blob: cda81e428d71020ec9e8ff61435babe411025d88 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This library converts LLVM code to C code, compilable by GCC and other C
11// compilers.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CTargetMachine.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Module.h"
20#include "llvm/Instructions.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000021#include "llvm/Pass.h"
22#include "llvm/PassManager.h"
23#include "llvm/TypeSymbolTable.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Analysis/ConstantsScanner.h"
28#include "llvm/Analysis/FindUsedTypes.h"
29#include "llvm/Analysis/LoopInfo.h"
Gordon Henriksendf87fdc2008-01-07 01:30:38 +000030#include "llvm/CodeGen/Passes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000031#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/Transforms/Scalar.h"
33#include "llvm/Target/TargetMachineRegistry.h"
34#include "llvm/Target/TargetAsmInfo.h"
35#include "llvm/Target/TargetData.h"
36#include "llvm/Support/CallSite.h"
37#include "llvm/Support/CFG.h"
38#include "llvm/Support/GetElementPtrTypeIterator.h"
39#include "llvm/Support/InstVisitor.h"
40#include "llvm/Support/Mangler.h"
41#include "llvm/Support/MathExtras.h"
42#include "llvm/ADT/StringExtras.h"
43#include "llvm/ADT/STLExtras.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Config/config.h"
46#include <algorithm>
47#include <sstream>
48using namespace llvm;
49
Dan Gohman089efff2008-05-13 00:00:25 +000050// Register the target.
51static RegisterTarget<CTargetMachine> X("c", " C backend");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000052
Dan Gohman089efff2008-05-13 00:00:25 +000053namespace {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000054 /// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for
55 /// any unnamed structure types that are used by the program, and merges
56 /// external functions with the same name.
57 ///
58 class CBackendNameAllUsedStructsAndMergeFunctions : public ModulePass {
59 public:
60 static char ID;
61 CBackendNameAllUsedStructsAndMergeFunctions()
62 : ModulePass((intptr_t)&ID) {}
63 void getAnalysisUsage(AnalysisUsage &AU) const {
64 AU.addRequired<FindUsedTypes>();
65 }
66
67 virtual const char *getPassName() const {
68 return "C backend type canonicalizer";
69 }
70
71 virtual bool runOnModule(Module &M);
72 };
73
74 char CBackendNameAllUsedStructsAndMergeFunctions::ID = 0;
75
76 /// CWriter - This class is the main chunk of code that converts an LLVM
77 /// module to a C translation unit.
78 class CWriter : public FunctionPass, public InstVisitor<CWriter> {
79 std::ostream &Out;
80 IntrinsicLowering *IL;
81 Mangler *Mang;
82 LoopInfo *LI;
83 const Module *TheModule;
84 const TargetAsmInfo* TAsm;
85 const TargetData* TD;
86 std::map<const Type *, std::string> TypeNames;
87 std::map<const ConstantFP *, unsigned> FPConstantMap;
88 std::set<Function*> intrinsicPrototypesAlreadyGenerated;
Chris Lattner8bbc8592008-03-02 08:07:24 +000089 std::set<const Argument*> ByValParams;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000090
91 public:
92 static char ID;
Dan Gohman40bd38e2008-03-25 22:06:05 +000093 explicit CWriter(std::ostream &o)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000094 : FunctionPass((intptr_t)&ID), Out(o), IL(0), Mang(0), LI(0),
95 TheModule(0), TAsm(0), TD(0) {}
96
97 virtual const char *getPassName() const { return "C backend"; }
98
99 void getAnalysisUsage(AnalysisUsage &AU) const {
100 AU.addRequired<LoopInfo>();
101 AU.setPreservesAll();
102 }
103
104 virtual bool doInitialization(Module &M);
105
106 bool runOnFunction(Function &F) {
107 LI = &getAnalysis<LoopInfo>();
108
109 // Get rid of intrinsics we can't handle.
110 lowerIntrinsics(F);
111
112 // Output all floating point constants that cannot be printed accurately.
113 printFloatingPointConstants(F);
114
115 printFunction(F);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000116 return false;
117 }
118
119 virtual bool doFinalization(Module &M) {
120 // Free memory...
121 delete Mang;
Evan Cheng17254e62008-01-11 09:12:49 +0000122 FPConstantMap.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000123 TypeNames.clear();
Evan Cheng17254e62008-01-11 09:12:49 +0000124 ByValParams.clear();
Chris Lattner8bbc8592008-03-02 08:07:24 +0000125 intrinsicPrototypesAlreadyGenerated.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000126 return false;
127 }
128
129 std::ostream &printType(std::ostream &Out, const Type *Ty,
130 bool isSigned = false,
131 const std::string &VariableName = "",
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000132 bool IgnoreName = false,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000133 const PAListPtr &PAL = PAListPtr());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000134 std::ostream &printSimpleType(std::ostream &Out, const Type *Ty,
Chris Lattner63fb1f02008-03-02 03:16:38 +0000135 bool isSigned,
136 const std::string &NameSoFar = "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000137
138 void printStructReturnPointerFunctionType(std::ostream &Out,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000139 const PAListPtr &PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000140 const PointerType *Ty);
Chris Lattner8bbc8592008-03-02 08:07:24 +0000141
142 /// writeOperandDeref - Print the result of dereferencing the specified
143 /// operand with '*'. This is equivalent to printing '*' then using
144 /// writeOperand, but avoids excess syntax in some cases.
145 void writeOperandDeref(Value *Operand) {
146 if (isAddressExposed(Operand)) {
147 // Already something with an address exposed.
148 writeOperandInternal(Operand);
149 } else {
150 Out << "*(";
151 writeOperand(Operand);
152 Out << ")";
153 }
154 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000155
156 void writeOperand(Value *Operand);
157 void writeOperandRaw(Value *Operand);
Chris Lattnerd70f5a82008-05-31 09:23:55 +0000158 void writeInstComputationInline(Instruction &I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000159 void writeOperandInternal(Value *Operand);
160 void writeOperandWithCast(Value* Operand, unsigned Opcode);
Chris Lattner389c9142007-09-15 06:51:03 +0000161 void writeOperandWithCast(Value* Operand, const ICmpInst &I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000162 bool writeInstructionCast(const Instruction &I);
163
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +0000164 void writeMemoryAccess(Value *Operand, const Type *OperandType,
165 bool IsVolatile, unsigned Alignment);
166
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000167 private :
168 std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
169
170 void lowerIntrinsics(Function &F);
171
172 void printModule(Module *M);
173 void printModuleTypes(const TypeSymbolTable &ST);
Dan Gohman5d995b02008-06-02 21:30:49 +0000174 void printContainedStructs(const Type *Ty, std::set<const Type *> &);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000175 void printFloatingPointConstants(Function &F);
176 void printFunctionSignature(const Function *F, bool Prototype);
177
178 void printFunction(Function &);
179 void printBasicBlock(BasicBlock *BB);
180 void printLoop(Loop *L);
181
182 void printCast(unsigned opcode, const Type *SrcTy, const Type *DstTy);
183 void printConstant(Constant *CPV);
184 void printConstantWithCast(Constant *CPV, unsigned Opcode);
185 bool printConstExprCast(const ConstantExpr *CE);
186 void printConstantArray(ConstantArray *CPA);
Chris Lattner8bbc8592008-03-02 08:07:24 +0000187 void printConstantVector(ConstantVector *CV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000188
Chris Lattner8bbc8592008-03-02 08:07:24 +0000189 /// isAddressExposed - Return true if the specified value's name needs to
190 /// have its address taken in order to get a C value of the correct type.
191 /// This happens for global variables, byval parameters, and direct allocas.
192 bool isAddressExposed(const Value *V) const {
193 if (const Argument *A = dyn_cast<Argument>(V))
194 return ByValParams.count(A);
195 return isa<GlobalVariable>(V) || isDirectAlloca(V);
196 }
197
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000198 // isInlinableInst - Attempt to inline instructions into their uses to build
199 // trees as much as possible. To do this, we have to consistently decide
200 // what is acceptable to inline, so that variable declarations don't get
201 // printed and an extra copy of the expr is not emitted.
202 //
203 static bool isInlinableInst(const Instruction &I) {
204 // Always inline cmp instructions, even if they are shared by multiple
205 // expressions. GCC generates horrible code if we don't.
206 if (isa<CmpInst>(I))
207 return true;
208
209 // Must be an expression, must be used exactly once. If it is dead, we
210 // emit it inline where it would go.
211 if (I.getType() == Type::VoidTy || !I.hasOneUse() ||
212 isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
Dan Gohman5d995b02008-06-02 21:30:49 +0000213 isa<LoadInst>(I) || isa<VAArgInst>(I) || isa<InsertElementInst>(I) ||
214 isa<InsertValueInst>(I))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000215 // Don't inline a load across a store or other bad things!
216 return false;
217
Chris Lattnerf858a042008-03-02 05:41:07 +0000218 // Must not be used in inline asm, extractelement, or shufflevector.
219 if (I.hasOneUse()) {
220 const Instruction &User = cast<Instruction>(*I.use_back());
221 if (isInlineAsm(User) || isa<ExtractElementInst>(User) ||
222 isa<ShuffleVectorInst>(User))
223 return false;
224 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000225
226 // Only inline instruction it if it's use is in the same BB as the inst.
227 return I.getParent() == cast<Instruction>(I.use_back())->getParent();
228 }
229
230 // isDirectAlloca - Define fixed sized allocas in the entry block as direct
231 // variables which are accessed with the & operator. This causes GCC to
232 // generate significantly better code than to emit alloca calls directly.
233 //
234 static const AllocaInst *isDirectAlloca(const Value *V) {
235 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
236 if (!AI) return false;
237 if (AI->isArrayAllocation())
238 return 0; // FIXME: we can also inline fixed size array allocas!
239 if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
240 return 0;
241 return AI;
242 }
243
244 // isInlineAsm - Check if the instruction is a call to an inline asm chunk
245 static bool isInlineAsm(const Instruction& I) {
246 if (isa<CallInst>(&I) && isa<InlineAsm>(I.getOperand(0)))
247 return true;
248 return false;
249 }
250
251 // Instruction visitation functions
252 friend class InstVisitor<CWriter>;
253
254 void visitReturnInst(ReturnInst &I);
255 void visitBranchInst(BranchInst &I);
256 void visitSwitchInst(SwitchInst &I);
257 void visitInvokeInst(InvokeInst &I) {
258 assert(0 && "Lowerinvoke pass didn't work!");
259 }
260
261 void visitUnwindInst(UnwindInst &I) {
262 assert(0 && "Lowerinvoke pass didn't work!");
263 }
264 void visitUnreachableInst(UnreachableInst &I);
265
266 void visitPHINode(PHINode &I);
267 void visitBinaryOperator(Instruction &I);
268 void visitICmpInst(ICmpInst &I);
269 void visitFCmpInst(FCmpInst &I);
270
271 void visitCastInst (CastInst &I);
272 void visitSelectInst(SelectInst &I);
273 void visitCallInst (CallInst &I);
274 void visitInlineAsm(CallInst &I);
Chris Lattnera74b9182008-03-02 08:29:41 +0000275 bool visitBuiltinCall(CallInst &I, Intrinsic::ID ID, bool &WroteCallee);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000276
277 void visitMallocInst(MallocInst &I);
278 void visitAllocaInst(AllocaInst &I);
279 void visitFreeInst (FreeInst &I);
280 void visitLoadInst (LoadInst &I);
281 void visitStoreInst (StoreInst &I);
282 void visitGetElementPtrInst(GetElementPtrInst &I);
283 void visitVAArgInst (VAArgInst &I);
Chris Lattnerf41a7942008-03-02 03:52:39 +0000284
285 void visitInsertElementInst(InsertElementInst &I);
Chris Lattnera5f0bc02008-03-02 03:57:08 +0000286 void visitExtractElementInst(ExtractElementInst &I);
Chris Lattnerf858a042008-03-02 05:41:07 +0000287 void visitShuffleVectorInst(ShuffleVectorInst &SVI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000288
Dan Gohman5d995b02008-06-02 21:30:49 +0000289 void visitInsertValueInst(InsertValueInst &I);
290 void visitExtractValueInst(ExtractValueInst &I);
291
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000292 void visitInstruction(Instruction &I) {
293 cerr << "C Writer does not know about " << I;
294 abort();
295 }
296
297 void outputLValue(Instruction *I) {
298 Out << " " << GetValueName(I) << " = ";
299 }
300
301 bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
302 void printPHICopiesForSuccessor(BasicBlock *CurBlock,
303 BasicBlock *Successor, unsigned Indent);
304 void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
305 unsigned Indent);
Chris Lattner8bbc8592008-03-02 08:07:24 +0000306 void printGEPExpression(Value *Ptr, gep_type_iterator I,
307 gep_type_iterator E);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000308
309 std::string GetValueName(const Value *Operand);
310 };
311}
312
313char CWriter::ID = 0;
314
315/// This method inserts names for any unnamed structure types that are used by
316/// the program, and removes names from structure types that are not used by the
317/// program.
318///
319bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) {
320 // Get a set of types that are used by the program...
321 std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
322
323 // Loop over the module symbol table, removing types from UT that are
324 // already named, and removing names for types that are not used.
325 //
326 TypeSymbolTable &TST = M.getTypeSymbolTable();
327 for (TypeSymbolTable::iterator TI = TST.begin(), TE = TST.end();
328 TI != TE; ) {
329 TypeSymbolTable::iterator I = TI++;
330
Dan Gohman5d995b02008-06-02 21:30:49 +0000331 // If this isn't a struct or array type, remove it from our set of types
332 // to name. This simplifies emission later.
333 if (!isa<StructType>(I->second) && !isa<OpaqueType>(I->second) &&
334 !isa<ArrayType>(I->second)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000335 TST.remove(I);
336 } else {
337 // If this is not used, remove it from the symbol table.
338 std::set<const Type *>::iterator UTI = UT.find(I->second);
339 if (UTI == UT.end())
340 TST.remove(I);
341 else
342 UT.erase(UTI); // Only keep one name for this type.
343 }
344 }
345
346 // UT now contains types that are not named. Loop over it, naming
347 // structure types.
348 //
349 bool Changed = false;
350 unsigned RenameCounter = 0;
351 for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
352 I != E; ++I)
Dan Gohman5d995b02008-06-02 21:30:49 +0000353 if (isa<StructType>(*I) || isa<ArrayType>(*I)) {
354 while (M.addTypeName("unnamed"+utostr(RenameCounter), *I))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000355 ++RenameCounter;
356 Changed = true;
357 }
358
359
360 // Loop over all external functions and globals. If we have two with
361 // identical names, merge them.
362 // FIXME: This code should disappear when we don't allow values with the same
363 // names when they have different types!
364 std::map<std::string, GlobalValue*> ExtSymbols;
365 for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
366 Function *GV = I++;
367 if (GV->isDeclaration() && GV->hasName()) {
368 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
369 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
370 if (!X.second) {
371 // Found a conflict, replace this global with the previous one.
372 GlobalValue *OldGV = X.first->second;
373 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
374 GV->eraseFromParent();
375 Changed = true;
376 }
377 }
378 }
379 // Do the same for globals.
380 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
381 I != E;) {
382 GlobalVariable *GV = I++;
383 if (GV->isDeclaration() && GV->hasName()) {
384 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
385 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
386 if (!X.second) {
387 // Found a conflict, replace this global with the previous one.
388 GlobalValue *OldGV = X.first->second;
389 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
390 GV->eraseFromParent();
391 Changed = true;
392 }
393 }
394 }
395
396 return Changed;
397}
398
399/// printStructReturnPointerFunctionType - This is like printType for a struct
400/// return type, except, instead of printing the type as void (*)(Struct*, ...)
401/// print it as "Struct (*)(...)", for struct return functions.
