blob: d2d14aed8b933198e79234505fa950df2178d7e2 [file] [log] [blame]
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for PowerPC --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
Misha Brukman98649d12004-06-24 21:54:47 +000010#define DEBUG_TYPE "isel"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000011#include "PowerPC.h"
12#include "PowerPCInstrBuilder.h"
13#include "PowerPCInstrInfo.h"
14#include "llvm/Constants.h"
15#include "llvm/DerivedTypes.h"
16#include "llvm/Function.h"
17#include "llvm/Instructions.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000018#include "llvm/Pass.h"
Misha Brukman8c9f5202004-06-21 18:30:31 +000019#include "llvm/CodeGen/IntrinsicLowering.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000020#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/SSARegMap.h"
24#include "llvm/Target/MRegisterInfo.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Support/GetElementPtrTypeIterator.h"
27#include "llvm/Support/InstVisitor.h"
Misha Brukman98649d12004-06-24 21:54:47 +000028#include "Support/Debug.h"
29#include <vector>
Misha Brukman5dfe3a92004-06-21 16:55:25 +000030using namespace llvm;
31
32namespace {
Misha Brukman422791f2004-06-21 17:41:12 +000033 /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
34 /// PPC Representation.
Misha Brukman5dfe3a92004-06-21 16:55:25 +000035 ///
36 enum TypeClass {
37 cByte, cShort, cInt, cFP, cLong
38 };
39}
40
41/// getClass - Turn a primitive type into a "class" number which is based on the
42/// size of the type, and whether or not it is floating point.
43///
44static inline TypeClass getClass(const Type *Ty) {
Misha Brukman358829f2004-06-21 17:25:55 +000045 switch (Ty->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +000046 case Type::SByteTyID:
47 case Type::UByteTyID: return cByte; // Byte operands are class #0
48 case Type::ShortTyID:
49 case Type::UShortTyID: return cShort; // Short operands are class #1
50 case Type::IntTyID:
51 case Type::UIntTyID:
52 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
53
54 case Type::FloatTyID:
55 case Type::DoubleTyID: return cFP; // Floating Point is #3
56
57 case Type::LongTyID:
58 case Type::ULongTyID: return cLong; // Longs are class #4
59 default:
60 assert(0 && "Invalid type to getClass!");
61 return cByte; // not reached
62 }
63}
64
65// getClassB - Just like getClass, but treat boolean values as ints.
66static inline TypeClass getClassB(const Type *Ty) {
67 if (Ty == Type::BoolTy) return cInt;
68 return getClass(Ty);
69}
70
71namespace {
72 struct ISel : public FunctionPass, InstVisitor<ISel> {
73 TargetMachine &TM;
74 MachineFunction *F; // The function we are compiling into
75 MachineBasicBlock *BB; // The current MBB we are compiling
76 int VarArgsFrameIndex; // FrameIndex for start of varargs area
77 int ReturnAddressIndex; // FrameIndex for the return address
78
79 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
80
81 // MBBMap - Mapping between LLVM BB -> Machine BB
82 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
83
84 // AllocaMap - Mapping from fixed sized alloca instructions to the
85 // FrameIndex for the alloca.
86 std::map<AllocaInst*, unsigned> AllocaMap;
87
88 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
89
90 /// runOnFunction - Top level implementation of instruction selection for
91 /// the entire function.
92 ///
93 bool runOnFunction(Function &Fn) {
94 // First pass over the function, lower any unknown intrinsic functions
95 // with the IntrinsicLowering class.
96 LowerUnknownIntrinsicFunctionCalls(Fn);
97
98 F = &MachineFunction::construct(&Fn, TM);
99
100 // Create all of the machine basic blocks for the function...
101 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
102 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
103
104 BB = &F->front();
105
106 // Set up a frame object for the return address. This is used by the
107 // llvm.returnaddress & llvm.frameaddress intrinisics.
108 ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
109
110 // Copy incoming arguments off of the stack...
111 LoadArgumentsToVirtualRegs(Fn);
112
113 // Instruction select everything except PHI nodes
114 visit(Fn);
115
116 // Select the PHI nodes
117 SelectPHINodes();
118
119 RegMap.clear();
120 MBBMap.clear();
121 AllocaMap.clear();
122 F = 0;
123 // We always build a machine code representation for the function
124 return true;
125 }
126
127 virtual const char *getPassName() const {
128 return "PowerPC Simple Instruction Selection";
129 }
130
131 /// visitBasicBlock - This method is called when we are visiting a new basic
132 /// block. This simply creates a new MachineBasicBlock to emit code into
133 /// and adds it to the current MachineFunction. Subsequent visit* for
134 /// instructions will be invoked for all instructions in the basic block.
135 ///
136 void visitBasicBlock(BasicBlock &LLVM_BB) {
137 BB = MBBMap[&LLVM_BB];
138 }
139
140 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
141 /// function, lowering any calls to unknown intrinsic functions into the
142 /// equivalent LLVM code.
143 ///
144 void LowerUnknownIntrinsicFunctionCalls(Function &F);
145
146 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
147 /// from the stack into virtual registers.
148 ///
149 void LoadArgumentsToVirtualRegs(Function &F);
150
151 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
152 /// because we have to generate our sources into the source basic blocks,
153 /// not the current one.
154 ///
155 void SelectPHINodes();
156
157 // Visitation methods for various instructions. These methods simply emit
158 // fixed PowerPC code for each instruction.
159
160 // Control flow operators
161 void visitReturnInst(ReturnInst &RI);
162 void visitBranchInst(BranchInst &BI);
163
164 struct ValueRecord {
165 Value *Val;
166 unsigned Reg;
167 const Type *Ty;
168 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
169 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
170 };
171 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
172 const std::vector<ValueRecord> &Args);
173 void visitCallInst(CallInst &I);
174 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
175
176 // Arithmetic operators
177 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
178 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
179 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
180 void visitMul(BinaryOperator &B);
181
182 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
183 void visitRem(BinaryOperator &B) { visitDivRem(B); }
184 void visitDivRem(BinaryOperator &B);
185
186 // Bitwise operators
187 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
188 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
189 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
190
191 // Comparison operators...
192 void visitSetCondInst(SetCondInst &I);
193 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
194 MachineBasicBlock *MBB,
195 MachineBasicBlock::iterator MBBI);
196 void visitSelectInst(SelectInst &SI);
197
198
199 // Memory Instructions
200 void visitLoadInst(LoadInst &I);
201 void visitStoreInst(StoreInst &I);
202 void visitGetElementPtrInst(GetElementPtrInst &I);
203 void visitAllocaInst(AllocaInst &I);
204 void visitMallocInst(MallocInst &I);
205 void visitFreeInst(FreeInst &I);
206
207 // Other operators
208 void visitShiftInst(ShiftInst &I);
209 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
210 void visitCastInst(CastInst &I);
211 void visitVANextInst(VANextInst &I);
212 void visitVAArgInst(VAArgInst &I);
213
214 void visitInstruction(Instruction &I) {
215 std::cerr << "Cannot instruction select: " << I;
216 abort();
217 }
218
219 /// promote32 - Make a value 32-bits wide, and put it somewhere.
220 ///
221 void promote32(unsigned targetReg, const ValueRecord &VR);
222
223 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
224 /// constant expression GEP support.
225 ///
226 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
227 Value *Src, User::op_iterator IdxBegin,
228 User::op_iterator IdxEnd, unsigned TargetReg);
229
230 /// emitCastOperation - Common code shared between visitCastInst and
231 /// constant expression cast support.
232 ///
233 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
234 Value *Src, const Type *DestTy, unsigned TargetReg);
235
236 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
237 /// and constant expression support.
238 ///
239 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
240 MachineBasicBlock::iterator IP,
241 Value *Op0, Value *Op1,
242 unsigned OperatorClass, unsigned TargetReg);
243
244 /// emitBinaryFPOperation - This method handles emission of floating point
245 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
246 void emitBinaryFPOperation(MachineBasicBlock *BB,
247 MachineBasicBlock::iterator IP,
248 Value *Op0, Value *Op1,
249 unsigned OperatorClass, unsigned TargetReg);
250
251 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
252 Value *Op0, Value *Op1, unsigned TargetReg);
253
254 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
255 unsigned DestReg, const Type *DestTy,
256 unsigned Op0Reg, unsigned Op1Reg);
257 void doMultiplyConst(MachineBasicBlock *MBB,
258 MachineBasicBlock::iterator MBBI,
259 unsigned DestReg, const Type *DestTy,
260 unsigned Op0Reg, unsigned Op1Val);
261
262 void emitDivRemOperation(MachineBasicBlock *BB,
263 MachineBasicBlock::iterator IP,
264 Value *Op0, Value *Op1, bool isDiv,
265 unsigned TargetReg);
266
267 /// emitSetCCOperation - Common code shared between visitSetCondInst and
268 /// constant expression support.
269 ///
270 void emitSetCCOperation(MachineBasicBlock *BB,
271 MachineBasicBlock::iterator IP,
272 Value *Op0, Value *Op1, unsigned Opcode,
273 unsigned TargetReg);
274
275 /// emitShiftOperation - Common code shared between visitShiftInst and
276 /// constant expression support.
277 ///
278 void emitShiftOperation(MachineBasicBlock *MBB,
279 MachineBasicBlock::iterator IP,
280 Value *Op, Value *ShiftAmount, bool isLeftShift,
281 const Type *ResultTy, unsigned DestReg);
282
283 /// emitSelectOperation - Common code shared between visitSelectInst and the
284 /// constant expression support.
285 void emitSelectOperation(MachineBasicBlock *MBB,
286 MachineBasicBlock::iterator IP,
287 Value *Cond, Value *TrueVal, Value *FalseVal,
288 unsigned DestReg);
289
290 /// copyConstantToRegister - Output the instructions required to put the
291 /// specified constant into the specified register.
292 ///
293 void copyConstantToRegister(MachineBasicBlock *MBB,
294 MachineBasicBlock::iterator MBBI,
295 Constant *C, unsigned Reg);
296
297 void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
298 unsigned LHS, unsigned RHS);
299
300 /// makeAnotherReg - This method returns the next register number we haven't
301 /// yet used.
302 ///
303 /// Long values are handled somewhat specially. They are always allocated
304 /// as pairs of 32 bit integer values. The register number returned is the
305 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
306 /// of the long value.
307 ///
308 unsigned makeAnotherReg(const Type *Ty) {
309 assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
310 "Current target doesn't have PPC reg info??");
311 const PowerPCRegisterInfo *MRI =
312 static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
313 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
314 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
315 // Create the lower part
316 F->getSSARegMap()->createVirtualRegister(RC);
317 // Create the upper part.
318 return F->getSSARegMap()->createVirtualRegister(RC)-1;
319 }
320
321 // Add the mapping of regnumber => reg class to MachineFunction
322 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
323 return F->getSSARegMap()->createVirtualRegister(RC);
324 }
325
326 /// getReg - This method turns an LLVM value into a register number.
327 ///
328 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
329 unsigned getReg(Value *V) {
330 // Just append to the end of the current bb.
331 MachineBasicBlock::iterator It = BB->end();
332 return getReg(V, BB, It);
333 }
334 unsigned getReg(Value *V, MachineBasicBlock *MBB,
335 MachineBasicBlock::iterator IPt);
336
337 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
338 /// that is to be statically allocated with the initial stack frame
339 /// adjustment.
340 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
341 };
342}
343
344/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
345/// instruction in the entry block, return it. Otherwise, return a null
346/// pointer.
347static AllocaInst *dyn_castFixedAlloca(Value *V) {
348 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
349 BasicBlock *BB = AI->getParent();
350 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
351 return AI;
352 }
353 return 0;
354}
355
356/// getReg - This method turns an LLVM value into a register number.
357///
358unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
359 MachineBasicBlock::iterator IPt) {
360 // If this operand is a constant, emit the code to copy the constant into
361 // the register here...
362 //
363 if (Constant *C = dyn_cast<Constant>(V)) {
364 unsigned Reg = makeAnotherReg(V->getType());
365 copyConstantToRegister(MBB, IPt, C, Reg);
366 return Reg;
367 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
Misha Brukman7e5812c2004-06-28 18:20:59 +0000368 // GV is located at PC + distance
Misha Brukman7e5812c2004-06-28 18:20:59 +0000369 unsigned CurPC = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000370 unsigned Reg1 = makeAnotherReg(V->getType());
Misha Brukman422791f2004-06-21 17:41:12 +0000371 unsigned Reg2 = makeAnotherReg(V->getType());
Misha Brukman7e5812c2004-06-28 18:20:59 +0000372 // Move PC to destination reg
373 BuildMI(*MBB, IPt, PPC32::MovePCtoLR, 0, CurPC);
Misha Brukman7e5812c2004-06-28 18:20:59 +0000374 // Move value at PC + distance into return reg
375 BuildMI(*MBB, IPt, PPC32::LOADHiAddr, 2, Reg1).addReg(CurPC)
Misha Brukman911afde2004-06-25 14:50:41 +0000376 .addGlobalAddress(GV);
Misha Brukman9ecf3bf2004-06-25 14:57:19 +0000377 BuildMI(*MBB, IPt, PPC32::LOADLoAddr, 2, Reg2).addReg(Reg1)
Misha Brukman911afde2004-06-25 14:50:41 +0000378 .addGlobalAddress(GV);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000379 return Reg2;
380 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
381 // Do not emit noop casts at all.
