blob: b5651c87661ff05666111a8e99bdd94679f24cd8 [file] [log] [blame]
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for PowerPC --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
Misha Brukman98649d12004-06-24 21:54:47 +000010#define DEBUG_TYPE "isel"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000011#include "PowerPC.h"
12#include "PowerPCInstrBuilder.h"
13#include "PowerPCInstrInfo.h"
14#include "llvm/Constants.h"
15#include "llvm/DerivedTypes.h"
16#include "llvm/Function.h"
17#include "llvm/Instructions.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000018#include "llvm/Pass.h"
Misha Brukman8c9f5202004-06-21 18:30:31 +000019#include "llvm/CodeGen/IntrinsicLowering.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000020#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/SSARegMap.h"
24#include "llvm/Target/MRegisterInfo.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Support/GetElementPtrTypeIterator.h"
27#include "llvm/Support/InstVisitor.h"
Misha Brukman98649d12004-06-24 21:54:47 +000028#include "Support/Debug.h"
29#include <vector>
Misha Brukman5dfe3a92004-06-21 16:55:25 +000030using namespace llvm;
31
32namespace {
Misha Brukman422791f2004-06-21 17:41:12 +000033 /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
34 /// PPC Representation.
Misha Brukman5dfe3a92004-06-21 16:55:25 +000035 ///
36 enum TypeClass {
37 cByte, cShort, cInt, cFP, cLong
38 };
39}
40
41/// getClass - Turn a primitive type into a "class" number which is based on the
42/// size of the type, and whether or not it is floating point.
43///
44static inline TypeClass getClass(const Type *Ty) {
Misha Brukman358829f2004-06-21 17:25:55 +000045 switch (Ty->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +000046 case Type::SByteTyID:
47 case Type::UByteTyID: return cByte; // Byte operands are class #0
48 case Type::ShortTyID:
49 case Type::UShortTyID: return cShort; // Short operands are class #1
50 case Type::IntTyID:
51 case Type::UIntTyID:
52 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
53
54 case Type::FloatTyID:
55 case Type::DoubleTyID: return cFP; // Floating Point is #3
56
57 case Type::LongTyID:
58 case Type::ULongTyID: return cLong; // Longs are class #4
59 default:
60 assert(0 && "Invalid type to getClass!");
61 return cByte; // not reached
62 }
63}
64
65// getClassB - Just like getClass, but treat boolean values as ints.
66static inline TypeClass getClassB(const Type *Ty) {
67 if (Ty == Type::BoolTy) return cInt;
68 return getClass(Ty);
69}
70
71namespace {
72 struct ISel : public FunctionPass, InstVisitor<ISel> {
73 TargetMachine &TM;
74 MachineFunction *F; // The function we are compiling into
75 MachineBasicBlock *BB; // The current MBB we are compiling
76 int VarArgsFrameIndex; // FrameIndex for start of varargs area
77 int ReturnAddressIndex; // FrameIndex for the return address
78
79 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
80
81 // MBBMap - Mapping between LLVM BB -> Machine BB
82 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
83
84 // AllocaMap - Mapping from fixed sized alloca instructions to the
85 // FrameIndex for the alloca.
86 std::map<AllocaInst*, unsigned> AllocaMap;
87
88 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
89
90 /// runOnFunction - Top level implementation of instruction selection for
91 /// the entire function.
92 ///
93 bool runOnFunction(Function &Fn) {
94 // First pass over the function, lower any unknown intrinsic functions
95 // with the IntrinsicLowering class.
96 LowerUnknownIntrinsicFunctionCalls(Fn);
97
98 F = &MachineFunction::construct(&Fn, TM);
99
100 // Create all of the machine basic blocks for the function...
101 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
102 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
103
104 BB = &F->front();
105
106 // Set up a frame object for the return address. This is used by the
107 // llvm.returnaddress & llvm.frameaddress intrinisics.
108 ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
109
110 // Copy incoming arguments off of the stack...
111 LoadArgumentsToVirtualRegs(Fn);
112
113 // Instruction select everything except PHI nodes
114 visit(Fn);
115
116 // Select the PHI nodes
117 SelectPHINodes();
118
119 RegMap.clear();
120 MBBMap.clear();
121 AllocaMap.clear();
122 F = 0;
123 // We always build a machine code representation for the function
124 return true;
125 }
126
127 virtual const char *getPassName() const {
128 return "PowerPC Simple Instruction Selection";
129 }
130
131 /// visitBasicBlock - This method is called when we are visiting a new basic
132 /// block. This simply creates a new MachineBasicBlock to emit code into
133 /// and adds it to the current MachineFunction. Subsequent visit* for
134 /// instructions will be invoked for all instructions in the basic block.
135 ///
136 void visitBasicBlock(BasicBlock &LLVM_BB) {
137 BB = MBBMap[&LLVM_BB];
138 }
139
140 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
141 /// function, lowering any calls to unknown intrinsic functions into the
142 /// equivalent LLVM code.
143 ///
144 void LowerUnknownIntrinsicFunctionCalls(Function &F);
145
146 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
147 /// from the stack into virtual registers.
148 ///
149 void LoadArgumentsToVirtualRegs(Function &F);
150
151 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
152 /// because we have to generate our sources into the source basic blocks,
153 /// not the current one.
154 ///
155 void SelectPHINodes();
156
157 // Visitation methods for various instructions. These methods simply emit
158 // fixed PowerPC code for each instruction.
159
160 // Control flow operators
161 void visitReturnInst(ReturnInst &RI);
162 void visitBranchInst(BranchInst &BI);
163
164 struct ValueRecord {
165 Value *Val;
166 unsigned Reg;
167 const Type *Ty;
168 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
169 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
170 };
171 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
172 const std::vector<ValueRecord> &Args);
173 void visitCallInst(CallInst &I);
174 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
175
176 // Arithmetic operators
177 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
178 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
179 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
180 void visitMul(BinaryOperator &B);
181
182 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
183 void visitRem(BinaryOperator &B) { visitDivRem(B); }
184 void visitDivRem(BinaryOperator &B);
185
186 // Bitwise operators
187 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
188 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
189 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
190
191 // Comparison operators...
192 void visitSetCondInst(SetCondInst &I);
193 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
194 MachineBasicBlock *MBB,
195 MachineBasicBlock::iterator MBBI);
196 void visitSelectInst(SelectInst &SI);
197
198
199 // Memory Instructions
200 void visitLoadInst(LoadInst &I);
201 void visitStoreInst(StoreInst &I);
202 void visitGetElementPtrInst(GetElementPtrInst &I);
203 void visitAllocaInst(AllocaInst &I);
204 void visitMallocInst(MallocInst &I);
205 void visitFreeInst(FreeInst &I);
206
207 // Other operators
208 void visitShiftInst(ShiftInst &I);
209 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
210 void visitCastInst(CastInst &I);
211 void visitVANextInst(VANextInst &I);
212 void visitVAArgInst(VAArgInst &I);
213
214 void visitInstruction(Instruction &I) {
215 std::cerr << "Cannot instruction select: " << I;
216 abort();
217 }
218
219 /// promote32 - Make a value 32-bits wide, and put it somewhere.
220 ///
221 void promote32(unsigned targetReg, const ValueRecord &VR);
222
223 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
224 /// constant expression GEP support.
225 ///
226 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
227 Value *Src, User::op_iterator IdxBegin,
228 User::op_iterator IdxEnd, unsigned TargetReg);
229
230 /// emitCastOperation - Common code shared between visitCastInst and
231 /// constant expression cast support.
232 ///
233 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
234 Value *Src, const Type *DestTy, unsigned TargetReg);
235
236 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
237 /// and constant expression support.
238 ///
239 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
240 MachineBasicBlock::iterator IP,
241 Value *Op0, Value *Op1,
242 unsigned OperatorClass, unsigned TargetReg);
243
244 /// emitBinaryFPOperation - This method handles emission of floating point
245 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
246 void emitBinaryFPOperation(MachineBasicBlock *BB,
247 MachineBasicBlock::iterator IP,
248 Value *Op0, Value *Op1,
249 unsigned OperatorClass, unsigned TargetReg);
250
251 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
252 Value *Op0, Value *Op1, unsigned TargetReg);
253
254 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
255 unsigned DestReg, const Type *DestTy,
256 unsigned Op0Reg, unsigned Op1Reg);
257 void doMultiplyConst(MachineBasicBlock *MBB,
258 MachineBasicBlock::iterator MBBI,
259 unsigned DestReg, const Type *DestTy,
260 unsigned Op0Reg, unsigned Op1Val);
261
262 void emitDivRemOperation(MachineBasicBlock *BB,
263 MachineBasicBlock::iterator IP,
264 Value *Op0, Value *Op1, bool isDiv,
265 unsigned TargetReg);
266
267 /// emitSetCCOperation - Common code shared between visitSetCondInst and
268 /// constant expression support.
269 ///
270 void emitSetCCOperation(MachineBasicBlock *BB,
271 MachineBasicBlock::iterator IP,
272 Value *Op0, Value *Op1, unsigned Opcode,
273 unsigned TargetReg);
274
275 /// emitShiftOperation - Common code shared between visitShiftInst and
276 /// constant expression support.
277 ///
278 void emitShiftOperation(MachineBasicBlock *MBB,
279 MachineBasicBlock::iterator IP,
280 Value *Op, Value *ShiftAmount, bool isLeftShift,
281 const Type *ResultTy, unsigned DestReg);
282
283 /// emitSelectOperation - Common code shared between visitSelectInst and the
284 /// constant expression support.
285 void emitSelectOperation(MachineBasicBlock *MBB,
286 MachineBasicBlock::iterator IP,
287 Value *Cond, Value *TrueVal, Value *FalseVal,
288 unsigned DestReg);
289
290 /// copyConstantToRegister - Output the instructions required to put the
291 /// specified constant into the specified register.
292 ///
293 void copyConstantToRegister(MachineBasicBlock *MBB,
294 MachineBasicBlock::iterator MBBI,
295 Constant *C, unsigned Reg);
296
297 void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
298 unsigned LHS, unsigned RHS);
299
300 /// makeAnotherReg - This method returns the next register number we haven't
301 /// yet used.
302 ///
303 /// Long values are handled somewhat specially. They are always allocated
304 /// as pairs of 32 bit integer values. The register number returned is the
305 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
306 /// of the long value.
307 ///
308 unsigned makeAnotherReg(const Type *Ty) {
309 assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
310 "Current target doesn't have PPC reg info??");
311 const PowerPCRegisterInfo *MRI =
312 static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
313 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
314 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
315 // Create the lower part
316 F->getSSARegMap()->createVirtualRegister(RC);
317 // Create the upper part.
318 return F->getSSARegMap()->createVirtualRegister(RC)-1;
319 }
320
321 // Add the mapping of regnumber => reg class to MachineFunction
322 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
323 return F->getSSARegMap()->createVirtualRegister(RC);
324 }
325
326 /// getReg - This method turns an LLVM value into a register number.
327 ///
328 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
329 unsigned getReg(Value *V) {
330 // Just append to the end of the current bb.
331 MachineBasicBlock::iterator It = BB->end();
332 return getReg(V, BB, It);
333 }
334 unsigned getReg(Value *V, MachineBasicBlock *MBB,
335 MachineBasicBlock::iterator IPt);
336
337 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
338 /// that is to be statically allocated with the initial stack frame
339 /// adjustment.
340 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
341 };
342}
343
344/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
345/// instruction in the entry block, return it. Otherwise, return a null
346/// pointer.
347static AllocaInst *dyn_castFixedAlloca(Value *V) {
348 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
349 BasicBlock *BB = AI->getParent();
350 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
351 return AI;
352 }
353 return 0;
354}
355
356/// getReg - This method turns an LLVM value into a register number.
357///
358unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
359 MachineBasicBlock::iterator IPt) {
360 // If this operand is a constant, emit the code to copy the constant into
361 // the register here...
