blob: 6adccb15e8a95c9ddcb158b0b90623b2121dd280 [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
2//
Chris Lattner3e130a22003-01-13 00:32:26 +00003// This file defines a simple peephole instruction selector for the x86 target
Chris Lattner72614082002-10-25 22:55:53 +00004//
5//===----------------------------------------------------------------------===//
6
7#include "X86.h"
Chris Lattner055c9652002-10-29 21:05:24 +00008#include "X86InstrInfo.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +00009#include "X86InstrBuilder.h"
Chris Lattner72614082002-10-25 22:55:53 +000010#include "llvm/Function.h"
11#include "llvm/iTerminators.h"
Brian Gaeke1749d632002-11-07 17:59:21 +000012#include "llvm/iOperators.h"
Brian Gaekea1719c92002-10-31 23:03:59 +000013#include "llvm/iOther.h"
Chris Lattner51b49a92002-11-02 19:45:49 +000014#include "llvm/iPHINode.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +000015#include "llvm/iMemory.h"
Chris Lattner72614082002-10-25 22:55:53 +000016#include "llvm/Type.h"
Brian Gaeke20244b72002-12-12 15:33:40 +000017#include "llvm/DerivedTypes.h"
Chris Lattnerc5291f52002-10-27 21:16:59 +000018#include "llvm/Constants.h"
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000019#include "llvm/Pass.h"
Chris Lattner341a9372002-10-29 17:43:55 +000020#include "llvm/CodeGen/MachineFunction.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000021#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner94af4142002-12-25 05:13:53 +000022#include "llvm/CodeGen/SSARegMap.h"
Chris Lattneraa09b752002-12-28 21:08:28 +000023#include "llvm/CodeGen/MachineFrameInfo.h"
Chris Lattner3e130a22003-01-13 00:32:26 +000024#include "llvm/CodeGen/MachineConstantPool.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000025#include "llvm/Target/TargetMachine.h"
Chris Lattner72614082002-10-25 22:55:53 +000026#include "llvm/Support/InstVisitor.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000027#include "llvm/Target/MRegisterInfo.h"
28#include <map>
Chris Lattner72614082002-10-25 22:55:53 +000029
Chris Lattner333b2fa2002-12-13 10:09:43 +000030/// BMI - A special BuildMI variant that takes an iterator to insert the
31/// instruction at as well as a basic block.
Brian Gaeke71794c02002-12-13 11:22:48 +000032/// this is the version for when you have a destination register in mind.
33inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattner333b2fa2002-12-13 10:09:43 +000034 MachineBasicBlock::iterator &I,
35 MachineOpCode Opcode,
36 unsigned NumOperands,
37 unsigned DestReg) {
Chris Lattnerd7d38722002-12-13 13:04:04 +000038 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattner333b2fa2002-12-13 10:09:43 +000039 MachineInstr *MI = new MachineInstr(Opcode, NumOperands+1, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000040 I = MBB->insert(I, MI)+1;
Chris Lattner333b2fa2002-12-13 10:09:43 +000041 return MachineInstrBuilder(MI).addReg(DestReg, MOTy::Def);
42}
43
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000044/// BMI - A special BuildMI variant that takes an iterator to insert the
45/// instruction at as well as a basic block.
Brian Gaeke71794c02002-12-13 11:22:48 +000046inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000047 MachineBasicBlock::iterator &I,
48 MachineOpCode Opcode,
49 unsigned NumOperands) {
Chris Lattnerd7d38722002-12-13 13:04:04 +000050 assert(I > MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000051 MachineInstr *MI = new MachineInstr(Opcode, NumOperands, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000052 I = MBB->insert(I, MI)+1;
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000053 return MachineInstrBuilder(MI);
54}
55
Chris Lattner333b2fa2002-12-13 10:09:43 +000056
Chris Lattner72614082002-10-25 22:55:53 +000057namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000058 struct ISel : public FunctionPass, InstVisitor<ISel> {
59 TargetMachine &TM;
Chris Lattner341a9372002-10-29 17:43:55 +000060 MachineFunction *F; // The function we are compiling into
61 MachineBasicBlock *BB; // The current MBB we are compiling
Chris Lattner72614082002-10-25 22:55:53 +000062
Chris Lattner72614082002-10-25 22:55:53 +000063 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
64
Chris Lattner333b2fa2002-12-13 10:09:43 +000065 // MBBMap - Mapping between LLVM BB -> Machine BB
66 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
67
Chris Lattner3e130a22003-01-13 00:32:26 +000068 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
Chris Lattner72614082002-10-25 22:55:53 +000069
70 /// runOnFunction - Top level implementation of instruction selection for
71 /// the entire function.
72 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000073 bool runOnFunction(Function &Fn) {
Chris Lattner36b36032002-10-29 23:40:58 +000074 F = &MachineFunction::construct(&Fn, TM);
Chris Lattner333b2fa2002-12-13 10:09:43 +000075
Chris Lattner065faeb2002-12-28 20:24:02 +000076 // Create all of the machine basic blocks for the function...
Chris Lattner333b2fa2002-12-13 10:09:43 +000077 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
78 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
79
Chris Lattner14aa7fe2002-12-16 22:54:46 +000080 BB = &F->front();
Chris Lattner065faeb2002-12-28 20:24:02 +000081 LoadArgumentsToVirtualRegs(Fn);
Chris Lattner14aa7fe2002-12-16 22:54:46 +000082
Chris Lattner333b2fa2002-12-13 10:09:43 +000083 // Instruction select everything except PHI nodes
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000084 visit(Fn);
Chris Lattner333b2fa2002-12-13 10:09:43 +000085
86 // Select the PHI nodes
87 SelectPHINodes();
88
Chris Lattner72614082002-10-25 22:55:53 +000089 RegMap.clear();
Chris Lattner333b2fa2002-12-13 10:09:43 +000090 MBBMap.clear();
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000091 F = 0;
Chris Lattner72614082002-10-25 22:55:53 +000092 return false; // We never modify the LLVM itself.
93 }
94
Chris Lattnerf0eb7be2002-12-15 21:13:40 +000095 virtual const char *getPassName() const {
96 return "X86 Simple Instruction Selection";
97 }
98
Chris Lattner72614082002-10-25 22:55:53 +000099 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +0000100 /// block. This simply creates a new MachineBasicBlock to emit code into
101 /// and adds it to the current MachineFunction. Subsequent visit* for
102 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +0000103 ///
104 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000105 BB = MBBMap[&LLVM_BB];
Chris Lattner72614082002-10-25 22:55:53 +0000106 }
107
Chris Lattner065faeb2002-12-28 20:24:02 +0000108 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
109 /// from the stack into virtual registers.
110 ///
111 void LoadArgumentsToVirtualRegs(Function &F);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000112
113 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
114 /// because we have to generate our sources into the source basic blocks,
115 /// not the current one.
116 ///
117 void SelectPHINodes();
118
Chris Lattner72614082002-10-25 22:55:53 +0000119 // Visitation methods for various instructions. These methods simply emit
120 // fixed X86 code for each instruction.
121 //
Brian Gaekefa8d5712002-11-22 11:07:01 +0000122
123 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +0000124 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +0000125 void visitBranchInst(BranchInst &BI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000126
127 struct ValueRecord {
128 unsigned Reg;
129 const Type *Ty;
130 ValueRecord(unsigned R, const Type *T) : Reg(R), Ty(T) {}
131 };
132 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
133 const std::vector<ValueRecord> &Args);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000134 void visitCallInst(CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000135
136 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +0000137 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +0000138 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
139 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattner8a307e82002-12-16 19:32:50 +0000140 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +0000141 unsigned DestReg, const Type *DestTy,
142 unsigned Op0Reg, unsigned Op1Reg);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000143 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +0000144
Chris Lattnerf01729e2002-11-02 20:54:46 +0000145 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
146 void visitRem(BinaryOperator &B) { visitDivRem(B); }
147 void visitDivRem(BinaryOperator &B);
148
Chris Lattnere2954c82002-11-02 20:04:26 +0000149 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +0000150 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
151 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
152 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +0000153
Chris Lattner6d40c192003-01-16 16:43:00 +0000154 // Comparison operators...
155 void visitSetCondInst(SetCondInst &I);
156 bool EmitComparisonGetSignedness(unsigned OpNum, Value *Op0, Value *Op1);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000157
158 // Memory Instructions
Chris Lattner3e130a22003-01-13 00:32:26 +0000159 MachineInstr *doFPLoad(MachineBasicBlock *MBB,
160 MachineBasicBlock::iterator &MBBI,
161 const Type *Ty, unsigned DestReg);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000162 void visitLoadInst(LoadInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000163 void doFPStore(const Type *Ty, unsigned DestAddrReg, unsigned SrcReg);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000164 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000165 void visitGetElementPtrInst(GetElementPtrInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000166 void visitAllocaInst(AllocaInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000167 void visitMallocInst(MallocInst &I);
168 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000169
Chris Lattnere2954c82002-11-02 20:04:26 +0000170 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000171 void visitShiftInst(ShiftInst &I);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000172 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
Brian Gaekefa8d5712002-11-22 11:07:01 +0000173 void visitCastInst(CastInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000174
175 void visitInstruction(Instruction &I) {
176 std::cerr << "Cannot instruction select: " << I;
177 abort();
178 }
179
Brian Gaeke95780cc2002-12-13 07:56:18 +0000180 /// promote32 - Make a value 32-bits wide, and put it somewhere.
Chris Lattner3e130a22003-01-13 00:32:26 +0000181 ///
182 void promote32(unsigned targetReg, const ValueRecord &VR);
183
184 /// EmitByteSwap - Byteswap SrcReg into DestReg.
185 ///
186 void EmitByteSwap(unsigned DestReg, unsigned SrcReg, unsigned Class);
Brian Gaeke95780cc2002-12-13 07:56:18 +0000187
Chris Lattner3e130a22003-01-13 00:32:26 +0000188 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
189 /// constant expression GEP support.
190 ///
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000191 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator&IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000192 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000193 User::op_iterator IdxEnd, unsigned TargetReg);
194
Chris Lattnerc5291f52002-10-27 21:16:59 +0000195 /// copyConstantToRegister - Output the instructions required to put the
196 /// specified constant into the specified register.
197 ///
Chris Lattner8a307e82002-12-16 19:32:50 +0000198 void copyConstantToRegister(MachineBasicBlock *MBB,
199 MachineBasicBlock::iterator &MBBI,
200 Constant *C, unsigned Reg);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000201
Chris Lattner3e130a22003-01-13 00:32:26 +0000202 /// makeAnotherReg - This method returns the next register number we haven't
203 /// yet used.
204 ///
205 /// Long values are handled somewhat specially. They are always allocated
206 /// as pairs of 32 bit integer values. The register number returned is the
207 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
208 /// of the long value.
209 ///
Chris Lattnerc0812d82002-12-13 06:56:29 +0000210 unsigned makeAnotherReg(const Type *Ty) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000211 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
212 const TargetRegisterClass *RC =
213 TM.getRegisterInfo()->getRegClassForType(Type::IntTy);
214 // Create the lower part
215 F->getSSARegMap()->createVirtualRegister(RC);
216 // Create the upper part.
217 return F->getSSARegMap()->createVirtualRegister(RC)-1;
218 }
219
Chris Lattnerc0812d82002-12-13 06:56:29 +0000220 // Add the mapping of regnumber => reg class to MachineFunction
Chris Lattner94af4142002-12-25 05:13:53 +0000221 const TargetRegisterClass *RC =
222 TM.getRegisterInfo()->getRegClassForType(Ty);
Chris Lattner3e130a22003-01-13 00:32:26 +0000223 return F->getSSARegMap()->createVirtualRegister(RC);
Brian Gaeke20244b72002-12-12 15:33:40 +0000224 }
225
Chris Lattner72614082002-10-25 22:55:53 +0000226 /// getReg - This method turns an LLVM value into a register number. This
227 /// is guaranteed to produce the same register number for a particular value
228 /// every time it is queried.
