blob: b69f5c6f6d421a9c1d3d0f6062e2c1e5f9a4fbf2 [file] [log] [blame]
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for PowerPC --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
Misha Brukman98649d12004-06-24 21:54:47 +000010#define DEBUG_TYPE "isel"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000011#include "PowerPC.h"
12#include "PowerPCInstrBuilder.h"
13#include "PowerPCInstrInfo.h"
14#include "llvm/Constants.h"
15#include "llvm/DerivedTypes.h"
16#include "llvm/Function.h"
17#include "llvm/Instructions.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000018#include "llvm/Pass.h"
Misha Brukman8c9f5202004-06-21 18:30:31 +000019#include "llvm/CodeGen/IntrinsicLowering.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000020#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/SSARegMap.h"
24#include "llvm/Target/MRegisterInfo.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Support/GetElementPtrTypeIterator.h"
27#include "llvm/Support/InstVisitor.h"
Misha Brukman98649d12004-06-24 21:54:47 +000028#include "Support/Debug.h"
29#include <vector>
Misha Brukman5dfe3a92004-06-21 16:55:25 +000030using namespace llvm;
31
32namespace {
Misha Brukman422791f2004-06-21 17:41:12 +000033 /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
34 /// PPC Representation.
Misha Brukman5dfe3a92004-06-21 16:55:25 +000035 ///
36 enum TypeClass {
37 cByte, cShort, cInt, cFP, cLong
38 };
39}
40
41/// getClass - Turn a primitive type into a "class" number which is based on the
42/// size of the type, and whether or not it is floating point.
43///
44static inline TypeClass getClass(const Type *Ty) {
Misha Brukman358829f2004-06-21 17:25:55 +000045 switch (Ty->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +000046 case Type::SByteTyID:
47 case Type::UByteTyID: return cByte; // Byte operands are class #0
48 case Type::ShortTyID:
49 case Type::UShortTyID: return cShort; // Short operands are class #1
50 case Type::IntTyID:
51 case Type::UIntTyID:
52 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
53
54 case Type::FloatTyID:
55 case Type::DoubleTyID: return cFP; // Floating Point is #3
56
57 case Type::LongTyID:
58 case Type::ULongTyID: return cLong; // Longs are class #4
59 default:
60 assert(0 && "Invalid type to getClass!");
61 return cByte; // not reached
62 }
63}
64
65// getClassB - Just like getClass, but treat boolean values as ints.
66static inline TypeClass getClassB(const Type *Ty) {
67 if (Ty == Type::BoolTy) return cInt;
68 return getClass(Ty);
69}
70
71namespace {
72 struct ISel : public FunctionPass, InstVisitor<ISel> {
73 TargetMachine &TM;
74 MachineFunction *F; // The function we are compiling into
75 MachineBasicBlock *BB; // The current MBB we are compiling
76 int VarArgsFrameIndex; // FrameIndex for start of varargs area
77 int ReturnAddressIndex; // FrameIndex for the return address
78
79 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
80
81 // MBBMap - Mapping between LLVM BB -> Machine BB
82 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
83
84 // AllocaMap - Mapping from fixed sized alloca instructions to the
85 // FrameIndex for the alloca.
86 std::map<AllocaInst*, unsigned> AllocaMap;
87
88 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
89
Misha Brukmand18a31d2004-07-06 22:51:53 +000090 bool doInitialization(Module &M) {
91 Type *d = Type::DoubleTy;
92 // double fmod(double, double);
93 // M.getOrInsertFunction("fmod", d, d, d, 0);
94 // { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
95 return false;
96 }
97
Misha Brukman5dfe3a92004-06-21 16:55:25 +000098 /// runOnFunction - Top level implementation of instruction selection for
99 /// the entire function.
100 ///
101 bool runOnFunction(Function &Fn) {
102 // First pass over the function, lower any unknown intrinsic functions
103 // with the IntrinsicLowering class.
104 LowerUnknownIntrinsicFunctionCalls(Fn);
105
106 F = &MachineFunction::construct(&Fn, TM);
107
108 // Create all of the machine basic blocks for the function...
109 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
110 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
111
112 BB = &F->front();
113
114 // Set up a frame object for the return address. This is used by the
115 // llvm.returnaddress & llvm.frameaddress intrinisics.
116 ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
117
118 // Copy incoming arguments off of the stack...
119 LoadArgumentsToVirtualRegs(Fn);
120
121 // Instruction select everything except PHI nodes
122 visit(Fn);
123
124 // Select the PHI nodes
125 SelectPHINodes();
126
127 RegMap.clear();
128 MBBMap.clear();
129 AllocaMap.clear();
130 F = 0;
131 // We always build a machine code representation for the function
132 return true;
133 }
134
135 virtual const char *getPassName() const {
136 return "PowerPC Simple Instruction Selection";
137 }
138
139 /// visitBasicBlock - This method is called when we are visiting a new basic
140 /// block. This simply creates a new MachineBasicBlock to emit code into
141 /// and adds it to the current MachineFunction. Subsequent visit* for
142 /// instructions will be invoked for all instructions in the basic block.
143 ///
144 void visitBasicBlock(BasicBlock &LLVM_BB) {
145 BB = MBBMap[&LLVM_BB];
146 }
147
148 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
149 /// function, lowering any calls to unknown intrinsic functions into the
150 /// equivalent LLVM code.
151 ///
152 void LowerUnknownIntrinsicFunctionCalls(Function &F);
153
154 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
155 /// from the stack into virtual registers.
156 ///
157 void LoadArgumentsToVirtualRegs(Function &F);
158
159 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
160 /// because we have to generate our sources into the source basic blocks,
161 /// not the current one.
162 ///
163 void SelectPHINodes();
164
165 // Visitation methods for various instructions. These methods simply emit
166 // fixed PowerPC code for each instruction.
167
168 // Control flow operators
169 void visitReturnInst(ReturnInst &RI);
170 void visitBranchInst(BranchInst &BI);
171
172 struct ValueRecord {
173 Value *Val;
174 unsigned Reg;
175 const Type *Ty;
176 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
177 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
178 };
179 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmand18a31d2004-07-06 22:51:53 +0000180 const std::vector<ValueRecord> &Args, bool isVarArg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000181 void visitCallInst(CallInst &I);
182 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
183
184 // Arithmetic operators
185 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
186 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
187 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
188 void visitMul(BinaryOperator &B);
189
190 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
191 void visitRem(BinaryOperator &B) { visitDivRem(B); }
192 void visitDivRem(BinaryOperator &B);
193
194 // Bitwise operators
195 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
196 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
197 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
198
199 // Comparison operators...
200 void visitSetCondInst(SetCondInst &I);
201 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
202 MachineBasicBlock *MBB,
203 MachineBasicBlock::iterator MBBI);
204 void visitSelectInst(SelectInst &SI);
205
206
207 // Memory Instructions
208 void visitLoadInst(LoadInst &I);
209 void visitStoreInst(StoreInst &I);
210 void visitGetElementPtrInst(GetElementPtrInst &I);
211 void visitAllocaInst(AllocaInst &I);
212 void visitMallocInst(MallocInst &I);
213 void visitFreeInst(FreeInst &I);
214
215 // Other operators
216 void visitShiftInst(ShiftInst &I);
217 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
218 void visitCastInst(CastInst &I);
219 void visitVANextInst(VANextInst &I);
220 void visitVAArgInst(VAArgInst &I);
221
222 void visitInstruction(Instruction &I) {
223 std::cerr << "Cannot instruction select: " << I;
224 abort();
225 }
226
227 /// promote32 - Make a value 32-bits wide, and put it somewhere.
228 ///
229 void promote32(unsigned targetReg, const ValueRecord &VR);
230
231 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
232 /// constant expression GEP support.
233 ///
234 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
235 Value *Src, User::op_iterator IdxBegin,
236 User::op_iterator IdxEnd, unsigned TargetReg);
237
238 /// emitCastOperation - Common code shared between visitCastInst and
239 /// constant expression cast support.
240 ///
241 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
242 Value *Src, const Type *DestTy, unsigned TargetReg);
243
244 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
245 /// and constant expression support.
246 ///
247 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
248 MachineBasicBlock::iterator IP,
249 Value *Op0, Value *Op1,
250 unsigned OperatorClass, unsigned TargetReg);
251
252 /// emitBinaryFPOperation - This method handles emission of floating point
253 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
254 void emitBinaryFPOperation(MachineBasicBlock *BB,
255 MachineBasicBlock::iterator IP,
256 Value *Op0, Value *Op1,
257 unsigned OperatorClass, unsigned TargetReg);
258
259 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
260 Value *Op0, Value *Op1, unsigned TargetReg);
261
262 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
263 unsigned DestReg, const Type *DestTy,
264 unsigned Op0Reg, unsigned Op1Reg);
265 void doMultiplyConst(MachineBasicBlock *MBB,
266 MachineBasicBlock::iterator MBBI,
267 unsigned DestReg, const Type *DestTy,
268 unsigned Op0Reg, unsigned Op1Val);
269
270 void emitDivRemOperation(MachineBasicBlock *BB,
271 MachineBasicBlock::iterator IP,
272 Value *Op0, Value *Op1, bool isDiv,
273 unsigned TargetReg);
274
275 /// emitSetCCOperation - Common code shared between visitSetCondInst and
276 /// constant expression support.
277 ///
278 void emitSetCCOperation(MachineBasicBlock *BB,
279 MachineBasicBlock::iterator IP,
280 Value *Op0, Value *Op1, unsigned Opcode,
281 unsigned TargetReg);
282
283 /// emitShiftOperation - Common code shared between visitShiftInst and
284 /// constant expression support.
285 ///
286 void emitShiftOperation(MachineBasicBlock *MBB,
287 MachineBasicBlock::iterator IP,
288 Value *Op, Value *ShiftAmount, bool isLeftShift,
289 const Type *ResultTy, unsigned DestReg);
290
291 /// emitSelectOperation - Common code shared between visitSelectInst and the
292 /// constant expression support.
293 void emitSelectOperation(MachineBasicBlock *MBB,
294 MachineBasicBlock::iterator IP,
295 Value *Cond, Value *TrueVal, Value *FalseVal,
296 unsigned DestReg);
297
298 /// copyConstantToRegister - Output the instructions required to put the
299 /// specified constant into the specified register.
300 ///
301 void copyConstantToRegister(MachineBasicBlock *MBB,
302 MachineBasicBlock::iterator MBBI,
303 Constant *C, unsigned Reg);
304
305 void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
306 unsigned LHS, unsigned RHS);
307
308 /// makeAnotherReg - This method returns the next register number we haven't
309 /// yet used.
310 ///
311 /// Long values are handled somewhat specially. They are always allocated
312 /// as pairs of 32 bit integer values. The register number returned is the
313 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
314 /// of the long value.
315 ///
316 unsigned makeAnotherReg(const Type *Ty) {
317 assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
318 "Current target doesn't have PPC reg info??");
319 const PowerPCRegisterInfo *MRI =
320 static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
321 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
322 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
323 // Create the lower part
324 F->getSSARegMap()->createVirtualRegister(RC);
325 // Create the upper part.
326 return F->getSSARegMap()->createVirtualRegister(RC)-1;
327 }
328
329 // Add the mapping of regnumber => reg class to MachineFunction
330 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
331 return F->getSSARegMap()->createVirtualRegister(RC);
332 }
333
334 /// getReg - This method turns an LLVM value into a register number.
335 ///
336 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
337 unsigned getReg(Value *V) {
338 // Just append to the end of the current bb.
339 MachineBasicBlock::iterator It = BB->end();
340 return getReg(V, BB, It);
341 }
342 unsigned getReg(Value *V, MachineBasicBlock *MBB,
343 MachineBasicBlock::iterator IPt);
344
345 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
346 /// that is to be statically allocated with the initial stack frame
347 /// adjustment.
348 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
349 };
350}
351
352/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
353/// instruction in the entry block, return it. Otherwise, return a null
354/// pointer.
355static AllocaInst *dyn_castFixedAlloca(Value *V) {
356 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
357 BasicBlock *BB = AI->getParent();
358 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
359 return AI;
360 }
361 return 0;
362}
363
364/// getReg - This method turns an LLVM value into a register number.
365///
366unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
367 MachineBasicBlock::iterator IPt) {
368 // If this operand is a constant, emit the code to copy the constant into
369 // the register here...