382 if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()))
383 return getReg(CI->getOperand(0), MBB, IPt);
384 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
385 unsigned Reg = makeAnotherReg(V->getType());
386 unsigned FI = getFixedSizedAllocaFI(AI);
387 addFrameReference(BuildMI(*MBB, IPt, PPC32::ADDI, 2, Reg), FI, 0, false);
388 return Reg;
389 }
390
391 unsigned &Reg = RegMap[V];
392 if (Reg == 0) {
393 Reg = makeAnotherReg(V->getType());
394 RegMap[V] = Reg;
395 }
396
397 return Reg;
398}
399
400/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
401/// that is to be statically allocated with the initial stack frame
402/// adjustment.
403unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
404 // Already computed this?
405 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
406 if (I != AllocaMap.end() && I->first == AI) return I->second;
407
408 const Type *Ty = AI->getAllocatedType();
409 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
410 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
411 TySize *= CUI->getValue(); // Get total allocated size...
412 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
413
414 // Create a new stack object using the frame manager...
415 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
416 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
417 return FrameIdx;
418}
419
420
421/// copyConstantToRegister - Output the instructions required to put the
422/// specified constant into the specified register.
423///
424void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
425 MachineBasicBlock::iterator IP,
426 Constant *C, unsigned R) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000427 if (C->getType()->isIntegral()) {
428 unsigned Class = getClassB(C->getType());
429
430 if (Class == cLong) {
431 // Copy the value into the register pair.
432 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Misha Brukman422791f2004-06-21 17:41:12 +0000433 unsigned hiTmp = makeAnotherReg(Type::IntTy);
434 unsigned loTmp = makeAnotherReg(Type::IntTy);
Misha Brukman911afde2004-06-25 14:50:41 +0000435 BuildMI(*MBB, IP, PPC32::ADDIS, 2, loTmp).addReg(PPC32::R0)
436 .addImm(Val >> 48);
437 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(loTmp)
438 .addImm((Val >> 32) & 0xFFFF);
439 BuildMI(*MBB, IP, PPC32::ADDIS, 2, hiTmp).addReg(PPC32::R0)
440 .addImm((Val >> 16) & 0xFFFF);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000441 BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(hiTmp).addImm(Val & 0xFFFF);
442 return;
443 }
444
445 assert(Class <= cInt && "Type not handled yet!");
446
447 if (C->getType() == Type::BoolTy) {
Misha Brukman911afde2004-06-25 14:50:41 +0000448 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0)
449 .addImm(C == ConstantBool::True);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000450 } else if (Class == cByte || Class == cShort) {
451 ConstantInt *CI = cast<ConstantInt>(C);
Misha Brukman911afde2004-06-25 14:50:41 +0000452 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0)
453 .addImm(CI->getRawValue());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000454 } else {
455 ConstantInt *CI = cast<ConstantInt>(C);
456 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
457 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman911afde2004-06-25 14:50:41 +0000458 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0)
459 .addImm(CI->getRawValue());
Misha Brukman422791f2004-06-21 17:41:12 +0000460 } else {
461 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman911afde2004-06-25 14:50:41 +0000462 BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0)
463 .addImm(CI->getRawValue() >> 16);
464 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TmpReg)
465 .addImm(CI->getRawValue() & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +0000466 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000467 }
468 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
469 // We need to spill the constant to memory...
470 MachineConstantPool *CP = F->getConstantPool();
471 unsigned CPI = CP->getConstantPoolIndex(CFP);
472 const Type *Ty = CFP->getType();
473
Misha Brukman911afde2004-06-25 14:50:41 +0000474 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000475 unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
476 addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 2, R), CPI);
477 } else if (isa<ConstantPointerNull>(C)) {
478 // Copy zero (null pointer) to the register.
479 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(0);
480 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000481 BuildMI(*MBB, IP, PPC32::ADDIS, 2, R).addReg(PPC32::R0)
482 .addGlobalAddress(CPR->getValue());
483 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(PPC32::R0)
484 .addGlobalAddress(CPR->getValue());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000485 } else {
486 std::cerr << "Offending constant: " << C << "\n";
487 assert(0 && "Type not handled yet!");
488 }
489}
490
491/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
492/// the stack into virtual registers.
493///
494/// FIXME: When we can calculate which args are coming in via registers
495/// source them from there instead.
496void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
497 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
498 unsigned GPR_remaining = 8;
499 unsigned FPR_remaining = 13;
500 unsigned GPR_idx = 3;
501 unsigned FPR_idx = 1;
Misha Brukman422791f2004-06-21 17:41:12 +0000502
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000503 MachineFrameInfo *MFI = F->getFrameInfo();
504
505 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
506 bool ArgLive = !I->use_empty();
507 unsigned Reg = ArgLive ? getReg(*I) : 0;
508 int FI; // Frame object index
509
510 switch (getClassB(I->getType())) {
511 case cByte:
512 if (ArgLive) {
513 FI = MFI->CreateFixedObject(1, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000514 if (GPR_remaining > 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000515 BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx)
516 .addReg(PPC32::R0+GPR_idx);
Misha Brukman422791f2004-06-21 17:41:12 +0000517 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000518 addFrameReference(BuildMI(BB, PPC32::LBZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000519 }
520 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000521 break;
522 case cShort:
523 if (ArgLive) {
524 FI = MFI->CreateFixedObject(2, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000525 if (GPR_remaining > 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000526 BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx)
527 .addReg(PPC32::R0+GPR_idx);
Misha Brukman422791f2004-06-21 17:41:12 +0000528 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000529 addFrameReference(BuildMI(BB, PPC32::LHZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000530 }
531 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000532 break;
533 case cInt:
534 if (ArgLive) {
535 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000536 if (GPR_remaining > 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000537 BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx)
538 .addReg(PPC32::R0+GPR_idx);
Misha Brukman422791f2004-06-21 17:41:12 +0000539 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000540 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000541 }
542 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000543 break;
544 case cLong:
545 if (ArgLive) {
546 FI = MFI->CreateFixedObject(8, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000547 if (GPR_remaining > 1) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000548 BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx)
549 .addReg(PPC32::R0+GPR_idx);
550 BuildMI(BB, PPC32::OR, 2, Reg+1).addReg(PPC32::R0+GPR_idx+1)
551 .addReg(PPC32::R0+GPR_idx+1);
Misha Brukman422791f2004-06-21 17:41:12 +0000552 } else {
553 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
554 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg+1), FI, 4);
555 }
556 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000557 ArgOffset += 4; // longs require 4 additional bytes
Misha Brukman422791f2004-06-21 17:41:12 +0000558 if (GPR_remaining > 1) {
559 GPR_remaining--; // uses up 2 GPRs
560 GPR_idx++;
561 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000562 break;
563 case cFP:
564 if (ArgLive) {
565 unsigned Opcode;
566 if (I->getType() == Type::FloatTy) {
567 Opcode = PPC32::LFS;
568 FI = MFI->CreateFixedObject(4, ArgOffset);
569 } else {
570 Opcode = PPC32::LFD;
571 FI = MFI->CreateFixedObject(8, ArgOffset);
572 }
Misha Brukman422791f2004-06-21 17:41:12 +0000573 if (FPR_remaining > 0) {
574 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(PPC32::F0+FPR_idx);
575 FPR_remaining--;
576 FPR_idx++;
577 } else {
578 addFrameReference(BuildMI(BB, Opcode, 2, Reg), FI);
579 }
580 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000581 if (I->getType() == Type::DoubleTy) {
582 ArgOffset += 4; // doubles require 4 additional bytes
Misha Brukman422791f2004-06-21 17:41:12 +0000583 if (GPR_remaining > 0) {
584 GPR_remaining--; // uses up 2 GPRs
585 GPR_idx++;
586 }
587 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000588 break;
589 default:
590 assert(0 && "Unhandled argument type!");
591 }
592 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Misha Brukman422791f2004-06-21 17:41:12 +0000593 if (GPR_remaining > 0) {
594 GPR_remaining--; // uses up 2 GPRs
595 GPR_idx++;
596 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000597 }
598
599 // If the function takes variable number of arguments, add a frame offset for
600 // the start of the first vararg value... this is used to expand
601 // llvm.va_start.
602 if (Fn.getFunctionType()->isVarArg())
603 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
604}
605
606
607/// SelectPHINodes - Insert machine code to generate phis. This is tricky
608/// because we have to generate our sources into the source basic blocks, not
609/// the current one.
610///
611void ISel::SelectPHINodes() {
612 const TargetInstrInfo &TII = *TM.getInstrInfo();
613 const Function &LF = *F->getFunction(); // The LLVM function...
614 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
615 const BasicBlock *BB = I;
616 MachineBasicBlock &MBB = *MBBMap[I];
617
618 // Loop over all of the PHI nodes in the LLVM basic block...
619 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
620 for (BasicBlock::const_iterator I = BB->begin();
621 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
622
623 // Create a new machine instr PHI node, and insert it.
624 unsigned PHIReg = getReg(*PN);
625 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
626 PPC32::PHI, PN->getNumOperands(), PHIReg);
627
628 MachineInstr *LongPhiMI = 0;
629 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
630 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
631 PPC32::PHI, PN->getNumOperands(), PHIReg+1);
632
633 // PHIValues - Map of blocks to incoming virtual registers. We use this
634 // so that we only initialize one incoming value for a particular block,
635 // even if the block has multiple entries in the PHI node.
636 //
637 std::map<MachineBasicBlock*, unsigned> PHIValues;
638
639 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
640 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
641 unsigned ValReg;
642 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
643 PHIValues.lower_bound(PredMBB);
644
645 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
646 // We already inserted an initialization of the register for this
647 // predecessor. Recycle it.
648 ValReg = EntryIt->second;
649
650 } else {
651 // Get the incoming value into a virtual register.
652 //
653 Value *Val = PN->getIncomingValue(i);
654
655 // If this is a constant or GlobalValue, we may have to insert code
656 // into the basic block to compute it into a virtual register.
657 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
658 isa<GlobalValue>(Val)) {
659 // Simple constants get emitted at the end of the basic block,
660 // before any terminator instructions. We "know" that the code to
661 // move a constant into a register will never clobber any flags.
662 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
663 } else {
664 // Because we don't want to clobber any values which might be in
665 // physical registers with the computation of this constant (which
666 // might be arbitrarily complex if it is a constant expression),
667 // just insert the computation at the top of the basic block.
668 MachineBasicBlock::iterator PI = PredMBB->begin();
669
670 // Skip over any PHI nodes though!
671 while (PI != PredMBB->end() && PI->getOpcode() == PPC32::PHI)
672 ++PI;
673
674 ValReg = getReg(Val, PredMBB, PI);
675 }
676
677 // Remember that we inserted a value for this PHI for this predecessor
678 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
679 }
680
681 PhiMI->addRegOperand(ValReg);
682 PhiMI->addMachineBasicBlockOperand(PredMBB);
683 if (LongPhiMI) {
684 LongPhiMI->addRegOperand(ValReg+1);
685 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
686 }
687 }
688
689 // Now that we emitted all of the incoming values for the PHI node, make
690 // sure to reposition the InsertPoint after the PHI that we just added.
691 // This is needed because we might have inserted a constant into this
692 // block, right after the PHI's which is before the old insert point!
693 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
694 ++PHIInsertPoint;
695 }
696 }
697}
698
699
700// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
701// it into the conditional branch or select instruction which is the only user
702// of the cc instruction. This is the case if the conditional branch is the
703// only user of the setcc, and if the setcc is in the same basic block as the
704// conditional branch. We also don't handle long arguments below, so we reject
705// them here as well.
706//
707static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
708 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
709 if (SCI->hasOneUse()) {
710 Instruction *User = cast<Instruction>(SCI->use_back());
711 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
712 SCI->getParent() == User->getParent() &&
713 (getClassB(SCI->getOperand(0)->getType()) != cLong ||
714 SCI->getOpcode() == Instruction::SetEQ ||
715 SCI->getOpcode() == Instruction::SetNE))
716 return SCI;
717 }
718 return 0;
719}
720
721// Return a fixed numbering for setcc instructions which does not depend on the
722// order of the opcodes.
