blob: ccee43d6bba915c7fb09b46f1ca8234445089e99 [file] [log] [blame]
Chris Lattner1e60a912003-12-20 01:22:19 +00001//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswell856ba762003-10-21 15:17:13 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswell856ba762003-10-21 15:17:13 +00008//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3501fea2003-01-14 22:00:31 +000010// This file contains the X86 implementation of the TargetInstrInfo class.
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
14#ifndef X86INSTRUCTIONINFO_H
15#define X86INSTRUCTIONINFO_H
16
Chris Lattner3501fea2003-01-14 22:00:31 +000017#include "llvm/Target/TargetInstrInfo.h"
Chris Lattner72614082002-10-25 22:55:53 +000018#include "X86RegisterInfo.h"
Bill Wendling6259d512007-12-30 03:18:58 +000019#include "llvm/ADT/IndexedMap.h"
20#include "llvm/Target/MRegisterInfo.h"
Chris Lattner72614082002-10-25 22:55:53 +000021
Brian Gaeked0fde302003-11-11 22:41:34 +000022namespace llvm {
Evan Cheng25ab6902006-09-08 06:48:29 +000023 class X86RegisterInfo;
Evan Chengaa3c1412006-05-30 21:45:53 +000024 class X86TargetMachine;
Brian Gaeked0fde302003-11-11 22:41:34 +000025
Chris Lattner7fbe9722006-10-20 17:42:20 +000026namespace X86 {
27 // X86 specific condition code. These correspond to X86_*_COND in
28 // X86InstrInfo.td. They must be kept in synch.
29 enum CondCode {
30 COND_A = 0,
31 COND_AE = 1,
32 COND_B = 2,
33 COND_BE = 3,
34 COND_E = 4,
35 COND_G = 5,
36 COND_GE = 6,
37 COND_L = 7,
38 COND_LE = 8,
39 COND_NE = 9,
40 COND_NO = 10,
41 COND_NP = 11,
42 COND_NS = 12,
43 COND_O = 13,
44 COND_P = 14,
45 COND_S = 15,
46 COND_INVALID
47 };
48
49 // Turn condition code into conditional branch opcode.
50 unsigned GetCondBranchFromCond(CondCode CC);
Chris Lattner9cd68752006-10-21 05:52:40 +000051
52 /// GetOppositeBranchCondition - Return the inverse of the specified cond,
53 /// e.g. turning COND_E to COND_NE.
54 CondCode GetOppositeBranchCondition(X86::CondCode CC);
55
Chris Lattner7fbe9722006-10-20 17:42:20 +000056}
57
Chris Lattner9d177402002-10-30 01:09:34 +000058/// X86II - This namespace holds all of the target specific flags that
59/// instruction info tracks.
60///
61namespace X86II {
62 enum {
Chris Lattner6aab9cf2002-11-18 05:37:11 +000063 //===------------------------------------------------------------------===//
64 // Instruction types. These are the standard/most common forms for X86
65 // instructions.
66 //
67
Chris Lattner4c299f52002-12-25 05:09:59 +000068 // PseudoFrm - This represents an instruction that is a pseudo instruction
69 // or one that has not been implemented yet. It is illegal to code generate
70 // it, but tolerated for intermediate implementation stages.
71 Pseudo = 0,
72
Chris Lattner6aab9cf2002-11-18 05:37:11 +000073 /// Raw - This form is for instructions that don't have any operands, so
74 /// they are just a fixed opcode value, like 'leave'.
Chris Lattner4c299f52002-12-25 05:09:59 +000075 RawFrm = 1,
Misha Brukman0e0a7a452005-04-21 23:38:14 +000076
Chris Lattner6aab9cf2002-11-18 05:37:11 +000077 /// AddRegFrm - This form is used for instructions like 'push r32' that have
78 /// their one register operand added to their opcode.
Chris Lattner4c299f52002-12-25 05:09:59 +000079 AddRegFrm = 2,
Chris Lattner6aab9cf2002-11-18 05:37:11 +000080
81 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
82 /// to specify a destination, which in this case is a register.
83 ///
Chris Lattner4c299f52002-12-25 05:09:59 +000084 MRMDestReg = 3,
Chris Lattner6aab9cf2002-11-18 05:37:11 +000085
86 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
87 /// to specify a destination, which in this case is memory.
88 ///
Chris Lattner4c299f52002-12-25 05:09:59 +000089 MRMDestMem = 4,
Chris Lattner6aab9cf2002-11-18 05:37:11 +000090
91 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
92 /// to specify a source, which in this case is a register.