402void CWriter::printStructReturnPointerFunctionType(std::ostream &Out,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000403 const PAListPtr &PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000404 const PointerType *TheTy) {
405 const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
406 std::stringstream FunctionInnards;
407 FunctionInnards << " (*) (";
408 bool PrintedType = false;
409
410 FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
411 const Type *RetTy = cast<PointerType>(I->get())->getElementType();
412 unsigned Idx = 1;
Evan Cheng2054cb02008-01-11 03:07:46 +0000413 for (++I, ++Idx; I != E; ++I, ++Idx) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000414 if (PrintedType)
415 FunctionInnards << ", ";
Evan Cheng2054cb02008-01-11 03:07:46 +0000416 const Type *ArgTy = *I;
Chris Lattner1c8733e2008-03-12 17:45:29 +0000417 if (PAL.paramHasAttr(Idx, ParamAttr::ByVal)) {
Evan Cheng17254e62008-01-11 09:12:49 +0000418 assert(isa<PointerType>(ArgTy));
419 ArgTy = cast<PointerType>(ArgTy)->getElementType();
420 }
Evan Cheng2054cb02008-01-11 03:07:46 +0000421 printType(FunctionInnards, ArgTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000422 /*isSigned=*/PAL.paramHasAttr(Idx, ParamAttr::SExt), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000423 PrintedType = true;
424 }
425 if (FTy->isVarArg()) {
426 if (PrintedType)
427 FunctionInnards << ", ...";
428 } else if (!PrintedType) {
429 FunctionInnards << "void";
430 }
431 FunctionInnards << ')';
432 std::string tstr = FunctionInnards.str();
433 printType(Out, RetTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000434 /*isSigned=*/PAL.paramHasAttr(0, ParamAttr::SExt), tstr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000435}
436
437std::ostream &
438CWriter::printSimpleType(std::ostream &Out, const Type *Ty, bool isSigned,
Chris Lattnerd8090712008-03-02 03:41:23 +0000439 const std::string &NameSoFar) {
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000440 assert((Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000441 "Invalid type for printSimpleType");
442 switch (Ty->getTypeID()) {
443 case Type::VoidTyID: return Out << "void " << NameSoFar;
444 case Type::IntegerTyID: {
445 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
446 if (NumBits == 1)
447 return Out << "bool " << NameSoFar;
448 else if (NumBits <= 8)
449 return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
450 else if (NumBits <= 16)
451 return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
452 else if (NumBits <= 32)
453 return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
Dan Gohmana2245af2008-04-02 19:40:14 +0000454 else if (NumBits <= 64)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000455 return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
Dan Gohmana2245af2008-04-02 19:40:14 +0000456 else {
457 assert(NumBits <= 128 && "Bit widths > 128 not implemented yet");
458 return Out << (isSigned?"llvmInt128":"llvmUInt128") << " " << NameSoFar;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000459 }
460 }
461 case Type::FloatTyID: return Out << "float " << NameSoFar;
462 case Type::DoubleTyID: return Out << "double " << NameSoFar;
Dale Johannesen137cef62007-09-17 00:38:27 +0000463 // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
464 // present matches host 'long double'.
465 case Type::X86_FP80TyID:
466 case Type::PPC_FP128TyID:
467 case Type::FP128TyID: return Out << "long double " << NameSoFar;
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000468
469 case Type::VectorTyID: {
470 const VectorType *VTy = cast<VectorType>(Ty);
Chris Lattnerd8090712008-03-02 03:41:23 +0000471 return printSimpleType(Out, VTy->getElementType(), isSigned,
Chris Lattnerfddca552008-03-02 03:39:43 +0000472 " __attribute__((vector_size(" +
473 utostr(TD->getABITypeSize(VTy)) + " ))) " + NameSoFar);
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000474 }
475
476 default:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000477 cerr << "Unknown primitive type: " << *Ty << "\n";
478 abort();
479 }
480}
481
482// Pass the Type* and the variable name and this prints out the variable
483// declaration.
484//
485std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
486 bool isSigned, const std::string &NameSoFar,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000487 bool IgnoreName, const PAListPtr &PAL) {
Chris Lattnerdb6d5ce2008-03-02 03:33:31 +0000488 if (Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000489 printSimpleType(Out, Ty, isSigned, NameSoFar);
490 return Out;
491 }
492
493 // Check to see if the type is named.
494 if (!IgnoreName || isa<OpaqueType>(Ty)) {
495 std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
496 if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
497 }
498
499 switch (Ty->getTypeID()) {
500 case Type::FunctionTyID: {
501 const FunctionType *FTy = cast<FunctionType>(Ty);
502 std::stringstream FunctionInnards;
503 FunctionInnards << " (" << NameSoFar << ") (";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000504 unsigned Idx = 1;
505 for (FunctionType::param_iterator I = FTy->param_begin(),
506 E = FTy->param_end(); I != E; ++I) {
Evan Chengb8a072c2008-01-12 18:53:07 +0000507 const Type *ArgTy = *I;
Chris Lattner1c8733e2008-03-12 17:45:29 +0000508 if (PAL.paramHasAttr(Idx, ParamAttr::ByVal)) {
Evan Chengb8a072c2008-01-12 18:53:07 +0000509 assert(isa<PointerType>(ArgTy));
510 ArgTy = cast<PointerType>(ArgTy)->getElementType();
511 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000512 if (I != FTy->param_begin())
513 FunctionInnards << ", ";
Evan Chengb8a072c2008-01-12 18:53:07 +0000514 printType(FunctionInnards, ArgTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +0000515 /*isSigned=*/PAL.paramHasAttr(Idx, ParamAttr::SExt), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000516 ++Idx;
517 }
518 if (FTy->isVarArg()) {
519 if (FTy->getNumParams())
520 FunctionInnards << ", ...";
521 } else if (!FTy->getNumParams()) {
522 FunctionInnards << "void";
523 }
524 FunctionInnards << ')';
525 std::string tstr = FunctionInnards.str();
526 printType(Out, FTy->getReturnType(),
Chris Lattner1c8733e2008-03-12 17:45:29 +0000527 /*isSigned=*/PAL.paramHasAttr(0, ParamAttr::SExt), tstr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000528 return Out;
529 }
530 case Type::StructTyID: {
531 const StructType *STy = cast<StructType>(Ty);
532 Out << NameSoFar + " {\n";
533 unsigned Idx = 0;
534 for (StructType::element_iterator I = STy->element_begin(),
535 E = STy->element_end(); I != E; ++I) {
536 Out << " ";
537 printType(Out, *I, false, "field" + utostr(Idx++));
538 Out << ";\n";
539 }
540 Out << '}';
541 if (STy->isPacked())
542 Out << " __attribute__ ((packed))";
543 return Out;
544 }
545
546 case Type::PointerTyID: {
547 const PointerType *PTy = cast<PointerType>(Ty);
548 std::string ptrName = "*" + NameSoFar;
549
550 if (isa<ArrayType>(PTy->getElementType()) ||
551 isa<VectorType>(PTy->getElementType()))
552 ptrName = "(" + ptrName + ")";
553
Chris Lattner1c8733e2008-03-12 17:45:29 +0000554 if (!PAL.isEmpty())
Evan Chengb8a072c2008-01-12 18:53:07 +0000555 // Must be a function ptr cast!
556 return printType(Out, PTy->getElementType(), false, ptrName, true, PAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000557 return printType(Out, PTy->getElementType(), false, ptrName);
558 }
559
560 case Type::ArrayTyID: {
561 const ArrayType *ATy = cast<ArrayType>(Ty);
562 unsigned NumElements = ATy->getNumElements();
563 if (NumElements == 0) NumElements = 1;
Dan Gohman5d995b02008-06-02 21:30:49 +0000564 // Arrays are wrapped in structs to allow them to have normal
565 // value semantics (avoiding the array "decay").
566 Out << NameSoFar << " { ";
567 printType(Out, ATy->getElementType(), false,
568 "array[" + utostr(NumElements) + "]");
569 return Out << "; }";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000570 }
571
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000572 case Type::OpaqueTyID: {
573 static int Count = 0;
574 std::string TyName = "struct opaque_" + itostr(Count++);
575 assert(TypeNames.find(Ty) == TypeNames.end());
576 TypeNames[Ty] = TyName;
577 return Out << TyName << ' ' << NameSoFar;
578 }
579 default:
580 assert(0 && "Unhandled case in getTypeProps!");
581 abort();
582 }
583
584 return Out;
585}
586
587void CWriter::printConstantArray(ConstantArray *CPA) {
588
589 // As a special case, print the array as a string if it is an array of
590 // ubytes or an array of sbytes with positive values.
591 //
592 const Type *ETy = CPA->getType()->getElementType();
593 bool isString = (ETy == Type::Int8Ty || ETy == Type::Int8Ty);
594
595 // Make sure the last character is a null char, as automatically added by C
596 if (isString && (CPA->getNumOperands() == 0 ||
597 !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
598 isString = false;
599
600 if (isString) {
601 Out << '\"';
602 // Keep track of whether the last number was a hexadecimal escape
603 bool LastWasHex = false;
604
605 // Do not include the last character, which we know is null
606 for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
607 unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
608
609 // Print it out literally if it is a printable character. The only thing
610 // to be careful about is when the last letter output was a hex escape
611 // code, in which case we have to be careful not to print out hex digits
612 // explicitly (the C compiler thinks it is a continuation of the previous
613 // character, sheesh...)
614 //
615 if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
616 LastWasHex = false;
617 if (C == '"' || C == '\\')
618 Out << "\\" << C;
619 else
620 Out << C;
621 } else {
622 LastWasHex = false;
623 switch (C) {
624 case '\n': Out << "\\n"; break;
625 case '\t': Out << "\\t"; break;
626 case '\r': Out << "\\r"; break;
627 case '\v': Out << "\\v"; break;
628 case '\a': Out << "\\a"; break;
629 case '\"': Out << "\\\""; break;
630 case '\'': Out << "\\\'"; break;
631 default:
632 Out << "\\x";
633 Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
634 Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
635 LastWasHex = true;
636 break;
637 }
638 }
639 }
640 Out << '\"';
641 } else {
642 Out << '{';
643 if (CPA->getNumOperands()) {
644 Out << ' ';
645 printConstant(cast<Constant>(CPA->getOperand(0)));
646 for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
647 Out << ", ";
648 printConstant(cast<Constant>(CPA->getOperand(i)));
649 }
650 }
651 Out << " }";
652 }
653}
654
655void CWriter::printConstantVector(ConstantVector *CP) {
656 Out << '{';
657 if (CP->getNumOperands()) {
658 Out << ' ';
659 printConstant(cast<Constant>(CP->getOperand(0)));
660 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
661 Out << ", ";
662 printConstant(cast<Constant>(CP->getOperand(i)));
663 }
664 }
665 Out << " }";
666}
667
668// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
669// textually as a double (rather than as a reference to a stack-allocated
670// variable). We decide this by converting CFP to a string and back into a
671// double, and then checking whether the conversion results in a bit-equal
672// double to the original value of CFP. This depends on us and the target C
673// compiler agreeing on the conversion process (which is pretty likely since we
674// only deal in IEEE FP).
675//
676static bool isFPCSafeToPrint(const ConstantFP *CFP) {
Dale Johannesen137cef62007-09-17 00:38:27 +0000677 // Do long doubles in hex for now.
Dale Johannesen2fc20782007-09-14 22:26:36 +0000678 if (CFP->getType()!=Type::FloatTy && CFP->getType()!=Type::DoubleTy)
679 return false;
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000680 APFloat APF = APFloat(CFP->getValueAPF()); // copy
681 if (CFP->getType()==Type::FloatTy)
682 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000683#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
684 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000685 sprintf(Buffer, "%a", APF.convertToDouble());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000686 if (!strncmp(Buffer, "0x", 2) ||
687 !strncmp(Buffer, "-0x", 3) ||
688 !strncmp(Buffer, "+0x", 3))
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000689 return APF.bitwiseIsEqual(APFloat(atof(Buffer)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000690 return false;
691#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000692 std::string StrVal = ftostr(APF);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000693
694 while (StrVal[0] == ' ')
695 StrVal.erase(StrVal.begin());
696
697 // Check to make sure that the stringized number is not some string like "Inf"
698 // or NaN. Check that the string matches the "[-+]?[0-9]" regex.
699 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
700 ((StrVal[0] == '-' || StrVal[0] == '+') &&
701 (StrVal[1] >= '0' && StrVal[1] <= '9')))
702 // Reparse stringized version!
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000703 return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000704 return false;
705#endif
706}
707
708/// Print out the casting for a cast operation. This does the double casting
709/// necessary for conversion to the destination type, if necessary.
710/// @brief Print a cast
711void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) {
712 // Print the destination type cast
713 switch (opc) {
714 case Instruction::UIToFP:
715 case Instruction::SIToFP:
716 case Instruction::IntToPtr:
717 case Instruction::Trunc:
718 case Instruction::BitCast:
719 case Instruction::FPExt:
720 case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
721 Out << '(';
722 printType(Out, DstTy);
723 Out << ')';
724 break;
725 case Instruction::ZExt:
726 case Instruction::PtrToInt:
727 case Instruction::FPToUI: // For these, make sure we get an unsigned dest
728 Out << '(';
729 printSimpleType(Out, DstTy, false);
730 Out << ')';
731 break;
732 case Instruction::SExt:
733 case Instruction::FPToSI: // For these, make sure we get a signed dest
734 Out << '(';
735 printSimpleType(Out, DstTy, true);
736 Out << ')';
737 break;
738 default:
739 assert(0 && "Invalid cast opcode");
740 }
741
742 // Print the source type cast
743 switch (opc) {
744 case Instruction::UIToFP:
745 case Instruction::ZExt:
746 Out << '(';
747 printSimpleType(Out, SrcTy, false);
748 Out << ')';
749 break;
750 case Instruction::SIToFP:
751 case Instruction::SExt:
752 Out << '(';
753 printSimpleType(Out, SrcTy, true);
754 Out << ')';
755 break;
756 case Instruction::IntToPtr:
757 case Instruction::PtrToInt:
758 // Avoid "cast to pointer from integer of different size" warnings
759 Out << "(unsigned long)";
760 break;
761 case Instruction::Trunc:
762 case Instruction::BitCast:
763 case Instruction::FPExt:
764 case Instruction::FPTrunc:
765 case Instruction::FPToSI:
766 case Instruction::FPToUI:
767 break; // These don't need a source cast.
768 default:
769 assert(0 && "Invalid cast opcode");
770 break;
771 }
772}
773
774// printConstant - The LLVM Constant to C Constant converter.
775void CWriter::printConstant(Constant *CPV) {
776 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
777 switch (CE->getOpcode()) {
778 case Instruction::Trunc:
779 case Instruction::ZExt:
780 case Instruction::SExt:
781 case Instruction::FPTrunc:
782 case Instruction::FPExt:
783 case Instruction::UIToFP:
784 case Instruction::SIToFP:
785 case Instruction::FPToUI:
786 case Instruction::FPToSI:
787 case Instruction::PtrToInt:
788 case Instruction::IntToPtr:
789 case Instruction::BitCast:
790 Out << "(";
791 printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
792 if (CE->getOpcode() == Instruction::SExt &&
793 CE->getOperand(0)->getType() == Type::Int1Ty) {
794 // Make sure we really sext from bool here by subtracting from 0
795 Out << "0-";
796 }
797 printConstant(CE->getOperand(0));
798 if (CE->getType() == Type::Int1Ty &&
799 (CE->getOpcode() == Instruction::Trunc ||
800 CE->getOpcode() == Instruction::FPToUI ||
801 CE->getOpcode() == Instruction::FPToSI ||
802 CE->getOpcode() == Instruction::PtrToInt)) {
803 // Make sure we really truncate to bool here by anding with 1
804 Out << "&1u";
805 }
806 Out << ')';
807 return;
808
809 case Instruction::GetElementPtr:
Chris Lattner8bbc8592008-03-02 08:07:24 +0000810 Out << "(";
811 printGEPExpression(CE->getOperand(0), gep_type_begin(CPV),
812 gep_type_end(CPV));
813 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000814 return;
815 case Instruction::Select:
816 Out << '(';
817 printConstant(CE->getOperand(0));
818 Out << '?';
819 printConstant(CE->getOperand(1));
820 Out << ':';
821 printConstant(CE->getOperand(2));
822 Out << ')';
823 return;
824 case Instruction::Add:
825 case Instruction::Sub:
826 case Instruction::Mul:
827 case Instruction::SDiv:
828 case Instruction::UDiv:
829 case Instruction::FDiv:
830 case Instruction::URem:
831 case Instruction::SRem:
832 case Instruction::FRem:
833 case Instruction::And:
834 case Instruction::Or:
835 case Instruction::Xor:
836 case Instruction::ICmp:
837 case Instruction::Shl:
838 case Instruction::LShr:
839 case Instruction::AShr:
840 {
841 Out << '(';
842 bool NeedsClosingParens = printConstExprCast(CE);
843 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
844 switch (CE->getOpcode()) {
845 case Instruction::Add: Out << " + "; break;
846 case Instruction::Sub: Out << " - "; break;
847 case Instruction::Mul: Out << " * "; break;
848 case Instruction::URem:
849 case Instruction::SRem:
850 case Instruction::FRem: Out << " % "; break;
851 case Instruction::UDiv:
852 case Instruction::SDiv:
853 case Instruction::FDiv: Out << " / "; break;
854 case Instruction::And: Out << " & "; break;
855 case Instruction::Or: Out << " | "; break;
856 case Instruction::Xor: Out << " ^ "; break;
857 case Instruction::Shl: Out << " << "; break;
858 case Instruction::LShr:
859 case Instruction::AShr: Out << " >> "; break;
860 case Instruction::ICmp:
861 switch (CE->getPredicate()) {
862 case ICmpInst::ICMP_EQ: Out << " == "; break;
863 case ICmpInst::ICMP_NE: Out << " != "; break;
864 case ICmpInst::ICMP_SLT:
865 case ICmpInst::ICMP_ULT: Out << " < "; break;
866 case ICmpInst::ICMP_SLE:
867 case ICmpInst::ICMP_ULE: Out << " <= "; break;
868 case ICmpInst::ICMP_SGT:
869 case ICmpInst::ICMP_UGT: Out << " > "; break;
870 case ICmpInst::ICMP_SGE:
871 case ICmpInst::ICMP_UGE: Out << " >= "; break;
872 default: assert(0 && "Illegal ICmp predicate");
873 }
874 break;
875 default: assert(0 && "Illegal opcode here!");
876 }
877 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
878 if (NeedsClosingParens)
879 Out << "))";
880 Out << ')';
881 return;
882 }
883 case Instruction::FCmp: {
884 Out << '(';
885 bool NeedsClosingParens = printConstExprCast(CE);
886 if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
887 Out << "0";
888 else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
889 Out << "1";
890 else {
891 const char* op = 0;
892 switch (CE->getPredicate()) {
893 default: assert(0 && "Illegal FCmp predicate");
894 case FCmpInst::FCMP_ORD: op = "ord"; break;
895 case FCmpInst::FCMP_UNO: op = "uno"; break;
896 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
897 case FCmpInst::FCMP_UNE: op = "une"; break;
898 case FCmpInst::FCMP_ULT: op = "ult"; break;
899 case FCmpInst::FCMP_ULE: op = "ule"; break;
900 case FCmpInst::FCMP_UGT: op = "ugt"; break;
901 case FCmpInst::FCMP_UGE: op = "uge"; break;
902 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
903 case FCmpInst::FCMP_ONE: op = "one"; break;
904 case FCmpInst::FCMP_OLT: op = "olt"; break;
905 case FCmpInst::FCMP_OLE: op = "ole"; break;
906 case FCmpInst::FCMP_OGT: op = "ogt"; break;
907 case FCmpInst::FCMP_OGE: op = "oge"; break;
908 }
909 Out << "llvm_fcmp_" << op << "(";
910 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
911 Out << ", ";
912 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
913 Out << ")";
914 }
915 if (NeedsClosingParens)
916 Out << "))";
917 Out << ')';
Anton Korobeynikov44891ce2007-12-21 23:33:44 +0000918 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000919 }
920 default:
921 cerr << "CWriter Error: Unhandled constant expression: "
922 << *CE << "\n";
923 abort();
924 }
Dan Gohman76c2cb42008-05-23 16:57:00 +0000925 } else if (isa<UndefValue>(CPV) && CPV->getType()->isSingleValueType()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000926 Out << "((";
927 printType(Out, CPV->getType()); // sign doesn't matter
Chris Lattnerc72d9e32008-03-02 08:14:45 +0000928 Out << ")/*UNDEF*/";
929 if (!isa<VectorType>(CPV->getType())) {
930 Out << "0)";
931 } else {
932 Out << "{})";
933 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000934 return;
935 }
936
937 if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
938 const Type* Ty = CI->getType();
939 if (Ty == Type::Int1Ty)
Chris Lattner63fb1f02008-03-02 03:16:38 +0000940 Out << (CI->getZExtValue() ? '1' : '0');
941 else if (Ty == Type::Int32Ty)
942 Out << CI->getZExtValue() << 'u';
943 else if (Ty->getPrimitiveSizeInBits() > 32)
944 Out << CI->getZExtValue() << "ull";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000945 else {
946 Out << "((";
947 printSimpleType(Out, Ty, false) << ')';
948 if (CI->isMinValue(true))
949 Out << CI->getZExtValue() << 'u';
950 else
951 Out << CI->getSExtValue();
Chris Lattner63fb1f02008-03-02 03:16:38 +0000952 Out << ')';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000953 }
954 return;
955 }
956
957 switch (CPV->getType()->getTypeID()) {
958 case Type::FloatTyID:
Dale Johannesen137cef62007-09-17 00:38:27 +0000959 case Type::DoubleTyID:
960 case Type::X86_FP80TyID:
961 case Type::PPC_FP128TyID:
962 case Type::FP128TyID: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000963 ConstantFP *FPC = cast<ConstantFP>(CPV);
964 std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
965 if (I != FPConstantMap.end()) {
966 // Because of FP precision problems we must load from a stack allocated
967 // value that holds the value in hex.
