blob: 89842a4e9f11e506d87929f0eda637beba65746b [file] [log] [blame]
Misha Brukman91b5ca82004-07-26 18:45:48 +00001//===-- X86ISelSimple.cpp - A simple instruction selector for x86 ---------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3e130a22003-01-13 00:32:26 +000010// This file defines a simple peephole instruction selector for the x86 target
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
14#include "X86.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +000015#include "X86InstrBuilder.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000016#include "X86InstrInfo.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
Chris Lattner72614082002-10-25 22:55:53 +000019#include "llvm/Function.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000020#include "llvm/Instructions.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000021#include "llvm/Pass.h"
Chris Lattner30483732004-06-20 07:49:54 +000022#include "llvm/CodeGen/IntrinsicLowering.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000023#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
Chris Lattner341a9372002-10-29 17:43:55 +000025#include "llvm/CodeGen/MachineFunction.h"
Chris Lattner94af4142002-12-25 05:13:53 +000026#include "llvm/CodeGen/SSARegMap.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000027#include "llvm/Target/MRegisterInfo.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000028#include "llvm/Target/TargetMachine.h"
Chris Lattner3f1e8e72004-02-22 07:04:00 +000029#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000030#include "llvm/Support/InstVisitor.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000031#include "llvm/ADT/Statistic.h"
Chris Lattner44827152003-12-28 09:47:19 +000032using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000033
Chris Lattner986618e2004-02-22 19:47:26 +000034namespace {
35 Statistic<>
36 NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added");
Chris Lattner427aeb42004-04-11 19:21:59 +000037
38 /// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
39 /// Representation.
40 ///
41 enum TypeClass {
42 cByte, cShort, cInt, cFP, cLong
43 };
44}
45
46/// getClass - Turn a primitive type into a "class" number which is based on the
47/// size of the type, and whether or not it is floating point.
48///
49static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerf70c22b2004-06-17 18:19:28 +000050 switch (Ty->getTypeID()) {
Chris Lattner427aeb42004-04-11 19:21:59 +000051 case Type::SByteTyID:
52 case Type::UByteTyID: return cByte; // Byte operands are class #0
53 case Type::ShortTyID:
54 case Type::UShortTyID: return cShort; // Short operands are class #1
55 case Type::IntTyID:
56 case Type::UIntTyID:
57 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
58
59 case Type::FloatTyID:
60 case Type::DoubleTyID: return cFP; // Floating Point is #3
61
62 case Type::LongTyID:
63 case Type::ULongTyID: return cLong; // Longs are class #4
64 default:
65 assert(0 && "Invalid type to getClass!");
66 return cByte; // not reached
67 }
68}
69
70// getClassB - Just like getClass, but treat boolean values as bytes.
71static inline TypeClass getClassB(const Type *Ty) {
72 if (Ty == Type::BoolTy) return cByte;
73 return getClass(Ty);
Chris Lattner986618e2004-02-22 19:47:26 +000074}
Chris Lattnercf93cdd2004-01-30 22:13:44 +000075
Chris Lattner72614082002-10-25 22:55:53 +000076namespace {
Misha Brukmaneae1bf12004-09-21 18:21:21 +000077 struct X86ISel : public FunctionPass, InstVisitor<X86ISel> {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000078 TargetMachine &TM;
Chris Lattnereca195e2003-05-08 19:44:13 +000079 MachineFunction *F; // The function we are compiling into
80 MachineBasicBlock *BB; // The current MBB we are compiling
81 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Chris Lattner0e5b79c2004-02-15 01:04:03 +000082 int ReturnAddressIndex; // FrameIndex for the return address
Chris Lattner72614082002-10-25 22:55:53 +000083
Chris Lattner72614082002-10-25 22:55:53 +000084 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
85
Chris Lattner333b2fa2002-12-13 10:09:43 +000086 // MBBMap - Mapping between LLVM BB -> Machine BB
87 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
88
Chris Lattnercb2fd552004-05-13 07:40:27 +000089 // AllocaMap - Mapping from fixed sized alloca instructions to the
90 // FrameIndex for the alloca.
91 std::map<AllocaInst*, unsigned> AllocaMap;
92
Misha Brukmaneae1bf12004-09-21 18:21:21 +000093 X86ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
Chris Lattner72614082002-10-25 22:55:53 +000094
95 /// runOnFunction - Top level implementation of instruction selection for
96 /// the entire function.
97 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000098 bool runOnFunction(Function &Fn) {
Chris Lattner44827152003-12-28 09:47:19 +000099 // First pass over the function, lower any unknown intrinsic functions
100 // with the IntrinsicLowering class.
101 LowerUnknownIntrinsicFunctionCalls(Fn);
102
Chris Lattner36b36032002-10-29 23:40:58 +0000103 F = &MachineFunction::construct(&Fn, TM);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000104
Chris Lattner065faeb2002-12-28 20:24:02 +0000105 // Create all of the machine basic blocks for the function...
Chris Lattner333b2fa2002-12-13 10:09:43 +0000106 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
107 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
108
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000109 BB = &F->front();
Chris Lattnerdbd73722003-05-06 21:32:22 +0000110
Chris Lattner0e5b79c2004-02-15 01:04:03 +0000111 // Set up a frame object for the return address. This is used by the
112 // llvm.returnaddress & llvm.frameaddress intrinisics.
113 ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
114
Chris Lattnerdbd73722003-05-06 21:32:22 +0000115 // Copy incoming arguments off of the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000116 LoadArgumentsToVirtualRegs(Fn);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000117
Chris Lattner333b2fa2002-12-13 10:09:43 +0000118 // Instruction select everything except PHI nodes
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000119 visit(Fn);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000120
121 // Select the PHI nodes
122 SelectPHINodes();
123
Chris Lattner986618e2004-02-22 19:47:26 +0000124 // Insert the FP_REG_KILL instructions into blocks that need them.
125 InsertFPRegKills();
126
Chris Lattner72614082002-10-25 22:55:53 +0000127 RegMap.clear();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000128 MBBMap.clear();
Chris Lattnercb2fd552004-05-13 07:40:27 +0000129 AllocaMap.clear();
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000130 F = 0;
Chris Lattner2a865b02003-07-26 23:05:37 +0000131 // We always build a machine code representation for the function
132 return true;
Chris Lattner72614082002-10-25 22:55:53 +0000133 }
134
Chris Lattnerf0eb7be2002-12-15 21:13:40 +0000135 virtual const char *getPassName() const {
136 return "X86 Simple Instruction Selection";
137 }
138
Chris Lattner72614082002-10-25 22:55:53 +0000139 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +0000140 /// block. This simply creates a new MachineBasicBlock to emit code into
141 /// and adds it to the current MachineFunction. Subsequent visit* for
142 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +0000143 ///
144 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000145 BB = MBBMap[&LLVM_BB];
Chris Lattner72614082002-10-25 22:55:53 +0000146 }
147
Chris Lattner44827152003-12-28 09:47:19 +0000148 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
149 /// function, lowering any calls to unknown intrinsic functions into the
150 /// equivalent LLVM code.
Misha Brukman538607f2004-03-01 23:53:11 +0000151 ///
Chris Lattner44827152003-12-28 09:47:19 +0000152 void LowerUnknownIntrinsicFunctionCalls(Function &F);
153
Chris Lattner065faeb2002-12-28 20:24:02 +0000154 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
155 /// from the stack into virtual registers.
156 ///
157 void LoadArgumentsToVirtualRegs(Function &F);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000158
159 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
160 /// because we have to generate our sources into the source basic blocks,
161 /// not the current one.
162 ///
163 void SelectPHINodes();
164
Chris Lattner986618e2004-02-22 19:47:26 +0000165 /// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks
166 /// that need them. This only occurs due to the floating point stackifier
167 /// not being aggressive enough to handle arbitrary global stackification.
168 ///
169 void InsertFPRegKills();
170
Chris Lattner72614082002-10-25 22:55:53 +0000171 // Visitation methods for various instructions. These methods simply emit
172 // fixed X86 code for each instruction.
173 //
Brian Gaekefa8d5712002-11-22 11:07:01 +0000174
175 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +0000176 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +0000177 void visitBranchInst(BranchInst &BI);
Chris Lattner30483b02004-10-16 18:13:05 +0000178 void visitUnreachableInst(UnreachableInst &UI) {}
Chris Lattner3e130a22003-01-13 00:32:26 +0000179
180 struct ValueRecord {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000181 Value *Val;
Chris Lattner3e130a22003-01-13 00:32:26 +0000182 unsigned Reg;
183 const Type *Ty;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000184 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
185 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
Chris Lattner3e130a22003-01-13 00:32:26 +0000186 };
187 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000188 const std::vector<ValueRecord> &Args);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000189 void visitCallInst(CallInst &I);
Brian Gaeked0fde302003-11-11 22:41:34 +0000190 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000191
192 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +0000193 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +0000194 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
195 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattnerca9671d2002-11-02 20:28:58 +0000196 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +0000197
Chris Lattnerf01729e2002-11-02 20:54:46 +0000198 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
199 void visitRem(BinaryOperator &B) { visitDivRem(B); }
200 void visitDivRem(BinaryOperator &B);
201
Chris Lattnere2954c82002-11-02 20:04:26 +0000202 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +0000203 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
204 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
205 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +0000206
Chris Lattner6d40c192003-01-16 16:43:00 +0000207 // Comparison operators...
208 void visitSetCondInst(SetCondInst &I);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000209 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
210 MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000211 MachineBasicBlock::iterator MBBI);
Chris Lattner12d96a02004-03-30 21:22:00 +0000212 void visitSelectInst(SelectInst &SI);
213
Chris Lattnerb2acc512003-10-19 21:09:10 +0000214
Chris Lattner6fc3c522002-11-17 21:11:55 +0000215 // Memory Instructions
216 void visitLoadInst(LoadInst &I);
217 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000218 void visitGetElementPtrInst(GetElementPtrInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000219 void visitAllocaInst(AllocaInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000220 void visitMallocInst(MallocInst &I);
221 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000222
Chris Lattnere2954c82002-11-02 20:04:26 +0000223 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000224 void visitShiftInst(ShiftInst &I);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000225 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
Brian Gaekefa8d5712002-11-22 11:07:01 +0000226 void visitCastInst(CastInst &I);
Chris Lattner73815062003-10-18 05:56:40 +0000227 void visitVANextInst(VANextInst &I);
228 void visitVAArgInst(VAArgInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000229
230 void visitInstruction(Instruction &I) {
231 std::cerr << "Cannot instruction select: " << I;
232 abort();
233 }
234
Brian Gaeke95780cc2002-12-13 07:56:18 +0000235 /// promote32 - Make a value 32-bits wide, and put it somewhere.
Chris Lattner3e130a22003-01-13 00:32:26 +0000236 ///
237 void promote32(unsigned targetReg, const ValueRecord &VR);
238
Chris Lattner721d2d42004-03-08 01:18:36 +0000239 /// getAddressingMode - Get the addressing mode to use to address the
240 /// specified value. The returned value should be used with addFullAddress.
Reid Spencerfc989e12004-08-30 00:13:26 +0000241 void getAddressingMode(Value *Addr, X86AddressMode &AM);
Chris Lattner721d2d42004-03-08 01:18:36 +0000242
243
244 /// getGEPIndex - This is used to fold GEP instructions into X86 addressing
245 /// expressions.
Chris Lattnerb6bac512004-02-25 06:13:04 +0000246 void getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
247 std::vector<Value*> &GEPOps,
Reid Spencerfc989e12004-08-30 00:13:26 +0000248 std::vector<const Type*> &GEPTypes,
249 X86AddressMode &AM);
Chris Lattnerb6bac512004-02-25 06:13:04 +0000250
251 /// isGEPFoldable - Return true if the specified GEP can be completely
252 /// folded into the addressing mode of a load/store or lea instruction.
253 bool isGEPFoldable(MachineBasicBlock *MBB,
254 Value *Src, User::op_iterator IdxBegin,
Reid Spencerfc989e12004-08-30 00:13:26 +0000255 User::op_iterator IdxEnd, X86AddressMode &AM);
Chris Lattnerb6bac512004-02-25 06:13:04 +0000256
Chris Lattner3e130a22003-01-13 00:32:26 +0000257 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
258 /// constant expression GEP support.
259 ///
Chris Lattner827832c2004-02-22 17:05:38 +0000260 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000261 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000262 User::op_iterator IdxEnd, unsigned TargetReg);
263
Chris Lattner548f61d2003-04-23 17:22:12 +0000264 /// emitCastOperation - Common code shared between visitCastInst and
265 /// constant expression cast support.
Misha Brukman538607f2004-03-01 23:53:11 +0000266 ///
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000267 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
Chris Lattner548f61d2003-04-23 17:22:12 +0000268 Value *Src, const Type *DestTy, unsigned TargetReg);
269
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000270 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
271 /// and constant expression support.
Misha Brukman538607f2004-03-01 23:53:11 +0000272 ///
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000273 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000274 MachineBasicBlock::iterator IP,
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000275 Value *Op0, Value *Op1,
276 unsigned OperatorClass, unsigned TargetReg);
277
Chris Lattner6621ed92004-04-11 21:23:56 +0000278 /// emitBinaryFPOperation - This method handles emission of floating point
279 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
280 void emitBinaryFPOperation(MachineBasicBlock *BB,
281 MachineBasicBlock::iterator IP,
282 Value *Op0, Value *Op1,
283 unsigned OperatorClass, unsigned TargetReg);
284
Chris Lattner462fa822004-04-11 20:56:28 +0000285 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
286 Value *Op0, Value *Op1, unsigned TargetReg);
287
288 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
289 unsigned DestReg, const Type *DestTy,
290 unsigned Op0Reg, unsigned Op1Reg);
291 void doMultiplyConst(MachineBasicBlock *MBB,
292 MachineBasicBlock::iterator MBBI,
293 unsigned DestReg, const Type *DestTy,
294 unsigned Op0Reg, unsigned Op1Val);
295
Chris Lattnercadff442003-10-23 17:21:43 +0000296 void emitDivRemOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000297 MachineBasicBlock::iterator IP,
Chris Lattner462fa822004-04-11 20:56:28 +0000298 Value *Op0, Value *Op1, bool isDiv,
299 unsigned TargetReg);
Chris Lattnercadff442003-10-23 17:21:43 +0000300
Chris Lattner58c41fe2003-08-24 19:19:47 +0000301 /// emitSetCCOperation - Common code shared between visitSetCondInst and
302 /// constant expression support.
Misha Brukman538607f2004-03-01 23:53:11 +0000303 ///
Chris Lattner58c41fe2003-08-24 19:19:47 +0000304 void emitSetCCOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000305 MachineBasicBlock::iterator IP,
Chris Lattner58c41fe2003-08-24 19:19:47 +0000306 Value *Op0, Value *Op1, unsigned Opcode,
307 unsigned TargetReg);
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000308
309 /// emitShiftOperation - Common code shared between visitShiftInst and
310 /// constant expression support.
Misha Brukman538607f2004-03-01 23:53:11 +0000311 ///
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000312 void emitShiftOperation(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000313 MachineBasicBlock::iterator IP,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000314 Value *Op, Value *ShiftAmount, bool isLeftShift,
315 const Type *ResultTy, unsigned DestReg);
Chris Lattnerce7cafa2004-11-13 20:48:57 +0000316
317 // Emit code for a 'SHLD DestReg, Op0, Op1, Amt' operation, where Amt is a
318 // constant.
319 void doSHLDConst(MachineBasicBlock *MBB,
320 MachineBasicBlock::iterator MBBI,
321 unsigned DestReg, unsigned Op0Reg, unsigned Op1Reg,
322 unsigned Op1Val);
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000323
Chris Lattner12d96a02004-03-30 21:22:00 +0000324 /// emitSelectOperation - Common code shared between visitSelectInst and the
325 /// constant expression support.
326 void emitSelectOperation(MachineBasicBlock *MBB,
327 MachineBasicBlock::iterator IP,
328 Value *Cond, Value *TrueVal, Value *FalseVal,
329 unsigned DestReg);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000330
Chris Lattnerc5291f52002-10-27 21:16:59 +0000331 /// copyConstantToRegister - Output the instructions required to put the
332 /// specified constant into the specified register.
333 ///
Chris Lattner8a307e82002-12-16 19:32:50 +0000334 void copyConstantToRegister(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000335 MachineBasicBlock::iterator MBBI,
Chris Lattner8a307e82002-12-16 19:32:50 +0000336 Constant *C, unsigned Reg);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000337
Chris Lattner01cdb1b2004-06-11 05:33:49 +0000338 void emitUCOMr(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
339 unsigned LHS, unsigned RHS);
340
Chris Lattner3e130a22003-01-13 00:32:26 +0000341 /// makeAnotherReg - This method returns the next register number we haven't
342 /// yet used.
343 ///
344 /// Long values are handled somewhat specially. They are always allocated
345 /// as pairs of 32 bit integer values. The register number returned is the
346 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
347 /// of the long value.
348 ///
Chris Lattnerc0812d82002-12-13 06:56:29 +0000349 unsigned makeAnotherReg(const Type *Ty) {
Chris Lattner7db1fa92003-07-30 05:33:48 +0000350 assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
351 "Current target doesn't have X86 reg info??");
352 const X86RegisterInfo *MRI =
353 static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
Chris Lattner3e130a22003-01-13 00:32:26 +0000354 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000355 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
356 // Create the lower part
357 F->getSSARegMap()->createVirtualRegister(RC);
358 // Create the upper part.
359 return F->getSSARegMap()->createVirtualRegister(RC)-1;
Chris Lattner3e130a22003-01-13 00:32:26 +0000360 }
361
Chris Lattnerc0812d82002-12-13 06:56:29 +0000362 // Add the mapping of regnumber => reg class to MachineFunction
Chris Lattner7db1fa92003-07-30 05:33:48 +0000363 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
Chris Lattner3e130a22003-01-13 00:32:26 +0000364 return F->getSSARegMap()->createVirtualRegister(RC);
Brian Gaeke20244b72002-12-12 15:33:40 +0000365 }
366
Chris Lattnercb2fd552004-05-13 07:40:27 +0000367 /// getReg - This method turns an LLVM value into a register number.
Chris Lattner72614082002-10-25 22:55:53 +0000368 ///
369 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000370 unsigned getReg(Value *V) {
371 // Just append to the end of the current bb.
372 MachineBasicBlock::iterator It = BB->end();
373 return getReg(V, BB, It);
374 }
Brian Gaeke71794c02002-12-13 11:22:48 +0000375 unsigned getReg(Value *V, MachineBasicBlock *MBB,
Chris Lattnercb2fd552004-05-13 07:40:27 +0000376 MachineBasicBlock::iterator IPt);
Chris Lattner427aeb42004-04-11 19:21:59 +0000377
Chris Lattnercb2fd552004-05-13 07:40:27 +0000378 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
379 /// that is to be statically allocated with the initial stack frame
380 /// adjustment.
381 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
Chris Lattner72614082002-10-25 22:55:53 +0000382 };
383}
384
Chris Lattnercb2fd552004-05-13 07:40:27 +0000385/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
386/// instruction in the entry block, return it. Otherwise, return a null
387/// pointer.
388static AllocaInst *dyn_castFixedAlloca(Value *V) {
389 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
390 BasicBlock *BB = AI->getParent();
391 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
392 return AI;
393 }
394 return 0;
395}
396
397/// getReg - This method turns an LLVM value into a register number.
398///
Misha Brukmaneae1bf12004-09-21 18:21:21 +0000399unsigned X86ISel::getReg(Value *V, MachineBasicBlock *MBB,
400 MachineBasicBlock::iterator IPt) {
Chris Lattnercb2fd552004-05-13 07:40:27 +0000401 // If this operand is a constant, emit the code to copy the constant into
402 // the register here...
Chris Lattnercb2fd552004-05-13 07:40:27 +0000403 if (Constant *C = dyn_cast<Constant>(V)) {
404 unsigned Reg = makeAnotherReg(V->getType());
405 copyConstantToRegister(MBB, IPt, C, Reg);
406 return Reg;
Chris Lattnercb2fd552004-05-13 07:40:27 +0000407 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
Chris Lattner8b486a12004-06-29 00:14:38 +0000408 // Do not emit noop casts at all, unless it's a double -> float cast.
409 if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()) &&
410 (CI->getType() != Type::FloatTy ||
411 CI->getOperand(0)->getType() != Type::DoubleTy))
Chris Lattnercb2fd552004-05-13 07:40:27 +0000412 return getReg(CI->getOperand(0), MBB, IPt);
413 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
414 // If the alloca address couldn't be folded into the instruction addressing,
415 // emit an explicit LEA as appropriate.
416 unsigned Reg = makeAnotherReg(V->getType());
417 unsigned FI = getFixedSizedAllocaFI(AI);
418 addFrameReference(BuildMI(*MBB, IPt, X86::LEA32r, 4, Reg), FI);
419 return Reg;
420 }
421
422 unsigned &Reg = RegMap[V];
423 if (Reg == 0) {
424 Reg = makeAnotherReg(V->getType());
425 RegMap[V] = Reg;
426 }
427
428 return Reg;
429}
430
431/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
432/// that is to be statically allocated with the initial stack frame
433/// adjustment.
Misha Brukmaneae1bf12004-09-21 18:21:21 +0000434unsigned X86ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
Chris Lattnercb2fd552004-05-13 07:40:27 +0000435 // Already computed this?
436 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
437 if (I != AllocaMap.end() && I->first == AI) return I->second;
438
439 const Type *Ty = AI->getAllocatedType();
440 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
441 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
442 TySize *= CUI->getValue(); // Get total allocated size...
443 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
444
445 // Create a new stack object using the frame manager...
446 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
447 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
448 return FrameIdx;
449}
450
451
Chris Lattnerc5291f52002-10-27 21:16:59 +0000452/// copyConstantToRegister - Output the instructions required to put the
453/// specified constant into the specified register.
454///
Misha Brukmaneae1bf12004-09-21 18:21:21 +0000455void X86ISel::copyConstantToRegister(MachineBasicBlock *MBB,
456 MachineBasicBlock::iterator IP,
457 Constant *C, unsigned R) {
Chris Lattner30483b02004-10-16 18:13:05 +0000458 if (isa<UndefValue>(C)) {
459 switch (getClassB(C->getType())) {
460 case cFP:
461 // FIXME: SHOULD TEACH STACKIFIER ABOUT UNDEF VALUES!
462 BuildMI(*MBB, IP, X86::FLD0, 0, R);
463 return;
464 case cLong:
465 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, R+1);
466 // FALL THROUGH
467 default:
468 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, R);
469 return;
470 }
471 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000472 unsigned Class = 0;
473 switch (CE->getOpcode()) {
474 case Instruction::GetElementPtr:
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000475 emitGEPOperation(MBB, IP, CE->getOperand(0),
Chris Lattner333b2fa2002-12-13 10:09:43 +0000476 CE->op_begin()+1, CE->op_end(), R);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000477 return;
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000478 case Instruction::Cast:
Chris Lattner548f61d2003-04-23 17:22:12 +0000479 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
Chris Lattner4b12cde2003-04-21 21:33:44 +0000480 return;
Chris Lattnerc0812d82002-12-13 06:56:29 +0000481
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000482 case Instruction::Xor: ++Class; // FALL THROUGH
483 case Instruction::Or: ++Class; // FALL THROUGH
484 case Instruction::And: ++Class; // FALL THROUGH
485 case Instruction::Sub: ++Class; // FALL THROUGH
486 case Instruction::Add:
487 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
488 Class, R);
489 return;
490
Chris Lattner462fa822004-04-11 20:56:28 +0000491 case Instruction::Mul:
492 emitMultiply(MBB, IP, CE->getOperand(0), CE->getOperand(1), R);
Chris Lattnercadff442003-10-23 17:21:43 +0000493 return;
Chris Lattner462fa822004-04-11 20:56:28 +0000494
Chris Lattnercadff442003-10-23 17:21:43 +0000495 case Instruction::Div:
Chris Lattner462fa822004-04-11 20:56:28 +0000496 case Instruction::Rem:
497 emitDivRemOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
498 CE->getOpcode() == Instruction::Div, R);
Chris Lattnercadff442003-10-23 17:21:43 +0000499 return;
Chris Lattnercadff442003-10-23 17:21:43 +0000500
Chris Lattner58c41fe2003-08-24 19:19:47 +0000501 case Instruction::SetNE:
502 case Instruction::SetEQ:
503 case Instruction::SetLT:
504 case Instruction::SetGT:
505 case Instruction::SetLE:
506 case Instruction::SetGE:
507 emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
508 CE->getOpcode(), R);
509 return;
510
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000511 case Instruction::Shl:
512 case Instruction::Shr:
513 emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000514 CE->getOpcode() == Instruction::Shl, CE->getType(), R);
515 return;
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000516
Chris Lattner12d96a02004-03-30 21:22:00 +0000517 case Instruction::Select:
518 emitSelectOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
519 CE->getOperand(2), R);
520 return;
521
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000522 default:
Chris Lattner76e2df22004-07-15 02:14:30 +0000523 std::cerr << "Offending expr: " << *C << "\n";
Chris Lattnerb2acc512003-10-19 21:09:10 +0000524 assert(0 && "Constant expression not yet handled!\n");
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000525 }
Brian Gaeke20244b72002-12-12 15:33:40 +0000526 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000527
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000528 if (C->getType()->isIntegral()) {
Chris Lattner6b993cc2002-12-15 08:02:15 +0000529 unsigned Class = getClassB(C->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +0000530
531 if (Class == cLong) {
532 // Copy the value into the register pair.
Chris Lattnerc07736a2003-07-23 15:22:26 +0000533 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000534 BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(Val & 0xFFFFFFFF);
535 BuildMI(*MBB, IP, X86::MOV32ri, 1, R+1).addImm(Val >> 32);
Chris Lattner3e130a22003-01-13 00:32:26 +0000536 return;
537 }
538
Chris Lattner94af4142002-12-25 05:13:53 +0000539 assert(Class <= cInt && "Type not handled yet!");
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000540
541 static const unsigned IntegralOpcodeTab[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000542 X86::MOV8ri, X86::MOV16ri, X86::MOV32ri
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000543 };
544
Chris Lattner6b993cc2002-12-15 08:02:15 +0000545 if (C->getType() == Type::BoolTy) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000546 BuildMI(*MBB, IP, X86::MOV8ri, 1, R).addImm(C == ConstantBool::True);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000547 } else {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000548 ConstantInt *CI = cast<ConstantInt>(C);
Chris Lattneree352852004-02-29 07:22:16 +0000549 BuildMI(*MBB, IP, IntegralOpcodeTab[Class],1,R).addImm(CI->getRawValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000550 }
Chris Lattner94af4142002-12-25 05:13:53 +0000551 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Chris Lattneraf703622004-02-02 18:56:30 +0000552 if (CFP->isExactlyValue(+0.0))
Chris Lattneree352852004-02-29 07:22:16 +0000553 BuildMI(*MBB, IP, X86::FLD0, 0, R);
Chris Lattneraf703622004-02-02 18:56:30 +0000554 else if (CFP->isExactlyValue(+1.0))
Chris Lattneree352852004-02-29 07:22:16 +0000555 BuildMI(*MBB, IP, X86::FLD1, 0, R);
Chris Lattner94af4142002-12-25 05:13:53 +0000556 else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000557 // Otherwise we need to spill the constant to memory...