370 //
371 if (Constant *C = dyn_cast<Constant>(V)) {
372 unsigned Reg = makeAnotherReg(V->getType());
373 copyConstantToRegister(MBB, IPt, C, Reg);
374 return Reg;
375 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
Misha Brukman7e5812c2004-06-28 18:20:59 +0000376 // GV is located at PC + distance
Misha Brukman7e5812c2004-06-28 18:20:59 +0000377 unsigned CurPC = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000378 unsigned Reg1 = makeAnotherReg(V->getType());
Misha Brukman422791f2004-06-21 17:41:12 +0000379 unsigned Reg2 = makeAnotherReg(V->getType());
Misha Brukman7e5812c2004-06-28 18:20:59 +0000380 // Move PC to destination reg
381 BuildMI(*MBB, IPt, PPC32::MovePCtoLR, 0, CurPC);
Misha Brukman7e5812c2004-06-28 18:20:59 +0000382 // Move value at PC + distance into return reg
383 BuildMI(*MBB, IPt, PPC32::LOADHiAddr, 2, Reg1).addReg(CurPC)
Misha Brukman911afde2004-06-25 14:50:41 +0000384 .addGlobalAddress(GV);
Misha Brukman9ecf3bf2004-06-25 14:57:19 +0000385 BuildMI(*MBB, IPt, PPC32::LOADLoAddr, 2, Reg2).addReg(Reg1)
Misha Brukman911afde2004-06-25 14:50:41 +0000386 .addGlobalAddress(GV);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000387 return Reg2;
388 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
389 // Do not emit noop casts at all.
390 if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()))
391 return getReg(CI->getOperand(0), MBB, IPt);
392 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
393 unsigned Reg = makeAnotherReg(V->getType());
394 unsigned FI = getFixedSizedAllocaFI(AI);
395 addFrameReference(BuildMI(*MBB, IPt, PPC32::ADDI, 2, Reg), FI, 0, false);
396 return Reg;
397 }
398
399 unsigned &Reg = RegMap[V];
400 if (Reg == 0) {
401 Reg = makeAnotherReg(V->getType());
402 RegMap[V] = Reg;
403 }
404
405 return Reg;
406}
407
408/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
409/// that is to be statically allocated with the initial stack frame
410/// adjustment.
411unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
412 // Already computed this?
413 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
414 if (I != AllocaMap.end() && I->first == AI) return I->second;
415
416 const Type *Ty = AI->getAllocatedType();
417 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
418 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
419 TySize *= CUI->getValue(); // Get total allocated size...
420 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
421
422 // Create a new stack object using the frame manager...
423 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
424 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
425 return FrameIdx;
426}
427
428
429/// copyConstantToRegister - Output the instructions required to put the
430/// specified constant into the specified register.
431///
432void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
433 MachineBasicBlock::iterator IP,
434 Constant *C, unsigned R) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000435 if (C->getType()->isIntegral()) {
436 unsigned Class = getClassB(C->getType());
437
438 if (Class == cLong) {
439 // Copy the value into the register pair.
440 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Misha Brukman422791f2004-06-21 17:41:12 +0000441 unsigned hiTmp = makeAnotherReg(Type::IntTy);
442 unsigned loTmp = makeAnotherReg(Type::IntTy);
Misha Brukman911afde2004-06-25 14:50:41 +0000443 BuildMI(*MBB, IP, PPC32::ADDIS, 2, loTmp).addReg(PPC32::R0)
444 .addImm(Val >> 48);
445 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(loTmp)
446 .addImm((Val >> 32) & 0xFFFF);
447 BuildMI(*MBB, IP, PPC32::ADDIS, 2, hiTmp).addReg(PPC32::R0)
448 .addImm((Val >> 16) & 0xFFFF);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000449 BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(hiTmp).addImm(Val & 0xFFFF);
450 return;
451 }
452
453 assert(Class <= cInt && "Type not handled yet!");
454
455 if (C->getType() == Type::BoolTy) {
Misha Brukman911afde2004-06-25 14:50:41 +0000456 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0)
457 .addImm(C == ConstantBool::True);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000458 } else if (Class == cByte || Class == cShort) {
459 ConstantInt *CI = cast<ConstantInt>(C);
Misha Brukman911afde2004-06-25 14:50:41 +0000460 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0)
461 .addImm(CI->getRawValue());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000462 } else {
463 ConstantInt *CI = cast<ConstantInt>(C);
464 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
465 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman911afde2004-06-25 14:50:41 +0000466 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0)
467 .addImm(CI->getRawValue());
Misha Brukman422791f2004-06-21 17:41:12 +0000468 } else {
469 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman911afde2004-06-25 14:50:41 +0000470 BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0)
471 .addImm(CI->getRawValue() >> 16);
472 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TmpReg)
473 .addImm(CI->getRawValue() & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +0000474 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000475 }
476 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000477 // We need to spill the constant to memory...
478 MachineConstantPool *CP = F->getConstantPool();
479 unsigned CPI = CP->getConstantPoolIndex(CFP);
480 const Type *Ty = CFP->getType();
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000481
Misha Brukmand18a31d2004-07-06 22:51:53 +0000482 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
483 unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC32::LFS : PPC32::LFD;
484 addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 2, R), CPI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000485 } else if (isa<ConstantPointerNull>(C)) {
486 // Copy zero (null pointer) to the register.
487 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(0);
488 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000489 BuildMI(*MBB, IP, PPC32::ADDIS, 2, R).addReg(PPC32::R0)
490 .addGlobalAddress(CPR->getValue());
491 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(PPC32::R0)
492 .addGlobalAddress(CPR->getValue());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000493 } else {
494 std::cerr << "Offending constant: " << C << "\n";
495 assert(0 && "Type not handled yet!");
496 }
497}
498
499/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
500/// the stack into virtual registers.
501///
502/// FIXME: When we can calculate which args are coming in via registers
503/// source them from there instead.
504void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
505 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
506 unsigned GPR_remaining = 8;
507 unsigned FPR_remaining = 13;
Misha Brukmand18a31d2004-07-06 22:51:53 +0000508 unsigned GPR_idx = 0, FPR_idx = 0;
509 static const unsigned GPR[] = {
510 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
511 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
512 };
513 static const unsigned FPR[] = {
514 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6, PPC32::F7,
515 PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12, PPC32::F13
516 };
Misha Brukman422791f2004-06-21 17:41:12 +0000517
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000518 MachineFrameInfo *MFI = F->getFrameInfo();
Misha Brukmand18a31d2004-07-06 22:51:53 +0000519
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000520 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
521 bool ArgLive = !I->use_empty();
522 unsigned Reg = ArgLive ? getReg(*I) : 0;
523 int FI; // Frame object index
524
525 switch (getClassB(I->getType())) {
526 case cByte:
527 if (ArgLive) {
528 FI = MFI->CreateFixedObject(1, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000529 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000530 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
531 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000532 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000533 addFrameReference(BuildMI(BB, PPC32::LBZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000534 }
535 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000536 break;
537 case cShort:
538 if (ArgLive) {
539 FI = MFI->CreateFixedObject(2, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000540 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000541 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
542 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000543 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000544 addFrameReference(BuildMI(BB, PPC32::LHZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000545 }
546 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000547 break;
548 case cInt:
549 if (ArgLive) {
550 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000551 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000552 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
553 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000554 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000555 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000556 }
557 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000558 break;
559 case cLong:
560 if (ArgLive) {
561 FI = MFI->CreateFixedObject(8, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000562 if (GPR_remaining > 1) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000563 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
564 .addReg(GPR[GPR_idx]);
565 BuildMI(BB, PPC32::OR, 2, Reg+1).addReg(GPR[GPR_idx+1])
566 .addReg(GPR[GPR_idx+1]);
Misha Brukman422791f2004-06-21 17:41:12 +0000567 } else {
568 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
569 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg+1), FI, 4);
570 }
571 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000572 ArgOffset += 4; // longs require 4 additional bytes
Misha Brukman422791f2004-06-21 17:41:12 +0000573 if (GPR_remaining > 1) {
574 GPR_remaining--; // uses up 2 GPRs
575 GPR_idx++;
576 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000577 break;
578 case cFP:
579 if (ArgLive) {
580 unsigned Opcode;
581 if (I->getType() == Type::FloatTy) {
582 Opcode = PPC32::LFS;
583 FI = MFI->CreateFixedObject(4, ArgOffset);
584 } else {
585 Opcode = PPC32::LFD;
586 FI = MFI->CreateFixedObject(8, ArgOffset);
587 }
Misha Brukman422791f2004-06-21 17:41:12 +0000588 if (FPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000589 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(FPR[FPR_idx]);
590 FPR_remaining--;
591 FPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000592 } else {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000593 addFrameReference(BuildMI(BB, Opcode, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000594 }
595 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000596 if (I->getType() == Type::DoubleTy) {
597 ArgOffset += 4; // doubles require 4 additional bytes
Misha Brukman422791f2004-06-21 17:41:12 +0000598 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000599 GPR_remaining--; // uses up 2 GPRs
600 GPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000601 }
602 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000603 break;
604 default:
605 assert(0 && "Unhandled argument type!");
606 }
607 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Misha Brukman422791f2004-06-21 17:41:12 +0000608 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000609 GPR_remaining--; // uses up 2 GPRs
610 GPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000611 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000612 }
613
614 // If the function takes variable number of arguments, add a frame offset for
615 // the start of the first vararg value... this is used to expand
616 // llvm.va_start.
617 if (Fn.getFunctionType()->isVarArg())
618 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
619}
620
621
622/// SelectPHINodes - Insert machine code to generate phis. This is tricky
623/// because we have to generate our sources into the source basic blocks, not
624/// the current one.
625///
626void ISel::SelectPHINodes() {
627 const TargetInstrInfo &TII = *TM.getInstrInfo();
628 const Function &LF = *F->getFunction(); // The LLVM function...
629 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
630 const BasicBlock *BB = I;
631 MachineBasicBlock &MBB = *MBBMap[I];
632
633 // Loop over all of the PHI nodes in the LLVM basic block...
634 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
635 for (BasicBlock::const_iterator I = BB->begin();
636 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
637
638 // Create a new machine instr PHI node, and insert it.
639 unsigned PHIReg = getReg(*PN);
640 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
641 PPC32::PHI, PN->getNumOperands(), PHIReg);
642
643 MachineInstr *LongPhiMI = 0;
644 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
645 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
646 PPC32::PHI, PN->getNumOperands(), PHIReg+1);
647
648 // PHIValues - Map of blocks to incoming virtual registers. We use this
649 // so that we only initialize one incoming value for a particular block,
650 // even if the block has multiple entries in the PHI node.
651 //
652 std::map<MachineBasicBlock*, unsigned> PHIValues;
653
654 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
655 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
656 unsigned ValReg;
657 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
658 PHIValues.lower_bound(PredMBB);
659
660 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
661 // We already inserted an initialization of the register for this
662 // predecessor. Recycle it.
663 ValReg = EntryIt->second;
664
665 } else {
666 // Get the incoming value into a virtual register.
667 //
668 Value *Val = PN->getIncomingValue(i);
669
670 // If this is a constant or GlobalValue, we may have to insert code
671 // into the basic block to compute it into a virtual register.
672 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
673 isa<GlobalValue>(Val)) {
674 // Simple constants get emitted at the end of the basic block,
675 // before any terminator instructions. We "know" that the code to
676 // move a constant into a register will never clobber any flags.
677 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
678 } else {
679 // Because we don't want to clobber any values which might be in
680 // physical registers with the computation of this constant (which
681 // might be arbitrarily complex if it is a constant expression),
682 // just insert the computation at the top of the basic block.
683 MachineBasicBlock::iterator PI = PredMBB->begin();
684
685 // Skip over any PHI nodes though!
686 while (PI != PredMBB->end() && PI->getOpcode() == PPC32::PHI)
687 ++PI;
688
689 ValReg = getReg(Val, PredMBB, PI);
690 }
691
692 // Remember that we inserted a value for this PHI for this predecessor
693 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
694 }
695
696 PhiMI->addRegOperand(ValReg);
697 PhiMI->addMachineBasicBlockOperand(PredMBB);
698 if (LongPhiMI) {
699 LongPhiMI->addRegOperand(ValReg+1);
700 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
701 }
702 }
703
704 // Now that we emitted all of the incoming values for the PHI node, make
705 // sure to reposition the InsertPoint after the PHI that we just added.
706 // This is needed because we might have inserted a constant into this
707 // block, right after the PHI's which is before the old insert point!
708 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
709 ++PHIInsertPoint;
710 }
711 }
712}
713
714
715// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
716// it into the conditional branch or select instruction which is the only user
717// of the cc instruction. This is the case if the conditional branch is the
718// only user of the setcc, and if the setcc is in the same basic block as the
719// conditional branch. We also don't handle long arguments below, so we reject
720// them here as well.
721//
722static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
723 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
724 if (SCI->hasOneUse()) {
725 Instruction *User = cast<Instruction>(SCI->use_back());
726 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
727 SCI->getParent() == User->getParent() &&
728 (getClassB(SCI->getOperand(0)->getType()) != cLong ||
729 SCI->getOpcode() == Instruction::SetEQ ||
730 SCI->getOpcode() == Instruction::SetNE))
731 return SCI;
732 }
733 return 0;
734}
735
736// Return a fixed numbering for setcc instructions which does not depend on the
737// order of the opcodes.
