blob: 8357ddbc34445cc10d486b07aded6d266ff99b08 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. These classes are reference counted, managed by the SCEVHandle
18// class. We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression. These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43// Chains of recurrences -- a method to expedite the evaluation
44// of closed-form functions
45// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47// On computational properties of chains of recurrences
48// Eugene V. Zima
49//
50// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51// Robert A. van Engelen
52//
53// Efficient Symbolic Analysis for Optimizing Compilers
54// Robert A. van Engelen
55//
56// Using the chains of recurrences algebra for data dependence testing and
57// induction variable substitution
58// MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
68#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng98c073b2009-02-17 00:13:06 +000069#include "llvm/Analysis/Dominators.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000070#include "llvm/Analysis/LoopInfo.h"
71#include "llvm/Assembly/Writer.h"
Dan Gohman01c2ee72009-04-16 03:18:22 +000072#include "llvm/Target/TargetData.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000073#include "llvm/Support/CommandLine.h"
74#include "llvm/Support/Compiler.h"
75#include "llvm/Support/ConstantRange.h"
Dan Gohman01c2ee72009-04-16 03:18:22 +000076#include "llvm/Support/GetElementPtrTypeIterator.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000077#include "llvm/Support/InstIterator.h"
78#include "llvm/Support/ManagedStatic.h"
79#include "llvm/Support/MathExtras.h"
Dan Gohman13058cc2009-04-21 00:47:46 +000080#include "llvm/Support/raw_ostream.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000081#include "llvm/ADT/Statistic.h"
Dan Gohman01c2ee72009-04-16 03:18:22 +000082#include "llvm/ADT/STLExtras.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000083#include <algorithm>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000084using namespace llvm;
85
Dan Gohmanf17a25c2007-07-18 16:29:46 +000086STATISTIC(NumArrayLenItCounts,
87 "Number of trip counts computed with array length");
88STATISTIC(NumTripCountsComputed,
89 "Number of loops with predictable loop counts");
90STATISTIC(NumTripCountsNotComputed,
91 "Number of loops without predictable loop counts");
92STATISTIC(NumBruteForceTripCountsComputed,
93 "Number of loops with trip counts computed by force");
94
Dan Gohman089efff2008-05-13 00:00:25 +000095static cl::opt<unsigned>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000096MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
97 cl::desc("Maximum number of iterations SCEV will "
98 "symbolically execute a constant derived loop"),
99 cl::init(100));
100
Dan Gohman089efff2008-05-13 00:00:25 +0000101static RegisterPass<ScalarEvolution>
102R("scalar-evolution", "Scalar Evolution Analysis", false, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000103char ScalarEvolution::ID = 0;
104
105//===----------------------------------------------------------------------===//
106// SCEV class definitions
107//===----------------------------------------------------------------------===//
108
109//===----------------------------------------------------------------------===//
110// Implementation of the SCEV class.
111//
112SCEV::~SCEV() {}
113void SCEV::dump() const {
Dan Gohman13058cc2009-04-21 00:47:46 +0000114 print(errs());
115 errs() << '\n';
116}
117
118void SCEV::print(std::ostream &o) const {
119 raw_os_ostream OS(o);
120 print(OS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000121}
122
Dan Gohman7b560c42008-06-18 16:23:07 +0000123bool SCEV::isZero() const {
124 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
125 return SC->getValue()->isZero();
126 return false;
127}
128
Dan Gohmanf8bc8e82009-05-18 15:22:39 +0000129bool SCEV::isOne() const {
130 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
131 return SC->getValue()->isOne();
132 return false;
133}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000134
135SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
Dan Gohmanffd36ba2009-04-21 23:15:49 +0000136SCEVCouldNotCompute::~SCEVCouldNotCompute() {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000137
138bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
139 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
140 return false;
141}
142
143const Type *SCEVCouldNotCompute::getType() const {
144 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
145 return 0;
146}
147
148bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
149 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
150 return false;
151}
152
153SCEVHandle SCEVCouldNotCompute::
154replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman89f85052007-10-22 18:31:58 +0000155 const SCEVHandle &Conc,
156 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000157 return this;
158}
159
Dan Gohman13058cc2009-04-21 00:47:46 +0000160void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000161 OS << "***COULDNOTCOMPUTE***";
162}
163
164bool SCEVCouldNotCompute::classof(const SCEV *S) {
165 return S->getSCEVType() == scCouldNotCompute;
166}
167
168
169// SCEVConstants - Only allow the creation of one SCEVConstant for any
170// particular value. Don't use a SCEVHandle here, or else the object will
171// never be deleted!
172static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
173
174
175SCEVConstant::~SCEVConstant() {
176 SCEVConstants->erase(V);
177}
178
Dan Gohman89f85052007-10-22 18:31:58 +0000179SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000180 SCEVConstant *&R = (*SCEVConstants)[V];
181 if (R == 0) R = new SCEVConstant(V);
182 return R;
183}
184
Dan Gohman89f85052007-10-22 18:31:58 +0000185SCEVHandle ScalarEvolution::getConstant(const APInt& Val) {
186 return getConstant(ConstantInt::get(Val));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000187}
188
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000189const Type *SCEVConstant::getType() const { return V->getType(); }
190
Dan Gohman13058cc2009-04-21 00:47:46 +0000191void SCEVConstant::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000192 WriteAsOperand(OS, V, false);
193}
194
Dan Gohman2a381532009-04-21 01:25:57 +0000195SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy,
196 const SCEVHandle &op, const Type *ty)
197 : SCEV(SCEVTy), Op(op), Ty(ty) {}
198
199SCEVCastExpr::~SCEVCastExpr() {}
200
201bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
202 return Op->dominates(BB, DT);
203}
204
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000205// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
206// particular input. Don't use a SCEVHandle here, or else the object will
207// never be deleted!
Dan Gohmanbff6b582009-05-04 22:30:44 +0000208static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000209 SCEVTruncateExpr*> > SCEVTruncates;
210
211SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
Dan Gohman2a381532009-04-21 01:25:57 +0000212 : SCEVCastExpr(scTruncate, op, ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000213 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
214 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000215 "Cannot truncate non-integer value!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000216}
217
218SCEVTruncateExpr::~SCEVTruncateExpr() {
219 SCEVTruncates->erase(std::make_pair(Op, Ty));
220}
221
Dan Gohman13058cc2009-04-21 00:47:46 +0000222void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohmanc9119222009-04-29 20:27:52 +0000223 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000224}
225
226// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
227// particular input. Don't use a SCEVHandle here, or else the object will never
228// be deleted!
Dan Gohmanbff6b582009-05-04 22:30:44 +0000229static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000230 SCEVZeroExtendExpr*> > SCEVZeroExtends;
231
232SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
Dan Gohman2a381532009-04-21 01:25:57 +0000233 : SCEVCastExpr(scZeroExtend, op, ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000234 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
235 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000236 "Cannot zero extend non-integer value!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000237}
238
239SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
240 SCEVZeroExtends->erase(std::make_pair(Op, Ty));
241}
242
Dan Gohman13058cc2009-04-21 00:47:46 +0000243void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohmanc9119222009-04-29 20:27:52 +0000244 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000245}
246
247// SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
248// particular input. Don't use a SCEVHandle here, or else the object will never
249// be deleted!
Dan Gohmanbff6b582009-05-04 22:30:44 +0000250static ManagedStatic<std::map<std::pair<const SCEV*, const Type*>,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000251 SCEVSignExtendExpr*> > SCEVSignExtends;
252
253SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty)
Dan Gohman2a381532009-04-21 01:25:57 +0000254 : SCEVCastExpr(scSignExtend, op, ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000255 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
256 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000257 "Cannot sign extend non-integer value!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000258}
259
260SCEVSignExtendExpr::~SCEVSignExtendExpr() {
261 SCEVSignExtends->erase(std::make_pair(Op, Ty));
262}
263
Dan Gohman13058cc2009-04-21 00:47:46 +0000264void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohmanc9119222009-04-29 20:27:52 +0000265 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000266}
267
268// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
269// particular input. Don't use a SCEVHandle here, or else the object will never
270// be deleted!
Dan Gohmanbff6b582009-05-04 22:30:44 +0000271static ManagedStatic<std::map<std::pair<unsigned, std::vector<const SCEV*> >,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000272 SCEVCommutativeExpr*> > SCEVCommExprs;
273
274SCEVCommutativeExpr::~SCEVCommutativeExpr() {
Dan Gohmanbff6b582009-05-04 22:30:44 +0000275 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
276 SCEVCommExprs->erase(std::make_pair(getSCEVType(), SCEVOps));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000277}
278
Dan Gohman13058cc2009-04-21 00:47:46 +0000279void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000280 assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
281 const char *OpStr = getOperationStr();
282 OS << "(" << *Operands[0];
283 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
284 OS << OpStr << *Operands[i];
285 OS << ")";
286}
287
288SCEVHandle SCEVCommutativeExpr::
289replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman89f85052007-10-22 18:31:58 +0000290 const SCEVHandle &Conc,
291 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000292 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Dan Gohman89f85052007-10-22 18:31:58 +0000293 SCEVHandle H =
294 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000295 if (H != getOperand(i)) {
Dan Gohman02ff9392009-06-14 22:47:23 +0000296 SmallVector<SCEVHandle, 8> NewOps;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000297 NewOps.reserve(getNumOperands());
298 for (unsigned j = 0; j != i; ++j)
299 NewOps.push_back(getOperand(j));
300 NewOps.push_back(H);
301 for (++i; i != e; ++i)
302 NewOps.push_back(getOperand(i)->
Dan Gohman89f85052007-10-22 18:31:58 +0000303 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000304
305 if (isa<SCEVAddExpr>(this))
Dan Gohman89f85052007-10-22 18:31:58 +0000306 return SE.getAddExpr(NewOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000307 else if (isa<SCEVMulExpr>(this))
Dan Gohman89f85052007-10-22 18:31:58 +0000308 return SE.getMulExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +0000309 else if (isa<SCEVSMaxExpr>(this))
310 return SE.getSMaxExpr(NewOps);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +0000311 else if (isa<SCEVUMaxExpr>(this))
312 return SE.getUMaxExpr(NewOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000313 else
314 assert(0 && "Unknown commutative expr!");
315 }
316 }
317 return this;
318}
319
Dan Gohman72a8a022009-05-07 14:00:19 +0000320bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Evan Cheng98c073b2009-02-17 00:13:06 +0000321 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
322 if (!getOperand(i)->dominates(BB, DT))
323 return false;
324 }
325 return true;
326}
327
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000328
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000329// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000330// input. Don't use a SCEVHandle here, or else the object will never be
331// deleted!
Dan Gohmanbff6b582009-05-04 22:30:44 +0000332static ManagedStatic<std::map<std::pair<const SCEV*, const SCEV*>,
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000333 SCEVUDivExpr*> > SCEVUDivs;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000334
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000335SCEVUDivExpr::~SCEVUDivExpr() {
336 SCEVUDivs->erase(std::make_pair(LHS, RHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000337}
338
Evan Cheng98c073b2009-02-17 00:13:06 +0000339bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
340 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
341}
342
Dan Gohman13058cc2009-04-21 00:47:46 +0000343void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000344 OS << "(" << *LHS << " /u " << *RHS << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000345}
346
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000347const Type *SCEVUDivExpr::getType() const {
Dan Gohman140f08f2009-05-26 17:44:05 +0000348 // In most cases the types of LHS and RHS will be the same, but in some
349 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
350 // depend on the type for correctness, but handling types carefully can
351 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
352 // a pointer type than the RHS, so use the RHS' type here.
353 return RHS->getType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000354}
355
356// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
357// particular input. Don't use a SCEVHandle here, or else the object will never
358// be deleted!
Dan Gohmanbff6b582009-05-04 22:30:44 +0000359static ManagedStatic<std::map<std::pair<const Loop *,
360 std::vector<const SCEV*> >,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000361 SCEVAddRecExpr*> > SCEVAddRecExprs;
362
363SCEVAddRecExpr::~SCEVAddRecExpr() {
Dan Gohmanbff6b582009-05-04 22:30:44 +0000364 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
365 SCEVAddRecExprs->erase(std::make_pair(L, SCEVOps));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000366}
367
368SCEVHandle SCEVAddRecExpr::
369replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman89f85052007-10-22 18:31:58 +0000370 const SCEVHandle &Conc,
371 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000372 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Dan Gohman89f85052007-10-22 18:31:58 +0000373 SCEVHandle H =
374 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000375 if (H != getOperand(i)) {
Dan Gohman02ff9392009-06-14 22:47:23 +0000376 SmallVector<SCEVHandle, 8> NewOps;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000377 NewOps.reserve(getNumOperands());
378 for (unsigned j = 0; j != i; ++j)
379 NewOps.push_back(getOperand(j));
380 NewOps.push_back(H);
381 for (++i; i != e; ++i)
382 NewOps.push_back(getOperand(i)->
Dan Gohman89f85052007-10-22 18:31:58 +0000383 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000384
Dan Gohman89f85052007-10-22 18:31:58 +0000385 return SE.getAddRecExpr(NewOps, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000386 }
387 }
388 return this;
389}
390
391
392bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
393 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
394 // contain L and if the start is invariant.
Dan Gohmanae1eaae2009-05-20 01:01:24 +0000395 // Add recurrences are never invariant in the function-body (null loop).
396 return QueryLoop &&
397 !QueryLoop->contains(L->getHeader()) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000398 getOperand(0)->isLoopInvariant(QueryLoop);
399}
400
401
Dan Gohman13058cc2009-04-21 00:47:46 +0000402void SCEVAddRecExpr::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000403 OS << "{" << *Operands[0];
404 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
405 OS << ",+," << *Operands[i];
406 OS << "}<" << L->getHeader()->getName() + ">";
407}
408
409// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
410// value. Don't use a SCEVHandle here, or else the object will never be
411// deleted!
412static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
413
414SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
415
416bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
417 // All non-instruction values are loop invariant. All instructions are loop
418 // invariant if they are not contained in the specified loop.
Dan Gohmanae1eaae2009-05-20 01:01:24 +0000419 // Instructions are never considered invariant in the function body
420 // (null loop) because they are defined within the "loop".
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000421 if (Instruction *I = dyn_cast<Instruction>(V))
Dan Gohmanae1eaae2009-05-20 01:01:24 +0000422 return L && !L->contains(I->getParent());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000423 return true;
424}
425
Evan Cheng98c073b2009-02-17 00:13:06 +0000426bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
427 if (Instruction *I = dyn_cast<Instruction>(getValue()))
428 return DT->dominates(I->getParent(), BB);
429 return true;
430}
431
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000432const Type *SCEVUnknown::getType() const {
433 return V->getType();
434}
435
Dan Gohman13058cc2009-04-21 00:47:46 +0000436void SCEVUnknown::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000437 WriteAsOperand(OS, V, false);
438}
439
440//===----------------------------------------------------------------------===//
441// SCEV Utilities
442//===----------------------------------------------------------------------===//
443
444namespace {
445 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
446 /// than the complexity of the RHS. This comparator is used to canonicalize
447 /// expressions.
Dan Gohman5d486452009-05-07 14:39:04 +0000448 class VISIBILITY_HIDDEN SCEVComplexityCompare {
449 LoopInfo *LI;
450 public:
451 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
452
Dan Gohmanc0c69cf2008-04-14 18:23:56 +0000453 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman5d486452009-05-07 14:39:04 +0000454 // Primarily, sort the SCEVs by their getSCEVType().
455 if (LHS->getSCEVType() != RHS->getSCEVType())
456 return LHS->getSCEVType() < RHS->getSCEVType();
457
458 // Aside from the getSCEVType() ordering, the particular ordering
459 // isn't very important except that it's beneficial to be consistent,
460 // so that (a + b) and (b + a) don't end up as different expressions.
461
462 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
463 // not as complete as it could be.
464 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
465 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
466
Dan Gohmand0c01232009-05-19 02:15:55 +0000467 // Order pointer values after integer values. This helps SCEVExpander
468 // form GEPs.
469 if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType()))
470 return false;
471 if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType()))
472 return true;
473
Dan Gohman5d486452009-05-07 14:39:04 +0000474 // Compare getValueID values.
475 if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
476 return LU->getValue()->getValueID() < RU->getValue()->getValueID();
477
478 // Sort arguments by their position.
479 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
480 const Argument *RA = cast<Argument>(RU->getValue());
481 return LA->getArgNo() < RA->getArgNo();
482 }
483
484 // For instructions, compare their loop depth, and their opcode.
485 // This is pretty loose.
486 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
487 Instruction *RV = cast<Instruction>(RU->getValue());
488
489 // Compare loop depths.
490 if (LI->getLoopDepth(LV->getParent()) !=
491 LI->getLoopDepth(RV->getParent()))
492 return LI->getLoopDepth(LV->getParent()) <
493 LI->getLoopDepth(RV->getParent());
494
495 // Compare opcodes.
496 if (LV->getOpcode() != RV->getOpcode())
497 return LV->getOpcode() < RV->getOpcode();
498
499 // Compare the number of operands.
500 if (LV->getNumOperands() != RV->getNumOperands())
501 return LV->getNumOperands() < RV->getNumOperands();
502 }
503
504 return false;
505 }
506
507 // Constant sorting doesn't matter since they'll be folded.
508 if (isa<SCEVConstant>(LHS))
509 return false;
510
511 // Lexicographically compare n-ary expressions.
512 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
513 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
514 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
515 if (i >= RC->getNumOperands())
516 return false;
517 if (operator()(LC->getOperand(i), RC->getOperand(i)))
518 return true;
519 if (operator()(RC->getOperand(i), LC->getOperand(i)))
520 return false;
521 }
522 return LC->getNumOperands() < RC->getNumOperands();
523 }
524
Dan Gohman6e10db12009-05-07 19:23:21 +0000525 // Lexicographically compare udiv expressions.
526 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
527 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
528 if (operator()(LC->getLHS(), RC->getLHS()))
529 return true;
530 if (operator()(RC->getLHS(), LC->getLHS()))
531 return false;
532 if (operator()(LC->getRHS(), RC->getRHS()))
533 return true;
534 if (operator()(RC->getRHS(), LC->getRHS()))
535 return false;
536 return false;
537 }
538
Dan Gohman5d486452009-05-07 14:39:04 +0000539 // Compare cast expressions by operand.
540 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
541 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
542 return operator()(LC->getOperand(), RC->getOperand());
543 }
544
545 assert(0 && "Unknown SCEV kind!");
546 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000547 }
548 };
549}
550
551/// GroupByComplexity - Given a list of SCEV objects, order them by their
552/// complexity, and group objects of the same complexity together by value.
553/// When this routine is finished, we know that any duplicates in the vector are
554/// consecutive and that complexity is monotonically increasing.
555///
556/// Note that we go take special precautions to ensure that we get determinstic
557/// results from this routine. In other words, we don't want the results of
558/// this to depend on where the addresses of various SCEV objects happened to
559/// land in memory.
560///
Dan Gohman02ff9392009-06-14 22:47:23 +0000561static void GroupByComplexity(SmallVectorImpl<SCEVHandle> &Ops,
Dan Gohman5d486452009-05-07 14:39:04 +0000562 LoopInfo *LI) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000563 if (Ops.size() < 2) return; // Noop
564 if (Ops.size() == 2) {
565 // This is the common case, which also happens to be trivially simple.
566 // Special case it.
Dan Gohman5d486452009-05-07 14:39:04 +0000567 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000568 std::swap(Ops[0], Ops[1]);
569 return;
570 }
571
572 // Do the rough sort by complexity.
Dan Gohman5d486452009-05-07 14:39:04 +0000573 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000574
575 // Now that we are sorted by complexity, group elements of the same
576 // complexity. Note that this is, at worst, N^2, but the vector is likely to
577 // be extremely short in practice. Note that we take this approach because we
578 // do not want to depend on the addresses of the objects we are grouping.
579 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
Dan Gohmanbff6b582009-05-04 22:30:44 +0000580 const SCEV *S = Ops[i];
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000581 unsigned Complexity = S->getSCEVType();
582
583 // If there are any objects of the same complexity and same value as this
584 // one, group them.
