blob: 9f5ca3e3d526f353a482d49b9b64163a208157c0 [file] [log] [blame]
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001//===-- APFloat.cpp - Implement APFloat class -----------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Chris Lattnerb39cdde2007-08-20 22:49:32 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision floating
11// point values and provide a variety of arithmetic operations on them.
12//
13//===----------------------------------------------------------------------===//
14
Chris Lattner36d26c22007-12-08 19:00:03 +000015#include "llvm/ADT/APFloat.h"
Jeffrey Yasskin3d42bfb2011-07-15 07:04:56 +000016#include "llvm/ADT/APSInt.h"
Ted Kremenek1f801fa2008-02-11 17:24:50 +000017#include "llvm/ADT/FoldingSet.h"
Chandler Carruthed7692a2012-03-04 12:02:57 +000018#include "llvm/ADT/Hashing.h"
19#include "llvm/ADT/StringRef.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000020#include "llvm/Support/ErrorHandling.h"
Dale Johannesend3b51fd2007-08-24 05:08:11 +000021#include "llvm/Support/MathExtras.h"
John McCall8b3f3302010-02-26 22:20:41 +000022#include <limits.h>
Chris Lattnerfad86b02008-08-17 07:19:36 +000023#include <cstring>
Chris Lattnerb39cdde2007-08-20 22:49:32 +000024
25using namespace llvm;
26
27#define convolve(lhs, rhs) ((lhs) * 4 + (rhs))
28
Neil Bootha30b0ee2007-10-03 22:26:02 +000029/* Assumed in hexadecimal significand parsing, and conversion to
30 hexadecimal strings. */
Chris Lattner9f17eb02008-08-17 04:58:58 +000031#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
Chris Lattnerb39cdde2007-08-20 22:49:32 +000032COMPILE_TIME_ASSERT(integerPartWidth % 4 == 0);
33
34namespace llvm {
35
36 /* Represents floating point arithmetic semantics. */
37 struct fltSemantics {
38 /* The largest E such that 2^E is representable; this matches the
39 definition of IEEE 754. */
40 exponent_t maxExponent;
41
42 /* The smallest E such that 2^E is a normalized number; this
43 matches the definition of IEEE 754. */
44 exponent_t minExponent;
45
46 /* Number of bits in the significand. This includes the integer
47 bit. */
Neil Booth7a951ca2007-10-12 15:33:27 +000048 unsigned int precision;
Neil Boothcaf19d72007-10-14 10:29:28 +000049
50 /* True if arithmetic is supported. */
51 unsigned int arithmeticOK;
Chris Lattnerb39cdde2007-08-20 22:49:32 +000052 };
53
Chris Lattnercc4287a2009-10-16 02:13:51 +000054 const fltSemantics APFloat::IEEEhalf = { 15, -14, 11, true };
Neil Boothcaf19d72007-10-14 10:29:28 +000055 const fltSemantics APFloat::IEEEsingle = { 127, -126, 24, true };
56 const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53, true };
57 const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113, true };
58 const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64, true };
59 const fltSemantics APFloat::Bogus = { 0, 0, 0, true };
Dale Johannesena471c2e2007-10-11 18:07:22 +000060
61 // The PowerPC format consists of two doubles. It does not map cleanly
62 // onto the usual format above. For now only storage of constants of
63 // this type is supported, no arithmetic.
Neil Boothcaf19d72007-10-14 10:29:28 +000064 const fltSemantics APFloat::PPCDoubleDouble = { 1023, -1022, 106, false };
Neil Booth96c74712007-10-12 16:02:31 +000065
66 /* A tight upper bound on number of parts required to hold the value
67 pow(5, power) is
68
Neil Booth686700e2007-10-15 15:00:55 +000069 power * 815 / (351 * integerPartWidth) + 1
Dan Gohman16e02092010-03-24 19:38:02 +000070
Neil Booth96c74712007-10-12 16:02:31 +000071 However, whilst the result may require only this many parts,
72 because we are multiplying two values to get it, the
73 multiplication may require an extra part with the excess part
74 being zero (consider the trivial case of 1 * 1, tcFullMultiply
75 requires two parts to hold the single-part result). So we add an
76 extra one to guarantee enough space whilst multiplying. */
77 const unsigned int maxExponent = 16383;
78 const unsigned int maxPrecision = 113;
79 const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1;
Neil Booth686700e2007-10-15 15:00:55 +000080 const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815)
81 / (351 * integerPartWidth));
Chris Lattnerb39cdde2007-08-20 22:49:32 +000082}
83
Chris Lattnere213f3f2009-03-12 23:59:55 +000084/* A bunch of private, handy routines. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +000085
Chris Lattnere213f3f2009-03-12 23:59:55 +000086static inline unsigned int
87partCountForBits(unsigned int bits)
88{
89 return ((bits) + integerPartWidth - 1) / integerPartWidth;
90}
Chris Lattnerb39cdde2007-08-20 22:49:32 +000091
Chris Lattnere213f3f2009-03-12 23:59:55 +000092/* Returns 0U-9U. Return values >= 10U are not digits. */
93static inline unsigned int
94decDigitValue(unsigned int c)
95{
96 return c - '0';
97}
Chris Lattnerb39cdde2007-08-20 22:49:32 +000098
Chris Lattnere213f3f2009-03-12 23:59:55 +000099static unsigned int
100hexDigitValue(unsigned int c)
101{
102 unsigned int r;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000103
Chris Lattnere213f3f2009-03-12 23:59:55 +0000104 r = c - '0';
Dan Gohman16e02092010-03-24 19:38:02 +0000105 if (r <= 9)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000106 return r;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000107
Chris Lattnere213f3f2009-03-12 23:59:55 +0000108 r = c - 'A';
Dan Gohman16e02092010-03-24 19:38:02 +0000109 if (r <= 5)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000110 return r + 10;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000111
Chris Lattnere213f3f2009-03-12 23:59:55 +0000112 r = c - 'a';
Dan Gohman16e02092010-03-24 19:38:02 +0000113 if (r <= 5)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000114 return r + 10;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000115
Chris Lattnere213f3f2009-03-12 23:59:55 +0000116 return -1U;
117}
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000118
Chris Lattnere213f3f2009-03-12 23:59:55 +0000119static inline void
120assertArithmeticOK(const llvm::fltSemantics &semantics) {
Dan Gohman16e02092010-03-24 19:38:02 +0000121 assert(semantics.arithmeticOK &&
122 "Compile-time arithmetic does not support these semantics");
Chris Lattnere213f3f2009-03-12 23:59:55 +0000123}
Neil Boothcaf19d72007-10-14 10:29:28 +0000124
Chris Lattnere213f3f2009-03-12 23:59:55 +0000125/* Return the value of a decimal exponent of the form
126 [+-]ddddddd.