738//
739static unsigned getSetCCNumber(unsigned Opcode) {
Misha Brukmane9c65512004-07-06 15:32:44 +0000740 switch (Opcode) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000741 default: assert(0 && "Unknown setcc instruction!");
742 case Instruction::SetEQ: return 0;
743 case Instruction::SetNE: return 1;
744 case Instruction::SetLT: return 2;
745 case Instruction::SetGE: return 3;
746 case Instruction::SetGT: return 4;
747 case Instruction::SetLE: return 5;
748 }
749}
750
Misha Brukmane9c65512004-07-06 15:32:44 +0000751static unsigned getPPCOpcodeForSetCCNumber(unsigned Opcode) {
752 switch (Opcode) {
753 default: assert(0 && "Unknown setcc instruction!");
754 case Instruction::SetEQ: return PPC32::BEQ;
755 case Instruction::SetNE: return PPC32::BNE;
756 case Instruction::SetLT: return PPC32::BLT;
757 case Instruction::SetGE: return PPC32::BGE;
758 case Instruction::SetGT: return PPC32::BGT;
759 case Instruction::SetLE: return PPC32::BLE;
760 }
761}
762
763static unsigned invertPPCBranchOpcode(unsigned Opcode) {
764 switch (Opcode) {
765 default: assert(0 && "Unknown PPC32 branch opcode!");
766 case PPC32::BEQ: return PPC32::BNE;
767 case PPC32::BNE: return PPC32::BEQ;
768 case PPC32::BLT: return PPC32::BGE;
769 case PPC32::BGE: return PPC32::BLT;
770 case PPC32::BGT: return PPC32::BLE;
771 case PPC32::BLE: return PPC32::BGT;
772 }
773}
774
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000775/// emitUCOM - emits an unordered FP compare.
776void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
777 unsigned LHS, unsigned RHS) {
Misha Brukman422791f2004-06-21 17:41:12 +0000778 BuildMI(*MBB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(LHS).addReg(RHS);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000779}
780
781// EmitComparison - This function emits a comparison of the two operands,
782// returning the extended setcc code to use.
783unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
784 MachineBasicBlock *MBB,
785 MachineBasicBlock::iterator IP) {
786 // The arguments are already supposed to be of the same type.
787 const Type *CompTy = Op0->getType();
788 unsigned Class = getClassB(CompTy);
789 unsigned Op0r = getReg(Op0, MBB, IP);
790
791 // Special case handling of: cmp R, i
792 if (isa<ConstantPointerNull>(Op1)) {
Misha Brukmane9c65512004-07-06 15:32:44 +0000793 BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(Op0r).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000794 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
795 if (Class == cByte || Class == cShort || Class == cInt) {
796 unsigned Op1v = CI->getRawValue();
797
798 // Mask off any upper bits of the constant, if there are any...
799 Op1v &= (1ULL << (8 << Class)) - 1;
800
Misha Brukman422791f2004-06-21 17:41:12 +0000801 // Compare immediate or promote to reg?
802 if (Op1v <= 32767) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000803 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3,
804 PPC32::CR0).addImm(0).addReg(Op0r).addImm(Op1v);
Misha Brukman422791f2004-06-21 17:41:12 +0000805 } else {
806 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman2fec9902004-06-21 20:22:03 +0000807 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 3,
808 PPC32::CR0).addImm(0).addReg(Op0r).addReg(Op1r);
Misha Brukman422791f2004-06-21 17:41:12 +0000809 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000810 return OpNum;
811 } else {
812 assert(Class == cLong && "Unknown integer class!");
813 unsigned LowCst = CI->getRawValue();
814 unsigned HiCst = CI->getRawValue() >> 32;
815 if (OpNum < 2) { // seteq, setne
816 unsigned LoTmp = Op0r;
817 if (LowCst != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +0000818 unsigned LoLow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000819 unsigned LoTmp = makeAnotherReg(Type::IntTy);
820 BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r).addImm(LowCst);
Misha Brukman2fec9902004-06-21 20:22:03 +0000821 BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow)
822 .addImm(LowCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000823 }
824 unsigned HiTmp = Op0r+1;
825 if (HiCst != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +0000826 unsigned HiLow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000827 unsigned HiTmp = makeAnotherReg(Type::IntTy);
828 BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r+1).addImm(HiCst);
Misha Brukman2fec9902004-06-21 20:22:03 +0000829 BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow)
830 .addImm(HiCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000831 }
832 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
833 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
834 //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0);
835 return OpNum;
836 } else {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000837 // FIXME: Not Yet Implemented
Misha Brukman911afde2004-06-25 14:50:41 +0000838 std::cerr << "EmitComparison unimplemented: Opnum >= 2\n";
839 abort();
Misha Brukman422791f2004-06-21 17:41:12 +0000840 return OpNum;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000841 }
842 }
843 }
844
845 unsigned Op1r = getReg(Op1, MBB, IP);
846 switch (Class) {
847 default: assert(0 && "Unknown type class!");
848 case cByte:
849 case cShort:
850 case cInt:
Misha Brukman2fec9902004-06-21 20:22:03 +0000851 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 2,
852 PPC32::CR0).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000853 break;
Misha Brukmand18a31d2004-07-06 22:51:53 +0000854
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000855 case cFP:
856 emitUCOM(MBB, IP, Op0r, Op1r);
857 break;
858
859 case cLong:
860 if (OpNum < 2) { // seteq, setne
861 unsigned LoTmp = makeAnotherReg(Type::IntTy);
862 unsigned HiTmp = makeAnotherReg(Type::IntTy);
863 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
864 BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r).addReg(Op1r);
865 BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
866 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
867 //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0);
868 break; // Allow the sete or setne to be generated from flags set by OR
869 } else {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000870 // FIXME: Not Yet Implemented
Misha Brukman911afde2004-06-25 14:50:41 +0000871 std::cerr << "EmitComparison (cLong) unimplemented: Opnum >= 2\n";
872 abort();
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000873 return OpNum;
874 }
875 }
876 return OpNum;
877}
878
Misha Brukmand18a31d2004-07-06 22:51:53 +0000879/// visitSetCondInst - emit code to calculate the condition via
880/// EmitComparison(), and possibly store a 0 or 1 to a register as a result
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000881///
882void ISel::visitSetCondInst(SetCondInst &I) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000883 if (canFoldSetCCIntoBranchOrSelect(&I))
Misha Brukmane9c65512004-07-06 15:32:44 +0000884 return;
885
Misha Brukman425ff242004-07-01 21:34:10 +0000886 unsigned Op0Reg = getReg(I.getOperand(0));
887 unsigned Op1Reg = getReg(I.getOperand(1));
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000888 unsigned DestReg = getReg(I);
Misha Brukmand18a31d2004-07-06 22:51:53 +0000889 unsigned OpNum = I.getOpcode();
Misha Brukman425ff242004-07-01 21:34:10 +0000890 const Type *Ty = I.getOperand (0)->getType();
891
Misha Brukmand18a31d2004-07-06 22:51:53 +0000892 EmitComparison(OpNum, I.getOperand(0), I.getOperand(1), BB, BB->end());
893
894 unsigned Opcode = getPPCOpcodeForSetCCNumber(OpNum);
Misha Brukman425ff242004-07-01 21:34:10 +0000895 MachineBasicBlock *thisMBB = BB;
896 const BasicBlock *LLVM_BB = BB->getBasicBlock();
897 // thisMBB:
898 // ...
899 // cmpTY cr0, r1, r2
900 // bCC copy1MBB
901 // b copy0MBB
902
903 // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
904 // if we could insert other, non-terminator instructions after the
905 // bCC. But MBB->getFirstTerminator() can't understand this.
906 MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
907 F->getBasicBlockList().push_back(copy1MBB);
908 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0).addMBB(copy1MBB);
909 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
910 F->getBasicBlockList().push_back(copy0MBB);
911 BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
912 // Update machine-CFG edges
913 BB->addSuccessor(copy1MBB);
914 BB->addSuccessor(copy0MBB);
915
916 // copy0MBB:
917 // %FalseValue = li 0
Misha Brukmane9c65512004-07-06 15:32:44 +0000918 // b sinkMBB
Misha Brukman425ff242004-07-01 21:34:10 +0000919 BB = copy0MBB;
920 unsigned FalseValue = makeAnotherReg(I.getType());
921 BuildMI(BB, PPC32::LI, 1, FalseValue).addZImm(0);
922 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
923 F->getBasicBlockList().push_back(sinkMBB);
924 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
925 // Update machine-CFG edges
926 BB->addSuccessor(sinkMBB);
927
928 DEBUG(std::cerr << "thisMBB is at " << (void*)thisMBB << "\n");
929 DEBUG(std::cerr << "copy1MBB is at " << (void*)copy1MBB << "\n");
930 DEBUG(std::cerr << "copy0MBB is at " << (void*)copy0MBB << "\n");
931 DEBUG(std::cerr << "sinkMBB is at " << (void*)sinkMBB << "\n");
932
933 // copy1MBB:
934 // %TrueValue = li 1
Misha Brukmane9c65512004-07-06 15:32:44 +0000935 // b sinkMBB
Misha Brukman425ff242004-07-01 21:34:10 +0000936 BB = copy1MBB;
937 unsigned TrueValue = makeAnotherReg (I.getType ());
938 BuildMI(BB, PPC32::LI, 1, TrueValue).addZImm(1);
939 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
940 // Update machine-CFG edges
941 BB->addSuccessor(sinkMBB);
942
943 // sinkMBB:
944 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
945 // ...
946 BB = sinkMBB;
947 BuildMI(BB, PPC32::PHI, 4, DestReg).addReg(FalseValue)
948 .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000949}
950
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000951void ISel::visitSelectInst(SelectInst &SI) {
952 unsigned DestReg = getReg(SI);
953 MachineBasicBlock::iterator MII = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +0000954 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
955 SI.getFalseValue(), DestReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000956}
957
958/// emitSelect - Common code shared between visitSelectInst and the constant
959/// expression support.
960/// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has
961/// no select instruction. FSEL only works for comparisons against zero.
962void ISel::emitSelectOperation(MachineBasicBlock *MBB,
963 MachineBasicBlock::iterator IP,
964 Value *Cond, Value *TrueVal, Value *FalseVal,
965 unsigned DestReg) {
966 unsigned SelectClass = getClassB(TrueVal->getType());
967
968 unsigned TrueReg = getReg(TrueVal, MBB, IP);
969 unsigned FalseReg = getReg(FalseVal, MBB, IP);
970
971 if (TrueReg == FalseReg) {
Misha Brukman422791f2004-06-21 17:41:12 +0000972 if (SelectClass == cFP) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000973 BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(TrueReg);
Misha Brukman422791f2004-06-21 17:41:12 +0000974 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000975 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TrueReg).addReg(TrueReg);
Misha Brukman422791f2004-06-21 17:41:12 +0000976 }
977
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000978 if (SelectClass == cLong)
Misha Brukman2fec9902004-06-21 20:22:03 +0000979 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TrueReg+1)
980 .addReg(TrueReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000981 return;
982 }
983
984 unsigned CondReg = getReg(Cond, MBB, IP);
985 unsigned numZeros = makeAnotherReg(Type::IntTy);
986 unsigned falseHi = makeAnotherReg(Type::IntTy);
987 unsigned falseAll = makeAnotherReg(Type::IntTy);
988 unsigned trueAll = makeAnotherReg(Type::IntTy);
989 unsigned Temp1 = makeAnotherReg(Type::IntTy);
990 unsigned Temp2 = makeAnotherReg(Type::IntTy);
991
992 BuildMI(*MBB, IP, PPC32::CNTLZW, 1, numZeros).addReg(CondReg);
Misha Brukman2fec9902004-06-21 20:22:03 +0000993 BuildMI(*MBB, IP, PPC32::RLWINM, 4, falseHi).addReg(numZeros).addImm(26)
994 .addImm(0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000995 BuildMI(*MBB, IP, PPC32::SRAWI, 2, falseAll).addReg(falseHi).addImm(31);
996 BuildMI(*MBB, IP, PPC32::NOR, 2, trueAll).addReg(falseAll).addReg(falseAll);
997 BuildMI(*MBB, IP, PPC32::AND, 2, Temp1).addReg(TrueReg).addReg(trueAll);
998 BuildMI(*MBB, IP, PPC32::AND, 2, Temp2).addReg(FalseReg).addReg(falseAll);
999 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Temp1).addReg(Temp2);
1000
1001 if (SelectClass == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001002 unsigned Temp3 = makeAnotherReg(Type::IntTy);
1003 unsigned Temp4 = makeAnotherReg(Type::IntTy);
1004 BuildMI(*MBB, IP, PPC32::AND, 2, Temp3).addReg(TrueReg+1).addReg(trueAll);
1005 BuildMI(*MBB, IP, PPC32::AND, 2, Temp4).addReg(FalseReg+1).addReg(falseAll);
1006 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(Temp3).addReg(Temp4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001007 }
1008
1009 return;
1010}
1011
1012
1013
1014/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
1015/// operand, in the specified target register.