723//
724static unsigned getSetCCNumber(unsigned Opcode) {
725 switch(Opcode) {
726 default: assert(0 && "Unknown setcc instruction!");
727 case Instruction::SetEQ: return 0;
728 case Instruction::SetNE: return 1;
729 case Instruction::SetLT: return 2;
730 case Instruction::SetGE: return 3;
731 case Instruction::SetGT: return 4;
732 case Instruction::SetLE: return 5;
733 }
734}
735
736/// emitUCOM - emits an unordered FP compare.
737void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
738 unsigned LHS, unsigned RHS) {
Misha Brukman422791f2004-06-21 17:41:12 +0000739 BuildMI(*MBB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(LHS).addReg(RHS);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000740}
741
742// EmitComparison - This function emits a comparison of the two operands,
743// returning the extended setcc code to use.
744unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
745 MachineBasicBlock *MBB,
746 MachineBasicBlock::iterator IP) {
747 // The arguments are already supposed to be of the same type.
748 const Type *CompTy = Op0->getType();
749 unsigned Class = getClassB(CompTy);
750 unsigned Op0r = getReg(Op0, MBB, IP);
751
752 // Special case handling of: cmp R, i
753 if (isa<ConstantPointerNull>(Op1)) {
754 BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(Op0r).addImm(0);
755 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
756 if (Class == cByte || Class == cShort || Class == cInt) {
757 unsigned Op1v = CI->getRawValue();
758
759 // Mask off any upper bits of the constant, if there are any...
760 Op1v &= (1ULL << (8 << Class)) - 1;
761
Misha Brukman422791f2004-06-21 17:41:12 +0000762 // Compare immediate or promote to reg?
763 if (Op1v <= 32767) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000764 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3,
765 PPC32::CR0).addImm(0).addReg(Op0r).addImm(Op1v);
Misha Brukman422791f2004-06-21 17:41:12 +0000766 } else {
767 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman2fec9902004-06-21 20:22:03 +0000768 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 3,
769 PPC32::CR0).addImm(0).addReg(Op0r).addReg(Op1r);
Misha Brukman422791f2004-06-21 17:41:12 +0000770 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000771 return OpNum;
772 } else {
773 assert(Class == cLong && "Unknown integer class!");
774 unsigned LowCst = CI->getRawValue();
775 unsigned HiCst = CI->getRawValue() >> 32;
776 if (OpNum < 2) { // seteq, setne
777 unsigned LoTmp = Op0r;
778 if (LowCst != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +0000779 unsigned LoLow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000780 unsigned LoTmp = makeAnotherReg(Type::IntTy);
781 BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r).addImm(LowCst);
Misha Brukman2fec9902004-06-21 20:22:03 +0000782 BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow)
783 .addImm(LowCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000784 }
785 unsigned HiTmp = Op0r+1;
786 if (HiCst != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +0000787 unsigned HiLow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000788 unsigned HiTmp = makeAnotherReg(Type::IntTy);
789 BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r+1).addImm(HiCst);
Misha Brukman2fec9902004-06-21 20:22:03 +0000790 BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow)
791 .addImm(HiCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000792 }
793 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
794 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
795 //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0);
796 return OpNum;
797 } else {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000798 // FIXME: Not Yet Implemented
Misha Brukman911afde2004-06-25 14:50:41 +0000799 std::cerr << "EmitComparison unimplemented: Opnum >= 2\n";
800 abort();
Misha Brukman422791f2004-06-21 17:41:12 +0000801 return OpNum;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000802 }
803 }
804 }
805
806 unsigned Op1r = getReg(Op1, MBB, IP);
807 switch (Class) {
808 default: assert(0 && "Unknown type class!");
809 case cByte:
810 case cShort:
811 case cInt:
Misha Brukman2fec9902004-06-21 20:22:03 +0000812 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 2,
813 PPC32::CR0).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000814 break;
815 case cFP:
816 emitUCOM(MBB, IP, Op0r, Op1r);
817 break;
818
819 case cLong:
820 if (OpNum < 2) { // seteq, setne
821 unsigned LoTmp = makeAnotherReg(Type::IntTy);
822 unsigned HiTmp = makeAnotherReg(Type::IntTy);
823 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
824 BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r).addReg(Op1r);
825 BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
826 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
827 //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0);
828 break; // Allow the sete or setne to be generated from flags set by OR
829 } else {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000830 // FIXME: Not Yet Implemented
Misha Brukman911afde2004-06-25 14:50:41 +0000831 std::cerr << "EmitComparison (cLong) unimplemented: Opnum >= 2\n";
832 abort();
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000833 return OpNum;
834 }
835 }
836 return OpNum;
837}
838
Misha Brukman425ff242004-07-01 21:34:10 +0000839/// visitSetCondInst -
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000840///
841void ISel::visitSetCondInst(SetCondInst &I) {
Misha Brukman425ff242004-07-01 21:34:10 +0000842 unsigned Op0Reg = getReg(I.getOperand(0));
843 unsigned Op1Reg = getReg(I.getOperand(1));
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000844 unsigned DestReg = getReg(I);
Misha Brukman425ff242004-07-01 21:34:10 +0000845 const Type *Ty = I.getOperand (0)->getType();
846
847 assert(getClass(Ty) < cLong && "can't setcc on longs or fp yet");
848 // Compare the two values.
849 BuildMI(BB, PPC32::CMPW, 2, PPC32::CR0).addReg(Op0Reg).addReg(Op1Reg);
850
851 unsigned BranchIdx;
852 switch (I.getOpcode()) {
853 default: assert(0 && "Unknown setcc instruction!");
854 case Instruction::SetEQ: BranchIdx = 0; break;
855 case Instruction::SetNE: BranchIdx = 1; break;
856 case Instruction::SetLT: BranchIdx = 2; break;
857 case Instruction::SetGT: BranchIdx = 3; break;
858 case Instruction::SetLE: BranchIdx = 4; break;
859 case Instruction::SetGE: BranchIdx = 5; break;
860 }
861 static unsigned OpcodeTab[] = {
862 PPC32::BEQ, PPC32::BNE, PPC32::BLT, PPC32::BGT, PPC32::BLE, PPC32::BGE
863 };
864 unsigned Opcode = OpcodeTab[BranchIdx];
865
866 MachineBasicBlock *thisMBB = BB;
867 const BasicBlock *LLVM_BB = BB->getBasicBlock();
868 // thisMBB:
869 // ...
870 // cmpTY cr0, r1, r2
871 // bCC copy1MBB
872 // b copy0MBB
873
874 // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
875 // if we could insert other, non-terminator instructions after the
876 // bCC. But MBB->getFirstTerminator() can't understand this.
877 MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
878 F->getBasicBlockList().push_back(copy1MBB);
879 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0).addMBB(copy1MBB);
880 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
881 F->getBasicBlockList().push_back(copy0MBB);
882 BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
883 // Update machine-CFG edges
884 BB->addSuccessor(copy1MBB);
885 BB->addSuccessor(copy0MBB);
886
887 // copy0MBB:
888 // %FalseValue = li 0
889 // ba sinkMBB
890 BB = copy0MBB;
891 unsigned FalseValue = makeAnotherReg(I.getType());
892 BuildMI(BB, PPC32::LI, 1, FalseValue).addZImm(0);
893 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
894 F->getBasicBlockList().push_back(sinkMBB);
895 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
896 // Update machine-CFG edges
897 BB->addSuccessor(sinkMBB);
898
899 DEBUG(std::cerr << "thisMBB is at " << (void*)thisMBB << "\n");
900 DEBUG(std::cerr << "copy1MBB is at " << (void*)copy1MBB << "\n");
901 DEBUG(std::cerr << "copy0MBB is at " << (void*)copy0MBB << "\n");
902 DEBUG(std::cerr << "sinkMBB is at " << (void*)sinkMBB << "\n");
903
904 // copy1MBB:
905 // %TrueValue = li 1
906 // ba sinkMBB
907 BB = copy1MBB;
908 unsigned TrueValue = makeAnotherReg (I.getType ());
909 BuildMI(BB, PPC32::LI, 1, TrueValue).addZImm(1);
910 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
911 // Update machine-CFG edges
912 BB->addSuccessor(sinkMBB);
913
914 // sinkMBB:
915 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
916 // ...
917 BB = sinkMBB;
918 BuildMI(BB, PPC32::PHI, 4, DestReg).addReg(FalseValue)
919 .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000920}
921
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000922void ISel::visitSelectInst(SelectInst &SI) {
923 unsigned DestReg = getReg(SI);
924 MachineBasicBlock::iterator MII = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +0000925 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
926 SI.getFalseValue(), DestReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000927}
928
929/// emitSelect - Common code shared between visitSelectInst and the constant
930/// expression support.
931/// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has
932/// no select instruction. FSEL only works for comparisons against zero.
933void ISel::emitSelectOperation(MachineBasicBlock *MBB,
934 MachineBasicBlock::iterator IP,
935 Value *Cond, Value *TrueVal, Value *FalseVal,
936 unsigned DestReg) {
937 unsigned SelectClass = getClassB(TrueVal->getType());
938
939 unsigned TrueReg = getReg(TrueVal, MBB, IP);
940 unsigned FalseReg = getReg(FalseVal, MBB, IP);
941
942 if (TrueReg == FalseReg) {
Misha Brukman422791f2004-06-21 17:41:12 +0000943 if (SelectClass == cFP) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000944 BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(TrueReg);
Misha Brukman422791f2004-06-21 17:41:12 +0000945 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000946 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TrueReg).addReg(TrueReg);
Misha Brukman422791f2004-06-21 17:41:12 +0000947 }
948
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000949 if (SelectClass == cLong)
Misha Brukman2fec9902004-06-21 20:22:03 +0000950 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TrueReg+1)
951 .addReg(TrueReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000952 return;
953 }
954
955 unsigned CondReg = getReg(Cond, MBB, IP);
956 unsigned numZeros = makeAnotherReg(Type::IntTy);
957 unsigned falseHi = makeAnotherReg(Type::IntTy);
958 unsigned falseAll = makeAnotherReg(Type::IntTy);
959 unsigned trueAll = makeAnotherReg(Type::IntTy);
960 unsigned Temp1 = makeAnotherReg(Type::IntTy);
961 unsigned Temp2 = makeAnotherReg(Type::IntTy);
962
963 BuildMI(*MBB, IP, PPC32::CNTLZW, 1, numZeros).addReg(CondReg);
Misha Brukman2fec9902004-06-21 20:22:03 +0000964 BuildMI(*MBB, IP, PPC32::RLWINM, 4, falseHi).addReg(numZeros).addImm(26)
965 .addImm(0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000966 BuildMI(*MBB, IP, PPC32::SRAWI, 2, falseAll).addReg(falseHi).addImm(31);
967 BuildMI(*MBB, IP, PPC32::NOR, 2, trueAll).addReg(falseAll).addReg(falseAll);
968 BuildMI(*MBB, IP, PPC32::AND, 2, Temp1).addReg(TrueReg).addReg(trueAll);
969 BuildMI(*MBB, IP, PPC32::AND, 2, Temp2).addReg(FalseReg).addReg(falseAll);
970 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Temp1).addReg(Temp2);
971
972 if (SelectClass == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +0000973 unsigned Temp3 = makeAnotherReg(Type::IntTy);
974 unsigned Temp4 = makeAnotherReg(Type::IntTy);
975 BuildMI(*MBB, IP, PPC32::AND, 2, Temp3).addReg(TrueReg+1).addReg(trueAll);
976 BuildMI(*MBB, IP, PPC32::AND, 2, Temp4).addReg(FalseReg+1).addReg(falseAll);
977 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(Temp3).addReg(Temp4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000978 }
979
980 return;
981}
982
983
984
985/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
986/// operand, in the specified target register.
987///
988void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
989 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
990
991 Value *Val = VR.Val;
992 const Type *Ty = VR.Ty;
993 if (Val) {
994 if (Constant *C = dyn_cast<Constant>(Val)) {
995 Val = ConstantExpr::getCast(C, Type::IntTy);
996 Ty = Type::IntTy;
997 }
998
Misha Brukman2fec9902004-06-21 20:22:03 +0000999 // If this is a simple constant, just emit a load directly to avoid the copy
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001000 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1001 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
1002
1003 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman422791f2004-06-21 17:41:12 +00001004 BuildMI(BB, PPC32::ADDI, 2, targetReg).addReg(PPC32::R0).addImm(TheVal);
1005 } else {
1006 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001007 BuildMI(BB, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0)
1008 .addImm(TheVal >> 16);
1009 BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(TmpReg)
1010 .addImm(TheVal & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +00001011 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001012 return;
1013 }
1014 }
1015
1016 // Make sure we have the register number for this value...