Neil Booth1870f292007-10-14 10:16:12 +0000127
Chris Lattnere213f3f2009-03-12 23:59:55 +0000128 If the exponent overflows, returns a large exponent with the
129 appropriate sign. */
130static int
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000131readExponent(StringRef::iterator begin, StringRef::iterator end)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000132{
133 bool isNegative;
134 unsigned int absExponent;
135 const unsigned int overlargeExponent = 24000; /* FIXME. */
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000136 StringRef::iterator p = begin;
137
138 assert(p != end && "Exponent has no digits");
Neil Booth1870f292007-10-14 10:16:12 +0000139
Chris Lattnere213f3f2009-03-12 23:59:55 +0000140 isNegative = (*p == '-');
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000141 if (*p == '-' || *p == '+') {
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000142 p++;
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000143 assert(p != end && "Exponent has no digits");
144 }
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000145
Chris Lattnere213f3f2009-03-12 23:59:55 +0000146 absExponent = decDigitValue(*p++);
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000147 assert(absExponent < 10U && "Invalid character in exponent");
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000148
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000149 for (; p != end; ++p) {
Chris Lattnere213f3f2009-03-12 23:59:55 +0000150 unsigned int value;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000151
Chris Lattnere213f3f2009-03-12 23:59:55 +0000152 value = decDigitValue(*p);
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000153 assert(value < 10U && "Invalid character in exponent");
Chris Lattnere213f3f2009-03-12 23:59:55 +0000154
Chris Lattnere213f3f2009-03-12 23:59:55 +0000155 value += absExponent * 10;
156 if (absExponent >= overlargeExponent) {
157 absExponent = overlargeExponent;
Dale Johannesenb1508d12010-08-19 17:58:35 +0000158 p = end; /* outwit assert below */
Chris Lattnere213f3f2009-03-12 23:59:55 +0000159 break;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000160 }
Chris Lattnere213f3f2009-03-12 23:59:55 +0000161 absExponent = value;
162 }
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000163
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000164 assert(p == end && "Invalid exponent in exponent");
165
Chris Lattnere213f3f2009-03-12 23:59:55 +0000166 if (isNegative)
167 return -(int) absExponent;
168 else
169 return (int) absExponent;
170}
171
172/* This is ugly and needs cleaning up, but I don't immediately see
173 how whilst remaining safe. */
174static int
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000175totalExponent(StringRef::iterator p, StringRef::iterator end,
176 int exponentAdjustment)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000177{
178 int unsignedExponent;
179 bool negative, overflow;
Ted Kremenek584520e2011-01-23 17:05:06 +0000180 int exponent = 0;
Chris Lattnere213f3f2009-03-12 23:59:55 +0000181
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +0000182 assert(p != end && "Exponent has no digits");
183
Chris Lattnere213f3f2009-03-12 23:59:55 +0000184 negative = *p == '-';
Dan Gohman16e02092010-03-24 19:38:02 +0000185 if (*p == '-' || *p == '+') {
Chris Lattnere213f3f2009-03-12 23:59:55 +0000186 p++;
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +0000187 assert(p != end && "Exponent has no digits");
188 }
Chris Lattnere213f3f2009-03-12 23:59:55 +0000189
190 unsignedExponent = 0;
191 overflow = false;
Dan Gohman16e02092010-03-24 19:38:02 +0000192 for (; p != end; ++p) {
Chris Lattnere213f3f2009-03-12 23:59:55 +0000193 unsigned int value;
194
195 value = decDigitValue(*p);
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000196 assert(value < 10U && "Invalid character in exponent");
Chris Lattnere213f3f2009-03-12 23:59:55 +0000197
Chris Lattnere213f3f2009-03-12 23:59:55 +0000198 unsignedExponent = unsignedExponent * 10 + value;
Abramo Bagnara4bb46f42011-01-06 16:55:14 +0000199 if (unsignedExponent > 32767)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000200 overflow = true;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000201 }
202
Abramo Bagnara4bb46f42011-01-06 16:55:14 +0000203 if (exponentAdjustment > 32767 || exponentAdjustment < -32768)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000204 overflow = true;
205
Dan Gohman16e02092010-03-24 19:38:02 +0000206 if (!overflow) {
Chris Lattnere213f3f2009-03-12 23:59:55 +0000207 exponent = unsignedExponent;
Dan Gohman16e02092010-03-24 19:38:02 +0000208 if (negative)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000209 exponent = -exponent;
210 exponent += exponentAdjustment;
Abramo Bagnara4bb46f42011-01-06 16:55:14 +0000211 if (exponent > 32767 || exponent < -32768)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000212 overflow = true;
213 }
214
Dan Gohman16e02092010-03-24 19:38:02 +0000215 if (overflow)
Abramo Bagnara4bb46f42011-01-06 16:55:14 +0000216 exponent = negative ? -32768: 32767;
Chris Lattnere213f3f2009-03-12 23:59:55 +0000217
218 return exponent;
219}
220
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000221static StringRef::iterator
222skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end,
223 StringRef::iterator *dot)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000224{
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000225 StringRef::iterator p = begin;
226 *dot = end;
Dan Gohman16e02092010-03-24 19:38:02 +0000227 while (*p == '0' && p != end)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000228 p++;
229
Dan Gohman16e02092010-03-24 19:38:02 +0000230 if (*p == '.') {
Chris Lattnere213f3f2009-03-12 23:59:55 +0000231 *dot = p++;
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000232
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +0000233 assert(end - begin != 1 && "Significand has no digits");
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000234
Dan Gohman16e02092010-03-24 19:38:02 +0000235 while (*p == '0' && p != end)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000236 p++;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000237 }
238
Chris Lattnere213f3f2009-03-12 23:59:55 +0000239 return p;
240}
Neil Booth1870f292007-10-14 10:16:12 +0000241
Chris Lattnere213f3f2009-03-12 23:59:55 +0000242/* Given a normal decimal floating point number of the form
Neil Booth1870f292007-10-14 10:16:12 +0000243
Chris Lattnere213f3f2009-03-12 23:59:55 +0000244 dddd.dddd[eE][+-]ddd
Neil Booth686700e2007-10-15 15:00:55 +0000245
Chris Lattnere213f3f2009-03-12 23:59:55 +0000246 where the decimal point and exponent are optional, fill out the
247 structure D. Exponent is appropriate if the significand is
248 treated as an integer, and normalizedExponent if the significand
249 is taken to have the decimal point after a single leading
250 non-zero digit.
Neil Booth1870f292007-10-14 10:16:12 +0000251
Chris Lattnere213f3f2009-03-12 23:59:55 +0000252 If the value is zero, V->firstSigDigit points to a non-digit, and
253 the return exponent is zero.