558 MachineConstantPool *CP = F->getConstantPool();
559 unsigned CPI = CP->getConstantPoolIndex(CFP);
Chris Lattner6c09db22003-10-20 04:11:23 +0000560 const Type *Ty = CFP->getType();
561
562 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000563 unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLD32m : X86::FLD64m;
Chris Lattneree352852004-02-29 07:22:16 +0000564 addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 4, R), CPI);
Chris Lattner94af4142002-12-25 05:13:53 +0000565 }
566
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000567 } else if (isa<ConstantPointerNull>(C)) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000568 // Copy zero (null pointer) to the register.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000569 BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(0);
Reid Spencer8863f182004-07-18 00:38:32 +0000570 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
571 BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addGlobalAddress(GV);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000572 } else {
Chris Lattner76e2df22004-07-15 02:14:30 +0000573 std::cerr << "Offending constant: " << *C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000574 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000575 }
576}
577
Chris Lattner065faeb2002-12-28 20:24:02 +0000578/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
579/// the stack into virtual registers.
580///
Misha Brukmaneae1bf12004-09-21 18:21:21 +0000581void X86ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000582 // Emit instructions to load the arguments... On entry to a function on the
583 // X86, the stack frame looks like this:
584 //
585 // [ESP] -- return address
Chris Lattner3e130a22003-01-13 00:32:26 +0000586 // [ESP + 4] -- first argument (leftmost lexically)
587 // [ESP + 8] -- second argument, if first argument is four bytes in size
Chris Lattner065faeb2002-12-28 20:24:02 +0000588 // ...
589 //
Chris Lattnerf158da22003-01-16 02:20:12 +0000590 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
Chris Lattneraa09b752002-12-28 21:08:28 +0000591 MachineFrameInfo *MFI = F->getFrameInfo();
Chris Lattner065faeb2002-12-28 20:24:02 +0000592
593 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
Chris Lattner427aeb42004-04-11 19:21:59 +0000594 bool ArgLive = !I->use_empty();
595 unsigned Reg = ArgLive ? getReg(*I) : 0;
Chris Lattner065faeb2002-12-28 20:24:02 +0000596 int FI; // Frame object index
Chris Lattner427aeb42004-04-11 19:21:59 +0000597
Chris Lattner065faeb2002-12-28 20:24:02 +0000598 switch (getClassB(I->getType())) {
599 case cByte:
Chris Lattner427aeb42004-04-11 19:21:59 +0000600 if (ArgLive) {
601 FI = MFI->CreateFixedObject(1, ArgOffset);
602 addFrameReference(BuildMI(BB, X86::MOV8rm, 4, Reg), FI);
603 }
Chris Lattner065faeb2002-12-28 20:24:02 +0000604 break;
605 case cShort:
Chris Lattner427aeb42004-04-11 19:21:59 +0000606 if (ArgLive) {
607 FI = MFI->CreateFixedObject(2, ArgOffset);
608 addFrameReference(BuildMI(BB, X86::MOV16rm, 4, Reg), FI);
609 }
Chris Lattner065faeb2002-12-28 20:24:02 +0000610 break;
611 case cInt:
Chris Lattner427aeb42004-04-11 19:21:59 +0000612 if (ArgLive) {
613 FI = MFI->CreateFixedObject(4, ArgOffset);
614 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI);
615 }
Chris Lattner065faeb2002-12-28 20:24:02 +0000616 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000617 case cLong:
Chris Lattner427aeb42004-04-11 19:21:59 +0000618 if (ArgLive) {
619 FI = MFI->CreateFixedObject(8, ArgOffset);
620 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI);
621 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg+1), FI, 4);
622 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000623 ArgOffset += 4; // longs require 4 additional bytes
624 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000625 case cFP:
Chris Lattner427aeb42004-04-11 19:21:59 +0000626 if (ArgLive) {
627 unsigned Opcode;
628 if (I->getType() == Type::FloatTy) {
629 Opcode = X86::FLD32m;
630 FI = MFI->CreateFixedObject(4, ArgOffset);
631 } else {
632 Opcode = X86::FLD64m;
633 FI = MFI->CreateFixedObject(8, ArgOffset);
634 }
635 addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
Chris Lattner065faeb2002-12-28 20:24:02 +0000636 }
Chris Lattner427aeb42004-04-11 19:21:59 +0000637 if (I->getType() == Type::DoubleTy)
638 ArgOffset += 4; // doubles require 4 additional bytes
Chris Lattner065faeb2002-12-28 20:24:02 +0000639 break;
640 default:
641 assert(0 && "Unhandled argument type!");
642 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000643 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000644 }
Chris Lattnereca195e2003-05-08 19:44:13 +0000645
646 // If the function takes variable number of arguments, add a frame offset for
647 // the start of the first vararg value... this is used to expand
648 // llvm.va_start.
649 if (Fn.getFunctionType()->isVarArg())
650 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000651}
652
653
Chris Lattner333b2fa2002-12-13 10:09:43 +0000654/// SelectPHINodes - Insert machine code to generate phis. This is tricky
655/// because we have to generate our sources into the source basic blocks, not
656/// the current one.
657///
Misha Brukmaneae1bf12004-09-21 18:21:21 +0000658void X86ISel::SelectPHINodes() {
Chris Lattnerd029cd22004-06-02 05:55:25 +0000659 const TargetInstrInfo &TII = *TM.getInstrInfo();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000660 const Function &LF = *F->getFunction(); // The LLVM function...
661 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
662 const BasicBlock *BB = I;
Chris Lattner168aa902004-02-29 07:10:16 +0000663 MachineBasicBlock &MBB = *MBBMap[I];
Chris Lattner333b2fa2002-12-13 10:09:43 +0000664
665 // Loop over all of the PHI nodes in the LLVM basic block...
Chris Lattner168aa902004-02-29 07:10:16 +0000666 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
Reid Spencer2da5c3d2004-09-15 17:06:42 +0000667 for (BasicBlock::const_iterator I = BB->begin(); isa<PHINode>(I); ++I) {
668 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I));
Chris Lattner3e130a22003-01-13 00:32:26 +0000669
Chris Lattner333b2fa2002-12-13 10:09:43 +0000670 // Create a new machine instr PHI node, and insert it.
Chris Lattner3e130a22003-01-13 00:32:26 +0000671 unsigned PHIReg = getReg(*PN);
Chris Lattner168aa902004-02-29 07:10:16 +0000672 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
673 X86::PHI, PN->getNumOperands(), PHIReg);
Chris Lattner3e130a22003-01-13 00:32:26 +0000674
675 MachineInstr *LongPhiMI = 0;
Chris Lattner168aa902004-02-29 07:10:16 +0000676 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
677 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
678 X86::PHI, PN->getNumOperands(), PHIReg+1);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000679
Chris Lattnera6e73f12003-05-12 14:22:21 +0000680 // PHIValues - Map of blocks to incoming virtual registers. We use this
681 // so that we only initialize one incoming value for a particular block,
682 // even if the block has multiple entries in the PHI node.
683 //
684 std::map<MachineBasicBlock*, unsigned> PHIValues;
685
Chris Lattner333b2fa2002-12-13 10:09:43 +0000686 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
687 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
Chris Lattnera6e73f12003-05-12 14:22:21 +0000688 unsigned ValReg;
689 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
690 PHIValues.lower_bound(PredMBB);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000691
Chris Lattnera6e73f12003-05-12 14:22:21 +0000692 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
693 // We already inserted an initialization of the register for this
694 // predecessor. Recycle it.
695 ValReg = EntryIt->second;
696
697 } else {
Chris Lattnera81fc682003-10-19 00:26:11 +0000698 // Get the incoming value into a virtual register.
Chris Lattnera6e73f12003-05-12 14:22:21 +0000699 //
Chris Lattnera81fc682003-10-19 00:26:11 +0000700 Value *Val = PN->getIncomingValue(i);
701
702 // If this is a constant or GlobalValue, we may have to insert code
703 // into the basic block to compute it into a virtual register.
Reid Spencer8863f182004-07-18 00:38:32 +0000704 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val))) {
Chris Lattnercb2fd552004-05-13 07:40:27 +0000705 // Simple constants get emitted at the end of the basic block,
706 // before any terminator instructions. We "know" that the code to
707 // move a constant into a register will never clobber any flags.
708 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
Chris Lattnera81fc682003-10-19 00:26:11 +0000709 } else {
Chris Lattnercb2fd552004-05-13 07:40:27 +0000710 // Because we don't want to clobber any values which might be in
711 // physical registers with the computation of this constant (which
712 // might be arbitrarily complex if it is a constant expression),
713 // just insert the computation at the top of the basic block.
714 MachineBasicBlock::iterator PI = PredMBB->begin();
715
716 // Skip over any PHI nodes though!
717 while (PI != PredMBB->end() && PI->getOpcode() == X86::PHI)
718 ++PI;
719
720 ValReg = getReg(Val, PredMBB, PI);
Chris Lattnera81fc682003-10-19 00:26:11 +0000721 }
Chris Lattnera6e73f12003-05-12 14:22:21 +0000722
723 // Remember that we inserted a value for this PHI for this predecessor
724 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
725 }
726
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000727 PhiMI->addRegOperand(ValReg);
Chris Lattner3e130a22003-01-13 00:32:26 +0000728 PhiMI->addMachineBasicBlockOperand(PredMBB);
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000729 if (LongPhiMI) {
730 LongPhiMI->addRegOperand(ValReg+1);
731 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
732 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000733 }
Chris Lattner168aa902004-02-29 07:10:16 +0000734
735 // Now that we emitted all of the incoming values for the PHI node, make
736 // sure to reposition the InsertPoint after the PHI that we just added.
737 // This is needed because we might have inserted a constant into this
738 // block, right after the PHI's which is before the old insert point!
739 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
740 ++PHIInsertPoint;
Chris Lattner333b2fa2002-12-13 10:09:43 +0000741 }
742 }
743}
744
Chris Lattner986618e2004-02-22 19:47:26 +0000745/// RequiresFPRegKill - The floating point stackifier pass cannot insert
746/// compensation code on critical edges. As such, it requires that we kill all
747/// FP registers on the exit from any blocks that either ARE critical edges, or
748/// branch to a block that has incoming critical edges.
749///
750/// Note that this kill instruction will eventually be eliminated when
751/// restrictions in the stackifier are relaxed.
752///
Brian Gaeke1afe7732004-04-28 04:45:55 +0000753static bool RequiresFPRegKill(const MachineBasicBlock *MBB) {
Chris Lattner986618e2004-02-22 19:47:26 +0000754#if 0
Brian Gaeke1afe7732004-04-28 04:45:55 +0000755 const BasicBlock *BB = MBB->getBasicBlock ();
Chris Lattner986618e2004-02-22 19:47:26 +0000756 for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); SI!=E; ++SI) {
757 const BasicBlock *Succ = *SI;
758 pred_const_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
759 ++PI; // Block have at least one predecessory
760 if (PI != PE) { // If it has exactly one, this isn't crit edge
761 // If this block has more than one predecessor, check all of the
762 // predecessors to see if they have multiple successors. If so, then the
763 // block we are analyzing needs an FPRegKill.
764 for (PI = pred_begin(Succ); PI != PE; ++PI) {
765 const BasicBlock *Pred = *PI;
766 succ_const_iterator SI2 = succ_begin(Pred);
767 ++SI2; // There must be at least one successor of this block.
768 if (SI2 != succ_end(Pred))
769 return true; // Yes, we must insert the kill on this edge.
770 }
771 }
772 }
773 // If we got this far, there is no need to insert the kill instruction.
774 return false;
775#else
776 return true;
777#endif
778}
779
780// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks that
781// need them. This only occurs due to the floating point stackifier not being
782// aggressive enough to handle arbitrary global stackification.
783//
784// Currently we insert an FP_REG_KILL instruction into each block that uses or
785// defines a floating point virtual register.
786//
787// When the global register allocators (like linear scan) finally update live
788// variable analysis, we can keep floating point values in registers across
789// portions of the CFG that do not involve critical edges. This will be a big
790// win, but we are waiting on the global allocators before we can do this.
791//
792// With a bit of work, the floating point stackifier pass can be enhanced to
793// break critical edges as needed (to make a place to put compensation code),
794// but this will require some infrastructure improvements as well.
795//
Misha Brukmaneae1bf12004-09-21 18:21:21 +0000796void X86ISel::InsertFPRegKills() {
Chris Lattner986618e2004-02-22 19:47:26 +0000797 SSARegMap &RegMap = *F->getSSARegMap();
Chris Lattner986618e2004-02-22 19:47:26 +0000798
799 for (MachineFunction::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
Chris Lattner986618e2004-02-22 19:47:26 +0000800 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
Alkis Evlogimenos71e353e2004-02-26 22:00:20 +0000801 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
802 MachineOperand& MO = I->getOperand(i);
803 if (MO.isRegister() && MO.getReg()) {
804 unsigned Reg = MO.getReg();
Chris Lattner986618e2004-02-22 19:47:26 +0000805 if (MRegisterInfo::isVirtualRegister(Reg))
Chris Lattner65cf42d2004-02-23 07:29:45 +0000806 if (RegMap.getRegClass(Reg)->getSize() == 10)
807 goto UsesFPReg;
Chris Lattner986618e2004-02-22 19:47:26 +0000808 }
Alkis Evlogimenos71e353e2004-02-26 22:00:20 +0000809 }
Chris Lattner65cf42d2004-02-23 07:29:45 +0000810 // If we haven't found an FP register use or def in this basic block, check
811 // to see if any of our successors has an FP PHI node, which will cause a
812 // copy to be inserted into this block.
Brian Gaeke235aa5e2004-04-28 04:34:16 +0000813 for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(),
814 SE = BB->succ_end(); SI != SE; ++SI) {
815 MachineBasicBlock *SBB = *SI;
Chris Lattnerfbc39d52004-02-23 07:42:19 +0000816 for (MachineBasicBlock::iterator I = SBB->begin();
817 I != SBB->end() && I->getOpcode() == X86::PHI; ++I) {
818 if (RegMap.getRegClass(I->getOperand(0).getReg())->getSize() == 10)
819 goto UsesFPReg;
Chris Lattner986618e2004-02-22 19:47:26 +0000820 }
Chris Lattnerfbc39d52004-02-23 07:42:19 +0000821 }
Chris Lattner65cf42d2004-02-23 07:29:45 +0000822 continue;
823 UsesFPReg:
824 // Okay, this block uses an FP register. If the block has successors (ie,
825 // it's not an unwind/return), insert the FP_REG_KILL instruction.
Brian Gaeke1afe7732004-04-28 04:45:55 +0000826 if (BB->succ_size () && RequiresFPRegKill(BB)) {
Chris Lattneree352852004-02-29 07:22:16 +0000827 BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0);
Chris Lattner65cf42d2004-02-23 07:29:45 +0000828 ++NumFPKill;
Chris Lattner986618e2004-02-22 19:47:26 +0000829 }
830 }
831}
832
833
Misha Brukmaneae1bf12004-09-21 18:21:21 +0000834void X86ISel::getAddressingMode(Value *Addr, X86AddressMode &AM) {
Reid Spencerfc989e12004-08-30 00:13:26 +0000835 AM.BaseType = X86AddressMode::RegBase;
836 AM.Base.Reg = 0; AM.Scale = 1; AM.IndexReg = 0; AM.Disp = 0;
Chris Lattner9f1b5312004-05-13 15:12:43 +0000837 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) {
838 if (isGEPFoldable(BB, GEP->getOperand(0), GEP->op_begin()+1, GEP->op_end(),
Reid Spencerfc989e12004-08-30 00:13:26 +0000839 AM))
Chris Lattner9f1b5312004-05-13 15:12:43 +0000840 return;
841 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
842 if (CE->getOpcode() == Instruction::GetElementPtr)
843 if (isGEPFoldable(BB, CE->getOperand(0), CE->op_begin()+1, CE->op_end(),
Reid Spencerfc989e12004-08-30 00:13:26 +0000844 AM))
Chris Lattner9f1b5312004-05-13 15:12:43 +0000845 return;
Reid Spencerfc989e12004-08-30 00:13:26 +0000846 } else if (AllocaInst *AI = dyn_castFixedAlloca(Addr)) {
847 AM.BaseType = X86AddressMode::FrameIndexBase;
848 AM.Base.FrameIndex = getFixedSizedAllocaFI(AI);
849 return;
Chris Lattner358a9022004-10-15 05:05:29 +0000850 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
851 AM.GV = GV;
852 return;
Chris Lattner9f1b5312004-05-13 15:12:43 +0000853 }
854
855 // If it's not foldable, reset addr mode.
Reid Spencerfc989e12004-08-30 00:13:26 +0000856 AM.BaseType = X86AddressMode::RegBase;
857 AM.Base.Reg = getReg(Addr);
858 AM.Scale = 1; AM.IndexReg = 0; AM.Disp = 0;
Chris Lattner9f1b5312004-05-13 15:12:43 +0000859}
860
Chris Lattner307ecba2004-03-30 22:39:09 +0000861// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
862// it into the conditional branch or select instruction which is the only user
863// of the cc instruction. This is the case if the conditional branch is the
Chris Lattnera6f9fe62004-06-18 00:29:22 +0000864// only user of the setcc. We also don't handle long arguments below, so we
865// reject them here as well.
Chris Lattner6d40c192003-01-16 16:43:00 +0000866//
Chris Lattner307ecba2004-03-30 22:39:09 +0000867static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
Chris Lattner6d40c192003-01-16 16:43:00 +0000868 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
Chris Lattner307ecba2004-03-30 22:39:09 +0000869 if (SCI->hasOneUse()) {
870 Instruction *User = cast<Instruction>(SCI->use_back());
871 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
Chris Lattner48c937e2004-04-06 17:34:50 +0000872 (getClassB(SCI->getOperand(0)->getType()) != cLong ||
873 SCI->getOpcode() == Instruction::SetEQ ||
Chris Lattnerd04cd552004-10-08 16:34:13 +0000874 SCI->getOpcode() == Instruction::SetNE) &&
Chris Lattnerb0f4e382004-10-08 22:24:31 +0000875 (isa<BranchInst>(User) || User->getOperand(0) == V))
Chris Lattner6d40c192003-01-16 16:43:00 +0000876 return SCI;
877 }
878 return 0;
879}
Chris Lattner333b2fa2002-12-13 10:09:43 +0000880
Chris Lattner6d40c192003-01-16 16:43:00 +0000881// Return a fixed numbering for setcc instructions which does not depend on the
882// order of the opcodes.
883//
884static unsigned getSetCCNumber(unsigned Opcode) {
885 switch(Opcode) {
886 default: assert(0 && "Unknown setcc instruction!");
887 case Instruction::SetEQ: return 0;
888 case Instruction::SetNE: return 1;
889 case Instruction::SetLT: return 2;
Chris Lattner55f6fab2003-01-16 18:07:23 +0000890 case Instruction::SetGE: return 3;
891 case Instruction::SetGT: return 4;
892 case Instruction::SetLE: return 5;
Chris Lattner6d40c192003-01-16 16:43:00 +0000893 }
894}
Chris Lattner06925362002-11-17 21:56:38 +0000895
Chris Lattner6d40c192003-01-16 16:43:00 +0000896// LLVM -> X86 signed X86 unsigned
897// ----- ---------- ------------
898// seteq -> sete sete
899// setne -> setne setne
900// setlt -> setl setb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000901// setge -> setge setae
Chris Lattner6d40c192003-01-16 16:43:00 +0000902// setgt -> setg seta
903// setle -> setle setbe
Chris Lattnerb2acc512003-10-19 21:09:10 +0000904// ----
905// sets // Used by comparison with 0 optimization
906// setns
907static const unsigned SetCCOpcodeTab[2][8] = {
908 { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr,
909 0, 0 },
910 { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr,
911 X86::SETSr, X86::SETNSr },
Chris Lattner6d40c192003-01-16 16:43:00 +0000912};
913
Chris Lattner01cdb1b2004-06-11 05:33:49 +0000914/// emitUCOMr - In the future when we support processors before the P6, this
915/// wraps the logic for emitting an FUCOMr vs FUCOMIr.
Misha Brukmaneae1bf12004-09-21 18:21:21 +0000916void X86ISel::emitUCOMr(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
917 unsigned LHS, unsigned RHS) {
Chris Lattner01cdb1b2004-06-11 05:33:49 +0000918 if (0) { // for processors prior to the P6
919 BuildMI(*MBB, IP, X86::FUCOMr, 2).addReg(LHS).addReg(RHS);
920 BuildMI(*MBB, IP, X86::FNSTSW8r, 0);
921 BuildMI(*MBB, IP, X86::SAHF, 1);
922 } else {
923 BuildMI(*MBB, IP, X86::FUCOMIr, 2).addReg(LHS).addReg(RHS);
924 }
925}
926
Chris Lattnerb2acc512003-10-19 21:09:10 +0000927// EmitComparison - This function emits a comparison of the two operands,
928// returning the extended setcc code to use.
Misha Brukmaneae1bf12004-09-21 18:21:21 +0000929unsigned X86ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
930 MachineBasicBlock *MBB,
931 MachineBasicBlock::iterator IP) {
Brian Gaeke1749d632002-11-07 17:59:21 +0000932 // The arguments are already supposed to be of the same type.
Chris Lattner6d40c192003-01-16 16:43:00 +0000933 const Type *CompTy = Op0->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +0000934 unsigned Class = getClassB(CompTy);
Chris Lattner333864d2003-06-05 19:30:30 +0000935
936 // Special case handling of: cmp R, i
Chris Lattner260195d2004-05-07 19:55:55 +0000937 if (isa<ConstantPointerNull>(Op1)) {
Chris Lattnerde95c9e2004-10-17 06:10:40 +0000938 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattner260195d2004-05-07 19:55:55 +0000939 if (OpNum < 2) // seteq/setne -> test
940 BuildMI(*MBB, IP, X86::TEST32rr, 2).addReg(Op0r).addReg(Op0r);
941 else
942 BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(0);
943 return OpNum;
944
945 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnere80e6372004-04-06 16:02:27 +0000946 if (Class == cByte || Class == cShort || Class == cInt) {
947 unsigned Op1v = CI->getRawValue();
Chris Lattnerc07736a2003-07-23 15:22:26 +0000948
Chris Lattner333864d2003-06-05 19:30:30 +0000949 // Mask off any upper bits of the constant, if there are any...
950 Op1v &= (1ULL << (8 << Class)) - 1;
951
Chris Lattnerb2acc512003-10-19 21:09:10 +0000952 // If this is a comparison against zero, emit more efficient code. We
953 // can't handle unsigned comparisons against zero unless they are == or
954 // !=. These should have been strength reduced already anyway.
955 if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) {
Chris Lattnerde95c9e2004-10-17 06:10:40 +0000956
957 // If this is a comparison against zero and the LHS is an and of a
958 // register with a constant, use the test to do the and.
959 if (Instruction *Op0I = dyn_cast<Instruction>(Op0))
960 if (Op0I->getOpcode() == Instruction::And && Op0->hasOneUse() &&
961 isa<ConstantInt>(Op0I->getOperand(1))) {
962 static const unsigned TESTTab[] = {
963 X86::TEST8ri, X86::TEST16ri, X86::TEST32ri
964 };
965
966 // Emit test X, i
967 unsigned LHS = getReg(Op0I->getOperand(0), MBB, IP);
968 unsigned Imm =
969 cast<ConstantInt>(Op0I->getOperand(1))->getRawValue();
970 BuildMI(*MBB, IP, TESTTab[Class], 2).addReg(LHS).addImm(Imm);
971
Chris Lattnerde95c9e2004-10-17 06:10:40 +0000972 if (OpNum == 2) return 6; // Map jl -> js
973 if (OpNum == 3) return 7; // Map jg -> jns
974 return OpNum;
975 }
976
977 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000978 static const unsigned TESTTab[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000979 X86::TEST8rr, X86::TEST16rr, X86::TEST32rr
Chris Lattnerb2acc512003-10-19 21:09:10 +0000980 };
Chris Lattneree352852004-02-29 07:22:16 +0000981 BuildMI(*MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000982
983 if (OpNum == 2) return 6; // Map jl -> js
984 if (OpNum == 3) return 7; // Map jg -> jns
985 return OpNum;
Chris Lattner333864d2003-06-05 19:30:30 +0000986 }
Chris Lattnerb2acc512003-10-19 21:09:10 +0000987
988 static const unsigned CMPTab[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000989 X86::CMP8ri, X86::CMP16ri, X86::CMP32ri
Chris Lattnerb2acc512003-10-19 21:09:10 +0000990 };
991
Chris Lattnerde95c9e2004-10-17 06:10:40 +0000992 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattneree352852004-02-29 07:22:16 +0000993 BuildMI(*MBB, IP, CMPTab[Class], 2).addReg(Op0r).addImm(Op1v);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000994 return OpNum;
Chris Lattnere80e6372004-04-06 16:02:27 +0000995 } else {
Chris Lattnerde95c9e2004-10-17 06:10:40 +0000996 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattnere80e6372004-04-06 16:02:27 +0000997 assert(Class == cLong && "Unknown integer class!");
998 unsigned LowCst = CI->getRawValue();
999 unsigned HiCst = CI->getRawValue() >> 32;
1000 if (OpNum < 2) { // seteq, setne
1001 unsigned LoTmp = Op0r;
1002 if (LowCst != 0) {
1003 LoTmp = makeAnotherReg(Type::IntTy);
1004 BuildMI(*MBB, IP, X86::XOR32ri, 2, LoTmp).addReg(Op0r).addImm(LowCst);
1005 }
1006 unsigned HiTmp = Op0r+1;
1007 if (HiCst != 0) {
1008 HiTmp = makeAnotherReg(Type::IntTy);
Chris Lattner48c937e2004-04-06 17:34:50 +00001009 BuildMI(*MBB, IP, X86::XOR32ri, 2,HiTmp).addReg(Op0r+1).addImm(HiCst);
Chris Lattnere80e6372004-04-06 16:02:27 +00001010 }
1011 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
1012 BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
1013 return OpNum;
Chris Lattner48c937e2004-04-06 17:34:50 +00001014 } else {
1015 // Emit a sequence of code which compares the high and low parts once
1016 // each, then uses a conditional move to handle the overflow case. For
1017 // example, a setlt for long would generate code like this:
1018 //
Chris Lattner9984fd02004-05-09 23:16:33 +00001019 // AL = lo(op1) < lo(op2) // Always unsigned comparison
1020 // BL = hi(op1) < hi(op2) // Signedness depends on operands
1021 // dest = hi(op1) == hi(op2) ? BL : AL;
Chris Lattner48c937e2004-04-06 17:34:50 +00001022 //
1023
1024 // FIXME: This would be much better if we had hierarchical register
1025 // classes! Until then, hardcode registers so that we can deal with
1026 // their aliases (because we don't have conditional byte moves).
1027 //
1028 BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(LowCst);
1029 BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
1030 BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r+1).addImm(HiCst);
1031 BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0,X86::BL);
1032 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
1033 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
1034 BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX)
1035 .addReg(X86::AX);
1036 // NOTE: visitSetCondInst knows that the value is dumped into the BL
1037 // register at this point for long values...
