blob: 2139df56205b8c8ea9080c8772ff2a0d45f04e9b [file] [log] [blame]
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001//===-- APFloat.cpp - Implement APFloat class -----------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Chris Lattnerb39cdde2007-08-20 22:49:32 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision floating
11// point values and provide a variety of arithmetic operations on them.
12//
13//===----------------------------------------------------------------------===//
14
Chris Lattner36d26c22007-12-08 19:00:03 +000015#include "llvm/ADT/APFloat.h"
Jeffrey Yasskin3d42bfb2011-07-15 07:04:56 +000016#include "llvm/ADT/APSInt.h"
Ted Kremenek1f801fa2008-02-11 17:24:50 +000017#include "llvm/ADT/FoldingSet.h"
Chandler Carruthed7692a2012-03-04 12:02:57 +000018#include "llvm/ADT/Hashing.h"
19#include "llvm/ADT/StringRef.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000020#include "llvm/Support/ErrorHandling.h"
Dale Johannesend3b51fd2007-08-24 05:08:11 +000021#include "llvm/Support/MathExtras.h"
John McCall8b3f3302010-02-26 22:20:41 +000022#include <limits.h>
Chris Lattnerfad86b02008-08-17 07:19:36 +000023#include <cstring>
Chris Lattnerb39cdde2007-08-20 22:49:32 +000024
25using namespace llvm;
26
27#define convolve(lhs, rhs) ((lhs) * 4 + (rhs))
28
Neil Bootha30b0ee2007-10-03 22:26:02 +000029/* Assumed in hexadecimal significand parsing, and conversion to
30 hexadecimal strings. */
Chris Lattner9f17eb02008-08-17 04:58:58 +000031#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
Chris Lattnerb39cdde2007-08-20 22:49:32 +000032COMPILE_TIME_ASSERT(integerPartWidth % 4 == 0);
33
34namespace llvm {
35
36 /* Represents floating point arithmetic semantics. */
37 struct fltSemantics {
38 /* The largest E such that 2^E is representable; this matches the
39 definition of IEEE 754. */
40 exponent_t maxExponent;
41
42 /* The smallest E such that 2^E is a normalized number; this
43 matches the definition of IEEE 754. */
44 exponent_t minExponent;
45
46 /* Number of bits in the significand. This includes the integer
47 bit. */
Neil Booth7a951ca2007-10-12 15:33:27 +000048 unsigned int precision;
Neil Boothcaf19d72007-10-14 10:29:28 +000049
50 /* True if arithmetic is supported. */
51 unsigned int arithmeticOK;
Chris Lattnerb39cdde2007-08-20 22:49:32 +000052 };
53
Chris Lattnercc4287a2009-10-16 02:13:51 +000054 const fltSemantics APFloat::IEEEhalf = { 15, -14, 11, true };
Neil Boothcaf19d72007-10-14 10:29:28 +000055 const fltSemantics APFloat::IEEEsingle = { 127, -126, 24, true };
56 const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53, true };
57 const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113, true };
58 const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64, true };
59 const fltSemantics APFloat::Bogus = { 0, 0, 0, true };
Dale Johannesena471c2e2007-10-11 18:07:22 +000060
61 // The PowerPC format consists of two doubles. It does not map cleanly
62 // onto the usual format above. For now only storage of constants of
63 // this type is supported, no arithmetic.
Neil Boothcaf19d72007-10-14 10:29:28 +000064 const fltSemantics APFloat::PPCDoubleDouble = { 1023, -1022, 106, false };
Neil Booth96c74712007-10-12 16:02:31 +000065
66 /* A tight upper bound on number of parts required to hold the value
67 pow(5, power) is
68
Neil Booth686700e2007-10-15 15:00:55 +000069 power * 815 / (351 * integerPartWidth) + 1
Dan Gohman16e02092010-03-24 19:38:02 +000070
Neil Booth96c74712007-10-12 16:02:31 +000071 However, whilst the result may require only this many parts,
72 because we are multiplying two values to get it, the
73 multiplication may require an extra part with the excess part
74 being zero (consider the trivial case of 1 * 1, tcFullMultiply
75 requires two parts to hold the single-part result). So we add an
76 extra one to guarantee enough space whilst multiplying. */
77 const unsigned int maxExponent = 16383;
78 const unsigned int maxPrecision = 113;
79 const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1;
Neil Booth686700e2007-10-15 15:00:55 +000080 const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815)
81 / (351 * integerPartWidth));
Chris Lattnerb39cdde2007-08-20 22:49:32 +000082}
83
Chris Lattnere213f3f2009-03-12 23:59:55 +000084/* A bunch of private, handy routines. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +000085
Chris Lattnere213f3f2009-03-12 23:59:55 +000086static inline unsigned int
87partCountForBits(unsigned int bits)
88{
89 return ((bits) + integerPartWidth - 1) / integerPartWidth;
90}
Chris Lattnerb39cdde2007-08-20 22:49:32 +000091
Chris Lattnere213f3f2009-03-12 23:59:55 +000092/* Returns 0U-9U. Return values >= 10U are not digits. */
93static inline unsigned int
94decDigitValue(unsigned int c)
95{
96 return c - '0';
97}
Chris Lattnerb39cdde2007-08-20 22:49:32 +000098
Chris Lattnere213f3f2009-03-12 23:59:55 +000099static unsigned int
100hexDigitValue(unsigned int c)
101{
102 unsigned int r;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000103
Chris Lattnere213f3f2009-03-12 23:59:55 +0000104 r = c - '0';
Dan Gohman16e02092010-03-24 19:38:02 +0000105 if (r <= 9)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000106 return r;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000107
Chris Lattnere213f3f2009-03-12 23:59:55 +0000108 r = c - 'A';
Dan Gohman16e02092010-03-24 19:38:02 +0000109 if (r <= 5)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000110 return r + 10;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000111
Chris Lattnere213f3f2009-03-12 23:59:55 +0000112 r = c - 'a';
Dan Gohman16e02092010-03-24 19:38:02 +0000113 if (r <= 5)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000114 return r + 10;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000115
Chris Lattnere213f3f2009-03-12 23:59:55 +0000116 return -1U;
117}
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000118
Chris Lattnere213f3f2009-03-12 23:59:55 +0000119static inline void
120assertArithmeticOK(const llvm::fltSemantics &semantics) {
Dan Gohman16e02092010-03-24 19:38:02 +0000121 assert(semantics.arithmeticOK &&
122 "Compile-time arithmetic does not support these semantics");
Chris Lattnere213f3f2009-03-12 23:59:55 +0000123}
Neil Boothcaf19d72007-10-14 10:29:28 +0000124
Chris Lattnere213f3f2009-03-12 23:59:55 +0000125/* Return the value of a decimal exponent of the form
126 [+-]ddddddd.
Neil Booth1870f292007-10-14 10:16:12 +0000127
Chris Lattnere213f3f2009-03-12 23:59:55 +0000128 If the exponent overflows, returns a large exponent with the
129 appropriate sign. */
130static int
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000131readExponent(StringRef::iterator begin, StringRef::iterator end)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000132{
133 bool isNegative;
134 unsigned int absExponent;
135 const unsigned int overlargeExponent = 24000; /* FIXME. */
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000136 StringRef::iterator p = begin;
137
138 assert(p != end && "Exponent has no digits");
Neil Booth1870f292007-10-14 10:16:12 +0000139
Chris Lattnere213f3f2009-03-12 23:59:55 +0000140 isNegative = (*p == '-');
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000141 if (*p == '-' || *p == '+') {
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000142 p++;
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000143 assert(p != end && "Exponent has no digits");
144 }
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000145
Chris Lattnere213f3f2009-03-12 23:59:55 +0000146 absExponent = decDigitValue(*p++);
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000147 assert(absExponent < 10U && "Invalid character in exponent");
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000148
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000149 for (; p != end; ++p) {
Chris Lattnere213f3f2009-03-12 23:59:55 +0000150 unsigned int value;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000151
Chris Lattnere213f3f2009-03-12 23:59:55 +0000152 value = decDigitValue(*p);
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000153 assert(value < 10U && "Invalid character in exponent");
Chris Lattnere213f3f2009-03-12 23:59:55 +0000154
Chris Lattnere213f3f2009-03-12 23:59:55 +0000155 value += absExponent * 10;
156 if (absExponent >= overlargeExponent) {
157 absExponent = overlargeExponent;
Dale Johannesenb1508d12010-08-19 17:58:35 +0000158 p = end; /* outwit assert below */
Chris Lattnere213f3f2009-03-12 23:59:55 +0000159 break;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000160 }
Chris Lattnere213f3f2009-03-12 23:59:55 +0000161 absExponent = value;
162 }
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000163
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000164 assert(p == end && "Invalid exponent in exponent");
165
Chris Lattnere213f3f2009-03-12 23:59:55 +0000166 if (isNegative)
167 return -(int) absExponent;
168 else
169 return (int) absExponent;
170}
171
172/* This is ugly and needs cleaning up, but I don't immediately see
173 how whilst remaining safe. */
174static int
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000175totalExponent(StringRef::iterator p, StringRef::iterator end,
176 int exponentAdjustment)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000177{
178 int unsignedExponent;
179 bool negative, overflow;
Ted Kremenek584520e2011-01-23 17:05:06 +0000180 int exponent = 0;
Chris Lattnere213f3f2009-03-12 23:59:55 +0000181
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +0000182 assert(p != end && "Exponent has no digits");
183
Chris Lattnere213f3f2009-03-12 23:59:55 +0000184 negative = *p == '-';
Dan Gohman16e02092010-03-24 19:38:02 +0000185 if (*p == '-' || *p == '+') {
Chris Lattnere213f3f2009-03-12 23:59:55 +0000186 p++;
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +0000187 assert(p != end && "Exponent has no digits");
188 }
Chris Lattnere213f3f2009-03-12 23:59:55 +0000189
190 unsignedExponent = 0;
191 overflow = false;
Dan Gohman16e02092010-03-24 19:38:02 +0000192 for (; p != end; ++p) {
Chris Lattnere213f3f2009-03-12 23:59:55 +0000193 unsigned int value;
194
195 value = decDigitValue(*p);
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000196 assert(value < 10U && "Invalid character in exponent");
Chris Lattnere213f3f2009-03-12 23:59:55 +0000197
Chris Lattnere213f3f2009-03-12 23:59:55 +0000198 unsignedExponent = unsignedExponent * 10 + value;
Abramo Bagnara4bb46f42011-01-06 16:55:14 +0000199 if (unsignedExponent > 32767)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000200 overflow = true;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000201 }
202
Abramo Bagnara4bb46f42011-01-06 16:55:14 +0000203 if (exponentAdjustment > 32767 || exponentAdjustment < -32768)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000204 overflow = true;
205
Dan Gohman16e02092010-03-24 19:38:02 +0000206 if (!overflow) {
Chris Lattnere213f3f2009-03-12 23:59:55 +0000207 exponent = unsignedExponent;
Dan Gohman16e02092010-03-24 19:38:02 +0000208 if (negative)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000209 exponent = -exponent;
210 exponent += exponentAdjustment;
Abramo Bagnara4bb46f42011-01-06 16:55:14 +0000211 if (exponent > 32767 || exponent < -32768)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000212 overflow = true;
213 }
214
Dan Gohman16e02092010-03-24 19:38:02 +0000215 if (overflow)
Abramo Bagnara4bb46f42011-01-06 16:55:14 +0000216 exponent = negative ? -32768: 32767;
Chris Lattnere213f3f2009-03-12 23:59:55 +0000217
218 return exponent;
219}
220
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000221static StringRef::iterator
222skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end,
223 StringRef::iterator *dot)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000224{
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000225 StringRef::iterator p = begin;
226 *dot = end;
Dan Gohman16e02092010-03-24 19:38:02 +0000227 while (*p == '0' && p != end)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000228 p++;
229
Dan Gohman16e02092010-03-24 19:38:02 +0000230 if (*p == '.') {
Chris Lattnere213f3f2009-03-12 23:59:55 +0000231 *dot = p++;
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000232
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +0000233 assert(end - begin != 1 && "Significand has no digits");
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000234
Dan Gohman16e02092010-03-24 19:38:02 +0000235 while (*p == '0' && p != end)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000236 p++;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000237 }
238
Chris Lattnere213f3f2009-03-12 23:59:55 +0000239 return p;
240}
Neil Booth1870f292007-10-14 10:16:12 +0000241
Chris Lattnere213f3f2009-03-12 23:59:55 +0000242/* Given a normal decimal floating point number of the form
Neil Booth1870f292007-10-14 10:16:12 +0000243
Chris Lattnere213f3f2009-03-12 23:59:55 +0000244 dddd.dddd[eE][+-]ddd
Neil Booth686700e2007-10-15 15:00:55 +0000245
Chris Lattnere213f3f2009-03-12 23:59:55 +0000246 where the decimal point and exponent are optional, fill out the
247 structure D. Exponent is appropriate if the significand is
248 treated as an integer, and normalizedExponent if the significand
249 is taken to have the decimal point after a single leading
250 non-zero digit.
Neil Booth1870f292007-10-14 10:16:12 +0000251
Chris Lattnere213f3f2009-03-12 23:59:55 +0000252 If the value is zero, V->firstSigDigit points to a non-digit, and
253 the return exponent is zero.
254*/
255struct decimalInfo {
256 const char *firstSigDigit;
257 const char *lastSigDigit;
258 int exponent;
259 int normalizedExponent;
260};
Neil Booth1870f292007-10-14 10:16:12 +0000261
Chris Lattnere213f3f2009-03-12 23:59:55 +0000262static void
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000263interpretDecimal(StringRef::iterator begin, StringRef::iterator end,
264 decimalInfo *D)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000265{
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000266 StringRef::iterator dot = end;
267 StringRef::iterator p = skipLeadingZeroesAndAnyDot (begin, end, &dot);
Neil Booth1870f292007-10-14 10:16:12 +0000268
Chris Lattnere213f3f2009-03-12 23:59:55 +0000269 D->firstSigDigit = p;
270 D->exponent = 0;
271 D->normalizedExponent = 0;
272
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000273 for (; p != end; ++p) {
Chris Lattnere213f3f2009-03-12 23:59:55 +0000274 if (*p == '.') {
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +0000275 assert(dot == end && "String contains multiple dots");
Chris Lattnere213f3f2009-03-12 23:59:55 +0000276 dot = p++;
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000277 if (p == end)
278 break;
Neil Booth1870f292007-10-14 10:16:12 +0000279 }
Chris Lattnere213f3f2009-03-12 23:59:55 +0000280 if (decDigitValue(*p) >= 10U)
281 break;
Chris Lattnere213f3f2009-03-12 23:59:55 +0000282 }
Neil Booth1870f292007-10-14 10:16:12 +0000283
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000284 if (p != end) {
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +0000285 assert((*p == 'e' || *p == 'E') && "Invalid character in significand");
286 assert(p != begin && "Significand has no digits");
287 assert((dot == end || p - begin != 1) && "Significand has no digits");
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000288
289 /* p points to the first non-digit in the string */
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +0000290 D->exponent = readExponent(p + 1, end);
Neil Booth1870f292007-10-14 10:16:12 +0000291
Chris Lattnere213f3f2009-03-12 23:59:55 +0000292 /* Implied decimal point? */
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000293 if (dot == end)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000294 dot = p;
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000295 }
Neil Booth1870f292007-10-14 10:16:12 +0000296
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000297 /* If number is all zeroes accept any exponent. */
298 if (p != D->firstSigDigit) {
Chris Lattnere213f3f2009-03-12 23:59:55 +0000299 /* Drop insignificant trailing zeroes. */
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000300 if (p != begin) {
Neil Booth1870f292007-10-14 10:16:12 +0000301 do
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000302 do
303 p--;
304 while (p != begin && *p == '0');
305 while (p != begin && *p == '.');
306 }
Neil Booth1870f292007-10-14 10:16:12 +0000307
Chris Lattnere213f3f2009-03-12 23:59:55 +0000308 /* Adjust the exponents for any decimal point. */
309 D->exponent += static_cast<exponent_t>((dot - p) - (dot > p));
310 D->normalizedExponent = (D->exponent +
311 static_cast<exponent_t>((p - D->firstSigDigit)
312 - (dot > D->firstSigDigit && dot < p)));
Neil Booth1870f292007-10-14 10:16:12 +0000313 }
314
Chris Lattnere213f3f2009-03-12 23:59:55 +0000315 D->lastSigDigit = p;
316}
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000317
Chris Lattnere213f3f2009-03-12 23:59:55 +0000318/* Return the trailing fraction of a hexadecimal number.
319 DIGITVALUE is the first hex digit of the fraction, P points to
320 the next digit. */
321static lostFraction
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000322trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end,
323 unsigned int digitValue)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000324{
325 unsigned int hexDigit;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000326
Chris Lattnere213f3f2009-03-12 23:59:55 +0000327 /* If the first trailing digit isn't 0 or 8 we can work out the
328 fraction immediately. */
Dan Gohman16e02092010-03-24 19:38:02 +0000329 if (digitValue > 8)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000330 return lfMoreThanHalf;
Dan Gohman16e02092010-03-24 19:38:02 +0000331 else if (digitValue < 8 && digitValue > 0)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000332 return lfLessThanHalf;
Chris Lattnere213f3f2009-03-12 23:59:55 +0000333
334 /* Otherwise we need to find the first non-zero digit. */
Dan Gohman16e02092010-03-24 19:38:02 +0000335 while (*p == '0')
Chris Lattnere213f3f2009-03-12 23:59:55 +0000336 p++;
337
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000338 assert(p != end && "Invalid trailing hexadecimal fraction!");
339
Chris Lattnere213f3f2009-03-12 23:59:55 +0000340 hexDigit = hexDigitValue(*p);
341
342 /* If we ran off the end it is exactly zero or one-half, otherwise
343 a little more. */
Dan Gohman16e02092010-03-24 19:38:02 +0000344 if (hexDigit == -1U)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000345 return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
346 else
347 return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
348}
349
350/* Return the fraction lost were a bignum truncated losing the least
351 significant BITS bits. */
352static lostFraction
353lostFractionThroughTruncation(const integerPart *parts,
354 unsigned int partCount,
355 unsigned int bits)
356{
357 unsigned int lsb;
358
359 lsb = APInt::tcLSB(parts, partCount);
360
361 /* Note this is guaranteed true if bits == 0, or LSB == -1U. */
Dan Gohman16e02092010-03-24 19:38:02 +0000362 if (bits <= lsb)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000363 return lfExactlyZero;
Dan Gohman16e02092010-03-24 19:38:02 +0000364 if (bits == lsb + 1)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000365 return lfExactlyHalf;
Dan Gohman16e02092010-03-24 19:38:02 +0000366 if (bits <= partCount * integerPartWidth &&
367 APInt::tcExtractBit(parts, bits - 1))
Chris Lattnere213f3f2009-03-12 23:59:55 +0000368 return lfMoreThanHalf;
369
370 return lfLessThanHalf;
371}
372
373/* Shift DST right BITS bits noting lost fraction. */
374static lostFraction
375shiftRight(integerPart *dst, unsigned int parts, unsigned int bits)
376{
377 lostFraction lost_fraction;
378
379 lost_fraction = lostFractionThroughTruncation(dst, parts, bits);
380
381 APInt::tcShiftRight(dst, parts, bits);
382
383 return lost_fraction;
384}
385
386/* Combine the effect of two lost fractions. */
387static lostFraction
388combineLostFractions(lostFraction moreSignificant,
389 lostFraction lessSignificant)
390{
Dan Gohman16e02092010-03-24 19:38:02 +0000391 if (lessSignificant != lfExactlyZero) {
392 if (moreSignificant == lfExactlyZero)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000393 moreSignificant = lfLessThanHalf;
Dan Gohman16e02092010-03-24 19:38:02 +0000394 else if (moreSignificant == lfExactlyHalf)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000395 moreSignificant = lfMoreThanHalf;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000396 }
397
Chris Lattnere213f3f2009-03-12 23:59:55 +0000398 return moreSignificant;
399}
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000400
Chris Lattnere213f3f2009-03-12 23:59:55 +0000401/* The error from the true value, in half-ulps, on multiplying two
402 floating point numbers, which differ from the value they
403 approximate by at most HUE1 and HUE2 half-ulps, is strictly less
404 than the returned value.