254*/
255struct decimalInfo {
256 const char *firstSigDigit;
257 const char *lastSigDigit;
258 int exponent;
259 int normalizedExponent;
260};
Neil Booth1870f292007-10-14 10:16:12 +0000261
Chris Lattnere213f3f2009-03-12 23:59:55 +0000262static void
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000263interpretDecimal(StringRef::iterator begin, StringRef::iterator end,
264 decimalInfo *D)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000265{
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000266 StringRef::iterator dot = end;
267 StringRef::iterator p = skipLeadingZeroesAndAnyDot (begin, end, &dot);
Neil Booth1870f292007-10-14 10:16:12 +0000268
Chris Lattnere213f3f2009-03-12 23:59:55 +0000269 D->firstSigDigit = p;
270 D->exponent = 0;
271 D->normalizedExponent = 0;
272
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000273 for (; p != end; ++p) {
Chris Lattnere213f3f2009-03-12 23:59:55 +0000274 if (*p == '.') {
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +0000275 assert(dot == end && "String contains multiple dots");
Chris Lattnere213f3f2009-03-12 23:59:55 +0000276 dot = p++;
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000277 if (p == end)
278 break;
Neil Booth1870f292007-10-14 10:16:12 +0000279 }
Chris Lattnere213f3f2009-03-12 23:59:55 +0000280 if (decDigitValue(*p) >= 10U)
281 break;
Chris Lattnere213f3f2009-03-12 23:59:55 +0000282 }
Neil Booth1870f292007-10-14 10:16:12 +0000283
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000284 if (p != end) {
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +0000285 assert((*p == 'e' || *p == 'E') && "Invalid character in significand");
286 assert(p != begin && "Significand has no digits");
287 assert((dot == end || p - begin != 1) && "Significand has no digits");
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000288
289 /* p points to the first non-digit in the string */
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +0000290 D->exponent = readExponent(p + 1, end);
Neil Booth1870f292007-10-14 10:16:12 +0000291
Chris Lattnere213f3f2009-03-12 23:59:55 +0000292 /* Implied decimal point? */
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000293 if (dot == end)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000294 dot = p;
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000295 }
Neil Booth1870f292007-10-14 10:16:12 +0000296
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000297 /* If number is all zeroes accept any exponent. */
298 if (p != D->firstSigDigit) {
Chris Lattnere213f3f2009-03-12 23:59:55 +0000299 /* Drop insignificant trailing zeroes. */
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000300 if (p != begin) {
Neil Booth1870f292007-10-14 10:16:12 +0000301 do
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000302 do
303 p--;
304 while (p != begin && *p == '0');
305 while (p != begin && *p == '.');
306 }
Neil Booth1870f292007-10-14 10:16:12 +0000307
Chris Lattnere213f3f2009-03-12 23:59:55 +0000308 /* Adjust the exponents for any decimal point. */
309 D->exponent += static_cast<exponent_t>((dot - p) - (dot > p));
310 D->normalizedExponent = (D->exponent +
311 static_cast<exponent_t>((p - D->firstSigDigit)
312 - (dot > D->firstSigDigit && dot < p)));
Neil Booth1870f292007-10-14 10:16:12 +0000313 }
314
Chris Lattnere213f3f2009-03-12 23:59:55 +0000315 D->lastSigDigit = p;
316}
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000317
Chris Lattnere213f3f2009-03-12 23:59:55 +0000318/* Return the trailing fraction of a hexadecimal number.
319 DIGITVALUE is the first hex digit of the fraction, P points to
320 the next digit. */
321static lostFraction
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000322trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end,
323 unsigned int digitValue)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000324{
325 unsigned int hexDigit;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000326
Chris Lattnere213f3f2009-03-12 23:59:55 +0000327 /* If the first trailing digit isn't 0 or 8 we can work out the
328 fraction immediately. */
Dan Gohman16e02092010-03-24 19:38:02 +0000329 if (digitValue > 8)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000330 return lfMoreThanHalf;
Dan Gohman16e02092010-03-24 19:38:02 +0000331 else if (digitValue < 8 && digitValue > 0)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000332 return lfLessThanHalf;
Chris Lattnere213f3f2009-03-12 23:59:55 +0000333
334 /* Otherwise we need to find the first non-zero digit. */
Dan Gohman16e02092010-03-24 19:38:02 +0000335 while (*p == '0')
Chris Lattnere213f3f2009-03-12 23:59:55 +0000336 p++;
337
Erick Tryzelaara15d8902009-08-16 23:36:19 +0000338 assert(p != end && "Invalid trailing hexadecimal fraction!");
339
Chris Lattnere213f3f2009-03-12 23:59:55 +0000340 hexDigit = hexDigitValue(*p);
341
342 /* If we ran off the end it is exactly zero or one-half, otherwise
343 a little more. */
Dan Gohman16e02092010-03-24 19:38:02 +0000344 if (hexDigit == -1U)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000345 return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
346 else
347 return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
348}
349
350/* Return the fraction lost were a bignum truncated losing the least
351 significant BITS bits. */
352static lostFraction
353lostFractionThroughTruncation(const integerPart *parts,
354 unsigned int partCount,
355 unsigned int bits)
356{
357 unsigned int lsb;
358
359 lsb = APInt::tcLSB(parts, partCount);
360
361 /* Note this is guaranteed true if bits == 0, or LSB == -1U. */
Dan Gohman16e02092010-03-24 19:38:02 +0000362 if (bits <= lsb)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000363 return lfExactlyZero;
Dan Gohman16e02092010-03-24 19:38:02 +0000364 if (bits == lsb + 1)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000365 return lfExactlyHalf;
Dan Gohman16e02092010-03-24 19:38:02 +0000366 if (bits <= partCount * integerPartWidth &&
367 APInt::tcExtractBit(parts, bits - 1))
Chris Lattnere213f3f2009-03-12 23:59:55 +0000368 return lfMoreThanHalf;
369
370 return lfLessThanHalf;
371}
372
373/* Shift DST right BITS bits noting lost fraction. */
374static lostFraction
375shiftRight(integerPart *dst, unsigned int parts, unsigned int bits)
376{
377 lostFraction lost_fraction;
378
379 lost_fraction = lostFractionThroughTruncation(dst, parts, bits);
380
381 APInt::tcShiftRight(dst, parts, bits);
382
383 return lost_fraction;
384}
385
386/* Combine the effect of two lost fractions. */
387static lostFraction
388combineLostFractions(lostFraction moreSignificant,
389 lostFraction lessSignificant)
390{
Dan Gohman16e02092010-03-24 19:38:02 +0000391 if (lessSignificant != lfExactlyZero) {
392 if (moreSignificant == lfExactlyZero)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000393 moreSignificant = lfLessThanHalf;
Dan Gohman16e02092010-03-24 19:38:02 +0000394 else if (moreSignificant == lfExactlyHalf)
Chris Lattnere213f3f2009-03-12 23:59:55 +0000395 moreSignificant = lfMoreThanHalf;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000396 }
397
Chris Lattnere213f3f2009-03-12 23:59:55 +0000398 return moreSignificant;
399}
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000400
Chris Lattnere213f3f2009-03-12 23:59:55 +0000401/* The error from the true value, in half-ulps, on multiplying two
402 floating point numbers, which differ from the value they
403 approximate by at most HUE1 and HUE2 half-ulps, is strictly less
404 than the returned value.