362 //
363 if (Constant *C = dyn_cast<Constant>(V)) {
364 unsigned Reg = makeAnotherReg(V->getType());
365 copyConstantToRegister(MBB, IPt, C, Reg);
366 return Reg;
367 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
Misha Brukman7e5812c2004-06-28 18:20:59 +0000368 // GV is located at PC + distance
Misha Brukman7e5812c2004-06-28 18:20:59 +0000369 unsigned CurPC = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000370 unsigned Reg1 = makeAnotherReg(V->getType());
Misha Brukman422791f2004-06-21 17:41:12 +0000371 unsigned Reg2 = makeAnotherReg(V->getType());
Misha Brukman7e5812c2004-06-28 18:20:59 +0000372 // Move PC to destination reg
373 BuildMI(*MBB, IPt, PPC32::MovePCtoLR, 0, CurPC);
Misha Brukman7e5812c2004-06-28 18:20:59 +0000374 // Move value at PC + distance into return reg
375 BuildMI(*MBB, IPt, PPC32::LOADHiAddr, 2, Reg1).addReg(CurPC)
Misha Brukman911afde2004-06-25 14:50:41 +0000376 .addGlobalAddress(GV);
Misha Brukman9ecf3bf2004-06-25 14:57:19 +0000377 BuildMI(*MBB, IPt, PPC32::LOADLoAddr, 2, Reg2).addReg(Reg1)
Misha Brukman911afde2004-06-25 14:50:41 +0000378 .addGlobalAddress(GV);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000379 return Reg2;
380 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
381 // Do not emit noop casts at all.
382 if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()))
383 return getReg(CI->getOperand(0), MBB, IPt);
384 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
385 unsigned Reg = makeAnotherReg(V->getType());
386 unsigned FI = getFixedSizedAllocaFI(AI);
387 addFrameReference(BuildMI(*MBB, IPt, PPC32::ADDI, 2, Reg), FI, 0, false);
388 return Reg;
389 }
390
391 unsigned &Reg = RegMap[V];
392 if (Reg == 0) {
393 Reg = makeAnotherReg(V->getType());
394 RegMap[V] = Reg;
395 }
396
397 return Reg;
398}
399
400/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
401/// that is to be statically allocated with the initial stack frame
402/// adjustment.
403unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
404 // Already computed this?
405 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
406 if (I != AllocaMap.end() && I->first == AI) return I->second;
407
408 const Type *Ty = AI->getAllocatedType();
409 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
410 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
411 TySize *= CUI->getValue(); // Get total allocated size...
412 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
413
414 // Create a new stack object using the frame manager...
415 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
416 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
417 return FrameIdx;
418}
419
420
421/// copyConstantToRegister - Output the instructions required to put the
422/// specified constant into the specified register.
423///
424void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
425 MachineBasicBlock::iterator IP,
426 Constant *C, unsigned R) {
427 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
428 unsigned Class = 0;
429 switch (CE->getOpcode()) {
430 case Instruction::GetElementPtr:
431 emitGEPOperation(MBB, IP, CE->getOperand(0),
432 CE->op_begin()+1, CE->op_end(), R);
433 return;
434 case Instruction::Cast:
435 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
436 return;
437
438 case Instruction::Xor: ++Class; // FALL THROUGH
439 case Instruction::Or: ++Class; // FALL THROUGH
440 case Instruction::And: ++Class; // FALL THROUGH
441 case Instruction::Sub: ++Class; // FALL THROUGH
442 case Instruction::Add:
443 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
444 Class, R);
445 return;
446
447 case Instruction::Mul:
448 emitMultiply(MBB, IP, CE->getOperand(0), CE->getOperand(1), R);
449 return;
450
451 case Instruction::Div:
452 case Instruction::Rem:
453 emitDivRemOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
454 CE->getOpcode() == Instruction::Div, R);
455 return;
456
457 case Instruction::SetNE:
458 case Instruction::SetEQ:
459 case Instruction::SetLT:
460 case Instruction::SetGT:
461 case Instruction::SetLE:
462 case Instruction::SetGE:
463 emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
464 CE->getOpcode(), R);
465 return;
466
467 case Instruction::Shl:
468 case Instruction::Shr:
469 emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
470 CE->getOpcode() == Instruction::Shl, CE->getType(), R);
471 return;
472
473 case Instruction::Select:
474 emitSelectOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
475 CE->getOperand(2), R);
476 return;
477
478 default:
479 std::cerr << "Offending expr: " << C << "\n";
480 assert(0 && "Constant expression not yet handled!\n");
481 }
482 }
483
484 if (C->getType()->isIntegral()) {
485 unsigned Class = getClassB(C->getType());
486
487 if (Class == cLong) {
488 // Copy the value into the register pair.
489 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Misha Brukman422791f2004-06-21 17:41:12 +0000490 unsigned hiTmp = makeAnotherReg(Type::IntTy);
491 unsigned loTmp = makeAnotherReg(Type::IntTy);
Misha Brukman911afde2004-06-25 14:50:41 +0000492 BuildMI(*MBB, IP, PPC32::ADDIS, 2, loTmp).addReg(PPC32::R0)
493 .addImm(Val >> 48);
494 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(loTmp)
495 .addImm((Val >> 32) & 0xFFFF);
496 BuildMI(*MBB, IP, PPC32::ADDIS, 2, hiTmp).addReg(PPC32::R0)
497 .addImm((Val >> 16) & 0xFFFF);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000498 BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(hiTmp).addImm(Val & 0xFFFF);
499 return;
500 }
501
502 assert(Class <= cInt && "Type not handled yet!");
503
504 if (C->getType() == Type::BoolTy) {
Misha Brukman911afde2004-06-25 14:50:41 +0000505 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0)
506 .addImm(C == ConstantBool::True);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000507 } else if (Class == cByte || Class == cShort) {
508 ConstantInt *CI = cast<ConstantInt>(C);
Misha Brukman911afde2004-06-25 14:50:41 +0000509 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0)
510 .addImm(CI->getRawValue());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000511 } else {
512 ConstantInt *CI = cast<ConstantInt>(C);
513 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
514 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman911afde2004-06-25 14:50:41 +0000515 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0)
516 .addImm(CI->getRawValue());
Misha Brukman422791f2004-06-21 17:41:12 +0000517 } else {
518 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman911afde2004-06-25 14:50:41 +0000519 BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0)
520 .addImm(CI->getRawValue() >> 16);
521 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TmpReg)
522 .addImm(CI->getRawValue() & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +0000523 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000524 }
525 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
526 // We need to spill the constant to memory...
527 MachineConstantPool *CP = F->getConstantPool();
528 unsigned CPI = CP->getConstantPoolIndex(CFP);
529 const Type *Ty = CFP->getType();
530
Misha Brukman911afde2004-06-25 14:50:41 +0000531 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000532 unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
533 addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 2, R), CPI);
534 } else if (isa<ConstantPointerNull>(C)) {
535 // Copy zero (null pointer) to the register.
536 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(0);
537 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000538 BuildMI(*MBB, IP, PPC32::ADDIS, 2, R).addReg(PPC32::R0)
539 .addGlobalAddress(CPR->getValue());
540 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(PPC32::R0)
541 .addGlobalAddress(CPR->getValue());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000542 } else {
543 std::cerr << "Offending constant: " << C << "\n";
544 assert(0 && "Type not handled yet!");
545 }
546}
547
548/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
549/// the stack into virtual registers.
550///
551/// FIXME: When we can calculate which args are coming in via registers
552/// source them from there instead.
553void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
554 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
555 unsigned GPR_remaining = 8;
556 unsigned FPR_remaining = 13;
557 unsigned GPR_idx = 3;
558 unsigned FPR_idx = 1;
Misha Brukman422791f2004-06-21 17:41:12 +0000559
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000560 MachineFrameInfo *MFI = F->getFrameInfo();
561
562 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
563 bool ArgLive = !I->use_empty();
564 unsigned Reg = ArgLive ? getReg(*I) : 0;
565 int FI; // Frame object index
566
567 switch (getClassB(I->getType())) {
568 case cByte:
569 if (ArgLive) {
570 FI = MFI->CreateFixedObject(1, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000571 if (GPR_remaining > 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000572 BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx)
573 .addReg(PPC32::R0+GPR_idx);
Misha Brukman422791f2004-06-21 17:41:12 +0000574 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000575 addFrameReference(BuildMI(BB, PPC32::LBZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000576 }
577 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000578 break;
579 case cShort:
580 if (ArgLive) {
581 FI = MFI->CreateFixedObject(2, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000582 if (GPR_remaining > 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000583 BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx)
584 .addReg(PPC32::R0+GPR_idx);
Misha Brukman422791f2004-06-21 17:41:12 +0000585 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000586 addFrameReference(BuildMI(BB, PPC32::LHZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000587 }
588 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000589 break;
590 case cInt:
591 if (ArgLive) {
592 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000593 if (GPR_remaining > 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000594 BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx)
595 .addReg(PPC32::R0+GPR_idx);
Misha Brukman422791f2004-06-21 17:41:12 +0000596 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000597 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000598 }
599 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000600 break;
601 case cLong:
602 if (ArgLive) {
603 FI = MFI->CreateFixedObject(8, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000604 if (GPR_remaining > 1) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000605 BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx)
606 .addReg(PPC32::R0+GPR_idx);
607 BuildMI(BB, PPC32::OR, 2, Reg+1).addReg(PPC32::R0+GPR_idx+1)
608 .addReg(PPC32::R0+GPR_idx+1);
Misha Brukman422791f2004-06-21 17:41:12 +0000609 } else {
610 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
611 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg+1), FI, 4);
612 }
613 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000614 ArgOffset += 4; // longs require 4 additional bytes
Misha Brukman422791f2004-06-21 17:41:12 +0000615 if (GPR_remaining > 1) {
616 GPR_remaining--; // uses up 2 GPRs
617 GPR_idx++;
618 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000619 break;
620 case cFP:
621 if (ArgLive) {
622 unsigned Opcode;
623 if (I->getType() == Type::FloatTy) {
624 Opcode = PPC32::LFS;
625 FI = MFI->CreateFixedObject(4, ArgOffset);
626 } else {
627 Opcode = PPC32::LFD;
628 FI = MFI->CreateFixedObject(8, ArgOffset);
629 }
Misha Brukman422791f2004-06-21 17:41:12 +0000630 if (FPR_remaining > 0) {
631 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(PPC32::F0+FPR_idx);
632 FPR_remaining--;
633 FPR_idx++;
634 } else {
635 addFrameReference(BuildMI(BB, Opcode, 2, Reg), FI);
636 }
637 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000638 if (I->getType() == Type::DoubleTy) {
639 ArgOffset += 4; // doubles require 4 additional bytes
Misha Brukman422791f2004-06-21 17:41:12 +0000640 if (GPR_remaining > 0) {
641 GPR_remaining--; // uses up 2 GPRs
642 GPR_idx++;
643 }
644 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000645 break;
646 default:
647 assert(0 && "Unhandled argument type!");
648 }
649 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Misha Brukman422791f2004-06-21 17:41:12 +0000650 if (GPR_remaining > 0) {
651 GPR_remaining--; // uses up 2 GPRs
652 GPR_idx++;
653 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000654 }
655
656 // If the function takes variable number of arguments, add a frame offset for
657 // the start of the first vararg value... this is used to expand
658 // llvm.va_start.
659 if (Fn.getFunctionType()->isVarArg())
660 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
661}
662
663
664/// SelectPHINodes - Insert machine code to generate phis. This is tricky
665/// because we have to generate our sources into the source basic blocks, not
666/// the current one.
667///
668void ISel::SelectPHINodes() {
669 const TargetInstrInfo &TII = *TM.getInstrInfo();
670 const Function &LF = *F->getFunction(); // The LLVM function...
671 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
672 const BasicBlock *BB = I;
673 MachineBasicBlock &MBB = *MBBMap[I];
674
675 // Loop over all of the PHI nodes in the LLVM basic block...
676 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
677 for (BasicBlock::const_iterator I = BB->begin();
678 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
679
680 // Create a new machine instr PHI node, and insert it.
681 unsigned PHIReg = getReg(*PN);
682 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
683 PPC32::PHI, PN->getNumOperands(), PHIReg);
684
685 MachineInstr *LongPhiMI = 0;
686 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
687 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
688 PPC32::PHI, PN->getNumOperands(), PHIReg+1);
689
690 // PHIValues - Map of blocks to incoming virtual registers. We use this
691 // so that we only initialize one incoming value for a particular block,
692 // even if the block has multiple entries in the PHI node.
693 //
694 std::map<MachineBasicBlock*, unsigned> PHIValues;
695
696 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
697 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
698 unsigned ValReg;
699 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
700 PHIValues.lower_bound(PredMBB);
701
702 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
703 // We already inserted an initialization of the register for this
704 // predecessor. Recycle it.
705 ValReg = EntryIt->second;
706
707 } else {
708 // Get the incoming value into a virtual register.
709 //
710 Value *Val = PN->getIncomingValue(i);
711
712 // If this is a constant or GlobalValue, we may have to insert code
713 // into the basic block to compute it into a virtual register.
714 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
715 isa<GlobalValue>(Val)) {
716 // Simple constants get emitted at the end of the basic block,
717 // before any terminator instructions. We "know" that the code to
718 // move a constant into a register will never clobber any flags.