1038 return OpNum;
Chris Lattnere80e6372004-04-06 16:02:27 +00001039 }
Chris Lattner333864d2003-06-05 19:30:30 +00001040 }
Chris Lattnere80e6372004-04-06 16:02:27 +00001041 }
Chris Lattner333864d2003-06-05 19:30:30 +00001042
Chris Lattnerde95c9e2004-10-17 06:10:40 +00001043 unsigned Op0r = getReg(Op0, MBB, IP);
1044
Chris Lattner9f08a922004-02-03 18:54:04 +00001045 // Special case handling of comparison against +/- 0.0
1046 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op1))
1047 if (CFP->isExactlyValue(+0.0) || CFP->isExactlyValue(-0.0)) {
Chris Lattneree352852004-02-29 07:22:16 +00001048 BuildMI(*MBB, IP, X86::FTST, 1).addReg(Op0r);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001049 BuildMI(*MBB, IP, X86::FNSTSW8r, 0);
Chris Lattneree352852004-02-29 07:22:16 +00001050 BuildMI(*MBB, IP, X86::SAHF, 1);
Chris Lattner9f08a922004-02-03 18:54:04 +00001051 return OpNum;
1052 }
1053
Chris Lattner58c41fe2003-08-24 19:19:47 +00001054 unsigned Op1r = getReg(Op1, MBB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001055 switch (Class) {
1056 default: assert(0 && "Unknown type class!");
1057 // Emit: cmp <var1>, <var2> (do the comparison). We can
1058 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
1059 // 32-bit.
1060 case cByte:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001061 BuildMI(*MBB, IP, X86::CMP8rr, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +00001062 break;
1063 case cShort:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001064 BuildMI(*MBB, IP, X86::CMP16rr, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +00001065 break;
1066 case cInt:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001067 BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +00001068 break;
1069 case cFP:
Chris Lattner01cdb1b2004-06-11 05:33:49 +00001070 emitUCOMr(MBB, IP, Op0r, Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +00001071 break;
1072
1073 case cLong:
1074 if (OpNum < 2) { // seteq, setne
1075 unsigned LoTmp = makeAnotherReg(Type::IntTy);
1076 unsigned HiTmp = makeAnotherReg(Type::IntTy);
1077 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001078 BuildMI(*MBB, IP, X86::XOR32rr, 2, LoTmp).addReg(Op0r).addReg(Op1r);
1079 BuildMI(*MBB, IP, X86::XOR32rr, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
1080 BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Chris Lattner3e130a22003-01-13 00:32:26 +00001081 break; // Allow the sete or setne to be generated from flags set by OR
1082 } else {
1083 // Emit a sequence of code which compares the high and low parts once
1084 // each, then uses a conditional move to handle the overflow case. For
1085 // example, a setlt for long would generate code like this:
1086 //
1087 // AL = lo(op1) < lo(op2) // Signedness depends on operands
1088 // BL = hi(op1) < hi(op2) // Always unsigned comparison
Chris Lattner9984fd02004-05-09 23:16:33 +00001089 // dest = hi(op1) == hi(op2) ? BL : AL;
Chris Lattner3e130a22003-01-13 00:32:26 +00001090 //
1091
Chris Lattner6d40c192003-01-16 16:43:00 +00001092 // FIXME: This would be much better if we had hierarchical register
Chris Lattner3e130a22003-01-13 00:32:26 +00001093 // classes! Until then, hardcode registers so that we can deal with their
1094 // aliases (because we don't have conditional byte moves).
1095 //
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001096 BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r);
Chris Lattneree352852004-02-29 07:22:16 +00001097 BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001098 BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattneree352852004-02-29 07:22:16 +00001099 BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL);
1100 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
1101 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001102 BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX)
Chris Lattneree352852004-02-29 07:22:16 +00001103 .addReg(X86::AX);
Chris Lattner6d40c192003-01-16 16:43:00 +00001104 // NOTE: visitSetCondInst knows that the value is dumped into the BL
1105 // register at this point for long values...
Chris Lattnerb2acc512003-10-19 21:09:10 +00001106 return OpNum;
Chris Lattner3e130a22003-01-13 00:32:26 +00001107 }
1108 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001109 return OpNum;
Chris Lattner6d40c192003-01-16 16:43:00 +00001110}
Chris Lattner3e130a22003-01-13 00:32:26 +00001111
Chris Lattner6d40c192003-01-16 16:43:00 +00001112/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
1113/// register, then move it to wherever the result should be.
1114///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001115void X86ISel::visitSetCondInst(SetCondInst &I) {
Chris Lattner307ecba2004-03-30 22:39:09 +00001116 if (canFoldSetCCIntoBranchOrSelect(&I))
1117 return; // Fold this into a branch or select.
Chris Lattner6d40c192003-01-16 16:43:00 +00001118
Chris Lattner6d40c192003-01-16 16:43:00 +00001119 unsigned DestReg = getReg(I);
Chris Lattner58c41fe2003-08-24 19:19:47 +00001120 MachineBasicBlock::iterator MII = BB->end();
1121 emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
1122 DestReg);
1123}
Chris Lattner6d40c192003-01-16 16:43:00 +00001124
Chris Lattner58c41fe2003-08-24 19:19:47 +00001125/// emitSetCCOperation - Common code shared between visitSetCondInst and
1126/// constant expression support.
Misha Brukman538607f2004-03-01 23:53:11 +00001127///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001128void X86ISel::emitSetCCOperation(MachineBasicBlock *MBB,
1129 MachineBasicBlock::iterator IP,
1130 Value *Op0, Value *Op1, unsigned Opcode,
1131 unsigned TargetReg) {
Chris Lattner58c41fe2003-08-24 19:19:47 +00001132 unsigned OpNum = getSetCCNumber(Opcode);
Chris Lattnerb2acc512003-10-19 21:09:10 +00001133 OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
Chris Lattner58c41fe2003-08-24 19:19:47 +00001134
Chris Lattnerb2acc512003-10-19 21:09:10 +00001135 const Type *CompTy = Op0->getType();
1136 unsigned CompClass = getClassB(CompTy);
1137 bool isSigned = CompTy->isSigned() && CompClass != cFP;
1138
1139 if (CompClass != cLong || OpNum < 2) {
Chris Lattner6d40c192003-01-16 16:43:00 +00001140 // Handle normal comparisons with a setcc instruction...
Chris Lattneree352852004-02-29 07:22:16 +00001141 BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg);
Chris Lattner6d40c192003-01-16 16:43:00 +00001142 } else {
1143 // Handle long comparisons by copying the value which is already in BL into
1144 // the register we want...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001145 BuildMI(*MBB, IP, X86::MOV8rr, 1, TargetReg).addReg(X86::BL);
Chris Lattner6d40c192003-01-16 16:43:00 +00001146 }
Brian Gaeke1749d632002-11-07 17:59:21 +00001147}
Chris Lattner51b49a92002-11-02 19:45:49 +00001148
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001149void X86ISel::visitSelectInst(SelectInst &SI) {
Chris Lattner12d96a02004-03-30 21:22:00 +00001150 unsigned DestReg = getReg(SI);
1151 MachineBasicBlock::iterator MII = BB->end();
1152 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
1153 SI.getFalseValue(), DestReg);
1154}
1155
1156/// emitSelect - Common code shared between visitSelectInst and the constant
1157/// expression support.
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001158void X86ISel::emitSelectOperation(MachineBasicBlock *MBB,
1159 MachineBasicBlock::iterator IP,
1160 Value *Cond, Value *TrueVal, Value *FalseVal,
1161 unsigned DestReg) {
Chris Lattner12d96a02004-03-30 21:22:00 +00001162 unsigned SelectClass = getClassB(TrueVal->getType());
1163
1164 // We don't support 8-bit conditional moves. If we have incoming constants,
1165 // transform them into 16-bit constants to avoid having a run-time conversion.
1166 if (SelectClass == cByte) {
1167 if (Constant *T = dyn_cast<Constant>(TrueVal))
1168 TrueVal = ConstantExpr::getCast(T, Type::ShortTy);
1169 if (Constant *F = dyn_cast<Constant>(FalseVal))
1170 FalseVal = ConstantExpr::getCast(F, Type::ShortTy);
1171 }
1172
Chris Lattner82c5a992004-04-13 21:56:09 +00001173 unsigned TrueReg = getReg(TrueVal, MBB, IP);
1174 unsigned FalseReg = getReg(FalseVal, MBB, IP);
1175 if (TrueReg == FalseReg) {
1176 static const unsigned Opcode[] = {
1177 X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr
1178 };
1179 BuildMI(*MBB, IP, Opcode[SelectClass], 1, DestReg).addReg(TrueReg);
1180 if (SelectClass == cLong)
1181 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(TrueReg+1);
1182 return;
1183 }
1184
Chris Lattner307ecba2004-03-30 22:39:09 +00001185 unsigned Opcode;
1186 if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
1187 // We successfully folded the setcc into the select instruction.
1188
1189 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
1190 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), MBB,
1191 IP);
1192
1193 const Type *CompTy = SCI->getOperand(0)->getType();
1194 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
1195
1196 // LLVM -> X86 signed X86 unsigned
1197 // ----- ---------- ------------
1198 // seteq -> cmovNE cmovNE
1199 // setne -> cmovE cmovE
1200 // setlt -> cmovGE cmovAE
1201 // setge -> cmovL cmovB
1202 // setgt -> cmovLE cmovBE
1203 // setle -> cmovG cmovA
1204 // ----
1205 // cmovNS // Used by comparison with 0 optimization
1206 // cmovS
1207
1208 switch (SelectClass) {
Chris Lattner352eb482004-03-31 22:03:35 +00001209 default: assert(0 && "Unknown value class!");
1210 case cFP: {
1211 // Annoyingly, we don't have a full set of floating point conditional
1212 // moves. :(
1213 static const unsigned OpcodeTab[2][8] = {
1214 { X86::FCMOVNE, X86::FCMOVE, X86::FCMOVAE, X86::FCMOVB,
1215 X86::FCMOVBE, X86::FCMOVA, 0, 0 },
1216 { X86::FCMOVNE, X86::FCMOVE, 0, 0, 0, 0, 0, 0 },
1217 };
1218 Opcode = OpcodeTab[isSigned][OpNum];
1219
1220 // If opcode == 0, we hit a case that we don't support. Output a setcc
1221 // and compare the result against zero.
1222 if (Opcode == 0) {
1223 unsigned CompClass = getClassB(CompTy);
1224 unsigned CondReg;
1225 if (CompClass != cLong || OpNum < 2) {
1226 CondReg = makeAnotherReg(Type::BoolTy);
1227 // Handle normal comparisons with a setcc instruction...
1228 BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, CondReg);
1229 } else {
1230 // Long comparisons end up in the BL register.
1231 CondReg = X86::BL;
1232 }
1233
Chris Lattner68626c22004-03-31 22:22:36 +00001234 BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
Chris Lattner352eb482004-03-31 22:03:35 +00001235 Opcode = X86::FCMOVE;
1236 }
1237 break;
1238 }
Chris Lattner307ecba2004-03-30 22:39:09 +00001239 case cByte:
1240 case cShort: {
1241 static const unsigned OpcodeTab[2][8] = {
1242 { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVAE16rr, X86::CMOVB16rr,
1243 X86::CMOVBE16rr, X86::CMOVA16rr, 0, 0 },
1244 { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVGE16rr, X86::CMOVL16rr,
1245 X86::CMOVLE16rr, X86::CMOVG16rr, X86::CMOVNS16rr, X86::CMOVS16rr },
1246 };
1247 Opcode = OpcodeTab[isSigned][OpNum];
1248 break;
1249 }
1250 case cInt:
1251 case cLong: {
1252 static const unsigned OpcodeTab[2][8] = {
1253 { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVAE32rr, X86::CMOVB32rr,
1254 X86::CMOVBE32rr, X86::CMOVA32rr, 0, 0 },
1255 { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVGE32rr, X86::CMOVL32rr,
1256 X86::CMOVLE32rr, X86::CMOVG32rr, X86::CMOVNS32rr, X86::CMOVS32rr },
1257 };
1258 Opcode = OpcodeTab[isSigned][OpNum];
1259 break;
1260 }
1261 }
1262 } else {
1263 // Get the value being branched on, and use it to set the condition codes.
1264 unsigned CondReg = getReg(Cond, MBB, IP);
Chris Lattner68626c22004-03-31 22:22:36 +00001265 BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
Chris Lattner307ecba2004-03-30 22:39:09 +00001266 switch (SelectClass) {
Chris Lattner352eb482004-03-31 22:03:35 +00001267 default: assert(0 && "Unknown value class!");
1268 case cFP: Opcode = X86::FCMOVE; break;
Chris Lattner307ecba2004-03-30 22:39:09 +00001269 case cByte:
Chris Lattner352eb482004-03-31 22:03:35 +00001270 case cShort: Opcode = X86::CMOVE16rr; break;
Chris Lattner307ecba2004-03-30 22:39:09 +00001271 case cInt:
Chris Lattner352eb482004-03-31 22:03:35 +00001272 case cLong: Opcode = X86::CMOVE32rr; break;
Chris Lattner307ecba2004-03-30 22:39:09 +00001273 }
1274 }
Chris Lattner12d96a02004-03-30 21:22:00 +00001275
Chris Lattner12d96a02004-03-30 21:22:00 +00001276 unsigned RealDestReg = DestReg;
Chris Lattner12d96a02004-03-30 21:22:00 +00001277
Chris Lattner12d96a02004-03-30 21:22:00 +00001278
1279 // Annoyingly enough, X86 doesn't HAVE 8-bit conditional moves. Because of
1280 // this, we have to promote the incoming values to 16 bits, perform a 16-bit
1281 // cmove, then truncate the result.
1282 if (SelectClass == cByte) {
1283 DestReg = makeAnotherReg(Type::ShortTy);
1284 if (getClassB(TrueVal->getType()) == cByte) {
1285 // Promote the true value, by storing it into AL, and reading from AX.
1286 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::AL).addReg(TrueReg);
1287 BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::AH).addImm(0);
1288 TrueReg = makeAnotherReg(Type::ShortTy);
1289 BuildMI(*MBB, IP, X86::MOV16rr, 1, TrueReg).addReg(X86::AX);
1290 }
1291 if (getClassB(FalseVal->getType()) == cByte) {
1292 // Promote the true value, by storing it into CL, and reading from CX.
1293 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(FalseReg);
1294 BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::CH).addImm(0);
1295 FalseReg = makeAnotherReg(Type::ShortTy);
1296 BuildMI(*MBB, IP, X86::MOV16rr, 1, FalseReg).addReg(X86::CX);
1297 }
1298 }
1299
1300 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(TrueReg).addReg(FalseReg);
1301
1302 switch (SelectClass) {
1303 case cByte:
1304 // We did the computation with 16-bit registers. Truncate back to our
1305 // result by copying into AX then copying out AL.
1306 BuildMI(*MBB, IP, X86::MOV16rr, 1, X86::AX).addReg(DestReg);
1307 BuildMI(*MBB, IP, X86::MOV8rr, 1, RealDestReg).addReg(X86::AL);
1308 break;
1309 case cLong:
1310 // Move the upper half of the value as well.
1311 BuildMI(*MBB, IP, Opcode, 2,DestReg+1).addReg(TrueReg+1).addReg(FalseReg+1);
1312 break;
1313 }
1314}
Chris Lattner58c41fe2003-08-24 19:19:47 +00001315
1316
1317
Brian Gaekec2505982002-11-30 11:57:28 +00001318/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
1319/// operand, in the specified target register.
Misha Brukman538607f2004-03-01 23:53:11 +00001320///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001321void X86ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
Chris Lattner9984fd02004-05-09 23:16:33 +00001322 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001323
Chris Lattner29bf0622004-04-06 01:21:00 +00001324 Value *Val = VR.Val;
1325 const Type *Ty = VR.Ty;
Chris Lattner502e36c2004-04-06 01:25:33 +00001326 if (Val) {
Chris Lattner29bf0622004-04-06 01:21:00 +00001327 if (Constant *C = dyn_cast<Constant>(Val)) {
1328 Val = ConstantExpr::getCast(C, Type::IntTy);
1329 Ty = Type::IntTy;
1330 }
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001331
Chris Lattner502e36c2004-04-06 01:25:33 +00001332 // If this is a simple constant, just emit a MOVri directly to avoid the
1333 // copy.
1334 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1335 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
Chris Lattner2b10b082004-05-12 16:35:04 +00001336 BuildMI(BB, X86::MOV32ri, 1, targetReg).addImm(TheVal);
Chris Lattner502e36c2004-04-06 01:25:33 +00001337 return;
1338 }
1339 }
1340
Chris Lattner29bf0622004-04-06 01:21:00 +00001341 // Make sure we have the register number for this value...
1342 unsigned Reg = Val ? getReg(Val) : VR.Reg;
1343
1344 switch (getClassB(Ty)) {
Chris Lattner94af4142002-12-25 05:13:53 +00001345 case cByte:
1346 // Extend value into target register (8->32)
1347 if (isUnsigned)
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001348 BuildMI(BB, X86::MOVZX32rr8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001349 else
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001350 BuildMI(BB, X86::MOVSX32rr8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001351 break;
1352 case cShort:
1353 // Extend value into target register (16->32)
1354 if (isUnsigned)
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001355 BuildMI(BB, X86::MOVZX32rr16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001356 else
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001357 BuildMI(BB, X86::MOVSX32rr16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001358 break;
1359 case cInt:
1360 // Move value into target register (32->32)
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001361 BuildMI(BB, X86::MOV32rr, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001362 break;
1363 default:
1364 assert(0 && "Unpromotable operand class in promote32");
1365 }
Brian Gaekec2505982002-11-30 11:57:28 +00001366}
Chris Lattnerc5291f52002-10-27 21:16:59 +00001367
Chris Lattner72614082002-10-25 22:55:53 +00001368/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
1369/// we have the following possibilities:
1370///
1371/// ret void: No return value, simply emit a 'ret' instruction
1372/// ret sbyte, ubyte : Extend value into EAX and return
1373/// ret short, ushort: Extend value into EAX and return
1374/// ret int, uint : Move value into EAX and return
1375/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +00001376/// ret long, ulong : Move value into EAX/EDX and return
1377/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +00001378///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001379void X86ISel::visitReturnInst(ReturnInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +00001380 if (I.getNumOperands() == 0) {
1381 BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
1382 return;
1383 }
1384
1385 Value *RetVal = I.getOperand(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00001386 switch (getClassB(RetVal->getType())) {
Chris Lattner94af4142002-12-25 05:13:53 +00001387 case cByte: // integral return values: extend or move into EAX and return
1388 case cShort:
1389 case cInt:
Chris Lattner29bf0622004-04-06 01:21:00 +00001390 promote32(X86::EAX, ValueRecord(RetVal));
Chris Lattnerdbd73722003-05-06 21:32:22 +00001391 // Declare that EAX is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +00001392 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +00001393 break;
Chris Lattner29bf0622004-04-06 01:21:00 +00001394 case cFP: { // Floats & Doubles: Return in ST(0)
1395 unsigned RetReg = getReg(RetVal);
Chris Lattner3e130a22003-01-13 00:32:26 +00001396 BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
Chris Lattnerdbd73722003-05-06 21:32:22 +00001397 // Declare that top-of-stack is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +00001398 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +00001399 break;
Chris Lattner29bf0622004-04-06 01:21:00 +00001400 }
1401 case cLong: {
1402 unsigned RetReg = getReg(RetVal);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001403 BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(RetReg);
1404 BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RetReg+1);
Chris Lattnerdbd73722003-05-06 21:32:22 +00001405 // Declare that EAX & EDX are live on exit
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001406 BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX)
1407 .addReg(X86::ESP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001408 break;
Chris Lattner29bf0622004-04-06 01:21:00 +00001409 }
Chris Lattner94af4142002-12-25 05:13:53 +00001410 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00001411 visitInstruction(I);
Chris Lattner94af4142002-12-25 05:13:53 +00001412 }
Chris Lattner43189d12002-11-17 20:07:45 +00001413 // Emit a 'ret' instruction
Chris Lattner94af4142002-12-25 05:13:53 +00001414 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +00001415}
1416
Chris Lattner55f6fab2003-01-16 18:07:23 +00001417// getBlockAfter - Return the basic block which occurs lexically after the
1418// specified one.
1419static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1420 Function::iterator I = BB; ++I; // Get iterator to next block
1421 return I != BB->getParent()->end() ? &*I : 0;
1422}
1423
Chris Lattner51b49a92002-11-02 19:45:49 +00001424/// visitBranchInst - Handle conditional and unconditional branches here. Note
1425/// that since code layout is frozen at this point, that if we are trying to
1426/// jump to a block that is the immediate successor of the current block, we can
Chris Lattner6d40c192003-01-16 16:43:00 +00001427/// just make a fall-through (but we don't currently).
Chris Lattner51b49a92002-11-02 19:45:49 +00001428///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001429void X86ISel::visitBranchInst(BranchInst &BI) {
Brian Gaekeea9ca672004-04-28 04:19:37 +00001430 // Update machine-CFG edges
1431 BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
1432 if (BI.isConditional())
1433 BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
1434
Chris Lattner55f6fab2003-01-16 18:07:23 +00001435 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
1436
1437 if (!BI.isConditional()) { // Unconditional branch?
Chris Lattnercf93cdd2004-01-30 22:13:44 +00001438 if (BI.getSuccessor(0) != NextBB)
Brian Gaeke9f088e42004-05-14 06:54:56 +00001439 BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
Chris Lattner6d40c192003-01-16 16:43:00 +00001440 return;
1441 }
1442
1443 // See if we can fold the setcc into the branch itself...
Chris Lattner307ecba2004-03-30 22:39:09 +00001444 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
Chris Lattner6d40c192003-01-16 16:43:00 +00001445 if (SCI == 0) {
1446 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1447 // computed some other way...
Chris Lattner065faeb2002-12-28 20:24:02 +00001448 unsigned condReg = getReg(BI.getCondition());
Chris Lattner68626c22004-03-31 22:22:36 +00001449 BuildMI(BB, X86::TEST8rr, 2).addReg(condReg).addReg(condReg);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001450 if (BI.getSuccessor(1) == NextBB) {
1451 if (BI.getSuccessor(0) != NextBB)
Brian Gaeke9f088e42004-05-14 06:54:56 +00001452 BuildMI(BB, X86::JNE, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001453 } else {
Brian Gaeke9f088e42004-05-14 06:54:56 +00001454 BuildMI(BB, X86::JE, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001455
1456 if (BI.getSuccessor(0) != NextBB)
Brian Gaeke9f088e42004-05-14 06:54:56 +00001457 BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001458 }
Chris Lattner6d40c192003-01-16 16:43:00 +00001459 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001460 }
Chris Lattner6d40c192003-01-16 16:43:00 +00001461
1462 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Chris Lattner58c41fe2003-08-24 19:19:47 +00001463 MachineBasicBlock::iterator MII = BB->end();
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001464 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Chris Lattnerb2acc512003-10-19 21:09:10 +00001465
1466 const Type *CompTy = SCI->getOperand(0)->getType();
1467 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
Chris Lattner6d40c192003-01-16 16:43:00 +00001468
Chris Lattnerb2acc512003-10-19 21:09:10 +00001469
Chris Lattner6d40c192003-01-16 16:43:00 +00001470 // LLVM -> X86 signed X86 unsigned
1471 // ----- ---------- ------------
1472 // seteq -> je je
1473 // setne -> jne jne
1474 // setlt -> jl jb
Chris Lattner55f6fab2003-01-16 18:07:23 +00001475 // setge -> jge jae
Chris Lattner6d40c192003-01-16 16:43:00 +00001476 // setgt -> jg ja
1477 // setle -> jle jbe
Chris Lattnerb2acc512003-10-19 21:09:10 +00001478 // ----
1479 // js // Used by comparison with 0 optimization
1480 // jns
1481
1482 static const unsigned OpcodeTab[2][8] = {
1483 { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 },
1484 { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE,
1485 X86::JS, X86::JNS },
Chris Lattner6d40c192003-01-16 16:43:00 +00001486 };
1487
Chris Lattner55f6fab2003-01-16 18:07:23 +00001488 if (BI.getSuccessor(0) != NextBB) {
Brian Gaeke9f088e42004-05-14 06:54:56 +00001489 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1)
1490 .addMBB(MBBMap[BI.getSuccessor(0)]);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001491 if (BI.getSuccessor(1) != NextBB)
Brian Gaeke9f088e42004-05-14 06:54:56 +00001492 BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001493 } else {
1494 // Change to the inverse condition...
1495 if (BI.getSuccessor(1) != NextBB) {
1496 OpNum ^= 1;
Brian Gaeke9f088e42004-05-14 06:54:56 +00001497 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1)
1498 .addMBB(MBBMap[BI.getSuccessor(1)]);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001499 }
1500 }
Chris Lattner2df035b2002-11-02 19:27:56 +00001501}
1502
Chris Lattner3e130a22003-01-13 00:32:26 +00001503
1504/// doCall - This emits an abstract call instruction, setting up the arguments
1505/// and the return value as appropriate. For the actual function call itself,
1506/// it inserts the specified CallMI instruction into the stream.
1507///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001508void X86ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
1509 const std::vector<ValueRecord> &Args) {
Chris Lattner065faeb2002-12-28 20:24:02 +00001510 // Count how many bytes are to be pushed on the stack...
1511 unsigned NumBytes = 0;
Misha Brukman0d2cf3a2002-12-04 19:22:53 +00001512
Chris Lattner3e130a22003-01-13 00:32:26 +00001513 if (!Args.empty()) {
1514 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1515 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +00001516 case cByte: case cShort: case cInt:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001517 NumBytes += 4; break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001518 case cLong:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001519 NumBytes += 8; break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001520 case cFP:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001521 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
1522 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001523 default: assert(0 && "Unknown class!");
1524 }
1525
1526 // Adjust the stack pointer for the new arguments...
Chris Lattneree352852004-02-29 07:22:16 +00001527 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
Chris Lattner065faeb2002-12-28 20:24:02 +00001528
1529 // Arguments go on the stack in reverse order, as specified by the ABI.
1530 unsigned ArgOffset = 0;
Chris Lattner3e130a22003-01-13 00:32:26 +00001531 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
Chris Lattnerce6096f2004-03-01 02:34:08 +00001532 unsigned ArgReg;
Chris Lattner3e130a22003-01-13 00:32:26 +00001533 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +00001534 case cByte:
Chris Lattner2b10b082004-05-12 16:35:04 +00001535 if (Args[i].Val && isa<ConstantBool>(Args[i].Val)) {
1536 addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset)
1537 .addImm(Args[i].Val == ConstantBool::True);
1538 break;
1539 }
1540 // FALL THROUGH
Chris Lattner21585222004-03-01 02:42:43 +00001541 case cShort:
1542 if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
1543 // Zero/Sign extend constant, then stuff into memory.
1544 ConstantInt *Val = cast<ConstantInt>(Args[i].Val);
1545 Val = cast<ConstantInt>(ConstantExpr::getCast(Val, Type::IntTy));
1546 addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset)
1547 .addImm(Val->getRawValue() & 0xFFFFFFFF);
1548 } else {
1549 // Promote arg to 32 bits wide into a temporary register...
1550 ArgReg = makeAnotherReg(Type::UIntTy);
1551 promote32(ArgReg, Args[i]);
1552 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1553 X86::ESP, ArgOffset).addReg(ArgReg);
1554 }
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001555 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001556 case cInt:
Chris Lattner21585222004-03-01 02:42:43 +00001557 if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
1558 unsigned Val = cast<ConstantInt>(Args[i].Val)->getRawValue();
1559 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1560 X86::ESP, ArgOffset).addImm(Val);
Chris Lattnerb7cb9ff2004-05-13 15:26:48 +00001561 } else if (Args[i].Val && isa<ConstantPointerNull>(Args[i].Val)) {
1562 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1563 X86::ESP, ArgOffset).addImm(0);
Chris Lattner21585222004-03-01 02:42:43 +00001564 } else {
1565 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1566 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1567 X86::ESP, ArgOffset).addReg(ArgReg);
1568 }
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001569 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001570 case cLong:
Chris Lattner92900a62004-04-06 03:23:00 +00001571 if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
1572 uint64_t Val = cast<ConstantInt>(Args[i].Val)->getRawValue();
1573 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1574 X86::ESP, ArgOffset).addImm(Val & ~0U);
1575 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1576 X86::ESP, ArgOffset+4).addImm(Val >> 32ULL);
1577 } else {
1578 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1579 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1580 X86::ESP, ArgOffset).addReg(ArgReg);
1581 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1582 X86::ESP, ArgOffset+4).addReg(ArgReg+1);
1583 }
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001584 ArgOffset += 4; // 8 byte entry, not 4.