1016///
1017void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
1018 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
1019
1020 Value *Val = VR.Val;
1021 const Type *Ty = VR.Ty;
1022 if (Val) {
1023 if (Constant *C = dyn_cast<Constant>(Val)) {
1024 Val = ConstantExpr::getCast(C, Type::IntTy);
1025 Ty = Type::IntTy;
1026 }
1027
Misha Brukman2fec9902004-06-21 20:22:03 +00001028 // If this is a simple constant, just emit a load directly to avoid the copy
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001029 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1030 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
1031
1032 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman422791f2004-06-21 17:41:12 +00001033 BuildMI(BB, PPC32::ADDI, 2, targetReg).addReg(PPC32::R0).addImm(TheVal);
1034 } else {
1035 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001036 BuildMI(BB, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0)
1037 .addImm(TheVal >> 16);
1038 BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(TmpReg)
1039 .addImm(TheVal & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +00001040 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001041 return;
1042 }
1043 }
1044
1045 // Make sure we have the register number for this value...
1046 unsigned Reg = Val ? getReg(Val) : VR.Reg;
1047
1048 switch (getClassB(Ty)) {
1049 case cByte:
1050 // Extend value into target register (8->32)
1051 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001052 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1053 .addZImm(24).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001054 else
1055 BuildMI(BB, PPC32::EXTSB, 1, targetReg).addReg(Reg);
1056 break;
1057 case cShort:
1058 // Extend value into target register (16->32)
1059 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001060 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1061 .addZImm(16).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001062 else
1063 BuildMI(BB, PPC32::EXTSH, 1, targetReg).addReg(Reg);
1064 break;
1065 case cInt:
1066 // Move value into target register (32->32)
Misha Brukman972569a2004-06-25 18:36:53 +00001067 BuildMI(BB, PPC32::OR, 2, targetReg).addReg(Reg).addReg(Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001068 break;
1069 default:
1070 assert(0 && "Unpromotable operand class in promote32");
1071 }
1072}
1073
Misha Brukman2fec9902004-06-21 20:22:03 +00001074/// visitReturnInst - implemented with BLR
1075///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001076void ISel::visitReturnInst(ReturnInst &I) {
Misha Brukmand47bbf72004-06-25 19:04:27 +00001077 // Only do the processing if this is a non-void return
1078 if (I.getNumOperands() > 0) {
1079 Value *RetVal = I.getOperand(0);
1080 switch (getClassB(RetVal->getType())) {
1081 case cByte: // integral return values: extend or move into r3 and return
1082 case cShort:
1083 case cInt:
1084 promote32(PPC32::R3, ValueRecord(RetVal));
1085 break;
1086 case cFP: { // Floats & Doubles: Return in f1
1087 unsigned RetReg = getReg(RetVal);
1088 BuildMI(BB, PPC32::FMR, 1, PPC32::F1).addReg(RetReg);
1089 break;
1090 }
1091 case cLong: {
1092 unsigned RetReg = getReg(RetVal);
1093 BuildMI(BB, PPC32::OR, 2, PPC32::R3).addReg(RetReg).addReg(RetReg);
1094 BuildMI(BB, PPC32::OR, 2, PPC32::R4).addReg(RetReg+1).addReg(RetReg+1);
1095 break;
1096 }
1097 default:
1098 visitInstruction(I);
1099 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001100 }
1101 BuildMI(BB, PPC32::BLR, 1).addImm(0);
1102}
1103
1104// getBlockAfter - Return the basic block which occurs lexically after the
1105// specified one.
1106static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1107 Function::iterator I = BB; ++I; // Get iterator to next block
1108 return I != BB->getParent()->end() ? &*I : 0;
1109}
1110
1111/// visitBranchInst - Handle conditional and unconditional branches here. Note
1112/// that since code layout is frozen at this point, that if we are trying to
1113/// jump to a block that is the immediate successor of the current block, we can
1114/// just make a fall-through (but we don't currently).
1115///
1116void ISel::visitBranchInst(BranchInst &BI) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001117 // Update machine-CFG edges
1118 BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
1119 if (BI.isConditional())
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001120 BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
Misha Brukman2fec9902004-06-21 20:22:03 +00001121
1122 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
Misha Brukmane9c65512004-07-06 15:32:44 +00001123
Misha Brukman2fec9902004-06-21 20:22:03 +00001124 if (!BI.isConditional()) { // Unconditional branch?
Misha Brukmane9c65512004-07-06 15:32:44 +00001125 if (BI.getSuccessor(0) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001126 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1127 return;
Misha Brukman2fec9902004-06-21 20:22:03 +00001128 }
1129
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001130 // See if we can fold the setcc into the branch itself...
1131 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
1132 if (SCI == 0) {
1133 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1134 // computed some other way...
1135 unsigned condReg = getReg(BI.getCondition());
Misha Brukmane9c65512004-07-06 15:32:44 +00001136 BuildMI(BB, PPC32::CMPLI, 3, PPC32::CR1).addImm(0).addReg(condReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00001137 .addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001138 if (BI.getSuccessor(1) == NextBB) {
1139 if (BI.getSuccessor(0) != NextBB)
Misha Brukmane9c65512004-07-06 15:32:44 +00001140 BuildMI(BB, PPC32::BNE, 2).addReg(PPC32::CR1)
Misha Brukman2fec9902004-06-21 20:22:03 +00001141 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001142 } else {
Misha Brukmane9c65512004-07-06 15:32:44 +00001143 BuildMI(BB, PPC32::BNE, 2).addReg(PPC32::CR1)
Misha Brukman2fec9902004-06-21 20:22:03 +00001144 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001145
1146 if (BI.getSuccessor(0) != NextBB)
1147 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1148 }
1149 return;
1150 }
1151
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001152 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Misha Brukmane9c65512004-07-06 15:32:44 +00001153 unsigned Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001154 MachineBasicBlock::iterator MII = BB->end();
1155 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001156
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001157 if (BI.getSuccessor(0) != NextBB) {
Misha Brukmane9c65512004-07-06 15:32:44 +00001158 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001159 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001160 if (BI.getSuccessor(1) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001161 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001162 } else {
1163 // Change to the inverse condition...
1164 if (BI.getSuccessor(1) != NextBB) {
Misha Brukmane9c65512004-07-06 15:32:44 +00001165 Opcode = invertPPCBranchOpcode(Opcode);
1166 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0)
Misha Brukman2fec9902004-06-21 20:22:03 +00001167 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001168 }
1169 }
1170}
1171
1172
1173/// doCall - This emits an abstract call instruction, setting up the arguments
1174/// and the return value as appropriate. For the actual function call itself,
1175/// it inserts the specified CallMI instruction into the stream.
1176///
1177/// FIXME: See Documentation at the following URL for "correct" behavior
1178/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html>
1179void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmand18a31d2004-07-06 22:51:53 +00001180 const std::vector<ValueRecord> &Args, bool isVarArg) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001181 // Count how many bytes are to be pushed on the stack...
1182 unsigned NumBytes = 0;
1183
1184 if (!Args.empty()) {
1185 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1186 switch (getClassB(Args[i].Ty)) {
1187 case cByte: case cShort: case cInt:
1188 NumBytes += 4; break;
1189 case cLong:
1190 NumBytes += 8; break;
1191 case cFP:
1192 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
1193 break;
1194 default: assert(0 && "Unknown class!");
1195 }
1196
1197 // Adjust the stack pointer for the new arguments...
1198 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
1199
1200 // Arguments go on the stack in reverse order, as specified by the ABI.
1201 unsigned ArgOffset = 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001202 int GPR_remaining = 8, FPR_remaining = 13;
1203 static const unsigned GPR[] = {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001204 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
1205 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
1206 };
Misha Brukmand18a31d2004-07-06 22:51:53 +00001207 static const unsigned FPR[] = {
1208 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6,
1209 PPC32::F7, PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12,
1210 PPC32::F13
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001211 };
1212 unsigned GPR_idx = 0, FPR_idx = 0;
Misha Brukman422791f2004-06-21 17:41:12 +00001213
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001214 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1215 unsigned ArgReg;
1216 switch (getClassB(Args[i].Ty)) {
1217 case cByte:
1218 case cShort:
1219 // Promote arg to 32 bits wide into a temporary register...
1220 ArgReg = makeAnotherReg(Type::UIntTy);
1221 promote32(ArgReg, Args[i]);
Misha Brukman422791f2004-06-21 17:41:12 +00001222
1223 // Reg or stack?
1224 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001225 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001226 .addReg(ArgReg);
Misha Brukman422791f2004-06-21 17:41:12 +00001227 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001228 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1229 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001230 }
1231 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001232 case cInt:
1233 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1234
Misha Brukman422791f2004-06-21 17:41:12 +00001235 // Reg or stack?
1236 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001237 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001238 .addReg(ArgReg);
Misha Brukman422791f2004-06-21 17:41:12 +00001239 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001240 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1241 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001242 }
1243 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001244 case cLong:
Misha Brukman422791f2004-06-21 17:41:12 +00001245 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001246
Misha Brukman422791f2004-06-21 17:41:12 +00001247 // Reg or stack?
1248 if (GPR_remaining > 1) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001249 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001250 .addReg(ArgReg);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001251 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx + 1]).addReg(ArgReg+1)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001252 .addReg(ArgReg+1);
Misha Brukman422791f2004-06-21 17:41:12 +00001253 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001254 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1255 .addReg(PPC32::R1);
1256 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addImm(ArgOffset+4)
1257 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001258 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001259
1260 ArgOffset += 4; // 8 byte entry, not 4.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001261 GPR_remaining -= 1; // uses up 2 GPRs
1262 GPR_idx += 1;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001263 break;
1264 case cFP:
1265 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1266 if (Args[i].Ty == Type::FloatTy) {
Misha Brukman1916bf92004-06-24 21:56:15 +00001267 // Reg or stack?
1268 if (FPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001269 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001270 FPR_remaining--;
1271 FPR_idx++;
Misha Brukman1916bf92004-06-24 21:56:15 +00001272 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001273 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addImm(ArgOffset)
1274 .addReg(PPC32::R1);
Misha Brukman1916bf92004-06-24 21:56:15 +00001275 }
Misha Brukmand18a31d2004-07-06 22:51:53 +00001276 assert(!isVarArg && "Cannot pass floats to vararg functions!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001277 } else {
1278 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman1916bf92004-06-24 21:56:15 +00001279 // Reg or stack?
1280 if (FPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001281 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001282 FPR_remaining--;
1283 FPR_idx++;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001284 // For vararg functions, must pass doubles via int regs as well
1285 if (isVarArg) {
1286 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset)
1287 .addReg(PPC32::R1);
1288 if (GPR_remaining > 1) {
1289 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx]).addImm(ArgOffset)
1290 .addReg(PPC32::R1);
1291 BuildMI(BB, PPC32::LWZ, 2, GPR[GPR_idx + 1])
1292 .addImm(ArgOffset+4).addReg(PPC32::R1);
1293 }
1294 }
Misha Brukman1916bf92004-06-24 21:56:15 +00001295 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001296 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset)
1297 .addReg(PPC32::R1);
Misha Brukman1916bf92004-06-24 21:56:15 +00001298 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001299
Misha Brukman1916bf92004-06-24 21:56:15 +00001300 ArgOffset += 4; // 8 byte entry, not 4.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001301 GPR_remaining--; // uses up 2 GPRs
1302 GPR_idx++;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001303 }
1304 break;
1305
1306 default: assert(0 && "Unknown class!");
1307 }
1308 ArgOffset += 4;
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001309 GPR_remaining--;
1310 GPR_idx++;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001311 }
1312 } else {
1313 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(0);
1314 }
1315
1316 BB->push_back(CallMI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001317 BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addImm(NumBytes);
1318
1319 // If there is a return value, scavenge the result from the location the call
1320 // leaves it in...
1321 //
1322 if (Ret.Ty != Type::VoidTy) {
1323 unsigned DestClass = getClassB(Ret.Ty);
1324 switch (DestClass) {
1325 case cByte:
1326 case cShort:
1327 case cInt:
1328 // Integral results are in r3
Misha Brukman422791f2004-06-21 17:41:12 +00001329 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
Misha Brukmane327e492004-06-24 23:53:24 +00001330 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001331 case cFP: // Floating-point return values live in f1
1332 BuildMI(BB, PPC32::FMR, 1, Ret.Reg).addReg(PPC32::F1);
1333 break;
1334 case cLong: // Long values are in r3:r4
Misha Brukman422791f2004-06-21 17:41:12 +00001335 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
1336 BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R4).addReg(PPC32::R4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001337 break;
1338 default: assert(0 && "Unknown class!");
1339 }
1340 }
1341}
1342
1343
1344/// visitCallInst - Push args on stack and do a procedure call instruction.
1345void ISel::visitCallInst(CallInst &CI) {
1346 MachineInstr *TheCall;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001347 Function *F = CI.getCalledFunction();
1348 if (F) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001349 // Is it an intrinsic function call?
1350 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
1351 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1352 return;
1353 }
1354
1355 // Emit a CALL instruction with PC-relative displacement.