93 ///
Chris Lattner4c299f52002-12-25 05:09:59 +000094 MRMSrcReg = 5,
Chris Lattner6aab9cf2002-11-18 05:37:11 +000095
96 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
97 /// to specify a source, which in this case is memory.
98 ///
Chris Lattner4c299f52002-12-25 05:09:59 +000099 MRMSrcMem = 6,
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000100
Alkis Evlogimenos169584e2004-02-27 18:55:12 +0000101 /// MRM[0-7][rm] - These forms are used to represent instructions that use
Chris Lattner85b39f22002-11-21 17:08:49 +0000102 /// a Mod/RM byte, and use the middle field to hold extended opcode
103 /// information. In the intel manual these are represented as /0, /1, ...
104 ///
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000105
Chris Lattner85b39f22002-11-21 17:08:49 +0000106 // First, instructions that operate on a register r/m operand...
Alkis Evlogimenos169584e2004-02-27 18:55:12 +0000107 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, // Format /0 /1 /2 /3
108 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, // Format /4 /5 /6 /7
Chris Lattner85b39f22002-11-21 17:08:49 +0000109
110 // Next, instructions that operate on a memory r/m operand...
Alkis Evlogimenos169584e2004-02-27 18:55:12 +0000111 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3
112 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7
Chris Lattner85b39f22002-11-21 17:08:49 +0000113
Evan Cheng3c55c542006-02-01 06:13:50 +0000114 // MRMInitReg - This form is used for instructions whose source and
115 // destinations are the same register.
116 MRMInitReg = 32,
117
118 FormMask = 63,
Chris Lattner6aab9cf2002-11-18 05:37:11 +0000119
120 //===------------------------------------------------------------------===//
121 // Actual flags...
122
Chris Lattner11e53e32002-11-21 01:32:55 +0000123 // OpSize - Set if this instruction requires an operand size prefix (0x66),
124 // which most often indicates that the instruction operates on 16 bit data
125 // instead of 32 bit data.
Evan Cheng3c55c542006-02-01 06:13:50 +0000126 OpSize = 1 << 6,
Brian Gaeke86764d72002-12-05 08:30:40 +0000127
Evan Cheng25ab6902006-09-08 06:48:29 +0000128 // AsSize - Set if this instruction requires an operand size prefix (0x67),
129 // which most often indicates that the instruction address 16 bit address
130 // instead of 32 bit address (or 32 bit address in 64 bit mode).
131 AdSize = 1 << 7,
132
133 //===------------------------------------------------------------------===//
Chris Lattner4c299f52002-12-25 05:09:59 +0000134 // Op0Mask - There are several prefix bytes that are used to form two byte
Chris Lattner915e5e52004-02-12 17:53:22 +0000135 // opcodes. These are currently 0x0F, 0xF3, and 0xD8-0xDF. This mask is
136 // used to obtain the setting of this field. If no bits in this field is
137 // set, there is no prefix byte for obtaining a multibyte opcode.
Chris Lattner4c299f52002-12-25 05:09:59 +0000138 //
Evan Cheng25ab6902006-09-08 06:48:29 +0000139 Op0Shift = 8,
Chris Lattner2959b6e2003-08-06 15:32:20 +0000140 Op0Mask = 0xF << Op0Shift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000141
142 // TB - TwoByte - Set if this instruction has a two byte opcode, which
143 // starts with a 0x0F byte before the real opcode.
Chris Lattner2959b6e2003-08-06 15:32:20 +0000144 TB = 1 << Op0Shift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000145
Chris Lattner915e5e52004-02-12 17:53:22 +0000146 // REP - The 0xF3 prefix byte indicating repetition of the following
147 // instruction.
148 REP = 2 << Op0Shift,
149
Chris Lattner4c299f52002-12-25 05:09:59 +0000150 // D8-DF - These escape opcodes are used by the floating point unit. These
151 // values must remain sequential.
Chris Lattner915e5e52004-02-12 17:53:22 +0000152 D8 = 3 << Op0Shift, D9 = 4 << Op0Shift,
153 DA = 5 << Op0Shift, DB = 6 << Op0Shift,
154 DC = 7 << Op0Shift, DD = 8 << Op0Shift,
155 DE = 9 << Op0Shift, DF = 10 << Op0Shift,
Jeff Cohen9eb59ec2005-07-27 05:53:44 +0000156
Nate Begemanf63be7d2005-07-06 18:59:04 +0000157 // XS, XD - These prefix codes are for single and double precision scalar
158 // floating point operations performed in the SSE registers.