1585 break;
1586
Chris Lattner065faeb2002-12-28 20:24:02 +00001587 case cFP:
Chris Lattnerce6096f2004-03-01 02:34:08 +00001588 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001589 if (Args[i].Ty == Type::FloatTy) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001590 addRegOffset(BuildMI(BB, X86::FST32m, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001591 X86::ESP, ArgOffset).addReg(ArgReg);
1592 } else {
1593 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001594 addRegOffset(BuildMI(BB, X86::FST64m, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001595 X86::ESP, ArgOffset).addReg(ArgReg);
1596 ArgOffset += 4; // 8 byte entry, not 4.
1597 }
1598 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001599
Chris Lattner3e130a22003-01-13 00:32:26 +00001600 default: assert(0 && "Unknown class!");
Chris Lattner065faeb2002-12-28 20:24:02 +00001601 }
1602 ArgOffset += 4;
Chris Lattner94af4142002-12-25 05:13:53 +00001603 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001604 } else {
Chris Lattneree352852004-02-29 07:22:16 +00001605 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(0);
Chris Lattner94af4142002-12-25 05:13:53 +00001606 }
Chris Lattner6e49a4b2002-12-13 14:13:27 +00001607
Chris Lattner3e130a22003-01-13 00:32:26 +00001608 BB->push_back(CallMI);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +00001609
Chris Lattneree352852004-02-29 07:22:16 +00001610 BuildMI(BB, X86::ADJCALLSTACKUP, 1).addImm(NumBytes);
Chris Lattnera3243642002-12-04 23:45:28 +00001611
1612 // If there is a return value, scavenge the result from the location the call
1613 // leaves it in...
1614 //
Chris Lattner3e130a22003-01-13 00:32:26 +00001615 if (Ret.Ty != Type::VoidTy) {
1616 unsigned DestClass = getClassB(Ret.Ty);
1617 switch (DestClass) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001618 case cByte:
1619 case cShort:
1620 case cInt: {
1621 // Integral results are in %eax, or the appropriate portion
1622 // thereof.
1623 static const unsigned regRegMove[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001624 X86::MOV8rr, X86::MOV16rr, X86::MOV32rr
Brian Gaeke20244b72002-12-12 15:33:40 +00001625 };
1626 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
Chris Lattner3e130a22003-01-13 00:32:26 +00001627 BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001628 break;
Brian Gaeke20244b72002-12-12 15:33:40 +00001629 }
Chris Lattner94af4142002-12-25 05:13:53 +00001630 case cFP: // Floating-point return values live in %ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +00001631 BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +00001632 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001633 case cLong: // Long values are left in EDX:EAX
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001634 BuildMI(BB, X86::MOV32rr, 1, Ret.Reg).addReg(X86::EAX);
1635 BuildMI(BB, X86::MOV32rr, 1, Ret.Reg+1).addReg(X86::EDX);
Chris Lattner3e130a22003-01-13 00:32:26 +00001636 break;
1637 default: assert(0 && "Unknown class!");
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001638 }
Chris Lattnera3243642002-12-04 23:45:28 +00001639 }
Brian Gaekefa8d5712002-11-22 11:07:01 +00001640}
Chris Lattner2df035b2002-11-02 19:27:56 +00001641
Chris Lattner3e130a22003-01-13 00:32:26 +00001642
1643/// visitCallInst - Push args on stack and do a procedure call instruction.
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001644void X86ISel::visitCallInst(CallInst &CI) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001645 MachineInstr *TheCall;
1646 if (Function *F = CI.getCalledFunction()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001647 // Is it an intrinsic function call?
Brian Gaeked0fde302003-11-11 22:41:34 +00001648 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001649 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1650 return;
1651 }
1652
Chris Lattner3e130a22003-01-13 00:32:26 +00001653 // Emit a CALL instruction with PC-relative displacement.
1654 TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
1655 } else { // Emit an indirect call...
1656 unsigned Reg = getReg(CI.getCalledValue());
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001657 TheCall = BuildMI(X86::CALL32r, 1).addReg(Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001658 }
1659
1660 std::vector<ValueRecord> Args;
1661 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001662 Args.push_back(ValueRecord(CI.getOperand(i)));
Chris Lattner3e130a22003-01-13 00:32:26 +00001663
1664 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
1665 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001666}
Chris Lattner3e130a22003-01-13 00:32:26 +00001667
Chris Lattner44827152003-12-28 09:47:19 +00001668/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1669/// function, lowering any calls to unknown intrinsic functions into the
1670/// equivalent LLVM code.
Misha Brukman538607f2004-03-01 23:53:11 +00001671///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001672void X86ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
Chris Lattner44827152003-12-28 09:47:19 +00001673 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1674 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1675 if (CallInst *CI = dyn_cast<CallInst>(I++))
1676 if (Function *F = CI->getCalledFunction())
1677 switch (F->getIntrinsicID()) {
Chris Lattneraed386e2003-12-28 09:53:23 +00001678 case Intrinsic::not_intrinsic:
Chris Lattner317201d2004-03-13 00:24:00 +00001679 case Intrinsic::vastart:
1680 case Intrinsic::vacopy:
1681 case Intrinsic::vaend:
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001682 case Intrinsic::returnaddress:
1683 case Intrinsic::frameaddress:
Chris Lattner915e5e52004-02-12 17:53:22 +00001684 case Intrinsic::memcpy:
Chris Lattner2a0f2242004-02-14 04:46:05 +00001685 case Intrinsic::memset:
Chris Lattnerdc572442004-06-15 21:36:44 +00001686 case Intrinsic::isunordered:
John Criswell4ffff9e2004-04-08 20:31:47 +00001687 case Intrinsic::readport:
1688 case Intrinsic::writeport:
Chris Lattner44827152003-12-28 09:47:19 +00001689 // We directly implement these intrinsics
1690 break;
John Criswelle5a4c152004-04-13 22:13:14 +00001691 case Intrinsic::readio: {
1692 // On X86, memory operations are in-order. Lower this intrinsic
1693 // into a volatile load.
1694 Instruction *Before = CI->getPrev();
Chris Lattnerb4fe76c2004-06-11 04:31:10 +00001695 LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
1696 CI->replaceAllUsesWith(LI);
1697 BB->getInstList().erase(CI);
John Criswelle5a4c152004-04-13 22:13:14 +00001698 break;
1699 }
1700 case Intrinsic::writeio: {
1701 // On X86, memory operations are in-order. Lower this intrinsic
1702 // into a volatile store.
1703 Instruction *Before = CI->getPrev();
Chris Lattnerb4fe76c2004-06-11 04:31:10 +00001704 StoreInst *LI = new StoreInst(CI->getOperand(1),
1705 CI->getOperand(2), true, CI);
1706 CI->replaceAllUsesWith(LI);
1707 BB->getInstList().erase(CI);
John Criswelle5a4c152004-04-13 22:13:14 +00001708 break;
1709 }
Chris Lattner44827152003-12-28 09:47:19 +00001710 default:
1711 // All other intrinsic calls we must lower.
1712 Instruction *Before = CI->getPrev();
Chris Lattnerf70e0c22003-12-28 21:23:38 +00001713 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
Chris Lattner44827152003-12-28 09:47:19 +00001714 if (Before) { // Move iterator to instruction after call
Chris Lattnerb4fe76c2004-06-11 04:31:10 +00001715 I = Before; ++I;
Chris Lattner44827152003-12-28 09:47:19 +00001716 } else {
1717 I = BB->begin();
1718 }
1719 }
Chris Lattner44827152003-12-28 09:47:19 +00001720}
1721
Misha Brukmaneae1bf12004-09-21 18:21:21 +00001722void X86ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001723 unsigned TmpReg1, TmpReg2;
1724 switch (ID) {
Chris Lattner5634b9f2004-03-13 00:24:52 +00001725 case Intrinsic::vastart:
Chris Lattnereca195e2003-05-08 19:44:13 +00001726 // Get the address of the first vararg value...
Chris Lattner73815062003-10-18 05:56:40 +00001727 TmpReg1 = getReg(CI);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001728 addFrameReference(BuildMI(BB, X86::LEA32r, 5, TmpReg1), VarArgsFrameIndex);
Chris Lattnereca195e2003-05-08 19:44:13 +00001729 return;
1730
Chris Lattner5634b9f2004-03-13 00:24:52 +00001731 case Intrinsic::vacopy:
Chris Lattner73815062003-10-18 05:56:40 +00001732 TmpReg1 = getReg(CI);
1733 TmpReg2 = getReg(CI.getOperand(1));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001734 BuildMI(BB, X86::MOV32rr, 1, TmpReg1).addReg(TmpReg2);
Chris Lattnereca195e2003-05-08 19:44:13 +00001735 return;
Chris Lattner5634b9f2004-03-13 00:24:52 +00001736 case Intrinsic::vaend: return; // Noop on X86
Chris Lattnereca195e2003-05-08 19:44:13 +00001737
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001738 case Intrinsic::returnaddress:
1739 case Intrinsic::frameaddress:
1740 TmpReg1 = getReg(CI);
1741 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1742 if (ID == Intrinsic::returnaddress) {
1743 // Just load the return address
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001744 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, TmpReg1),
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001745 ReturnAddressIndex);
1746 } else {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001747 addFrameReference(BuildMI(BB, X86::LEA32r, 4, TmpReg1),
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001748 ReturnAddressIndex, -4);
1749 }
1750 } else {
1751 // Values other than zero are not implemented yet.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001752 BuildMI(BB, X86::MOV32ri, 1, TmpReg1).addImm(0);
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001753 }
1754 return;
1755
Chris Lattnerdc572442004-06-15 21:36:44 +00001756 case Intrinsic::isunordered:
1757 TmpReg1 = getReg(CI.getOperand(1));
1758 TmpReg2 = getReg(CI.getOperand(2));
1759 emitUCOMr(BB, BB->end(), TmpReg2, TmpReg1);
1760 TmpReg2 = getReg(CI);
1761 BuildMI(BB, X86::SETPr, 0, TmpReg2);
1762 return;
1763
Chris Lattner915e5e52004-02-12 17:53:22 +00001764 case Intrinsic::memcpy: {
1765 assert(CI.getNumOperands() == 5 && "Illegal llvm.memcpy call!");
1766 unsigned Align = 1;
1767 if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
1768 Align = AlignC->getRawValue();
1769 if (Align == 0) Align = 1;
1770 }
1771
1772 // Turn the byte code into # iterations
Chris Lattner915e5e52004-02-12 17:53:22 +00001773 unsigned CountReg;
Chris Lattner2a0f2242004-02-14 04:46:05 +00001774 unsigned Opcode;
Chris Lattner915e5e52004-02-12 17:53:22 +00001775 switch (Align & 3) {
1776 case 2: // WORD aligned
Chris Lattner07122832004-02-13 23:36:47 +00001777 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1778 CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
1779 } else {
1780 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001781 unsigned ByteReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001782 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
Chris Lattner07122832004-02-13 23:36:47 +00001783 }
Chris Lattner2a0f2242004-02-14 04:46:05 +00001784 Opcode = X86::REP_MOVSW;
Chris Lattner915e5e52004-02-12 17:53:22 +00001785 break;
1786 case 0: // DWORD aligned
Chris Lattner07122832004-02-13 23:36:47 +00001787 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1788 CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
1789 } else {
1790 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001791 unsigned ByteReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001792 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
Chris Lattner07122832004-02-13 23:36:47 +00001793 }
Chris Lattner2a0f2242004-02-14 04:46:05 +00001794 Opcode = X86::REP_MOVSD;
Chris Lattner915e5e52004-02-12 17:53:22 +00001795 break;
Chris Lattner8dd8d262004-02-26 01:20:02 +00001796 default: // BYTE aligned
Chris Lattner07122832004-02-13 23:36:47 +00001797 CountReg = getReg(CI.getOperand(3));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001798 Opcode = X86::REP_MOVSB;
Chris Lattner915e5e52004-02-12 17:53:22 +00001799 break;
1800 }
1801
1802 // No matter what the alignment is, we put the source in ESI, the
1803 // destination in EDI, and the count in ECX.
1804 TmpReg1 = getReg(CI.getOperand(1));
1805 TmpReg2 = getReg(CI.getOperand(2));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001806 BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
1807 BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
1808 BuildMI(BB, X86::MOV32rr, 1, X86::ESI).addReg(TmpReg2);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001809 BuildMI(BB, Opcode, 0);
1810 return;
1811 }
1812 case Intrinsic::memset: {
1813 assert(CI.getNumOperands() == 5 && "Illegal llvm.memset call!");
1814 unsigned Align = 1;
1815 if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
1816 Align = AlignC->getRawValue();
1817 if (Align == 0) Align = 1;
Chris Lattner915e5e52004-02-12 17:53:22 +00001818 }
1819
Chris Lattner2a0f2242004-02-14 04:46:05 +00001820 // Turn the byte code into # iterations
Chris Lattner2a0f2242004-02-14 04:46:05 +00001821 unsigned CountReg;
1822 unsigned Opcode;
1823 if (ConstantInt *ValC = dyn_cast<ConstantInt>(CI.getOperand(2))) {
1824 unsigned Val = ValC->getRawValue() & 255;
1825
1826 // If the value is a constant, then we can potentially use larger copies.
1827 switch (Align & 3) {
1828 case 2: // WORD aligned
1829 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
Chris Lattner300d0ed2004-02-14 06:00:36 +00001830 CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001831 } else {
1832 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001833 unsigned ByteReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001834 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001835 }
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001836 BuildMI(BB, X86::MOV16ri, 1, X86::AX).addImm((Val << 8) | Val);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001837 Opcode = X86::REP_STOSW;
1838 break;
1839 case 0: // DWORD aligned
1840 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
Chris Lattner300d0ed2004-02-14 06:00:36 +00001841 CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001842 } else {
1843 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001844 unsigned ByteReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001845 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001846 }
1847 Val = (Val << 8) | Val;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001848 BuildMI(BB, X86::MOV32ri, 1, X86::EAX).addImm((Val << 16) | Val);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001849 Opcode = X86::REP_STOSD;
1850 break;
Chris Lattner8dd8d262004-02-26 01:20:02 +00001851 default: // BYTE aligned
Chris Lattner2a0f2242004-02-14 04:46:05 +00001852 CountReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001853 BuildMI(BB, X86::MOV8ri, 1, X86::AL).addImm(Val);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001854 Opcode = X86::REP_STOSB;
1855 break;
1856 }
1857 } else {
1858 // If it's not a constant value we are storing, just fall back. We could
1859 // try to be clever to form 16 bit and 32 bit values, but we don't yet.
1860 unsigned ValReg = getReg(CI.getOperand(2));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001861 BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001862 CountReg = getReg(CI.getOperand(3));
1863 Opcode = X86::REP_STOSB;
1864 }
1865
1866 // No matter what the alignment is, we put the source in ESI, the
1867 // destination in EDI, and the count in ECX.
1868 TmpReg1 = getReg(CI.getOperand(1));
1869 //TmpReg2 = getReg(CI.getOperand(2));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001870 BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
1871 BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001872 BuildMI(BB, Opcode, 0);
Chris Lattner915e5e52004-02-12 17:53:22 +00001873 return;
1874 }
1875
Chris Lattner87e18de2004-04-13 17:20:37 +00001876 case Intrinsic::readport: {
1877 // First, determine that the size of the operand falls within the acceptable
1878 // range for this architecture.
John Criswell4ffff9e2004-04-08 20:31:47 +00001879 //
Chris Lattner87e18de2004-04-13 17:20:37 +00001880 if (getClassB(CI.getOperand(1)->getType()) != cShort) {
John Criswellca6ea0f2004-04-08 22:39:13 +00001881 std::cerr << "llvm.readport: Address size is not 16 bits\n";
Chris Lattner87e18de2004-04-13 17:20:37 +00001882 exit(1);
John Criswellca6ea0f2004-04-08 22:39:13 +00001883 }
John Criswell4ffff9e2004-04-08 20:31:47 +00001884
John Criswell4ffff9e2004-04-08 20:31:47 +00001885 // Now, move the I/O port address into the DX register and use the IN
1886 // instruction to get the input data.
1887 //
Chris Lattner87e18de2004-04-13 17:20:37 +00001888 unsigned Class = getClass(CI.getCalledFunction()->getReturnType());
1889 unsigned DestReg = getReg(CI);
John Criswell4ffff9e2004-04-08 20:31:47 +00001890
Chris Lattner87e18de2004-04-13 17:20:37 +00001891 // If the port is a single-byte constant, use the immediate form.
1892 if (ConstantInt *C = dyn_cast<ConstantInt>(CI.getOperand(1)))
1893 if ((C->getRawValue() & 255) == C->getRawValue()) {
1894 switch (Class) {
1895 case cByte:
1896 BuildMI(BB, X86::IN8ri, 1).addImm((unsigned char)C->getRawValue());
1897 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
1898 return;
1899 case cShort:
1900 BuildMI(BB, X86::IN16ri, 1).addImm((unsigned char)C->getRawValue());
1901 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX);
1902 return;
1903 case cInt:
1904 BuildMI(BB, X86::IN32ri, 1).addImm((unsigned char)C->getRawValue());
1905 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX);
1906 return;
1907 }
1908 }
1909
1910 unsigned Reg = getReg(CI.getOperand(1));
1911 BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg);
1912 switch (Class) {
1913 case cByte:
1914 BuildMI(BB, X86::IN8rr, 0);
1915 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
1916 break;
1917 case cShort:
1918 BuildMI(BB, X86::IN16rr, 0);
1919 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX);
1920 break;
1921 case cInt:
1922 BuildMI(BB, X86::IN32rr, 0);
1923 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX);
1924 break;
1925 default:
1926 std::cerr << "Cannot do input on this data type";
John Criswellca6ea0f2004-04-08 22:39:13 +00001927 exit (1);
1928 }
John Criswell4ffff9e2004-04-08 20:31:47 +00001929 return;
Chris Lattner87e18de2004-04-13 17:20:37 +00001930 }
John Criswell4ffff9e2004-04-08 20:31:47 +00001931
Chris Lattner87e18de2004-04-13 17:20:37 +00001932 case Intrinsic::writeport: {
1933 // First, determine that the size of the operand falls within the
1934 // acceptable range for this architecture.
1935 if (getClass(CI.getOperand(2)->getType()) != cShort) {
1936 std::cerr << "llvm.writeport: Address size is not 16 bits\n";
1937 exit(1);
1938 }
1939
1940 unsigned Class = getClassB(CI.getOperand(1)->getType());
1941 unsigned ValReg = getReg(CI.getOperand(1));
1942 switch (Class) {
1943 case cByte:
1944 BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg);
1945 break;
1946 case cShort:
1947 BuildMI(BB, X86::MOV16rr, 1, X86::AX).addReg(ValReg);
1948 break;
1949 case cInt:
1950 BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(ValReg);
1951 break;
1952 default:
1953 std::cerr << "llvm.writeport: invalid data type for X86 target";
1954 exit(1);
1955 }
1956
1957
1958 // If the port is a single-byte constant, use the immediate form.
1959 if (ConstantInt *C = dyn_cast<ConstantInt>(CI.getOperand(2)))
1960 if ((C->getRawValue() & 255) == C->getRawValue()) {
1961 static const unsigned O[] = { X86::OUT8ir, X86::OUT16ir, X86::OUT32ir };
1962 BuildMI(BB, O[Class], 1).addImm((unsigned char)C->getRawValue());
1963 return;
1964 }
1965
1966 // Otherwise, move the I/O port address into the DX register and the value
1967 // to write into the AL/AX/EAX register.
1968 static const unsigned Opc[] = { X86::OUT8rr, X86::OUT16rr, X86::OUT32rr };
1969 unsigned Reg = getReg(CI.getOperand(2));
1970 BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg);
1971 BuildMI(BB, Opc[Class], 0);
1972 return;
1973 }
1974
Chris Lattner44827152003-12-28 09:47:19 +00001975 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
Chris Lattnereca195e2003-05-08 19:44:13 +00001976 }
1977}
1978
Chris Lattner7dee5da2004-03-08 01:58:35 +00001979static bool isSafeToFoldLoadIntoInstruction(LoadInst &LI, Instruction &User) {
1980 if (LI.getParent() != User.getParent())
1981 return false;
1982 BasicBlock::iterator It = &LI;
1983 // Check all of the instructions between the load and the user. We should
1984 // really use alias analysis here, but for now we just do something simple.
1985 for (++It; It != BasicBlock::iterator(&User); ++It) {
1986 switch (It->getOpcode()) {
Chris Lattner85c84e72004-03-18 06:29:54 +00001987 case Instruction::Free:
Chris Lattner7dee5da2004-03-08 01:58:35 +00001988 case Instruction::Store:
1989 case Instruction::Call:
1990 case Instruction::Invoke:
1991 return false;
Chris Lattner133dbb12004-04-12 03:02:48 +00001992 case Instruction::Load:
1993 if (cast<LoadInst>(It)->isVolatile() && LI.isVolatile())
1994 return false;
1995 break;
Chris Lattner7dee5da2004-03-08 01:58:35 +00001996 }
1997 }
1998 return true;
1999}
2000
Chris Lattnerb515f6d2003-05-08 20:49:25 +00002001/// visitSimpleBinary - Implement simple binary operators for integral types...
2002/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
2003/// Xor.
Misha Brukman538607f2004-03-01 23:53:11 +00002004///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002005void X86ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +00002006 unsigned DestReg = getReg(B);
2007 MachineBasicBlock::iterator MI = BB->end();
Chris Lattner721d2d42004-03-08 01:18:36 +00002008 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
Chris Lattnerc81e6ba2004-05-10 15:15:55 +00002009 unsigned Class = getClassB(B.getType());
Chris Lattner721d2d42004-03-08 01:18:36 +00002010
Chris Lattnerde95c9e2004-10-17 06:10:40 +00002011 // If this is AND X, C, and it is only used by a setcc instruction, it will
2012 // be folded. There is no need to emit this instruction.
2013 if (B.hasOneUse() && OperatorClass == 2 && isa<ConstantInt>(Op1))
2014 if (Class == cByte || Class == cShort || Class == cInt) {
2015 Instruction *Use = cast<Instruction>(B.use_back());
2016 if (isa<SetCondInst>(Use) &&
2017 Use->getOperand(1) == Constant::getNullValue(B.getType())) {
2018 switch (getSetCCNumber(Use->getOpcode())) {
2019 case 0:
2020 case 1:
2021 return;
2022 default:
2023 if (B.getType()->isSigned()) return;
2024 }
2025 }
2026 }
2027
Chris Lattner7dee5da2004-03-08 01:58:35 +00002028 // Special case: op Reg, load [mem]
Chris Lattnerc81e6ba2004-05-10 15:15:55 +00002029 if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1) && Class != cLong &&
Chris Lattnerccd97962004-06-17 22:15:25 +00002030 Op0->hasOneUse() &&
Chris Lattnerc81e6ba2004-05-10 15:15:55 +00002031 isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B))
Chris Lattner7dee5da2004-03-08 01:58:35 +00002032 if (!B.swapOperands())
2033 std::swap(Op0, Op1); // Make sure any loads are in the RHS.
2034
Chris Lattnerccd97962004-06-17 22:15:25 +00002035 if (isa<LoadInst>(Op1) && Class != cLong && Op1->hasOneUse() &&
Chris Lattner7dee5da2004-03-08 01:58:35 +00002036 isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op1), B)) {
2037
Chris Lattner95157f72004-04-11 22:05:45 +00002038 unsigned Opcode;
2039 if (Class != cFP) {
2040 static const unsigned OpcodeTab[][3] = {
2041 // Arithmetic operators
2042 { X86::ADD8rm, X86::ADD16rm, X86::ADD32rm }, // ADD
2043 { X86::SUB8rm, X86::SUB16rm, X86::SUB32rm }, // SUB
2044
2045 // Bitwise operators
2046 { X86::AND8rm, X86::AND16rm, X86::AND32rm }, // AND
2047 { X86:: OR8rm, X86:: OR16rm, X86:: OR32rm }, // OR
2048 { X86::XOR8rm, X86::XOR16rm, X86::XOR32rm }, // XOR
2049 };
2050 Opcode = OpcodeTab[OperatorClass][Class];
2051 } else {
2052 static const unsigned OpcodeTab[][2] = {
2053 { X86::FADD32m, X86::FADD64m }, // ADD
2054 { X86::FSUB32m, X86::FSUB64m }, // SUB
2055 };
2056 const Type *Ty = Op0->getType();
2057 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
2058 Opcode = OpcodeTab[OperatorClass][Ty == Type::DoubleTy];
2059 }
Chris Lattner7dee5da2004-03-08 01:58:35 +00002060
Chris Lattner7dee5da2004-03-08 01:58:35 +00002061 unsigned Op0r = getReg(Op0);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002062 if (AllocaInst *AI =
2063 dyn_castFixedAlloca(cast<LoadInst>(Op1)->getOperand(0))) {
2064 unsigned FI = getFixedSizedAllocaFI(AI);
2065 addFrameReference(BuildMI(BB, Opcode, 5, DestReg).addReg(Op0r), FI);
2066
2067 } else {
Reid Spencerfc989e12004-08-30 00:13:26 +00002068 X86AddressMode AM;
2069 getAddressingMode(cast<LoadInst>(Op1)->getOperand(0), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002070
Reid Spencerfc989e12004-08-30 00:13:26 +00002071 addFullAddress(BuildMI(BB, Opcode, 5, DestReg).addReg(Op0r), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002072 }
Chris Lattner7dee5da2004-03-08 01:58:35 +00002073 return;
2074 }
2075
Chris Lattner95157f72004-04-11 22:05:45 +00002076 // If this is a floating point subtract, check to see if we can fold the first
2077 // operand in.
2078 if (Class == cFP && OperatorClass == 1 &&
2079 isa<LoadInst>(Op0) &&
2080 isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B)) {
2081 const Type *Ty = Op0->getType();
2082 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
2083 unsigned Opcode = Ty == Type::FloatTy ? X86::FSUBR32m : X86::FSUBR64m;
2084
Chris Lattner95157f72004-04-11 22:05:45 +00002085 unsigned Op1r = getReg(Op1);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002086 if (AllocaInst *AI =
2087 dyn_castFixedAlloca(cast<LoadInst>(Op0)->getOperand(0))) {
2088 unsigned FI = getFixedSizedAllocaFI(AI);
2089 addFrameReference(BuildMI(BB, Opcode, 5, DestReg).addReg(Op1r), FI);
2090 } else {
Reid Spencerfc989e12004-08-30 00:13:26 +00002091 X86AddressMode AM;
2092 getAddressingMode(cast<LoadInst>(Op0)->getOperand(0), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002093
Reid Spencerfc989e12004-08-30 00:13:26 +00002094 addFullAddress(BuildMI(BB, Opcode, 5, DestReg).addReg(Op1r), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002095 }
Chris Lattner95157f72004-04-11 22:05:45 +00002096 return;
2097 }
2098
Chris Lattner721d2d42004-03-08 01:18:36 +00002099 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
Chris Lattnerb515f6d2003-05-08 20:49:25 +00002100}
Chris Lattner3e130a22003-01-13 00:32:26 +00002101
Chris Lattner6621ed92004-04-11 21:23:56 +00002102
2103/// emitBinaryFPOperation - This method handles emission of floating point
2104/// Add (0), Sub (1), Mul (2), and Div (3) operations.