1356 TheCall = BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(F, true);
1357 } else { // Emit an indirect call through the CTR
1358 unsigned Reg = getReg(CI.getCalledValue());
1359 BuildMI(PPC32::MTSPR, 2).addZImm(9).addReg(Reg);
1360 TheCall = BuildMI(PPC32::CALLindirect, 1).addZImm(20).addZImm(0);
1361 }
1362
1363 std::vector<ValueRecord> Args;
1364 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
1365 Args.push_back(ValueRecord(CI.getOperand(i)));
1366
1367 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001368 bool isVarArg = F ? F->getFunctionType()->isVarArg() : true;
1369 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001370}
1371
1372
1373/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
1374///
1375static Value *dyncastIsNan(Value *V) {
1376 if (CallInst *CI = dyn_cast<CallInst>(V))
1377 if (Function *F = CI->getCalledFunction())
Misha Brukmana2916ce2004-06-21 17:58:36 +00001378 if (F->getIntrinsicID() == Intrinsic::isunordered)
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001379 return CI->getOperand(1);
1380 return 0;
1381}
1382
1383/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
1384/// or's whos operands are all calls to the isnan predicate.
1385static bool isOnlyUsedByUnorderedComparisons(Value *V) {
1386 assert(dyncastIsNan(V) && "The value isn't an isnan call!");
1387
1388 // Check all uses, which will be or's of isnans if this predicate is true.
1389 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1390 Instruction *I = cast<Instruction>(*UI);
1391 if (I->getOpcode() != Instruction::Or) return false;
1392 if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
1393 if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
1394 }
1395
1396 return true;
1397}
1398
1399/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1400/// function, lowering any calls to unknown intrinsic functions into the
1401/// equivalent LLVM code.
1402///
1403void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1404 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1405 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1406 if (CallInst *CI = dyn_cast<CallInst>(I++))
1407 if (Function *F = CI->getCalledFunction())
1408 switch (F->getIntrinsicID()) {
1409 case Intrinsic::not_intrinsic:
1410 case Intrinsic::vastart:
1411 case Intrinsic::vacopy:
1412 case Intrinsic::vaend:
1413 case Intrinsic::returnaddress:
1414 case Intrinsic::frameaddress:
Misha Brukmana2916ce2004-06-21 17:58:36 +00001415 // FIXME: should lower this ourselves
1416 // case Intrinsic::isunordered:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001417 // We directly implement these intrinsics
1418 break;
1419 case Intrinsic::readio: {
1420 // On PPC, memory operations are in-order. Lower this intrinsic
1421 // into a volatile load.
1422 Instruction *Before = CI->getPrev();
1423 LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
1424 CI->replaceAllUsesWith(LI);
1425 BB->getInstList().erase(CI);
1426 break;
1427 }
1428 case Intrinsic::writeio: {
1429 // On PPC, memory operations are in-order. Lower this intrinsic
1430 // into a volatile store.
1431 Instruction *Before = CI->getPrev();
1432 StoreInst *LI = new StoreInst(CI->getOperand(1),
1433 CI->getOperand(2), true, CI);
1434 CI->replaceAllUsesWith(LI);
1435 BB->getInstList().erase(CI);
1436 break;
1437 }
1438 default:
1439 // All other intrinsic calls we must lower.
1440 Instruction *Before = CI->getPrev();
1441 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
1442 if (Before) { // Move iterator to instruction after call
1443 I = Before; ++I;
1444 } else {
1445 I = BB->begin();
1446 }
1447 }
1448}
1449
1450void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
1451 unsigned TmpReg1, TmpReg2, TmpReg3;
1452 switch (ID) {
1453 case Intrinsic::vastart:
1454 // Get the address of the first vararg value...
1455 TmpReg1 = getReg(CI);
1456 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1), VarArgsFrameIndex);
1457 return;
1458
1459 case Intrinsic::vacopy:
1460 TmpReg1 = getReg(CI);
1461 TmpReg2 = getReg(CI.getOperand(1));
1462 BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
1463 return;
1464 case Intrinsic::vaend: return;
1465
1466 case Intrinsic::returnaddress:
1467 case Intrinsic::frameaddress:
1468 TmpReg1 = getReg(CI);
1469 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1470 if (ID == Intrinsic::returnaddress) {
1471 // Just load the return address
1472 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, TmpReg1),
1473 ReturnAddressIndex);
1474 } else {
1475 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1),
1476 ReturnAddressIndex, -4, false);
1477 }
1478 } else {
1479 // Values other than zero are not implemented yet.
1480 BuildMI(BB, PPC32::ADDI, 2, TmpReg1).addReg(PPC32::R0).addImm(0);
1481 }
1482 return;
1483
Misha Brukmana2916ce2004-06-21 17:58:36 +00001484#if 0
1485 // This may be useful for supporting isunordered
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001486 case Intrinsic::isnan:
1487 // If this is only used by 'isunordered' style comparisons, don't emit it.
1488 if (isOnlyUsedByUnorderedComparisons(&CI)) return;
1489 TmpReg1 = getReg(CI.getOperand(1));
1490 emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
Misha Brukman422791f2004-06-21 17:41:12 +00001491 TmpReg2 = makeAnotherReg(Type::IntTy);
1492 BuildMI(BB, PPC32::MFCR, TmpReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001493 TmpReg3 = getReg(CI);
1494 BuildMI(BB, PPC32::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
1495 return;
Misha Brukmana2916ce2004-06-21 17:58:36 +00001496#endif
1497
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001498 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
1499 }
1500}
1501
1502/// visitSimpleBinary - Implement simple binary operators for integral types...
1503/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1504/// Xor.
1505///
1506void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1507 unsigned DestReg = getReg(B);
1508 MachineBasicBlock::iterator MI = BB->end();
1509 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
1510 unsigned Class = getClassB(B.getType());
1511
1512 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
1513}
1514
1515/// emitBinaryFPOperation - This method handles emission of floating point
1516/// Add (0), Sub (1), Mul (2), and Div (3) operations.
1517void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
1518 MachineBasicBlock::iterator IP,
1519 Value *Op0, Value *Op1,
1520 unsigned OperatorClass, unsigned DestReg) {
1521
1522 // Special case: op Reg, <const fp>
1523 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001524 // Create a constant pool entry for this constant.
1525 MachineConstantPool *CP = F->getConstantPool();
1526 unsigned CPI = CP->getConstantPoolIndex(Op1C);
1527 const Type *Ty = Op1->getType();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001528
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001529 static const unsigned OpcodeTab[][4] = {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001530 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1531 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001532 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001533
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001534 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1535 unsigned TempReg = makeAnotherReg(Ty);
Misha Brukmand18a31d2004-07-06 22:51:53 +00001536 unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC32::LFS : PPC32::LFD;
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001537 addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001538
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001539 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
1540 unsigned Op0r = getReg(Op0, BB, IP);
1541 BuildMI(*BB, IP, Opcode, DestReg).addReg(Op0r).addReg(TempReg);
1542 return;
1543 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001544
1545 // Special case: R1 = op <const fp>, R2
1546 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
1547 if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) {
1548 // -0.0 - X === -X
1549 unsigned op1Reg = getReg(Op1, BB, IP);
1550 BuildMI(*BB, IP, PPC32::FNEG, 1, DestReg).addReg(op1Reg);
1551 return;
1552 } else {
1553 // R1 = op CST, R2 --> R1 = opr R2, CST
1554
1555 // Create a constant pool entry for this constant.
1556 MachineConstantPool *CP = F->getConstantPool();
1557 unsigned CPI = CP->getConstantPoolIndex(CFP);
1558 const Type *Ty = CFP->getType();
1559
1560 static const unsigned OpcodeTab[][4] = {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001561 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1562 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001563 };
1564
1565 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman422791f2004-06-21 17:41:12 +00001566 unsigned TempReg = makeAnotherReg(Ty);
Misha Brukmand18a31d2004-07-06 22:51:53 +00001567 unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC32::LFS : PPC32::LFD;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001568 addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI);
1569
1570 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
1571 unsigned Op1r = getReg(Op1, BB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001572 BuildMI(*BB, IP, Opcode, DestReg).addReg(TempReg).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001573 return;
1574 }
1575
1576 // General case.
Misha Brukman911afde2004-06-25 14:50:41 +00001577 static const unsigned OpcodeTab[] = {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001578 PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV
1579 };
1580
1581 unsigned Opcode = OpcodeTab[OperatorClass];
1582 unsigned Op0r = getReg(Op0, BB, IP);
1583 unsigned Op1r = getReg(Op1, BB, IP);
1584 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1585}
1586
1587/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1588/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1589/// Or, 4 for Xor.
1590///
1591/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1592/// and constant expression support.
1593///
1594void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
1595 MachineBasicBlock::iterator IP,
1596 Value *Op0, Value *Op1,
1597 unsigned OperatorClass, unsigned DestReg) {
1598 unsigned Class = getClassB(Op0->getType());
1599
Misha Brukman422791f2004-06-21 17:41:12 +00001600 // Arithmetic and Bitwise operators
Misha Brukman911afde2004-06-25 14:50:41 +00001601 static const unsigned OpcodeTab[] = {
Misha Brukman422791f2004-06-21 17:41:12 +00001602 PPC32::ADD, PPC32::SUB, PPC32::AND, PPC32::OR, PPC32::XOR
1603 };
1604 // Otherwise, code generate the full operation with a constant.
1605 static const unsigned BottomTab[] = {
1606 PPC32::ADDC, PPC32::SUBC, PPC32::AND, PPC32::OR, PPC32::XOR
1607 };
1608 static const unsigned TopTab[] = {
1609 PPC32::ADDE, PPC32::SUBFE, PPC32::AND, PPC32::OR, PPC32::XOR
1610 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001611
1612 if (Class == cFP) {
1613 assert(OperatorClass < 2 && "No logical ops for FP!");
1614 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
1615 return;
1616 }
1617
1618 if (Op0->getType() == Type::BoolTy) {
1619 if (OperatorClass == 3)
1620 // If this is an or of two isnan's, emit an FP comparison directly instead
1621 // of or'ing two isnan's together.
1622 if (Value *LHS = dyncastIsNan(Op0))
1623 if (Value *RHS = dyncastIsNan(Op1)) {
1624 unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001625 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001626 emitUCOM(MBB, IP, Op0Reg, Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00001627 BuildMI(*MBB, IP, PPC32::MFCR, TmpReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001628 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
1629 .addImm(31).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001630 return;
1631 }
1632 }
1633
1634 // sub 0, X -> neg X
1635 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
1636 if (OperatorClass == 1 && CI->isNullValue()) {
1637 unsigned op1Reg = getReg(Op1, MBB, IP);
1638 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg).addReg(op1Reg);
1639
1640 if (Class == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001641 unsigned zeroes = makeAnotherReg(Type::IntTy);
1642 unsigned overflow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001643 unsigned T = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00001644 BuildMI(*MBB, IP, PPC32::CNTLZW, 1, zeroes).addReg(op1Reg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001645 BuildMI(*MBB, IP, PPC32::RLWINM, 4, overflow).addReg(zeroes).addImm(27)
1646 .addImm(5).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00001647 BuildMI(*MBB, IP, PPC32::ADD, 2, T).addReg(op1Reg+1).addReg(overflow);
1648 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg+1).addReg(T);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001649 }
1650 return;
1651 }
1652
1653 // Special case: op Reg, <const int>
1654 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1655 unsigned Op0r = getReg(Op0, MBB, IP);
1656
1657 // xor X, -1 -> not X
1658 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1659 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1660 if (Class == cLong) // Invert the top part too
Misha Brukman2fec9902004-06-21 20:22:03 +00001661 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg+1).addReg(Op0r+1)
1662 .addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001663 return;
1664 }
1665
1666 unsigned Opcode = OpcodeTab[OperatorClass];
1667 unsigned Op1r = getReg(Op1, MBB, IP);
1668
1669 if (Class != cLong) {
1670 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1671 return;
1672 }
1673
1674 // If the constant is zero in the low 32-bits, just copy the low part
1675 // across and apply the normal 32-bit operation to the high parts. There
1676 // will be no carry or borrow into the top.
1677 if (cast<ConstantInt>(Op1C)->getRawValue() == 0) {
1678 if (OperatorClass != 2) // All but and...
1679 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1680 else
1681 BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
Misha Brukman422791f2004-06-21 17:41:12 +00001682 BuildMI(*MBB, IP, Opcode, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001683 return;
1684 }
1685
1686 // If this is a long value and the high or low bits have a special
1687 // property, emit some special cases.
1688 unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
1689
1690 // If this is a logical operation and the top 32-bits are zero, just
1691 // operate on the lower 32.
1692 if (Op1h == 0 && OperatorClass > 1) {
1693 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1694 if (OperatorClass != 2) // All but and
Misha Brukman2fec9902004-06-21 20:22:03 +00001695 BuildMI(*MBB, IP, PPC32::OR, 2,DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001696 else
Misha Brukman2fec9902004-06-21 20:22:03 +00001697 BuildMI(*MBB, IP, PPC32::ADDI, 2,DestReg+1).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001698 return;
1699 }
1700
1701 // TODO: We could handle lots of other special cases here, such as AND'ing
1702 // with 0xFFFFFFFF00000000 -> noop, etc.