1017 unsigned Reg = Val ? getReg(Val) : VR.Reg;
1018
1019 switch (getClassB(Ty)) {
1020 case cByte:
1021 // Extend value into target register (8->32)
1022 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001023 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1024 .addZImm(24).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001025 else
1026 BuildMI(BB, PPC32::EXTSB, 1, targetReg).addReg(Reg);
1027 break;
1028 case cShort:
1029 // Extend value into target register (16->32)
1030 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001031 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1032 .addZImm(16).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001033 else
1034 BuildMI(BB, PPC32::EXTSH, 1, targetReg).addReg(Reg);
1035 break;
1036 case cInt:
1037 // Move value into target register (32->32)
Misha Brukman972569a2004-06-25 18:36:53 +00001038 BuildMI(BB, PPC32::OR, 2, targetReg).addReg(Reg).addReg(Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001039 break;
1040 default:
1041 assert(0 && "Unpromotable operand class in promote32");
1042 }
1043}
1044
Misha Brukman2fec9902004-06-21 20:22:03 +00001045/// visitReturnInst - implemented with BLR
1046///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001047void ISel::visitReturnInst(ReturnInst &I) {
Misha Brukmand47bbf72004-06-25 19:04:27 +00001048 // Only do the processing if this is a non-void return
1049 if (I.getNumOperands() > 0) {
1050 Value *RetVal = I.getOperand(0);
1051 switch (getClassB(RetVal->getType())) {
1052 case cByte: // integral return values: extend or move into r3 and return
1053 case cShort:
1054 case cInt:
1055 promote32(PPC32::R3, ValueRecord(RetVal));
1056 break;
1057 case cFP: { // Floats & Doubles: Return in f1
1058 unsigned RetReg = getReg(RetVal);
1059 BuildMI(BB, PPC32::FMR, 1, PPC32::F1).addReg(RetReg);
1060 break;
1061 }
1062 case cLong: {
1063 unsigned RetReg = getReg(RetVal);
1064 BuildMI(BB, PPC32::OR, 2, PPC32::R3).addReg(RetReg).addReg(RetReg);
1065 BuildMI(BB, PPC32::OR, 2, PPC32::R4).addReg(RetReg+1).addReg(RetReg+1);
1066 break;
1067 }
1068 default:
1069 visitInstruction(I);
1070 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001071 }
1072 BuildMI(BB, PPC32::BLR, 1).addImm(0);
1073}
1074
1075// getBlockAfter - Return the basic block which occurs lexically after the
1076// specified one.
1077static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1078 Function::iterator I = BB; ++I; // Get iterator to next block
1079 return I != BB->getParent()->end() ? &*I : 0;
1080}
1081
1082/// visitBranchInst - Handle conditional and unconditional branches here. Note
1083/// that since code layout is frozen at this point, that if we are trying to
1084/// jump to a block that is the immediate successor of the current block, we can
1085/// just make a fall-through (but we don't currently).
1086///
1087void ISel::visitBranchInst(BranchInst &BI) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001088 // Update machine-CFG edges
1089 BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
1090 if (BI.isConditional())
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001091 BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
Misha Brukman2fec9902004-06-21 20:22:03 +00001092
1093 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
1094
1095 if (!BI.isConditional()) { // Unconditional branch?
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001096 if (BI.getSuccessor(0) != NextBB)
1097 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1098 return;
Misha Brukman2fec9902004-06-21 20:22:03 +00001099 }
1100
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001101 // See if we can fold the setcc into the branch itself...
1102 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
1103 if (SCI == 0) {
1104 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1105 // computed some other way...
1106 unsigned condReg = getReg(BI.getCondition());
Misha Brukman2fec9902004-06-21 20:22:03 +00001107 BuildMI(BB, PPC32::CMPLI, 3, PPC32::CR0).addImm(0).addReg(condReg)
1108 .addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001109 if (BI.getSuccessor(1) == NextBB) {
1110 if (BI.getSuccessor(0) != NextBB)
Misha Brukman2fec9902004-06-21 20:22:03 +00001111 BuildMI(BB, PPC32::BC, 3).addImm(4).addImm(2)
1112 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001113 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00001114 BuildMI(BB, PPC32::BC, 3).addImm(12).addImm(2)
1115 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001116
1117 if (BI.getSuccessor(0) != NextBB)
1118 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1119 }
1120 return;
1121 }
1122
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001123 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
1124 MachineBasicBlock::iterator MII = BB->end();
1125 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
1126
1127 const Type *CompTy = SCI->getOperand(0)->getType();
1128 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
1129
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001130 static const unsigned BITab[6] = { 2, 2, 0, 0, 1, 1 };
1131 unsigned BO_true = (OpNum % 2 == 0) ? 12 : 4;
1132 unsigned BO_false = (OpNum % 2 == 0) ? 4 : 12;
1133 unsigned BIval = BITab[0];
1134
1135 if (BI.getSuccessor(0) != NextBB) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001136 BuildMI(BB, PPC32::BC, 3).addImm(BO_true).addImm(BIval)
1137 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001138 if (BI.getSuccessor(1) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001139 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001140 } else {
1141 // Change to the inverse condition...
1142 if (BI.getSuccessor(1) != NextBB) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001143 BuildMI(BB, PPC32::BC, 3).addImm(BO_false).addImm(BIval)
1144 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001145 }
1146 }
1147}
1148
1149
1150/// doCall - This emits an abstract call instruction, setting up the arguments
1151/// and the return value as appropriate. For the actual function call itself,
1152/// it inserts the specified CallMI instruction into the stream.
1153///
1154/// FIXME: See Documentation at the following URL for "correct" behavior
1155/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html>
1156void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
1157 const std::vector<ValueRecord> &Args) {
1158 // Count how many bytes are to be pushed on the stack...
1159 unsigned NumBytes = 0;
1160
1161 if (!Args.empty()) {
1162 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1163 switch (getClassB(Args[i].Ty)) {
1164 case cByte: case cShort: case cInt:
1165 NumBytes += 4; break;
1166 case cLong:
1167 NumBytes += 8; break;
1168 case cFP:
1169 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
1170 break;
1171 default: assert(0 && "Unknown class!");
1172 }
1173
1174 // Adjust the stack pointer for the new arguments...
1175 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
1176
1177 // Arguments go on the stack in reverse order, as specified by the ABI.
1178 unsigned ArgOffset = 0;
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001179 int GPR_remaining = 8, FPR_remaining = 8;
1180 unsigned GPR[] = {
1181 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
1182 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
1183 };
1184 unsigned FPR[] = {
1185 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4,
1186 PPC32::F5, PPC32::F6, PPC32::F7, PPC32::F8
1187 };
1188 unsigned GPR_idx = 0, FPR_idx = 0;
Misha Brukman422791f2004-06-21 17:41:12 +00001189
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001190 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1191 unsigned ArgReg;
1192 switch (getClassB(Args[i].Ty)) {
1193 case cByte:
1194 case cShort:
1195 // Promote arg to 32 bits wide into a temporary register...
1196 ArgReg = makeAnotherReg(Type::UIntTy);
1197 promote32(ArgReg, Args[i]);
Misha Brukman422791f2004-06-21 17:41:12 +00001198
1199 // Reg or stack?
1200 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001201 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001202 .addReg(ArgReg);
Misha Brukman422791f2004-06-21 17:41:12 +00001203 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001204 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1205 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001206 }
1207 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001208 case cInt:
1209 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1210
Misha Brukman422791f2004-06-21 17:41:12 +00001211 // Reg or stack?
1212 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001213 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001214 .addReg(ArgReg);
Misha Brukman422791f2004-06-21 17:41:12 +00001215 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001216 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1217 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001218 }
1219 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001220 case cLong:
Misha Brukman422791f2004-06-21 17:41:12 +00001221 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001222
Misha Brukman422791f2004-06-21 17:41:12 +00001223 // Reg or stack?
1224 if (GPR_remaining > 1) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001225 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001226 .addReg(ArgReg);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001227 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx + 1]).addReg(ArgReg+1)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001228 .addReg(ArgReg+1);
Misha Brukman422791f2004-06-21 17:41:12 +00001229 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001230 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1231 .addReg(PPC32::R1);
1232 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addImm(ArgOffset+4)
1233 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001234 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001235
1236 ArgOffset += 4; // 8 byte entry, not 4.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001237 GPR_remaining -= 1; // uses up 2 GPRs
1238 GPR_idx += 1;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001239 break;
1240 case cFP:
1241 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1242 if (Args[i].Ty == Type::FloatTy) {
Misha Brukman1916bf92004-06-24 21:56:15 +00001243 // Reg or stack?
1244 if (FPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001245 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001246 FPR_remaining--;
1247 FPR_idx++;
Misha Brukman1916bf92004-06-24 21:56:15 +00001248 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001249 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addImm(ArgOffset)
1250 .addReg(PPC32::R1);
Misha Brukman1916bf92004-06-24 21:56:15 +00001251 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001252 } else {
1253 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman1916bf92004-06-24 21:56:15 +00001254 // Reg or stack?
1255 if (FPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001256 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001257 FPR_remaining--;
1258 FPR_idx++;
Misha Brukman1916bf92004-06-24 21:56:15 +00001259 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001260 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset)
1261 .addReg(PPC32::R1);
Misha Brukman1916bf92004-06-24 21:56:15 +00001262 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001263
Misha Brukman1916bf92004-06-24 21:56:15 +00001264 ArgOffset += 4; // 8 byte entry, not 4.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001265 GPR_remaining--; // uses up 2 GPRs
1266 GPR_idx++;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001267 }
1268 break;
1269
1270 default: assert(0 && "Unknown class!");
1271 }
1272 ArgOffset += 4;
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001273 GPR_remaining--;
1274 GPR_idx++;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001275 }
1276 } else {
1277 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(0);
1278 }
1279
1280 BB->push_back(CallMI);
1281
1282 BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addImm(NumBytes);
1283
1284 // If there is a return value, scavenge the result from the location the call
1285 // leaves it in...
1286 //
1287 if (Ret.Ty != Type::VoidTy) {
1288 unsigned DestClass = getClassB(Ret.Ty);
1289 switch (DestClass) {
1290 case cByte:
1291 case cShort:
1292 case cInt:
1293 // Integral results are in r3
Misha Brukman422791f2004-06-21 17:41:12 +00001294 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
Misha Brukmane327e492004-06-24 23:53:24 +00001295 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001296 case cFP: // Floating-point return values live in f1
1297 BuildMI(BB, PPC32::FMR, 1, Ret.Reg).addReg(PPC32::F1);
1298 break;
1299 case cLong: // Long values are in r3:r4
Misha Brukman422791f2004-06-21 17:41:12 +00001300 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
1301 BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R4).addReg(PPC32::R4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001302 break;
1303 default: assert(0 && "Unknown class!");
1304 }
1305 }
1306}
1307
1308
1309/// visitCallInst - Push args on stack and do a procedure call instruction.
1310void ISel::visitCallInst(CallInst &CI) {
1311 MachineInstr *TheCall;
1312 if (Function *F = CI.getCalledFunction()) {
1313 // Is it an intrinsic function call?
1314 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
1315 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1316 return;
1317 }
1318
1319 // Emit a CALL instruction with PC-relative displacement.
1320 TheCall = BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(F, true);
1321 } else { // Emit an indirect call through the CTR
1322 unsigned Reg = getReg(CI.getCalledValue());
1323 BuildMI(PPC32::MTSPR, 2).addZImm(9).addReg(Reg);
1324 TheCall = BuildMI(PPC32::CALLindirect, 1).addZImm(20).addZImm(0);
1325 }
1326
1327 std::vector<ValueRecord> Args;
1328 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
1329 Args.push_back(ValueRecord(CI.getOperand(i)));
1330
1331 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
1332 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
1333}
1334
1335
1336/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
1337///
1338static Value *dyncastIsNan(Value *V) {
1339 if (CallInst *CI = dyn_cast<CallInst>(V))
1340 if (Function *F = CI->getCalledFunction())
Misha Brukmana2916ce2004-06-21 17:58:36 +00001341 if (F->getIntrinsicID() == Intrinsic::isunordered)
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001342 return CI->getOperand(1);
1343 return 0;
1344}
1345
1346/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
1347/// or's whos operands are all calls to the isnan predicate.