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002105void X86ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
2106 MachineBasicBlock::iterator IP,
2107 Value *Op0, Value *Op1,
2108 unsigned OperatorClass, unsigned DestReg) {
Chris Lattner6621ed92004-04-11 21:23:56 +00002109 // Special case: op Reg, <const fp>
2110 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1))
2111 if (!Op1C->isExactlyValue(+0.0) && !Op1C->isExactlyValue(+1.0)) {
2112 // Create a constant pool entry for this constant.
2113 MachineConstantPool *CP = F->getConstantPool();
2114 unsigned CPI = CP->getConstantPoolIndex(Op1C);
2115 const Type *Ty = Op1->getType();
2116
2117 static const unsigned OpcodeTab[][4] = {
2118 { X86::FADD32m, X86::FSUB32m, X86::FMUL32m, X86::FDIV32m }, // Float
2119 { X86::FADD64m, X86::FSUB64m, X86::FMUL64m, X86::FDIV64m }, // Double
2120 };
2121
2122 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
2123 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
2124 unsigned Op0r = getReg(Op0, BB, IP);
2125 addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5,
2126 DestReg).addReg(Op0r), CPI);
2127 return;
2128 }
2129
Chris Lattner13c07fe2004-04-12 00:12:04 +00002130 // Special case: R1 = op <const fp>, R2
Chris Lattner6621ed92004-04-11 21:23:56 +00002131 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
2132 if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) {
2133 // -0.0 - X === -X
2134 unsigned op1Reg = getReg(Op1, BB, IP);
2135 BuildMI(*BB, IP, X86::FCHS, 1, DestReg).addReg(op1Reg);
2136 return;
2137 } else if (!CFP->isExactlyValue(+0.0) && !CFP->isExactlyValue(+1.0)) {
Chris Lattner13c07fe2004-04-12 00:12:04 +00002138 // R1 = op CST, R2 --> R1 = opr R2, CST
Chris Lattner6621ed92004-04-11 21:23:56 +00002139
2140 // Create a constant pool entry for this constant.
2141 MachineConstantPool *CP = F->getConstantPool();
2142 unsigned CPI = CP->getConstantPoolIndex(CFP);
2143 const Type *Ty = CFP->getType();
2144
2145 static const unsigned OpcodeTab[][4] = {
2146 { X86::FADD32m, X86::FSUBR32m, X86::FMUL32m, X86::FDIVR32m }, // Float
2147 { X86::FADD64m, X86::FSUBR64m, X86::FMUL64m, X86::FDIVR64m }, // Double
2148 };
2149
2150 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2151 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
2152 unsigned Op1r = getReg(Op1, BB, IP);
2153 addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5,
2154 DestReg).addReg(Op1r), CPI);
2155 return;
2156 }
2157
2158 // General case.
2159 static const unsigned OpcodeTab[4] = {
2160 X86::FpADD, X86::FpSUB, X86::FpMUL, X86::FpDIV
2161 };
2162
2163 unsigned Opcode = OpcodeTab[OperatorClass];
2164 unsigned Op0r = getReg(Op0, BB, IP);
2165 unsigned Op1r = getReg(Op1, BB, IP);
2166 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
2167}
2168
Chris Lattnerb2acc512003-10-19 21:09:10 +00002169/// emitSimpleBinaryOperation - Implement simple binary operators for integral
2170/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
2171/// Or, 4 for Xor.
Chris Lattner68aad932002-11-02 20:13:22 +00002172///
Chris Lattnerb515f6d2003-05-08 20:49:25 +00002173/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
2174/// and constant expression support.
Chris Lattnerb2acc512003-10-19 21:09:10 +00002175///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002176void X86ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
2177 MachineBasicBlock::iterator IP,
2178 Value *Op0, Value *Op1,
2179 unsigned OperatorClass,
2180 unsigned DestReg) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +00002181 unsigned Class = getClassB(Op0->getType());
Chris Lattnerb2acc512003-10-19 21:09:10 +00002182
Chris Lattner6621ed92004-04-11 21:23:56 +00002183 if (Class == cFP) {
2184 assert(OperatorClass < 2 && "No logical ops for FP!");
2185 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
2186 return;
2187 }
2188
Chris Lattner48b0c972004-04-11 20:26:20 +00002189 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
Chris Lattner667ea022004-06-18 00:50:37 +00002190 if (OperatorClass == 1) {
Chris Lattner48b0c972004-04-11 20:26:20 +00002191 static unsigned const NEGTab[] = {
2192 X86::NEG8r, X86::NEG16r, X86::NEG32r, 0, X86::NEG32r
2193 };
Chris Lattner667ea022004-06-18 00:50:37 +00002194
2195 // sub 0, X -> neg X
2196 if (CI->isNullValue()) {
2197 unsigned op1Reg = getReg(Op1, MBB, IP);
2198 BuildMI(*MBB, IP, NEGTab[Class], 1, DestReg).addReg(op1Reg);
Chris Lattner48b0c972004-04-11 20:26:20 +00002199
Chris Lattner667ea022004-06-18 00:50:37 +00002200 if (Class == cLong) {
2201 // We just emitted: Dl = neg Sl
2202 // Now emit : T = addc Sh, 0
2203 // : Dh = neg T
2204 unsigned T = makeAnotherReg(Type::IntTy);
2205 BuildMI(*MBB, IP, X86::ADC32ri, 2, T).addReg(op1Reg+1).addImm(0);
2206 BuildMI(*MBB, IP, X86::NEG32r, 1, DestReg+1).addReg(T);
2207 }
2208 return;
2209 } else if (Op1->hasOneUse() && Class != cLong) {
2210 // sub C, X -> tmp = neg X; DestReg = add tmp, C. This is better
2211 // than copying C into a temporary register, because of register
2212 // pressure (tmp and destreg can share a register.
2213 static unsigned const ADDRITab[] = {
2214 X86::ADD8ri, X86::ADD16ri, X86::ADD32ri, 0, X86::ADD32ri
2215 };
2216 unsigned op1Reg = getReg(Op1, MBB, IP);
2217 unsigned Tmp = makeAnotherReg(Op0->getType());
2218 BuildMI(*MBB, IP, NEGTab[Class], 1, Tmp).addReg(op1Reg);
Chris Lattner30483732004-06-20 07:49:54 +00002219 BuildMI(*MBB, IP, ADDRITab[Class], 2,
2220 DestReg).addReg(Tmp).addImm(CI->getRawValue());
Chris Lattner667ea022004-06-18 00:50:37 +00002221 return;
Chris Lattnerb2acc512003-10-19 21:09:10 +00002222 }
Chris Lattner48b0c972004-04-11 20:26:20 +00002223 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002224
Chris Lattner48b0c972004-04-11 20:26:20 +00002225 // Special case: op Reg, <const int>
2226 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner721d2d42004-03-08 01:18:36 +00002227 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002228
Chris Lattner721d2d42004-03-08 01:18:36 +00002229 // xor X, -1 -> not X
2230 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002231 static unsigned const NOTTab[] = {
2232 X86::NOT8r, X86::NOT16r, X86::NOT32r, 0, X86::NOT32r
2233 };
Chris Lattner721d2d42004-03-08 01:18:36 +00002234 BuildMI(*MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r);
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002235 if (Class == cLong) // Invert the top part too
2236 BuildMI(*MBB, IP, X86::NOT32r, 1, DestReg+1).addReg(Op0r+1);
Chris Lattner721d2d42004-03-08 01:18:36 +00002237 return;
2238 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002239
Chris Lattner721d2d42004-03-08 01:18:36 +00002240 // add X, -1 -> dec X
Chris Lattner06521672004-04-06 03:36:57 +00002241 if (OperatorClass == 0 && Op1C->isAllOnesValue() && Class != cLong) {
2242 // Note that we can't use dec for 64-bit decrements, because it does not
2243 // set the carry flag!
2244 static unsigned const DECTab[] = { X86::DEC8r, X86::DEC16r, X86::DEC32r };
Chris Lattner721d2d42004-03-08 01:18:36 +00002245 BuildMI(*MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
2246 return;
2247 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002248
Chris Lattner721d2d42004-03-08 01:18:36 +00002249 // add X, 1 -> inc X
Chris Lattner06521672004-04-06 03:36:57 +00002250 if (OperatorClass == 0 && Op1C->equalsInt(1) && Class != cLong) {
2251 // Note that we can't use inc for 64-bit increments, because it does not
2252 // set the carry flag!
2253 static unsigned const INCTab[] = { X86::INC8r, X86::INC16r, X86::INC32r };
Alkis Evlogimenosbee8a092004-04-02 18:11:32 +00002254 BuildMI(*MBB, IP, INCTab[Class], 1, DestReg).addReg(Op0r);
Chris Lattner721d2d42004-03-08 01:18:36 +00002255 return;
2256 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002257
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002258 static const unsigned OpcodeTab[][5] = {
Chris Lattner721d2d42004-03-08 01:18:36 +00002259 // Arithmetic operators
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002260 { X86::ADD8ri, X86::ADD16ri, X86::ADD32ri, 0, X86::ADD32ri }, // ADD
2261 { X86::SUB8ri, X86::SUB16ri, X86::SUB32ri, 0, X86::SUB32ri }, // SUB
Chris Lattnerb2acc512003-10-19 21:09:10 +00002262
Chris Lattner721d2d42004-03-08 01:18:36 +00002263 // Bitwise operators
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002264 { X86::AND8ri, X86::AND16ri, X86::AND32ri, 0, X86::AND32ri }, // AND
2265 { X86:: OR8ri, X86:: OR16ri, X86:: OR32ri, 0, X86::OR32ri }, // OR
2266 { X86::XOR8ri, X86::XOR16ri, X86::XOR32ri, 0, X86::XOR32ri }, // XOR
Chris Lattner721d2d42004-03-08 01:18:36 +00002267 };
2268
Chris Lattner721d2d42004-03-08 01:18:36 +00002269 unsigned Opcode = OpcodeTab[OperatorClass][Class];
Chris Lattner33f7fa32004-04-06 03:15:53 +00002270 unsigned Op1l = cast<ConstantInt>(Op1C)->getRawValue();
Chris Lattner721d2d42004-03-08 01:18:36 +00002271
Chris Lattner33f7fa32004-04-06 03:15:53 +00002272 if (Class != cLong) {
2273 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l);
2274 return;
Chris Lattner6621ed92004-04-11 21:23:56 +00002275 }
2276
2277 // If this is a long value and the high or low bits have a special
2278 // property, emit some special cases.
2279 unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
2280
2281 // If the constant is zero in the low 32-bits, just copy the low part
2282 // across and apply the normal 32-bit operation to the high parts. There
2283 // will be no carry or borrow into the top.
2284 if (Op1l == 0) {
2285 if (OperatorClass != 2) // All but and...
2286 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0r);
2287 else
2288 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
2289 BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg+1)
2290 .addReg(Op0r+1).addImm(Op1h);
Chris Lattner33f7fa32004-04-06 03:15:53 +00002291 return;
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002292 }
Chris Lattner6621ed92004-04-11 21:23:56 +00002293
2294 // If this is a logical operation and the top 32-bits are zero, just
2295 // operate on the lower 32.
2296 if (Op1h == 0 && OperatorClass > 1) {
2297 BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg)
2298 .addReg(Op0r).addImm(Op1l);
2299 if (OperatorClass != 2) // All but and
2300 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(Op0r+1);
2301 else
2302 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
2303 return;
2304 }
2305
2306 // TODO: We could handle lots of other special cases here, such as AND'ing
2307 // with 0xFFFFFFFF00000000 -> noop, etc.
2308
2309 // Otherwise, code generate the full operation with a constant.
2310 static const unsigned TopTab[] = {
2311 X86::ADC32ri, X86::SBB32ri, X86::AND32ri, X86::OR32ri, X86::XOR32ri
2312 };
2313
2314 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l);
2315 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1)
2316 .addReg(Op0r+1).addImm(Op1h);
2317 return;
Chris Lattner721d2d42004-03-08 01:18:36 +00002318 }
2319
2320 // Finally, handle the general case now.
Chris Lattner7ba92302004-04-06 02:13:25 +00002321 static const unsigned OpcodeTab[][5] = {
Chris Lattner721d2d42004-03-08 01:18:36 +00002322 // Arithmetic operators
Chris Lattner6621ed92004-04-11 21:23:56 +00002323 { X86::ADD8rr, X86::ADD16rr, X86::ADD32rr, 0, X86::ADD32rr }, // ADD
2324 { X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, 0, X86::SUB32rr }, // SUB
Chris Lattner721d2d42004-03-08 01:18:36 +00002325
Chris Lattnerb2acc512003-10-19 21:09:10 +00002326 // Bitwise operators
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002327 { X86::AND8rr, X86::AND16rr, X86::AND32rr, 0, X86::AND32rr }, // AND
2328 { X86:: OR8rr, X86:: OR16rr, X86:: OR32rr, 0, X86:: OR32rr }, // OR
2329 { X86::XOR8rr, X86::XOR16rr, X86::XOR32rr, 0, X86::XOR32rr }, // XOR
Chris Lattnerb2acc512003-10-19 21:09:10 +00002330 };
Chris Lattner721d2d42004-03-08 01:18:36 +00002331
Chris Lattnerb2acc512003-10-19 21:09:10 +00002332 unsigned Opcode = OpcodeTab[OperatorClass][Class];
Chris Lattner721d2d42004-03-08 01:18:36 +00002333 unsigned Op0r = getReg(Op0, MBB, IP);
2334 unsigned Op1r = getReg(Op1, MBB, IP);
2335 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
2336
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002337 if (Class == cLong) { // Handle the upper 32 bits of long values...
Chris Lattner721d2d42004-03-08 01:18:36 +00002338 static const unsigned TopTab[] = {
2339 X86::ADC32rr, X86::SBB32rr, X86::AND32rr, X86::OR32rr, X86::XOR32rr
2340 };
2341 BuildMI(*MBB, IP, TopTab[OperatorClass], 2,
2342 DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
2343 }
Chris Lattnere2954c82002-11-02 20:04:26 +00002344}
2345
Chris Lattner3e130a22003-01-13 00:32:26 +00002346/// doMultiply - Emit appropriate instructions to multiply together the
2347/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
2348/// result should be given as DestTy.
2349///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002350void X86ISel::doMultiply(MachineBasicBlock *MBB,
2351 MachineBasicBlock::iterator MBBI,
2352 unsigned DestReg, const Type *DestTy,
2353 unsigned op0Reg, unsigned op1Reg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002354 unsigned Class = getClass(DestTy);
Chris Lattner94af4142002-12-25 05:13:53 +00002355 switch (Class) {
Chris Lattner0f1c4612003-06-21 17:16:58 +00002356 case cInt:
2357 case cShort:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002358 BuildMI(*MBB, MBBI, Class == cInt ? X86::IMUL32rr:X86::IMUL16rr, 2, DestReg)
Chris Lattner0f1c4612003-06-21 17:16:58 +00002359 .addReg(op0Reg).addReg(op1Reg);
2360 return;
2361 case cByte:
2362 // Must use the MUL instruction, which forces use of AL...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002363 BuildMI(*MBB, MBBI, X86::MOV8rr, 1, X86::AL).addReg(op0Reg);
2364 BuildMI(*MBB, MBBI, X86::MUL8r, 1).addReg(op1Reg);
2365 BuildMI(*MBB, MBBI, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
Chris Lattner0f1c4612003-06-21 17:16:58 +00002366 return;
Chris Lattner94af4142002-12-25 05:13:53 +00002367 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00002368 case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
Chris Lattner94af4142002-12-25 05:13:53 +00002369 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002370}
2371
Chris Lattnerb2acc512003-10-19 21:09:10 +00002372// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
2373// returns zero when the input is not exactly a power of two.
2374static unsigned ExactLog2(unsigned Val) {
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002375 if (Val == 0 || (Val & (Val-1))) return 0;
Chris Lattnerb2acc512003-10-19 21:09:10 +00002376 unsigned Count = 0;
2377 while (Val != 1) {
Chris Lattnerb2acc512003-10-19 21:09:10 +00002378 Val >>= 1;
2379 ++Count;
2380 }
2381 return Count+1;
2382}
2383
Chris Lattner462fa822004-04-11 20:56:28 +00002384
2385/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
2386/// 16, or 32-bit integer multiply by a constant.
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002387void X86ISel::doMultiplyConst(MachineBasicBlock *MBB,
2388 MachineBasicBlock::iterator IP,
2389 unsigned DestReg, const Type *DestTy,
2390 unsigned op0Reg, unsigned ConstRHS) {
Chris Lattner6ab06d52004-04-06 04:55:43 +00002391 static const unsigned MOVrrTab[] = {X86::MOV8rr, X86::MOV16rr, X86::MOV32rr};
2392 static const unsigned MOVriTab[] = {X86::MOV8ri, X86::MOV16ri, X86::MOV32ri};
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002393 static const unsigned ADDrrTab[] = {X86::ADD8rr, X86::ADD16rr, X86::ADD32rr};
Chris Lattner596b97f2004-07-19 23:47:21 +00002394 static const unsigned NEGrTab[] = {X86::NEG8r , X86::NEG16r , X86::NEG32r };
Chris Lattner6ab06d52004-04-06 04:55:43 +00002395
Chris Lattnerb2acc512003-10-19 21:09:10 +00002396 unsigned Class = getClass(DestTy);
Chris Lattner596b97f2004-07-19 23:47:21 +00002397 unsigned TmpReg;
Chris Lattnerb2acc512003-10-19 21:09:10 +00002398
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002399 // Handle special cases here.
2400 switch (ConstRHS) {
Chris Lattner596b97f2004-07-19 23:47:21 +00002401 case -2:
2402 TmpReg = makeAnotherReg(DestTy);
2403 BuildMI(*MBB, IP, NEGrTab[Class], 1, TmpReg).addReg(op0Reg);
2404 BuildMI(*MBB, IP, ADDrrTab[Class], 1,DestReg).addReg(TmpReg).addReg(TmpReg);
2405 return;
2406 case -1:
2407 BuildMI(*MBB, IP, NEGrTab[Class], 1, DestReg).addReg(op0Reg);
2408 return;
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002409 case 0:
Chris Lattner6ab06d52004-04-06 04:55:43 +00002410 BuildMI(*MBB, IP, MOVriTab[Class], 1, DestReg).addImm(0);
2411 return;
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002412 case 1:
Chris Lattner6ab06d52004-04-06 04:55:43 +00002413 BuildMI(*MBB, IP, MOVrrTab[Class], 1, DestReg).addReg(op0Reg);
2414 return;
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002415 case 2:
2416 BuildMI(*MBB, IP, ADDrrTab[Class], 1,DestReg).addReg(op0Reg).addReg(op0Reg);
2417 return;
2418 case 3:
2419 case 5:
2420 case 9:
2421 if (Class == cInt) {
Reid Spencerfc989e12004-08-30 00:13:26 +00002422 X86AddressMode AM;
2423 AM.BaseType = X86AddressMode::RegBase;
2424 AM.Base.Reg = op0Reg;
2425 AM.Scale = ConstRHS-1;
2426 AM.IndexReg = op0Reg;
2427 AM.Disp = 0;
2428 addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, DestReg), AM);
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002429 return;
2430 }
Chris Lattner596b97f2004-07-19 23:47:21 +00002431 case -3:
2432 case -5:
2433 case -9:
2434 if (Class == cInt) {
2435 TmpReg = makeAnotherReg(DestTy);
Reid Spencerfc989e12004-08-30 00:13:26 +00002436 X86AddressMode AM;
2437 AM.BaseType = X86AddressMode::RegBase;
2438 AM.Base.Reg = op0Reg;
2439 AM.Scale = -ConstRHS-1;
2440 AM.IndexReg = op0Reg;
2441 AM.Disp = 0;
2442 addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TmpReg), AM);
Chris Lattner596b97f2004-07-19 23:47:21 +00002443 BuildMI(*MBB, IP, NEGrTab[Class], 1, DestReg).addReg(TmpReg);
2444 return;
2445 }
Chris Lattner6ab06d52004-04-06 04:55:43 +00002446 }
2447
Chris Lattnerb2acc512003-10-19 21:09:10 +00002448 // If the element size is exactly a power of 2, use a shift to get it.
2449 if (unsigned Shift = ExactLog2(ConstRHS)) {
2450 switch (Class) {
2451 default: assert(0 && "Unknown class for this function!");
2452 case cByte:
Chris Lattner596b97f2004-07-19 23:47:21 +00002453 BuildMI(*MBB, IP, X86::SHL8ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002454 return;
2455 case cShort:
Chris Lattner596b97f2004-07-19 23:47:21 +00002456 BuildMI(*MBB, IP, X86::SHL16ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002457 return;
2458 case cInt:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002459 BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002460 return;
2461 }
2462 }
Chris Lattner596b97f2004-07-19 23:47:21 +00002463
2464 // If the element size is a negative power of 2, use a shift/neg to get it.
2465 if (unsigned Shift = ExactLog2(-ConstRHS)) {
2466 TmpReg = makeAnotherReg(DestTy);
2467 BuildMI(*MBB, IP, NEGrTab[Class], 1, TmpReg).addReg(op0Reg);
2468 switch (Class) {
2469 default: assert(0 && "Unknown class for this function!");
2470 case cByte:
2471 BuildMI(*MBB, IP, X86::SHL8ri,2, DestReg).addReg(TmpReg).addImm(Shift-1);
2472 return;
2473 case cShort:
2474 BuildMI(*MBB, IP, X86::SHL16ri,2, DestReg).addReg(TmpReg).addImm(Shift-1);
2475 return;
2476 case cInt:
2477 BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(TmpReg).addImm(Shift-1);
2478 return;
2479 }
2480 }
Chris Lattnerc01d1232003-10-20 03:42:58 +00002481
2482 if (Class == cShort) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002483 BuildMI(*MBB, IP, X86::IMUL16rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS);
Chris Lattnerc01d1232003-10-20 03:42:58 +00002484 return;
2485 } else if (Class == cInt) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002486 BuildMI(*MBB, IP, X86::IMUL32rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS);
Chris Lattnerc01d1232003-10-20 03:42:58 +00002487 return;
2488 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002489
2490 // Most general case, emit a normal multiply...
Chris Lattner596b97f2004-07-19 23:47:21 +00002491 TmpReg = makeAnotherReg(DestTy);
Chris Lattneree352852004-02-29 07:22:16 +00002492 BuildMI(*MBB, IP, MOVriTab[Class], 1, TmpReg).addImm(ConstRHS);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002493
2494 // Emit a MUL to multiply the register holding the index by
2495 // elementSize, putting the result in OffsetReg.
2496 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
2497}
2498
Chris Lattnerca9671d2002-11-02 20:28:58 +00002499/// visitMul - Multiplies are not simple binary operators because they must deal
2500/// with the EAX register explicitly.
2501///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002502void X86ISel::visitMul(BinaryOperator &I) {
Chris Lattner462fa822004-04-11 20:56:28 +00002503 unsigned ResultReg = getReg(I);
2504
Chris Lattner95157f72004-04-11 22:05:45 +00002505 Value *Op0 = I.getOperand(0);
2506 Value *Op1 = I.getOperand(1);
2507
2508 // Fold loads into floating point multiplies.
2509 if (getClass(Op0->getType()) == cFP) {
2510 if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1))
2511 if (!I.swapOperands())
2512 std::swap(Op0, Op1); // Make sure any loads are in the RHS.
2513 if (LoadInst *LI = dyn_cast<LoadInst>(Op1))
2514 if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
2515 const Type *Ty = Op0->getType();
2516 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2517 unsigned Opcode = Ty == Type::FloatTy ? X86::FMUL32m : X86::FMUL64m;
2518
Chris Lattner95157f72004-04-11 22:05:45 +00002519 unsigned Op0r = getReg(Op0);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002520 if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
2521 unsigned FI = getFixedSizedAllocaFI(AI);
2522 addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), FI);
2523 } else {
Reid Spencerfc989e12004-08-30 00:13:26 +00002524 X86AddressMode AM;
2525 getAddressingMode(LI->getOperand(0), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002526
Reid Spencerfc989e12004-08-30 00:13:26 +00002527 addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002528 }
Chris Lattner95157f72004-04-11 22:05:45 +00002529 return;
2530 }
2531 }
2532
Chris Lattner462fa822004-04-11 20:56:28 +00002533 MachineBasicBlock::iterator IP = BB->end();
Chris Lattner95157f72004-04-11 22:05:45 +00002534 emitMultiply(BB, IP, Op0, Op1, ResultReg);
Chris Lattner462fa822004-04-11 20:56:28 +00002535}
2536
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002537void X86ISel::emitMultiply(MachineBasicBlock *MBB,
2538 MachineBasicBlock::iterator IP,
2539 Value *Op0, Value *Op1, unsigned DestReg) {
Chris Lattner462fa822004-04-11 20:56:28 +00002540 MachineBasicBlock &BB = *MBB;
2541 TypeClass Class = getClass(Op0->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +00002542
2543 // Simple scalar multiply?
Chris Lattner8ebf1c32004-04-11 21:09:14 +00002544 unsigned Op0Reg = getReg(Op0, &BB, IP);
Chris Lattner462fa822004-04-11 20:56:28 +00002545 switch (Class) {
2546 case cByte:
2547 case cShort:
2548 case cInt:
2549 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner462fa822004-04-11 20:56:28 +00002550 unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
2551 doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002552 } else {
Chris Lattner462fa822004-04-11 20:56:28 +00002553 unsigned Op1Reg = getReg(Op1, &BB, IP);
2554 doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002555 }
Chris Lattner462fa822004-04-11 20:56:28 +00002556 return;
2557 case cFP:
Chris Lattner6621ed92004-04-11 21:23:56 +00002558 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
2559 return;
Chris Lattner462fa822004-04-11 20:56:28 +00002560 case cLong:
2561 break;
2562 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002563
Chris Lattner462fa822004-04-11 20:56:28 +00002564 // Long value. We have to do things the hard way...
2565 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2566 unsigned CLow = CI->getRawValue();
2567 unsigned CHi = CI->getRawValue() >> 32;
2568
2569 if (CLow == 0) {
2570 // If the low part of the constant is all zeros, things are simple.
