +00002022 for (BasicBlock &B : F) {
2023 // Phi nodes are attached to basic blocks
Daniel Berlin2919b1c2016-08-05 21:46:52 +00002024 if (MemoryPhi *MP = getMemoryAccess(&B))
2025 for (const Use &U : MP->uses())
2026 assert(dominates(MP, U) && "Memory PHI does not dominate it's uses");
Daniel Berlin7af95872016-08-05 21:47:20 +00002027
George Burgess IVe1100f52016-02-02 22:46:49 +00002028 for (Instruction &I : B) {
2029 MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I));
2030 if (!MD)
2031 continue;
2032
Daniel Berlin2919b1c2016-08-05 21:46:52 +00002033 for (const Use &U : MD->uses())
2034 assert(dominates(MD, U) && "Memory Def does not dominate it's uses");
George Burgess IVe1100f52016-02-02 22:46:49 +00002035 }
2036 }
Daniel Berlin7af95872016-08-05 21:47:20 +00002037#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00002038}
2039
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00002040/// Verify the def-use lists in MemorySSA, by verifying that \p Use
George Burgess IVe1100f52016-02-02 22:46:49 +00002041/// appears in the use list of \p Def.
Daniel Berlin932b4cb2016-02-10 17:39:43 +00002042void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
Daniel Berlin7af95872016-08-05 21:47:20 +00002043#ifndef NDEBUG
George Burgess IVe1100f52016-02-02 22:46:49 +00002044 // The live on entry use may cause us to get a NULL def here
Daniel Berlin7af95872016-08-05 21:47:20 +00002045 if (!Def)
2046 assert(isLiveOnEntryDef(Use) &&
2047 "Null def but use not point to live on entry def");
2048 else
Daniel Berlinda2f38e2016-08-11 21:26:50 +00002049 assert(is_contained(Def->users(), Use) &&
Daniel Berlin7af95872016-08-05 21:47:20 +00002050 "Did not find use in def's use list");
2051#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00002052}
2053
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00002054/// Verify the immediate use information, by walking all the memory
George Burgess IVe1100f52016-02-02 22:46:49 +00002055/// accesses and verifying that, for each use, it appears in the
2056/// appropriate def's use list
Daniel Berlin932b4cb2016-02-10 17:39:43 +00002057void MemorySSA::verifyDefUses(Function &F) const {
Alina Sbirlea594f0e02019-09-04 00:44:54 +00002058#if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS)
George Burgess IVe1100f52016-02-02 22:46:49 +00002059 for (BasicBlock &B : F) {
2060 // Phi nodes are attached to basic blocks
Daniel Berlin14300262016-06-21 18:39:20 +00002061 if (MemoryPhi *Phi = getMemoryAccess(&B)) {
David Majnemer580e7542016-06-25 00:04:06 +00002062 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
2063 pred_begin(&B), pred_end(&B))) &&
Daniel Berlin14300262016-06-21 18:39:20 +00002064 "Incomplete MemoryPhi Node");
Alina Sbirlea201d02c2018-06-20 21:06:13 +00002065 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002066 verifyUseInDefs(Phi->getIncomingValue(I), Phi);
Alina Sbirlea201d02c2018-06-20 21:06:13 +00002067 assert(find(predecessors(&B), Phi->getIncomingBlock(I)) !=
2068 pred_end(&B) &&
2069 "Incoming phi block not a block predecessor");
2070 }
Daniel Berlin14300262016-06-21 18:39:20 +00002071 }
George Burgess IVe1100f52016-02-02 22:46:49 +00002072
2073 for (Instruction &I : B) {
George Burgess IV66837ab2016-11-01 21:17:46 +00002074 if (MemoryUseOrDef *MA = getMemoryAccess(&I)) {
2075 verifyUseInDefs(MA->getDefiningAccess(), MA);
George Burgess IVe1100f52016-02-02 22:46:49 +00002076 }
2077 }
2078 }
George Burgess IV6a9aa022018-08-28 00:32:32 +00002079#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00002080}
2081
Daniel Berlin5c46b942016-07-19 22:49:43 +00002082/// Perform a local numbering on blocks so that instruction ordering can be
2083/// determined in constant time.