719 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
720 } else {
721 // Because we don't want to clobber any values which might be in
722 // physical registers with the computation of this constant (which
723 // might be arbitrarily complex if it is a constant expression),
724 // just insert the computation at the top of the basic block.
725 MachineBasicBlock::iterator PI = PredMBB->begin();
726
727 // Skip over any PHI nodes though!
728 while (PI != PredMBB->end() && PI->getOpcode() == PPC32::PHI)
729 ++PI;
730
731 ValReg = getReg(Val, PredMBB, PI);
732 }
733
734 // Remember that we inserted a value for this PHI for this predecessor
735 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
736 }
737
738 PhiMI->addRegOperand(ValReg);
739 PhiMI->addMachineBasicBlockOperand(PredMBB);
740 if (LongPhiMI) {
741 LongPhiMI->addRegOperand(ValReg+1);
742 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
743 }
744 }
745
746 // Now that we emitted all of the incoming values for the PHI node, make
747 // sure to reposition the InsertPoint after the PHI that we just added.
748 // This is needed because we might have inserted a constant into this
749 // block, right after the PHI's which is before the old insert point!
750 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
751 ++PHIInsertPoint;
752 }
753 }
754}
755
756
757// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
758// it into the conditional branch or select instruction which is the only user
759// of the cc instruction. This is the case if the conditional branch is the
760// only user of the setcc, and if the setcc is in the same basic block as the
761// conditional branch. We also don't handle long arguments below, so we reject
762// them here as well.
763//
764static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
765 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
766 if (SCI->hasOneUse()) {
767 Instruction *User = cast<Instruction>(SCI->use_back());
768 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
769 SCI->getParent() == User->getParent() &&
770 (getClassB(SCI->getOperand(0)->getType()) != cLong ||
771 SCI->getOpcode() == Instruction::SetEQ ||
772 SCI->getOpcode() == Instruction::SetNE))
773 return SCI;
774 }
775 return 0;
776}
777
778// Return a fixed numbering for setcc instructions which does not depend on the
779// order of the opcodes.
780//
781static unsigned getSetCCNumber(unsigned Opcode) {
782 switch(Opcode) {
783 default: assert(0 && "Unknown setcc instruction!");
784 case Instruction::SetEQ: return 0;
785 case Instruction::SetNE: return 1;
786 case Instruction::SetLT: return 2;
787 case Instruction::SetGE: return 3;
788 case Instruction::SetGT: return 4;
789 case Instruction::SetLE: return 5;
790 }
791}
792
793/// emitUCOM - emits an unordered FP compare.
794void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
795 unsigned LHS, unsigned RHS) {
Misha Brukman422791f2004-06-21 17:41:12 +0000796 BuildMI(*MBB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(LHS).addReg(RHS);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000797}
798
799// EmitComparison - This function emits a comparison of the two operands,
800// returning the extended setcc code to use.
801unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
802 MachineBasicBlock *MBB,
803 MachineBasicBlock::iterator IP) {
804 // The arguments are already supposed to be of the same type.
805 const Type *CompTy = Op0->getType();
806 unsigned Class = getClassB(CompTy);
807 unsigned Op0r = getReg(Op0, MBB, IP);
808
809 // Special case handling of: cmp R, i
810 if (isa<ConstantPointerNull>(Op1)) {
811 BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(Op0r).addImm(0);
812 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
813 if (Class == cByte || Class == cShort || Class == cInt) {
814 unsigned Op1v = CI->getRawValue();
815
816 // Mask off any upper bits of the constant, if there are any...
817 Op1v &= (1ULL << (8 << Class)) - 1;
818
Misha Brukman422791f2004-06-21 17:41:12 +0000819 // Compare immediate or promote to reg?
820 if (Op1v <= 32767) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000821 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3,
822 PPC32::CR0).addImm(0).addReg(Op0r).addImm(Op1v);
Misha Brukman422791f2004-06-21 17:41:12 +0000823 } else {
824 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman2fec9902004-06-21 20:22:03 +0000825 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 3,
826 PPC32::CR0).addImm(0).addReg(Op0r).addReg(Op1r);
Misha Brukman422791f2004-06-21 17:41:12 +0000827 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000828 return OpNum;
829 } else {
830 assert(Class == cLong && "Unknown integer class!");
831 unsigned LowCst = CI->getRawValue();
832 unsigned HiCst = CI->getRawValue() >> 32;
833 if (OpNum < 2) { // seteq, setne
834 unsigned LoTmp = Op0r;
835 if (LowCst != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +0000836 unsigned LoLow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000837 unsigned LoTmp = makeAnotherReg(Type::IntTy);
838 BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r).addImm(LowCst);
Misha Brukman2fec9902004-06-21 20:22:03 +0000839 BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow)
840 .addImm(LowCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000841 }
842 unsigned HiTmp = Op0r+1;
843 if (HiCst != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +0000844 unsigned HiLow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000845 unsigned HiTmp = makeAnotherReg(Type::IntTy);
846 BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r+1).addImm(HiCst);
Misha Brukman2fec9902004-06-21 20:22:03 +0000847 BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow)
848 .addImm(HiCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000849 }
850 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
851 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
852 //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0);
853 return OpNum;
854 } else {
855 // Emit a sequence of code which compares the high and low parts once
856 // each, then uses a conditional move to handle the overflow case. For
857 // example, a setlt for long would generate code like this:
858 //
859 // AL = lo(op1) < lo(op2) // Always unsigned comparison
860 // BL = hi(op1) < hi(op2) // Signedness depends on operands
861 // dest = hi(op1) == hi(op2) ? BL : AL;
862 //
863
864 // FIXME: Not Yet Implemented
Misha Brukman911afde2004-06-25 14:50:41 +0000865 std::cerr << "EmitComparison unimplemented: Opnum >= 2\n";
866 abort();
Misha Brukman422791f2004-06-21 17:41:12 +0000867 return OpNum;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000868 }
869 }
870 }
871
872 unsigned Op1r = getReg(Op1, MBB, IP);
873 switch (Class) {
874 default: assert(0 && "Unknown type class!");
875 case cByte:
876 case cShort:
877 case cInt:
Misha Brukman2fec9902004-06-21 20:22:03 +0000878 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 2,
879 PPC32::CR0).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000880 break;
881 case cFP:
882 emitUCOM(MBB, IP, Op0r, Op1r);
883 break;
884
885 case cLong:
886 if (OpNum < 2) { // seteq, setne
887 unsigned LoTmp = makeAnotherReg(Type::IntTy);
888 unsigned HiTmp = makeAnotherReg(Type::IntTy);
889 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
890 BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r).addReg(Op1r);
891 BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
892 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
893 //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0);
894 break; // Allow the sete or setne to be generated from flags set by OR
895 } else {
896 // Emit a sequence of code which compares the high and low parts once
897 // each, then uses a conditional move to handle the overflow case. For
898 // example, a setlt for long would generate code like this:
899 //
900 // AL = lo(op1) < lo(op2) // Signedness depends on operands
901 // BL = hi(op1) < hi(op2) // Always unsigned comparison
902 // dest = hi(op1) == hi(op2) ? BL : AL;
903 //
904
905 // FIXME: Not Yet Implemented
Misha Brukman911afde2004-06-25 14:50:41 +0000906 std::cerr << "EmitComparison (cLong) unimplemented: Opnum >= 2\n";
907 abort();
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000908 return OpNum;
909 }
910 }
911 return OpNum;
912}
913
914/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
915/// register, then move it to wherever the result should be.
916///
917void ISel::visitSetCondInst(SetCondInst &I) {
918 if (canFoldSetCCIntoBranchOrSelect(&I))
919 return; // Fold this into a branch or select.
920
921 unsigned DestReg = getReg(I);
922 MachineBasicBlock::iterator MII = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +0000923 emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
924 DestReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000925}
926
927/// emitSetCCOperation - Common code shared between visitSetCondInst and
928/// constant expression support.
929///
930/// FIXME: this is wrong. we should figure out a way to guarantee
931/// TargetReg is a CR and then make it a no-op
932void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
933 MachineBasicBlock::iterator IP,
934 Value *Op0, Value *Op1, unsigned Opcode,
935 unsigned TargetReg) {
936 unsigned OpNum = getSetCCNumber(Opcode);
937 OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
938
939 // The value is already in CR0 at this point, do nothing.
940}
941
942
943void ISel::visitSelectInst(SelectInst &SI) {
944 unsigned DestReg = getReg(SI);
945 MachineBasicBlock::iterator MII = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +0000946 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
947 SI.getFalseValue(), DestReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000948}
949
950/// emitSelect - Common code shared between visitSelectInst and the constant
951/// expression support.
952/// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has
953/// no select instruction. FSEL only works for comparisons against zero.
954void ISel::emitSelectOperation(MachineBasicBlock *MBB,
955 MachineBasicBlock::iterator IP,
956 Value *Cond, Value *TrueVal, Value *FalseVal,
957 unsigned DestReg) {
958 unsigned SelectClass = getClassB(TrueVal->getType());
959
960 unsigned TrueReg = getReg(TrueVal, MBB, IP);
961 unsigned FalseReg = getReg(FalseVal, MBB, IP);
962
963 if (TrueReg == FalseReg) {
Misha Brukman422791f2004-06-21 17:41:12 +0000964 if (SelectClass == cFP) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000965 BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(TrueReg);
Misha Brukman422791f2004-06-21 17:41:12 +0000966 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000967 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TrueReg).addReg(TrueReg);
Misha Brukman422791f2004-06-21 17:41:12 +0000968 }
969
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000970 if (SelectClass == cLong)
Misha Brukman2fec9902004-06-21 20:22:03 +0000971 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TrueReg+1)
972 .addReg(TrueReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000973 return;
974 }
975
976 unsigned CondReg = getReg(Cond, MBB, IP);
977 unsigned numZeros = makeAnotherReg(Type::IntTy);
978 unsigned falseHi = makeAnotherReg(Type::IntTy);
979 unsigned falseAll = makeAnotherReg(Type::IntTy);
980 unsigned trueAll = makeAnotherReg(Type::IntTy);
981 unsigned Temp1 = makeAnotherReg(Type::IntTy);
982 unsigned Temp2 = makeAnotherReg(Type::IntTy);
983
984 BuildMI(*MBB, IP, PPC32::CNTLZW, 1, numZeros).addReg(CondReg);
Misha Brukman2fec9902004-06-21 20:22:03 +0000985 BuildMI(*MBB, IP, PPC32::RLWINM, 4, falseHi).addReg(numZeros).addImm(26)
986 .addImm(0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000987 BuildMI(*MBB, IP, PPC32::SRAWI, 2, falseAll).addReg(falseHi).addImm(31);
988 BuildMI(*MBB, IP, PPC32::NOR, 2, trueAll).addReg(falseAll).addReg(falseAll);
989 BuildMI(*MBB, IP, PPC32::AND, 2, Temp1).addReg(TrueReg).addReg(trueAll);
990 BuildMI(*MBB, IP, PPC32::AND, 2, Temp2).addReg(FalseReg).addReg(falseAll);
991 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Temp1).addReg(Temp2);
992
993 if (SelectClass == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +0000994 unsigned Temp3 = makeAnotherReg(Type::IntTy);
995 unsigned Temp4 = makeAnotherReg(Type::IntTy);
996 BuildMI(*MBB, IP, PPC32::AND, 2, Temp3).addReg(TrueReg+1).addReg(trueAll);
997 BuildMI(*MBB, IP, PPC32::AND, 2, Temp4).addReg(FalseReg+1).addReg(falseAll);
998 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(Temp3).addReg(Temp4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000999 }
1000
1001 return;
1002}
1003
1004
1005
1006/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
1007/// operand, in the specified target register.
1008///
1009void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
1010 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
1011
1012 Value *Val = VR.Val;
1013 const Type *Ty = VR.Ty;
1014 if (Val) {
1015 if (Constant *C = dyn_cast<Constant>(Val)) {
1016 Val = ConstantExpr::getCast(C, Type::IntTy);
1017 Ty = Type::IntTy;
1018 }
1019
Misha Brukman2fec9902004-06-21 20:22:03 +00001020 // If this is a simple constant, just emit a load directly to avoid the copy
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001021 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1022 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
1023
1024 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman422791f2004-06-21 17:41:12 +00001025 BuildMI(BB, PPC32::ADDI, 2, targetReg).addReg(PPC32::R0).addImm(TheVal);
1026 } else {
1027 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001028 BuildMI(BB, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0)
1029 .addImm(TheVal >> 16);
1030 BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(TmpReg)
1031 .addImm(TheVal & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +00001032 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001033 return;
1034 }
1035 }
1036
1037 // Make sure we have the register number for this value...