2571 BuildMI(BB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
2572 doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
2573 return;
2574 }
2575
2576 // Multiply the two low parts... capturing carry into EDX
2577 unsigned OverflowReg = 0;
2578 if (CLow == 1) {
2579 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0Reg);
Chris Lattner028adc42004-04-06 04:29:36 +00002580 } else {
Chris Lattner462fa822004-04-11 20:56:28 +00002581 unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
2582 OverflowReg = makeAnotherReg(Type::UIntTy);
2583 BuildMI(BB, IP, X86::MOV32ri, 1, Op1RegL).addImm(CLow);
2584 BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg);
2585 BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1RegL); // AL*BL
Chris Lattner028adc42004-04-06 04:29:36 +00002586
Chris Lattner462fa822004-04-11 20:56:28 +00002587 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL
2588 BuildMI(BB, IP, X86::MOV32rr, 1,
2589 OverflowReg).addReg(X86::EDX); // AL*BL >> 32
2590 }
2591
2592 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
2593 doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
2594
2595 unsigned AHBLplusOverflowReg;
2596 if (OverflowReg) {
2597 AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
2598 BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32)
Chris Lattner028adc42004-04-06 04:29:36 +00002599 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
Chris Lattner462fa822004-04-11 20:56:28 +00002600 } else {
2601 AHBLplusOverflowReg = AHBLReg;
2602 }
2603
2604 if (CHi == 0) {
2605 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(AHBLplusOverflowReg);
2606 } else {
Chris Lattner028adc42004-04-06 04:29:36 +00002607 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
Chris Lattner462fa822004-04-11 20:56:28 +00002608 doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
Chris Lattner028adc42004-04-06 04:29:36 +00002609
Chris Lattner462fa822004-04-11 20:56:28 +00002610 BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32)
Chris Lattner028adc42004-04-06 04:29:36 +00002611 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
2612 }
Chris Lattner462fa822004-04-11 20:56:28 +00002613 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00002614 }
Chris Lattner462fa822004-04-11 20:56:28 +00002615
2616 // General 64x64 multiply
2617
2618 unsigned Op1Reg = getReg(Op1, &BB, IP);
2619 // Multiply the two low parts... capturing carry into EDX
2620 BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg);
2621 BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1Reg); // AL*BL
2622
2623 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
2624 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL
2625 BuildMI(BB, IP, X86::MOV32rr, 1,
2626 OverflowReg).addReg(X86::EDX); // AL*BL >> 32
2627
2628 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
2629 BuildMI(BB, IP, X86::IMUL32rr, 2,
2630 AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
2631
2632 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
2633 BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32)
2634 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
2635
2636 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
2637 BuildMI(BB, IP, X86::IMUL32rr, 2,
2638 ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
2639
2640 BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32)
2641 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00002642}
Chris Lattnerca9671d2002-11-02 20:28:58 +00002643
Chris Lattner06925362002-11-17 21:56:38 +00002644
Chris Lattnerf01729e2002-11-02 20:54:46 +00002645/// visitDivRem - Handle division and remainder instructions... these
2646/// instruction both require the same instructions to be generated, they just
2647/// select the result from a different register. Note that both of these
2648/// instructions work differently for signed and unsigned operands.
2649///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002650void X86ISel::visitDivRem(BinaryOperator &I) {
Chris Lattnercadff442003-10-23 17:21:43 +00002651 unsigned ResultReg = getReg(I);
Chris Lattner95157f72004-04-11 22:05:45 +00002652 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2653
2654 // Fold loads into floating point divides.
2655 if (getClass(Op0->getType()) == cFP) {
2656 if (LoadInst *LI = dyn_cast<LoadInst>(Op1))
2657 if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
2658 const Type *Ty = Op0->getType();
2659 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2660 unsigned Opcode = Ty == Type::FloatTy ? X86::FDIV32m : X86::FDIV64m;
2661
Chris Lattner95157f72004-04-11 22:05:45 +00002662 unsigned Op0r = getReg(Op0);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002663 if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
2664 unsigned FI = getFixedSizedAllocaFI(AI);
2665 addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), FI);
2666 } else {
Reid Spencerfc989e12004-08-30 00:13:26 +00002667 X86AddressMode AM;
2668 getAddressingMode(LI->getOperand(0), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002669
Reid Spencerfc989e12004-08-30 00:13:26 +00002670 addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002671 }
Chris Lattner95157f72004-04-11 22:05:45 +00002672 return;
2673 }
2674
2675 if (LoadInst *LI = dyn_cast<LoadInst>(Op0))
2676 if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
2677 const Type *Ty = Op0->getType();
2678 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2679 unsigned Opcode = Ty == Type::FloatTy ? X86::FDIVR32m : X86::FDIVR64m;
2680
Chris Lattner95157f72004-04-11 22:05:45 +00002681 unsigned Op1r = getReg(Op1);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002682 if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
2683 unsigned FI = getFixedSizedAllocaFI(AI);
2684 addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op1r), FI);
2685 } else {
Reid Spencerfc989e12004-08-30 00:13:26 +00002686 X86AddressMode AM;
2687 getAddressingMode(LI->getOperand(0), AM);
2688 addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op1r), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002689 }
Chris Lattner95157f72004-04-11 22:05:45 +00002690 return;
2691 }
2692 }
2693
Chris Lattner94af4142002-12-25 05:13:53 +00002694
Chris Lattnercadff442003-10-23 17:21:43 +00002695 MachineBasicBlock::iterator IP = BB->end();
Chris Lattner95157f72004-04-11 22:05:45 +00002696 emitDivRemOperation(BB, IP, Op0, Op1,
Chris Lattner462fa822004-04-11 20:56:28 +00002697 I.getOpcode() == Instruction::Div, ResultReg);
Chris Lattnercadff442003-10-23 17:21:43 +00002698}
2699
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002700void X86ISel::emitDivRemOperation(MachineBasicBlock *BB,
2701 MachineBasicBlock::iterator IP,
2702 Value *Op0, Value *Op1, bool isDiv,
2703 unsigned ResultReg) {
Chris Lattner8ebf1c32004-04-11 21:09:14 +00002704 const Type *Ty = Op0->getType();
2705 unsigned Class = getClass(Ty);
Chris Lattner94af4142002-12-25 05:13:53 +00002706 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002707 case cFP: // Floating point divide
Chris Lattnercadff442003-10-23 17:21:43 +00002708 if (isDiv) {
Chris Lattner6621ed92004-04-11 21:23:56 +00002709 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2710 return;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00002711 } else { // Floating point remainder...
Chris Lattner462fa822004-04-11 20:56:28 +00002712 unsigned Op0Reg = getReg(Op0, BB, IP);
2713 unsigned Op1Reg = getReg(Op1, BB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00002714 MachineInstr *TheCall =
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002715 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00002716 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00002717 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
2718 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00002719 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
2720 }
Chris Lattner94af4142002-12-25 05:13:53 +00002721 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00002722 case cLong: {
2723 static const char *FnName[] =
2724 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
Chris Lattner462fa822004-04-11 20:56:28 +00002725 unsigned Op0Reg = getReg(Op0, BB, IP);
2726 unsigned Op1Reg = getReg(Op1, BB, IP);
Chris Lattner8ebf1c32004-04-11 21:09:14 +00002727 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
Chris Lattner3e130a22003-01-13 00:32:26 +00002728 MachineInstr *TheCall =
2729 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
2730
2731 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00002732 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
2733 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00002734 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
2735 return;
2736 }
2737 case cByte: case cShort: case cInt:
Misha Brukmancf00c4a2003-10-10 17:57:28 +00002738 break; // Small integrals, handled below...
Chris Lattner3e130a22003-01-13 00:32:26 +00002739 default: assert(0 && "Unknown class!");
Chris Lattner94af4142002-12-25 05:13:53 +00002740 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00002741
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002742 static const unsigned MovOpcode[]={ X86::MOV8rr, X86::MOV16rr, X86::MOV32rr };
Chris Lattner2483f672004-10-06 05:01:07 +00002743 static const unsigned NEGOpcode[]={ X86::NEG8r, X86::NEG16r, X86::NEG32r };
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002744 static const unsigned SAROpcode[]={ X86::SAR8ri, X86::SAR16ri, X86::SAR32ri };
2745 static const unsigned SHROpcode[]={ X86::SHR8ri, X86::SHR16ri, X86::SHR32ri };
2746 static const unsigned ADDOpcode[]={ X86::ADD8rr, X86::ADD16rr, X86::ADD32rr };
2747
2748 // Special case signed division by power of 2.
Chris Lattner2483f672004-10-06 05:01:07 +00002749 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1))
2750 if (isDiv) {
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002751 assert(Class != cLong && "This doesn't handle 64-bit divides!");
2752 int V = CI->getValue();
2753
2754 if (V == 1) { // X /s 1 => X
2755 unsigned Op0Reg = getReg(Op0, BB, IP);
2756 BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(Op0Reg);
2757 return;
2758 }
2759
2760 if (V == -1) { // X /s -1 => -X
2761 unsigned Op0Reg = getReg(Op0, BB, IP);
2762 BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(Op0Reg);
2763 return;
2764 }
2765
Chris Lattner610f1e22004-10-06 04:02:39 +00002766 if (V == 2 || V == -2) { // X /s 2
2767 static const unsigned CMPOpcode[] = {
2768 X86::CMP8ri, X86::CMP16ri, X86::CMP32ri
2769 };
2770 static const unsigned SBBOpcode[] = {
2771 X86::SBB8ri, X86::SBB16ri, X86::SBB32ri
2772 };
2773 unsigned Op0Reg = getReg(Op0, BB, IP);
2774 unsigned SignBit = 1 << (CI->getType()->getPrimitiveSize()*8-1);
2775 BuildMI(*BB, IP, CMPOpcode[Class], 2).addReg(Op0Reg).addImm(SignBit);
2776
2777 unsigned TmpReg = makeAnotherReg(Op0->getType());
2778 BuildMI(*BB, IP, SBBOpcode[Class], 2, TmpReg).addReg(Op0Reg).addImm(-1);
2779
2780 unsigned TmpReg2 = V == 2 ? ResultReg : makeAnotherReg(Op0->getType());
2781 BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg2).addReg(TmpReg).addImm(1);
2782 if (V == -2) {
2783 BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(TmpReg2);
2784 }
2785 return;
2786 }
2787
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002788 bool isNeg = false;
2789 if (V < 0) { // Not a positive power of 2?
2790 V = -V;
2791 isNeg = true; // Maybe it's a negative power of 2.
2792 }
2793 if (unsigned Log = ExactLog2(V)) {
2794 --Log;
2795 unsigned Op0Reg = getReg(Op0, BB, IP);
2796 unsigned TmpReg = makeAnotherReg(Op0->getType());
Chris Lattner3ffdff62004-10-06 04:19:43 +00002797 BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg)
2798 .addReg(Op0Reg).addImm(Log-1);
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002799 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2800 BuildMI(*BB, IP, SHROpcode[Class], 2, TmpReg2)
2801 .addReg(TmpReg).addImm(32-Log);
2802 unsigned TmpReg3 = makeAnotherReg(Op0->getType());
2803 BuildMI(*BB, IP, ADDOpcode[Class], 2, TmpReg3)
2804 .addReg(Op0Reg).addReg(TmpReg2);
2805
2806 unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg;
2807 BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg4)
Chris Lattner3ffdff62004-10-06 04:19:43 +00002808 .addReg(TmpReg3).addImm(Log);
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002809 if (isNeg)
2810 BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(TmpReg4);
2811 return;
2812 }
Chris Lattner2483f672004-10-06 05:01:07 +00002813 } else { // X % C
2814 assert(Class != cLong && "This doesn't handle 64-bit remainder!");
2815 int V = CI->getValue();
2816
2817 if (V == 2 || V == -2) { // X % 2, X % -2
Chris Lattner2483f672004-10-06 05:01:07 +00002818 static const unsigned SExtOpcode[] = { X86::CBW, X86::CWD, X86::CDQ };
2819 static const unsigned BaseReg[] = { X86::AL , X86::AX , X86::EAX };
2820 static const unsigned SExtReg[] = { X86::AH , X86::DX , X86::EDX };
2821 static const unsigned ANDOpcode[] = {
2822 X86::AND8ri, X86::AND16ri, X86::AND32ri
2823 };
2824 static const unsigned XOROpcode[] = {
2825 X86::XOR8rr, X86::XOR16rr, X86::XOR32rr
2826 };
2827 static const unsigned SUBOpcode[] = {
2828 X86::SUB8rr, X86::SUB16rr, X86::SUB32rr
2829 };
2830
2831 // Sign extend result into reg of -1 or 0.
2832 unsigned Op0Reg = getReg(Op0, BB, IP);
2833 BuildMI(*BB, IP, MovOpcode[Class], 1, BaseReg[Class]).addReg(Op0Reg);
2834 BuildMI(*BB, IP, SExtOpcode[Class], 0);
2835 unsigned TmpReg0 = makeAnotherReg(Op0->getType());
2836 BuildMI(*BB, IP, MovOpcode[Class], 1, TmpReg0).addReg(SExtReg[Class]);
2837
2838 unsigned TmpReg1 = makeAnotherReg(Op0->getType());
2839 BuildMI(*BB, IP, ANDOpcode[Class], 2, TmpReg1).addReg(Op0Reg).addImm(1);
2840
2841 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2842 BuildMI(*BB, IP, XOROpcode[Class], 2,
2843 TmpReg2).addReg(TmpReg1).addReg(TmpReg0);
2844 BuildMI(*BB, IP, SUBOpcode[Class], 2,
2845 ResultReg).addReg(TmpReg2).addReg(TmpReg0);
2846 return;
2847 }
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002848 }
2849
2850 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002851 static const unsigned ClrOpcode[]={ X86::MOV8ri, X86::MOV16ri, X86::MOV32ri };
Chris Lattnerf01729e2002-11-02 20:54:46 +00002852 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
2853
2854 static const unsigned DivOpcode[][4] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002855 { X86::DIV8r , X86::DIV16r , X86::DIV32r , 0 }, // Unsigned division
2856 { X86::IDIV8r, X86::IDIV16r, X86::IDIV32r, 0 }, // Signed division
Chris Lattnerf01729e2002-11-02 20:54:46 +00002857 };
2858
Chris Lattnerf01729e2002-11-02 20:54:46 +00002859 unsigned Reg = Regs[Class];
2860 unsigned ExtReg = ExtRegs[Class];
Chris Lattnerf01729e2002-11-02 20:54:46 +00002861
2862 // Put the first operand into one of the A registers...
Chris Lattner462fa822004-04-11 20:56:28 +00002863 unsigned Op0Reg = getReg(Op0, BB, IP);
2864 unsigned Op1Reg = getReg(Op1, BB, IP);
Chris Lattneree352852004-02-29 07:22:16 +00002865 BuildMI(*BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00002866
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002867 if (Ty->isSigned()) {
Chris Lattnerf01729e2002-11-02 20:54:46 +00002868 // Emit a sign extension instruction...
Chris Lattner462fa822004-04-11 20:56:28 +00002869 unsigned ShiftResult = makeAnotherReg(Op0->getType());
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002870 BuildMI(*BB, IP, SAROpcode[Class], 2,ShiftResult).addReg(Op0Reg).addImm(31);
Chris Lattneree352852004-02-29 07:22:16 +00002871 BuildMI(*BB, IP, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002872
2873 // Emit the appropriate divide or remainder instruction...
2874 BuildMI(*BB, IP, DivOpcode[1][Class], 1).addReg(Op1Reg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00002875 } else {
Alkis Evlogimenosf998a7e2004-01-12 07:22:45 +00002876 // If unsigned, emit a zeroing instruction... (reg = 0)
Chris Lattneree352852004-02-29 07:22:16 +00002877 BuildMI(*BB, IP, ClrOpcode[Class], 2, ExtReg).addImm(0);
Chris Lattnerf01729e2002-11-02 20:54:46 +00002878
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002879 // Emit the appropriate divide or remainder instruction...
2880 BuildMI(*BB, IP, DivOpcode[0][Class], 1).addReg(Op1Reg);
2881 }
Chris Lattner06925362002-11-17 21:56:38 +00002882
Chris Lattnerf01729e2002-11-02 20:54:46 +00002883 // Figure out which register we want to pick the result out of...
Chris Lattnercadff442003-10-23 17:21:43 +00002884 unsigned DestReg = isDiv ? Reg : ExtReg;
Chris Lattnerf01729e2002-11-02 20:54:46 +00002885
Chris Lattnerf01729e2002-11-02 20:54:46 +00002886 // Put the result into the destination register...
Chris Lattneree352852004-02-29 07:22:16 +00002887 BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +00002888}
Chris Lattnere2954c82002-11-02 20:04:26 +00002889
Chris Lattner06925362002-11-17 21:56:38 +00002890
Brian Gaekea1719c92002-10-31 23:03:59 +00002891/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2892/// for constant immediate shift values, and for constant immediate
2893/// shift values equal to 1. Even the general case is sort of special,
2894/// because the shift amount has to be in CL, not just any old register.
2895///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002896void X86ISel::visitShiftInst(ShiftInst &I) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002897 MachineBasicBlock::iterator IP = BB->end ();
2898 emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1),
2899 I.getOpcode () == Instruction::Shl, I.getType (),
2900 getReg (I));
2901}
2902
Chris Lattnerce7cafa2004-11-13 20:48:57 +00002903/// Emit code for a 'SHLD DestReg, Op0, Op1, Amt' operation, where Amt is a
2904/// constant.
2905void X86ISel::doSHLDConst(MachineBasicBlock *MBB,
2906 MachineBasicBlock::iterator IP,
2907 unsigned DestReg, unsigned Op0Reg, unsigned Op1Reg,
2908 unsigned Amt) {
2909 // SHLD is a very inefficient operation on every processor, try to do
2910 // somethign simpler for common values of 'Amt'.
2911 if (Amt == 0) {
2912 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0Reg);
2913 } else if (Amt == 1) {
2914 unsigned Tmp = makeAnotherReg(Type::UIntTy);
2915 BuildMI(*MBB, IP, X86::ADD32rr, 2, Tmp).addReg(Op1Reg).addReg(Op1Reg);
2916 BuildMI(*MBB, IP, X86::ADC32rr, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg);
2917 } else if (Amt == 2 || Amt == 3) {
2918 // On the P4 and Athlon it is cheaper to replace shld ..., 2|3 with a
2919 // shift/lea pair. NOTE: This should not be done on the P6 family!
2920 unsigned Tmp = makeAnotherReg(Type::UIntTy);
2921 BuildMI(*MBB, IP, X86::SHR32ri, 2, Tmp).addReg(Op1Reg).addImm(32-Amt);
2922 X86AddressMode AM;
2923 AM.BaseType = X86AddressMode::RegBase;
2924 AM.Base.Reg = Tmp;
2925 AM.Scale = 1 << Amt;
2926 AM.IndexReg = Op0Reg;
2927 AM.Disp = 0;
2928 addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 4, DestReg), AM);
2929 } else {
2930 // NOTE: It is always cheaper on the P4 to emit SHLD as two shifts and an OR
2931 // than it is to emit a real SHLD.
2932
2933 BuildMI(*MBB, IP, X86::SHLD32rri8, 3,
2934 DestReg).addReg(Op0Reg).addReg(Op1Reg).addImm(Amt);
2935 }
2936}
2937
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002938/// emitShiftOperation - Common code shared between visitShiftInst and
2939/// constant expression support.
Misha Brukmaneae1bf12004-09-21 18:21:21 +00002940void X86ISel::emitShiftOperation(MachineBasicBlock *MBB,
2941 MachineBasicBlock::iterator IP,
2942 Value *Op, Value *ShiftAmount,
2943 bool isLeftShift, const Type *ResultTy,
2944 unsigned DestReg) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002945 unsigned SrcReg = getReg (Op, MBB, IP);
2946 bool isSigned = ResultTy->isSigned ();
2947 unsigned Class = getClass (ResultTy);
Chris Lattnerde95c9e2004-10-17 06:10:40 +00002948
Chris Lattnerce7cafa2004-11-13 20:48:57 +00002949 static const unsigned ConstantOperand[][3] = {
2950 { X86::SHR8ri, X86::SHR16ri, X86::SHR32ri }, // SHR
2951 { X86::SAR8ri, X86::SAR16ri, X86::SAR32ri }, // SAR
2952 { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri }, // SHL
2953 { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri }, // SAL = SHL
Chris Lattner3e130a22003-01-13 00:32:26 +00002954 };
Chris Lattnerb1761fc2002-11-02 01:15:18 +00002955
Chris Lattnerce7cafa2004-11-13 20:48:57 +00002956 static const unsigned NonConstantOperand[][3] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002957 { X86::SHR8rCL, X86::SHR16rCL, X86::SHR32rCL }, // SHR
2958 { X86::SAR8rCL, X86::SAR16rCL, X86::SAR32rCL }, // SAR
2959 { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SHL
2960 { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SAL = SHL
Chris Lattner3e130a22003-01-13 00:32:26 +00002961 };
Chris Lattner796df732002-11-02 00:44:25 +00002962
Chris Lattnerce7cafa2004-11-13 20:48:57 +00002963 // Longs, as usual, are handled specially.
Chris Lattner3e130a22003-01-13 00:32:26 +00002964 if (Class == cLong) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002965 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002966 unsigned Amount = CUI->getValue();
Chris Lattner62f5a942004-11-13 20:04:38 +00002967 if (Amount == 1 && isLeftShift) { // X << 1 == X+X
Chris Lattner44205ca2004-11-13 20:03:48 +00002968 BuildMI(*MBB, IP, X86::ADD32rr, 2,
2969 DestReg).addReg(SrcReg).addReg(SrcReg);
2970 BuildMI(*MBB, IP, X86::ADC32rr, 2,
2971 DestReg+1).addReg(SrcReg+1).addReg(SrcReg+1);
2972 } else if (Amount < 32) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002973 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
2974 if (isLeftShift) {
Chris Lattnerce7cafa2004-11-13 20:48:57 +00002975 doSHLDConst(MBB, IP, DestReg+1, SrcReg+1, SrcReg, Amount);
Chris Lattneree352852004-02-29 07:22:16 +00002976 BuildMI(*MBB, IP, Opc[2], 2, DestReg).addReg(SrcReg).addImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002977 } else {
Chris Lattnerce7cafa2004-11-13 20:48:57 +00002978 BuildMI(*MBB, IP, X86::SHRD32rri8, 3,
2979 DestReg).addReg(SrcReg ).addReg(SrcReg+1).addImm(Amount);
Chris Lattneree352852004-02-29 07:22:16 +00002980 BuildMI(*MBB, IP, Opc[2],2,DestReg+1).addReg(SrcReg+1).addImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002981 }
Chris Lattner36c625d2004-11-15 23:16:34 +00002982 } else if (Amount == 32) {
2983 if (isLeftShift) {
2984 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg);
2985 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
2986 } else {
Chris Lattner39a83dc2004-11-16 18:40:52 +00002987 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg+1);
Chris Lattner36c625d2004-11-15 23:16:34 +00002988 if (!isSigned) {
2989 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
2990 } else {
2991 BuildMI(*MBB, IP, X86::SAR32ri, 2,
2992 DestReg+1).addReg(SrcReg).addImm(31);
2993 }
2994 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002995 } else { // Shifting more than 32 bits
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002996 Amount -= 32;
2997 if (isLeftShift) {
Chris Lattner36c625d2004-11-15 23:16:34 +00002998 BuildMI(*MBB, IP, X86::SHL32ri, 2,
2999 DestReg + 1).addReg(SrcReg).addImm(Amount);
Chris Lattner722070e2004-04-06 03:42:38 +00003000 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003001 } else {
Chris Lattner36c625d2004-11-15 23:16:34 +00003002 BuildMI(*MBB, IP, isSigned ? X86::SAR32ri : X86::SHR32ri, 2,
3003 DestReg).addReg(SrcReg+1).addImm(Amount);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003004 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003005 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003006 }
3007 } else {
Chris Lattner9171ef52003-06-01 01:56:54 +00003008 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Chris Lattner9171ef52003-06-01 01:56:54 +00003009 if (!isLeftShift && isSigned) {
3010 // If this is a SHR of a Long, then we need to do funny sign extension
3011 // stuff. TmpReg gets the value to use as the high-part if we are
3012 // shifting more than 32 bits.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003013 BuildMI(*MBB, IP, X86::SAR32ri, 2, TmpReg).addReg(SrcReg).addImm(31);
Chris Lattner9171ef52003-06-01 01:56:54 +00003014 } else {
3015 // Other shifts use a fixed zero value if the shift is more than 32
3016 // bits.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003017 BuildMI(*MBB, IP, X86::MOV32ri, 1, TmpReg).addImm(0);
Chris Lattner9171ef52003-06-01 01:56:54 +00003018 }
3019
3020 // Initialize CL with the shift amount...
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00003021 unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003022 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00003023
3024 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
3025 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
3026 if (isLeftShift) {
3027 // TmpReg2 = shld inHi, inLo
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003028 BuildMI(*MBB, IP, X86::SHLD32rrCL,2,TmpReg2).addReg(SrcReg+1)
Chris Lattneree352852004-02-29 07:22:16 +00003029 .addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00003030 // TmpReg3 = shl inLo, CL
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003031 BuildMI(*MBB, IP, X86::SHL32rCL, 1, TmpReg3).addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00003032
3033 // Set the flags to indicate whether the shift was by more than 32 bits.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003034 BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00003035
3036 // DestHi = (>32) ? TmpReg3 : TmpReg2;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003037 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00003038 DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
3039 // DestLo = (>32) ? TmpReg : TmpReg3;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003040 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00003041 DestReg).addReg(TmpReg3).addReg(TmpReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00003042 } else {
3043 // TmpReg2 = shrd inLo, inHi
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003044 BuildMI(*MBB, IP, X86::SHRD32rrCL,2,TmpReg2).addReg(SrcReg)
Chris Lattneree352852004-02-29 07:22:16 +00003045 .addReg(SrcReg+1);
Chris Lattner9171ef52003-06-01 01:56:54 +00003046 // TmpReg3 = s[ah]r inHi, CL
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003047 BuildMI(*MBB, IP, isSigned ? X86::SAR32rCL : X86::SHR32rCL, 1, TmpReg3)
Chris Lattner9171ef52003-06-01 01:56:54 +00003048 .addReg(SrcReg+1);
3049
3050 // Set the flags to indicate whether the shift was by more than 32 bits.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003051 BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00003052
3053 // DestLo = (>32) ? TmpReg3 : TmpReg2;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003054 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00003055 DestReg).addReg(TmpReg2).addReg(TmpReg3);
3056
3057 // DestHi = (>32) ? TmpReg : TmpReg3;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003058 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00003059 DestReg+1).addReg(TmpReg3).addReg(TmpReg);
3060 }
Brian Gaekea1719c92002-10-31 23:03:59 +00003061 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003062 return;
3063 }
Chris Lattnere9913f22002-11-02 01:41:55 +00003064
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00003065 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00003066 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
3067 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
Chris Lattnerb1761fc2002-11-02 01:15:18 +00003068
Chris Lattner44205ca2004-11-13 20:03:48 +00003069 if (CUI->getValue() == 1 && isLeftShift) { // X << 1 -> X+X
3070 static const int AddOpC[] = { X86::ADD8rr, X86::ADD16rr, X86::ADD32rr };
3071 BuildMI(*MBB, IP, AddOpC[Class], 2,DestReg).addReg(SrcReg).addReg(SrcReg);
3072 } else {
3073 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
3074 BuildMI(*MBB, IP, Opc[Class], 2,
3075 DestReg).addReg(SrcReg).addImm(CUI->getValue());
3076 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003077 } else { // The shift amount is non-constant.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00003078 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003079 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +00003080
Chris Lattner3e130a22003-01-13 00:32:26 +00003081 const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
Chris Lattneree352852004-02-29 07:22:16 +00003082 BuildMI(*MBB, IP, Opc[Class], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003083 }
3084}
Chris Lattnerb1761fc2002-11-02 01:15:18 +00003085
Chris Lattner3e130a22003-01-13 00:32:26 +00003086
Chris Lattner6fc3c522002-11-17 21:11:55 +00003087/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
Chris Lattnere8f0d922002-12-24 00:03:11 +00003088/// instruction. The load and store instructions are the only place where we
3089/// need to worry about the memory layout of the target machine.