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000405
Chris Lattnere213f3f2009-03-12 23:59:55 +0000406 See "How to Read Floating Point Numbers Accurately" by William D
407 Clinger. */
408static unsigned int
409HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2)
410{
411 assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8));
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000412
Chris Lattnere213f3f2009-03-12 23:59:55 +0000413 if (HUerr1 + HUerr2 == 0)
414 return inexactMultiply * 2; /* <= inexactMultiply half-ulps. */
415 else
416 return inexactMultiply + 2 * (HUerr1 + HUerr2);
417}
Neil Bootha30b0ee2007-10-03 22:26:02 +0000418
Chris Lattnere213f3f2009-03-12 23:59:55 +0000419/* The number of ulps from the boundary (zero, or half if ISNEAREST)
420 when the least significant BITS are truncated. BITS cannot be
421 zero. */
422static integerPart
423ulpsFromBoundary(const integerPart *parts, unsigned int bits, bool isNearest)
424{
425 unsigned int count, partBits;
426 integerPart part, boundary;
Neil Booth33d4c922007-10-07 08:51:21 +0000427
Evan Cheng99ebfa52009-10-27 21:35:42 +0000428 assert(bits != 0);
Neil Bootha30b0ee2007-10-03 22:26:02 +0000429
Chris Lattnere213f3f2009-03-12 23:59:55 +0000430 bits--;
431 count = bits / integerPartWidth;
432 partBits = bits % integerPartWidth + 1;
Neil Booth96c74712007-10-12 16:02:31 +0000433
Chris Lattnere213f3f2009-03-12 23:59:55 +0000434 part = parts[count] & (~(integerPart) 0 >> (integerPartWidth - partBits));
Neil Booth96c74712007-10-12 16:02:31 +0000435
Chris Lattnere213f3f2009-03-12 23:59:55 +0000436 if (isNearest)
437 boundary = (integerPart) 1 << (partBits - 1);
438 else
439 boundary = 0;
440
441 if (count == 0) {
442 if (part - boundary <= boundary - part)
443 return part - boundary;
Neil Booth96c74712007-10-12 16:02:31 +0000444 else
Chris Lattnere213f3f2009-03-12 23:59:55 +0000445 return boundary - part;
Neil Booth96c74712007-10-12 16:02:31 +0000446 }
447
Chris Lattnere213f3f2009-03-12 23:59:55 +0000448 if (part == boundary) {
449 while (--count)
450 if (parts[count])
451 return ~(integerPart) 0; /* A lot. */
Neil Booth96c74712007-10-12 16:02:31 +0000452
Chris Lattnere213f3f2009-03-12 23:59:55 +0000453 return parts[0];
454 } else if (part == boundary - 1) {
455 while (--count)
456 if (~parts[count])
457 return ~(integerPart) 0; /* A lot. */
Neil Booth96c74712007-10-12 16:02:31 +0000458
Chris Lattnere213f3f2009-03-12 23:59:55 +0000459 return -parts[0];
460 }
Neil Booth96c74712007-10-12 16:02:31 +0000461
Chris Lattnere213f3f2009-03-12 23:59:55 +0000462 return ~(integerPart) 0; /* A lot. */
463}
Neil Booth96c74712007-10-12 16:02:31 +0000464
Chris Lattnere213f3f2009-03-12 23:59:55 +0000465/* Place pow(5, power) in DST, and return the number of parts used.
466 DST must be at least one part larger than size of the answer. */
467static unsigned int
468powerOf5(integerPart *dst, unsigned int power)
469{
470 static const integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125,
471 15625, 78125 };
Chris Lattneree167a72009-03-13 00:24:01 +0000472 integerPart pow5s[maxPowerOfFiveParts * 2 + 5];
473 pow5s[0] = 78125 * 5;
Dan Gohman16e02092010-03-24 19:38:02 +0000474
Chris Lattner807926a2009-03-13 00:03:51 +0000475 unsigned int partsCount[16] = { 1 };
Chris Lattnere213f3f2009-03-12 23:59:55 +0000476 integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5;
477 unsigned int result;
Chris Lattnere213f3f2009-03-12 23:59:55 +0000478 assert(power <= maxExponent);
479
480 p1 = dst;
481 p2 = scratch;
482
483 *p1 = firstEightPowers[power & 7];
484 power >>= 3;
485
486 result = 1;
487 pow5 = pow5s;
488
489 for (unsigned int n = 0; power; power >>= 1, n++) {
490 unsigned int pc;
491
492 pc = partsCount[n];
493
494 /* Calculate pow(5,pow(2,n+3)) if we haven't yet. */
495 if (pc == 0) {
496 pc = partsCount[n - 1];
497 APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc);
498 pc *= 2;
499 if (pow5[pc - 1] == 0)
500 pc--;
501 partsCount[n] = pc;
Neil Booth96c74712007-10-12 16:02:31 +0000502 }
503
Chris Lattnere213f3f2009-03-12 23:59:55 +0000504 if (power & 1) {
505 integerPart *tmp;
Neil Booth96c74712007-10-12 16:02:31 +0000506
Chris Lattnere213f3f2009-03-12 23:59:55 +0000507 APInt::tcFullMultiply(p2, p1, pow5, result, pc);
508 result += pc;
509 if (p2[result - 1] == 0)
510 result--;
Neil Booth96c74712007-10-12 16:02:31 +0000511
Chris Lattnere213f3f2009-03-12 23:59:55 +0000512 /* Now result is in p1 with partsCount parts and p2 is scratch
513 space. */
514 tmp = p1, p1 = p2, p2 = tmp;
Neil Booth96c74712007-10-12 16:02:31 +0000515 }
516
Chris Lattnere213f3f2009-03-12 23:59:55 +0000517 pow5 += pc;
Neil Booth96c74712007-10-12 16:02:31 +0000518 }
519
Chris Lattnere213f3f2009-03-12 23:59:55 +0000520 if (p1 != dst)
521 APInt::tcAssign(dst, p1, result);
Neil Booth96c74712007-10-12 16:02:31 +0000522
Chris Lattnere213f3f2009-03-12 23:59:55 +0000523 return result;
524}
Neil Booth96c74712007-10-12 16:02:31 +0000525
Chris Lattnere213f3f2009-03-12 23:59:55 +0000526/* Zero at the end to avoid modular arithmetic when adding one; used
527 when rounding up during hexadecimal output. */
528static const char hexDigitsLower[] = "0123456789abcdef0";
529static const char hexDigitsUpper[] = "0123456789ABCDEF0";
530static const char infinityL[] = "infinity";
531static const char infinityU[] = "INFINITY";
532static const char NaNL[] = "nan";
533static const char NaNU[] = "NAN";
Neil Booth96c74712007-10-12 16:02:31 +0000534
Chris Lattnere213f3f2009-03-12 23:59:55 +0000535/* Write out an integerPart in hexadecimal, starting with the most
536 significant nibble. Write out exactly COUNT hexdigits, return
537 COUNT. */
538static unsigned int
539partAsHex (char *dst, integerPart part, unsigned int count,
540 const char *hexDigitChars)
541{
542 unsigned int result = count;
Neil Booth96c74712007-10-12 16:02:31 +0000543
Evan Cheng99ebfa52009-10-27 21:35:42 +0000544 assert(count != 0 && count <= integerPartWidth / 4);
Neil Booth96c74712007-10-12 16:02:31 +0000545
Chris Lattnere213f3f2009-03-12 23:59:55 +0000546 part >>= (integerPartWidth - 4 * count);
547 while (count--) {
548 dst[count] = hexDigitChars[part & 0xf];
549 part >>= 4;
Neil Booth96c74712007-10-12 16:02:31 +0000550 }
551
Chris Lattnere213f3f2009-03-12 23:59:55 +0000552 return result;
553}
Neil Bootha30b0ee2007-10-03 22:26:02 +0000554
Chris Lattnere213f3f2009-03-12 23:59:55 +0000555/* Write out an unsigned decimal integer. */
556static char *
557writeUnsignedDecimal (char *dst, unsigned int n)
558{
559 char buff[40], *p;
Neil Bootha30b0ee2007-10-03 22:26:02 +0000560
Chris Lattnere213f3f2009-03-12 23:59:55 +0000561 p = buff;
562 do
563 *p++ = '0' + n % 10;
564 while (n /= 10);
Neil Bootha30b0ee2007-10-03 22:26:02 +0000565
Chris Lattnere213f3f2009-03-12 23:59:55 +0000566 do
567 *dst++ = *--p;
568 while (p != buff);
Neil Bootha30b0ee2007-10-03 22:26:02 +0000569
Chris Lattnere213f3f2009-03-12 23:59:55 +0000570 return dst;
571}
Neil Bootha30b0ee2007-10-03 22:26:02 +0000572
Chris Lattnere213f3f2009-03-12 23:59:55 +0000573/* Write out a signed decimal integer. */
574static char *
575writeSignedDecimal (char *dst, int value)
576{
577 if (value < 0) {
578 *dst++ = '-';
579 dst = writeUnsignedDecimal(dst, -(unsigned) value);
580 } else
581 dst = writeUnsignedDecimal(dst, value);
Neil Bootha30b0ee2007-10-03 22:26:02 +0000582
Chris Lattnere213f3f2009-03-12 23:59:55 +0000583 return dst;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000584}
585
586/* Constructors. */
587void
588APFloat::initialize(const fltSemantics *ourSemantics)
589{
590 unsigned int count;
591
592 semantics = ourSemantics;
593 count = partCount();
Dan Gohman16e02092010-03-24 19:38:02 +0000594 if (count > 1)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000595 significand.parts = new integerPart[count];
596}
597
598void
599APFloat::freeSignificand()
600{
Dan Gohman16e02092010-03-24 19:38:02 +0000601 if (partCount() > 1)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000602 delete [] significand.parts;
603}
604
605void
606APFloat::assign(const APFloat &rhs)
607{
608 assert(semantics == rhs.semantics);
609
610 sign = rhs.sign;
611 category = rhs.category;
612 exponent = rhs.exponent;
Dale Johannesena471c2e2007-10-11 18:07:22 +0000613 sign2 = rhs.sign2;
614 exponent2 = rhs.exponent2;
Dan Gohman16e02092010-03-24 19:38:02 +0000615 if (category == fcNormal || category == fcNaN)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000616 copySignificand(rhs);
617}
618
619void
620APFloat::copySignificand(const APFloat &rhs)
621{
Dale Johanneseneaf08942007-08-31 04:03:46 +0000622 assert(category == fcNormal || category == fcNaN);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000623 assert(rhs.partCount() >= partCount());
624
625 APInt::tcAssign(significandParts(), rhs.significandParts(),
Neil Booth4f881702007-09-26 21:33:42 +0000626 partCount());
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000627}
628
Neil Boothe5e01942007-10-14 10:39:51 +0000629/* Make this number a NaN, with an arbitrary but deterministic value
Dale Johannesen541ed9f2009-01-21 20:32:55 +0000630 for the significand. If double or longer, this is a signalling NaN,
Mike Stumpc5ca7132009-05-30 03:49:43 +0000631 which may not be ideal. If float, this is QNaN(0). */
John McCalle12b7382010-02-28 02:51:25 +0000632void APFloat::makeNaN(bool SNaN, bool Negative, const APInt *fill)
Neil Boothe5e01942007-10-14 10:39:51 +0000633{
634 category = fcNaN;
John McCalle12b7382010-02-28 02:51:25 +0000635 sign = Negative;
636
John McCall165e96b2010-02-28 12:49:50 +0000637 integerPart *significand = significandParts();
638 unsigned numParts = partCount();
639
John McCalle12b7382010-02-28 02:51:25 +0000640 // Set the significand bits to the fill.
John McCall165e96b2010-02-28 12:49:50 +0000641 if (!fill || fill->getNumWords() < numParts)
642 APInt::tcSet(significand, 0, numParts);
643 if (fill) {
John McCalld44c6cc2010-03-01 18:38:45 +0000644 APInt::tcAssign(significand, fill->getRawData(),
645 std::min(fill->getNumWords(), numParts));
John McCall165e96b2010-02-28 12:49:50 +0000646
647 // Zero out the excess bits of the significand.
648 unsigned bitsToPreserve = semantics->precision - 1;
649 unsigned part = bitsToPreserve / 64;
650 bitsToPreserve %= 64;
651 significand[part] &= ((1ULL << bitsToPreserve) - 1);
652 for (part++; part != numParts; ++part)
653 significand[part] = 0;
654 }
655
656 unsigned QNaNBit = semantics->precision - 2;
John McCalle12b7382010-02-28 02:51:25 +0000657
658 if (SNaN) {
659 // We always have to clear the QNaN bit to make it an SNaN.
John McCall165e96b2010-02-28 12:49:50 +0000660 APInt::tcClearBit(significand, QNaNBit);
John McCalle12b7382010-02-28 02:51:25 +0000661
662 // If there are no bits set in the payload, we have to set
663 // *something* to make it a NaN instead of an infinity;
664 // conventionally, this is the next bit down from the QNaN bit.
John McCall165e96b2010-02-28 12:49:50 +0000665 if (APInt::tcIsZero(significand, numParts))
666 APInt::tcSetBit(significand, QNaNBit - 1);
John McCalle12b7382010-02-28 02:51:25 +0000667 } else {
668 // We always have to set the QNaN bit to make it a QNaN.
John McCall165e96b2010-02-28 12:49:50 +0000669 APInt::tcSetBit(significand, QNaNBit);
John McCalle12b7382010-02-28 02:51:25 +0000670 }
John McCall165e96b2010-02-28 12:49:50 +0000671
672 // For x87 extended precision, we want to make a NaN, not a
673 // pseudo-NaN. Maybe we should expose the ability to make
674 // pseudo-NaNs?
675 if (semantics == &APFloat::x87DoubleExtended)
676 APInt::tcSetBit(significand, QNaNBit + 1);
John McCalle12b7382010-02-28 02:51:25 +0000677}
678
679APFloat APFloat::makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative,
680 const APInt *fill) {
681 APFloat value(Sem, uninitialized);
682 value.makeNaN(SNaN, Negative, fill);
683 return value;
Neil Boothe5e01942007-10-14 10:39:51 +0000684}
685
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000686APFloat &
687APFloat::operator=(const APFloat &rhs)
688{
Dan Gohman16e02092010-03-24 19:38:02 +0000689 if (this != &rhs) {
690 if (semantics != rhs.semantics) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000691 freeSignificand();
692 initialize(rhs.semantics);
693 }
694 assign(rhs);
695 }
696
697 return *this;
698}
699
Dale Johannesen343e7702007-08-24 00:56:33 +0000700bool
Dale Johannesen12595d72007-08-24 22:09:56 +0000701APFloat::bitwiseIsEqual(const APFloat &rhs) const {
Dale Johannesen343e7702007-08-24 00:56:33 +0000702 if (this == &rhs)
703 return true;
704 if (semantics != rhs.semantics ||
Dale Johanneseneaf08942007-08-31 04:03:46 +0000705 category != rhs.category ||
706 sign != rhs.sign)
Dale Johannesen343e7702007-08-24 00:56:33 +0000707 return false;
Dan Gohmanb10abe12008-01-29 12:08:20 +0000708 if (semantics==(const llvm::fltSemantics*)&PPCDoubleDouble &&
Dale Johannesena471c2e2007-10-11 18:07:22 +0000709 sign2 != rhs.sign2)
710 return false;
Dale Johanneseneaf08942007-08-31 04:03:46 +0000711 if (category==fcZero || category==fcInfinity)
Dale Johannesen343e7702007-08-24 00:56:33 +0000712 return true;
Dale Johanneseneaf08942007-08-31 04:03:46 +0000713 else if (category==fcNormal && exponent!=rhs.exponent)
714 return false;
Dan Gohmanb10abe12008-01-29 12:08:20 +0000715 else if (semantics==(const llvm::fltSemantics*)&PPCDoubleDouble &&
Dale Johannesena471c2e2007-10-11 18:07:22 +0000716 exponent2!=rhs.exponent2)
717 return false;
Dale Johannesen343e7702007-08-24 00:56:33 +0000718 else {
Dale Johannesen343e7702007-08-24 00:56:33 +0000719 int i= partCount();
720 const integerPart* p=significandParts();
721 const integerPart* q=rhs.significandParts();
722 for (; i>0; i--, p++, q++) {
723 if (*p != *q)
724 return false;
725 }
726 return true;
727 }
728}
729
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000730APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value)
Bill Wendlingf09a8b52011-03-18 09:09:44 +0000731 : exponent2(0), sign2(0) {
Neil Boothcaf19d72007-10-14 10:29:28 +0000732 assertArithmeticOK(ourSemantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000733 initialize(&ourSemantics);
734 sign = 0;
735 zeroSignificand();
736 exponent = ourSemantics.precision - 1;
737 significandParts()[0] = value;
738 normalize(rmNearestTiesToEven, lfExactlyZero);
739}
740
Bill Wendlingf09a8b52011-03-18 09:09:44 +0000741APFloat::APFloat(const fltSemantics &ourSemantics) : exponent2(0), sign2(0) {
Chris Lattnerd7bd78e2009-09-17 01:08:43 +0000742 assertArithmeticOK(ourSemantics);
743 initialize(&ourSemantics);
744 category = fcZero;
745 sign = false;
746}
747
Bill Wendlingf09a8b52011-03-18 09:09:44 +0000748APFloat::APFloat(const fltSemantics &ourSemantics, uninitializedTag tag)
749 : exponent2(0), sign2(0) {
John McCalle12b7382010-02-28 02:51:25 +0000750 assertArithmeticOK(ourSemantics);
751 // Allocates storage if necessary but does not initialize it.
752 initialize(&ourSemantics);
753}
Chris Lattnerd7bd78e2009-09-17 01:08:43 +0000754
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000755APFloat::APFloat(const fltSemantics &ourSemantics,
John McCalle12b7382010-02-28 02:51:25 +0000756 fltCategory ourCategory, bool negative)
Bill Wendlingf09a8b52011-03-18 09:09:44 +0000757 : exponent2(0), sign2(0) {
Neil Boothcaf19d72007-10-14 10:29:28 +0000758 assertArithmeticOK(ourSemantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000759 initialize(&ourSemantics);
760 category = ourCategory;
761 sign = negative;
Mike Stumpc5ca7132009-05-30 03:49:43 +0000762 if (category == fcNormal)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000763 category = fcZero;
Neil Boothe5e01942007-10-14 10:39:51 +0000764 else if (ourCategory == fcNaN)
John McCalle12b7382010-02-28 02:51:25 +0000765 makeNaN();
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000766}
767
Benjamin Kramer38e59892010-07-14 22:38:02 +0000768APFloat::APFloat(const fltSemantics &ourSemantics, StringRef text)
Bill Wendlingf09a8b52011-03-18 09:09:44 +0000769 : exponent2(0), sign2(0) {
Neil Boothcaf19d72007-10-14 10:29:28 +0000770 assertArithmeticOK(ourSemantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000771 initialize(&ourSemantics);
772 convertFromString(text, rmNearestTiesToEven);
773}
774
Bill Wendlingf09a8b52011-03-18 09:09:44 +0000775APFloat::APFloat(const APFloat &rhs) : exponent2(0), sign2(0) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000776 initialize(rhs.semantics);
777 assign(rhs);
778}
779
780APFloat::~APFloat()
781{
782 freeSignificand();
783}
784
Ted Kremenek1f801fa2008-02-11 17:24:50 +0000785// Profile - This method 'profiles' an APFloat for use with FoldingSet.
786void APFloat::Profile(FoldingSetNodeID& ID) const {
Dale Johannesen7111b022008-10-09 18:53:47 +0000787 ID.Add(bitcastToAPInt());
Ted Kremenek1f801fa2008-02-11 17:24:50 +0000788}
789
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000790unsigned int
791APFloat::partCount() const
792{
Dale Johannesena72a5a02007-09-20 23:47:58 +0000793 return partCountForBits(semantics->precision + 1);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000794}
795
796unsigned int
797APFloat::semanticsPrecision(const fltSemantics &semantics)
798{
799 return semantics.precision;
800}
801
802const integerPart *
803APFloat::significandParts() const
804{
805 return const_cast<APFloat *>(this)->significandParts();
806}
807
808integerPart *
809APFloat::significandParts()
810{
Dale Johanneseneaf08942007-08-31 04:03:46 +0000811 assert(category == fcNormal || category == fcNaN);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000812
Evan Cheng99ebfa52009-10-27 21:35:42 +0000813 if (partCount() > 1)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000814 return significand.parts;
815 else
816 return &significand.part;
817}
818
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000819void
820APFloat::zeroSignificand()
821{
822 category = fcNormal;
823 APInt::tcSet(significandParts(), 0, partCount());
824}
825
826/* Increment an fcNormal floating point number's significand. */
827void
828APFloat::incrementSignificand()
829{
830 integerPart carry;
831
832 carry = APInt::tcIncrement(significandParts(), partCount());
833
834 /* Our callers should never cause us to overflow. */
835 assert(carry == 0);
Duncan Sands1f6a3292011-08-12 14:54:45 +0000836 (void)carry;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000837}
838
839/* Add the significand of the RHS. Returns the carry flag. */
840integerPart
841APFloat::addSignificand(const APFloat &rhs)
842{
843 integerPart *parts;
844
845 parts = significandParts();
846
847 assert(semantics == rhs.semantics);
848 assert(exponent == rhs.exponent);
849
850 return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount());
851}
852
853/* Subtract the significand of the RHS with a borrow flag. Returns
854 the borrow flag. */
855integerPart
856APFloat::subtractSignificand(const APFloat &rhs, integerPart borrow)
857{
858 integerPart *parts;
859
860 parts = significandParts();
861
862 assert(semantics == rhs.semantics);
863 assert(exponent == rhs.exponent);
864
865 return APInt::tcSubtract(parts, rhs.significandParts(), borrow,
Neil Booth4f881702007-09-26 21:33:42 +0000866 partCount());
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000867}
868
869/* Multiply the significand of the RHS. If ADDEND is non-NULL, add it
870 on to the full-precision result of the multiplication. Returns the
871 lost fraction. */
872lostFraction
873APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
874{
Neil Booth4f881702007-09-26 21:33:42 +0000875 unsigned int omsb; // One, not zero, based MSB.