585 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
586 if (Ops[j] == S) { // Found a duplicate.
587 // Move it to immediately after i'th element.
588 std::swap(Ops[i+1], Ops[j]);
589 ++i; // no need to rescan it.
590 if (i == e-2) return; // Done!
591 }
592 }
593 }
594}
595
596
597
598//===----------------------------------------------------------------------===//
599// Simple SCEV method implementations
600//===----------------------------------------------------------------------===//
601
Eli Friedman7489ec92008-08-04 23:49:06 +0000602/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohmanc8a29272009-05-24 23:45:28 +0000603/// Assume, K > 0.
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000604static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K,
Eli Friedman7489ec92008-08-04 23:49:06 +0000605 ScalarEvolution &SE,
Dan Gohman01c2ee72009-04-16 03:18:22 +0000606 const Type* ResultTy) {
Eli Friedman7489ec92008-08-04 23:49:06 +0000607 // Handle the simplest case efficiently.
608 if (K == 1)
609 return SE.getTruncateOrZeroExtend(It, ResultTy);
610
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000611 // We are using the following formula for BC(It, K):
612 //
613 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
614 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000615 // Suppose, W is the bitwidth of the return value. We must be prepared for
616 // overflow. Hence, we must assure that the result of our computation is
617 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
618 // safe in modular arithmetic.
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000619 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000620 // However, this code doesn't use exactly that formula; the formula it uses
621 // is something like the following, where T is the number of factors of 2 in
622 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
623 // exponentiation:
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000624 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000625 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000626 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000627 // This formula is trivially equivalent to the previous formula. However,
628 // this formula can be implemented much more efficiently. The trick is that
629 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
630 // arithmetic. To do exact division in modular arithmetic, all we have
631 // to do is multiply by the inverse. Therefore, this step can be done at
632 // width W.
633 //
634 // The next issue is how to safely do the division by 2^T. The way this
635 // is done is by doing the multiplication step at a width of at least W + T
636 // bits. This way, the bottom W+T bits of the product are accurate. Then,
637 // when we perform the division by 2^T (which is equivalent to a right shift
638 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
639 // truncated out after the division by 2^T.
640 //
641 // In comparison to just directly using the first formula, this technique
642 // is much more efficient; using the first formula requires W * K bits,
643 // but this formula less than W + K bits. Also, the first formula requires
644 // a division step, whereas this formula only requires multiplies and shifts.
645 //
646 // It doesn't matter whether the subtraction step is done in the calculation
647 // width or the input iteration count's width; if the subtraction overflows,
648 // the result must be zero anyway. We prefer here to do it in the width of
649 // the induction variable because it helps a lot for certain cases; CodeGen
650 // isn't smart enough to ignore the overflow, which leads to much less
651 // efficient code if the width of the subtraction is wider than the native
652 // register width.
653 //
654 // (It's possible to not widen at all by pulling out factors of 2 before
655 // the multiplication; for example, K=2 can be calculated as
656 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
657 // extra arithmetic, so it's not an obvious win, and it gets
658 // much more complicated for K > 3.)
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000659
Eli Friedman7489ec92008-08-04 23:49:06 +0000660 // Protection from insane SCEVs; this bound is conservative,
661 // but it probably doesn't matter.
662 if (K > 1000)
Dan Gohman0ad08b02009-04-18 17:58:19 +0000663 return SE.getCouldNotCompute();
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000664
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000665 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000666
Eli Friedman7489ec92008-08-04 23:49:06 +0000667 // Calculate K! / 2^T and T; we divide out the factors of two before
668 // multiplying for calculating K! / 2^T to avoid overflow.
669 // Other overflow doesn't matter because we only care about the bottom
670 // W bits of the result.
671 APInt OddFactorial(W, 1);
672 unsigned T = 1;
673 for (unsigned i = 3; i <= K; ++i) {
674 APInt Mult(W, i);
675 unsigned TwoFactors = Mult.countTrailingZeros();
676 T += TwoFactors;
677 Mult = Mult.lshr(TwoFactors);
678 OddFactorial *= Mult;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000679 }
Nick Lewyckydbaa60a2008-06-13 04:38:55 +0000680
Eli Friedman7489ec92008-08-04 23:49:06 +0000681 // We need at least W + T bits for the multiplication step
nicholas9e3e5fd2009-01-25 08:16:27 +0000682 unsigned CalculationBits = W + T;
Eli Friedman7489ec92008-08-04 23:49:06 +0000683
684 // Calcuate 2^T, at width T+W.
685 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
686
687 // Calculate the multiplicative inverse of K! / 2^T;
688 // this multiplication factor will perform the exact division by
689 // K! / 2^T.
690 APInt Mod = APInt::getSignedMinValue(W+1);
691 APInt MultiplyFactor = OddFactorial.zext(W+1);
692 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
693 MultiplyFactor = MultiplyFactor.trunc(W);
694
695 // Calculate the product, at width T+W
696 const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
697 SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
698 for (unsigned i = 1; i != K; ++i) {
699 SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
700 Dividend = SE.getMulExpr(Dividend,
701 SE.getTruncateOrZeroExtend(S, CalculationTy));
702 }
703
704 // Divide by 2^T
705 SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
706
707 // Truncate the result, and divide by K! / 2^T.
708
709 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
710 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000711}
712
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000713/// evaluateAtIteration - Return the value of this chain of recurrences at
714/// the specified iteration number. We can evaluate this recurrence by
715/// multiplying each element in the chain by the binomial coefficient
716/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
717///
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000718/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000719///
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000720/// where BC(It, k) stands for binomial coefficient.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000721///
Dan Gohman89f85052007-10-22 18:31:58 +0000722SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It,
723 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000724 SCEVHandle Result = getStart();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000725 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000726 // The computation is correct in the face of overflow provided that the
727 // multiplication is performed _after_ the evaluation of the binomial
728 // coefficient.
Dan Gohman01c2ee72009-04-16 03:18:22 +0000729 SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckyb6218e02008-10-13 03:58:02 +0000730 if (isa<SCEVCouldNotCompute>(Coeff))
731 return Coeff;
732
733 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000734 }
735 return Result;
736}
737
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000738//===----------------------------------------------------------------------===//
739// SCEV Expression folder implementations
740//===----------------------------------------------------------------------===//
741
Dan Gohman9c8abcc2009-05-01 16:44:56 +0000742SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op,
743 const Type *Ty) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000744 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000745 "This is not a truncating conversion!");
Dan Gohman13a51e22009-05-01 16:44:18 +0000746 assert(isSCEVable(Ty) &&
747 "This is not a conversion to a SCEVable type!");
748 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000749
Dan Gohmanc76b5452009-05-04 22:02:23 +0000750 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman89f85052007-10-22 18:31:58 +0000751 return getUnknown(
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000752 ConstantExpr::getTrunc(SC->getValue(), Ty));
753
Dan Gohman1a5c4992009-04-22 16:20:48 +0000754 // trunc(trunc(x)) --> trunc(x)
Dan Gohmanc76b5452009-05-04 22:02:23 +0000755 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman1a5c4992009-04-22 16:20:48 +0000756 return getTruncateExpr(ST->getOperand(), Ty);
757
Nick Lewycky37d04642009-04-23 05:15:08 +0000758 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmanc76b5452009-05-04 22:02:23 +0000759 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky37d04642009-04-23 05:15:08 +0000760 return getTruncateOrSignExtend(SS->getOperand(), Ty);
761
762 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmanc76b5452009-05-04 22:02:23 +0000763 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky37d04642009-04-23 05:15:08 +0000764 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
765
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000766 // If the input value is a chrec scev made out of constants, truncate
767 // all of the constants.
Dan Gohmanc76b5452009-05-04 22:02:23 +0000768 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman02ff9392009-06-14 22:47:23 +0000769 SmallVector<SCEVHandle, 4> Operands;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000770 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman45b3b542009-05-08 21:03:19 +0000771 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
772 return getAddRecExpr(Operands, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000773 }
774
775 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
776 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
777 return Result;
778}
779
Dan Gohman36d40922009-04-16 19:25:55 +0000780SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op,
781 const Type *Ty) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000782 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman36d40922009-04-16 19:25:55 +0000783 "This is not an extending conversion!");
Dan Gohman13a51e22009-05-01 16:44:18 +0000784 assert(isSCEVable(Ty) &&
785 "This is not a conversion to a SCEVable type!");
786 Ty = getEffectiveSCEVType(Ty);
Dan Gohman36d40922009-04-16 19:25:55 +0000787
Dan Gohmanc76b5452009-05-04 22:02:23 +0000788 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000789 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +0000790 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
791 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
792 return getUnknown(C);
793 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000794
Dan Gohman1a5c4992009-04-22 16:20:48 +0000795 // zext(zext(x)) --> zext(x)
Dan Gohmanc76b5452009-05-04 22:02:23 +0000796 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman1a5c4992009-04-22 16:20:48 +0000797 return getZeroExtendExpr(SZ->getOperand(), Ty);
798
Dan Gohmana9dba962009-04-27 20:16:15 +0000799 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000800 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohmana9dba962009-04-27 20:16:15 +0000801 // operands (often constants). This allows analysis of something like
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000802 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmanc76b5452009-05-04 22:02:23 +0000803 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohmana9dba962009-04-27 20:16:15 +0000804 if (AR->isAffine()) {
805 // Check whether the backedge-taken count is SCEVCouldNotCompute.
806 // Note that this serves two purposes: It filters out loops that are
807 // simply not analyzable, and it covers the case where this code is
808 // being called from within backedge-taken count analysis, such that
809 // attempting to ask for the backedge-taken count would likely result
810 // in infinite recursion. In the later case, the analysis code will
811 // cope with a conservative value, and it will take care to purge
812 // that value once it has finished.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000813 SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
814 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman4ada77f2009-04-29 01:54:20 +0000815 // Manually compute the final value for AR, checking for
Dan Gohman3ded5b22009-04-29 22:28:28 +0000816 // overflow.
Dan Gohmana9dba962009-04-27 20:16:15 +0000817 SCEVHandle Start = AR->getStart();
818 SCEVHandle Step = AR->getStepRecurrence(*this);
819
820 // Check whether the backedge-taken count can be losslessly casted to
821 // the addrec's type. The count is always unsigned.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000822 SCEVHandle CastedMaxBECount =
823 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman3bb37f52009-05-18 15:58:39 +0000824 SCEVHandle RecastedMaxBECount =
825 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
826 if (MaxBECount == RecastedMaxBECount) {
Dan Gohmana9dba962009-04-27 20:16:15 +0000827 const Type *WideTy =
828 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000829 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohmana9dba962009-04-27 20:16:15 +0000830 SCEVHandle ZMul =
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000831 getMulExpr(CastedMaxBECount,
Dan Gohmana9dba962009-04-27 20:16:15 +0000832 getTruncateOrZeroExtend(Step, Start->getType()));
Dan Gohman3ded5b22009-04-29 22:28:28 +0000833 SCEVHandle Add = getAddExpr(Start, ZMul);
Dan Gohman3bb37f52009-05-18 15:58:39 +0000834 SCEVHandle OperandExtendedAdd =
835 getAddExpr(getZeroExtendExpr(Start, WideTy),
836 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
837 getZeroExtendExpr(Step, WideTy)));
838 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman3ded5b22009-04-29 22:28:28 +0000839 // Return the expression with the addrec on the outside.
840 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
841 getZeroExtendExpr(Step, Ty),
842 AR->getLoop());
Dan Gohmana9dba962009-04-27 20:16:15 +0000843
844 // Similar to above, only this time treat the step value as signed.
845 // This covers loops that count down.
846 SCEVHandle SMul =
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000847 getMulExpr(CastedMaxBECount,
Dan Gohmana9dba962009-04-27 20:16:15 +0000848 getTruncateOrSignExtend(Step, Start->getType()));
Dan Gohman3ded5b22009-04-29 22:28:28 +0000849 Add = getAddExpr(Start, SMul);
Dan Gohman3bb37f52009-05-18 15:58:39 +0000850 OperandExtendedAdd =
851 getAddExpr(getZeroExtendExpr(Start, WideTy),
852 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
853 getSignExtendExpr(Step, WideTy)));
854 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman3ded5b22009-04-29 22:28:28 +0000855 // Return the expression with the addrec on the outside.
856 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
857 getSignExtendExpr(Step, Ty),
858 AR->getLoop());
Dan Gohmana9dba962009-04-27 20:16:15 +0000859 }
860 }
861 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000862
863 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
864 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
865 return Result;
866}
867
Dan Gohmana9dba962009-04-27 20:16:15 +0000868SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op,
869 const Type *Ty) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000870 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000871 "This is not an extending conversion!");
Dan Gohman13a51e22009-05-01 16:44:18 +0000872 assert(isSCEVable(Ty) &&
873 "This is not a conversion to a SCEVable type!");
874 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000875
Dan Gohmanc76b5452009-05-04 22:02:23 +0000876 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000877 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +0000878 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
879 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
880 return getUnknown(C);
881 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000882
Dan Gohman1a5c4992009-04-22 16:20:48 +0000883 // sext(sext(x)) --> sext(x)
Dan Gohmanc76b5452009-05-04 22:02:23 +0000884 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman1a5c4992009-04-22 16:20:48 +0000885 return getSignExtendExpr(SS->getOperand(), Ty);
886
Dan Gohmana9dba962009-04-27 20:16:15 +0000887 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000888 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohmana9dba962009-04-27 20:16:15 +0000889 // operands (often constants). This allows analysis of something like
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000890 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmanc76b5452009-05-04 22:02:23 +0000891 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohmana9dba962009-04-27 20:16:15 +0000892 if (AR->isAffine()) {
893 // Check whether the backedge-taken count is SCEVCouldNotCompute.
894 // Note that this serves two purposes: It filters out loops that are
895 // simply not analyzable, and it covers the case where this code is
896 // being called from within backedge-taken count analysis, such that
897 // attempting to ask for the backedge-taken count would likely result
898 // in infinite recursion. In the later case, the analysis code will
899 // cope with a conservative value, and it will take care to purge
900 // that value once it has finished.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000901 SCEVHandle MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
902 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman4ada77f2009-04-29 01:54:20 +0000903 // Manually compute the final value for AR, checking for
Dan Gohman3ded5b22009-04-29 22:28:28 +0000904 // overflow.
Dan Gohmana9dba962009-04-27 20:16:15 +0000905 SCEVHandle Start = AR->getStart();
906 SCEVHandle Step = AR->getStepRecurrence(*this);
907
908 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman3ded5b22009-04-29 22:28:28 +0000909 // the addrec's type. The count is always unsigned.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000910 SCEVHandle CastedMaxBECount =
911 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman3bb37f52009-05-18 15:58:39 +0000912 SCEVHandle RecastedMaxBECount =
913 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
914 if (MaxBECount == RecastedMaxBECount) {
Dan Gohmana9dba962009-04-27 20:16:15 +0000915 const Type *WideTy =
916 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000917 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohmana9dba962009-04-27 20:16:15 +0000918 SCEVHandle SMul =
Dan Gohmanf7d3d25542009-04-30 20:47:05 +0000919 getMulExpr(CastedMaxBECount,
Dan Gohmana9dba962009-04-27 20:16:15 +0000920 getTruncateOrSignExtend(Step, Start->getType()));
Dan Gohman3ded5b22009-04-29 22:28:28 +0000921 SCEVHandle Add = getAddExpr(Start, SMul);
Dan Gohman3bb37f52009-05-18 15:58:39 +0000922 SCEVHandle OperandExtendedAdd =
923 getAddExpr(getSignExtendExpr(Start, WideTy),
924 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
925 getSignExtendExpr(Step, WideTy)));
926 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman3ded5b22009-04-29 22:28:28 +0000927 // Return the expression with the addrec on the outside.
928 return getAddRecExpr(getSignExtendExpr(Start, Ty),
929 getSignExtendExpr(Step, Ty),
930 AR->getLoop());
Dan Gohmana9dba962009-04-27 20:16:15 +0000931 }
932 }
933 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000934
935 SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)];
936 if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
937 return Result;
938}
939
Dan Gohmane1ca7e82009-06-13 15:56:47 +0000940/// getAnyExtendExpr - Return a SCEV for the given operand extended with
941/// unspecified bits out to the given type.
942///
943SCEVHandle ScalarEvolution::getAnyExtendExpr(const SCEVHandle &Op,
944 const Type *Ty) {
945 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
946 "This is not an extending conversion!");
947 assert(isSCEVable(Ty) &&
948 "This is not a conversion to a SCEVable type!");
949 Ty = getEffectiveSCEVType(Ty);
950
951 // Sign-extend negative constants.
952 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
953 if (SC->getValue()->getValue().isNegative())
954 return getSignExtendExpr(Op, Ty);
955
956 // Peel off a truncate cast.
957 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
958 SCEVHandle NewOp = T->getOperand();
959 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
960 return getAnyExtendExpr(NewOp, Ty);
961 return getTruncateOrNoop(NewOp, Ty);
962 }
963
964 // Next try a zext cast. If the cast is folded, use it.
965 SCEVHandle ZExt = getZeroExtendExpr(Op, Ty);
966 if (!isa<SCEVZeroExtendExpr>(ZExt))
967 return ZExt;
968
969 // Next try a sext cast. If the cast is folded, use it.
970 SCEVHandle SExt = getSignExtendExpr(Op, Ty);
971 if (!isa<SCEVSignExtendExpr>(SExt))
972 return SExt;
973
974 // If the expression is obviously signed, use the sext cast value.
975 if (isa<SCEVSMaxExpr>(Op))
976 return SExt;
977
978 // Absent any other information, use the zext cast value.
979 return ZExt;
980}
981
Dan Gohmanc8a29272009-05-24 23:45:28 +0000982/// getAddExpr - Get a canonical add expression, or something simpler if
983/// possible.
Dan Gohman02ff9392009-06-14 22:47:23 +0000984SCEVHandle ScalarEvolution::getAddExpr(SmallVectorImpl<SCEVHandle> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000985 assert(!Ops.empty() && "Cannot get empty add!");
986 if (Ops.size() == 1) return Ops[0];
Dan Gohmana77b3d42009-05-18 15:44:58 +0000987#ifndef NDEBUG
988 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
989 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
990 getEffectiveSCEVType(Ops[0]->getType()) &&
991 "SCEVAddExpr operand types don't match!");
992#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000993
994 // Sort by complexity, this groups all similar expression types together.
Dan Gohman5d486452009-05-07 14:39:04 +0000995 GroupByComplexity(Ops, LI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000996
997 // If there are any constants, fold them together.
998 unsigned Idx = 0;
Dan Gohmanc76b5452009-05-04 22:02:23 +0000999 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001000 ++Idx;
1001 assert(Idx < Ops.size());
Dan Gohmanc76b5452009-05-04 22:02:23 +00001002 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001003 // We found two constants, fold them together!
Dan Gohman02ff9392009-06-14 22:47:23 +00001004 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1005 RHSC->getValue()->getValue());
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001006 Ops.erase(Ops.begin()+1); // Erase the folded element
1007 if (Ops.size() == 1) return Ops[0];
1008 LHSC = cast<SCEVConstant>(Ops[0]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001009 }
1010
1011 // If we are left with a constant zero being added, strip it off.
1012 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1013 Ops.erase(Ops.begin());
1014 --Idx;
1015 }
1016 }
1017
1018 if (Ops.size() == 1) return Ops[0];
1019
1020 // Okay, check to see if the same value occurs in the operand list twice. If
1021 // so, merge them together into an multiply expression. Since we sorted the
1022 // list, these values are required to be adjacent.
1023 const Type *Ty = Ops[0]->getType();
1024 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1025 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
1026 // Found a match, merge the two values into a multiply, and add any
1027 // remaining values to the result.