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000405
Chris Lattnere213f3f2009-03-12 23:59:55 +0000406 See "How to Read Floating Point Numbers Accurately" by William D
407 Clinger. */
408static unsigned int
409HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2)
410{
411 assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8));
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000412
Chris Lattnere213f3f2009-03-12 23:59:55 +0000413 if (HUerr1 + HUerr2 == 0)
414 return inexactMultiply * 2; /* <= inexactMultiply half-ulps. */
415 else
416 return inexactMultiply + 2 * (HUerr1 + HUerr2);
417}
Neil Bootha30b0ee2007-10-03 22:26:02 +0000418
Chris Lattnere213f3f2009-03-12 23:59:55 +0000419/* The number of ulps from the boundary (zero, or half if ISNEAREST)
420 when the least significant BITS are truncated. BITS cannot be
421 zero. */
422static integerPart
423ulpsFromBoundary(const integerPart *parts, unsigned int bits, bool isNearest)
424{
425 unsigned int count, partBits;
426 integerPart part, boundary;
Neil Booth33d4c922007-10-07 08:51:21 +0000427
Evan Cheng99ebfa52009-10-27 21:35:42 +0000428 assert(bits != 0);
Neil Bootha30b0ee2007-10-03 22:26:02 +0000429
Chris Lattnere213f3f2009-03-12 23:59:55 +0000430 bits--;
431 count = bits / integerPartWidth;
432 partBits = bits % integerPartWidth + 1;
Neil Booth96c74712007-10-12 16:02:31 +0000433
Chris Lattnere213f3f2009-03-12 23:59:55 +0000434 part = parts[count] & (~(integerPart) 0 >> (integerPartWidth - partBits));
Neil Booth96c74712007-10-12 16:02:31 +0000435
Chris Lattnere213f3f2009-03-12 23:59:55 +0000436 if (isNearest)
437 boundary = (integerPart) 1 << (partBits - 1);
438 else
439 boundary = 0;
440
441 if (count == 0) {
442 if (part - boundary <= boundary - part)
443 return part - boundary;
Neil Booth96c74712007-10-12 16:02:31 +0000444 else
Chris Lattnere213f3f2009-03-12 23:59:55 +0000445 return boundary - part;
Neil Booth96c74712007-10-12 16:02:31 +0000446 }
447
Chris Lattnere213f3f2009-03-12 23:59:55 +0000448 if (part == boundary) {
449 while (--count)
450 if (parts[count])
451 return ~(integerPart) 0; /* A lot. */
Neil Booth96c74712007-10-12 16:02:31 +0000452
Chris Lattnere213f3f2009-03-12 23:59:55 +0000453 return parts[0];
454 } else if (part == boundary - 1) {
455 while (--count)
456 if (~parts[count])
457 return ~(integerPart) 0; /* A lot. */
Neil Booth96c74712007-10-12 16:02:31 +0000458
Chris Lattnere213f3f2009-03-12 23:59:55 +0000459 return -parts[0];
460 }
Neil Booth96c74712007-10-12 16:02:31 +0000461
Chris Lattnere213f3f2009-03-12 23:59:55 +0000462 return ~(integerPart) 0; /* A lot. */
463}
Neil Booth96c74712007-10-12 16:02:31 +0000464
Chris Lattnere213f3f2009-03-12 23:59:55 +0000465/* Place pow(5, power) in DST, and return the number of parts used.
466 DST must be at least one part larger than size of the answer. */
467static unsigned int
468powerOf5(integerPart *dst, unsigned int power)
469{
470 static const integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125,
471 15625, 78125 };
Chris Lattneree167a72009-03-13 00:24:01 +0000472 integerPart pow5s[maxPowerOfFiveParts * 2 + 5];
473 pow5s[0] = 78125 * 5;
Dan Gohman16e02092010-03-24 19:38:02 +0000474
Chris Lattner807926a2009-03-13 00:03:51 +0000475 unsigned int partsCount[16] = { 1 };
Chris Lattnere213f3f2009-03-12 23:59:55 +0000476 integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5;
477 unsigned int result;
Chris Lattnere213f3f2009-03-12 23:59:55 +0000478 assert(power <= maxExponent);
479
480 p1 = dst;
481 p2 = scratch;
482
483 *p1 = firstEightPowers[power & 7];
484 power >>= 3;
485
486 result = 1;
487 pow5 = pow5s;
488
489 for (unsigned int n = 0; power; power >>= 1, n++) {
490 unsigned int pc;
491
492 pc = partsCount[n];
493
494 /* Calculate pow(5,pow(2,n+3)) if we haven't yet. */
495 if (pc == 0) {
496 pc = partsCount[n - 1];
497 APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc);
498 pc *= 2;
499 if (pow5[pc - 1] == 0)
500 pc--;
501 partsCount[n] = pc;
Neil Booth96c74712007-10-12 16:02:31 +0000502 }
503
Chris Lattnere213f3f2009-03-12 23:59:55 +0000504 if (power & 1) {
505 integerPart *tmp;
Neil Booth96c74712007-10-12 16:02:31 +0000506
Chris Lattnere213f3f2009-03-12 23:59:55 +0000507 APInt::tcFullMultiply(p2, p1, pow5, result, pc);
508 result += pc;
509 if (p2[result - 1] == 0)
510 result--;
Neil Booth96c74712007-10-12 16:02:31 +0000511
Chris Lattnere213f3f2009-03-12 23:59:55 +0000512 /* Now result is in p1 with partsCount parts and p2 is scratch
513 space. */
514 tmp = p1, p1 = p2, p2 = tmp;
Neil Booth96c74712007-10-12 16:02:31 +0000515 }
516
Chris Lattnere213f3f2009-03-12 23:59:55 +0000517 pow5 += pc;
Neil Booth96c74712007-10-12 16:02:31 +0000518 }
519
Chris Lattnere213f3f2009-03-12 23:59:55 +0000520 if (p1 != dst)
521 APInt::tcAssign(dst, p1, result);
Neil Booth96c74712007-10-12 16:02:31 +0000522
Chris Lattnere213f3f2009-03-12 23:59:55 +0000523 return result;
524}
Neil Booth96c74712007-10-12 16:02:31 +0000525
Chris Lattnere213f3f2009-03-12 23:59:55 +0000526/* Zero at the end to avoid modular arithmetic when adding one; used
527 when rounding up during hexadecimal output. */
528static const char hexDigitsLower[] = "0123456789abcdef0";
529static const char hexDigitsUpper[] = "0123456789ABCDEF0";
530static const char infinityL[] = "infinity";
531static const char infinityU[] = "INFINITY";
532static const char NaNL[] = "nan";
533static const char NaNU[] = "NAN";
Neil Booth96c74712007-10-12 16:02:31 +0000534
Chris Lattnere213f3f2009-03-12 23:59:55 +0000535/* Write out an integerPart in hexadecimal, starting with the most
536 significant nibble. Write out exactly COUNT hexdigits, return
537 COUNT. */
538static unsigned int
539partAsHex (char *dst, integerPart part, unsigned int count,