229 ///
230 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000231 unsigned getReg(Value *V) {
232 // Just append to the end of the current bb.
233 MachineBasicBlock::iterator It = BB->end();
234 return getReg(V, BB, It);
235 }
Brian Gaeke71794c02002-12-13 11:22:48 +0000236 unsigned getReg(Value *V, MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000237 MachineBasicBlock::iterator &IPt) {
Chris Lattner72614082002-10-25 22:55:53 +0000238 unsigned &Reg = RegMap[V];
Misha Brukmand2cc0172002-11-20 00:58:23 +0000239 if (Reg == 0) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000240 Reg = makeAnotherReg(V->getType());
Misha Brukmand2cc0172002-11-20 00:58:23 +0000241 RegMap[V] = Reg;
Misha Brukmand2cc0172002-11-20 00:58:23 +0000242 }
Chris Lattner72614082002-10-25 22:55:53 +0000243
Chris Lattner6f8fd252002-10-27 21:23:43 +0000244 // If this operand is a constant, emit the code to copy the constant into
245 // the register here...
246 //
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000247 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattner8a307e82002-12-16 19:32:50 +0000248 copyConstantToRegister(MBB, IPt, C, Reg);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000249 RegMap.erase(V); // Assign a new name to this constant if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000250 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
251 // Move the address of the global into the register
Chris Lattner3e130a22003-01-13 00:32:26 +0000252 BMI(MBB, IPt, X86::MOVir32, 1, Reg).addGlobalAddress(GV);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000253 RegMap.erase(V); // Assign a new name to this address if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000254 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000255
Chris Lattner72614082002-10-25 22:55:53 +0000256 return Reg;
257 }
Chris Lattner72614082002-10-25 22:55:53 +0000258 };
259}
260
Chris Lattner43189d12002-11-17 20:07:45 +0000261/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
262/// Representation.
263///
264enum TypeClass {
Chris Lattner94af4142002-12-25 05:13:53 +0000265 cByte, cShort, cInt, cFP, cLong
Chris Lattner43189d12002-11-17 20:07:45 +0000266};
267
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000268/// getClass - Turn a primitive type into a "class" number which is based on the
269/// size of the type, and whether or not it is floating point.
270///
Chris Lattner43189d12002-11-17 20:07:45 +0000271static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000272 switch (Ty->getPrimitiveID()) {
273 case Type::SByteTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000274 case Type::UByteTyID: return cByte; // Byte operands are class #0
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000275 case Type::ShortTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000276 case Type::UShortTyID: return cShort; // Short operands are class #1
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000277 case Type::IntTyID:
278 case Type::UIntTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000279 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000280
Chris Lattner94af4142002-12-25 05:13:53 +0000281 case Type::FloatTyID:
282 case Type::DoubleTyID: return cFP; // Floating Point is #3
Chris Lattner3e130a22003-01-13 00:32:26 +0000283
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000284 case Type::LongTyID:
Chris Lattner3e130a22003-01-13 00:32:26 +0000285 case Type::ULongTyID: return cLong; // Longs are class #4
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000286 default:
287 assert(0 && "Invalid type to getClass!");
Chris Lattner43189d12002-11-17 20:07:45 +0000288 return cByte; // not reached
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000289 }
290}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000291
Chris Lattner6b993cc2002-12-15 08:02:15 +0000292// getClassB - Just like getClass, but treat boolean values as bytes.
293static inline TypeClass getClassB(const Type *Ty) {
294 if (Ty == Type::BoolTy) return cByte;
295 return getClass(Ty);
296}
297
Chris Lattner06925362002-11-17 21:56:38 +0000298
Chris Lattnerc5291f52002-10-27 21:16:59 +0000299/// copyConstantToRegister - Output the instructions required to put the
300/// specified constant into the specified register.
301///
Chris Lattner8a307e82002-12-16 19:32:50 +0000302void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
303 MachineBasicBlock::iterator &IP,
304 Constant *C, unsigned R) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000305 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
306 if (CE->getOpcode() == Instruction::GetElementPtr) {
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000307 emitGEPOperation(MBB, IP, CE->getOperand(0),
Chris Lattner333b2fa2002-12-13 10:09:43 +0000308 CE->op_begin()+1, CE->op_end(), R);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000309 return;
Chris Lattner4b12cde2003-04-21 21:33:44 +0000310 } else if (CE->getOpcode() == Instruction::Cast &&
311 isa<PointerType>(CE->getType()) &&
312 isa<PointerType>(CE->getOperand(0)->getType())) {
313 copyConstantToRegister(MBB, IP, cast<Constant>(CE->getOperand(0)), R);
314 return;
Chris Lattnerc0812d82002-12-13 06:56:29 +0000315 }
316
Brian Gaeke20244b72002-12-12 15:33:40 +0000317 std::cerr << "Offending expr: " << C << "\n";
Chris Lattner94af4142002-12-25 05:13:53 +0000318 assert(0 && "Constant expressions not yet handled!\n");
Brian Gaeke20244b72002-12-12 15:33:40 +0000319 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000320
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000321 if (C->getType()->isIntegral()) {
Chris Lattner6b993cc2002-12-15 08:02:15 +0000322 unsigned Class = getClassB(C->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +0000323
324 if (Class == cLong) {
325 // Copy the value into the register pair.
326 uint64_t Val;
327 if (C->getType()->isSigned())
328 Val = cast<ConstantSInt>(C)->getValue();
329 else
330 Val = cast<ConstantUInt>(C)->getValue();
331
332 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(Val & 0xFFFFFFFF);
333 BMI(MBB, IP, X86::MOVir32, 1, R+1).addZImm(Val >> 32);
334 return;
335 }
336
Chris Lattner94af4142002-12-25 05:13:53 +0000337 assert(Class <= cInt && "Type not handled yet!");
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000338
339 static const unsigned IntegralOpcodeTab[] = {
340 X86::MOVir8, X86::MOVir16, X86::MOVir32
341 };
342
Chris Lattner6b993cc2002-12-15 08:02:15 +0000343 if (C->getType() == Type::BoolTy) {
344 BMI(MBB, IP, X86::MOVir8, 1, R).addZImm(C == ConstantBool::True);
345 } else if (C->getType()->isSigned()) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000346 ConstantSInt *CSI = cast<ConstantSInt>(C);
Chris Lattner3e130a22003-01-13 00:32:26 +0000347 BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CSI->getValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000348 } else {
349 ConstantUInt *CUI = cast<ConstantUInt>(C);
Brian Gaeke71794c02002-12-13 11:22:48 +0000350 BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CUI->getValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000351 }
Chris Lattner94af4142002-12-25 05:13:53 +0000352 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
353 double Value = CFP->getValue();
354 if (Value == +0.0)
355 BMI(MBB, IP, X86::FLD0, 0, R);
356 else if (Value == +1.0)
357 BMI(MBB, IP, X86::FLD1, 0, R);
358 else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000359 // Otherwise we need to spill the constant to memory...
360 MachineConstantPool *CP = F->getConstantPool();
361 unsigned CPI = CP->getConstantPoolIndex(CFP);
362 addConstantPoolReference(doFPLoad(MBB, IP, CFP->getType(), R), CPI);
Chris Lattner94af4142002-12-25 05:13:53 +0000363 }
364
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000365 } else if (isa<ConstantPointerNull>(C)) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000366 // Copy zero (null pointer) to the register.
Brian Gaeke71794c02002-12-13 11:22:48 +0000367 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(0);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000368 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000369 unsigned SrcReg = getReg(CPR->getValue(), MBB, IP);
Brian Gaeke71794c02002-12-13 11:22:48 +0000370 BMI(MBB, IP, X86::MOVrr32, 1, R).addReg(SrcReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000371 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +0000372 std::cerr << "Offending constant: " << C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000373 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000374 }
375}
376
Chris Lattner065faeb2002-12-28 20:24:02 +0000377/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
378/// the stack into virtual registers.
379///
380void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
381 // Emit instructions to load the arguments... On entry to a function on the
382 // X86, the stack frame looks like this:
383 //
384 // [ESP] -- return address
Chris Lattner3e130a22003-01-13 00:32:26 +0000385 // [ESP + 4] -- first argument (leftmost lexically)
386 // [ESP + 8] -- second argument, if first argument is four bytes in size
Chris Lattner065faeb2002-12-28 20:24:02 +0000387 // ...
388 //
Chris Lattnerf158da22003-01-16 02:20:12 +0000389 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
Chris Lattneraa09b752002-12-28 21:08:28 +0000390 MachineFrameInfo *MFI = F->getFrameInfo();
Chris Lattner065faeb2002-12-28 20:24:02 +0000391
392 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
393 unsigned Reg = getReg(*I);
394
Chris Lattner065faeb2002-12-28 20:24:02 +0000395 int FI; // Frame object index
Chris Lattner065faeb2002-12-28 20:24:02 +0000396 switch (getClassB(I->getType())) {
397 case cByte:
Chris Lattneraa09b752002-12-28 21:08:28 +0000398 FI = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000399 addFrameReference(BuildMI(BB, X86::MOVmr8, 4, Reg), FI);
400 break;
401 case cShort:
Chris Lattneraa09b752002-12-28 21:08:28 +0000402 FI = MFI->CreateFixedObject(2, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000403 addFrameReference(BuildMI(BB, X86::MOVmr16, 4, Reg), FI);
404 break;
405 case cInt:
Chris Lattneraa09b752002-12-28 21:08:28 +0000406 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000407 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
408 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000409 case cLong:
410 FI = MFI->CreateFixedObject(8, ArgOffset);
411 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
412 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg+1), FI, 4);
413 ArgOffset += 4; // longs require 4 additional bytes
414 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000415 case cFP:
416 unsigned Opcode;
417 if (I->getType() == Type::FloatTy) {
418 Opcode = X86::FLDr32;
Chris Lattneraa09b752002-12-28 21:08:28 +0000419 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000420 } else {
421 Opcode = X86::FLDr64;
Chris Lattneraa09b752002-12-28 21:08:28 +0000422 FI = MFI->CreateFixedObject(8, ArgOffset);
Chris Lattner3e130a22003-01-13 00:32:26 +0000423 ArgOffset += 4; // doubles require 4 additional bytes
Chris Lattner065faeb2002-12-28 20:24:02 +0000424 }
425 addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
426 break;
427 default:
428 assert(0 && "Unhandled argument type!");
429 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000430 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000431 }
432}
433
434
Chris Lattner333b2fa2002-12-13 10:09:43 +0000435/// SelectPHINodes - Insert machine code to generate phis. This is tricky
436/// because we have to generate our sources into the source basic blocks, not
437/// the current one.
438///
439void ISel::SelectPHINodes() {
Chris Lattner3501fea2003-01-14 22:00:31 +0000440 const TargetInstrInfo &TII = TM.getInstrInfo();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000441 const Function &LF = *F->getFunction(); // The LLVM function...
442 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
443 const BasicBlock *BB = I;
444 MachineBasicBlock *MBB = MBBMap[I];
445
446 // Loop over all of the PHI nodes in the LLVM basic block...
447 unsigned NumPHIs = 0;
448 for (BasicBlock::const_iterator I = BB->begin();
449 PHINode *PN = (PHINode*)dyn_cast<PHINode>(&*I); ++I) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000450
Chris Lattner333b2fa2002-12-13 10:09:43 +0000451 // Create a new machine instr PHI node, and insert it.