Dan Gohman89f85052007-10-22 18:31:58 +00001028 SCEVHandle Two = getIntegerSCEV(2, Ty);
1029 SCEVHandle Mul = getMulExpr(Ops[i], Two);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001030 if (Ops.size() == 2)
1031 return Mul;
1032 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1033 Ops.push_back(Mul);
Dan Gohman89f85052007-10-22 18:31:58 +00001034 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001035 }
1036
Dan Gohman45b3b542009-05-08 21:03:19 +00001037 // Check for truncates. If all the operands are truncated from the same
1038 // type, see if factoring out the truncate would permit the result to be
1039 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1040 // if the contents of the resulting outer trunc fold to something simple.
1041 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1042 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1043 const Type *DstType = Trunc->getType();
1044 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman02ff9392009-06-14 22:47:23 +00001045 SmallVector<SCEVHandle, 8> LargeOps;
Dan Gohman45b3b542009-05-08 21:03:19 +00001046 bool Ok = true;
1047 // Check all the operands to see if they can be represented in the
1048 // source type of the truncate.
1049 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1050 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1051 if (T->getOperand()->getType() != SrcType) {
1052 Ok = false;
1053 break;
1054 }
1055 LargeOps.push_back(T->getOperand());
1056 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1057 // This could be either sign or zero extension, but sign extension
1058 // is much more likely to be foldable here.
1059 LargeOps.push_back(getSignExtendExpr(C, SrcType));
1060 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman02ff9392009-06-14 22:47:23 +00001061 SmallVector<SCEVHandle, 8> LargeMulOps;
Dan Gohman45b3b542009-05-08 21:03:19 +00001062 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1063 if (const SCEVTruncateExpr *T =
1064 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1065 if (T->getOperand()->getType() != SrcType) {
1066 Ok = false;
1067 break;
1068 }
1069 LargeMulOps.push_back(T->getOperand());
1070 } else if (const SCEVConstant *C =
1071 dyn_cast<SCEVConstant>(M->getOperand(j))) {
1072 // This could be either sign or zero extension, but sign extension
1073 // is much more likely to be foldable here.
1074 LargeMulOps.push_back(getSignExtendExpr(C, SrcType));
1075 } else {
1076 Ok = false;
1077 break;
1078 }
1079 }
1080 if (Ok)
1081 LargeOps.push_back(getMulExpr(LargeMulOps));
1082 } else {
1083 Ok = false;
1084 break;
1085 }
1086 }
1087 if (Ok) {
1088 // Evaluate the expression in the larger type.
1089 SCEVHandle Fold = getAddExpr(LargeOps);
1090 // If it folds to something simple, use it. Otherwise, don't.
1091 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1092 return getTruncateExpr(Fold, DstType);
1093 }
1094 }
1095
1096 // Skip past any other cast SCEVs.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001097 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1098 ++Idx;
1099
1100 // If there are add operands they would be next.
1101 if (Idx < Ops.size()) {
1102 bool DeletedAdd = false;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001103 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001104 // If we have an add, expand the add operands onto the end of the operands
1105 // list.
1106 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
1107 Ops.erase(Ops.begin()+Idx);
1108 DeletedAdd = true;
1109 }
1110
1111 // If we deleted at least one add, we added operands to the end of the list,
1112 // and they are not necessarily sorted. Recurse to resort and resimplify
1113 // any operands we just aquired.
1114 if (DeletedAdd)
Dan Gohman89f85052007-10-22 18:31:58 +00001115 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001116 }
1117
1118 // Skip over the add expression until we get to a multiply.
1119 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1120 ++Idx;
1121
1122 // If we are adding something to a multiply expression, make sure the
1123 // something is not already an operand of the multiply. If so, merge it into
1124 // the multiply.
1125 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001126 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001127 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001128 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001129 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman02ff9392009-06-14 22:47:23 +00001130 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001131 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
1132 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
1133 if (Mul->getNumOperands() != 2) {
1134 // If the multiply has more than two operands, we must get the
1135 // Y*Z term.
Dan Gohman02ff9392009-06-14 22:47:23 +00001136 SmallVector<SCEVHandle, 4> MulOps(Mul->op_begin(), Mul->op_end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001137 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman89f85052007-10-22 18:31:58 +00001138 InnerMul = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001139 }
Dan Gohman89f85052007-10-22 18:31:58 +00001140 SCEVHandle One = getIntegerSCEV(1, Ty);
1141 SCEVHandle AddOne = getAddExpr(InnerMul, One);
1142 SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001143 if (Ops.size() == 2) return OuterMul;
1144 if (AddOp < Idx) {
1145 Ops.erase(Ops.begin()+AddOp);
1146 Ops.erase(Ops.begin()+Idx-1);
1147 } else {
1148 Ops.erase(Ops.begin()+Idx);
1149 Ops.erase(Ops.begin()+AddOp-1);
1150 }
1151 Ops.push_back(OuterMul);
Dan Gohman89f85052007-10-22 18:31:58 +00001152 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001153 }
1154
1155 // Check this multiply against other multiplies being added together.
1156 for (unsigned OtherMulIdx = Idx+1;
1157 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1158 ++OtherMulIdx) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001159 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001160 // If MulOp occurs in OtherMul, we can fold the two multiplies
1161 // together.
1162 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1163 OMulOp != e; ++OMulOp)
1164 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1165 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1166 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
1167 if (Mul->getNumOperands() != 2) {
Dan Gohman02ff9392009-06-14 22:47:23 +00001168 SmallVector<SCEVHandle, 4> MulOps(Mul->op_begin(), Mul->op_end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001169 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman89f85052007-10-22 18:31:58 +00001170 InnerMul1 = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001171 }
1172 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1173 if (OtherMul->getNumOperands() != 2) {
Dan Gohman02ff9392009-06-14 22:47:23 +00001174 SmallVector<SCEVHandle, 4> MulOps(OtherMul->op_begin(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001175 OtherMul->op_end());
1176 MulOps.erase(MulOps.begin()+OMulOp);
Dan Gohman89f85052007-10-22 18:31:58 +00001177 InnerMul2 = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001178 }
Dan Gohman89f85052007-10-22 18:31:58 +00001179 SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1180 SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001181 if (Ops.size() == 2) return OuterMul;
1182 Ops.erase(Ops.begin()+Idx);
1183 Ops.erase(Ops.begin()+OtherMulIdx-1);
1184 Ops.push_back(OuterMul);
Dan Gohman89f85052007-10-22 18:31:58 +00001185 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001186 }
1187 }
1188 }
1189 }
1190
1191 // If there are any add recurrences in the operands list, see if any other
1192 // added values are loop invariant. If so, we can fold them into the
1193 // recurrence.
1194 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1195 ++Idx;
1196
1197 // Scan over all recurrences, trying to fold loop invariants into them.
1198 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1199 // Scan all of the other operands to this add and add them to the vector if
1200 // they are loop invariant w.r.t. the recurrence.
Dan Gohman02ff9392009-06-14 22:47:23 +00001201 SmallVector<SCEVHandle, 8> LIOps;
Dan Gohmanbff6b582009-05-04 22:30:44 +00001202 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001203 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1204 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1205 LIOps.push_back(Ops[i]);
1206 Ops.erase(Ops.begin()+i);
1207 --i; --e;
1208 }
1209
1210 // If we found some loop invariants, fold them into the recurrence.
1211 if (!LIOps.empty()) {
Dan Gohmanabe991f2008-09-14 17:21:12 +00001212 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001213 LIOps.push_back(AddRec->getStart());
1214
Dan Gohman02ff9392009-06-14 22:47:23 +00001215 SmallVector<SCEVHandle, 4> AddRecOps(AddRec->op_begin(),
1216 AddRec->op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00001217 AddRecOps[0] = getAddExpr(LIOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001218
Dan Gohman89f85052007-10-22 18:31:58 +00001219 SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001220 // If all of the other operands were loop invariant, we are done.
1221 if (Ops.size() == 1) return NewRec;
1222
1223 // Otherwise, add the folded AddRec by the non-liv parts.
1224 for (unsigned i = 0;; ++i)
1225 if (Ops[i] == AddRec) {
1226 Ops[i] = NewRec;
1227 break;
1228 }
Dan Gohman89f85052007-10-22 18:31:58 +00001229 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001230 }
1231
1232 // Okay, if there weren't any loop invariants to be folded, check to see if
1233 // there are multiple AddRec's with the same loop induction variable being
1234 // added together. If so, we can fold them.
1235 for (unsigned OtherIdx = Idx+1;
1236 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1237 if (OtherIdx != Idx) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001238 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001239 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1240 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
Dan Gohman02ff9392009-06-14 22:47:23 +00001241 SmallVector<SCEVHandle, 4> NewOps(AddRec->op_begin(), AddRec->op_end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001242 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1243 if (i >= NewOps.size()) {
1244 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1245 OtherAddRec->op_end());
1246 break;
1247 }
Dan Gohman89f85052007-10-22 18:31:58 +00001248 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001249 }
Dan Gohman89f85052007-10-22 18:31:58 +00001250 SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001251
1252 if (Ops.size() == 2) return NewAddRec;
1253
1254 Ops.erase(Ops.begin()+Idx);
1255 Ops.erase(Ops.begin()+OtherIdx-1);
1256 Ops.push_back(NewAddRec);
Dan Gohman89f85052007-10-22 18:31:58 +00001257 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001258 }
1259 }
1260
1261 // Otherwise couldn't fold anything into this recurrence. Move onto the
1262 // next one.
1263 }
1264
1265 // Okay, it looks like we really DO need an add expr. Check to see if we
1266 // already have one, otherwise create a new one.
Dan Gohmanbff6b582009-05-04 22:30:44 +00001267 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001268 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
1269 SCEVOps)];
1270 if (Result == 0) Result = new SCEVAddExpr(Ops);
1271 return Result;
1272}
1273
1274
Dan Gohmanc8a29272009-05-24 23:45:28 +00001275/// getMulExpr - Get a canonical multiply expression, or something simpler if
1276/// possible.
Dan Gohman02ff9392009-06-14 22:47:23 +00001277SCEVHandle ScalarEvolution::getMulExpr(SmallVectorImpl<SCEVHandle> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001278 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana77b3d42009-05-18 15:44:58 +00001279#ifndef NDEBUG
1280 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1281 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1282 getEffectiveSCEVType(Ops[0]->getType()) &&
1283 "SCEVMulExpr operand types don't match!");
1284#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001285
1286 // Sort by complexity, this groups all similar expression types together.
Dan Gohman5d486452009-05-07 14:39:04 +00001287 GroupByComplexity(Ops, LI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001288
1289 // If there are any constants, fold them together.
1290 unsigned Idx = 0;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001291 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001292
1293 // C1*(C2+V) -> C1*C2 + C1*V
1294 if (Ops.size() == 2)
Dan Gohmanc76b5452009-05-04 22:02:23 +00001295 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001296 if (Add->getNumOperands() == 2 &&
1297 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman89f85052007-10-22 18:31:58 +00001298 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1299 getMulExpr(LHSC, Add->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001300
1301
1302 ++Idx;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001303 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001304 // We found two constants, fold them together!
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001305 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
1306 RHSC->getValue()->getValue());
1307 Ops[0] = getConstant(Fold);
1308 Ops.erase(Ops.begin()+1); // Erase the folded element
1309 if (Ops.size() == 1) return Ops[0];
1310 LHSC = cast<SCEVConstant>(Ops[0]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001311 }
1312
1313 // If we are left with a constant one being multiplied, strip it off.
1314 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1315 Ops.erase(Ops.begin());
1316 --Idx;
1317 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1318 // If we have a multiply of zero, it will always be zero.
1319 return Ops[0];
1320 }
1321 }
1322
1323 // Skip over the add expression until we get to a multiply.
1324 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1325 ++Idx;
1326
1327 if (Ops.size() == 1)
1328 return Ops[0];
1329
1330 // If there are mul operands inline them all into this expression.
1331 if (Idx < Ops.size()) {
1332 bool DeletedMul = false;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001333 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001334 // If we have an mul, expand the mul operands onto the end of the operands
1335 // list.
1336 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1337 Ops.erase(Ops.begin()+Idx);
1338 DeletedMul = true;
1339 }
1340
1341 // If we deleted at least one mul, we added operands to the end of the list,
1342 // and they are not necessarily sorted. Recurse to resort and resimplify
1343 // any operands we just aquired.
1344 if (DeletedMul)
Dan Gohman89f85052007-10-22 18:31:58 +00001345 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001346 }
1347
1348 // If there are any add recurrences in the operands list, see if any other
1349 // added values are loop invariant. If so, we can fold them into the
1350 // recurrence.
1351 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1352 ++Idx;
1353
1354 // Scan over all recurrences, trying to fold loop invariants into them.
1355 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1356 // Scan all of the other operands to this mul and add them to the vector if
1357 // they are loop invariant w.r.t. the recurrence.
Dan Gohman02ff9392009-06-14 22:47:23 +00001358 SmallVector<SCEVHandle, 8> LIOps;
Dan Gohmanbff6b582009-05-04 22:30:44 +00001359 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001360 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1361 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1362 LIOps.push_back(Ops[i]);
1363 Ops.erase(Ops.begin()+i);
1364 --i; --e;
1365 }
1366
1367 // If we found some loop invariants, fold them into the recurrence.
1368 if (!LIOps.empty()) {
Dan Gohmanabe991f2008-09-14 17:21:12 +00001369 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman02ff9392009-06-14 22:47:23 +00001370 SmallVector<SCEVHandle, 4> NewOps;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001371 NewOps.reserve(AddRec->getNumOperands());
1372 if (LIOps.size() == 1) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001373 const SCEV *Scale = LIOps[0];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001374 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman89f85052007-10-22 18:31:58 +00001375 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001376 } else {
1377 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
Dan Gohman02ff9392009-06-14 22:47:23 +00001378 SmallVector<SCEVHandle, 4> MulOps(LIOps.begin(), LIOps.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001379 MulOps.push_back(AddRec->getOperand(i));
Dan Gohman89f85052007-10-22 18:31:58 +00001380 NewOps.push_back(getMulExpr(MulOps));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001381 }
1382 }
1383
Dan Gohman89f85052007-10-22 18:31:58 +00001384 SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001385
1386 // If all of the other operands were loop invariant, we are done.
1387 if (Ops.size() == 1) return NewRec;
1388
1389 // Otherwise, multiply the folded AddRec by the non-liv parts.
1390 for (unsigned i = 0;; ++i)
1391 if (Ops[i] == AddRec) {
1392 Ops[i] = NewRec;
1393 break;
1394 }
Dan Gohman89f85052007-10-22 18:31:58 +00001395 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001396 }
1397
1398 // Okay, if there weren't any loop invariants to be folded, check to see if
1399 // there are multiple AddRec's with the same loop induction variable being
1400 // multiplied together. If so, we can fold them.
1401 for (unsigned OtherIdx = Idx+1;
1402 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1403 if (OtherIdx != Idx) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001404 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001405 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1406 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
Dan Gohmanbff6b582009-05-04 22:30:44 +00001407 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman89f85052007-10-22 18:31:58 +00001408 SCEVHandle NewStart = getMulExpr(F->getStart(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001409 G->getStart());
Dan Gohman89f85052007-10-22 18:31:58 +00001410 SCEVHandle B = F->getStepRecurrence(*this);
1411 SCEVHandle D = G->getStepRecurrence(*this);
1412 SCEVHandle NewStep = getAddExpr(getMulExpr(F, D),
1413 getMulExpr(G, B),
1414 getMulExpr(B, D));
1415 SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep,
1416 F->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001417 if (Ops.size() == 2) return NewAddRec;
1418
1419 Ops.erase(Ops.begin()+Idx);
1420 Ops.erase(Ops.begin()+OtherIdx-1);
1421 Ops.push_back(NewAddRec);
Dan Gohman89f85052007-10-22 18:31:58 +00001422 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001423 }
1424 }
1425
1426 // Otherwise couldn't fold anything into this recurrence. Move onto the
1427 // next one.
1428 }
1429
1430 // Okay, it looks like we really DO need an mul expr. Check to see if we
1431 // already have one, otherwise create a new one.
Dan Gohmanbff6b582009-05-04 22:30:44 +00001432 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001433 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
1434 SCEVOps)];
1435 if (Result == 0)
1436 Result = new SCEVMulExpr(Ops);
1437 return Result;
1438}
1439
Dan Gohmanc8a29272009-05-24 23:45:28 +00001440/// getUDivExpr - Get a canonical multiply expression, or something simpler if
1441/// possible.
Dan Gohman77841cd2009-05-04 22:23:18 +00001442SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS,
1443 const SCEVHandle &RHS) {
Dan Gohmana77b3d42009-05-18 15:44:58 +00001444 assert(getEffectiveSCEVType(LHS->getType()) ==
1445 getEffectiveSCEVType(RHS->getType()) &&
1446 "SCEVUDivExpr operand types don't match!");
1447
Dan Gohmanc76b5452009-05-04 22:02:23 +00001448 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001449 if (RHSC->getValue()->equalsInt(1))
Nick Lewycky35b56022009-01-13 09:18:58 +00001450 return LHS; // X udiv 1 --> x
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001451 if (RHSC->isZero())
1452 return getIntegerSCEV(0, LHS->getType()); // value is undefined
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001453
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001454 // Determine if the division can be folded into the operands of
1455 // its operands.
1456 // TODO: Generalize this to non-constants by using known-bits information.
1457 const Type *Ty = LHS->getType();
1458 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1459 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1460 // For non-power-of-two values, effectively round the value up to the
1461 // nearest power of two.
1462 if (!RHSC->getValue()->getValue().isPowerOf2())
1463 ++MaxShiftAmt;
1464 const IntegerType *ExtTy =
1465 IntegerType::get(getTypeSizeInBits(Ty) + MaxShiftAmt);
1466 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1467 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1468 if (const SCEVConstant *Step =
1469 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1470 if (!Step->getValue()->getValue()
1471 .urem(RHSC->getValue()->getValue()) &&
Dan Gohman14374d32009-05-08 23:11:16 +00001472 getZeroExtendExpr(AR, ExtTy) ==
1473 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1474 getZeroExtendExpr(Step, ExtTy),
1475 AR->getLoop())) {
Dan Gohman02ff9392009-06-14 22:47:23 +00001476 SmallVector<SCEVHandle, 4> Operands;
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001477 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1478 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1479 return getAddRecExpr(Operands, AR->getLoop());
1480 }
1481 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
Dan Gohman14374d32009-05-08 23:11:16 +00001482 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
Dan Gohman02ff9392009-06-14 22:47:23 +00001483 SmallVector<SCEVHandle, 4> Operands;
Dan Gohman14374d32009-05-08 23:11:16 +00001484 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1485 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1486 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001487 // Find an operand that's safely divisible.
1488 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1489 SCEVHandle Op = M->getOperand(i);
1490 SCEVHandle Div = getUDivExpr(Op, RHSC);
1491 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
Dan Gohman02ff9392009-06-14 22:47:23 +00001492 const SmallVectorImpl<SCEVHandle> &MOperands = M->getOperands();
1493 Operands = SmallVector<SCEVHandle, 4>(MOperands.begin(),
1494 MOperands.end());
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001495 Operands[i] = Div;
1496 return getMulExpr(Operands);
1497 }
1498 }
Dan Gohman14374d32009-05-08 23:11:16 +00001499 }
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001500 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Dan Gohman14374d32009-05-08 23:11:16 +00001501 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
Dan Gohman02ff9392009-06-14 22:47:23 +00001502 SmallVector<SCEVHandle, 4> Operands;
Dan Gohman14374d32009-05-08 23:11:16 +00001503 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1504 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1505 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1506 Operands.clear();
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001507 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1508 SCEVHandle Op = getUDivExpr(A->getOperand(i), RHS);
1509 if (isa<SCEVUDivExpr>(Op) || getMulExpr(Op, RHS) != A->getOperand(i))
1510 break;
1511 Operands.push_back(Op);
1512 }
1513 if (Operands.size() == A->getNumOperands())
1514 return getAddExpr(Operands);
1515 }
Dan Gohman14374d32009-05-08 23:11:16 +00001516 }
Dan Gohmanaf0a1512009-05-08 20:18:49 +00001517
1518 // Fold if both operands are constant.
