blob: 55636902495aed46f00f197af99fc77bd48f4b7d [file] [log] [blame]
Chris Lattner53e677a2004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattner53e677a2004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattner53e677a2004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanbc3d77a2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattner53e677a2004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman2b37d7c2005-04-21 21:13:18 +000030//
Chris Lattner53e677a2004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattner53e677a2004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner3b27d682006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chris Lattner0a7f98c2004-04-15 15:07:24 +000062#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000063#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
Chris Lattner673e02b2004-10-12 01:49:27 +000065#include "llvm/GlobalVariable.h"
Dan Gohman26812322009-08-25 17:49:57 +000066#include "llvm/GlobalAlias.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000067#include "llvm/Instructions.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000068#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000069#include "llvm/Operator.h"
John Criswella1156432005-10-27 15:54:34 +000070#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng5a6c1a82009-02-17 00:13:06 +000071#include "llvm/Analysis/Dominators.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000072#include "llvm/Analysis/LoopInfo.h"
Dan Gohman61ffa8e2009-06-16 19:52:01 +000073#include "llvm/Analysis/ValueTracking.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000074#include "llvm/Assembly/Writer.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000075#include "llvm/Target/TargetData.h"
Chris Lattner95255282006-06-28 23:17:24 +000076#include "llvm/Support/CommandLine.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000077#include "llvm/Support/ConstantRange.h"
David Greene63c94632009-12-23 22:58:38 +000078#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000079#include "llvm/Support/ErrorHandling.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000080#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner53e677a2004-04-02 20:23:17 +000081#include "llvm/Support/InstIterator.h"
Chris Lattner75de5ab2006-12-19 01:16:02 +000082#include "llvm/Support/MathExtras.h"
Dan Gohmanb7ef7292009-04-21 00:47:46 +000083#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000084#include "llvm/ADT/Statistic.h"
Dan Gohman2d1be872009-04-16 03:18:22 +000085#include "llvm/ADT/STLExtras.h"
Dan Gohman59ae6b92009-07-08 19:23:34 +000086#include "llvm/ADT/SmallPtrSet.h"
Alkis Evlogimenos20aa4742004-09-03 18:19:51 +000087#include <algorithm>
Chris Lattner53e677a2004-04-02 20:23:17 +000088using namespace llvm;
89
Chris Lattner3b27d682006-12-19 22:30:33 +000090STATISTIC(NumArrayLenItCounts,
91 "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93 "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95 "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97 "Number of loops with trip counts computed by force");
98
Dan Gohman844731a2008-05-13 00:00:25 +000099static cl::opt<unsigned>
Chris Lattner3b27d682006-12-19 22:30:33 +0000100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101 cl::desc("Maximum number of iterations SCEV will "
Dan Gohman64a845e2009-06-24 04:48:43 +0000102 "symbolically execute a constant "
103 "derived loop"),
Chris Lattner3b27d682006-12-19 22:30:33 +0000104 cl::init(100));
105
Dan Gohman844731a2008-05-13 00:00:25 +0000106static RegisterPass<ScalarEvolution>
107R("scalar-evolution", "Scalar Evolution Analysis", false, true);
Devang Patel19974732007-05-03 01:11:54 +0000108char ScalarEvolution::ID = 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000109
110//===----------------------------------------------------------------------===//
111// SCEV class definitions
112//===----------------------------------------------------------------------===//
113
114//===----------------------------------------------------------------------===//
115// Implementation of the SCEV class.
116//
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000117
Chris Lattner53e677a2004-04-02 20:23:17 +0000118SCEV::~SCEV() {}
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000119
Chris Lattner53e677a2004-04-02 20:23:17 +0000120void SCEV::dump() const {
David Greene25e0e872009-12-23 22:18:14 +0000121 print(dbgs());
122 dbgs() << '\n';
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000123}
124
Dan Gohmancfeb6a42008-06-18 16:23:07 +0000125bool SCEV::isZero() const {
126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
127 return SC->getValue()->isZero();
128 return false;
129}
130
Dan Gohman70a1fe72009-05-18 15:22:39 +0000131bool SCEV::isOne() const {
132 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
133 return SC->getValue()->isOne();
134 return false;
135}
Chris Lattner53e677a2004-04-02 20:23:17 +0000136
Dan Gohman4d289bf2009-06-24 00:30:26 +0000137bool SCEV::isAllOnesValue() const {
138 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
139 return SC->getValue()->isAllOnesValue();
140 return false;
141}
142
Owen Anderson753ad612009-06-22 21:57:23 +0000143SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman3bf63762010-06-18 19:54:20 +0000144 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000145
Chris Lattner53e677a2004-04-02 20:23:17 +0000146bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000147 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000148 return false;
Chris Lattner53e677a2004-04-02 20:23:17 +0000149}
150
151const Type *SCEVCouldNotCompute::getType() const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000152 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Misha Brukmanbb2aff12004-04-05 19:00:46 +0000153 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +0000154}
155
156bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
Torok Edwinc23197a2009-07-14 16:55:14 +0000157 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Chris Lattner53e677a2004-04-02 20:23:17 +0000158 return false;
159}
160
Dan Gohmanfef8bb22009-07-25 01:13:03 +0000161bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
162 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
163 return false;
Chris Lattner4dc534c2005-02-13 04:37:18 +0000164}
165
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000166void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Chris Lattner53e677a2004-04-02 20:23:17 +0000167 OS << "***COULDNOTCOMPUTE***";
168}
169
170bool SCEVCouldNotCompute::classof(const SCEV *S) {
171 return S->getSCEVType() == scCouldNotCompute;
172}
173
Dan Gohman0bba49c2009-07-07 17:06:11 +0000174const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohman1c343752009-06-27 21:21:31 +0000175 FoldingSetNodeID ID;
176 ID.AddInteger(scConstant);
177 ID.AddPointer(V);
178 void *IP = 0;
179 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +0000180 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +0000181 UniqueSCEVs.InsertNode(S, IP);
182 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000183}
Chris Lattner53e677a2004-04-02 20:23:17 +0000184
Dan Gohman0bba49c2009-07-07 17:06:11 +0000185const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000186 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman9a6ae962007-07-09 15:25:17 +0000187}
188
Dan Gohman0bba49c2009-07-07 17:06:11 +0000189const SCEV *
Dan Gohman6de29f82009-06-15 22:12:54 +0000190ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
Dan Gohmana560fd22010-04-21 16:04:04 +0000191 const IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
192 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman6de29f82009-06-15 22:12:54 +0000193}
194
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000195const Type *SCEVConstant::getType() const { return V->getType(); }
Chris Lattner53e677a2004-04-02 20:23:17 +0000196
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000197void SCEVConstant::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000198 WriteAsOperand(OS, V, false);
199}
Chris Lattner53e677a2004-04-02 20:23:17 +0000200
Dan Gohman3bf63762010-06-18 19:54:20 +0000201SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000202 unsigned SCEVTy, const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000203 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohman1c343752009-06-27 21:21:31 +0000204
Dan Gohman84923602009-04-21 01:25:57 +0000205bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
206 return Op->dominates(BB, DT);
207}
208
Dan Gohman6e70e312009-09-27 15:26:03 +0000209bool SCEVCastExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
210 return Op->properlyDominates(BB, DT);
211}
212
Dan Gohman3bf63762010-06-18 19:54:20 +0000213SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000214 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000215 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000216 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
217 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000218 "Cannot truncate non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000219}
Chris Lattner53e677a2004-04-02 20:23:17 +0000220
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000221void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000222 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000223}
224
Dan Gohman3bf63762010-06-18 19:54:20 +0000225SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000226 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000227 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000228 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
229 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000230 "Cannot zero extend non-integer value!");
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000231}
232
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000233void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000234 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000235}
236
Dan Gohman3bf63762010-06-18 19:54:20 +0000237SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Dan Gohmanc050fd92009-07-13 20:50:19 +0000238 const SCEV *op, const Type *ty)
Dan Gohman3bf63762010-06-18 19:54:20 +0000239 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands1df98592010-02-16 11:11:14 +0000240 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
241 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmand19534a2007-06-15 14:38:12 +0000242 "Cannot sign extend non-integer value!");
Dan Gohmand19534a2007-06-15 14:38:12 +0000243}
244
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000245void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohman36b8e532009-04-29 20:27:52 +0000246 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmand19534a2007-06-15 14:38:12 +0000247}
248
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000249void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000250 const char *OpStr = getOperationStr();
Dan Gohmana5145c82010-04-16 15:03:25 +0000251 OS << "(";
252 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) {
253 OS << **I;
254 if (next(I) != E)
255 OS << OpStr;
256 }
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000257 OS << ")";
258}
259
Dan Gohmanecb403a2009-05-07 14:00:19 +0000260bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000261 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
262 if (!getOperand(i)->dominates(BB, DT))
263 return false;
264 }
265 return true;
266}
267
Dan Gohman6e70e312009-09-27 15:26:03 +0000268bool SCEVNAryExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
269 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
270 if (!getOperand(i)->properlyDominates(BB, DT))
271 return false;
272 }
273 return true;
274}
275
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000276bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
277 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
278}
279
Dan Gohman6e70e312009-09-27 15:26:03 +0000280bool SCEVUDivExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
281 return LHS->properlyDominates(BB, DT) && RHS->properlyDominates(BB, DT);
282}
283
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000284void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000285 OS << "(" << *LHS << " /u " << *RHS << ")";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000286}
287
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000288const Type *SCEVUDivExpr::getType() const {
Dan Gohman91bb61a2009-05-26 17:44:05 +0000289 // In most cases the types of LHS and RHS will be the same, but in some
290 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
291 // depend on the type for correctness, but handling types carefully can
292 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
293 // a pointer type than the RHS, so use the RHS' type here.
294 return RHS->getType();
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000295}
296
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000297bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
Dan Gohmana3035a62009-05-20 01:01:24 +0000298 // Add recurrences are never invariant in the function-body (null loop).
Dan Gohmane890eea2009-06-26 22:17:21 +0000299 if (!QueryLoop)
300 return false;
301
302 // This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
Dan Gohman92329c72009-12-18 01:24:09 +0000303 if (QueryLoop->contains(L))
Dan Gohmane890eea2009-06-26 22:17:21 +0000304 return false;
305
306 // This recurrence is variant w.r.t. QueryLoop if any of its operands
307 // are variant.
308 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
309 if (!getOperand(i)->isLoopInvariant(QueryLoop))
310 return false;
311
312 // Otherwise it's loop-invariant.
313 return true;
Chris Lattner53e677a2004-04-02 20:23:17 +0000314}
315
Dan Gohman39125d82010-02-13 00:19:39 +0000316bool
317SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
318 return DT->dominates(L->getHeader(), BB) &&
319 SCEVNAryExpr::dominates(BB, DT);
320}
321
322bool
323SCEVAddRecExpr::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
324 // This uses a "dominates" query instead of "properly dominates" query because
325 // the instruction which produces the addrec's value is a PHI, and a PHI
326 // effectively properly dominates its entire containing block.
327 return DT->dominates(L->getHeader(), BB) &&
328 SCEVNAryExpr::properlyDominates(BB, DT);
329}
330
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000331void SCEVAddRecExpr::print(raw_ostream &OS) const {
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000332 OS << "{" << *Operands[0];
Dan Gohmanf9e64722010-03-18 01:17:13 +0000333 for (unsigned i = 1, e = NumOperands; i != e; ++i)
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000334 OS << ",+," << *Operands[i];
Dan Gohman30733292010-01-09 18:17:45 +0000335 OS << "}<";
336 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
337 OS << ">";
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000338}
Chris Lattner53e677a2004-04-02 20:23:17 +0000339
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000340bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
341 // All non-instruction values are loop invariant. All instructions are loop
342 // invariant if they are not contained in the specified loop.
Dan Gohmana3035a62009-05-20 01:01:24 +0000343 // Instructions are never considered invariant in the function body
344 // (null loop) because they are defined within the "loop".
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000345 if (Instruction *I = dyn_cast<Instruction>(V))
Dan Gohman92329c72009-12-18 01:24:09 +0000346 return L && !L->contains(I);
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000347 return true;
348}
Chris Lattner53e677a2004-04-02 20:23:17 +0000349
Evan Cheng5a6c1a82009-02-17 00:13:06 +0000350bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
351 if (Instruction *I = dyn_cast<Instruction>(getValue()))
352 return DT->dominates(I->getParent(), BB);
353 return true;
354}
355
Dan Gohman6e70e312009-09-27 15:26:03 +0000356bool SCEVUnknown::properlyDominates(BasicBlock *BB, DominatorTree *DT) const {
357 if (Instruction *I = dyn_cast<Instruction>(getValue()))
358 return DT->properlyDominates(I->getParent(), BB);
359 return true;
360}
361
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000362const Type *SCEVUnknown::getType() const {
363 return V->getType();
364}
Chris Lattner53e677a2004-04-02 20:23:17 +0000365
Dan Gohman0f5efe52010-01-28 02:15:55 +0000366bool SCEVUnknown::isSizeOf(const Type *&AllocTy) const {
367 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
368 if (VCE->getOpcode() == Instruction::PtrToInt)
369 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000370 if (CE->getOpcode() == Instruction::GetElementPtr &&
371 CE->getOperand(0)->isNullValue() &&
372 CE->getNumOperands() == 2)
373 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
374 if (CI->isOne()) {
375 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
376 ->getElementType();
377 return true;
378 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000379
380 return false;
381}
382
383bool SCEVUnknown::isAlignOf(const Type *&AllocTy) const {
384 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
385 if (VCE->getOpcode() == Instruction::PtrToInt)
386 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman8db08df2010-02-02 01:38:49 +0000387 if (CE->getOpcode() == Instruction::GetElementPtr &&
388 CE->getOperand(0)->isNullValue()) {
389 const Type *Ty =
390 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
391 if (const StructType *STy = dyn_cast<StructType>(Ty))
392 if (!STy->isPacked() &&
393 CE->getNumOperands() == 3 &&
394 CE->getOperand(1)->isNullValue()) {
395 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
396 if (CI->isOne() &&
397 STy->getNumElements() == 2 &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000398 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman8db08df2010-02-02 01:38:49 +0000399 AllocTy = STy->getElementType(1);
400 return true;
401 }
402 }
403 }
Dan Gohman0f5efe52010-01-28 02:15:55 +0000404
405 return false;
406}
407
Dan Gohman4f8eea82010-02-01 18:27:38 +0000408bool SCEVUnknown::isOffsetOf(const Type *&CTy, Constant *&FieldNo) const {
409 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(V))
410 if (VCE->getOpcode() == Instruction::PtrToInt)
411 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
412 if (CE->getOpcode() == Instruction::GetElementPtr &&
413 CE->getNumOperands() == 3 &&
414 CE->getOperand(0)->isNullValue() &&
415 CE->getOperand(1)->isNullValue()) {
416 const Type *Ty =
417 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
418 // Ignore vector types here so that ScalarEvolutionExpander doesn't
419 // emit getelementptrs that index into vectors.
Duncan Sands1df98592010-02-16 11:11:14 +0000420 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohman4f8eea82010-02-01 18:27:38 +0000421 CTy = Ty;
422 FieldNo = CE->getOperand(2);
423 return true;
424 }
425 }
426
427 return false;
428}
429
Dan Gohmanb7ef7292009-04-21 00:47:46 +0000430void SCEVUnknown::print(raw_ostream &OS) const {
Dan Gohman0f5efe52010-01-28 02:15:55 +0000431 const Type *AllocTy;
432 if (isSizeOf(AllocTy)) {
433 OS << "sizeof(" << *AllocTy << ")";
434 return;
435 }
436 if (isAlignOf(AllocTy)) {
437 OS << "alignof(" << *AllocTy << ")";
438 return;
439 }
440
Dan Gohman4f8eea82010-02-01 18:27:38 +0000441 const Type *CTy;
Dan Gohman0f5efe52010-01-28 02:15:55 +0000442 Constant *FieldNo;
Dan Gohman4f8eea82010-02-01 18:27:38 +0000443 if (isOffsetOf(CTy, FieldNo)) {
444 OS << "offsetof(" << *CTy << ", ";
Dan Gohman0f5efe52010-01-28 02:15:55 +0000445 WriteAsOperand(OS, FieldNo, false);
446 OS << ")";
447 return;
448 }
449
450 // Otherwise just print it normally.
Chris Lattner0a7f98c2004-04-15 15:07:24 +0000451 WriteAsOperand(OS, V, false);
Chris Lattner53e677a2004-04-02 20:23:17 +0000452}
453
Chris Lattner8d741b82004-06-20 06:23:15 +0000454//===----------------------------------------------------------------------===//
455// SCEV Utilities
456//===----------------------------------------------------------------------===//
457
Dan Gohmanc40f17b2009-08-18 16:46:41 +0000458static bool CompareTypes(const Type *A, const Type *B) {
459 if (A->getTypeID() != B->getTypeID())
460 return A->getTypeID() < B->getTypeID();
461 if (const IntegerType *AI = dyn_cast<IntegerType>(A)) {
462 const IntegerType *BI = cast<IntegerType>(B);
463 return AI->getBitWidth() < BI->getBitWidth();
464 }
465 if (const PointerType *AI = dyn_cast<PointerType>(A)) {
466 const PointerType *BI = cast<PointerType>(B);
467 return CompareTypes(AI->getElementType(), BI->getElementType());
468 }
469 if (const ArrayType *AI = dyn_cast<ArrayType>(A)) {
470 const ArrayType *BI = cast<ArrayType>(B);
471 if (AI->getNumElements() != BI->getNumElements())
472 return AI->getNumElements() < BI->getNumElements();
473 return CompareTypes(AI->getElementType(), BI->getElementType());
474 }
475 if (const VectorType *AI = dyn_cast<VectorType>(A)) {
476 const VectorType *BI = cast<VectorType>(B);
477 if (AI->getNumElements() != BI->getNumElements())
478 return AI->getNumElements() < BI->getNumElements();
479 return CompareTypes(AI->getElementType(), BI->getElementType());
480 }
481 if (const StructType *AI = dyn_cast<StructType>(A)) {
482 const StructType *BI = cast<StructType>(B);
483 if (AI->getNumElements() != BI->getNumElements())
484 return AI->getNumElements() < BI->getNumElements();
485 for (unsigned i = 0, e = AI->getNumElements(); i != e; ++i)
486 if (CompareTypes(AI->getElementType(i), BI->getElementType(i)) ||
487 CompareTypes(BI->getElementType(i), AI->getElementType(i)))
488 return CompareTypes(AI->getElementType(i), BI->getElementType(i));
489 }
490 return false;
491}
492
Chris Lattner8d741b82004-06-20 06:23:15 +0000493namespace {
494 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
495 /// than the complexity of the RHS. This comparator is used to canonicalize
496 /// expressions.
Nick Lewycky6726b6d2009-10-25 06:33:48 +0000497 class SCEVComplexityCompare {
Dan Gohman72861302009-05-07 14:39:04 +0000498 LoopInfo *LI;
499 public:
500 explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
501
Dan Gohmanf7b37b22008-04-14 18:23:56 +0000502 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman42214892009-08-31 21:15:23 +0000503 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
504 if (LHS == RHS)
505 return false;
506
Dan Gohman72861302009-05-07 14:39:04 +0000507 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman3bf63762010-06-18 19:54:20 +0000508 if (LHS->getSCEVType() != RHS->getSCEVType())
509 return LHS->getSCEVType() < RHS->getSCEVType();
Dan Gohman72861302009-05-07 14:39:04 +0000510
Dan Gohman3bf63762010-06-18 19:54:20 +0000511 // Aside from the getSCEVType() ordering, the particular ordering
512 // isn't very important except that it's beneficial to be consistent,
513 // so that (a + b) and (b + a) don't end up as different expressions.
514
515 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
516 // not as complete as it could be.
517 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
518 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
519
520 // Order pointer values after integer values. This helps SCEVExpander
521 // form GEPs.
522 if (LU->getType()->isPointerTy() && !RU->getType()->isPointerTy())
523 return false;
524 if (RU->getType()->isPointerTy() && !LU->getType()->isPointerTy())
525 return true;
526
527 // Compare getValueID values.
528 if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
529 return LU->getValue()->getValueID() < RU->getValue()->getValueID();
530
531 // Sort arguments by their position.
532 if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
533 const Argument *RA = cast<Argument>(RU->getValue());
534 return LA->getArgNo() < RA->getArgNo();
535 }
536
537 // For instructions, compare their loop depth, and their opcode.
538 // This is pretty loose.
539 if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
540 Instruction *RV = cast<Instruction>(RU->getValue());
541
542 // Compare loop depths.
543 if (LI->getLoopDepth(LV->getParent()) !=
544 LI->getLoopDepth(RV->getParent()))
545 return LI->getLoopDepth(LV->getParent()) <
546 LI->getLoopDepth(RV->getParent());
547
548 // Compare opcodes.
549 if (LV->getOpcode() != RV->getOpcode())
550 return LV->getOpcode() < RV->getOpcode();
551
552 // Compare the number of operands.
553 if (LV->getNumOperands() != RV->getNumOperands())
554 return LV->getNumOperands() < RV->getNumOperands();
555 }
556
557 return false;
558 }
559
560 // Compare constant values.
561 if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
562 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
563 if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth())
564 return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth();
565 return LC->getValue()->getValue().ult(RC->getValue()->getValue());
566 }
567
568 // Compare addrec loop depths.
569 if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
570 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
571 if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
572 return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
573 }
574
575 // Lexicographically compare n-ary expressions.
576 if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
577 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
578 for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
579 if (i >= RC->getNumOperands())
580 return false;
581 if (operator()(LC->getOperand(i), RC->getOperand(i)))
582 return true;
583 if (operator()(RC->getOperand(i), LC->getOperand(i)))
584 return false;
585 }
586 return LC->getNumOperands() < RC->getNumOperands();
587 }
588
589 // Lexicographically compare udiv expressions.
590 if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
591 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
592 if (operator()(LC->getLHS(), RC->getLHS()))
593 return true;
594 if (operator()(RC->getLHS(), LC->getLHS()))
595 return false;
596 if (operator()(LC->getRHS(), RC->getRHS()))
597 return true;
598 if (operator()(RC->getRHS(), LC->getRHS()))
599 return false;
600 return false;
601 }
602
603 // Compare cast expressions by operand.
604 if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
605 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
606 return operator()(LC->getOperand(), RC->getOperand());
607 }
608
609 llvm_unreachable("Unknown SCEV kind!");
610 return false;
Chris Lattner8d741b82004-06-20 06:23:15 +0000611 }
612 };
613}
614
615/// GroupByComplexity - Given a list of SCEV objects, order them by their
616/// complexity, and group objects of the same complexity together by value.
617/// When this routine is finished, we know that any duplicates in the vector are
618/// consecutive and that complexity is monotonically increasing.
619///
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000620/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattner8d741b82004-06-20 06:23:15 +0000621/// results from this routine. In other words, we don't want the results of
622/// this to depend on where the addresses of various SCEV objects happened to
623/// land in memory.
624///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000625static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman72861302009-05-07 14:39:04 +0000626 LoopInfo *LI) {
Chris Lattner8d741b82004-06-20 06:23:15 +0000627 if (Ops.size() < 2) return; // Noop
628 if (Ops.size() == 2) {
629 // This is the common case, which also happens to be trivially simple.
630 // Special case it.
Dan Gohman3bf63762010-06-18 19:54:20 +0000631 if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
Chris Lattner8d741b82004-06-20 06:23:15 +0000632 std::swap(Ops[0], Ops[1]);
633 return;
634 }
635
Dan Gohman3bf63762010-06-18 19:54:20 +0000636 // Do the rough sort by complexity.
637 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
638
639 // Now that we are sorted by complexity, group elements of the same
640 // complexity. Note that this is, at worst, N^2, but the vector is likely to
641 // be extremely short in practice. Note that we take this approach because we
642 // do not want to depend on the addresses of the objects we are grouping.
643 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
644 const SCEV *S = Ops[i];
645 unsigned Complexity = S->getSCEVType();
646
647 // If there are any objects of the same complexity and same value as this
648 // one, group them.
649 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
650 if (Ops[j] == S) { // Found a duplicate.
651 // Move it to immediately after i'th element.
652 std::swap(Ops[i+1], Ops[j]);
653 ++i; // no need to rescan it.
654 if (i == e-2) return; // Done!
655 }
656 }
657 }
Chris Lattner8d741b82004-06-20 06:23:15 +0000658}
659
Chris Lattner53e677a2004-04-02 20:23:17 +0000660
Chris Lattner53e677a2004-04-02 20:23:17 +0000661
662//===----------------------------------------------------------------------===//
663// Simple SCEV method implementations
664//===----------------------------------------------------------------------===//
665
Eli Friedmanb42a6262008-08-04 23:49:06 +0000666/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman6c0866c2009-05-24 23:45:28 +0000667/// Assume, K > 0.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000668static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000669 ScalarEvolution &SE,
670 const Type* ResultTy) {
Eli Friedmanb42a6262008-08-04 23:49:06 +0000671 // Handle the simplest case efficiently.
672 if (K == 1)
673 return SE.getTruncateOrZeroExtend(It, ResultTy);
674
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000675 // We are using the following formula for BC(It, K):
676 //
677 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
678 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000679 // Suppose, W is the bitwidth of the return value. We must be prepared for
680 // overflow. Hence, we must assure that the result of our computation is
681 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
682 // safe in modular arithmetic.
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000683 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000684 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohman64a845e2009-06-24 04:48:43 +0000685 // is something like the following, where T is the number of factors of 2 in
Eli Friedmanb42a6262008-08-04 23:49:06 +0000686 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
687 // exponentiation:
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000688 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000689 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000690 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000691 // This formula is trivially equivalent to the previous formula. However,
692 // this formula can be implemented much more efficiently. The trick is that
693 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
694 // arithmetic. To do exact division in modular arithmetic, all we have
695 // to do is multiply by the inverse. Therefore, this step can be done at
696 // width W.
Dan Gohman64a845e2009-06-24 04:48:43 +0000697 //
Eli Friedmanb42a6262008-08-04 23:49:06 +0000698 // The next issue is how to safely do the division by 2^T. The way this
699 // is done is by doing the multiplication step at a width of at least W + T
700 // bits. This way, the bottom W+T bits of the product are accurate. Then,
701 // when we perform the division by 2^T (which is equivalent to a right shift
702 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
703 // truncated out after the division by 2^T.
704 //
705 // In comparison to just directly using the first formula, this technique
706 // is much more efficient; using the first formula requires W * K bits,
707 // but this formula less than W + K bits. Also, the first formula requires
708 // a division step, whereas this formula only requires multiplies and shifts.
709 //
710 // It doesn't matter whether the subtraction step is done in the calculation
711 // width or the input iteration count's width; if the subtraction overflows,
712 // the result must be zero anyway. We prefer here to do it in the width of
713 // the induction variable because it helps a lot for certain cases; CodeGen
714 // isn't smart enough to ignore the overflow, which leads to much less
715 // efficient code if the width of the subtraction is wider than the native
716 // register width.
717 //
718 // (It's possible to not widen at all by pulling out factors of 2 before
719 // the multiplication; for example, K=2 can be calculated as
720 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
721 // extra arithmetic, so it's not an obvious win, and it gets
722 // much more complicated for K > 3.)
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000723
Eli Friedmanb42a6262008-08-04 23:49:06 +0000724 // Protection from insane SCEVs; this bound is conservative,
725 // but it probably doesn't matter.
726 if (K > 1000)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +0000727 return SE.getCouldNotCompute();
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000728
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000729 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000730
Eli Friedmanb42a6262008-08-04 23:49:06 +0000731 // Calculate K! / 2^T and T; we divide out the factors of two before
732 // multiplying for calculating K! / 2^T to avoid overflow.
733 // Other overflow doesn't matter because we only care about the bottom
734 // W bits of the result.
735 APInt OddFactorial(W, 1);
736 unsigned T = 1;
737 for (unsigned i = 3; i <= K; ++i) {
738 APInt Mult(W, i);
739 unsigned TwoFactors = Mult.countTrailingZeros();
740 T += TwoFactors;
741 Mult = Mult.lshr(TwoFactors);
742 OddFactorial *= Mult;
Chris Lattner53e677a2004-04-02 20:23:17 +0000743 }
Nick Lewycky6f8abf92008-06-13 04:38:55 +0000744
Eli Friedmanb42a6262008-08-04 23:49:06 +0000745 // We need at least W + T bits for the multiplication step
Nick Lewycky237d8732009-01-25 08:16:27 +0000746 unsigned CalculationBits = W + T;
Eli Friedmanb42a6262008-08-04 23:49:06 +0000747
Dan Gohman3f46a3a2010-03-01 17:49:51 +0000748 // Calculate 2^T, at width T+W.
Eli Friedmanb42a6262008-08-04 23:49:06 +0000749 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
750
751 // Calculate the multiplicative inverse of K! / 2^T;
752 // this multiplication factor will perform the exact division by
753 // K! / 2^T.
754 APInt Mod = APInt::getSignedMinValue(W+1);
755 APInt MultiplyFactor = OddFactorial.zext(W+1);
756 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
757 MultiplyFactor = MultiplyFactor.trunc(W);
758
759 // Calculate the product, at width T+W
Owen Anderson1d0be152009-08-13 21:58:54 +0000760 const IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
761 CalculationBits);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000762 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedmanb42a6262008-08-04 23:49:06 +0000763 for (unsigned i = 1; i != K; ++i) {
Dan Gohmandeff6212010-05-03 22:09:21 +0000764 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000765 Dividend = SE.getMulExpr(Dividend,
766 SE.getTruncateOrZeroExtend(S, CalculationTy));
767 }
768
769 // Divide by 2^T
Dan Gohman0bba49c2009-07-07 17:06:11 +0000770 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedmanb42a6262008-08-04 23:49:06 +0000771
772 // Truncate the result, and divide by K! / 2^T.
773
774 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
775 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattner53e677a2004-04-02 20:23:17 +0000776}
777
Chris Lattner53e677a2004-04-02 20:23:17 +0000778/// evaluateAtIteration - Return the value of this chain of recurrences at
779/// the specified iteration number. We can evaluate this recurrence by
780/// multiplying each element in the chain by the binomial coefficient
781/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
782///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000783/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattner53e677a2004-04-02 20:23:17 +0000784///
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000785/// where BC(It, k) stands for binomial coefficient.
Chris Lattner53e677a2004-04-02 20:23:17 +0000786///
Dan Gohman0bba49c2009-07-07 17:06:11 +0000787const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohmanc2b015e2009-07-21 00:38:55 +0000788 ScalarEvolution &SE) const {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000789 const SCEV *Result = getStart();
Chris Lattner53e677a2004-04-02 20:23:17 +0000790 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicze3320a12008-02-11 11:03:14 +0000791 // The computation is correct in the face of overflow provided that the
792 // multiplication is performed _after_ the evaluation of the binomial
793 // coefficient.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000794 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckycb8f1b52008-10-13 03:58:02 +0000795 if (isa<SCEVCouldNotCompute>(Coeff))
796 return Coeff;
797
798 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattner53e677a2004-04-02 20:23:17 +0000799 }
800 return Result;
801}
802
Chris Lattner53e677a2004-04-02 20:23:17 +0000803//===----------------------------------------------------------------------===//
804// SCEV Expression folder implementations
805//===----------------------------------------------------------------------===//
806
Dan Gohman0bba49c2009-07-07 17:06:11 +0000807const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000808 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000809 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000810 "This is not a truncating conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000811 assert(isSCEVable(Ty) &&
812 "This is not a conversion to a SCEVable type!");
813 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000814
Dan Gohmanc050fd92009-07-13 20:50:19 +0000815 FoldingSetNodeID ID;
816 ID.AddInteger(scTruncate);
817 ID.AddPointer(Op);
818 ID.AddPointer(Ty);
819 void *IP = 0;
820 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
821
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000822 // Fold if the operand is constant.