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000876 unsigned int partsCount, newPartsCount, precision;
877 integerPart *lhsSignificand;
878 integerPart scratch[4];
879 integerPart *fullSignificand;
880 lostFraction lost_fraction;
Dale Johannesen23a98552008-10-09 23:00:39 +0000881 bool ignored;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000882
883 assert(semantics == rhs.semantics);
884
885 precision = semantics->precision;
886 newPartsCount = partCountForBits(precision * 2);
887
Dan Gohman16e02092010-03-24 19:38:02 +0000888 if (newPartsCount > 4)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000889 fullSignificand = new integerPart[newPartsCount];
890 else
891 fullSignificand = scratch;
892
893 lhsSignificand = significandParts();
894 partsCount = partCount();
895
896 APInt::tcFullMultiply(fullSignificand, lhsSignificand,
Neil Booth978661d2007-10-06 00:24:48 +0000897 rhs.significandParts(), partsCount, partsCount);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000898
899 lost_fraction = lfExactlyZero;
900 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
901 exponent += rhs.exponent;
902
Dan Gohman16e02092010-03-24 19:38:02 +0000903 if (addend) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000904 Significand savedSignificand = significand;
905 const fltSemantics *savedSemantics = semantics;
906 fltSemantics extendedSemantics;
907 opStatus status;
908 unsigned int extendedPrecision;
909
910 /* Normalize our MSB. */
911 extendedPrecision = precision + precision - 1;
Dan Gohman16e02092010-03-24 19:38:02 +0000912 if (omsb != extendedPrecision) {
913 APInt::tcShiftLeft(fullSignificand, newPartsCount,
914 extendedPrecision - omsb);
915 exponent -= extendedPrecision - omsb;
916 }
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000917
918 /* Create new semantics. */
919 extendedSemantics = *semantics;
920 extendedSemantics.precision = extendedPrecision;
921
Dan Gohman16e02092010-03-24 19:38:02 +0000922 if (newPartsCount == 1)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000923 significand.part = fullSignificand[0];
924 else
925 significand.parts = fullSignificand;
926 semantics = &extendedSemantics;
927
928 APFloat extendedAddend(*addend);
Dale Johannesen23a98552008-10-09 23:00:39 +0000929 status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000930 assert(status == opOK);
Duncan Sands1f6a3292011-08-12 14:54:45 +0000931 (void)status;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000932 lost_fraction = addOrSubtractSignificand(extendedAddend, false);
933
934 /* Restore our state. */
Dan Gohman16e02092010-03-24 19:38:02 +0000935 if (newPartsCount == 1)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000936 fullSignificand[0] = significand.part;
937 significand = savedSignificand;
938 semantics = savedSemantics;
939
940 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
941 }
942
943 exponent -= (precision - 1);
944
Dan Gohman16e02092010-03-24 19:38:02 +0000945 if (omsb > precision) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000946 unsigned int bits, significantParts;
947 lostFraction lf;
948
949 bits = omsb - precision;
950 significantParts = partCountForBits(omsb);
951 lf = shiftRight(fullSignificand, significantParts, bits);
952 lost_fraction = combineLostFractions(lf, lost_fraction);
953 exponent += bits;
954 }
955
956 APInt::tcAssign(lhsSignificand, fullSignificand, partsCount);
957
Dan Gohman16e02092010-03-24 19:38:02 +0000958 if (newPartsCount > 4)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000959 delete [] fullSignificand;
960
961 return lost_fraction;
962}
963
964/* Multiply the significands of LHS and RHS to DST. */
965lostFraction
966APFloat::divideSignificand(const APFloat &rhs)
967{
968 unsigned int bit, i, partsCount;
969 const integerPart *rhsSignificand;
970 integerPart *lhsSignificand, *dividend, *divisor;
971 integerPart scratch[4];
972 lostFraction lost_fraction;
973
974 assert(semantics == rhs.semantics);
975
976 lhsSignificand = significandParts();
977 rhsSignificand = rhs.significandParts();
978 partsCount = partCount();
979
Dan Gohman16e02092010-03-24 19:38:02 +0000980 if (partsCount > 2)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000981 dividend = new integerPart[partsCount * 2];
982 else
983 dividend = scratch;
984
985 divisor = dividend + partsCount;
986
987 /* Copy the dividend and divisor as they will be modified in-place. */
Dan Gohman16e02092010-03-24 19:38:02 +0000988 for (i = 0; i < partsCount; i++) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000989 dividend[i] = lhsSignificand[i];
990 divisor[i] = rhsSignificand[i];
991 lhsSignificand[i] = 0;
992 }
993
994 exponent -= rhs.exponent;
995
996 unsigned int precision = semantics->precision;
997
998 /* Normalize the divisor. */
999 bit = precision - APInt::tcMSB(divisor, partsCount) - 1;
Dan Gohman16e02092010-03-24 19:38:02 +00001000 if (bit) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001001 exponent += bit;
1002 APInt::tcShiftLeft(divisor, partsCount, bit);
1003 }
1004
1005 /* Normalize the dividend. */
1006 bit = precision - APInt::tcMSB(dividend, partsCount) - 1;
Dan Gohman16e02092010-03-24 19:38:02 +00001007 if (bit) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001008 exponent -= bit;
1009 APInt::tcShiftLeft(dividend, partsCount, bit);
1010 }
1011
Neil Booth96c74712007-10-12 16:02:31 +00001012 /* Ensure the dividend >= divisor initially for the loop below.
1013 Incidentally, this means that the division loop below is
1014 guaranteed to set the integer bit to one. */
Dan Gohman16e02092010-03-24 19:38:02 +00001015 if (APInt::tcCompare(dividend, divisor, partsCount) < 0) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001016 exponent--;
1017 APInt::tcShiftLeft(dividend, partsCount, 1);
1018 assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0);
1019 }
1020
1021 /* Long division. */
Dan Gohman16e02092010-03-24 19:38:02 +00001022 for (bit = precision; bit; bit -= 1) {
1023 if (APInt::tcCompare(dividend, divisor, partsCount) >= 0) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001024 APInt::tcSubtract(dividend, divisor, 0, partsCount);
1025 APInt::tcSetBit(lhsSignificand, bit - 1);
1026 }
1027
1028 APInt::tcShiftLeft(dividend, partsCount, 1);
1029 }
1030
1031 /* Figure out the lost fraction. */
1032 int cmp = APInt::tcCompare(dividend, divisor, partsCount);
1033
Dan Gohman16e02092010-03-24 19:38:02 +00001034 if (cmp > 0)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001035 lost_fraction = lfMoreThanHalf;
Dan Gohman16e02092010-03-24 19:38:02 +00001036 else if (cmp == 0)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001037 lost_fraction = lfExactlyHalf;
Dan Gohman16e02092010-03-24 19:38:02 +00001038 else if (APInt::tcIsZero(dividend, partsCount))
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001039 lost_fraction = lfExactlyZero;
1040 else
1041 lost_fraction = lfLessThanHalf;
1042
Dan Gohman16e02092010-03-24 19:38:02 +00001043 if (partsCount > 2)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001044 delete [] dividend;
1045
1046 return lost_fraction;
1047}
1048
1049unsigned int
1050APFloat::significandMSB() const
1051{
1052 return APInt::tcMSB(significandParts(), partCount());
1053}
1054
1055unsigned int
1056APFloat::significandLSB() const
1057{
1058 return APInt::tcLSB(significandParts(), partCount());
1059}
1060
1061/* Note that a zero result is NOT normalized to fcZero. */
1062lostFraction
1063APFloat::shiftSignificandRight(unsigned int bits)
1064{
1065 /* Our exponent should not overflow. */
1066 assert((exponent_t) (exponent + bits) >= exponent);
1067
1068 exponent += bits;
1069
1070 return shiftRight(significandParts(), partCount(), bits);
1071}
1072
1073/* Shift the significand left BITS bits, subtract BITS from its exponent. */
1074void
1075APFloat::shiftSignificandLeft(unsigned int bits)
1076{
1077 assert(bits < semantics->precision);
1078
Dan Gohman16e02092010-03-24 19:38:02 +00001079 if (bits) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001080 unsigned int partsCount = partCount();
1081
1082 APInt::tcShiftLeft(significandParts(), partsCount, bits);
1083 exponent -= bits;
1084
1085 assert(!APInt::tcIsZero(significandParts(), partsCount));
1086 }
1087}
1088
1089APFloat::cmpResult
1090APFloat::compareAbsoluteValue(const APFloat &rhs) const
1091{
1092 int compare;
1093
1094 assert(semantics == rhs.semantics);
1095 assert(category == fcNormal);
1096 assert(rhs.category == fcNormal);
1097
1098 compare = exponent - rhs.exponent;
1099
1100 /* If exponents are equal, do an unsigned bignum comparison of the
1101 significands. */
Dan Gohman16e02092010-03-24 19:38:02 +00001102 if (compare == 0)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001103 compare = APInt::tcCompare(significandParts(), rhs.significandParts(),
Neil Booth4f881702007-09-26 21:33:42 +00001104 partCount());
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001105
Dan Gohman16e02092010-03-24 19:38:02 +00001106 if (compare > 0)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001107 return cmpGreaterThan;
Dan Gohman16e02092010-03-24 19:38:02 +00001108 else if (compare < 0)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001109 return cmpLessThan;
1110 else
1111 return cmpEqual;
1112}
1113
1114/* Handle overflow. Sign is preserved. We either become infinity or
1115 the largest finite number. */
1116APFloat::opStatus
1117APFloat::handleOverflow(roundingMode rounding_mode)
1118{
1119 /* Infinity? */
Dan Gohman16e02092010-03-24 19:38:02 +00001120 if (rounding_mode == rmNearestTiesToEven ||
1121 rounding_mode == rmNearestTiesToAway ||
1122 (rounding_mode == rmTowardPositive && !sign) ||
1123 (rounding_mode == rmTowardNegative && sign)) {
1124 category = fcInfinity;
1125 return (opStatus) (opOverflow | opInexact);
1126 }
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001127
1128 /* Otherwise we become the largest finite number. */
1129 category = fcNormal;
1130 exponent = semantics->maxExponent;
1131 APInt::tcSetLeastSignificantBits(significandParts(), partCount(),
Neil Booth4f881702007-09-26 21:33:42 +00001132 semantics->precision);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001133
1134 return opInexact;
1135}
1136
Neil Boothb7dea4c2007-10-03 15:16:41 +00001137/* Returns TRUE if, when truncating the current number, with BIT the
1138 new LSB, with the given lost fraction and rounding mode, the result
1139 would need to be rounded away from zero (i.e., by increasing the
1140 signficand). This routine must work for fcZero of both signs, and
1141 fcNormal numbers. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001142bool
1143APFloat::roundAwayFromZero(roundingMode rounding_mode,
Neil Boothb7dea4c2007-10-03 15:16:41 +00001144 lostFraction lost_fraction,
1145 unsigned int bit) const
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001146{
Dale Johanneseneaf08942007-08-31 04:03:46 +00001147 /* NaNs and infinities should not have lost fractions. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001148 assert(category == fcNormal || category == fcZero);
1149
Neil Boothb7dea4c2007-10-03 15:16:41 +00001150 /* Current callers never pass this so we don't handle it. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001151 assert(lost_fraction != lfExactlyZero);
1152
Mike Stumpf3dc0c02009-05-13 23:23:20 +00001153 switch (rounding_mode) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001154 case rmNearestTiesToAway:
1155 return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;
1156
1157 case rmNearestTiesToEven:
Dan Gohman16e02092010-03-24 19:38:02 +00001158 if (lost_fraction == lfMoreThanHalf)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001159 return true;
1160
1161 /* Our zeroes don't have a significand to test. */
Dan Gohman16e02092010-03-24 19:38:02 +00001162 if (lost_fraction == lfExactlyHalf && category != fcZero)
Neil Boothb7dea4c2007-10-03 15:16:41 +00001163 return APInt::tcExtractBit(significandParts(), bit);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001164
1165 return false;
1166
1167 case rmTowardZero:
1168 return false;
1169
1170 case rmTowardPositive:
1171 return sign == false;
1172
1173 case rmTowardNegative:
1174 return sign == true;
1175 }
Chandler Carruth732f05c2012-01-10 18:08:01 +00001176 llvm_unreachable("Invalid rounding mode found");
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001177}
1178
1179APFloat::opStatus
1180APFloat::normalize(roundingMode rounding_mode,
Neil Booth4f881702007-09-26 21:33:42 +00001181 lostFraction lost_fraction)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001182{
Neil Booth4f881702007-09-26 21:33:42 +00001183 unsigned int omsb; /* One, not zero, based MSB. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001184 int exponentChange;
1185
Dan Gohman16e02092010-03-24 19:38:02 +00001186 if (category != fcNormal)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001187 return opOK;
1188
1189 /* Before rounding normalize the exponent of fcNormal numbers. */
1190 omsb = significandMSB() + 1;
1191
Dan Gohman16e02092010-03-24 19:38:02 +00001192 if (omsb) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001193 /* OMSB is numbered from 1. We want to place it in the integer
Nick Lewycky03dd4e82011-10-03 21:30:08 +00001194 bit numbered PRECISION if possible, with a compensating change in
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001195 the exponent. */
1196 exponentChange = omsb - semantics->precision;
1197
1198 /* If the resulting exponent is too high, overflow according to
1199 the rounding mode. */
Dan Gohman16e02092010-03-24 19:38:02 +00001200 if (exponent + exponentChange > semantics->maxExponent)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001201 return handleOverflow(rounding_mode);
1202
1203 /* Subnormal numbers have exponent minExponent, and their MSB
1204 is forced based on that. */
Dan Gohman16e02092010-03-24 19:38:02 +00001205 if (exponent + exponentChange < semantics->minExponent)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001206 exponentChange = semantics->minExponent - exponent;
1207
1208 /* Shifting left is easy as we don't lose precision. */
Dan Gohman16e02092010-03-24 19:38:02 +00001209 if (exponentChange < 0) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001210 assert(lost_fraction == lfExactlyZero);
1211
1212 shiftSignificandLeft(-exponentChange);
1213
1214 return opOK;
1215 }
1216
Dan Gohman16e02092010-03-24 19:38:02 +00001217 if (exponentChange > 0) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001218 lostFraction lf;
1219
1220 /* Shift right and capture any new lost fraction. */
1221 lf = shiftSignificandRight(exponentChange);
1222
1223 lost_fraction = combineLostFractions(lf, lost_fraction);
1224
1225 /* Keep OMSB up-to-date. */
Dan Gohman16e02092010-03-24 19:38:02 +00001226 if (omsb > (unsigned) exponentChange)
Neil Booth96c74712007-10-12 16:02:31 +00001227 omsb -= exponentChange;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001228 else
Neil Booth4f881702007-09-26 21:33:42 +00001229 omsb = 0;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001230 }
1231 }
1232
1233 /* Now round the number according to rounding_mode given the lost
1234 fraction. */
1235
1236 /* As specified in IEEE 754, since we do not trap we do not report
1237 underflow for exact results. */
Dan Gohman16e02092010-03-24 19:38:02 +00001238 if (lost_fraction == lfExactlyZero) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001239 /* Canonicalize zeroes. */
Dan Gohman16e02092010-03-24 19:38:02 +00001240 if (omsb == 0)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001241 category = fcZero;
1242
1243 return opOK;
1244 }
1245
1246 /* Increment the significand if we're rounding away from zero. */
Dan Gohman16e02092010-03-24 19:38:02 +00001247 if (roundAwayFromZero(rounding_mode, lost_fraction, 0)) {
1248 if (omsb == 0)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001249 exponent = semantics->minExponent;
1250
1251 incrementSignificand();
1252 omsb = significandMSB() + 1;
1253
1254 /* Did the significand increment overflow? */
Dan Gohman16e02092010-03-24 19:38:02 +00001255 if (omsb == (unsigned) semantics->precision + 1) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001256 /* Renormalize by incrementing the exponent and shifting our
Neil Booth4f881702007-09-26 21:33:42 +00001257 significand right one. However if we already have the
1258 maximum exponent we overflow to infinity. */
Dan Gohman16e02092010-03-24 19:38:02 +00001259 if (exponent == semantics->maxExponent) {
Neil Booth4f881702007-09-26 21:33:42 +00001260 category = fcInfinity;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001261
Neil Booth4f881702007-09-26 21:33:42 +00001262 return (opStatus) (opOverflow | opInexact);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001263 }
1264
1265 shiftSignificandRight(1);
1266
1267 return opInexact;
1268 }
1269 }
1270
1271 /* The normal case - we were and are not denormal, and any
1272 significand increment above didn't overflow. */
Dan Gohman16e02092010-03-24 19:38:02 +00001273 if (omsb == semantics->precision)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001274 return opInexact;
1275
1276 /* We have a non-zero denormal. */
1277 assert(omsb < semantics->precision);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001278
1279 /* Canonicalize zeroes. */
Dan Gohman16e02092010-03-24 19:38:02 +00001280 if (omsb == 0)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001281 category = fcZero;
1282
1283 /* The fcZero case is a denormal that underflowed to zero. */
1284 return (opStatus) (opUnderflow | opInexact);
1285}
1286
1287APFloat::opStatus
1288APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract)
1289{
Mike Stumpf3dc0c02009-05-13 23:23:20 +00001290 switch (convolve(category, rhs.category)) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001291 default:
Torok Edwinc23197a2009-07-14 16:55:14 +00001292 llvm_unreachable(0);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001293
Dale Johanneseneaf08942007-08-31 04:03:46 +00001294 case convolve(fcNaN, fcZero):
1295 case convolve(fcNaN, fcNormal):
1296 case convolve(fcNaN, fcInfinity):
1297 case convolve(fcNaN, fcNaN):
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001298 case convolve(fcNormal, fcZero):
1299 case convolve(fcInfinity, fcNormal):
1300 case convolve(fcInfinity, fcZero):
1301 return opOK;
1302
Dale Johanneseneaf08942007-08-31 04:03:46 +00001303 case convolve(fcZero, fcNaN):
1304 case convolve(fcNormal, fcNaN):
1305 case convolve(fcInfinity, fcNaN):
1306 category = fcNaN;
1307 copySignificand(rhs);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001308 return opOK;
1309
1310 case convolve(fcNormal, fcInfinity):
1311 case convolve(fcZero, fcInfinity):
1312 category = fcInfinity;
1313 sign = rhs.sign ^ subtract;
1314 return opOK;
1315
1316 case convolve(fcZero, fcNormal):
1317 assign(rhs);
1318 sign = rhs.sign ^ subtract;
1319 return opOK;
1320
1321 case convolve(fcZero, fcZero):
1322 /* Sign depends on rounding mode; handled by caller. */
1323 return opOK;
1324
1325 case convolve(fcInfinity, fcInfinity):
1326 /* Differently signed infinities can only be validly
1327 subtracted. */
Dan Gohman16e02092010-03-24 19:38:02 +00001328 if (((sign ^ rhs.sign)!=0) != subtract) {
Neil Boothe5e01942007-10-14 10:39:51 +00001329 makeNaN();
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001330 return opInvalidOp;
1331 }
1332
1333 return opOK;
1334
1335 case convolve(fcNormal, fcNormal):
1336 return opDivByZero;
1337 }
1338}
1339
1340/* Add or subtract two normal numbers. */
1341lostFraction
1342APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract)
1343{
1344 integerPart carry;
1345 lostFraction lost_fraction;
1346 int bits;
1347
1348 /* Determine if the operation on the absolute values is effectively
1349 an addition or subtraction. */
Hartmut Kaiser8df77a92007-10-25 23:15:31 +00001350 subtract ^= (sign ^ rhs.sign) ? true : false;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001351
1352 /* Are we bigger exponent-wise than the RHS? */
1353 bits = exponent - rhs.exponent;
1354
1355 /* Subtraction is more subtle than one might naively expect. */
Dan Gohman16e02092010-03-24 19:38:02 +00001356 if (subtract) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001357 APFloat temp_rhs(rhs);
1358 bool reverse;
1359
Chris Lattnerada530b2007-08-24 03:02:34 +00001360 if (bits == 0) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001361 reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan;
1362 lost_fraction = lfExactlyZero;
Chris Lattnerada530b2007-08-24 03:02:34 +00001363 } else if (bits > 0) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001364 lost_fraction = temp_rhs.shiftSignificandRight(bits - 1);
1365 shiftSignificandLeft(1);
1366 reverse = false;
Chris Lattnerada530b2007-08-24 03:02:34 +00001367 } else {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001368 lost_fraction = shiftSignificandRight(-bits - 1);
1369 temp_rhs.shiftSignificandLeft(1);
1370 reverse = true;
1371 }
1372
Chris Lattnerada530b2007-08-24 03:02:34 +00001373 if (reverse) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001374 carry = temp_rhs.subtractSignificand
Neil Booth4f881702007-09-26 21:33:42 +00001375 (*this, lost_fraction != lfExactlyZero);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001376 copySignificand(temp_rhs);