Chris Lattner3e130a22003-01-13 00:32:26 +0000452 unsigned PHIReg = getReg(*PN);
453 MachineInstr *PhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg);
454 MBB->insert(MBB->begin()+NumPHIs++, PhiMI);
455
456 MachineInstr *LongPhiMI = 0;
457 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) {
458 LongPhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg+1);
459 MBB->insert(MBB->begin()+NumPHIs++, LongPhiMI);
460 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000461
462 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
463 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
464
465 // Get the incoming value into a virtual register. If it is not already
466 // available in a virtual register, insert the computation code into
467 // PredMBB
Chris Lattner92053632002-12-13 11:52:34 +0000468 //
Chris Lattner3e130a22003-01-13 00:32:26 +0000469 MachineBasicBlock::iterator PI = PredMBB->end();
470 while (PI != PredMBB->begin() &&
Chris Lattner3501fea2003-01-14 22:00:31 +0000471 TII.isTerminatorInstr((*(PI-1))->getOpcode()))
Chris Lattner3e130a22003-01-13 00:32:26 +0000472 --PI;
473 unsigned ValReg = getReg(PN->getIncomingValue(i), PredMBB, PI);
474 PhiMI->addRegOperand(ValReg);
475 PhiMI->addMachineBasicBlockOperand(PredMBB);
476 if (LongPhiMI) {
477 LongPhiMI->addRegOperand(ValReg+1);
478 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
479 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000480 }
481 }
482 }
483}
484
Chris Lattner6d40c192003-01-16 16:43:00 +0000485// canFoldSetCCIntoBranch - Return the setcc instruction if we can fold it into
486// the conditional branch instruction which is the only user of the cc
487// instruction. This is the case if the conditional branch is the only user of
488// the setcc, and if the setcc is in the same basic block as the conditional
489// branch. We also don't handle long arguments below, so we reject them here as
490// well.
491//
492static SetCondInst *canFoldSetCCIntoBranch(Value *V) {
493 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
494 if (SCI->use_size() == 1 && isa<BranchInst>(SCI->use_back()) &&
495 SCI->getParent() == cast<BranchInst>(SCI->use_back())->getParent()) {
496 const Type *Ty = SCI->getOperand(0)->getType();
497 if (Ty != Type::LongTy && Ty != Type::ULongTy)
498 return SCI;
499 }
500 return 0;
501}
Chris Lattner333b2fa2002-12-13 10:09:43 +0000502
Chris Lattner6d40c192003-01-16 16:43:00 +0000503// Return a fixed numbering for setcc instructions which does not depend on the
504// order of the opcodes.
505//
506static unsigned getSetCCNumber(unsigned Opcode) {
507 switch(Opcode) {
508 default: assert(0 && "Unknown setcc instruction!");
509 case Instruction::SetEQ: return 0;
510 case Instruction::SetNE: return 1;
511 case Instruction::SetLT: return 2;
Chris Lattner55f6fab2003-01-16 18:07:23 +0000512 case Instruction::SetGE: return 3;
513 case Instruction::SetGT: return 4;
514 case Instruction::SetLE: return 5;
Chris Lattner6d40c192003-01-16 16:43:00 +0000515 }
516}
Chris Lattner06925362002-11-17 21:56:38 +0000517
Chris Lattner6d40c192003-01-16 16:43:00 +0000518// LLVM -> X86 signed X86 unsigned
519// ----- ---------- ------------
520// seteq -> sete sete
521// setne -> setne setne
522// setlt -> setl setb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000523// setge -> setge setae
Chris Lattner6d40c192003-01-16 16:43:00 +0000524// setgt -> setg seta
525// setle -> setle setbe
Chris Lattner6d40c192003-01-16 16:43:00 +0000526static const unsigned SetCCOpcodeTab[2][6] = {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000527 {X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr},
528 {X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr},
Chris Lattner6d40c192003-01-16 16:43:00 +0000529};
530
531bool ISel::EmitComparisonGetSignedness(unsigned OpNum, Value *Op0, Value *Op1) {
532
Brian Gaeke1749d632002-11-07 17:59:21 +0000533 // The arguments are already supposed to be of the same type.
Chris Lattner6d40c192003-01-16 16:43:00 +0000534 const Type *CompTy = Op0->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +0000535 bool isSigned = CompTy->isSigned();
Chris Lattner6d40c192003-01-16 16:43:00 +0000536 unsigned reg1 = getReg(Op0);
537 unsigned reg2 = getReg(Op1);
Chris Lattner05093a52002-11-21 15:52:38 +0000538
Chris Lattner3e130a22003-01-13 00:32:26 +0000539 unsigned Class = getClassB(CompTy);
540 switch (Class) {
541 default: assert(0 && "Unknown type class!");
542 // Emit: cmp <var1>, <var2> (do the comparison). We can
543 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
544 // 32-bit.
545 case cByte:
546 BuildMI(BB, X86::CMPrr8, 2).addReg(reg1).addReg(reg2);
547 break;
548 case cShort:
549 BuildMI(BB, X86::CMPrr16, 2).addReg(reg1).addReg(reg2);
550 break;
551 case cInt:
552 BuildMI(BB, X86::CMPrr32, 2).addReg(reg1).addReg(reg2);
553 break;
554 case cFP:
555 BuildMI(BB, X86::FpUCOM, 2).addReg(reg1).addReg(reg2);
556 BuildMI(BB, X86::FNSTSWr8, 0);
557 BuildMI(BB, X86::SAHF, 1);
558 isSigned = false; // Compare with unsigned operators
559 break;
560
561 case cLong:
562 if (OpNum < 2) { // seteq, setne
563 unsigned LoTmp = makeAnotherReg(Type::IntTy);
564 unsigned HiTmp = makeAnotherReg(Type::IntTy);
565 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
566 BuildMI(BB, X86::XORrr32, 2, LoTmp).addReg(reg1).addReg(reg2);
567 BuildMI(BB, X86::XORrr32, 2, HiTmp).addReg(reg1+1).addReg(reg2+1);
568 BuildMI(BB, X86::ORrr32, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
569 break; // Allow the sete or setne to be generated from flags set by OR
570 } else {
571 // Emit a sequence of code which compares the high and low parts once
572 // each, then uses a conditional move to handle the overflow case. For
573 // example, a setlt for long would generate code like this:
574 //
575 // AL = lo(op1) < lo(op2) // Signedness depends on operands
576 // BL = hi(op1) < hi(op2) // Always unsigned comparison
577 // dest = hi(op1) == hi(op2) ? AL : BL;
578 //
579
Chris Lattner6d40c192003-01-16 16:43:00 +0000580 // FIXME: This would be much better if we had hierarchical register
Chris Lattner3e130a22003-01-13 00:32:26 +0000581 // classes! Until then, hardcode registers so that we can deal with their
582 // aliases (because we don't have conditional byte moves).
583 //
584 BuildMI(BB, X86::CMPrr32, 2).addReg(reg1).addReg(reg2);
Chris Lattner6d40c192003-01-16 16:43:00 +0000585 BuildMI(BB, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
Chris Lattner3e130a22003-01-13 00:32:26 +0000586 BuildMI(BB, X86::CMPrr32, 2).addReg(reg1+1).addReg(reg2+1);
Chris Lattner6d40c192003-01-16 16:43:00 +0000587 BuildMI(BB, SetCCOpcodeTab[isSigned][OpNum], 0, X86::BL);
Chris Lattner3e130a22003-01-13 00:32:26 +0000588 BuildMI(BB, X86::CMOVErr16, 2, X86::BX).addReg(X86::BX).addReg(X86::AX);
Chris Lattner6d40c192003-01-16 16:43:00 +0000589 // NOTE: visitSetCondInst knows that the value is dumped into the BL
590 // register at this point for long values...
591 return isSigned;
Chris Lattner3e130a22003-01-13 00:32:26 +0000592 }
593 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000594 return isSigned;
595}
Chris Lattner3e130a22003-01-13 00:32:26 +0000596
Chris Lattner6d40c192003-01-16 16:43:00 +0000597
598/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
599/// register, then move it to wherever the result should be.
600///
601void ISel::visitSetCondInst(SetCondInst &I) {
602 if (canFoldSetCCIntoBranch(&I)) return; // Fold this into a branch...
603
604 unsigned OpNum = getSetCCNumber(I.getOpcode());
605 unsigned DestReg = getReg(I);
606 bool isSigned = EmitComparisonGetSignedness(OpNum, I.getOperand(0),
607 I.getOperand(1));
608
609 if (getClassB(I.getOperand(0)->getType()) != cLong || OpNum < 2) {
610 // Handle normal comparisons with a setcc instruction...
611 BuildMI(BB, SetCCOpcodeTab[isSigned][OpNum], 0, DestReg);
612 } else {
613 // Handle long comparisons by copying the value which is already in BL into
614 // the register we want...
615 BuildMI(BB, X86::MOVrr8, 1, DestReg).addReg(X86::BL);
616 }
Brian Gaeke1749d632002-11-07 17:59:21 +0000617}
Chris Lattner51b49a92002-11-02 19:45:49 +0000618
Brian Gaekec2505982002-11-30 11:57:28 +0000619/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
620/// operand, in the specified target register.
Chris Lattner3e130a22003-01-13 00:32:26 +0000621void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
622 bool isUnsigned = VR.Ty->isUnsigned();
623 switch (getClassB(VR.Ty)) {
Chris Lattner94af4142002-12-25 05:13:53 +0000624 case cByte:
625 // Extend value into target register (8->32)
626 if (isUnsigned)
Chris Lattner3e130a22003-01-13 00:32:26 +0000627 BuildMI(BB, X86::MOVZXr32r8, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000628 else
Chris Lattner3e130a22003-01-13 00:32:26 +0000629 BuildMI(BB, X86::MOVSXr32r8, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000630 break;
631 case cShort:
632 // Extend value into target register (16->32)
633 if (isUnsigned)
Chris Lattner3e130a22003-01-13 00:32:26 +0000634 BuildMI(BB, X86::MOVZXr32r16, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000635 else
Chris Lattner3e130a22003-01-13 00:32:26 +0000636 BuildMI(BB, X86::MOVSXr32r16, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000637 break;
638 case cInt:
639 // Move value into target register (32->32)
Chris Lattner3e130a22003-01-13 00:32:26 +0000640 BuildMI(BB, X86::MOVrr32, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000641 break;
642 default:
643 assert(0 && "Unpromotable operand class in promote32");
644 }
Brian Gaekec2505982002-11-30 11:57:28 +0000645}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000646
Chris Lattner72614082002-10-25 22:55:53 +0000647/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
648/// we have the following possibilities:
649///
650/// ret void: No return value, simply emit a 'ret' instruction
651/// ret sbyte, ubyte : Extend value into EAX and return
652/// ret short, ushort: Extend value into EAX and return
653/// ret int, uint : Move value into EAX and return
654/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +0000655/// ret long, ulong : Move value into EAX/EDX and return
656/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +0000657///
Chris Lattner3e130a22003-01-13 00:32:26 +0000658void ISel::visitReturnInst(ReturnInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +0000659 if (I.getNumOperands() == 0) {
660 BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
661 return;
662 }
663
664 Value *RetVal = I.getOperand(0);
Chris Lattner3e130a22003-01-13 00:32:26 +0000665 unsigned RetReg = getReg(RetVal);
666 switch (getClassB(RetVal->getType())) {
Chris Lattner94af4142002-12-25 05:13:53 +0000667 case cByte: // integral return values: extend or move into EAX and return
668 case cShort:
669 case cInt:
Chris Lattner3e130a22003-01-13 00:32:26 +0000670 promote32(X86::EAX, ValueRecord(RetReg, RetVal->getType()));
Chris Lattner94af4142002-12-25 05:13:53 +0000671 break;
672 case cFP: // Floats & Doubles: Return in ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +0000673 BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
Chris Lattner94af4142002-12-25 05:13:53 +0000674 break;
675 case cLong:
Chris Lattner3e130a22003-01-13 00:32:26 +0000676 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(RetReg);
677 BuildMI(BB, X86::MOVrr32, 1, X86::EDX).addReg(RetReg+1);
678 break;
Chris Lattner94af4142002-12-25 05:13:53 +0000679 default:
Chris Lattner3e130a22003-01-13 00:32:26 +0000680 visitInstruction(I);
Chris Lattner94af4142002-12-25 05:13:53 +0000681 }
Chris Lattner43189d12002-11-17 20:07:45 +0000682 // Emit a 'ret' instruction
Chris Lattner94af4142002-12-25 05:13:53 +0000683 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +0000684}
685
Chris Lattner55f6fab2003-01-16 18:07:23 +0000686// getBlockAfter - Return the basic block which occurs lexically after the
687// specified one.