Dan Gohman622ed672009-05-04 22:02:23 +0000823 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohmanb8be8b72009-06-24 00:38:39 +0000824 return getConstant(
Dan Gohman1faa8822010-06-24 16:33:38 +0000825 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(),
826 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000827
Dan Gohman20900ca2009-04-22 16:20:48 +0000828 // trunc(trunc(x)) --> trunc(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000829 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000830 return getTruncateExpr(ST->getOperand(), Ty);
831
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000832 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000833 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000834 return getTruncateOrSignExtend(SS->getOperand(), Ty);
835
836 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohman622ed672009-05-04 22:02:23 +0000837 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewycky5cd28fa2009-04-23 05:15:08 +0000838 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
839
Dan Gohman6864db62009-06-18 16:24:47 +0000840 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohman622ed672009-05-04 22:02:23 +0000841 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +0000842 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +0000843 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman728c7f32009-05-08 21:03:19 +0000844 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
845 return getAddRecExpr(Operands, AddRec->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +0000846 }
847
Dan Gohman420ab912010-06-25 18:47:08 +0000848 // The cast wasn't folded; create an explicit cast node. We can reuse
849 // the existing insert position since if we get here, we won't have
850 // made any changes which would invalidate it.
Dan Gohman95531882010-03-18 18:49:47 +0000851 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
852 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000853 UniqueSCEVs.InsertNode(S, IP);
854 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000855}
856
Dan Gohman0bba49c2009-07-07 17:06:11 +0000857const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000858 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000859 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman8170a682009-04-16 19:25:55 +0000860 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000861 assert(isSCEVable(Ty) &&
862 "This is not a conversion to a SCEVable type!");
863 Ty = getEffectiveSCEVType(Ty);
Dan Gohman8170a682009-04-16 19:25:55 +0000864
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000865 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000866 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
867 return getConstant(
868 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(),
869 getEffectiveSCEVType(Ty))));
Chris Lattner53e677a2004-04-02 20:23:17 +0000870
Dan Gohman20900ca2009-04-22 16:20:48 +0000871 // zext(zext(x)) --> zext(x)
Dan Gohman622ed672009-05-04 22:02:23 +0000872 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +0000873 return getZeroExtendExpr(SZ->getOperand(), Ty);
874
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000875 // Before doing any expensive analysis, check to see if we've already
876 // computed a SCEV for this Op and Ty.
877 FoldingSetNodeID ID;
878 ID.AddInteger(scZeroExtend);
879 ID.AddPointer(Op);
880 ID.AddPointer(Ty);
881 void *IP = 0;
882 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
883
Dan Gohman01ecca22009-04-27 20:16:15 +0000884 // If the input value is a chrec scev, and we can prove that the value
Chris Lattner53e677a2004-04-02 20:23:17 +0000885 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +0000886 // operands (often constants). This allows analysis of something like
Chris Lattner53e677a2004-04-02 20:23:17 +0000887 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +0000888 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +0000889 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +0000890 const SCEV *Start = AR->getStart();
891 const SCEV *Step = AR->getStepRecurrence(*this);
892 unsigned BitWidth = getTypeSizeInBits(AR->getType());
893 const Loop *L = AR->getLoop();
894
Dan Gohmaneb490a72009-07-25 01:22:26 +0000895 // If we have special knowledge that this addrec won't overflow,
896 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +0000897 if (AR->hasNoUnsignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +0000898 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
899 getZeroExtendExpr(Step, Ty),
900 L);
901
Dan Gohman01ecca22009-04-27 20:16:15 +0000902 // Check whether the backedge-taken count is SCEVCouldNotCompute.
903 // Note that this serves two purposes: It filters out loops that are
904 // simply not analyzable, and it covers the case where this code is
905 // being called from within backedge-taken count analysis, such that
906 // attempting to ask for the backedge-taken count would likely result
907 // in infinite recursion. In the later case, the analysis code will
908 // cope with a conservative value, and it will take care to purge
909 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +0000910 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +0000911 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +0000912 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +0000913 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +0000914
915 // Check whether the backedge-taken count can be losslessly casted to
916 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +0000917 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +0000918 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +0000919 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +0000920 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
921 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +0000922 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +0000923 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +0000924 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +0000925 const SCEV *Add = getAddExpr(Start, ZMul);
926 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +0000927 getAddExpr(getZeroExtendExpr(Start, WideTy),
928 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
929 getZeroExtendExpr(Step, WideTy)));
930 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000931 // Return the expression with the addrec on the outside.
932 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
933 getZeroExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000934 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000935
936 // Similar to above, only this time treat the step value as signed.
937 // This covers loops that count down.
Dan Gohman8f767d92010-02-24 19:31:06 +0000938 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohmanac70cea2009-04-29 22:28:28 +0000939 Add = getAddExpr(Start, SMul);
Dan Gohman5183cae2009-05-18 15:58:39 +0000940 OperandExtendedAdd =
941 getAddExpr(getZeroExtendExpr(Start, WideTy),
942 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
943 getSignExtendExpr(Step, WideTy)));
944 if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +0000945 // Return the expression with the addrec on the outside.
946 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
947 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +0000948 L);
949 }
950
951 // If the backedge is guarded by a comparison with the pre-inc value
952 // the addrec is safe. Also, if the entry is guarded by a comparison
953 // with the start value and the backedge is guarded by a comparison
954 // with the post-inc value, the addrec is safe.
955 if (isKnownPositive(Step)) {
956 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
957 getUnsignedRange(Step).getUnsignedMax());
958 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +0000959 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000960 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
961 AR->getPostIncExpr(*this), N)))
962 // Return the expression with the addrec on the outside.
963 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
964 getZeroExtendExpr(Step, Ty),
965 L);
966 } else if (isKnownNegative(Step)) {
967 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
968 getSignedRange(Step).getSignedMin());
Dan Gohmanc0ed0092010-05-04 01:11:15 +0000969 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
970 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +0000971 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
972 AR->getPostIncExpr(*this), N)))
973 // Return the expression with the addrec on the outside.
974 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
975 getSignExtendExpr(Step, Ty),
976 L);
Dan Gohman01ecca22009-04-27 20:16:15 +0000977 }
978 }
979 }
Chris Lattner53e677a2004-04-02 20:23:17 +0000980
Dan Gohman69fbc7f2009-07-13 20:55:53 +0000981 // The cast wasn't folded; create an explicit cast node.
982 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +0000983 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +0000984 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
985 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +0000986 UniqueSCEVs.InsertNode(S, IP);
987 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +0000988}
989
Dan Gohman0bba49c2009-07-07 17:06:11 +0000990const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Dan Gohmanf5074ec2009-07-13 22:05:32 +0000991 const Type *Ty) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +0000992 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000993 "This is not an extending conversion!");
Dan Gohman10b94792009-05-01 16:44:18 +0000994 assert(isSCEVable(Ty) &&
995 "This is not a conversion to a SCEVable type!");
996 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanfb17fd22009-04-21 00:55:22 +0000997
Dan Gohmanc39f44b2009-06-30 20:13:32 +0000998 // Fold if the operand is constant.
Dan Gohmaneaf6cf22010-06-24 16:47:03 +0000999 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1000 return getConstant(
1001 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(),
1002 getEffectiveSCEVType(Ty))));
Dan Gohmand19534a2007-06-15 14:38:12 +00001003
Dan Gohman20900ca2009-04-22 16:20:48 +00001004 // sext(sext(x)) --> sext(x)
Dan Gohman622ed672009-05-04 22:02:23 +00001005 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman20900ca2009-04-22 16:20:48 +00001006 return getSignExtendExpr(SS->getOperand(), Ty);
1007
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001008 // Before doing any expensive analysis, check to see if we've already
1009 // computed a SCEV for this Op and Ty.
1010 FoldingSetNodeID ID;
1011 ID.AddInteger(scSignExtend);
1012 ID.AddPointer(Op);
1013 ID.AddPointer(Ty);
1014 void *IP = 0;
1015 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1016
Dan Gohman01ecca22009-04-27 20:16:15 +00001017 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmand19534a2007-06-15 14:38:12 +00001018 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman01ecca22009-04-27 20:16:15 +00001019 // operands (often constants). This allows analysis of something like
Dan Gohmand19534a2007-06-15 14:38:12 +00001020 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohman622ed672009-05-04 22:02:23 +00001021 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman01ecca22009-04-27 20:16:15 +00001022 if (AR->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00001023 const SCEV *Start = AR->getStart();
1024 const SCEV *Step = AR->getStepRecurrence(*this);
1025 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1026 const Loop *L = AR->getLoop();
1027
Dan Gohmaneb490a72009-07-25 01:22:26 +00001028 // If we have special knowledge that this addrec won't overflow,
1029 // we don't need to do any further analysis.
Dan Gohman5078f842009-08-20 17:11:38 +00001030 if (AR->hasNoSignedWrap())
Dan Gohmaneb490a72009-07-25 01:22:26 +00001031 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1032 getSignExtendExpr(Step, Ty),
1033 L);
1034
Dan Gohman01ecca22009-04-27 20:16:15 +00001035 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1036 // Note that this serves two purposes: It filters out loops that are
1037 // simply not analyzable, and it covers the case where this code is
1038 // being called from within backedge-taken count analysis, such that
1039 // attempting to ask for the backedge-taken count would likely result
1040 // in infinite recursion. In the later case, the analysis code will
1041 // cope with a conservative value, and it will take care to purge
1042 // that value once it has finished.
Dan Gohman85b05a22009-07-13 21:35:55 +00001043 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohmana1af7572009-04-30 20:47:05 +00001044 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohmanf0aa4852009-04-29 01:54:20 +00001045 // Manually compute the final value for AR, checking for
Dan Gohmanac70cea2009-04-29 22:28:28 +00001046 // overflow.
Dan Gohman01ecca22009-04-27 20:16:15 +00001047
1048 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohmanac70cea2009-04-29 22:28:28 +00001049 // the addrec's type. The count is always unsigned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001050 const SCEV *CastedMaxBECount =
Dan Gohmana1af7572009-04-30 20:47:05 +00001051 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001052 const SCEV *RecastedMaxBECount =
Dan Gohman5183cae2009-05-18 15:58:39 +00001053 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1054 if (MaxBECount == RecastedMaxBECount) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001055 const Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohmana1af7572009-04-30 20:47:05 +00001056 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman8f767d92010-02-24 19:31:06 +00001057 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001058 const SCEV *Add = getAddExpr(Start, SMul);
1059 const SCEV *OperandExtendedAdd =
Dan Gohman5183cae2009-05-18 15:58:39 +00001060 getAddExpr(getSignExtendExpr(Start, WideTy),
1061 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1062 getSignExtendExpr(Step, WideTy)));
1063 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohmanac70cea2009-04-29 22:28:28 +00001064 // Return the expression with the addrec on the outside.
1065 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1066 getSignExtendExpr(Step, Ty),
Dan Gohman85b05a22009-07-13 21:35:55 +00001067 L);
Dan Gohman850f7912009-07-16 17:34:36 +00001068
1069 // Similar to above, only this time treat the step value as unsigned.
1070 // This covers loops that count up with an unsigned step.
Dan Gohman8f767d92010-02-24 19:31:06 +00001071 const SCEV *UMul = getMulExpr(CastedMaxBECount, Step);
Dan Gohman850f7912009-07-16 17:34:36 +00001072 Add = getAddExpr(Start, UMul);
1073 OperandExtendedAdd =
Dan Gohman19378d62009-07-25 16:03:30 +00001074 getAddExpr(getSignExtendExpr(Start, WideTy),
Dan Gohman850f7912009-07-16 17:34:36 +00001075 getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
1076 getZeroExtendExpr(Step, WideTy)));
Dan Gohman19378d62009-07-25 16:03:30 +00001077 if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
Dan Gohman850f7912009-07-16 17:34:36 +00001078 // Return the expression with the addrec on the outside.
1079 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1080 getZeroExtendExpr(Step, Ty),
1081 L);
Dan Gohman85b05a22009-07-13 21:35:55 +00001082 }
1083
1084 // If the backedge is guarded by a comparison with the pre-inc value
1085 // the addrec is safe. Also, if the entry is guarded by a comparison
1086 // with the start value and the backedge is guarded by a comparison
1087 // with the post-inc value, the addrec is safe.
1088 if (isKnownPositive(Step)) {
1089 const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
1090 getSignedRange(Step).getSignedMax());
1091 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001092 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001093 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
1094 AR->getPostIncExpr(*this), N)))
1095 // Return the expression with the addrec on the outside.
1096 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1097 getSignExtendExpr(Step, Ty),
1098 L);
1099 } else if (isKnownNegative(Step)) {
1100 const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
1101 getSignedRange(Step).getSignedMin());
1102 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
Dan Gohman3948d0b2010-04-11 19:27:13 +00001103 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
Dan Gohman85b05a22009-07-13 21:35:55 +00001104 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
1105 AR->getPostIncExpr(*this), N)))
1106 // Return the expression with the addrec on the outside.
1107 return getAddRecExpr(getSignExtendExpr(Start, Ty),
1108 getSignExtendExpr(Step, Ty),
1109 L);
Dan Gohman01ecca22009-04-27 20:16:15 +00001110 }
1111 }
1112 }
Dan Gohmand19534a2007-06-15 14:38:12 +00001113
Dan Gohman69fbc7f2009-07-13 20:55:53 +00001114 // The cast wasn't folded; create an explicit cast node.
1115 // Recompute the insert position, as it may have been invalidated.
Dan Gohman1c343752009-06-27 21:21:31 +00001116 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001117 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1118 Op, Ty);
Dan Gohman1c343752009-06-27 21:21:31 +00001119 UniqueSCEVs.InsertNode(S, IP);
1120 return S;
Dan Gohmand19534a2007-06-15 14:38:12 +00001121}
1122
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001123/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1124/// unspecified bits out to the given type.
1125///
Dan Gohman0bba49c2009-07-07 17:06:11 +00001126const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Dan Gohmanc40f17b2009-08-18 16:46:41 +00001127 const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001128 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1129 "This is not an extending conversion!");
1130 assert(isSCEVable(Ty) &&
1131 "This is not a conversion to a SCEVable type!");
1132 Ty = getEffectiveSCEVType(Ty);
1133
1134 // Sign-extend negative constants.
1135 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1136 if (SC->getValue()->getValue().isNegative())
1137 return getSignExtendExpr(Op, Ty);
1138
1139 // Peel off a truncate cast.
1140 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001141 const SCEV *NewOp = T->getOperand();
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001142 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1143 return getAnyExtendExpr(NewOp, Ty);
1144 return getTruncateOrNoop(NewOp, Ty);
1145 }
1146
1147 // Next try a zext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001148 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001149 if (!isa<SCEVZeroExtendExpr>(ZExt))
1150 return ZExt;
1151
1152 // Next try a sext cast. If the cast is folded, use it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001153 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001154 if (!isa<SCEVSignExtendExpr>(SExt))
1155 return SExt;
1156
Dan Gohmana10756e2010-01-21 02:09:26 +00001157 // Force the cast to be folded into the operands of an addrec.
1158 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1159 SmallVector<const SCEV *, 4> Ops;
1160 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1161 I != E; ++I)
1162 Ops.push_back(getAnyExtendExpr(*I, Ty));
1163 return getAddRecExpr(Ops, AR->getLoop());
1164 }
1165
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00001166 // If the expression is obviously signed, use the sext cast value.
1167 if (isa<SCEVSMaxExpr>(Op))
1168 return SExt;
1169
1170 // Absent any other information, use the zext cast value.
1171 return ZExt;
1172}
1173
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001174/// CollectAddOperandsWithScales - Process the given Ops list, which is
1175/// a list of operands to be added under the given scale, update the given
1176/// map. This is a helper function for getAddRecExpr. As an example of
1177/// what it does, given a sequence of operands that would form an add
1178/// expression like this:
1179///
1180/// m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1181///
1182/// where A and B are constants, update the map with these values:
1183///
1184/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1185///
1186/// and add 13 + A*B*29 to AccumulatedConstant.
1187/// This will allow getAddRecExpr to produce this:
1188///
1189/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1190///
1191/// This form often exposes folding opportunities that are hidden in
1192/// the original operand list.
1193///
1194/// Return true iff it appears that any interesting folding opportunities
1195/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1196/// the common case where no interesting opportunities are present, and
1197/// is also used as a check to avoid infinite recursion.
1198///
1199static bool
Dan Gohman0bba49c2009-07-07 17:06:11 +00001200CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1201 SmallVector<const SCEV *, 8> &NewOps,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001202 APInt &AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001203 const SCEV *const *Ops, size_t NumOperands,
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001204 const APInt &Scale,
1205 ScalarEvolution &SE) {
1206 bool Interesting = false;
1207
Dan Gohmane0f0c7b2010-06-18 19:12:32 +00001208 // Iterate over the add operands. They are sorted, with constants first.
1209 unsigned i = 0;
1210 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1211 ++i;
1212 // Pull a buried constant out to the outside.
1213 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1214 Interesting = true;
1215 AccumulatedConstant += Scale * C->getValue()->getValue();
1216 }
1217
1218 // Next comes everything else. We're especially interested in multiplies
1219 // here, but they're in the middle, so just visit the rest with one loop.
1220 for (; i != NumOperands; ++i) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001221 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1222 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1223 APInt NewScale =
1224 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1225 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1226 // A multiplication of a constant with another add; recurse.
Dan Gohmanf9e64722010-03-18 01:17:13 +00001227 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001228 Interesting |=
1229 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001230 Add->op_begin(), Add->getNumOperands(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001231 NewScale, SE);
1232 } else {
1233 // A multiplication of a constant with some other value. Update
1234 // the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001235 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1236 const SCEV *Key = SE.getMulExpr(MulOps);
1237 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001238 M.insert(std::make_pair(Key, NewScale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001239 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001240 NewOps.push_back(Pair.first->first);
1241 } else {
1242 Pair.first->second += NewScale;
1243 // The map already had an entry for this value, which may indicate
1244 // a folding opportunity.
1245 Interesting = true;
1246 }
1247 }
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001248 } else {
1249 // An ordinary operand. Update the map.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001250 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohman23737e02009-06-29 18:25:52 +00001251 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001252 if (Pair.second) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001253 NewOps.push_back(Pair.first->first);
1254 } else {
1255 Pair.first->second += Scale;
1256 // The map already had an entry for this value, which may indicate
1257 // a folding opportunity.
1258 Interesting = true;
1259 }
1260 }
1261 }
1262
1263 return Interesting;
1264}
1265
1266namespace {
1267 struct APIntCompare {
1268 bool operator()(const APInt &LHS, const APInt &RHS) const {
1269 return LHS.ult(RHS);
1270 }
1271 };
1272}
1273
Dan Gohman6c0866c2009-05-24 23:45:28 +00001274/// getAddExpr - Get a canonical add expression, or something simpler if
1275/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001276const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1277 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001278 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner627018b2004-04-07 16:16:11 +00001279 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001280#ifndef NDEBUG
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001281 const Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmanf78a9782009-05-18 15:44:58 +00001282 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanc72f0c82010-06-18 19:09:27 +00001283 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmanf78a9782009-05-18 15:44:58 +00001284 "SCEVAddExpr operand types don't match!");
1285#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001286
Dan Gohmana10756e2010-01-21 02:09:26 +00001287 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1288 if (!HasNUW && HasNSW) {
1289 bool All = true;
1290 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1291 if (!isKnownNonNegative(Ops[i])) {
1292 All = false;
1293 break;
1294 }
1295 if (All) HasNUW = true;
1296 }
1297
Chris Lattner53e677a2004-04-02 20:23:17 +00001298 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001299 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001300
1301 // If there are any constants, fold them together.
1302 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001303 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001304 ++Idx;
Chris Lattner627018b2004-04-07 16:16:11 +00001305 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00001306 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001307 // We found two constants, fold them together!
Dan Gohmana82752c2009-06-14 22:47:23 +00001308 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1309 RHSC->getValue()->getValue());
Dan Gohman7f7c4362009-06-14 22:53:57 +00001310 if (Ops.size() == 2) return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00001311 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky3e630762008-02-20 06:48:22 +00001312 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001313 }
1314
1315 // If we are left with a constant zero being added, strip it off.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001316 if (LHSC->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001317 Ops.erase(Ops.begin());
1318 --Idx;
1319 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001320
Dan Gohmanbca091d2010-04-12 23:08:18 +00001321 if (Ops.size() == 1) return Ops[0];
1322 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001323
Chris Lattner53e677a2004-04-02 20:23:17 +00001324 // Okay, check to see if the same value occurs in the operand list twice. If
1325 // so, merge them together into an multiply expression. Since we sorted the
1326 // list, these values are required to be adjacent.
1327 const Type *Ty = Ops[0]->getType();
1328 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1329 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
1330 // Found a match, merge the two values into a multiply, and add any
1331 // remaining values to the result.
Dan Gohmandeff6212010-05-03 22:09:21 +00001332 const SCEV *Two = getConstant(Ty, 2);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001333 const SCEV *Mul = getMulExpr(Ops[i], Two);
Chris Lattner53e677a2004-04-02 20:23:17 +00001334 if (Ops.size() == 2)
1335 return Mul;
1336 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1337 Ops.push_back(Mul);
Dan Gohman3645b012009-10-09 00:10:36 +00001338 return getAddExpr(Ops, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001339 }
1340
Dan Gohman728c7f32009-05-08 21:03:19 +00001341 // Check for truncates. If all the operands are truncated from the same
1342 // type, see if factoring out the truncate would permit the result to be
1343 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1344 // if the contents of the resulting outer trunc fold to something simple.
1345 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1346 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1347 const Type *DstType = Trunc->getType();
1348 const Type *SrcType = Trunc->getOperand()->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00001349 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001350 bool Ok = true;
1351 // Check all the operands to see if they can be represented in the
1352 // source type of the truncate.
1353 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1354 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1355 if (T->getOperand()->getType() != SrcType) {
1356 Ok = false;
1357 break;
1358 }
1359 LargeOps.push_back(T->getOperand());
1360 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001361 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001362 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001363 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman728c7f32009-05-08 21:03:19 +00001364 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1365 if (const SCEVTruncateExpr *T =
1366 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1367 if (T->getOperand()->getType() != SrcType) {
1368 Ok = false;
1369 break;
1370 }
1371 LargeMulOps.push_back(T->getOperand());
1372 } else if (const SCEVConstant *C =
1373 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanc6863982010-04-23 01:51:29 +00001374 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman728c7f32009-05-08 21:03:19 +00001375 } else {
1376 Ok = false;
1377 break;
1378 }
1379 }
1380 if (Ok)
1381 LargeOps.push_back(getMulExpr(LargeMulOps));
1382 } else {
1383 Ok = false;
1384 break;
1385 }
1386 }
1387 if (Ok) {
1388 // Evaluate the expression in the larger type.
Dan Gohman3645b012009-10-09 00:10:36 +00001389 const SCEV *Fold = getAddExpr(LargeOps, HasNUW, HasNSW);
Dan Gohman728c7f32009-05-08 21:03:19 +00001390 // If it folds to something simple, use it. Otherwise, don't.
1391 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1392 return getTruncateExpr(Fold, DstType);
1393 }
1394 }
1395
1396 // Skip past any other cast SCEVs.
Dan Gohmanf50cd742007-06-18 19:30:09 +00001397 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1398 ++Idx;
1399
1400 // If there are add operands they would be next.
Chris Lattner53e677a2004-04-02 20:23:17 +00001401 if (Idx < Ops.size()) {
1402 bool DeletedAdd = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001403 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001404 // If we have an add, expand the add operands onto the end of the operands
1405 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001406 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001407 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001408 DeletedAdd = true;
1409 }
1410
1411 // If we deleted at least one add, we added operands to the end of the list,
1412 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001413 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001414 if (DeletedAdd)
Dan Gohman246b2562007-10-22 18:31:58 +00001415 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001416 }
1417
1418 // Skip over the add expression until we get to a multiply.
1419 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1420 ++Idx;
1421
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001422 // Check to see if there are any folding opportunities present with
1423 // operands multiplied by constant values.
1424 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1425 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001426 DenseMap<const SCEV *, APInt> M;
1427 SmallVector<const SCEV *, 8> NewOps;
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001428 APInt AccumulatedConstant(BitWidth, 0);
1429 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohmanf9e64722010-03-18 01:17:13 +00001430 Ops.data(), Ops.size(),
1431 APInt(BitWidth, 1), *this)) {
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001432 // Some interesting folding opportunity is present, so its worthwhile to
1433 // re-generate the operands list. Group the operands by constant scale,
1434 // to avoid multiplying by the same constant scale multiple times.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001435 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1436 for (SmallVector<const SCEV *, 8>::iterator I = NewOps.begin(),
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001437 E = NewOps.end(); I != E; ++I)
1438 MulOpLists[M.find(*I)->second].push_back(*I);
1439 // Re-generate the operands list.
1440 Ops.clear();
1441 if (AccumulatedConstant != 0)
1442 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohman64a845e2009-06-24 04:48:43 +00001443 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1444 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001445 if (I->first != 0)
Dan Gohman64a845e2009-06-24 04:48:43 +00001446 Ops.push_back(getMulExpr(getConstant(I->first),
1447 getAddExpr(I->second)));
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001448 if (Ops.empty())
Dan Gohmandeff6212010-05-03 22:09:21 +00001449 return getConstant(Ty, 0);
Dan Gohmanbd59d7b2009-06-14 22:58:51 +00001450 if (Ops.size() == 1)
1451 return Ops[0];
1452 return getAddExpr(Ops);
1453 }
1454 }
1455
Chris Lattner53e677a2004-04-02 20:23:17 +00001456 // If we are adding something to a multiply expression, make sure the
1457 // something is not already an operand of the multiply. If so, merge it into
1458 // the multiply.
1459 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001460 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001461 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001462 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Chris Lattner53e677a2004-04-02 20:23:17 +00001463 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohmana82752c2009-06-14 22:47:23 +00001464 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(Ops[AddOp])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001465 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001466 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001467 if (Mul->getNumOperands() != 2) {
1468 // If the multiply has more than two operands, we must get the
1469 // Y*Z term.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001470 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001471 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001472 InnerMul = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001473 }
Dan Gohmandeff6212010-05-03 22:09:21 +00001474 const SCEV *One = getConstant(Ty, 1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00001475 const SCEV *AddOne = getAddExpr(InnerMul, One);
1476 const SCEV *OuterMul = getMulExpr(AddOne, Ops[AddOp]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001477 if (Ops.size() == 2) return OuterMul;
1478 if (AddOp < Idx) {
1479 Ops.erase(Ops.begin()+AddOp);
1480 Ops.erase(Ops.begin()+Idx-1);
1481 } else {
1482 Ops.erase(Ops.begin()+Idx);
1483 Ops.erase(Ops.begin()+AddOp-1);
1484 }
1485 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001486 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001487 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00001488
Chris Lattner53e677a2004-04-02 20:23:17 +00001489 // Check this multiply against other multiplies being added together.
1490 for (unsigned OtherMulIdx = Idx+1;
1491 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1492 ++OtherMulIdx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001493 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001494 // If MulOp occurs in OtherMul, we can fold the two multiplies
1495 // together.
1496 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1497 OMulOp != e; ++OMulOp)
1498 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1499 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohman0bba49c2009-07-07 17:06:11 +00001500 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001501 if (Mul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001502 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1503 Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001504 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001505 InnerMul1 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001506 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001507 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattner53e677a2004-04-02 20:23:17 +00001508 if (OtherMul->getNumOperands() != 2) {
Dan Gohman64a845e2009-06-24 04:48:43 +00001509 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1510 OtherMul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001511 MulOps.erase(MulOps.begin()+OMulOp);
Dan Gohman246b2562007-10-22 18:31:58 +00001512 InnerMul2 = getMulExpr(MulOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001513 }
Dan Gohman0bba49c2009-07-07 17:06:11 +00001514 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1515 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattner53e677a2004-04-02 20:23:17 +00001516 if (Ops.size() == 2) return OuterMul;
1517 Ops.erase(Ops.begin()+Idx);
1518 Ops.erase(Ops.begin()+OtherMulIdx-1);
1519 Ops.push_back(OuterMul);
Dan Gohman246b2562007-10-22 18:31:58 +00001520 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001521 }
1522 }
1523 }
1524 }
1525
1526 // If there are any add recurrences in the operands list, see if any other
1527 // added values are loop invariant. If so, we can fold them into the
1528 // recurrence.
1529 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1530 ++Idx;
1531
1532 // Scan over all recurrences, trying to fold loop invariants into them.
1533 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1534 // Scan all of the other operands to this add and add them to the vector if
1535 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001536 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001537 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001538 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattner53e677a2004-04-02 20:23:17 +00001539 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanbca091d2010-04-12 23:08:18 +00001540 if (Ops[i]->isLoopInvariant(AddRecLoop)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001541 LIOps.push_back(Ops[i]);
1542 Ops.erase(Ops.begin()+i);
1543 --i; --e;
1544 }
1545
1546 // If we found some loop invariants, fold them into the recurrence.
1547 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001548 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattner53e677a2004-04-02 20:23:17 +00001549 LIOps.push_back(AddRec->getStart());
1550
Dan Gohman0bba49c2009-07-07 17:06:11 +00001551 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman3a5d4092009-12-18 03:57:04 +00001552 AddRec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001553 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattner53e677a2004-04-02 20:23:17 +00001554
Dan Gohman355b4f32009-12-19 01:46:34 +00001555 // It's tempting to propagate NUW/NSW flags here, but nuw/nsw addition
Dan Gohman59de33e2009-12-18 18:45:31 +00001556 // is not associative so this isn't necessarily safe.
Dan Gohmanbca091d2010-04-12 23:08:18 +00001557 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop);
Dan Gohman59de33e2009-12-18 18:45:31 +00001558
Chris Lattner53e677a2004-04-02 20:23:17 +00001559 // If all of the other operands were loop invariant, we are done.
1560 if (Ops.size() == 1) return NewRec;
1561
1562 // Otherwise, add the folded AddRec by the non-liv parts.
1563 for (unsigned i = 0;; ++i)
1564 if (Ops[i] == AddRec) {
1565 Ops[i] = NewRec;
1566 break;
1567 }
Dan Gohman246b2562007-10-22 18:31:58 +00001568 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001569 }
1570
1571 // Okay, if there weren't any loop invariants to be folded, check to see if
1572 // there are multiple AddRec's with the same loop induction variable being
1573 // added together. If so, we can fold them.
1574 for (unsigned OtherIdx = Idx+1;
1575 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1576 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001577 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Dan Gohmanbca091d2010-04-12 23:08:18 +00001578 if (AddRecLoop == OtherAddRec->getLoop()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001579 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
Dan Gohman64a845e2009-06-24 04:48:43 +00001580 SmallVector<const SCEV *, 4> NewOps(AddRec->op_begin(),
1581 AddRec->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001582 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1583 if (i >= NewOps.size()) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00001584 NewOps.append(OtherAddRec->op_begin()+i,
Chris Lattner53e677a2004-04-02 20:23:17 +00001585 OtherAddRec->op_end());
1586 break;
1587 }
Dan Gohman246b2562007-10-22 18:31:58 +00001588 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
Chris Lattner53e677a2004-04-02 20:23:17 +00001589 }
Dan Gohmanbca091d2010-04-12 23:08:18 +00001590 const SCEV *NewAddRec = getAddRecExpr(NewOps, AddRecLoop);
Chris Lattner53e677a2004-04-02 20:23:17 +00001591
1592 if (Ops.size() == 2) return NewAddRec;
1593
1594 Ops.erase(Ops.begin()+Idx);
1595 Ops.erase(Ops.begin()+OtherIdx-1);
1596 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001597 return getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001598 }
1599 }
1600
1601 // Otherwise couldn't fold anything into this recurrence. Move onto the
1602 // next one.