1377 sign = !sign;
1378 } else {
1379 carry = subtractSignificand
Neil Booth4f881702007-09-26 21:33:42 +00001380 (temp_rhs, lost_fraction != lfExactlyZero);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001381 }
1382
1383 /* Invert the lost fraction - it was on the RHS and
1384 subtracted. */
Dan Gohman16e02092010-03-24 19:38:02 +00001385 if (lost_fraction == lfLessThanHalf)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001386 lost_fraction = lfMoreThanHalf;
Dan Gohman16e02092010-03-24 19:38:02 +00001387 else if (lost_fraction == lfMoreThanHalf)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001388 lost_fraction = lfLessThanHalf;
1389
1390 /* The code above is intended to ensure that no borrow is
1391 necessary. */
1392 assert(!carry);
Duncan Sands1f6a3292011-08-12 14:54:45 +00001393 (void)carry;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001394 } else {
Dan Gohman16e02092010-03-24 19:38:02 +00001395 if (bits > 0) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001396 APFloat temp_rhs(rhs);
1397
1398 lost_fraction = temp_rhs.shiftSignificandRight(bits);
1399 carry = addSignificand(temp_rhs);
1400 } else {
1401 lost_fraction = shiftSignificandRight(-bits);
1402 carry = addSignificand(rhs);
1403 }
1404
1405 /* We have a guard bit; generating a carry cannot happen. */
1406 assert(!carry);
Duncan Sands1f6a3292011-08-12 14:54:45 +00001407 (void)carry;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001408 }
1409
1410 return lost_fraction;
1411}
1412
1413APFloat::opStatus
1414APFloat::multiplySpecials(const APFloat &rhs)
1415{
Mike Stumpf3dc0c02009-05-13 23:23:20 +00001416 switch (convolve(category, rhs.category)) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001417 default:
Torok Edwinc23197a2009-07-14 16:55:14 +00001418 llvm_unreachable(0);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001419
Dale Johanneseneaf08942007-08-31 04:03:46 +00001420 case convolve(fcNaN, fcZero):
1421 case convolve(fcNaN, fcNormal):
1422 case convolve(fcNaN, fcInfinity):
1423 case convolve(fcNaN, fcNaN):
1424 return opOK;
1425
1426 case convolve(fcZero, fcNaN):
1427 case convolve(fcNormal, fcNaN):
1428 case convolve(fcInfinity, fcNaN):
1429 category = fcNaN;
1430 copySignificand(rhs);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001431 return opOK;
1432
1433 case convolve(fcNormal, fcInfinity):
1434 case convolve(fcInfinity, fcNormal):
1435 case convolve(fcInfinity, fcInfinity):
1436 category = fcInfinity;
1437 return opOK;
1438
1439 case convolve(fcZero, fcNormal):
1440 case convolve(fcNormal, fcZero):
1441 case convolve(fcZero, fcZero):
1442 category = fcZero;
1443 return opOK;
1444
1445 case convolve(fcZero, fcInfinity):
1446 case convolve(fcInfinity, fcZero):
Neil Boothe5e01942007-10-14 10:39:51 +00001447 makeNaN();
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001448 return opInvalidOp;
1449
1450 case convolve(fcNormal, fcNormal):
1451 return opOK;
1452 }
1453}
1454
1455APFloat::opStatus
1456APFloat::divideSpecials(const APFloat &rhs)
1457{
Mike Stumpf3dc0c02009-05-13 23:23:20 +00001458 switch (convolve(category, rhs.category)) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001459 default:
Torok Edwinc23197a2009-07-14 16:55:14 +00001460 llvm_unreachable(0);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001461
Dale Johanneseneaf08942007-08-31 04:03:46 +00001462 case convolve(fcNaN, fcZero):
1463 case convolve(fcNaN, fcNormal):
1464 case convolve(fcNaN, fcInfinity):
1465 case convolve(fcNaN, fcNaN):
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001466 case convolve(fcInfinity, fcZero):
1467 case convolve(fcInfinity, fcNormal):
1468 case convolve(fcZero, fcInfinity):
1469 case convolve(fcZero, fcNormal):
1470 return opOK;
1471
Dale Johanneseneaf08942007-08-31 04:03:46 +00001472 case convolve(fcZero, fcNaN):
1473 case convolve(fcNormal, fcNaN):
1474 case convolve(fcInfinity, fcNaN):
1475 category = fcNaN;
1476 copySignificand(rhs);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001477 return opOK;
1478
1479 case convolve(fcNormal, fcInfinity):
1480 category = fcZero;
1481 return opOK;
1482
1483 case convolve(fcNormal, fcZero):
1484 category = fcInfinity;
1485 return opDivByZero;
1486
1487 case convolve(fcInfinity, fcInfinity):
1488 case convolve(fcZero, fcZero):
Neil Boothe5e01942007-10-14 10:39:51 +00001489 makeNaN();
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001490 return opInvalidOp;
1491
1492 case convolve(fcNormal, fcNormal):
1493 return opOK;
1494 }
1495}
1496
Dale Johannesened6af242009-01-21 00:35:19 +00001497APFloat::opStatus
1498APFloat::modSpecials(const APFloat &rhs)
1499{
Mike Stumpf3dc0c02009-05-13 23:23:20 +00001500 switch (convolve(category, rhs.category)) {
Dale Johannesened6af242009-01-21 00:35:19 +00001501 default:
Torok Edwinc23197a2009-07-14 16:55:14 +00001502 llvm_unreachable(0);
Dale Johannesened6af242009-01-21 00:35:19 +00001503
1504 case convolve(fcNaN, fcZero):
1505 case convolve(fcNaN, fcNormal):
1506 case convolve(fcNaN, fcInfinity):
1507 case convolve(fcNaN, fcNaN):
1508 case convolve(fcZero, fcInfinity):
1509 case convolve(fcZero, fcNormal):
1510 case convolve(fcNormal, fcInfinity):
1511 return opOK;
1512
1513 case convolve(fcZero, fcNaN):
1514 case convolve(fcNormal, fcNaN):
1515 case convolve(fcInfinity, fcNaN):
1516 category = fcNaN;
1517 copySignificand(rhs);
1518 return opOK;
1519
1520 case convolve(fcNormal, fcZero):
1521 case convolve(fcInfinity, fcZero):
1522 case convolve(fcInfinity, fcNormal):
1523 case convolve(fcInfinity, fcInfinity):
1524 case convolve(fcZero, fcZero):
1525 makeNaN();
1526 return opInvalidOp;
1527
1528 case convolve(fcNormal, fcNormal):
1529 return opOK;
1530 }
1531}
1532
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001533/* Change sign. */
1534void
1535APFloat::changeSign()
1536{
1537 /* Look mummy, this one's easy. */
1538 sign = !sign;
1539}
1540
Dale Johannesene15c2db2007-08-31 23:35:31 +00001541void
1542APFloat::clearSign()
1543{
1544 /* So is this one. */
1545 sign = 0;
1546}
1547
1548void
1549APFloat::copySign(const APFloat &rhs)
1550{
1551 /* And this one. */
1552 sign = rhs.sign;
1553}
1554
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001555/* Normalized addition or subtraction. */
1556APFloat::opStatus
1557APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode,
Neil Booth4f881702007-09-26 21:33:42 +00001558 bool subtract)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001559{
1560 opStatus fs;
1561
Neil Boothcaf19d72007-10-14 10:29:28 +00001562 assertArithmeticOK(*semantics);
1563
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001564 fs = addOrSubtractSpecials(rhs, subtract);
1565
1566 /* This return code means it was not a simple case. */
Dan Gohman16e02092010-03-24 19:38:02 +00001567 if (fs == opDivByZero) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001568 lostFraction lost_fraction;
1569
1570 lost_fraction = addOrSubtractSignificand(rhs, subtract);
1571 fs = normalize(rounding_mode, lost_fraction);
1572
1573 /* Can only be zero if we lost no fraction. */
1574 assert(category != fcZero || lost_fraction == lfExactlyZero);
1575 }
1576
1577 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1578 positive zero unless rounding to minus infinity, except that
1579 adding two like-signed zeroes gives that zero. */
Dan Gohman16e02092010-03-24 19:38:02 +00001580 if (category == fcZero) {
1581 if (rhs.category != fcZero || (sign == rhs.sign) == subtract)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001582 sign = (rounding_mode == rmTowardNegative);
1583 }
1584
1585 return fs;
1586}
1587
1588/* Normalized addition. */
1589APFloat::opStatus
1590APFloat::add(const APFloat &rhs, roundingMode rounding_mode)
1591{
1592 return addOrSubtract(rhs, rounding_mode, false);
1593}
1594
1595/* Normalized subtraction. */
1596APFloat::opStatus
1597APFloat::subtract(const APFloat &rhs, roundingMode rounding_mode)
1598{
1599 return addOrSubtract(rhs, rounding_mode, true);
1600}
1601
1602/* Normalized multiply. */
1603APFloat::opStatus
1604APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode)
1605{
1606 opStatus fs;
1607
Neil Boothcaf19d72007-10-14 10:29:28 +00001608 assertArithmeticOK(*semantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001609 sign ^= rhs.sign;
1610 fs = multiplySpecials(rhs);
1611
Dan Gohman16e02092010-03-24 19:38:02 +00001612 if (category == fcNormal) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001613 lostFraction lost_fraction = multiplySignificand(rhs, 0);
1614 fs = normalize(rounding_mode, lost_fraction);
Dan Gohman16e02092010-03-24 19:38:02 +00001615 if (lost_fraction != lfExactlyZero)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001616 fs = (opStatus) (fs | opInexact);
1617 }
1618
1619 return fs;
1620}
1621
1622/* Normalized divide. */
1623APFloat::opStatus
1624APFloat::divide(const APFloat &rhs, roundingMode rounding_mode)
1625{
1626 opStatus fs;
1627
Neil Boothcaf19d72007-10-14 10:29:28 +00001628 assertArithmeticOK(*semantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001629 sign ^= rhs.sign;
1630 fs = divideSpecials(rhs);
1631
Dan Gohman16e02092010-03-24 19:38:02 +00001632 if (category == fcNormal) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001633 lostFraction lost_fraction = divideSignificand(rhs);
1634 fs = normalize(rounding_mode, lost_fraction);
Dan Gohman16e02092010-03-24 19:38:02 +00001635 if (lost_fraction != lfExactlyZero)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001636 fs = (opStatus) (fs | opInexact);
1637 }
1638
1639 return fs;
1640}
1641
Dale Johannesen24b66a82009-01-20 18:35:05 +00001642/* Normalized remainder. This is not currently correct in all cases. */
1643APFloat::opStatus
1644APFloat::remainder(const APFloat &rhs)
1645{
1646 opStatus fs;
1647 APFloat V = *this;
1648 unsigned int origSign = sign;
1649
1650 assertArithmeticOK(*semantics);
1651 fs = V.divide(rhs, rmNearestTiesToEven);
1652 if (fs == opDivByZero)
1653 return fs;
1654
1655 int parts = partCount();
1656 integerPart *x = new integerPart[parts];
1657 bool ignored;
1658 fs = V.convertToInteger(x, parts * integerPartWidth, true,
1659 rmNearestTiesToEven, &ignored);
1660 if (fs==opInvalidOp)
1661 return fs;
1662
1663 fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
1664 rmNearestTiesToEven);
1665 assert(fs==opOK); // should always work
1666
1667 fs = V.multiply(rhs, rmNearestTiesToEven);
1668 assert(fs==opOK || fs==opInexact); // should not overflow or underflow
1669
1670 fs = subtract(V, rmNearestTiesToEven);
1671 assert(fs==opOK || fs==opInexact); // likewise
1672
1673 if (isZero())
1674 sign = origSign; // IEEE754 requires this
1675 delete[] x;
1676 return fs;
1677}
1678
Dan Gohman16e02092010-03-24 19:38:02 +00001679/* Normalized llvm frem (C fmod).
Dale Johannesen24b66a82009-01-20 18:35:05 +00001680 This is not currently correct in all cases. */
Dale Johannesene15c2db2007-08-31 23:35:31 +00001681APFloat::opStatus
1682APFloat::mod(const APFloat &rhs, roundingMode rounding_mode)
1683{
1684 opStatus fs;
Neil Boothcaf19d72007-10-14 10:29:28 +00001685 assertArithmeticOK(*semantics);
Dale Johannesened6af242009-01-21 00:35:19 +00001686 fs = modSpecials(rhs);
Dale Johannesene15c2db2007-08-31 23:35:31 +00001687
Dale Johannesened6af242009-01-21 00:35:19 +00001688 if (category == fcNormal && rhs.category == fcNormal) {
1689 APFloat V = *this;
1690 unsigned int origSign = sign;
Dale Johannesene15c2db2007-08-31 23:35:31 +00001691
Dale Johannesened6af242009-01-21 00:35:19 +00001692 fs = V.divide(rhs, rmNearestTiesToEven);
1693 if (fs == opDivByZero)
1694 return fs;
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001695
Dale Johannesened6af242009-01-21 00:35:19 +00001696 int parts = partCount();
1697 integerPart *x = new integerPart[parts];
1698 bool ignored;
1699 fs = V.convertToInteger(x, parts * integerPartWidth, true,
1700 rmTowardZero, &ignored);
1701 if (fs==opInvalidOp)
1702 return fs;
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001703
Dale Johannesened6af242009-01-21 00:35:19 +00001704 fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
1705 rmNearestTiesToEven);
1706 assert(fs==opOK); // should always work
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001707
Dale Johannesened6af242009-01-21 00:35:19 +00001708 fs = V.multiply(rhs, rounding_mode);
1709 assert(fs==opOK || fs==opInexact); // should not overflow or underflow
1710
1711 fs = subtract(V, rounding_mode);
1712 assert(fs==opOK || fs==opInexact); // likewise
1713
1714 if (isZero())
1715 sign = origSign; // IEEE754 requires this
1716 delete[] x;
1717 }
Dale Johannesene15c2db2007-08-31 23:35:31 +00001718 return fs;
1719}
1720
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001721/* Normalized fused-multiply-add. */
1722APFloat::opStatus
1723APFloat::fusedMultiplyAdd(const APFloat &multiplicand,
Neil Booth4f881702007-09-26 21:33:42 +00001724 const APFloat &addend,
1725 roundingMode rounding_mode)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001726{
1727 opStatus fs;
1728
Neil Boothcaf19d72007-10-14 10:29:28 +00001729 assertArithmeticOK(*semantics);
1730
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001731 /* Post-multiplication sign, before addition. */
1732 sign ^= multiplicand.sign;
1733
1734 /* If and only if all arguments are normal do we need to do an
1735 extended-precision calculation. */
Dan Gohman16e02092010-03-24 19:38:02 +00001736 if (category == fcNormal &&
1737 multiplicand.category == fcNormal &&
1738 addend.category == fcNormal) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001739 lostFraction lost_fraction;
1740
1741 lost_fraction = multiplySignificand(multiplicand, &addend);
1742 fs = normalize(rounding_mode, lost_fraction);
Dan Gohman16e02092010-03-24 19:38:02 +00001743 if (lost_fraction != lfExactlyZero)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001744 fs = (opStatus) (fs | opInexact);
1745
1746 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1747 positive zero unless rounding to minus infinity, except that
1748 adding two like-signed zeroes gives that zero. */
Dan Gohman16e02092010-03-24 19:38:02 +00001749 if (category == fcZero && sign != addend.sign)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001750 sign = (rounding_mode == rmTowardNegative);
1751 } else {
1752 fs = multiplySpecials(multiplicand);
1753
1754 /* FS can only be opOK or opInvalidOp. There is no more work
1755 to do in the latter case. The IEEE-754R standard says it is
1756 implementation-defined in this case whether, if ADDEND is a
Dale Johanneseneaf08942007-08-31 04:03:46 +00001757 quiet NaN, we raise invalid op; this implementation does so.
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001758
1759 If we need to do the addition we can do so with normal
1760 precision. */
Dan Gohman16e02092010-03-24 19:38:02 +00001761 if (fs == opOK)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001762 fs = addOrSubtract(addend, rounding_mode, false);
1763 }
1764
1765 return fs;
1766}
1767
Owen Anderson7c626d32012-08-13 23:32:49 +00001768/* Rounding-mode corrrect round to integral value. */
1769APFloat::opStatus APFloat::roundToIntegral(roundingMode rounding_mode) {
1770 opStatus fs;
1771 assertArithmeticOK(*semantics);
1772
1773 // The algorithm here is quite simple: we add 2^(p-1), where p is the
1774 // precision of our format, and then subtract it back off again. The choice
1775 // of rounding modes for the addition/subtraction determines the rounding mode
1776 // for our integral rounding as well.
1777 APInt IntegerConstant(NextPowerOf2(semanticsPrecision(*semantics)),
1778 1 << (semanticsPrecision(*semantics)-1));
1779 APFloat MagicConstant(*semantics);
1780 fs = MagicConstant.convertFromAPInt(IntegerConstant, false,
1781 rmNearestTiesToEven);
1782 if (fs != opOK)
1783 return fs;
1784
1785 fs = add(MagicConstant, rounding_mode);
1786 if (fs != opOK && fs != opInexact)
1787 return fs;
1788
1789 fs = subtract(MagicConstant, rounding_mode);
1790 return fs;
1791}
1792
1793
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001794/* Comparison requires normalized numbers. */
1795APFloat::cmpResult
1796APFloat::compare(const APFloat &rhs) const
1797{
1798 cmpResult result;
1799
Neil Boothcaf19d72007-10-14 10:29:28 +00001800 assertArithmeticOK(*semantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001801 assert(semantics == rhs.semantics);
1802
Mike Stumpf3dc0c02009-05-13 23:23:20 +00001803 switch (convolve(category, rhs.category)) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001804 default:
Torok Edwinc23197a2009-07-14 16:55:14 +00001805 llvm_unreachable(0);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001806
Dale Johanneseneaf08942007-08-31 04:03:46 +00001807 case convolve(fcNaN, fcZero):
1808 case convolve(fcNaN, fcNormal):
1809 case convolve(fcNaN, fcInfinity):
1810 case convolve(fcNaN, fcNaN):
1811 case convolve(fcZero, fcNaN):
1812 case convolve(fcNormal, fcNaN):
1813 case convolve(fcInfinity, fcNaN):
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001814 return cmpUnordered;
1815
1816 case convolve(fcInfinity, fcNormal):
1817 case convolve(fcInfinity, fcZero):
1818 case convolve(fcNormal, fcZero):
Dan Gohman16e02092010-03-24 19:38:02 +00001819 if (sign)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001820 return cmpLessThan;
1821 else
1822 return cmpGreaterThan;
1823
1824 case convolve(fcNormal, fcInfinity):
1825 case convolve(fcZero, fcInfinity):
1826 case convolve(fcZero, fcNormal):
Dan Gohman16e02092010-03-24 19:38:02 +00001827 if (rhs.sign)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001828 return cmpGreaterThan;
1829 else
1830 return cmpLessThan;
1831
1832 case convolve(fcInfinity, fcInfinity):
Dan Gohman16e02092010-03-24 19:38:02 +00001833 if (sign == rhs.sign)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001834 return cmpEqual;
Dan Gohman16e02092010-03-24 19:38:02 +00001835 else if (sign)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001836 return cmpLessThan;
1837 else
1838 return cmpGreaterThan;
1839
1840 case convolve(fcZero, fcZero):
1841 return cmpEqual;
1842
1843 case convolve(fcNormal, fcNormal):
1844 break;
1845 }
1846
1847 /* Two normal numbers. Do they have the same sign? */
Dan Gohman16e02092010-03-24 19:38:02 +00001848 if (sign != rhs.sign) {
1849 if (sign)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001850 result = cmpLessThan;
1851 else
1852 result = cmpGreaterThan;
1853 } else {
1854 /* Compare absolute values; invert result if negative. */
1855 result = compareAbsoluteValue(rhs);
1856
Dan Gohman16e02092010-03-24 19:38:02 +00001857 if (sign) {
1858 if (result == cmpLessThan)
Neil Booth4f881702007-09-26 21:33:42 +00001859 result = cmpGreaterThan;
Dan Gohman16e02092010-03-24 19:38:02 +00001860 else if (result == cmpGreaterThan)
Neil Booth4f881702007-09-26 21:33:42 +00001861 result = cmpLessThan;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001862 }
1863 }
1864
1865 return result;
1866}
1867
Dale Johannesen23a98552008-10-09 23:00:39 +00001868/// APFloat::convert - convert a value of one floating point type to another.
1869/// The return value corresponds to the IEEE754 exceptions. *losesInfo
1870/// records whether the transformation lost information, i.e. whether
1871/// converting the result back to the original type will produce the
1872/// original value (this is almost the same as return value==fsOK, but there
1873/// are edge cases where this is not so).
1874
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001875APFloat::opStatus
1876APFloat::convert(const fltSemantics &toSemantics,
Dale Johannesen23a98552008-10-09 23:00:39 +00001877 roundingMode rounding_mode, bool *losesInfo)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001878{
Neil Boothc8db43d2007-09-22 02:56:19 +00001879 lostFraction lostFraction;
1880 unsigned int newPartCount, oldPartCount;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001881 opStatus fs;
Eli Friedman44551422011-11-26 03:38:02 +00001882 int shift;
1883 const fltSemantics &fromSemantics = *semantics;
Neil Booth4f881702007-09-26 21:33:42 +00001884
Eli Friedman44551422011-11-26 03:38:02 +00001885 assertArithmeticOK(fromSemantics);
Dale Johannesen79f82f92008-04-20 01:34:03 +00001886 assertArithmeticOK(toSemantics);
Neil Boothc8db43d2007-09-22 02:56:19 +00001887 lostFraction = lfExactlyZero;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001888 newPartCount = partCountForBits(toSemantics.precision + 1);
Neil Boothc8db43d2007-09-22 02:56:19 +00001889 oldPartCount = partCount();
Eli Friedman44551422011-11-26 03:38:02 +00001890 shift = toSemantics.precision - fromSemantics.precision;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001891
Eli Friedman44551422011-11-26 03:38:02 +00001892 bool X86SpecialNan = false;
1893 if (&fromSemantics == &APFloat::x87DoubleExtended &&
1894 &toSemantics != &APFloat::x87DoubleExtended && category == fcNaN &&
1895 (!(*significandParts() & 0x8000000000000000ULL) ||
1896 !(*significandParts() & 0x4000000000000000ULL))) {
1897 // x86 has some unusual NaNs which cannot be represented in any other
1898 // format; note them here.
1899 X86SpecialNan = true;
1900 }
1901
1902 // If this is a truncation, perform the shift before we narrow the storage.