2084/// TODO: We currently just number in order. If we numbered by N, we could
2085/// allow at least N-1 sequences of insertBefore or insertAfter (and at least
2086/// log2(N) sequences of mixed before and after) without needing to invalidate
2087/// the numbering.
2088void MemorySSA::renumberBlock(const BasicBlock *B) const {
2089 // The pre-increment ensures the numbers really start at 1.
2090 unsigned long CurrentNumber = 0;
2091 const AccessList *AL = getBlockAccesses(B);
2092 assert(AL != nullptr && "Asking to renumber an empty block");
2093 for (const auto &I : *AL)
2094 BlockNumbering[&I] = ++CurrentNumber;
2095 BlockNumberingValid.insert(B);
2096}
2097
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00002098/// Determine, for two memory accesses in the same block,
George Burgess IVe1100f52016-02-02 22:46:49 +00002099/// whether \p Dominator dominates \p Dominatee.
2100/// \returns True if \p Dominator dominates \p Dominatee.
2101bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
2102 const MemoryAccess *Dominatee) const {
Daniel Berlin5c46b942016-07-19 22:49:43 +00002103 const BasicBlock *DominatorBlock = Dominator->getBlock();
Daniel Berlin5c46b942016-07-19 22:49:43 +00002104
Daniel Berlin19860302016-07-19 23:08:08 +00002105 assert((DominatorBlock == Dominatee->getBlock()) &&
Daniel Berlin5c46b942016-07-19 22:49:43 +00002106 "Asking for local domination when accesses are in different blocks!");
Sebastian Pope1f60b12016-06-10 21:36:41 +00002107 // A node dominates itself.
2108 if (Dominatee == Dominator)
2109 return true;
2110
2111 // When Dominatee is defined on function entry, it is not dominated by another
2112 // memory access.
2113 if (isLiveOnEntryDef(Dominatee))
2114 return false;
2115
2116 // When Dominator is defined on function entry, it dominates the other memory
2117 // access.
2118 if (isLiveOnEntryDef(Dominator))
2119 return true;
2120
Daniel Berlin5c46b942016-07-19 22:49:43 +00002121 if (!BlockNumberingValid.count(DominatorBlock))
2122 renumberBlock(DominatorBlock);
George Burgess IVe1100f52016-02-02 22:46:49 +00002123
Daniel Berlin5c46b942016-07-19 22:49:43 +00002124 unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
2125 // All numbers start with 1
2126 assert(DominatorNum != 0 && "Block was not numbered properly");
2127 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
2128 assert(DominateeNum != 0 && "Block was not numbered properly");
2129 return DominatorNum < DominateeNum;
George Burgess IVe1100f52016-02-02 22:46:49 +00002130}
2131
George Burgess IV5f308972016-07-19 01:29:15 +00002132bool MemorySSA::dominates(const MemoryAccess *Dominator,
2133 const MemoryAccess *Dominatee) const {
2134 if (Dominator == Dominatee)
2135 return true;
2136
2137 if (isLiveOnEntryDef(Dominatee))
2138 return false;
2139
2140 if (Dominator->getBlock() != Dominatee->getBlock())
2141 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
2142 return locallyDominates(Dominator, Dominatee);
2143}
2144
Daniel Berlin2919b1c2016-08-05 21:46:52 +00002145bool MemorySSA::dominates(const MemoryAccess *Dominator,
2146 const Use &Dominatee) const {
2147 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
2148 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
2149 // The def must dominate the incoming block of the phi.
2150 if (UseBB != Dominator->getBlock())
2151 return DT->dominates(Dominator->getBlock(), UseBB);
2152 // If the UseBB and the DefBB are the same, compare locally.