Dale Johannesen137cef62007-09-17 00:38:27 +0000968 Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" :
969 FPC->getType() == Type::DoubleTy ? "double" :
970 "long double")
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000971 << "*)&FPConstant" << I->second << ')';
972 } else {
Dale Johannesen137cef62007-09-17 00:38:27 +0000973 assert(FPC->getType() == Type::FloatTy ||
974 FPC->getType() == Type::DoubleTy);
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000975 double V = FPC->getType() == Type::FloatTy ?
976 FPC->getValueAPF().convertToFloat() :
977 FPC->getValueAPF().convertToDouble();
978 if (IsNAN(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000979 // The value is NaN
980
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000981 // FIXME the actual NaN bits should be emitted.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000982 // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
983 // it's 0x7ff4.
984 const unsigned long QuietNaN = 0x7ff8UL;
985 //const unsigned long SignalNaN = 0x7ff4UL;
986
987 // We need to grab the first part of the FP #
988 char Buffer[100];
989
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000990 uint64_t ll = DoubleToBits(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000991 sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
992
993 std::string Num(&Buffer[0], &Buffer[6]);
994 unsigned long Val = strtoul(Num.c_str(), 0, 16);
995
996 if (FPC->getType() == Type::FloatTy)
997 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
998 << Buffer << "\") /*nan*/ ";
999 else
1000 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
1001 << Buffer << "\") /*nan*/ ";
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001002 } else if (IsInf(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001003 // The value is Inf
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001004 if (V < 0) Out << '-';
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001005 Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "")
1006 << " /*inf*/ ";
1007 } else {
1008 std::string Num;
1009#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
1010 // Print out the constant as a floating point number.
1011 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001012 sprintf(Buffer, "%a", V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001013 Num = Buffer;
1014#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001015 Num = ftostr(FPC->getValueAPF());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001016#endif
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001017 Out << Num;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001018 }
1019 }
1020 break;
1021 }
1022
1023 case Type::ArrayTyID:
Dan Gohman5d995b02008-06-02 21:30:49 +00001024 Out << "{ "; // Arrays are wrapped in struct types.
Chris Lattner8673e322008-03-02 05:46:57 +00001025 if (ConstantArray *CA = dyn_cast<ConstantArray>(CPV)) {
Chris Lattner6d4cd9b2008-03-02 03:18:46 +00001026 printConstantArray(CA);
Chris Lattner63fb1f02008-03-02 03:16:38 +00001027 } else {
1028 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001029 const ArrayType *AT = cast<ArrayType>(CPV->getType());
1030 Out << '{';
1031 if (AT->getNumElements()) {
1032 Out << ' ';
1033 Constant *CZ = Constant::getNullValue(AT->getElementType());
1034 printConstant(CZ);
1035 for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
1036 Out << ", ";
1037 printConstant(CZ);
1038 }
1039 }
1040 Out << " }";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001041 }
Dan Gohman5d995b02008-06-02 21:30:49 +00001042 Out << " }"; // Arrays are wrapped in struct types.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001043 break;
1044
1045 case Type::VectorTyID:
Chris Lattner70f0f672008-03-02 03:29:50 +00001046 // Use C99 compound expression literal initializer syntax.
1047 Out << "(";
1048 printType(Out, CPV->getType());
1049 Out << ")";
Chris Lattner8673e322008-03-02 05:46:57 +00001050 if (ConstantVector *CV = dyn_cast<ConstantVector>(CPV)) {
Chris Lattner63fb1f02008-03-02 03:16:38 +00001051 printConstantVector(CV);
1052 } else {
1053 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
1054 const VectorType *VT = cast<VectorType>(CPV->getType());
1055 Out << "{ ";
1056 Constant *CZ = Constant::getNullValue(VT->getElementType());
1057 printConstant(CZ);
Chris Lattner6d4cd9b2008-03-02 03:18:46 +00001058 for (unsigned i = 1, e = VT->getNumElements(); i != e; ++i) {
Chris Lattner63fb1f02008-03-02 03:16:38 +00001059 Out << ", ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001060 printConstant(CZ);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001061 }
1062 Out << " }";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001063 }
1064 break;
1065
1066 case Type::StructTyID:
1067 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
1068 const StructType *ST = cast<StructType>(CPV->getType());
1069 Out << '{';
1070 if (ST->getNumElements()) {
1071 Out << ' ';
1072 printConstant(Constant::getNullValue(ST->getElementType(0)));
1073 for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
1074 Out << ", ";
1075 printConstant(Constant::getNullValue(ST->getElementType(i)));
1076 }
1077 }
1078 Out << " }";
1079 } else {
1080 Out << '{';
1081 if (CPV->getNumOperands()) {
1082 Out << ' ';
1083 printConstant(cast<Constant>(CPV->getOperand(0)));
1084 for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
1085 Out << ", ";
1086 printConstant(cast<Constant>(CPV->getOperand(i)));
1087 }
1088 }
1089 Out << " }";
1090 }
1091 break;
1092
1093 case Type::PointerTyID:
1094 if (isa<ConstantPointerNull>(CPV)) {
1095 Out << "((";
1096 printType(Out, CPV->getType()); // sign doesn't matter
1097 Out << ")/*NULL*/0)";
1098 break;
1099 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
1100 writeOperand(GV);
1101 break;
1102 }
1103 // FALL THROUGH
1104 default:
1105 cerr << "Unknown constant type: " << *CPV << "\n";
1106 abort();
1107 }
1108}
1109
1110// Some constant expressions need to be casted back to the original types
1111// because their operands were casted to the expected type. This function takes
1112// care of detecting that case and printing the cast for the ConstantExpr.
1113bool CWriter::printConstExprCast(const ConstantExpr* CE) {
1114 bool NeedsExplicitCast = false;
1115 const Type *Ty = CE->getOperand(0)->getType();
1116 bool TypeIsSigned = false;
1117 switch (CE->getOpcode()) {
Dan Gohmane1790de2008-07-18 18:43:12 +00001118 case Instruction::Add:
1119 case Instruction::Sub:
1120 case Instruction::Mul:
1121 // We need to cast integer arithmetic so that it is always performed
1122 // as unsigned, to avoid undefined behavior on overflow.
1123 if (!Ty->isIntOrIntVector()) break;
1124 // FALL THROUGH
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001125 case Instruction::LShr:
1126 case Instruction::URem:
1127 case Instruction::UDiv: NeedsExplicitCast = true; break;
1128 case Instruction::AShr:
1129 case Instruction::SRem:
1130 case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
1131 case Instruction::SExt:
1132 Ty = CE->getType();
1133 NeedsExplicitCast = true;
1134 TypeIsSigned = true;
1135 break;
1136 case Instruction::ZExt:
1137 case Instruction::Trunc:
1138 case Instruction::FPTrunc:
1139 case Instruction::FPExt:
1140 case Instruction::UIToFP:
1141 case Instruction::SIToFP:
1142 case Instruction::FPToUI:
1143 case Instruction::FPToSI:
1144 case Instruction::PtrToInt:
1145 case Instruction::IntToPtr:
1146 case Instruction::BitCast:
1147 Ty = CE->getType();
1148 NeedsExplicitCast = true;
1149 break;
1150 default: break;
1151 }
1152 if (NeedsExplicitCast) {
1153 Out << "((";
1154 if (Ty->isInteger() && Ty != Type::Int1Ty)
1155 printSimpleType(Out, Ty, TypeIsSigned);
1156 else
1157 printType(Out, Ty); // not integer, sign doesn't matter
1158 Out << ")(";
1159 }
1160 return NeedsExplicitCast;
1161}
1162
1163// Print a constant assuming that it is the operand for a given Opcode. The
1164// opcodes that care about sign need to cast their operands to the expected
1165// type before the operation proceeds. This function does the casting.
1166void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
1167
1168 // Extract the operand's type, we'll need it.
1169 const Type* OpTy = CPV->getType();
1170
1171 // Indicate whether to do the cast or not.
1172 bool shouldCast = false;
1173 bool typeIsSigned = false;
1174
1175 // Based on the Opcode for which this Constant is being written, determine
1176 // the new type to which the operand should be casted by setting the value
1177 // of OpTy. If we change OpTy, also set shouldCast to true so it gets
1178 // casted below.
1179 switch (Opcode) {
1180 default:
1181 // for most instructions, it doesn't matter
1182 break;
Dan Gohmane1790de2008-07-18 18:43:12 +00001183 case Instruction::Add:
1184 case Instruction::Sub:
1185 case Instruction::Mul:
1186 // We need to cast integer arithmetic so that it is always performed
1187 // as unsigned, to avoid undefined behavior on overflow.
1188 if (!OpTy->isIntOrIntVector()) break;
1189 // FALL THROUGH
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001190 case Instruction::LShr:
1191 case Instruction::UDiv:
1192 case Instruction::URem:
1193 shouldCast = true;
1194 break;
1195 case Instruction::AShr:
1196 case Instruction::SDiv:
1197 case Instruction::SRem:
1198 shouldCast = true;
1199 typeIsSigned = true;
1200 break;
1201 }
1202
1203 // Write out the casted constant if we should, otherwise just write the
1204 // operand.
1205 if (shouldCast) {
1206 Out << "((";
1207 printSimpleType(Out, OpTy, typeIsSigned);
1208 Out << ")";
1209 printConstant(CPV);
1210 Out << ")";
1211 } else
1212 printConstant(CPV);
1213}
1214
1215std::string CWriter::GetValueName(const Value *Operand) {
1216 std::string Name;
1217
1218 if (!isa<GlobalValue>(Operand) && Operand->getName() != "") {
1219 std::string VarName;
1220
1221 Name = Operand->getName();
1222 VarName.reserve(Name.capacity());
1223
1224 for (std::string::iterator I = Name.begin(), E = Name.end();
1225 I != E; ++I) {
1226 char ch = *I;
1227
1228 if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
Lauro Ramos Venancio66842ee2008-02-28 20:26:04 +00001229 (ch >= '0' && ch <= '9') || ch == '_')) {
1230 char buffer[5];
1231 sprintf(buffer, "_%x_", ch);
1232 VarName += buffer;
1233 } else
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001234 VarName += ch;
1235 }
1236
1237 Name = "llvm_cbe_" + VarName;
1238 } else {
1239 Name = Mang->getValueName(Operand);
1240 }
1241
1242 return Name;
1243}
1244
Chris Lattnerd70f5a82008-05-31 09:23:55 +00001245/// writeInstComputationInline - Emit the computation for the specified
1246/// instruction inline, with no destination provided.
1247void CWriter::writeInstComputationInline(Instruction &I) {
1248 // If this is a non-trivial bool computation, make sure to truncate down to
1249 // a 1 bit value. This is important because we want "add i1 x, y" to return
1250 // "0" when x and y are true, not "2" for example.
1251 bool NeedBoolTrunc = false;
1252 if (I.getType() == Type::Int1Ty && !isa<ICmpInst>(I) && !isa<FCmpInst>(I))
1253 NeedBoolTrunc = true;
1254
1255 if (NeedBoolTrunc)
1256 Out << "((";
1257
1258 visit(I);
1259
1260 if (NeedBoolTrunc)
1261 Out << ")&1)";
1262}
1263
1264
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001265void CWriter::writeOperandInternal(Value *Operand) {
1266 if (Instruction *I = dyn_cast<Instruction>(Operand))
Chris Lattnerd70f5a82008-05-31 09:23:55 +00001267 // Should we inline this instruction to build a tree?
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001268 if (isInlinableInst(*I) && !isDirectAlloca(I)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001269 Out << '(';
Chris Lattnerd70f5a82008-05-31 09:23:55 +00001270 writeInstComputationInline(*I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001271 Out << ')';
1272 return;
1273 }
1274
1275 Constant* CPV = dyn_cast<Constant>(Operand);
1276
1277 if (CPV && !isa<GlobalValue>(CPV))
1278 printConstant(CPV);
1279 else
1280 Out << GetValueName(Operand);
1281}
1282
1283void CWriter::writeOperandRaw(Value *Operand) {
1284 Constant* CPV = dyn_cast<Constant>(Operand);
1285 if (CPV && !isa<GlobalValue>(CPV)) {
1286 printConstant(CPV);
1287 } else {
1288 Out << GetValueName(Operand);
1289 }
1290}
1291
1292void CWriter::writeOperand(Value *Operand) {
Chris Lattner8bbc8592008-03-02 08:07:24 +00001293 bool isAddressImplicit = isAddressExposed(Operand);
1294 if (isAddressImplicit)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001295 Out << "(&"; // Global variables are referenced as their addresses by llvm
1296
1297 writeOperandInternal(Operand);
1298
Chris Lattner8bbc8592008-03-02 08:07:24 +00001299 if (isAddressImplicit)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001300 Out << ')';
1301}
1302
1303// Some instructions need to have their result value casted back to the
1304// original types because their operands were casted to the expected type.
1305// This function takes care of detecting that case and printing the cast
1306// for the Instruction.
1307bool CWriter::writeInstructionCast(const Instruction &I) {
1308 const Type *Ty = I.getOperand(0)->getType();
1309 switch (I.getOpcode()) {
Dan Gohmane1790de2008-07-18 18:43:12 +00001310 case Instruction::Add:
1311 case Instruction::Sub:
1312 case Instruction::Mul:
1313 // We need to cast integer arithmetic so that it is always performed
1314 // as unsigned, to avoid undefined behavior on overflow.