1903 if (shift < 0 && (category==fcNormal || category==fcNaN))
1904 lostFraction = shiftRight(significandParts(), oldPartCount, -shift);
1905
1906 // Fix the storage so it can hold to new value.
Neil Boothc8db43d2007-09-22 02:56:19 +00001907 if (newPartCount > oldPartCount) {
Eli Friedman44551422011-11-26 03:38:02 +00001908 // The new type requires more storage; make it available.
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001909 integerPart *newParts;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001910 newParts = new integerPart[newPartCount];
1911 APInt::tcSet(newParts, 0, newPartCount);
Dale Johannesen902ff942007-09-25 17:25:00 +00001912 if (category==fcNormal || category==fcNaN)
1913 APInt::tcAssign(newParts, significandParts(), oldPartCount);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001914 freeSignificand();
1915 significand.parts = newParts;
Eli Friedman44551422011-11-26 03:38:02 +00001916 } else if (newPartCount == 1 && oldPartCount != 1) {
1917 // Switch to built-in storage for a single part.
1918 integerPart newPart = 0;
1919 if (category==fcNormal || category==fcNaN)
1920 newPart = significandParts()[0];
1921 freeSignificand();
1922 significand.part = newPart;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001923 }
1924
Eli Friedman44551422011-11-26 03:38:02 +00001925 // Now that we have the right storage, switch the semantics.
1926 semantics = &toSemantics;
1927
1928 // If this is an extension, perform the shift now that the storage is
1929 // available.
1930 if (shift > 0 && (category==fcNormal || category==fcNaN))
1931 APInt::tcShiftLeft(significandParts(), newPartCount, shift);
1932
Dan Gohman16e02092010-03-24 19:38:02 +00001933 if (category == fcNormal) {
Neil Boothc8db43d2007-09-22 02:56:19 +00001934 fs = normalize(rounding_mode, lostFraction);
Dale Johannesen23a98552008-10-09 23:00:39 +00001935 *losesInfo = (fs != opOK);
Dale Johannesen902ff942007-09-25 17:25:00 +00001936 } else if (category == fcNaN) {
Eli Friedman44551422011-11-26 03:38:02 +00001937 *losesInfo = lostFraction != lfExactlyZero || X86SpecialNan;
Dale Johannesen902ff942007-09-25 17:25:00 +00001938 // gcc forces the Quiet bit on, which means (float)(double)(float_sNan)
1939 // does not give you back the same bits. This is dubious, and we
1940 // don't currently do it. You're really supposed to get
1941 // an invalid operation signal at runtime, but nobody does that.
Dale Johannesen23a98552008-10-09 23:00:39 +00001942 fs = opOK;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001943 } else {
Dale Johannesen23a98552008-10-09 23:00:39 +00001944 *losesInfo = false;
Eli Friedmanf9b1cd02011-11-28 18:50:37 +00001945 fs = opOK;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001946 }
1947
1948 return fs;
1949}
1950
1951/* Convert a floating point number to an integer according to the
1952 rounding mode. If the rounded integer value is out of range this
Neil Boothee7ae382007-11-01 22:43:37 +00001953 returns an invalid operation exception and the contents of the
1954 destination parts are unspecified. If the rounded value is in
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001955 range but the floating point number is not the exact integer, the C
1956 standard doesn't require an inexact exception to be raised. IEEE
1957 854 does require it so we do that.
1958
1959 Note that for conversions to integer type the C standard requires
1960 round-to-zero to always be used. */
1961APFloat::opStatus
Neil Boothee7ae382007-11-01 22:43:37 +00001962APFloat::convertToSignExtendedInteger(integerPart *parts, unsigned int width,
1963 bool isSigned,
Dale Johannesen23a98552008-10-09 23:00:39 +00001964 roundingMode rounding_mode,
1965 bool *isExact) const
Neil Boothee7ae382007-11-01 22:43:37 +00001966{
1967 lostFraction lost_fraction;
1968 const integerPart *src;
1969 unsigned int dstPartsCount, truncatedBits;
1970
Evan Cheng794a7db2008-11-26 01:11:57 +00001971 assertArithmeticOK(*semantics);
Neil Boothe3d936a2007-11-02 15:10:05 +00001972
Dale Johannesen23a98552008-10-09 23:00:39 +00001973 *isExact = false;
1974
Neil Boothee7ae382007-11-01 22:43:37 +00001975 /* Handle the three special cases first. */
Dan Gohman16e02092010-03-24 19:38:02 +00001976 if (category == fcInfinity || category == fcNaN)
Neil Boothee7ae382007-11-01 22:43:37 +00001977 return opInvalidOp;
1978
1979 dstPartsCount = partCountForBits(width);
1980
Dan Gohman16e02092010-03-24 19:38:02 +00001981 if (category == fcZero) {
Neil Boothee7ae382007-11-01 22:43:37 +00001982 APInt::tcSet(parts, 0, dstPartsCount);
Dale Johannesene4a42452008-10-07 00:40:01 +00001983 // Negative zero can't be represented as an int.
Dale Johannesen23a98552008-10-09 23:00:39 +00001984 *isExact = !sign;
1985 return opOK;
Neil Boothee7ae382007-11-01 22:43:37 +00001986 }
1987
1988 src = significandParts();
1989
1990 /* Step 1: place our absolute value, with any fraction truncated, in
1991 the destination. */
1992 if (exponent < 0) {
1993 /* Our absolute value is less than one; truncate everything. */
1994 APInt::tcSet(parts, 0, dstPartsCount);
Dale Johannesen1f54f582009-01-19 21:17:05 +00001995 /* For exponent -1 the integer bit represents .5, look at that.
1996 For smaller exponents leftmost truncated bit is 0. */
1997 truncatedBits = semantics->precision -1U - exponent;
Neil Boothee7ae382007-11-01 22:43:37 +00001998 } else {
1999 /* We want the most significant (exponent + 1) bits; the rest are
2000 truncated. */
2001 unsigned int bits = exponent + 1U;
2002
2003 /* Hopelessly large in magnitude? */
2004 if (bits > width)
2005 return opInvalidOp;
2006
2007 if (bits < semantics->precision) {
2008 /* We truncate (semantics->precision - bits) bits. */
2009 truncatedBits = semantics->precision - bits;
2010 APInt::tcExtract(parts, dstPartsCount, src, bits, truncatedBits);
2011 } else {
2012 /* We want at least as many bits as are available. */
2013 APInt::tcExtract(parts, dstPartsCount, src, semantics->precision, 0);
2014 APInt::tcShiftLeft(parts, dstPartsCount, bits - semantics->precision);
2015 truncatedBits = 0;
2016 }
2017 }
2018
2019 /* Step 2: work out any lost fraction, and increment the absolute
2020 value if we would round away from zero. */
2021 if (truncatedBits) {
2022 lost_fraction = lostFractionThroughTruncation(src, partCount(),
2023 truncatedBits);
Dan Gohman16e02092010-03-24 19:38:02 +00002024 if (lost_fraction != lfExactlyZero &&
2025 roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) {
Neil Boothee7ae382007-11-01 22:43:37 +00002026 if (APInt::tcIncrement(parts, dstPartsCount))
2027 return opInvalidOp; /* Overflow. */
2028 }
2029 } else {
2030 lost_fraction = lfExactlyZero;
2031 }
2032
2033 /* Step 3: check if we fit in the destination. */
2034 unsigned int omsb = APInt::tcMSB(parts, dstPartsCount) + 1;
2035
2036 if (sign) {
2037 if (!isSigned) {
2038 /* Negative numbers cannot be represented as unsigned. */
2039 if (omsb != 0)
2040 return opInvalidOp;
2041 } else {
2042 /* It takes omsb bits to represent the unsigned integer value.
2043 We lose a bit for the sign, but care is needed as the
2044 maximally negative integer is a special case. */
2045 if (omsb == width && APInt::tcLSB(parts, dstPartsCount) + 1 != omsb)
2046 return opInvalidOp;
2047
2048 /* This case can happen because of rounding. */
2049 if (omsb > width)
2050 return opInvalidOp;
2051 }
2052
2053 APInt::tcNegate (parts, dstPartsCount);
2054 } else {
2055 if (omsb >= width + !isSigned)
2056 return opInvalidOp;
2057 }
2058
Dale Johannesen23a98552008-10-09 23:00:39 +00002059 if (lost_fraction == lfExactlyZero) {
2060 *isExact = true;
Neil Boothee7ae382007-11-01 22:43:37 +00002061 return opOK;
Dale Johannesen23a98552008-10-09 23:00:39 +00002062 } else
Neil Boothee7ae382007-11-01 22:43:37 +00002063 return opInexact;
2064}
2065
2066/* Same as convertToSignExtendedInteger, except we provide
2067 deterministic values in case of an invalid operation exception,
2068 namely zero for NaNs and the minimal or maximal value respectively
Dale Johannesen23a98552008-10-09 23:00:39 +00002069 for underflow or overflow.
2070 The *isExact output tells whether the result is exact, in the sense
2071 that converting it back to the original floating point type produces
2072 the original value. This is almost equivalent to result==opOK,
2073 except for negative zeroes.
2074*/
Neil Boothee7ae382007-11-01 22:43:37 +00002075APFloat::opStatus
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002076APFloat::convertToInteger(integerPart *parts, unsigned int width,
Neil Booth4f881702007-09-26 21:33:42 +00002077 bool isSigned,
Dale Johannesen23a98552008-10-09 23:00:39 +00002078 roundingMode rounding_mode, bool *isExact) const
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002079{
Neil Boothee7ae382007-11-01 22:43:37 +00002080 opStatus fs;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002081
Dan Gohman16e02092010-03-24 19:38:02 +00002082 fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode,
Dale Johannesen23a98552008-10-09 23:00:39 +00002083 isExact);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002084
Neil Boothee7ae382007-11-01 22:43:37 +00002085 if (fs == opInvalidOp) {
2086 unsigned int bits, dstPartsCount;
2087
2088 dstPartsCount = partCountForBits(width);
2089
2090 if (category == fcNaN)
2091 bits = 0;
2092 else if (sign)
2093 bits = isSigned;
2094 else
2095 bits = width - isSigned;
2096
2097 APInt::tcSetLeastSignificantBits(parts, dstPartsCount, bits);
2098 if (sign && isSigned)
2099 APInt::tcShiftLeft(parts, dstPartsCount, width - 1);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002100 }
2101
Neil Boothee7ae382007-11-01 22:43:37 +00002102 return fs;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002103}
2104
Jeffrey Yasskin3d42bfb2011-07-15 07:04:56 +00002105/* Same as convertToInteger(integerPart*, ...), except the result is returned in
2106 an APSInt, whose initial bit-width and signed-ness are used to determine the
2107 precision of the conversion.
2108 */
2109APFloat::opStatus
2110APFloat::convertToInteger(APSInt &result,
2111 roundingMode rounding_mode, bool *isExact) const
2112{
2113 unsigned bitWidth = result.getBitWidth();
2114 SmallVector<uint64_t, 4> parts(result.getNumWords());
2115 opStatus status = convertToInteger(
2116 parts.data(), bitWidth, result.isSigned(), rounding_mode, isExact);
2117 // Keeps the original signed-ness.
Jeffrey Yasskin3ba292d2011-07-18 21:45:40 +00002118 result = APInt(bitWidth, parts);
Jeffrey Yasskin3d42bfb2011-07-15 07:04:56 +00002119 return status;
2120}
2121
Neil Booth643ce592007-10-07 12:07:53 +00002122/* Convert an unsigned integer SRC to a floating point number,
2123 rounding according to ROUNDING_MODE. The sign of the floating
2124 point number is not modified. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002125APFloat::opStatus
Neil Booth643ce592007-10-07 12:07:53 +00002126APFloat::convertFromUnsignedParts(const integerPart *src,
2127 unsigned int srcCount,
2128 roundingMode rounding_mode)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002129{
Neil Booth5477f852007-10-08 14:39:42 +00002130 unsigned int omsb, precision, dstCount;
Neil Booth643ce592007-10-07 12:07:53 +00002131 integerPart *dst;
Neil Booth5477f852007-10-08 14:39:42 +00002132 lostFraction lost_fraction;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002133
Neil Boothcaf19d72007-10-14 10:29:28 +00002134 assertArithmeticOK(*semantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002135 category = fcNormal;
Neil Booth5477f852007-10-08 14:39:42 +00002136 omsb = APInt::tcMSB(src, srcCount) + 1;
Neil Booth643ce592007-10-07 12:07:53 +00002137 dst = significandParts();
2138 dstCount = partCount();
Neil Booth5477f852007-10-08 14:39:42 +00002139 precision = semantics->precision;
Neil Booth643ce592007-10-07 12:07:53 +00002140
Nick Lewycky03dd4e82011-10-03 21:30:08 +00002141 /* We want the most significant PRECISION bits of SRC. There may not
Neil Booth5477f852007-10-08 14:39:42 +00002142 be that many; extract what we can. */
2143 if (precision <= omsb) {
2144 exponent = omsb - 1;
Neil Booth643ce592007-10-07 12:07:53 +00002145 lost_fraction = lostFractionThroughTruncation(src, srcCount,
Neil Booth5477f852007-10-08 14:39:42 +00002146 omsb - precision);
2147 APInt::tcExtract(dst, dstCount, src, precision, omsb - precision);
2148 } else {
2149 exponent = precision - 1;
2150 lost_fraction = lfExactlyZero;
2151 APInt::tcExtract(dst, dstCount, src, omsb, 0);
Neil Booth643ce592007-10-07 12:07:53 +00002152 }
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002153
2154 return normalize(rounding_mode, lost_fraction);
2155}
2156
Dan Gohman93c276e2008-02-29 01:26:11 +00002157APFloat::opStatus
2158APFloat::convertFromAPInt(const APInt &Val,
2159 bool isSigned,
2160 roundingMode rounding_mode)
2161{
2162 unsigned int partCount = Val.getNumWords();
2163 APInt api = Val;
2164
2165 sign = false;
2166 if (isSigned && api.isNegative()) {
2167 sign = true;
2168 api = -api;
2169 }
2170
2171 return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
2172}
2173
Neil Boothf16c5952007-10-07 12:15:41 +00002174/* Convert a two's complement integer SRC to a floating point number,
2175 rounding according to ROUNDING_MODE. ISSIGNED is true if the
2176 integer is signed, in which case it must be sign-extended. */
2177APFloat::opStatus
2178APFloat::convertFromSignExtendedInteger(const integerPart *src,
2179 unsigned int srcCount,
2180 bool isSigned,
2181 roundingMode rounding_mode)
2182{
2183 opStatus status;
2184
Neil Boothcaf19d72007-10-14 10:29:28 +00002185 assertArithmeticOK(*semantics);
Dan Gohman16e02092010-03-24 19:38:02 +00002186 if (isSigned &&
2187 APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) {
Neil Boothf16c5952007-10-07 12:15:41 +00002188 integerPart *copy;
2189
2190 /* If we're signed and negative negate a copy. */
2191 sign = true;
2192 copy = new integerPart[srcCount];
2193 APInt::tcAssign(copy, src, srcCount);
2194 APInt::tcNegate(copy, srcCount);
2195 status = convertFromUnsignedParts(copy, srcCount, rounding_mode);
2196 delete [] copy;
2197 } else {
2198 sign = false;
2199 status = convertFromUnsignedParts(src, srcCount, rounding_mode);
2200 }
2201
2202 return status;
2203}
2204
Neil Boothccf596a2007-10-07 11:45:55 +00002205/* FIXME: should this just take a const APInt reference? */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002206APFloat::opStatus
Neil Boothccf596a2007-10-07 11:45:55 +00002207APFloat::convertFromZeroExtendedInteger(const integerPart *parts,
2208 unsigned int width, bool isSigned,
2209 roundingMode rounding_mode)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002210{
Dale Johannesen910993e2007-09-21 22:09:37 +00002211 unsigned int partCount = partCountForBits(width);
Jeffrey Yasskin3ba292d2011-07-18 21:45:40 +00002212 APInt api = APInt(width, makeArrayRef(parts, partCount));
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002213
2214 sign = false;
Dan Gohman16e02092010-03-24 19:38:02 +00002215 if (isSigned && APInt::tcExtractBit(parts, width - 1)) {
Dale Johannesencce23a42007-09-30 18:17:01 +00002216 sign = true;
2217 api = -api;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002218 }
2219
Neil Booth7a7bc0f2007-10-07 12:10:57 +00002220 return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002221}
2222
2223APFloat::opStatus
Benjamin Kramer38e59892010-07-14 22:38:02 +00002224APFloat::convertFromHexadecimalString(StringRef s, roundingMode rounding_mode)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002225{
Erick Tryzelaarf8bc8012009-08-18 18:20:37 +00002226 lostFraction lost_fraction = lfExactlyZero;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002227 integerPart *significand;
2228 unsigned int bitPos, partsCount;
Erick Tryzelaara15d8902009-08-16 23:36:19 +00002229 StringRef::iterator dot, firstSignificantDigit;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002230
2231 zeroSignificand();
2232 exponent = 0;
2233 category = fcNormal;
2234
2235 significand = significandParts();
2236 partsCount = partCount();
2237 bitPos = partsCount * integerPartWidth;
2238
Neil Booth33d4c922007-10-07 08:51:21 +00002239 /* Skip leading zeroes and any (hexa)decimal point. */
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +00002240 StringRef::iterator begin = s.begin();
2241 StringRef::iterator end = s.end();
2242 StringRef::iterator p = skipLeadingZeroesAndAnyDot(begin, end, &dot);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002243 firstSignificantDigit = p;
2244
Dan Gohman16e02092010-03-24 19:38:02 +00002245 for (; p != end;) {
Dale Johannesen386f3e92008-05-14 22:53:25 +00002246 integerPart hex_value;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002247
Dan Gohman16e02092010-03-24 19:38:02 +00002248 if (*p == '.') {
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +00002249 assert(dot == end && "String contains multiple dots");
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002250 dot = p++;
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +00002251 if (p == end) {
2252 break;
2253 }
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002254 }
2255
2256 hex_value = hexDigitValue(*p);
Dan Gohman16e02092010-03-24 19:38:02 +00002257 if (hex_value == -1U) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002258 break;
2259 }
2260
2261 p++;
2262
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +00002263 if (p == end) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002264 break;
Erick Tryzelaara15d8902009-08-16 23:36:19 +00002265 } else {
2266 /* Store the number whilst 4-bit nibbles remain. */
Dan Gohman16e02092010-03-24 19:38:02 +00002267 if (bitPos) {
Erick Tryzelaara15d8902009-08-16 23:36:19 +00002268 bitPos -= 4;
2269 hex_value <<= bitPos % integerPartWidth;
2270 significand[bitPos / integerPartWidth] |= hex_value;
2271 } else {
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +00002272 lost_fraction = trailingHexadecimalFraction(p, end, hex_value);
Dan Gohman16e02092010-03-24 19:38:02 +00002273 while (p != end && hexDigitValue(*p) != -1U)
Erick Tryzelaara15d8902009-08-16 23:36:19 +00002274 p++;
2275 break;
2276 }
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002277 }
2278 }
2279
2280 /* Hex floats require an exponent but not a hexadecimal point. */
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +00002281 assert(p != end && "Hex strings require an exponent");
2282 assert((*p == 'p' || *p == 'P') && "Invalid character in significand");
2283 assert(p != begin && "Significand has no digits");
2284 assert((dot == end || p - begin != 1) && "Significand has no digits");
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002285
2286 /* Ignore the exponent if we are zero. */
Dan Gohman16e02092010-03-24 19:38:02 +00002287 if (p != firstSignificantDigit) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002288 int expAdjustment;
2289
2290 /* Implicit hexadecimal point? */
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +00002291 if (dot == end)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002292 dot = p;
2293
2294 /* Calculate the exponent adjustment implicit in the number of
2295 significant digits. */
Evan Cheng48e8c802008-05-02 21:15:08 +00002296 expAdjustment = static_cast<int>(dot - firstSignificantDigit);