1348static bool isOnlyUsedByUnorderedComparisons(Value *V) {
1349 assert(dyncastIsNan(V) && "The value isn't an isnan call!");
1350
1351 // Check all uses, which will be or's of isnans if this predicate is true.
1352 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1353 Instruction *I = cast<Instruction>(*UI);
1354 if (I->getOpcode() != Instruction::Or) return false;
1355 if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
1356 if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
1357 }
1358
1359 return true;
1360}
1361
1362/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1363/// function, lowering any calls to unknown intrinsic functions into the
1364/// equivalent LLVM code.
1365///
1366void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1367 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1368 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1369 if (CallInst *CI = dyn_cast<CallInst>(I++))
1370 if (Function *F = CI->getCalledFunction())
1371 switch (F->getIntrinsicID()) {
1372 case Intrinsic::not_intrinsic:
1373 case Intrinsic::vastart:
1374 case Intrinsic::vacopy:
1375 case Intrinsic::vaend:
1376 case Intrinsic::returnaddress:
1377 case Intrinsic::frameaddress:
Misha Brukmana2916ce2004-06-21 17:58:36 +00001378 // FIXME: should lower this ourselves
1379 // case Intrinsic::isunordered:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001380 // We directly implement these intrinsics
1381 break;
1382 case Intrinsic::readio: {
1383 // On PPC, memory operations are in-order. Lower this intrinsic
1384 // into a volatile load.
1385 Instruction *Before = CI->getPrev();
1386 LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
1387 CI->replaceAllUsesWith(LI);
1388 BB->getInstList().erase(CI);
1389 break;
1390 }
1391 case Intrinsic::writeio: {
1392 // On PPC, memory operations are in-order. Lower this intrinsic
1393 // into a volatile store.
1394 Instruction *Before = CI->getPrev();
1395 StoreInst *LI = new StoreInst(CI->getOperand(1),
1396 CI->getOperand(2), true, CI);
1397 CI->replaceAllUsesWith(LI);
1398 BB->getInstList().erase(CI);
1399 break;
1400 }
1401 default:
1402 // All other intrinsic calls we must lower.
1403 Instruction *Before = CI->getPrev();
1404 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
1405 if (Before) { // Move iterator to instruction after call
1406 I = Before; ++I;
1407 } else {
1408 I = BB->begin();
1409 }
1410 }
1411}
1412
1413void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
1414 unsigned TmpReg1, TmpReg2, TmpReg3;
1415 switch (ID) {
1416 case Intrinsic::vastart:
1417 // Get the address of the first vararg value...
1418 TmpReg1 = getReg(CI);
1419 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1), VarArgsFrameIndex);
1420 return;
1421
1422 case Intrinsic::vacopy:
1423 TmpReg1 = getReg(CI);
1424 TmpReg2 = getReg(CI.getOperand(1));
1425 BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
1426 return;
1427 case Intrinsic::vaend: return;
1428
1429 case Intrinsic::returnaddress:
1430 case Intrinsic::frameaddress:
1431 TmpReg1 = getReg(CI);
1432 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1433 if (ID == Intrinsic::returnaddress) {
1434 // Just load the return address
1435 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, TmpReg1),
1436 ReturnAddressIndex);
1437 } else {
1438 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1),
1439 ReturnAddressIndex, -4, false);
1440 }
1441 } else {
1442 // Values other than zero are not implemented yet.
1443 BuildMI(BB, PPC32::ADDI, 2, TmpReg1).addReg(PPC32::R0).addImm(0);
1444 }
1445 return;
1446
Misha Brukmana2916ce2004-06-21 17:58:36 +00001447#if 0
1448 // This may be useful for supporting isunordered
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001449 case Intrinsic::isnan:
1450 // If this is only used by 'isunordered' style comparisons, don't emit it.
1451 if (isOnlyUsedByUnorderedComparisons(&CI)) return;
1452 TmpReg1 = getReg(CI.getOperand(1));
1453 emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
Misha Brukman422791f2004-06-21 17:41:12 +00001454 TmpReg2 = makeAnotherReg(Type::IntTy);
1455 BuildMI(BB, PPC32::MFCR, TmpReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001456 TmpReg3 = getReg(CI);
1457 BuildMI(BB, PPC32::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
1458 return;
Misha Brukmana2916ce2004-06-21 17:58:36 +00001459#endif
1460
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001461 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
1462 }
1463}
1464
1465/// visitSimpleBinary - Implement simple binary operators for integral types...
1466/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1467/// Xor.
1468///
1469void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1470 unsigned DestReg = getReg(B);
1471 MachineBasicBlock::iterator MI = BB->end();
1472 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
1473 unsigned Class = getClassB(B.getType());
1474
1475 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
1476}
1477
1478/// emitBinaryFPOperation - This method handles emission of floating point
1479/// Add (0), Sub (1), Mul (2), and Div (3) operations.
1480void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
1481 MachineBasicBlock::iterator IP,
1482 Value *Op0, Value *Op1,
1483 unsigned OperatorClass, unsigned DestReg) {
1484
1485 // Special case: op Reg, <const fp>
1486 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001487 // Create a constant pool entry for this constant.
1488 MachineConstantPool *CP = F->getConstantPool();
1489 unsigned CPI = CP->getConstantPoolIndex(Op1C);
1490 const Type *Ty = Op1->getType();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001491
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001492 static const unsigned OpcodeTab[][4] = {
1493 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1494 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
1495 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001496
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001497 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1498 unsigned TempReg = makeAnotherReg(Ty);
1499 unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
1500 addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001501
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001502 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
1503 unsigned Op0r = getReg(Op0, BB, IP);
1504 BuildMI(*BB, IP, Opcode, DestReg).addReg(Op0r).addReg(TempReg);
1505 return;
1506 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001507
1508 // Special case: R1 = op <const fp>, R2
1509 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
1510 if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) {
1511 // -0.0 - X === -X
1512 unsigned op1Reg = getReg(Op1, BB, IP);
1513 BuildMI(*BB, IP, PPC32::FNEG, 1, DestReg).addReg(op1Reg);
1514 return;
1515 } else {
1516 // R1 = op CST, R2 --> R1 = opr R2, CST
1517
1518 // Create a constant pool entry for this constant.
1519 MachineConstantPool *CP = F->getConstantPool();
1520 unsigned CPI = CP->getConstantPoolIndex(CFP);
1521 const Type *Ty = CFP->getType();
1522
1523 static const unsigned OpcodeTab[][4] = {
1524 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1525 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
1526 };
1527
1528 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman422791f2004-06-21 17:41:12 +00001529 unsigned TempReg = makeAnotherReg(Ty);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001530 unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
1531 addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI);
1532
1533 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
1534 unsigned Op1r = getReg(Op1, BB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001535 BuildMI(*BB, IP, Opcode, DestReg).addReg(TempReg).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001536 return;
1537 }
1538
1539 // General case.
Misha Brukman911afde2004-06-25 14:50:41 +00001540 static const unsigned OpcodeTab[] = {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001541 PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV
1542 };
1543
1544 unsigned Opcode = OpcodeTab[OperatorClass];
1545 unsigned Op0r = getReg(Op0, BB, IP);
1546 unsigned Op1r = getReg(Op1, BB, IP);
1547 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1548}
1549
1550/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1551/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1552/// Or, 4 for Xor.
1553///
1554/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1555/// and constant expression support.
1556///
1557void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
1558 MachineBasicBlock::iterator IP,
1559 Value *Op0, Value *Op1,
1560 unsigned OperatorClass, unsigned DestReg) {
1561 unsigned Class = getClassB(Op0->getType());
1562
Misha Brukman422791f2004-06-21 17:41:12 +00001563 // Arithmetic and Bitwise operators
Misha Brukman911afde2004-06-25 14:50:41 +00001564 static const unsigned OpcodeTab[] = {
Misha Brukman422791f2004-06-21 17:41:12 +00001565 PPC32::ADD, PPC32::SUB, PPC32::AND, PPC32::OR, PPC32::XOR
1566 };
1567 // Otherwise, code generate the full operation with a constant.
1568 static const unsigned BottomTab[] = {
1569 PPC32::ADDC, PPC32::SUBC, PPC32::AND, PPC32::OR, PPC32::XOR
1570 };
1571 static const unsigned TopTab[] = {
1572 PPC32::ADDE, PPC32::SUBFE, PPC32::AND, PPC32::OR, PPC32::XOR
1573 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001574
1575 if (Class == cFP) {
1576 assert(OperatorClass < 2 && "No logical ops for FP!");
1577 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
1578 return;
1579 }
1580
1581 if (Op0->getType() == Type::BoolTy) {
1582 if (OperatorClass == 3)
1583 // If this is an or of two isnan's, emit an FP comparison directly instead
1584 // of or'ing two isnan's together.
1585 if (Value *LHS = dyncastIsNan(Op0))
1586 if (Value *RHS = dyncastIsNan(Op1)) {
1587 unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001588 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001589 emitUCOM(MBB, IP, Op0Reg, Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00001590 BuildMI(*MBB, IP, PPC32::MFCR, TmpReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001591 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
1592 .addImm(31).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001593 return;
1594 }
1595 }
1596
1597 // sub 0, X -> neg X
1598 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
1599 if (OperatorClass == 1 && CI->isNullValue()) {
1600 unsigned op1Reg = getReg(Op1, MBB, IP);
1601 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg).addReg(op1Reg);
1602
1603 if (Class == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001604 unsigned zeroes = makeAnotherReg(Type::IntTy);
1605 unsigned overflow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001606 unsigned T = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00001607 BuildMI(*MBB, IP, PPC32::CNTLZW, 1, zeroes).addReg(op1Reg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001608 BuildMI(*MBB, IP, PPC32::RLWINM, 4, overflow).addReg(zeroes).addImm(27)
1609 .addImm(5).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00001610 BuildMI(*MBB, IP, PPC32::ADD, 2, T).addReg(op1Reg+1).addReg(overflow);
1611 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg+1).addReg(T);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001612 }
1613 return;
1614 }
1615
1616 // Special case: op Reg, <const int>
1617 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1618 unsigned Op0r = getReg(Op0, MBB, IP);
1619
1620 // xor X, -1 -> not X
1621 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1622 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1623 if (Class == cLong) // Invert the top part too
Misha Brukman2fec9902004-06-21 20:22:03 +00001624 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg+1).addReg(Op0r+1)
1625 .addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001626 return;
1627 }
1628
1629 unsigned Opcode = OpcodeTab[OperatorClass];
1630 unsigned Op1r = getReg(Op1, MBB, IP);
1631
1632 if (Class != cLong) {
1633 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1634 return;
1635 }
1636
1637 // If the constant is zero in the low 32-bits, just copy the low part
1638 // across and apply the normal 32-bit operation to the high parts. There
1639 // will be no carry or borrow into the top.
1640 if (cast<ConstantInt>(Op1C)->getRawValue() == 0) {
1641 if (OperatorClass != 2) // All but and...
1642 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1643 else
1644 BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
Misha Brukman422791f2004-06-21 17:41:12 +00001645 BuildMI(*MBB, IP, Opcode, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001646 return;
1647 }
1648
1649 // If this is a long value and the high or low bits have a special
1650 // property, emit some special cases.
1651 unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
1652
1653 // If this is a logical operation and the top 32-bits are zero, just
1654 // operate on the lower 32.
1655 if (Op1h == 0 && OperatorClass > 1) {
1656 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1657 if (OperatorClass != 2) // All but and
Misha Brukman2fec9902004-06-21 20:22:03 +00001658 BuildMI(*MBB, IP, PPC32::OR, 2,DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001659 else
Misha Brukman2fec9902004-06-21 20:22:03 +00001660 BuildMI(*MBB, IP, PPC32::ADDI, 2,DestReg+1).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001661 return;
1662 }
1663
1664 // TODO: We could handle lots of other special cases here, such as AND'ing
1665 // with 0xFFFFFFFF00000000 -> noop, etc.
1666
Misha Brukman2fec9902004-06-21 20:22:03 +00001667 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
1668 .addImm(Op1r);
1669 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
1670 .addImm(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001671 return;
1672 }
1673
1674 unsigned Op0r = getReg(Op0, MBB, IP);
1675 unsigned Op1r = getReg(Op1, MBB, IP);
1676
1677 if (Class != cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001678 unsigned Opcode = OpcodeTab[OperatorClass];
1679 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001680 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00001681 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
1682 .addImm(Op1r);
1683 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
1684 .addImm(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001685 }
1686 return;
1687}
1688
1689/// doMultiply - Emit appropriate instructions to multiply together the
1690/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1691/// result should be given as DestTy.