540 const char *hexDigitChars)
541{
542 unsigned int result = count;
Neil Booth96c74712007-10-12 16:02:31 +0000543
Evan Cheng99ebfa52009-10-27 21:35:42 +0000544 assert(count != 0 && count <= integerPartWidth / 4);
Neil Booth96c74712007-10-12 16:02:31 +0000545
Chris Lattnere213f3f2009-03-12 23:59:55 +0000546 part >>= (integerPartWidth - 4 * count);
547 while (count--) {
548 dst[count] = hexDigitChars[part & 0xf];
549 part >>= 4;
Neil Booth96c74712007-10-12 16:02:31 +0000550 }
551
Chris Lattnere213f3f2009-03-12 23:59:55 +0000552 return result;
553}
Neil Bootha30b0ee2007-10-03 22:26:02 +0000554
Chris Lattnere213f3f2009-03-12 23:59:55 +0000555/* Write out an unsigned decimal integer. */
556static char *
557writeUnsignedDecimal (char *dst, unsigned int n)
558{
559 char buff[40], *p;
Neil Bootha30b0ee2007-10-03 22:26:02 +0000560
Chris Lattnere213f3f2009-03-12 23:59:55 +0000561 p = buff;
562 do
563 *p++ = '0' + n % 10;
564 while (n /= 10);
Neil Bootha30b0ee2007-10-03 22:26:02 +0000565
Chris Lattnere213f3f2009-03-12 23:59:55 +0000566 do
567 *dst++ = *--p;
568 while (p != buff);
Neil Bootha30b0ee2007-10-03 22:26:02 +0000569
Chris Lattnere213f3f2009-03-12 23:59:55 +0000570 return dst;
571}
Neil Bootha30b0ee2007-10-03 22:26:02 +0000572
Chris Lattnere213f3f2009-03-12 23:59:55 +0000573/* Write out a signed decimal integer. */
574static char *
575writeSignedDecimal (char *dst, int value)
576{
577 if (value < 0) {
578 *dst++ = '-';
579 dst = writeUnsignedDecimal(dst, -(unsigned) value);
580 } else
581 dst = writeUnsignedDecimal(dst, value);
Neil Bootha30b0ee2007-10-03 22:26:02 +0000582
Chris Lattnere213f3f2009-03-12 23:59:55 +0000583 return dst;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000584}
585
586/* Constructors. */
587void
588APFloat::initialize(const fltSemantics *ourSemantics)
589{
590 unsigned int count;
591
592 semantics = ourSemantics;
593 count = partCount();
Dan Gohman16e02092010-03-24 19:38:02 +0000594 if (count > 1)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000595 significand.parts = new integerPart[count];
596}
597
598void
599APFloat::freeSignificand()
600{
Dan Gohman16e02092010-03-24 19:38:02 +0000601 if (partCount() > 1)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000602 delete [] significand.parts;
603}
604
605void
606APFloat::assign(const APFloat &rhs)
607{
608 assert(semantics == rhs.semantics);
609
610 sign = rhs.sign;
611 category = rhs.category;
612 exponent = rhs.exponent;
Dale Johannesena471c2e2007-10-11 18:07:22 +0000613 sign2 = rhs.sign2;
614 exponent2 = rhs.exponent2;
Dan Gohman16e02092010-03-24 19:38:02 +0000615 if (category == fcNormal || category == fcNaN)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000616 copySignificand(rhs);
617}
618
619void
620APFloat::copySignificand(const APFloat &rhs)
621{
Dale Johanneseneaf08942007-08-31 04:03:46 +0000622 assert(category == fcNormal || category == fcNaN);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000623 assert(rhs.partCount() >= partCount());
624
625 APInt::tcAssign(significandParts(), rhs.significandParts(),
Neil Booth4f881702007-09-26 21:33:42 +0000626 partCount());
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000627}
628
Neil Boothe5e01942007-10-14 10:39:51 +0000629/* Make this number a NaN, with an arbitrary but deterministic value
Dale Johannesen541ed9f2009-01-21 20:32:55 +0000630 for the significand. If double or longer, this is a signalling NaN,
Mike Stumpc5ca7132009-05-30 03:49:43 +0000631 which may not be ideal. If float, this is QNaN(0). */
John McCalle12b7382010-02-28 02:51:25 +0000632void APFloat::makeNaN(bool SNaN, bool Negative, const APInt *fill)
Neil Boothe5e01942007-10-14 10:39:51 +0000633{
634 category = fcNaN;
John McCalle12b7382010-02-28 02:51:25 +0000635 sign = Negative;
636
John McCall165e96b2010-02-28 12:49:50 +0000637 integerPart *significand = significandParts();
638 unsigned numParts = partCount();
639
John McCalle12b7382010-02-28 02:51:25 +0000640 // Set the significand bits to the fill.
John McCall165e96b2010-02-28 12:49:50 +0000641 if (!fill || fill->getNumWords() < numParts)
642 APInt::tcSet(significand, 0, numParts);
643 if (fill) {
John McCalld44c6cc2010-03-01 18:38:45 +0000644 APInt::tcAssign(significand, fill->getRawData(),
645 std::min(fill->getNumWords(), numParts));
John McCall165e96b2010-02-28 12:49:50 +0000646
647 // Zero out the excess bits of the significand.
648 unsigned bitsToPreserve = semantics->precision - 1;
649 unsigned part = bitsToPreserve / 64;
650 bitsToPreserve %= 64;
651 significand[part] &= ((1ULL << bitsToPreserve) - 1);
652 for (part++; part != numParts; ++part)
653 significand[part] = 0;
654 }
655
656 unsigned QNaNBit = semantics->precision - 2;
John McCalle12b7382010-02-28 02:51:25 +0000657
658 if (SNaN) {
659 // We always have to clear the QNaN bit to make it an SNaN.
John McCall165e96b2010-02-28 12:49:50 +0000660 APInt::tcClearBit(significand, QNaNBit);
John McCalle12b7382010-02-28 02:51:25 +0000661
662 // If there are no bits set in the payload, we have to set
663 // *something* to make it a NaN instead of an infinity;
664 // conventionally, this is the next bit down from the QNaN bit.
John McCall165e96b2010-02-28 12:49:50 +0000665 if (APInt::tcIsZero(significand, numParts))
666 APInt::tcSetBit(significand, QNaNBit - 1);
John McCalle12b7382010-02-28 02:51:25 +0000667 } else {
668 // We always have to set the QNaN bit to make it a QNaN.
John McCall165e96b2010-02-28 12:49:50 +0000669 APInt::tcSetBit(significand, QNaNBit);
John McCalle12b7382010-02-28 02:51:25 +0000670 }
John McCall165e96b2010-02-28 12:49:50 +0000671
672 // For x87 extended precision, we want to make a NaN, not a
673 // pseudo-NaN. Maybe we should expose the ability to make
674 // pseudo-NaNs?