1603 }
1604
1605 // Okay, it looks like we really DO need an add expr. Check to see if we
1606 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001607 FoldingSetNodeID ID;
1608 ID.AddInteger(scAddExpr);
1609 ID.AddInteger(Ops.size());
1610 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1611 ID.AddPointer(Ops[i]);
1612 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001613 SCEVAddExpr *S =
1614 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1615 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001616 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1617 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001618 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1619 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001620 UniqueSCEVs.InsertNode(S, IP);
1621 }
Dan Gohman3645b012009-10-09 00:10:36 +00001622 if (HasNUW) S->setHasNoUnsignedWrap(true);
1623 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001624 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001625}
1626
Dan Gohman6c0866c2009-05-24 23:45:28 +00001627/// getMulExpr - Get a canonical multiply expression, or something simpler if
1628/// possible.
Dan Gohman3645b012009-10-09 00:10:36 +00001629const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1630 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001631 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohmana10756e2010-01-21 02:09:26 +00001632 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001633#ifndef NDEBUG
1634 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1635 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
1636 getEffectiveSCEVType(Ops[0]->getType()) &&
1637 "SCEVMulExpr operand types don't match!");
1638#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001639
Dan Gohmana10756e2010-01-21 02:09:26 +00001640 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1641 if (!HasNUW && HasNSW) {
1642 bool All = true;
1643 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1644 if (!isKnownNonNegative(Ops[i])) {
1645 All = false;
1646 break;
1647 }
1648 if (All) HasNUW = true;
1649 }
1650
Chris Lattner53e677a2004-04-02 20:23:17 +00001651 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00001652 GroupByComplexity(Ops, LI);
Chris Lattner53e677a2004-04-02 20:23:17 +00001653
1654 // If there are any constants, fold them together.
1655 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00001656 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001657
1658 // C1*(C2+V) -> C1*C2 + C1*V
1659 if (Ops.size() == 2)
Dan Gohman622ed672009-05-04 22:02:23 +00001660 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattner53e677a2004-04-02 20:23:17 +00001661 if (Add->getNumOperands() == 2 &&
1662 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman246b2562007-10-22 18:31:58 +00001663 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1664 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001665
Chris Lattner53e677a2004-04-02 20:23:17 +00001666 ++Idx;
Dan Gohman622ed672009-05-04 22:02:23 +00001667 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001668 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00001669 ConstantInt *Fold = ConstantInt::get(getContext(),
1670 LHSC->getValue()->getValue() *
Nick Lewycky3e630762008-02-20 06:48:22 +00001671 RHSC->getValue()->getValue());
1672 Ops[0] = getConstant(Fold);
1673 Ops.erase(Ops.begin()+1); // Erase the folded element
1674 if (Ops.size() == 1) return Ops[0];
1675 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001676 }
1677
1678 // If we are left with a constant one being multiplied, strip it off.
1679 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1680 Ops.erase(Ops.begin());
1681 --Idx;
Reid Spencercae57542007-03-02 00:28:52 +00001682 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001683 // If we have a multiply of zero, it will always be zero.
1684 return Ops[0];
Dan Gohmana10756e2010-01-21 02:09:26 +00001685 } else if (Ops[0]->isAllOnesValue()) {
1686 // If we have a mul by -1 of an add, try distributing the -1 among the
1687 // add operands.
1688 if (Ops.size() == 2)
1689 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1690 SmallVector<const SCEV *, 4> NewOps;
1691 bool AnyFolded = false;
1692 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1693 I != E; ++I) {
1694 const SCEV *Mul = getMulExpr(Ops[0], *I);
1695 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1696 NewOps.push_back(Mul);
1697 }
1698 if (AnyFolded)
1699 return getAddExpr(NewOps);
1700 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001701 }
Dan Gohman3ab13122010-04-13 16:49:23 +00001702
1703 if (Ops.size() == 1)
1704 return Ops[0];
Chris Lattner53e677a2004-04-02 20:23:17 +00001705 }
1706
1707 // Skip over the add expression until we get to a multiply.
1708 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1709 ++Idx;
1710
Chris Lattner53e677a2004-04-02 20:23:17 +00001711 // If there are mul operands inline them all into this expression.
1712 if (Idx < Ops.size()) {
1713 bool DeletedMul = false;
Dan Gohman622ed672009-05-04 22:02:23 +00001714 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001715 // If we have an mul, expand the mul operands onto the end of the operands
1716 // list.
Chris Lattner53e677a2004-04-02 20:23:17 +00001717 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00001718 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattner53e677a2004-04-02 20:23:17 +00001719 DeletedMul = true;
1720 }
1721
1722 // If we deleted at least one mul, we added operands to the end of the list,
1723 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman3f46a3a2010-03-01 17:49:51 +00001724 // any operands we just acquired.
Chris Lattner53e677a2004-04-02 20:23:17 +00001725 if (DeletedMul)
Dan Gohman246b2562007-10-22 18:31:58 +00001726 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001727 }
1728
1729 // If there are any add recurrences in the operands list, see if any other
1730 // added values are loop invariant. If so, we can fold them into the
1731 // recurrence.
1732 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1733 ++Idx;
1734
1735 // Scan over all recurrences, trying to fold loop invariants into them.
1736 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1737 // Scan all of the other operands to this mul and add them to the vector if
1738 // they are loop invariant w.r.t. the recurrence.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001739 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman35738ac2009-05-04 22:30:44 +00001740 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001741 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1742 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1743 LIOps.push_back(Ops[i]);
1744 Ops.erase(Ops.begin()+i);
1745 --i; --e;
1746 }
1747
1748 // If we found some loop invariants, fold them into the recurrence.
1749 if (!LIOps.empty()) {
Dan Gohman8dae1382008-09-14 17:21:12 +00001750 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohman0bba49c2009-07-07 17:06:11 +00001751 SmallVector<const SCEV *, 4> NewOps;
Chris Lattner53e677a2004-04-02 20:23:17 +00001752 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman27ed6a42010-06-17 23:34:09 +00001753 const SCEV *Scale = getMulExpr(LIOps);
1754 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
1755 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattner53e677a2004-04-02 20:23:17 +00001756
Dan Gohman355b4f32009-12-19 01:46:34 +00001757 // It's tempting to propagate the NSW flag here, but nsw multiplication
Dan Gohman59de33e2009-12-18 18:45:31 +00001758 // is not associative so this isn't necessarily safe.
Dan Gohmana10756e2010-01-21 02:09:26 +00001759 const SCEV *NewRec = getAddRecExpr(NewOps, AddRec->getLoop(),
1760 HasNUW && AddRec->hasNoUnsignedWrap(),
1761 /*HasNSW=*/false);
Chris Lattner53e677a2004-04-02 20:23:17 +00001762
1763 // If all of the other operands were loop invariant, we are done.
1764 if (Ops.size() == 1) return NewRec;
1765
1766 // Otherwise, multiply the folded AddRec by the non-liv parts.
1767 for (unsigned i = 0;; ++i)
1768 if (Ops[i] == AddRec) {
1769 Ops[i] = NewRec;
1770 break;
1771 }
Dan Gohman246b2562007-10-22 18:31:58 +00001772 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001773 }
1774
1775 // Okay, if there weren't any loop invariants to be folded, check to see if
1776 // there are multiple AddRec's with the same loop induction variable being
1777 // multiplied together. If so, we can fold them.
1778 for (unsigned OtherIdx = Idx+1;
1779 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1780 if (OtherIdx != Idx) {
Dan Gohman35738ac2009-05-04 22:30:44 +00001781 const SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
Chris Lattner53e677a2004-04-02 20:23:17 +00001782 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1783 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
Dan Gohman35738ac2009-05-04 22:30:44 +00001784 const SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman0bba49c2009-07-07 17:06:11 +00001785 const SCEV *NewStart = getMulExpr(F->getStart(),
Chris Lattner53e677a2004-04-02 20:23:17 +00001786 G->getStart());
Dan Gohman0bba49c2009-07-07 17:06:11 +00001787 const SCEV *B = F->getStepRecurrence(*this);
1788 const SCEV *D = G->getStepRecurrence(*this);
1789 const SCEV *NewStep = getAddExpr(getMulExpr(F, D),
Dan Gohman246b2562007-10-22 18:31:58 +00001790 getMulExpr(G, B),
1791 getMulExpr(B, D));
Dan Gohman0bba49c2009-07-07 17:06:11 +00001792 const SCEV *NewAddRec = getAddRecExpr(NewStart, NewStep,
Dan Gohman246b2562007-10-22 18:31:58 +00001793 F->getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00001794 if (Ops.size() == 2) return NewAddRec;
1795
1796 Ops.erase(Ops.begin()+Idx);
1797 Ops.erase(Ops.begin()+OtherIdx-1);
1798 Ops.push_back(NewAddRec);
Dan Gohman246b2562007-10-22 18:31:58 +00001799 return getMulExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00001800 }
1801 }
1802
1803 // Otherwise couldn't fold anything into this recurrence. Move onto the
1804 // next one.
1805 }
1806
1807 // Okay, it looks like we really DO need an mul expr. Check to see if we
1808 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00001809 FoldingSetNodeID ID;
1810 ID.AddInteger(scMulExpr);
1811 ID.AddInteger(Ops.size());
1812 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1813 ID.AddPointer(Ops[i]);
1814 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00001815 SCEVMulExpr *S =
1816 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1817 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00001818 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1819 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00001820 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
1821 O, Ops.size());
Dan Gohmana10756e2010-01-21 02:09:26 +00001822 UniqueSCEVs.InsertNode(S, IP);
1823 }
Dan Gohman3645b012009-10-09 00:10:36 +00001824 if (HasNUW) S->setHasNoUnsignedWrap(true);
1825 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00001826 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001827}
1828
Andreas Bolka8a11c982009-08-07 22:55:26 +00001829/// getUDivExpr - Get a canonical unsigned division expression, or something
1830/// simpler if possible.
Dan Gohman9311ef62009-06-24 14:49:00 +00001831const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
1832 const SCEV *RHS) {
Dan Gohmanf78a9782009-05-18 15:44:58 +00001833 assert(getEffectiveSCEVType(LHS->getType()) ==
1834 getEffectiveSCEVType(RHS->getType()) &&
1835 "SCEVUDivExpr operand types don't match!");
1836
Dan Gohman622ed672009-05-04 22:02:23 +00001837 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001838 if (RHSC->getValue()->equalsInt(1))
Dan Gohman4c0d5d52009-08-20 16:42:55 +00001839 return LHS; // X udiv 1 --> x
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001840 // If the denominator is zero, the result of the udiv is undefined. Don't
1841 // try to analyze it, because the resolution chosen here may differ from
1842 // the resolution chosen in other parts of the compiler.
1843 if (!RHSC->getValue()->isZero()) {
1844 // Determine if the division can be folded into the operands of
1845 // its operands.
1846 // TODO: Generalize this to non-constants by using known-bits information.
1847 const Type *Ty = LHS->getType();
1848 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
1849 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ;
1850 // For non-power-of-two values, effectively round the value up to the
1851 // nearest power of two.
1852 if (!RHSC->getValue()->getValue().isPowerOf2())
1853 ++MaxShiftAmt;
1854 const IntegerType *ExtTy =
1855 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
1856 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
1857 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
1858 if (const SCEVConstant *Step =
1859 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)))
1860 if (!Step->getValue()->getValue()
1861 .urem(RHSC->getValue()->getValue()) &&
1862 getZeroExtendExpr(AR, ExtTy) ==
1863 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
1864 getZeroExtendExpr(Step, ExtTy),
1865 AR->getLoop())) {
1866 SmallVector<const SCEV *, 4> Operands;
1867 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
1868 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
1869 return getAddRecExpr(Operands, AR->getLoop());
Dan Gohman185cf032009-05-08 20:18:49 +00001870 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001871 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
1872 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
1873 SmallVector<const SCEV *, 4> Operands;
1874 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
1875 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
1876 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
1877 // Find an operand that's safely divisible.
1878 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
1879 const SCEV *Op = M->getOperand(i);
1880 const SCEV *Div = getUDivExpr(Op, RHSC);
1881 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
1882 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
1883 M->op_end());
1884 Operands[i] = Div;
1885 return getMulExpr(Operands);
1886 }
1887 }
Dan Gohman185cf032009-05-08 20:18:49 +00001888 }
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001889 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
1890 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(LHS)) {
1891 SmallVector<const SCEV *, 4> Operands;
1892 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
1893 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
1894 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
1895 Operands.clear();
1896 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
1897 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
1898 if (isa<SCEVUDivExpr>(Op) ||
1899 getMulExpr(Op, RHS) != A->getOperand(i))
1900 break;
1901 Operands.push_back(Op);
1902 }
1903 if (Operands.size() == A->getNumOperands())
1904 return getAddExpr(Operands);
1905 }
1906 }
Dan Gohman185cf032009-05-08 20:18:49 +00001907
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00001908 // Fold if both operands are constant.
1909 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1910 Constant *LHSCV = LHSC->getValue();
1911 Constant *RHSCV = RHSC->getValue();
1912 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
1913 RHSCV)));
1914 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001915 }
1916 }
1917
Dan Gohman1c343752009-06-27 21:21:31 +00001918 FoldingSetNodeID ID;
1919 ID.AddInteger(scUDivExpr);
1920 ID.AddPointer(LHS);
1921 ID.AddPointer(RHS);
1922 void *IP = 0;
1923 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman95531882010-03-18 18:49:47 +00001924 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
1925 LHS, RHS);
Dan Gohman1c343752009-06-27 21:21:31 +00001926 UniqueSCEVs.InsertNode(S, IP);
1927 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00001928}
1929
1930
Dan Gohman6c0866c2009-05-24 23:45:28 +00001931/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1932/// Simplify the expression as much as possible.
Dan Gohman0bba49c2009-07-07 17:06:11 +00001933const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start,
Dan Gohman3645b012009-10-09 00:10:36 +00001934 const SCEV *Step, const Loop *L,
1935 bool HasNUW, bool HasNSW) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001936 SmallVector<const SCEV *, 4> Operands;
Chris Lattner53e677a2004-04-02 20:23:17 +00001937 Operands.push_back(Start);
Dan Gohman622ed672009-05-04 22:02:23 +00001938 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattner53e677a2004-04-02 20:23:17 +00001939 if (StepChrec->getLoop() == L) {
Dan Gohman403a8cd2010-06-21 19:47:52 +00001940 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00001941 return getAddRecExpr(Operands, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00001942 }
1943
1944 Operands.push_back(Step);
Dan Gohman3645b012009-10-09 00:10:36 +00001945 return getAddRecExpr(Operands, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00001946}
1947
Dan Gohman6c0866c2009-05-24 23:45:28 +00001948/// getAddRecExpr - Get an add recurrence expression for the specified loop.
1949/// Simplify the expression as much as possible.
Dan Gohman64a845e2009-06-24 04:48:43 +00001950const SCEV *
Dan Gohman0bba49c2009-07-07 17:06:11 +00001951ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Dan Gohman3645b012009-10-09 00:10:36 +00001952 const Loop *L,
1953 bool HasNUW, bool HasNSW) {
Chris Lattner53e677a2004-04-02 20:23:17 +00001954 if (Operands.size() == 1) return Operands[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00001955#ifndef NDEBUG
1956 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
1957 assert(getEffectiveSCEVType(Operands[i]->getType()) ==
1958 getEffectiveSCEVType(Operands[0]->getType()) &&
1959 "SCEVAddRecExpr operand types don't match!");
1960#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00001961
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001962 if (Operands.back()->isZero()) {
1963 Operands.pop_back();
Dan Gohman3645b012009-10-09 00:10:36 +00001964 return getAddRecExpr(Operands, L, HasNUW, HasNSW); // {X,+,0} --> X
Dan Gohmancfeb6a42008-06-18 16:23:07 +00001965 }
Chris Lattner53e677a2004-04-02 20:23:17 +00001966
Dan Gohmanbc028532010-02-19 18:49:22 +00001967 // It's tempting to want to call getMaxBackedgeTakenCount count here and
1968 // use that information to infer NUW and NSW flags. However, computing a
1969 // BE count requires calling getAddRecExpr, so we may not yet have a
1970 // meaningful BE count at this point (and if we don't, we'd be stuck
1971 // with a SCEVCouldNotCompute as the cached BE count).
1972
Dan Gohmana10756e2010-01-21 02:09:26 +00001973 // If HasNSW is true and all the operands are non-negative, infer HasNUW.
1974 if (!HasNUW && HasNSW) {
1975 bool All = true;
1976 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1977 if (!isKnownNonNegative(Operands[i])) {
1978 All = false;
1979 break;
1980 }
1981 if (All) HasNUW = true;
1982 }
1983
Dan Gohmand9cc7492008-08-08 18:33:12 +00001984 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohman622ed672009-05-04 22:02:23 +00001985 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohman5d984912009-12-18 01:14:11 +00001986 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohmana10756e2010-01-21 02:09:26 +00001987 if (L->contains(NestedLoop->getHeader()) ?
1988 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
1989 (!NestedLoop->contains(L->getHeader()) &&
1990 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00001991 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohman5d984912009-12-18 01:14:11 +00001992 NestedAR->op_end());
Dan Gohmand9cc7492008-08-08 18:33:12 +00001993 Operands[0] = NestedAR->getStart();
Dan Gohman9a80b452009-06-26 22:36:20 +00001994 // AddRecs require their operands be loop-invariant with respect to their
1995 // loops. Don't perform this transformation if it would break this
1996 // requirement.
1997 bool AllInvariant = true;
1998 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
1999 if (!Operands[i]->isLoopInvariant(L)) {
2000 AllInvariant = false;
2001 break;
2002 }
2003 if (AllInvariant) {
2004 NestedOperands[0] = getAddRecExpr(Operands, L);
2005 AllInvariant = true;
2006 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2007 if (!NestedOperands[i]->isLoopInvariant(NestedLoop)) {
2008 AllInvariant = false;
2009 break;
2010 }
2011 if (AllInvariant)
2012 // Ok, both add recurrences are valid after the transformation.
Dan Gohman3645b012009-10-09 00:10:36 +00002013 return getAddRecExpr(NestedOperands, NestedLoop, HasNUW, HasNSW);
Dan Gohman9a80b452009-06-26 22:36:20 +00002014 }
2015 // Reset Operands to its original state.
2016 Operands[0] = NestedAR;
Dan Gohmand9cc7492008-08-08 18:33:12 +00002017 }
2018 }
2019
Dan Gohman67847532010-01-19 22:27:22 +00002020 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2021 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002022 FoldingSetNodeID ID;
2023 ID.AddInteger(scAddRecExpr);
2024 ID.AddInteger(Operands.size());
2025 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2026 ID.AddPointer(Operands[i]);
2027 ID.AddPointer(L);
2028 void *IP = 0;
Dan Gohmana10756e2010-01-21 02:09:26 +00002029 SCEVAddRecExpr *S =
2030 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2031 if (!S) {
Dan Gohmanf9e64722010-03-18 01:17:13 +00002032 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2033 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002034 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2035 O, Operands.size(), L);
Dan Gohmana10756e2010-01-21 02:09:26 +00002036 UniqueSCEVs.InsertNode(S, IP);
2037 }
Dan Gohman3645b012009-10-09 00:10:36 +00002038 if (HasNUW) S->setHasNoUnsignedWrap(true);
2039 if (HasNSW) S->setHasNoSignedWrap(true);
Dan Gohman1c343752009-06-27 21:21:31 +00002040 return S;
Chris Lattner53e677a2004-04-02 20:23:17 +00002041}
2042
Dan Gohman9311ef62009-06-24 14:49:00 +00002043const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2044 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002045 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002046 Ops.push_back(LHS);
2047 Ops.push_back(RHS);
2048 return getSMaxExpr(Ops);
2049}
2050
Dan Gohman0bba49c2009-07-07 17:06:11 +00002051const SCEV *
2052ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002053 assert(!Ops.empty() && "Cannot get empty smax!");
2054 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002055#ifndef NDEBUG
2056 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2057 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2058 getEffectiveSCEVType(Ops[0]->getType()) &&
2059 "SCEVSMaxExpr operand types don't match!");
2060#endif
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002061
2062 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002063 GroupByComplexity(Ops, LI);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002064
2065 // If there are any constants, fold them together.
2066 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002067 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002068 ++Idx;
2069 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002070 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002071 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002072 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002073 APIntOps::smax(LHSC->getValue()->getValue(),
2074 RHSC->getValue()->getValue()));
Nick Lewycky3e630762008-02-20 06:48:22 +00002075 Ops[0] = getConstant(Fold);
2076 Ops.erase(Ops.begin()+1); // Erase the folded element
2077 if (Ops.size() == 1) return Ops[0];
2078 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002079 }
2080
Dan Gohmane5aceed2009-06-24 14:46:22 +00002081 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002082 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2083 Ops.erase(Ops.begin());
2084 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002085 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2086 // If we have an smax with a constant maximum-int, it will always be
2087 // maximum-int.
2088 return Ops[0];
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002089 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002090
Dan Gohman3ab13122010-04-13 16:49:23 +00002091 if (Ops.size() == 1) return Ops[0];
2092 }
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002093
2094 // Find the first SMax
2095 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2096 ++Idx;
2097
2098 // Check to see if one of the operands is an SMax. If so, expand its operands
2099 // onto our operand list, and recurse to simplify.
2100 if (Idx < Ops.size()) {
2101 bool DeletedSMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002102 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002103 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002104 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002105 DeletedSMax = true;
2106 }
2107
2108 if (DeletedSMax)
2109 return getSMaxExpr(Ops);
2110 }
2111
2112 // Okay, check to see if the same value occurs in the operand list twice. If
2113 // so, delete one. Since we sorted the list, these values are required to
2114 // be adjacent.
2115 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002116 // X smax Y smax Y --> X smax Y
2117 // X smax Y --> X, if X is always greater than Y
2118 if (Ops[i] == Ops[i+1] ||
2119 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2120 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2121 --i; --e;
2122 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002123 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2124 --i; --e;
2125 }
2126
2127 if (Ops.size() == 1) return Ops[0];
2128
2129 assert(!Ops.empty() && "Reduced smax down to nothing!");
2130
Nick Lewycky3e630762008-02-20 06:48:22 +00002131 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002132 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002133 FoldingSetNodeID ID;
2134 ID.AddInteger(scSMaxExpr);
2135 ID.AddInteger(Ops.size());
2136 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2137 ID.AddPointer(Ops[i]);
2138 void *IP = 0;
2139 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002140 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2141 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002142 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2143 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002144 UniqueSCEVs.InsertNode(S, IP);
2145 return S;
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002146}
2147
Dan Gohman9311ef62009-06-24 14:49:00 +00002148const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2149 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002150 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky3e630762008-02-20 06:48:22 +00002151 Ops.push_back(LHS);
2152 Ops.push_back(RHS);
2153 return getUMaxExpr(Ops);
2154}
2155
Dan Gohman0bba49c2009-07-07 17:06:11 +00002156const SCEV *
2157ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002158 assert(!Ops.empty() && "Cannot get empty umax!");
2159 if (Ops.size() == 1) return Ops[0];
Dan Gohmanf78a9782009-05-18 15:44:58 +00002160#ifndef NDEBUG
2161 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2162 assert(getEffectiveSCEVType(Ops[i]->getType()) ==
2163 getEffectiveSCEVType(Ops[0]->getType()) &&
2164 "SCEVUMaxExpr operand types don't match!");
2165#endif
Nick Lewycky3e630762008-02-20 06:48:22 +00002166
2167 // Sort by complexity, this groups all similar expression types together.
Dan Gohman72861302009-05-07 14:39:04 +00002168 GroupByComplexity(Ops, LI);
Nick Lewycky3e630762008-02-20 06:48:22 +00002169
2170 // If there are any constants, fold them together.
2171 unsigned Idx = 0;
Dan Gohman622ed672009-05-04 22:02:23 +00002172 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002173 ++Idx;
2174 assert(Idx < Ops.size());
Dan Gohman622ed672009-05-04 22:02:23 +00002175 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002176 // We found two constants, fold them together!
Owen Andersoneed707b2009-07-24 23:12:02 +00002177 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky3e630762008-02-20 06:48:22 +00002178 APIntOps::umax(LHSC->getValue()->getValue(),
2179 RHSC->getValue()->getValue()));
2180 Ops[0] = getConstant(Fold);
2181 Ops.erase(Ops.begin()+1); // Erase the folded element
2182 if (Ops.size() == 1) return Ops[0];
2183 LHSC = cast<SCEVConstant>(Ops[0]);
2184 }
2185
Dan Gohmane5aceed2009-06-24 14:46:22 +00002186 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky3e630762008-02-20 06:48:22 +00002187 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2188 Ops.erase(Ops.begin());
2189 --Idx;
Dan Gohmane5aceed2009-06-24 14:46:22 +00002190 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2191 // If we have an umax with a constant maximum-int, it will always be
2192 // maximum-int.
2193 return Ops[0];
Nick Lewycky3e630762008-02-20 06:48:22 +00002194 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002195
Dan Gohman3ab13122010-04-13 16:49:23 +00002196 if (Ops.size() == 1) return Ops[0];
2197 }
Nick Lewycky3e630762008-02-20 06:48:22 +00002198
2199 // Find the first UMax
2200 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2201 ++Idx;
2202
2203 // Check to see if one of the operands is a UMax. If so, expand its operands
2204 // onto our operand list, and recurse to simplify.
2205 if (Idx < Ops.size()) {
2206 bool DeletedUMax = false;
Dan Gohman622ed672009-05-04 22:02:23 +00002207 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002208 Ops.erase(Ops.begin()+Idx);
Dan Gohman403a8cd2010-06-21 19:47:52 +00002209 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky3e630762008-02-20 06:48:22 +00002210 DeletedUMax = true;
2211 }
2212
2213 if (DeletedUMax)
2214 return getUMaxExpr(Ops);
2215 }
2216
2217 // Okay, check to see if the same value occurs in the operand list twice. If
2218 // so, delete one. Since we sorted the list, these values are required to
2219 // be adjacent.
2220 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman28287792010-04-13 16:51:03 +00002221 // X umax Y umax Y --> X umax Y
2222 // X umax Y --> X, if X is always greater than Y
2223 if (Ops[i] == Ops[i+1] ||
2224 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2225 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2226 --i; --e;
2227 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002228 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2229 --i; --e;
2230 }
2231
2232 if (Ops.size() == 1) return Ops[0];
2233
2234 assert(!Ops.empty() && "Reduced umax down to nothing!");
2235
2236 // Okay, it looks like we really DO need a umax expr. Check to see if we
2237 // already have one, otherwise create a new one.
Dan Gohman1c343752009-06-27 21:21:31 +00002238 FoldingSetNodeID ID;
2239 ID.AddInteger(scUMaxExpr);
2240 ID.AddInteger(Ops.size());
2241 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2242 ID.AddPointer(Ops[i]);
2243 void *IP = 0;
2244 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohmanf9e64722010-03-18 01:17:13 +00002245 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2246 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman95531882010-03-18 18:49:47 +00002247 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2248 O, Ops.size());
Dan Gohman1c343752009-06-27 21:21:31 +00002249 UniqueSCEVs.InsertNode(S, IP);
2250 return S;
Nick Lewycky3e630762008-02-20 06:48:22 +00002251}
2252
Dan Gohman9311ef62009-06-24 14:49:00 +00002253const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2254 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002255 // ~smax(~x, ~y) == smin(x, y).
2256 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2257}
2258
Dan Gohman9311ef62009-06-24 14:49:00 +00002259const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2260 const SCEV *RHS) {
Dan Gohmanf9a9a992009-06-22 03:18:45 +00002261 // ~umax(~x, ~y) == umin(x, y)
2262 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2263}
2264
Dan Gohman4f8eea82010-02-01 18:27:38 +00002265const SCEV *ScalarEvolution::getSizeOfExpr(const Type *AllocTy) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002266 // If we have TargetData, we can bypass creating a target-independent
2267 // constant expression and then folding it back into a ConstantInt.
2268 // This is just a compile-time optimization.
2269 if (TD)
2270 return getConstant(TD->getIntPtrType(getContext()),
2271 TD->getTypeAllocSize(AllocTy));
2272
Dan Gohman4f8eea82010-02-01 18:27:38 +00002273 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2274 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002275 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2276 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002277 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2278 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2279}
2280
2281const SCEV *ScalarEvolution::getAlignOfExpr(const Type *AllocTy) {
2282 Constant *C = ConstantExpr::getAlignOf(AllocTy);
2283 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002284 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2285 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002286 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2287 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2288}
2289
2290const SCEV *ScalarEvolution::getOffsetOfExpr(const StructType *STy,
2291 unsigned FieldNo) {
Dan Gohman6ab10f62010-04-12 23:03:26 +00002292 // If we have TargetData, we can bypass creating a target-independent
2293 // constant expression and then folding it back into a ConstantInt.
2294 // This is just a compile-time optimization.
2295 if (TD)
2296 return getConstant(TD->getIntPtrType(getContext()),
2297 TD->getStructLayout(STy)->getElementOffset(FieldNo));
2298
Dan Gohman0f5efe52010-01-28 02:15:55 +00002299 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2300 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002301 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2302 C = Folded;
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002303 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002304 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002305}
2306
Dan Gohman4f8eea82010-02-01 18:27:38 +00002307const SCEV *ScalarEvolution::getOffsetOfExpr(const Type *CTy,
2308 Constant *FieldNo) {
2309 Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
Dan Gohman0f5efe52010-01-28 02:15:55 +00002310 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Dan Gohman70001222010-05-28 16:12:08 +00002311 if (Constant *Folded = ConstantFoldConstantExpression(CE, TD))
2312 C = Folded;
Dan Gohman4f8eea82010-02-01 18:27:38 +00002313 const Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
Dan Gohman0f5efe52010-01-28 02:15:55 +00002314 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002315}
2316
Dan Gohman0bba49c2009-07-07 17:06:11 +00002317const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohman6bbcba12009-06-24 00:54:57 +00002318 // Don't attempt to do anything other than create a SCEVUnknown object
2319 // here. createSCEV only calls getUnknown after checking for all other
2320 // interesting possibilities, and any other code that calls getUnknown
2321 // is doing so in order to hide a value from SCEV canonicalization.
2322
Dan Gohman1c343752009-06-27 21:21:31 +00002323 FoldingSetNodeID ID;
2324 ID.AddInteger(scUnknown);
2325 ID.AddPointer(V);
2326 void *IP = 0;
2327 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman3bf63762010-06-18 19:54:20 +00002328 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V);
Dan Gohman1c343752009-06-27 21:21:31 +00002329 UniqueSCEVs.InsertNode(S, IP);
2330 return S;
Chris Lattner0a7f98c2004-04-15 15:07:24 +00002331}
2332
Chris Lattner53e677a2004-04-02 20:23:17 +00002333//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00002334// Basic SCEV Analysis and PHI Idiom Recognition Code
2335//
2336
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002337/// isSCEVable - Test if values of the given type are analyzable within
2338/// the SCEV framework. This primarily includes integer types, and it
2339/// can optionally include pointer types if the ScalarEvolution class
2340/// has access to target-specific information.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002341bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002342 // Integers and pointers are always SCEVable.
Duncan Sands1df98592010-02-16 11:11:14 +00002343 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002344}
2345
2346/// getTypeSizeInBits - Return the size in bits of the specified type,
2347/// for which isSCEVable must return true.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002348uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002349 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2350
2351 // If we have a TargetData, use it!
2352 if (TD)
2353 return TD->getTypeSizeInBits(Ty);
2354
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002355 // Integer types have fixed sizes.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002356 if (Ty->isIntegerTy())
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002357 return Ty->getPrimitiveSizeInBits();
2358
2359 // The only other support type is pointer. Without TargetData, conservatively
2360 // assume pointers are 64-bit.
Duncan Sands1df98592010-02-16 11:11:14 +00002361 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002362 return 64;
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002363}
2364
2365/// getEffectiveSCEVType - Return a type with the same bitwidth as
2366/// the given type and which represents how SCEV will treat the given
2367/// type, for which isSCEVable must return true. For pointer types,
2368/// this is the pointer-sized integer type.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002369const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002370 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2371
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002372 if (Ty->isIntegerTy())
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002373 return Ty;
2374
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002375 // The only other support type is pointer.