688static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
689 Function::iterator I = BB; ++I; // Get iterator to next block
690 return I != BB->getParent()->end() ? &*I : 0;
691}
692
Chris Lattner51b49a92002-11-02 19:45:49 +0000693/// visitBranchInst - Handle conditional and unconditional branches here. Note
694/// that since code layout is frozen at this point, that if we are trying to
695/// jump to a block that is the immediate successor of the current block, we can
Chris Lattner6d40c192003-01-16 16:43:00 +0000696/// just make a fall-through (but we don't currently).
Chris Lattner51b49a92002-11-02 19:45:49 +0000697///
Chris Lattner94af4142002-12-25 05:13:53 +0000698void ISel::visitBranchInst(BranchInst &BI) {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000699 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
700
701 if (!BI.isConditional()) { // Unconditional branch?
702 if (BI.getSuccessor(0) != NextBB)
703 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
Chris Lattner6d40c192003-01-16 16:43:00 +0000704 return;
705 }
706
707 // See if we can fold the setcc into the branch itself...
708 SetCondInst *SCI = canFoldSetCCIntoBranch(BI.getCondition());
709 if (SCI == 0) {
710 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
711 // computed some other way...
Chris Lattner065faeb2002-12-28 20:24:02 +0000712 unsigned condReg = getReg(BI.getCondition());
Chris Lattner94af4142002-12-25 05:13:53 +0000713 BuildMI(BB, X86::CMPri8, 2).addReg(condReg).addZImm(0);
Chris Lattner55f6fab2003-01-16 18:07:23 +0000714 if (BI.getSuccessor(1) == NextBB) {
715 if (BI.getSuccessor(0) != NextBB)
716 BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0));
717 } else {
718 BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1));
719
720 if (BI.getSuccessor(0) != NextBB)
721 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
722 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000723 return;
Chris Lattner94af4142002-12-25 05:13:53 +0000724 }
Chris Lattner6d40c192003-01-16 16:43:00 +0000725
726 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
727 bool isSigned = EmitComparisonGetSignedness(OpNum, SCI->getOperand(0),
728 SCI->getOperand(1));
729
730 // LLVM -> X86 signed X86 unsigned
731 // ----- ---------- ------------
732 // seteq -> je je
733 // setne -> jne jne
734 // setlt -> jl jb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000735 // setge -> jge jae
Chris Lattner6d40c192003-01-16 16:43:00 +0000736 // setgt -> jg ja
737 // setle -> jle jbe
Chris Lattner6d40c192003-01-16 16:43:00 +0000738 static const unsigned OpcodeTab[2][6] = {
Chris Lattner55f6fab2003-01-16 18:07:23 +0000739 { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE },
740 { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE },
Chris Lattner6d40c192003-01-16 16:43:00 +0000741 };
742
Chris Lattner55f6fab2003-01-16 18:07:23 +0000743 if (BI.getSuccessor(0) != NextBB) {
744 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0));
745 if (BI.getSuccessor(1) != NextBB)
746 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1));
747 } else {
748 // Change to the inverse condition...
749 if (BI.getSuccessor(1) != NextBB) {
750 OpNum ^= 1;
751 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1));
752 }
753 }
Chris Lattner2df035b2002-11-02 19:27:56 +0000754}
755
Chris Lattner3e130a22003-01-13 00:32:26 +0000756
757/// doCall - This emits an abstract call instruction, setting up the arguments
758/// and the return value as appropriate. For the actual function call itself,
759/// it inserts the specified CallMI instruction into the stream.
760///
761void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
762 const std::vector<ValueRecord> &Args) {
763
Chris Lattner065faeb2002-12-28 20:24:02 +0000764 // Count how many bytes are to be pushed on the stack...
765 unsigned NumBytes = 0;
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000766
Chris Lattner3e130a22003-01-13 00:32:26 +0000767 if (!Args.empty()) {
768 for (unsigned i = 0, e = Args.size(); i != e; ++i)
769 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000770 case cByte: case cShort: case cInt:
Chris Lattner3e130a22003-01-13 00:32:26 +0000771 NumBytes += 4; break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000772 case cLong:
Chris Lattner3e130a22003-01-13 00:32:26 +0000773 NumBytes += 8; break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000774 case cFP:
Chris Lattner3e130a22003-01-13 00:32:26 +0000775 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
Chris Lattner065faeb2002-12-28 20:24:02 +0000776 break;
777 default: assert(0 && "Unknown class!");
778 }
779
780 // Adjust the stack pointer for the new arguments...
781 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(NumBytes);
782
783 // Arguments go on the stack in reverse order, as specified by the ABI.
784 unsigned ArgOffset = 0;
Chris Lattner3e130a22003-01-13 00:32:26 +0000785 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
786 unsigned ArgReg = Args[i].Reg;
787 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000788 case cByte:
789 case cShort: {
790 // Promote arg to 32 bits wide into a temporary register...
791 unsigned R = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +0000792 promote32(R, Args[i]);
Chris Lattner065faeb2002-12-28 20:24:02 +0000793 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
794 X86::ESP, ArgOffset).addReg(R);
795 break;
796 }
797 case cInt:
798 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +0000799 X86::ESP, ArgOffset).addReg(ArgReg);
Chris Lattner065faeb2002-12-28 20:24:02 +0000800 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000801 case cLong:
802 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
803 X86::ESP, ArgOffset).addReg(ArgReg);
804 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
805 X86::ESP, ArgOffset+4).addReg(ArgReg+1);
806 ArgOffset += 4; // 8 byte entry, not 4.
807 break;
808
Chris Lattner065faeb2002-12-28 20:24:02 +0000809 case cFP:
Chris Lattner3e130a22003-01-13 00:32:26 +0000810 if (Args[i].Ty == Type::FloatTy) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000811 addRegOffset(BuildMI(BB, X86::FSTr32, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +0000812 X86::ESP, ArgOffset).addReg(ArgReg);
Chris Lattner065faeb2002-12-28 20:24:02 +0000813 } else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000814 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
815 addRegOffset(BuildMI(BB, X86::FSTr64, 5),
816 X86::ESP, ArgOffset).addReg(ArgReg);
817 ArgOffset += 4; // 8 byte entry, not 4.
Chris Lattner065faeb2002-12-28 20:24:02 +0000818 }
819 break;
820
Chris Lattner3e130a22003-01-13 00:32:26 +0000821 default: assert(0 && "Unknown class!");
Chris Lattner065faeb2002-12-28 20:24:02 +0000822 }
823 ArgOffset += 4;
Chris Lattner94af4142002-12-25 05:13:53 +0000824 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000825 } else {
826 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(0);
Chris Lattner94af4142002-12-25 05:13:53 +0000827 }
Chris Lattner6e49a4b2002-12-13 14:13:27 +0000828
Chris Lattner3e130a22003-01-13 00:32:26 +0000829 BB->push_back(CallMI);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000830
Chris Lattner065faeb2002-12-28 20:24:02 +0000831 BuildMI(BB, X86::ADJCALLSTACKUP, 1).addZImm(NumBytes);
Chris Lattnera3243642002-12-04 23:45:28 +0000832
833 // If there is a return value, scavenge the result from the location the call
834 // leaves it in...
835 //
Chris Lattner3e130a22003-01-13 00:32:26 +0000836 if (Ret.Ty != Type::VoidTy) {
837 unsigned DestClass = getClassB(Ret.Ty);
838 switch (DestClass) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000839 case cByte:
840 case cShort:
841 case cInt: {
842 // Integral results are in %eax, or the appropriate portion
843 // thereof.
844 static const unsigned regRegMove[] = {
845 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
846 };
847 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
Chris Lattner3e130a22003-01-13 00:32:26 +0000848 BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000849 break;
Brian Gaeke20244b72002-12-12 15:33:40 +0000850 }
Chris Lattner94af4142002-12-25 05:13:53 +0000851 case cFP: // Floating-point return values live in %ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +0000852 BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +0000853 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000854 case cLong: // Long values are left in EDX:EAX
855 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg).addReg(X86::EAX);
856 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg+1).addReg(X86::EDX);
857 break;
858 default: assert(0 && "Unknown class!");
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000859 }
Chris Lattnera3243642002-12-04 23:45:28 +0000860 }
Brian Gaekefa8d5712002-11-22 11:07:01 +0000861}
Chris Lattner2df035b2002-11-02 19:27:56 +0000862
Chris Lattner3e130a22003-01-13 00:32:26 +0000863
864/// visitCallInst - Push args on stack and do a procedure call instruction.
865void ISel::visitCallInst(CallInst &CI) {
866 MachineInstr *TheCall;
867 if (Function *F = CI.getCalledFunction()) {
868 // Emit a CALL instruction with PC-relative displacement.
869 TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
870 } else { // Emit an indirect call...
871 unsigned Reg = getReg(CI.getCalledValue());
872 TheCall = BuildMI(X86::CALLr32, 1).addReg(Reg);
873 }
874
875 std::vector<ValueRecord> Args;
876 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
877 Args.push_back(ValueRecord(getReg(CI.getOperand(i)),
878 CI.getOperand(i)->getType()));
879
880 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
881 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
882}
883
884
Chris Lattner68aad932002-11-02 20:13:22 +0000885/// visitSimpleBinary - Implement simple binary operators for integral types...
886/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or,
887/// 4 for Xor.
888///
889void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000890 unsigned Class = getClassB(B.getType());
Chris Lattnere2954c82002-11-02 20:04:26 +0000891
892 static const unsigned OpcodeTab[][4] = {
Chris Lattner68aad932002-11-02 20:13:22 +0000893 // Arithmetic operators
Chris Lattner94af4142002-12-25 05:13:53 +0000894 { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, X86::FpADD }, // ADD
895 { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, X86::FpSUB }, // SUB
Chris Lattner68aad932002-11-02 20:13:22 +0000896
897 // Bitwise operators
Chris Lattnere2954c82002-11-02 20:04:26 +0000898 { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
899 { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
900 { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
901 };
Chris Lattner3e130a22003-01-13 00:32:26 +0000902
903 bool isLong = false;
904 if (Class == cLong) {
905 isLong = true;
906 Class = cInt; // Bottom 32 bits are handled just like ints
907 }
Chris Lattnere2954c82002-11-02 20:04:26 +0000908
909 unsigned Opcode = OpcodeTab[OperatorClass][Class];
Chris Lattner94af4142002-12-25 05:13:53 +0000910 assert(Opcode && "Floating point arguments to logical inst?");
Chris Lattnere2954c82002-11-02 20:04:26 +0000911 unsigned Op0r = getReg(B.getOperand(0));
912 unsigned Op1r = getReg(B.getOperand(1));
Chris Lattner3e130a22003-01-13 00:32:26 +0000913 unsigned DestReg = getReg(B);
914 BuildMI(BB, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
915
916 if (isLong) { // Handle the upper 32 bits of long values...