1315 if (!Ty->isIntOrIntVector()) break;
1316 // FALL THROUGH
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001317 case Instruction::LShr:
1318 case Instruction::URem:
1319 case Instruction::UDiv:
1320 Out << "((";
1321 printSimpleType(Out, Ty, false);
1322 Out << ")(";
1323 return true;
1324 case Instruction::AShr:
1325 case Instruction::SRem:
1326 case Instruction::SDiv:
1327 Out << "((";
1328 printSimpleType(Out, Ty, true);
1329 Out << ")(";
1330 return true;
1331 default: break;
1332 }
1333 return false;
1334}
1335
1336// Write the operand with a cast to another type based on the Opcode being used.
1337// This will be used in cases where an instruction has specific type
1338// requirements (usually signedness) for its operands.
1339void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
1340
1341 // Extract the operand's type, we'll need it.
1342 const Type* OpTy = Operand->getType();
1343
1344 // Indicate whether to do the cast or not.
1345 bool shouldCast = false;
1346
1347 // Indicate whether the cast should be to a signed type or not.
1348 bool castIsSigned = false;
1349
1350 // Based on the Opcode for which this Operand is being written, determine
1351 // the new type to which the operand should be casted by setting the value
1352 // of OpTy. If we change OpTy, also set shouldCast to true.
1353 switch (Opcode) {
1354 default:
1355 // for most instructions, it doesn't matter
1356 break;
Dan Gohmane1790de2008-07-18 18:43:12 +00001357 case Instruction::Add:
1358 case Instruction::Sub:
1359 case Instruction::Mul:
1360 // We need to cast integer arithmetic so that it is always performed
1361 // as unsigned, to avoid undefined behavior on overflow.
1362 if (!OpTy->isIntOrIntVector()) break;
1363 // FALL THROUGH
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001364 case Instruction::LShr:
1365 case Instruction::UDiv:
1366 case Instruction::URem: // Cast to unsigned first
1367 shouldCast = true;
1368 castIsSigned = false;
1369 break;
Chris Lattner7ce1ee42007-09-22 20:16:48 +00001370 case Instruction::GetElementPtr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001371 case Instruction::AShr:
1372 case Instruction::SDiv:
1373 case Instruction::SRem: // Cast to signed first
1374 shouldCast = true;
1375 castIsSigned = true;
1376 break;
1377 }
1378
1379 // Write out the casted operand if we should, otherwise just write the
1380 // operand.
1381 if (shouldCast) {
1382 Out << "((";
1383 printSimpleType(Out, OpTy, castIsSigned);
1384 Out << ")";
1385 writeOperand(Operand);
1386 Out << ")";
1387 } else
1388 writeOperand(Operand);
1389}
1390
1391// Write the operand with a cast to another type based on the icmp predicate
1392// being used.
Chris Lattner389c9142007-09-15 06:51:03 +00001393void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) {
1394 // This has to do a cast to ensure the operand has the right signedness.
1395 // Also, if the operand is a pointer, we make sure to cast to an integer when
1396 // doing the comparison both for signedness and so that the C compiler doesn't
1397 // optimize things like "p < NULL" to false (p may contain an integer value
1398 // f.e.).
1399 bool shouldCast = Cmp.isRelational();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001400
1401 // Write out the casted operand if we should, otherwise just write the
1402 // operand.
Chris Lattner389c9142007-09-15 06:51:03 +00001403 if (!shouldCast) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001404 writeOperand(Operand);
Chris Lattner389c9142007-09-15 06:51:03 +00001405 return;
1406 }
1407
1408 // Should this be a signed comparison? If so, convert to signed.
1409 bool castIsSigned = Cmp.isSignedPredicate();
1410
1411 // If the operand was a pointer, convert to a large integer type.
1412 const Type* OpTy = Operand->getType();
1413 if (isa<PointerType>(OpTy))
1414 OpTy = TD->getIntPtrType();
1415
1416 Out << "((";
1417 printSimpleType(Out, OpTy, castIsSigned);
1418 Out << ")";
1419 writeOperand(Operand);
1420 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001421}
1422
1423// generateCompilerSpecificCode - This is where we add conditional compilation
1424// directives to cater to specific compilers as need be.
1425//
Dan Gohman3f795232008-04-02 23:52:49 +00001426static void generateCompilerSpecificCode(std::ostream& Out,
1427 const TargetData *TD) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001428 // Alloca is hard to get, and we don't want to include stdlib.h here.
1429 Out << "/* get a declaration for alloca */\n"
1430 << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
1431 << "#define alloca(x) __builtin_alloca((x))\n"
1432 << "#define _alloca(x) __builtin_alloca((x))\n"
1433 << "#elif defined(__APPLE__)\n"
1434 << "extern void *__builtin_alloca(unsigned long);\n"
1435 << "#define alloca(x) __builtin_alloca(x)\n"
1436 << "#define longjmp _longjmp\n"
1437 << "#define setjmp _setjmp\n"
1438 << "#elif defined(__sun__)\n"
1439 << "#if defined(__sparcv9)\n"
1440 << "extern void *__builtin_alloca(unsigned long);\n"
1441 << "#else\n"
1442 << "extern void *__builtin_alloca(unsigned int);\n"
1443 << "#endif\n"
1444 << "#define alloca(x) __builtin_alloca(x)\n"
Matthijs Kooijman331217d2008-06-26 10:36:58 +00001445 << "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)\n"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001446 << "#define alloca(x) __builtin_alloca(x)\n"
1447 << "#elif defined(_MSC_VER)\n"
1448 << "#define inline _inline\n"
1449 << "#define alloca(x) _alloca(x)\n"
1450 << "#else\n"
1451 << "#include <alloca.h>\n"
1452 << "#endif\n\n";
1453
1454 // We output GCC specific attributes to preserve 'linkonce'ness on globals.
1455 // If we aren't being compiled with GCC, just drop these attributes.
1456 Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n"
1457 << "#define __attribute__(X)\n"
1458 << "#endif\n\n";
1459
1460 // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
1461 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1462 << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
1463 << "#elif defined(__GNUC__)\n"
1464 << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
1465 << "#else\n"
1466 << "#define __EXTERNAL_WEAK__\n"
1467 << "#endif\n\n";
1468
1469 // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
1470 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1471 << "#define __ATTRIBUTE_WEAK__\n"
1472 << "#elif defined(__GNUC__)\n"
1473 << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
1474 << "#else\n"
1475 << "#define __ATTRIBUTE_WEAK__\n"
1476 << "#endif\n\n";
1477
1478 // Add hidden visibility support. FIXME: APPLE_CC?
1479 Out << "#if defined(__GNUC__)\n"
1480 << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
1481 << "#endif\n\n";
1482
1483 // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
1484 // From the GCC documentation:
1485 //
1486 // double __builtin_nan (const char *str)
1487 //
1488 // This is an implementation of the ISO C99 function nan.
1489 //
1490 // Since ISO C99 defines this function in terms of strtod, which we do
1491 // not implement, a description of the parsing is in order. The string is
1492 // parsed as by strtol; that is, the base is recognized by leading 0 or
1493 // 0x prefixes. The number parsed is placed in the significand such that
1494 // the least significant bit of the number is at the least significant
1495 // bit of the significand. The number is truncated to fit the significand
1496 // field provided. The significand is forced to be a quiet NaN.
1497 //
1498 // This function, if given a string literal, is evaluated early enough
1499 // that it is considered a compile-time constant.
1500 //
1501 // float __builtin_nanf (const char *str)
1502 //
1503 // Similar to __builtin_nan, except the return type is float.
1504 //
1505 // double __builtin_inf (void)
1506 //
1507 // Similar to __builtin_huge_val, except a warning is generated if the
1508 // target floating-point format does not support infinities. This
1509 // function is suitable for implementing the ISO C99 macro INFINITY.
1510 //
1511 // float __builtin_inff (void)
1512 //
1513 // Similar to __builtin_inf, except the return type is float.
1514 Out << "#ifdef __GNUC__\n"
1515 << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n"
1516 << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n"
1517 << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n"
1518 << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
1519 << "#define LLVM_INF __builtin_inf() /* Double */\n"
1520 << "#define LLVM_INFF __builtin_inff() /* Float */\n"
1521 << "#define LLVM_PREFETCH(addr,rw,locality) "
1522 "__builtin_prefetch(addr,rw,locality)\n"
1523 << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
1524 << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
1525 << "#define LLVM_ASM __asm__\n"
1526 << "#else\n"
1527 << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n"
1528 << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n"
1529 << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n"
1530 << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n"
1531 << "#define LLVM_INF ((double)0.0) /* Double */\n"
1532 << "#define LLVM_INFF 0.0F /* Float */\n"
1533 << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n"
1534 << "#define __ATTRIBUTE_CTOR__\n"
1535 << "#define __ATTRIBUTE_DTOR__\n"
1536 << "#define LLVM_ASM(X)\n"
1537 << "#endif\n\n";
1538
1539 Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
1540 << "#define __builtin_stack_save() 0 /* not implemented */\n"
1541 << "#define __builtin_stack_restore(X) /* noop */\n"
1542 << "#endif\n\n";
1543
Dan Gohman3f795232008-04-02 23:52:49 +00001544 // Output typedefs for 128-bit integers. If these are needed with a
1545 // 32-bit target or with a C compiler that doesn't support mode(TI),
1546 // more drastic measures will be needed.
Chris Lattnerab6d3382008-06-16 04:25:29 +00001547 Out << "#if __GNUC__ && __LP64__ /* 128-bit integer types */\n"
1548 << "typedef int __attribute__((mode(TI))) llvmInt128;\n"
1549 << "typedef unsigned __attribute__((mode(TI))) llvmUInt128;\n"
1550 << "#endif\n\n";
Dan Gohmana2245af2008-04-02 19:40:14 +00001551
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001552 // Output target-specific code that should be inserted into main.
1553 Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001554}
1555
1556/// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
1557/// the StaticTors set.
1558static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
1559 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
1560 if (!InitList) return;
1561
1562 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
1563 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
1564 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
1565
1566 if (CS->getOperand(1)->isNullValue())
1567 return; // Found a null terminator, exit printing.
1568 Constant *FP = CS->getOperand(1);
1569 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
1570 if (CE->isCast())
1571 FP = CE->getOperand(0);
1572 if (Function *F = dyn_cast<Function>(FP))
1573 StaticTors.insert(F);
1574 }
1575}
1576
1577enum SpecialGlobalClass {
1578 NotSpecial = 0,
1579 GlobalCtors, GlobalDtors,
1580 NotPrinted
1581};
1582
1583/// getGlobalVariableClass - If this is a global that is specially recognized
1584/// by LLVM, return a code that indicates how we should handle it.
1585static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
1586 // If this is a global ctors/dtors list, handle it now.
1587 if (GV->hasAppendingLinkage() && GV->use_empty()) {
1588 if (GV->getName() == "llvm.global_ctors")
1589 return GlobalCtors;
1590 else if (GV->getName() == "llvm.global_dtors")
1591 return GlobalDtors;
1592 }
1593
1594 // Otherwise, it it is other metadata, don't print it. This catches things
1595 // like debug information.
1596 if (GV->getSection() == "llvm.metadata")
1597 return NotPrinted;
1598
1599 return NotSpecial;
1600}
1601
1602
1603bool CWriter::doInitialization(Module &M) {
1604 // Initialize
1605 TheModule = &M;
1606
1607 TD = new TargetData(&M);
1608 IL = new IntrinsicLowering(*TD);
1609 IL->AddPrototypes(M);
1610
1611 // Ensure that all structure types have names...
1612 Mang = new Mangler(M);
1613 Mang->markCharUnacceptable('.');
1614
1615 // Keep track of which functions are static ctors/dtors so they can have
1616 // an attribute added to their prototypes.
1617 std::set<Function*> StaticCtors, StaticDtors;
1618 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1619 I != E; ++I) {
1620 switch (getGlobalVariableClass(I)) {
1621 default: break;
1622 case GlobalCtors:
1623 FindStaticTors(I, StaticCtors);
1624 break;
1625 case GlobalDtors:
1626 FindStaticTors(I, StaticDtors);
1627 break;
1628 }
1629 }
1630
1631 // get declaration for alloca
1632 Out << "/* Provide Declarations */\n";
1633 Out << "#include <stdarg.h>\n"; // Varargs support
1634 Out << "#include <setjmp.h>\n"; // Unwind support
Dan Gohman3f795232008-04-02 23:52:49 +00001635 generateCompilerSpecificCode(Out, TD);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001636
1637 // Provide a definition for `bool' if not compiling with a C++ compiler.
1638 Out << "\n"
1639 << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
1640
1641 << "\n\n/* Support for floating point constants */\n"
1642 << "typedef unsigned long long ConstantDoubleTy;\n"
1643 << "typedef unsigned int ConstantFloatTy;\n"
Dale Johannesen137cef62007-09-17 00:38:27 +00001644 << "typedef struct { unsigned long long f1; unsigned short f2; "
1645 "unsigned short pad[3]; } ConstantFP80Ty;\n"
Dale Johannesen091dcfd2007-10-15 01:05:37 +00001646 // This is used for both kinds of 128-bit long double; meaning differs.
Dale Johannesen137cef62007-09-17 00:38:27 +00001647 << "typedef struct { unsigned long long f1; unsigned long long f2; }"
1648 " ConstantFP128Ty;\n"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001649 << "\n\n/* Global Declarations */\n";
1650
1651 // First output all the declarations for the program, because C requires
1652 // Functions & globals to be declared before they are used.
1653 //
1654
1655 // Loop over the symbol table, emitting all named constants...
1656 printModuleTypes(M.getTypeSymbolTable());
1657
1658 // Global variable declarations...
1659 if (!M.global_empty()) {
1660 Out << "\n/* External Global Variable Declarations */\n";
1661 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1662 I != E; ++I) {
1663
Dale Johannesen49c44122008-05-14 20:12:51 +00001664 if (I->hasExternalLinkage() || I->hasExternalWeakLinkage() ||
1665 I->hasCommonLinkage())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001666 Out << "extern ";
1667 else if (I->hasDLLImportLinkage())
1668 Out << "__declspec(dllimport) ";
1669 else
1670 continue; // Internal Global
1671
1672 // Thread Local Storage
1673 if (I->isThreadLocal())
1674 Out << "__thread ";
1675
1676 printType(Out, I->getType()->getElementType(), false, GetValueName(I));
1677
1678 if (I->hasExternalWeakLinkage())
1679 Out << " __EXTERNAL_WEAK__";
1680 Out << ";\n";
1681 }
1682 }
1683
1684 // Function declarations
1685 Out << "\n/* Function Declarations */\n";
1686 Out << "double fmod(double, double);\n"; // Support for FP rem
1687 Out << "float fmodf(float, float);\n";
Dale Johannesen137cef62007-09-17 00:38:27 +00001688 Out << "long double fmodl(long double, long double);\n";
Evan Chengd2d22fe2008-06-07 07:50:29 +00001689
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001690 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1691 // Don't print declarations for intrinsic functions.
Duncan Sands79d28872007-12-03 20:06:50 +00001692 if (!I->isIntrinsic() && I->getName() != "setjmp" &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001693 I->getName() != "longjmp" && I->getName() != "_setjmp") {
1694 if (I->hasExternalWeakLinkage())
1695 Out << "extern ";
1696 printFunctionSignature(I, true);
Evan Chengd2d22fe2008-06-07 07:50:29 +00001697 if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001698 Out << " __ATTRIBUTE_WEAK__";
1699 if (I->hasExternalWeakLinkage())
1700 Out << " __EXTERNAL_WEAK__";
1701 if (StaticCtors.count(I))
1702 Out << " __ATTRIBUTE_CTOR__";
1703 if (StaticDtors.count(I))
1704 Out << " __ATTRIBUTE_DTOR__";
1705 if (I->hasHiddenVisibility())
1706 Out << " __HIDDEN__";
Evan Chengd2d22fe2008-06-07 07:50:29 +00001707
1708 if (I->hasName() && I->getName()[0] == 1)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001709 Out << " LLVM_ASM(\"" << I->getName().c_str()+1 << "\")";
Evan Chengd2d22fe2008-06-07 07:50:29 +00001710
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001711 Out << ";\n";
1712 }
1713 }
1714
1715 // Output the global variable declarations
1716 if (!M.global_empty()) {
1717 Out << "\n\n/* Global Variable Declarations */\n";
1718 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1719 I != E; ++I)
1720 if (!I->isDeclaration()) {
1721 // Ignore special globals, such as debug info.
1722 if (getGlobalVariableClass(I))
1723 continue;
1724
1725 if (I->hasInternalLinkage())
1726 Out << "static ";
1727 else
1728 Out << "extern ";
1729
1730 // Thread Local Storage
1731 if (I->isThreadLocal())
1732 Out << "__thread ";
1733
1734 printType(Out, I->getType()->getElementType(), false,
1735 GetValueName(I));
1736
1737 if (I->hasLinkOnceLinkage())
1738 Out << " __attribute__((common))";
Dale Johannesen49c44122008-05-14 20:12:51 +00001739 else if (I->hasCommonLinkage()) // FIXME is this right?