Dan Gohmanc76b5452009-05-04 22:02:23 +00001519 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001520 Constant *LHSCV = LHSC->getValue();
1521 Constant *RHSCV = RHSC->getValue();
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +00001522 return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001523 }
1524 }
1525
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +00001526 SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)];
1527 if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001528 return Result;
1529}
1530
1531
Dan Gohmanc8a29272009-05-24 23:45:28 +00001532/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1533/// Simplify the expression as much as possible.
Dan Gohman89f85052007-10-22 18:31:58 +00001534SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001535 const SCEVHandle &Step, const Loop *L) {
Dan Gohman02ff9392009-06-14 22:47:23 +00001536 SmallVector<SCEVHandle, 4> Operands;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001537 Operands.push_back(Start);
Dan Gohmanc76b5452009-05-04 22:02:23 +00001538 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001539 if (StepChrec->getLoop() == L) {
1540 Operands.insert(Operands.end(), StepChrec->op_begin(),
1541 StepChrec->op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00001542 return getAddRecExpr(Operands, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001543 }
1544
1545 Operands.push_back(Step);
Dan Gohman89f85052007-10-22 18:31:58 +00001546 return getAddRecExpr(Operands, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001547}
1548
Dan Gohmanc8a29272009-05-24 23:45:28 +00001549/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1550/// Simplify the expression as much as possible.
Dan Gohman02ff9392009-06-14 22:47:23 +00001551SCEVHandle ScalarEvolution::getAddRecExpr(SmallVectorImpl<SCEVHandle> &Operands,
Nick Lewycky37d04642009-04-23 05:15:08 +00001552 const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001553 if (Operands.size() == 1) return Operands[0];
Dan Gohmana77b3d42009-05-18 15:44:58 +00001554#ifndef NDEBUG
1555 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1556 assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1557 getEffectiveSCEVType(Operands[0]->getType()) &&
1558 "SCEVAddRecExpr operand types don't match!");
1559#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001560
Dan Gohman7b560c42008-06-18 16:23:07 +00001561 if (Operands.back()->isZero()) {
1562 Operands.pop_back();
Dan Gohmanabe991f2008-09-14 17:21:12 +00001563 return getAddRecExpr(Operands, L); // {X,+,0} --> X
Dan Gohman7b560c42008-06-18 16:23:07 +00001564 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001565
Dan Gohman42936882008-08-08 18:33:12 +00001566 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmanc76b5452009-05-04 22:02:23 +00001567 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman42936882008-08-08 18:33:12 +00001568 const Loop* NestedLoop = NestedAR->getLoop();
1569 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
Dan Gohman02ff9392009-06-14 22:47:23 +00001570 SmallVector<SCEVHandle, 4> NestedOperands(NestedAR->op_begin(),
1571 NestedAR->op_end());
Dan Gohman42936882008-08-08 18:33:12 +00001572 SCEVHandle NestedARHandle(NestedAR);
1573 Operands[0] = NestedAR->getStart();
1574 NestedOperands[0] = getAddRecExpr(Operands, L);
1575 return getAddRecExpr(NestedOperands, NestedLoop);
1576 }
1577 }
1578
Dan Gohmanbff6b582009-05-04 22:30:44 +00001579 std::vector<const SCEV*> SCEVOps(Operands.begin(), Operands.end());
1580 SCEVAddRecExpr *&Result = (*SCEVAddRecExprs)[std::make_pair(L, SCEVOps)];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001581 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1582 return Result;
1583}
1584
Nick Lewycky711640a2007-11-25 22:41:31 +00001585SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS,
1586 const SCEVHandle &RHS) {
Dan Gohman02ff9392009-06-14 22:47:23 +00001587 SmallVector<SCEVHandle, 2> Ops;
Nick Lewycky711640a2007-11-25 22:41:31 +00001588 Ops.push_back(LHS);
1589 Ops.push_back(RHS);
1590 return getSMaxExpr(Ops);
1591}
1592
Dan Gohman02ff9392009-06-14 22:47:23 +00001593SCEVHandle
1594ScalarEvolution::getSMaxExpr(SmallVectorImpl<SCEVHandle> &Ops) {
Nick Lewycky711640a2007-11-25 22:41:31 +00001595 assert(!Ops.empty() && "Cannot get empty smax!");
1596 if (Ops.size() == 1) return Ops[0];
Dan Gohmana77b3d42009-05-18 15:44:58 +00001597#ifndef NDEBUG
1598 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1599 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1600 getEffectiveSCEVType(Ops[0]->getType()) &&
1601 "SCEVSMaxExpr operand types don't match!");
1602#endif
Nick Lewycky711640a2007-11-25 22:41:31 +00001603
1604 // Sort by complexity, this groups all similar expression types together.
Dan Gohman5d486452009-05-07 14:39:04 +00001605 GroupByComplexity(Ops, LI);
Nick Lewycky711640a2007-11-25 22:41:31 +00001606
1607 // If there are any constants, fold them together.
1608 unsigned Idx = 0;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001609 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky711640a2007-11-25 22:41:31 +00001610 ++Idx;
1611 assert(Idx < Ops.size());
Dan Gohmanc76b5452009-05-04 22:02:23 +00001612 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky711640a2007-11-25 22:41:31 +00001613 // We found two constants, fold them together!
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001614 ConstantInt *Fold = ConstantInt::get(
Nick Lewycky711640a2007-11-25 22:41:31 +00001615 APIntOps::smax(LHSC->getValue()->getValue(),
1616 RHSC->getValue()->getValue()));
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001617 Ops[0] = getConstant(Fold);
1618 Ops.erase(Ops.begin()+1); // Erase the folded element
1619 if (Ops.size() == 1) return Ops[0];
1620 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewycky711640a2007-11-25 22:41:31 +00001621 }
1622
1623 // If we are left with a constant -inf, strip it off.
1624 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1625 Ops.erase(Ops.begin());
1626 --Idx;
1627 }
1628 }
1629
1630 if (Ops.size() == 1) return Ops[0];
1631
1632 // Find the first SMax
1633 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1634 ++Idx;
1635
1636 // Check to see if one of the operands is an SMax. If so, expand its operands
1637 // onto our operand list, and recurse to simplify.
1638 if (Idx < Ops.size()) {
1639 bool DeletedSMax = false;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001640 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewycky711640a2007-11-25 22:41:31 +00001641 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1642 Ops.erase(Ops.begin()+Idx);
1643 DeletedSMax = true;
1644 }
1645
1646 if (DeletedSMax)
1647 return getSMaxExpr(Ops);
1648 }
1649
1650 // Okay, check to see if the same value occurs in the operand list twice. If
1651 // so, delete one. Since we sorted the list, these values are required to
1652 // be adjacent.
1653 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1654 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y
1655 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1656 --i; --e;
1657 }
1658
1659 if (Ops.size() == 1) return Ops[0];
1660
1661 assert(!Ops.empty() && "Reduced smax down to nothing!");
1662
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001663 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewycky711640a2007-11-25 22:41:31 +00001664 // already have one, otherwise create a new one.
Dan Gohmanbff6b582009-05-04 22:30:44 +00001665 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
Nick Lewycky711640a2007-11-25 22:41:31 +00001666 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr,
1667 SCEVOps)];
1668 if (Result == 0) Result = new SCEVSMaxExpr(Ops);
1669 return Result;
1670}
1671
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001672SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS,
1673 const SCEVHandle &RHS) {
Dan Gohman02ff9392009-06-14 22:47:23 +00001674 SmallVector<SCEVHandle, 2> Ops;
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001675 Ops.push_back(LHS);
1676 Ops.push_back(RHS);
1677 return getUMaxExpr(Ops);
1678}
1679
Dan Gohman02ff9392009-06-14 22:47:23 +00001680SCEVHandle
1681ScalarEvolution::getUMaxExpr(SmallVectorImpl<SCEVHandle> &Ops) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001682 assert(!Ops.empty() && "Cannot get empty umax!");
1683 if (Ops.size() == 1) return Ops[0];
Dan Gohmana77b3d42009-05-18 15:44:58 +00001684#ifndef NDEBUG
1685 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1686 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1687 getEffectiveSCEVType(Ops[0]->getType()) &&
1688 "SCEVUMaxExpr operand types don't match!");
1689#endif
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001690
1691 // Sort by complexity, this groups all similar expression types together.
Dan Gohman5d486452009-05-07 14:39:04 +00001692 GroupByComplexity(Ops, LI);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001693
1694 // If there are any constants, fold them together.
1695 unsigned Idx = 0;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001696 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001697 ++Idx;
1698 assert(Idx < Ops.size());
Dan Gohmanc76b5452009-05-04 22:02:23 +00001699 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001700 // We found two constants, fold them together!
1701 ConstantInt *Fold = ConstantInt::get(
1702 APIntOps::umax(LHSC->getValue()->getValue(),
1703 RHSC->getValue()->getValue()));
1704 Ops[0] = getConstant(Fold);
1705 Ops.erase(Ops.begin()+1); // Erase the folded element
1706 if (Ops.size() == 1) return Ops[0];
1707 LHSC = cast<SCEVConstant>(Ops[0]);
1708 }
1709
1710 // If we are left with a constant zero, strip it off.
1711 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1712 Ops.erase(Ops.begin());
1713 --Idx;
1714 }
1715 }
1716
1717 if (Ops.size() == 1) return Ops[0];
1718
1719 // Find the first UMax
1720 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1721 ++Idx;
1722
1723 // Check to see if one of the operands is a UMax. If so, expand its operands
1724 // onto our operand list, and recurse to simplify.
1725 if (Idx < Ops.size()) {
1726 bool DeletedUMax = false;
Dan Gohmanc76b5452009-05-04 22:02:23 +00001727 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001728 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1729 Ops.erase(Ops.begin()+Idx);
1730 DeletedUMax = true;
1731 }
1732
1733 if (DeletedUMax)
1734 return getUMaxExpr(Ops);
1735 }
1736
1737 // Okay, check to see if the same value occurs in the operand list twice. If
1738 // so, delete one. Since we sorted the list, these values are required to
1739 // be adjacent.
1740 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1741 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y
1742 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1743 --i; --e;
1744 }
1745
1746 if (Ops.size() == 1) return Ops[0];
1747
1748 assert(!Ops.empty() && "Reduced umax down to nothing!");
1749
1750 // Okay, it looks like we really DO need a umax expr. Check to see if we
1751 // already have one, otherwise create a new one.
Dan Gohmanbff6b582009-05-04 22:30:44 +00001752 std::vector<const SCEV*> SCEVOps(Ops.begin(), Ops.end());
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001753 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr,
1754 SCEVOps)];
1755 if (Result == 0) Result = new SCEVUMaxExpr(Ops);
1756 return Result;
1757}
1758
Dan Gohman89f85052007-10-22 18:31:58 +00001759SCEVHandle ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001760 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
Dan Gohman89f85052007-10-22 18:31:58 +00001761 return getConstant(CI);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001762 if (isa<ConstantPointerNull>(V))
1763 return getIntegerSCEV(0, V->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001764 SCEVUnknown *&Result = (*SCEVUnknowns)[V];
1765 if (Result == 0) Result = new SCEVUnknown(V);
1766 return Result;
1767}
1768
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001769//===----------------------------------------------------------------------===//
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001770// Basic SCEV Analysis and PHI Idiom Recognition Code
1771//
1772
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001773/// isSCEVable - Test if values of the given type are analyzable within
1774/// the SCEV framework. This primarily includes integer types, and it
1775/// can optionally include pointer types if the ScalarEvolution class
1776/// has access to target-specific information.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001777bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001778 // Integers are always SCEVable.
1779 if (Ty->isInteger())
1780 return true;
1781
1782 // Pointers are SCEVable if TargetData information is available
1783 // to provide pointer size information.
1784 if (isa<PointerType>(Ty))
1785 return TD != NULL;
1786
1787 // Otherwise it's not SCEVable.
1788 return false;
1789}
1790
1791/// getTypeSizeInBits - Return the size in bits of the specified type,
1792/// for which isSCEVable must return true.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001793uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001794 assert(isSCEVable(Ty) && "Type is not SCEVable!");
1795
1796 // If we have a TargetData, use it!
1797 if (TD)
1798 return TD->getTypeSizeInBits(Ty);
1799
1800 // Otherwise, we support only integer types.
1801 assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!");
1802 return Ty->getPrimitiveSizeInBits();
1803}
1804
1805/// getEffectiveSCEVType - Return a type with the same bitwidth as
1806/// the given type and which represents how SCEV will treat the given
1807/// type, for which isSCEVable must return true. For pointer types,
1808/// this is the pointer-sized integer type.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001809const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001810 assert(isSCEVable(Ty) && "Type is not SCEVable!");
1811
1812 if (Ty->isInteger())
1813 return Ty;
1814
1815 assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
1816 return TD->getIntPtrType();
Dan Gohman01c2ee72009-04-16 03:18:22 +00001817}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001818
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001819SCEVHandle ScalarEvolution::getCouldNotCompute() {
Dan Gohman0c850912009-06-06 14:37:11 +00001820 return CouldNotCompute;
Dan Gohman0ad08b02009-04-18 17:58:19 +00001821}
1822
Dan Gohmand83d4af2009-05-04 22:20:30 +00001823/// hasSCEV - Return true if the SCEV for this value has already been
Edwin Török0e828d62009-05-01 08:33:47 +00001824/// computed.
1825bool ScalarEvolution::hasSCEV(Value *V) const {
1826 return Scalars.count(V);
1827}
1828
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001829/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1830/// expression and create a new one.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001831SCEVHandle ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001832 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001833
Dan Gohmanbff6b582009-05-04 22:30:44 +00001834 std::map<SCEVCallbackVH, SCEVHandle>::iterator I = Scalars.find(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001835 if (I != Scalars.end()) return I->second;
1836 SCEVHandle S = createSCEV(V);
Dan Gohmanbff6b582009-05-04 22:30:44 +00001837 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001838 return S;
1839}
1840
Dan Gohman01c2ee72009-04-16 03:18:22 +00001841/// getIntegerSCEV - Given an integer or FP type, create a constant for the
1842/// specified signed integer value and return a SCEV for the constant.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001843SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
1844 Ty = getEffectiveSCEVType(Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001845 Constant *C;
1846 if (Val == 0)
1847 C = Constant::getNullValue(Ty);
1848 else if (Ty->isFloatingPoint())
1849 C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle :
1850 APFloat::IEEEdouble, Val));
1851 else
1852 C = ConstantInt::get(Ty, Val);
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001853 return getUnknown(C);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001854}
1855
1856/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
1857///
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001858SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) {
Dan Gohmanc76b5452009-05-04 22:02:23 +00001859 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001860 return getUnknown(ConstantExpr::getNeg(VC->getValue()));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001861
1862 const Type *Ty = V->getType();
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001863 Ty = getEffectiveSCEVType(Ty);
1864 return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty)));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001865}
1866
1867/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001868SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) {
Dan Gohmanc76b5452009-05-04 22:02:23 +00001869 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001870 return getUnknown(ConstantExpr::getNot(VC->getValue()));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001871
1872 const Type *Ty = V->getType();
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001873 Ty = getEffectiveSCEVType(Ty);
1874 SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001875 return getMinusSCEV(AllOnes, V);
1876}
1877
1878/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
1879///
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001880SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS,
Nick Lewycky37d04642009-04-23 05:15:08 +00001881 const SCEVHandle &RHS) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00001882 // X - Y --> X + -Y
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001883 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001884}
1885
1886/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
1887/// input value to the specified type. If the type must be extended, it is zero
1888/// extended.
1889SCEVHandle
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001890ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V,
Nick Lewycky37d04642009-04-23 05:15:08 +00001891 const Type *Ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00001892 const Type *SrcTy = V->getType();
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001893 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1894 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
Dan Gohman01c2ee72009-04-16 03:18:22 +00001895 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001896 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman01c2ee72009-04-16 03:18:22 +00001897 return V; // No conversion
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001898 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001899 return getTruncateExpr(V, Ty);
1900 return getZeroExtendExpr(V, Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001901}
1902
1903/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
1904/// input value to the specified type. If the type must be extended, it is sign
1905/// extended.
1906SCEVHandle
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001907ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V,
Nick Lewycky37d04642009-04-23 05:15:08 +00001908 const Type *Ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00001909 const Type *SrcTy = V->getType();
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001910 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1911 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
Dan Gohman01c2ee72009-04-16 03:18:22 +00001912 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001913 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman01c2ee72009-04-16 03:18:22 +00001914 return V; // No conversion
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001915 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001916 return getTruncateExpr(V, Ty);
1917 return getSignExtendExpr(V, Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001918}
1919
Dan Gohmanac959332009-05-13 03:46:30 +00001920/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
1921/// input value to the specified type. If the type must be extended, it is zero
1922/// extended. The conversion must not be narrowing.
1923SCEVHandle
1924ScalarEvolution::getNoopOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
1925 const Type *SrcTy = V->getType();
1926 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1927 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1928 "Cannot noop or zero extend with non-integer arguments!");
1929 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
1930 "getNoopOrZeroExtend cannot truncate!");
1931 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1932 return V; // No conversion
1933 return getZeroExtendExpr(V, Ty);
1934}
1935
1936/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
1937/// input value to the specified type. If the type must be extended, it is sign
1938/// extended. The conversion must not be narrowing.
1939SCEVHandle
1940ScalarEvolution::getNoopOrSignExtend(const SCEVHandle &V, const Type *Ty) {
1941 const Type *SrcTy = V->getType();
1942 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1943 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1944 "Cannot noop or sign extend with non-integer arguments!");
1945 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
1946 "getNoopOrSignExtend cannot truncate!");
1947 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1948 return V; // No conversion
1949 return getSignExtendExpr(V, Ty);
1950}
1951
Dan Gohmane1ca7e82009-06-13 15:56:47 +00001952/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
1953/// the input value to the specified type. If the type must be extended,
1954/// it is extended with unspecified bits. The conversion must not be
1955/// narrowing.
1956SCEVHandle
1957ScalarEvolution::getNoopOrAnyExtend(const SCEVHandle &V, const Type *Ty) {
1958 const Type *SrcTy = V->getType();
1959 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1960 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1961 "Cannot noop or any extend with non-integer arguments!");
1962 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
1963 "getNoopOrAnyExtend cannot truncate!");
1964 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1965 return V; // No conversion
1966 return getAnyExtendExpr(V, Ty);
1967}
1968
Dan Gohmanac959332009-05-13 03:46:30 +00001969/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
1970/// input value to the specified type. The conversion must not be widening.
1971SCEVHandle
1972ScalarEvolution::getTruncateOrNoop(const SCEVHandle &V, const Type *Ty) {
1973 const Type *SrcTy = V->getType();
1974 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1975 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
1976 "Cannot truncate or noop with non-integer arguments!");
1977 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
1978 "getTruncateOrNoop cannot extend!");
1979 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
1980 return V; // No conversion
1981 return getTruncateExpr(V, Ty);
1982}
1983
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001984/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1985/// the specified instruction and replaces any references to the symbolic value
1986/// SymName with the specified value. This is used during PHI resolution.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001987void ScalarEvolution::
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001988ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1989 const SCEVHandle &NewVal) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00001990 std::map<SCEVCallbackVH, SCEVHandle>::iterator SI =
1991 Scalars.find(SCEVCallbackVH(I, this));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001992 if (SI == Scalars.end()) return;
1993
1994 SCEVHandle NV =
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001995 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001996 if (NV == SI->second) return; // No change.
1997
1998 SI->second = NV; // Update the scalars map!
1999
2000 // Any instruction values that use this instruction might also need to be
2001 // updated!
2002 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
2003 UI != E; ++UI)
2004 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
2005}
2006
2007/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2008/// a loop header, making it a potential recurrence, or it doesn't.
2009///
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002010SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002011 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002012 if (const Loop *L = LI->getLoopFor(PN->getParent()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002013 if (L->getHeader() == PN->getParent()) {
2014 // If it lives in the loop header, it has two incoming values, one
2015 // from outside the loop, and one from inside.