917 static const unsigned TopTab[] = {
918 X86::ADCrr32, X86::SBBrr32, X86::ANDrr32, X86::ORrr32, X86::XORrr32
919 };
920 BuildMI(BB, TopTab[OperatorClass], 2,
921 DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
922 }
Chris Lattnere2954c82002-11-02 20:04:26 +0000923}
924
Chris Lattner3e130a22003-01-13 00:32:26 +0000925/// doMultiply - Emit appropriate instructions to multiply together the
926/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
927/// result should be given as DestTy.
928///
929/// FIXME: doMultiply should use one of the two address IMUL instructions!
930///
Chris Lattner8a307e82002-12-16 19:32:50 +0000931void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +0000932 unsigned DestReg, const Type *DestTy,
Chris Lattner8a307e82002-12-16 19:32:50 +0000933 unsigned op0Reg, unsigned op1Reg) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000934 unsigned Class = getClass(DestTy);
Chris Lattner94af4142002-12-25 05:13:53 +0000935 switch (Class) {
936 case cFP: // Floating point multiply
Chris Lattner3e130a22003-01-13 00:32:26 +0000937 BMI(BB, MBBI, X86::FpMUL, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000938 return;
939 default:
Chris Lattner3e130a22003-01-13 00:32:26 +0000940 case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
Chris Lattner94af4142002-12-25 05:13:53 +0000941 case cByte:
942 case cShort:
943 case cInt: // Small integerals, handled below...
944 break;
945 }
Brian Gaeke20244b72002-12-12 15:33:40 +0000946
947 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
Chris Lattner3e130a22003-01-13 00:32:26 +0000948 static const unsigned MulOpcode[]={ X86::MULr8 , X86::MULr16 , X86::MULr32 };
Brian Gaeke20244b72002-12-12 15:33:40 +0000949 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
950 unsigned Reg = Regs[Class];
951
952 // Emit a MOV to put the first operand into the appropriately-sized
953 // subreg of EAX.
Chris Lattner3e130a22003-01-13 00:32:26 +0000954 BMI(MBB, MBBI, MovOpcode[Class], 1, Reg).addReg(op0Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +0000955
956 // Emit the appropriate multiply instruction.
Chris Lattner3e130a22003-01-13 00:32:26 +0000957 BMI(MBB, MBBI, MulOpcode[Class], 1).addReg(op1Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +0000958
959 // Emit another MOV to put the result into the destination register.
Chris Lattner3e130a22003-01-13 00:32:26 +0000960 BMI(MBB, MBBI, MovOpcode[Class], 1, DestReg).addReg(Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +0000961}
962
Chris Lattnerca9671d2002-11-02 20:28:58 +0000963/// visitMul - Multiplies are not simple binary operators because they must deal
964/// with the EAX register explicitly.
965///
966void ISel::visitMul(BinaryOperator &I) {
Chris Lattner202a2d02002-12-13 13:07:42 +0000967 unsigned Op0Reg = getReg(I.getOperand(0));
968 unsigned Op1Reg = getReg(I.getOperand(1));
Chris Lattner3e130a22003-01-13 00:32:26 +0000969 unsigned DestReg = getReg(I);
970
971 // Simple scalar multiply?
972 if (I.getType() != Type::LongTy && I.getType() != Type::ULongTy) {
973 MachineBasicBlock::iterator MBBI = BB->end();
974 doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg);
975 } else {
976 // Long value. We have to do things the hard way...
977 // Multiply the two low parts... capturing carry into EDX
978 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(Op0Reg);
979 BuildMI(BB, X86::MULr32, 1).addReg(Op1Reg); // AL*BL
980
981 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
982 BuildMI(BB, X86::MOVrr32, 1, DestReg).addReg(X86::EAX); // AL*BL
983 BuildMI(BB, X86::MOVrr32, 1, OverflowReg).addReg(X86::EDX); // AL*BL >> 32
984
985 MachineBasicBlock::iterator MBBI = BB->end();
986 unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
987 doMultiply(BB, MBBI, AHBLReg, Type::UIntTy, Op0Reg+1, Op1Reg); // AH*BL
988
989 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
990 BuildMI(BB, X86::ADDrr32, 2, // AH*BL+(AL*BL >> 32)
991 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
992
993 MBBI = BB->end();
994 unsigned ALBHReg = makeAnotherReg(Type::UIntTy);
995 doMultiply(BB, MBBI, ALBHReg, Type::UIntTy, Op0Reg, Op1Reg+1); // AL*BH
996
997 BuildMI(BB, X86::ADDrr32, 2, // AL*BH + AH*BL + (AL*BL >> 32)
998 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
999 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001000}
Chris Lattnerca9671d2002-11-02 20:28:58 +00001001
Chris Lattner06925362002-11-17 21:56:38 +00001002
Chris Lattnerf01729e2002-11-02 20:54:46 +00001003/// visitDivRem - Handle division and remainder instructions... these
1004/// instruction both require the same instructions to be generated, they just
1005/// select the result from a different register. Note that both of these
1006/// instructions work differently for signed and unsigned operands.
1007///
1008void ISel::visitDivRem(BinaryOperator &I) {
Chris Lattner94af4142002-12-25 05:13:53 +00001009 unsigned Class = getClass(I.getType());
1010 unsigned Op0Reg = getReg(I.getOperand(0));
1011 unsigned Op1Reg = getReg(I.getOperand(1));
1012 unsigned ResultReg = getReg(I);
1013
1014 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001015 case cFP: // Floating point divide
Chris Lattner94af4142002-12-25 05:13:53 +00001016 if (I.getOpcode() == Instruction::Div)
1017 BuildMI(BB, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001018 else { // Floating point remainder...
1019 MachineInstr *TheCall =
1020 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
1021 std::vector<ValueRecord> Args;
1022 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
1023 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
1024 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
1025 }
Chris Lattner94af4142002-12-25 05:13:53 +00001026 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001027 case cLong: {
1028 static const char *FnName[] =
1029 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
1030
1031 unsigned NameIdx = I.getType()->isUnsigned()*2;
1032 NameIdx += I.getOpcode() == Instruction::Div;
1033 MachineInstr *TheCall =
1034 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
1035
1036 std::vector<ValueRecord> Args;
1037 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
1038 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
1039 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
1040 return;
1041 }
1042 case cByte: case cShort: case cInt:
1043 break; // Small integerals, handled below...
1044 default: assert(0 && "Unknown class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001045 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00001046
1047 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
1048 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
Brian Gaeke6559bb92002-11-14 22:32:30 +00001049 static const unsigned ExtOpcode[]={ X86::CBW , X86::CWD , X86::CDQ };
Chris Lattnerf01729e2002-11-02 20:54:46 +00001050 static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 };
1051 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
1052
1053 static const unsigned DivOpcode[][4] = {
Chris Lattner3e130a22003-01-13 00:32:26 +00001054 { X86::DIVr8 , X86::DIVr16 , X86::DIVr32 , 0 }, // Unsigned division
1055 { X86::IDIVr8, X86::IDIVr16, X86::IDIVr32, 0 }, // Signed division
Chris Lattnerf01729e2002-11-02 20:54:46 +00001056 };
1057
1058 bool isSigned = I.getType()->isSigned();
1059 unsigned Reg = Regs[Class];
1060 unsigned ExtReg = ExtRegs[Class];
Chris Lattnerf01729e2002-11-02 20:54:46 +00001061
1062 // Put the first operand into one of the A registers...
1063 BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
1064
1065 if (isSigned) {
1066 // Emit a sign extension instruction...
Chris Lattnera4978cc2002-12-01 23:24:58 +00001067 BuildMI(BB, ExtOpcode[Class], 0);
Chris Lattnerf01729e2002-11-02 20:54:46 +00001068 } else {
1069 // If unsigned, emit a zeroing instruction... (reg = xor reg, reg)
1070 BuildMI(BB, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg);
1071 }
1072
Chris Lattner06925362002-11-17 21:56:38 +00001073 // Emit the appropriate divide or remainder instruction...
Chris Lattner92845e32002-11-21 18:54:29 +00001074 BuildMI(BB, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
Chris Lattner06925362002-11-17 21:56:38 +00001075
Chris Lattnerf01729e2002-11-02 20:54:46 +00001076 // Figure out which register we want to pick the result out of...
1077 unsigned DestReg = (I.getOpcode() == Instruction::Div) ? Reg : ExtReg;
1078
Chris Lattnerf01729e2002-11-02 20:54:46 +00001079 // Put the result into the destination register...
Chris Lattner94af4142002-12-25 05:13:53 +00001080 BuildMI(BB, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +00001081}
Chris Lattnere2954c82002-11-02 20:04:26 +00001082
Chris Lattner06925362002-11-17 21:56:38 +00001083
Brian Gaekea1719c92002-10-31 23:03:59 +00001084/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
1085/// for constant immediate shift values, and for constant immediate
1086/// shift values equal to 1. Even the general case is sort of special,
1087/// because the shift amount has to be in CL, not just any old register.
1088///
Chris Lattner3e130a22003-01-13 00:32:26 +00001089void ISel::visitShiftInst(ShiftInst &I) {
1090 unsigned SrcReg = getReg(I.getOperand(0));
Chris Lattnerf01729e2002-11-02 20:54:46 +00001091 unsigned DestReg = getReg(I);
Chris Lattnere9913f22002-11-02 01:41:55 +00001092 bool isLeftShift = I.getOpcode() == Instruction::Shl;
Chris Lattner3e130a22003-01-13 00:32:26 +00001093 bool isSigned = I.getType()->isSigned();
1094 unsigned Class = getClass(I.getType());
1095
1096 static const unsigned ConstantOperand[][4] = {
1097 { X86::SHRir8, X86::SHRir16, X86::SHRir32, X86::SHRDir32 }, // SHR
1098 { X86::SARir8, X86::SARir16, X86::SARir32, X86::SHRDir32 }, // SAR
1099 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SHL
1100 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SAL = SHL
1101 };
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001102
Chris Lattner3e130a22003-01-13 00:32:26 +00001103 static const unsigned NonConstantOperand[][4] = {
1104 { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32 }, // SHR
1105 { X86::SARrr8, X86::SARrr16, X86::SARrr32 }, // SAR
1106 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SHL
1107 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SAL = SHL
1108 };
Chris Lattner796df732002-11-02 00:44:25 +00001109
Chris Lattner3e130a22003-01-13 00:32:26 +00001110 // Longs, as usual, are handled specially...
1111 if (Class == cLong) {
1112 // If we have a constant shift, we can generate much more efficient code
1113 // than otherwise...
1114 //
1115 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getOperand(1))) {
1116 unsigned Amount = CUI->getValue();
1117 if (Amount < 32) {
1118 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
1119 if (isLeftShift) {
1120 BuildMI(BB, Opc[3], 3,
1121 DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addZImm(Amount);
1122 BuildMI(BB, Opc[2], 2, DestReg).addReg(SrcReg).addZImm(Amount);
1123 } else {
1124 BuildMI(BB, Opc[3], 3,
1125 DestReg).addReg(SrcReg ).addReg(SrcReg+1).addZImm(Amount);
1126 BuildMI(BB, Opc[2], 2, DestReg+1).addReg(SrcReg+1).addZImm(Amount);
1127 }
1128 } else { // Shifting more than 32 bits
1129 Amount -= 32;
1130 if (isLeftShift) {
1131 BuildMI(BB, X86::SHLir32, 2,DestReg+1).addReg(SrcReg).addZImm(Amount);
1132 BuildMI(BB, X86::MOVir32, 1,DestReg ).addZImm(0);
1133 } else {
1134 unsigned Opcode = isSigned ? X86::SARir32 : X86::SHRir32;
1135 BuildMI(BB, Opcode, 2, DestReg).addReg(SrcReg+1).addZImm(Amount);
1136 BuildMI(BB, X86::MOVir32, 1, DestReg+1).addZImm(0);
1137 }
1138 }
1139 } else {
1140 visitInstruction(I); // FIXME: Implement long shift by non-constant
Brian Gaekea1719c92002-10-31 23:03:59 +00001141 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001142 return;
1143 }
Chris Lattnere9913f22002-11-02 01:41:55 +00001144
Chris Lattner3e130a22003-01-13 00:32:26 +00001145 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getOperand(1))) {
1146 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
1147 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001148
Chris Lattner3e130a22003-01-13 00:32:26 +00001149 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
1150 BuildMI(BB, Opc[Class], 2, DestReg).addReg(SrcReg).addZImm(CUI->getValue());
1151 } else { // The shift amount is non-constant.