2153 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
2154 }
2155 // If it's not a PHI node use, the normal dominates can already handle it.
2156 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
2157}
2158
George Burgess IVe1100f52016-02-02 22:46:49 +00002159const static char LiveOnEntryStr[] = "liveOnEntry";
2160
Reid Kleckner96ab8722017-05-18 17:24:10 +00002161void MemoryAccess::print(raw_ostream &OS) const {
2162 switch (getValueID()) {
2163 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
2164 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
2165 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
2166 }
2167 llvm_unreachable("invalid value id");
2168}
2169
George Burgess IVe1100f52016-02-02 22:46:49 +00002170void MemoryDef::print(raw_ostream &OS) const {
2171 MemoryAccess *UO = getDefiningAccess();
2172
George Burgess IVaa283d82018-06-14 19:55:53 +00002173 auto printID = [&OS](MemoryAccess *A) {
2174 if (A && A->getID())
2175 OS << A->getID();
2176 else
2177 OS << LiveOnEntryStr;
2178 };
2179
George Burgess IVe1100f52016-02-02 22:46:49 +00002180 OS << getID() << " = MemoryDef(";
George Burgess IVaa283d82018-06-14 19:55:53 +00002181 printID(UO);
2182 OS << ")";
2183
2184 if (isOptimized()) {
2185 OS << "->";
2186 printID(getOptimized());
2187
2188 if (Optional<AliasResult> AR = getOptimizedAccessType())
2189 OS << " " << *AR;
2190 }
George Burgess IVe1100f52016-02-02 22:46:49 +00002191}
2192
2193void MemoryPhi::print(raw_ostream &OS) const {
2194 bool First = true;
2195 OS << getID() << " = MemoryPhi(";
2196 for (const auto &Op : operands()) {
2197 BasicBlock *BB = getIncomingBlock(Op);
2198 MemoryAccess *MA = cast<MemoryAccess>(Op);
2199 if (!First)
2200 OS << ',';
2201 else
2202 First = false;
2203
2204 OS << '{';
2205 if (BB->hasName())
2206 OS << BB->getName();
2207 else
2208 BB->printAsOperand(OS, false);
2209 OS << ',';
2210 if (unsigned ID = MA->getID())
2211 OS << ID;
2212 else
2213 OS << LiveOnEntryStr;
2214 OS << '}';
2215 }
2216 OS << ')';
2217}
2218
George Burgess IVe1100f52016-02-02 22:46:49 +00002219void MemoryUse::print(raw_ostream &OS) const {
2220 MemoryAccess *UO = getDefiningAccess();
2221 OS << "MemoryUse(";
2222 if (UO && UO->getID())
2223 OS << UO->getID();
2224 else
2225 OS << LiveOnEntryStr;
2226 OS << ')';
George Burgess IVaa283d82018-06-14 19:55:53 +00002227
2228 if (Optional<AliasResult> AR = getOptimizedAccessType())
2229 OS << " " << *AR;
George Burgess IVe1100f52016-02-02 22:46:49 +00002230}
2231
2232void MemoryAccess::dump() const {
Daniel Berlin78cbd282017-02-20 22:26:03 +00002233// Cannot completely remove virtual function even in release mode.