2016 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
2017 unsigned BackEdge = IncomingEdge^1;
2018
2019 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002020 SCEVHandle SymbolicName = getUnknown(PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002021 assert(Scalars.find(PN) == Scalars.end() &&
2022 "PHI node already processed?");
Dan Gohmanbff6b582009-05-04 22:30:44 +00002023 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002024
2025 // Using this symbolic name for the PHI, analyze the value coming around
2026 // the back-edge.
2027 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
2028
2029 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2030 // has a special value for the first iteration of the loop.
2031
2032 // If the value coming around the backedge is an add with the symbolic
2033 // value we just inserted, then we found a simple induction variable!
Dan Gohmanc76b5452009-05-04 22:02:23 +00002034 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002035 // If there is a single occurrence of the symbolic value, replace it
2036 // with a recurrence.
2037 unsigned FoundIndex = Add->getNumOperands();
2038 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2039 if (Add->getOperand(i) == SymbolicName)
2040 if (FoundIndex == e) {
2041 FoundIndex = i;
2042 break;
2043 }
2044
2045 if (FoundIndex != Add->getNumOperands()) {
2046 // Create an add with everything but the specified operand.
Dan Gohman02ff9392009-06-14 22:47:23 +00002047 SmallVector<SCEVHandle, 8> Ops;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002048 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2049 if (i != FoundIndex)
2050 Ops.push_back(Add->getOperand(i));
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002051 SCEVHandle Accum = getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002052
2053 // This is not a valid addrec if the step amount is varying each
2054 // loop iteration, but is not itself an addrec in this loop.
2055 if (Accum->isLoopInvariant(L) ||
2056 (isa<SCEVAddRecExpr>(Accum) &&
2057 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
2058 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002059 SCEVHandle PHISCEV = getAddRecExpr(StartVal, Accum, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002060
2061 // Okay, for the entire analysis of this edge we assumed the PHI
2062 // to be symbolic. We now need to go back and update all of the
2063 // entries for the scalars that use the PHI (except for the PHI
2064 // itself) to use the new analyzed value instead of the "symbolic"
2065 // value.
2066 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
2067 return PHISCEV;
2068 }
2069 }
Dan Gohmanc76b5452009-05-04 22:02:23 +00002070 } else if (const SCEVAddRecExpr *AddRec =
2071 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002072 // Otherwise, this could be a loop like this:
2073 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2074 // In this case, j = {1,+,1} and BEValue is j.
2075 // Because the other in-value of i (0) fits the evolution of BEValue
2076 // i really is an addrec evolution.
2077 if (AddRec->getLoop() == L && AddRec->isAffine()) {
2078 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
2079
2080 // If StartVal = j.start - j.stride, we can use StartVal as the
2081 // initial step of the addrec evolution.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002082 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman89f85052007-10-22 18:31:58 +00002083 AddRec->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002084 SCEVHandle PHISCEV =
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002085 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002086
2087 // Okay, for the entire analysis of this edge we assumed the PHI
2088 // to be symbolic. We now need to go back and update all of the
2089 // entries for the scalars that use the PHI (except for the PHI
2090 // itself) to use the new analyzed value instead of the "symbolic"
2091 // value.
2092 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
2093 return PHISCEV;
2094 }
2095 }
2096 }
2097
2098 return SymbolicName;
2099 }
2100
2101 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002102 return getUnknown(PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002103}
2104
Dan Gohman509cf4d2009-05-08 20:26:55 +00002105/// createNodeForGEP - Expand GEP instructions into add and multiply
2106/// operations. This allows them to be analyzed by regular SCEV code.
2107///
Dan Gohmanca5a39e2009-05-08 20:58:38 +00002108SCEVHandle ScalarEvolution::createNodeForGEP(User *GEP) {
Dan Gohman509cf4d2009-05-08 20:26:55 +00002109
2110 const Type *IntPtrTy = TD->getIntPtrType();
Dan Gohmanc7034fa2009-05-08 20:36:47 +00002111 Value *Base = GEP->getOperand(0);
Dan Gohmand586a4f2009-05-09 00:14:52 +00002112 // Don't attempt to analyze GEPs over unsized objects.
2113 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2114 return getUnknown(GEP);
Dan Gohman509cf4d2009-05-08 20:26:55 +00002115 SCEVHandle TotalOffset = getIntegerSCEV(0, IntPtrTy);
Dan Gohmanc7034fa2009-05-08 20:36:47 +00002116 gep_type_iterator GTI = gep_type_begin(GEP);
2117 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2118 E = GEP->op_end();
Dan Gohman509cf4d2009-05-08 20:26:55 +00002119 I != E; ++I) {
2120 Value *Index = *I;
2121 // Compute the (potentially symbolic) offset in bytes for this index.
2122 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2123 // For a struct, add the member offset.
2124 const StructLayout &SL = *TD->getStructLayout(STy);
2125 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
2126 uint64_t Offset = SL.getElementOffset(FieldNo);
2127 TotalOffset = getAddExpr(TotalOffset,
2128 getIntegerSCEV(Offset, IntPtrTy));
2129 } else {
2130 // For an array, add the element offset, explicitly scaled.
2131 SCEVHandle LocalOffset = getSCEV(Index);
2132 if (!isa<PointerType>(LocalOffset->getType()))
2133 // Getelementptr indicies are signed.
2134 LocalOffset = getTruncateOrSignExtend(LocalOffset,
2135 IntPtrTy);
2136 LocalOffset =
2137 getMulExpr(LocalOffset,
Duncan Sandsec4f97d2009-05-09 07:06:46 +00002138 getIntegerSCEV(TD->getTypeAllocSize(*GTI),
Dan Gohman509cf4d2009-05-08 20:26:55 +00002139 IntPtrTy));
2140 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2141 }
2142 }
2143 return getAddExpr(getSCEV(Base), TotalOffset);
2144}
2145
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002146/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2147/// guaranteed to end in (at every loop iteration). It is, at the same time,
2148/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2149/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002150static uint32_t GetMinTrailingZeros(SCEVHandle S, const ScalarEvolution &SE) {
Dan Gohmanc76b5452009-05-04 22:02:23 +00002151 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner6ecce2a2007-11-23 22:36:49 +00002152 return C->getValue()->getValue().countTrailingZeros();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002153
Dan Gohmanc76b5452009-05-04 22:02:23 +00002154 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002155 return std::min(GetMinTrailingZeros(T->getOperand(), SE),
2156 (uint32_t)SE.getTypeSizeInBits(T->getType()));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002157
Dan Gohmanc76b5452009-05-04 22:02:23 +00002158 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002159 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
2160 return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
Dan Gohmanbfd51da2009-05-12 01:23:18 +00002161 SE.getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002162 }
2163
Dan Gohmanc76b5452009-05-04 22:02:23 +00002164 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002165 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
2166 return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
Dan Gohmanbfd51da2009-05-12 01:23:18 +00002167 SE.getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002168 }
2169
Dan Gohmanc76b5452009-05-04 22:02:23 +00002170 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002171 // The result is the min of all operands results.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002172 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002173 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002174 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002175 return MinOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002176 }
2177
Dan Gohmanc76b5452009-05-04 22:02:23 +00002178 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002179 // The result is the sum of all operands results.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002180 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
2181 uint32_t BitWidth = SE.getTypeSizeInBits(M->getType());
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002182 for (unsigned i = 1, e = M->getNumOperands();
2183 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002184 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i), SE),
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002185 BitWidth);
2186 return SumOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002187 }
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002188
Dan Gohmanc76b5452009-05-04 22:02:23 +00002189 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002190 // The result is the min of all operands results.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002191 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002192 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002193 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002194 return MinOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002195 }
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002196
Dan Gohmanc76b5452009-05-04 22:02:23 +00002197 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewycky711640a2007-11-25 22:41:31 +00002198 // The result is the min of all operands results.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002199 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
Nick Lewycky711640a2007-11-25 22:41:31 +00002200 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002201 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
Nick Lewycky711640a2007-11-25 22:41:31 +00002202 return MinOpRes;
2203 }
2204
Dan Gohmanc76b5452009-05-04 22:02:23 +00002205 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002206 // The result is the min of all operands results.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002207 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002208 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002209 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002210 return MinOpRes;
2211 }
2212
Nick Lewycky35b56022009-01-13 09:18:58 +00002213 // SCEVUDivExpr, SCEVUnknown
Nick Lewycky4cb604b2007-11-22 07:59:40 +00002214 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002215}
2216
2217/// createSCEV - We know that there is no SCEV for the specified value.
2218/// Analyze the expression.
2219///
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002220SCEVHandle ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002221 if (!isSCEVable(V->getType()))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002222 return getUnknown(V);
Dan Gohman01c2ee72009-04-16 03:18:22 +00002223
Dan Gohman3996f472008-06-22 19:56:46 +00002224 unsigned Opcode = Instruction::UserOp1;
2225 if (Instruction *I = dyn_cast<Instruction>(V))
2226 Opcode = I->getOpcode();
2227 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2228 Opcode = CE->getOpcode();
2229 else
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002230 return getUnknown(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002231
Dan Gohman3996f472008-06-22 19:56:46 +00002232 User *U = cast<User>(V);
2233 switch (Opcode) {
2234 case Instruction::Add:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002235 return getAddExpr(getSCEV(U->getOperand(0)),
2236 getSCEV(U->getOperand(1)));
Dan Gohman3996f472008-06-22 19:56:46 +00002237 case Instruction::Mul:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002238 return getMulExpr(getSCEV(U->getOperand(0)),
2239 getSCEV(U->getOperand(1)));
Dan Gohman3996f472008-06-22 19:56:46 +00002240 case Instruction::UDiv:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002241 return getUDivExpr(getSCEV(U->getOperand(0)),
2242 getSCEV(U->getOperand(1)));
Dan Gohman3996f472008-06-22 19:56:46 +00002243 case Instruction::Sub:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002244 return getMinusSCEV(getSCEV(U->getOperand(0)),
2245 getSCEV(U->getOperand(1)));
Dan Gohman53bf64a2009-04-21 02:26:00 +00002246 case Instruction::And:
2247 // For an expression like x&255 that merely masks off the high bits,
2248 // use zext(trunc(x)) as the SCEV expression.
2249 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman91ae1e72009-04-25 17:05:40 +00002250 if (CI->isNullValue())
2251 return getSCEV(U->getOperand(1));
Dan Gohmanc7ebba12009-04-27 01:41:10 +00002252 if (CI->isAllOnesValue())
2253 return getSCEV(U->getOperand(0));
Dan Gohman53bf64a2009-04-21 02:26:00 +00002254 const APInt &A = CI->getValue();
2255 unsigned Ones = A.countTrailingOnes();
2256 if (APIntOps::isMask(Ones, A))
2257 return
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002258 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
2259 IntegerType::get(Ones)),
2260 U->getType());
Dan Gohman53bf64a2009-04-21 02:26:00 +00002261 }
2262 break;
Dan Gohman3996f472008-06-22 19:56:46 +00002263 case Instruction::Or:
2264 // If the RHS of the Or is a constant, we may have something like:
2265 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
2266 // optimizations will transparently handle this case.
2267 //
2268 // In order for this transformation to be safe, the LHS must be of the
2269 // form X*(2^n) and the Or constant must be less than 2^n.
2270 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
2271 SCEVHandle LHS = getSCEV(U->getOperand(0));
2272 const APInt &CIVal = CI->getValue();
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002273 if (GetMinTrailingZeros(LHS, *this) >=
Dan Gohman3996f472008-06-22 19:56:46 +00002274 (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002275 return getAddExpr(LHS, getSCEV(U->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002276 }
Dan Gohman3996f472008-06-22 19:56:46 +00002277 break;
2278 case Instruction::Xor:
Dan Gohman3996f472008-06-22 19:56:46 +00002279 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky7fd27892008-07-07 06:15:49 +00002280 // If the RHS of the xor is a signbit, then this is just an add.
2281 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman3996f472008-06-22 19:56:46 +00002282 if (CI->getValue().isSignBit())
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002283 return getAddExpr(getSCEV(U->getOperand(0)),
2284 getSCEV(U->getOperand(1)));
Nick Lewycky7fd27892008-07-07 06:15:49 +00002285
2286 // If the RHS of xor is -1, then this is a not operation.
Dan Gohmanc897f752009-05-18 16:17:44 +00002287 if (CI->isAllOnesValue())
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002288 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohmanfc78cff2009-05-18 16:29:04 +00002289
2290 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
2291 // This is a variant of the check for xor with -1, and it handles
2292 // the case where instcombine has trimmed non-demanded bits out
2293 // of an xor with -1.
2294 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
2295 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
2296 if (BO->getOpcode() == Instruction::And &&
2297 LCI->getValue() == CI->getValue())
2298 if (const SCEVZeroExtendExpr *Z =
2299 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0))))
2300 return getZeroExtendExpr(getNotSCEV(Z->getOperand()),
2301 U->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00002302 }
2303 break;
2304
2305 case Instruction::Shl:
2306 // Turn shift left of a constant amount into a multiply.
2307 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2308 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2309 Constant *X = ConstantInt::get(
2310 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002311 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman3996f472008-06-22 19:56:46 +00002312 }
2313 break;
2314
Nick Lewycky7fd27892008-07-07 06:15:49 +00002315 case Instruction::LShr:
Nick Lewycky35b56022009-01-13 09:18:58 +00002316 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky7fd27892008-07-07 06:15:49 +00002317 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
2318 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
2319 Constant *X = ConstantInt::get(
2320 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002321 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky7fd27892008-07-07 06:15:49 +00002322 }
2323 break;
2324
Dan Gohman53bf64a2009-04-21 02:26:00 +00002325 case Instruction::AShr:
2326 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
2327 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
2328 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
2329 if (L->getOpcode() == Instruction::Shl &&
2330 L->getOperand(1) == U->getOperand(1)) {
Dan Gohman91ae1e72009-04-25 17:05:40 +00002331 unsigned BitWidth = getTypeSizeInBits(U->getType());
2332 uint64_t Amt = BitWidth - CI->getZExtValue();
2333 if (Amt == BitWidth)
2334 return getSCEV(L->getOperand(0)); // shift by zero --> noop
2335 if (Amt > BitWidth)
2336 return getIntegerSCEV(0, U->getType()); // value is undefined
Dan Gohman53bf64a2009-04-21 02:26:00 +00002337 return
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002338 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohman91ae1e72009-04-25 17:05:40 +00002339 IntegerType::get(Amt)),
Dan Gohman53bf64a2009-04-21 02:26:00 +00002340 U->getType());
2341 }
2342 break;
2343
Dan Gohman3996f472008-06-22 19:56:46 +00002344 case Instruction::Trunc:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002345 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00002346
2347 case Instruction::ZExt:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002348 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00002349
2350 case Instruction::SExt:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002351 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00002352
2353 case Instruction::BitCast:
2354 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002355 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman3996f472008-06-22 19:56:46 +00002356 return getSCEV(U->getOperand(0));
2357 break;
2358
Dan Gohman01c2ee72009-04-16 03:18:22 +00002359 case Instruction::IntToPtr:
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002360 if (!TD) break; // Without TD we can't analyze pointers.
Dan Gohman01c2ee72009-04-16 03:18:22 +00002361 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002362 TD->getIntPtrType());
Dan Gohman01c2ee72009-04-16 03:18:22 +00002363
2364 case Instruction::PtrToInt:
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002365 if (!TD) break; // Without TD we can't analyze pointers.
Dan Gohman01c2ee72009-04-16 03:18:22 +00002366 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
2367 U->getType());
2368
Dan Gohman509cf4d2009-05-08 20:26:55 +00002369 case Instruction::GetElementPtr:
Dan Gohmanb98c1a32009-04-21 01:07:12 +00002370 if (!TD) break; // Without TD we can't analyze pointers.
Dan Gohmanca5a39e2009-05-08 20:58:38 +00002371 return createNodeForGEP(U);
Dan Gohman01c2ee72009-04-16 03:18:22 +00002372
Dan Gohman3996f472008-06-22 19:56:46 +00002373 case Instruction::PHI:
2374 return createNodeForPHI(cast<PHINode>(U));
2375
2376 case Instruction::Select:
2377 // This could be a smax or umax that was lowered earlier.
2378 // Try to recover it.
2379 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
2380 Value *LHS = ICI->getOperand(0);
2381 Value *RHS = ICI->getOperand(1);
2382 switch (ICI->getPredicate()) {
2383 case ICmpInst::ICMP_SLT:
2384 case ICmpInst::ICMP_SLE:
2385 std::swap(LHS, RHS);
2386 // fall through
2387 case ICmpInst::ICMP_SGT:
2388 case ICmpInst::ICMP_SGE:
2389 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002390 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman3996f472008-06-22 19:56:46 +00002391 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
Eli Friedman8e2fd032008-07-30 04:36:32 +00002392 // ~smax(~x, ~y) == smin(x, y).
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002393 return getNotSCEV(getSMaxExpr(
2394 getNotSCEV(getSCEV(LHS)),
2395 getNotSCEV(getSCEV(RHS))));
Dan Gohman3996f472008-06-22 19:56:46 +00002396 break;
2397 case ICmpInst::ICMP_ULT:
2398 case ICmpInst::ICMP_ULE:
2399 std::swap(LHS, RHS);
2400 // fall through
2401 case ICmpInst::ICMP_UGT:
2402 case ICmpInst::ICMP_UGE:
2403 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002404 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman3996f472008-06-22 19:56:46 +00002405 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2406 // ~umax(~x, ~y) == umin(x, y)
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002407 return getNotSCEV(getUMaxExpr(getNotSCEV(getSCEV(LHS)),
2408 getNotSCEV(getSCEV(RHS))));
Dan Gohman3996f472008-06-22 19:56:46 +00002409 break;
2410 default:
2411 break;
2412 }
2413 }
2414
2415 default: // We cannot analyze this expression.
2416 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002417 }
2418
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002419 return getUnknown(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002420}
2421
2422
2423
2424//===----------------------------------------------------------------------===//
2425// Iteration Count Computation Code
2426//
2427
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002428/// getBackedgeTakenCount - If the specified loop has a predictable
2429/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
2430/// object. The backedge-taken count is the number of times the loop header
2431/// will be branched to from within the loop. This is one less than the
2432/// trip count of the loop, since it doesn't count the first iteration,
2433/// when the header is branched to from outside the loop.
2434///
2435/// Note that it is not valid to call this method on a loop without a
2436/// loop-invariant backedge-taken count (see
2437/// hasLoopInvariantBackedgeTakenCount).
2438///
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002439SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002440 return getBackedgeTakenInfo(L).Exact;
2441}
2442
2443/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
2444/// return the least SCEV value that is known never to be less than the
2445/// actual backedge taken count.
2446SCEVHandle ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
2447 return getBackedgeTakenInfo(L).Max;
2448}
2449
2450const ScalarEvolution::BackedgeTakenInfo &
2451ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohmana9dba962009-04-27 20:16:15 +00002452 // Initially insert a CouldNotCompute for this loop. If the insertion
2453 // succeeds, procede to actually compute a backedge-taken count and
2454 // update the value. The temporary CouldNotCompute value tells SCEV
2455 // code elsewhere that it shouldn't attempt to request a new
2456 // backedge-taken count, which could result in infinite recursion.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002457 std::pair<std::map<const Loop*, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohmana9dba962009-04-27 20:16:15 +00002458 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
2459 if (Pair.second) {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002460 BackedgeTakenInfo ItCount = ComputeBackedgeTakenCount(L);
Dan Gohman0c850912009-06-06 14:37:11 +00002461 if (ItCount.Exact != CouldNotCompute) {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002462 assert(ItCount.Exact->isLoopInvariant(L) &&
2463 ItCount.Max->isLoopInvariant(L) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002464 "Computed trip count isn't loop invariant for loop!");
2465 ++NumTripCountsComputed;
Dan Gohmana9dba962009-04-27 20:16:15 +00002466
Dan Gohmana9dba962009-04-27 20:16:15 +00002467 // Update the value in the map.
2468 Pair.first->second = ItCount;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002469 } else if (isa<PHINode>(L->getHeader()->begin())) {
2470 // Only count loops that have phi nodes as not being computable.