1703
Misha Brukman2fec9902004-06-21 20:22:03 +00001704 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
1705 .addImm(Op1r);
1706 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
1707 .addImm(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001708 return;
1709 }
1710
1711 unsigned Op0r = getReg(Op0, MBB, IP);
1712 unsigned Op1r = getReg(Op1, MBB, IP);
1713
1714 if (Class != cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001715 unsigned Opcode = OpcodeTab[OperatorClass];
1716 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001717 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00001718 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
1719 .addImm(Op1r);
1720 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
1721 .addImm(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001722 }
1723 return;
1724}
1725
1726/// doMultiply - Emit appropriate instructions to multiply together the
1727/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1728/// result should be given as DestTy.
1729///
1730void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
1731 unsigned DestReg, const Type *DestTy,
1732 unsigned op0Reg, unsigned op1Reg) {
1733 unsigned Class = getClass(DestTy);
1734 switch (Class) {
1735 case cLong:
Misha Brukman2fec9902004-06-21 20:22:03 +00001736 BuildMI(*MBB, MBBI, PPC32::MULHW, 2, DestReg+1).addReg(op0Reg+1)
1737 .addReg(op1Reg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001738 case cInt:
1739 case cShort:
1740 case cByte:
1741 BuildMI(*MBB, MBBI, PPC32::MULLW, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
1742 return;
1743 default:
Misha Brukman422791f2004-06-21 17:41:12 +00001744 assert(0 && "doMultiply cannot operate on unknown type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001745 }
1746}
1747
1748// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1749// returns zero when the input is not exactly a power of two.
1750static unsigned ExactLog2(unsigned Val) {
1751 if (Val == 0 || (Val & (Val-1))) return 0;
1752 unsigned Count = 0;
1753 while (Val != 1) {
1754 Val >>= 1;
1755 ++Count;
1756 }
1757 return Count+1;
1758}
1759
1760
1761/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
1762/// 16, or 32-bit integer multiply by a constant.
Misha Brukman2fec9902004-06-21 20:22:03 +00001763///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001764void ISel::doMultiplyConst(MachineBasicBlock *MBB,
1765 MachineBasicBlock::iterator IP,
1766 unsigned DestReg, const Type *DestTy,
1767 unsigned op0Reg, unsigned ConstRHS) {
1768 unsigned Class = getClass(DestTy);
1769 // Handle special cases here.
1770 switch (ConstRHS) {
1771 case 0:
1772 BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
1773 return;
1774 case 1:
1775 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(op0Reg).addReg(op0Reg);
1776 return;
1777 case 2:
1778 BuildMI(*MBB, IP, PPC32::ADD, 2,DestReg).addReg(op0Reg).addReg(op0Reg);
1779 return;
1780 }
1781
1782 // If the element size is exactly a power of 2, use a shift to get it.
1783 if (unsigned Shift = ExactLog2(ConstRHS)) {
1784 switch (Class) {
1785 default: assert(0 && "Unknown class for this function!");
1786 case cByte:
1787 case cShort:
1788 case cInt:
Misha Brukman2fec9902004-06-21 20:22:03 +00001789 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(op0Reg)
1790 .addImm(Shift-1).addImm(0).addImm(31-Shift-1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001791 return;
1792 }
1793 }
1794
1795 // Most general case, emit a normal multiply...
1796 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
1797 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001798 BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg1).addReg(PPC32::R0)
1799 .addImm(ConstRHS >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001800 BuildMI(*MBB, IP, PPC32::ORI, 2, TmpReg2).addReg(TmpReg1).addImm(ConstRHS);
1801
1802 // Emit a MUL to multiply the register holding the index by
1803 // elementSize, putting the result in OffsetReg.
1804 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg2);
1805}
1806
1807void ISel::visitMul(BinaryOperator &I) {
1808 unsigned ResultReg = getReg(I);
1809
1810 Value *Op0 = I.getOperand(0);
1811 Value *Op1 = I.getOperand(1);
1812
1813 MachineBasicBlock::iterator IP = BB->end();
1814 emitMultiply(BB, IP, Op0, Op1, ResultReg);
1815}
1816
1817void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
1818 Value *Op0, Value *Op1, unsigned DestReg) {
1819 MachineBasicBlock &BB = *MBB;
1820 TypeClass Class = getClass(Op0->getType());
1821
1822 // Simple scalar multiply?
1823 unsigned Op0Reg = getReg(Op0, &BB, IP);
1824 switch (Class) {
1825 case cByte:
1826 case cShort:
1827 case cInt:
1828 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1829 unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
1830 doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
1831 } else {
1832 unsigned Op1Reg = getReg(Op1, &BB, IP);
1833 doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
1834 }
1835 return;
1836 case cFP:
1837 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
1838 return;
1839 case cLong:
1840 break;
1841 }
1842
1843 // Long value. We have to do things the hard way...
1844 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1845 unsigned CLow = CI->getRawValue();
1846 unsigned CHi = CI->getRawValue() >> 32;
1847
1848 if (CLow == 0) {
1849 // If the low part of the constant is all zeros, things are simple.
1850 BuildMI(BB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
1851 doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
1852 return;
1853 }
1854
1855 // Multiply the two low parts
1856 unsigned OverflowReg = 0;
1857 if (CLow == 1) {
1858 BuildMI(BB, IP, PPC32::OR, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg);
1859 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00001860 unsigned TmpRegL = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001861 unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
1862 OverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001863 BuildMI(BB, IP, PPC32::ADDIS, 2, TmpRegL).addReg(PPC32::R0)
1864 .addImm(CLow >> 16);
Misha Brukman422791f2004-06-21 17:41:12 +00001865 BuildMI(BB, IP, PPC32::ORI, 2, Op1RegL).addReg(TmpRegL).addImm(CLow);
1866 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1RegL);
Misha Brukman2fec9902004-06-21 20:22:03 +00001867 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg)
1868 .addReg(Op1RegL);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001869 }
1870
1871 unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
1872 doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
1873
1874 unsigned AHBLplusOverflowReg;
1875 if (OverflowReg) {
1876 AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001877 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001878 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
1879 } else {
1880 AHBLplusOverflowReg = AHBLReg;
1881 }
1882
1883 if (CHi == 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001884 BuildMI(BB, IP, PPC32::OR, 2, DestReg+1).addReg(AHBLplusOverflowReg)
1885 .addReg(AHBLplusOverflowReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001886 } else {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001887 unsigned ALBHReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001888 doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
1889
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001890 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001891 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1892 }
1893 return;
1894 }
1895
1896 // General 64x64 multiply
1897
1898 unsigned Op1Reg = getReg(Op1, &BB, IP);
1899
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001900 // Multiply the two low parts...
1901 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001902
1903 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001904 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001905
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001906 unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001907 BuildMI(BB, IP, PPC32::MULLW, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
1908
1909 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001910 BuildMI(BB, IP, PPC32::ADD, 2, AHBLplusOverflowReg).addReg(AHBLReg)
1911 .addReg(OverflowReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001912
1913 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
1914 BuildMI(BB, IP, PPC32::MULLW, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
1915
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001916 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001917 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1918}
1919
1920
1921/// visitDivRem - Handle division and remainder instructions... these
1922/// instruction both require the same instructions to be generated, they just
1923/// select the result from a different register. Note that both of these
1924/// instructions work differently for signed and unsigned operands.
1925///
1926void ISel::visitDivRem(BinaryOperator &I) {
1927 unsigned ResultReg = getReg(I);
1928 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1929
1930 MachineBasicBlock::iterator IP = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00001931 emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
1932 ResultReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001933}
1934
1935void ISel::emitDivRemOperation(MachineBasicBlock *BB,
1936 MachineBasicBlock::iterator IP,
1937 Value *Op0, Value *Op1, bool isDiv,
1938 unsigned ResultReg) {
1939 const Type *Ty = Op0->getType();
1940 unsigned Class = getClass(Ty);
1941 switch (Class) {
1942 case cFP: // Floating point divide
1943 if (isDiv) {
1944 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
1945 return;
1946 } else { // Floating point remainder...
1947 unsigned Op0Reg = getReg(Op0, BB, IP);
1948 unsigned Op1Reg = getReg(Op1, BB, IP);
1949 MachineInstr *TheCall =
1950 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("fmod", true);
1951 std::vector<ValueRecord> Args;
1952 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
1953 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Misha Brukmand18a31d2004-07-06 22:51:53 +00001954 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001955 }
1956 return;
1957 case cLong: {
Misha Brukman425ff242004-07-01 21:34:10 +00001958 // FIXME: Make sure the module has external function
1959 static const char *FnName[] =
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001960 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
1961 unsigned Op0Reg = getReg(Op0, BB, IP);
1962 unsigned Op1Reg = getReg(Op1, BB, IP);
1963 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
1964 MachineInstr *TheCall =
1965 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol(FnName[NameIdx], true);
1966
1967 std::vector<ValueRecord> Args;
1968 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
1969 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Misha Brukmand18a31d2004-07-06 22:51:53 +00001970 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001971 return;
1972 }
1973 case cByte: case cShort: case cInt:
1974 break; // Small integrals, handled below...
1975 default: assert(0 && "Unknown class!");
1976 }
1977
1978 // Special case signed division by power of 2.
1979 if (isDiv)
1980 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
1981 assert(Class != cLong && "This doesn't handle 64-bit divides!");
1982 int V = CI->getValue();
1983
1984 if (V == 1) { // X /s 1 => X
1985 unsigned Op0Reg = getReg(Op0, BB, IP);
1986 BuildMI(*BB, IP, PPC32::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
1987 return;
1988 }
1989
1990 if (V == -1) { // X /s -1 => -X
1991 unsigned Op0Reg = getReg(Op0, BB, IP);
1992 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(Op0Reg);
1993 return;
1994 }
1995
1996 bool isNeg = false;
1997 if (V < 0) { // Not a positive power of 2?
1998 V = -V;
1999 isNeg = true; // Maybe it's a negative power of 2.
2000 }
2001 if (unsigned Log = ExactLog2(V)) {
2002 --Log;
2003 unsigned Op0Reg = getReg(Op0, BB, IP);
2004 unsigned TmpReg = makeAnotherReg(Op0->getType());
2005 if (Log != 1)
Misha Brukman2fec9902004-06-21 20:22:03 +00002006 BuildMI(*BB, IP, PPC32::SRAWI,2, TmpReg).addReg(Op0Reg).addImm(Log-1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002007 else
2008 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(Op0Reg).addReg(Op0Reg);
2009
2010 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
Misha Brukman2fec9902004-06-21 20:22:03 +00002011 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg2).addReg(TmpReg).addImm(Log)
2012 .addImm(32-Log).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002013
2014 unsigned TmpReg3 = makeAnotherReg(Op0->getType());
2015 BuildMI(*BB, IP, PPC32::ADD, 2, TmpReg3).addReg(Op0Reg).addReg(TmpReg2);
2016
2017 unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg;
2018 BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg4).addReg(Op0Reg).addImm(Log);
2019
2020 if (isNeg)
2021 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(TmpReg4);
2022 return;
2023 }
2024 }
2025
2026 unsigned Op0Reg = getReg(Op0, BB, IP);
2027 unsigned Op1Reg = getReg(Op1, BB, IP);
2028
2029 if (isDiv) {
Misha Brukman422791f2004-06-21 17:41:12 +00002030 if (Ty->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002031 BuildMI(*BB, IP, PPC32::DIVW, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002032 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002033 BuildMI(*BB, IP,PPC32::DIVWU, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002034 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002035 } else { // Remainder
Misha Brukman422791f2004-06-21 17:41:12 +00002036 unsigned TmpReg1 = makeAnotherReg(Op0->getType());
2037 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2038
2039 if (Ty->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002040 BuildMI(*BB, IP, PPC32::DIVW, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002041 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002042 BuildMI(*BB, IP, PPC32::DIVWU, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002043 }
2044 BuildMI(*BB, IP, PPC32::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
2045 BuildMI(*BB, IP, PPC32::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002046 }
2047}
2048
2049
2050/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2051/// for constant immediate shift values, and for constant immediate
2052/// shift values equal to 1. Even the general case is sort of special,
2053/// because the shift amount has to be in CL, not just any old register.
2054///
2055void ISel::visitShiftInst(ShiftInst &I) {
2056 MachineBasicBlock::iterator IP = BB->end ();
Misha Brukman2fec9902004-06-21 20:22:03 +00002057 emitShiftOperation(BB, IP, I.getOperand (0), I.getOperand (1),
2058 I.getOpcode () == Instruction::Shl, I.getType (),
2059 getReg (I));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002060}
2061
2062/// emitShiftOperation - Common code shared between visitShiftInst and
2063/// constant expression support.