675 if (semantics == &APFloat::x87DoubleExtended)
676 APInt::tcSetBit(significand, QNaNBit + 1);
John McCalle12b7382010-02-28 02:51:25 +0000677}
678
679APFloat APFloat::makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative,
680 const APInt *fill) {
681 APFloat value(Sem, uninitialized);
682 value.makeNaN(SNaN, Negative, fill);
683 return value;
Neil Boothe5e01942007-10-14 10:39:51 +0000684}
685
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000686APFloat &
687APFloat::operator=(const APFloat &rhs)
688{
Dan Gohman16e02092010-03-24 19:38:02 +0000689 if (this != &rhs) {
690 if (semantics != rhs.semantics) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000691 freeSignificand();
692 initialize(rhs.semantics);
693 }
694 assign(rhs);
695 }
696
697 return *this;
698}
699
Dale Johannesen343e7702007-08-24 00:56:33 +0000700bool
Dale Johannesen12595d72007-08-24 22:09:56 +0000701APFloat::bitwiseIsEqual(const APFloat &rhs) const {
Dale Johannesen343e7702007-08-24 00:56:33 +0000702 if (this == &rhs)
703 return true;
704 if (semantics != rhs.semantics ||
Dale Johanneseneaf08942007-08-31 04:03:46 +0000705 category != rhs.category ||
706 sign != rhs.sign)
Dale Johannesen343e7702007-08-24 00:56:33 +0000707 return false;
Dan Gohmanb10abe12008-01-29 12:08:20 +0000708 if (semantics==(const llvm::fltSemantics*)&PPCDoubleDouble &&
Dale Johannesena471c2e2007-10-11 18:07:22 +0000709 sign2 != rhs.sign2)
710 return false;
Dale Johanneseneaf08942007-08-31 04:03:46 +0000711 if (category==fcZero || category==fcInfinity)
Dale Johannesen343e7702007-08-24 00:56:33 +0000712 return true;
Dale Johanneseneaf08942007-08-31 04:03:46 +0000713 else if (category==fcNormal && exponent!=rhs.exponent)
714 return false;
Dan Gohmanb10abe12008-01-29 12:08:20 +0000715 else if (semantics==(const llvm::fltSemantics*)&PPCDoubleDouble &&
Dale Johannesena471c2e2007-10-11 18:07:22 +0000716 exponent2!=rhs.exponent2)
717 return false;
Dale Johannesen343e7702007-08-24 00:56:33 +0000718 else {
Dale Johannesen343e7702007-08-24 00:56:33 +0000719 int i= partCount();
720 const integerPart* p=significandParts();
721 const integerPart* q=rhs.significandParts();
722 for (; i>0; i--, p++, q++) {
723 if (*p != *q)
724 return false;
725 }
726 return true;
727 }
728}
729
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000730APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value)
Bill Wendlingf09a8b52011-03-18 09:09:44 +0000731 : exponent2(0), sign2(0) {
Neil Boothcaf19d72007-10-14 10:29:28 +0000732 assertArithmeticOK(ourSemantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000733 initialize(&ourSemantics);
734 sign = 0;
735 zeroSignificand();
736 exponent = ourSemantics.precision - 1;
737 significandParts()[0] = value;
738 normalize(rmNearestTiesToEven, lfExactlyZero);
739}
740
Bill Wendlingf09a8b52011-03-18 09:09:44 +0000741APFloat::APFloat(const fltSemantics &ourSemantics) : exponent2(0), sign2(0) {
Chris Lattnerd7bd78e2009-09-17 01:08:43 +0000742 assertArithmeticOK(ourSemantics);
743 initialize(&ourSemantics);
744 category = fcZero;
745 sign = false;
746}
747
Bill Wendlingf09a8b52011-03-18 09:09:44 +0000748APFloat::APFloat(const fltSemantics &ourSemantics, uninitializedTag tag)
749 : exponent2(0), sign2(0) {
John McCalle12b7382010-02-28 02:51:25 +0000750 assertArithmeticOK(ourSemantics);
751 // Allocates storage if necessary but does not initialize it.
752 initialize(&ourSemantics);
753}
Chris Lattnerd7bd78e2009-09-17 01:08:43 +0000754
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000755APFloat::APFloat(const fltSemantics &ourSemantics,
John McCalle12b7382010-02-28 02:51:25 +0000756 fltCategory ourCategory, bool negative)
Bill Wendlingf09a8b52011-03-18 09:09:44 +0000757 : exponent2(0), sign2(0) {
Neil Boothcaf19d72007-10-14 10:29:28 +0000758 assertArithmeticOK(ourSemantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000759 initialize(&ourSemantics);
760 category = ourCategory;
761 sign = negative;
Mike Stumpc5ca7132009-05-30 03:49:43 +0000762 if (category == fcNormal)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000763 category = fcZero;
Neil Boothe5e01942007-10-14 10:39:51 +0000764 else if (ourCategory == fcNaN)
John McCalle12b7382010-02-28 02:51:25 +0000765 makeNaN();
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000766}
767
Benjamin Kramer38e59892010-07-14 22:38:02 +0000768APFloat::APFloat(const fltSemantics &ourSemantics, StringRef text)
Bill Wendlingf09a8b52011-03-18 09:09:44 +0000769 : exponent2(0), sign2(0) {
Neil Boothcaf19d72007-10-14 10:29:28 +0000770 assertArithmeticOK(ourSemantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000771 initialize(&ourSemantics);
772 convertFromString(text, rmNearestTiesToEven);
773}
774
Bill Wendlingf09a8b52011-03-18 09:09:44 +0000775APFloat::APFloat(const APFloat &rhs) : exponent2(0), sign2(0) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000776 initialize(rhs.semantics);
777 assign(rhs);
778}
779
780APFloat::~APFloat()
781{
782 freeSignificand();
783}
784
Ted Kremenek1f801fa2008-02-11 17:24:50 +0000785// Profile - This method 'profiles' an APFloat for use with FoldingSet.
786void APFloat::Profile(FoldingSetNodeID& ID) const {
Dale Johannesen7111b022008-10-09 18:53:47 +0000787 ID.Add(bitcastToAPInt());
Ted Kremenek1f801fa2008-02-11 17:24:50 +0000788}
789
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000790unsigned int
791APFloat::partCount() const
792{
Dale Johannesena72a5a02007-09-20 23:47:58 +0000793 return partCountForBits(semantics->precision + 1);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000794}
795
796unsigned int
797APFloat::semanticsPrecision(const fltSemantics &semantics)
798{
799 return semantics.precision;
800}
801
802const integerPart *
803APFloat::significandParts() const
804{
805 return const_cast<APFloat *>(this)->significandParts();
806}
807
808integerPart *
809APFloat::significandParts()
810{
Dale Johanneseneaf08942007-08-31 04:03:46 +0000811 assert(category == fcNormal || category == fcNaN);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000812
Evan Cheng99ebfa52009-10-27 21:35:42 +0000813 if (partCount() > 1)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000814 return significand.parts;
815 else
816 return &significand.part;
817}
818
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000819void
820APFloat::zeroSignificand()
821{
822 category = fcNormal;
823 APInt::tcSet(significandParts(), 0, partCount());
824}
825
826/* Increment an fcNormal floating point number's significand. */
827void
828APFloat::incrementSignificand()
829{
830 integerPart carry;
831
832 carry = APInt::tcIncrement(significandParts(), partCount());
833
834 /* Our callers should never cause us to overflow. */
835 assert(carry == 0);
Duncan Sands1f6a3292011-08-12 14:54:45 +0000836 (void)carry;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000837}
838
839/* Add the significand of the RHS. Returns the carry flag. */
840integerPart
841APFloat::addSignificand(const APFloat &rhs)
842{
843 integerPart *parts;
844
845 parts = significandParts();
846
847 assert(semantics == rhs.semantics);
848 assert(exponent == rhs.exponent);
849
850 return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount());
851}
852
853/* Subtract the significand of the RHS with a borrow flag. Returns
854 the borrow flag. */
855integerPart
856APFloat::subtractSignificand(const APFloat &rhs, integerPart borrow)
857{
858 integerPart *parts;
859
860 parts = significandParts();
861
862 assert(semantics == rhs.semantics);
863 assert(exponent == rhs.exponent);
864
865 return APInt::tcSubtract(parts, rhs.significandParts(), borrow,
Neil Booth4f881702007-09-26 21:33:42 +0000866 partCount());
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000867}
868
869/* Multiply the significand of the RHS. If ADDEND is non-NULL, add it
870 on to the full-precision result of the multiplication. Returns the
871 lost fraction. */
872lostFraction
873APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
874{
Neil Booth4f881702007-09-26 21:33:42 +0000875 unsigned int omsb; // One, not zero, based MSB.