1038 unsigned Reg = Val ? getReg(Val) : VR.Reg;
1039
1040 switch (getClassB(Ty)) {
1041 case cByte:
1042 // Extend value into target register (8->32)
1043 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001044 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1045 .addZImm(24).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001046 else
1047 BuildMI(BB, PPC32::EXTSB, 1, targetReg).addReg(Reg);
1048 break;
1049 case cShort:
1050 // Extend value into target register (16->32)
1051 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001052 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1053 .addZImm(16).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001054 else
1055 BuildMI(BB, PPC32::EXTSH, 1, targetReg).addReg(Reg);
1056 break;
1057 case cInt:
1058 // Move value into target register (32->32)
Misha Brukman972569a2004-06-25 18:36:53 +00001059 BuildMI(BB, PPC32::OR, 2, targetReg).addReg(Reg).addReg(Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001060 break;
1061 default:
1062 assert(0 && "Unpromotable operand class in promote32");
1063 }
1064}
1065
Misha Brukman2fec9902004-06-21 20:22:03 +00001066/// visitReturnInst - implemented with BLR
1067///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001068void ISel::visitReturnInst(ReturnInst &I) {
Misha Brukmand47bbf72004-06-25 19:04:27 +00001069 // Only do the processing if this is a non-void return
1070 if (I.getNumOperands() > 0) {
1071 Value *RetVal = I.getOperand(0);
1072 switch (getClassB(RetVal->getType())) {
1073 case cByte: // integral return values: extend or move into r3 and return
1074 case cShort:
1075 case cInt:
1076 promote32(PPC32::R3, ValueRecord(RetVal));
1077 break;
1078 case cFP: { // Floats & Doubles: Return in f1
1079 unsigned RetReg = getReg(RetVal);
1080 BuildMI(BB, PPC32::FMR, 1, PPC32::F1).addReg(RetReg);
1081 break;
1082 }
1083 case cLong: {
1084 unsigned RetReg = getReg(RetVal);
1085 BuildMI(BB, PPC32::OR, 2, PPC32::R3).addReg(RetReg).addReg(RetReg);
1086 BuildMI(BB, PPC32::OR, 2, PPC32::R4).addReg(RetReg+1).addReg(RetReg+1);
1087 break;
1088 }
1089 default:
1090 visitInstruction(I);
1091 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001092 }
1093 BuildMI(BB, PPC32::BLR, 1).addImm(0);
1094}
1095
1096// getBlockAfter - Return the basic block which occurs lexically after the
1097// specified one.
1098static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1099 Function::iterator I = BB; ++I; // Get iterator to next block
1100 return I != BB->getParent()->end() ? &*I : 0;
1101}
1102
1103/// visitBranchInst - Handle conditional and unconditional branches here. Note
1104/// that since code layout is frozen at this point, that if we are trying to
1105/// jump to a block that is the immediate successor of the current block, we can
1106/// just make a fall-through (but we don't currently).
1107///
1108void ISel::visitBranchInst(BranchInst &BI) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001109 // Update machine-CFG edges
1110 BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
1111 if (BI.isConditional())
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001112 BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
Misha Brukman2fec9902004-06-21 20:22:03 +00001113
1114 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
1115
1116 if (!BI.isConditional()) { // Unconditional branch?
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001117 if (BI.getSuccessor(0) != NextBB)
1118 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1119 return;
Misha Brukman2fec9902004-06-21 20:22:03 +00001120 }
1121
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001122 // See if we can fold the setcc into the branch itself...
1123 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
1124 if (SCI == 0) {
1125 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1126 // computed some other way...
1127 unsigned condReg = getReg(BI.getCondition());
Misha Brukman2fec9902004-06-21 20:22:03 +00001128 BuildMI(BB, PPC32::CMPLI, 3, PPC32::CR0).addImm(0).addReg(condReg)
1129 .addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001130 if (BI.getSuccessor(1) == NextBB) {
1131 if (BI.getSuccessor(0) != NextBB)
Misha Brukman2fec9902004-06-21 20:22:03 +00001132 BuildMI(BB, PPC32::BC, 3).addImm(4).addImm(2)
1133 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001134 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00001135 BuildMI(BB, PPC32::BC, 3).addImm(12).addImm(2)
1136 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001137
1138 if (BI.getSuccessor(0) != NextBB)
1139 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1140 }
1141 return;
1142 }
1143
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001144 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
1145 MachineBasicBlock::iterator MII = BB->end();
1146 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
1147
1148 const Type *CompTy = SCI->getOperand(0)->getType();
1149 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
1150
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001151 static const unsigned BITab[6] = { 2, 2, 0, 0, 1, 1 };
1152 unsigned BO_true = (OpNum % 2 == 0) ? 12 : 4;
1153 unsigned BO_false = (OpNum % 2 == 0) ? 4 : 12;
1154 unsigned BIval = BITab[0];
1155
1156 if (BI.getSuccessor(0) != NextBB) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001157 BuildMI(BB, PPC32::BC, 3).addImm(BO_true).addImm(BIval)
1158 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001159 if (BI.getSuccessor(1) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001160 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001161 } else {
1162 // Change to the inverse condition...
1163 if (BI.getSuccessor(1) != NextBB) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001164 BuildMI(BB, PPC32::BC, 3).addImm(BO_false).addImm(BIval)
1165 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001166 }
1167 }
1168}
1169
1170
1171/// doCall - This emits an abstract call instruction, setting up the arguments
1172/// and the return value as appropriate. For the actual function call itself,
1173/// it inserts the specified CallMI instruction into the stream.
1174///
1175/// FIXME: See Documentation at the following URL for "correct" behavior
1176/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html>
1177void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
1178 const std::vector<ValueRecord> &Args) {
1179 // Count how many bytes are to be pushed on the stack...
1180 unsigned NumBytes = 0;
1181
1182 if (!Args.empty()) {
1183 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1184 switch (getClassB(Args[i].Ty)) {
1185 case cByte: case cShort: case cInt:
1186 NumBytes += 4; break;
1187 case cLong:
1188 NumBytes += 8; break;
1189 case cFP:
1190 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
1191 break;
1192 default: assert(0 && "Unknown class!");
1193 }
1194
1195 // Adjust the stack pointer for the new arguments...
1196 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
1197
1198 // Arguments go on the stack in reverse order, as specified by the ABI.
1199 unsigned ArgOffset = 0;
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001200 int GPR_remaining = 8, FPR_remaining = 8;
1201 unsigned GPR[] = {
1202 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
1203 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
1204 };
1205 unsigned FPR[] = {
1206 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4,
1207 PPC32::F5, PPC32::F6, PPC32::F7, PPC32::F8
1208 };
1209 unsigned GPR_idx = 0, FPR_idx = 0;
Misha Brukman422791f2004-06-21 17:41:12 +00001210
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001211 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1212 unsigned ArgReg;
1213 switch (getClassB(Args[i].Ty)) {
1214 case cByte:
1215 case cShort:
1216 // Promote arg to 32 bits wide into a temporary register...
1217 ArgReg = makeAnotherReg(Type::UIntTy);
1218 promote32(ArgReg, Args[i]);
Misha Brukman422791f2004-06-21 17:41:12 +00001219
1220 // Reg or stack?
1221 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001222 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001223 .addReg(ArgReg);
Misha Brukman422791f2004-06-21 17:41:12 +00001224 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001225 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1226 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001227 }
1228 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001229 case cInt:
1230 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1231
Misha Brukman422791f2004-06-21 17:41:12 +00001232 // Reg or stack?
1233 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001234 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001235 .addReg(ArgReg);
Misha Brukman422791f2004-06-21 17:41:12 +00001236 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001237 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1238 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001239 }
1240 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001241 case cLong:
Misha Brukman422791f2004-06-21 17:41:12 +00001242 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001243
Misha Brukman422791f2004-06-21 17:41:12 +00001244 // Reg or stack?
1245 if (GPR_remaining > 1) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001246 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001247 .addReg(ArgReg);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001248 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx + 1]).addReg(ArgReg+1)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001249 .addReg(ArgReg+1);
Misha Brukman422791f2004-06-21 17:41:12 +00001250 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001251 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1252 .addReg(PPC32::R1);
1253 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addImm(ArgOffset+4)
1254 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001255 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001256
1257 ArgOffset += 4; // 8 byte entry, not 4.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001258 GPR_remaining -= 1; // uses up 2 GPRs
1259 GPR_idx += 1;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001260 break;
1261 case cFP:
1262 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1263 if (Args[i].Ty == Type::FloatTy) {
Misha Brukman1916bf92004-06-24 21:56:15 +00001264 // Reg or stack?
1265 if (FPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001266 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001267 FPR_remaining--;
1268 FPR_idx++;
Misha Brukman1916bf92004-06-24 21:56:15 +00001269 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001270 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addImm(ArgOffset)
1271 .addReg(PPC32::R1);
Misha Brukman1916bf92004-06-24 21:56:15 +00001272 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001273 } else {
1274 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman1916bf92004-06-24 21:56:15 +00001275 // Reg or stack?
1276 if (FPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001277 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001278 FPR_remaining--;
1279 FPR_idx++;
Misha Brukman1916bf92004-06-24 21:56:15 +00001280 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001281 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset)
1282 .addReg(PPC32::R1);
Misha Brukman1916bf92004-06-24 21:56:15 +00001283 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001284
Misha Brukman1916bf92004-06-24 21:56:15 +00001285 ArgOffset += 4; // 8 byte entry, not 4.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001286 GPR_remaining--; // uses up 2 GPRs
1287 GPR_idx++;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001288 }
1289 break;
1290
1291 default: assert(0 && "Unknown class!");
1292 }
1293 ArgOffset += 4;
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001294 GPR_remaining--;
1295 GPR_idx++;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001296 }
1297 } else {
1298 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(0);
1299 }
1300
1301 BB->push_back(CallMI);
1302
1303 BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addImm(NumBytes);
1304
1305 // If there is a return value, scavenge the result from the location the call
1306 // leaves it in...
1307 //
1308 if (Ret.Ty != Type::VoidTy) {
1309 unsigned DestClass = getClassB(Ret.Ty);
1310 switch (DestClass) {
1311 case cByte:
1312 case cShort:
1313 case cInt:
1314 // Integral results are in r3
Misha Brukman422791f2004-06-21 17:41:12 +00001315 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
Misha Brukmane327e492004-06-24 23:53:24 +00001316 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001317 case cFP: // Floating-point return values live in f1
1318 BuildMI(BB, PPC32::FMR, 1, Ret.Reg).addReg(PPC32::F1);
1319 break;
1320 case cLong: // Long values are in r3:r4
Misha Brukman422791f2004-06-21 17:41:12 +00001321 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
1322 BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R4).addReg(PPC32::R4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001323 break;
1324 default: assert(0 && "Unknown class!");
1325 }
1326 }
1327}
1328
1329
1330/// visitCallInst - Push args on stack and do a procedure call instruction.
1331void ISel::visitCallInst(CallInst &CI) {
1332 MachineInstr *TheCall;
1333 if (Function *F = CI.getCalledFunction()) {
1334 // Is it an intrinsic function call?
1335 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
1336 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1337 return;
1338 }
1339
1340 // Emit a CALL instruction with PC-relative displacement.
1341 TheCall = BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(F, true);
1342 } else { // Emit an indirect call through the CTR
1343 unsigned Reg = getReg(CI.getCalledValue());
1344 BuildMI(PPC32::MTSPR, 2).addZImm(9).addReg(Reg);
1345 TheCall = BuildMI(PPC32::CALLindirect, 1).addZImm(20).addZImm(0);
1346 }
1347
1348 std::vector<ValueRecord> Args;
1349 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
1350 Args.push_back(ValueRecord(CI.getOperand(i)));
1351
1352 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
1353 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
1354}
1355
1356
1357/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
1358///
1359static Value *dyncastIsNan(Value *V) {
1360 if (CallInst *CI = dyn_cast<CallInst>(V))
1361 if (Function *F = CI->getCalledFunction())
Misha Brukmana2916ce2004-06-21 17:58:36 +00001362 if (F->getIntrinsicID() == Intrinsic::isunordered)
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001363 return CI->getOperand(1);
1364 return 0;
1365}
1366
1367/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
1368/// or's whos operands are all calls to the isnan predicate.
1369static bool isOnlyUsedByUnorderedComparisons(Value *V) {
1370 assert(dyncastIsNan(V) && "The value isn't an isnan call!");
1371
1372 // Check all uses, which will be or's of isnans if this predicate is true.