Misha Brukman2fec9902004-06-21 20:22:03 +00002064///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002065void ISel::emitShiftOperation(MachineBasicBlock *MBB,
2066 MachineBasicBlock::iterator IP,
2067 Value *Op, Value *ShiftAmount, bool isLeftShift,
2068 const Type *ResultTy, unsigned DestReg) {
2069 unsigned SrcReg = getReg (Op, MBB, IP);
2070 bool isSigned = ResultTy->isSigned ();
2071 unsigned Class = getClass (ResultTy);
2072
2073 // Longs, as usual, are handled specially...
2074 if (Class == cLong) {
2075 // If we have a constant shift, we can generate much more efficient code
2076 // than otherwise...
2077 //
2078 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2079 unsigned Amount = CUI->getValue();
2080 if (Amount < 32) {
2081 if (isLeftShift) {
Misha Brukman422791f2004-06-21 17:41:12 +00002082 // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002083 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2084 .addImm(Amount).addImm(0).addImm(31-Amount);
2085 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg)
2086 .addImm(Amount).addImm(32-Amount).addImm(31);
2087 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2088 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002089 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002090 // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002091 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2092 .addImm(32-Amount).addImm(Amount).addImm(31);
2093 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1)
2094 .addImm(32-Amount).addImm(0).addImm(Amount-1);
2095 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2096 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002097 }
2098 } else { // Shifting more than 32 bits
2099 Amount -= 32;
2100 if (isLeftShift) {
2101 if (Amount != 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002102 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg)
2103 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002104 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002105 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2106 .addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002107 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002108 BuildMI(*MBB, IP, PPC32::ADDI, 2,DestReg).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002109 } else {
2110 if (Amount != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +00002111 if (isSigned)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00002112 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg+1)
2113 .addImm(Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002114 else
Misha Brukmanfadb82f2004-06-24 22:00:15 +00002115 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1)
2116 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002117 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002118 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1)
2119 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002120 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002121 BuildMI(*MBB, IP,PPC32::ADDI,2,DestReg+1).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002122 }
2123 }
2124 } else {
2125 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
2126 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002127 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
2128 unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
2129 unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
2130 unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
2131 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2132
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002133 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002134 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
2135 .addImm(32);
2136 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg+1)
2137 .addReg(ShiftAmountReg);
2138 BuildMI(*MBB, IP, PPC32::SRW, 2,TmpReg3).addReg(SrcReg).addReg(TmpReg1);
2139 BuildMI(*MBB, IP, PPC32::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
2140 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
2141 .addImm(-32);
2142 BuildMI(*MBB, IP, PPC32::SLW, 2,TmpReg6).addReg(SrcReg).addReg(TmpReg5);
2143 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4)
2144 .addReg(TmpReg6);
2145 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2146 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002147 } else {
2148 if (isSigned) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002149 // FIXME: Unimplemented
Misha Brukman2fec9902004-06-21 20:22:03 +00002150 // Page C-3 of the PowerPC 32bit Programming Environments Manual
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002151 std::cerr << "Unimplemented: signed right shift\n";
2152 abort();
Misha Brukman422791f2004-06-21 17:41:12 +00002153 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002154 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
2155 .addImm(32);
2156 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg)
2157 .addReg(ShiftAmountReg);
2158 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg+1)
2159 .addReg(TmpReg1);
2160 BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2)
2161 .addReg(TmpReg3);
2162 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
2163 .addImm(-32);
2164 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg+1)
2165 .addReg(TmpReg5);
2166 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4)
2167 .addReg(TmpReg6);
2168 BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg+1).addReg(SrcReg+1)
2169 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002170 }
2171 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002172 }
2173 return;
2174 }
2175
2176 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2177 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
2178 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
2179 unsigned Amount = CUI->getValue();
2180
Misha Brukman422791f2004-06-21 17:41:12 +00002181 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002182 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2183 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002184 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002185 if (isSigned) {
2186 BuildMI(*MBB, IP, PPC32::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
2187 } else {
2188 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2189 .addImm(32-Amount).addImm(Amount).addImm(31);
2190 }
Misha Brukman422791f2004-06-21 17:41:12 +00002191 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002192 } else { // The shift amount is non-constant.
2193 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2194
Misha Brukman422791f2004-06-21 17:41:12 +00002195 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002196 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2197 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002198 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002199 BuildMI(*MBB, IP, isSigned ? PPC32::SRAW : PPC32::SRW, 2, DestReg)
2200 .addReg(SrcReg).addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002201 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002202 }
2203}
2204
2205
2206/// visitLoadInst - Implement LLVM load instructions
2207///
2208void ISel::visitLoadInst(LoadInst &I) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002209 static const unsigned Opcodes[] = {
2210 PPC32::LBZ, PPC32::LHZ, PPC32::LWZ, PPC32::LFS
2211 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002212 unsigned Class = getClassB(I.getType());
2213 unsigned Opcode = Opcodes[Class];
2214 if (I.getType() == Type::DoubleTy) Opcode = PPC32::LFD;
2215
2216 unsigned DestReg = getReg(I);
2217
2218 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
Misha Brukman422791f2004-06-21 17:41:12 +00002219 unsigned FI = getFixedSizedAllocaFI(AI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002220 if (Class == cLong) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002221 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg), FI);
2222 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg+1), FI, 4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002223 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002224 addFrameReference(BuildMI(BB, Opcode, 2, DestReg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +00002225 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002226 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002227 unsigned SrcAddrReg = getReg(I.getOperand(0));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002228
2229 if (Class == cLong) {
2230 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2231 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(SrcAddrReg);
2232 } else {
2233 BuildMI(BB, Opcode, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2234 }
2235 }
2236}
2237
2238/// visitStoreInst - Implement LLVM store instructions
2239///
2240void ISel::visitStoreInst(StoreInst &I) {
2241 unsigned ValReg = getReg(I.getOperand(0));
2242 unsigned AddressReg = getReg(I.getOperand(1));
2243
2244 const Type *ValTy = I.getOperand(0)->getType();
2245 unsigned Class = getClassB(ValTy);
2246
2247 if (Class == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00002248 BuildMI(BB, PPC32::STW, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002249 BuildMI(BB, PPC32::STW, 3).addReg(ValReg+1).addImm(4).addReg(AddressReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002250 return;
2251 }
2252
2253 static const unsigned Opcodes[] = {
2254 PPC32::STB, PPC32::STH, PPC32::STW, PPC32::STFS
2255 };
2256 unsigned Opcode = Opcodes[Class];
2257 if (ValTy == Type::DoubleTy) Opcode = PPC32::STFD;
2258 BuildMI(BB, Opcode, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
2259}
2260
2261
2262/// visitCastInst - Here we have various kinds of copying with or without sign
2263/// extension going on.
2264///
2265void ISel::visitCastInst(CastInst &CI) {
2266 Value *Op = CI.getOperand(0);
2267
2268 unsigned SrcClass = getClassB(Op->getType());
2269 unsigned DestClass = getClassB(CI.getType());
2270 // Noop casts are not emitted: getReg will return the source operand as the
2271 // register to use for any uses of the noop cast.
2272 if (DestClass == SrcClass)
2273 return;
2274
2275 // If this is a cast from a 32-bit integer to a Long type, and the only uses
2276 // of the case are GEP instructions, then the cast does not need to be
2277 // generated explicitly, it will be folded into the GEP.
2278 if (DestClass == cLong && SrcClass == cInt) {
2279 bool AllUsesAreGEPs = true;
2280 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
2281 if (!isa<GetElementPtrInst>(*I)) {
2282 AllUsesAreGEPs = false;
2283 break;
2284 }
2285
2286 // No need to codegen this cast if all users are getelementptr instrs...
2287 if (AllUsesAreGEPs) return;
2288 }
2289
2290 unsigned DestReg = getReg(CI);
2291 MachineBasicBlock::iterator MI = BB->end();
2292 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
2293}
2294
2295/// emitCastOperation - Common code shared between visitCastInst and constant
2296/// expression cast support.
2297///
2298void ISel::emitCastOperation(MachineBasicBlock *BB,
2299 MachineBasicBlock::iterator IP,
2300 Value *Src, const Type *DestTy,
2301 unsigned DestReg) {
2302 const Type *SrcTy = Src->getType();
2303 unsigned SrcClass = getClassB(SrcTy);
2304 unsigned DestClass = getClassB(DestTy);
2305 unsigned SrcReg = getReg(Src, BB, IP);
2306
2307 // Implement casts to bool by using compare on the operand followed by set if
2308 // not zero on the result.
2309 if (DestTy == Type::BoolTy) {
2310 switch (SrcClass) {
2311 case cByte:
Misha Brukman422791f2004-06-21 17:41:12 +00002312 case cShort:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002313 case cInt: {
2314 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002315 BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addImm(-1);
2316 BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002317 break;
2318 }
2319 case cLong: {
2320 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2321 unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
2322 BuildMI(*BB, IP, PPC32::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
Misha Brukman422791f2004-06-21 17:41:12 +00002323 BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addImm(-1);
2324 BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002325 break;
2326 }
2327 case cFP:
2328 // FIXME
Misha Brukman422791f2004-06-21 17:41:12 +00002329 // Load -0.0
2330 // Compare
2331 // move to CR1
2332 // Negate -0.0
2333 // Compare
2334 // CROR
2335 // MFCR
2336 // Left-align
2337 // SRA ?
Misha Brukmand18a31d2004-07-06 22:51:53 +00002338 std::cerr << "Cast fp-to-bool not implemented!";
2339 abort();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002340 }
2341 return;
2342 }
2343
2344 // Implement casts between values of the same type class (as determined by
2345 // getClass) by using a register-to-register move.
2346 if (SrcClass == DestClass) {
Misha Brukman422791f2004-06-21 17:41:12 +00002347 if (SrcClass <= cInt) {
2348 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2349 } else if (SrcClass == cFP && SrcTy == DestTy) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002350 BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2351 } else if (SrcClass == cFP) {
2352 if (SrcTy == Type::FloatTy) { // float -> double
2353 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
2354 BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2355 } else { // double -> float
2356 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
2357 "Unknown cFP member!");
Misha Brukman422791f2004-06-21 17:41:12 +00002358 BuildMI(*BB, IP, PPC32::FRSP, 1, DestReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002359 }
2360 } else if (SrcClass == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00002361 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002362 BuildMI(*BB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
2363 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002364 } else {
2365 assert(0 && "Cannot handle this type of cast instruction!");
2366 abort();
2367 }
2368 return;
2369 }
2370
2371 // Handle cast of SMALLER int to LARGER int using a move with sign extension
2372 // or zero extension, depending on whether the source type was signed.
2373 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
2374 SrcClass < DestClass) {
2375 bool isLong = DestClass == cLong;
2376 if (isLong) DestClass = cInt;
2377
2378 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
2379 if (SrcClass < cInt) {
2380 if (isUnsigned) {
Misha Brukman422791f2004-06-21 17:41:12 +00002381 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002382 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2383 .addImm(shift).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002384 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002385 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH,
2386 1, DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002387 }
2388 } else {
2389 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2390 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002391
2392 if (isLong) { // Handle upper 32 bits as appropriate...
2393 if (isUnsigned) // Zero out top bits...
2394 BuildMI(*BB, IP, PPC32::ADDI, 2, DestReg+1).addReg(PPC32::R0).addImm(0);
2395 else // Sign extend bottom half...
2396 BuildMI(*BB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(DestReg).addImm(31);
2397 }
2398 return;
2399 }
2400
2401 // Special case long -> int ...
2402 if (SrcClass == cLong && DestClass == cInt) {
2403 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2404 return;
2405 }
2406
2407 // Handle cast of LARGER int to SMALLER int with a clear or sign extend
2408 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
2409 && SrcClass > DestClass) {
2410 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
Misha Brukman422791f2004-06-21 17:41:12 +00002411 if (isUnsigned) {
2412 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002413 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2414 .addImm(shift).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00002415 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002416 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH, 1,
2417 DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002418 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002419 return;
2420 }
2421
2422 // Handle casts from integer to floating point now...
2423 if (DestClass == cFP) {
2424
Misha Brukman422791f2004-06-21 17:41:12 +00002425 // Emit a library call for long to float conversion
2426 if (SrcClass == cLong) {
2427 std::vector<ValueRecord> Args;
2428 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002429 MachineInstr *TheCall =
2430 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("__floatdidf", true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002431 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukman422791f2004-06-21 17:41:12 +00002432 return;
2433 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002434
2435 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman358829f2004-06-21 17:25:55 +00002436 switch (SrcTy->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002437 case Type::BoolTyID:
2438 case Type::SByteTyID:
2439 BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
2440 break;
2441 case Type::UByteTyID:
Misha Brukman2fec9902004-06-21 20:22:03 +00002442 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0)
2443 .addImm(24).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002444 break;
2445 case Type::ShortTyID:
2446 BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
2447 break;
2448 case Type::UShortTyID:
Misha Brukman2fec9902004-06-21 20:22:03 +00002449 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0)
2450 .addImm(16).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002451 break;
Misha Brukman422791f2004-06-21 17:41:12 +00002452 case Type::IntTyID:
2453 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
2454 break;
2455 case Type::UIntTyID:
2456 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
2457 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002458 default: // No promotion needed...