Duncan Sands1df98592010-02-16 11:11:14 +00002376 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002377 if (TD) return TD->getIntPtrType(getContext());
2378
2379 // Without TargetData, conservatively assume pointers are 64-bit.
2380 return Type::getInt64Ty(getContext());
Dan Gohman2d1be872009-04-16 03:18:22 +00002381}
Chris Lattner53e677a2004-04-02 20:23:17 +00002382
Dan Gohman0bba49c2009-07-07 17:06:11 +00002383const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohman1c343752009-06-27 21:21:31 +00002384 return &CouldNotCompute;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00002385}
2386
Chris Lattner53e677a2004-04-02 20:23:17 +00002387/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2388/// expression and create a new one.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002389const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002390 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattner53e677a2004-04-02 20:23:17 +00002391
Dan Gohman0bba49c2009-07-07 17:06:11 +00002392 std::map<SCEVCallbackVH, const SCEV *>::iterator I = Scalars.find(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00002393 if (I != Scalars.end()) return I->second;
Dan Gohman0bba49c2009-07-07 17:06:11 +00002394 const SCEV *S = createSCEV(V);
Dan Gohman35738ac2009-05-04 22:30:44 +00002395 Scalars.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattner53e677a2004-04-02 20:23:17 +00002396 return S;
2397}
2398
Dan Gohman2d1be872009-04-16 03:18:22 +00002399/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2400///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002401const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002402 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson0a5372e2009-07-13 04:09:18 +00002403 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002404 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002405
2406 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002407 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002408 return getMulExpr(V,
Owen Andersona7235ea2009-07-31 20:28:14 +00002409 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman2d1be872009-04-16 03:18:22 +00002410}
2411
2412/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohman0bba49c2009-07-07 17:06:11 +00002413const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohman622ed672009-05-04 22:02:23 +00002414 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson73c6b712009-07-13 20:58:05 +00002415 return getConstant(
Owen Andersonbaf3c402009-07-29 18:55:55 +00002416 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman2d1be872009-04-16 03:18:22 +00002417
2418 const Type *Ty = V->getType();
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002419 Ty = getEffectiveSCEVType(Ty);
Owen Anderson73c6b712009-07-13 20:58:05 +00002420 const SCEV *AllOnes =
Owen Andersona7235ea2009-07-31 20:28:14 +00002421 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman2d1be872009-04-16 03:18:22 +00002422 return getMinusSCEV(AllOnes, V);
2423}
2424
2425/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
2426///
Dan Gohman9311ef62009-06-24 14:49:00 +00002427const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS,
2428 const SCEV *RHS) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002429 // X - Y --> X + -Y
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002430 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman2d1be872009-04-16 03:18:22 +00002431}
2432
2433/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2434/// input value to the specified type. If the type must be extended, it is zero
2435/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002436const SCEV *
2437ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002438 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002439 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002440 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2441 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002442 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002443 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002444 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002445 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002446 return getTruncateExpr(V, Ty);
2447 return getZeroExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002448}
2449
2450/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2451/// input value to the specified type. If the type must be extended, it is sign
2452/// extended.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002453const SCEV *
2454ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Nick Lewycky5cd28fa2009-04-23 05:15:08 +00002455 const Type *Ty) {
Dan Gohman2d1be872009-04-16 03:18:22 +00002456 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002457 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2458 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2d1be872009-04-16 03:18:22 +00002459 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002460 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman2d1be872009-04-16 03:18:22 +00002461 return V; // No conversion
Dan Gohmanaf79fb52009-04-21 01:07:12 +00002462 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002463 return getTruncateExpr(V, Ty);
2464 return getSignExtendExpr(V, Ty);
Dan Gohman2d1be872009-04-16 03:18:22 +00002465}
2466
Dan Gohman467c4302009-05-13 03:46:30 +00002467/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2468/// input value to the specified type. If the type must be extended, it is zero
2469/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002470const SCEV *
2471ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002472 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002473 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2474 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002475 "Cannot noop or zero extend with non-integer arguments!");
2476 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2477 "getNoopOrZeroExtend cannot truncate!");
2478 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2479 return V; // No conversion
2480 return getZeroExtendExpr(V, Ty);
2481}
2482
2483/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2484/// input value to the specified type. If the type must be extended, it is sign
2485/// extended. The conversion must not be narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002486const SCEV *
2487ScalarEvolution::getNoopOrSignExtend(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002488 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002489 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2490 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002491 "Cannot noop or sign extend with non-integer arguments!");
2492 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2493 "getNoopOrSignExtend cannot truncate!");
2494 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2495 return V; // No conversion
2496 return getSignExtendExpr(V, Ty);
2497}
2498
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002499/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2500/// the input value to the specified type. If the type must be extended,
2501/// it is extended with unspecified bits. The conversion must not be
2502/// narrowing.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002503const SCEV *
2504ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, const Type *Ty) {
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002505 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002506 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2507 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman2ce84c8d2009-06-13 15:56:47 +00002508 "Cannot noop or any extend with non-integer arguments!");
2509 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2510 "getNoopOrAnyExtend cannot truncate!");
2511 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2512 return V; // No conversion
2513 return getAnyExtendExpr(V, Ty);
2514}
2515
Dan Gohman467c4302009-05-13 03:46:30 +00002516/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2517/// input value to the specified type. The conversion must not be widening.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002518const SCEV *
2519ScalarEvolution::getTruncateOrNoop(const SCEV *V, const Type *Ty) {
Dan Gohman467c4302009-05-13 03:46:30 +00002520 const Type *SrcTy = V->getType();
Duncan Sands1df98592010-02-16 11:11:14 +00002521 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2522 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman467c4302009-05-13 03:46:30 +00002523 "Cannot truncate or noop with non-integer arguments!");
2524 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2525 "getTruncateOrNoop cannot extend!");
2526 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2527 return V; // No conversion
2528 return getTruncateExpr(V, Ty);
2529}
2530
Dan Gohmana334aa72009-06-22 00:31:57 +00002531/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2532/// the types using zero-extension, and then perform a umax operation
2533/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002534const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2535 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002536 const SCEV *PromotedLHS = LHS;
2537 const SCEV *PromotedRHS = RHS;
Dan Gohmana334aa72009-06-22 00:31:57 +00002538
2539 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2540 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2541 else
2542 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2543
2544 return getUMaxExpr(PromotedLHS, PromotedRHS);
2545}
2546
Dan Gohmanc9759e82009-06-22 15:03:27 +00002547/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2548/// the types using zero-extension, and then perform a umin operation
2549/// with them.
Dan Gohman9311ef62009-06-24 14:49:00 +00002550const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2551 const SCEV *RHS) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002552 const SCEV *PromotedLHS = LHS;
2553 const SCEV *PromotedRHS = RHS;
Dan Gohmanc9759e82009-06-22 15:03:27 +00002554
2555 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2556 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2557 else
2558 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2559
2560 return getUMinExpr(PromotedLHS, PromotedRHS);
2561}
2562
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002563/// PushDefUseChildren - Push users of the given Instruction
2564/// onto the given Worklist.
2565static void
2566PushDefUseChildren(Instruction *I,
2567 SmallVectorImpl<Instruction *> &Worklist) {
2568 // Push the def-use children onto the Worklist stack.
2569 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2570 UI != UE; ++UI)
2571 Worklist.push_back(cast<Instruction>(UI));
2572}
2573
2574/// ForgetSymbolicValue - This looks up computed SCEV values for all
2575/// instructions that depend on the given instruction and removes them from
2576/// the Scalars map if they reference SymName. This is used during PHI
2577/// resolution.
Dan Gohman64a845e2009-06-24 04:48:43 +00002578void
Dan Gohman85669632010-02-25 06:57:05 +00002579ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002580 SmallVector<Instruction *, 16> Worklist;
Dan Gohman85669632010-02-25 06:57:05 +00002581 PushDefUseChildren(PN, Worklist);
Chris Lattner53e677a2004-04-02 20:23:17 +00002582
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002583 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman85669632010-02-25 06:57:05 +00002584 Visited.insert(PN);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002585 while (!Worklist.empty()) {
Dan Gohman85669632010-02-25 06:57:05 +00002586 Instruction *I = Worklist.pop_back_val();
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002587 if (!Visited.insert(I)) continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002588
Dan Gohman5d984912009-12-18 01:14:11 +00002589 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002590 Scalars.find(static_cast<Value *>(I));
2591 if (It != Scalars.end()) {
2592 // Short-circuit the def-use traversal if the symbolic name
2593 // ceases to appear in expressions.
Dan Gohman50922bb2010-02-15 10:28:37 +00002594 if (It->second != SymName && !It->second->hasOperand(SymName))
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002595 continue;
Chris Lattner4dc534c2005-02-13 04:37:18 +00002596
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002597 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohman85669632010-02-25 06:57:05 +00002598 // structure, it's a PHI that's in the progress of being computed
2599 // by createNodeForPHI, or it's a single-value PHI. In the first case,
2600 // additional loop trip count information isn't going to change anything.
2601 // In the second case, createNodeForPHI will perform the necessary
2602 // updates on its own when it gets to that point. In the third, we do
2603 // want to forget the SCEVUnknown.
2604 if (!isa<PHINode>(I) ||
2605 !isa<SCEVUnknown>(It->second) ||
2606 (I != PN && It->second == SymName)) {
Dan Gohman42214892009-08-31 21:15:23 +00002607 ValuesAtScopes.erase(It->second);
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002608 Scalars.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00002609 }
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002610 }
2611
2612 PushDefUseChildren(I, Worklist);
2613 }
Chris Lattner4dc534c2005-02-13 04:37:18 +00002614}
Chris Lattner53e677a2004-04-02 20:23:17 +00002615
2616/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
2617/// a loop header, making it a potential recurrence, or it doesn't.
2618///
Dan Gohman0bba49c2009-07-07 17:06:11 +00002619const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman27dead42010-04-12 07:49:36 +00002620 if (const Loop *L = LI->getLoopFor(PN->getParent()))
2621 if (L->getHeader() == PN->getParent()) {
2622 // The loop may have multiple entrances or multiple exits; we can analyze
2623 // this phi as an addrec if it has a unique entry value and a unique
2624 // backedge value.
2625 Value *BEValueV = 0, *StartValueV = 0;
2626 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2627 Value *V = PN->getIncomingValue(i);
2628 if (L->contains(PN->getIncomingBlock(i))) {
2629 if (!BEValueV) {
2630 BEValueV = V;
2631 } else if (BEValueV != V) {
2632 BEValueV = 0;
2633 break;
2634 }
2635 } else if (!StartValueV) {
2636 StartValueV = V;
2637 } else if (StartValueV != V) {
2638 StartValueV = 0;
2639 break;
2640 }
2641 }
2642 if (BEValueV && StartValueV) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002643 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002644 const SCEV *SymbolicName = getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002645 assert(Scalars.find(PN) == Scalars.end() &&
2646 "PHI node already processed?");
Dan Gohman35738ac2009-05-04 22:30:44 +00002647 Scalars.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattner53e677a2004-04-02 20:23:17 +00002648
2649 // Using this symbolic name for the PHI, analyze the value coming around
2650 // the back-edge.
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002651 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattner53e677a2004-04-02 20:23:17 +00002652
2653 // NOTE: If BEValue is loop invariant, we know that the PHI node just
2654 // has a special value for the first iteration of the loop.
2655
2656 // If the value coming around the backedge is an add with the symbolic
2657 // value we just inserted, then we found a simple induction variable!
Dan Gohman622ed672009-05-04 22:02:23 +00002658 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00002659 // If there is a single occurrence of the symbolic value, replace it
2660 // with a recurrence.
2661 unsigned FoundIndex = Add->getNumOperands();
2662 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2663 if (Add->getOperand(i) == SymbolicName)
2664 if (FoundIndex == e) {
2665 FoundIndex = i;
2666 break;
2667 }
2668
2669 if (FoundIndex != Add->getNumOperands()) {
2670 // Create an add with everything but the specified operand.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002671 SmallVector<const SCEV *, 8> Ops;
Chris Lattner53e677a2004-04-02 20:23:17 +00002672 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
2673 if (i != FoundIndex)
2674 Ops.push_back(Add->getOperand(i));
Dan Gohman0bba49c2009-07-07 17:06:11 +00002675 const SCEV *Accum = getAddExpr(Ops);
Chris Lattner53e677a2004-04-02 20:23:17 +00002676
2677 // This is not a valid addrec if the step amount is varying each
2678 // loop iteration, but is not itself an addrec in this loop.
2679 if (Accum->isLoopInvariant(L) ||
2680 (isa<SCEVAddRecExpr>(Accum) &&
2681 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002682 bool HasNUW = false;
2683 bool HasNSW = false;
2684
2685 // If the increment doesn't overflow, then neither the addrec nor
2686 // the post-increment will overflow.
2687 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
2688 if (OBO->hasNoUnsignedWrap())
2689 HasNUW = true;
2690 if (OBO->hasNoSignedWrap())
2691 HasNSW = true;
2692 }
2693
Dan Gohman27dead42010-04-12 07:49:36 +00002694 const SCEV *StartVal = getSCEV(StartValueV);
Dan Gohmana10756e2010-01-21 02:09:26 +00002695 const SCEV *PHISCEV =
2696 getAddRecExpr(StartVal, Accum, L, HasNUW, HasNSW);
Dan Gohmaneb490a72009-07-25 01:22:26 +00002697
Dan Gohmana10756e2010-01-21 02:09:26 +00002698 // Since the no-wrap flags are on the increment, they apply to the
2699 // post-incremented value as well.
2700 if (Accum->isLoopInvariant(L))
2701 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
2702 Accum, L, HasNUW, HasNSW);
Chris Lattner53e677a2004-04-02 20:23:17 +00002703
2704 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002705 // to be symbolic. We now need to go back and purge all of the
2706 // entries for the scalars that use the symbolic expression.
2707 ForgetSymbolicName(PN, SymbolicName);
2708 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner53e677a2004-04-02 20:23:17 +00002709 return PHISCEV;
2710 }
2711 }
Dan Gohman622ed672009-05-04 22:02:23 +00002712 } else if (const SCEVAddRecExpr *AddRec =
2713 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattner97156e72006-04-26 18:34:07 +00002714 // Otherwise, this could be a loop like this:
2715 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
2716 // In this case, j = {1,+,1} and BEValue is j.
2717 // Because the other in-value of i (0) fits the evolution of BEValue
2718 // i really is an addrec evolution.
2719 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman27dead42010-04-12 07:49:36 +00002720 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattner97156e72006-04-26 18:34:07 +00002721
2722 // If StartVal = j.start - j.stride, we can use StartVal as the
2723 // initial step of the addrec evolution.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002724 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman5ee60f72010-04-11 23:44:58 +00002725 AddRec->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00002726 const SCEV *PHISCEV =
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002727 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Chris Lattner97156e72006-04-26 18:34:07 +00002728
2729 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohmanfef8bb22009-07-25 01:13:03 +00002730 // to be symbolic. We now need to go back and purge all of the
2731 // entries for the scalars that use the symbolic expression.
2732 ForgetSymbolicName(PN, SymbolicName);
2733 Scalars[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattner97156e72006-04-26 18:34:07 +00002734 return PHISCEV;
2735 }
2736 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002737 }
Chris Lattner53e677a2004-04-02 20:23:17 +00002738 }
Dan Gohman27dead42010-04-12 07:49:36 +00002739 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002740
Dan Gohman85669632010-02-25 06:57:05 +00002741 // If the PHI has a single incoming value, follow that value, unless the
2742 // PHI's incoming blocks are in a different loop, in which case doing so
2743 // risks breaking LCSSA form. Instcombine would normally zap these, but
2744 // it doesn't have DominatorTree information, so it may miss cases.
2745 if (Value *V = PN->hasConstantValue(DT)) {
2746 bool AllSameLoop = true;
2747 Loop *PNLoop = LI->getLoopFor(PN->getParent());
2748 for (size_t i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2749 if (LI->getLoopFor(PN->getIncomingBlock(i)) != PNLoop) {
2750 AllSameLoop = false;
2751 break;
2752 }
2753 if (AllSameLoop)
2754 return getSCEV(V);
2755 }
Dan Gohmana653fc52009-07-14 14:06:25 +00002756
Chris Lattner53e677a2004-04-02 20:23:17 +00002757 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00002758 return getUnknown(PN);
Chris Lattner53e677a2004-04-02 20:23:17 +00002759}
2760
Dan Gohman26466c02009-05-08 20:26:55 +00002761/// createNodeForGEP - Expand GEP instructions into add and multiply
2762/// operations. This allows them to be analyzed by regular SCEV code.
2763///
Dan Gohmand281ed22009-12-18 02:09:29 +00002764const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Dan Gohman26466c02009-05-08 20:26:55 +00002765
Dan Gohmand281ed22009-12-18 02:09:29 +00002766 bool InBounds = GEP->isInBounds();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002767 const Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohmane810b0d2009-05-08 20:36:47 +00002768 Value *Base = GEP->getOperand(0);
Dan Gohmanc63a6272009-05-09 00:14:52 +00002769 // Don't attempt to analyze GEPs over unsized objects.
2770 if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
2771 return getUnknown(GEP);
Dan Gohmandeff6212010-05-03 22:09:21 +00002772 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohmane810b0d2009-05-08 20:36:47 +00002773 gep_type_iterator GTI = gep_type_begin(GEP);
2774 for (GetElementPtrInst::op_iterator I = next(GEP->op_begin()),
2775 E = GEP->op_end();
Dan Gohman26466c02009-05-08 20:26:55 +00002776 I != E; ++I) {
2777 Value *Index = *I;
2778 // Compute the (potentially symbolic) offset in bytes for this index.
2779 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
2780 // For a struct, add the member offset.
Dan Gohman26466c02009-05-08 20:26:55 +00002781 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Dan Gohmanc40f17b2009-08-18 16:46:41 +00002782 TotalOffset = getAddExpr(TotalOffset,
Dan Gohman4f8eea82010-02-01 18:27:38 +00002783 getOffsetOfExpr(STy, FieldNo),
Dan Gohmand281ed22009-12-18 02:09:29 +00002784 /*HasNUW=*/false, /*HasNSW=*/InBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002785 } else {
2786 // For an array, add the element offset, explicitly scaled.
Dan Gohman0bba49c2009-07-07 17:06:11 +00002787 const SCEV *LocalOffset = getSCEV(Index);
Dan Gohman3f46a3a2010-03-01 17:49:51 +00002788 // Getelementptr indices are signed.
Dan Gohman8db08df2010-02-02 01:38:49 +00002789 LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
Dan Gohmand281ed22009-12-18 02:09:29 +00002790 // Lower "inbounds" GEPs to NSW arithmetic.
Dan Gohman4f8eea82010-02-01 18:27:38 +00002791 LocalOffset = getMulExpr(LocalOffset, getSizeOfExpr(*GTI),
Dan Gohmand281ed22009-12-18 02:09:29 +00002792 /*HasNUW=*/false, /*HasNSW=*/InBounds);
2793 TotalOffset = getAddExpr(TotalOffset, LocalOffset,
2794 /*HasNUW=*/false, /*HasNSW=*/InBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002795 }
2796 }
Dan Gohmand281ed22009-12-18 02:09:29 +00002797 return getAddExpr(getSCEV(Base), TotalOffset,
2798 /*HasNUW=*/false, /*HasNSW=*/InBounds);
Dan Gohman26466c02009-05-08 20:26:55 +00002799}
2800
Nick Lewycky83bb0052007-11-22 07:59:40 +00002801/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
2802/// guaranteed to end in (at every loop iteration). It is, at the same time,
2803/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
2804/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002805uint32_t
Dan Gohman0bba49c2009-07-07 17:06:11 +00002806ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohman622ed672009-05-04 22:02:23 +00002807 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner8314a0c2007-11-23 22:36:49 +00002808 return C->getValue()->getValue().countTrailingZeros();
Chris Lattnera17f0392006-12-12 02:26:09 +00002809
Dan Gohman622ed672009-05-04 22:02:23 +00002810 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohman2c364ad2009-06-19 23:29:04 +00002811 return std::min(GetMinTrailingZeros(T->getOperand()),
2812 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002813
Dan Gohman622ed672009-05-04 22:02:23 +00002814 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002815 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2816 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2817 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002818 }
2819
Dan Gohman622ed672009-05-04 22:02:23 +00002820 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002821 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
2822 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
2823 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky83bb0052007-11-22 07:59:40 +00002824 }
2825
Dan Gohman622ed672009-05-04 22:02:23 +00002826 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002827 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002828 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002829 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002830 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002831 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002832 }
2833
Dan Gohman622ed672009-05-04 22:02:23 +00002834 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002835 // The result is the sum of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002836 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
2837 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky83bb0052007-11-22 07:59:40 +00002838 for (unsigned i = 1, e = M->getNumOperands();
2839 SumOpRes != BitWidth && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002840 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky83bb0052007-11-22 07:59:40 +00002841 BitWidth);
2842 return SumOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002843 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002844
Dan Gohman622ed672009-05-04 22:02:23 +00002845 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky83bb0052007-11-22 07:59:40 +00002846 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002847 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002848 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002849 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky83bb0052007-11-22 07:59:40 +00002850 return MinOpRes;
Chris Lattnera17f0392006-12-12 02:26:09 +00002851 }
Nick Lewycky83bb0052007-11-22 07:59:40 +00002852
Dan Gohman622ed672009-05-04 22:02:23 +00002853 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002854 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002855 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002856 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002857 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckyc54c5612007-11-25 22:41:31 +00002858 return MinOpRes;
2859 }
2860
Dan Gohman622ed672009-05-04 22:02:23 +00002861 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky3e630762008-02-20 06:48:22 +00002862 // The result is the min of all operands results.
Dan Gohman2c364ad2009-06-19 23:29:04 +00002863 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky3e630762008-02-20 06:48:22 +00002864 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohman2c364ad2009-06-19 23:29:04 +00002865 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky3e630762008-02-20 06:48:22 +00002866 return MinOpRes;
2867 }
2868
Dan Gohman2c364ad2009-06-19 23:29:04 +00002869 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2870 // For a SCEVUnknown, ask ValueTracking.
2871 unsigned BitWidth = getTypeSizeInBits(U->getType());
2872 APInt Mask = APInt::getAllOnesValue(BitWidth);
2873 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
2874 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones);
2875 return Zeros.countTrailingOnes();
2876 }
2877
2878 // SCEVUDivExpr
Nick Lewycky83bb0052007-11-22 07:59:40 +00002879 return 0;
Chris Lattnera17f0392006-12-12 02:26:09 +00002880}
Chris Lattner53e677a2004-04-02 20:23:17 +00002881
Dan Gohman85b05a22009-07-13 21:35:55 +00002882/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
2883///
2884ConstantRange
2885ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00002886
2887 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohman85b05a22009-07-13 21:35:55 +00002888 return ConstantRange(C->getValue()->getValue());
Dan Gohman2c364ad2009-06-19 23:29:04 +00002889
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002890 unsigned BitWidth = getTypeSizeInBits(S->getType());
2891 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
2892
2893 // If the value has known zeros, the maximum unsigned value will have those
2894 // known zeros as well.
2895 uint32_t TZ = GetMinTrailingZeros(S);
2896 if (TZ != 0)
2897 ConservativeResult =
2898 ConstantRange(APInt::getMinValue(BitWidth),
2899 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
2900
Dan Gohman85b05a22009-07-13 21:35:55 +00002901 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2902 ConstantRange X = getUnsignedRange(Add->getOperand(0));
2903 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
2904 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002905 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002906 }
2907
2908 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
2909 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
2910 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
2911 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002912 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002913 }
2914
2915 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
2916 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
2917 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
2918 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002919 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002920 }
2921
2922 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
2923 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
2924 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
2925 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002926 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00002927 }
2928
2929 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
2930 ConstantRange X = getUnsignedRange(UDiv->getLHS());
2931 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002932 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00002933 }
2934
2935 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
2936 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002937 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002938 }
2939
2940 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
2941 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002942 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002943 }
2944
2945 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
2946 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002947 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00002948 }
2949
Dan Gohman85b05a22009-07-13 21:35:55 +00002950 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00002951 // If there's no unsigned wrap, the value will never be less than its
2952 // initial value.
2953 if (AddRec->hasNoUnsignedWrap())
2954 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanbca091d2010-04-12 23:08:18 +00002955 if (!C->getValue()->isZero())
Dan Gohmanbc7129f2010-04-11 22:12:18 +00002956 ConservativeResult =
Dan Gohmanb64cf892010-04-11 22:13:11 +00002957 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0));
Dan Gohman85b05a22009-07-13 21:35:55 +00002958
2959 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002960 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00002961 const Type *Ty = AddRec->getType();
2962 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002963 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
2964 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00002965 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
2966
2967 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00002968 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00002969
2970 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00002971 ConstantRange StepRange = getSignedRange(Step);
2972 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
2973 ConstantRange EndRange =
2974 StartRange.add(MaxBECountRange.multiply(StepRange));
2975
2976 // Check for overflow. This must be done with ConstantRange arithmetic
2977 // because we could be called from within the ScalarEvolution overflow
2978 // checking code.
2979 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
2980 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
2981 ConstantRange ExtMaxBECountRange =
2982 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
2983 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
2984 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
2985 ExtEndRange)
2986 return ConservativeResult;
2987
Dan Gohman85b05a22009-07-13 21:35:55 +00002988 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
2989 EndRange.getUnsignedMin());
2990 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
2991 EndRange.getUnsignedMax());
2992 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00002993 return ConservativeResult;
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00002994 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman85b05a22009-07-13 21:35:55 +00002995 }
2996 }
Dan Gohmana10756e2010-01-21 02:09:26 +00002997
2998 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00002999 }
3000
3001 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3002 // For a SCEVUnknown, ask ValueTracking.
Dan Gohman2c364ad2009-06-19 23:29:04 +00003003 APInt Mask = APInt::getAllOnesValue(BitWidth);
3004 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3005 ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
Dan Gohman746f3b12009-07-20 22:34:18 +00003006 if (Ones == ~Zeros + 1)
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003007 return ConservativeResult;
3008 return ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003009 }
3010
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003011 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003012}
3013
Dan Gohman85b05a22009-07-13 21:35:55 +00003014/// getSignedRange - Determine the signed range for a particular SCEV.
3015///
3016ConstantRange
3017ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman2c364ad2009-06-19 23:29:04 +00003018
Dan Gohman85b05a22009-07-13 21:35:55 +00003019 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3020 return ConstantRange(C->getValue()->getValue());
3021
Dan Gohman52fddd32010-01-26 04:40:18 +00003022 unsigned BitWidth = getTypeSizeInBits(S->getType());
3023 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3024
3025 // If the value has known zeros, the maximum signed value will have those
3026 // known zeros as well.
3027 uint32_t TZ = GetMinTrailingZeros(S);
3028 if (TZ != 0)
3029 ConservativeResult =
3030 ConstantRange(APInt::getSignedMinValue(BitWidth),
3031 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3032
Dan Gohman85b05a22009-07-13 21:35:55 +00003033 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3034 ConstantRange X = getSignedRange(Add->getOperand(0));
3035 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3036 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003037 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003038 }
3039
Dan Gohman85b05a22009-07-13 21:35:55 +00003040 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3041 ConstantRange X = getSignedRange(Mul->getOperand(0));
3042 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3043 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003044 return ConservativeResult.intersectWith(X);
Dan Gohman2c364ad2009-06-19 23:29:04 +00003045 }
3046
Dan Gohman85b05a22009-07-13 21:35:55 +00003047 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3048 ConstantRange X = getSignedRange(SMax->getOperand(0));
3049 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3050 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003051 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003052 }
Dan Gohman62849c02009-06-24 01:05:09 +00003053
Dan Gohman85b05a22009-07-13 21:35:55 +00003054 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3055 ConstantRange X = getSignedRange(UMax->getOperand(0));
3056 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3057 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohman52fddd32010-01-26 04:40:18 +00003058 return ConservativeResult.intersectWith(X);
Dan Gohman85b05a22009-07-13 21:35:55 +00003059 }
Dan Gohman62849c02009-06-24 01:05:09 +00003060
Dan Gohman85b05a22009-07-13 21:35:55 +00003061 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3062 ConstantRange X = getSignedRange(UDiv->getLHS());
3063 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohman52fddd32010-01-26 04:40:18 +00003064 return ConservativeResult.intersectWith(X.udiv(Y));
Dan Gohman85b05a22009-07-13 21:35:55 +00003065 }
Dan Gohman62849c02009-06-24 01:05:09 +00003066
Dan Gohman85b05a22009-07-13 21:35:55 +00003067 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3068 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003069 return ConservativeResult.intersectWith(X.zeroExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003070 }
3071
3072 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3073 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003074 return ConservativeResult.intersectWith(X.signExtend(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003075 }
3076
3077 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3078 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohman52fddd32010-01-26 04:40:18 +00003079 return ConservativeResult.intersectWith(X.truncate(BitWidth));
Dan Gohman85b05a22009-07-13 21:35:55 +00003080 }
3081
Dan Gohman85b05a22009-07-13 21:35:55 +00003082 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohmana10756e2010-01-21 02:09:26 +00003083 // If there's no signed wrap, and all the operands have the same sign or
3084 // zero, the value won't ever change sign.
3085 if (AddRec->hasNoSignedWrap()) {
3086 bool AllNonNeg = true;
3087 bool AllNonPos = true;
3088 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3089 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3090 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3091 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003092 if (AllNonNeg)
Dan Gohman52fddd32010-01-26 04:40:18 +00003093 ConservativeResult = ConservativeResult.intersectWith(
3094 ConstantRange(APInt(BitWidth, 0),
3095 APInt::getSignedMinValue(BitWidth)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003096 else if (AllNonPos)
Dan Gohman52fddd32010-01-26 04:40:18 +00003097 ConservativeResult = ConservativeResult.intersectWith(
3098 ConstantRange(APInt::getSignedMinValue(BitWidth),
3099 APInt(BitWidth, 1)));
Dan Gohmana10756e2010-01-21 02:09:26 +00003100 }
Dan Gohman85b05a22009-07-13 21:35:55 +00003101
3102 // TODO: non-affine addrec
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003103 if (AddRec->isAffine()) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003104 const Type *Ty = AddRec->getType();
3105 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc9c36cb2010-01-26 19:19:05 +00003106 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3107 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohman85b05a22009-07-13 21:35:55 +00003108 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3109
3110 const SCEV *Start = AddRec->getStart();
Dan Gohman646e0472010-04-12 07:39:33 +00003111 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohman85b05a22009-07-13 21:35:55 +00003112
3113 ConstantRange StartRange = getSignedRange(Start);
Dan Gohman646e0472010-04-12 07:39:33 +00003114 ConstantRange StepRange = getSignedRange(Step);
3115 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3116 ConstantRange EndRange =
3117 StartRange.add(MaxBECountRange.multiply(StepRange));
3118
3119 // Check for overflow. This must be done with ConstantRange arithmetic
3120 // because we could be called from within the ScalarEvolution overflow
3121 // checking code.
3122 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3123 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3124 ConstantRange ExtMaxBECountRange =
3125 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3126 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3127 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3128 ExtEndRange)
3129 return ConservativeResult;
3130
Dan Gohman85b05a22009-07-13 21:35:55 +00003131 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3132 EndRange.getSignedMin());
3133 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3134 EndRange.getSignedMax());
3135 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmana10756e2010-01-21 02:09:26 +00003136 return ConservativeResult;
Dan Gohman52fddd32010-01-26 04:40:18 +00003137 return ConservativeResult.intersectWith(ConstantRange(Min, Max+1));
Dan Gohman62849c02009-06-24 01:05:09 +00003138 }
Dan Gohman62849c02009-06-24 01:05:09 +00003139 }
Dan Gohmana10756e2010-01-21 02:09:26 +00003140
3141 return ConservativeResult;
Dan Gohman62849c02009-06-24 01:05:09 +00003142 }
3143
Dan Gohman2c364ad2009-06-19 23:29:04 +00003144 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3145 // For a SCEVUnknown, ask ValueTracking.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00003146 if (!U->getValue()->getType()->isIntegerTy() && !TD)
Dan Gohman52fddd32010-01-26 04:40:18 +00003147 return ConservativeResult;
Dan Gohman85b05a22009-07-13 21:35:55 +00003148 unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3149 if (NS == 1)
Dan Gohman52fddd32010-01-26 04:40:18 +00003150 return ConservativeResult;
3151 return ConservativeResult.intersectWith(
Dan Gohman85b05a22009-07-13 21:35:55 +00003152 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohman52fddd32010-01-26 04:40:18 +00003153 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1));
Dan Gohman2c364ad2009-06-19 23:29:04 +00003154 }
3155
Dan Gohman52fddd32010-01-26 04:40:18 +00003156 return ConservativeResult;
Dan Gohman2c364ad2009-06-19 23:29:04 +00003157}
3158
Chris Lattner53e677a2004-04-02 20:23:17 +00003159/// createSCEV - We know that there is no SCEV for the specified value.