1692///
1693void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
1694 unsigned DestReg, const Type *DestTy,
1695 unsigned op0Reg, unsigned op1Reg) {
1696 unsigned Class = getClass(DestTy);
1697 switch (Class) {
1698 case cLong:
Misha Brukman2fec9902004-06-21 20:22:03 +00001699 BuildMI(*MBB, MBBI, PPC32::MULHW, 2, DestReg+1).addReg(op0Reg+1)
1700 .addReg(op1Reg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001701 case cInt:
1702 case cShort:
1703 case cByte:
1704 BuildMI(*MBB, MBBI, PPC32::MULLW, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
1705 return;
1706 default:
Misha Brukman422791f2004-06-21 17:41:12 +00001707 assert(0 && "doMultiply cannot operate on unknown type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001708 }
1709}
1710
1711// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1712// returns zero when the input is not exactly a power of two.
1713static unsigned ExactLog2(unsigned Val) {
1714 if (Val == 0 || (Val & (Val-1))) return 0;
1715 unsigned Count = 0;
1716 while (Val != 1) {
1717 Val >>= 1;
1718 ++Count;
1719 }
1720 return Count+1;
1721}
1722
1723
1724/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
1725/// 16, or 32-bit integer multiply by a constant.
Misha Brukman2fec9902004-06-21 20:22:03 +00001726///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001727void ISel::doMultiplyConst(MachineBasicBlock *MBB,
1728 MachineBasicBlock::iterator IP,
1729 unsigned DestReg, const Type *DestTy,
1730 unsigned op0Reg, unsigned ConstRHS) {
1731 unsigned Class = getClass(DestTy);
1732 // Handle special cases here.
1733 switch (ConstRHS) {
1734 case 0:
1735 BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
1736 return;
1737 case 1:
1738 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(op0Reg).addReg(op0Reg);
1739 return;
1740 case 2:
1741 BuildMI(*MBB, IP, PPC32::ADD, 2,DestReg).addReg(op0Reg).addReg(op0Reg);
1742 return;
1743 }
1744
1745 // If the element size is exactly a power of 2, use a shift to get it.
1746 if (unsigned Shift = ExactLog2(ConstRHS)) {
1747 switch (Class) {
1748 default: assert(0 && "Unknown class for this function!");
1749 case cByte:
1750 case cShort:
1751 case cInt:
Misha Brukman2fec9902004-06-21 20:22:03 +00001752 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(op0Reg)
1753 .addImm(Shift-1).addImm(0).addImm(31-Shift-1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001754 return;
1755 }
1756 }
1757
1758 // Most general case, emit a normal multiply...
1759 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
1760 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001761 BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg1).addReg(PPC32::R0)
1762 .addImm(ConstRHS >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001763 BuildMI(*MBB, IP, PPC32::ORI, 2, TmpReg2).addReg(TmpReg1).addImm(ConstRHS);
1764
1765 // Emit a MUL to multiply the register holding the index by
1766 // elementSize, putting the result in OffsetReg.
1767 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg2);
1768}
1769
1770void ISel::visitMul(BinaryOperator &I) {
1771 unsigned ResultReg = getReg(I);
1772
1773 Value *Op0 = I.getOperand(0);
1774 Value *Op1 = I.getOperand(1);
1775
1776 MachineBasicBlock::iterator IP = BB->end();
1777 emitMultiply(BB, IP, Op0, Op1, ResultReg);
1778}
1779
1780void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
1781 Value *Op0, Value *Op1, unsigned DestReg) {
1782 MachineBasicBlock &BB = *MBB;
1783 TypeClass Class = getClass(Op0->getType());
1784
1785 // Simple scalar multiply?
1786 unsigned Op0Reg = getReg(Op0, &BB, IP);
1787 switch (Class) {
1788 case cByte:
1789 case cShort:
1790 case cInt:
1791 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1792 unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
1793 doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
1794 } else {
1795 unsigned Op1Reg = getReg(Op1, &BB, IP);
1796 doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
1797 }
1798 return;
1799 case cFP:
1800 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
1801 return;
1802 case cLong:
1803 break;
1804 }
1805
1806 // Long value. We have to do things the hard way...
1807 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1808 unsigned CLow = CI->getRawValue();
1809 unsigned CHi = CI->getRawValue() >> 32;
1810
1811 if (CLow == 0) {
1812 // If the low part of the constant is all zeros, things are simple.
1813 BuildMI(BB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
1814 doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
1815 return;
1816 }
1817
1818 // Multiply the two low parts
1819 unsigned OverflowReg = 0;
1820 if (CLow == 1) {
1821 BuildMI(BB, IP, PPC32::OR, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg);
1822 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00001823 unsigned TmpRegL = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001824 unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
1825 OverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001826 BuildMI(BB, IP, PPC32::ADDIS, 2, TmpRegL).addReg(PPC32::R0)
1827 .addImm(CLow >> 16);
Misha Brukman422791f2004-06-21 17:41:12 +00001828 BuildMI(BB, IP, PPC32::ORI, 2, Op1RegL).addReg(TmpRegL).addImm(CLow);
1829 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1RegL);
Misha Brukman2fec9902004-06-21 20:22:03 +00001830 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg)
1831 .addReg(Op1RegL);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001832 }
1833
1834 unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
1835 doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
1836
1837 unsigned AHBLplusOverflowReg;
1838 if (OverflowReg) {
1839 AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001840 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001841 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
1842 } else {
1843 AHBLplusOverflowReg = AHBLReg;
1844 }
1845
1846 if (CHi == 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001847 BuildMI(BB, IP, PPC32::OR, 2, DestReg+1).addReg(AHBLplusOverflowReg)
1848 .addReg(AHBLplusOverflowReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001849 } else {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001850 unsigned ALBHReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001851 doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
1852
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001853 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001854 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1855 }
1856 return;
1857 }
1858
1859 // General 64x64 multiply
1860
1861 unsigned Op1Reg = getReg(Op1, &BB, IP);
1862
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001863 // Multiply the two low parts...
1864 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001865
1866 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001867 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001868
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001869 unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001870 BuildMI(BB, IP, PPC32::MULLW, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
1871
1872 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001873 BuildMI(BB, IP, PPC32::ADD, 2, AHBLplusOverflowReg).addReg(AHBLReg)
1874 .addReg(OverflowReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001875
1876 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
1877 BuildMI(BB, IP, PPC32::MULLW, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
1878
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001879 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001880 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1881}
1882
1883
1884/// visitDivRem - Handle division and remainder instructions... these
1885/// instruction both require the same instructions to be generated, they just
1886/// select the result from a different register. Note that both of these
1887/// instructions work differently for signed and unsigned operands.
1888///
1889void ISel::visitDivRem(BinaryOperator &I) {
1890 unsigned ResultReg = getReg(I);
1891 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1892
1893 MachineBasicBlock::iterator IP = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00001894 emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
1895 ResultReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001896}
1897
1898void ISel::emitDivRemOperation(MachineBasicBlock *BB,
1899 MachineBasicBlock::iterator IP,
1900 Value *Op0, Value *Op1, bool isDiv,
1901 unsigned ResultReg) {
1902 const Type *Ty = Op0->getType();
1903 unsigned Class = getClass(Ty);
1904 switch (Class) {
1905 case cFP: // Floating point divide
1906 if (isDiv) {
1907 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
1908 return;
1909 } else { // Floating point remainder...
1910 unsigned Op0Reg = getReg(Op0, BB, IP);
1911 unsigned Op1Reg = getReg(Op1, BB, IP);
Misha Brukman425ff242004-07-01 21:34:10 +00001912 // FIXME: Make sure the module has external function
1913 // double fmod(double, double)
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001914 MachineInstr *TheCall =
1915 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("fmod", true);
1916 std::vector<ValueRecord> Args;
1917 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
1918 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
1919 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
1920 }
1921 return;
1922 case cLong: {
Misha Brukman425ff242004-07-01 21:34:10 +00001923 // FIXME: Make sure the module has external function
1924 static const char *FnName[] =
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001925 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
1926 unsigned Op0Reg = getReg(Op0, BB, IP);
1927 unsigned Op1Reg = getReg(Op1, BB, IP);
1928 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
1929 MachineInstr *TheCall =
1930 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol(FnName[NameIdx], true);
1931
1932 std::vector<ValueRecord> Args;
1933 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
1934 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
1935 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
1936 return;
1937 }
1938 case cByte: case cShort: case cInt:
1939 break; // Small integrals, handled below...
1940 default: assert(0 && "Unknown class!");
1941 }
1942
1943 // Special case signed division by power of 2.
1944 if (isDiv)
1945 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
1946 assert(Class != cLong && "This doesn't handle 64-bit divides!");
1947 int V = CI->getValue();
1948
1949 if (V == 1) { // X /s 1 => X
1950 unsigned Op0Reg = getReg(Op0, BB, IP);
1951 BuildMI(*BB, IP, PPC32::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
1952 return;
1953 }
1954
1955 if (V == -1) { // X /s -1 => -X
1956 unsigned Op0Reg = getReg(Op0, BB, IP);
1957 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(Op0Reg);
1958 return;
1959 }
1960
1961 bool isNeg = false;
1962 if (V < 0) { // Not a positive power of 2?
1963 V = -V;
1964 isNeg = true; // Maybe it's a negative power of 2.
1965 }
1966 if (unsigned Log = ExactLog2(V)) {
1967 --Log;
1968 unsigned Op0Reg = getReg(Op0, BB, IP);
1969 unsigned TmpReg = makeAnotherReg(Op0->getType());
1970 if (Log != 1)
Misha Brukman2fec9902004-06-21 20:22:03 +00001971 BuildMI(*BB, IP, PPC32::SRAWI,2, TmpReg).addReg(Op0Reg).addImm(Log-1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001972 else
1973 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(Op0Reg).addReg(Op0Reg);
1974
1975 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
Misha Brukman2fec9902004-06-21 20:22:03 +00001976 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg2).addReg(TmpReg).addImm(Log)
1977 .addImm(32-Log).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001978
1979 unsigned TmpReg3 = makeAnotherReg(Op0->getType());
1980 BuildMI(*BB, IP, PPC32::ADD, 2, TmpReg3).addReg(Op0Reg).addReg(TmpReg2);
1981
1982 unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg;
1983 BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg4).addReg(Op0Reg).addImm(Log);
1984
1985 if (isNeg)
1986 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(TmpReg4);
1987 return;
1988 }
1989 }
1990
1991 unsigned Op0Reg = getReg(Op0, BB, IP);
1992 unsigned Op1Reg = getReg(Op1, BB, IP);
1993
1994 if (isDiv) {
Misha Brukman422791f2004-06-21 17:41:12 +00001995 if (Ty->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001996 BuildMI(*BB, IP, PPC32::DIVW, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00001997 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00001998 BuildMI(*BB, IP,PPC32::DIVWU, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00001999 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002000 } else { // Remainder
Misha Brukman422791f2004-06-21 17:41:12 +00002001 unsigned TmpReg1 = makeAnotherReg(Op0->getType());
2002 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2003
2004 if (Ty->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002005 BuildMI(*BB, IP, PPC32::DIVW, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002006 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002007 BuildMI(*BB, IP, PPC32::DIVWU, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002008 }
2009 BuildMI(*BB, IP, PPC32::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
2010 BuildMI(*BB, IP, PPC32::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002011 }
2012}
2013
2014
2015/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2016/// for constant immediate shift values, and for constant immediate
2017/// shift values equal to 1. Even the general case is sort of special,
2018/// because the shift amount has to be in CL, not just any old register.
2019///
2020void ISel::visitShiftInst(ShiftInst &I) {
2021 MachineBasicBlock::iterator IP = BB->end ();
Misha Brukman2fec9902004-06-21 20:22:03 +00002022 emitShiftOperation(BB, IP, I.getOperand (0), I.getOperand (1),
2023 I.getOpcode () == Instruction::Shl, I.getType (),
2024 getReg (I));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002025}
2026
2027/// emitShiftOperation - Common code shared between visitShiftInst and
2028/// constant expression support.
Misha Brukman2fec9902004-06-21 20:22:03 +00002029///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002030void ISel::emitShiftOperation(MachineBasicBlock *MBB,
2031 MachineBasicBlock::iterator IP,
2032 Value *Op, Value *ShiftAmount, bool isLeftShift,
2033 const Type *ResultTy, unsigned DestReg) {
2034 unsigned SrcReg = getReg (Op, MBB, IP);
2035 bool isSigned = ResultTy->isSigned ();
2036 unsigned Class = getClass (ResultTy);
2037
2038 // Longs, as usual, are handled specially...
2039 if (Class == cLong) {
2040 // If we have a constant shift, we can generate much more efficient code
2041 // than otherwise...