Chris Lattner6fc3c522002-11-17 21:11:55 +00003090///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003091void X86ISel::visitLoadInst(LoadInst &I) {
Chris Lattner7dee5da2004-03-08 01:58:35 +00003092 // Check to see if this load instruction is going to be folded into a binary
3093 // instruction, like add. If so, we don't want to emit it. Wouldn't a real
3094 // pattern matching instruction selector be nice?
Chris Lattner95157f72004-04-11 22:05:45 +00003095 unsigned Class = getClassB(I.getType());
Chris Lattnerfeac3e12004-04-11 23:21:26 +00003096 if (I.hasOneUse()) {
Chris Lattner7dee5da2004-03-08 01:58:35 +00003097 Instruction *User = cast<Instruction>(I.use_back());
3098 switch (User->getOpcode()) {
Chris Lattnerfeac3e12004-04-11 23:21:26 +00003099 case Instruction::Cast:
3100 // If this is a cast from a signed-integer type to a floating point type,
3101 // fold the cast here.
John Criswell6b5bd582004-06-09 15:18:51 +00003102 if (getClassB(User->getType()) == cFP &&
Chris Lattnerfeac3e12004-04-11 23:21:26 +00003103 (I.getType() == Type::ShortTy || I.getType() == Type::IntTy ||
3104 I.getType() == Type::LongTy)) {
3105 unsigned DestReg = getReg(User);
3106 static const unsigned Opcode[] = {
3107 0/*BYTE*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m
3108 };
Chris Lattner9f1b5312004-05-13 15:12:43 +00003109
3110 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
3111 unsigned FI = getFixedSizedAllocaFI(AI);
3112 addFrameReference(BuildMI(BB, Opcode[Class], 4, DestReg), FI);
3113 } else {
Reid Spencerfc989e12004-08-30 00:13:26 +00003114 X86AddressMode AM;
3115 getAddressingMode(I.getOperand(0), AM);
3116 addFullAddress(BuildMI(BB, Opcode[Class], 4, DestReg), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00003117 }
Chris Lattnerfeac3e12004-04-11 23:21:26 +00003118 return;
3119 } else {
3120 User = 0;
3121 }
3122 break;
Chris Lattner13c07fe2004-04-12 00:12:04 +00003123
Chris Lattner7dee5da2004-03-08 01:58:35 +00003124 case Instruction::Add:
3125 case Instruction::Sub:
3126 case Instruction::And:
3127 case Instruction::Or:
3128 case Instruction::Xor:
Chris Lattnerfeac3e12004-04-11 23:21:26 +00003129 if (Class == cLong) User = 0;
Chris Lattner7dee5da2004-03-08 01:58:35 +00003130 break;
Chris Lattner95157f72004-04-11 22:05:45 +00003131 case Instruction::Mul:
3132 case Instruction::Div:
Chris Lattner13c07fe2004-04-12 00:12:04 +00003133 if (Class != cFP) User = 0;
Chris Lattnerfeac3e12004-04-11 23:21:26 +00003134 break; // Folding only implemented for floating point.
Chris Lattner95157f72004-04-11 22:05:45 +00003135 default: User = 0; break;
Chris Lattner7dee5da2004-03-08 01:58:35 +00003136 }
3137
3138 if (User) {
3139 // Okay, we found a user. If the load is the first operand and there is
3140 // no second operand load, reverse the operand ordering. Note that this
3141 // can fail for a subtract (ie, no change will be made).
Chris Lattner3dbb5042004-07-21 21:28:26 +00003142 bool Swapped = false;
Chris Lattner7dee5da2004-03-08 01:58:35 +00003143 if (!isa<LoadInst>(User->getOperand(1)))
Chris Lattner3dbb5042004-07-21 21:28:26 +00003144 Swapped = !cast<BinaryOperator>(User)->swapOperands();
Chris Lattner7dee5da2004-03-08 01:58:35 +00003145
3146 // Okay, now that everything is set up, if this load is used by the second
3147 // operand, and if there are no instructions that invalidate the load
3148 // before the binary operator, eliminate the load.
3149 if (User->getOperand(1) == &I &&
3150 isSafeToFoldLoadIntoInstruction(I, *User))
3151 return; // Eliminate the load!
Chris Lattner95157f72004-04-11 22:05:45 +00003152
3153 // If this is a floating point sub or div, we won't be able to swap the
3154 // operands, but we will still be able to eliminate the load.
3155 if (Class == cFP && User->getOperand(0) == &I &&
3156 !isa<LoadInst>(User->getOperand(1)) &&
3157 (User->getOpcode() == Instruction::Sub ||
3158 User->getOpcode() == Instruction::Div) &&
3159 isSafeToFoldLoadIntoInstruction(I, *User))
3160 return; // Eliminate the load!
Chris Lattner3dbb5042004-07-21 21:28:26 +00003161
3162 // If we swapped the operands to the instruction, but couldn't fold the
3163 // load anyway, swap them back. We don't want to break add X, int
3164 // folding.
3165 if (Swapped) cast<BinaryOperator>(User)->swapOperands();
Chris Lattner7dee5da2004-03-08 01:58:35 +00003166 }
3167 }
3168
Chris Lattner6ac1d712003-10-20 04:48:06 +00003169 static const unsigned Opcodes[] = {
Chris Lattner9f1b5312004-05-13 15:12:43 +00003170 X86::MOV8rm, X86::MOV16rm, X86::MOV32rm, X86::FLD32m, X86::MOV32rm
Chris Lattner3e130a22003-01-13 00:32:26 +00003171 };
Chris Lattner6ac1d712003-10-20 04:48:06 +00003172 unsigned Opcode = Opcodes[Class];
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003173 if (I.getType() == Type::DoubleTy) Opcode = X86::FLD64m;
Chris Lattner9f1b5312004-05-13 15:12:43 +00003174
3175 unsigned DestReg = getReg(I);
3176
3177 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
3178 unsigned FI = getFixedSizedAllocaFI(AI);
3179 if (Class == cLong) {
3180 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, DestReg), FI);
3181 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), FI, 4);
3182 } else {
3183 addFrameReference(BuildMI(BB, Opcode, 4, DestReg), FI);
3184 }
3185 } else {
Reid Spencerfc989e12004-08-30 00:13:26 +00003186 X86AddressMode AM;
3187 getAddressingMode(I.getOperand(0), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00003188
3189 if (Class == cLong) {
Reid Spencerfc989e12004-08-30 00:13:26 +00003190 addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg), AM);
3191 AM.Disp += 4;
3192 addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00003193 } else {
Reid Spencerfc989e12004-08-30 00:13:26 +00003194 addFullAddress(BuildMI(BB, Opcode, 4, DestReg), AM);
Chris Lattner9f1b5312004-05-13 15:12:43 +00003195 }
3196 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003197}
3198
Chris Lattner6fc3c522002-11-17 21:11:55 +00003199/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
3200/// instruction.
3201///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003202void X86ISel::visitStoreInst(StoreInst &I) {
Reid Spencerfc989e12004-08-30 00:13:26 +00003203 X86AddressMode AM;
3204 getAddressingMode(I.getOperand(1), AM);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003205
Chris Lattner6c09db22003-10-20 04:11:23 +00003206 const Type *ValTy = I.getOperand(0)->getType();
3207 unsigned Class = getClassB(ValTy);
Chris Lattner6ac1d712003-10-20 04:48:06 +00003208
Chris Lattner5a830962004-02-25 02:56:58 +00003209 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(0))) {
3210 uint64_t Val = CI->getRawValue();
3211 if (Class == cLong) {
Reid Spencerfc989e12004-08-30 00:13:26 +00003212 addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(Val & ~0U);
3213 AM.Disp += 4;
3214 addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(Val>>32);
Chris Lattner5a830962004-02-25 02:56:58 +00003215 } else {
3216 static const unsigned Opcodes[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003217 X86::MOV8mi, X86::MOV16mi, X86::MOV32mi
Chris Lattner5a830962004-02-25 02:56:58 +00003218 };
3219 unsigned Opcode = Opcodes[Class];
Reid Spencerfc989e12004-08-30 00:13:26 +00003220 addFullAddress(BuildMI(BB, Opcode, 5), AM).addImm(Val);
Chris Lattner5a830962004-02-25 02:56:58 +00003221 }
Chris Lattnerb7cb9ff2004-05-13 15:26:48 +00003222 } else if (isa<ConstantPointerNull>(I.getOperand(0))) {
Chris Lattner358a9022004-10-15 05:05:29 +00003223 addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(0);
Chris Lattner5a830962004-02-25 02:56:58 +00003224 } else if (ConstantBool *CB = dyn_cast<ConstantBool>(I.getOperand(0))) {
Reid Spencerfc989e12004-08-30 00:13:26 +00003225 addFullAddress(BuildMI(BB, X86::MOV8mi, 5), AM).addImm(CB->getValue());
Chris Lattnere7a31c92004-05-07 21:18:15 +00003226 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) {
3227 // Store constant FP values with integer instructions to avoid having to
3228 // load the constants from the constant pool then do a store.
3229 if (CFP->getType() == Type::FloatTy) {
3230 union {
3231 unsigned I;
3232 float F;
3233 } V;
3234 V.F = CFP->getValue();
Reid Spencerfc989e12004-08-30 00:13:26 +00003235 addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(V.I);
Chris Lattner5a830962004-02-25 02:56:58 +00003236 } else {
Chris Lattnere7a31c92004-05-07 21:18:15 +00003237 union {
3238 uint64_t I;
3239 double F;
3240 } V;
3241 V.F = CFP->getValue();
Reid Spencerfc989e12004-08-30 00:13:26 +00003242 addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm((unsigned)V.I);
3243 AM.Disp += 4;
3244 addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(
Chris Lattnere7a31c92004-05-07 21:18:15 +00003245 unsigned(V.I >> 32));
Chris Lattner5a830962004-02-25 02:56:58 +00003246 }
Chris Lattnere7a31c92004-05-07 21:18:15 +00003247
3248 } else if (Class == cLong) {
3249 unsigned ValReg = getReg(I.getOperand(0));
Reid Spencerfc989e12004-08-30 00:13:26 +00003250 addFullAddress(BuildMI(BB, X86::MOV32mr, 5), AM).addReg(ValReg);
3251 AM.Disp += 4;
3252 addFullAddress(BuildMI(BB, X86::MOV32mr, 5), AM).addReg(ValReg+1);
Chris Lattnere7a31c92004-05-07 21:18:15 +00003253 } else {
Chris Lattner358a9022004-10-15 05:05:29 +00003254 // FIXME: stop emitting these two instructions:
3255 // movl $global,%eax
3256 // movl %eax,(%ebx)
3257 // when one instruction will suffice. That includes when the global
3258 // has an offset applied to it.
Chris Lattnere7a31c92004-05-07 21:18:15 +00003259 unsigned ValReg = getReg(I.getOperand(0));
3260 static const unsigned Opcodes[] = {
3261 X86::MOV8mr, X86::MOV16mr, X86::MOV32mr, X86::FST32m
3262 };
3263 unsigned Opcode = Opcodes[Class];
3264 if (ValTy == Type::DoubleTy) Opcode = X86::FST64m;
Chris Lattner9f1b5312004-05-13 15:12:43 +00003265
Reid Spencerfc989e12004-08-30 00:13:26 +00003266 addFullAddress(BuildMI(BB, Opcode, 1+4), AM).addReg(ValReg);
Chris Lattner94af4142002-12-25 05:13:53 +00003267 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00003268}
3269
3270
Misha Brukman538607f2004-03-01 23:53:11 +00003271/// visitCastInst - Here we have various kinds of copying with or without sign
3272/// extension going on.
3273///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003274void X86ISel::visitCastInst(CastInst &CI) {
Chris Lattnerf5854472003-06-21 16:01:24 +00003275 Value *Op = CI.getOperand(0);
Chris Lattner427aeb42004-04-11 19:21:59 +00003276
Chris Lattner99382862004-04-12 00:23:04 +00003277 unsigned SrcClass = getClassB(Op->getType());
3278 unsigned DestClass = getClassB(CI.getType());
3279 // Noop casts are not emitted: getReg will return the source operand as the
3280 // register to use for any uses of the noop cast.
Chris Lattner8b486a12004-06-29 00:14:38 +00003281 if (DestClass == SrcClass) {
3282 // The only detail in this plan is that casts from double -> float are
3283 // truncating operations that we have to codegen through memory (despite
3284 // the fact that the source/dest registers are the same class).
3285 if (CI.getType() != Type::FloatTy || Op->getType() != Type::DoubleTy)
3286 return;
3287 }
Chris Lattner427aeb42004-04-11 19:21:59 +00003288
Chris Lattnerf5854472003-06-21 16:01:24 +00003289 // If this is a cast from a 32-bit integer to a Long type, and the only uses
3290 // of the case are GEP instructions, then the cast does not need to be
3291 // generated explicitly, it will be folded into the GEP.
Chris Lattner99382862004-04-12 00:23:04 +00003292 if (DestClass == cLong && SrcClass == cInt) {
Chris Lattnerf5854472003-06-21 16:01:24 +00003293 bool AllUsesAreGEPs = true;
3294 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
3295 if (!isa<GetElementPtrInst>(*I)) {
3296 AllUsesAreGEPs = false;
3297 break;
3298 }
3299
3300 // No need to codegen this cast if all users are getelementptr instrs...
3301 if (AllUsesAreGEPs) return;
3302 }
3303
Chris Lattner99382862004-04-12 00:23:04 +00003304 // If this cast converts a load from a short,int, or long integer to a FP
3305 // value, we will have folded this cast away.
3306 if (DestClass == cFP && isa<LoadInst>(Op) && Op->hasOneUse() &&
3307 (Op->getType() == Type::ShortTy || Op->getType() == Type::IntTy ||
3308 Op->getType() == Type::LongTy))
3309 return;
3310
3311
Chris Lattner548f61d2003-04-23 17:22:12 +00003312 unsigned DestReg = getReg(CI);
3313 MachineBasicBlock::iterator MI = BB->end();
Chris Lattnerf5854472003-06-21 16:01:24 +00003314 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
Chris Lattner548f61d2003-04-23 17:22:12 +00003315}
3316
Misha Brukman538607f2004-03-01 23:53:11 +00003317/// emitCastOperation - Common code shared between visitCastInst and constant
3318/// expression cast support.
3319///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003320void X86ISel::emitCastOperation(MachineBasicBlock *BB,
3321 MachineBasicBlock::iterator IP,
3322 Value *Src, const Type *DestTy,
3323 unsigned DestReg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00003324 const Type *SrcTy = Src->getType();
3325 unsigned SrcClass = getClassB(SrcTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00003326 unsigned DestClass = getClassB(DestTy);
Chris Lattnerfeac3e12004-04-11 23:21:26 +00003327 unsigned SrcReg = getReg(Src, BB, IP);
3328
Chris Lattner3e130a22003-01-13 00:32:26 +00003329 // Implement casts to bool by using compare on the operand followed by set if
3330 // not zero on the result.
3331 if (DestTy == Type::BoolTy) {
Chris Lattner20772542003-06-01 03:38:24 +00003332 switch (SrcClass) {
3333 case cByte:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003334 BuildMI(*BB, IP, X86::TEST8rr, 2).addReg(SrcReg).addReg(SrcReg);
Chris Lattner20772542003-06-01 03:38:24 +00003335 break;
3336 case cShort:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003337 BuildMI(*BB, IP, X86::TEST16rr, 2).addReg(SrcReg).addReg(SrcReg);
Chris Lattner20772542003-06-01 03:38:24 +00003338 break;
3339 case cInt:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003340 BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg).addReg(SrcReg);
Chris Lattner20772542003-06-01 03:38:24 +00003341 break;
3342 case cLong: {
3343 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003344 BuildMI(*BB, IP, X86::OR32rr, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
Chris Lattner20772542003-06-01 03:38:24 +00003345 break;
3346 }
3347 case cFP:
Chris Lattneree352852004-02-29 07:22:16 +00003348 BuildMI(*BB, IP, X86::FTST, 1).addReg(SrcReg);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003349 BuildMI(*BB, IP, X86::FNSTSW8r, 0);
Chris Lattneree352852004-02-29 07:22:16 +00003350 BuildMI(*BB, IP, X86::SAHF, 1);
Chris Lattner311ca2e2004-02-23 03:21:41 +00003351 break;
Chris Lattner20772542003-06-01 03:38:24 +00003352 }
3353
3354 // If the zero flag is not set, then the value is true, set the byte to
3355 // true.
Chris Lattneree352852004-02-29 07:22:16 +00003356 BuildMI(*BB, IP, X86::SETNEr, 1, DestReg);
Chris Lattner94af4142002-12-25 05:13:53 +00003357 return;
3358 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003359
3360 static const unsigned RegRegMove[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003361 X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr
Chris Lattner3e130a22003-01-13 00:32:26 +00003362 };
3363
3364 // Implement casts between values of the same type class (as determined by
3365 // getClass) by using a register-to-register move.
3366 if (SrcClass == DestClass) {
3367 if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
Chris Lattneree352852004-02-29 07:22:16 +00003368 BuildMI(*BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003369 } else if (SrcClass == cFP) {
3370 if (SrcTy == Type::FloatTy) { // double -> float
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003371 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
Chris Lattneree352852004-02-29 07:22:16 +00003372 BuildMI(*BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003373 } else { // float -> double
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003374 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
3375 "Unknown cFP member!");
3376 // Truncate from double to float by storing to memory as short, then
3377 // reading it back.
3378 unsigned FltAlign = TM.getTargetData().getFloatAlignment();
Chris Lattner3e130a22003-01-13 00:32:26 +00003379 int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003380 addFrameReference(BuildMI(*BB, IP, X86::FST32m, 5), FrameIdx).addReg(SrcReg);
3381 addFrameReference(BuildMI(*BB, IP, X86::FLD32m, 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003382 }
3383 } else if (SrcClass == cLong) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003384 BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg);
3385 BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00003386 } else {
Chris Lattnerc53544a2003-05-12 20:16:58 +00003387 assert(0 && "Cannot handle this type of cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00003388 abort();
Brian Gaeked474e9c2002-12-06 10:49:33 +00003389 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003390 return;
3391 }
3392
3393 // Handle cast of SMALLER int to LARGER int using a move with sign extension
3394 // or zero extension, depending on whether the source type was signed.
3395 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
3396 SrcClass < DestClass) {
3397 bool isLong = DestClass == cLong;
3398 if (isLong) DestClass = cInt;
3399
3400 static const unsigned Opc[][4] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003401 { X86::MOVSX16rr8, X86::MOVSX32rr8, X86::MOVSX32rr16, X86::MOV32rr }, // s
3402 { X86::MOVZX16rr8, X86::MOVZX32rr8, X86::MOVZX32rr16, X86::MOV32rr } // u
Chris Lattner3e130a22003-01-13 00:32:26 +00003403 };
3404
Chris Lattner96e3b422004-05-09 22:28:45 +00003405 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
Chris Lattneree352852004-02-29 07:22:16 +00003406 BuildMI(*BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
Chris Lattner548f61d2003-04-23 17:22:12 +00003407 DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003408
3409 if (isLong) { // Handle upper 32 bits as appropriate...
3410 if (isUnsigned) // Zero out top bits...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003411 BuildMI(*BB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00003412 else // Sign extend bottom half...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003413 BuildMI(*BB, IP, X86::SAR32ri, 2, DestReg+1).addReg(DestReg).addImm(31);
Brian Gaeked474e9c2002-12-06 10:49:33 +00003414 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003415 return;
3416 }
3417
3418 // Special case long -> int ...
3419 if (SrcClass == cLong && DestClass == cInt) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003420 BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003421 return;
3422 }
3423
3424 // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
3425 // move out of AX or AL.
3426 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
3427 && SrcClass > DestClass) {
3428 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
Chris Lattneree352852004-02-29 07:22:16 +00003429 BuildMI(*BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
3430 BuildMI(*BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
Chris Lattner3e130a22003-01-13 00:32:26 +00003431 return;
3432 }
3433
3434 // Handle casts from integer to floating point now...
3435 if (DestClass == cFP) {
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003436 // Promote the integer to a type supported by FLD. We do this because there
3437 // are no unsigned FLD instructions, so we must promote an unsigned value to
3438 // a larger signed value, then use FLD on the larger value.
3439 //
3440 const Type *PromoteType = 0;
Chris Lattner85aa7092004-04-10 18:32:01 +00003441 unsigned PromoteOpcode = 0;
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003442 unsigned RealDestReg = DestReg;
Chris Lattnerf70c22b2004-06-17 18:19:28 +00003443 switch (SrcTy->getTypeID()) {
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003444 case Type::BoolTyID:
3445 case Type::SByteTyID:
3446 // We don't have the facilities for directly loading byte sized data from
3447 // memory (even signed). Promote it to 16 bits.
3448 PromoteType = Type::ShortTy;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003449 PromoteOpcode = X86::MOVSX16rr8;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003450 break;
3451 case Type::UByteTyID:
3452 PromoteType = Type::ShortTy;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003453 PromoteOpcode = X86::MOVZX16rr8;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003454 break;
3455 case Type::UShortTyID:
3456 PromoteType = Type::IntTy;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003457 PromoteOpcode = X86::MOVZX32rr16;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003458 break;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003459 case Type::ULongTyID:
Chris Lattner56a31c62004-10-17 08:01:28 +00003460 case Type::UIntTyID:
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003461 // Don't fild into the read destination.
3462 DestReg = makeAnotherReg(Type::DoubleTy);
3463 break;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003464 default: // No promotion needed...
3465 break;
3466 }
3467
3468 if (PromoteType) {
3469 unsigned TmpReg = makeAnotherReg(PromoteType);
Chris Lattner7b92de1e2004-04-06 19:29:36 +00003470 BuildMI(*BB, IP, PromoteOpcode, 1, TmpReg).addReg(SrcReg);
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003471 SrcTy = PromoteType;
3472 SrcClass = getClass(PromoteType);
Chris Lattner3e130a22003-01-13 00:32:26 +00003473 SrcReg = TmpReg;
3474 }
3475
3476 // Spill the integer to memory and reload it from there...
Chris Lattnerb6bac512004-02-25 06:13:04 +00003477 int FrameIdx =
3478 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
Chris Lattner3e130a22003-01-13 00:32:26 +00003479
3480 if (SrcClass == cLong) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003481 addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5),
Chris Lattneree352852004-02-29 07:22:16 +00003482 FrameIdx).addReg(SrcReg);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003483 addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003484 FrameIdx, 4).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00003485 } else {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003486 static const unsigned Op1[] = { X86::MOV8mr, X86::MOV16mr, X86::MOV32mr };
Chris Lattneree352852004-02-29 07:22:16 +00003487 addFrameReference(BuildMI(*BB, IP, Op1[SrcClass], 5),
3488 FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003489 }
3490
3491 static const unsigned Op2[] =
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003492 { 0/*byte*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m };
Chris Lattneree352852004-02-29 07:22:16 +00003493 addFrameReference(BuildMI(*BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003494
Chris Lattner56a31c62004-10-17 08:01:28 +00003495 if (SrcTy == Type::UIntTy) {
3496 // If this is a cast from uint -> double, we need to be careful about if
3497 // the "sign" bit is set. If so, we don't want to make a negative number,
3498 // we want to make a positive number. Emit code to add an offset if the
3499 // sign bit is set.
3500
3501 // Compute whether the sign bit is set by shifting the reg right 31 bits.
3502 unsigned IsNeg = makeAnotherReg(Type::IntTy);
3503 BuildMI(BB, X86::SHR32ri, 2, IsNeg).addReg(SrcReg).addImm(31);
3504
3505 // Create a CP value that has the offset in one word and 0 in the other.
3506 static ConstantInt *TheOffset = ConstantUInt::get(Type::ULongTy,
3507 0x4f80000000000000ULL);
3508 unsigned CPI = F->getConstantPool()->getConstantPoolIndex(TheOffset);
3509 BuildMI(BB, X86::FADD32m, 5, RealDestReg).addReg(DestReg)
3510 .addConstantPoolIndex(CPI).addZImm(4).addReg(IsNeg).addSImm(0);
3511
3512 } else if (SrcTy == Type::ULongTy) {
3513 // We need special handling for unsigned 64-bit integer sources. If the
3514 // input number has the "sign bit" set, then we loaded it incorrectly as a
3515 // negative 64-bit number. In this case, add an offset value.
3516
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003517 // Emit a test instruction to see if the dynamic input value was signed.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003518 BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg+1).addReg(SrcReg+1);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003519
Chris Lattnerb6bac512004-02-25 06:13:04 +00003520 // If the sign bit is set, get a pointer to an offset, otherwise get a
3521 // pointer to a zero.
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003522 MachineConstantPool *CP = F->getConstantPool();
3523 unsigned Zero = makeAnotherReg(Type::IntTy);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003524 Constant *Null = Constant::getNullValue(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003525 addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Zero),
Chris Lattnerb6bac512004-02-25 06:13:04 +00003526 CP->getConstantPoolIndex(Null));
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003527 unsigned Offset = makeAnotherReg(Type::IntTy);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003528 Constant *OffsetCst = ConstantUInt::get(Type::UIntTy, 0x5f800000);
3529
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003530 addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Offset),
Chris Lattnerb6bac512004-02-25 06:13:04 +00003531 CP->getConstantPoolIndex(OffsetCst));
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003532 unsigned Addr = makeAnotherReg(Type::IntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003533 BuildMI(*BB, IP, X86::CMOVS32rr, 2, Addr).addReg(Zero).addReg(Offset);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003534
3535 // Load the constant for an add. FIXME: this could make an 'fadd' that
3536 // reads directly from memory, but we don't support these yet.
3537 unsigned ConstReg = makeAnotherReg(Type::DoubleTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003538 addDirectMem(BuildMI(*BB, IP, X86::FLD32m, 4, ConstReg), Addr);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003539
Chris Lattneree352852004-02-29 07:22:16 +00003540 BuildMI(*BB, IP, X86::FpADD, 2, RealDestReg)
3541 .addReg(ConstReg).addReg(DestReg);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003542 }
3543
Chris Lattner3e130a22003-01-13 00:32:26 +00003544 return;
3545 }
3546
3547 // Handle casts from floating point to integer now...
3548 if (SrcClass == cFP) {
3549 // Change the floating point control register to use "round towards zero"
3550 // mode when truncating to an integer value.
3551 //
3552 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003553 addFrameReference(BuildMI(*BB, IP, X86::FNSTCW16m, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003554
3555 // Load the old value of the high byte of the control word...
3556 unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003557 addFrameReference(BuildMI(*BB, IP, X86::MOV8rm, 4, HighPartOfCW),
Chris Lattneree352852004-02-29 07:22:16 +00003558 CWFrameIdx, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +00003559
3560 // Set the high part to be round to zero...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003561 addFrameReference(BuildMI(*BB, IP, X86::MOV8mi, 5),
Chris Lattneree352852004-02-29 07:22:16 +00003562 CWFrameIdx, 1).addImm(12);
Chris Lattner3e130a22003-01-13 00:32:26 +00003563
3564 // Reload the modified control word now...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003565 addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003566
3567 // Restore the memory image of control word to original value
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003568 addFrameReference(BuildMI(*BB, IP, X86::MOV8mr, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003569 CWFrameIdx, 1).addReg(HighPartOfCW);
Chris Lattner3e130a22003-01-13 00:32:26 +00003570
3571 // We don't have the facilities for directly storing byte sized data to
3572 // memory. Promote it to 16 bits. We also must promote unsigned values to
3573 // larger classes because we only have signed FP stores.