Dan Gohman16e02092010-03-24 19:38:02 +00002297 if (expAdjustment < 0)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002298 expAdjustment++;
2299 expAdjustment = expAdjustment * 4 - 1;
2300
2301 /* Adjust for writing the significand starting at the most
2302 significant nibble. */
2303 expAdjustment += semantics->precision;
2304 expAdjustment -= partsCount * integerPartWidth;
2305
2306 /* Adjust for the given exponent. */
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +00002307 exponent = totalExponent(p + 1, end, expAdjustment);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002308 }
2309
2310 return normalize(rounding_mode, lost_fraction);
2311}
2312
2313APFloat::opStatus
Neil Booth96c74712007-10-12 16:02:31 +00002314APFloat::roundSignificandWithExponent(const integerPart *decSigParts,
2315 unsigned sigPartCount, int exp,
2316 roundingMode rounding_mode)
2317{
2318 unsigned int parts, pow5PartCount;
Neil Boothcaf19d72007-10-14 10:29:28 +00002319 fltSemantics calcSemantics = { 32767, -32767, 0, true };
Neil Booth96c74712007-10-12 16:02:31 +00002320 integerPart pow5Parts[maxPowerOfFiveParts];
2321 bool isNearest;
2322
Dan Gohman16e02092010-03-24 19:38:02 +00002323 isNearest = (rounding_mode == rmNearestTiesToEven ||
2324 rounding_mode == rmNearestTiesToAway);
Neil Booth96c74712007-10-12 16:02:31 +00002325
2326 parts = partCountForBits(semantics->precision + 11);
2327
2328 /* Calculate pow(5, abs(exp)). */
2329 pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp);
2330
2331 for (;; parts *= 2) {
2332 opStatus sigStatus, powStatus;
2333 unsigned int excessPrecision, truncatedBits;
2334
2335 calcSemantics.precision = parts * integerPartWidth - 1;
2336 excessPrecision = calcSemantics.precision - semantics->precision;
2337 truncatedBits = excessPrecision;
2338
2339 APFloat decSig(calcSemantics, fcZero, sign);
2340 APFloat pow5(calcSemantics, fcZero, false);
2341
2342 sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount,
2343 rmNearestTiesToEven);
2344 powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount,
2345 rmNearestTiesToEven);
2346 /* Add exp, as 10^n = 5^n * 2^n. */
2347 decSig.exponent += exp;
2348
2349 lostFraction calcLostFraction;
Evan Cheng48e8c802008-05-02 21:15:08 +00002350 integerPart HUerr, HUdistance;
2351 unsigned int powHUerr;
Neil Booth96c74712007-10-12 16:02:31 +00002352
2353 if (exp >= 0) {
2354 /* multiplySignificand leaves the precision-th bit set to 1. */
2355 calcLostFraction = decSig.multiplySignificand(pow5, NULL);
2356 powHUerr = powStatus != opOK;
2357 } else {
2358 calcLostFraction = decSig.divideSignificand(pow5);
2359 /* Denormal numbers have less precision. */
2360 if (decSig.exponent < semantics->minExponent) {
2361 excessPrecision += (semantics->minExponent - decSig.exponent);
2362 truncatedBits = excessPrecision;
2363 if (excessPrecision > calcSemantics.precision)
2364 excessPrecision = calcSemantics.precision;
2365 }
2366 /* Extra half-ulp lost in reciprocal of exponent. */
Evan Cheng48e8c802008-05-02 21:15:08 +00002367 powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2;
Neil Booth96c74712007-10-12 16:02:31 +00002368 }
2369
2370 /* Both multiplySignificand and divideSignificand return the
2371 result with the integer bit set. */
Evan Cheng99ebfa52009-10-27 21:35:42 +00002372 assert(APInt::tcExtractBit
2373 (decSig.significandParts(), calcSemantics.precision - 1) == 1);
Neil Booth96c74712007-10-12 16:02:31 +00002374
2375 HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK,
2376 powHUerr);
2377 HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(),
2378 excessPrecision, isNearest);
2379
2380 /* Are we guaranteed to round correctly if we truncate? */
2381 if (HUdistance >= HUerr) {
2382 APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(),
2383 calcSemantics.precision - excessPrecision,
2384 excessPrecision);
2385 /* Take the exponent of decSig. If we tcExtract-ed less bits
2386 above we must adjust our exponent to compensate for the
2387 implicit right shift. */
2388 exponent = (decSig.exponent + semantics->precision
2389 - (calcSemantics.precision - excessPrecision));
2390 calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(),
2391 decSig.partCount(),
2392 truncatedBits);
2393 return normalize(rounding_mode, calcLostFraction);
2394 }
2395 }
2396}
2397
2398APFloat::opStatus
Benjamin Kramer38e59892010-07-14 22:38:02 +00002399APFloat::convertFromDecimalString(StringRef str, roundingMode rounding_mode)
Neil Booth96c74712007-10-12 16:02:31 +00002400{
Neil Booth1870f292007-10-14 10:16:12 +00002401 decimalInfo D;
Neil Booth96c74712007-10-12 16:02:31 +00002402 opStatus fs;
2403
Neil Booth1870f292007-10-14 10:16:12 +00002404 /* Scan the text. */
Erick Tryzelaara15d8902009-08-16 23:36:19 +00002405 StringRef::iterator p = str.begin();
2406 interpretDecimal(p, str.end(), &D);
Neil Booth96c74712007-10-12 16:02:31 +00002407
Neil Booth686700e2007-10-15 15:00:55 +00002408 /* Handle the quick cases. First the case of no significant digits,
2409 i.e. zero, and then exponents that are obviously too large or too
2410 small. Writing L for log 10 / log 2, a number d.ddddd*10^exp
2411 definitely overflows if
2412
2413 (exp - 1) * L >= maxExponent
2414
2415 and definitely underflows to zero where
2416
2417 (exp + 1) * L <= minExponent - precision
2418
2419 With integer arithmetic the tightest bounds for L are
2420
2421 93/28 < L < 196/59 [ numerator <= 256 ]
2422 42039/12655 < L < 28738/8651 [ numerator <= 65536 ]
2423 */
2424
Neil Boothcc233592007-12-05 13:06:04 +00002425 if (decDigitValue(*D.firstSigDigit) >= 10U) {
Neil Booth96c74712007-10-12 16:02:31 +00002426 category = fcZero;
2427 fs = opOK;
John McCall8b3f3302010-02-26 22:20:41 +00002428
2429 /* Check whether the normalized exponent is high enough to overflow
2430 max during the log-rebasing in the max-exponent check below. */
2431 } else if (D.normalizedExponent - 1 > INT_MAX / 42039) {
2432 fs = handleOverflow(rounding_mode);
2433
2434 /* If it wasn't, then it also wasn't high enough to overflow max
2435 during the log-rebasing in the min-exponent check. Check that it
2436 won't overflow min in either check, then perform the min-exponent
2437 check. */
2438 } else if (D.normalizedExponent - 1 < INT_MIN / 42039 ||
2439 (D.normalizedExponent + 1) * 28738 <=
2440 8651 * (semantics->minExponent - (int) semantics->precision)) {
Neil Booth686700e2007-10-15 15:00:55 +00002441 /* Underflow to zero and round. */
2442 zeroSignificand();
2443 fs = normalize(rounding_mode, lfLessThanHalf);
John McCall8b3f3302010-02-26 22:20:41 +00002444
2445 /* We can finally safely perform the max-exponent check. */
Neil Booth686700e2007-10-15 15:00:55 +00002446 } else if ((D.normalizedExponent - 1) * 42039
2447 >= 12655 * semantics->maxExponent) {
2448 /* Overflow and round. */
2449 fs = handleOverflow(rounding_mode);
Neil Booth96c74712007-10-12 16:02:31 +00002450 } else {
Neil Booth1870f292007-10-14 10:16:12 +00002451 integerPart *decSignificand;
2452 unsigned int partCount;
Neil Booth96c74712007-10-12 16:02:31 +00002453
Neil Booth1870f292007-10-14 10:16:12 +00002454 /* A tight upper bound on number of bits required to hold an
Neil Booth686700e2007-10-15 15:00:55 +00002455 N-digit decimal integer is N * 196 / 59. Allocate enough space
Neil Booth1870f292007-10-14 10:16:12 +00002456 to hold the full significand, and an extra part required by
2457 tcMultiplyPart. */
Evan Cheng48e8c802008-05-02 21:15:08 +00002458 partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1;
Neil Booth686700e2007-10-15 15:00:55 +00002459 partCount = partCountForBits(1 + 196 * partCount / 59);
Neil Booth1870f292007-10-14 10:16:12 +00002460 decSignificand = new integerPart[partCount + 1];
2461 partCount = 0;
Neil Booth96c74712007-10-12 16:02:31 +00002462
Neil Booth1870f292007-10-14 10:16:12 +00002463 /* Convert to binary efficiently - we do almost all multiplication
2464 in an integerPart. When this would overflow do we do a single
2465 bignum multiplication, and then revert again to multiplication
2466 in an integerPart. */
2467 do {
2468 integerPart decValue, val, multiplier;
2469
2470 val = 0;
2471 multiplier = 1;
2472
2473 do {
Erick Tryzelaara15d8902009-08-16 23:36:19 +00002474 if (*p == '.') {
Neil Booth1870f292007-10-14 10:16:12 +00002475 p++;
Erick Tryzelaara15d8902009-08-16 23:36:19 +00002476 if (p == str.end()) {
2477 break;
2478 }
2479 }
Neil Booth1870f292007-10-14 10:16:12 +00002480 decValue = decDigitValue(*p++);
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +00002481 assert(decValue < 10U && "Invalid character in significand");
Neil Booth1870f292007-10-14 10:16:12 +00002482 multiplier *= 10;
2483 val = val * 10 + decValue;
2484 /* The maximum number that can be multiplied by ten with any
2485 digit added without overflowing an integerPart. */
2486 } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10);
2487
2488 /* Multiply out the current part. */
2489 APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val,
2490 partCount, partCount + 1, false);
2491
2492 /* If we used another part (likely but not guaranteed), increase
2493 the count. */
2494 if (decSignificand[partCount])
2495 partCount++;
2496 } while (p <= D.lastSigDigit);
Neil Booth96c74712007-10-12 16:02:31 +00002497
Neil Booth43a4b282007-11-01 22:51:07 +00002498 category = fcNormal;
Neil Booth96c74712007-10-12 16:02:31 +00002499 fs = roundSignificandWithExponent(decSignificand, partCount,
Neil Booth1870f292007-10-14 10:16:12 +00002500 D.exponent, rounding_mode);
Neil Booth96c74712007-10-12 16:02:31 +00002501
Neil Booth1870f292007-10-14 10:16:12 +00002502 delete [] decSignificand;
2503 }
Neil Booth96c74712007-10-12 16:02:31 +00002504
2505 return fs;
2506}
2507
2508APFloat::opStatus
Benjamin Kramer38e59892010-07-14 22:38:02 +00002509APFloat::convertFromString(StringRef str, roundingMode rounding_mode)
Neil Booth4f881702007-09-26 21:33:42 +00002510{
Neil Boothcaf19d72007-10-14 10:29:28 +00002511 assertArithmeticOK(*semantics);
Erick Tryzelaara15d8902009-08-16 23:36:19 +00002512 assert(!str.empty() && "Invalid string length");
Neil Boothcaf19d72007-10-14 10:29:28 +00002513
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002514 /* Handle a leading minus sign. */
Erick Tryzelaara15d8902009-08-16 23:36:19 +00002515 StringRef::iterator p = str.begin();
2516 size_t slen = str.size();
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +00002517 sign = *p == '-' ? 1 : 0;
Dan Gohman16e02092010-03-24 19:38:02 +00002518 if (*p == '-' || *p == '+') {
Erick Tryzelaara15d8902009-08-16 23:36:19 +00002519 p++;
2520 slen--;
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +00002521 assert(slen && "String has no digits");
Erick Tryzelaara15d8902009-08-16 23:36:19 +00002522 }
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002523
Dan Gohman16e02092010-03-24 19:38:02 +00002524 if (slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
Erick Tryzelaara15d8902009-08-16 23:36:19 +00002525 assert(slen - 2 && "Invalid string");
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +00002526 return convertFromHexadecimalString(StringRef(p + 2, slen - 2),
Erick Tryzelaara15d8902009-08-16 23:36:19 +00002527 rounding_mode);
2528 }
Bill Wendlingb7c0d942008-11-27 08:00:12 +00002529
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +00002530 return convertFromDecimalString(StringRef(p, slen), rounding_mode);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002531}
Dale Johannesen343e7702007-08-24 00:56:33 +00002532
Neil Bootha30b0ee2007-10-03 22:26:02 +00002533/* Write out a hexadecimal representation of the floating point value
2534 to DST, which must be of sufficient size, in the C99 form
2535 [-]0xh.hhhhp[+-]d. Return the number of characters written,
2536 excluding the terminating NUL.
2537
2538 If UPPERCASE, the output is in upper case, otherwise in lower case.
2539
2540 HEXDIGITS digits appear altogether, rounding the value if
2541 necessary. If HEXDIGITS is 0, the minimal precision to display the
2542 number precisely is used instead. If nothing would appear after
2543 the decimal point it is suppressed.
2544
2545 The decimal exponent is always printed and has at least one digit.
2546 Zero values display an exponent of zero. Infinities and NaNs
2547 appear as "infinity" or "nan" respectively.
2548
2549 The above rules are as specified by C99. There is ambiguity about
2550 what the leading hexadecimal digit should be. This implementation
2551 uses whatever is necessary so that the exponent is displayed as
2552 stored. This implies the exponent will fall within the IEEE format
2553 range, and the leading hexadecimal digit will be 0 (for denormals),
2554 1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with
2555 any other digits zero).
2556*/
2557unsigned int
2558APFloat::convertToHexString(char *dst, unsigned int hexDigits,
2559 bool upperCase, roundingMode rounding_mode) const
2560{
2561 char *p;
2562
Neil Boothcaf19d72007-10-14 10:29:28 +00002563 assertArithmeticOK(*semantics);
2564
Neil Bootha30b0ee2007-10-03 22:26:02 +00002565 p = dst;
2566 if (sign)
2567 *dst++ = '-';
2568
2569 switch (category) {
2570 case fcInfinity:
2571 memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1);
2572 dst += sizeof infinityL - 1;
2573 break;
2574
2575 case fcNaN:
2576 memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1);
2577 dst += sizeof NaNU - 1;
2578 break;
2579
2580 case fcZero:
2581 *dst++ = '0';
2582 *dst++ = upperCase ? 'X': 'x';
2583 *dst++ = '0';
2584 if (hexDigits > 1) {
2585 *dst++ = '.';
2586 memset (dst, '0', hexDigits - 1);
2587 dst += hexDigits - 1;
2588 }
2589 *dst++ = upperCase ? 'P': 'p';
2590 *dst++ = '0';
2591 break;
2592
2593 case fcNormal:
2594 dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode);
2595 break;
2596 }
2597
2598 *dst = 0;
2599
Evan Cheng48e8c802008-05-02 21:15:08 +00002600 return static_cast<unsigned int>(dst - p);
Neil Bootha30b0ee2007-10-03 22:26:02 +00002601}
2602
2603/* Does the hard work of outputting the correctly rounded hexadecimal
2604 form of a normal floating point number with the specified number of
2605 hexadecimal digits. If HEXDIGITS is zero the minimum number of
2606 digits necessary to print the value precisely is output. */
2607char *
2608APFloat::convertNormalToHexString(char *dst, unsigned int hexDigits,
2609 bool upperCase,
2610 roundingMode rounding_mode) const
2611{
2612 unsigned int count, valueBits, shift, partsCount, outputDigits;
2613 const char *hexDigitChars;
2614 const integerPart *significand;
2615 char *p;
2616 bool roundUp;
2617
2618 *dst++ = '0';
2619 *dst++ = upperCase ? 'X': 'x';
2620
2621 roundUp = false;
2622 hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower;
2623
2624 significand = significandParts();
2625 partsCount = partCount();
2626
2627 /* +3 because the first digit only uses the single integer bit, so
2628 we have 3 virtual zero most-significant-bits. */
2629 valueBits = semantics->precision + 3;
2630 shift = integerPartWidth - valueBits % integerPartWidth;
2631
2632 /* The natural number of digits required ignoring trailing
2633 insignificant zeroes. */
2634 outputDigits = (valueBits - significandLSB () + 3) / 4;
2635
2636 /* hexDigits of zero means use the required number for the
2637 precision. Otherwise, see if we are truncating. If we are,
Neil Booth978661d2007-10-06 00:24:48 +00002638 find out if we need to round away from zero. */
Neil Bootha30b0ee2007-10-03 22:26:02 +00002639 if (hexDigits) {
2640 if (hexDigits < outputDigits) {
2641 /* We are dropping non-zero bits, so need to check how to round.
2642 "bits" is the number of dropped bits. */
2643 unsigned int bits;
2644 lostFraction fraction;
2645
2646 bits = valueBits - hexDigits * 4;
2647 fraction = lostFractionThroughTruncation (significand, partsCount, bits);
2648 roundUp = roundAwayFromZero(rounding_mode, fraction, bits);
2649 }
2650 outputDigits = hexDigits;
2651 }
2652
2653 /* Write the digits consecutively, and start writing in the location
2654 of the hexadecimal point. We move the most significant digit
2655 left and add the hexadecimal point later. */
2656 p = ++dst;
2657
2658 count = (valueBits + integerPartWidth - 1) / integerPartWidth;
2659
2660 while (outputDigits && count) {
2661 integerPart part;
2662
2663 /* Put the most significant integerPartWidth bits in "part". */
2664 if (--count == partsCount)
2665 part = 0; /* An imaginary higher zero part. */
2666 else
2667 part = significand[count] << shift;
2668
2669 if (count && shift)
2670 part |= significand[count - 1] >> (integerPartWidth - shift);
2671
2672 /* Convert as much of "part" to hexdigits as we can. */
2673 unsigned int curDigits = integerPartWidth / 4;
2674
2675 if (curDigits > outputDigits)
2676 curDigits = outputDigits;
2677 dst += partAsHex (dst, part, curDigits, hexDigitChars);
2678 outputDigits -= curDigits;
2679 }
2680
2681 if (roundUp) {
2682 char *q = dst;
2683
2684 /* Note that hexDigitChars has a trailing '0'. */
2685 do {
2686 q--;
2687 *q = hexDigitChars[hexDigitValue (*q) + 1];
Neil Booth978661d2007-10-06 00:24:48 +00002688 } while (*q == '0');
Evan Cheng99ebfa52009-10-27 21:35:42 +00002689 assert(q >= p);
Neil Bootha30b0ee2007-10-03 22:26:02 +00002690 } else {
2691 /* Add trailing zeroes. */
2692 memset (dst, '0', outputDigits);
2693 dst += outputDigits;
2694 }
2695
2696 /* Move the most significant digit to before the point, and if there
2697 is something after the decimal point add it. This must come
2698 after rounding above. */
2699 p[-1] = p[0];
2700 if (dst -1 == p)
2701 dst--;
2702 else
2703 p[0] = '.';
2704
2705 /* Finally output the exponent. */
2706 *dst++ = upperCase ? 'P': 'p';
2707
Neil Booth92f7e8d2007-10-06 07:29:25 +00002708 return writeSignedDecimal (dst, exponent);
Neil Bootha30b0ee2007-10-03 22:26:02 +00002709}
2710
Chandler Carruthed7692a2012-03-04 12:02:57 +00002711hash_code llvm::hash_value(const APFloat &Arg) {
2712 if (Arg.category != APFloat::fcNormal)
2713 return hash_combine((uint8_t)Arg.category,
2714 // NaN has no sign, fix it at zero.
2715 Arg.isNaN() ? (uint8_t)0 : (uint8_t)Arg.sign,
2716 Arg.semantics->precision);
2717
2718 // Normal floats need their exponent and significand hashed.
2719 return hash_combine((uint8_t)Arg.category, (uint8_t)Arg.sign,
2720 Arg.semantics->precision, Arg.exponent,
2721 hash_combine_range(
2722 Arg.significandParts(),
2723 Arg.significandParts() + Arg.partCount()));
Dale Johannesen343e7702007-08-24 00:56:33 +00002724}
2725
2726// Conversion from APFloat to/from host float/double. It may eventually be
2727// possible to eliminate these and have everybody deal with APFloats, but that
2728// will take a while. This approach will not easily extend to long double.
Dale Johannesena72a5a02007-09-20 23:47:58 +00002729// Current implementation requires integerPartWidth==64, which is correct at
2730// the moment but could be made more general.
Dale Johannesen343e7702007-08-24 00:56:33 +00002731
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002732// Denormals have exponent minExponent in APFloat, but minExponent-1 in
Dale Johannesena72a5a02007-09-20 23:47:58 +00002733// the actual IEEE respresentations. We compensate for that here.