2042 //
2043 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2044 unsigned Amount = CUI->getValue();
2045 if (Amount < 32) {
2046 if (isLeftShift) {
Misha Brukman422791f2004-06-21 17:41:12 +00002047 // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002048 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2049 .addImm(Amount).addImm(0).addImm(31-Amount);
2050 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg)
2051 .addImm(Amount).addImm(32-Amount).addImm(31);
2052 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2053 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002054 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002055 // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002056 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2057 .addImm(32-Amount).addImm(Amount).addImm(31);
2058 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1)
2059 .addImm(32-Amount).addImm(0).addImm(Amount-1);
2060 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2061 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002062 }
2063 } else { // Shifting more than 32 bits
2064 Amount -= 32;
2065 if (isLeftShift) {
2066 if (Amount != 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002067 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg)
2068 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002069 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002070 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2071 .addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002072 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002073 BuildMI(*MBB, IP, PPC32::ADDI, 2,DestReg).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002074 } else {
2075 if (Amount != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +00002076 if (isSigned)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00002077 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg+1)
2078 .addImm(Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002079 else
Misha Brukmanfadb82f2004-06-24 22:00:15 +00002080 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1)
2081 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002082 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002083 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1)
2084 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002085 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002086 BuildMI(*MBB, IP,PPC32::ADDI,2,DestReg+1).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002087 }
2088 }
2089 } else {
2090 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
2091 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002092 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
2093 unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
2094 unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
2095 unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
2096 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2097
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002098 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002099 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
2100 .addImm(32);
2101 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg+1)
2102 .addReg(ShiftAmountReg);
2103 BuildMI(*MBB, IP, PPC32::SRW, 2,TmpReg3).addReg(SrcReg).addReg(TmpReg1);
2104 BuildMI(*MBB, IP, PPC32::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
2105 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
2106 .addImm(-32);
2107 BuildMI(*MBB, IP, PPC32::SLW, 2,TmpReg6).addReg(SrcReg).addReg(TmpReg5);
2108 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4)
2109 .addReg(TmpReg6);
2110 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2111 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002112 } else {
2113 if (isSigned) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002114 // FIXME: Unimplemented
Misha Brukman2fec9902004-06-21 20:22:03 +00002115 // Page C-3 of the PowerPC 32bit Programming Environments Manual
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002116 std::cerr << "Unimplemented: signed right shift\n";
2117 abort();
Misha Brukman422791f2004-06-21 17:41:12 +00002118 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002119 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
2120 .addImm(32);
2121 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg)
2122 .addReg(ShiftAmountReg);
2123 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg+1)
2124 .addReg(TmpReg1);
2125 BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2)
2126 .addReg(TmpReg3);
2127 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
2128 .addImm(-32);
2129 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg+1)
2130 .addReg(TmpReg5);
2131 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4)
2132 .addReg(TmpReg6);
2133 BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg+1).addReg(SrcReg+1)
2134 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002135 }
2136 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002137 }
2138 return;
2139 }
2140
2141 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2142 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
2143 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
2144 unsigned Amount = CUI->getValue();
2145
Misha Brukman422791f2004-06-21 17:41:12 +00002146 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002147 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2148 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002149 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002150 if (isSigned) {
2151 BuildMI(*MBB, IP, PPC32::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
2152 } else {
2153 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2154 .addImm(32-Amount).addImm(Amount).addImm(31);
2155 }
Misha Brukman422791f2004-06-21 17:41:12 +00002156 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002157 } else { // The shift amount is non-constant.
2158 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2159
Misha Brukman422791f2004-06-21 17:41:12 +00002160 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002161 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2162 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002163 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002164 BuildMI(*MBB, IP, isSigned ? PPC32::SRAW : PPC32::SRW, 2, DestReg)
2165 .addReg(SrcReg).addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002166 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002167 }
2168}
2169
2170
2171/// visitLoadInst - Implement LLVM load instructions
2172///
2173void ISel::visitLoadInst(LoadInst &I) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002174 static const unsigned Opcodes[] = {
2175 PPC32::LBZ, PPC32::LHZ, PPC32::LWZ, PPC32::LFS
2176 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002177 unsigned Class = getClassB(I.getType());
2178 unsigned Opcode = Opcodes[Class];
2179 if (I.getType() == Type::DoubleTy) Opcode = PPC32::LFD;
2180
2181 unsigned DestReg = getReg(I);
2182
2183 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
Misha Brukman422791f2004-06-21 17:41:12 +00002184 unsigned FI = getFixedSizedAllocaFI(AI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002185 if (Class == cLong) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002186 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg), FI);
2187 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg+1), FI, 4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002188 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002189 addFrameReference(BuildMI(BB, Opcode, 2, DestReg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +00002190 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002191 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002192 unsigned SrcAddrReg = getReg(I.getOperand(0));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002193
2194 if (Class == cLong) {
2195 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2196 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(SrcAddrReg);
2197 } else {
2198 BuildMI(BB, Opcode, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2199 }
2200 }
2201}
2202
2203/// visitStoreInst - Implement LLVM store instructions
2204///
2205void ISel::visitStoreInst(StoreInst &I) {
2206 unsigned ValReg = getReg(I.getOperand(0));
2207 unsigned AddressReg = getReg(I.getOperand(1));
2208
2209 const Type *ValTy = I.getOperand(0)->getType();
2210 unsigned Class = getClassB(ValTy);
2211
2212 if (Class == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00002213 BuildMI(BB, PPC32::STW, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002214 BuildMI(BB, PPC32::STW, 3).addReg(ValReg+1).addImm(4).addReg(AddressReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002215 return;
2216 }
2217
2218 static const unsigned Opcodes[] = {
2219 PPC32::STB, PPC32::STH, PPC32::STW, PPC32::STFS
2220 };
2221 unsigned Opcode = Opcodes[Class];
2222 if (ValTy == Type::DoubleTy) Opcode = PPC32::STFD;
2223 BuildMI(BB, Opcode, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
2224}
2225
2226
2227/// visitCastInst - Here we have various kinds of copying with or without sign
2228/// extension going on.
2229///
2230void ISel::visitCastInst(CastInst &CI) {
2231 Value *Op = CI.getOperand(0);
2232
2233 unsigned SrcClass = getClassB(Op->getType());
2234 unsigned DestClass = getClassB(CI.getType());
2235 // Noop casts are not emitted: getReg will return the source operand as the
2236 // register to use for any uses of the noop cast.
2237 if (DestClass == SrcClass)
2238 return;
2239
2240 // If this is a cast from a 32-bit integer to a Long type, and the only uses
2241 // of the case are GEP instructions, then the cast does not need to be
2242 // generated explicitly, it will be folded into the GEP.
2243 if (DestClass == cLong && SrcClass == cInt) {
2244 bool AllUsesAreGEPs = true;
2245 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
2246 if (!isa<GetElementPtrInst>(*I)) {
2247 AllUsesAreGEPs = false;
2248 break;
2249 }
2250
2251 // No need to codegen this cast if all users are getelementptr instrs...
2252 if (AllUsesAreGEPs) return;
2253 }
2254
2255 unsigned DestReg = getReg(CI);
2256 MachineBasicBlock::iterator MI = BB->end();
2257 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
2258}
2259
2260/// emitCastOperation - Common code shared between visitCastInst and constant
2261/// expression cast support.
2262///
2263void ISel::emitCastOperation(MachineBasicBlock *BB,
2264 MachineBasicBlock::iterator IP,
2265 Value *Src, const Type *DestTy,
2266 unsigned DestReg) {
2267 const Type *SrcTy = Src->getType();
2268 unsigned SrcClass = getClassB(SrcTy);
2269 unsigned DestClass = getClassB(DestTy);
2270 unsigned SrcReg = getReg(Src, BB, IP);
2271
2272 // Implement casts to bool by using compare on the operand followed by set if
2273 // not zero on the result.
2274 if (DestTy == Type::BoolTy) {
2275 switch (SrcClass) {
2276 case cByte:
Misha Brukman422791f2004-06-21 17:41:12 +00002277 case cShort:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002278 case cInt: {
2279 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002280 BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addImm(-1);
2281 BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002282 break;
2283 }
2284 case cLong: {
2285 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2286 unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
2287 BuildMI(*BB, IP, PPC32::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
Misha Brukman422791f2004-06-21 17:41:12 +00002288 BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addImm(-1);
2289 BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002290 break;
2291 }
2292 case cFP:
2293 // FIXME
Misha Brukman422791f2004-06-21 17:41:12 +00002294 // Load -0.0
2295 // Compare
2296 // move to CR1
2297 // Negate -0.0
2298 // Compare
2299 // CROR
2300 // MFCR
2301 // Left-align
2302 // SRA ?
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002303 break;
2304 }
2305 return;
2306 }
2307
2308 // Implement casts between values of the same type class (as determined by
2309 // getClass) by using a register-to-register move.
2310 if (SrcClass == DestClass) {
Misha Brukman422791f2004-06-21 17:41:12 +00002311 if (SrcClass <= cInt) {
2312 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2313 } else if (SrcClass == cFP && SrcTy == DestTy) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002314 BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2315 } else if (SrcClass == cFP) {
2316 if (SrcTy == Type::FloatTy) { // float -> double
2317 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
2318 BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2319 } else { // double -> float
2320 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
2321 "Unknown cFP member!");
Misha Brukman422791f2004-06-21 17:41:12 +00002322 BuildMI(*BB, IP, PPC32::FRSP, 1, DestReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002323 }
2324 } else if (SrcClass == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00002325 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002326 BuildMI(*BB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
2327 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002328 } else {
2329 assert(0 && "Cannot handle this type of cast instruction!");
2330 abort();
2331 }
2332 return;
2333 }
2334
2335 // Handle cast of SMALLER int to LARGER int using a move with sign extension
2336 // or zero extension, depending on whether the source type was signed.
2337 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
2338 SrcClass < DestClass) {
2339 bool isLong = DestClass == cLong;
2340 if (isLong) DestClass = cInt;
2341
2342 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
2343 if (SrcClass < cInt) {
2344 if (isUnsigned) {
Misha Brukman422791f2004-06-21 17:41:12 +00002345 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002346 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2347 .addImm(shift).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002348 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002349 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH,
2350 1, DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002351 }
2352 } else {
2353 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2354 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002355
2356 if (isLong) { // Handle upper 32 bits as appropriate...
2357 if (isUnsigned) // Zero out top bits...
2358 BuildMI(*BB, IP, PPC32::ADDI, 2, DestReg+1).addReg(PPC32::R0).addImm(0);
2359 else // Sign extend bottom half...
2360 BuildMI(*BB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(DestReg).addImm(31);
2361 }
2362 return;
2363 }
2364
2365 // Special case long -> int ...
2366 if (SrcClass == cLong && DestClass == cInt) {
2367 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2368 return;
2369 }
2370
2371 // Handle cast of LARGER int to SMALLER int with a clear or sign extend
2372 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
2373 && SrcClass > DestClass) {
2374 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
Misha Brukman422791f2004-06-21 17:41:12 +00002375 if (isUnsigned) {
2376 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002377 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2378 .addImm(shift).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00002379 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002380 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH, 1,
2381 DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002382 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002383 return;
2384 }
2385
2386 // Handle casts from integer to floating point now...
2387 if (DestClass == cFP) {
2388
Misha Brukman422791f2004-06-21 17:41:12 +00002389 // Emit a library call for long to float conversion
2390 if (SrcClass == cLong) {
2391 std::vector<ValueRecord> Args;
2392 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002393 MachineInstr *TheCall =
2394 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("__floatdidf", true);
Misha Brukman422791f2004-06-21 17:41:12 +00002395 doCall(ValueRecord(DestReg, DestTy), TheCall, Args);
2396 return;
2397 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002398
2399 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman358829f2004-06-21 17:25:55 +00002400 switch (SrcTy->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002401 case Type::BoolTyID:
2402 case Type::SByteTyID:
2403 BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
2404 break;
2405 case Type::UByteTyID:
Misha Brukman2fec9902004-06-21 20:22:03 +00002406 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0)
2407 .addImm(24).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002408 break;
2409 case Type::ShortTyID:
2410 BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
2411 break;
2412 case Type::UShortTyID:
Misha Brukman2fec9902004-06-21 20:22:03 +00002413 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0)
2414 .addImm(16).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002415 break;
Misha Brukman422791f2004-06-21 17:41:12 +00002416 case Type::IntTyID:
2417 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
2418 break;
2419 case Type::UIntTyID:
2420 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
2421 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002422 default: // No promotion needed...
2423 break;
2424 }
2425
2426 SrcReg = TmpReg;
Misha Brukman422791f2004-06-21 17:41:12 +00002427
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002428 // Spill the integer to memory and reload it from there.