3574 unsigned StoreClass = DestClass;
3575 const Type *StoreTy = DestTy;
3576 if (StoreClass == cByte || DestTy->isUnsigned())
3577 switch (StoreClass) {
3578 case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
3579 case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
3580 case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
Brian Gaeked4615052003-07-18 20:23:43 +00003581 // The following treatment of cLong may not be perfectly right,
3582 // but it survives chains of casts of the form
3583 // double->ulong->double.
3584 case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break;
Chris Lattner3e130a22003-01-13 00:32:26 +00003585 default: assert(0 && "Unknown store class!");
3586 }
3587
3588 // Spill the integer to memory and reload it from there...
3589 int FrameIdx =
3590 F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
3591
3592 static const unsigned Op1[] =
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003593 { 0, X86::FIST16m, X86::FIST32m, 0, X86::FISTP64m };
Chris Lattneree352852004-02-29 07:22:16 +00003594 addFrameReference(BuildMI(*BB, IP, Op1[StoreClass], 5),
3595 FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003596
3597 if (DestClass == cLong) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003598 addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg), FrameIdx);
3599 addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg+1),
Chris Lattneree352852004-02-29 07:22:16 +00003600 FrameIdx, 4);
Chris Lattner3e130a22003-01-13 00:32:26 +00003601 } else {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003602 static const unsigned Op2[] = { X86::MOV8rm, X86::MOV16rm, X86::MOV32rm };
Chris Lattneree352852004-02-29 07:22:16 +00003603 addFrameReference(BuildMI(*BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003604 }
3605
3606 // Reload the original control word now...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003607 addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003608 return;
3609 }
3610
Brian Gaeked474e9c2002-12-06 10:49:33 +00003611 // Anything we haven't handled already, we can't (yet) handle at all.
Chris Lattnerc53544a2003-05-12 20:16:58 +00003612 assert(0 && "Unhandled cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00003613 abort();
Brian Gaekefa8d5712002-11-22 11:07:01 +00003614}
Brian Gaekea1719c92002-10-31 23:03:59 +00003615
Chris Lattner73815062003-10-18 05:56:40 +00003616/// visitVANextInst - Implement the va_next instruction...
Chris Lattnereca195e2003-05-08 19:44:13 +00003617///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003618void X86ISel::visitVANextInst(VANextInst &I) {
Chris Lattner73815062003-10-18 05:56:40 +00003619 unsigned VAList = getReg(I.getOperand(0));
Chris Lattnereca195e2003-05-08 19:44:13 +00003620 unsigned DestReg = getReg(I);
3621
Chris Lattnereca195e2003-05-08 19:44:13 +00003622 unsigned Size;
Chris Lattnerf70c22b2004-06-17 18:19:28 +00003623 switch (I.getArgType()->getTypeID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00003624 default:
3625 std::cerr << I;
Chris Lattner73815062003-10-18 05:56:40 +00003626 assert(0 && "Error: bad type for va_next instruction!");
Chris Lattnereca195e2003-05-08 19:44:13 +00003627 return;
3628 case Type::PointerTyID:
3629 case Type::UIntTyID:
3630 case Type::IntTyID:
3631 Size = 4;
Chris Lattnereca195e2003-05-08 19:44:13 +00003632 break;
3633 case Type::ULongTyID:
3634 case Type::LongTyID:
Chris Lattnereca195e2003-05-08 19:44:13 +00003635 case Type::DoubleTyID:
3636 Size = 8;
Chris Lattnereca195e2003-05-08 19:44:13 +00003637 break;
3638 }
3639
3640 // Increment the VAList pointer...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003641 BuildMI(BB, X86::ADD32ri, 2, DestReg).addReg(VAList).addImm(Size);
Chris Lattner73815062003-10-18 05:56:40 +00003642}
Chris Lattnereca195e2003-05-08 19:44:13 +00003643
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003644void X86ISel::visitVAArgInst(VAArgInst &I) {
Chris Lattner73815062003-10-18 05:56:40 +00003645 unsigned VAList = getReg(I.getOperand(0));
3646 unsigned DestReg = getReg(I);
3647
Chris Lattnerf70c22b2004-06-17 18:19:28 +00003648 switch (I.getType()->getTypeID()) {
Chris Lattner73815062003-10-18 05:56:40 +00003649 default:
3650 std::cerr << I;
3651 assert(0 && "Error: bad type for va_next instruction!");
3652 return;
3653 case Type::PointerTyID:
3654 case Type::UIntTyID:
3655 case Type::IntTyID:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003656 addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList);
Chris Lattner73815062003-10-18 05:56:40 +00003657 break;
3658 case Type::ULongTyID:
3659 case Type::LongTyID:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003660 addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList);
3661 addRegOffset(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), VAList, 4);
Chris Lattner73815062003-10-18 05:56:40 +00003662 break;
3663 case Type::DoubleTyID:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003664 addDirectMem(BuildMI(BB, X86::FLD64m, 4, DestReg), VAList);
Chris Lattner73815062003-10-18 05:56:40 +00003665 break;
3666 }
Chris Lattnereca195e2003-05-08 19:44:13 +00003667}
3668
Misha Brukman538607f2004-03-01 23:53:11 +00003669/// visitGetElementPtrInst - instruction-select GEP instructions
3670///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003671void X86ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
Chris Lattnerb6bac512004-02-25 06:13:04 +00003672 // If this GEP instruction will be folded into all of its users, we don't need
3673 // to explicitly calculate it!
Reid Spencerfc989e12004-08-30 00:13:26 +00003674 X86AddressMode AM;
3675 if (isGEPFoldable(0, I.getOperand(0), I.op_begin()+1, I.op_end(), AM)) {
Chris Lattnerb6bac512004-02-25 06:13:04 +00003676 // Check all of the users of the instruction to see if they are loads and
3677 // stores.
3678 bool AllWillFold = true;
3679 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI)
3680 if (cast<Instruction>(*UI)->getOpcode() != Instruction::Load)
3681 if (cast<Instruction>(*UI)->getOpcode() != Instruction::Store ||
3682 cast<Instruction>(*UI)->getOperand(0) == &I) {
3683 AllWillFold = false;
3684 break;
3685 }
3686
3687 // If the instruction is foldable, and will be folded into all users, don't
3688 // emit it!
3689 if (AllWillFold) return;
3690 }
3691
Chris Lattner3e130a22003-01-13 00:32:26 +00003692 unsigned outputReg = getReg(I);
Chris Lattner827832c2004-02-22 17:05:38 +00003693 emitGEPOperation(BB, BB->end(), I.getOperand(0),
Brian Gaeke68b1edc2002-12-16 04:23:29 +00003694 I.op_begin()+1, I.op_end(), outputReg);
Chris Lattnerc0812d82002-12-13 06:56:29 +00003695}
3696
Chris Lattner985fe3d2004-02-25 03:45:50 +00003697/// getGEPIndex - Inspect the getelementptr operands specified with GEPOps and
3698/// GEPTypes (the derived types being stepped through at each level). On return
3699/// from this function, if some indexes of the instruction are representable as
3700/// an X86 lea instruction, the machine operands are put into the Ops
3701/// instruction and the consumed indexes are poped from the GEPOps/GEPTypes
3702/// lists. Otherwise, GEPOps.size() is returned. If this returns a an
3703/// addressing mode that only partially consumes the input, the BaseReg input of
3704/// the addressing mode must be left free.
3705///
3706/// Note that there is one fewer entry in GEPTypes than there is in GEPOps.
3707///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003708void X86ISel::getGEPIndex(MachineBasicBlock *MBB,
3709 MachineBasicBlock::iterator IP,
3710 std::vector<Value*> &GEPOps,
3711 std::vector<const Type*> &GEPTypes,
3712 X86AddressMode &AM) {
Chris Lattnerb6bac512004-02-25 06:13:04 +00003713 const TargetData &TD = TM.getTargetData();
3714
Chris Lattner985fe3d2004-02-25 03:45:50 +00003715 // Clear out the state we are working with...
Reid Spencerfc989e12004-08-30 00:13:26 +00003716 AM.BaseType = X86AddressMode::RegBase;
3717 AM.Base.Reg = 0; // No base register
3718 AM.Scale = 1; // Unit scale
3719 AM.IndexReg = 0; // No index register
3720 AM.Disp = 0; // No displacement
Chris Lattnerb6bac512004-02-25 06:13:04 +00003721
Chris Lattner985fe3d2004-02-25 03:45:50 +00003722 // While there are GEP indexes that can be folded into the current address,
3723 // keep processing them.
3724 while (!GEPTypes.empty()) {
3725 if (const StructType *StTy = dyn_cast<StructType>(GEPTypes.back())) {
3726 // It's a struct access. CUI is the index into the structure,
3727 // which names the field. This index must have unsigned type.
3728 const ConstantUInt *CUI = cast<ConstantUInt>(GEPOps.back());
3729
3730 // Use the TargetData structure to pick out what the layout of the
3731 // structure is in memory. Since the structure index must be constant, we
3732 // can get its value and use it to find the right byte offset from the
3733 // StructLayout class's list of structure member offsets.
Reid Spencerfc989e12004-08-30 00:13:26 +00003734 AM.Disp += TD.getStructLayout(StTy)->MemberOffsets[CUI->getValue()];
Chris Lattner985fe3d2004-02-25 03:45:50 +00003735 GEPOps.pop_back(); // Consume a GEP operand
3736 GEPTypes.pop_back();
3737 } else {
3738 // It's an array or pointer access: [ArraySize x ElementType].
3739 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
3740 Value *idx = GEPOps.back();
3741
3742 // idx is the index into the array. Unlike with structure
3743 // indices, we may not know its actual value at code-generation
3744 // time.
Chris Lattner985fe3d2004-02-25 03:45:50 +00003745
3746 // If idx is a constant, fold it into the offset.
Chris Lattner5f2c7b12004-02-25 07:00:55 +00003747 unsigned TypeSize = TD.getTypeSize(SqTy->getElementType());
Chris Lattner985fe3d2004-02-25 03:45:50 +00003748 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
Reid Spencerfc989e12004-08-30 00:13:26 +00003749 AM.Disp += TypeSize*CSI->getValue();
Chris Lattner28977af2004-04-05 01:30:19 +00003750 } else if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(idx)) {
Reid Spencerfc989e12004-08-30 00:13:26 +00003751 AM.Disp += TypeSize*CUI->getValue();
Chris Lattner985fe3d2004-02-25 03:45:50 +00003752 } else {
Chris Lattner5f2c7b12004-02-25 07:00:55 +00003753 // If the index reg is already taken, we can't handle this index.
Reid Spencerfc989e12004-08-30 00:13:26 +00003754 if (AM.IndexReg) return;
Chris Lattner5f2c7b12004-02-25 07:00:55 +00003755
3756 // If this is a size that we can handle, then add the index as
3757 switch (TypeSize) {
3758 case 1: case 2: case 4: case 8:
3759 // These are all acceptable scales on X86.
Reid Spencerfc989e12004-08-30 00:13:26 +00003760 AM.Scale = TypeSize;
Chris Lattner5f2c7b12004-02-25 07:00:55 +00003761 break;
3762 default:
3763 // Otherwise, we can't handle this scale
3764 return;
3765 }
3766
3767 if (CastInst *CI = dyn_cast<CastInst>(idx))
3768 if (CI->getOperand(0)->getType() == Type::IntTy ||
3769 CI->getOperand(0)->getType() == Type::UIntTy)
3770 idx = CI->getOperand(0);
3771
Reid Spencerfc989e12004-08-30 00:13:26 +00003772 AM.IndexReg = MBB ? getReg(idx, MBB, IP) : 1;
Chris Lattner985fe3d2004-02-25 03:45:50 +00003773 }
3774
3775 GEPOps.pop_back(); // Consume a GEP operand
3776 GEPTypes.pop_back();
3777 }
3778 }
Chris Lattnerb6bac512004-02-25 06:13:04 +00003779
Chris Lattnerdf040972004-05-23 21:23:12 +00003780 // GEPTypes is empty, which means we have a single operand left. Set it as
3781 // the base register.
Chris Lattnerb6bac512004-02-25 06:13:04 +00003782 //
Reid Spencerfc989e12004-08-30 00:13:26 +00003783 assert(AM.Base.Reg == 0);
Chris Lattnerdf040972004-05-23 21:23:12 +00003784
Reid Spencerfc989e12004-08-30 00:13:26 +00003785 if (AllocaInst *AI = dyn_castFixedAlloca(GEPOps.back())) {
3786 AM.BaseType = X86AddressMode::FrameIndexBase;
3787 AM.Base.FrameIndex = getFixedSizedAllocaFI(AI);
Chris Lattnerdf040972004-05-23 21:23:12 +00003788 GEPOps.pop_back();
3789 return;
Reid Spencerfc989e12004-08-30 00:13:26 +00003790 }
3791
Chris Lattner358a9022004-10-15 05:05:29 +00003792 if (GlobalValue *GV = dyn_cast<GlobalValue>(GEPOps.back())) {
3793 AM.GV = GV;
3794 GEPOps.pop_back();
3795 return;
Chris Lattnerdf040972004-05-23 21:23:12 +00003796 }
Chris Lattnerdf040972004-05-23 21:23:12 +00003797
Reid Spencerfc989e12004-08-30 00:13:26 +00003798 AM.Base.Reg = MBB ? getReg(GEPOps[0], MBB, IP) : 1;
Chris Lattnerb6bac512004-02-25 06:13:04 +00003799 GEPOps.pop_back(); // Consume the last GEP operand
Chris Lattner985fe3d2004-02-25 03:45:50 +00003800}
3801
3802
Chris Lattnerb6bac512004-02-25 06:13:04 +00003803/// isGEPFoldable - Return true if the specified GEP can be completely
3804/// folded into the addressing mode of a load/store or lea instruction.
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003805bool X86ISel::isGEPFoldable(MachineBasicBlock *MBB,
3806 Value *Src, User::op_iterator IdxBegin,
3807 User::op_iterator IdxEnd, X86AddressMode &AM) {
Chris Lattner7ca04092004-02-22 17:35:42 +00003808
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003809 std::vector<Value*> GEPOps;
3810 GEPOps.resize(IdxEnd-IdxBegin+1);
3811 GEPOps[0] = Src;
3812 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
3813
Chris Lattnerdf040972004-05-23 21:23:12 +00003814 std::vector<const Type*>
3815 GEPTypes(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
3816 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003817
Chris Lattnerb6bac512004-02-25 06:13:04 +00003818 MachineBasicBlock::iterator IP;
3819 if (MBB) IP = MBB->end();
Reid Spencerfc989e12004-08-30 00:13:26 +00003820 getGEPIndex(MBB, IP, GEPOps, GEPTypes, AM);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003821
3822 // We can fold it away iff the getGEPIndex call eliminated all operands.
3823 return GEPOps.empty();
3824}
3825
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003826void X86ISel::emitGEPOperation(MachineBasicBlock *MBB,
3827 MachineBasicBlock::iterator IP,
3828 Value *Src, User::op_iterator IdxBegin,
3829 User::op_iterator IdxEnd, unsigned TargetReg) {
Chris Lattnerb6bac512004-02-25 06:13:04 +00003830 const TargetData &TD = TM.getTargetData();
Chris Lattnerb6bac512004-02-25 06:13:04 +00003831
Chris Lattnerd2995df2004-07-15 00:58:53 +00003832 // If this is a getelementptr null, with all constant integer indices, just
3833 // replace it with TargetReg = 42.
3834 if (isa<ConstantPointerNull>(Src)) {
3835 User::op_iterator I = IdxBegin;
3836 for (; I != IdxEnd; ++I)
3837 if (!isa<ConstantInt>(*I))
3838 break;
3839 if (I == IdxEnd) { // All constant indices
3840 unsigned Offset = TD.getIndexedOffset(Src->getType(),
3841 std::vector<Value*>(IdxBegin, IdxEnd));
3842 BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addImm(Offset);
3843 return;
3844 }
3845 }
3846
Chris Lattnerb6bac512004-02-25 06:13:04 +00003847 std::vector<Value*> GEPOps;
3848 GEPOps.resize(IdxEnd-IdxBegin+1);
3849 GEPOps[0] = Src;
3850 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
3851
3852 std::vector<const Type*> GEPTypes;
3853 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
3854 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
Chris Lattner985fe3d2004-02-25 03:45:50 +00003855
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003856 // Keep emitting instructions until we consume the entire GEP instruction.
3857 while (!GEPOps.empty()) {
3858 unsigned OldSize = GEPOps.size();
Reid Spencerfc989e12004-08-30 00:13:26 +00003859 X86AddressMode AM;
3860 getGEPIndex(MBB, IP, GEPOps, GEPTypes, AM);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003861
Chris Lattner985fe3d2004-02-25 03:45:50 +00003862 if (GEPOps.size() != OldSize) {
3863 // getGEPIndex consumed some of the input. Build an LEA instruction here.
Chris Lattnerb6bac512004-02-25 06:13:04 +00003864 unsigned NextTarget = 0;
3865 if (!GEPOps.empty()) {
Reid Spencerfc989e12004-08-30 00:13:26 +00003866 assert(AM.Base.Reg == 0 &&
Chris Lattnerb6bac512004-02-25 06:13:04 +00003867 "getGEPIndex should have left the base register open for chaining!");
Reid Spencerfc989e12004-08-30 00:13:26 +00003868 NextTarget = AM.Base.Reg = makeAnotherReg(Type::UIntTy);
Chris Lattner985fe3d2004-02-25 03:45:50 +00003869 }
Chris Lattnerb6bac512004-02-25 06:13:04 +00003870
Reid Spencerfc989e12004-08-30 00:13:26 +00003871 if (AM.BaseType == X86AddressMode::RegBase &&
Chris Lattner358a9022004-10-15 05:05:29 +00003872 AM.IndexReg == 0 && AM.Disp == 0 && !AM.GV)
Reid Spencerfc989e12004-08-30 00:13:26 +00003873 BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(AM.Base.Reg);
Chris Lattner358a9022004-10-15 05:05:29 +00003874 else if (AM.BaseType == X86AddressMode::RegBase && AM.Base.Reg == 0 &&
3875 AM.IndexReg == 0 && AM.Disp == 0)
3876 BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addGlobalAddress(AM.GV);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003877 else
Reid Spencerfc989e12004-08-30 00:13:26 +00003878 addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TargetReg), AM);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003879 --IP;
3880 TargetReg = NextTarget;
Chris Lattner985fe3d2004-02-25 03:45:50 +00003881 } else if (GEPTypes.empty()) {
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003882 // The getGEPIndex operation didn't want to build an LEA. Check to see if
3883 // all operands are consumed but the base pointer. If so, just load it
3884 // into the register.
Chris Lattner7ca04092004-02-22 17:35:42 +00003885 if (GlobalValue *GV = dyn_cast<GlobalValue>(GEPOps[0])) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003886 BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addGlobalAddress(GV);
Chris Lattner7ca04092004-02-22 17:35:42 +00003887 } else {
3888 unsigned BaseReg = getReg(GEPOps[0], MBB, IP);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003889 BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg);
Chris Lattner7ca04092004-02-22 17:35:42 +00003890 }
3891 break; // we are now done
Chris Lattnerb6bac512004-02-25 06:13:04 +00003892
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003893 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +00003894 // It's an array or pointer access: [ArraySize x ElementType].
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003895 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
3896 Value *idx = GEPOps.back();
3897 GEPOps.pop_back(); // Consume a GEP operand
3898 GEPTypes.pop_back();
Chris Lattner8a307e82002-12-16 19:32:50 +00003899
Chris Lattner28977af2004-04-05 01:30:19 +00003900 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
Chris Lattnerf5854472003-06-21 16:01:24 +00003901 // operand on X86. Handle this case directly now...
3902 if (CastInst *CI = dyn_cast<CastInst>(idx))
3903 if (CI->getOperand(0)->getType() == Type::IntTy ||
3904 CI->getOperand(0)->getType() == Type::UIntTy)
3905 idx = CI->getOperand(0);
3906
Chris Lattner3e130a22003-01-13 00:32:26 +00003907 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
Chris Lattner8a307e82002-12-16 19:32:50 +00003908 // must find the size of the pointed-to type (Not coincidentally, the next
3909 // type is the type of the elements in the array).
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003910 const Type *ElTy = SqTy->getElementType();
3911 unsigned elementSize = TD.getTypeSize(ElTy);
Chris Lattner8a307e82002-12-16 19:32:50 +00003912
3913 // If idxReg is a constant, we don't need to perform the multiply!
Chris Lattner28977af2004-04-05 01:30:19 +00003914 if (ConstantInt *CSI = dyn_cast<ConstantInt>(idx)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00003915 if (!CSI->isNullValue()) {
Chris Lattner28977af2004-04-05 01:30:19 +00003916 unsigned Offset = elementSize*CSI->getRawValue();
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003917 unsigned Reg = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003918 BuildMI(*MBB, IP, X86::ADD32ri, 2, TargetReg)
Chris Lattneree352852004-02-29 07:22:16 +00003919 .addReg(Reg).addImm(Offset);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003920 --IP; // Insert the next instruction before this one.
3921 TargetReg = Reg; // Codegen the rest of the GEP into this
Chris Lattner8a307e82002-12-16 19:32:50 +00003922 }
3923 } else if (elementSize == 1) {
3924 // If the element size is 1, we don't have to multiply, just add
3925 unsigned idxReg = getReg(idx, MBB, IP);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003926 unsigned Reg = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003927 BuildMI(*MBB, IP, X86::ADD32rr, 2,TargetReg).addReg(Reg).addReg(idxReg);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003928 --IP; // Insert the next instruction before this one.
3929 TargetReg = Reg; // Codegen the rest of the GEP into this
Chris Lattner8a307e82002-12-16 19:32:50 +00003930 } else {
3931 unsigned idxReg = getReg(idx, MBB, IP);
3932 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00003933
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003934 // Make sure we can back the iterator up to point to the first
3935 // instruction emitted.
3936 MachineBasicBlock::iterator BeforeIt = IP;
3937 if (IP == MBB->begin())
3938 BeforeIt = MBB->end();
3939 else
3940 --BeforeIt;
Chris Lattnerb2acc512003-10-19 21:09:10 +00003941 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
3942
Chris Lattner8a307e82002-12-16 19:32:50 +00003943 // Emit an ADD to add OffsetReg to the basePtr.
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003944 unsigned Reg = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003945 BuildMI(*MBB, IP, X86::ADD32rr, 2, TargetReg)
Chris Lattneree352852004-02-29 07:22:16 +00003946 .addReg(Reg).addReg(OffsetReg);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003947
3948 // Step to the first instruction of the multiply.
3949 if (BeforeIt == MBB->end())
3950 IP = MBB->begin();
3951 else
3952 IP = ++BeforeIt;
3953
3954 TargetReg = Reg; // Codegen the rest of the GEP into this
Chris Lattner8a307e82002-12-16 19:32:50 +00003955 }
Brian Gaeke20244b72002-12-12 15:33:40 +00003956 }
Brian Gaeke20244b72002-12-12 15:33:40 +00003957 }
Brian Gaeke20244b72002-12-12 15:33:40 +00003958}
3959
Chris Lattner065faeb2002-12-28 20:24:02 +00003960/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
3961/// frame manager, otherwise do it the hard way.
3962///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00003963void X86ISel::visitAllocaInst(AllocaInst &I) {
Chris Lattner9f1b5312004-05-13 15:12:43 +00003964 // If this is a fixed size alloca in the entry block for the function, we
3965 // statically stack allocate the space, so we don't need to do anything here.
3966 //
Chris Lattnercb2fd552004-05-13 07:40:27 +00003967 if (dyn_castFixedAlloca(&I)) return;
Chris Lattner9f1b5312004-05-13 15:12:43 +00003968
Brian Gaekee48ec012002-12-13 06:46:31 +00003969 // Find the data size of the alloca inst's getAllocatedType.
Chris Lattner065faeb2002-12-28 20:24:02 +00003970 const Type *Ty = I.getAllocatedType();
3971 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
3972
Chris Lattner065faeb2002-12-28 20:24:02 +00003973 // Create a register to hold the temporary result of multiplying the type size
3974 // constant by the variable amount.
3975 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
3976 unsigned SrcReg1 = getReg(I.getArraySize());
Chris Lattner065faeb2002-12-28 20:24:02 +00003977
3978 // TotalSizeReg = mul <numelements>, <TypeSize>
3979 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00003980 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
Chris Lattner065faeb2002-12-28 20:24:02 +00003981
3982 // AddedSize = add <TotalSizeReg>, 15
3983 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003984 BuildMI(BB, X86::ADD32ri, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
Chris Lattner065faeb2002-12-28 20:24:02 +00003985
3986 // AlignedSize = and <AddedSize>, ~15
3987 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003988 BuildMI(BB, X86::AND32ri, 2, AlignedSize).addReg(AddedSizeReg).addImm(~15);
Chris Lattner065faeb2002-12-28 20:24:02 +00003989
Brian Gaekee48ec012002-12-13 06:46:31 +00003990 // Subtract size from stack pointer, thereby allocating some space.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003991 BuildMI(BB, X86::SUB32rr, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
Chris Lattner065faeb2002-12-28 20:24:02 +00003992
Brian Gaekee48ec012002-12-13 06:46:31 +00003993 // Put a pointer to the space into the result register, by copying
3994 // the stack pointer.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003995 BuildMI(BB, X86::MOV32rr, 1, getReg(I)).addReg(X86::ESP);
Chris Lattner065faeb2002-12-28 20:24:02 +00003996
Misha Brukman48196b32003-05-03 02:18:17 +00003997 // Inform the Frame Information that we have just allocated a variable-sized
Chris Lattner065faeb2002-12-28 20:24:02 +00003998 // object.
3999 F->getFrameInfo()->CreateVariableSizedObject();
Brian Gaeke20244b72002-12-12 15:33:40 +00004000}
Chris Lattner3e130a22003-01-13 00:32:26 +00004001
4002/// visitMallocInst - Malloc instructions are code generated into direct calls
4003/// to the library malloc.
4004///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00004005void X86ISel::visitMallocInst(MallocInst &I) {
Chris Lattner3e130a22003-01-13 00:32:26 +00004006 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
4007 unsigned Arg;
4008
4009 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
4010 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
4011 } else {
4012 Arg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00004013 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattner3e130a22003-01-13 00:32:26 +00004014 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00004015 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
Chris Lattner3e130a22003-01-13 00:32:26 +00004016 }
4017
4018 std::vector<ValueRecord> Args;
4019 Args.push_back(ValueRecord(Arg, Type::UIntTy));
4020 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00004021 1).addExternalSymbol("malloc", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00004022 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
4023}
4024
4025
4026/// visitFreeInst - Free instructions are code gen'd to call the free libc
4027/// function.
4028///
Misha Brukmaneae1bf12004-09-21 18:21:21 +00004029void X86ISel::visitFreeInst(FreeInst &I) {
Chris Lattner3e130a22003-01-13 00:32:26 +00004030 std::vector<ValueRecord> Args;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00004031 Args.push_back(ValueRecord(I.getOperand(0)));
Chris Lattner3e130a22003-01-13 00:32:26 +00004032 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00004033 1).addExternalSymbol("free", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00004034 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
4035}
4036
Chris Lattnerd281de22003-07-26 23:49:58 +00004037/// createX86SimpleInstructionSelector - This pass converts an LLVM function
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00004038/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +00004039/// generated code sucks but the implementation is nice and simple.
4040///
Chris Lattnerf70e0c22003-12-28 21:23:38 +00004041FunctionPass *llvm::createX86SimpleInstructionSelector(TargetMachine &TM) {
Misha Brukmaneae1bf12004-09-21 18:21:21 +00004042 return new X86ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +00004043}