Bill Wendlingbb1ee052007-04-10 22:10:25 +0000159 XD = 11 << Op0Shift, XS = 12 << Op0Shift,
160
161 // T8, TA - Prefix after the 0x0F prefix.
162 T8 = 13 << Op0Shift, TA = 14 << Op0Shift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000163
Chris Lattner0c514f42003-01-13 00:49:24 +0000164 //===------------------------------------------------------------------===//
Evan Cheng25ab6902006-09-08 06:48:29 +0000165 // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
166 // They are used to specify GPRs and SSE registers, 64-bit operand size,
167 // etc. We only cares about REX.W and REX.R bits and only the former is
168 // statically determined.
169 //
170 REXShift = 12,
171 REX_W = 1 << REXShift,
172
173 //===------------------------------------------------------------------===//
174 // This three-bit field describes the size of an immediate operand. Zero is
Alkis Evlogimenos5ab29b52004-02-28 22:02:05 +0000175 // unused so that we can tell if we forgot to set a value.
Evan Cheng25ab6902006-09-08 06:48:29 +0000176 ImmShift = 13,
177 ImmMask = 7 << ImmShift,
Alkis Evlogimenos5ab29b52004-02-28 22:02:05 +0000178 Imm8 = 1 << ImmShift,
179 Imm16 = 2 << ImmShift,
180 Imm32 = 3 << ImmShift,
Evan Cheng25ab6902006-09-08 06:48:29 +0000181 Imm64 = 4 << ImmShift,
Chris Lattner4c299f52002-12-25 05:09:59 +0000182
Chris Lattner0c514f42003-01-13 00:49:24 +0000183 //===------------------------------------------------------------------===//
184 // FP Instruction Classification... Zero is non-fp instruction.
185
Chris Lattner2959b6e2003-08-06 15:32:20 +0000186 // FPTypeMask - Mask for all of the FP types...
Evan Cheng25ab6902006-09-08 06:48:29 +0000187 FPTypeShift = 16,
Chris Lattner2959b6e2003-08-06 15:32:20 +0000188 FPTypeMask = 7 << FPTypeShift,
189
Chris Lattner79b13732004-01-30 22:24:18 +0000190 // NotFP - The default, set for instructions that do not use FP registers.
191 NotFP = 0 << FPTypeShift,
192
Chris Lattner0c514f42003-01-13 00:49:24 +0000193 // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
Chris Lattner2959b6e2003-08-06 15:32:20 +0000194 ZeroArgFP = 1 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000195
196 // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
Chris Lattner2959b6e2003-08-06 15:32:20 +0000197 OneArgFP = 2 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000198
199 // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
200 // result back to ST(0). For example, fcos, fsqrt, etc.
201 //
Chris Lattner2959b6e2003-08-06 15:32:20 +0000202 OneArgFPRW = 3 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000203
204 // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
205 // explicit argument, storing the result to either ST(0) or the implicit
206 // argument. For example: fadd, fsub, fmul, etc...
Chris Lattner2959b6e2003-08-06 15:32:20 +0000207 TwoArgFP = 4 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000208
Chris Lattnerab8decc2004-06-11 04:41:24 +0000209 // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
210 // explicit argument, but have no destination. Example: fucom, fucomi, ...
211 CompareFP = 5 << FPTypeShift,
212
Chris Lattner1c54a852004-03-31 22:02:13 +0000213 // CondMovFP - "2 operand" floating point conditional move instructions.
Chris Lattnerab8decc2004-06-11 04:41:24 +0000214 CondMovFP = 6 << FPTypeShift,
Chris Lattner1c54a852004-03-31 22:02:13 +0000215
Chris Lattner0c514f42003-01-13 00:49:24 +0000216 // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
Chris Lattnerab8decc2004-06-11 04:41:24 +0000217 SpecialFP = 7 << FPTypeShift,
Chris Lattner0c514f42003-01-13 00:49:24 +0000218
Evan Cheng25ab6902006-09-08 06:48:29 +0000219 // Bits 19 -> 23 are unused
220 OpcodeShift = 24,
Chris Lattnerd74ea2b2006-05-24 17:04:05 +0000221 OpcodeMask = 0xFF << OpcodeShift
Chris Lattner9d177402002-10-30 01:09:34 +0000222 };
223}
224
Chris Lattner64105522008-01-01 01:03:04 +0000225class X86InstrInfo : public TargetInstrInfoImpl {
Evan Chengaa3c1412006-05-30 21:45:53 +0000226 X86TargetMachine &TM;
Chris Lattner72614082002-10-25 22:55:53 +0000227 const X86RegisterInfo RI;
Owen Anderson43dbe052008-01-07 01:35:02 +0000228
229 /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
230 /// RegOp2MemOpTable2 - Load / store folding opcode maps.