1740 Out << " __ATTRIBUTE_WEAK__";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001741 else if (I->hasWeakLinkage())
1742 Out << " __ATTRIBUTE_WEAK__";
1743 else if (I->hasExternalWeakLinkage())
1744 Out << " __EXTERNAL_WEAK__";
1745 if (I->hasHiddenVisibility())
1746 Out << " __HIDDEN__";
1747 Out << ";\n";
1748 }
1749 }
1750
1751 // Output the global variable definitions and contents...
1752 if (!M.global_empty()) {
1753 Out << "\n\n/* Global Variable Definitions and Initialization */\n";
Evan Chengd2d22fe2008-06-07 07:50:29 +00001754 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001755 I != E; ++I)
1756 if (!I->isDeclaration()) {
1757 // Ignore special globals, such as debug info.
1758 if (getGlobalVariableClass(I))
1759 continue;
1760
1761 if (I->hasInternalLinkage())
1762 Out << "static ";
1763 else if (I->hasDLLImportLinkage())
1764 Out << "__declspec(dllimport) ";
1765 else if (I->hasDLLExportLinkage())
1766 Out << "__declspec(dllexport) ";
1767
1768 // Thread Local Storage
1769 if (I->isThreadLocal())
1770 Out << "__thread ";
1771
1772 printType(Out, I->getType()->getElementType(), false,
1773 GetValueName(I));
1774 if (I->hasLinkOnceLinkage())
1775 Out << " __attribute__((common))";
1776 else if (I->hasWeakLinkage())
1777 Out << " __ATTRIBUTE_WEAK__";
Dale Johannesen49c44122008-05-14 20:12:51 +00001778 else if (I->hasCommonLinkage())
1779 Out << " __ATTRIBUTE_WEAK__";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001780
1781 if (I->hasHiddenVisibility())
1782 Out << " __HIDDEN__";
1783
1784 // If the initializer is not null, emit the initializer. If it is null,
1785 // we try to avoid emitting large amounts of zeros. The problem with
1786 // this, however, occurs when the variable has weak linkage. In this
1787 // case, the assembler will complain about the variable being both weak
1788 // and common, so we disable this optimization.
Dale Johannesen49c44122008-05-14 20:12:51 +00001789 // FIXME common linkage should avoid this problem.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001790 if (!I->getInitializer()->isNullValue()) {
1791 Out << " = " ;
1792 writeOperand(I->getInitializer());
1793 } else if (I->hasWeakLinkage()) {
1794 // We have to specify an initializer, but it doesn't have to be
1795 // complete. If the value is an aggregate, print out { 0 }, and let
1796 // the compiler figure out the rest of the zeros.
1797 Out << " = " ;
1798 if (isa<StructType>(I->getInitializer()->getType()) ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001799 isa<VectorType>(I->getInitializer()->getType())) {
1800 Out << "{ 0 }";
Dan Gohman5d995b02008-06-02 21:30:49 +00001801 } else if (isa<ArrayType>(I->getInitializer()->getType())) {
1802 // As with structs and vectors, but with an extra set of braces
1803 // because arrays are wrapped in structs.
1804 Out << "{ { 0 } }";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001805 } else {
1806 // Just print it out normally.
1807 writeOperand(I->getInitializer());
1808 }
1809 }
1810 Out << ";\n";
1811 }
1812 }
1813
1814 if (!M.empty())
1815 Out << "\n\n/* Function Bodies */\n";
1816
1817 // Emit some helper functions for dealing with FCMP instruction's
1818 // predicates
1819 Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
1820 Out << "return X == X && Y == Y; }\n";
1821 Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
1822 Out << "return X != X || Y != Y; }\n";
1823 Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
1824 Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
1825 Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
1826 Out << "return X != Y; }\n";
1827 Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
1828 Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n";
1829 Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
1830 Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n";
1831 Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
1832 Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
1833 Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
1834 Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
1835 Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
1836 Out << "return X == Y ; }\n";
1837 Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
1838 Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
1839 Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
1840 Out << "return X < Y ; }\n";
1841 Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
1842 Out << "return X > Y ; }\n";
1843 Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
1844 Out << "return X <= Y ; }\n";
1845 Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
1846 Out << "return X >= Y ; }\n";
1847 return false;
1848}
1849
1850
1851/// Output all floating point constants that cannot be printed accurately...
1852void CWriter::printFloatingPointConstants(Function &F) {
1853 // Scan the module for floating point constants. If any FP constant is used
1854 // in the function, we want to redirect it here so that we do not depend on
1855 // the precision of the printed form, unless the printed form preserves
1856 // precision.
1857 //
1858 static unsigned FPCounter = 0;
1859 for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
1860 I != E; ++I)
1861 if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
1862 if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe.
1863 !FPConstantMap.count(FPC)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001864 FPConstantMap[FPC] = FPCounter; // Number the FP constants
1865
1866 if (FPC->getType() == Type::DoubleTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001867 double Val = FPC->getValueAPF().convertToDouble();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001868 uint64_t i = FPC->getValueAPF().convertToAPInt().getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001869 Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
Dale Johannesen1616e902007-09-11 18:32:33 +00001870 << " = 0x" << std::hex << i << std::dec
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001871 << "ULL; /* " << Val << " */\n";
1872 } else if (FPC->getType() == Type::FloatTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001873 float Val = FPC->getValueAPF().convertToFloat();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001874 uint32_t i = (uint32_t)FPC->getValueAPF().convertToAPInt().
1875 getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001876 Out << "static const ConstantFloatTy FPConstant" << FPCounter++
Dale Johannesen1616e902007-09-11 18:32:33 +00001877 << " = 0x" << std::hex << i << std::dec
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001878 << "U; /* " << Val << " */\n";
Dale Johannesen137cef62007-09-17 00:38:27 +00001879 } else if (FPC->getType() == Type::X86_FP80Ty) {
Dale Johannesen693aa822007-09-26 23:20:33 +00001880 // api needed to prevent premature destruction
1881 APInt api = FPC->getValueAPF().convertToAPInt();
1882 const uint64_t *p = api.getRawData();
Dale Johannesen137cef62007-09-17 00:38:27 +00001883 Out << "static const ConstantFP80Ty FPConstant" << FPCounter++
1884 << " = { 0x" << std::hex
1885 << ((uint16_t)p[1] | (p[0] & 0xffffffffffffLL)<<16)
Duncan Sands48d91af2008-05-24 01:00:52 +00001886 << "ULL, 0x" << (uint16_t)(p[0] >> 48) << ",{0,0,0}"
Dale Johannesen137cef62007-09-17 00:38:27 +00001887 << "}; /* Long double constant */\n" << std::dec;
Dale Johannesen091dcfd2007-10-15 01:05:37 +00001888 } else if (FPC->getType() == Type::PPC_FP128Ty) {
1889 APInt api = FPC->getValueAPF().convertToAPInt();
1890 const uint64_t *p = api.getRawData();
1891 Out << "static const ConstantFP128Ty FPConstant" << FPCounter++
1892 << " = { 0x" << std::hex
1893 << p[0] << ", 0x" << p[1]
1894 << "}; /* Long double constant */\n" << std::dec;
1895
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001896 } else
1897 assert(0 && "Unknown float type!");
1898 }
1899
1900 Out << '\n';
1901}
1902
1903
1904/// printSymbolTable - Run through symbol table looking for type names. If a
1905/// type name is found, emit its declaration...
1906///
1907void CWriter::printModuleTypes(const TypeSymbolTable &TST) {
1908 Out << "/* Helper union for bitcasts */\n";
1909 Out << "typedef union {\n";
1910 Out << " unsigned int Int32;\n";
1911 Out << " unsigned long long Int64;\n";
1912 Out << " float Float;\n";
1913 Out << " double Double;\n";
1914 Out << "} llvmBitCastUnion;\n";
1915
1916 // We are only interested in the type plane of the symbol table.
1917 TypeSymbolTable::const_iterator I = TST.begin();
1918 TypeSymbolTable::const_iterator End = TST.end();
1919
1920 // If there are no type names, exit early.
1921 if (I == End) return;
1922
1923 // Print out forward declarations for structure types before anything else!
1924 Out << "/* Structure forward decls */\n";
1925 for (; I != End; ++I) {
1926 std::string Name = "struct l_" + Mang->makeNameProper(I->first);
1927 Out << Name << ";\n";
1928 TypeNames.insert(std::make_pair(I->second, Name));
1929 }
1930
1931 Out << '\n';
1932
1933 // Now we can print out typedefs. Above, we guaranteed that this can only be
1934 // for struct or opaque types.
1935 Out << "/* Typedefs */\n";
1936 for (I = TST.begin(); I != End; ++I) {
1937 std::string Name = "l_" + Mang->makeNameProper(I->first);
1938 Out << "typedef ";
1939 printType(Out, I->second, false, Name);
1940 Out << ";\n";
1941 }
1942
1943 Out << '\n';
1944
1945 // Keep track of which structures have been printed so far...
Dan Gohman5d995b02008-06-02 21:30:49 +00001946 std::set<const Type *> StructPrinted;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001947
1948 // Loop over all structures then push them into the stack so they are
1949 // printed in the correct order.
1950 //
1951 Out << "/* Structure contents */\n";
1952 for (I = TST.begin(); I != End; ++I)
Dan Gohman5d995b02008-06-02 21:30:49 +00001953 if (isa<StructType>(I->second) || isa<ArrayType>(I->second))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001954 // Only print out used types!
Dan Gohman5d995b02008-06-02 21:30:49 +00001955 printContainedStructs(I->second, StructPrinted);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001956}
1957
1958// Push the struct onto the stack and recursively push all structs
1959// this one depends on.
1960//
1961// TODO: Make this work properly with vector types
1962//
1963void CWriter::printContainedStructs(const Type *Ty,
Dan Gohman5d995b02008-06-02 21:30:49 +00001964 std::set<const Type*> &StructPrinted) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001965 // Don't walk through pointers.
1966 if (isa<PointerType>(Ty) || Ty->isPrimitiveType() || Ty->isInteger()) return;
1967
1968 // Print all contained types first.
1969 for (Type::subtype_iterator I = Ty->subtype_begin(),
1970 E = Ty->subtype_end(); I != E; ++I)
1971 printContainedStructs(*I, StructPrinted);
1972
Dan Gohman5d995b02008-06-02 21:30:49 +00001973 if (isa<StructType>(Ty) || isa<ArrayType>(Ty)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001974 // Check to see if we have already printed this struct.
Dan Gohman5d995b02008-06-02 21:30:49 +00001975 if (StructPrinted.insert(Ty).second) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001976 // Print structure type out.
Dan Gohman5d995b02008-06-02 21:30:49 +00001977 std::string Name = TypeNames[Ty];
1978 printType(Out, Ty, false, Name, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001979 Out << ";\n\n";
1980 }
1981 }
1982}
1983
1984void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
1985 /// isStructReturn - Should this function actually return a struct by-value?
Devang Patel949a4b72008-03-03 21:46:28 +00001986 bool isStructReturn = F->hasStructRetAttr();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001987
1988 if (F->hasInternalLinkage()) Out << "static ";
1989 if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
1990 if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";
1991 switch (F->getCallingConv()) {
1992 case CallingConv::X86_StdCall:
1993 Out << "__stdcall ";
1994 break;
1995 case CallingConv::X86_FastCall:
1996 Out << "__fastcall ";
1997 break;
1998 }
1999
2000 // Loop over the arguments, printing them...
2001 const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
Chris Lattner1c8733e2008-03-12 17:45:29 +00002002 const PAListPtr &PAL = F->getParamAttrs();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002003
2004 std::stringstream FunctionInnards;
2005
2006 // Print out the name...
2007 FunctionInnards << GetValueName(F) << '(';
2008
2009 bool PrintedArg = false;
2010 if (!F->isDeclaration()) {
2011 if (!F->arg_empty()) {
2012 Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
Evan Cheng2054cb02008-01-11 03:07:46 +00002013 unsigned Idx = 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002014
2015 // If this is a struct-return function, don't print the hidden
2016 // struct-return argument.
2017 if (isStructReturn) {
2018 assert(I != E && "Invalid struct return function!");
2019 ++I;
Evan Cheng2054cb02008-01-11 03:07:46 +00002020 ++Idx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002021 }
2022
2023 std::string ArgName;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002024 for (; I != E; ++I) {
2025 if (PrintedArg) FunctionInnards << ", ";
2026 if (I->hasName() || !Prototype)
2027 ArgName = GetValueName(I);
2028 else
2029 ArgName = "";
Evan Cheng2054cb02008-01-11 03:07:46 +00002030 const Type *ArgTy = I->getType();
Chris Lattner1c8733e2008-03-12 17:45:29 +00002031 if (PAL.paramHasAttr(Idx, ParamAttr::ByVal)) {
Evan Cheng17254e62008-01-11 09:12:49 +00002032 ArgTy = cast<PointerType>(ArgTy)->getElementType();
Chris Lattner8bbc8592008-03-02 08:07:24 +00002033 ByValParams.insert(I);
Evan Cheng17254e62008-01-11 09:12:49 +00002034 }
Evan Cheng2054cb02008-01-11 03:07:46 +00002035 printType(FunctionInnards, ArgTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +00002036 /*isSigned=*/PAL.paramHasAttr(Idx, ParamAttr::SExt),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002037 ArgName);
2038 PrintedArg = true;
2039 ++Idx;
2040 }
2041 }
2042 } else {
2043 // Loop over the arguments, printing them.
2044 FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
Evan Chengf8956382008-01-11 23:10:11 +00002045 unsigned Idx = 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002046
2047 // If this is a struct-return function, don't print the hidden
2048 // struct-return argument.
2049 if (isStructReturn) {
2050 assert(I != E && "Invalid struct return function!");
2051 ++I;
Evan Chengf8956382008-01-11 23:10:11 +00002052 ++Idx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002053 }
2054
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002055 for (; I != E; ++I) {
2056 if (PrintedArg) FunctionInnards << ", ";
Evan Chengf8956382008-01-11 23:10:11 +00002057 const Type *ArgTy = *I;
Chris Lattner1c8733e2008-03-12 17:45:29 +00002058 if (PAL.paramHasAttr(Idx, ParamAttr::ByVal)) {
Evan Chengf8956382008-01-11 23:10:11 +00002059 assert(isa<PointerType>(ArgTy));
2060 ArgTy = cast<PointerType>(ArgTy)->getElementType();
2061 }
2062 printType(FunctionInnards, ArgTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +00002063 /*isSigned=*/PAL.paramHasAttr(Idx, ParamAttr::SExt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002064 PrintedArg = true;
2065 ++Idx;
2066 }
2067 }
2068
2069 // Finish printing arguments... if this is a vararg function, print the ...,
2070 // unless there are no known types, in which case, we just emit ().
2071 //
2072 if (FT->isVarArg() && PrintedArg) {
2073 if (PrintedArg) FunctionInnards << ", ";
2074 FunctionInnards << "..."; // Output varargs portion of signature!
2075 } else if (!FT->isVarArg() && !PrintedArg) {
2076 FunctionInnards << "void"; // ret() -> ret(void) in C.
2077 }
2078 FunctionInnards << ')';
2079
2080 // Get the return tpe for the function.
2081 const Type *RetTy;
2082 if (!isStructReturn)
2083 RetTy = F->getReturnType();
2084 else {
2085 // If this is a struct-return function, print the struct-return type.
2086 RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
2087 }
2088
2089 // Print out the return type and the signature built above.
2090 printType(Out, RetTy,
Chris Lattner1c8733e2008-03-12 17:45:29 +00002091 /*isSigned=*/PAL.paramHasAttr(0, ParamAttr::SExt),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002092 FunctionInnards.str());
2093}
2094
2095static inline bool isFPIntBitCast(const Instruction &I) {
2096 if (!isa<BitCastInst>(I))
2097 return false;
2098 const Type *SrcTy = I.getOperand(0)->getType();
2099 const Type *DstTy = I.getType();
2100 return (SrcTy->isFloatingPoint() && DstTy->isInteger()) ||
2101 (DstTy->isFloatingPoint() && SrcTy->isInteger());
2102}
2103
2104void CWriter::printFunction(Function &F) {
2105 /// isStructReturn - Should this function actually return a struct by-value?
Devang Patel949a4b72008-03-03 21:46:28 +00002106 bool isStructReturn = F.hasStructRetAttr();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002107
2108 printFunctionSignature(&F, false);
2109 Out << " {\n";
2110
2111 // If this is a struct return function, handle the result with magic.