2471 ++NumTripCountsNotComputed;
2472 }
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002473
2474 // Now that we know more about the trip count for this loop, forget any
2475 // existing SCEV values for PHI nodes in this loop since they are only
2476 // conservative estimates made without the benefit
2477 // of trip count information.
2478 if (ItCount.hasAnyInfo())
Dan Gohman94623022009-05-02 17:43:35 +00002479 forgetLoopPHIs(L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002480 }
Dan Gohmana9dba962009-04-27 20:16:15 +00002481 return Pair.first->second;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002482}
2483
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002484/// forgetLoopBackedgeTakenCount - This method should be called by the
Dan Gohmanf3a060a2009-02-17 20:49:49 +00002485/// client when it has changed a loop in a way that may effect
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002486/// ScalarEvolution's ability to compute a trip count, or if the loop
2487/// is deleted.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002488void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002489 BackedgeTakenCounts.erase(L);
Dan Gohman94623022009-05-02 17:43:35 +00002490 forgetLoopPHIs(L);
2491}
2492
2493/// forgetLoopPHIs - Delete the memoized SCEVs associated with the
2494/// PHI nodes in the given loop. This is used when the trip count of
2495/// the loop may have changed.
2496void ScalarEvolution::forgetLoopPHIs(const Loop *L) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00002497 BasicBlock *Header = L->getHeader();
2498
Dan Gohman9fd4a002009-05-12 01:27:58 +00002499 // Push all Loop-header PHIs onto the Worklist stack, except those
2500 // that are presently represented via a SCEVUnknown. SCEVUnknown for
2501 // a PHI either means that it has an unrecognized structure, or it's
2502 // a PHI that's in the progress of being computed by createNodeForPHI.
2503 // In the former case, additional loop trip count information isn't
2504 // going to change anything. In the later case, createNodeForPHI will
2505 // perform the necessary updates on its own when it gets to that point.
Dan Gohmanbff6b582009-05-04 22:30:44 +00002506 SmallVector<Instruction *, 16> Worklist;
2507 for (BasicBlock::iterator I = Header->begin();
Dan Gohman9fd4a002009-05-12 01:27:58 +00002508 PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2509 std::map<SCEVCallbackVH, SCEVHandle>::iterator It = Scalars.find((Value*)I);
2510 if (It != Scalars.end() && !isa<SCEVUnknown>(It->second))
2511 Worklist.push_back(PN);
2512 }
Dan Gohmanbff6b582009-05-04 22:30:44 +00002513
2514 while (!Worklist.empty()) {
2515 Instruction *I = Worklist.pop_back_val();
2516 if (Scalars.erase(I))
2517 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2518 UI != UE; ++UI)
2519 Worklist.push_back(cast<Instruction>(UI));
2520 }
Dan Gohmanf3a060a2009-02-17 20:49:49 +00002521}
2522
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002523/// ComputeBackedgeTakenCount - Compute the number of times the backedge
2524/// of the specified loop will execute.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002525ScalarEvolution::BackedgeTakenInfo
2526ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002527 // If the loop has a non-one exit block count, we can't analyze it.
Devang Patel7388a9a2009-06-05 23:08:56 +00002528 BasicBlock *ExitBlock = L->getExitBlock();
2529 if (!ExitBlock)
Dan Gohman0c850912009-06-06 14:37:11 +00002530 return CouldNotCompute;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002531
2532 // Okay, there is one exit block. Try to find the condition that causes the
2533 // loop to be exited.
Devang Patel7388a9a2009-06-05 23:08:56 +00002534 BasicBlock *ExitingBlock = L->getExitingBlock();
2535 if (!ExitingBlock)
Dan Gohman0c850912009-06-06 14:37:11 +00002536 return CouldNotCompute; // More than one block exiting!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002537
2538 // Okay, we've computed the exiting block. See what condition causes us to
2539 // exit.
2540 //
2541 // FIXME: we should be able to handle switch instructions (with a single exit)
2542 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman0c850912009-06-06 14:37:11 +00002543 if (ExitBr == 0) return CouldNotCompute;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002544 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
2545
2546 // At this point, we know we have a conditional branch that determines whether
2547 // the loop is exited. However, we don't know if the branch is executed each
2548 // time through the loop. If not, then the execution count of the branch will
2549 // not be equal to the trip count of the loop.
2550 //
2551 // Currently we check for this by checking to see if the Exit branch goes to
2552 // the loop header. If so, we know it will always execute the same number of
2553 // times as the loop. We also handle the case where the exit block *is* the
2554 // loop header. This is common for un-rotated loops. More extensive analysis
2555 // could be done to handle more cases here.
2556 if (ExitBr->getSuccessor(0) != L->getHeader() &&
2557 ExitBr->getSuccessor(1) != L->getHeader() &&
2558 ExitBr->getParent() != L->getHeader())
Dan Gohman0c850912009-06-06 14:37:11 +00002559 return CouldNotCompute;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002560
2561 ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
2562
Eli Friedman459d7292009-05-09 12:32:42 +00002563 // If it's not an integer or pointer comparison then compute it the hard way.
2564 if (ExitCond == 0)
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002565 return ComputeBackedgeTakenCountExhaustively(L, ExitBr->getCondition(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002566 ExitBr->getSuccessor(0) == ExitBlock);
2567
2568 // If the condition was exit on true, convert the condition to exit on false
2569 ICmpInst::Predicate Cond;
2570 if (ExitBr->getSuccessor(1) == ExitBlock)
2571 Cond = ExitCond->getPredicate();
2572 else
2573 Cond = ExitCond->getInversePredicate();
2574
2575 // Handle common loops like: for (X = "string"; *X; ++X)
2576 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
2577 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
2578 SCEVHandle ItCnt =
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002579 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002580 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
2581 }
2582
2583 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
2584 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
2585
2586 // Try to evaluate any dependencies out of the loop.
Dan Gohmanaff14d62009-05-24 23:25:42 +00002587 LHS = getSCEVAtScope(LHS, L);
2588 RHS = getSCEVAtScope(RHS, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002589
2590 // At this point, we would like to compute how many iterations of the
2591 // loop the predicate will return true for these inputs.
Dan Gohman2d96e352008-09-16 18:52:57 +00002592 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
2593 // If there is a loop-invariant, force it into the RHS.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002594 std::swap(LHS, RHS);
2595 Cond = ICmpInst::getSwappedPredicate(Cond);
2596 }
2597
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002598 // If we have a comparison of a chrec against a constant, try to use value
2599 // ranges to answer this query.
Dan Gohmanc76b5452009-05-04 22:02:23 +00002600 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
2601 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002602 if (AddRec->getLoop() == L) {
Eli Friedman459d7292009-05-09 12:32:42 +00002603 // Form the constant range.
2604 ConstantRange CompRange(
2605 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002606
Eli Friedman459d7292009-05-09 12:32:42 +00002607 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, *this);
2608 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002609 }
2610
2611 switch (Cond) {
2612 case ICmpInst::ICMP_NE: { // while (X != Y)
2613 // Convert to: while (X-Y != 0)
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002614 SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002615 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2616 break;
2617 }
2618 case ICmpInst::ICMP_EQ: {
2619 // Convert to: while (X-Y == 0) // while (X == Y)
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002620 SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002621 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2622 break;
2623 }
2624 case ICmpInst::ICMP_SLT: {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002625 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
2626 if (BTI.hasAnyInfo()) return BTI;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002627 break;
2628 }
2629 case ICmpInst::ICMP_SGT: {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002630 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2631 getNotSCEV(RHS), L, true);
2632 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyb7c28942007-08-06 19:21:00 +00002633 break;
2634 }
2635 case ICmpInst::ICMP_ULT: {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002636 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
2637 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyb7c28942007-08-06 19:21:00 +00002638 break;
2639 }
2640 case ICmpInst::ICMP_UGT: {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00002641 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
2642 getNotSCEV(RHS), L, false);
2643 if (BTI.hasAnyInfo()) return BTI;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002644 break;
2645 }
2646 default:
2647#if 0
Dan Gohman13058cc2009-04-21 00:47:46 +00002648 errs() << "ComputeBackedgeTakenCount ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002649 if (ExitCond->getOperand(0)->getType()->isUnsigned())
Dan Gohman13058cc2009-04-21 00:47:46 +00002650 errs() << "[unsigned] ";
2651 errs() << *LHS << " "
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002652 << Instruction::getOpcodeName(Instruction::ICmp)
2653 << " " << *RHS << "\n";
2654#endif
2655 break;
2656 }
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002657 return
2658 ComputeBackedgeTakenCountExhaustively(L, ExitCond,
2659 ExitBr->getSuccessor(0) == ExitBlock);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002660}
2661
2662static ConstantInt *
Dan Gohman89f85052007-10-22 18:31:58 +00002663EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
2664 ScalarEvolution &SE) {
2665 SCEVHandle InVal = SE.getConstant(C);
2666 SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002667 assert(isa<SCEVConstant>(Val) &&
2668 "Evaluation of SCEV at constant didn't fold correctly?");
2669 return cast<SCEVConstant>(Val)->getValue();
2670}
2671
2672/// GetAddressedElementFromGlobal - Given a global variable with an initializer
2673/// and a GEP expression (missing the pointer index) indexing into it, return
2674/// the addressed element of the initializer or null if the index expression is
2675/// invalid.
2676static Constant *
2677GetAddressedElementFromGlobal(GlobalVariable *GV,
2678 const std::vector<ConstantInt*> &Indices) {
2679 Constant *Init = GV->getInitializer();
2680 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
2681 uint64_t Idx = Indices[i]->getZExtValue();
2682 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2683 assert(Idx < CS->getNumOperands() && "Bad struct index!");
2684 Init = cast<Constant>(CS->getOperand(Idx));
2685 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2686 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
2687 Init = cast<Constant>(CA->getOperand(Idx));
2688 } else if (isa<ConstantAggregateZero>(Init)) {
2689 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2690 assert(Idx < STy->getNumElements() && "Bad struct index!");
2691 Init = Constant::getNullValue(STy->getElementType(Idx));
2692 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
2693 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
2694 Init = Constant::getNullValue(ATy->getElementType());
2695 } else {
2696 assert(0 && "Unknown constant aggregate type!");
2697 }
2698 return 0;
2699 } else {
2700 return 0; // Unknown initializer type
2701 }
2702 }
2703 return Init;
2704}
2705
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002706/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
2707/// 'icmp op load X, cst', try to see if we can compute the backedge
2708/// execution count.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002709SCEVHandle ScalarEvolution::
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002710ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS,
2711 const Loop *L,
2712 ICmpInst::Predicate predicate) {
Dan Gohman0c850912009-06-06 14:37:11 +00002713 if (LI->isVolatile()) return CouldNotCompute;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002714
2715 // Check to see if the loaded pointer is a getelementptr of a global.
2716 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman0c850912009-06-06 14:37:11 +00002717 if (!GEP) return CouldNotCompute;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002718
2719 // Make sure that it is really a constant global we are gepping, with an
2720 // initializer, and make sure the first IDX is really 0.
2721 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
2722 if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
2723 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
2724 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman0c850912009-06-06 14:37:11 +00002725 return CouldNotCompute;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002726
2727 // Okay, we allow one non-constant index into the GEP instruction.
2728 Value *VarIdx = 0;
2729 std::vector<ConstantInt*> Indexes;
2730 unsigned VarIdxNum = 0;
2731 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
2732 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
2733 Indexes.push_back(CI);
2734 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman0c850912009-06-06 14:37:11 +00002735 if (VarIdx) return CouldNotCompute; // Multiple non-constant idx's.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002736 VarIdx = GEP->getOperand(i);
2737 VarIdxNum = i-2;
2738 Indexes.push_back(0);
2739 }
2740
2741 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
2742 // Check to see if X is a loop variant variable value now.
2743 SCEVHandle Idx = getSCEV(VarIdx);
Dan Gohmanaff14d62009-05-24 23:25:42 +00002744 Idx = getSCEVAtScope(Idx, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002745
2746 // We can only recognize very limited forms of loop index expressions, in
2747 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohmanbff6b582009-05-04 22:30:44 +00002748 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002749 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
2750 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
2751 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman0c850912009-06-06 14:37:11 +00002752 return CouldNotCompute;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002753
2754 unsigned MaxSteps = MaxBruteForceIterations;
2755 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
2756 ConstantInt *ItCst =
2757 ConstantInt::get(IdxExpr->getType(), IterationNum);
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002758 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002759
2760 // Form the GEP offset.
2761 Indexes[VarIdxNum] = Val;
2762
2763 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
2764 if (Result == 0) break; // Cannot compute!
2765
2766 // Evaluate the condition for this iteration.
2767 Result = ConstantExpr::getICmp(predicate, Result, RHS);
2768 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
2769 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
2770#if 0
Dan Gohman13058cc2009-04-21 00:47:46 +00002771 errs() << "\n***\n*** Computed loop count " << *ItCst
2772 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
2773 << "***\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002774#endif
2775 ++NumArrayLenItCounts;
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002776 return getConstant(ItCst); // Found terminating iteration!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002777 }
2778 }
Dan Gohman0c850912009-06-06 14:37:11 +00002779 return CouldNotCompute;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002780}
2781
2782
2783/// CanConstantFold - Return true if we can constant fold an instruction of the
2784/// specified type, assuming that all operands were constants.
2785static bool CanConstantFold(const Instruction *I) {
2786 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
2787 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
2788 return true;
2789
2790 if (const CallInst *CI = dyn_cast<CallInst>(I))
2791 if (const Function *F = CI->getCalledFunction())
Dan Gohmane6e001f2008-01-31 01:05:10 +00002792 return canConstantFoldCallTo(F);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002793 return false;
2794}
2795
2796/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
2797/// in the loop that V is derived from. We allow arbitrary operations along the
2798/// way, but the operands of an operation must either be constants or a value
2799/// derived from a constant PHI. If this expression does not fit with these
2800/// constraints, return null.
2801static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
2802 // If this is not an instruction, or if this is an instruction outside of the
2803 // loop, it can't be derived from a loop PHI.
2804 Instruction *I = dyn_cast<Instruction>(V);
2805 if (I == 0 || !L->contains(I->getParent())) return 0;
2806
Anton Korobeynikov357a27d2008-02-20 11:08:44 +00002807 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002808 if (L->getHeader() == I->getParent())
2809 return PN;
2810 else
2811 // We don't currently keep track of the control flow needed to evaluate
2812 // PHIs, so we cannot handle PHIs inside of loops.
2813 return 0;
Anton Korobeynikov357a27d2008-02-20 11:08:44 +00002814 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002815
2816 // If we won't be able to constant fold this expression even if the operands
2817 // are constants, return early.
2818 if (!CanConstantFold(I)) return 0;
2819
2820 // Otherwise, we can evaluate this instruction if all of its operands are
2821 // constant or derived from a PHI node themselves.
2822 PHINode *PHI = 0;
2823 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
2824 if (!(isa<Constant>(I->getOperand(Op)) ||
2825 isa<GlobalValue>(I->getOperand(Op)))) {
2826 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
2827 if (P == 0) return 0; // Not evolving from PHI
2828 if (PHI == 0)
2829 PHI = P;
2830 else if (PHI != P)
2831 return 0; // Evolving from multiple different PHIs.
2832 }
2833
2834 // This is a expression evolving from a constant PHI!
2835 return PHI;
2836}
2837
2838/// EvaluateExpression - Given an expression that passes the
2839/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
2840/// in the loop has the value PHIVal. If we can't fold this expression for some
2841/// reason, return null.
2842static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
2843 if (isa<PHINode>(V)) return PHIVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002844 if (Constant *C = dyn_cast<Constant>(V)) return C;
Dan Gohman01c2ee72009-04-16 03:18:22 +00002845 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002846 Instruction *I = cast<Instruction>(V);
2847
2848 std::vector<Constant*> Operands;
2849 Operands.resize(I->getNumOperands());
2850
2851 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2852 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
2853 if (Operands[i] == 0) return 0;
2854 }
2855
Chris Lattnerd6e56912007-12-10 22:53:04 +00002856 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2857 return ConstantFoldCompareInstOperands(CI->getPredicate(),
2858 &Operands[0], Operands.size());
2859 else
2860 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2861 &Operands[0], Operands.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002862}
2863
2864/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
2865/// in the header of its containing loop, we know the loop executes a
2866/// constant number of times, and the PHI node is just a recurrence
2867/// involving constants, fold it.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002868Constant *ScalarEvolution::
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002869getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002870 std::map<PHINode*, Constant*>::iterator I =
2871 ConstantEvolutionLoopExitValue.find(PN);
2872 if (I != ConstantEvolutionLoopExitValue.end())
2873 return I->second;
2874
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002875 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002876 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
2877
2878 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
2879
2880 // Since the loop is canonicalized, the PHI node must have two entries. One
2881 // entry must be a constant (coming in from outside of the loop), and the
2882 // second must be derived from the same PHI.
2883 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2884 Constant *StartCST =
2885 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2886 if (StartCST == 0)
2887 return RetVal = 0; // Must be a constant.
2888
2889 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2890 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2891 if (PN2 != PN)
2892 return RetVal = 0; // Not derived from same PHI.
2893
2894 // Execute the loop symbolically to determine the exit value.
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002895 if (BEs.getActiveBits() >= 32)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002896 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
2897
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002898 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002899 unsigned IterationNum = 0;
2900 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
2901 if (IterationNum == NumIterations)
2902 return RetVal = PHIVal; // Got exit value!
2903
2904 // Compute the value of the PHI node for the next iteration.
2905 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2906 if (NextPHI == PHIVal)
2907 return RetVal = NextPHI; // Stopped evolving!
2908 if (NextPHI == 0)
2909 return 0; // Couldn't evaluate!
2910 PHIVal = NextPHI;
2911 }
2912}
2913
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002914/// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002915/// constant number of times (the condition evolves only from constants),
2916/// try to evaluate a few iterations of the loop until we get the exit
2917/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman0c850912009-06-06 14:37:11 +00002918/// evaluate the trip count of the loop, return CouldNotCompute.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002919SCEVHandle ScalarEvolution::
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002920ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002921 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman0c850912009-06-06 14:37:11 +00002922 if (PN == 0) return CouldNotCompute;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002923
2924 // Since the loop is canonicalized, the PHI node must have two entries. One
2925 // entry must be a constant (coming in from outside of the loop), and the
2926 // second must be derived from the same PHI.
2927 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2928 Constant *StartCST =
2929 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman0c850912009-06-06 14:37:11 +00002930 if (StartCST == 0) return CouldNotCompute; // Must be a constant.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002931
2932 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2933 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
Dan Gohman0c850912009-06-06 14:37:11 +00002934 if (PN2 != PN) return CouldNotCompute; // Not derived from same PHI.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002935
2936 // Okay, we find a PHI node that defines the trip count of this loop. Execute
2937 // the loop symbolically to determine when the condition gets a value of
2938 // "ExitWhen".
2939 unsigned IterationNum = 0;
2940 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
2941 for (Constant *PHIVal = StartCST;
2942 IterationNum != MaxIterations; ++IterationNum) {
2943 ConstantInt *CondVal =
2944 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
2945
2946 // Couldn't symbolically evaluate.
Dan Gohman0c850912009-06-06 14:37:11 +00002947 if (!CondVal) return CouldNotCompute;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002948
2949 if (CondVal->getValue() == uint64_t(ExitWhen)) {
2950 ConstantEvolutionLoopExitValue[PN] = PHIVal;
2951 ++NumBruteForceTripCountsComputed;
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002952 return getConstant(ConstantInt::get(Type::Int32Ty, IterationNum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002953 }
2954
2955 // Compute the value of the PHI node for the next iteration.
2956 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2957 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman0c850912009-06-06 14:37:11 +00002958 return CouldNotCompute; // Couldn't evaluate or not making progress...
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002959 PHIVal = NextPHI;
2960 }
2961
2962 // Too many iterations were needed to evaluate.
Dan Gohman0c850912009-06-06 14:37:11 +00002963 return CouldNotCompute;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002964}
2965
Dan Gohmandd40e9a2009-05-08 20:38:54 +00002966/// getSCEVAtScope - Return a SCEV expression handle for the specified value
2967/// at the specified scope in the program. The L value specifies a loop
2968/// nest to evaluate the expression at, where null is the top-level or a
2969/// specified loop is immediately inside of the loop.