1373 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1374 Instruction *I = cast<Instruction>(*UI);
1375 if (I->getOpcode() != Instruction::Or) return false;
1376 if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
1377 if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
1378 }
1379
1380 return true;
1381}
1382
1383/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1384/// function, lowering any calls to unknown intrinsic functions into the
1385/// equivalent LLVM code.
1386///
1387void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1388 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1389 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1390 if (CallInst *CI = dyn_cast<CallInst>(I++))
1391 if (Function *F = CI->getCalledFunction())
1392 switch (F->getIntrinsicID()) {
1393 case Intrinsic::not_intrinsic:
1394 case Intrinsic::vastart:
1395 case Intrinsic::vacopy:
1396 case Intrinsic::vaend:
1397 case Intrinsic::returnaddress:
1398 case Intrinsic::frameaddress:
Misha Brukmana2916ce2004-06-21 17:58:36 +00001399 // FIXME: should lower this ourselves
1400 // case Intrinsic::isunordered:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001401 // We directly implement these intrinsics
1402 break;
1403 case Intrinsic::readio: {
1404 // On PPC, memory operations are in-order. Lower this intrinsic
1405 // into a volatile load.
1406 Instruction *Before = CI->getPrev();
1407 LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
1408 CI->replaceAllUsesWith(LI);
1409 BB->getInstList().erase(CI);
1410 break;
1411 }
1412 case Intrinsic::writeio: {
1413 // On PPC, memory operations are in-order. Lower this intrinsic
1414 // into a volatile store.
1415 Instruction *Before = CI->getPrev();
1416 StoreInst *LI = new StoreInst(CI->getOperand(1),
1417 CI->getOperand(2), true, CI);
1418 CI->replaceAllUsesWith(LI);
1419 BB->getInstList().erase(CI);
1420 break;
1421 }
1422 default:
1423 // All other intrinsic calls we must lower.
1424 Instruction *Before = CI->getPrev();
1425 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
1426 if (Before) { // Move iterator to instruction after call
1427 I = Before; ++I;
1428 } else {
1429 I = BB->begin();
1430 }
1431 }
1432}
1433
1434void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
1435 unsigned TmpReg1, TmpReg2, TmpReg3;
1436 switch (ID) {
1437 case Intrinsic::vastart:
1438 // Get the address of the first vararg value...
1439 TmpReg1 = getReg(CI);
1440 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1), VarArgsFrameIndex);
1441 return;
1442
1443 case Intrinsic::vacopy:
1444 TmpReg1 = getReg(CI);
1445 TmpReg2 = getReg(CI.getOperand(1));
1446 BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
1447 return;
1448 case Intrinsic::vaend: return;
1449
1450 case Intrinsic::returnaddress:
1451 case Intrinsic::frameaddress:
1452 TmpReg1 = getReg(CI);
1453 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1454 if (ID == Intrinsic::returnaddress) {
1455 // Just load the return address
1456 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, TmpReg1),
1457 ReturnAddressIndex);
1458 } else {
1459 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1),
1460 ReturnAddressIndex, -4, false);
1461 }
1462 } else {
1463 // Values other than zero are not implemented yet.
1464 BuildMI(BB, PPC32::ADDI, 2, TmpReg1).addReg(PPC32::R0).addImm(0);
1465 }
1466 return;
1467
Misha Brukmana2916ce2004-06-21 17:58:36 +00001468#if 0
1469 // This may be useful for supporting isunordered
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001470 case Intrinsic::isnan:
1471 // If this is only used by 'isunordered' style comparisons, don't emit it.
1472 if (isOnlyUsedByUnorderedComparisons(&CI)) return;
1473 TmpReg1 = getReg(CI.getOperand(1));
1474 emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
Misha Brukman422791f2004-06-21 17:41:12 +00001475 TmpReg2 = makeAnotherReg(Type::IntTy);
1476 BuildMI(BB, PPC32::MFCR, TmpReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001477 TmpReg3 = getReg(CI);
1478 BuildMI(BB, PPC32::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
1479 return;
Misha Brukmana2916ce2004-06-21 17:58:36 +00001480#endif
1481
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001482 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
1483 }
1484}
1485
1486/// visitSimpleBinary - Implement simple binary operators for integral types...
1487/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1488/// Xor.
1489///
1490void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1491 unsigned DestReg = getReg(B);
1492 MachineBasicBlock::iterator MI = BB->end();
1493 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
1494 unsigned Class = getClassB(B.getType());
1495
1496 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
1497}
1498
1499/// emitBinaryFPOperation - This method handles emission of floating point
1500/// Add (0), Sub (1), Mul (2), and Div (3) operations.
1501void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
1502 MachineBasicBlock::iterator IP,
1503 Value *Op0, Value *Op1,
1504 unsigned OperatorClass, unsigned DestReg) {
1505
1506 // Special case: op Reg, <const fp>
1507 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001508 // Create a constant pool entry for this constant.
1509 MachineConstantPool *CP = F->getConstantPool();
1510 unsigned CPI = CP->getConstantPoolIndex(Op1C);
1511 const Type *Ty = Op1->getType();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001512
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001513 static const unsigned OpcodeTab[][4] = {
1514 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1515 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
1516 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001517
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001518 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1519 unsigned TempReg = makeAnotherReg(Ty);
1520 unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
1521 addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001522
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001523 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
1524 unsigned Op0r = getReg(Op0, BB, IP);
1525 BuildMI(*BB, IP, Opcode, DestReg).addReg(Op0r).addReg(TempReg);
1526 return;
1527 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001528
1529 // Special case: R1 = op <const fp>, R2
1530 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
1531 if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) {
1532 // -0.0 - X === -X
1533 unsigned op1Reg = getReg(Op1, BB, IP);
1534 BuildMI(*BB, IP, PPC32::FNEG, 1, DestReg).addReg(op1Reg);
1535 return;
1536 } else {
1537 // R1 = op CST, R2 --> R1 = opr R2, CST
1538
1539 // Create a constant pool entry for this constant.
1540 MachineConstantPool *CP = F->getConstantPool();
1541 unsigned CPI = CP->getConstantPoolIndex(CFP);
1542 const Type *Ty = CFP->getType();
1543
1544 static const unsigned OpcodeTab[][4] = {
1545 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1546 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
1547 };
1548
1549 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman422791f2004-06-21 17:41:12 +00001550 unsigned TempReg = makeAnotherReg(Ty);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001551 unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
1552 addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI);
1553
1554 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
1555 unsigned Op1r = getReg(Op1, BB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001556 BuildMI(*BB, IP, Opcode, DestReg).addReg(TempReg).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001557 return;
1558 }
1559
1560 // General case.
Misha Brukman911afde2004-06-25 14:50:41 +00001561 static const unsigned OpcodeTab[] = {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001562 PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV
1563 };
1564
1565 unsigned Opcode = OpcodeTab[OperatorClass];
1566 unsigned Op0r = getReg(Op0, BB, IP);
1567 unsigned Op1r = getReg(Op1, BB, IP);
1568 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1569}
1570
1571/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1572/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1573/// Or, 4 for Xor.
1574///
1575/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1576/// and constant expression support.
1577///
1578void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
1579 MachineBasicBlock::iterator IP,
1580 Value *Op0, Value *Op1,
1581 unsigned OperatorClass, unsigned DestReg) {
1582 unsigned Class = getClassB(Op0->getType());
1583
Misha Brukman422791f2004-06-21 17:41:12 +00001584 // Arithmetic and Bitwise operators
Misha Brukman911afde2004-06-25 14:50:41 +00001585 static const unsigned OpcodeTab[] = {
Misha Brukman422791f2004-06-21 17:41:12 +00001586 PPC32::ADD, PPC32::SUB, PPC32::AND, PPC32::OR, PPC32::XOR
1587 };
1588 // Otherwise, code generate the full operation with a constant.
1589 static const unsigned BottomTab[] = {
1590 PPC32::ADDC, PPC32::SUBC, PPC32::AND, PPC32::OR, PPC32::XOR
1591 };
1592 static const unsigned TopTab[] = {
1593 PPC32::ADDE, PPC32::SUBFE, PPC32::AND, PPC32::OR, PPC32::XOR
1594 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001595
1596 if (Class == cFP) {
1597 assert(OperatorClass < 2 && "No logical ops for FP!");
1598 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
1599 return;
1600 }
1601
1602 if (Op0->getType() == Type::BoolTy) {
1603 if (OperatorClass == 3)
1604 // If this is an or of two isnan's, emit an FP comparison directly instead
1605 // of or'ing two isnan's together.
1606 if (Value *LHS = dyncastIsNan(Op0))
1607 if (Value *RHS = dyncastIsNan(Op1)) {
1608 unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001609 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001610 emitUCOM(MBB, IP, Op0Reg, Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00001611 BuildMI(*MBB, IP, PPC32::MFCR, TmpReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001612 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
1613 .addImm(31).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001614 return;
1615 }
1616 }
1617
1618 // sub 0, X -> neg X
1619 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
1620 if (OperatorClass == 1 && CI->isNullValue()) {
1621 unsigned op1Reg = getReg(Op1, MBB, IP);
1622 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg).addReg(op1Reg);
1623
1624 if (Class == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001625 unsigned zeroes = makeAnotherReg(Type::IntTy);
1626 unsigned overflow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001627 unsigned T = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00001628 BuildMI(*MBB, IP, PPC32::CNTLZW, 1, zeroes).addReg(op1Reg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001629 BuildMI(*MBB, IP, PPC32::RLWINM, 4, overflow).addReg(zeroes).addImm(27)
1630 .addImm(5).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00001631 BuildMI(*MBB, IP, PPC32::ADD, 2, T).addReg(op1Reg+1).addReg(overflow);
1632 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg+1).addReg(T);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001633 }
1634 return;
1635 }
1636
1637 // Special case: op Reg, <const int>
1638 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1639 unsigned Op0r = getReg(Op0, MBB, IP);
1640
1641 // xor X, -1 -> not X
1642 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1643 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1644 if (Class == cLong) // Invert the top part too
Misha Brukman2fec9902004-06-21 20:22:03 +00001645 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg+1).addReg(Op0r+1)
1646 .addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001647 return;
1648 }
1649
1650 unsigned Opcode = OpcodeTab[OperatorClass];
1651 unsigned Op1r = getReg(Op1, MBB, IP);
1652
1653 if (Class != cLong) {
1654 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1655 return;
1656 }
1657
1658 // If the constant is zero in the low 32-bits, just copy the low part
1659 // across and apply the normal 32-bit operation to the high parts. There
1660 // will be no carry or borrow into the top.
1661 if (cast<ConstantInt>(Op1C)->getRawValue() == 0) {
1662 if (OperatorClass != 2) // All but and...
1663 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1664 else
1665 BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
Misha Brukman422791f2004-06-21 17:41:12 +00001666 BuildMI(*MBB, IP, Opcode, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001667 return;
1668 }
1669
1670 // If this is a long value and the high or low bits have a special
1671 // property, emit some special cases.
1672 unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
1673
1674 // If this is a logical operation and the top 32-bits are zero, just
1675 // operate on the lower 32.
1676 if (Op1h == 0 && OperatorClass > 1) {
1677 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1678 if (OperatorClass != 2) // All but and
Misha Brukman2fec9902004-06-21 20:22:03 +00001679 BuildMI(*MBB, IP, PPC32::OR, 2,DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001680 else
Misha Brukman2fec9902004-06-21 20:22:03 +00001681 BuildMI(*MBB, IP, PPC32::ADDI, 2,DestReg+1).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001682 return;
1683 }
1684
1685 // TODO: We could handle lots of other special cases here, such as AND'ing
1686 // with 0xFFFFFFFF00000000 -> noop, etc.
1687
Misha Brukman2fec9902004-06-21 20:22:03 +00001688 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
1689 .addImm(Op1r);
1690 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
1691 .addImm(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001692 return;
1693 }
1694
1695 unsigned Op0r = getReg(Op0, MBB, IP);
1696 unsigned Op1r = getReg(Op1, MBB, IP);
1697
1698 if (Class != cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001699 unsigned Opcode = OpcodeTab[OperatorClass];
1700 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001701 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00001702 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
1703 .addImm(Op1r);
1704 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
1705 .addImm(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001706 }
1707 return;
1708}
1709
1710/// doMultiply - Emit appropriate instructions to multiply together the
1711/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1712/// result should be given as DestTy.