3160/// Analyze the expression.
3161///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003162const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003163 if (!isSCEVable(V->getType()))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003164 return getUnknown(V);
Dan Gohman2d1be872009-04-16 03:18:22 +00003165
Dan Gohman6c459a22008-06-22 19:56:46 +00003166 unsigned Opcode = Instruction::UserOp1;
Dan Gohman4ecbca52010-03-09 23:46:50 +00003167 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman6c459a22008-06-22 19:56:46 +00003168 Opcode = I->getOpcode();
Dan Gohman4ecbca52010-03-09 23:46:50 +00003169
3170 // Don't attempt to analyze instructions in blocks that aren't
3171 // reachable. Such instructions don't matter, and they aren't required
3172 // to obey basic rules for definitions dominating uses which this
3173 // analysis depends on.
3174 if (!DT->isReachableFromEntry(I->getParent()))
3175 return getUnknown(V);
3176 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman6c459a22008-06-22 19:56:46 +00003177 Opcode = CE->getOpcode();
Dan Gohman6bbcba12009-06-24 00:54:57 +00003178 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3179 return getConstant(CI);
3180 else if (isa<ConstantPointerNull>(V))
Dan Gohmandeff6212010-05-03 22:09:21 +00003181 return getConstant(V->getType(), 0);
Dan Gohman26812322009-08-25 17:49:57 +00003182 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3183 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman6c459a22008-06-22 19:56:46 +00003184 else
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003185 return getUnknown(V);
Chris Lattner2811f2a2007-04-02 05:41:38 +00003186
Dan Gohmanca178902009-07-17 20:47:02 +00003187 Operator *U = cast<Operator>(V);
Dan Gohman6c459a22008-06-22 19:56:46 +00003188 switch (Opcode) {
Dan Gohman7a721952009-10-09 16:35:06 +00003189 case Instruction::Add:
3190 // Don't transfer the NSW and NUW bits from the Add instruction to the
3191 // Add expression, because the Instruction may be guarded by control
3192 // flow and the no-overflow bits may not be valid for the expression in
3193 // any context.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003194 return getAddExpr(getSCEV(U->getOperand(0)),
Dan Gohman7a721952009-10-09 16:35:06 +00003195 getSCEV(U->getOperand(1)));
3196 case Instruction::Mul:
3197 // Don't transfer the NSW and NUW bits from the Mul instruction to the
3198 // Mul expression, as with Add.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003199 return getMulExpr(getSCEV(U->getOperand(0)),
Dan Gohman7a721952009-10-09 16:35:06 +00003200 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003201 case Instruction::UDiv:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003202 return getUDivExpr(getSCEV(U->getOperand(0)),
3203 getSCEV(U->getOperand(1)));
Dan Gohman6c459a22008-06-22 19:56:46 +00003204 case Instruction::Sub:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003205 return getMinusSCEV(getSCEV(U->getOperand(0)),
3206 getSCEV(U->getOperand(1)));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003207 case Instruction::And:
3208 // For an expression like x&255 that merely masks off the high bits,
3209 // use zext(trunc(x)) as the SCEV expression.
3210 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003211 if (CI->isNullValue())
3212 return getSCEV(U->getOperand(1));
Dan Gohmand6c32952009-04-27 01:41:10 +00003213 if (CI->isAllOnesValue())
3214 return getSCEV(U->getOperand(0));
Dan Gohman4ee29af2009-04-21 02:26:00 +00003215 const APInt &A = CI->getValue();
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003216
3217 // Instcombine's ShrinkDemandedConstant may strip bits out of
3218 // constants, obscuring what would otherwise be a low-bits mask.
3219 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3220 // knew about to reconstruct a low-bits mask value.
3221 unsigned LZ = A.countLeadingZeros();
3222 unsigned BitWidth = A.getBitWidth();
3223 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
3224 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3225 ComputeMaskedBits(U->getOperand(0), AllOnes, KnownZero, KnownOne, TD);
3226
3227 APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3228
Dan Gohmanfc3641b2009-06-17 23:54:37 +00003229 if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003230 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003231 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
Owen Anderson1d0be152009-08-13 21:58:54 +00003232 IntegerType::get(getContext(), BitWidth - LZ)),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003233 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003234 }
3235 break;
Dan Gohman61ffa8e2009-06-16 19:52:01 +00003236
Dan Gohman6c459a22008-06-22 19:56:46 +00003237 case Instruction::Or:
3238 // If the RHS of the Or is a constant, we may have something like:
3239 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3240 // optimizations will transparently handle this case.
3241 //
3242 // In order for this transformation to be safe, the LHS must be of the
3243 // form X*(2^n) and the Or constant must be less than 2^n.
3244 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003245 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman6c459a22008-06-22 19:56:46 +00003246 const APInt &CIVal = CI->getValue();
Dan Gohman2c364ad2009-06-19 23:29:04 +00003247 if (GetMinTrailingZeros(LHS) >=
Dan Gohman1f96e672009-09-17 18:05:20 +00003248 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3249 // Build a plain add SCEV.
3250 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3251 // If the LHS of the add was an addrec and it has no-wrap flags,
3252 // transfer the no-wrap flags, since an or won't introduce a wrap.
3253 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3254 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3255 if (OldAR->hasNoUnsignedWrap())
3256 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoUnsignedWrap(true);
3257 if (OldAR->hasNoSignedWrap())
3258 const_cast<SCEVAddRecExpr *>(NewAR)->setHasNoSignedWrap(true);
3259 }
3260 return S;
3261 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003262 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003263 break;
3264 case Instruction::Xor:
Dan Gohman6c459a22008-06-22 19:56:46 +00003265 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky01eaf802008-07-07 06:15:49 +00003266 // If the RHS of the xor is a signbit, then this is just an add.
3267 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman6c459a22008-06-22 19:56:46 +00003268 if (CI->getValue().isSignBit())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003269 return getAddExpr(getSCEV(U->getOperand(0)),
3270 getSCEV(U->getOperand(1)));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003271
3272 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman0bac95e2009-05-18 16:17:44 +00003273 if (CI->isAllOnesValue())
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003274 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman10978bd2009-05-18 16:29:04 +00003275
3276 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3277 // This is a variant of the check for xor with -1, and it handles
3278 // the case where instcombine has trimmed non-demanded bits out
3279 // of an xor with -1.
3280 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3281 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3282 if (BO->getOpcode() == Instruction::And &&
3283 LCI->getValue() == CI->getValue())
3284 if (const SCEVZeroExtendExpr *Z =
Dan Gohman3034c102009-06-17 01:22:39 +00003285 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Dan Gohman82052832009-06-18 00:00:20 +00003286 const Type *UTy = U->getType();
Dan Gohman0bba49c2009-07-07 17:06:11 +00003287 const SCEV *Z0 = Z->getOperand();
Dan Gohman82052832009-06-18 00:00:20 +00003288 const Type *Z0Ty = Z0->getType();
3289 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3290
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003291 // If C is a low-bits mask, the zero extend is serving to
Dan Gohman82052832009-06-18 00:00:20 +00003292 // mask off the high bits. Complement the operand and
3293 // re-apply the zext.
3294 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3295 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3296
3297 // If C is a single bit, it may be in the sign-bit position
3298 // before the zero-extend. In this case, represent the xor
3299 // using an add, which is equivalent, and re-apply the zext.
3300 APInt Trunc = APInt(CI->getValue()).trunc(Z0TySize);
3301 if (APInt(Trunc).zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3302 Trunc.isSignBit())
3303 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3304 UTy);
Dan Gohman3034c102009-06-17 01:22:39 +00003305 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003306 }
3307 break;
3308
3309 case Instruction::Shl:
3310 // Turn shift left of a constant amount into a multiply.
3311 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003312 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003313
3314 // If the shift count is not less than the bitwidth, the result of
3315 // the shift is undefined. Don't try to analyze it, because the
3316 // resolution chosen here may differ from the resolution chosen in
3317 // other parts of the compiler.
3318 if (SA->getValue().uge(BitWidth))
3319 break;
3320
Owen Andersoneed707b2009-07-24 23:12:02 +00003321 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003322 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003323 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman6c459a22008-06-22 19:56:46 +00003324 }
3325 break;
3326
Nick Lewycky01eaf802008-07-07 06:15:49 +00003327 case Instruction::LShr:
Nick Lewycky789558d2009-01-13 09:18:58 +00003328 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky01eaf802008-07-07 06:15:49 +00003329 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman4f8eea82010-02-01 18:27:38 +00003330 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003331
3332 // If the shift count is not less than the bitwidth, the result of
3333 // the shift is undefined. Don't try to analyze it, because the
3334 // resolution chosen here may differ from the resolution chosen in
3335 // other parts of the compiler.
3336 if (SA->getValue().uge(BitWidth))
3337 break;
3338
Owen Andersoneed707b2009-07-24 23:12:02 +00003339 Constant *X = ConstantInt::get(getContext(),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003340 APInt(BitWidth, 1).shl(SA->getZExtValue()));
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003341 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky01eaf802008-07-07 06:15:49 +00003342 }
3343 break;
3344
Dan Gohman4ee29af2009-04-21 02:26:00 +00003345 case Instruction::AShr:
3346 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3347 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003348 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman4ee29af2009-04-21 02:26:00 +00003349 if (L->getOpcode() == Instruction::Shl &&
3350 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003351 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3352
3353 // If the shift count is not less than the bitwidth, the result of
3354 // the shift is undefined. Don't try to analyze it, because the
3355 // resolution chosen here may differ from the resolution chosen in
3356 // other parts of the compiler.
3357 if (CI->getValue().uge(BitWidth))
3358 break;
3359
Dan Gohman2c73d5f2009-04-25 17:05:40 +00003360 uint64_t Amt = BitWidth - CI->getZExtValue();
3361 if (Amt == BitWidth)
3362 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman4ee29af2009-04-21 02:26:00 +00003363 return
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003364 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanddb3eaf2010-04-22 01:35:11 +00003365 IntegerType::get(getContext(),
3366 Amt)),
3367 U->getType());
Dan Gohman4ee29af2009-04-21 02:26:00 +00003368 }
3369 break;
3370
Dan Gohman6c459a22008-06-22 19:56:46 +00003371 case Instruction::Trunc:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003372 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003373
3374 case Instruction::ZExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003375 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003376
3377 case Instruction::SExt:
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003378 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman6c459a22008-06-22 19:56:46 +00003379
3380 case Instruction::BitCast:
3381 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00003382 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman6c459a22008-06-22 19:56:46 +00003383 return getSCEV(U->getOperand(0));
3384 break;
3385
Dan Gohman4f8eea82010-02-01 18:27:38 +00003386 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3387 // lead to pointer expressions which cannot safely be expanded to GEPs,
3388 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3389 // simplifying integer expressions.
Dan Gohman2d1be872009-04-16 03:18:22 +00003390
Dan Gohman26466c02009-05-08 20:26:55 +00003391 case Instruction::GetElementPtr:
Dan Gohmand281ed22009-12-18 02:09:29 +00003392 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman2d1be872009-04-16 03:18:22 +00003393
Dan Gohman6c459a22008-06-22 19:56:46 +00003394 case Instruction::PHI:
3395 return createNodeForPHI(cast<PHINode>(U));
3396
3397 case Instruction::Select:
3398 // This could be a smax or umax that was lowered earlier.
3399 // Try to recover it.
3400 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3401 Value *LHS = ICI->getOperand(0);
3402 Value *RHS = ICI->getOperand(1);
3403 switch (ICI->getPredicate()) {
3404 case ICmpInst::ICMP_SLT:
3405 case ICmpInst::ICMP_SLE:
3406 std::swap(LHS, RHS);
3407 // fall through
3408 case ICmpInst::ICMP_SGT:
3409 case ICmpInst::ICMP_SGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003410 // a >s b ? a+x : b+x -> smax(a, b)+x
3411 // a >s b ? b+x : a+x -> smin(a, b)+x
3412 if (LHS->getType() == U->getType()) {
3413 const SCEV *LS = getSCEV(LHS);
3414 const SCEV *RS = getSCEV(RHS);
3415 const SCEV *LA = getSCEV(U->getOperand(1));
3416 const SCEV *RA = getSCEV(U->getOperand(2));
3417 const SCEV *LDiff = getMinusSCEV(LA, LS);
3418 const SCEV *RDiff = getMinusSCEV(RA, RS);
3419 if (LDiff == RDiff)
3420 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3421 LDiff = getMinusSCEV(LA, RS);
3422 RDiff = getMinusSCEV(RA, LS);
3423 if (LDiff == RDiff)
3424 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3425 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003426 break;
3427 case ICmpInst::ICMP_ULT:
3428 case ICmpInst::ICMP_ULE:
3429 std::swap(LHS, RHS);
3430 // fall through
3431 case ICmpInst::ICMP_UGT:
3432 case ICmpInst::ICMP_UGE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003433 // a >u b ? a+x : b+x -> umax(a, b)+x
3434 // a >u b ? b+x : a+x -> umin(a, b)+x
3435 if (LHS->getType() == U->getType()) {
3436 const SCEV *LS = getSCEV(LHS);
3437 const SCEV *RS = getSCEV(RHS);
3438 const SCEV *LA = getSCEV(U->getOperand(1));
3439 const SCEV *RA = getSCEV(U->getOperand(2));
3440 const SCEV *LDiff = getMinusSCEV(LA, LS);
3441 const SCEV *RDiff = getMinusSCEV(RA, RS);
3442 if (LDiff == RDiff)
3443 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3444 LDiff = getMinusSCEV(LA, RS);
3445 RDiff = getMinusSCEV(RA, LS);
3446 if (LDiff == RDiff)
3447 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3448 }
Dan Gohman6c459a22008-06-22 19:56:46 +00003449 break;
Dan Gohman30fb5122009-06-18 20:21:07 +00003450 case ICmpInst::ICMP_NE:
Dan Gohman9f93d302010-04-24 03:09:42 +00003451 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3452 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003453 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003454 cast<ConstantInt>(RHS)->isZero()) {
3455 const SCEV *One = getConstant(LHS->getType(), 1);
3456 const SCEV *LS = getSCEV(LHS);
3457 const SCEV *LA = getSCEV(U->getOperand(1));
3458 const SCEV *RA = getSCEV(U->getOperand(2));
3459 const SCEV *LDiff = getMinusSCEV(LA, LS);
3460 const SCEV *RDiff = getMinusSCEV(RA, One);
3461 if (LDiff == RDiff)
3462 return getAddExpr(getUMaxExpr(LS, One), LDiff);
3463 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003464 break;
3465 case ICmpInst::ICMP_EQ:
Dan Gohman9f93d302010-04-24 03:09:42 +00003466 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
3467 if (LHS->getType() == U->getType() &&
Dan Gohman30fb5122009-06-18 20:21:07 +00003468 isa<ConstantInt>(RHS) &&
Dan Gohman9f93d302010-04-24 03:09:42 +00003469 cast<ConstantInt>(RHS)->isZero()) {
3470 const SCEV *One = getConstant(LHS->getType(), 1);
3471 const SCEV *LS = getSCEV(LHS);
3472 const SCEV *LA = getSCEV(U->getOperand(1));
3473 const SCEV *RA = getSCEV(U->getOperand(2));
3474 const SCEV *LDiff = getMinusSCEV(LA, One);
3475 const SCEV *RDiff = getMinusSCEV(RA, LS);
3476 if (LDiff == RDiff)
3477 return getAddExpr(getUMaxExpr(LS, One), LDiff);
3478 }
Dan Gohman30fb5122009-06-18 20:21:07 +00003479 break;
Dan Gohman6c459a22008-06-22 19:56:46 +00003480 default:
3481 break;
3482 }
3483 }
3484
3485 default: // We cannot analyze this expression.
3486 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003487 }
3488
Dan Gohmanf8a8be82009-04-21 23:15:49 +00003489 return getUnknown(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00003490}
3491
3492
3493
3494//===----------------------------------------------------------------------===//
3495// Iteration Count Computation Code
3496//
3497
Dan Gohman46bdfb02009-02-24 18:55:53 +00003498/// getBackedgeTakenCount - If the specified loop has a predictable
3499/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3500/// object. The backedge-taken count is the number of times the loop header
3501/// will be branched to from within the loop. This is one less than the
3502/// trip count of the loop, since it doesn't count the first iteration,
3503/// when the header is branched to from outside the loop.
3504///
3505/// Note that it is not valid to call this method on a loop without a
3506/// loop-invariant backedge-taken count (see
3507/// hasLoopInvariantBackedgeTakenCount).
3508///
Dan Gohman0bba49c2009-07-07 17:06:11 +00003509const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003510 return getBackedgeTakenInfo(L).Exact;
3511}
3512
3513/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
3514/// return the least SCEV value that is known never to be less than the
3515/// actual backedge taken count.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003516const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Dan Gohmana1af7572009-04-30 20:47:05 +00003517 return getBackedgeTakenInfo(L).Max;
3518}
3519
Dan Gohman59ae6b92009-07-08 19:23:34 +00003520/// PushLoopPHIs - Push PHI nodes in the header of the given loop
3521/// onto the given Worklist.
3522static void
3523PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
3524 BasicBlock *Header = L->getHeader();
3525
3526 // Push all Loop-header PHIs onto the Worklist stack.
3527 for (BasicBlock::iterator I = Header->begin();
3528 PHINode *PN = dyn_cast<PHINode>(I); ++I)
3529 Worklist.push_back(PN);
3530}
3531
Dan Gohmana1af7572009-04-30 20:47:05 +00003532const ScalarEvolution::BackedgeTakenInfo &
3533ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Dan Gohman01ecca22009-04-27 20:16:15 +00003534 // Initially insert a CouldNotCompute for this loop. If the insertion
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003535 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman01ecca22009-04-27 20:16:15 +00003536 // update the value. The temporary CouldNotCompute value tells SCEV
3537 // code elsewhere that it shouldn't attempt to request a new
3538 // backedge-taken count, which could result in infinite recursion.
Dan Gohman5d984912009-12-18 01:14:11 +00003539 std::pair<std::map<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Dan Gohman01ecca22009-04-27 20:16:15 +00003540 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
3541 if (Pair.second) {
Dan Gohman93dacad2010-01-26 16:46:18 +00003542 BackedgeTakenInfo BECount = ComputeBackedgeTakenCount(L);
3543 if (BECount.Exact != getCouldNotCompute()) {
3544 assert(BECount.Exact->isLoopInvariant(L) &&
3545 BECount.Max->isLoopInvariant(L) &&
3546 "Computed backedge-taken count isn't loop invariant for loop!");
Chris Lattner53e677a2004-04-02 20:23:17 +00003547 ++NumTripCountsComputed;
Dan Gohman01ecca22009-04-27 20:16:15 +00003548
Dan Gohman01ecca22009-04-27 20:16:15 +00003549 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003550 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003551 } else {
Dan Gohman93dacad2010-01-26 16:46:18 +00003552 if (BECount.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003553 // Update the value in the map.
Dan Gohman93dacad2010-01-26 16:46:18 +00003554 Pair.first->second = BECount;
Dan Gohmana334aa72009-06-22 00:31:57 +00003555 if (isa<PHINode>(L->getHeader()->begin()))
3556 // Only count loops that have phi nodes as not being computable.
3557 ++NumTripCountsNotComputed;
Chris Lattner53e677a2004-04-02 20:23:17 +00003558 }
Dan Gohmana1af7572009-04-30 20:47:05 +00003559
3560 // Now that we know more about the trip count for this loop, forget any
3561 // existing SCEV values for PHI nodes in this loop since they are only
Dan Gohman59ae6b92009-07-08 19:23:34 +00003562 // conservative estimates made without the benefit of trip count
Dan Gohman4c7279a2009-10-31 15:04:55 +00003563 // information. This is similar to the code in forgetLoop, except that
3564 // it handles SCEVUnknown PHI nodes specially.
Dan Gohman93dacad2010-01-26 16:46:18 +00003565 if (BECount.hasAnyInfo()) {
Dan Gohman59ae6b92009-07-08 19:23:34 +00003566 SmallVector<Instruction *, 16> Worklist;
3567 PushLoopPHIs(L, Worklist);
3568
3569 SmallPtrSet<Instruction *, 8> Visited;
3570 while (!Worklist.empty()) {
3571 Instruction *I = Worklist.pop_back_val();
3572 if (!Visited.insert(I)) continue;
3573
Dan Gohman5d984912009-12-18 01:14:11 +00003574 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohman59ae6b92009-07-08 19:23:34 +00003575 Scalars.find(static_cast<Value *>(I));
3576 if (It != Scalars.end()) {
3577 // SCEVUnknown for a PHI either means that it has an unrecognized
3578 // structure, or it's a PHI that's in the progress of being computed
Dan Gohmanba701882009-07-13 22:04:06 +00003579 // by createNodeForPHI. In the former case, additional loop trip
3580 // count information isn't going to change anything. In the later
3581 // case, createNodeForPHI will perform the necessary updates on its
3582 // own when it gets to that point.
Dan Gohman42214892009-08-31 21:15:23 +00003583 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(It->second)) {
3584 ValuesAtScopes.erase(It->second);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003585 Scalars.erase(It);
Dan Gohman42214892009-08-31 21:15:23 +00003586 }
Dan Gohman59ae6b92009-07-08 19:23:34 +00003587 if (PHINode *PN = dyn_cast<PHINode>(I))
3588 ConstantEvolutionLoopExitValue.erase(PN);
3589 }
3590
3591 PushDefUseChildren(I, Worklist);
3592 }
3593 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003594 }
Dan Gohman01ecca22009-04-27 20:16:15 +00003595 return Pair.first->second;
Chris Lattner53e677a2004-04-02 20:23:17 +00003596}
3597
Dan Gohman4c7279a2009-10-31 15:04:55 +00003598/// forgetLoop - This method should be called by the client when it has
3599/// changed a loop in a way that may effect ScalarEvolution's ability to
3600/// compute a trip count, or if the loop is deleted.
3601void ScalarEvolution::forgetLoop(const Loop *L) {
3602 // Drop any stored trip count value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00003603 BackedgeTakenCounts.erase(L);
Dan Gohmanfb7d35f2009-05-02 17:43:35 +00003604
Dan Gohman4c7279a2009-10-31 15:04:55 +00003605 // Drop information about expressions based on loop-header PHIs.
Dan Gohman35738ac2009-05-04 22:30:44 +00003606 SmallVector<Instruction *, 16> Worklist;
Dan Gohman59ae6b92009-07-08 19:23:34 +00003607 PushLoopPHIs(L, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003608
Dan Gohman59ae6b92009-07-08 19:23:34 +00003609 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00003610 while (!Worklist.empty()) {
3611 Instruction *I = Worklist.pop_back_val();
Dan Gohman59ae6b92009-07-08 19:23:34 +00003612 if (!Visited.insert(I)) continue;
3613
Dan Gohman5d984912009-12-18 01:14:11 +00003614 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
Dan Gohman59ae6b92009-07-08 19:23:34 +00003615 Scalars.find(static_cast<Value *>(I));
3616 if (It != Scalars.end()) {
Dan Gohman42214892009-08-31 21:15:23 +00003617 ValuesAtScopes.erase(It->second);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003618 Scalars.erase(It);
Dan Gohman59ae6b92009-07-08 19:23:34 +00003619 if (PHINode *PN = dyn_cast<PHINode>(I))
3620 ConstantEvolutionLoopExitValue.erase(PN);
3621 }
3622
3623 PushDefUseChildren(I, Worklist);
Dan Gohman35738ac2009-05-04 22:30:44 +00003624 }
Dan Gohman60f8a632009-02-17 20:49:49 +00003625}
3626
Dale Johannesen45a2d7d2010-02-19 07:14:22 +00003627/// forgetValue - This method should be called by the client when it has
3628/// changed a value in a way that may effect its value, or which may
3629/// disconnect it from a def-use chain linking it to a loop.
3630void ScalarEvolution::forgetValue(Value *V) {
3631 Instruction *I = dyn_cast<Instruction>(V);
3632 if (!I) return;
3633
3634 // Drop information about expressions based on loop-header PHIs.
3635 SmallVector<Instruction *, 16> Worklist;
3636 Worklist.push_back(I);
3637
3638 SmallPtrSet<Instruction *, 8> Visited;
3639 while (!Worklist.empty()) {
3640 I = Worklist.pop_back_val();
3641 if (!Visited.insert(I)) continue;
3642
3643 std::map<SCEVCallbackVH, const SCEV *>::iterator It =
3644 Scalars.find(static_cast<Value *>(I));
3645 if (It != Scalars.end()) {
3646 ValuesAtScopes.erase(It->second);
3647 Scalars.erase(It);
3648 if (PHINode *PN = dyn_cast<PHINode>(I))
3649 ConstantEvolutionLoopExitValue.erase(PN);
3650 }
3651
3652 PushDefUseChildren(I, Worklist);
3653 }
3654}
3655
Dan Gohman46bdfb02009-02-24 18:55:53 +00003656/// ComputeBackedgeTakenCount - Compute the number of times the backedge
3657/// of the specified loop will execute.
Dan Gohmana1af7572009-04-30 20:47:05 +00003658ScalarEvolution::BackedgeTakenInfo
3659ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohman5d984912009-12-18 01:14:11 +00003660 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohmana334aa72009-06-22 00:31:57 +00003661 L->getExitingBlocks(ExitingBlocks);
Chris Lattner53e677a2004-04-02 20:23:17 +00003662
Dan Gohmana334aa72009-06-22 00:31:57 +00003663 // Examine all exits and pick the most conservative values.
Dan Gohman0bba49c2009-07-07 17:06:11 +00003664 const SCEV *BECount = getCouldNotCompute();
3665 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003666 bool CouldNotComputeBECount = false;
Dan Gohmana334aa72009-06-22 00:31:57 +00003667 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
3668 BackedgeTakenInfo NewBTI =
3669 ComputeBackedgeTakenCountFromExit(L, ExitingBlocks[i]);
Chris Lattner53e677a2004-04-02 20:23:17 +00003670
Dan Gohman1c343752009-06-27 21:21:31 +00003671 if (NewBTI.Exact == getCouldNotCompute()) {
Dan Gohmana334aa72009-06-22 00:31:57 +00003672 // We couldn't compute an exact value for this exit, so
Dan Gohmand32f5bf2009-06-22 21:10:22 +00003673 // we won't be able to compute an exact value for the loop.
Dan Gohmana334aa72009-06-22 00:31:57 +00003674 CouldNotComputeBECount = true;
Dan Gohman1c343752009-06-27 21:21:31 +00003675 BECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003676 } else if (!CouldNotComputeBECount) {
Dan Gohman1c343752009-06-27 21:21:31 +00003677 if (BECount == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003678 BECount = NewBTI.Exact;
Dan Gohmana334aa72009-06-22 00:31:57 +00003679 else
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003680 BECount = getUMinFromMismatchedTypes(BECount, NewBTI.Exact);
Dan Gohmana334aa72009-06-22 00:31:57 +00003681 }
Dan Gohman1c343752009-06-27 21:21:31 +00003682 if (MaxBECount == getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003683 MaxBECount = NewBTI.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003684 else if (NewBTI.Max != getCouldNotCompute())
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003685 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, NewBTI.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003686 }
3687
3688 return BackedgeTakenInfo(BECount, MaxBECount);
3689}
3690
3691/// ComputeBackedgeTakenCountFromExit - Compute the number of times the backedge
3692/// of the specified loop will execute if it exits via the specified block.
3693ScalarEvolution::BackedgeTakenInfo
3694ScalarEvolution::ComputeBackedgeTakenCountFromExit(const Loop *L,
3695 BasicBlock *ExitingBlock) {
3696
3697 // Okay, we've chosen an exiting block. See what condition causes us to
3698 // exit at this block.
Chris Lattner53e677a2004-04-02 20:23:17 +00003699 //
3700 // FIXME: we should be able to handle switch instructions (with a single exit)
Chris Lattner53e677a2004-04-02 20:23:17 +00003701 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
Dan Gohman1c343752009-06-27 21:21:31 +00003702 if (ExitBr == 0) return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00003703 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
Dan Gohman64a845e2009-06-24 04:48:43 +00003704
Chris Lattner8b0e3602007-01-07 02:24:26 +00003705 // At this point, we know we have a conditional branch that determines whether
3706 // the loop is exited. However, we don't know if the branch is executed each
3707 // time through the loop. If not, then the execution count of the branch will
3708 // not be equal to the trip count of the loop.
3709 //
3710 // Currently we check for this by checking to see if the Exit branch goes to
3711 // the loop header. If so, we know it will always execute the same number of
Chris Lattner192e4032007-01-14 01:24:47 +00003712 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohmana334aa72009-06-22 00:31:57 +00003713 // loop header. This is common for un-rotated loops.
3714 //
3715 // If both of those tests fail, walk up the unique predecessor chain to the
3716 // header, stopping if there is an edge that doesn't exit the loop. If the
3717 // header is reached, the execution count of the branch will be equal to the
3718 // trip count of the loop.
3719 //
3720 // More extensive analysis could be done to handle more cases here.
3721 //
Chris Lattner8b0e3602007-01-07 02:24:26 +00003722 if (ExitBr->getSuccessor(0) != L->getHeader() &&
Chris Lattner192e4032007-01-14 01:24:47 +00003723 ExitBr->getSuccessor(1) != L->getHeader() &&
Dan Gohmana334aa72009-06-22 00:31:57 +00003724 ExitBr->getParent() != L->getHeader()) {
3725 // The simple checks failed, try climbing the unique predecessor chain
3726 // up to the header.
3727 bool Ok = false;
3728 for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
3729 BasicBlock *Pred = BB->getUniquePredecessor();
3730 if (!Pred)
Dan Gohman1c343752009-06-27 21:21:31 +00003731 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003732 TerminatorInst *PredTerm = Pred->getTerminator();
3733 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
3734 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
3735 if (PredSucc == BB)
3736 continue;
3737 // If the predecessor has a successor that isn't BB and isn't
3738 // outside the loop, assume the worst.
3739 if (L->contains(PredSucc))
Dan Gohman1c343752009-06-27 21:21:31 +00003740 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003741 }
3742 if (Pred == L->getHeader()) {
3743 Ok = true;
3744 break;
3745 }
3746 BB = Pred;
3747 }
3748 if (!Ok)
Dan Gohman1c343752009-06-27 21:21:31 +00003749 return getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003750 }
3751
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003752 // Proceed to the next level to examine the exit condition expression.
Dan Gohmana334aa72009-06-22 00:31:57 +00003753 return ComputeBackedgeTakenCountFromExitCond(L, ExitBr->getCondition(),
3754 ExitBr->getSuccessor(0),
3755 ExitBr->getSuccessor(1));
3756}
3757
3758/// ComputeBackedgeTakenCountFromExitCond - Compute the number of times the
3759/// backedge of the specified loop will execute if its exit condition
3760/// were a conditional branch of ExitCond, TBB, and FBB.
3761ScalarEvolution::BackedgeTakenInfo
3762ScalarEvolution::ComputeBackedgeTakenCountFromExitCond(const Loop *L,
3763 Value *ExitCond,
3764 BasicBlock *TBB,
3765 BasicBlock *FBB) {
Dan Gohman40a5a1b2009-06-24 01:18:18 +00003766 // Check if the controlling expression for this loop is an And or Or.