1152 BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(getReg(I.getOperand(1)));
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001153
Chris Lattner3e130a22003-01-13 00:32:26 +00001154 const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
1155 BuildMI(BB, Opc[Class], 1, DestReg).addReg(SrcReg);
1156 }
1157}
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001158
Chris Lattner3e130a22003-01-13 00:32:26 +00001159
1160/// doFPLoad - This method is used to load an FP value from memory using the
1161/// current endianness. NOTE: This method returns a partially constructed load
1162/// instruction which needs to have the memory source filled in still.
1163///
1164MachineInstr *ISel::doFPLoad(MachineBasicBlock *MBB,
1165 MachineBasicBlock::iterator &MBBI,
1166 const Type *Ty, unsigned DestReg) {
1167 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1168 unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLDr32 : X86::FLDr64;
1169
1170 if (TM.getTargetData().isLittleEndian()) // fast path...
1171 return BMI(MBB, MBBI, LoadOpcode, 4, DestReg);
1172
1173 // If we are big-endian, start by creating an LEA instruction to represent the
1174 // address of the memory location to load from...
1175 //
1176 unsigned SrcAddrReg = makeAnotherReg(Type::UIntTy);
1177 MachineInstr *Result = BMI(MBB, MBBI, X86::LEAr32, 5, SrcAddrReg);
1178
1179 // Allocate a temporary stack slot to transform the value into...
1180 int FrameIdx = F->getFrameInfo()->CreateStackObject(Ty, TM.getTargetData());
1181
1182 // Perform the bswaps 32 bits at a time...
1183 unsigned TmpReg1 = makeAnotherReg(Type::UIntTy);
1184 unsigned TmpReg2 = makeAnotherReg(Type::UIntTy);
1185 addDirectMem(BMI(MBB, MBBI, X86::MOVmr32, 4, TmpReg1), SrcAddrReg);
1186 BMI(MBB, MBBI, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1187 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1188 addFrameReference(BMI(MBB, MBBI, X86::MOVrm32, 5),
1189 FrameIdx, Offset).addReg(TmpReg2);
1190
1191 if (Ty == Type::DoubleTy) { // Swap the other 32 bits of a double value...
1192 TmpReg1 = makeAnotherReg(Type::UIntTy);
1193 TmpReg2 = makeAnotherReg(Type::UIntTy);
1194
1195 addRegOffset(BMI(MBB, MBBI, X86::MOVmr32, 4, TmpReg1), SrcAddrReg, 4);
1196 BMI(MBB, MBBI, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1197 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1198 addFrameReference(BMI(MBB, MBBI, X86::MOVrm32,5), FrameIdx).addReg(TmpReg2);
1199 }
1200
1201 // Now we can reload the final byteswapped result into the final destination.
1202 addFrameReference(BMI(MBB, MBBI, LoadOpcode, 4, DestReg), FrameIdx);
1203 return Result;
1204}
1205
1206/// EmitByteSwap - Byteswap SrcReg into DestReg.
1207///
1208void ISel::EmitByteSwap(unsigned DestReg, unsigned SrcReg, unsigned Class) {
1209 // Emit the byte swap instruction...
1210 switch (Class) {
1211 case cByte:
1212 // No byteswap neccesary for 8 bit value...
1213 BuildMI(BB, X86::MOVrr8, 1, DestReg).addReg(SrcReg);
1214 break;
1215 case cInt:
1216 // Use the 32 bit bswap instruction to do a 32 bit swap...
1217 BuildMI(BB, X86::BSWAPr32, 1, DestReg).addReg(SrcReg);
1218 break;
1219
1220 case cShort:
1221 // For 16 bit we have to use an xchg instruction, because there is no
1222 // 16-bit bswap. XCHG is neccesarily not in SSA form, so we force things
1223 // into AX to do the xchg.
1224 //
1225 BuildMI(BB, X86::MOVrr16, 1, X86::AX).addReg(SrcReg);
1226 BuildMI(BB, X86::XCHGrr8, 2).addReg(X86::AL, MOTy::UseAndDef)
1227 .addReg(X86::AH, MOTy::UseAndDef);
1228 BuildMI(BB, X86::MOVrr16, 1, DestReg).addReg(X86::AX);
1229 break;
1230 default: assert(0 && "Cannot byteswap this class!");
1231 }
Brian Gaekea1719c92002-10-31 23:03:59 +00001232}
1233
Chris Lattner06925362002-11-17 21:56:38 +00001234
Chris Lattner6fc3c522002-11-17 21:11:55 +00001235/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
Chris Lattnere8f0d922002-12-24 00:03:11 +00001236/// instruction. The load and store instructions are the only place where we
1237/// need to worry about the memory layout of the target machine.
Chris Lattner6fc3c522002-11-17 21:11:55 +00001238///
1239void ISel::visitLoadInst(LoadInst &I) {
Chris Lattnere8f0d922002-12-24 00:03:11 +00001240 bool isLittleEndian = TM.getTargetData().isLittleEndian();
1241 bool hasLongPointers = TM.getTargetData().getPointerSize() == 8;
Chris Lattner94af4142002-12-25 05:13:53 +00001242 unsigned SrcAddrReg = getReg(I.getOperand(0));
1243 unsigned DestReg = getReg(I);
Chris Lattnere8f0d922002-12-24 00:03:11 +00001244
Chris Lattner6fc3c522002-11-17 21:11:55 +00001245 unsigned Class = getClass(I.getType());
Chris Lattner94af4142002-12-25 05:13:53 +00001246 switch (Class) {
Chris Lattner94af4142002-12-25 05:13:53 +00001247 case cFP: {
Chris Lattner3e130a22003-01-13 00:32:26 +00001248 MachineBasicBlock::iterator MBBI = BB->end();
1249 addDirectMem(doFPLoad(BB, MBBI, I.getType(), DestReg), SrcAddrReg);
Chris Lattner94af4142002-12-25 05:13:53 +00001250 return;
1251 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001252 case cLong: case cInt: case cShort: case cByte:
1253 break; // Integers of various sizes handled below
1254 default: assert(0 && "Unknown memory class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001255 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00001256
Chris Lattnere8f0d922002-12-24 00:03:11 +00001257 // We need to adjust the input pointer if we are emulating a big-endian
1258 // long-pointer target. On these systems, the pointer that we are interested
1259 // in is in the upper part of the eight byte memory image of the pointer. It
1260 // also happens to be byte-swapped, but this will be handled later.
1261 //
1262 if (!isLittleEndian && hasLongPointers && isa<PointerType>(I.getType())) {
1263 unsigned R = makeAnotherReg(Type::UIntTy);
1264 BuildMI(BB, X86::ADDri32, 2, R).addReg(SrcAddrReg).addZImm(4);
1265 SrcAddrReg = R;
1266 }
Chris Lattner94af4142002-12-25 05:13:53 +00001267
Chris Lattnere8f0d922002-12-24 00:03:11 +00001268 unsigned IReg = DestReg;
Chris Lattner3e130a22003-01-13 00:32:26 +00001269 if (!isLittleEndian) // If big endian we need an intermediate stage
1270 DestReg = makeAnotherReg(Class != cLong ? I.getType() : Type::UIntTy);
Chris Lattner94af4142002-12-25 05:13:53 +00001271
Chris Lattner3e130a22003-01-13 00:32:26 +00001272 static const unsigned Opcode[] = {
1273 X86::MOVmr8, X86::MOVmr16, X86::MOVmr32, 0, X86::MOVmr32
1274 };
Chris Lattnere8f0d922002-12-24 00:03:11 +00001275 addDirectMem(BuildMI(BB, Opcode[Class], 4, DestReg), SrcAddrReg);
1276
Chris Lattner3e130a22003-01-13 00:32:26 +00001277 // Handle long values now...
1278 if (Class == cLong) {
1279 if (isLittleEndian) {
1280 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), SrcAddrReg, 4);
1281 } else {
1282 EmitByteSwap(IReg+1, DestReg, cInt);
1283 unsigned TempReg = makeAnotherReg(Type::IntTy);
1284 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, TempReg), SrcAddrReg, 4);
1285 EmitByteSwap(IReg, TempReg, cInt);
Chris Lattner94af4142002-12-25 05:13:53 +00001286 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001287 return;
1288 }
1289
1290 if (!isLittleEndian)
1291 EmitByteSwap(IReg, DestReg, Class);
1292}
1293
1294
1295/// doFPStore - This method is used to store an FP value to memory using the
1296/// current endianness.
1297///
1298void ISel::doFPStore(const Type *Ty, unsigned DestAddrReg, unsigned SrcReg) {
1299 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1300 unsigned StoreOpcode = Ty == Type::FloatTy ? X86::FSTr32 : X86::FSTr64;
1301
1302 if (TM.getTargetData().isLittleEndian()) { // fast path...
1303 addDirectMem(BuildMI(BB, StoreOpcode,5), DestAddrReg).addReg(SrcReg);
1304 return;
1305 }
1306
1307 // Allocate a temporary stack slot to transform the value into...
1308 int FrameIdx = F->getFrameInfo()->CreateStackObject(Ty, TM.getTargetData());
1309 unsigned SrcAddrReg = makeAnotherReg(Type::UIntTy);
1310 addFrameReference(BuildMI(BB, X86::LEAr32, 5, SrcAddrReg), FrameIdx);
1311
1312 // Store the value into a temporary stack slot...
1313 addDirectMem(BuildMI(BB, StoreOpcode, 5), SrcAddrReg).addReg(SrcReg);
1314
1315 // Perform the bswaps 32 bits at a time...
1316 unsigned TmpReg1 = makeAnotherReg(Type::UIntTy);
1317 unsigned TmpReg2 = makeAnotherReg(Type::UIntTy);
1318 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, TmpReg1), SrcAddrReg);
1319 BuildMI(BB, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1320 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1321 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1322 DestAddrReg, Offset).addReg(TmpReg2);
1323
1324 if (Ty == Type::DoubleTy) { // Swap the other 32 bits of a double value...
1325 TmpReg1 = makeAnotherReg(Type::UIntTy);
1326 TmpReg2 = makeAnotherReg(Type::UIntTy);
1327
1328 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, TmpReg1), SrcAddrReg, 4);
1329 BuildMI(BB, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1330 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1331 addDirectMem(BuildMI(BB, X86::MOVrm32, 5), DestAddrReg).addReg(TmpReg2);
Chris Lattnere8f0d922002-12-24 00:03:11 +00001332 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00001333}
1334
Chris Lattner06925362002-11-17 21:56:38 +00001335
Chris Lattner6fc3c522002-11-17 21:11:55 +00001336/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
1337/// instruction.