2459 break;
2460 }
2461
2462 SrcReg = TmpReg;
Misha Brukman422791f2004-06-21 17:41:12 +00002463
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002464 // Spill the integer to memory and reload it from there.
Misha Brukman422791f2004-06-21 17:41:12 +00002465 // Also spill room for a special conversion constant
2466 int ConstantFrameIndex =
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002467 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2468 int ValueFrameIdx =
2469 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2470
Misha Brukman422791f2004-06-21 17:41:12 +00002471 unsigned constantHi = makeAnotherReg(Type::IntTy);
2472 unsigned constantLo = makeAnotherReg(Type::IntTy);
2473 unsigned ConstF = makeAnotherReg(Type::DoubleTy);
2474 unsigned TempF = makeAnotherReg(Type::DoubleTy);
2475
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002476 if (!SrcTy->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002477 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0)
2478 .addImm(0x4330);
Misha Brukman422791f2004-06-21 17:41:12 +00002479 BuildMI(*BB, IP, PPC32::ADDI, 2, constantLo).addReg(PPC32::R0).addImm(0);
Misha Brukman2fec9902004-06-21 20:22:03 +00002480 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2481 ConstantFrameIndex);
2482 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2483 ConstantFrameIndex, 4);
2484 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2485 ValueFrameIdx);
2486 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(SrcReg),
2487 ValueFrameIdx, 4);
2488 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2489 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002490 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
2491 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
2492 } else {
2493 unsigned TempLo = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00002494 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0)
2495 .addImm(0x4330);
2496 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantLo).addReg(PPC32::R0)
2497 .addImm(0x8000);
2498 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2499 ConstantFrameIndex);
2500 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2501 ConstantFrameIndex, 4);
2502 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2503 ValueFrameIdx);
Misha Brukman422791f2004-06-21 17:41:12 +00002504 BuildMI(*BB, IP, PPC32::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002505 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(TempLo),
2506 ValueFrameIdx, 4);
2507 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2508 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002509 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
Misha Brukman2fec9902004-06-21 20:22:03 +00002510 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF ).addReg(ConstF);
Misha Brukman422791f2004-06-21 17:41:12 +00002511 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002512 return;
2513 }
2514
2515 // Handle casts from floating point to integer now...
2516 if (SrcClass == cFP) {
2517
Misha Brukman422791f2004-06-21 17:41:12 +00002518 // emit library call
2519 if (DestClass == cLong) {
2520 std::vector<ValueRecord> Args;
2521 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002522 MachineInstr *TheCall =
2523 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("__fixdfdi", true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002524 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukman422791f2004-06-21 17:41:12 +00002525 return;
2526 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002527
2528 int ValueFrameIdx =
2529 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2530
Misha Brukman422791f2004-06-21 17:41:12 +00002531 // load into 32 bit value, and then truncate as necessary
2532 // FIXME: This is wrong for unsigned dest types
2533 //if (DestTy->isSigned()) {
2534 unsigned TempReg = makeAnotherReg(Type::DoubleTy);
2535 BuildMI(*BB, IP, PPC32::FCTIWZ, 1, TempReg).addReg(SrcReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002536 addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3)
2537 .addReg(TempReg), ValueFrameIdx);
2538 addFrameReference(BuildMI(*BB, IP, PPC32::LWZ, 2, DestReg),
2539 ValueFrameIdx+4);
Misha Brukman422791f2004-06-21 17:41:12 +00002540 //} else {
2541 //}
2542
2543 // FIXME: Truncate return value
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002544 return;
2545 }
2546
2547 // Anything we haven't handled already, we can't (yet) handle at all.
2548 assert(0 && "Unhandled cast instruction!");
2549 abort();
2550}
2551
2552/// visitVANextInst - Implement the va_next instruction...
2553///
2554void ISel::visitVANextInst(VANextInst &I) {
2555 unsigned VAList = getReg(I.getOperand(0));
2556 unsigned DestReg = getReg(I);
2557
2558 unsigned Size;
Misha Brukman358829f2004-06-21 17:25:55 +00002559 switch (I.getArgType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002560 default:
2561 std::cerr << I;
2562 assert(0 && "Error: bad type for va_next instruction!");
2563 return;
2564 case Type::PointerTyID:
2565 case Type::UIntTyID:
2566 case Type::IntTyID:
2567 Size = 4;
2568 break;
2569 case Type::ULongTyID:
2570 case Type::LongTyID:
2571 case Type::DoubleTyID:
2572 Size = 8;
2573 break;
2574 }
2575
2576 // Increment the VAList pointer...
2577 BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addImm(Size);
2578}
2579
2580void ISel::visitVAArgInst(VAArgInst &I) {
2581 unsigned VAList = getReg(I.getOperand(0));
2582 unsigned DestReg = getReg(I);
2583
Misha Brukman358829f2004-06-21 17:25:55 +00002584 switch (I.getType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002585 default:
2586 std::cerr << I;
2587 assert(0 && "Error: bad type for va_next instruction!");
2588 return;
2589 case Type::PointerTyID:
2590 case Type::UIntTyID:
2591 case Type::IntTyID:
2592 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2593 break;
2594 case Type::ULongTyID:
2595 case Type::LongTyID:
2596 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2597 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(VAList);
2598 break;
2599 case Type::DoubleTyID:
2600 BuildMI(BB, PPC32::LFD, 2, DestReg).addImm(0).addReg(VAList);
2601 break;
2602 }
2603}
2604
2605/// visitGetElementPtrInst - instruction-select GEP instructions
2606///
2607void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
2608 unsigned outputReg = getReg(I);
Misha Brukman2fec9902004-06-21 20:22:03 +00002609 emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(),
2610 outputReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002611}
2612
2613void ISel::emitGEPOperation(MachineBasicBlock *MBB,
2614 MachineBasicBlock::iterator IP,
2615 Value *Src, User::op_iterator IdxBegin,
2616 User::op_iterator IdxEnd, unsigned TargetReg) {
2617 const TargetData &TD = TM.getTargetData();
2618 if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src))
2619 Src = CPR->getValue();
2620
2621 std::vector<Value*> GEPOps;
2622 GEPOps.resize(IdxEnd-IdxBegin+1);
2623 GEPOps[0] = Src;
2624 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
2625
2626 std::vector<const Type*> GEPTypes;
2627 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
2628 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
2629
2630 // Keep emitting instructions until we consume the entire GEP instruction.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002631 while (!GEPOps.empty()) {
2632 if (GEPTypes.empty()) {
2633 // Load the base pointer into a register.
2634 unsigned Reg = getReg(Src, MBB, IP);
2635 BuildMI(*MBB, IP, PPC32::OR, 2, TargetReg).addReg(Reg).addReg(Reg);
2636 break; // we are now done
2637 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002638 // It's an array or pointer access: [ArraySize x ElementType].
2639 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
2640 Value *idx = GEPOps.back();
2641 GEPOps.pop_back(); // Consume a GEP operand
2642 GEPTypes.pop_back();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002643
Misha Brukman2fec9902004-06-21 20:22:03 +00002644 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002645 // operand. Handle this case directly now...
Misha Brukman2fec9902004-06-21 20:22:03 +00002646 if (CastInst *CI = dyn_cast<CastInst>(idx))
2647 if (CI->getOperand(0)->getType() == Type::IntTy ||
2648 CI->getOperand(0)->getType() == Type::UIntTy)
2649 idx = CI->getOperand(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002650
Misha Brukman2fec9902004-06-21 20:22:03 +00002651 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
2652 // must find the size of the pointed-to type (Not coincidentally, the next
2653 // type is the type of the elements in the array).
2654 const Type *ElTy = SqTy->getElementType();
2655 unsigned elementSize = TD.getTypeSize(ElTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002656
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002657 if (idx == Constant::getNullValue(idx->getType())) {
2658 // GEP with idx 0 is a no-op
2659 } else if (elementSize == 1) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002660 // If the element size is 1, we don't have to multiply, just add
2661 unsigned idxReg = getReg(idx, MBB, IP);
2662 unsigned Reg = makeAnotherReg(Type::UIntTy);
2663 BuildMI(*MBB, IP, PPC32::ADD, 2,TargetReg).addReg(Reg).addReg(idxReg);
2664 --IP; // Insert the next instruction before this one.
2665 TargetReg = Reg; // Codegen the rest of the GEP into this
2666 } else {
2667 unsigned idxReg = getReg(idx, MBB, IP);
2668 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002669
Misha Brukman2fec9902004-06-21 20:22:03 +00002670 // Make sure we can back the iterator up to point to the first
2671 // instruction emitted.
2672 MachineBasicBlock::iterator BeforeIt = IP;
2673 if (IP == MBB->begin())
2674 BeforeIt = MBB->end();
2675 else
2676 --BeforeIt;
2677 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002678
Misha Brukman2fec9902004-06-21 20:22:03 +00002679 // Emit an ADD to add OffsetReg to the basePtr.
2680 unsigned Reg = makeAnotherReg(Type::UIntTy);
2681 BuildMI(*MBB, IP, PPC32::ADD, 2, TargetReg).addReg(Reg).addReg(OffsetReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002682
Misha Brukman2fec9902004-06-21 20:22:03 +00002683 // Step to the first instruction of the multiply.
2684 if (BeforeIt == MBB->end())
2685 IP = MBB->begin();
2686 else
2687 IP = ++BeforeIt;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002688
Misha Brukman2fec9902004-06-21 20:22:03 +00002689 TargetReg = Reg; // Codegen the rest of the GEP into this
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002690 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002691 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002692}
2693
2694/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2695/// frame manager, otherwise do it the hard way.
2696///
2697void ISel::visitAllocaInst(AllocaInst &I) {
2698 // If this is a fixed size alloca in the entry block for the function, we
2699 // statically stack allocate the space, so we don't need to do anything here.
2700 //
2701 if (dyn_castFixedAlloca(&I)) return;
2702
2703 // Find the data size of the alloca inst's getAllocatedType.
2704 const Type *Ty = I.getAllocatedType();
2705 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2706
2707 // Create a register to hold the temporary result of multiplying the type size
2708 // constant by the variable amount.
2709 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2710 unsigned SrcReg1 = getReg(I.getArraySize());
2711
2712 // TotalSizeReg = mul <numelements>, <TypeSize>
2713 MachineBasicBlock::iterator MBBI = BB->end();
2714 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
2715
2716 // AddedSize = add <TotalSizeReg>, 15
2717 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2718 BuildMI(BB, PPC32::ADD, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
2719
2720 // AlignedSize = and <AddedSize>, ~15
2721 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00002722 BuildMI(BB, PPC32::RLWNM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
2723 .addImm(0).addImm(27);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002724
2725 // Subtract size from stack pointer, thereby allocating some space.
2726 BuildMI(BB, PPC32::SUB, 2, PPC32::R1).addReg(PPC32::R1).addReg(AlignedSize);
2727
2728 // Put a pointer to the space into the result register, by copying
2729 // the stack pointer.
2730 BuildMI(BB, PPC32::OR, 2, getReg(I)).addReg(PPC32::R1).addReg(PPC32::R1);
2731
2732 // Inform the Frame Information that we have just allocated a variable-sized
2733 // object.
2734 F->getFrameInfo()->CreateVariableSizedObject();
2735}
2736
2737/// visitMallocInst - Malloc instructions are code generated into direct calls
2738/// to the library malloc.
2739///
2740void ISel::visitMallocInst(MallocInst &I) {
2741 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2742 unsigned Arg;
2743
2744 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2745 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2746 } else {
2747 Arg = makeAnotherReg(Type::UIntTy);
2748 unsigned Op0Reg = getReg(I.getOperand(0));
2749 MachineBasicBlock::iterator MBBI = BB->end();
2750 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
2751 }
2752
2753 std::vector<ValueRecord> Args;
2754 Args.push_back(ValueRecord(Arg, Type::UIntTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002755 MachineInstr *TheCall =
2756 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("malloc", true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002757 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002758}
2759
2760
2761/// visitFreeInst - Free instructions are code gen'd to call the free libc
2762/// function.
2763///
2764void ISel::visitFreeInst(FreeInst &I) {
2765 std::vector<ValueRecord> Args;
2766 Args.push_back(ValueRecord(I.getOperand(0)));
Misha Brukman2fec9902004-06-21 20:22:03 +00002767 MachineInstr *TheCall =
2768 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("free", true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002769 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002770}
2771
2772/// createPPC32SimpleInstructionSelector - This pass converts an LLVM function
2773/// into a machine code representation is a very simple peep-hole fashion. The
2774/// generated code sucks but the implementation is nice and simple.
2775///
2776FunctionPass *llvm::createPPCSimpleInstructionSelector(TargetMachine &TM) {
2777 return new ISel(TM);
2778}