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000876 unsigned int partsCount, newPartsCount, precision;
877 integerPart *lhsSignificand;
878 integerPart scratch[4];
879 integerPart *fullSignificand;
880 lostFraction lost_fraction;
Dale Johannesen23a98552008-10-09 23:00:39 +0000881 bool ignored;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000882
883 assert(semantics == rhs.semantics);
884
885 precision = semantics->precision;
886 newPartsCount = partCountForBits(precision * 2);
887
Dan Gohman16e02092010-03-24 19:38:02 +0000888 if (newPartsCount > 4)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000889 fullSignificand = new integerPart[newPartsCount];
890 else
891 fullSignificand = scratch;
892
893 lhsSignificand = significandParts();
894 partsCount = partCount();
895
896 APInt::tcFullMultiply(fullSignificand, lhsSignificand,
Neil Booth978661d2007-10-06 00:24:48 +0000897 rhs.significandParts(), partsCount, partsCount);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000898
899 lost_fraction = lfExactlyZero;
900 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
901 exponent += rhs.exponent;
902
Dan Gohman16e02092010-03-24 19:38:02 +0000903 if (addend) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000904 Significand savedSignificand = significand;
905 const fltSemantics *savedSemantics = semantics;
906 fltSemantics extendedSemantics;
907 opStatus status;
908 unsigned int extendedPrecision;
909
910 /* Normalize our MSB. */
911 extendedPrecision = precision + precision - 1;
Dan Gohman16e02092010-03-24 19:38:02 +0000912 if (omsb != extendedPrecision) {
913 APInt::tcShiftLeft(fullSignificand, newPartsCount,
914 extendedPrecision - omsb);
915 exponent -= extendedPrecision - omsb;
916 }
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000917
918 /* Create new semantics. */
919 extendedSemantics = *semantics;
920 extendedSemantics.precision = extendedPrecision;
921
Dan Gohman16e02092010-03-24 19:38:02 +0000922 if (newPartsCount == 1)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000923 significand.part = fullSignificand[0];
924 else
925 significand.parts = fullSignificand;
926 semantics = &extendedSemantics;
927
928 APFloat extendedAddend(*addend);
Dale Johannesen23a98552008-10-09 23:00:39 +0000929 status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored);
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000930 assert(status == opOK);
Duncan Sands1f6a3292011-08-12 14:54:45 +0000931 (void)status;
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000932 lost_fraction = addOrSubtractSignificand(extendedAddend, false);
933
934 /* Restore our state. */
Dan Gohman16e02092010-03-24 19:38:02 +0000935 if (newPartsCount == 1)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000936 fullSignificand[0] = significand.part;
937 significand = savedSignificand;
938 semantics = savedSemantics;
939
940 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
941 }
942
943 exponent -= (precision - 1);
944
Dan Gohman16e02092010-03-24 19:38:02 +0000945 if (omsb > precision) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000946 unsigned int bits, significantParts;
947 lostFraction lf;
948
949 bits = omsb - precision;
950 significantParts = partCountForBits(omsb);
951 lf = shiftRight(fullSignificand, significantParts, bits);
952 lost_fraction = combineLostFractions(lf, lost_fraction);
953 exponent += bits;
954 }
955
956 APInt::tcAssign(lhsSignificand, fullSignificand, partsCount);
957
Dan Gohman16e02092010-03-24 19:38:02 +0000958 if (newPartsCount > 4)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000959 delete [] fullSignificand;
960
961 return lost_fraction;
962}
963
964/* Multiply the significands of LHS and RHS to DST. */
965lostFraction
966APFloat::divideSignificand(const APFloat &rhs)
967{
968 unsigned int bit, i, partsCount;
969 const integerPart *rhsSignificand;
970 integerPart *lhsSignificand, *dividend, *divisor;
971 integerPart scratch[4];
972 lostFraction lost_fraction;
973
974 assert(semantics == rhs.semantics);
975
976 lhsSignificand = significandParts();
977 rhsSignificand = rhs.significandParts();
978 partsCount = partCount();
979
Dan Gohman16e02092010-03-24 19:38:02 +0000980 if (partsCount > 2)
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000981 dividend = new integerPart[partsCount * 2];
982 else
983 dividend = scratch;
984
985 divisor = dividend + partsCount;
986
987 /* Copy the dividend and divisor as they will be modified in-place. */
Dan Gohman16e02092010-03-24 19:38:02 +0000988 for (i = 0; i < partsCount; i++) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +0000989 dividend[i] = lhsSignificand[i];
990 divisor[i] = rhsSignificand[i];
991 lhsSignificand[i] = 0;
992 }
993
994 exponent -= rhs.exponent;
995
996 unsigned int precision = semantics->precision;
997
998 /* Normalize the divisor. */
999 bit = precision - APInt::tcMSB(divisor, partsCount) - 1;
Dan Gohman16e02092010-03-24 19:38:02 +00001000 if (bit) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001001 exponent += bit;
1002 APInt::tcShiftLeft(divisor, partsCount, bit);
1003 }
1004
1005 /* Normalize the dividend. */
1006 bit = precision - APInt::tcMSB(dividend, partsCount) - 1;
Dan Gohman16e02092010-03-24 19:38:02 +00001007 if (bit) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001008 exponent -= bit;
1009 APInt::tcShiftLeft(dividend, partsCount, bit);
1010 }
1011
Neil Booth96c74712007-10-12 16:02:31 +00001012 /* Ensure the dividend >= divisor initially for the loop below.