1713///
1714void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
1715 unsigned DestReg, const Type *DestTy,
1716 unsigned op0Reg, unsigned op1Reg) {
1717 unsigned Class = getClass(DestTy);
1718 switch (Class) {
1719 case cLong:
Misha Brukman2fec9902004-06-21 20:22:03 +00001720 BuildMI(*MBB, MBBI, PPC32::MULHW, 2, DestReg+1).addReg(op0Reg+1)
1721 .addReg(op1Reg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001722 case cInt:
1723 case cShort:
1724 case cByte:
1725 BuildMI(*MBB, MBBI, PPC32::MULLW, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
1726 return;
1727 default:
Misha Brukman422791f2004-06-21 17:41:12 +00001728 assert(0 && "doMultiply cannot operate on unknown type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001729 }
1730}
1731
1732// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1733// returns zero when the input is not exactly a power of two.
1734static unsigned ExactLog2(unsigned Val) {
1735 if (Val == 0 || (Val & (Val-1))) return 0;
1736 unsigned Count = 0;
1737 while (Val != 1) {
1738 Val >>= 1;
1739 ++Count;
1740 }
1741 return Count+1;
1742}
1743
1744
1745/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
1746/// 16, or 32-bit integer multiply by a constant.
Misha Brukman2fec9902004-06-21 20:22:03 +00001747///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001748void ISel::doMultiplyConst(MachineBasicBlock *MBB,
1749 MachineBasicBlock::iterator IP,
1750 unsigned DestReg, const Type *DestTy,
1751 unsigned op0Reg, unsigned ConstRHS) {
1752 unsigned Class = getClass(DestTy);
1753 // Handle special cases here.
1754 switch (ConstRHS) {
1755 case 0:
1756 BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
1757 return;
1758 case 1:
1759 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(op0Reg).addReg(op0Reg);
1760 return;
1761 case 2:
1762 BuildMI(*MBB, IP, PPC32::ADD, 2,DestReg).addReg(op0Reg).addReg(op0Reg);
1763 return;
1764 }
1765
1766 // If the element size is exactly a power of 2, use a shift to get it.
1767 if (unsigned Shift = ExactLog2(ConstRHS)) {
1768 switch (Class) {
1769 default: assert(0 && "Unknown class for this function!");
1770 case cByte:
1771 case cShort:
1772 case cInt:
Misha Brukman2fec9902004-06-21 20:22:03 +00001773 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(op0Reg)
1774 .addImm(Shift-1).addImm(0).addImm(31-Shift-1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001775 return;
1776 }
1777 }
1778
1779 // Most general case, emit a normal multiply...
1780 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
1781 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001782 BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg1).addReg(PPC32::R0)
1783 .addImm(ConstRHS >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001784 BuildMI(*MBB, IP, PPC32::ORI, 2, TmpReg2).addReg(TmpReg1).addImm(ConstRHS);
1785
1786 // Emit a MUL to multiply the register holding the index by
1787 // elementSize, putting the result in OffsetReg.
1788 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg2);
1789}
1790
1791void ISel::visitMul(BinaryOperator &I) {
1792 unsigned ResultReg = getReg(I);
1793
1794 Value *Op0 = I.getOperand(0);
1795 Value *Op1 = I.getOperand(1);
1796
1797 MachineBasicBlock::iterator IP = BB->end();
1798 emitMultiply(BB, IP, Op0, Op1, ResultReg);
1799}
1800
1801void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
1802 Value *Op0, Value *Op1, unsigned DestReg) {
1803 MachineBasicBlock &BB = *MBB;
1804 TypeClass Class = getClass(Op0->getType());
1805
1806 // Simple scalar multiply?
1807 unsigned Op0Reg = getReg(Op0, &BB, IP);
1808 switch (Class) {
1809 case cByte:
1810 case cShort:
1811 case cInt:
1812 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1813 unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
1814 doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
1815 } else {
1816 unsigned Op1Reg = getReg(Op1, &BB, IP);
1817 doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
1818 }
1819 return;
1820 case cFP:
1821 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
1822 return;
1823 case cLong:
1824 break;
1825 }
1826
1827 // Long value. We have to do things the hard way...
1828 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1829 unsigned CLow = CI->getRawValue();
1830 unsigned CHi = CI->getRawValue() >> 32;
1831
1832 if (CLow == 0) {
1833 // If the low part of the constant is all zeros, things are simple.
1834 BuildMI(BB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
1835 doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
1836 return;
1837 }
1838
1839 // Multiply the two low parts
1840 unsigned OverflowReg = 0;
1841 if (CLow == 1) {
1842 BuildMI(BB, IP, PPC32::OR, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg);
1843 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00001844 unsigned TmpRegL = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001845 unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
1846 OverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001847 BuildMI(BB, IP, PPC32::ADDIS, 2, TmpRegL).addReg(PPC32::R0)
1848 .addImm(CLow >> 16);
Misha Brukman422791f2004-06-21 17:41:12 +00001849 BuildMI(BB, IP, PPC32::ORI, 2, Op1RegL).addReg(TmpRegL).addImm(CLow);
1850 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1RegL);
Misha Brukman2fec9902004-06-21 20:22:03 +00001851 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg)
1852 .addReg(Op1RegL);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001853 }
1854
1855 unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
1856 doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
1857
1858 unsigned AHBLplusOverflowReg;
1859 if (OverflowReg) {
1860 AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001861 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001862 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
1863 } else {
1864 AHBLplusOverflowReg = AHBLReg;
1865 }
1866
1867 if (CHi == 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001868 BuildMI(BB, IP, PPC32::OR, 2, DestReg+1).addReg(AHBLplusOverflowReg)
1869 .addReg(AHBLplusOverflowReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001870 } else {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001871 unsigned ALBHReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001872 doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
1873
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001874 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001875 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1876 }
1877 return;
1878 }
1879
1880 // General 64x64 multiply
1881
1882 unsigned Op1Reg = getReg(Op1, &BB, IP);
1883
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001884 // Multiply the two low parts...
1885 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001886
1887 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001888 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001889
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001890 unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001891 BuildMI(BB, IP, PPC32::MULLW, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
1892
1893 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001894 BuildMI(BB, IP, PPC32::ADD, 2, AHBLplusOverflowReg).addReg(AHBLReg)
1895 .addReg(OverflowReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001896
1897 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
1898 BuildMI(BB, IP, PPC32::MULLW, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
1899
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001900 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001901 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1902}
1903
1904
1905/// visitDivRem - Handle division and remainder instructions... these
1906/// instruction both require the same instructions to be generated, they just
1907/// select the result from a different register. Note that both of these
1908/// instructions work differently for signed and unsigned operands.
1909///
1910void ISel::visitDivRem(BinaryOperator &I) {
1911 unsigned ResultReg = getReg(I);
1912 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1913
1914 MachineBasicBlock::iterator IP = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00001915 emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
1916 ResultReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001917}
1918
1919void ISel::emitDivRemOperation(MachineBasicBlock *BB,
1920 MachineBasicBlock::iterator IP,
1921 Value *Op0, Value *Op1, bool isDiv,
1922 unsigned ResultReg) {
1923 const Type *Ty = Op0->getType();
1924 unsigned Class = getClass(Ty);
1925 switch (Class) {
1926 case cFP: // Floating point divide
1927 if (isDiv) {
1928 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
1929 return;
1930 } else { // Floating point remainder...
1931 unsigned Op0Reg = getReg(Op0, BB, IP);
1932 unsigned Op1Reg = getReg(Op1, BB, IP);
1933 MachineInstr *TheCall =
1934 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("fmod", true);
1935 std::vector<ValueRecord> Args;
1936 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
1937 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
1938 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
1939 }
1940 return;
1941 case cLong: {
1942 static const char *FnName[] =
1943 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
1944 unsigned Op0Reg = getReg(Op0, BB, IP);
1945 unsigned Op1Reg = getReg(Op1, BB, IP);
1946 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
1947 MachineInstr *TheCall =
1948 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol(FnName[NameIdx], true);
1949
1950 std::vector<ValueRecord> Args;
1951 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
1952 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
1953 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
1954 return;
1955 }
1956 case cByte: case cShort: case cInt:
1957 break; // Small integrals, handled below...
1958 default: assert(0 && "Unknown class!");
1959 }
1960
1961 // Special case signed division by power of 2.
1962 if (isDiv)
1963 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
1964 assert(Class != cLong && "This doesn't handle 64-bit divides!");
1965 int V = CI->getValue();
1966
1967 if (V == 1) { // X /s 1 => X
1968 unsigned Op0Reg = getReg(Op0, BB, IP);
1969 BuildMI(*BB, IP, PPC32::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
1970 return;
1971 }
1972
1973 if (V == -1) { // X /s -1 => -X
1974 unsigned Op0Reg = getReg(Op0, BB, IP);
1975 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(Op0Reg);
1976 return;
1977 }
1978
1979 bool isNeg = false;
1980 if (V < 0) { // Not a positive power of 2?
1981 V = -V;
1982 isNeg = true; // Maybe it's a negative power of 2.
1983 }
1984 if (unsigned Log = ExactLog2(V)) {
1985 --Log;
1986 unsigned Op0Reg = getReg(Op0, BB, IP);
1987 unsigned TmpReg = makeAnotherReg(Op0->getType());
1988 if (Log != 1)
Misha Brukman2fec9902004-06-21 20:22:03 +00001989 BuildMI(*BB, IP, PPC32::SRAWI,2, TmpReg).addReg(Op0Reg).addImm(Log-1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001990 else
1991 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(Op0Reg).addReg(Op0Reg);
1992
1993 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
Misha Brukman2fec9902004-06-21 20:22:03 +00001994 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg2).addReg(TmpReg).addImm(Log)
1995 .addImm(32-Log).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001996
1997 unsigned TmpReg3 = makeAnotherReg(Op0->getType());
1998 BuildMI(*BB, IP, PPC32::ADD, 2, TmpReg3).addReg(Op0Reg).addReg(TmpReg2);
1999
2000 unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg;
2001 BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg4).addReg(Op0Reg).addImm(Log);
2002
2003 if (isNeg)
2004 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(TmpReg4);
2005 return;
2006 }
2007 }
2008
2009 unsigned Op0Reg = getReg(Op0, BB, IP);
2010 unsigned Op1Reg = getReg(Op1, BB, IP);
2011
2012 if (isDiv) {
Misha Brukman422791f2004-06-21 17:41:12 +00002013 if (Ty->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002014 BuildMI(*BB, IP, PPC32::DIVW, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002015 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002016 BuildMI(*BB, IP,PPC32::DIVWU, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002017 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002018 } else { // Remainder
Misha Brukman422791f2004-06-21 17:41:12 +00002019 unsigned TmpReg1 = makeAnotherReg(Op0->getType());
2020 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2021
2022 if (Ty->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002023 BuildMI(*BB, IP, PPC32::DIVW, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002024 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002025 BuildMI(*BB, IP, PPC32::DIVWU, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002026 }
2027 BuildMI(*BB, IP, PPC32::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
2028 BuildMI(*BB, IP, PPC32::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002029 }
2030}
2031
2032
2033/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2034/// for constant immediate shift values, and for constant immediate
2035/// shift values equal to 1. Even the general case is sort of special,
2036/// because the shift amount has to be in CL, not just any old register.
2037///
2038void ISel::visitShiftInst(ShiftInst &I) {
2039 MachineBasicBlock::iterator IP = BB->end ();
Misha Brukman2fec9902004-06-21 20:22:03 +00002040 emitShiftOperation(BB, IP, I.getOperand (0), I.getOperand (1),
2041 I.getOpcode () == Instruction::Shl, I.getType (),
2042 getReg (I));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002043}
2044
2045/// emitShiftOperation - Common code shared between visitShiftInst and
2046/// constant expression support.
Misha Brukman2fec9902004-06-21 20:22:03 +00002047///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002048void ISel::emitShiftOperation(MachineBasicBlock *MBB,
2049 MachineBasicBlock::iterator IP,
2050 Value *Op, Value *ShiftAmount, bool isLeftShift,
2051 const Type *ResultTy, unsigned DestReg) {
2052 unsigned SrcReg = getReg (Op, MBB, IP);
2053 bool isSigned = ResultTy->isSigned ();
2054 unsigned Class = getClass (ResultTy);
2055
2056 // Longs, as usual, are handled specially...
2057 if (Class == cLong) {
2058 // If we have a constant shift, we can generate much more efficient code
2059 // than otherwise...