231 ///
232 DenseMap<unsigned*, unsigned> RegOp2MemOpTable2Addr;
233 DenseMap<unsigned*, unsigned> RegOp2MemOpTable0;
234 DenseMap<unsigned*, unsigned> RegOp2MemOpTable1;
235 DenseMap<unsigned*, unsigned> RegOp2MemOpTable2;
236
237 /// MemOp2RegOpTable - Load / store unfolding opcode map.
238 ///
239 DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
240
Chris Lattner72614082002-10-25 22:55:53 +0000241public:
Evan Chengaa3c1412006-05-30 21:45:53 +0000242 X86InstrInfo(X86TargetMachine &tm);
Chris Lattner72614082002-10-25 22:55:53 +0000243
Chris Lattner3501fea2003-01-14 22:00:31 +0000244 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
Chris Lattner72614082002-10-25 22:55:53 +0000245 /// such, whenever a client has an instance of instruction info, it should
246 /// always be able to get register info as well (through this method).
247 ///
248 virtual const MRegisterInfo &getRegisterInfo() const { return RI; }
249
Alkis Evlogimenos5e300022003-12-28 17:35:08 +0000250 // Return true if the instruction is a register to register move and
251 // leave the source and dest operands in the passed parameters.
252 //
Chris Lattner40839602006-02-02 20:12:32 +0000253 bool isMoveInstr(const MachineInstr& MI, unsigned& sourceReg,
254 unsigned& destReg) const;
255 unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const;
256 unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const;
Bill Wendling041b3f82007-12-08 23:58:46 +0000257 bool isReallyTriviallyReMaterializable(MachineInstr *MI) const;
Bill Wendling627c00b2007-12-17 23:07:56 +0000258 bool isReallySideEffectFree(MachineInstr *MI) const;
259
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000260 /// convertToThreeAddress - This method must be implemented by targets that
261 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
262 /// may be able to convert a two-address instruction into a true
263 /// three-address instruction on demand. This allows the X86 target (for
264 /// example) to convert ADD and SHL instructions into LEA instructions if they
265 /// would require register copies due to two-addressness.
266 ///
267 /// This method returns a null pointer if the transformation cannot be
268 /// performed, otherwise it returns the new instruction.
269 ///
Evan Chengba59a1e2006-12-01 21:52:58 +0000270 virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
271 MachineBasicBlock::iterator &MBBI,
272 LiveVariables &LV) const;
Chris Lattnerbcea4d62005-01-02 02:37:07 +0000273
Chris Lattner41e431b2005-01-19 07:11:01 +0000274 /// commuteInstruction - We have a few instructions that must be hacked on to
275 /// commute them.
276 ///
277 virtual MachineInstr *commuteInstruction(MachineInstr *MI) const;
278
Chris Lattner7fbe9722006-10-20 17:42:20 +0000279 // Branch analysis.