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002734
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002735APInt
Neil Booth4f881702007-09-26 21:33:42 +00002736APFloat::convertF80LongDoubleAPFloatToAPInt() const
2737{
Dan Gohmanb10abe12008-01-29 12:08:20 +00002738 assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended);
Evan Cheng99ebfa52009-10-27 21:35:42 +00002739 assert(partCount()==2);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002740
2741 uint64_t myexponent, mysignificand;
2742
2743 if (category==fcNormal) {
2744 myexponent = exponent+16383; //bias
Dale Johannesena72a5a02007-09-20 23:47:58 +00002745 mysignificand = significandParts()[0];
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002746 if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL))
2747 myexponent = 0; // denormal
2748 } else if (category==fcZero) {
2749 myexponent = 0;
2750 mysignificand = 0;
2751 } else if (category==fcInfinity) {
2752 myexponent = 0x7fff;
2753 mysignificand = 0x8000000000000000ULL;
Chris Lattnera11ef822007-10-06 06:13:42 +00002754 } else {
2755 assert(category == fcNaN && "Unknown category");
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002756 myexponent = 0x7fff;
Dale Johannesena72a5a02007-09-20 23:47:58 +00002757 mysignificand = significandParts()[0];
Chris Lattnera11ef822007-10-06 06:13:42 +00002758 }
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002759
2760 uint64_t words[2];
Dale Johannesen1b25cb22009-03-23 21:16:53 +00002761 words[0] = mysignificand;
2762 words[1] = ((uint64_t)(sign & 1) << 15) |
2763 (myexponent & 0x7fffLL);
Jeffrey Yasskin3ba292d2011-07-18 21:45:40 +00002764 return APInt(80, words);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002765}
2766
2767APInt
Dale Johannesena471c2e2007-10-11 18:07:22 +00002768APFloat::convertPPCDoubleDoubleAPFloatToAPInt() const
2769{
Dan Gohmanb10abe12008-01-29 12:08:20 +00002770 assert(semantics == (const llvm::fltSemantics*)&PPCDoubleDouble);
Evan Cheng99ebfa52009-10-27 21:35:42 +00002771 assert(partCount()==2);
Dale Johannesena471c2e2007-10-11 18:07:22 +00002772
2773 uint64_t myexponent, mysignificand, myexponent2, mysignificand2;
2774
2775 if (category==fcNormal) {
2776 myexponent = exponent + 1023; //bias
2777 myexponent2 = exponent2 + 1023;
2778 mysignificand = significandParts()[0];
2779 mysignificand2 = significandParts()[1];
2780 if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
2781 myexponent = 0; // denormal
2782 if (myexponent2==1 && !(mysignificand2 & 0x10000000000000LL))
2783 myexponent2 = 0; // denormal
2784 } else if (category==fcZero) {
2785 myexponent = 0;
2786 mysignificand = 0;
2787 myexponent2 = 0;
2788 mysignificand2 = 0;
2789 } else if (category==fcInfinity) {
2790 myexponent = 0x7ff;
2791 myexponent2 = 0;
2792 mysignificand = 0;
2793 mysignificand2 = 0;
2794 } else {
2795 assert(category == fcNaN && "Unknown category");
2796 myexponent = 0x7ff;
2797 mysignificand = significandParts()[0];
2798 myexponent2 = exponent2;
2799 mysignificand2 = significandParts()[1];
2800 }
2801
2802 uint64_t words[2];
Evan Cheng48e8c802008-05-02 21:15:08 +00002803 words[0] = ((uint64_t)(sign & 1) << 63) |
Dale Johannesena471c2e2007-10-11 18:07:22 +00002804 ((myexponent & 0x7ff) << 52) |
2805 (mysignificand & 0xfffffffffffffLL);
Evan Cheng48e8c802008-05-02 21:15:08 +00002806 words[1] = ((uint64_t)(sign2 & 1) << 63) |
Dale Johannesena471c2e2007-10-11 18:07:22 +00002807 ((myexponent2 & 0x7ff) << 52) |
2808 (mysignificand2 & 0xfffffffffffffLL);
Jeffrey Yasskin3ba292d2011-07-18 21:45:40 +00002809 return APInt(128, words);
Dale Johannesena471c2e2007-10-11 18:07:22 +00002810}
2811
2812APInt
Anton Korobeynikov7e844f12009-08-21 22:10:30 +00002813APFloat::convertQuadrupleAPFloatToAPInt() const
2814{
2815 assert(semantics == (const llvm::fltSemantics*)&IEEEquad);
Evan Cheng99ebfa52009-10-27 21:35:42 +00002816 assert(partCount()==2);
Anton Korobeynikov7e844f12009-08-21 22:10:30 +00002817
2818 uint64_t myexponent, mysignificand, mysignificand2;
2819
2820 if (category==fcNormal) {
2821 myexponent = exponent+16383; //bias
2822 mysignificand = significandParts()[0];
2823 mysignificand2 = significandParts()[1];
2824 if (myexponent==1 && !(mysignificand2 & 0x1000000000000LL))
2825 myexponent = 0; // denormal
2826 } else if (category==fcZero) {
2827 myexponent = 0;
2828 mysignificand = mysignificand2 = 0;
2829 } else if (category==fcInfinity) {
2830 myexponent = 0x7fff;
2831 mysignificand = mysignificand2 = 0;
2832 } else {
2833 assert(category == fcNaN && "Unknown category!");
2834 myexponent = 0x7fff;
2835 mysignificand = significandParts()[0];
2836 mysignificand2 = significandParts()[1];
2837 }
2838
2839 uint64_t words[2];
2840 words[0] = mysignificand;
2841 words[1] = ((uint64_t)(sign & 1) << 63) |
2842 ((myexponent & 0x7fff) << 48) |
Anton Korobeynikov4755e992009-08-21 23:09:47 +00002843 (mysignificand2 & 0xffffffffffffLL);
Anton Korobeynikov7e844f12009-08-21 22:10:30 +00002844
Jeffrey Yasskin3ba292d2011-07-18 21:45:40 +00002845 return APInt(128, words);
Anton Korobeynikov7e844f12009-08-21 22:10:30 +00002846}
2847
2848APInt
Neil Booth4f881702007-09-26 21:33:42 +00002849APFloat::convertDoubleAPFloatToAPInt() const
2850{
Dan Gohmancb648f92007-09-14 20:08:19 +00002851 assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
Evan Cheng99ebfa52009-10-27 21:35:42 +00002852 assert(partCount()==1);
Dale Johannesen343e7702007-08-24 00:56:33 +00002853
Dale Johanneseneaf08942007-08-31 04:03:46 +00002854 uint64_t myexponent, mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00002855
2856 if (category==fcNormal) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002857 myexponent = exponent+1023; //bias
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002858 mysignificand = *significandParts();
2859 if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
2860 myexponent = 0; // denormal
Dale Johannesen343e7702007-08-24 00:56:33 +00002861 } else if (category==fcZero) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002862 myexponent = 0;
2863 mysignificand = 0;
2864 } else if (category==fcInfinity) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002865 myexponent = 0x7ff;
2866 mysignificand = 0;
Chris Lattnera11ef822007-10-06 06:13:42 +00002867 } else {
2868 assert(category == fcNaN && "Unknown category!");
Dale Johannesen343e7702007-08-24 00:56:33 +00002869 myexponent = 0x7ff;
Dale Johanneseneaf08942007-08-31 04:03:46 +00002870 mysignificand = *significandParts();
Chris Lattnera11ef822007-10-06 06:13:42 +00002871 }
Dale Johannesen343e7702007-08-24 00:56:33 +00002872
Evan Cheng48e8c802008-05-02 21:15:08 +00002873 return APInt(64, ((((uint64_t)(sign & 1) << 63) |
Chris Lattnera11ef822007-10-06 06:13:42 +00002874 ((myexponent & 0x7ff) << 52) |
2875 (mysignificand & 0xfffffffffffffLL))));
Dale Johannesen343e7702007-08-24 00:56:33 +00002876}
2877
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002878APInt
Neil Booth4f881702007-09-26 21:33:42 +00002879APFloat::convertFloatAPFloatToAPInt() const
2880{
Dan Gohmancb648f92007-09-14 20:08:19 +00002881 assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
Evan Cheng99ebfa52009-10-27 21:35:42 +00002882 assert(partCount()==1);
Neil Booth4f881702007-09-26 21:33:42 +00002883
Dale Johanneseneaf08942007-08-31 04:03:46 +00002884 uint32_t myexponent, mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00002885
2886 if (category==fcNormal) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002887 myexponent = exponent+127; //bias
Evan Cheng48e8c802008-05-02 21:15:08 +00002888 mysignificand = (uint32_t)*significandParts();
Dale Johannesend0763b92007-11-17 01:02:27 +00002889 if (myexponent == 1 && !(mysignificand & 0x800000))
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002890 myexponent = 0; // denormal
Dale Johannesen343e7702007-08-24 00:56:33 +00002891 } else if (category==fcZero) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002892 myexponent = 0;
2893 mysignificand = 0;
2894 } else if (category==fcInfinity) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002895 myexponent = 0xff;
2896 mysignificand = 0;
Chris Lattnera11ef822007-10-06 06:13:42 +00002897 } else {
2898 assert(category == fcNaN && "Unknown category!");
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002899 myexponent = 0xff;
Evan Cheng48e8c802008-05-02 21:15:08 +00002900 mysignificand = (uint32_t)*significandParts();
Chris Lattnera11ef822007-10-06 06:13:42 +00002901 }
Dale Johannesen343e7702007-08-24 00:56:33 +00002902
Chris Lattnera11ef822007-10-06 06:13:42 +00002903 return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) |
2904 (mysignificand & 0x7fffff)));
Dale Johannesen343e7702007-08-24 00:56:33 +00002905}
2906
Chris Lattnercc4287a2009-10-16 02:13:51 +00002907APInt
2908APFloat::convertHalfAPFloatToAPInt() const
2909{
2910 assert(semantics == (const llvm::fltSemantics*)&IEEEhalf);
Evan Cheng99ebfa52009-10-27 21:35:42 +00002911 assert(partCount()==1);
Chris Lattnercc4287a2009-10-16 02:13:51 +00002912
2913 uint32_t myexponent, mysignificand;
2914
2915 if (category==fcNormal) {
2916 myexponent = exponent+15; //bias
2917 mysignificand = (uint32_t)*significandParts();
2918 if (myexponent == 1 && !(mysignificand & 0x400))
2919 myexponent = 0; // denormal
2920 } else if (category==fcZero) {
2921 myexponent = 0;
2922 mysignificand = 0;
2923 } else if (category==fcInfinity) {
Dale Johannesena223aed2009-10-23 04:02:51 +00002924 myexponent = 0x1f;
Chris Lattnercc4287a2009-10-16 02:13:51 +00002925 mysignificand = 0;
2926 } else {
2927 assert(category == fcNaN && "Unknown category!");
Dale Johannesena223aed2009-10-23 04:02:51 +00002928 myexponent = 0x1f;
Chris Lattnercc4287a2009-10-16 02:13:51 +00002929 mysignificand = (uint32_t)*significandParts();
2930 }
2931
2932 return APInt(16, (((sign&1) << 15) | ((myexponent&0x1f) << 10) |
2933 (mysignificand & 0x3ff)));
2934}
2935
Dale Johannesena471c2e2007-10-11 18:07:22 +00002936// This function creates an APInt that is just a bit map of the floating
2937// point constant as it would appear in memory. It is not a conversion,
2938// and treating the result as a normal integer is unlikely to be useful.
2939
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002940APInt
Dale Johannesen7111b022008-10-09 18:53:47 +00002941APFloat::bitcastToAPInt() const
Neil Booth4f881702007-09-26 21:33:42 +00002942{
Chris Lattnercc4287a2009-10-16 02:13:51 +00002943 if (semantics == (const llvm::fltSemantics*)&IEEEhalf)
2944 return convertHalfAPFloatToAPInt();
2945
Dan Gohmanb10abe12008-01-29 12:08:20 +00002946 if (semantics == (const llvm::fltSemantics*)&IEEEsingle)
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002947 return convertFloatAPFloatToAPInt();
Anton Korobeynikov7e844f12009-08-21 22:10:30 +00002948
Dan Gohmanb10abe12008-01-29 12:08:20 +00002949 if (semantics == (const llvm::fltSemantics*)&IEEEdouble)
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002950 return convertDoubleAPFloatToAPInt();
Neil Booth4f881702007-09-26 21:33:42 +00002951
Anton Korobeynikov7e844f12009-08-21 22:10:30 +00002952 if (semantics == (const llvm::fltSemantics*)&IEEEquad)
2953 return convertQuadrupleAPFloatToAPInt();
2954
Dan Gohmanb10abe12008-01-29 12:08:20 +00002955 if (semantics == (const llvm::fltSemantics*)&PPCDoubleDouble)
Dale Johannesena471c2e2007-10-11 18:07:22 +00002956 return convertPPCDoubleDoubleAPFloatToAPInt();
2957
Dan Gohmanb10abe12008-01-29 12:08:20 +00002958 assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended &&
Chris Lattnera11ef822007-10-06 06:13:42 +00002959 "unknown format!");
2960 return convertF80LongDoubleAPFloatToAPInt();
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002961}
2962
Neil Booth4f881702007-09-26 21:33:42 +00002963float
2964APFloat::convertToFloat() const
2965{
Chris Lattnerad785002009-09-24 21:44:20 +00002966 assert(semantics == (const llvm::fltSemantics*)&IEEEsingle &&
2967 "Float semantics are not IEEEsingle");
Dale Johannesen7111b022008-10-09 18:53:47 +00002968 APInt api = bitcastToAPInt();
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002969 return api.bitsToFloat();
2970}
2971
Neil Booth4f881702007-09-26 21:33:42 +00002972double
2973APFloat::convertToDouble() const
2974{
Chris Lattnerad785002009-09-24 21:44:20 +00002975 assert(semantics == (const llvm::fltSemantics*)&IEEEdouble &&
2976 "Float semantics are not IEEEdouble");
Dale Johannesen7111b022008-10-09 18:53:47 +00002977 APInt api = bitcastToAPInt();
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002978 return api.bitsToDouble();
2979}
2980
Dale Johannesend3d8ce32008-10-06 18:22:29 +00002981/// Integer bit is explicit in this format. Intel hardware (387 and later)
2982/// does not support these bit patterns:
2983/// exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity")
2984/// exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN")
2985/// exponent = 0, integer bit 1 ("pseudodenormal")
2986/// exponent!=0 nor all 1's, integer bit 0 ("unnormal")
2987/// At the moment, the first two are treated as NaNs, the second two as Normal.
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002988void
Neil Booth4f881702007-09-26 21:33:42 +00002989APFloat::initFromF80LongDoubleAPInt(const APInt &api)
2990{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002991 assert(api.getBitWidth()==80);
2992 uint64_t i1 = api.getRawData()[0];
2993 uint64_t i2 = api.getRawData()[1];
Dale Johannesen1b25cb22009-03-23 21:16:53 +00002994 uint64_t myexponent = (i2 & 0x7fff);
2995 uint64_t mysignificand = i1;
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002996
2997 initialize(&APFloat::x87DoubleExtended);
Dale Johannesena72a5a02007-09-20 23:47:58 +00002998 assert(partCount()==2);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002999
Dale Johannesen1b25cb22009-03-23 21:16:53 +00003000 sign = static_cast<unsigned int>(i2>>15);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00003001 if (myexponent==0 && mysignificand==0) {
3002 // exponent, significand meaningless
3003 category = fcZero;
3004 } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) {
3005 // exponent, significand meaningless
3006 category = fcInfinity;
3007 } else if (myexponent==0x7fff && mysignificand!=0x8000000000000000ULL) {
3008 // exponent meaningless
3009 category = fcNaN;
Dale Johannesena72a5a02007-09-20 23:47:58 +00003010 significandParts()[0] = mysignificand;
3011 significandParts()[1] = 0;
Dale Johannesen3f6eb742007-09-11 18:32:33 +00003012 } else {
3013 category = fcNormal;
3014 exponent = myexponent - 16383;
Dale Johannesena72a5a02007-09-20 23:47:58 +00003015 significandParts()[0] = mysignificand;
3016 significandParts()[1] = 0;
Dale Johannesen3f6eb742007-09-11 18:32:33 +00003017 if (myexponent==0) // denormal
3018 exponent = -16382;
Neil Booth4f881702007-09-26 21:33:42 +00003019 }
Dale Johannesen3f6eb742007-09-11 18:32:33 +00003020}
3021
3022void
Dale Johannesena471c2e2007-10-11 18:07:22 +00003023APFloat::initFromPPCDoubleDoubleAPInt(const APInt &api)
3024{
3025 assert(api.getBitWidth()==128);
3026 uint64_t i1 = api.getRawData()[0];
3027 uint64_t i2 = api.getRawData()[1];
3028 uint64_t myexponent = (i1 >> 52) & 0x7ff;
3029 uint64_t mysignificand = i1 & 0xfffffffffffffLL;
3030 uint64_t myexponent2 = (i2 >> 52) & 0x7ff;
3031 uint64_t mysignificand2 = i2 & 0xfffffffffffffLL;
3032
3033 initialize(&APFloat::PPCDoubleDouble);
3034 assert(partCount()==2);
3035
Evan Cheng48e8c802008-05-02 21:15:08 +00003036 sign = static_cast<unsigned int>(i1>>63);
3037 sign2 = static_cast<unsigned int>(i2>>63);
Dale Johannesena471c2e2007-10-11 18:07:22 +00003038 if (myexponent==0 && mysignificand==0) {
3039 // exponent, significand meaningless
3040 // exponent2 and significand2 are required to be 0; we don't check
3041 category = fcZero;
3042 } else if (myexponent==0x7ff && mysignificand==0) {
3043 // exponent, significand meaningless
3044 // exponent2 and significand2 are required to be 0; we don't check
3045 category = fcInfinity;
3046 } else if (myexponent==0x7ff && mysignificand!=0) {
Dan Gohman16e02092010-03-24 19:38:02 +00003047 // exponent meaningless. So is the whole second word, but keep it
Dale Johannesena471c2e2007-10-11 18:07:22 +00003048 // for determinism.
3049 category = fcNaN;
3050 exponent2 = myexponent2;
3051 significandParts()[0] = mysignificand;
3052 significandParts()[1] = mysignificand2;
3053 } else {
3054 category = fcNormal;
3055 // Note there is no category2; the second word is treated as if it is
3056 // fcNormal, although it might be something else considered by itself.
3057 exponent = myexponent - 1023;
3058 exponent2 = myexponent2 - 1023;
3059 significandParts()[0] = mysignificand;
3060 significandParts()[1] = mysignificand2;
3061 if (myexponent==0) // denormal
3062 exponent = -1022;
3063 else
3064 significandParts()[0] |= 0x10000000000000LL; // integer bit
Dan Gohman16e02092010-03-24 19:38:02 +00003065 if (myexponent2==0)
Dale Johannesena471c2e2007-10-11 18:07:22 +00003066 exponent2 = -1022;
3067 else
3068 significandParts()[1] |= 0x10000000000000LL; // integer bit
3069 }
3070}
3071
3072void
Anton Korobeynikov7e844f12009-08-21 22:10:30 +00003073APFloat::initFromQuadrupleAPInt(const APInt &api)
3074{
3075 assert(api.getBitWidth()==128);
3076 uint64_t i1 = api.getRawData()[0];
3077 uint64_t i2 = api.getRawData()[1];
3078 uint64_t myexponent = (i2 >> 48) & 0x7fff;
3079 uint64_t mysignificand = i1;
3080 uint64_t mysignificand2 = i2 & 0xffffffffffffLL;
3081
3082 initialize(&APFloat::IEEEquad);
3083 assert(partCount()==2);
3084
3085 sign = static_cast<unsigned int>(i2>>63);
3086 if (myexponent==0 &&
3087 (mysignificand==0 && mysignificand2==0)) {
3088 // exponent, significand meaningless
3089 category = fcZero;
3090 } else if (myexponent==0x7fff &&
3091 (mysignificand==0 && mysignificand2==0)) {
3092 // exponent, significand meaningless
3093 category = fcInfinity;
3094 } else if (myexponent==0x7fff &&
3095 (mysignificand!=0 || mysignificand2 !=0)) {
3096 // exponent meaningless
3097 category = fcNaN;
3098 significandParts()[0] = mysignificand;
3099 significandParts()[1] = mysignificand2;
3100 } else {
3101 category = fcNormal;
3102 exponent = myexponent - 16383;
3103 significandParts()[0] = mysignificand;
3104 significandParts()[1] = mysignificand2;
3105 if (myexponent==0) // denormal
3106 exponent = -16382;
3107 else
3108 significandParts()[1] |= 0x1000000000000LL; // integer bit
3109 }
3110}
3111
3112void
Neil Booth4f881702007-09-26 21:33:42 +00003113APFloat::initFromDoubleAPInt(const APInt &api)
3114{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00003115 assert(api.getBitWidth()==64);
3116 uint64_t i = *api.getRawData();
Dale Johannesend3b51fd2007-08-24 05:08:11 +00003117 uint64_t myexponent = (i >> 52) & 0x7ff;
3118 uint64_t mysignificand = i & 0xfffffffffffffLL;
3119
Dale Johannesen343e7702007-08-24 00:56:33 +00003120 initialize(&APFloat::IEEEdouble);
Dale Johannesen343e7702007-08-24 00:56:33 +00003121 assert(partCount()==1);
3122
Evan Cheng48e8c802008-05-02 21:15:08 +00003123 sign = static_cast<unsigned int>(i>>63);
Dale Johannesen343e7702007-08-24 00:56:33 +00003124 if (myexponent==0 && mysignificand==0) {
3125 // exponent, significand meaningless
3126 category = fcZero;
Dale Johannesen343e7702007-08-24 00:56:33 +00003127 } else if (myexponent==0x7ff && mysignificand==0) {
3128 // exponent, significand meaningless
3129 category = fcInfinity;
Dale Johanneseneaf08942007-08-31 04:03:46 +00003130 } else if (myexponent==0x7ff && mysignificand!=0) {
3131 // exponent meaningless
3132 category = fcNaN;
3133 *significandParts() = mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00003134 } else {
Dale Johannesen343e7702007-08-24 00:56:33 +00003135 category = fcNormal;
3136 exponent = myexponent - 1023;
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00003137 *significandParts() = mysignificand;
3138 if (myexponent==0) // denormal
3139 exponent = -1022;
3140 else
3141 *significandParts() |= 0x10000000000000LL; // integer bit
Neil Booth4f881702007-09-26 21:33:42 +00003142 }
Dale Johannesen343e7702007-08-24 00:56:33 +00003143}
3144
Dale Johannesen3f6eb742007-09-11 18:32:33 +00003145void
Neil Booth4f881702007-09-26 21:33:42 +00003146APFloat::initFromFloatAPInt(const APInt & api)
3147{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00003148 assert(api.getBitWidth()==32);
3149 uint32_t i = (uint32_t)*api.getRawData();
Dale Johannesend3b51fd2007-08-24 05:08:11 +00003150 uint32_t myexponent = (i >> 23) & 0xff;
3151 uint32_t mysignificand = i & 0x7fffff;
3152
Dale Johannesen343e7702007-08-24 00:56:33 +00003153 initialize(&APFloat::IEEEsingle);
Dale Johannesen343e7702007-08-24 00:56:33 +00003154 assert(partCount()==1);
3155
Dale Johanneseneaf08942007-08-31 04:03:46 +00003156 sign = i >> 31;
Dale Johannesen343e7702007-08-24 00:56:33 +00003157 if (myexponent==0 && mysignificand==0) {
3158 // exponent, significand meaningless
3159 category = fcZero;
Dale Johannesen343e7702007-08-24 00:56:33 +00003160 } else if (myexponent==0xff && mysignificand==0) {
3161 // exponent, significand meaningless
3162 category = fcInfinity;
Dale Johannesen902ff942007-09-25 17:25:00 +00003163 } else if (myexponent==0xff && mysignificand!=0) {
Dale Johannesen343e7702007-08-24 00:56:33 +00003164 // sign, exponent, significand meaningless
Dale Johanneseneaf08942007-08-31 04:03:46 +00003165 category = fcNaN;
3166 *significandParts() = mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00003167 } else {
3168 category = fcNormal;
Dale Johannesen343e7702007-08-24 00:56:33 +00003169 exponent = myexponent - 127; //bias
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00003170 *significandParts() = mysignificand;
3171 if (myexponent==0) // denormal
3172 exponent = -126;
3173 else
3174 *significandParts() |= 0x800000; // integer bit
Dale Johannesen343e7702007-08-24 00:56:33 +00003175 }
3176}
Dale Johannesen3f6eb742007-09-11 18:32:33 +00003177
Chris Lattnercc4287a2009-10-16 02:13:51 +00003178void
3179APFloat::initFromHalfAPInt(const APInt & api)
3180{
3181 assert(api.getBitWidth()==16);
3182 uint32_t i = (uint32_t)*api.getRawData();
Dale Johannesena223aed2009-10-23 04:02:51 +00003183 uint32_t myexponent = (i >> 10) & 0x1f;
Chris Lattnercc4287a2009-10-16 02:13:51 +00003184 uint32_t mysignificand = i & 0x3ff;
3185
3186 initialize(&APFloat::IEEEhalf);
3187 assert(partCount()==1);
3188
3189 sign = i >> 15;
3190 if (myexponent==0 && mysignificand==0) {
3191 // exponent, significand meaningless
3192 category = fcZero;
3193 } else if (myexponent==0x1f && mysignificand==0) {
3194 // exponent, significand meaningless
3195 category = fcInfinity;
3196 } else if (myexponent==0x1f && mysignificand!=0) {
3197 // sign, exponent, significand meaningless
3198 category = fcNaN;
3199 *significandParts() = mysignificand;
3200 } else {
3201 category = fcNormal;
3202 exponent = myexponent - 15; //bias
3203 *significandParts() = mysignificand;
3204 if (myexponent==0) // denormal
3205 exponent = -14;
3206 else
3207 *significandParts() |= 0x400; // integer bit
3208 }
3209}
3210
Dale Johannesen3f6eb742007-09-11 18:32:33 +00003211/// Treat api as containing the bits of a floating point number. Currently
Dale Johannesena471c2e2007-10-11 18:07:22 +00003212/// we infer the floating point type from the size of the APInt. The
3213/// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful
3214/// when the size is anything else).