Dan Gohmana334aa72009-06-22 00:31:57 +00003767 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
3768 if (BO->getOpcode() == Instruction::And) {
3769 // Recurse on the operands of the and.
3770 BackedgeTakenInfo BTI0 =
3771 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3772 BackedgeTakenInfo BTI1 =
3773 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003774 const SCEV *BECount = getCouldNotCompute();
3775 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003776 if (L->contains(TBB)) {
3777 // Both conditions must be true for the loop to continue executing.
3778 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003779 if (BTI0.Exact == getCouldNotCompute() ||
3780 BTI1.Exact == getCouldNotCompute())
3781 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003782 else
3783 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003784 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003785 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003786 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003787 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003788 else
3789 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003790 } else {
3791 // Both conditions must be true for the loop to exit.
3792 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Dan Gohman1c343752009-06-27 21:21:31 +00003793 if (BTI0.Exact != getCouldNotCompute() &&
3794 BTI1.Exact != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003795 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003796 if (BTI0.Max != getCouldNotCompute() &&
3797 BTI1.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003798 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3799 }
3800
3801 return BackedgeTakenInfo(BECount, MaxBECount);
3802 }
3803 if (BO->getOpcode() == Instruction::Or) {
3804 // Recurse on the operands of the or.
3805 BackedgeTakenInfo BTI0 =
3806 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(0), TBB, FBB);
3807 BackedgeTakenInfo BTI1 =
3808 ComputeBackedgeTakenCountFromExitCond(L, BO->getOperand(1), TBB, FBB);
Dan Gohman0bba49c2009-07-07 17:06:11 +00003809 const SCEV *BECount = getCouldNotCompute();
3810 const SCEV *MaxBECount = getCouldNotCompute();
Dan Gohmana334aa72009-06-22 00:31:57 +00003811 if (L->contains(FBB)) {
3812 // Both conditions must be false for the loop to continue executing.
3813 // Choose the less conservative count.
Dan Gohman1c343752009-06-27 21:21:31 +00003814 if (BTI0.Exact == getCouldNotCompute() ||
3815 BTI1.Exact == getCouldNotCompute())
3816 BECount = getCouldNotCompute();
Dan Gohman60e9b072009-06-22 15:09:28 +00003817 else
3818 BECount = getUMinFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003819 if (BTI0.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003820 MaxBECount = BTI1.Max;
Dan Gohman1c343752009-06-27 21:21:31 +00003821 else if (BTI1.Max == getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003822 MaxBECount = BTI0.Max;
Dan Gohman60e9b072009-06-22 15:09:28 +00003823 else
3824 MaxBECount = getUMinFromMismatchedTypes(BTI0.Max, BTI1.Max);
Dan Gohmana334aa72009-06-22 00:31:57 +00003825 } else {
3826 // Both conditions must be false for the loop to exit.
3827 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Dan Gohman1c343752009-06-27 21:21:31 +00003828 if (BTI0.Exact != getCouldNotCompute() &&
3829 BTI1.Exact != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003830 BECount = getUMaxFromMismatchedTypes(BTI0.Exact, BTI1.Exact);
Dan Gohman1c343752009-06-27 21:21:31 +00003831 if (BTI0.Max != getCouldNotCompute() &&
3832 BTI1.Max != getCouldNotCompute())
Dan Gohmana334aa72009-06-22 00:31:57 +00003833 MaxBECount = getUMaxFromMismatchedTypes(BTI0.Max, BTI1.Max);
3834 }
3835
3836 return BackedgeTakenInfo(BECount, MaxBECount);
3837 }
3838 }
3839
3840 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00003841 // Proceed to the next level to examine the icmp.
Dan Gohmana334aa72009-06-22 00:31:57 +00003842 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
3843 return ComputeBackedgeTakenCountFromExitCondICmp(L, ExitCondICmp, TBB, FBB);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003844
Dan Gohman00cb5b72010-02-19 18:12:07 +00003845 // Check for a constant condition. These are normally stripped out by
3846 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
3847 // preserve the CFG and is temporarily leaving constant conditions
3848 // in place.
3849 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
3850 if (L->contains(FBB) == !CI->getZExtValue())
3851 // The backedge is always taken.
3852 return getCouldNotCompute();
3853 else
3854 // The backedge is never taken.
Dan Gohmandeff6212010-05-03 22:09:21 +00003855 return getConstant(CI->getType(), 0);
Dan Gohman00cb5b72010-02-19 18:12:07 +00003856 }
3857
Eli Friedman361e54d2009-05-09 12:32:42 +00003858 // If it's not an integer or pointer comparison then compute it the hard way.
Dan Gohmana334aa72009-06-22 00:31:57 +00003859 return ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
3860}
3861
3862/// ComputeBackedgeTakenCountFromExitCondICmp - Compute the number of times the
3863/// backedge of the specified loop will execute if its exit condition
3864/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
3865ScalarEvolution::BackedgeTakenInfo
3866ScalarEvolution::ComputeBackedgeTakenCountFromExitCondICmp(const Loop *L,
3867 ICmpInst *ExitCond,
3868 BasicBlock *TBB,
3869 BasicBlock *FBB) {
Chris Lattner53e677a2004-04-02 20:23:17 +00003870
Reid Spencere4d87aa2006-12-23 06:05:41 +00003871 // If the condition was exit on true, convert the condition to exit on false
3872 ICmpInst::Predicate Cond;
Dan Gohmana334aa72009-06-22 00:31:57 +00003873 if (!L->contains(FBB))
Reid Spencere4d87aa2006-12-23 06:05:41 +00003874 Cond = ExitCond->getPredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003875 else
Reid Spencere4d87aa2006-12-23 06:05:41 +00003876 Cond = ExitCond->getInversePredicate();
Chris Lattner673e02b2004-10-12 01:49:27 +00003877
3878 // Handle common loops like: for (X = "string"; *X; ++X)
3879 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
3880 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003881 BackedgeTakenInfo ItCnt =
Dan Gohman46bdfb02009-02-24 18:55:53 +00003882 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003883 if (ItCnt.hasAnyInfo())
3884 return ItCnt;
Chris Lattner673e02b2004-10-12 01:49:27 +00003885 }
3886
Dan Gohman0bba49c2009-07-07 17:06:11 +00003887 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
3888 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattner53e677a2004-04-02 20:23:17 +00003889
3890 // Try to evaluate any dependencies out of the loop.
Dan Gohmand594e6f2009-05-24 23:25:42 +00003891 LHS = getSCEVAtScope(LHS, L);
3892 RHS = getSCEVAtScope(RHS, L);
Chris Lattner53e677a2004-04-02 20:23:17 +00003893
Dan Gohman64a845e2009-06-24 04:48:43 +00003894 // At this point, we would like to compute how many iterations of the
Reid Spencere4d87aa2006-12-23 06:05:41 +00003895 // loop the predicate will return true for these inputs.
Dan Gohman70ff4cf2008-09-16 18:52:57 +00003896 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
3897 // If there is a loop-invariant, force it into the RHS.
Chris Lattner53e677a2004-04-02 20:23:17 +00003898 std::swap(LHS, RHS);
Reid Spencere4d87aa2006-12-23 06:05:41 +00003899 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattner53e677a2004-04-02 20:23:17 +00003900 }
3901
Dan Gohman03557dc2010-05-03 16:35:17 +00003902 // Simplify the operands before analyzing them.
3903 (void)SimplifyICmpOperands(Cond, LHS, RHS);
3904
Chris Lattner53e677a2004-04-02 20:23:17 +00003905 // If we have a comparison of a chrec against a constant, try to use value
3906 // ranges to answer this query.
Dan Gohman622ed672009-05-04 22:02:23 +00003907 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
3908 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattner53e677a2004-04-02 20:23:17 +00003909 if (AddRec->getLoop() == L) {
Eli Friedman361e54d2009-05-09 12:32:42 +00003910 // Form the constant range.
3911 ConstantRange CompRange(
3912 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003913
Dan Gohman0bba49c2009-07-07 17:06:11 +00003914 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedman361e54d2009-05-09 12:32:42 +00003915 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattner53e677a2004-04-02 20:23:17 +00003916 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00003917
Chris Lattner53e677a2004-04-02 20:23:17 +00003918 switch (Cond) {
Reid Spencere4d87aa2006-12-23 06:05:41 +00003919 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattner53e677a2004-04-02 20:23:17 +00003920 // Convert to: while (X-Y != 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003921 BackedgeTakenInfo BTI = HowFarToZero(getMinusSCEV(LHS, RHS), L);
3922 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00003923 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003924 }
Dan Gohman4c0d5d52009-08-20 16:42:55 +00003925 case ICmpInst::ICMP_EQ: { // while (X == Y)
3926 // Convert to: while (X-Y == 0)
Dan Gohmanf6d009f2010-02-24 17:31:30 +00003927 BackedgeTakenInfo BTI = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
3928 if (BTI.hasAnyInfo()) return BTI;
Chris Lattner53e677a2004-04-02 20:23:17 +00003929 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003930 }
3931 case ICmpInst::ICMP_SLT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003932 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, true);
3933 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00003934 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003935 }
3936 case ICmpInst::ICMP_SGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003937 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3938 getNotSCEV(RHS), L, true);
3939 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00003940 break;
3941 }
3942 case ICmpInst::ICMP_ULT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003943 BackedgeTakenInfo BTI = HowManyLessThans(LHS, RHS, L, false);
3944 if (BTI.hasAnyInfo()) return BTI;
Nick Lewyckyd6dac0e2007-08-06 19:21:00 +00003945 break;
3946 }
3947 case ICmpInst::ICMP_UGT: {
Dan Gohmana1af7572009-04-30 20:47:05 +00003948 BackedgeTakenInfo BTI = HowManyLessThans(getNotSCEV(LHS),
3949 getNotSCEV(RHS), L, false);
3950 if (BTI.hasAnyInfo()) return BTI;
Chris Lattnerdb25de42005-08-15 23:33:51 +00003951 break;
Reid Spencere4d87aa2006-12-23 06:05:41 +00003952 }
Chris Lattner53e677a2004-04-02 20:23:17 +00003953 default:
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00003954#if 0
David Greene25e0e872009-12-23 22:18:14 +00003955 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattner53e677a2004-04-02 20:23:17 +00003956 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greene25e0e872009-12-23 22:18:14 +00003957 dbgs() << "[unsigned] ";
3958 dbgs() << *LHS << " "
Dan Gohman64a845e2009-06-24 04:48:43 +00003959 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencere4d87aa2006-12-23 06:05:41 +00003960 << " " << *RHS << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00003961#endif
Chris Lattnere34c0b42004-04-03 00:43:03 +00003962 break;
Chris Lattner53e677a2004-04-02 20:23:17 +00003963 }
Dan Gohman46bdfb02009-02-24 18:55:53 +00003964 return
Dan Gohmana334aa72009-06-22 00:31:57 +00003965 ComputeBackedgeTakenCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner7980fb92004-04-17 18:36:24 +00003966}
3967
Chris Lattner673e02b2004-10-12 01:49:27 +00003968static ConstantInt *
Dan Gohman246b2562007-10-22 18:31:58 +00003969EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
3970 ScalarEvolution &SE) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00003971 const SCEV *InVal = SE.getConstant(C);
3972 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattner673e02b2004-10-12 01:49:27 +00003973 assert(isa<SCEVConstant>(Val) &&
3974 "Evaluation of SCEV at constant didn't fold correctly?");
3975 return cast<SCEVConstant>(Val)->getValue();
3976}
3977
3978/// GetAddressedElementFromGlobal - Given a global variable with an initializer
3979/// and a GEP expression (missing the pointer index) indexing into it, return
3980/// the addressed element of the initializer or null if the index expression is
3981/// invalid.
3982static Constant *
Nick Lewyckyc6501b12009-11-23 03:26:09 +00003983GetAddressedElementFromGlobal(GlobalVariable *GV,
Chris Lattner673e02b2004-10-12 01:49:27 +00003984 const std::vector<ConstantInt*> &Indices) {
3985 Constant *Init = GV->getInitializer();
3986 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
Reid Spencerb83eb642006-10-20 07:07:24 +00003987 uint64_t Idx = Indices[i]->getZExtValue();
Chris Lattner673e02b2004-10-12 01:49:27 +00003988 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
3989 assert(Idx < CS->getNumOperands() && "Bad struct index!");
3990 Init = cast<Constant>(CS->getOperand(Idx));
3991 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
3992 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
3993 Init = cast<Constant>(CA->getOperand(Idx));
3994 } else if (isa<ConstantAggregateZero>(Init)) {
3995 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
3996 assert(Idx < STy->getNumElements() && "Bad struct index!");
Owen Andersona7235ea2009-07-31 20:28:14 +00003997 Init = Constant::getNullValue(STy->getElementType(Idx));
Chris Lattner673e02b2004-10-12 01:49:27 +00003998 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
3999 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
Owen Andersona7235ea2009-07-31 20:28:14 +00004000 Init = Constant::getNullValue(ATy->getElementType());
Chris Lattner673e02b2004-10-12 01:49:27 +00004001 } else {
Torok Edwinc23197a2009-07-14 16:55:14 +00004002 llvm_unreachable("Unknown constant aggregate type!");
Chris Lattner673e02b2004-10-12 01:49:27 +00004003 }
4004 return 0;
4005 } else {
4006 return 0; // Unknown initializer type
4007 }
4008 }
4009 return Init;
4010}
4011
Dan Gohman46bdfb02009-02-24 18:55:53 +00004012/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
4013/// 'icmp op load X, cst', try to see if we can compute the backedge
4014/// execution count.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004015ScalarEvolution::BackedgeTakenInfo
Dan Gohman64a845e2009-06-24 04:48:43 +00004016ScalarEvolution::ComputeLoadConstantCompareBackedgeTakenCount(
4017 LoadInst *LI,
4018 Constant *RHS,
4019 const Loop *L,
4020 ICmpInst::Predicate predicate) {
Dan Gohman1c343752009-06-27 21:21:31 +00004021 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004022
4023 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004024 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattner673e02b2004-10-12 01:49:27 +00004025 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohman1c343752009-06-27 21:21:31 +00004026 if (!GEP) return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004027
4028 // Make sure that it is really a constant global we are gepping, with an
4029 // initializer, and make sure the first IDX is really 0.
4030 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman82555732009-08-19 18:20:44 +00004031 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattner673e02b2004-10-12 01:49:27 +00004032 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4033 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohman1c343752009-06-27 21:21:31 +00004034 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004035
4036 // Okay, we allow one non-constant index into the GEP instruction.
4037 Value *VarIdx = 0;
4038 std::vector<ConstantInt*> Indexes;
4039 unsigned VarIdxNum = 0;
4040 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4041 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4042 Indexes.push_back(CI);
4043 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohman1c343752009-06-27 21:21:31 +00004044 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattner673e02b2004-10-12 01:49:27 +00004045 VarIdx = GEP->getOperand(i);
4046 VarIdxNum = i-2;
4047 Indexes.push_back(0);
4048 }
4049
4050 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4051 // Check to see if X is a loop variant variable value now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004052 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohmand594e6f2009-05-24 23:25:42 +00004053 Idx = getSCEVAtScope(Idx, L);
Chris Lattner673e02b2004-10-12 01:49:27 +00004054
4055 // We can only recognize very limited forms of loop index expressions, in
4056 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman35738ac2009-05-04 22:30:44 +00004057 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Chris Lattner673e02b2004-10-12 01:49:27 +00004058 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
4059 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4060 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohman1c343752009-06-27 21:21:31 +00004061 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004062
4063 unsigned MaxSteps = MaxBruteForceIterations;
4064 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersoneed707b2009-07-24 23:12:02 +00004065 ConstantInt *ItCst = ConstantInt::get(
Owen Anderson9adc0ab2009-07-14 23:09:55 +00004066 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004067 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattner673e02b2004-10-12 01:49:27 +00004068
4069 // Form the GEP offset.
4070 Indexes[VarIdxNum] = Val;
4071
Nick Lewyckyc6501b12009-11-23 03:26:09 +00004072 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
Chris Lattner673e02b2004-10-12 01:49:27 +00004073 if (Result == 0) break; // Cannot compute!
4074
4075 // Evaluate the condition for this iteration.
Reid Spencere4d87aa2006-12-23 06:05:41 +00004076 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004077 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencere8019bb2007-03-01 07:25:48 +00004078 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattner673e02b2004-10-12 01:49:27 +00004079#if 0
David Greene25e0e872009-12-23 22:18:14 +00004080 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004081 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4082 << "***\n";
Chris Lattner673e02b2004-10-12 01:49:27 +00004083#endif
4084 ++NumArrayLenItCounts;
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004085 return getConstant(ItCst); // Found terminating iteration!
Chris Lattner673e02b2004-10-12 01:49:27 +00004086 }
4087 }
Dan Gohman1c343752009-06-27 21:21:31 +00004088 return getCouldNotCompute();
Chris Lattner673e02b2004-10-12 01:49:27 +00004089}
4090
4091
Chris Lattner3221ad02004-04-17 22:58:41 +00004092/// CanConstantFold - Return true if we can constant fold an instruction of the
4093/// specified type, assuming that all operands were constants.
4094static bool CanConstantFold(const Instruction *I) {
Reid Spencer832254e2007-02-02 02:16:23 +00004095 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Chris Lattner3221ad02004-04-17 22:58:41 +00004096 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
4097 return true;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004098
Chris Lattner3221ad02004-04-17 22:58:41 +00004099 if (const CallInst *CI = dyn_cast<CallInst>(I))
4100 if (const Function *F = CI->getCalledFunction())
Dan Gohmanfa9b80e2008-01-31 01:05:10 +00004101 return canConstantFoldCallTo(F);
Chris Lattner3221ad02004-04-17 22:58:41 +00004102 return false;
Chris Lattner7980fb92004-04-17 18:36:24 +00004103}
4104
Chris Lattner3221ad02004-04-17 22:58:41 +00004105/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4106/// in the loop that V is derived from. We allow arbitrary operations along the
4107/// way, but the operands of an operation must either be constants or a value
4108/// derived from a constant PHI. If this expression does not fit with these
4109/// constraints, return null.
4110static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4111 // If this is not an instruction, or if this is an instruction outside of the
4112 // loop, it can't be derived from a loop PHI.
4113 Instruction *I = dyn_cast<Instruction>(V);
Dan Gohman92329c72009-12-18 01:24:09 +00004114 if (I == 0 || !L->contains(I)) return 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004115
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004116 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004117 if (L->getHeader() == I->getParent())
4118 return PN;
4119 else
4120 // We don't currently keep track of the control flow needed to evaluate
4121 // PHIs, so we cannot handle PHIs inside of loops.
4122 return 0;
Anton Korobeynikovae9f3a32008-02-20 11:08:44 +00004123 }
Chris Lattner3221ad02004-04-17 22:58:41 +00004124
4125 // If we won't be able to constant fold this expression even if the operands
4126 // are constants, return early.
4127 if (!CanConstantFold(I)) return 0;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004128
Chris Lattner3221ad02004-04-17 22:58:41 +00004129 // Otherwise, we can evaluate this instruction if all of its operands are
4130 // constant or derived from a PHI node themselves.
4131 PHINode *PHI = 0;
4132 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
Dan Gohman9d4588f2010-06-22 13:15:46 +00004133 if (!isa<Constant>(I->getOperand(Op))) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004134 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
4135 if (P == 0) return 0; // Not evolving from PHI
4136 if (PHI == 0)
4137 PHI = P;
4138 else if (PHI != P)
4139 return 0; // Evolving from multiple different PHIs.
4140 }
4141
4142 // This is a expression evolving from a constant PHI!
4143 return PHI;
4144}
4145
4146/// EvaluateExpression - Given an expression that passes the
4147/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4148/// in the loop has the value PHIVal. If we can't fold this expression for some
4149/// reason, return null.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004150static Constant *EvaluateExpression(Value *V, Constant *PHIVal,
4151 const TargetData *TD) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004152 if (isa<PHINode>(V)) return PHIVal;
Reid Spencere8404342004-07-18 00:18:30 +00004153 if (Constant *C = dyn_cast<Constant>(V)) return C;
Chris Lattner3221ad02004-04-17 22:58:41 +00004154 Instruction *I = cast<Instruction>(V);
4155
Dan Gohman9d4588f2010-06-22 13:15:46 +00004156 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattner3221ad02004-04-17 22:58:41 +00004157
4158 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004159 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004160 if (Operands[i] == 0) return 0;
4161 }
4162
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004163 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattner8f73dea2009-11-09 23:06:58 +00004164 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004165 Operands[1], TD);
Chris Lattner8f73dea2009-11-09 23:06:58 +00004166 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004167 &Operands[0], Operands.size(), TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004168}
4169
4170/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4171/// in the header of its containing loop, we know the loop executes a
4172/// constant number of times, and the PHI node is just a recurrence
4173/// involving constants, fold it.
Dan Gohman64a845e2009-06-24 04:48:43 +00004174Constant *
4175ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohman5d984912009-12-18 01:14:11 +00004176 const APInt &BEs,
Dan Gohman64a845e2009-06-24 04:48:43 +00004177 const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004178 std::map<PHINode*, Constant*>::iterator I =
4179 ConstantEvolutionLoopExitValue.find(PN);
4180 if (I != ConstantEvolutionLoopExitValue.end())
4181 return I->second;
4182
Dan Gohmane0567812010-04-08 23:03:40 +00004183 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattner3221ad02004-04-17 22:58:41 +00004184 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
4185
4186 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4187
4188 // Since the loop is canonicalized, the PHI node must have two entries. One
4189 // entry must be a constant (coming in from outside of the loop), and the
4190 // second must be derived from the same PHI.
4191 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4192 Constant *StartCST =
4193 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
4194 if (StartCST == 0)
4195 return RetVal = 0; // Must be a constant.
4196
4197 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004198 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4199 !isa<Constant>(BEValue))
Chris Lattner3221ad02004-04-17 22:58:41 +00004200 return RetVal = 0; // Not derived from same PHI.
4201
4202 // Execute the loop symbolically to determine the exit value.
Dan Gohman46bdfb02009-02-24 18:55:53 +00004203 if (BEs.getActiveBits() >= 32)
Reid Spencere8019bb2007-03-01 07:25:48 +00004204 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattner3221ad02004-04-17 22:58:41 +00004205
Dan Gohman46bdfb02009-02-24 18:55:53 +00004206 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencere8019bb2007-03-01 07:25:48 +00004207 unsigned IterationNum = 0;
Chris Lattner3221ad02004-04-17 22:58:41 +00004208 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
4209 if (IterationNum == NumIterations)
4210 return RetVal = PHIVal; // Got exit value!
4211
4212 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004213 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004214 if (NextPHI == PHIVal)
4215 return RetVal = NextPHI; // Stopped evolving!
4216 if (NextPHI == 0)
4217 return 0; // Couldn't evaluate!
4218 PHIVal = NextPHI;
4219 }
4220}
4221
Dan Gohman07ad19b2009-07-27 16:09:48 +00004222/// ComputeBackedgeTakenCountExhaustively - If the loop is known to execute a
Chris Lattner7980fb92004-04-17 18:36:24 +00004223/// constant number of times (the condition evolves only from constants),
4224/// try to evaluate a few iterations of the loop until we get the exit
4225/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohman1c343752009-06-27 21:21:31 +00004226/// evaluate the trip count of the loop, return getCouldNotCompute().
Dan Gohman64a845e2009-06-24 04:48:43 +00004227const SCEV *
4228ScalarEvolution::ComputeBackedgeTakenCountExhaustively(const Loop *L,
4229 Value *Cond,
4230 bool ExitWhen) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004231 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohman1c343752009-06-27 21:21:31 +00004232 if (PN == 0) return getCouldNotCompute();
Chris Lattner7980fb92004-04-17 18:36:24 +00004233
Dan Gohmanb92654d2010-06-19 14:17:24 +00004234 // If the loop is canonicalized, the PHI will have exactly two entries.
4235 // That's the only form we support here.
4236 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4237
4238 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner7980fb92004-04-17 18:36:24 +00004239 // second must be derived from the same PHI.
4240 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4241 Constant *StartCST =
4242 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
Dan Gohman1c343752009-06-27 21:21:31 +00004243 if (StartCST == 0) return getCouldNotCompute(); // Must be a constant.
Chris Lattner7980fb92004-04-17 18:36:24 +00004244
4245 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Dan Gohman9d4588f2010-06-22 13:15:46 +00004246 if (getConstantEvolvingPHI(BEValue, L) != PN &&
4247 !isa<Constant>(BEValue))
4248 return getCouldNotCompute(); // Not derived from same PHI.
Chris Lattner7980fb92004-04-17 18:36:24 +00004249
4250 // Okay, we find a PHI node that defines the trip count of this loop. Execute
4251 // the loop symbolically to determine when the condition gets a value of
4252 // "ExitWhen".
4253 unsigned IterationNum = 0;
4254 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
4255 for (Constant *PHIVal = StartCST;
4256 IterationNum != MaxIterations; ++IterationNum) {
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004257 ConstantInt *CondVal =
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004258 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal, TD));
Chris Lattner3221ad02004-04-17 22:58:41 +00004259
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004260 // Couldn't symbolically evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004261 if (!CondVal) return getCouldNotCompute();
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004262
Reid Spencere8019bb2007-03-01 07:25:48 +00004263 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner7980fb92004-04-17 18:36:24 +00004264 ++NumBruteForceTripCountsComputed;
Owen Anderson1d0be152009-08-13 21:58:54 +00004265 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner7980fb92004-04-17 18:36:24 +00004266 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004267
Chris Lattner3221ad02004-04-17 22:58:41 +00004268 // Compute the value of the PHI node for the next iteration.
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004269 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal, TD);
Chris Lattner3221ad02004-04-17 22:58:41 +00004270 if (NextPHI == 0 || NextPHI == PHIVal)
Dan Gohman1c343752009-06-27 21:21:31 +00004271 return getCouldNotCompute();// Couldn't evaluate or not making progress...
Chris Lattner3221ad02004-04-17 22:58:41 +00004272 PHIVal = NextPHI;
Chris Lattner7980fb92004-04-17 18:36:24 +00004273 }
4274
4275 // Too many iterations were needed to evaluate.
Dan Gohman1c343752009-06-27 21:21:31 +00004276 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004277}
4278
Dan Gohmane7125f42009-09-03 15:00:26 +00004279/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohman66a7e852009-05-08 20:38:54 +00004280/// at the specified scope in the program. The L value specifies a loop
4281/// nest to evaluate the expression at, where null is the top-level or a
4282/// specified loop is immediately inside of the loop.
4283///
4284/// This method can be used to compute the exit value for a variable defined
4285/// in a loop by querying what the value will hold in the parent loop.
4286///
Dan Gohmand594e6f2009-05-24 23:25:42 +00004287/// In the case that a relevant loop exit value cannot be computed, the
4288/// original value V is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004289const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohman42214892009-08-31 21:15:23 +00004290 // Check to see if we've folded this expression at this loop before.
4291 std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4292 std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4293 Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4294 if (!Pair.second)
4295 return Pair.first->second ? Pair.first->second : V;
Chris Lattner53e677a2004-04-02 20:23:17 +00004296
Dan Gohman42214892009-08-31 21:15:23 +00004297 // Otherwise compute it.
4298 const SCEV *C = computeSCEVAtScope(V, L);
Dan Gohmana5505cb2009-08-31 21:58:28 +00004299 ValuesAtScopes[V][L] = C;
Dan Gohman42214892009-08-31 21:15:23 +00004300 return C;
4301}
4302
4303const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004304 if (isa<SCEVConstant>(V)) return V;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004305
Nick Lewycky3e630762008-02-20 06:48:22 +00004306 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattner3221ad02004-04-17 22:58:41 +00004307 // exit value from the loop without using SCEVs.
Dan Gohman622ed672009-05-04 22:02:23 +00004308 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004309 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004310 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattner3221ad02004-04-17 22:58:41 +00004311 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
4312 if (PHINode *PN = dyn_cast<PHINode>(I))
4313 if (PN->getParent() == LI->getHeader()) {
4314 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman46bdfb02009-02-24 18:55:53 +00004315 // to see if the loop that contains it has a known backedge-taken
4316 // count. If so, we may be able to force computation of the exit
4317 // value.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004318 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohman622ed672009-05-04 22:02:23 +00004319 if (const SCEVConstant *BTCC =
Dan Gohman46bdfb02009-02-24 18:55:53 +00004320 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattner3221ad02004-04-17 22:58:41 +00004321 // Okay, we know how many times the containing loop executes. If
4322 // this is a constant evolving PHI node, get the final value at
4323 // the specified iteration number.
4324 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman46bdfb02009-02-24 18:55:53 +00004325 BTCC->getValue()->getValue(),
Chris Lattner3221ad02004-04-17 22:58:41 +00004326 LI);
Dan Gohman09987962009-06-29 21:31:18 +00004327 if (RV) return getSCEV(RV);
Chris Lattner3221ad02004-04-17 22:58:41 +00004328 }
4329 }
4330
Reid Spencer09906f32006-12-04 21:33:23 +00004331 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattner3221ad02004-04-17 22:58:41 +00004332 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencer09906f32006-12-04 21:33:23 +00004333 // the arguments into constants, and if so, try to constant propagate the
Chris Lattner3221ad02004-04-17 22:58:41 +00004334 // result. This is particularly useful for computing loop exit values.
4335 if (CanConstantFold(I)) {
4336 std::vector<Constant*> Operands;
4337 Operands.reserve(I->getNumOperands());
4338 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4339 Value *Op = I->getOperand(i);
4340 if (Constant *C = dyn_cast<Constant>(Op)) {
4341 Operands.push_back(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004342 } else {
Chris Lattner42b5e082007-11-23 08:46:22 +00004343 // If any of the operands is non-constant and if they are
Dan Gohman2d1be872009-04-16 03:18:22 +00004344 // non-integer and non-pointer, don't even try to analyze them
4345 // with scev techniques.
Dan Gohman4acd12a2009-04-30 16:40:30 +00004346 if (!isSCEVable(Op->getType()))
Chris Lattner42b5e082007-11-23 08:46:22 +00004347 return V;
Dan Gohman2d1be872009-04-16 03:18:22 +00004348
Dan Gohman5d984912009-12-18 01:14:11 +00004349 const SCEV *OpV = getSCEVAtScope(Op, L);
Dan Gohman622ed672009-05-04 22:02:23 +00004350 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
Dan Gohman4acd12a2009-04-30 16:40:30 +00004351 Constant *C = SC->getValue();
4352 if (C->getType() != Op->getType())
4353 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4354 Op->getType(),
4355 false),
4356 C, Op->getType());
4357 Operands.push_back(C);
Dan Gohman622ed672009-05-04 22:02:23 +00004358 } else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
Dan Gohman4acd12a2009-04-30 16:40:30 +00004359 if (Constant *C = dyn_cast<Constant>(SU->getValue())) {
4360 if (C->getType() != Op->getType())
4361 C =
4362 ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4363 Op->getType(),
4364 false),
4365 C, Op->getType());
4366 Operands.push_back(C);
4367 } else
Chris Lattner3221ad02004-04-17 22:58:41 +00004368 return V;
4369 } else {
4370 return V;
4371 }
4372 }
4373 }
Dan Gohman64a845e2009-06-24 04:48:43 +00004374
Dan Gohmane177c9a2010-02-24 19:31:47 +00004375 Constant *C = 0;
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004376 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
4377 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004378 Operands[0], Operands[1], TD);
Chris Lattnerf286f6f2007-12-10 22:53:04 +00004379 else
4380 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Dan Gohman1ba3b6c2009-11-09 23:34:17 +00004381 &Operands[0], Operands.size(), TD);
Dan Gohmane177c9a2010-02-24 19:31:47 +00004382 if (C)
4383 return getSCEV(C);
Chris Lattner3221ad02004-04-17 22:58:41 +00004384 }
4385 }
4386
4387 // This is some other type of SCEVUnknown, just return it.