Dale Johannesen318093b2007-06-14 22:03:45 +0000280 virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
Chris Lattner7fbe9722006-10-20 17:42:20 +0000281 virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
282 MachineBasicBlock *&FBB,
283 std::vector<MachineOperand> &Cond) const;
Evan Cheng6ae36262007-05-18 00:18:17 +0000284 virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
285 virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
286 MachineBasicBlock *FBB,
287 const std::vector<MachineOperand> &Cond) const;
Owen Andersond10fd972007-12-31 06:32:00 +0000288 virtual void copyRegToReg(MachineBasicBlock &MBB,
289 MachineBasicBlock::iterator MI,
290 unsigned DestReg, unsigned SrcReg,
291 const TargetRegisterClass *DestRC,
292 const TargetRegisterClass *SrcRC) const;
Owen Andersonf6372aa2008-01-01 21:11:32 +0000293 virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
294 MachineBasicBlock::iterator MI,
295 unsigned SrcReg, bool isKill, int FrameIndex,
296 const TargetRegisterClass *RC) const;
297
298 virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
299 SmallVectorImpl<MachineOperand> &Addr,
300 const TargetRegisterClass *RC,
301 SmallVectorImpl<MachineInstr*> &NewMIs) const;
302
303 virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
304 MachineBasicBlock::iterator MI,
305 unsigned DestReg, int FrameIndex,
306 const TargetRegisterClass *RC) const;
307
308 virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
309 SmallVectorImpl<MachineOperand> &Addr,
310 const TargetRegisterClass *RC,
311 SmallVectorImpl<MachineInstr*> &NewMIs) const;
Owen Andersond94b6a12008-01-04 23:57:37 +0000312
313 virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB,
314 MachineBasicBlock::iterator MI,
315 const std::vector<CalleeSavedInfo> &CSI) const;
316
317 virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
318 MachineBasicBlock::iterator MI,
319 const std::vector<CalleeSavedInfo> &CSI) const;
320
Owen Anderson43dbe052008-01-07 01:35:02 +0000321 /// foldMemoryOperand - If this target supports it, fold a load or store of
322 /// the specified stack slot into the specified machine instruction for the
323 /// specified operand(s). If this is possible, the target should perform the
324 /// folding and return true, otherwise it should return false. If it folds
325 /// the instruction, it is likely that the MachineInstruction the iterator
326 /// references has been changed.
327 virtual MachineInstr* foldMemoryOperand(MachineInstr* MI,
328 SmallVectorImpl<unsigned> &Ops,
329 int FrameIndex) const;
330
331 /// foldMemoryOperand - Same as the previous version except it allows folding
332 /// of any load and store from / to any address, not just from a specific
333 /// stack slot.
334 virtual MachineInstr* foldMemoryOperand(MachineInstr* MI,
335 SmallVectorImpl<unsigned> &Ops,
336 MachineInstr* LoadMI) const;
337
338 /// canFoldMemoryOperand - Returns true if the specified load / store is
339 /// folding is possible.
340 virtual bool canFoldMemoryOperand(MachineInstr*, SmallVectorImpl<unsigned> &) const;
341
342 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
343 /// a store or a load and a store into two or more instruction. If this is
344 /// possible, returns true as well as the new instructions by reference.
345 virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
346 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
347 SmallVectorImpl<MachineInstr*> &NewMIs) const;
348
349 virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
350 SmallVectorImpl<SDNode*> &NewNodes) const;
351
352 /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
353 /// instruction after load / store are unfolded from an instruction of the
354 /// specified opcode. It returns zero if the specified unfolding is not
355 /// possible.
356 virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
357 bool UnfoldLoad, bool UnfoldStore) const;
358
Chris Lattnerc24ff8e2006-10-28 17:29:57 +0000359 virtual bool BlockHasNoFallThrough(MachineBasicBlock &MBB) const;
Chris Lattner7fbe9722006-10-20 17:42:20 +0000360 virtual bool ReverseBranchCondition(std::vector<MachineOperand> &Cond) const;
Chris Lattner41e431b2005-01-19 07:11:01 +0000361
Evan Cheng25ab6902006-09-08 06:48:29 +0000362 const TargetRegisterClass *getPointerRegClass() const;
363
Chris Lattnerf21dfcd2002-11-18 06:56:24 +0000364 // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
Duncan Sandsee465742007-08-29 19:01:20 +0000365 // specified machine instruction.
Chris Lattnerf21dfcd2002-11-18 06:56:24 +0000366 //
Evan Cheng19f2ffc2006-12-05 04:01:03 +0000367 unsigned char getBaseOpcodeFor(const TargetInstrDescriptor *TID) const {
368 return TID->TSFlags >> X86II::OpcodeShift;
Chris Lattner4d18d5c2003-08-03 21:56:22 +0000369 }
Duncan Sandsee465742007-08-29 19:01:20 +0000370 unsigned char getBaseOpcodeFor(MachineOpCode Opcode) const {
371 return getBaseOpcodeFor(&get(Opcode));
372 }
Owen Anderson43dbe052008-01-07 01:35:02 +0000373
374private:
375 MachineInstr* foldMemoryOperand(MachineInstr* MI,
376 unsigned OpNum,
377 SmallVector<MachineOperand,4> &MOs) const;
Chris Lattner72614082002-10-25 22:55:53 +0000378};
379
Brian Gaeked0fde302003-11-11 22:41:34 +0000380} // End llvm namespace
381
Chris Lattner72614082002-10-25 22:55:53 +0000382#endif