2970///
2971/// This method can be used to compute the exit value for a variable defined
2972/// in a loop by querying what the value will hold in the parent loop.
2973///
Dan Gohmanaff14d62009-05-24 23:25:42 +00002974/// In the case that a relevant loop exit value cannot be computed, the
2975/// original value V is returned.
Dan Gohmanbff6b582009-05-04 22:30:44 +00002976SCEVHandle ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002977 // FIXME: this should be turned into a virtual method on SCEV!
2978
2979 if (isa<SCEVConstant>(V)) return V;
2980
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002981 // If this instruction is evolved from a constant-evolving PHI, compute the
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002982 // exit value from the loop without using SCEVs.
Dan Gohmanc76b5452009-05-04 22:02:23 +00002983 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002984 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002985 const Loop *LI = (*this->LI)[I->getParent()];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002986 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
2987 if (PHINode *PN = dyn_cast<PHINode>(I))
2988 if (PN->getParent() == LI->getHeader()) {
2989 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002990 // to see if the loop that contains it has a known backedge-taken
2991 // count. If so, we may be able to force computation of the exit
2992 // value.
2993 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmanc76b5452009-05-04 22:02:23 +00002994 if (const SCEVConstant *BTCC =
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002995 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002996 // Okay, we know how many times the containing loop executes. If
2997 // this is a constant evolving PHI node, get the final value at
2998 // the specified iteration number.
2999 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003000 BTCC->getValue()->getValue(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003001 LI);
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003002 if (RV) return getUnknown(RV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003003 }
3004 }
3005
3006 // Okay, this is an expression that we cannot symbolically evaluate
3007 // into a SCEV. Check to see if it's possible to symbolically evaluate
3008 // the arguments into constants, and if so, try to constant propagate the
3009 // result. This is particularly useful for computing loop exit values.
3010 if (CanConstantFold(I)) {
Dan Gohmanda0071e2009-05-08 20:47:27 +00003011 // Check to see if we've folded this instruction at this loop before.
3012 std::map<const Loop *, Constant *> &Values = ValuesAtScopes[I];
3013 std::pair<std::map<const Loop *, Constant *>::iterator, bool> Pair =
3014 Values.insert(std::make_pair(L, static_cast<Constant *>(0)));
3015 if (!Pair.second)
3016 return Pair.first->second ? &*getUnknown(Pair.first->second) : V;
3017
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003018 std::vector<Constant*> Operands;
3019 Operands.reserve(I->getNumOperands());
3020 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3021 Value *Op = I->getOperand(i);
3022 if (Constant *C = dyn_cast<Constant>(Op)) {
3023 Operands.push_back(C);
3024 } else {
Chris Lattner3fff4642007-11-23 08:46:22 +00003025 // If any of the operands is non-constant and if they are
Dan Gohman01c2ee72009-04-16 03:18:22 +00003026 // non-integer and non-pointer, don't even try to analyze them
3027 // with scev techniques.
Dan Gohman5e4eb762009-04-30 16:40:30 +00003028 if (!isSCEVable(Op->getType()))
Chris Lattner3fff4642007-11-23 08:46:22 +00003029 return V;
Dan Gohman01c2ee72009-04-16 03:18:22 +00003030
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003031 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
Dan Gohmanc76b5452009-05-04 22:02:23 +00003032 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
Dan Gohman5e4eb762009-04-30 16:40:30 +00003033 Constant *C = SC->getValue();
3034 if (C->getType() != Op->getType())
3035 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3036 Op->getType(),
3037 false),
3038 C, Op->getType());
3039 Operands.push_back(C);
Dan Gohmanc76b5452009-05-04 22:02:23 +00003040 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
Dan Gohman5e4eb762009-04-30 16:40:30 +00003041 if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
3042 if (C->getType() != Op->getType())
3043 C =
3044 ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
3045 Op->getType(),
3046 false),
3047 C, Op->getType());
3048 Operands.push_back(C);
3049 } else
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003050 return V;
3051 } else {
3052 return V;
3053 }
3054 }
3055 }
Chris Lattnerd6e56912007-12-10 22:53:04 +00003056
3057 Constant *C;
3058 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
3059 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
3060 &Operands[0], Operands.size());
3061 else
3062 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
3063 &Operands[0], Operands.size());
Dan Gohmanda0071e2009-05-08 20:47:27 +00003064 Pair.first->second = C;
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003065 return getUnknown(C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003066 }
3067 }
3068
3069 // This is some other type of SCEVUnknown, just return it.
3070 return V;
3071 }
3072
Dan Gohmanc76b5452009-05-04 22:02:23 +00003073 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003074 // Avoid performing the look-up in the common case where the specified
3075 // expression has no loop-variant portions.
3076 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
3077 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
3078 if (OpAtScope != Comm->getOperand(i)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003079 // Okay, at least one of these operands is loop variant but might be
3080 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman02ff9392009-06-14 22:47:23 +00003081 SmallVector<SCEVHandle, 8> NewOps(Comm->op_begin(), Comm->op_begin()+i);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003082 NewOps.push_back(OpAtScope);
3083
3084 for (++i; i != e; ++i) {
3085 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003086 NewOps.push_back(OpAtScope);
3087 }
3088 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003089 return getAddExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +00003090 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003091 return getMulExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +00003092 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003093 return getSMaxExpr(NewOps);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00003094 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003095 return getUMaxExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +00003096 assert(0 && "Unknown commutative SCEV type!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003097 }
3098 }
3099 // If we got here, all operands are loop invariant.
3100 return Comm;
3101 }
3102
Dan Gohmanc76b5452009-05-04 22:02:23 +00003103 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Nick Lewycky35b56022009-01-13 09:18:58 +00003104 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
Nick Lewycky35b56022009-01-13 09:18:58 +00003105 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky35b56022009-01-13 09:18:58 +00003106 if (LHS == Div->getLHS() && RHS == Div->getRHS())
3107 return Div; // must be loop invariant
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003108 return getUDivExpr(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003109 }
3110
3111 // If this is a loop recurrence for a loop that does not contain L, then we
3112 // are dealing with the final value computed by the loop.
Dan Gohmanc76b5452009-05-04 22:02:23 +00003113 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003114 if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
3115 // To evaluate this recurrence, we need to know how many times the AddRec
3116 // loop iterates. Compute this now.
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003117 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman0c850912009-06-06 14:37:11 +00003118 if (BackedgeTakenCount == CouldNotCompute) return AddRec;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003119
Eli Friedman7489ec92008-08-04 23:49:06 +00003120 // Then, evaluate the AddRec.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003121 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003122 }
Dan Gohmanaff14d62009-05-24 23:25:42 +00003123 return AddRec;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003124 }
3125
Dan Gohmanc76b5452009-05-04 22:02:23 +00003126 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman78d63c82009-04-29 22:29:01 +00003127 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman78d63c82009-04-29 22:29:01 +00003128 if (Op == Cast->getOperand())
3129 return Cast; // must be loop invariant
3130 return getZeroExtendExpr(Op, Cast->getType());
3131 }
3132
Dan Gohmanc76b5452009-05-04 22:02:23 +00003133 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman78d63c82009-04-29 22:29:01 +00003134 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman78d63c82009-04-29 22:29:01 +00003135 if (Op == Cast->getOperand())
3136 return Cast; // must be loop invariant
3137 return getSignExtendExpr(Op, Cast->getType());
3138 }
3139
Dan Gohmanc76b5452009-05-04 22:02:23 +00003140 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman78d63c82009-04-29 22:29:01 +00003141 SCEVHandle Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman78d63c82009-04-29 22:29:01 +00003142 if (Op == Cast->getOperand())
3143 return Cast; // must be loop invariant
3144 return getTruncateExpr(Op, Cast->getType());
3145 }
3146
3147 assert(0 && "Unknown SCEV type!");
Daniel Dunbara95d96c2009-05-18 16:43:04 +00003148 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003149}
3150
Dan Gohmandd40e9a2009-05-08 20:38:54 +00003151/// getSCEVAtScope - This is a convenience function which does
3152/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003153SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
3154 return getSCEVAtScope(getSCEV(V), L);
3155}
3156
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003157/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
3158/// following equation:
3159///
3160/// A * X = B (mod N)
3161///
3162/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
3163/// A and B isn't important.
3164///
3165/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
3166static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
3167 ScalarEvolution &SE) {
3168 uint32_t BW = A.getBitWidth();
3169 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
3170 assert(A != 0 && "A must be non-zero.");
3171
3172 // 1. D = gcd(A, N)
3173 //
3174 // The gcd of A and N may have only one prime factor: 2. The number of
3175 // trailing zeros in A is its multiplicity
3176 uint32_t Mult2 = A.countTrailingZeros();
3177 // D = 2^Mult2
3178
3179 // 2. Check if B is divisible by D.
3180 //
3181 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
3182 // is not less than multiplicity of this prime factor for D.
3183 if (B.countTrailingZeros() < Mult2)
Dan Gohman0ad08b02009-04-18 17:58:19 +00003184 return SE.getCouldNotCompute();
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003185
3186 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
3187 // modulo (N / D).
3188 //
3189 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
3190 // bit width during computations.
3191 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
3192 APInt Mod(BW + 1, 0);
3193 Mod.set(BW - Mult2); // Mod = N / D
3194 APInt I = AD.multiplicativeInverse(Mod);
3195
3196 // 4. Compute the minimum unsigned root of the equation:
3197 // I * (B / D) mod (N / D)
3198 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
3199
3200 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
3201 // bits.
3202 return SE.getConstant(Result.trunc(BW));
3203}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003204
3205/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
3206/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
3207/// might be the same) or two SCEVCouldNotCompute objects.
3208///
3209static std::pair<SCEVHandle,SCEVHandle>
Dan Gohman89f85052007-10-22 18:31:58 +00003210SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003211 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohmanbff6b582009-05-04 22:30:44 +00003212 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
3213 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
3214 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003215
3216 // We currently can only solve this if the coefficients are constants.
3217 if (!LC || !MC || !NC) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00003218 const SCEV *CNC = SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003219 return std::make_pair(CNC, CNC);
3220 }
3221
3222 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
3223 const APInt &L = LC->getValue()->getValue();
3224 const APInt &M = MC->getValue()->getValue();
3225 const APInt &N = NC->getValue()->getValue();
3226 APInt Two(BitWidth, 2);
3227 APInt Four(BitWidth, 4);
3228
3229 {
3230 using namespace APIntOps;
3231 const APInt& C = L;
3232 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
3233 // The B coefficient is M-N/2
3234 APInt B(M);
3235 B -= sdiv(N,Two);
3236
3237 // The A coefficient is N/2
3238 APInt A(N.sdiv(Two));
3239
3240 // Compute the B^2-4ac term.
3241 APInt SqrtTerm(B);
3242 SqrtTerm *= B;
3243 SqrtTerm -= Four * (A * C);
3244
3245 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
3246 // integer value or else APInt::sqrt() will assert.
3247 APInt SqrtVal(SqrtTerm.sqrt());
3248
3249 // Compute the two solutions for the quadratic formula.
3250 // The divisions must be performed as signed divisions.
3251 APInt NegB(-B);
3252 APInt TwoA( A << 1 );
Nick Lewycky35776692008-11-03 02:43:49 +00003253 if (TwoA.isMinValue()) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00003254 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky35776692008-11-03 02:43:49 +00003255 return std::make_pair(CNC, CNC);
3256 }
3257
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003258 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
3259 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
3260
Dan Gohman89f85052007-10-22 18:31:58 +00003261 return std::make_pair(SE.getConstant(Solution1),
3262 SE.getConstant(Solution2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003263 } // end APIntOps namespace
3264}
3265
3266/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman0c850912009-06-06 14:37:11 +00003267/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohmanbff6b582009-05-04 22:30:44 +00003268SCEVHandle ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003269 // If the value is a constant
Dan Gohmanc76b5452009-05-04 22:02:23 +00003270 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003271 // If the value is already zero, the branch will execute zero times.
3272 if (C->getValue()->isZero()) return C;
Dan Gohman0c850912009-06-06 14:37:11 +00003273 return CouldNotCompute; // Otherwise it will loop infinitely.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003274 }
3275
Dan Gohmanbff6b582009-05-04 22:30:44 +00003276 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003277 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman0c850912009-06-06 14:37:11 +00003278 return CouldNotCompute;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003279
3280 if (AddRec->isAffine()) {
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003281 // If this is an affine expression, the execution count of this branch is
3282 // the minimum unsigned root of the following equation:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003283 //
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003284 // Start + Step*N = 0 (mod 2^BW)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003285 //
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003286 // equivalent to:
3287 //
3288 // Step*N = -Start (mod 2^BW)
3289 //
3290 // where BW is the common bit width of Start and Step.
3291
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003292 // Get the initial value for the loop.
3293 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003294 SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003295
Dan Gohmanc76b5452009-05-04 22:02:23 +00003296 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003297 // For now we handle only constant steps.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003298
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003299 // First, handle unitary steps.
3300 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003301 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003302 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
3303 return Start; // N = Start (as unsigned)
3304
3305 // Then, try to solve the above equation provided that Start is constant.
Dan Gohmanc76b5452009-05-04 22:02:23 +00003306 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00003307 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003308 -StartC->getValue()->getValue(),
3309 *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003310 }
3311 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
3312 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
3313 // the quadratic equation to solve it.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003314 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec,
3315 *this);
Dan Gohmanbff6b582009-05-04 22:30:44 +00003316 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3317 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003318 if (R1) {
3319#if 0
Dan Gohman13058cc2009-04-21 00:47:46 +00003320 errs() << "HFTZ: " << *V << " - sol#1: " << *R1
3321 << " sol#2: " << *R2 << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003322#endif
3323 // Pick the smallest positive root value.
3324 if (ConstantInt *CB =
3325 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3326 R1->getValue(), R2->getValue()))) {
3327 if (CB->getZExtValue() == false)
3328 std::swap(R1, R2); // R1 is the minimum root now.
3329
3330 // We can only use this value if the chrec ends up with an exact zero
3331 // value at this index. When solving for "X*X != 5", for example, we
3332 // should not accept a root of 2.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003333 SCEVHandle Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohman7b560c42008-06-18 16:23:07 +00003334 if (Val->isZero())
3335 return R1; // We found a quadratic root!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003336 }
3337 }
3338 }
3339
Dan Gohman0c850912009-06-06 14:37:11 +00003340 return CouldNotCompute;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003341}
3342
3343/// HowFarToNonZero - Return the number of times a backedge checking the
3344/// specified value for nonzero will execute. If not computable, return
Dan Gohman0c850912009-06-06 14:37:11 +00003345/// CouldNotCompute
Dan Gohmanbff6b582009-05-04 22:30:44 +00003346SCEVHandle ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003347 // Loops that look like: while (X == 0) are very strange indeed. We don't
3348 // handle them yet except for the trivial case. This could be expanded in the
3349 // future as needed.
3350
3351 // If the value is a constant, check to see if it is known to be non-zero
3352 // already. If so, the backedge will execute zero times.
Dan Gohmanc76b5452009-05-04 22:02:23 +00003353 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewyckyf6805182008-02-21 09:14:53 +00003354 if (!C->getValue()->isNullValue())
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003355 return getIntegerSCEV(0, C->getType());
Dan Gohman0c850912009-06-06 14:37:11 +00003356 return CouldNotCompute; // Otherwise it will loop infinitely.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003357 }
3358
3359 // We could implement others, but I really doubt anyone writes loops like
3360 // this, and if they did, they would already be constant folded.
Dan Gohman0c850912009-06-06 14:37:11 +00003361 return CouldNotCompute;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003362}
3363
Dan Gohmanab157b22009-05-18 15:36:09 +00003364/// getLoopPredecessor - If the given loop's header has exactly one unique
3365/// predecessor outside the loop, return it. Otherwise return null.
3366///
3367BasicBlock *ScalarEvolution::getLoopPredecessor(const Loop *L) {
3368 BasicBlock *Header = L->getHeader();
3369 BasicBlock *Pred = 0;
3370 for (pred_iterator PI = pred_begin(Header), E = pred_end(Header);
3371 PI != E; ++PI)
3372 if (!L->contains(*PI)) {
3373 if (Pred && Pred != *PI) return 0; // Multiple predecessors.
3374 Pred = *PI;
3375 }
3376 return Pred;
3377}
3378
Dan Gohman1cddf972008-09-15 22:18:04 +00003379/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
3380/// (which may not be an immediate predecessor) which has exactly one
3381/// successor from which BB is reachable, or null if no such block is
3382/// found.
3383///
3384BasicBlock *
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003385ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman1116ea72009-04-30 20:48:53 +00003386 // If the block has a unique predecessor, then there is no path from the
3387 // predecessor to the block that does not go through the direct edge
3388 // from the predecessor to the block.
Dan Gohman1cddf972008-09-15 22:18:04 +00003389 if (BasicBlock *Pred = BB->getSinglePredecessor())
3390 return Pred;
3391
3392 // A loop's header is defined to be a block that dominates the loop.
Dan Gohmanab157b22009-05-18 15:36:09 +00003393 // If the header has a unique predecessor outside the loop, it must be
3394 // a block that has exactly one successor that can reach the loop.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003395 if (Loop *L = LI->getLoopFor(BB))
Dan Gohmanab157b22009-05-18 15:36:09 +00003396 return getLoopPredecessor(L);
Dan Gohman1cddf972008-09-15 22:18:04 +00003397
3398 return 0;
3399}
3400
Dan Gohmancacd2012009-02-12 22:19:27 +00003401/// isLoopGuardedByCond - Test whether entry to the loop is protected by
Dan Gohman1116ea72009-04-30 20:48:53 +00003402/// a conditional between LHS and RHS. This is used to help avoid max
3403/// expressions in loop trip counts.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003404bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
Dan Gohman1116ea72009-04-30 20:48:53 +00003405 ICmpInst::Predicate Pred,
Dan Gohmanbff6b582009-05-04 22:30:44 +00003406 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8b938182009-05-18 16:03:58 +00003407 // Interpret a null as meaning no loop, where there is obviously no guard
3408 // (interprocedural conditions notwithstanding).
3409 if (!L) return false;
3410
Dan Gohmanab157b22009-05-18 15:36:09 +00003411 BasicBlock *Predecessor = getLoopPredecessor(L);
3412 BasicBlock *PredecessorDest = L->getHeader();
Nick Lewycky1b020bf2008-07-12 07:41:32 +00003413
Dan Gohmanab157b22009-05-18 15:36:09 +00003414 // Starting at the loop predecessor, climb up the predecessor chain, as long
3415 // as there are predecessors that can be found that have unique successors
Dan Gohman1cddf972008-09-15 22:18:04 +00003416 // leading to the original header.
Dan Gohmanab157b22009-05-18 15:36:09 +00003417 for (; Predecessor;
3418 PredecessorDest = Predecessor,
3419 Predecessor = getPredecessorWithUniqueSuccessorForBB(Predecessor)) {
Dan Gohmanab678fb2008-08-12 20:17:31 +00003420
3421 BranchInst *LoopEntryPredicate =
Dan Gohmanab157b22009-05-18 15:36:09 +00003422 dyn_cast<BranchInst>(Predecessor->getTerminator());
Dan Gohmanab678fb2008-08-12 20:17:31 +00003423 if (!LoopEntryPredicate ||
3424 LoopEntryPredicate->isUnconditional())
3425 continue;
3426
3427 ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
3428 if (!ICI) continue;
3429
3430 // Now that we found a conditional branch that dominates the loop, check to
3431 // see if it is the comparison we are looking for.
3432 Value *PreCondLHS = ICI->getOperand(0);
3433 Value *PreCondRHS = ICI->getOperand(1);
3434 ICmpInst::Predicate Cond;
Dan Gohmanab157b22009-05-18 15:36:09 +00003435 if (LoopEntryPredicate->getSuccessor(0) == PredecessorDest)
Dan Gohmanab678fb2008-08-12 20:17:31 +00003436 Cond = ICI->getPredicate();
3437 else
3438 Cond = ICI->getInversePredicate();
3439
Dan Gohmancacd2012009-02-12 22:19:27 +00003440 if (Cond == Pred)
3441 ; // An exact match.