4388 return V;
4389 }
4390
Dan Gohman622ed672009-05-04 22:02:23 +00004391 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004392 // Avoid performing the look-up in the common case where the specified
4393 // expression has no loop-variant portions.
4394 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004395 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004396 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004397 // Okay, at least one of these operands is loop variant but might be
4398 // foldable. Build a new instance of the folded commutative expression.
Dan Gohman64a845e2009-06-24 04:48:43 +00004399 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
4400 Comm->op_begin()+i);
Chris Lattner53e677a2004-04-02 20:23:17 +00004401 NewOps.push_back(OpAtScope);
4402
4403 for (++i; i != e; ++i) {
4404 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattner53e677a2004-04-02 20:23:17 +00004405 NewOps.push_back(OpAtScope);
4406 }
4407 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004408 return getAddExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004409 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004410 return getMulExpr(NewOps);
Nick Lewyckyc54c5612007-11-25 22:41:31 +00004411 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004412 return getSMaxExpr(NewOps);
Nick Lewycky3e630762008-02-20 06:48:22 +00004413 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004414 return getUMaxExpr(NewOps);
Torok Edwinc23197a2009-07-14 16:55:14 +00004415 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattner53e677a2004-04-02 20:23:17 +00004416 }
4417 }
4418 // If we got here, all operands are loop invariant.
4419 return Comm;
4420 }
4421
Dan Gohman622ed672009-05-04 22:02:23 +00004422 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004423 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
4424 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky789558d2009-01-13 09:18:58 +00004425 if (LHS == Div->getLHS() && RHS == Div->getRHS())
4426 return Div; // must be loop invariant
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004427 return getUDivExpr(LHS, RHS);
Chris Lattner53e677a2004-04-02 20:23:17 +00004428 }
4429
4430 // If this is a loop recurrence for a loop that does not contain L, then we
4431 // are dealing with the final value computed by the loop.
Dan Gohman622ed672009-05-04 22:02:23 +00004432 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohman92329c72009-12-18 01:24:09 +00004433 if (!L || !AddRec->getLoop()->contains(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004434 // To evaluate this recurrence, we need to know how many times the AddRec
4435 // loop iterates. Compute this now.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004436 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohman1c343752009-06-27 21:21:31 +00004437 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004438
Eli Friedmanb42a6262008-08-04 23:49:06 +00004439 // Then, evaluate the AddRec.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004440 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004441 }
Dan Gohmand594e6f2009-05-24 23:25:42 +00004442 return AddRec;
Chris Lattner53e677a2004-04-02 20:23:17 +00004443 }
4444
Dan Gohman622ed672009-05-04 22:02:23 +00004445 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004446 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004447 if (Op == Cast->getOperand())
4448 return Cast; // must be loop invariant
4449 return getZeroExtendExpr(Op, Cast->getType());
4450 }
4451
Dan Gohman622ed672009-05-04 22:02:23 +00004452 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004453 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004454 if (Op == Cast->getOperand())
4455 return Cast; // must be loop invariant
4456 return getSignExtendExpr(Op, Cast->getType());
4457 }
4458
Dan Gohman622ed672009-05-04 22:02:23 +00004459 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00004460 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohmaneb3948b2009-04-29 22:29:01 +00004461 if (Op == Cast->getOperand())
4462 return Cast; // must be loop invariant
4463 return getTruncateExpr(Op, Cast->getType());
4464 }
4465
Torok Edwinc23197a2009-07-14 16:55:14 +00004466 llvm_unreachable("Unknown SCEV type!");
Daniel Dunbar8c562e22009-05-18 16:43:04 +00004467 return 0;
Chris Lattner53e677a2004-04-02 20:23:17 +00004468}
4469
Dan Gohman66a7e852009-05-08 20:38:54 +00004470/// getSCEVAtScope - This is a convenience function which does
4471/// getSCEVAtScope(getSCEV(V), L).
Dan Gohman0bba49c2009-07-07 17:06:11 +00004472const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004473 return getSCEVAtScope(getSCEV(V), L);
4474}
4475
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004476/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
4477/// following equation:
4478///
4479/// A * X = B (mod N)
4480///
4481/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
4482/// A and B isn't important.
4483///
4484/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004485static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004486 ScalarEvolution &SE) {
4487 uint32_t BW = A.getBitWidth();
4488 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
4489 assert(A != 0 && "A must be non-zero.");
4490
4491 // 1. D = gcd(A, N)
4492 //
4493 // The gcd of A and N may have only one prime factor: 2. The number of
4494 // trailing zeros in A is its multiplicity
4495 uint32_t Mult2 = A.countTrailingZeros();
4496 // D = 2^Mult2
4497
4498 // 2. Check if B is divisible by D.
4499 //
4500 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
4501 // is not less than multiplicity of this prime factor for D.
4502 if (B.countTrailingZeros() < Mult2)
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00004503 return SE.getCouldNotCompute();
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004504
4505 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
4506 // modulo (N / D).
4507 //
4508 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
4509 // bit width during computations.
4510 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
4511 APInt Mod(BW + 1, 0);
4512 Mod.set(BW - Mult2); // Mod = N / D
4513 APInt I = AD.multiplicativeInverse(Mod);
4514
4515 // 4. Compute the minimum unsigned root of the equation:
4516 // I * (B / D) mod (N / D)
4517 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
4518
4519 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
4520 // bits.
4521 return SE.getConstant(Result.trunc(BW));
4522}
Chris Lattner53e677a2004-04-02 20:23:17 +00004523
4524/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
4525/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
4526/// might be the same) or two SCEVCouldNotCompute objects.
4527///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004528static std::pair<const SCEV *,const SCEV *>
Dan Gohman246b2562007-10-22 18:31:58 +00004529SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004530 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman35738ac2009-05-04 22:30:44 +00004531 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
4532 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
4533 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004534
Chris Lattner53e677a2004-04-02 20:23:17 +00004535 // We currently can only solve this if the coefficients are constants.
Reid Spencere8019bb2007-03-01 07:25:48 +00004536 if (!LC || !MC || !NC) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004537 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004538 return std::make_pair(CNC, CNC);
4539 }
4540
Reid Spencere8019bb2007-03-01 07:25:48 +00004541 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnerfe560b82007-04-15 19:52:49 +00004542 const APInt &L = LC->getValue()->getValue();
4543 const APInt &M = MC->getValue()->getValue();
4544 const APInt &N = NC->getValue()->getValue();
Reid Spencere8019bb2007-03-01 07:25:48 +00004545 APInt Two(BitWidth, 2);
4546 APInt Four(BitWidth, 4);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004547
Dan Gohman64a845e2009-06-24 04:48:43 +00004548 {
Reid Spencere8019bb2007-03-01 07:25:48 +00004549 using namespace APIntOps;
Zhou Sheng414de4d2007-04-07 17:48:27 +00004550 const APInt& C = L;
Reid Spencere8019bb2007-03-01 07:25:48 +00004551 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
4552 // The B coefficient is M-N/2
4553 APInt B(M);
4554 B -= sdiv(N,Two);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004555
Reid Spencere8019bb2007-03-01 07:25:48 +00004556 // The A coefficient is N/2
Zhou Sheng414de4d2007-04-07 17:48:27 +00004557 APInt A(N.sdiv(Two));
Chris Lattner53e677a2004-04-02 20:23:17 +00004558
Reid Spencere8019bb2007-03-01 07:25:48 +00004559 // Compute the B^2-4ac term.
4560 APInt SqrtTerm(B);
4561 SqrtTerm *= B;
4562 SqrtTerm -= Four * (A * C);
Chris Lattner53e677a2004-04-02 20:23:17 +00004563
Reid Spencere8019bb2007-03-01 07:25:48 +00004564 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
4565 // integer value or else APInt::sqrt() will assert.
4566 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004567
Dan Gohman64a845e2009-06-24 04:48:43 +00004568 // Compute the two solutions for the quadratic formula.
Reid Spencere8019bb2007-03-01 07:25:48 +00004569 // The divisions must be performed as signed divisions.
4570 APInt NegB(-B);
Reid Spencer3e35c8d2007-04-16 02:24:41 +00004571 APInt TwoA( A << 1 );
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004572 if (TwoA.isMinValue()) {
Dan Gohman35738ac2009-05-04 22:30:44 +00004573 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky8f4d5eb2008-11-03 02:43:49 +00004574 return std::make_pair(CNC, CNC);
4575 }
4576
Owen Andersone922c022009-07-22 00:24:57 +00004577 LLVMContext &Context = SE.getContext();
Owen Anderson76f600b2009-07-06 22:37:39 +00004578
4579 ConstantInt *Solution1 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004580 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Anderson76f600b2009-07-06 22:37:39 +00004581 ConstantInt *Solution2 =
Owen Andersoneed707b2009-07-24 23:12:02 +00004582 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004583
Dan Gohman64a845e2009-06-24 04:48:43 +00004584 return std::make_pair(SE.getConstant(Solution1),
Dan Gohman246b2562007-10-22 18:31:58 +00004585 SE.getConstant(Solution2));
Reid Spencere8019bb2007-03-01 07:25:48 +00004586 } // end APIntOps namespace
Chris Lattner53e677a2004-04-02 20:23:17 +00004587}
4588
4589/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004590/// value to zero will execute. If not computable, return CouldNotCompute.
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004591ScalarEvolution::BackedgeTakenInfo
4592ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004593 // If the value is a constant
Dan Gohman622ed672009-05-04 22:02:23 +00004594 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004595 // If the value is already zero, the branch will execute zero times.
Reid Spencercae57542007-03-02 00:28:52 +00004596 if (C->getValue()->isZero()) return C;
Dan Gohman1c343752009-06-27 21:21:31 +00004597 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004598 }
4599
Dan Gohman35738ac2009-05-04 22:30:44 +00004600 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattner53e677a2004-04-02 20:23:17 +00004601 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00004602 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004603
4604 if (AddRec->isAffine()) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004605 // If this is an affine expression, the execution count of this branch is
4606 // the minimum unsigned root of the following equation:
Chris Lattner53e677a2004-04-02 20:23:17 +00004607 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004608 // Start + Step*N = 0 (mod 2^BW)
Chris Lattner53e677a2004-04-02 20:23:17 +00004609 //
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004610 // equivalent to:
4611 //
4612 // Step*N = -Start (mod 2^BW)
4613 //
4614 // where BW is the common bit width of Start and Step.
4615
Chris Lattner53e677a2004-04-02 20:23:17 +00004616 // Get the initial value for the loop.
Dan Gohman64a845e2009-06-24 04:48:43 +00004617 const SCEV *Start = getSCEVAtScope(AddRec->getStart(),
4618 L->getParentLoop());
4619 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1),
4620 L->getParentLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00004621
Dan Gohman622ed672009-05-04 22:02:23 +00004622 if (const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004623 // For now we handle only constant steps.
Chris Lattner53e677a2004-04-02 20:23:17 +00004624
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004625 // First, handle unitary steps.
4626 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohman4c0d5d52009-08-20 16:42:55 +00004627 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004628 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
4629 return Start; // N = Start (as unsigned)
4630
4631 // Then, try to solve the above equation provided that Start is constant.
Dan Gohman622ed672009-05-04 22:02:23 +00004632 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00004633 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004634 -StartC->getValue()->getValue(),
4635 *this);
Chris Lattner53e677a2004-04-02 20:23:17 +00004636 }
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00004637 } else if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004638 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
4639 // the quadratic equation to solve it.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004640 std::pair<const SCEV *,const SCEV *> Roots = SolveQuadraticEquation(AddRec,
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004641 *this);
Dan Gohman35738ac2009-05-04 22:30:44 +00004642 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
4643 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00004644 if (R1) {
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004645#if 0
David Greene25e0e872009-12-23 22:18:14 +00004646 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmanb7ef7292009-04-21 00:47:46 +00004647 << " sol#2: " << *R2 << "\n";
Chris Lattnerd18d9dc2004-04-02 20:26:46 +00004648#endif
Chris Lattner53e677a2004-04-02 20:23:17 +00004649 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00004650 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00004651 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Reid Spencere4d87aa2006-12-23 06:05:41 +00004652 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00004653 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00004654 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004655
Chris Lattner53e677a2004-04-02 20:23:17 +00004656 // We can only use this value if the chrec ends up with an exact zero
4657 // value at this index. When solving for "X*X != 5", for example, we
4658 // should not accept a root of 2.
Dan Gohman0bba49c2009-07-07 17:06:11 +00004659 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmancfeb6a42008-06-18 16:23:07 +00004660 if (Val->isZero())
4661 return R1; // We found a quadratic root!
Chris Lattner53e677a2004-04-02 20:23:17 +00004662 }
4663 }
4664 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004665
Dan Gohman1c343752009-06-27 21:21:31 +00004666 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004667}
4668
4669/// HowFarToNonZero - Return the number of times a backedge checking the
4670/// specified value for nonzero will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00004671/// CouldNotCompute
Dan Gohmanf6d009f2010-02-24 17:31:30 +00004672ScalarEvolution::BackedgeTakenInfo
4673ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattner53e677a2004-04-02 20:23:17 +00004674 // Loops that look like: while (X == 0) are very strange indeed. We don't
4675 // handle them yet except for the trivial case. This could be expanded in the
4676 // future as needed.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004677
Chris Lattner53e677a2004-04-02 20:23:17 +00004678 // If the value is a constant, check to see if it is known to be non-zero
4679 // already. If so, the backedge will execute zero times.
Dan Gohman622ed672009-05-04 22:02:23 +00004680 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky39442af2008-02-21 09:14:53 +00004681 if (!C->getValue()->isNullValue())
Dan Gohmandeff6212010-05-03 22:09:21 +00004682 return getConstant(C->getType(), 0);
Dan Gohman1c343752009-06-27 21:21:31 +00004683 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattner53e677a2004-04-02 20:23:17 +00004684 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00004685
Chris Lattner53e677a2004-04-02 20:23:17 +00004686 // We could implement others, but I really doubt anyone writes loops like
4687 // this, and if they did, they would already be constant folded.
Dan Gohman1c343752009-06-27 21:21:31 +00004688 return getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00004689}
4690
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004691/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
4692/// (which may not be an immediate predecessor) which has exactly one
4693/// successor from which BB is reachable, or null if no such block is
4694/// found.
4695///
Dan Gohman005752b2010-04-15 16:19:08 +00004696std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004697ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman3d739fe2009-04-30 20:48:53 +00004698 // If the block has a unique predecessor, then there is no path from the
4699 // predecessor to the block that does not go through the direct edge
4700 // from the predecessor to the block.
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004701 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman005752b2010-04-15 16:19:08 +00004702 return std::make_pair(Pred, BB);
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004703
4704 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman859b4822009-05-18 15:36:09 +00004705 // If the header has a unique predecessor outside the loop, it must be
4706 // a block that has exactly one successor that can reach the loop.
Dan Gohmanf8a8be82009-04-21 23:15:49 +00004707 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman605c14f2010-06-22 23:43:28 +00004708 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004709
Dan Gohman005752b2010-04-15 16:19:08 +00004710 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanfd6edef2008-09-15 22:18:04 +00004711}
4712
Dan Gohman763bad12009-06-20 00:35:32 +00004713/// HasSameValue - SCEV structural equivalence is usually sufficient for
4714/// testing whether two expressions are equal, however for the purposes of
4715/// looking for a condition guarding a loop, it can be useful to be a little
4716/// more general, since a front-end may have replicated the controlling
4717/// expression.
4718///
Dan Gohman0bba49c2009-07-07 17:06:11 +00004719static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman763bad12009-06-20 00:35:32 +00004720 // Quick check to see if they are the same SCEV.
4721 if (A == B) return true;
4722
4723 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
4724 // two different instructions with the same value. Check for this case.
4725 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
4726 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
4727 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
4728 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman041de422009-08-25 17:56:57 +00004729 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman763bad12009-06-20 00:35:32 +00004730 return true;
4731
4732 // Otherwise assume they may have a different value.
4733 return false;
4734}
4735
Dan Gohmane9796502010-04-24 01:28:42 +00004736/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
4737/// predicate Pred. Return true iff any changes were made.
4738///
4739bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
4740 const SCEV *&LHS, const SCEV *&RHS) {
4741 bool Changed = false;
4742
4743 // Canonicalize a constant to the right side.
4744 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
4745 // Check for both operands constant.
4746 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
4747 if (ConstantExpr::getICmp(Pred,
4748 LHSC->getValue(),
4749 RHSC->getValue())->isNullValue())
4750 goto trivially_false;
4751 else
4752 goto trivially_true;
4753 }
4754 // Otherwise swap the operands to put the constant on the right.
4755 std::swap(LHS, RHS);
4756 Pred = ICmpInst::getSwappedPredicate(Pred);
4757 Changed = true;
4758 }
4759
4760 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohman3abb69c2010-05-03 17:00:11 +00004761 // addrec's loop, put the addrec on the left. Also make a dominance check,
4762 // as both operands could be addrecs loop-invariant in each other's loop.
4763 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
4764 const Loop *L = AR->getLoop();
4765 if (LHS->isLoopInvariant(L) && LHS->properlyDominates(L->getHeader(), DT)) {
Dan Gohmane9796502010-04-24 01:28:42 +00004766 std::swap(LHS, RHS);
4767 Pred = ICmpInst::getSwappedPredicate(Pred);
4768 Changed = true;
4769 }
Dan Gohman3abb69c2010-05-03 17:00:11 +00004770 }
Dan Gohmane9796502010-04-24 01:28:42 +00004771
4772 // If there's a constant operand, canonicalize comparisons with boundary
4773 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
4774 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
4775 const APInt &RA = RC->getValue()->getValue();
4776 switch (Pred) {
4777 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
4778 case ICmpInst::ICMP_EQ:
4779 case ICmpInst::ICMP_NE:
4780 break;
4781 case ICmpInst::ICMP_UGE:
4782 if ((RA - 1).isMinValue()) {
4783 Pred = ICmpInst::ICMP_NE;
4784 RHS = getConstant(RA - 1);
4785 Changed = true;
4786 break;
4787 }
4788 if (RA.isMaxValue()) {
4789 Pred = ICmpInst::ICMP_EQ;
4790 Changed = true;
4791 break;
4792 }
4793 if (RA.isMinValue()) goto trivially_true;
4794
4795 Pred = ICmpInst::ICMP_UGT;
4796 RHS = getConstant(RA - 1);
4797 Changed = true;
4798 break;
4799 case ICmpInst::ICMP_ULE:
4800 if ((RA + 1).isMaxValue()) {
4801 Pred = ICmpInst::ICMP_NE;
4802 RHS = getConstant(RA + 1);
4803 Changed = true;
4804 break;
4805 }
4806 if (RA.isMinValue()) {
4807 Pred = ICmpInst::ICMP_EQ;
4808 Changed = true;
4809 break;
4810 }
4811 if (RA.isMaxValue()) goto trivially_true;
4812
4813 Pred = ICmpInst::ICMP_ULT;
4814 RHS = getConstant(RA + 1);
4815 Changed = true;
4816 break;
4817 case ICmpInst::ICMP_SGE:
4818 if ((RA - 1).isMinSignedValue()) {
4819 Pred = ICmpInst::ICMP_NE;
4820 RHS = getConstant(RA - 1);
4821 Changed = true;
4822 break;
4823 }
4824 if (RA.isMaxSignedValue()) {
4825 Pred = ICmpInst::ICMP_EQ;
4826 Changed = true;
4827 break;
4828 }
4829 if (RA.isMinSignedValue()) goto trivially_true;
4830
4831 Pred = ICmpInst::ICMP_SGT;
4832 RHS = getConstant(RA - 1);
4833 Changed = true;
4834 break;
4835 case ICmpInst::ICMP_SLE:
4836 if ((RA + 1).isMaxSignedValue()) {
4837 Pred = ICmpInst::ICMP_NE;
4838 RHS = getConstant(RA + 1);
4839 Changed = true;
4840 break;
4841 }
4842 if (RA.isMinSignedValue()) {
4843 Pred = ICmpInst::ICMP_EQ;
4844 Changed = true;
4845 break;
4846 }
4847 if (RA.isMaxSignedValue()) goto trivially_true;
4848
4849 Pred = ICmpInst::ICMP_SLT;
4850 RHS = getConstant(RA + 1);
4851 Changed = true;
4852 break;
4853 case ICmpInst::ICMP_UGT:
4854 if (RA.isMinValue()) {
4855 Pred = ICmpInst::ICMP_NE;
4856 Changed = true;
4857 break;
4858 }
4859 if ((RA + 1).isMaxValue()) {
4860 Pred = ICmpInst::ICMP_EQ;
4861 RHS = getConstant(RA + 1);
4862 Changed = true;
4863 break;
4864 }
4865 if (RA.isMaxValue()) goto trivially_false;
4866 break;
4867 case ICmpInst::ICMP_ULT:
4868 if (RA.isMaxValue()) {
4869 Pred = ICmpInst::ICMP_NE;
4870 Changed = true;
4871 break;
4872 }
4873 if ((RA - 1).isMinValue()) {
4874 Pred = ICmpInst::ICMP_EQ;
4875 RHS = getConstant(RA - 1);
4876 Changed = true;
4877 break;
4878 }
4879 if (RA.isMinValue()) goto trivially_false;
4880 break;
4881 case ICmpInst::ICMP_SGT:
4882 if (RA.isMinSignedValue()) {
4883 Pred = ICmpInst::ICMP_NE;
4884 Changed = true;
4885 break;
4886 }
4887 if ((RA + 1).isMaxSignedValue()) {
4888 Pred = ICmpInst::ICMP_EQ;
4889 RHS = getConstant(RA + 1);
4890 Changed = true;
4891 break;
4892 }
4893 if (RA.isMaxSignedValue()) goto trivially_false;
4894 break;
4895 case ICmpInst::ICMP_SLT:
4896 if (RA.isMaxSignedValue()) {
4897 Pred = ICmpInst::ICMP_NE;
4898 Changed = true;
4899 break;
4900 }
4901 if ((RA - 1).isMinSignedValue()) {
4902 Pred = ICmpInst::ICMP_EQ;
4903 RHS = getConstant(RA - 1);
4904 Changed = true;
4905 break;
4906 }
4907 if (RA.isMinSignedValue()) goto trivially_false;
4908 break;
4909 }
4910 }
4911
4912 // Check for obvious equality.
4913 if (HasSameValue(LHS, RHS)) {
4914 if (ICmpInst::isTrueWhenEqual(Pred))
4915 goto trivially_true;
4916 if (ICmpInst::isFalseWhenEqual(Pred))
4917 goto trivially_false;
4918 }
4919
Dan Gohman03557dc2010-05-03 16:35:17 +00004920 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
4921 // adding or subtracting 1 from one of the operands.
4922 switch (Pred) {
4923 case ICmpInst::ICMP_SLE:
4924 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
4925 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
4926 /*HasNUW=*/false, /*HasNSW=*/true);
4927 Pred = ICmpInst::ICMP_SLT;
4928 Changed = true;
4929 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004930 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004931 /*HasNUW=*/false, /*HasNSW=*/true);
4932 Pred = ICmpInst::ICMP_SLT;
4933 Changed = true;
4934 }
4935 break;
4936 case ICmpInst::ICMP_SGE:
4937 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004938 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004939 /*HasNUW=*/false, /*HasNSW=*/true);
4940 Pred = ICmpInst::ICMP_SGT;
4941 Changed = true;
4942 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
4943 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
4944 /*HasNUW=*/false, /*HasNSW=*/true);
4945 Pred = ICmpInst::ICMP_SGT;
4946 Changed = true;
4947 }
4948 break;
4949 case ICmpInst::ICMP_ULE:
4950 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004951 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004952 /*HasNUW=*/true, /*HasNSW=*/false);
4953 Pred = ICmpInst::ICMP_ULT;
4954 Changed = true;
4955 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004956 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004957 /*HasNUW=*/true, /*HasNSW=*/false);
4958 Pred = ICmpInst::ICMP_ULT;
4959 Changed = true;
4960 }
4961 break;
4962 case ICmpInst::ICMP_UGE:
4963 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004964 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004965 /*HasNUW=*/true, /*HasNSW=*/false);
4966 Pred = ICmpInst::ICMP_UGT;
4967 Changed = true;
4968 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohmanf16c6802010-05-03 20:23:47 +00004969 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Dan Gohman03557dc2010-05-03 16:35:17 +00004970 /*HasNUW=*/true, /*HasNSW=*/false);
4971 Pred = ICmpInst::ICMP_UGT;
4972 Changed = true;
4973 }
4974 break;
4975 default:
4976 break;
4977 }
4978
Dan Gohmane9796502010-04-24 01:28:42 +00004979 // TODO: More simplifications are possible here.
4980
4981 return Changed;
4982
4983trivially_true:
4984 // Return 0 == 0.
4985 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
4986 Pred = ICmpInst::ICMP_EQ;
4987 return true;
4988
4989trivially_false:
4990 // Return 0 != 0.
4991 LHS = RHS = getConstant(Type::getInt1Ty(getContext()), 0);
4992 Pred = ICmpInst::ICMP_NE;
4993 return true;
4994}
4995
Dan Gohman85b05a22009-07-13 21:35:55 +00004996bool ScalarEvolution::isKnownNegative(const SCEV *S) {
4997 return getSignedRange(S).getSignedMax().isNegative();
4998}
4999
5000bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5001 return getSignedRange(S).getSignedMin().isStrictlyPositive();
5002}
5003
5004bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5005 return !getSignedRange(S).getSignedMin().isNegative();
5006}
5007
5008bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5009 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5010}
5011
5012bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5013 return isKnownNegative(S) || isKnownPositive(S);
5014}
5015
5016bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5017 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmand19bba62010-04-24 01:38:36 +00005018 // Canonicalize the inputs first.
5019 (void)SimplifyICmpOperands(Pred, LHS, RHS);
5020
Dan Gohman53c66ea2010-04-11 22:16:48 +00005021 // If LHS or RHS is an addrec, check to see if the condition is true in
5022 // every iteration of the loop.
5023 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5024 if (isLoopEntryGuardedByCond(
5025 AR->getLoop(), Pred, AR->getStart(), RHS) &&
5026 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005027 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005028 return true;
5029 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5030 if (isLoopEntryGuardedByCond(
5031 AR->getLoop(), Pred, LHS, AR->getStart()) &&
5032 isLoopBackedgeGuardedByCond(
Dan Gohmanacd8cab2010-05-04 01:12:27 +00005033 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman53c66ea2010-04-11 22:16:48 +00005034 return true;
Dan Gohman85b05a22009-07-13 21:35:55 +00005035
Dan Gohman53c66ea2010-04-11 22:16:48 +00005036 // Otherwise see what can be done with known constant ranges.
5037 return isKnownPredicateWithRanges(Pred, LHS, RHS);
5038}
5039
5040bool
5041ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5042 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005043 if (HasSameValue(LHS, RHS))
5044 return ICmpInst::isTrueWhenEqual(Pred);
5045
Dan Gohman53c66ea2010-04-11 22:16:48 +00005046 // This code is split out from isKnownPredicate because it is called from
5047 // within isLoopEntryGuardedByCond.
Dan Gohman85b05a22009-07-13 21:35:55 +00005048 switch (Pred) {
5049 default:
Dan Gohman850f7912009-07-16 17:34:36 +00005050 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohman85b05a22009-07-13 21:35:55 +00005051 break;
5052 case ICmpInst::ICMP_SGT:
5053 Pred = ICmpInst::ICMP_SLT;
5054 std::swap(LHS, RHS);
5055 case ICmpInst::ICMP_SLT: {
5056 ConstantRange LHSRange = getSignedRange(LHS);
5057 ConstantRange RHSRange = getSignedRange(RHS);
5058 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5059 return true;
5060 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5061 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005062 break;
5063 }
5064 case ICmpInst::ICMP_SGE:
5065 Pred = ICmpInst::ICMP_SLE;
5066 std::swap(LHS, RHS);
5067 case ICmpInst::ICMP_SLE: {
5068 ConstantRange LHSRange = getSignedRange(LHS);
5069 ConstantRange RHSRange = getSignedRange(RHS);
5070 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5071 return true;
5072 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5073 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005074 break;
5075 }
5076 case ICmpInst::ICMP_UGT:
5077 Pred = ICmpInst::ICMP_ULT;
5078 std::swap(LHS, RHS);
5079 case ICmpInst::ICMP_ULT: {
5080 ConstantRange LHSRange = getUnsignedRange(LHS);
5081 ConstantRange RHSRange = getUnsignedRange(RHS);
5082 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5083 return true;
5084 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5085 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005086 break;
5087 }
5088 case ICmpInst::ICMP_UGE:
5089 Pred = ICmpInst::ICMP_ULE;
5090 std::swap(LHS, RHS);
5091 case ICmpInst::ICMP_ULE: {
5092 ConstantRange LHSRange = getUnsignedRange(LHS);
5093 ConstantRange RHSRange = getUnsignedRange(RHS);
5094 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5095 return true;
5096 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5097 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005098 break;
5099 }
5100 case ICmpInst::ICMP_NE: {
5101 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5102 return true;
5103 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5104 return true;
5105
5106 const SCEV *Diff = getMinusSCEV(LHS, RHS);
5107 if (isKnownNonZero(Diff))
5108 return true;
5109 break;
5110 }
5111 case ICmpInst::ICMP_EQ:
Dan Gohmanf117ed42009-07-20 23:54:43 +00005112 // The check at the top of the function catches the case where
5113 // the values are known to be equal.
Dan Gohman85b05a22009-07-13 21:35:55 +00005114 break;
5115 }
5116 return false;
5117}
5118
5119/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
5120/// protected by a conditional between LHS and RHS. This is used to
5121/// to eliminate casts.
5122bool
5123ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
5124 ICmpInst::Predicate Pred,
5125 const SCEV *LHS, const SCEV *RHS) {
5126 // Interpret a null as meaning no loop, where there is obviously no guard
5127 // (interprocedural conditions notwithstanding).
5128 if (!L) return true;
5129
5130 BasicBlock *Latch = L->getLoopLatch();
5131 if (!Latch)
5132 return false;
5133
5134 BranchInst *LoopContinuePredicate =
5135 dyn_cast<BranchInst>(Latch->getTerminator());
5136 if (!LoopContinuePredicate ||
5137 LoopContinuePredicate->isUnconditional())
5138 return false;
5139
Dan Gohman0f4b2852009-07-21 23:03:19 +00005140 return isImpliedCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
5141 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohman85b05a22009-07-13 21:35:55 +00005142}
5143
Dan Gohman3948d0b2010-04-11 19:27:13 +00005144/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohman85b05a22009-07-13 21:35:55 +00005145/// by a conditional between LHS and RHS. This is used to help avoid max
5146/// expressions in loop trip counts, and to eliminate casts.
5147bool
Dan Gohman3948d0b2010-04-11 19:27:13 +00005148ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
5149 ICmpInst::Predicate Pred,
5150 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman8ea94522009-05-18 16:03:58 +00005151 // Interpret a null as meaning no loop, where there is obviously no guard
5152 // (interprocedural conditions notwithstanding).
5153 if (!L) return false;
5154
Dan Gohman859b4822009-05-18 15:36:09 +00005155 // Starting at the loop predecessor, climb up the predecessor chain, as long
5156 // as there are predecessors that can be found that have unique successors
Dan Gohmanfd6edef2008-09-15 22:18:04 +00005157 // leading to the original header.