Misha Brukman422791f2004-06-21 17:41:12 +00002429 // Also spill room for a special conversion constant
2430 int ConstantFrameIndex =
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002431 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2432 int ValueFrameIdx =
2433 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2434
Misha Brukman422791f2004-06-21 17:41:12 +00002435 unsigned constantHi = makeAnotherReg(Type::IntTy);
2436 unsigned constantLo = makeAnotherReg(Type::IntTy);
2437 unsigned ConstF = makeAnotherReg(Type::DoubleTy);
2438 unsigned TempF = makeAnotherReg(Type::DoubleTy);
2439
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002440 if (!SrcTy->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002441 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0)
2442 .addImm(0x4330);
Misha Brukman422791f2004-06-21 17:41:12 +00002443 BuildMI(*BB, IP, PPC32::ADDI, 2, constantLo).addReg(PPC32::R0).addImm(0);
Misha Brukman2fec9902004-06-21 20:22:03 +00002444 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2445 ConstantFrameIndex);
2446 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2447 ConstantFrameIndex, 4);
2448 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2449 ValueFrameIdx);
2450 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(SrcReg),
2451 ValueFrameIdx, 4);
2452 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2453 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002454 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
2455 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
2456 } else {
2457 unsigned TempLo = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00002458 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0)
2459 .addImm(0x4330);
2460 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantLo).addReg(PPC32::R0)
2461 .addImm(0x8000);
2462 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2463 ConstantFrameIndex);
2464 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2465 ConstantFrameIndex, 4);
2466 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2467 ValueFrameIdx);
Misha Brukman422791f2004-06-21 17:41:12 +00002468 BuildMI(*BB, IP, PPC32::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002469 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(TempLo),
2470 ValueFrameIdx, 4);
2471 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2472 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002473 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
Misha Brukman2fec9902004-06-21 20:22:03 +00002474 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF ).addReg(ConstF);
Misha Brukman422791f2004-06-21 17:41:12 +00002475 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002476 return;
2477 }
2478
2479 // Handle casts from floating point to integer now...
2480 if (SrcClass == cFP) {
2481
Misha Brukman422791f2004-06-21 17:41:12 +00002482 // emit library call
2483 if (DestClass == cLong) {
2484 std::vector<ValueRecord> Args;
2485 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002486 MachineInstr *TheCall =
2487 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("__fixdfdi", true);
Misha Brukman422791f2004-06-21 17:41:12 +00002488 doCall(ValueRecord(DestReg, DestTy), TheCall, Args);
2489 return;
2490 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002491
2492 int ValueFrameIdx =
2493 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2494
Misha Brukman422791f2004-06-21 17:41:12 +00002495 // load into 32 bit value, and then truncate as necessary
2496 // FIXME: This is wrong for unsigned dest types
2497 //if (DestTy->isSigned()) {
2498 unsigned TempReg = makeAnotherReg(Type::DoubleTy);
2499 BuildMI(*BB, IP, PPC32::FCTIWZ, 1, TempReg).addReg(SrcReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002500 addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3)
2501 .addReg(TempReg), ValueFrameIdx);
2502 addFrameReference(BuildMI(*BB, IP, PPC32::LWZ, 2, DestReg),
2503 ValueFrameIdx+4);
Misha Brukman422791f2004-06-21 17:41:12 +00002504 //} else {
2505 //}
2506
2507 // FIXME: Truncate return value
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002508 return;
2509 }
2510
2511 // Anything we haven't handled already, we can't (yet) handle at all.
2512 assert(0 && "Unhandled cast instruction!");
2513 abort();
2514}
2515
2516/// visitVANextInst - Implement the va_next instruction...
2517///
2518void ISel::visitVANextInst(VANextInst &I) {
2519 unsigned VAList = getReg(I.getOperand(0));
2520 unsigned DestReg = getReg(I);
2521
2522 unsigned Size;
Misha Brukman358829f2004-06-21 17:25:55 +00002523 switch (I.getArgType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002524 default:
2525 std::cerr << I;
2526 assert(0 && "Error: bad type for va_next instruction!");
2527 return;
2528 case Type::PointerTyID:
2529 case Type::UIntTyID:
2530 case Type::IntTyID:
2531 Size = 4;
2532 break;
2533 case Type::ULongTyID:
2534 case Type::LongTyID:
2535 case Type::DoubleTyID:
2536 Size = 8;
2537 break;
2538 }
2539
2540 // Increment the VAList pointer...
2541 BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addImm(Size);
2542}
2543
2544void ISel::visitVAArgInst(VAArgInst &I) {
2545 unsigned VAList = getReg(I.getOperand(0));
2546 unsigned DestReg = getReg(I);
2547
Misha Brukman358829f2004-06-21 17:25:55 +00002548 switch (I.getType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002549 default:
2550 std::cerr << I;
2551 assert(0 && "Error: bad type for va_next instruction!");
2552 return;
2553 case Type::PointerTyID:
2554 case Type::UIntTyID:
2555 case Type::IntTyID:
2556 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2557 break;
2558 case Type::ULongTyID:
2559 case Type::LongTyID:
2560 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2561 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(VAList);
2562 break;
2563 case Type::DoubleTyID:
2564 BuildMI(BB, PPC32::LFD, 2, DestReg).addImm(0).addReg(VAList);
2565 break;
2566 }
2567}
2568
2569/// visitGetElementPtrInst - instruction-select GEP instructions
2570///
2571void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
2572 unsigned outputReg = getReg(I);
Misha Brukman2fec9902004-06-21 20:22:03 +00002573 emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(),
2574 outputReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002575}
2576
2577void ISel::emitGEPOperation(MachineBasicBlock *MBB,
2578 MachineBasicBlock::iterator IP,
2579 Value *Src, User::op_iterator IdxBegin,
2580 User::op_iterator IdxEnd, unsigned TargetReg) {
2581 const TargetData &TD = TM.getTargetData();
2582 if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src))
2583 Src = CPR->getValue();
2584
2585 std::vector<Value*> GEPOps;
2586 GEPOps.resize(IdxEnd-IdxBegin+1);
2587 GEPOps[0] = Src;
2588 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
2589
2590 std::vector<const Type*> GEPTypes;
2591 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
2592 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
2593
2594 // Keep emitting instructions until we consume the entire GEP instruction.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002595 while (!GEPOps.empty()) {
2596 if (GEPTypes.empty()) {
2597 // Load the base pointer into a register.
2598 unsigned Reg = getReg(Src, MBB, IP);
2599 BuildMI(*MBB, IP, PPC32::OR, 2, TargetReg).addReg(Reg).addReg(Reg);
2600 break; // we are now done
2601 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002602 // It's an array or pointer access: [ArraySize x ElementType].
2603 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
2604 Value *idx = GEPOps.back();
2605 GEPOps.pop_back(); // Consume a GEP operand
2606 GEPTypes.pop_back();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002607
Misha Brukman2fec9902004-06-21 20:22:03 +00002608 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002609 // operand. Handle this case directly now...
Misha Brukman2fec9902004-06-21 20:22:03 +00002610 if (CastInst *CI = dyn_cast<CastInst>(idx))
2611 if (CI->getOperand(0)->getType() == Type::IntTy ||
2612 CI->getOperand(0)->getType() == Type::UIntTy)
2613 idx = CI->getOperand(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002614
Misha Brukman2fec9902004-06-21 20:22:03 +00002615 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
2616 // must find the size of the pointed-to type (Not coincidentally, the next
2617 // type is the type of the elements in the array).
2618 const Type *ElTy = SqTy->getElementType();
2619 unsigned elementSize = TD.getTypeSize(ElTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002620
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002621 if (idx == Constant::getNullValue(idx->getType())) {
2622 // GEP with idx 0 is a no-op
2623 } else if (elementSize == 1) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002624 // If the element size is 1, we don't have to multiply, just add
2625 unsigned idxReg = getReg(idx, MBB, IP);
2626 unsigned Reg = makeAnotherReg(Type::UIntTy);
2627 BuildMI(*MBB, IP, PPC32::ADD, 2,TargetReg).addReg(Reg).addReg(idxReg);
2628 --IP; // Insert the next instruction before this one.
2629 TargetReg = Reg; // Codegen the rest of the GEP into this
2630 } else {
2631 unsigned idxReg = getReg(idx, MBB, IP);
2632 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002633
Misha Brukman2fec9902004-06-21 20:22:03 +00002634 // Make sure we can back the iterator up to point to the first
2635 // instruction emitted.
2636 MachineBasicBlock::iterator BeforeIt = IP;
2637 if (IP == MBB->begin())
2638 BeforeIt = MBB->end();
2639 else
2640 --BeforeIt;
2641 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002642
Misha Brukman2fec9902004-06-21 20:22:03 +00002643 // Emit an ADD to add OffsetReg to the basePtr.
2644 unsigned Reg = makeAnotherReg(Type::UIntTy);
2645 BuildMI(*MBB, IP, PPC32::ADD, 2, TargetReg).addReg(Reg).addReg(OffsetReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002646
Misha Brukman2fec9902004-06-21 20:22:03 +00002647 // Step to the first instruction of the multiply.
2648 if (BeforeIt == MBB->end())
2649 IP = MBB->begin();
2650 else
2651 IP = ++BeforeIt;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002652
Misha Brukman2fec9902004-06-21 20:22:03 +00002653 TargetReg = Reg; // Codegen the rest of the GEP into this
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002654 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002655 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002656}
2657
2658/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2659/// frame manager, otherwise do it the hard way.
2660///
2661void ISel::visitAllocaInst(AllocaInst &I) {
2662 // If this is a fixed size alloca in the entry block for the function, we
2663 // statically stack allocate the space, so we don't need to do anything here.
2664 //
2665 if (dyn_castFixedAlloca(&I)) return;
2666
2667 // Find the data size of the alloca inst's getAllocatedType.
2668 const Type *Ty = I.getAllocatedType();
2669 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2670
2671 // Create a register to hold the temporary result of multiplying the type size
2672 // constant by the variable amount.
2673 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2674 unsigned SrcReg1 = getReg(I.getArraySize());
2675
2676 // TotalSizeReg = mul <numelements>, <TypeSize>
2677 MachineBasicBlock::iterator MBBI = BB->end();
2678 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
2679
2680 // AddedSize = add <TotalSizeReg>, 15
2681 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2682 BuildMI(BB, PPC32::ADD, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
2683
2684 // AlignedSize = and <AddedSize>, ~15
2685 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00002686 BuildMI(BB, PPC32::RLWNM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
2687 .addImm(0).addImm(27);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002688
2689 // Subtract size from stack pointer, thereby allocating some space.
2690 BuildMI(BB, PPC32::SUB, 2, PPC32::R1).addReg(PPC32::R1).addReg(AlignedSize);
2691
2692 // Put a pointer to the space into the result register, by copying
2693 // the stack pointer.
2694 BuildMI(BB, PPC32::OR, 2, getReg(I)).addReg(PPC32::R1).addReg(PPC32::R1);
2695
2696 // Inform the Frame Information that we have just allocated a variable-sized
2697 // object.
2698 F->getFrameInfo()->CreateVariableSizedObject();
2699}
2700
2701/// visitMallocInst - Malloc instructions are code generated into direct calls
2702/// to the library malloc.
2703///
2704void ISel::visitMallocInst(MallocInst &I) {
2705 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2706 unsigned Arg;
2707
2708 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2709 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2710 } else {
2711 Arg = makeAnotherReg(Type::UIntTy);
2712 unsigned Op0Reg = getReg(I.getOperand(0));
2713 MachineBasicBlock::iterator MBBI = BB->end();
2714 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
2715 }
2716
2717 std::vector<ValueRecord> Args;
2718 Args.push_back(ValueRecord(Arg, Type::UIntTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002719 MachineInstr *TheCall =
2720 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("malloc", true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002721 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
2722}
2723
2724
2725/// visitFreeInst - Free instructions are code gen'd to call the free libc
2726/// function.
2727///
2728void ISel::visitFreeInst(FreeInst &I) {
2729 std::vector<ValueRecord> Args;
2730 Args.push_back(ValueRecord(I.getOperand(0)));
Misha Brukman2fec9902004-06-21 20:22:03 +00002731 MachineInstr *TheCall =
2732 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("free", true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002733 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
2734}
2735
2736/// createPPC32SimpleInstructionSelector - This pass converts an LLVM function
2737/// into a machine code representation is a very simple peep-hole fashion. The
2738/// generated code sucks but the implementation is nice and simple.
2739///
2740FunctionPass *llvm::createPPCSimpleInstructionSelector(TargetMachine &TM) {
2741 return new ISel(TM);
2742}