1338///
1339void ISel::visitStoreInst(StoreInst &I) {
Chris Lattnere8f0d922002-12-24 00:03:11 +00001340 bool isLittleEndian = TM.getTargetData().isLittleEndian();
1341 bool hasLongPointers = TM.getTargetData().getPointerSize() == 8;
Chris Lattner3e130a22003-01-13 00:32:26 +00001342 unsigned ValReg = getReg(I.getOperand(0));
1343 unsigned AddressReg = getReg(I.getOperand(1));
Chris Lattnere8f0d922002-12-24 00:03:11 +00001344
Chris Lattner94af4142002-12-25 05:13:53 +00001345 unsigned Class = getClass(I.getOperand(0)->getType());
1346 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001347 case cLong:
1348 if (isLittleEndian) {
1349 addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(ValReg);
1350 addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4),
1351 AddressReg, 4).addReg(ValReg+1);
1352 } else {
1353 unsigned T1 = makeAnotherReg(Type::IntTy);
1354 unsigned T2 = makeAnotherReg(Type::IntTy);
1355 EmitByteSwap(T1, ValReg , cInt);
1356 EmitByteSwap(T2, ValReg+1, cInt);
1357 addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(T2);
1358 addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg, 4).addReg(T1);
1359 }
Chris Lattner94af4142002-12-25 05:13:53 +00001360 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001361 case cFP:
1362 doFPStore(I.getOperand(0)->getType(), AddressReg, ValReg);
1363 return;
1364 case cInt: case cShort: case cByte:
1365 break; // Integers of various sizes handled below
1366 default: assert(0 && "Unknown memory class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001367 }
1368
1369 if (!isLittleEndian && hasLongPointers &&
1370 isa<PointerType>(I.getOperand(0)->getType())) {
Chris Lattnere8f0d922002-12-24 00:03:11 +00001371 unsigned R = makeAnotherReg(Type::UIntTy);
1372 BuildMI(BB, X86::ADDri32, 2, R).addReg(AddressReg).addZImm(4);
1373 AddressReg = R;
1374 }
1375
Chris Lattner94af4142002-12-25 05:13:53 +00001376 if (!isLittleEndian && Class != cByte) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001377 unsigned R = makeAnotherReg(I.getOperand(0)->getType());
1378 EmitByteSwap(R, ValReg, Class);
1379 ValReg = R;
Chris Lattnere8f0d922002-12-24 00:03:11 +00001380 }
1381
Chris Lattner94af4142002-12-25 05:13:53 +00001382 static const unsigned Opcode[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
Chris Lattner6fc3c522002-11-17 21:11:55 +00001383 addDirectMem(BuildMI(BB, Opcode[Class], 1+4), AddressReg).addReg(ValReg);
1384}
1385
1386
Brian Gaekec11232a2002-11-26 10:43:30 +00001387/// visitCastInst - Here we have various kinds of copying with or without
1388/// sign extension going on.
Chris Lattner3e130a22003-01-13 00:32:26 +00001389void ISel::visitCastInst(CastInst &CI) {
1390 const Type *DestTy = CI.getType();
1391 Value *Src = CI.getOperand(0);
1392 unsigned SrcReg = getReg(Src);
1393 const Type *SrcTy = Src->getType();
1394 unsigned SrcClass = getClassB(SrcTy);
1395 unsigned DestReg = getReg(CI);
1396 unsigned DestClass = getClassB(DestTy);
Chris Lattner7d255892002-12-13 11:31:59 +00001397
Chris Lattner3e130a22003-01-13 00:32:26 +00001398 // Implement casts to bool by using compare on the operand followed by set if
1399 // not zero on the result.
1400 if (DestTy == Type::BoolTy) {
1401 if (SrcClass == cFP || SrcClass == cLong)
1402 visitInstruction(CI);
1403
1404 BuildMI(BB, X86::CMPri8, 2).addReg(SrcReg).addZImm(0);
1405 BuildMI(BB, X86::SETNEr, 1, DestReg);
Chris Lattner94af4142002-12-25 05:13:53 +00001406 return;
1407 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001408
1409 static const unsigned RegRegMove[] = {
1410 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32, X86::FpMOV, X86::MOVrr32
1411 };
1412
1413 // Implement casts between values of the same type class (as determined by
1414 // getClass) by using a register-to-register move.
1415 if (SrcClass == DestClass) {
1416 if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
1417 BuildMI(BB, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
1418 } else if (SrcClass == cFP) {
1419 if (SrcTy == Type::FloatTy) { // double -> float
1420 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
1421 BuildMI(BB, X86::FpMOV, 1, DestReg).addReg(SrcReg);
1422 } else { // float -> double
1423 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
1424 "Unknown cFP member!");
1425 // Truncate from double to float by storing to memory as short, then
1426 // reading it back.
1427 unsigned FltAlign = TM.getTargetData().getFloatAlignment();
1428 int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
1429 addFrameReference(BuildMI(BB, X86::FSTr32, 5), FrameIdx).addReg(SrcReg);
1430 addFrameReference(BuildMI(BB, X86::FLDr32, 5, DestReg), FrameIdx);
1431 }
1432 } else if (SrcClass == cLong) {
1433 BuildMI(BB, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
1434 BuildMI(BB, X86::MOVrr32, 1, DestReg+1).addReg(SrcReg+1);
1435 } else {
1436 visitInstruction(CI);
Brian Gaeked474e9c2002-12-06 10:49:33 +00001437 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001438 return;
1439 }
1440
1441 // Handle cast of SMALLER int to LARGER int using a move with sign extension
1442 // or zero extension, depending on whether the source type was signed.
1443 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
1444 SrcClass < DestClass) {
1445 bool isLong = DestClass == cLong;
1446 if (isLong) DestClass = cInt;
1447
1448 static const unsigned Opc[][4] = {
1449 { X86::MOVSXr16r8, X86::MOVSXr32r8, X86::MOVSXr32r16, X86::MOVrr32 }, // s
1450 { X86::MOVZXr16r8, X86::MOVZXr32r8, X86::MOVZXr32r16, X86::MOVrr32 } // u
1451 };
1452
1453 bool isUnsigned = SrcTy->isUnsigned();
1454 BuildMI(BB, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
1455 DestReg).addReg(SrcReg);
1456
1457 if (isLong) { // Handle upper 32 bits as appropriate...
1458 if (isUnsigned) // Zero out top bits...
1459 BuildMI(BB, X86::MOVir32, 1, DestReg+1).addZImm(0);
1460 else // Sign extend bottom half...
1461 BuildMI(BB, X86::SARir32, 2, DestReg+1).addReg(DestReg).addZImm(31);
Brian Gaeked474e9c2002-12-06 10:49:33 +00001462 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001463 return;
1464 }
1465
1466 // Special case long -> int ...
1467 if (SrcClass == cLong && DestClass == cInt) {
1468 BuildMI(BB, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
1469 return;
1470 }
1471
1472 // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
1473 // move out of AX or AL.
1474 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
1475 && SrcClass > DestClass) {
1476 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
1477 BuildMI(BB, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
1478 BuildMI(BB, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
1479 return;
1480 }
1481
1482 // Handle casts from integer to floating point now...
1483 if (DestClass == cFP) {
1484 // unsigned int -> load as 64 bit int.
1485 // unsigned long long -> more complex
1486 if (SrcTy->isUnsigned() && SrcTy != Type::UByteTy)
1487 visitInstruction(CI); // don't handle unsigned src yet!
1488
1489 // We don't have the facilities for directly loading byte sized data from
1490 // memory. Promote it to 16 bits.
1491 if (SrcClass == cByte) {
1492 unsigned TmpReg = makeAnotherReg(Type::ShortTy);
1493 BuildMI(BB, SrcTy->isSigned() ? X86::MOVSXr16r8 : X86::MOVZXr16r8,
1494 1, TmpReg).addReg(SrcReg);
1495 SrcTy = Type::ShortTy; // Pretend the short is our input now!
1496 SrcClass = cShort;
1497 SrcReg = TmpReg;
1498 }
1499
1500 // Spill the integer to memory and reload it from there...
1501 int FrameIdx =
1502 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
1503
1504 if (SrcClass == cLong) {
1505 if (SrcTy == Type::ULongTy) visitInstruction(CI);
1506 addFrameReference(BuildMI(BB, X86::MOVrm32, 5), FrameIdx).addReg(SrcReg);
1507 addFrameReference(BuildMI(BB, X86::MOVrm32, 5),
1508 FrameIdx, 4).addReg(SrcReg+1);
1509 } else {
1510 static const unsigned Op1[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
1511 addFrameReference(BuildMI(BB, Op1[SrcClass], 5), FrameIdx).addReg(SrcReg);
1512 }
1513
1514 static const unsigned Op2[] =
1515 { 0, X86::FILDr16, X86::FILDr32, 0, X86::FILDr64 };
1516 addFrameReference(BuildMI(BB, Op2[SrcClass], 5, DestReg), FrameIdx);
1517 return;
1518 }
1519
1520 // Handle casts from floating point to integer now...
1521 if (SrcClass == cFP) {
1522 // Change the floating point control register to use "round towards zero"
1523 // mode when truncating to an integer value.
1524 //
1525 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
1526 addFrameReference(BuildMI(BB, X86::FNSTCWm16, 4), CWFrameIdx);
1527
1528 // Load the old value of the high byte of the control word...
1529 unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
1530 addFrameReference(BuildMI(BB, X86::MOVmr8, 4, HighPartOfCW), CWFrameIdx, 1);
1531
1532 // Set the high part to be round to zero...
1533 addFrameReference(BuildMI(BB, X86::MOVim8, 5), CWFrameIdx, 1).addZImm(12);
1534
1535 // Reload the modified control word now...
1536 addFrameReference(BuildMI(BB, X86::FLDCWm16, 4), CWFrameIdx);
1537
1538 // Restore the memory image of control word to original value
1539 addFrameReference(BuildMI(BB, X86::MOVrm8, 5),
1540 CWFrameIdx, 1).addReg(HighPartOfCW);
1541
1542 // We don't have the facilities for directly storing byte sized data to
1543 // memory. Promote it to 16 bits. We also must promote unsigned values to
1544 // larger classes because we only have signed FP stores.
1545 unsigned StoreClass = DestClass;
1546 const Type *StoreTy = DestTy;
1547 if (StoreClass == cByte || DestTy->isUnsigned())
1548 switch (StoreClass) {
1549 case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
1550 case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
1551 case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
1552 case cLong: visitInstruction(CI); // unsigned long long -> more complex
1553 default: assert(0 && "Unknown store class!");
1554 }
1555
1556 // Spill the integer to memory and reload it from there...
1557 int FrameIdx =
1558 F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
1559
1560 static const unsigned Op1[] =
1561 { 0, X86::FISTr16, X86::FISTr32, 0, X86::FISTPr64 };
1562 addFrameReference(BuildMI(BB, Op1[StoreClass], 5), FrameIdx).addReg(SrcReg);
1563
1564 if (DestClass == cLong) {
1565 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, DestReg), FrameIdx);
1566 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), FrameIdx, 4);
1567 } else {
1568 static const unsigned Op2[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
1569 addFrameReference(BuildMI(BB, Op2[DestClass], 4, DestReg), FrameIdx);
1570 }
1571
1572 // Reload the original control word now...
1573 addFrameReference(BuildMI(BB, X86::FLDCWm16, 4), CWFrameIdx);
1574 return;
1575 }
1576
Brian Gaeked474e9c2002-12-06 10:49:33 +00001577 // Anything we haven't handled already, we can't (yet) handle at all.
Brian Gaekefa8d5712002-11-22 11:07:01 +00001578 visitInstruction (CI);
1579}
Brian Gaekea1719c92002-10-31 23:03:59 +00001580
Chris Lattner8a307e82002-12-16 19:32:50 +00001581// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1582// returns zero when the input is not exactly a power of two.