Dan Gohman005752b2010-04-15 16:19:08 +00005158 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman605c14f2010-06-22 23:43:28 +00005159 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman005752b2010-04-15 16:19:08 +00005160 Pair.first;
5161 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman38372182008-08-12 20:17:31 +00005162
5163 BranchInst *LoopEntryPredicate =
Dan Gohman005752b2010-04-15 16:19:08 +00005164 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman38372182008-08-12 20:17:31 +00005165 if (!LoopEntryPredicate ||
5166 LoopEntryPredicate->isUnconditional())
5167 continue;
5168
Dan Gohman0f4b2852009-07-21 23:03:19 +00005169 if (isImpliedCond(LoopEntryPredicate->getCondition(), Pred, LHS, RHS,
Dan Gohman005752b2010-04-15 16:19:08 +00005170 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman38372182008-08-12 20:17:31 +00005171 return true;
Nick Lewycky59cff122008-07-12 07:41:32 +00005172 }
5173
Dan Gohman38372182008-08-12 20:17:31 +00005174 return false;
Nick Lewycky59cff122008-07-12 07:41:32 +00005175}
5176
Dan Gohman0f4b2852009-07-21 23:03:19 +00005177/// isImpliedCond - Test whether the condition described by Pred, LHS,
5178/// and RHS is true whenever the given Cond value evaluates to true.
5179bool ScalarEvolution::isImpliedCond(Value *CondValue,
5180 ICmpInst::Predicate Pred,
5181 const SCEV *LHS, const SCEV *RHS,
5182 bool Inverse) {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005183 // Recursively handle And and Or conditions.
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005184 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CondValue)) {
5185 if (BO->getOpcode() == Instruction::And) {
5186 if (!Inverse)
Dan Gohman0f4b2852009-07-21 23:03:19 +00005187 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
5188 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005189 } else if (BO->getOpcode() == Instruction::Or) {
5190 if (Inverse)
Dan Gohman0f4b2852009-07-21 23:03:19 +00005191 return isImpliedCond(BO->getOperand(0), Pred, LHS, RHS, Inverse) ||
5192 isImpliedCond(BO->getOperand(1), Pred, LHS, RHS, Inverse);
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005193 }
5194 }
5195
5196 ICmpInst *ICI = dyn_cast<ICmpInst>(CondValue);
5197 if (!ICI) return false;
5198
Dan Gohman85b05a22009-07-13 21:35:55 +00005199 // Bail if the ICmp's operands' types are wider than the needed type
5200 // before attempting to call getSCEV on them. This avoids infinite
5201 // recursion, since the analysis of widening casts can require loop
5202 // exit condition information for overflow checking, which would
5203 // lead back here.
5204 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman0f4b2852009-07-21 23:03:19 +00005205 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohman85b05a22009-07-13 21:35:55 +00005206 return false;
5207
Dan Gohman0f4b2852009-07-21 23:03:19 +00005208 // Now that we found a conditional branch that dominates the loop, check to
5209 // see if it is the comparison we are looking for.
5210 ICmpInst::Predicate FoundPred;
5211 if (Inverse)
5212 FoundPred = ICI->getInversePredicate();
5213 else
5214 FoundPred = ICI->getPredicate();
5215
5216 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
5217 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohman85b05a22009-07-13 21:35:55 +00005218
5219 // Balance the types. The case where FoundLHS' type is wider than
5220 // LHS' type is checked for above.
5221 if (getTypeSizeInBits(LHS->getType()) >
5222 getTypeSizeInBits(FoundLHS->getType())) {
5223 if (CmpInst::isSigned(Pred)) {
5224 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
5225 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
5226 } else {
5227 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
5228 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
5229 }
5230 }
5231
Dan Gohman0f4b2852009-07-21 23:03:19 +00005232 // Canonicalize the query to match the way instcombine will have
5233 // canonicalized the comparison.
Dan Gohmand4da5af2010-04-24 01:34:53 +00005234 if (SimplifyICmpOperands(Pred, LHS, RHS))
5235 if (LHS == RHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005236 return CmpInst::isTrueWhenEqual(Pred);
Dan Gohmand4da5af2010-04-24 01:34:53 +00005237 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
5238 if (FoundLHS == FoundRHS)
Dan Gohman34c3e362010-05-03 18:00:24 +00005239 return CmpInst::isFalseWhenEqual(Pred);
Dan Gohman0f4b2852009-07-21 23:03:19 +00005240
5241 // Check to see if we can make the LHS or RHS match.
5242 if (LHS == FoundRHS || RHS == FoundLHS) {
5243 if (isa<SCEVConstant>(RHS)) {
5244 std::swap(FoundLHS, FoundRHS);
5245 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
5246 } else {
5247 std::swap(LHS, RHS);
5248 Pred = ICmpInst::getSwappedPredicate(Pred);
5249 }
5250 }
5251
5252 // Check whether the found predicate is the same as the desired predicate.
5253 if (FoundPred == Pred)
5254 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
5255
5256 // Check whether swapping the found predicate makes it the same as the
5257 // desired predicate.
5258 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
5259 if (isa<SCEVConstant>(RHS))
5260 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
5261 else
5262 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
5263 RHS, LHS, FoundLHS, FoundRHS);
5264 }
5265
5266 // Check whether the actual condition is beyond sufficient.
5267 if (FoundPred == ICmpInst::ICMP_EQ)
5268 if (ICmpInst::isTrueWhenEqual(Pred))
5269 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
5270 return true;
5271 if (Pred == ICmpInst::ICMP_NE)
5272 if (!ICmpInst::isTrueWhenEqual(FoundPred))
5273 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
5274 return true;
5275
5276 // Otherwise assume the worst.
5277 return false;
Dan Gohman85b05a22009-07-13 21:35:55 +00005278}
5279
Dan Gohman0f4b2852009-07-21 23:03:19 +00005280/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005281/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005282/// and FoundRHS is true.
5283bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
5284 const SCEV *LHS, const SCEV *RHS,
5285 const SCEV *FoundLHS,
5286 const SCEV *FoundRHS) {
5287 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
5288 FoundLHS, FoundRHS) ||
5289 // ~x < ~y --> x > y
5290 isImpliedCondOperandsHelper(Pred, LHS, RHS,
5291 getNotSCEV(FoundRHS),
5292 getNotSCEV(FoundLHS));
5293}
5294
5295/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005296/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman0f4b2852009-07-21 23:03:19 +00005297/// FoundLHS, and FoundRHS is true.
Dan Gohman85b05a22009-07-13 21:35:55 +00005298bool
Dan Gohman0f4b2852009-07-21 23:03:19 +00005299ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
5300 const SCEV *LHS, const SCEV *RHS,
5301 const SCEV *FoundLHS,
5302 const SCEV *FoundRHS) {
Dan Gohman85b05a22009-07-13 21:35:55 +00005303 switch (Pred) {
Dan Gohman850f7912009-07-16 17:34:36 +00005304 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5305 case ICmpInst::ICMP_EQ:
5306 case ICmpInst::ICMP_NE:
5307 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
5308 return true;
5309 break;
Dan Gohman85b05a22009-07-13 21:35:55 +00005310 case ICmpInst::ICMP_SLT:
Dan Gohman850f7912009-07-16 17:34:36 +00005311 case ICmpInst::ICMP_SLE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005312 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
5313 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005314 return true;
5315 break;
5316 case ICmpInst::ICMP_SGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005317 case ICmpInst::ICMP_SGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005318 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
5319 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005320 return true;
5321 break;
5322 case ICmpInst::ICMP_ULT:
Dan Gohman850f7912009-07-16 17:34:36 +00005323 case ICmpInst::ICMP_ULE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005324 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
5325 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005326 return true;
5327 break;
5328 case ICmpInst::ICMP_UGT:
Dan Gohman850f7912009-07-16 17:34:36 +00005329 case ICmpInst::ICMP_UGE:
Dan Gohman53c66ea2010-04-11 22:16:48 +00005330 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
5331 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohman85b05a22009-07-13 21:35:55 +00005332 return true;
5333 break;
5334 }
5335
5336 return false;
Dan Gohman40a5a1b2009-06-24 01:18:18 +00005337}
5338
Dan Gohman51f53b72009-06-21 23:46:38 +00005339/// getBECount - Subtract the end and start values and divide by the step,
5340/// rounding up, to get the number of times the backedge is executed. Return
5341/// CouldNotCompute if an intermediate computation overflows.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005342const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
Dan Gohmanf5074ec2009-07-13 22:05:32 +00005343 const SCEV *End,
Dan Gohman1f96e672009-09-17 18:05:20 +00005344 const SCEV *Step,
5345 bool NoWrap) {
Dan Gohman52fddd32010-01-26 04:40:18 +00005346 assert(!isKnownNegative(Step) &&
5347 "This code doesn't handle negative strides yet!");
5348
Dan Gohman51f53b72009-06-21 23:46:38 +00005349 const Type *Ty = Start->getType();
Dan Gohmandeff6212010-05-03 22:09:21 +00005350 const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005351 const SCEV *Diff = getMinusSCEV(End, Start);
5352 const SCEV *RoundUp = getAddExpr(Step, NegOne);
Dan Gohman51f53b72009-06-21 23:46:38 +00005353
5354 // Add an adjustment to the difference between End and Start so that
5355 // the division will effectively round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005356 const SCEV *Add = getAddExpr(Diff, RoundUp);
Dan Gohman51f53b72009-06-21 23:46:38 +00005357
Dan Gohman1f96e672009-09-17 18:05:20 +00005358 if (!NoWrap) {
5359 // Check Add for unsigned overflow.
5360 // TODO: More sophisticated things could be done here.
5361 const Type *WideTy = IntegerType::get(getContext(),
5362 getTypeSizeInBits(Ty) + 1);
5363 const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
5364 const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
5365 const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
5366 if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
5367 return getCouldNotCompute();
5368 }
Dan Gohman51f53b72009-06-21 23:46:38 +00005369
5370 return getUDivExpr(Add, Step);
5371}
5372
Chris Lattnerdb25de42005-08-15 23:33:51 +00005373/// HowManyLessThans - Return the number of times a backedge containing the
5374/// specified less-than comparison will execute. If not computable, return
Dan Gohman86fbf2f2009-06-06 14:37:11 +00005375/// CouldNotCompute.
Dan Gohman64a845e2009-06-24 04:48:43 +00005376ScalarEvolution::BackedgeTakenInfo
5377ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
5378 const Loop *L, bool isSigned) {
Chris Lattnerdb25de42005-08-15 23:33:51 +00005379 // Only handle: "ADDREC < LoopInvariant".
Dan Gohman1c343752009-06-27 21:21:31 +00005380 if (!RHS->isLoopInvariant(L)) return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005381
Dan Gohman35738ac2009-05-04 22:30:44 +00005382 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005383 if (!AddRec || AddRec->getLoop() != L)
Dan Gohman1c343752009-06-27 21:21:31 +00005384 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005385
Dan Gohman1f96e672009-09-17 18:05:20 +00005386 // Check to see if we have a flag which makes analysis easy.
5387 bool NoWrap = isSigned ? AddRec->hasNoSignedWrap() :
5388 AddRec->hasNoUnsignedWrap();
5389
Chris Lattnerdb25de42005-08-15 23:33:51 +00005390 if (AddRec->isAffine()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005391 unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
Dan Gohman0bba49c2009-07-07 17:06:11 +00005392 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmana1af7572009-04-30 20:47:05 +00005393
Dan Gohman52fddd32010-01-26 04:40:18 +00005394 if (Step->isZero())
Dan Gohman1c343752009-06-27 21:21:31 +00005395 return getCouldNotCompute();
Dan Gohman52fddd32010-01-26 04:40:18 +00005396 if (Step->isOne()) {
Dan Gohmana1af7572009-04-30 20:47:05 +00005397 // With unit stride, the iteration never steps past the limit value.
Dan Gohman52fddd32010-01-26 04:40:18 +00005398 } else if (isKnownPositive(Step)) {
Dan Gohmanf451cb82010-02-10 16:03:48 +00005399 // Test whether a positive iteration can step past the limit
Dan Gohman52fddd32010-01-26 04:40:18 +00005400 // value and past the maximum value for its type in a single step.
5401 // Note that it's not sufficient to check NoWrap here, because even
5402 // though the value after a wrap is undefined, it's not undefined
5403 // behavior, so if wrap does occur, the loop could either terminate or
Dan Gohman155eec72010-01-26 18:32:54 +00005404 // loop infinitely, but in either case, the loop is guaranteed to
Dan Gohman52fddd32010-01-26 04:40:18 +00005405 // iterate at least until the iteration where the wrapping occurs.
Dan Gohmandeff6212010-05-03 22:09:21 +00005406 const SCEV *One = getConstant(Step->getType(), 1);
Dan Gohman52fddd32010-01-26 04:40:18 +00005407 if (isSigned) {
5408 APInt Max = APInt::getSignedMaxValue(BitWidth);
5409 if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
5410 .slt(getSignedRange(RHS).getSignedMax()))
5411 return getCouldNotCompute();
5412 } else {
5413 APInt Max = APInt::getMaxValue(BitWidth);
5414 if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
5415 .ult(getUnsignedRange(RHS).getUnsignedMax()))
5416 return getCouldNotCompute();
5417 }
Dan Gohmana1af7572009-04-30 20:47:05 +00005418 } else
Dan Gohman52fddd32010-01-26 04:40:18 +00005419 // TODO: Handle negative strides here and below.
Dan Gohman1c343752009-06-27 21:21:31 +00005420 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005421
Dan Gohmana1af7572009-04-30 20:47:05 +00005422 // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
5423 // m. So, we count the number of iterations in which {n,+,s} < m is true.
5424 // Note that we cannot simply return max(m-n,0)/s because it's not safe to
Wojciech Matyjewicza65ee032008-02-13 12:21:32 +00005425 // treat m-n as signed nor unsigned due to overflow possibility.
Chris Lattnerdb25de42005-08-15 23:33:51 +00005426
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005427 // First, we get the value of the LHS in the first iteration: n
Dan Gohman0bba49c2009-07-07 17:06:11 +00005428 const SCEV *Start = AddRec->getOperand(0);
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005429
Dan Gohmana1af7572009-04-30 20:47:05 +00005430 // Determine the minimum constant start value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005431 const SCEV *MinStart = getConstant(isSigned ?
5432 getSignedRange(Start).getSignedMin() :
5433 getUnsignedRange(Start).getUnsignedMin());
Wojciech Matyjewicz3a4cbe22008-02-13 11:51:34 +00005434
Dan Gohmana1af7572009-04-30 20:47:05 +00005435 // If we know that the condition is true in order to enter the loop,
5436 // then we know that it will run exactly (m-n)/s times. Otherwise, we
Dan Gohman6c0866c2009-05-24 23:45:28 +00005437 // only know that it will execute (max(m,n)-n)/s times. In both cases,
5438 // the division must round up.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005439 const SCEV *End = RHS;
Dan Gohman3948d0b2010-04-11 19:27:13 +00005440 if (!isLoopEntryGuardedByCond(L,
5441 isSigned ? ICmpInst::ICMP_SLT :
5442 ICmpInst::ICMP_ULT,
5443 getMinusSCEV(Start, Step), RHS))
Dan Gohmana1af7572009-04-30 20:47:05 +00005444 End = isSigned ? getSMaxExpr(RHS, Start)
5445 : getUMaxExpr(RHS, Start);
5446
5447 // Determine the maximum constant end value.
Dan Gohman85b05a22009-07-13 21:35:55 +00005448 const SCEV *MaxEnd = getConstant(isSigned ?
5449 getSignedRange(End).getSignedMax() :
5450 getUnsignedRange(End).getUnsignedMax());
Dan Gohmana1af7572009-04-30 20:47:05 +00005451
Dan Gohman52fddd32010-01-26 04:40:18 +00005452 // If MaxEnd is within a step of the maximum integer value in its type,
5453 // adjust it down to the minimum value which would produce the same effect.
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005454 // This allows the subsequent ceiling division of (N+(step-1))/step to
Dan Gohman52fddd32010-01-26 04:40:18 +00005455 // compute the correct value.
5456 const SCEV *StepMinusOne = getMinusSCEV(Step,
Dan Gohmandeff6212010-05-03 22:09:21 +00005457 getConstant(Step->getType(), 1));
Dan Gohman52fddd32010-01-26 04:40:18 +00005458 MaxEnd = isSigned ?
5459 getSMinExpr(MaxEnd,
5460 getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
5461 StepMinusOne)) :
5462 getUMinExpr(MaxEnd,
5463 getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
5464 StepMinusOne));
5465
Dan Gohmana1af7572009-04-30 20:47:05 +00005466 // Finally, we subtract these two values and divide, rounding up, to get
5467 // the number of times the backedge is executed.
Dan Gohman1f96e672009-09-17 18:05:20 +00005468 const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005469
5470 // The maximum backedge count is similar, except using the minimum start
5471 // value and the maximum end value.
Dan Gohman1f96e672009-09-17 18:05:20 +00005472 const SCEV *MaxBECount = getBECount(MinStart, MaxEnd, Step, NoWrap);
Dan Gohmana1af7572009-04-30 20:47:05 +00005473
5474 return BackedgeTakenInfo(BECount, MaxBECount);
Chris Lattnerdb25de42005-08-15 23:33:51 +00005475 }
5476
Dan Gohman1c343752009-06-27 21:21:31 +00005477 return getCouldNotCompute();
Chris Lattnerdb25de42005-08-15 23:33:51 +00005478}
5479
Chris Lattner53e677a2004-04-02 20:23:17 +00005480/// getNumIterationsInRange - Return the number of iterations of this loop that
5481/// produce values in the specified constant range. Another way of looking at
5482/// this is that it returns the first iteration number where the value is not in
5483/// the condition, thus computing the exit count. If the iteration count can't
5484/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005485const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohman64a845e2009-06-24 04:48:43 +00005486 ScalarEvolution &SE) const {
Chris Lattner53e677a2004-04-02 20:23:17 +00005487 if (Range.isFullSet()) // Infinite loop.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005488 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005489
5490 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohman622ed672009-05-04 22:02:23 +00005491 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencercae57542007-03-02 00:28:52 +00005492 if (!SC->getValue()->isZero()) {
Dan Gohman0bba49c2009-07-07 17:06:11 +00005493 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohmandeff6212010-05-03 22:09:21 +00005494 Operands[0] = SE.getConstant(SC->getType(), 0);
Dan Gohman0bba49c2009-07-07 17:06:11 +00005495 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohman622ed672009-05-04 22:02:23 +00005496 if (const SCEVAddRecExpr *ShiftedAddRec =
5497 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattner53e677a2004-04-02 20:23:17 +00005498 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman246b2562007-10-22 18:31:58 +00005499 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattner53e677a2004-04-02 20:23:17 +00005500 // This is strange and shouldn't happen.
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005501 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005502 }
5503
5504 // The only time we can solve this is when we have all constant indices.
5505 // Otherwise, we cannot determine the overflow conditions.
5506 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5507 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005508 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005509
5510
5511 // Okay at this point we know that all elements of the chrec are constants and
5512 // that the start element is zero.
5513
5514 // First check to see if the range contains zero. If not, the first
5515 // iteration exits.
Dan Gohmanaf79fb52009-04-21 01:07:12 +00005516 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman2d1be872009-04-16 03:18:22 +00005517 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohmandeff6212010-05-03 22:09:21 +00005518 return SE.getConstant(getType(), 0);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005519
Chris Lattner53e677a2004-04-02 20:23:17 +00005520 if (isAffine()) {
5521 // If this is an affine expression then we have this situation:
5522 // Solve {0,+,A} in Range === Ax in Range
5523
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005524 // We know that zero is in the range. If A is positive then we know that
5525 // the upper value of the range must be the first possible exit value.
5526 // If A is negative then the lower of the range is the last possible loop
5527 // value. Also note that we already checked for a full range.
Dan Gohman2d1be872009-04-16 03:18:22 +00005528 APInt One(BitWidth,1);
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005529 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
5530 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattner53e677a2004-04-02 20:23:17 +00005531
Nick Lewyckyeefdebe2007-07-16 02:08:00 +00005532 // The exit value should be (End+A)/A.
Nick Lewycky9a2f9312007-09-27 14:12:54 +00005533 APInt ExitVal = (End + A).udiv(A);
Owen Andersoneed707b2009-07-24 23:12:02 +00005534 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattner53e677a2004-04-02 20:23:17 +00005535
5536 // Evaluate at the exit value. If we really did fall out of the valid
5537 // range, then we computed our trip count, otherwise wrap around or other
5538 // things must have happened.
Dan Gohman246b2562007-10-22 18:31:58 +00005539 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005540 if (Range.contains(Val->getValue()))
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005541 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005542
5543 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer581b0d42007-02-28 19:57:34 +00005544 assert(Range.contains(
Dan Gohman64a845e2009-06-24 04:48:43 +00005545 EvaluateConstantChrecAtConstant(this,
Owen Andersoneed707b2009-07-24 23:12:02 +00005546 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattner53e677a2004-04-02 20:23:17 +00005547 "Linear scev computation is off in a bad way!");
Dan Gohman246b2562007-10-22 18:31:58 +00005548 return SE.getConstant(ExitValue);
Chris Lattner53e677a2004-04-02 20:23:17 +00005549 } else if (isQuadratic()) {
5550 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
5551 // quadratic equation to solve it. To do this, we must frame our problem in
5552 // terms of figuring out when zero is crossed, instead of when
5553 // Range.getUpper() is crossed.
Dan Gohman0bba49c2009-07-07 17:06:11 +00005554 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohman246b2562007-10-22 18:31:58 +00005555 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Dan Gohman0bba49c2009-07-07 17:06:11 +00005556 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Chris Lattner53e677a2004-04-02 20:23:17 +00005557
5558 // Next, solve the constructed addrec
Dan Gohman0bba49c2009-07-07 17:06:11 +00005559 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohman246b2562007-10-22 18:31:58 +00005560 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman35738ac2009-05-04 22:30:44 +00005561 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5562 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattner53e677a2004-04-02 20:23:17 +00005563 if (R1) {
5564 // Pick the smallest positive root value.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00005565 if (ConstantInt *CB =
Owen Andersonbaf3c402009-07-29 18:55:55 +00005566 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Anderson76f600b2009-07-06 22:37:39 +00005567 R1->getValue(), R2->getValue()))) {
Reid Spencer579dca12007-01-12 04:24:46 +00005568 if (CB->getZExtValue() == false)
Chris Lattner53e677a2004-04-02 20:23:17 +00005569 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005570
Chris Lattner53e677a2004-04-02 20:23:17 +00005571 // Make sure the root is not off by one. The returned iteration should
5572 // not be in the range, but the previous one should be. When solving
5573 // for "X*X < 5", for example, we should not return a root of 2.
5574 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman246b2562007-10-22 18:31:58 +00005575 R1->getValue(),
5576 SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005577 if (Range.contains(R1Val->getValue())) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005578 // The next iteration must be out of the range...
Owen Anderson76f600b2009-07-06 22:37:39 +00005579 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005580 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005581
Dan Gohman246b2562007-10-22 18:31:58 +00005582 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005583 if (!Range.contains(R1Val->getValue()))
Dan Gohman246b2562007-10-22 18:31:58 +00005584 return SE.getConstant(NextVal);
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005585 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005586 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005587
Chris Lattner53e677a2004-04-02 20:23:17 +00005588 // If R1 was not in the range, then it is a good return value. Make
5589 // sure that R1-1 WAS in the range though, just in case.
Owen Anderson76f600b2009-07-06 22:37:39 +00005590 ConstantInt *NextVal =
Owen Andersoneed707b2009-07-24 23:12:02 +00005591 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohman246b2562007-10-22 18:31:58 +00005592 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencera6e8a952007-03-01 07:54:15 +00005593 if (Range.contains(R1Val->getValue()))
Chris Lattner53e677a2004-04-02 20:23:17 +00005594 return R1;
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005595 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattner53e677a2004-04-02 20:23:17 +00005596 }
5597 }
5598 }
5599
Dan Gohmanf4ccfcb2009-04-18 17:58:19 +00005600 return SE.getCouldNotCompute();
Chris Lattner53e677a2004-04-02 20:23:17 +00005601}
5602
5603
5604
5605//===----------------------------------------------------------------------===//
Dan Gohman35738ac2009-05-04 22:30:44 +00005606// SCEVCallbackVH Class Implementation
5607//===----------------------------------------------------------------------===//
5608
Dan Gohman1959b752009-05-19 19:22:47 +00005609void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005610 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005611 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
5612 SE->ConstantEvolutionLoopExitValue.erase(PN);
5613 SE->Scalars.erase(getValPtr());
5614 // this now dangles!
5615}
5616
Dan Gohman1959b752009-05-19 19:22:47 +00005617void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *) {
Dan Gohmanddf9f992009-07-13 22:20:53 +00005618 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman35738ac2009-05-04 22:30:44 +00005619
5620 // Forget all the expressions associated with users of the old value,
5621 // so that future queries will recompute the expressions using the new
5622 // value.
5623 SmallVector<User *, 16> Worklist;
Dan Gohman69fcae92009-07-14 14:34:04 +00005624 SmallPtrSet<User *, 8> Visited;
Dan Gohman35738ac2009-05-04 22:30:44 +00005625 Value *Old = getValPtr();
5626 bool DeleteOld = false;
5627 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
5628 UI != UE; ++UI)
5629 Worklist.push_back(*UI);
5630 while (!Worklist.empty()) {
5631 User *U = Worklist.pop_back_val();
5632 // Deleting the Old value will cause this to dangle. Postpone
5633 // that until everything else is done.
5634 if (U == Old) {
5635 DeleteOld = true;
5636 continue;
5637 }
Dan Gohman69fcae92009-07-14 14:34:04 +00005638 if (!Visited.insert(U))
5639 continue;
Dan Gohman35738ac2009-05-04 22:30:44 +00005640 if (PHINode *PN = dyn_cast<PHINode>(U))
5641 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman69fcae92009-07-14 14:34:04 +00005642 SE->Scalars.erase(U);
5643 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
5644 UI != UE; ++UI)
5645 Worklist.push_back(*UI);
Dan Gohman35738ac2009-05-04 22:30:44 +00005646 }
Dan Gohman69fcae92009-07-14 14:34:04 +00005647 // Delete the Old value if it (indirectly) references itself.
Dan Gohman35738ac2009-05-04 22:30:44 +00005648 if (DeleteOld) {
5649 if (PHINode *PN = dyn_cast<PHINode>(Old))
5650 SE->ConstantEvolutionLoopExitValue.erase(PN);
5651 SE->Scalars.erase(Old);
5652 // this now dangles!
5653 }
5654 // this may dangle!
5655}
5656
Dan Gohman1959b752009-05-19 19:22:47 +00005657ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman35738ac2009-05-04 22:30:44 +00005658 : CallbackVH(V), SE(se) {}
5659
5660//===----------------------------------------------------------------------===//
Chris Lattner53e677a2004-04-02 20:23:17 +00005661// ScalarEvolution Class Implementation
5662//===----------------------------------------------------------------------===//
5663
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005664ScalarEvolution::ScalarEvolution()
Dan Gohman3bf63762010-06-18 19:54:20 +00005665 : FunctionPass(&ID) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005666}
5667
Chris Lattner53e677a2004-04-02 20:23:17 +00005668bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005669 this->F = &F;
5670 LI = &getAnalysis<LoopInfo>();
5671 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman454d26d2010-02-22 04:11:59 +00005672 DT = &getAnalysis<DominatorTree>();
Chris Lattner53e677a2004-04-02 20:23:17 +00005673 return false;
5674}
5675
5676void ScalarEvolution::releaseMemory() {
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005677 Scalars.clear();
5678 BackedgeTakenCounts.clear();
5679 ConstantEvolutionLoopExitValue.clear();
Dan Gohman6bce6432009-05-08 20:47:27 +00005680 ValuesAtScopes.clear();
Dan Gohman1c343752009-06-27 21:21:31 +00005681 UniqueSCEVs.clear();
5682 SCEVAllocator.Reset();
Chris Lattner53e677a2004-04-02 20:23:17 +00005683}
5684
5685void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
5686 AU.setPreservesAll();
Chris Lattner53e677a2004-04-02 20:23:17 +00005687 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman1cd92752010-01-19 22:21:27 +00005688 AU.addRequiredTransitive<DominatorTree>();
Dan Gohman2d1be872009-04-16 03:18:22 +00005689}
5690
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005691bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005692 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattner53e677a2004-04-02 20:23:17 +00005693}
5694
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005695static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattner53e677a2004-04-02 20:23:17 +00005696 const Loop *L) {
5697 // Print all inner loops first
5698 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5699 PrintLoopInfo(OS, SE, *I);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005700
Dan Gohman30733292010-01-09 18:17:45 +00005701 OS << "Loop ";
5702 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5703 OS << ": ";
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005704
Dan Gohman5d984912009-12-18 01:14:11 +00005705 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerf1ab4b42004-04-18 22:14:10 +00005706 L->getExitBlocks(ExitBlocks);
5707 if (ExitBlocks.size() != 1)
Nick Lewyckyaeb5e5c2008-01-02 02:49:20 +00005708 OS << "<multiple exits> ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005709
Dan Gohman46bdfb02009-02-24 18:55:53 +00005710 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
5711 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattner53e677a2004-04-02 20:23:17 +00005712 } else {
Dan Gohman46bdfb02009-02-24 18:55:53 +00005713 OS << "Unpredictable backedge-taken count. ";
Chris Lattner53e677a2004-04-02 20:23:17 +00005714 }
5715
Dan Gohman30733292010-01-09 18:17:45 +00005716 OS << "\n"
5717 "Loop ";
5718 WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
5719 OS << ": ";
Dan Gohmanaa551ae2009-06-24 00:33:16 +00005720
5721 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
5722 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
5723 } else {
5724 OS << "Unpredictable max backedge-taken count. ";
5725 }
5726
5727 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005728}
5729
Dan Gohman5d984912009-12-18 01:14:11 +00005730void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman3f46a3a2010-03-01 17:49:51 +00005731 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005732 // out SCEV values of all instructions that are interesting. Doing
5733 // this potentially causes it to create new SCEV objects though,
5734 // which technically conflicts with the const qualifier. This isn't
Dan Gohman1afdc5f2009-07-10 20:25:29 +00005735 // observable from outside the class though, so casting away the
5736 // const isn't dangerous.
Dan Gohman5d984912009-12-18 01:14:11 +00005737 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattner53e677a2004-04-02 20:23:17 +00005738
Dan Gohman30733292010-01-09 18:17:45 +00005739 OS << "Classifying expressions for: ";
5740 WriteAsOperand(OS, F, /*PrintType=*/false);
5741 OS << "\n";
Chris Lattner53e677a2004-04-02 20:23:17 +00005742 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmana189bae2010-05-03 17:03:23 +00005743 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanc902e132009-07-13 23:03:05 +00005744 OS << *I << '\n';
Dan Gohman8dae1382008-09-14 17:21:12 +00005745 OS << " --> ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005746 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005747 SV->print(OS);
Misha Brukman2b37d7c2005-04-21 21:13:18 +00005748
Dan Gohman0c689c52009-06-19 17:49:54 +00005749 const Loop *L = LI->getLoopFor((*I).getParent());
5750
Dan Gohman0bba49c2009-07-07 17:06:11 +00005751 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohman0c689c52009-06-19 17:49:54 +00005752 if (AtUse != SV) {
5753 OS << " --> ";
5754 AtUse->print(OS);
5755 }
5756
5757 if (L) {
Dan Gohman9e7d9882009-06-18 00:37:45 +00005758 OS << "\t\t" "Exits: ";
Dan Gohman0bba49c2009-07-07 17:06:11 +00005759 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmand594e6f2009-05-24 23:25:42 +00005760 if (!ExitValue->isLoopInvariant(L)) {
Chris Lattner53e677a2004-04-02 20:23:17 +00005761 OS << "<<Unknown>>";
5762 } else {
5763 OS << *ExitValue;
5764 }
5765 }
5766
Chris Lattner53e677a2004-04-02 20:23:17 +00005767 OS << "\n";
5768 }
5769
Dan Gohman30733292010-01-09 18:17:45 +00005770 OS << "Determining loop execution counts for: ";
5771 WriteAsOperand(OS, F, /*PrintType=*/false);
5772 OS << "\n";
Dan Gohmanf8a8be82009-04-21 23:15:49 +00005773 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
5774 PrintLoopInfo(OS, &SE, *I);
Chris Lattner53e677a2004-04-02 20:23:17 +00005775}
Dan Gohmanb7ef7292009-04-21 00:47:46 +00005776