2112 if (isStructReturn) {
2113 const Type *StructTy =
2114 cast<PointerType>(F.arg_begin()->getType())->getElementType();
2115 Out << " ";
2116 printType(Out, StructTy, false, "StructReturn");
2117 Out << "; /* Struct return temporary */\n";
2118
2119 Out << " ";
2120 printType(Out, F.arg_begin()->getType(), false,
2121 GetValueName(F.arg_begin()));
2122 Out << " = &StructReturn;\n";
2123 }
2124
2125 bool PrintedVar = false;
2126
2127 // print local variable information for the function
2128 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
2129 if (const AllocaInst *AI = isDirectAlloca(&*I)) {
2130 Out << " ";
2131 printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
2132 Out << "; /* Address-exposed local */\n";
2133 PrintedVar = true;
2134 } else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) {
2135 Out << " ";
2136 printType(Out, I->getType(), false, GetValueName(&*I));
2137 Out << ";\n";
2138
2139 if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
2140 Out << " ";
2141 printType(Out, I->getType(), false,
2142 GetValueName(&*I)+"__PHI_TEMPORARY");
2143 Out << ";\n";
2144 }
2145 PrintedVar = true;
2146 }
2147 // We need a temporary for the BitCast to use so it can pluck a value out
2148 // of a union to do the BitCast. This is separate from the need for a
2149 // variable to hold the result of the BitCast.
2150 if (isFPIntBitCast(*I)) {
2151 Out << " llvmBitCastUnion " << GetValueName(&*I)
2152 << "__BITCAST_TEMPORARY;\n";
2153 PrintedVar = true;
2154 }
2155 }
2156
2157 if (PrintedVar)
2158 Out << '\n';
2159
2160 if (F.hasExternalLinkage() && F.getName() == "main")
2161 Out << " CODE_FOR_MAIN();\n";
2162
2163 // print the basic blocks
2164 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2165 if (Loop *L = LI->getLoopFor(BB)) {
2166 if (L->getHeader() == BB && L->getParentLoop() == 0)
2167 printLoop(L);
2168 } else {
2169 printBasicBlock(BB);
2170 }
2171 }
2172
2173 Out << "}\n\n";
2174}
2175
2176void CWriter::printLoop(Loop *L) {
2177 Out << " do { /* Syntactic loop '" << L->getHeader()->getName()
2178 << "' to make GCC happy */\n";
2179 for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
2180 BasicBlock *BB = L->getBlocks()[i];
2181 Loop *BBLoop = LI->getLoopFor(BB);
2182 if (BBLoop == L)
2183 printBasicBlock(BB);
2184 else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
2185 printLoop(BBLoop);
2186 }
2187 Out << " } while (1); /* end of syntactic loop '"
2188 << L->getHeader()->getName() << "' */\n";
2189}
2190
2191void CWriter::printBasicBlock(BasicBlock *BB) {
2192
2193 // Don't print the label for the basic block if there are no uses, or if
2194 // the only terminator use is the predecessor basic block's terminator.
2195 // We have to scan the use list because PHI nodes use basic blocks too but
2196 // do not require a label to be generated.
2197 //
2198 bool NeedsLabel = false;
2199 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2200 if (isGotoCodeNecessary(*PI, BB)) {
2201 NeedsLabel = true;
2202 break;
2203 }
2204
2205 if (NeedsLabel) Out << GetValueName(BB) << ":\n";
2206
2207 // Output all of the instructions in the basic block...
2208 for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
2209 ++II) {
2210 if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
2211 if (II->getType() != Type::VoidTy && !isInlineAsm(*II))
2212 outputLValue(II);
2213 else
2214 Out << " ";
Chris Lattnerd70f5a82008-05-31 09:23:55 +00002215 writeInstComputationInline(*II);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002216 Out << ";\n";
2217 }
2218 }
2219
Chris Lattnerd70f5a82008-05-31 09:23:55 +00002220 // Don't emit prefix or suffix for the terminator.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002221 visit(*BB->getTerminator());
2222}
2223
2224
2225// Specific Instruction type classes... note that all of the casts are
2226// necessary because we use the instruction classes as opaque types...
2227//
2228void CWriter::visitReturnInst(ReturnInst &I) {
2229 // If this is a struct return function, return the temporary struct.
Devang Patel949a4b72008-03-03 21:46:28 +00002230 bool isStructReturn = I.getParent()->getParent()->hasStructRetAttr();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002231
2232 if (isStructReturn) {
2233 Out << " return StructReturn;\n";
2234 return;
2235 }
2236
2237 // Don't output a void return if this is the last basic block in the function
2238 if (I.getNumOperands() == 0 &&
2239 &*--I.getParent()->getParent()->end() == I.getParent() &&
2240 !I.getParent()->size() == 1) {
2241 return;
2242 }
2243
Dan Gohman93d04582008-04-23 21:49:29 +00002244 if (I.getNumOperands() > 1) {
2245 Out << " {\n";
2246 Out << " ";
2247 printType(Out, I.getParent()->getParent()->getReturnType());
2248 Out << " llvm_cbe_mrv_temp = {\n";
2249 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
2250 Out << " ";
2251 writeOperand(I.getOperand(i));
2252 if (i != e - 1)
2253 Out << ",";
2254 Out << "\n";
2255 }
2256 Out << " };\n";
2257 Out << " return llvm_cbe_mrv_temp;\n";
2258 Out << " }\n";
2259 return;
2260 }
2261
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002262 Out << " return";
2263 if (I.getNumOperands()) {
2264 Out << ' ';
2265 writeOperand(I.getOperand(0));
2266 }
2267 Out << ";\n";
2268}
2269
2270void CWriter::visitSwitchInst(SwitchInst &SI) {
2271
2272 Out << " switch (";
2273 writeOperand(SI.getOperand(0));
2274 Out << ") {\n default:\n";
2275 printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
2276 printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
2277 Out << ";\n";
2278 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
2279 Out << " case ";
2280 writeOperand(SI.getOperand(i));
2281 Out << ":\n";
2282 BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
2283 printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
2284 printBranchToBlock(SI.getParent(), Succ, 2);
2285 if (Function::iterator(Succ) == next(Function::iterator(SI.getParent())))
2286 Out << " break;\n";
2287 }
2288 Out << " }\n";
2289}
2290
2291void CWriter::visitUnreachableInst(UnreachableInst &I) {
2292 Out << " /*UNREACHABLE*/;\n";
2293}
2294
2295bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
2296 /// FIXME: This should be reenabled, but loop reordering safe!!
2297 return true;
2298
2299 if (next(Function::iterator(From)) != Function::iterator(To))
2300 return true; // Not the direct successor, we need a goto.
2301
2302 //isa<SwitchInst>(From->getTerminator())
2303
2304 if (LI->getLoopFor(From) != LI->getLoopFor(To))
2305 return true;
2306 return false;
2307}
2308
2309void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
2310 BasicBlock *Successor,
2311 unsigned Indent) {
2312 for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
2313 PHINode *PN = cast<PHINode>(I);
2314 // Now we have to do the printing.
2315 Value *IV = PN->getIncomingValueForBlock(CurBlock);
2316 if (!isa<UndefValue>(IV)) {
2317 Out << std::string(Indent, ' ');
2318 Out << " " << GetValueName(I) << "__PHI_TEMPORARY = ";
2319 writeOperand(IV);
2320 Out << "; /* for PHI node */\n";
2321 }
2322 }
2323}
2324
2325void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
2326 unsigned Indent) {
2327 if (isGotoCodeNecessary(CurBB, Succ)) {
2328 Out << std::string(Indent, ' ') << " goto ";
2329 writeOperand(Succ);
2330 Out << ";\n";
2331 }
2332}
2333
2334// Branch instruction printing - Avoid printing out a branch to a basic block
2335// that immediately succeeds the current one.
2336//
2337void CWriter::visitBranchInst(BranchInst &I) {
2338
2339 if (I.isConditional()) {
2340 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
2341 Out << " if (";
2342 writeOperand(I.getCondition());
2343 Out << ") {\n";
2344
2345 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
2346 printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
2347
2348 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
2349 Out << " } else {\n";
2350 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2351 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2352 }
2353 } else {
2354 // First goto not necessary, assume second one is...
2355 Out << " if (!";
2356 writeOperand(I.getCondition());
2357 Out << ") {\n";
2358
2359 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2360 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2361 }
2362
2363 Out << " }\n";
2364 } else {
2365 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
2366 printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
2367 }
2368 Out << "\n";
2369}
2370
2371// PHI nodes get copied into temporary values at the end of predecessor basic
2372// blocks. We now need to copy these temporary values into the REAL value for
2373// the PHI.
2374void CWriter::visitPHINode(PHINode &I) {
2375 writeOperand(&I);
2376 Out << "__PHI_TEMPORARY";
2377}
2378
2379
2380void CWriter::visitBinaryOperator(Instruction &I) {
2381 // binary instructions, shift instructions, setCond instructions.
2382 assert(!isa<PointerType>(I.getType()));
2383
2384 // We must cast the results of binary operations which might be promoted.
2385 bool needsCast = false;
2386 if ((I.getType() == Type::Int8Ty) || (I.getType() == Type::Int16Ty)
2387 || (I.getType() == Type::FloatTy)) {
2388 needsCast = true;
2389 Out << "((";
2390 printType(Out, I.getType(), false);
2391 Out << ")(";
2392 }
2393
2394 // If this is a negation operation, print it out as such. For FP, we don't
2395 // want to print "-0.0 - X".
2396 if (BinaryOperator::isNeg(&I)) {
2397 Out << "-(";
2398 writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
2399 Out << ")";
2400 } else if (I.getOpcode() == Instruction::FRem) {
2401 // Output a call to fmod/fmodf instead of emitting a%b
2402 if (I.getType() == Type::FloatTy)
2403 Out << "fmodf(";
Dale Johannesen137cef62007-09-17 00:38:27 +00002404 else if (I.getType() == Type::DoubleTy)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002405 Out << "fmod(";
Dale Johannesen137cef62007-09-17 00:38:27 +00002406 else // all 3 flavors of long double
2407 Out << "fmodl(";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002408 writeOperand(I.getOperand(0));
2409 Out << ", ";
2410 writeOperand(I.getOperand(1));
2411 Out << ")";
2412 } else {
2413
2414 // Write out the cast of the instruction's value back to the proper type
2415 // if necessary.
2416 bool NeedsClosingParens = writeInstructionCast(I);
2417
2418 // Certain instructions require the operand to be forced to a specific type
2419 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2420 // below for operand 1
2421 writeOperandWithCast(I.getOperand(0), I.getOpcode());
2422
2423 switch (I.getOpcode()) {
2424 case Instruction::Add: Out << " + "; break;
2425 case Instruction::Sub: Out << " - "; break;
2426 case Instruction::Mul: Out << " * "; break;
2427 case Instruction::URem:
2428 case Instruction::SRem:
2429 case Instruction::FRem: Out << " % "; break;
2430 case Instruction::UDiv:
2431 case Instruction::SDiv:
2432 case Instruction::FDiv: Out << " / "; break;
2433 case Instruction::And: Out << " & "; break;
2434 case Instruction::Or: Out << " | "; break;
2435 case Instruction::Xor: Out << " ^ "; break;
2436 case Instruction::Shl : Out << " << "; break;
2437 case Instruction::LShr:
2438 case Instruction::AShr: Out << " >> "; break;
2439 default: cerr << "Invalid operator type!" << I; abort();
2440 }
2441
2442 writeOperandWithCast(I.getOperand(1), I.getOpcode());
2443 if (NeedsClosingParens)
2444 Out << "))";
2445 }
2446
2447 if (needsCast) {
2448 Out << "))";
2449 }
2450}
2451
2452void CWriter::visitICmpInst(ICmpInst &I) {
2453 // We must cast the results of icmp which might be promoted.
2454 bool needsCast = false;
2455
2456 // Write out the cast of the instruction's value back to the proper type
2457 // if necessary.
2458 bool NeedsClosingParens = writeInstructionCast(I);
2459
2460 // Certain icmp predicate require the operand to be forced to a specific type
2461 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2462 // below for operand 1
Chris Lattner389c9142007-09-15 06:51:03 +00002463 writeOperandWithCast(I.getOperand(0), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002464
2465 switch (I.getPredicate()) {
2466 case ICmpInst::ICMP_EQ: Out << " == "; break;
2467 case ICmpInst::ICMP_NE: Out << " != "; break;
2468 case ICmpInst::ICMP_ULE:
2469 case ICmpInst::ICMP_SLE: Out << " <= "; break;
2470 case ICmpInst::ICMP_UGE:
2471 case ICmpInst::ICMP_SGE: Out << " >= "; break;
2472 case ICmpInst::ICMP_ULT:
2473 case ICmpInst::ICMP_SLT: Out << " < "; break;
2474 case ICmpInst::ICMP_UGT:
2475 case ICmpInst::ICMP_SGT: Out << " > "; break;
2476 default: cerr << "Invalid icmp predicate!" << I; abort();
2477 }
2478
Chris Lattner389c9142007-09-15 06:51:03 +00002479 writeOperandWithCast(I.getOperand(1), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002480 if (NeedsClosingParens)
2481 Out << "))";
2482
2483 if (needsCast) {
2484 Out << "))";
2485 }
2486}
2487
2488void CWriter::visitFCmpInst(FCmpInst &I) {
2489 if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
2490 Out << "0";
2491 return;
2492 }
2493 if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
2494 Out << "1";
2495 return;
2496 }
2497
2498 const char* op = 0;
2499 switch (I.getPredicate()) {
2500 default: assert(0 && "Illegal FCmp predicate");
2501 case FCmpInst::FCMP_ORD: op = "ord"; break;
2502 case FCmpInst::FCMP_UNO: op = "uno"; break;
2503 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
2504 case FCmpInst::FCMP_UNE: op = "une"; break;
2505 case FCmpInst::FCMP_ULT: op = "ult"; break;
2506 case FCmpInst::FCMP_ULE: op = "ule"; break;
2507 case FCmpInst::FCMP_UGT: op = "ugt"; break;
2508 case FCmpInst::FCMP_UGE: op = "uge"; break;
2509 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
2510 case FCmpInst::FCMP_ONE: op = "one"; break;
2511 case FCmpInst::FCMP_OLT: op = "olt"; break;
2512 case FCmpInst::FCMP_OLE: op = "ole"; break;
2513 case FCmpInst::FCMP_OGT: op = "ogt"; break;
2514 case FCmpInst::FCMP_OGE: op = "oge"; break;
2515 }
2516
2517 Out << "llvm_fcmp_" << op << "(";
2518 // Write the first operand
2519 writeOperand(I.getOperand(0));
2520 Out << ", ";
2521 // Write the second operand
2522 writeOperand(I.getOperand(1));
2523 Out << ")";
2524}
2525
2526static const char * getFloatBitCastField(const Type *Ty) {
2527 switch (Ty->getTypeID()) {
2528 default: assert(0 && "Invalid Type");
2529 case Type::FloatTyID: return "Float";
2530 case Type::DoubleTyID: return "Double";
2531 case Type::IntegerTyID: {
2532 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
2533 if (NumBits <= 32)
2534 return "Int32";
2535 else
2536 return "Int64";
2537 }
2538 }
2539}
2540
2541void CWriter::visitCastInst(CastInst &I) {
2542 const Type *DstTy = I.getType();
2543 const Type *SrcTy = I.getOperand(0)->getType();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002544 if (isFPIntBitCast(I)) {
Chris Lattnerd70f5a82008-05-31 09:23:55 +00002545 Out << '(';
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002546 // These int<->float and long<->double casts need to be handled specially
2547 Out << GetValueName(&I) << "__BITCAST_TEMPORARY."
2548 << getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
2549 writeOperand(I.getOperand(0));
2550 Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
2551 << getFloatBitCastField(I.getType());
Chris Lattnerd70f5a82008-05-31 09:23:55 +00002552 Out << ')';
2553 return;
2554 }
2555
2556 Out << '(';
2557 printCast(I.getOpcode(), SrcTy, DstTy);
2558
2559 // Make a sext from i1 work by subtracting the i1 from 0 (an int).
2560 if (SrcTy == Type::Int1Ty && I.getOpcode() == Instruction::SExt)
2561 Out << "0-";
2562
2563 writeOperand(I.getOperand(0));
2564
2565 if (DstTy == Type::Int1Ty &&
2566 (I.getOpcode() == Instruction::Trunc ||
2567 I.getOpcode() == Instruction::FPToUI ||
2568 I.getOpcode() == Instruction::FPToSI ||
2569 I.getOpcode() == Instruction::PtrToInt)) {
2570 // Make sure we really get a trunc to bool by anding the operand with 1
2571 Out << "&1u";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002572 }
2573 Out << ')';
2574}
2575
2576void CWriter::visitSelectInst(SelectInst &I) {
2577 Out << "((";
2578 writeOperand(I.getCondition());
2579 Out << ") ? (";
2580 writeOperand(I.getTrueValue());
2581 Out << ") : (";
2582 writeOperand(I.getFalseValue());
2583 Out << "))";
2584}
2585
2586
2587void CWriter::lowerIntrinsics(Function &F) {
2588 // This is used to keep track of intrinsics that get generated to a lowered
2589 // function. We must generate the prototypes before the function body which
2590 // will only be expanded on first use (by the loop below).
2591 std::vector<Function*> prototypesToGen;
2592
2593 // Examine all the instructions in this function to find the intrinsics that
2594 // need to be lowered.