Aaron Ballman615eb472017-10-15 14:32:27 +00002234#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
George Burgess IVe1100f52016-02-02 22:46:49 +00002235 print(dbgs());
2236 dbgs() << "\n";
Matthias Braun8c209aa2017-01-28 02:02:38 +00002237#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00002238}
2239
Chad Rosier232e29e2016-07-06 21:20:47 +00002240char MemorySSAPrinterLegacyPass::ID = 0;
2241
2242MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
2243 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
2244}
2245
2246void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
2247 AU.setPreservesAll();
2248 AU.addRequired<MemorySSAWrapperPass>();
Chad Rosier232e29e2016-07-06 21:20:47 +00002249}
2250
2251bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
2252 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
2253 MSSA.print(dbgs());
2254 if (VerifyMemorySSA)
2255 MSSA.verifyMemorySSA();
2256 return false;
2257}
2258
Chandler Carruthdab4eae2016-11-23 17:53:26 +00002259AnalysisKey MemorySSAAnalysis::Key;
George Burgess IVe1100f52016-02-02 22:46:49 +00002260
Daniel Berlin1e98c042016-09-26 17:22:54 +00002261MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
2262 FunctionAnalysisManager &AM) {
Geoff Berryb96d3b22016-06-01 21:30:40 +00002263 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
2264 auto &AA = AM.getResult<AAManager>(F);
Jonas Devlieghere0eaee542019-08-15 15:54:37 +00002265 return MemorySSAAnalysis::Result(std::make_unique<MemorySSA>(F, &AA, &DT));
George Burgess IVe1100f52016-02-02 22:46:49 +00002266}
2267
Alina Sbirleab4683202019-04-30 22:43:55 +00002268bool MemorySSAAnalysis::Result::invalidate(
2269 Function &F, const PreservedAnalyses &PA,
2270 FunctionAnalysisManager::Invalidator &Inv) {
2271 auto PAC = PA.getChecker<MemorySSAAnalysis>();
2272 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
2273 Inv.invalidate<AAManager>(F, PA) ||
2274 Inv.invalidate<DominatorTreeAnalysis>(F, PA);
2275}
2276
Geoff Berryb96d3b22016-06-01 21:30:40 +00002277PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
2278 FunctionAnalysisManager &AM) {
2279 OS << "MemorySSA for function: " << F.getName() << "\n";
Geoff Berry290a13e2016-08-08 18:27:22 +00002280 AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);
Geoff Berryb96d3b22016-06-01 21:30:40 +00002281
2282 return PreservedAnalyses::all();
George Burgess IVe1100f52016-02-02 22:46:49 +00002283}
2284
Geoff Berryb96d3b22016-06-01 21:30:40 +00002285PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
2286 FunctionAnalysisManager &AM) {
Geoff Berry290a13e2016-08-08 18:27:22 +00002287 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
Geoff Berryb96d3b22016-06-01 21:30:40 +00002288
2289 return PreservedAnalyses::all();
2290}
2291
2292char MemorySSAWrapperPass::ID = 0;
2293
2294MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
2295 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
2296}
2297
2298void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
2299
2300void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
George Burgess IVe1100f52016-02-02 22:46:49 +00002301 AU.setPreservesAll();
Geoff Berryb96d3b22016-06-01 21:30:40 +00002302 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2303 AU.addRequiredTransitive<AAResultsWrapperPass>();
George Burgess IVe1100f52016-02-02 22:46:49 +00002304}
2305
Geoff Berryb96d3b22016-06-01 21:30:40 +00002306bool MemorySSAWrapperPass::runOnFunction(Function &F) {
2307 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2308 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2309 MSSA.reset(new MemorySSA(F, &AA, &DT));
George Burgess IVe1100f52016-02-02 22:46:49 +00002310 return false;
2311}
2312
Geoff Berryb96d3b22016-06-01 21:30:40 +00002313void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); }
George Burgess IVe1100f52016-02-02 22:46:49 +00002314
Geoff Berryb96d3b22016-06-01 21:30:40 +00002315void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
George Burgess IVe1100f52016-02-02 22:46:49 +00002316 MSSA->print(OS);
2317}
2318
George Burgess IVe1100f52016-02-02 22:46:49 +00002319MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
2320
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002321/// Walk the use-def chains starting at \p StartingAccess and find
George Burgess IVe1100f52016-02-02 22:46:49 +00002322/// the MemoryAccess that actually clobbers Loc.