2060 //
2061 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2062 unsigned Amount = CUI->getValue();
2063 if (Amount < 32) {
2064 if (isLeftShift) {
Misha Brukman422791f2004-06-21 17:41:12 +00002065 // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002066 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2067 .addImm(Amount).addImm(0).addImm(31-Amount);
2068 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg)
2069 .addImm(Amount).addImm(32-Amount).addImm(31);
2070 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2071 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002072 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002073 // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002074 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2075 .addImm(32-Amount).addImm(Amount).addImm(31);
2076 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1)
2077 .addImm(32-Amount).addImm(0).addImm(Amount-1);
2078 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2079 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002080 }
2081 } else { // Shifting more than 32 bits
2082 Amount -= 32;
2083 if (isLeftShift) {
2084 if (Amount != 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002085 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg)
2086 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002087 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002088 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2089 .addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002090 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002091 BuildMI(*MBB, IP, PPC32::ADDI, 2,DestReg).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002092 } else {
2093 if (Amount != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +00002094 if (isSigned)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00002095 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg+1)
2096 .addImm(Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002097 else
Misha Brukmanfadb82f2004-06-24 22:00:15 +00002098 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1)
2099 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002100 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002101 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1)
2102 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002103 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002104 BuildMI(*MBB, IP,PPC32::ADDI,2,DestReg+1).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002105 }
2106 }
2107 } else {
2108 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
2109 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002110 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
2111 unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
2112 unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
2113 unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
2114 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2115
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002116 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002117 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
2118 .addImm(32);
2119 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg+1)
2120 .addReg(ShiftAmountReg);
2121 BuildMI(*MBB, IP, PPC32::SRW, 2,TmpReg3).addReg(SrcReg).addReg(TmpReg1);
2122 BuildMI(*MBB, IP, PPC32::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
2123 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
2124 .addImm(-32);
2125 BuildMI(*MBB, IP, PPC32::SLW, 2,TmpReg6).addReg(SrcReg).addReg(TmpReg5);
2126 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4)
2127 .addReg(TmpReg6);
2128 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2129 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002130 } else {
2131 if (isSigned) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002132 // FIXME: Unimplemented
Misha Brukman2fec9902004-06-21 20:22:03 +00002133 // Page C-3 of the PowerPC 32bit Programming Environments Manual
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002134 std::cerr << "Unimplemented: signed right shift\n";
2135 abort();
Misha Brukman422791f2004-06-21 17:41:12 +00002136 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002137 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
2138 .addImm(32);
2139 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg)
2140 .addReg(ShiftAmountReg);
2141 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg+1)
2142 .addReg(TmpReg1);
2143 BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2)
2144 .addReg(TmpReg3);
2145 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
2146 .addImm(-32);
2147 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg+1)
2148 .addReg(TmpReg5);
2149 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4)
2150 .addReg(TmpReg6);
2151 BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg+1).addReg(SrcReg+1)
2152 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002153 }
2154 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002155 }
2156 return;
2157 }
2158
2159 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2160 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
2161 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
2162 unsigned Amount = CUI->getValue();
2163
Misha Brukman422791f2004-06-21 17:41:12 +00002164 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002165 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2166 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002167 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002168 if (isSigned) {
2169 BuildMI(*MBB, IP, PPC32::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
2170 } else {
2171 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2172 .addImm(32-Amount).addImm(Amount).addImm(31);
2173 }
Misha Brukman422791f2004-06-21 17:41:12 +00002174 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002175 } else { // The shift amount is non-constant.
2176 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2177
Misha Brukman422791f2004-06-21 17:41:12 +00002178 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002179 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2180 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002181 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002182 BuildMI(*MBB, IP, isSigned ? PPC32::SRAW : PPC32::SRW, 2, DestReg)
2183 .addReg(SrcReg).addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002184 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002185 }
2186}
2187
2188
2189/// visitLoadInst - Implement LLVM load instructions
2190///
2191void ISel::visitLoadInst(LoadInst &I) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002192 static const unsigned Opcodes[] = {
2193 PPC32::LBZ, PPC32::LHZ, PPC32::LWZ, PPC32::LFS
2194 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002195 unsigned Class = getClassB(I.getType());
2196 unsigned Opcode = Opcodes[Class];
2197 if (I.getType() == Type::DoubleTy) Opcode = PPC32::LFD;
2198
2199 unsigned DestReg = getReg(I);
2200
2201 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
Misha Brukman422791f2004-06-21 17:41:12 +00002202 unsigned FI = getFixedSizedAllocaFI(AI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002203 if (Class == cLong) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002204 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg), FI);
2205 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg+1), FI, 4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002206 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002207 addFrameReference(BuildMI(BB, Opcode, 2, DestReg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +00002208 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002209 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002210 unsigned SrcAddrReg = getReg(I.getOperand(0));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002211
2212 if (Class == cLong) {
2213 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2214 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(SrcAddrReg);
2215 } else {
2216 BuildMI(BB, Opcode, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2217 }
2218 }
2219}
2220
2221/// visitStoreInst - Implement LLVM store instructions
2222///
2223void ISel::visitStoreInst(StoreInst &I) {
2224 unsigned ValReg = getReg(I.getOperand(0));
2225 unsigned AddressReg = getReg(I.getOperand(1));
2226
2227 const Type *ValTy = I.getOperand(0)->getType();
2228 unsigned Class = getClassB(ValTy);
2229
2230 if (Class == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00002231 BuildMI(BB, PPC32::STW, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002232 BuildMI(BB, PPC32::STW, 3).addReg(ValReg+1).addImm(4).addReg(AddressReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002233 return;
2234 }
2235
2236 static const unsigned Opcodes[] = {
2237 PPC32::STB, PPC32::STH, PPC32::STW, PPC32::STFS
2238 };
2239 unsigned Opcode = Opcodes[Class];
2240 if (ValTy == Type::DoubleTy) Opcode = PPC32::STFD;
2241 BuildMI(BB, Opcode, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
2242}
2243
2244
2245/// visitCastInst - Here we have various kinds of copying with or without sign
2246/// extension going on.
2247///
2248void ISel::visitCastInst(CastInst &CI) {
2249 Value *Op = CI.getOperand(0);
2250
2251 unsigned SrcClass = getClassB(Op->getType());
2252 unsigned DestClass = getClassB(CI.getType());
2253 // Noop casts are not emitted: getReg will return the source operand as the
2254 // register to use for any uses of the noop cast.
2255 if (DestClass == SrcClass)
2256 return;
2257
2258 // If this is a cast from a 32-bit integer to a Long type, and the only uses
2259 // of the case are GEP instructions, then the cast does not need to be
2260 // generated explicitly, it will be folded into the GEP.
2261 if (DestClass == cLong && SrcClass == cInt) {
2262 bool AllUsesAreGEPs = true;
2263 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
2264 if (!isa<GetElementPtrInst>(*I)) {
2265 AllUsesAreGEPs = false;
2266 break;
2267 }
2268
2269 // No need to codegen this cast if all users are getelementptr instrs...
2270 if (AllUsesAreGEPs) return;
2271 }
2272
2273 unsigned DestReg = getReg(CI);
2274 MachineBasicBlock::iterator MI = BB->end();
2275 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
2276}
2277
2278/// emitCastOperation - Common code shared between visitCastInst and constant
2279/// expression cast support.
2280///
2281void ISel::emitCastOperation(MachineBasicBlock *BB,
2282 MachineBasicBlock::iterator IP,
2283 Value *Src, const Type *DestTy,
2284 unsigned DestReg) {
2285 const Type *SrcTy = Src->getType();
2286 unsigned SrcClass = getClassB(SrcTy);
2287 unsigned DestClass = getClassB(DestTy);
2288 unsigned SrcReg = getReg(Src, BB, IP);
2289
2290 // Implement casts to bool by using compare on the operand followed by set if
2291 // not zero on the result.
2292 if (DestTy == Type::BoolTy) {
2293 switch (SrcClass) {
2294 case cByte:
Misha Brukman422791f2004-06-21 17:41:12 +00002295 case cShort:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002296 case cInt: {
2297 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002298 BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addImm(-1);
2299 BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002300 break;
2301 }
2302 case cLong: {
2303 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2304 unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
2305 BuildMI(*BB, IP, PPC32::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
Misha Brukman422791f2004-06-21 17:41:12 +00002306 BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addImm(-1);
2307 BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002308 break;
2309 }
2310 case cFP:
2311 // FIXME
Misha Brukman422791f2004-06-21 17:41:12 +00002312 // Load -0.0
2313 // Compare
2314 // move to CR1
2315 // Negate -0.0
2316 // Compare
2317 // CROR
2318 // MFCR
2319 // Left-align
2320 // SRA ?
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002321 break;
2322 }
2323 return;
2324 }
2325
2326 // Implement casts between values of the same type class (as determined by
2327 // getClass) by using a register-to-register move.
2328 if (SrcClass == DestClass) {
Misha Brukman422791f2004-06-21 17:41:12 +00002329 if (SrcClass <= cInt) {
2330 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2331 } else if (SrcClass == cFP && SrcTy == DestTy) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002332 BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2333 } else if (SrcClass == cFP) {
2334 if (SrcTy == Type::FloatTy) { // float -> double
2335 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
2336 BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2337 } else { // double -> float
2338 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
2339 "Unknown cFP member!");
Misha Brukman422791f2004-06-21 17:41:12 +00002340 BuildMI(*BB, IP, PPC32::FRSP, 1, DestReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002341 }
2342 } else if (SrcClass == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00002343 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002344 BuildMI(*BB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
2345 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002346 } else {
2347 assert(0 && "Cannot handle this type of cast instruction!");
2348 abort();
2349 }
2350 return;
2351 }
2352
2353 // Handle cast of SMALLER int to LARGER int using a move with sign extension
2354 // or zero extension, depending on whether the source type was signed.
2355 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
2356 SrcClass < DestClass) {
2357 bool isLong = DestClass == cLong;
2358 if (isLong) DestClass = cInt;
2359
2360 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
2361 if (SrcClass < cInt) {
2362 if (isUnsigned) {
Misha Brukman422791f2004-06-21 17:41:12 +00002363 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002364 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2365 .addImm(shift).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002366 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002367 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH,
2368 1, DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002369 }
2370 } else {
2371 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2372 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002373
2374 if (isLong) { // Handle upper 32 bits as appropriate...
2375 if (isUnsigned) // Zero out top bits...
2376 BuildMI(*BB, IP, PPC32::ADDI, 2, DestReg+1).addReg(PPC32::R0).addImm(0);
2377 else // Sign extend bottom half...
2378 BuildMI(*BB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(DestReg).addImm(31);
2379 }
2380 return;
2381 }
2382
2383 // Special case long -> int ...
2384 if (SrcClass == cLong && DestClass == cInt) {
2385 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2386 return;
2387 }
2388
2389 // Handle cast of LARGER int to SMALLER int with a clear or sign extend
2390 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
2391 && SrcClass > DestClass) {
2392 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
Misha Brukman422791f2004-06-21 17:41:12 +00002393 if (isUnsigned) {
2394 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002395 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2396 .addImm(shift).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00002397 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002398 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH, 1,
2399 DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002400 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002401 return;
2402 }
2403
2404 // Handle casts from integer to floating point now...
2405 if (DestClass == cFP) {
2406
Misha Brukman422791f2004-06-21 17:41:12 +00002407 // Emit a library call for long to float conversion
2408 if (SrcClass == cLong) {
2409 std::vector<ValueRecord> Args;
2410 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002411 MachineInstr *TheCall =
2412 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("__floatdidf", true);
Misha Brukman422791f2004-06-21 17:41:12 +00002413 doCall(ValueRecord(DestReg, DestTy), TheCall, Args);
2414 return;
2415 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002416
2417 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman358829f2004-06-21 17:25:55 +00002418 switch (SrcTy->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002419 case Type::BoolTyID:
2420 case Type::SByteTyID:
2421 BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
2422 break;
2423 case Type::UByteTyID:
Misha Brukman2fec9902004-06-21 20:22:03 +00002424 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0)
2425 .addImm(24).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002426 break;
2427 case Type::ShortTyID:
2428 BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
2429 break;
2430 case Type::UShortTyID:
Misha Brukman2fec9902004-06-21 20:22:03 +00002431 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0)
2432 .addImm(16).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002433 break;
Misha Brukman422791f2004-06-21 17:41:12 +00002434 case Type::IntTyID:
2435 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
2436 break;
2437 case Type::UIntTyID:
2438 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
2439 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002440 default: // No promotion needed...
2441 break;
2442 }
2443
2444 SrcReg = TmpReg;
Misha Brukman422791f2004-06-21 17:41:12 +00002445
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002446 // Spill the integer to memory and reload it from there.