2595 for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
2596 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
2597 if (CallInst *CI = dyn_cast<CallInst>(I++))
2598 if (Function *F = CI->getCalledFunction())
2599 switch (F->getIntrinsicID()) {
2600 case Intrinsic::not_intrinsic:
Andrew Lenharth0531ec52008-02-16 14:46:26 +00002601 case Intrinsic::memory_barrier:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002602 case Intrinsic::vastart:
2603 case Intrinsic::vacopy:
2604 case Intrinsic::vaend:
2605 case Intrinsic::returnaddress:
2606 case Intrinsic::frameaddress:
2607 case Intrinsic::setjmp:
2608 case Intrinsic::longjmp:
2609 case Intrinsic::prefetch:
2610 case Intrinsic::dbg_stoppoint:
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002611 case Intrinsic::powi:
Chris Lattner6a947cb2008-03-02 08:47:13 +00002612 case Intrinsic::x86_sse_cmp_ss:
2613 case Intrinsic::x86_sse_cmp_ps:
2614 case Intrinsic::x86_sse2_cmp_sd:
2615 case Intrinsic::x86_sse2_cmp_pd:
Chris Lattner709df322008-03-02 08:54:27 +00002616 case Intrinsic::ppc_altivec_lvsl:
Chris Lattner6a947cb2008-03-02 08:47:13 +00002617 // We directly implement these intrinsics
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002618 break;
2619 default:
2620 // If this is an intrinsic that directly corresponds to a GCC
2621 // builtin, we handle it.
2622 const char *BuiltinName = "";
2623#define GET_GCC_BUILTIN_NAME
2624#include "llvm/Intrinsics.gen"
2625#undef GET_GCC_BUILTIN_NAME
2626 // If we handle it, don't lower it.
2627 if (BuiltinName[0]) break;
2628
2629 // All other intrinsic calls we must lower.
2630 Instruction *Before = 0;
2631 if (CI != &BB->front())
2632 Before = prior(BasicBlock::iterator(CI));
2633
2634 IL->LowerIntrinsicCall(CI);
2635 if (Before) { // Move iterator to instruction after call
2636 I = Before; ++I;
2637 } else {
2638 I = BB->begin();
2639 }
2640 // If the intrinsic got lowered to another call, and that call has
2641 // a definition then we need to make sure its prototype is emitted
2642 // before any calls to it.
2643 if (CallInst *Call = dyn_cast<CallInst>(I))
2644 if (Function *NewF = Call->getCalledFunction())
2645 if (!NewF->isDeclaration())
2646 prototypesToGen.push_back(NewF);
2647
2648 break;
2649 }
2650
2651 // We may have collected some prototypes to emit in the loop above.
2652 // Emit them now, before the function that uses them is emitted. But,
2653 // be careful not to emit them twice.
2654 std::vector<Function*>::iterator I = prototypesToGen.begin();
2655 std::vector<Function*>::iterator E = prototypesToGen.end();
2656 for ( ; I != E; ++I) {
2657 if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
2658 Out << '\n';
2659 printFunctionSignature(*I, true);
2660 Out << ";\n";
2661 }
2662 }
2663}
2664
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002665void CWriter::visitCallInst(CallInst &I) {
Chris Lattner8a3b6e42008-05-22 06:19:37 +00002666 if (isa<InlineAsm>(I.getOperand(0)))
2667 return visitInlineAsm(I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002668
2669 bool WroteCallee = false;
2670
2671 // Handle intrinsic function calls first...
2672 if (Function *F = I.getCalledFunction())
Chris Lattnera74b9182008-03-02 08:29:41 +00002673 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2674 if (visitBuiltinCall(I, ID, WroteCallee))
Andrew Lenharth0531ec52008-02-16 14:46:26 +00002675 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002676
2677 Value *Callee = I.getCalledValue();
2678
2679 const PointerType *PTy = cast<PointerType>(Callee->getType());
2680 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
2681
2682 // If this is a call to a struct-return function, assign to the first
2683 // parameter instead of passing it to the call.
Chris Lattner1c8733e2008-03-12 17:45:29 +00002684 const PAListPtr &PAL = I.getParamAttrs();
Evan Chengb8a072c2008-01-12 18:53:07 +00002685 bool hasByVal = I.hasByValArgument();
Devang Patel949a4b72008-03-03 21:46:28 +00002686 bool isStructRet = I.hasStructRetAttr();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002687 if (isStructRet) {
Chris Lattner8bbc8592008-03-02 08:07:24 +00002688 writeOperandDeref(I.getOperand(1));
Evan Chengf8956382008-01-11 23:10:11 +00002689 Out << " = ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002690 }
2691
2692 if (I.isTailCall()) Out << " /*tail*/ ";
2693
2694 if (!WroteCallee) {
2695 // If this is an indirect call to a struct return function, we need to cast
Evan Chengb8a072c2008-01-12 18:53:07 +00002696 // the pointer. Ditto for indirect calls with byval arguments.
2697 bool NeedsCast = (hasByVal || isStructRet) && !isa<Function>(Callee);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002698
2699 // GCC is a real PITA. It does not permit codegening casts of functions to
2700 // function pointers if they are in a call (it generates a trap instruction
2701 // instead!). We work around this by inserting a cast to void* in between
2702 // the function and the function pointer cast. Unfortunately, we can't just
2703 // form the constant expression here, because the folder will immediately
2704 // nuke it.
2705 //
2706 // Note finally, that this is completely unsafe. ANSI C does not guarantee
2707 // that void* and function pointers have the same size. :( To deal with this
2708 // in the common case, we handle casts where the number of arguments passed
2709 // match exactly.
2710 //
2711 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
2712 if (CE->isCast())
2713 if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
2714 NeedsCast = true;
2715 Callee = RF;
2716 }
2717
2718 if (NeedsCast) {
2719 // Ok, just cast the pointer type.
2720 Out << "((";
Evan Chengb8a072c2008-01-12 18:53:07 +00002721 if (isStructRet)
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002722 printStructReturnPointerFunctionType(Out, PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002723 cast<PointerType>(I.getCalledValue()->getType()));
Evan Chengb8a072c2008-01-12 18:53:07 +00002724 else if (hasByVal)
2725 printType(Out, I.getCalledValue()->getType(), false, "", true, PAL);
2726 else
2727 printType(Out, I.getCalledValue()->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002728 Out << ")(void*)";
2729 }
2730 writeOperand(Callee);
2731 if (NeedsCast) Out << ')';
2732 }
2733
2734 Out << '(';
2735
2736 unsigned NumDeclaredParams = FTy->getNumParams();
2737
2738 CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end();
2739 unsigned ArgNo = 0;
2740 if (isStructRet) { // Skip struct return argument.
2741 ++AI;
2742 ++ArgNo;
2743 }
2744
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002745 bool PrintedArg = false;
Evan Chengf8956382008-01-11 23:10:11 +00002746 for (; AI != AE; ++AI, ++ArgNo) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002747 if (PrintedArg) Out << ", ";
2748 if (ArgNo < NumDeclaredParams &&
2749 (*AI)->getType() != FTy->getParamType(ArgNo)) {
2750 Out << '(';
2751 printType(Out, FTy->getParamType(ArgNo),
Chris Lattner1c8733e2008-03-12 17:45:29 +00002752 /*isSigned=*/PAL.paramHasAttr(ArgNo+1, ParamAttr::SExt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002753 Out << ')';
2754 }
Evan Chengf8956382008-01-11 23:10:11 +00002755 // Check if the argument is expected to be passed by value.
Chris Lattner8bbc8592008-03-02 08:07:24 +00002756 if (I.paramHasAttr(ArgNo+1, ParamAttr::ByVal))
2757 writeOperandDeref(*AI);
2758 else
2759 writeOperand(*AI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002760 PrintedArg = true;
2761 }
2762 Out << ')';
2763}
2764
Chris Lattnera74b9182008-03-02 08:29:41 +00002765/// visitBuiltinCall - Handle the call to the specified builtin. Returns true
2766/// if the entire call is handled, return false it it wasn't handled, and
2767/// optionally set 'WroteCallee' if the callee has already been printed out.
2768bool CWriter::visitBuiltinCall(CallInst &I, Intrinsic::ID ID,
2769 bool &WroteCallee) {
2770 switch (ID) {
2771 default: {
2772 // If this is an intrinsic that directly corresponds to a GCC
2773 // builtin, we emit it here.
2774 const char *BuiltinName = "";
2775 Function *F = I.getCalledFunction();
2776#define GET_GCC_BUILTIN_NAME
2777#include "llvm/Intrinsics.gen"
2778#undef GET_GCC_BUILTIN_NAME
2779 assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
2780
2781 Out << BuiltinName;
2782 WroteCallee = true;
2783 return false;
2784 }
2785 case Intrinsic::memory_barrier:
Andrew Lenharth5c976182008-03-05 23:41:37 +00002786 Out << "__sync_synchronize()";
Chris Lattnera74b9182008-03-02 08:29:41 +00002787 return true;
2788 case Intrinsic::vastart:
2789 Out << "0; ";
2790
2791 Out << "va_start(*(va_list*)";
2792 writeOperand(I.getOperand(1));
2793 Out << ", ";
2794 // Output the last argument to the enclosing function.
2795 if (I.getParent()->getParent()->arg_empty()) {
2796 cerr << "The C backend does not currently support zero "
2797 << "argument varargs functions, such as '"
2798 << I.getParent()->getParent()->getName() << "'!\n";
2799 abort();
2800 }
2801 writeOperand(--I.getParent()->getParent()->arg_end());
2802 Out << ')';
2803 return true;
2804 case Intrinsic::vaend:
2805 if (!isa<ConstantPointerNull>(I.getOperand(1))) {
2806 Out << "0; va_end(*(va_list*)";
2807 writeOperand(I.getOperand(1));
2808 Out << ')';
2809 } else {
2810 Out << "va_end(*(va_list*)0)";
2811 }
2812 return true;
2813 case Intrinsic::vacopy:
2814 Out << "0; ";
2815 Out << "va_copy(*(va_list*)";
2816 writeOperand(I.getOperand(1));
2817 Out << ", *(va_list*)";
2818 writeOperand(I.getOperand(2));
2819 Out << ')';
2820 return true;
2821 case Intrinsic::returnaddress:
2822 Out << "__builtin_return_address(";
2823 writeOperand(I.getOperand(1));
2824 Out << ')';
2825 return true;
2826 case Intrinsic::frameaddress:
2827 Out << "__builtin_frame_address(";
2828 writeOperand(I.getOperand(1));
2829 Out << ')';
2830 return true;
2831 case Intrinsic::powi:
2832 Out << "__builtin_powi(";
2833 writeOperand(I.getOperand(1));
2834 Out << ", ";
2835 writeOperand(I.getOperand(2));
2836 Out << ')';
2837 return true;
2838 case Intrinsic::setjmp:
2839 Out << "setjmp(*(jmp_buf*)";
2840 writeOperand(I.getOperand(1));
2841 Out << ')';
2842 return true;
2843 case Intrinsic::longjmp:
2844 Out << "longjmp(*(jmp_buf*)";
2845 writeOperand(I.getOperand(1));
2846 Out << ", ";
2847 writeOperand(I.getOperand(2));
2848 Out << ')';
2849 return true;
2850 case Intrinsic::prefetch:
2851 Out << "LLVM_PREFETCH((const void *)";
2852 writeOperand(I.getOperand(1));
2853 Out << ", ";
2854 writeOperand(I.getOperand(2));
2855 Out << ", ";
2856 writeOperand(I.getOperand(3));
2857 Out << ")";
2858 return true;
2859 case Intrinsic::stacksave:
2860 // Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save()
2861 // to work around GCC bugs (see PR1809).
2862 Out << "0; *((void**)&" << GetValueName(&I)
2863 << ") = __builtin_stack_save()";
2864 return true;
2865 case Intrinsic::dbg_stoppoint: {
2866 // If we use writeOperand directly we get a "u" suffix which is rejected
2867 // by gcc.
2868 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2869 Out << "\n#line "
2870 << SPI.getLine()
2871 << " \"" << SPI.getDirectory()
2872 << SPI.getFileName() << "\"\n";
2873 return true;
2874 }
Chris Lattner6a947cb2008-03-02 08:47:13 +00002875 case Intrinsic::x86_sse_cmp_ss:
2876 case Intrinsic::x86_sse_cmp_ps:
2877 case Intrinsic::x86_sse2_cmp_sd:
2878 case Intrinsic::x86_sse2_cmp_pd:
2879 Out << '(';
2880 printType(Out, I.getType());
2881 Out << ')';
2882 // Multiple GCC builtins multiplex onto this intrinsic.
2883 switch (cast<ConstantInt>(I.getOperand(3))->getZExtValue()) {
2884 default: assert(0 && "Invalid llvm.x86.sse.cmp!");
2885 case 0: Out << "__builtin_ia32_cmpeq"; break;
2886 case 1: Out << "__builtin_ia32_cmplt"; break;
2887 case 2: Out << "__builtin_ia32_cmple"; break;
2888 case 3: Out << "__builtin_ia32_cmpunord"; break;
2889 case 4: Out << "__builtin_ia32_cmpneq"; break;
2890 case 5: Out << "__builtin_ia32_cmpnlt"; break;
2891 case 6: Out << "__builtin_ia32_cmpnle"; break;
2892 case 7: Out << "__builtin_ia32_cmpord"; break;
2893 }
2894 if (ID == Intrinsic::x86_sse_cmp_ps || ID == Intrinsic::x86_sse2_cmp_pd)
2895 Out << 'p';
2896 else
2897 Out << 's';
2898 if (ID == Intrinsic::x86_sse_cmp_ss || ID == Intrinsic::x86_sse_cmp_ps)
2899 Out << 's';
2900 else
2901 Out << 'd';
2902
2903 Out << "(";
2904 writeOperand(I.getOperand(1));
2905 Out << ", ";
2906 writeOperand(I.getOperand(2));
2907 Out << ")";
2908 return true;
Chris Lattner709df322008-03-02 08:54:27 +00002909 case Intrinsic::ppc_altivec_lvsl:
2910 Out << '(';
2911 printType(Out, I.getType());
2912 Out << ')';
2913 Out << "__builtin_altivec_lvsl(0, (void*)";
2914 writeOperand(I.getOperand(1));
2915 Out << ")";
2916 return true;
Chris Lattnera74b9182008-03-02 08:29:41 +00002917 }
2918}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002919
2920//This converts the llvm constraint string to something gcc is expecting.
2921//TODO: work out platform independent constraints and factor those out
2922// of the per target tables
2923// handle multiple constraint codes
2924std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
2925
2926 assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
2927
Dan Gohman12300e12008-03-25 21:45:14 +00002928 const char *const *table = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002929
2930 //Grab the translation table from TargetAsmInfo if it exists
2931 if (!TAsm) {
2932 std::string E;
Gordon Henriksen99e34ab2007-10-17 21:28:48 +00002933 const TargetMachineRegistry::entry* Match =
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002934 TargetMachineRegistry::getClosestStaticTargetForModule(*TheModule, E);
2935 if (Match) {
2936 //Per platform Target Machines don't exist, so create it
2937 // this must be done only once
2938 const TargetMachine* TM = Match->CtorFn(*TheModule, "");
2939 TAsm = TM->getTargetAsmInfo();
2940 }
2941 }
2942 if (TAsm)
2943 table = TAsm->getAsmCBE();
2944
2945 //Search the translation table if it exists
2946 for (int i = 0; table && table[i]; i += 2)
2947 if (c.Codes[0] == table[i])
2948 return table[i+1];
2949
2950 //default is identity
2951 return c.Codes[0];
2952}
2953
2954//TODO: import logic from AsmPrinter.cpp
2955static std::string gccifyAsm(std::string asmstr) {
2956 for (std::string::size_type i = 0; i != asmstr.size(); ++i)
2957 if (asmstr[i] == '\n')
2958 asmstr.replace(i, 1, "\\n");
2959 else if (asmstr[i] == '\t')
2960 asmstr.replace(i, 1, "\\t");
2961 else if (asmstr[i] == '$') {
2962 if (asmstr[i + 1] == '{') {
2963 std::string::size_type a = asmstr.find_first_of(':', i + 1);
2964 std::string::size_type b = asmstr.find_first_of('}', i + 1);
2965 std::string n = "%" +
2966 asmstr.substr(a + 1, b - a - 1) +
2967 asmstr.substr(i + 2, a - i - 2);
2968 asmstr.replace(i, b - i + 1, n);
2969 i += n.size() - 1;
2970 } else
2971 asmstr.replace(i, 1, "%");
2972 }
2973 else if (asmstr[i] == '%')//grr
2974 { asmstr.replace(i, 1, "%%"); ++i;}
2975
2976 return asmstr;
2977}
2978
2979//TODO: assumptions about what consume arguments from the call are likely wrong
2980// handle communitivity
2981void CWriter::visitInlineAsm(CallInst &CI) {
2982 InlineAsm* as = cast<InlineAsm>(CI.getOperand(0));
2983 std::vector<InlineAsm::ConstraintInfo> Constraints = as->ParseConstraints();
Chris Lattner8a3b6e42008-05-22 06:19:37 +00002984
2985 std::vector<std::pair<Value*, int> > ResultVals;
2986 if (CI.getType() == Type::VoidTy)
2987 ;
2988 else if (const StructType *ST = dyn_cast<StructType>(CI.getType())) {
2989 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i)
2990 ResultVals.push_back(std::make_pair(&CI, (int)i));
2991 } else {
2992 ResultVals.push_back(std::make_pair(&CI, -1));
2993 }
2994
Chris Lattnera605a9c2008-06-04 18:03:28 +00002995 // Fix up the asm string for gcc and emit it.