2323///
2324/// \returns our clobbering memory access
Alina Sbirleabfc779e2019-03-22 17:22:19 +00002325template <typename AliasAnalysisType>
2326MemoryAccess *
2327MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase(
Alina Sbirleaf085cc52019-03-29 21:56:09 +00002328 MemoryAccess *StartingAccess, const MemoryLocation &Loc,
2329 unsigned &UpwardWalkLimit) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002330 if (isa<MemoryPhi>(StartingAccess))
2331 return StartingAccess;
2332
2333 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
2334 if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
2335 return StartingUseOrDef;
2336
2337 Instruction *I = StartingUseOrDef->getMemoryInst();
2338
2339 // Conservatively, fences are always clobbers, so don't perform the walk if we
2340 // hit a fence.
Chandler Carruth363ac682019-01-07 05:42:51 +00002341 if (!isa<CallBase>(I) && I->isFenceLike())
George Burgess IVe1100f52016-02-02 22:46:49 +00002342 return StartingUseOrDef;
2343
2344 UpwardsMemoryQuery Q;
2345 Q.OriginalAccess = StartingUseOrDef;
2346 Q.StartingLoc = Loc;
George Burgess IV5f308972016-07-19 01:29:15 +00002347 Q.Inst = I;
George Burgess IVe1100f52016-02-02 22:46:49 +00002348 Q.IsCall = false;
George Burgess IVe1100f52016-02-02 22:46:49 +00002349
George Burgess IVe1100f52016-02-02 22:46:49 +00002350 // Unlike the other function, do not walk to the def of a def, because we are
2351 // handed something we already believe is the clobbering access.
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002352 // We never set SkipSelf to true in Q in this method.
George Burgess IVe1100f52016-02-02 22:46:49 +00002353 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
2354 ? StartingUseOrDef->getDefiningAccess()
2355 : StartingUseOrDef;
2356
Alina Sbirleaf085cc52019-03-29 21:56:09 +00002357 MemoryAccess *Clobber =
2358 Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit);
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002359 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2360 LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n");
2361 LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2362 LLVM_DEBUG(dbgs() << *Clobber << "\n");
George Burgess IVe1100f52016-02-02 22:46:49 +00002363 return Clobber;
2364}
2365
Alina Sbirleabfc779e2019-03-22 17:22:19 +00002366template <typename AliasAnalysisType>
George Burgess IVe1100f52016-02-02 22:46:49 +00002367MemoryAccess *
Alina Sbirleabfc779e2019-03-22 17:22:19 +00002368MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase(
Alina Sbirleaf085cc52019-03-29 21:56:09 +00002369 MemoryAccess *MA, unsigned &UpwardWalkLimit, bool SkipSelf) {
George Burgess IV400ae402016-07-20 19:51:34 +00002370 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
2371 // If this is a MemoryPhi, we can't do anything.
2372 if (!StartingAccess)
2373 return MA;
George Burgess IVe1100f52016-02-02 22:46:49 +00002374
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002375 bool IsOptimized = false;
2376
Daniel Berlincd2deac2016-10-20 20:13:45 +00002377 // If this is an already optimized use or def, return the optimized result.
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002378 // Note: Currently, we store the optimized def result in a separate field,
2379 // since we can't use the defining access.
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002380 if (StartingAccess->isOptimized()) {
2381 if (!SkipSelf || !isa<MemoryDef>(StartingAccess))
2382 return StartingAccess->getOptimized();
2383 IsOptimized = true;
2384 }
Daniel Berlincd2deac2016-10-20 20:13:45 +00002385
George Burgess IV400ae402016-07-20 19:51:34 +00002386 const Instruction *I = StartingAccess->getMemoryInst();
George Burgess IV44477c62018-03-11 04:16:12 +00002387 // We can't sanely do anything with a fence, since they conservatively clobber
2388 // all memory, and have no locations to get pointers from to try to
2389 // disambiguate.