Misha Brukman422791f2004-06-21 17:41:12 +00002447 // Also spill room for a special conversion constant
2448 int ConstantFrameIndex =
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002449 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2450 int ValueFrameIdx =
2451 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2452
Misha Brukman422791f2004-06-21 17:41:12 +00002453 unsigned constantHi = makeAnotherReg(Type::IntTy);
2454 unsigned constantLo = makeAnotherReg(Type::IntTy);
2455 unsigned ConstF = makeAnotherReg(Type::DoubleTy);
2456 unsigned TempF = makeAnotherReg(Type::DoubleTy);
2457
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002458 if (!SrcTy->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002459 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0)
2460 .addImm(0x4330);
Misha Brukman422791f2004-06-21 17:41:12 +00002461 BuildMI(*BB, IP, PPC32::ADDI, 2, constantLo).addReg(PPC32::R0).addImm(0);
Misha Brukman2fec9902004-06-21 20:22:03 +00002462 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2463 ConstantFrameIndex);
2464 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2465 ConstantFrameIndex, 4);
2466 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2467 ValueFrameIdx);
2468 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(SrcReg),
2469 ValueFrameIdx, 4);
2470 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2471 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002472 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
2473 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
2474 } else {
2475 unsigned TempLo = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00002476 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0)
2477 .addImm(0x4330);
2478 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantLo).addReg(PPC32::R0)
2479 .addImm(0x8000);
2480 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2481 ConstantFrameIndex);
2482 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2483 ConstantFrameIndex, 4);
2484 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2485 ValueFrameIdx);
Misha Brukman422791f2004-06-21 17:41:12 +00002486 BuildMI(*BB, IP, PPC32::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002487 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(TempLo),
2488 ValueFrameIdx, 4);
2489 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2490 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002491 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
Misha Brukman2fec9902004-06-21 20:22:03 +00002492 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF ).addReg(ConstF);
Misha Brukman422791f2004-06-21 17:41:12 +00002493 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002494 return;
2495 }
2496
2497 // Handle casts from floating point to integer now...
2498 if (SrcClass == cFP) {
2499
Misha Brukman422791f2004-06-21 17:41:12 +00002500 // emit library call
2501 if (DestClass == cLong) {
2502 std::vector<ValueRecord> Args;
2503 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002504 MachineInstr *TheCall =
2505 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("__fixdfdi", true);
Misha Brukman422791f2004-06-21 17:41:12 +00002506 doCall(ValueRecord(DestReg, DestTy), TheCall, Args);
2507 return;
2508 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002509
2510 int ValueFrameIdx =
2511 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2512
Misha Brukman422791f2004-06-21 17:41:12 +00002513 // load into 32 bit value, and then truncate as necessary
2514 // FIXME: This is wrong for unsigned dest types
2515 //if (DestTy->isSigned()) {
2516 unsigned TempReg = makeAnotherReg(Type::DoubleTy);
2517 BuildMI(*BB, IP, PPC32::FCTIWZ, 1, TempReg).addReg(SrcReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002518 addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3)
2519 .addReg(TempReg), ValueFrameIdx);
2520 addFrameReference(BuildMI(*BB, IP, PPC32::LWZ, 2, DestReg),
2521 ValueFrameIdx+4);
Misha Brukman422791f2004-06-21 17:41:12 +00002522 //} else {
2523 //}
2524
2525 // FIXME: Truncate return value
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002526 return;
2527 }
2528
2529 // Anything we haven't handled already, we can't (yet) handle at all.
2530 assert(0 && "Unhandled cast instruction!");
2531 abort();
2532}
2533
2534/// visitVANextInst - Implement the va_next instruction...
2535///
2536void ISel::visitVANextInst(VANextInst &I) {
2537 unsigned VAList = getReg(I.getOperand(0));
2538 unsigned DestReg = getReg(I);
2539
2540 unsigned Size;
Misha Brukman358829f2004-06-21 17:25:55 +00002541 switch (I.getArgType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002542 default:
2543 std::cerr << I;
2544 assert(0 && "Error: bad type for va_next instruction!");
2545 return;
2546 case Type::PointerTyID:
2547 case Type::UIntTyID:
2548 case Type::IntTyID:
2549 Size = 4;
2550 break;
2551 case Type::ULongTyID:
2552 case Type::LongTyID:
2553 case Type::DoubleTyID:
2554 Size = 8;
2555 break;
2556 }
2557
2558 // Increment the VAList pointer...
2559 BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addImm(Size);
2560}
2561
2562void ISel::visitVAArgInst(VAArgInst &I) {
2563 unsigned VAList = getReg(I.getOperand(0));
2564 unsigned DestReg = getReg(I);
2565
Misha Brukman358829f2004-06-21 17:25:55 +00002566 switch (I.getType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002567 default:
2568 std::cerr << I;
2569 assert(0 && "Error: bad type for va_next instruction!");
2570 return;
2571 case Type::PointerTyID:
2572 case Type::UIntTyID:
2573 case Type::IntTyID:
2574 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2575 break;
2576 case Type::ULongTyID:
2577 case Type::LongTyID:
2578 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2579 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(VAList);
2580 break;
2581 case Type::DoubleTyID:
2582 BuildMI(BB, PPC32::LFD, 2, DestReg).addImm(0).addReg(VAList);
2583 break;
2584 }
2585}
2586
2587/// visitGetElementPtrInst - instruction-select GEP instructions
2588///
2589void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
2590 unsigned outputReg = getReg(I);
Misha Brukman2fec9902004-06-21 20:22:03 +00002591 emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(),
2592 outputReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002593}
2594
2595void ISel::emitGEPOperation(MachineBasicBlock *MBB,
2596 MachineBasicBlock::iterator IP,
2597 Value *Src, User::op_iterator IdxBegin,
2598 User::op_iterator IdxEnd, unsigned TargetReg) {
2599 const TargetData &TD = TM.getTargetData();
2600 if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src))
2601 Src = CPR->getValue();
2602
2603 std::vector<Value*> GEPOps;
2604 GEPOps.resize(IdxEnd-IdxBegin+1);
2605 GEPOps[0] = Src;
2606 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
2607
2608 std::vector<const Type*> GEPTypes;
2609 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
2610 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
2611
2612 // Keep emitting instructions until we consume the entire GEP instruction.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002613 while (!GEPOps.empty()) {
2614 if (GEPTypes.empty()) {
2615 // Load the base pointer into a register.
2616 unsigned Reg = getReg(Src, MBB, IP);
2617 BuildMI(*MBB, IP, PPC32::OR, 2, TargetReg).addReg(Reg).addReg(Reg);
2618 break; // we are now done
2619 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002620 // It's an array or pointer access: [ArraySize x ElementType].
2621 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
2622 Value *idx = GEPOps.back();
2623 GEPOps.pop_back(); // Consume a GEP operand
2624 GEPTypes.pop_back();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002625
Misha Brukman2fec9902004-06-21 20:22:03 +00002626 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002627 // operand. Handle this case directly now...
Misha Brukman2fec9902004-06-21 20:22:03 +00002628 if (CastInst *CI = dyn_cast<CastInst>(idx))
2629 if (CI->getOperand(0)->getType() == Type::IntTy ||
2630 CI->getOperand(0)->getType() == Type::UIntTy)
2631 idx = CI->getOperand(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002632
Misha Brukman2fec9902004-06-21 20:22:03 +00002633 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
2634 // must find the size of the pointed-to type (Not coincidentally, the next
2635 // type is the type of the elements in the array).
2636 const Type *ElTy = SqTy->getElementType();
2637 unsigned elementSize = TD.getTypeSize(ElTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002638
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002639 if (idx == Constant::getNullValue(idx->getType())) {
2640 // GEP with idx 0 is a no-op
2641 } else if (elementSize == 1) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002642 // If the element size is 1, we don't have to multiply, just add
2643 unsigned idxReg = getReg(idx, MBB, IP);
2644 unsigned Reg = makeAnotherReg(Type::UIntTy);
2645 BuildMI(*MBB, IP, PPC32::ADD, 2,TargetReg).addReg(Reg).addReg(idxReg);
2646 --IP; // Insert the next instruction before this one.
2647 TargetReg = Reg; // Codegen the rest of the GEP into this
2648 } else {
2649 unsigned idxReg = getReg(idx, MBB, IP);
2650 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002651
Misha Brukman2fec9902004-06-21 20:22:03 +00002652 // Make sure we can back the iterator up to point to the first
2653 // instruction emitted.
2654 MachineBasicBlock::iterator BeforeIt = IP;
2655 if (IP == MBB->begin())
2656 BeforeIt = MBB->end();
2657 else
2658 --BeforeIt;
2659 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002660
Misha Brukman2fec9902004-06-21 20:22:03 +00002661 // Emit an ADD to add OffsetReg to the basePtr.
2662 unsigned Reg = makeAnotherReg(Type::UIntTy);
2663 BuildMI(*MBB, IP, PPC32::ADD, 2, TargetReg).addReg(Reg).addReg(OffsetReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002664
Misha Brukman2fec9902004-06-21 20:22:03 +00002665 // Step to the first instruction of the multiply.
2666 if (BeforeIt == MBB->end())
2667 IP = MBB->begin();
2668 else
2669 IP = ++BeforeIt;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002670
Misha Brukman2fec9902004-06-21 20:22:03 +00002671 TargetReg = Reg; // Codegen the rest of the GEP into this
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002672 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002673 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002674}
2675
2676/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2677/// frame manager, otherwise do it the hard way.
2678///
2679void ISel::visitAllocaInst(AllocaInst &I) {
2680 // If this is a fixed size alloca in the entry block for the function, we
2681 // statically stack allocate the space, so we don't need to do anything here.
2682 //
2683 if (dyn_castFixedAlloca(&I)) return;
2684
2685 // Find the data size of the alloca inst's getAllocatedType.
2686 const Type *Ty = I.getAllocatedType();
2687 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2688
2689 // Create a register to hold the temporary result of multiplying the type size
2690 // constant by the variable amount.
2691 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2692 unsigned SrcReg1 = getReg(I.getArraySize());
2693
2694 // TotalSizeReg = mul <numelements>, <TypeSize>
2695 MachineBasicBlock::iterator MBBI = BB->end();
2696 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
2697
2698 // AddedSize = add <TotalSizeReg>, 15
2699 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2700 BuildMI(BB, PPC32::ADD, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
2701
2702 // AlignedSize = and <AddedSize>, ~15
2703 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00002704 BuildMI(BB, PPC32::RLWNM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
2705 .addImm(0).addImm(27);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002706
2707 // Subtract size from stack pointer, thereby allocating some space.
2708 BuildMI(BB, PPC32::SUB, 2, PPC32::R1).addReg(PPC32::R1).addReg(AlignedSize);
2709
2710 // Put a pointer to the space into the result register, by copying
2711 // the stack pointer.
2712 BuildMI(BB, PPC32::OR, 2, getReg(I)).addReg(PPC32::R1).addReg(PPC32::R1);
2713
2714 // Inform the Frame Information that we have just allocated a variable-sized
2715 // object.
2716 F->getFrameInfo()->CreateVariableSizedObject();
2717}
2718
2719/// visitMallocInst - Malloc instructions are code generated into direct calls
2720/// to the library malloc.
2721///
2722void ISel::visitMallocInst(MallocInst &I) {
2723 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2724 unsigned Arg;
2725
2726 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2727 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2728 } else {
2729 Arg = makeAnotherReg(Type::UIntTy);
2730 unsigned Op0Reg = getReg(I.getOperand(0));
2731 MachineBasicBlock::iterator MBBI = BB->end();
2732 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
2733 }
2734
2735 std::vector<ValueRecord> Args;
2736 Args.push_back(ValueRecord(Arg, Type::UIntTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002737 MachineInstr *TheCall =
2738 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("malloc", true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002739 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
2740}
2741
2742
2743/// visitFreeInst - Free instructions are code gen'd to call the free libc
2744/// function.
2745///
2746void ISel::visitFreeInst(FreeInst &I) {
2747 std::vector<ValueRecord> Args;
2748 Args.push_back(ValueRecord(I.getOperand(0)));
Misha Brukman2fec9902004-06-21 20:22:03 +00002749 MachineInstr *TheCall =
2750 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("free", true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002751 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
2752}
2753
2754/// createPPC32SimpleInstructionSelector - This pass converts an LLVM function
2755/// into a machine code representation is a very simple peep-hole fashion. The
2756/// generated code sucks but the implementation is nice and simple.
2757///
2758FunctionPass *llvm::createPPCSimpleInstructionSelector(TargetMachine &TM) {
2759 return new ISel(TM);
2760}