Dale Johannesen3f6eb742007-09-11 18:32:33 +00003215void
Dale Johannesena471c2e2007-10-11 18:07:22 +00003216APFloat::initFromAPInt(const APInt& api, bool isIEEE)
Neil Booth4f881702007-09-26 21:33:42 +00003217{
Chris Lattnercc4287a2009-10-16 02:13:51 +00003218 if (api.getBitWidth() == 16)
3219 return initFromHalfAPInt(api);
3220 else if (api.getBitWidth() == 32)
Dale Johannesen3f6eb742007-09-11 18:32:33 +00003221 return initFromFloatAPInt(api);
3222 else if (api.getBitWidth()==64)
3223 return initFromDoubleAPInt(api);
3224 else if (api.getBitWidth()==80)
3225 return initFromF80LongDoubleAPInt(api);
Anton Korobeynikov7e844f12009-08-21 22:10:30 +00003226 else if (api.getBitWidth()==128)
3227 return (isIEEE ?
3228 initFromQuadrupleAPInt(api) : initFromPPCDoubleDoubleAPInt(api));
Dale Johannesen3f6eb742007-09-11 18:32:33 +00003229 else
Torok Edwinc23197a2009-07-14 16:55:14 +00003230 llvm_unreachable(0);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00003231}
3232
Nadav Rotem093399c2011-02-17 21:22:27 +00003233APFloat
3234APFloat::getAllOnesValue(unsigned BitWidth, bool isIEEE)
3235{
3236 return APFloat(APInt::getAllOnesValue(BitWidth), isIEEE);
3237}
3238
John McCall00e65de2009-12-24 08:56:26 +00003239APFloat APFloat::getLargest(const fltSemantics &Sem, bool Negative) {
3240 APFloat Val(Sem, fcNormal, Negative);
3241
3242 // We want (in interchange format):
3243 // sign = {Negative}
3244 // exponent = 1..10
3245 // significand = 1..1
3246
3247 Val.exponent = Sem.maxExponent; // unbiased
3248
3249 // 1-initialize all bits....
3250 Val.zeroSignificand();
3251 integerPart *significand = Val.significandParts();
3252 unsigned N = partCountForBits(Sem.precision);
3253 for (unsigned i = 0; i != N; ++i)
3254 significand[i] = ~((integerPart) 0);
3255
3256 // ...and then clear the top bits for internal consistency.
Eli Friedman7247a5f2011-10-12 21:51:36 +00003257 if (Sem.precision % integerPartWidth != 0)
3258 significand[N-1] &=
3259 (((integerPart) 1) << (Sem.precision % integerPartWidth)) - 1;
John McCall00e65de2009-12-24 08:56:26 +00003260
3261 return Val;
3262}
3263
3264APFloat APFloat::getSmallest(const fltSemantics &Sem, bool Negative) {
3265 APFloat Val(Sem, fcNormal, Negative);
3266
3267 // We want (in interchange format):
3268 // sign = {Negative}
3269 // exponent = 0..0
3270 // significand = 0..01
3271
3272 Val.exponent = Sem.minExponent; // unbiased
3273 Val.zeroSignificand();
3274 Val.significandParts()[0] = 1;
3275 return Val;
3276}
3277
3278APFloat APFloat::getSmallestNormalized(const fltSemantics &Sem, bool Negative) {
3279 APFloat Val(Sem, fcNormal, Negative);
3280
3281 // We want (in interchange format):
3282 // sign = {Negative}
3283 // exponent = 0..0
3284 // significand = 10..0
3285
3286 Val.exponent = Sem.minExponent;
3287 Val.zeroSignificand();
Dan Gohman16e02092010-03-24 19:38:02 +00003288 Val.significandParts()[partCountForBits(Sem.precision)-1] |=
Eli Friedman90196fc2011-10-12 21:56:19 +00003289 (((integerPart) 1) << ((Sem.precision - 1) % integerPartWidth));
John McCall00e65de2009-12-24 08:56:26 +00003290
3291 return Val;
3292}
3293
Bill Wendlingf09a8b52011-03-18 09:09:44 +00003294APFloat::APFloat(const APInt& api, bool isIEEE) : exponent2(0), sign2(0) {
Dale Johannesena471c2e2007-10-11 18:07:22 +00003295 initFromAPInt(api, isIEEE);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00003296}
3297
Bill Wendlingf09a8b52011-03-18 09:09:44 +00003298APFloat::APFloat(float f) : exponent2(0), sign2(0) {
Jay Foade4d19c92010-11-28 21:04:48 +00003299 initFromAPInt(APInt::floatToBits(f));
Dale Johannesen3f6eb742007-09-11 18:32:33 +00003300}
3301
Bill Wendlingf09a8b52011-03-18 09:09:44 +00003302APFloat::APFloat(double d) : exponent2(0), sign2(0) {
Jay Foade4d19c92010-11-28 21:04:48 +00003303 initFromAPInt(APInt::doubleToBits(d));
Dale Johannesen3f6eb742007-09-11 18:32:33 +00003304}
John McCall00e65de2009-12-24 08:56:26 +00003305
3306namespace {
David Blaikie9f14ed12012-07-25 18:04:24 +00003307 void append(SmallVectorImpl<char> &Buffer, StringRef Str) {
3308 Buffer.append(Str.begin(), Str.end());
John McCall00e65de2009-12-24 08:56:26 +00003309 }
3310
John McCall003a09c2009-12-24 12:16:56 +00003311 /// Removes data from the given significand until it is no more
3312 /// precise than is required for the desired precision.
3313 void AdjustToPrecision(APInt &significand,
3314 int &exp, unsigned FormatPrecision) {
3315 unsigned bits = significand.getActiveBits();
3316
3317 // 196/59 is a very slight overestimate of lg_2(10).
3318 unsigned bitsRequired = (FormatPrecision * 196 + 58) / 59;
3319
3320 if (bits <= bitsRequired) return;
3321
3322 unsigned tensRemovable = (bits - bitsRequired) * 59 / 196;
3323 if (!tensRemovable) return;
3324
3325 exp += tensRemovable;
3326
3327 APInt divisor(significand.getBitWidth(), 1);
3328 APInt powten(significand.getBitWidth(), 10);
3329 while (true) {
3330 if (tensRemovable & 1)
3331 divisor *= powten;
3332 tensRemovable >>= 1;
3333 if (!tensRemovable) break;
3334 powten *= powten;
3335 }
3336
3337 significand = significand.udiv(divisor);
3338
3339 // Truncate the significand down to its active bit count, but
3340 // don't try to drop below 32.
John McCall6a09aff2009-12-24 23:18:09 +00003341 unsigned newPrecision = std::max(32U, significand.getActiveBits());
Jay Foad40f8f622010-12-07 08:25:19 +00003342 significand = significand.trunc(newPrecision);
John McCall003a09c2009-12-24 12:16:56 +00003343 }
3344
3345
John McCall00e65de2009-12-24 08:56:26 +00003346 void AdjustToPrecision(SmallVectorImpl<char> &buffer,
3347 int &exp, unsigned FormatPrecision) {
3348 unsigned N = buffer.size();
3349 if (N <= FormatPrecision) return;
3350
3351 // The most significant figures are the last ones in the buffer.
3352 unsigned FirstSignificant = N - FormatPrecision;
3353
3354 // Round.
3355 // FIXME: this probably shouldn't use 'round half up'.
3356
3357 // Rounding down is just a truncation, except we also want to drop
3358 // trailing zeros from the new result.
3359 if (buffer[FirstSignificant - 1] < '5') {
NAKAMURA Takumi752b2f02012-02-19 03:18:29 +00003360 while (FirstSignificant < N && buffer[FirstSignificant] == '0')
John McCall00e65de2009-12-24 08:56:26 +00003361 FirstSignificant++;
3362
3363 exp += FirstSignificant;
3364 buffer.erase(&buffer[0], &buffer[FirstSignificant]);
3365 return;
3366 }
3367
3368 // Rounding up requires a decimal add-with-carry. If we continue
3369 // the carry, the newly-introduced zeros will just be truncated.
3370 for (unsigned I = FirstSignificant; I != N; ++I) {
3371 if (buffer[I] == '9') {
3372 FirstSignificant++;
3373 } else {
3374 buffer[I]++;
3375 break;
3376 }
3377 }
3378
3379 // If we carried through, we have exactly one digit of precision.
3380 if (FirstSignificant == N) {
3381 exp += FirstSignificant;
3382 buffer.clear();
3383 buffer.push_back('1');
3384 return;
3385 }
3386
3387 exp += FirstSignificant;
3388 buffer.erase(&buffer[0], &buffer[FirstSignificant]);
3389 }
3390}
3391
3392void APFloat::toString(SmallVectorImpl<char> &Str,
3393 unsigned FormatPrecision,
Chris Lattner0ddda3b2010-03-06 19:20:13 +00003394 unsigned FormatMaxPadding) const {
John McCall00e65de2009-12-24 08:56:26 +00003395 switch (category) {
3396 case fcInfinity:
3397 if (isNegative())
3398 return append(Str, "-Inf");
3399 else
3400 return append(Str, "+Inf");
3401
3402 case fcNaN: return append(Str, "NaN");
3403
3404 case fcZero:
3405 if (isNegative())
3406 Str.push_back('-');
3407
3408 if (!FormatMaxPadding)
3409 append(Str, "0.0E+0");
3410 else
3411 Str.push_back('0');
3412 return;
3413
3414 case fcNormal:
3415 break;
3416 }
3417
3418 if (isNegative())
3419 Str.push_back('-');
3420
3421 // Decompose the number into an APInt and an exponent.
3422 int exp = exponent - ((int) semantics->precision - 1);
3423 APInt significand(semantics->precision,
Jeffrey Yasskin3ba292d2011-07-18 21:45:40 +00003424 makeArrayRef(significandParts(),
3425 partCountForBits(semantics->precision)));
John McCall00e65de2009-12-24 08:56:26 +00003426
John McCall6a09aff2009-12-24 23:18:09 +00003427 // Set FormatPrecision if zero. We want to do this before we
3428 // truncate trailing zeros, as those are part of the precision.
3429 if (!FormatPrecision) {
3430 // It's an interesting question whether to use the nominal
3431 // precision or the active precision here for denormals.
3432
3433 // FormatPrecision = ceil(significandBits / lg_2(10))
3434 FormatPrecision = (semantics->precision * 59 + 195) / 196;
3435 }
3436
John McCall00e65de2009-12-24 08:56:26 +00003437 // Ignore trailing binary zeros.
3438 int trailingZeros = significand.countTrailingZeros();
3439 exp += trailingZeros;
3440 significand = significand.lshr(trailingZeros);
3441
3442 // Change the exponent from 2^e to 10^e.
3443 if (exp == 0) {
3444 // Nothing to do.
3445 } else if (exp > 0) {
3446 // Just shift left.
Jay Foad40f8f622010-12-07 08:25:19 +00003447 significand = significand.zext(semantics->precision + exp);
John McCall00e65de2009-12-24 08:56:26 +00003448 significand <<= exp;
3449 exp = 0;
3450 } else { /* exp < 0 */
3451 int texp = -exp;
3452
3453 // We transform this using the identity:
3454 // (N)(2^-e) == (N)(5^e)(10^-e)
3455 // This means we have to multiply N (the significand) by 5^e.
3456 // To avoid overflow, we have to operate on numbers large
3457 // enough to store N * 5^e:
3458 // log2(N * 5^e) == log2(N) + e * log2(5)
John McCall6a09aff2009-12-24 23:18:09 +00003459 // <= semantics->precision + e * 137 / 59
3460 // (log_2(5) ~ 2.321928 < 2.322034 ~ 137/59)
Dan Gohman16e02092010-03-24 19:38:02 +00003461
Eli Friedman9eb6b4d2011-10-07 23:40:49 +00003462 unsigned precision = semantics->precision + (137 * texp + 136) / 59;
John McCall00e65de2009-12-24 08:56:26 +00003463
3464 // Multiply significand by 5^e.
3465 // N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8)
Jay Foad40f8f622010-12-07 08:25:19 +00003466 significand = significand.zext(precision);
John McCall00e65de2009-12-24 08:56:26 +00003467 APInt five_to_the_i(precision, 5);
3468 while (true) {
3469 if (texp & 1) significand *= five_to_the_i;
Dan Gohman16e02092010-03-24 19:38:02 +00003470
John McCall00e65de2009-12-24 08:56:26 +00003471 texp >>= 1;
3472 if (!texp) break;
3473 five_to_the_i *= five_to_the_i;
3474 }
3475 }
3476
John McCall003a09c2009-12-24 12:16:56 +00003477 AdjustToPrecision(significand, exp, FormatPrecision);
3478
John McCall00e65de2009-12-24 08:56:26 +00003479 llvm::SmallVector<char, 256> buffer;
3480
3481 // Fill the buffer.
3482 unsigned precision = significand.getBitWidth();
3483 APInt ten(precision, 10);
3484 APInt digit(precision, 0);
3485
3486 bool inTrail = true;
3487 while (significand != 0) {
3488 // digit <- significand % 10
3489 // significand <- significand / 10
3490 APInt::udivrem(significand, ten, significand, digit);
3491
3492 unsigned d = digit.getZExtValue();
3493
3494 // Drop trailing zeros.
3495 if (inTrail && !d) exp++;
3496 else {
3497 buffer.push_back((char) ('0' + d));
3498 inTrail = false;
3499 }
3500 }
3501
3502 assert(!buffer.empty() && "no characters in buffer!");
3503
3504 // Drop down to FormatPrecision.
3505 // TODO: don't do more precise calculations above than are required.
3506 AdjustToPrecision(buffer, exp, FormatPrecision);
3507
3508 unsigned NDigits = buffer.size();
3509
John McCall6a09aff2009-12-24 23:18:09 +00003510 // Check whether we should use scientific notation.
John McCall00e65de2009-12-24 08:56:26 +00003511 bool FormatScientific;
3512 if (!FormatMaxPadding)
3513 FormatScientific = true;
3514 else {
John McCall00e65de2009-12-24 08:56:26 +00003515 if (exp >= 0) {
John McCall6a09aff2009-12-24 23:18:09 +00003516 // 765e3 --> 765000
3517 // ^^^
3518 // But we shouldn't make the number look more precise than it is.
3519 FormatScientific = ((unsigned) exp > FormatMaxPadding ||
3520 NDigits + (unsigned) exp > FormatPrecision);
John McCall00e65de2009-12-24 08:56:26 +00003521 } else {
John McCall6a09aff2009-12-24 23:18:09 +00003522 // Power of the most significant digit.
3523 int MSD = exp + (int) (NDigits - 1);
3524 if (MSD >= 0) {
John McCall00e65de2009-12-24 08:56:26 +00003525 // 765e-2 == 7.65
John McCall6a09aff2009-12-24 23:18:09 +00003526 FormatScientific = false;
John McCall00e65de2009-12-24 08:56:26 +00003527 } else {
3528 // 765e-5 == 0.00765
3529 // ^ ^^
John McCall6a09aff2009-12-24 23:18:09 +00003530 FormatScientific = ((unsigned) -MSD) > FormatMaxPadding;
John McCall00e65de2009-12-24 08:56:26 +00003531 }
3532 }
John McCall00e65de2009-12-24 08:56:26 +00003533 }
3534
3535 // Scientific formatting is pretty straightforward.
3536 if (FormatScientific) {
3537 exp += (NDigits - 1);
3538
3539 Str.push_back(buffer[NDigits-1]);
3540 Str.push_back('.');
3541 if (NDigits == 1)
3542 Str.push_back('0');
3543 else
3544 for (unsigned I = 1; I != NDigits; ++I)
3545 Str.push_back(buffer[NDigits-1-I]);
3546 Str.push_back('E');
3547
3548 Str.push_back(exp >= 0 ? '+' : '-');
3549 if (exp < 0) exp = -exp;
3550 SmallVector<char, 6> expbuf;
3551 do {
3552 expbuf.push_back((char) ('0' + (exp % 10)));
3553 exp /= 10;
3554 } while (exp);
3555 for (unsigned I = 0, E = expbuf.size(); I != E; ++I)
3556 Str.push_back(expbuf[E-1-I]);
3557 return;
3558 }
3559
3560 // Non-scientific, positive exponents.
3561 if (exp >= 0) {
3562 for (unsigned I = 0; I != NDigits; ++I)
3563 Str.push_back(buffer[NDigits-1-I]);
3564 for (unsigned I = 0; I != (unsigned) exp; ++I)
3565 Str.push_back('0');
3566 return;
3567 }
3568
3569 // Non-scientific, negative exponents.
3570
3571 // The number of digits to the left of the decimal point.
3572 int NWholeDigits = exp + (int) NDigits;
3573
3574 unsigned I = 0;
3575 if (NWholeDigits > 0) {
3576 for (; I != (unsigned) NWholeDigits; ++I)
3577 Str.push_back(buffer[NDigits-I-1]);
3578 Str.push_back('.');
3579 } else {
3580 unsigned NZeros = 1 + (unsigned) -NWholeDigits;
3581
3582 Str.push_back('0');
3583 Str.push_back('.');
3584 for (unsigned Z = 1; Z != NZeros; ++Z)
3585 Str.push_back('0');
3586 }
3587
3588 for (; I != NDigits; ++I)
3589 Str.push_back(buffer[NDigits-I-1]);
3590}
Benjamin Kramer27460002011-03-30 15:42:27 +00003591
3592bool APFloat::getExactInverse(APFloat *inv) const {
Chris Lattner7a2bdde2011-04-15 05:18:47 +00003593 // We can only guarantee the existence of an exact inverse for IEEE floats.
Benjamin Kramer27460002011-03-30 15:42:27 +00003594 if (semantics != &IEEEhalf && semantics != &IEEEsingle &&
3595 semantics != &IEEEdouble && semantics != &IEEEquad)
3596 return false;
3597
3598 // Special floats and denormals have no exact inverse.
3599 if (category != fcNormal)
3600 return false;
3601
3602 // Check that the number is a power of two by making sure that only the
3603 // integer bit is set in the significand.
3604 if (significandLSB() != semantics->precision - 1)
3605 return false;
3606
3607 // Get the inverse.
3608 APFloat reciprocal(*semantics, 1ULL);
3609 if (reciprocal.divide(*this, rmNearestTiesToEven) != opOK)
3610 return false;
3611
Benjamin Kramer83985122011-03-30 17:02:54 +00003612 // Avoid multiplication with a denormal, it is not safe on all platforms and
3613 // may be slower than a normal division.
3614 if (reciprocal.significandMSB() + 1 < reciprocal.semantics->precision)
3615 return false;
3616
3617 assert(reciprocal.category == fcNormal &&
3618 reciprocal.significandLSB() == reciprocal.semantics->precision - 1);
3619
Benjamin Kramer27460002011-03-30 15:42:27 +00003620 if (inv)
3621 *inv = reciprocal;
3622
3623 return true;
3624}