2996 Out << "__asm__ volatile (\"" << gccifyAsm(as->getAsmString()) << "\"\n";
2997 Out << " :";
2998
2999 unsigned ValueCount = 0;
3000 bool IsFirst = true;
3001
3002 // Convert over all the output constraints.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003003 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
Chris Lattnera605a9c2008-06-04 18:03:28 +00003004 E = Constraints.end(); I != E; ++I) {
3005
3006 if (I->Type != InlineAsm::isOutput) {
3007 ++ValueCount;
3008 continue; // Ignore non-output constraints.
3009 }
3010
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003011 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
Chris Lattner8a3b6e42008-05-22 06:19:37 +00003012 std::string C = InterpretASMConstraint(*I);
3013 if (C.empty()) continue;
3014
Chris Lattnera605a9c2008-06-04 18:03:28 +00003015 if (!IsFirst) {
Chris Lattner8a3b6e42008-05-22 06:19:37 +00003016 Out << ", ";
Chris Lattnera605a9c2008-06-04 18:03:28 +00003017 IsFirst = false;
3018 }
3019
3020 // Unpack the dest.
3021 Value *DestVal;
3022 int DestValNo = -1;
3023
3024 if (ValueCount < ResultVals.size()) {
3025 DestVal = ResultVals[ValueCount].first;
3026 DestValNo = ResultVals[ValueCount].second;
3027 } else
3028 DestVal = CI.getOperand(ValueCount-ResultVals.size()+1);
3029
3030 if (I->isEarlyClobber)
3031 C = "&"+C;
3032
3033 Out << "\"=" << C << "\"(" << GetValueName(DestVal);
3034 if (DestValNo != -1)
3035 Out << ".field" << DestValNo; // Multiple retvals.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003036 Out << ")";
Chris Lattnera605a9c2008-06-04 18:03:28 +00003037 ++ValueCount;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003038 }
Chris Lattnera605a9c2008-06-04 18:03:28 +00003039
3040
3041 // Convert over all the input constraints.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003042 Out << "\n :";
Chris Lattnera605a9c2008-06-04 18:03:28 +00003043 IsFirst = true;
3044 ValueCount = 0;
3045 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
3046 E = Constraints.end(); I != E; ++I) {
3047 if (I->Type != InlineAsm::isInput) {
3048 ++ValueCount;
3049 continue; // Ignore non-input constraints.
3050 }
3051
3052 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
3053 std::string C = InterpretASMConstraint(*I);
3054 if (C.empty()) continue;
3055
3056 if (!IsFirst) {
Chris Lattner5fee1202008-05-22 06:29:38 +00003057 Out << ", ";
Chris Lattnera605a9c2008-06-04 18:03:28 +00003058 IsFirst = false;
3059 }
3060
3061 assert(ValueCount >= ResultVals.size() && "Input can't refer to result");
3062 Value *SrcVal = CI.getOperand(ValueCount-ResultVals.size()+1);
3063
3064 Out << "\"" << C << "\"(";
3065 if (!I->isIndirect)
3066 writeOperand(SrcVal);
3067 else
3068 writeOperandDeref(SrcVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003069 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003070 }
Chris Lattnera605a9c2008-06-04 18:03:28 +00003071
3072 // Convert over the clobber constraints.
3073 IsFirst = true;
3074 ValueCount = 0;
3075 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
3076 E = Constraints.end(); I != E; ++I) {
3077 if (I->Type != InlineAsm::isClobber)
3078 continue; // Ignore non-input constraints.
3079
3080 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
3081 std::string C = InterpretASMConstraint(*I);
3082 if (C.empty()) continue;
3083
3084 if (!IsFirst) {
3085 Out << ", ";
3086 IsFirst = false;
3087 }
3088
3089 Out << '\"' << C << '"';
3090 }
3091
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003092 Out << ")";
3093}
3094
3095void CWriter::visitMallocInst(MallocInst &I) {
3096 assert(0 && "lowerallocations pass didn't work!");
3097}
3098
3099void CWriter::visitAllocaInst(AllocaInst &I) {
3100 Out << '(';
3101 printType(Out, I.getType());
3102 Out << ") alloca(sizeof(";
3103 printType(Out, I.getType()->getElementType());
3104 Out << ')';
3105 if (I.isArrayAllocation()) {
3106 Out << " * " ;
3107 writeOperand(I.getOperand(0));
3108 }
3109 Out << ')';
3110}
3111
3112void CWriter::visitFreeInst(FreeInst &I) {
3113 assert(0 && "lowerallocations pass didn't work!");
3114}
3115
Chris Lattner8bbc8592008-03-02 08:07:24 +00003116void CWriter::printGEPExpression(Value *Ptr, gep_type_iterator I,
3117 gep_type_iterator E) {
3118
3119 // If there are no indices, just print out the pointer.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003120 if (I == E) {
Chris Lattner8bbc8592008-03-02 08:07:24 +00003121 writeOperand(Ptr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003122 return;
3123 }
Chris Lattner8bbc8592008-03-02 08:07:24 +00003124
3125 // Find out if the last index is into a vector. If so, we have to print this
3126 // specially. Since vectors can't have elements of indexable type, only the
3127 // last index could possibly be of a vector element.
3128 const VectorType *LastIndexIsVector = 0;
3129 {
3130 for (gep_type_iterator TmpI = I; TmpI != E; ++TmpI)
3131 LastIndexIsVector = dyn_cast<VectorType>(*TmpI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003132 }
Chris Lattner8bbc8592008-03-02 08:07:24 +00003133
3134 Out << "(";
3135
3136 // If the last index is into a vector, we can't print it as &a[i][j] because
3137 // we can't index into a vector with j in GCC. Instead, emit this as
3138 // (((float*)&a[i])+j)
3139 if (LastIndexIsVector) {
3140 Out << "((";
3141 printType(Out, PointerType::getUnqual(LastIndexIsVector->getElementType()));
3142 Out << ")(";
3143 }
3144
3145 Out << '&';
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003146
Chris Lattner8bbc8592008-03-02 08:07:24 +00003147 // If the first index is 0 (very typical) we can do a number of
3148 // simplifications to clean up the code.
3149 Value *FirstOp = I.getOperand();
3150 if (!isa<Constant>(FirstOp) || !cast<Constant>(FirstOp)->isNullValue()) {
3151 // First index isn't simple, print it the hard way.
3152 writeOperand(Ptr);
3153 } else {
3154 ++I; // Skip the zero index.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003155
Chris Lattner8bbc8592008-03-02 08:07:24 +00003156 // Okay, emit the first operand. If Ptr is something that is already address
3157 // exposed, like a global, avoid emitting (&foo)[0], just emit foo instead.
3158 if (isAddressExposed(Ptr)) {
3159 writeOperandInternal(Ptr);
3160 } else if (I != E && isa<StructType>(*I)) {
3161 // If we didn't already emit the first operand, see if we can print it as
3162 // P->f instead of "P[0].f"
3163 writeOperand(Ptr);
3164 Out << "->field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
3165 ++I; // eat the struct index as well.
3166 } else {
3167 // Instead of emitting P[0][1], emit (*P)[1], which is more idiomatic.
3168 Out << "(*";
3169 writeOperand(Ptr);
3170 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003171 }
3172 }
3173
Chris Lattner8bbc8592008-03-02 08:07:24 +00003174 for (; I != E; ++I) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003175 if (isa<StructType>(*I)) {
3176 Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
Dan Gohman5d995b02008-06-02 21:30:49 +00003177 } else if (isa<ArrayType>(*I)) {
3178 Out << ".array[";
3179 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
3180 Out << ']';
Chris Lattner8bbc8592008-03-02 08:07:24 +00003181 } else if (!isa<VectorType>(*I)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003182 Out << '[';
Chris Lattner7ce1ee42007-09-22 20:16:48 +00003183 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003184 Out << ']';
Chris Lattner8bbc8592008-03-02 08:07:24 +00003185 } else {
3186 // If the last index is into a vector, then print it out as "+j)". This
3187 // works with the 'LastIndexIsVector' code above.
3188 if (isa<Constant>(I.getOperand()) &&
3189 cast<Constant>(I.getOperand())->isNullValue()) {
3190 Out << "))"; // avoid "+0".
3191 } else {
3192 Out << ")+(";
3193 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
3194 Out << "))";
3195 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003196 }
Chris Lattner8bbc8592008-03-02 08:07:24 +00003197 }
3198 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003199}
3200
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003201void CWriter::writeMemoryAccess(Value *Operand, const Type *OperandType,
3202 bool IsVolatile, unsigned Alignment) {
3203
3204 bool IsUnaligned = Alignment &&
3205 Alignment < TD->getABITypeAlignment(OperandType);
3206
3207 if (!IsUnaligned)
3208 Out << '*';
3209 if (IsVolatile || IsUnaligned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003210 Out << "((";
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003211 if (IsUnaligned)
3212 Out << "struct __attribute__ ((packed, aligned(" << Alignment << "))) {";
3213 printType(Out, OperandType, false, IsUnaligned ? "data" : "volatile*");
3214 if (IsUnaligned) {
3215 Out << "; } ";
3216 if (IsVolatile) Out << "volatile ";
3217 Out << "*";
3218 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003219 Out << ")";
3220 }
3221
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003222 writeOperand(Operand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003223
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003224 if (IsVolatile || IsUnaligned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003225 Out << ')';
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003226 if (IsUnaligned)
3227 Out << "->data";
3228 }
3229}
3230
3231void CWriter::visitLoadInst(LoadInst &I) {
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003232 writeMemoryAccess(I.getOperand(0), I.getType(), I.isVolatile(),
3233 I.getAlignment());
3234
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003235}
3236
3237void CWriter::visitStoreInst(StoreInst &I) {
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00003238 writeMemoryAccess(I.getPointerOperand(), I.getOperand(0)->getType(),
3239 I.isVolatile(), I.getAlignment());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003240 Out << " = ";
3241 Value *Operand = I.getOperand(0);
3242 Constant *BitMask = 0;
3243 if (const IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
3244 if (!ITy->isPowerOf2ByteWidth())
3245 // We have a bit width that doesn't match an even power-of-2 byte
3246 // size. Consequently we must & the value with the type's bit mask
3247 BitMask = ConstantInt::get(ITy, ITy->getBitMask());
3248 if (BitMask)
3249 Out << "((";
3250 writeOperand(Operand);
3251 if (BitMask) {
3252 Out << ") & ";
3253 printConstant(BitMask);
3254 Out << ")";
3255 }
3256}
3257
3258void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
Chris Lattner8bbc8592008-03-02 08:07:24 +00003259 printGEPExpression(I.getPointerOperand(), gep_type_begin(I),
3260 gep_type_end(I));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003261}
3262
3263void CWriter::visitVAArgInst(VAArgInst &I) {
3264 Out << "va_arg(*(va_list*)";
3265 writeOperand(I.getOperand(0));
3266 Out << ", ";
3267 printType(Out, I.getType());
3268 Out << ");\n ";
3269}
3270
Chris Lattnerf41a7942008-03-02 03:52:39 +00003271void CWriter::visitInsertElementInst(InsertElementInst &I) {
3272 const Type *EltTy = I.getType()->getElementType();
3273 writeOperand(I.getOperand(0));
3274 Out << ";\n ";
3275 Out << "((";
3276 printType(Out, PointerType::getUnqual(EltTy));
3277 Out << ")(&" << GetValueName(&I) << "))[";
Chris Lattnerf41a7942008-03-02 03:52:39 +00003278 writeOperand(I.getOperand(2));
Chris Lattner09418362008-03-02 08:10:16 +00003279 Out << "] = (";
3280 writeOperand(I.getOperand(1));
Chris Lattnerf41a7942008-03-02 03:52:39 +00003281 Out << ")";
3282}
3283
Chris Lattnera5f0bc02008-03-02 03:57:08 +00003284void CWriter::visitExtractElementInst(ExtractElementInst &I) {
3285 // We know that our operand is not inlined.
3286 Out << "((";
3287 const Type *EltTy =
3288 cast<VectorType>(I.getOperand(0)->getType())->getElementType();
3289 printType(Out, PointerType::getUnqual(EltTy));
3290 Out << ")(&" << GetValueName(I.getOperand(0)) << "))[";
3291 writeOperand(I.getOperand(1));
3292 Out << "]";
3293}
3294
Chris Lattnerf858a042008-03-02 05:41:07 +00003295void CWriter::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
3296 Out << "(";
3297 printType(Out, SVI.getType());
3298 Out << "){ ";
3299 const VectorType *VT = SVI.getType();
3300 unsigned NumElts = VT->getNumElements();
3301 const Type *EltTy = VT->getElementType();
3302
3303 for (unsigned i = 0; i != NumElts; ++i) {
3304 if (i) Out << ", ";
3305 int SrcVal = SVI.getMaskValue(i);
3306 if ((unsigned)SrcVal >= NumElts*2) {
3307 Out << " 0/*undef*/ ";
3308 } else {
3309 Value *Op = SVI.getOperand((unsigned)SrcVal >= NumElts);
3310 if (isa<Instruction>(Op)) {
3311 // Do an extractelement of this value from the appropriate input.
3312 Out << "((";
3313 printType(Out, PointerType::getUnqual(EltTy));
3314 Out << ")(&" << GetValueName(Op)
Duncan Sandsf6890712008-05-27 11:50:51 +00003315 << "))[" << (SrcVal & (NumElts-1)) << "]";
Chris Lattnerf858a042008-03-02 05:41:07 +00003316 } else if (isa<ConstantAggregateZero>(Op) || isa<UndefValue>(Op)) {
3317 Out << "0";
3318 } else {
Duncan Sandsf6890712008-05-27 11:50:51 +00003319 printConstant(cast<ConstantVector>(Op)->getOperand(SrcVal &
3320 (NumElts-1)));
Chris Lattnerf858a042008-03-02 05:41:07 +00003321 }
3322 }
3323 }
3324 Out << "}";
3325}
Chris Lattnera5f0bc02008-03-02 03:57:08 +00003326
Dan Gohman5d995b02008-06-02 21:30:49 +00003327void CWriter::visitInsertValueInst(InsertValueInst &IVI) {
3328 // Start by copying the entire aggregate value into the result variable.
3329 writeOperand(IVI.getOperand(0));
3330 Out << ";\n ";
3331
3332 // Then do the insert to update the field.
3333 Out << GetValueName(&IVI);
3334 for (const unsigned *b = IVI.idx_begin(), *i = b, *e = IVI.idx_end();
3335 i != e; ++i) {
3336 const Type *IndexedTy =
3337 ExtractValueInst::getIndexedType(IVI.getOperand(0)->getType(), b, i+1);
3338 if (isa<ArrayType>(IndexedTy))
3339 Out << ".array[" << *i << "]";
3340 else
3341 Out << ".field" << *i;
3342 }
3343 Out << " = ";
3344 writeOperand(IVI.getOperand(1));
3345}
3346
3347void CWriter::visitExtractValueInst(ExtractValueInst &EVI) {
3348 Out << "(";
3349 if (isa<UndefValue>(EVI.getOperand(0))) {
3350 Out << "(";
3351 printType(Out, EVI.getType());
3352 Out << ") 0/*UNDEF*/";
3353 } else {
3354 Out << GetValueName(EVI.getOperand(0));
3355 for (const unsigned *b = EVI.idx_begin(), *i = b, *e = EVI.idx_end();
3356 i != e; ++i) {
3357 const Type *IndexedTy =
3358 ExtractValueInst::getIndexedType(EVI.getOperand(0)->getType(), b, i+1);
3359 if (isa<ArrayType>(IndexedTy))
3360 Out << ".array[" << *i << "]";
3361 else
3362 Out << ".field" << *i;
3363 }
3364 }
3365 Out << ")";
3366}
3367
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003368//===----------------------------------------------------------------------===//
3369// External Interface declaration
3370//===----------------------------------------------------------------------===//
3371
3372bool CTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
3373 std::ostream &o,
3374 CodeGenFileType FileType,
3375 bool Fast) {
3376 if (FileType != TargetMachine::AssemblyFile) return true;
3377
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00003378 PM.add(createGCLoweringPass());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003379 PM.add(createLowerAllocationsPass(true));
3380 PM.add(createLowerInvokePass());
3381 PM.add(createCFGSimplificationPass()); // clean up after lower invoke.
3382 PM.add(new CBackendNameAllUsedStructsAndMergeFunctions());
3383 PM.add(new CWriter(o));
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00003384 PM.add(createCollectorMetadataDeleter());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003385 return false;
3386}