Chandler Carruth363ac682019-01-07 05:42:51 +00002390 if (!isa<CallBase>(I) && I->isFenceLike())
George Burgess IVe1100f52016-02-02 22:46:49 +00002391 return StartingAccess;
2392
Alina Sbirleab4d088d2018-11-13 21:12:49 +00002393 UpwardsMemoryQuery Q(I, StartingAccess);
2394
Alina Sbirleabfc779e2019-03-22 17:22:19 +00002395 if (isUseTriviallyOptimizableToLiveOnEntry(*Walker.getAA(), I)) {
George Burgess IV024f3d22016-08-03 19:57:02 +00002396 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
George Burgess IV44477c62018-03-11 04:16:12 +00002397 StartingAccess->setOptimized(LiveOnEntry);
2398 StartingAccess->setOptimizedAccessType(None);
George Burgess IV024f3d22016-08-03 19:57:02 +00002399 return LiveOnEntry;
2400 }
2401
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002402 MemoryAccess *OptimizedAccess;
2403 if (!IsOptimized) {
2404 // Start with the thing we already think clobbers this location
2405 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
George Burgess IVe1100f52016-02-02 22:46:49 +00002406
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002407 // At this point, DefiningAccess may be the live on entry def.
2408 // If it is, we will not get a better result.
2409 if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
2410 StartingAccess->setOptimized(DefiningAccess);
2411 StartingAccess->setOptimizedAccessType(None);
2412 return DefiningAccess;
2413 }
George Burgess IVe1100f52016-02-02 22:46:49 +00002414
Alina Sbirleaf085cc52019-03-29 21:56:09 +00002415 OptimizedAccess = Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit);
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002416 StartingAccess->setOptimized(OptimizedAccess);
2417 if (MSSA->isLiveOnEntryDef(OptimizedAccess))
2418 StartingAccess->setOptimizedAccessType(None);
2419 else if (Q.AR == MustAlias)
2420 StartingAccess->setOptimizedAccessType(MustAlias);
2421 } else
2422 OptimizedAccess = StartingAccess->getOptimized();
2423
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002424 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002425 LLVM_DEBUG(dbgs() << *StartingAccess << "\n");
2426 LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is ");
2427 LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n");
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002428
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002429 MemoryAccess *Result;
2430 if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) &&
Alina Sbirleaf085cc52019-03-29 21:56:09 +00002431 isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) {
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002432 assert(isa<MemoryDef>(Q.OriginalAccess));
2433 Q.SkipSelfAccess = true;
Alina Sbirleaf085cc52019-03-29 21:56:09 +00002434 Result = Walker.findClobber(OptimizedAccess, Q, UpwardWalkLimit);
Alina Sbirleabc8aa242019-01-07 19:22:37 +00002435 } else
2436 Result = OptimizedAccess;
2437
2438 LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf);
2439 LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n");
George Burgess IVe1100f52016-02-02 22:46:49 +00002440
2441 return Result;
2442}
2443
George Burgess IVe1100f52016-02-02 22:46:49 +00002444MemoryAccess *
George Burgess IV400ae402016-07-20 19:51:34 +00002445DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002446 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
2447 return Use->getDefiningAccess();
2448 return MA;
2449}
2450
2451MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
George Burgess IV013fd732016-10-28 19:22:46 +00002452 MemoryAccess *StartingAccess, const MemoryLocation &) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002453 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
2454 return Use->getDefiningAccess();
2455 return StartingAccess;
2456}
Reid Kleckner96ab8722017-05-18 17:24:10 +00002457
2458void MemoryPhi::deleteMe(DerivedUser *Self) {
2459 delete static_cast<MemoryPhi *>(Self);
2460}
2461
2462void MemoryDef::deleteMe(DerivedUser *Self) {
2463 delete static_cast<MemoryDef *>(Self);
2464}
2465
2466void MemoryUse::deleteMe(DerivedUser *Self) {
2467 delete static_cast<MemoryUse *>(Self);
2468}