1583static unsigned ExactLog2(unsigned Val) {
1584 if (Val == 0) return 0;
1585 unsigned Count = 0;
1586 while (Val != 1) {
1587 if (Val & 1) return 0;
1588 Val >>= 1;
1589 ++Count;
1590 }
1591 return Count+1;
1592}
1593
Chris Lattner3e130a22003-01-13 00:32:26 +00001594void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
1595 unsigned outputReg = getReg(I);
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00001596 MachineBasicBlock::iterator MI = BB->end();
1597 emitGEPOperation(BB, MI, I.getOperand(0),
Brian Gaeke68b1edc2002-12-16 04:23:29 +00001598 I.op_begin()+1, I.op_end(), outputReg);
Chris Lattnerc0812d82002-12-13 06:56:29 +00001599}
1600
Brian Gaeke71794c02002-12-13 11:22:48 +00001601void ISel::emitGEPOperation(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00001602 MachineBasicBlock::iterator &IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +00001603 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +00001604 User::op_iterator IdxEnd, unsigned TargetReg) {
1605 const TargetData &TD = TM.getTargetData();
1606 const Type *Ty = Src->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +00001607 unsigned BaseReg = getReg(Src, MBB, IP);
Chris Lattnerc0812d82002-12-13 06:56:29 +00001608
Brian Gaeke20244b72002-12-12 15:33:40 +00001609 // GEPs have zero or more indices; we must perform a struct access
1610 // or array access for each one.
Chris Lattnerc0812d82002-12-13 06:56:29 +00001611 for (GetElementPtrInst::op_iterator oi = IdxBegin,
1612 oe = IdxEnd; oi != oe; ++oi) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001613 Value *idx = *oi;
Chris Lattner3e130a22003-01-13 00:32:26 +00001614 unsigned NextReg = BaseReg;
Chris Lattner065faeb2002-12-28 20:24:02 +00001615 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001616 // It's a struct access. idx is the index into the structure,
1617 // which names the field. This index must have ubyte type.
Chris Lattner065faeb2002-12-28 20:24:02 +00001618 const ConstantUInt *CUI = cast<ConstantUInt>(idx);
1619 assert(CUI->getType() == Type::UByteTy
Brian Gaeke20244b72002-12-12 15:33:40 +00001620 && "Funny-looking structure index in GEP");
1621 // Use the TargetData structure to pick out what the layout of
1622 // the structure is in memory. Since the structure index must
1623 // be constant, we can get its value and use it to find the
1624 // right byte offset from the StructLayout class's list of
1625 // structure member offsets.
Chris Lattnere8f0d922002-12-24 00:03:11 +00001626 unsigned idxValue = CUI->getValue();
Chris Lattner3e130a22003-01-13 00:32:26 +00001627 unsigned FieldOff = TD.getStructLayout(StTy)->MemberOffsets[idxValue];
1628 if (FieldOff) {
1629 NextReg = makeAnotherReg(Type::UIntTy);
1630 // Emit an ADD to add FieldOff to the basePtr.
1631 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(FieldOff);
1632 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001633 // The next type is the member of the structure selected by the
1634 // index.
Chris Lattner065faeb2002-12-28 20:24:02 +00001635 Ty = StTy->getElementTypes()[idxValue];
1636 } else if (const SequentialType *SqTy = cast<SequentialType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001637 // It's an array or pointer access: [ArraySize x ElementType].
Chris Lattner8a307e82002-12-16 19:32:50 +00001638
Brian Gaeke20244b72002-12-12 15:33:40 +00001639 // idx is the index into the array. Unlike with structure
1640 // indices, we may not know its actual value at code-generation
1641 // time.
Chris Lattner8a307e82002-12-16 19:32:50 +00001642 assert(idx->getType() == Type::LongTy && "Bad GEP array index!");
1643
Chris Lattner3e130a22003-01-13 00:32:26 +00001644 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
Chris Lattner8a307e82002-12-16 19:32:50 +00001645 // must find the size of the pointed-to type (Not coincidentally, the next
1646 // type is the type of the elements in the array).
1647 Ty = SqTy->getElementType();
1648 unsigned elementSize = TD.getTypeSize(Ty);
1649
1650 // If idxReg is a constant, we don't need to perform the multiply!
1651 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001652 if (!CSI->isNullValue()) {
Chris Lattner8a307e82002-12-16 19:32:50 +00001653 unsigned Offset = elementSize*CSI->getValue();
Chris Lattner3e130a22003-01-13 00:32:26 +00001654 NextReg = makeAnotherReg(Type::UIntTy);
1655 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(Offset);
Chris Lattner8a307e82002-12-16 19:32:50 +00001656 }
1657 } else if (elementSize == 1) {
1658 // If the element size is 1, we don't have to multiply, just add
1659 unsigned idxReg = getReg(idx, MBB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001660 NextReg = makeAnotherReg(Type::UIntTy);
1661 BMI(MBB, IP, X86::ADDrr32, 2, NextReg).addReg(BaseReg).addReg(idxReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00001662 } else {
1663 unsigned idxReg = getReg(idx, MBB, IP);
1664 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
1665 if (unsigned Shift = ExactLog2(elementSize)) {
1666 // If the element size is exactly a power of 2, use a shift to get it.
Chris Lattner8a307e82002-12-16 19:32:50 +00001667 BMI(MBB, IP, X86::SHLir32, 2,
1668 OffsetReg).addReg(idxReg).addZImm(Shift-1);
1669 } else {
1670 // Most general case, emit a multiply...
1671 unsigned elementSizeReg = makeAnotherReg(Type::LongTy);
1672 BMI(MBB, IP, X86::MOVir32, 1, elementSizeReg).addZImm(elementSize);
1673
1674 // Emit a MUL to multiply the register holding the index by
1675 // elementSize, putting the result in OffsetReg.
Chris Lattner3e130a22003-01-13 00:32:26 +00001676 doMultiply(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSizeReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00001677 }
1678 // Emit an ADD to add OffsetReg to the basePtr.
Chris Lattner3e130a22003-01-13 00:32:26 +00001679 NextReg = makeAnotherReg(Type::UIntTy);
1680 BMI(MBB, IP, X86::ADDrr32, 2,NextReg).addReg(BaseReg).addReg(OffsetReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00001681 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001682 }
1683 // Now that we are here, further indices refer to subtypes of this
Chris Lattner3e130a22003-01-13 00:32:26 +00001684 // one, so we don't need to worry about BaseReg itself, anymore.
1685 BaseReg = NextReg;
Brian Gaeke20244b72002-12-12 15:33:40 +00001686 }
1687 // After we have processed all the indices, the result is left in
Chris Lattner3e130a22003-01-13 00:32:26 +00001688 // BaseReg. Move it to the register where we were expected to
Brian Gaeke20244b72002-12-12 15:33:40 +00001689 // put the answer. A 32-bit move should do it, because we are in
1690 // ILP32 land.
Chris Lattner3e130a22003-01-13 00:32:26 +00001691 BMI(MBB, IP, X86::MOVrr32, 1, TargetReg).addReg(BaseReg);
Brian Gaeke20244b72002-12-12 15:33:40 +00001692}
1693
1694
Chris Lattner065faeb2002-12-28 20:24:02 +00001695/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
1696/// frame manager, otherwise do it the hard way.
1697///
1698void ISel::visitAllocaInst(AllocaInst &I) {
Brian Gaekee48ec012002-12-13 06:46:31 +00001699 // Find the data size of the alloca inst's getAllocatedType.
Chris Lattner065faeb2002-12-28 20:24:02 +00001700 const Type *Ty = I.getAllocatedType();
1701 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
1702
1703 // If this is a fixed size alloca in the entry block for the function,
1704 // statically stack allocate the space.
1705 //
1706 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getArraySize())) {
1707 if (I.getParent() == I.getParent()->getParent()->begin()) {
1708 TySize *= CUI->getValue(); // Get total allocated size...
1709 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
1710
1711 // Create a new stack object using the frame manager...
1712 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
1713 addFrameReference(BuildMI(BB, X86::LEAr32, 5, getReg(I)), FrameIdx);
1714 return;
1715 }
1716 }
1717
1718 // Create a register to hold the temporary result of multiplying the type size
1719 // constant by the variable amount.
1720 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
1721 unsigned SrcReg1 = getReg(I.getArraySize());
1722 unsigned SizeReg = makeAnotherReg(Type::UIntTy);
1723 BuildMI(BB, X86::MOVir32, 1, SizeReg).addZImm(TySize);
1724
1725 // TotalSizeReg = mul <numelements>, <TypeSize>
1726 MachineBasicBlock::iterator MBBI = BB->end();
1727 doMultiply(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, SizeReg);
1728
1729 // AddedSize = add <TotalSizeReg>, 15
1730 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
1731 BuildMI(BB, X86::ADDri32, 2, AddedSizeReg).addReg(TotalSizeReg).addZImm(15);
1732
1733 // AlignedSize = and <AddedSize>, ~15
1734 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
1735 BuildMI(BB, X86::ANDri32, 2, AlignedSize).addReg(AddedSizeReg).addZImm(~15);
1736
Brian Gaekee48ec012002-12-13 06:46:31 +00001737 // Subtract size from stack pointer, thereby allocating some space.
Chris Lattner3e130a22003-01-13 00:32:26 +00001738 BuildMI(BB, X86::SUBrr32, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
Chris Lattner065faeb2002-12-28 20:24:02 +00001739
Brian Gaekee48ec012002-12-13 06:46:31 +00001740 // Put a pointer to the space into the result register, by copying
1741 // the stack pointer.
Chris Lattner065faeb2002-12-28 20:24:02 +00001742 BuildMI(BB, X86::MOVrr32, 1, getReg(I)).addReg(X86::ESP);
1743
1744 // Inform the Frame Information that we have just allocated a variable sized
1745 // object.
1746 F->getFrameInfo()->CreateVariableSizedObject();
Brian Gaeke20244b72002-12-12 15:33:40 +00001747}
Chris Lattner3e130a22003-01-13 00:32:26 +00001748
1749/// visitMallocInst - Malloc instructions are code generated into direct calls
1750/// to the library malloc.
1751///
1752void ISel::visitMallocInst(MallocInst &I) {
1753 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
1754 unsigned Arg;
1755
1756 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
1757 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
1758 } else {
1759 Arg = makeAnotherReg(Type::UIntTy);
1760 unsigned Op0Reg = getReg(ConstantUInt::get(Type::UIntTy, AllocSize));
1761 unsigned Op1Reg = getReg(I.getOperand(0));
1762 MachineBasicBlock::iterator MBBI = BB->end();
1763 doMultiply(BB, MBBI, Arg, Type::UIntTy, Op0Reg, Op1Reg);
1764
1765
1766 }
1767
1768 std::vector<ValueRecord> Args;
1769 Args.push_back(ValueRecord(Arg, Type::UIntTy));
1770 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
1771 1).addExternalSymbol("malloc", true);
1772 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
1773}
1774
1775
1776/// visitFreeInst - Free instructions are code gen'd to call the free libc
1777/// function.
1778///
1779void ISel::visitFreeInst(FreeInst &I) {
1780 std::vector<ValueRecord> Args;
1781 Args.push_back(ValueRecord(getReg(I.getOperand(0)),
1782 I.getOperand(0)->getType()));
1783 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
1784 1).addExternalSymbol("free", true);
1785 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
1786}
1787
Brian Gaeke20244b72002-12-12 15:33:40 +00001788
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00001789/// createSimpleX86InstructionSelector - This pass converts an LLVM function
1790/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +00001791/// generated code sucks but the implementation is nice and simple.
1792///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00001793Pass *createSimpleX86InstructionSelector(TargetMachine &TM) {
1794 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +00001795}