3442 else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
3443 ; // The actual condition is beyond sufficient.
3444 else
3445 // Check a few special cases.
3446 switch (Cond) {
3447 case ICmpInst::ICMP_UGT:
3448 if (Pred == ICmpInst::ICMP_ULT) {
3449 std::swap(PreCondLHS, PreCondRHS);
3450 Cond = ICmpInst::ICMP_ULT;
3451 break;
3452 }
3453 continue;
3454 case ICmpInst::ICMP_SGT:
3455 if (Pred == ICmpInst::ICMP_SLT) {
3456 std::swap(PreCondLHS, PreCondRHS);
3457 Cond = ICmpInst::ICMP_SLT;
3458 break;
3459 }
3460 continue;
3461 case ICmpInst::ICMP_NE:
3462 // Expressions like (x >u 0) are often canonicalized to (x != 0),
3463 // so check for this case by checking if the NE is comparing against
3464 // a minimum or maximum constant.
3465 if (!ICmpInst::isTrueWhenEqual(Pred))
3466 if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
3467 const APInt &A = CI->getValue();
3468 switch (Pred) {
3469 case ICmpInst::ICMP_SLT:
3470 if (A.isMaxSignedValue()) break;
3471 continue;
3472 case ICmpInst::ICMP_SGT:
3473 if (A.isMinSignedValue()) break;
3474 continue;
3475 case ICmpInst::ICMP_ULT:
3476 if (A.isMaxValue()) break;
3477 continue;
3478 case ICmpInst::ICMP_UGT:
3479 if (A.isMinValue()) break;
3480 continue;
3481 default:
3482 continue;
3483 }
3484 Cond = ICmpInst::ICMP_NE;
3485 // NE is symmetric but the original comparison may not be. Swap
3486 // the operands if necessary so that they match below.
3487 if (isa<SCEVConstant>(LHS))
3488 std::swap(PreCondLHS, PreCondRHS);
3489 break;
3490 }
3491 continue;
3492 default:
3493 // We weren't able to reconcile the condition.
3494 continue;
3495 }
Dan Gohmanab678fb2008-08-12 20:17:31 +00003496
3497 if (!PreCondLHS->getType()->isInteger()) continue;
3498
3499 SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS);
3500 SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS);
3501 if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) ||
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003502 (LHS == getNotSCEV(PreCondRHSSCEV) &&
3503 RHS == getNotSCEV(PreCondLHSSCEV)))
Dan Gohmanab678fb2008-08-12 20:17:31 +00003504 return true;
Nick Lewycky1b020bf2008-07-12 07:41:32 +00003505 }
3506
Dan Gohmanab678fb2008-08-12 20:17:31 +00003507 return false;
Nick Lewycky1b020bf2008-07-12 07:41:32 +00003508}
3509
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003510/// HowManyLessThans - Return the number of times a backedge containing the
3511/// specified less-than comparison will execute. If not computable, return
Dan Gohman0c850912009-06-06 14:37:11 +00003512/// CouldNotCompute.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003513ScalarEvolution::BackedgeTakenInfo ScalarEvolution::
Dan Gohmanbff6b582009-05-04 22:30:44 +00003514HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
3515 const Loop *L, bool isSigned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003516 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman0c850912009-06-06 14:37:11 +00003517 if (!RHS->isLoopInvariant(L)) return CouldNotCompute;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003518
Dan Gohmanbff6b582009-05-04 22:30:44 +00003519 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003520 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman0c850912009-06-06 14:37:11 +00003521 return CouldNotCompute;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003522
3523 if (AddRec->isAffine()) {
Nick Lewycky35b56022009-01-13 09:18:58 +00003524 // FORNOW: We only support unit strides.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003525 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
3526 SCEVHandle Step = AddRec->getStepRecurrence(*this);
3527 SCEVHandle NegOne = getIntegerSCEV(-1, AddRec->getType());
3528
3529 // TODO: handle non-constant strides.
3530 const SCEVConstant *CStep = dyn_cast<SCEVConstant>(Step);
3531 if (!CStep || CStep->isZero())
Dan Gohman0c850912009-06-06 14:37:11 +00003532 return CouldNotCompute;
Dan Gohmanf8bc8e82009-05-18 15:22:39 +00003533 if (CStep->isOne()) {
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003534 // With unit stride, the iteration never steps past the limit value.
3535 } else if (CStep->getValue()->getValue().isStrictlyPositive()) {
3536 if (const SCEVConstant *CLimit = dyn_cast<SCEVConstant>(RHS)) {
3537 // Test whether a positive iteration iteration can step past the limit
3538 // value and past the maximum value for its type in a single step.
3539 if (isSigned) {
3540 APInt Max = APInt::getSignedMaxValue(BitWidth);
3541 if ((Max - CStep->getValue()->getValue())
3542 .slt(CLimit->getValue()->getValue()))
Dan Gohman0c850912009-06-06 14:37:11 +00003543 return CouldNotCompute;
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003544 } else {
3545 APInt Max = APInt::getMaxValue(BitWidth);
3546 if ((Max - CStep->getValue()->getValue())
3547 .ult(CLimit->getValue()->getValue()))
Dan Gohman0c850912009-06-06 14:37:11 +00003548 return CouldNotCompute;
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003549 }
3550 } else
3551 // TODO: handle non-constant limit values below.
Dan Gohman0c850912009-06-06 14:37:11 +00003552 return CouldNotCompute;
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003553 } else
3554 // TODO: handle negative strides below.
Dan Gohman0c850912009-06-06 14:37:11 +00003555 return CouldNotCompute;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003556
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003557 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
3558 // m. So, we count the number of iterations in which {n,+,s} < m is true.
3559 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicz1377a542008-02-13 12:21:32 +00003560 // treat m-n as signed nor unsigned due to overflow possibility.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003561
Wojciech Matyjewiczebc77b12008-02-13 11:51:34 +00003562 // First, we get the value of the LHS in the first iteration: n
3563 SCEVHandle Start = AddRec->getOperand(0);
3564
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003565 // Determine the minimum constant start value.
3566 SCEVHandle MinStart = isa<SCEVConstant>(Start) ? Start :
3567 getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) :
3568 APInt::getMinValue(BitWidth));
Wojciech Matyjewiczebc77b12008-02-13 11:51:34 +00003569
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003570 // If we know that the condition is true in order to enter the loop,
3571 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohmanc8a29272009-05-24 23:45:28 +00003572 // only know that it will execute (max(m,n)-n)/s times. In both cases,
3573 // the division must round up.
Dan Gohmanf7d3d25542009-04-30 20:47:05 +00003574 SCEVHandle End = RHS;
3575 if (!isLoopGuardedByCond(L,
3576 isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
3577 getMinusSCEV(Start, Step), RHS))
3578 End = isSigned ? getSMaxExpr(RHS, Start)
3579 : getUMaxExpr(RHS, Start);
3580
3581 // Determine the maximum constant end value.
3582 SCEVHandle MaxEnd = isa<SCEVConstant>(End) ? End :
3583 getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth) :
3584 APInt::getMaxValue(BitWidth));
3585
3586 // Finally, we subtract these two values and divide, rounding up, to get
3587 // the number of times the backedge is executed.
3588 SCEVHandle BECount = getUDivExpr(getAddExpr(getMinusSCEV(End, Start),
3589 getAddExpr(Step, NegOne)),
3590 Step);
3591
3592 // The maximum backedge count is similar, except using the minimum start
3593 // value and the maximum end value.
3594 SCEVHandle MaxBECount = getUDivExpr(getAddExpr(getMinusSCEV(MaxEnd,
3595 MinStart),
3596 getAddExpr(Step, NegOne)),
3597 Step);
3598
3599 return BackedgeTakenInfo(BECount, MaxBECount);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003600 }
3601
Dan Gohman0c850912009-06-06 14:37:11 +00003602 return CouldNotCompute;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003603}
3604
3605/// getNumIterationsInRange - Return the number of iterations of this loop that
3606/// produce values in the specified constant range. Another way of looking at
3607/// this is that it returns the first iteration number where the value is not in
3608/// the condition, thus computing the exit count. If the iteration count can't
3609/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman89f85052007-10-22 18:31:58 +00003610SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
3611 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003612 if (Range.isFullSet()) // Infinite loop.
Dan Gohman0ad08b02009-04-18 17:58:19 +00003613 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003614
3615 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmanc76b5452009-05-04 22:02:23 +00003616 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003617 if (!SC->getValue()->isZero()) {
Dan Gohman02ff9392009-06-14 22:47:23 +00003618 SmallVector<SCEVHandle, 4> Operands(op_begin(), op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00003619 Operands[0] = SE.getIntegerSCEV(0, SC->getType());
3620 SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohmanc76b5452009-05-04 22:02:23 +00003621 if (const SCEVAddRecExpr *ShiftedAddRec =
3622 dyn_cast<SCEVAddRecExpr>(Shifted))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003623 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman89f85052007-10-22 18:31:58 +00003624 Range.subtract(SC->getValue()->getValue()), SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003625 // This is strange and shouldn't happen.
Dan Gohman0ad08b02009-04-18 17:58:19 +00003626 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003627 }
3628
3629 // The only time we can solve this is when we have all constant indices.
3630 // Otherwise, we cannot determine the overflow conditions.
3631 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3632 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohman0ad08b02009-04-18 17:58:19 +00003633 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003634
3635
3636 // Okay at this point we know that all elements of the chrec are constants and
3637 // that the start element is zero.
3638
3639 // First check to see if the range contains zero. If not, the first
3640 // iteration exits.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00003641 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman01c2ee72009-04-16 03:18:22 +00003642 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman89f85052007-10-22 18:31:58 +00003643 return SE.getConstant(ConstantInt::get(getType(),0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003644
3645 if (isAffine()) {
3646 // If this is an affine expression then we have this situation:
3647 // Solve {0,+,A} in Range === Ax in Range
3648
3649 // We know that zero is in the range. If A is positive then we know that
3650 // the upper value of the range must be the first possible exit value.
3651 // If A is negative then the lower of the range is the last possible loop
3652 // value. Also note that we already checked for a full range.
Dan Gohman01c2ee72009-04-16 03:18:22 +00003653 APInt One(BitWidth,1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003654 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
3655 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
3656
3657 // The exit value should be (End+A)/A.
Nick Lewyckya0facae2007-09-27 14:12:54 +00003658 APInt ExitVal = (End + A).udiv(A);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003659 ConstantInt *ExitValue = ConstantInt::get(ExitVal);
3660
3661 // Evaluate at the exit value. If we really did fall out of the valid
3662 // range, then we computed our trip count, otherwise wrap around or other
3663 // things must have happened.
Dan Gohman89f85052007-10-22 18:31:58 +00003664 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003665 if (Range.contains(Val->getValue()))
Dan Gohman0ad08b02009-04-18 17:58:19 +00003666 return SE.getCouldNotCompute(); // Something strange happened
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003667
3668 // Ensure that the previous value is in the range. This is a sanity check.
3669 assert(Range.contains(
3670 EvaluateConstantChrecAtConstant(this,
Dan Gohman89f85052007-10-22 18:31:58 +00003671 ConstantInt::get(ExitVal - One), SE)->getValue()) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003672 "Linear scev computation is off in a bad way!");
Dan Gohman89f85052007-10-22 18:31:58 +00003673 return SE.getConstant(ExitValue);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003674 } else if (isQuadratic()) {
3675 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
3676 // quadratic equation to solve it. To do this, we must frame our problem in
3677 // terms of figuring out when zero is crossed, instead of when
3678 // Range.getUpper() is crossed.
Dan Gohman02ff9392009-06-14 22:47:23 +00003679 SmallVector<SCEVHandle, 4> NewOps(op_begin(), op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00003680 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
3681 SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003682
3683 // Next, solve the constructed addrec
3684 std::pair<SCEVHandle,SCEVHandle> Roots =
Dan Gohman89f85052007-10-22 18:31:58 +00003685 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohmanbff6b582009-05-04 22:30:44 +00003686 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3687 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003688 if (R1) {
3689 // Pick the smallest positive root value.
3690 if (ConstantInt *CB =
3691 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3692 R1->getValue(), R2->getValue()))) {
3693 if (CB->getZExtValue() == false)
3694 std::swap(R1, R2); // R1 is the minimum root now.
3695
3696 // Make sure the root is not off by one. The returned iteration should
3697 // not be in the range, but the previous one should be. When solving
3698 // for "X*X < 5", for example, we should not return a root of 2.
3699 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman89f85052007-10-22 18:31:58 +00003700 R1->getValue(),
3701 SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003702 if (Range.contains(R1Val->getValue())) {
3703 // The next iteration must be out of the range...
3704 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
3705
Dan Gohman89f85052007-10-22 18:31:58 +00003706 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003707 if (!Range.contains(R1Val->getValue()))
Dan Gohman89f85052007-10-22 18:31:58 +00003708 return SE.getConstant(NextVal);
Dan Gohman0ad08b02009-04-18 17:58:19 +00003709 return SE.getCouldNotCompute(); // Something strange happened
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003710 }
3711
3712 // If R1 was not in the range, then it is a good return value. Make
3713 // sure that R1-1 WAS in the range though, just in case.
3714 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
Dan Gohman89f85052007-10-22 18:31:58 +00003715 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003716 if (Range.contains(R1Val->getValue()))
3717 return R1;
Dan Gohman0ad08b02009-04-18 17:58:19 +00003718 return SE.getCouldNotCompute(); // Something strange happened
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003719 }
3720 }
3721 }
3722
Dan Gohman0ad08b02009-04-18 17:58:19 +00003723 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003724}
3725
3726
3727
3728//===----------------------------------------------------------------------===//
Dan Gohmanbff6b582009-05-04 22:30:44 +00003729// SCEVCallbackVH Class Implementation
3730//===----------------------------------------------------------------------===//
3731
Dan Gohman999d14e2009-05-19 19:22:47 +00003732void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanbff6b582009-05-04 22:30:44 +00003733 assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
3734 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
3735 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmanda0071e2009-05-08 20:47:27 +00003736 if (Instruction *I = dyn_cast<Instruction>(getValPtr()))
3737 SE->ValuesAtScopes.erase(I);
Dan Gohmanbff6b582009-05-04 22:30:44 +00003738 SE->Scalars.erase(getValPtr());
3739 // this now dangles!
3740}
3741
Dan Gohman999d14e2009-05-19 19:22:47 +00003742void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
Dan Gohmanbff6b582009-05-04 22:30:44 +00003743 assert(SE && "SCEVCallbackVH called with a non-null ScalarEvolution!");
3744
3745 // Forget all the expressions associated with users of the old value,
3746 // so that future queries will recompute the expressions using the new
3747 // value.
3748 SmallVector<User *, 16> Worklist;
3749 Value *Old = getValPtr();
3750 bool DeleteOld = false;
3751 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
3752 UI != UE; ++UI)
3753 Worklist.push_back(*UI);
3754 while (!Worklist.empty()) {
3755 User *U = Worklist.pop_back_val();
3756 // Deleting the Old value will cause this to dangle. Postpone
3757 // that until everything else is done.
3758 if (U == Old) {
3759 DeleteOld = true;
3760 continue;
3761 }
3762 if (PHINode *PN = dyn_cast<PHINode>(U))
3763 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmanda0071e2009-05-08 20:47:27 +00003764 if (Instruction *I = dyn_cast<Instruction>(U))
3765 SE->ValuesAtScopes.erase(I);
Dan Gohmanbff6b582009-05-04 22:30:44 +00003766 if (SE->Scalars.erase(U))
3767 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
3768 UI != UE; ++UI)
3769 Worklist.push_back(*UI);
3770 }
3771 if (DeleteOld) {
3772 if (PHINode *PN = dyn_cast<PHINode>(Old))
3773 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmanda0071e2009-05-08 20:47:27 +00003774 if (Instruction *I = dyn_cast<Instruction>(Old))
3775 SE->ValuesAtScopes.erase(I);
Dan Gohmanbff6b582009-05-04 22:30:44 +00003776 SE->Scalars.erase(Old);
3777 // this now dangles!
3778 }
3779 // this may dangle!
3780}
3781
Dan Gohman999d14e2009-05-19 19:22:47 +00003782ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohmanbff6b582009-05-04 22:30:44 +00003783 : CallbackVH(V), SE(se) {}
3784
3785//===----------------------------------------------------------------------===//
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003786// ScalarEvolution Class Implementation
3787//===----------------------------------------------------------------------===//
3788
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003789ScalarEvolution::ScalarEvolution()
Dan Gohman0c850912009-06-06 14:37:11 +00003790 : FunctionPass(&ID), CouldNotCompute(new SCEVCouldNotCompute()) {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003791}
3792
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003793bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003794 this->F = &F;
3795 LI = &getAnalysis<LoopInfo>();
3796 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003797 return false;
3798}
3799
3800void ScalarEvolution::releaseMemory() {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003801 Scalars.clear();
3802 BackedgeTakenCounts.clear();
3803 ConstantEvolutionLoopExitValue.clear();
Dan Gohmanda0071e2009-05-08 20:47:27 +00003804 ValuesAtScopes.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003805}
3806
3807void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
3808 AU.setPreservesAll();
3809 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman01c2ee72009-04-16 03:18:22 +00003810}
3811
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003812bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003813 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003814}
3815
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003816static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003817 const Loop *L) {
3818 // Print all inner loops first
3819 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3820 PrintLoopInfo(OS, SE, *I);
3821
Nick Lewyckye5da1912008-01-02 02:49:20 +00003822 OS << "Loop " << L->getHeader()->getName() << ": ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003823
Devang Patel02451fa2007-08-21 00:31:24 +00003824 SmallVector<BasicBlock*, 8> ExitBlocks;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003825 L->getExitBlocks(ExitBlocks);
3826 if (ExitBlocks.size() != 1)
Nick Lewyckye5da1912008-01-02 02:49:20 +00003827 OS << "<multiple exits> ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003828
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003829 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
3830 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003831 } else {
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003832 OS << "Unpredictable backedge-taken count. ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003833 }
3834
Nick Lewyckye5da1912008-01-02 02:49:20 +00003835 OS << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003836}
3837
Dan Gohman13058cc2009-04-21 00:47:46 +00003838void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003839 // ScalarEvolution's implementaiton of the print method is to print
3840 // out SCEV values of all instructions that are interesting. Doing
3841 // this potentially causes it to create new SCEV objects though,
3842 // which technically conflicts with the const qualifier. This isn't
3843 // observable from outside the class though (the hasSCEV function
3844 // notwithstanding), so casting away the const isn't dangerous.
3845 ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003846
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003847 OS << "Classifying expressions for: " << F->getName() << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003848 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohman43d37e92009-04-30 01:30:18 +00003849 if (isSCEVable(I->getType())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003850 OS << *I;
Dan Gohmanabe991f2008-09-14 17:21:12 +00003851 OS << " --> ";
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003852 SCEVHandle SV = SE.getSCEV(&*I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003853 SV->print(OS);
3854 OS << "\t\t";
3855
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003856 if (const Loop *L = LI->getLoopFor((*I).getParent())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003857 OS << "Exits: ";
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003858 SCEVHandle ExitValue = SE.getSCEVAtScope(&*I, L->getParentLoop());
Dan Gohmanaff14d62009-05-24 23:25:42 +00003859 if (!ExitValue->isLoopInvariant(L)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003860 OS << "<<Unknown>>";
3861 } else {
3862 OS << *ExitValue;
3863 }
3864 }
3865
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003866 OS << "\n";
3867 }
3868
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003869 OS << "Determining loop execution counts for: " << F->getName() << "\n";
3870 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
3871 PrintLoopInfo(OS, &SE, *I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003872}
Dan Gohman13058cc2009-04-21 00:47:46 +00003873
3874void ScalarEvolution::print(std::ostream &o, const Module *M) const {
3875 raw_os_ostream OS(o);
3876 print(OS, M);
3877}