1013 Incidentally, this means that the division loop below is
1014 guaranteed to set the integer bit to one. */
Dan Gohman16e02092010-03-24 19:38:02 +00001015 if (APInt::tcCompare(dividend, divisor, partsCount) < 0) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001016 exponent--;
1017 APInt::tcShiftLeft(dividend, partsCount, 1);
1018 assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0);
1019 }
1020
1021 /* Long division. */
Dan Gohman16e02092010-03-24 19:38:02 +00001022 for (bit = precision; bit; bit -= 1) {
1023 if (APInt::tcCompare(dividend, divisor, partsCount) >= 0) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001024 APInt::tcSubtract(dividend, divisor, 0, partsCount);
1025 APInt::tcSetBit(lhsSignificand, bit - 1);
1026 }
1027
1028 APInt::tcShiftLeft(dividend, partsCount, 1);
1029 }
1030
1031 /* Figure out the lost fraction. */
1032 int cmp = APInt::tcCompare(dividend, divisor, partsCount);
1033
Dan Gohman16e02092010-03-24 19:38:02 +00001034 if (cmp > 0)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001035 lost_fraction = lfMoreThanHalf;
Dan Gohman16e02092010-03-24 19:38:02 +00001036 else if (cmp == 0)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001037 lost_fraction = lfExactlyHalf;
Dan Gohman16e02092010-03-24 19:38:02 +00001038 else if (APInt::tcIsZero(dividend, partsCount))
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001039 lost_fraction = lfExactlyZero;
1040 else
1041 lost_fraction = lfLessThanHalf;
1042
Dan Gohman16e02092010-03-24 19:38:02 +00001043 if (partsCount > 2)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001044 delete [] dividend;
1045
1046 return lost_fraction;
1047}
1048
1049unsigned int
1050APFloat::significandMSB() const
1051{
1052 return APInt::tcMSB(significandParts(), partCount());
1053}
1054
1055unsigned int
1056APFloat::significandLSB() const
1057{
1058 return APInt::tcLSB(significandParts(), partCount());
1059}
1060
1061/* Note that a zero result is NOT normalized to fcZero. */
1062lostFraction
1063APFloat::shiftSignificandRight(unsigned int bits)
1064{
1065 /* Our exponent should not overflow. */
1066 assert((exponent_t) (exponent + bits) >= exponent);
1067
1068 exponent += bits;
1069
1070 return shiftRight(significandParts(), partCount(), bits);
1071}
1072
1073/* Shift the significand left BITS bits, subtract BITS from its exponent. */
1074void
1075APFloat::shiftSignificandLeft(unsigned int bits)
1076{
1077 assert(bits < semantics->precision);
1078
Dan Gohman16e02092010-03-24 19:38:02 +00001079 if (bits) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001080 unsigned int partsCount = partCount();
1081
1082 APInt::tcShiftLeft(significandParts(), partsCount, bits);
1083 exponent -= bits;
1084
1085 assert(!APInt::tcIsZero(significandParts(), partsCount));
1086 }
1087}
1088
1089APFloat::cmpResult
1090APFloat::compareAbsoluteValue(const APFloat &rhs) const
1091{
1092 int compare;
1093
1094 assert(semantics == rhs.semantics);
1095 assert(category == fcNormal);
1096 assert(rhs.category == fcNormal);
1097
1098 compare = exponent - rhs.exponent;
1099
1100 /* If exponents are equal, do an unsigned bignum comparison of the
1101 significands. */
Dan Gohman16e02092010-03-24 19:38:02 +00001102 if (compare == 0)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001103 compare = APInt::tcCompare(significandParts(), rhs.significandParts(),
Neil Booth4f881702007-09-26 21:33:42 +00001104 partCount());
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001105
Dan Gohman16e02092010-03-24 19:38:02 +00001106 if (compare > 0)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001107 return cmpGreaterThan;
Dan Gohman16e02092010-03-24 19:38:02 +00001108 else if (compare < 0)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001109 return cmpLessThan;
1110 else
1111 return cmpEqual;
1112}
1113
1114/* Handle overflow. Sign is preserved. We either become infinity or
1115 the largest finite number. */
1116APFloat::opStatus
1117APFloat::handleOverflow(roundingMode rounding_mode)
1118{
1119 /* Infinity? */
Dan Gohman16e02092010-03-24 19:38:02 +00001120 if (rounding_mode == rmNearestTiesToEven ||
1121 rounding_mode == rmNearestTiesToAway ||
1122 (rounding_mode == rmTowardPositive && !sign) ||
1123 (rounding_mode == rmTowardNegative && sign)) {
1124 category = fcInfinity;
1125 return (opStatus) (opOverflow | opInexact);
1126 }
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001127
1128 /* Otherwise we become the largest finite number. */
1129 category = fcNormal;
1130 exponent = semantics->maxExponent;
1131 APInt::tcSetLeastSignificantBits(significandParts(), partCount(),
Neil Booth4f881702007-09-26 21:33:42 +00001132 semantics->precision);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001133
1134 return opInexact;
1135}
1136
Neil Boothb7dea4c2007-10-03 15:16:41 +00001137/* Returns TRUE if, when truncating the current number, with BIT the
1138 new LSB, with the given lost fraction and rounding mode, the result
1139 would need to be rounded away from zero (i.e., by increasing the
1140 signficand). This routine must work for fcZero of both signs, and
1141 fcNormal numbers. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001142bool
1143APFloat::roundAwayFromZero(roundingMode rounding_mode,
Neil Boothb7dea4c2007-10-03 15:16:41 +00001144 lostFraction lost_fraction,
1145 unsigned int bit) const
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001146{
Dale Johanneseneaf08942007-08-31 04:03:46 +00001147 /* NaNs and infinities should not have lost fractions. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001148 assert(category == fcNormal || category == fcZero);
1149
Neil Boothb7dea4c2007-10-03 15:16:41 +00001150 /* Current callers never pass this so we don't handle it. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001151 assert(lost_fraction != lfExactlyZero);
1152
Mike Stumpf3dc0c02009-05-13 23:23:20 +00001153 switch (rounding_mode) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001154 case rmNearestTiesToAway:
1155 return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;
1156
1157 case rmNearestTiesToEven:
Dan Gohman16e02092010-03-24 19:38:02 +00001158 if (lost_fraction == lfMoreThanHalf)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001159 return true;
1160
1161 /* Our zeroes don't have a significand to test. */
Dan Gohman16e02092010-03-24 19:38:02 +00001162 if (lost_fraction == lfExactlyHalf && category != fcZero)
Neil Boothb7dea4c2007-10-03 15:16:41 +00001163 return APInt::tcExtractBit(significandParts(), bit);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001164
1165 return false;
1166
1167 case rmTowardZero:
1168 return false;
1169
1170 case rmTowardPositive:
1171 return sign == false;
1172
1173 case rmTowardNegative:
1174 return sign == true;
1175 }
Chandler Carruth732f05c2012-01-10 18:08:01 +00001176 llvm_unreachable("Invalid rounding mode found");
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001177}
1178
1179APFloat::opStatus
1180APFloat::normalize(roundingMode rounding_mode,
Neil Booth4f881702007-09-26 21:33:42 +00001181 lostFraction lost_fraction)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001182{
Neil Booth4f881702007-09-26 21:33:42 +00001183 unsigned int omsb; /* One, not zero, based MSB. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001184 int exponentChange;
1185
Dan Gohman16e02092010-03-24 19:38:02 +00001186 if (category != fcNormal)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001187 return opOK;
1188
1189 /* Before rounding normalize the exponent of fcNormal numbers. */
1190 omsb = significandMSB() + 1;
1191
Dan Gohman16e02092010-03-24 19:38:02 +00001192 if (omsb) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001193 /* OMSB is numbered from 1. We want to place it in the integer
Nick Lewycky03dd4e82011-10-03 21:30:08 +00001194 bit numbered PRECISION if possible, with a compensating change in
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001195 the exponent. */
1196 exponentChange = omsb - semantics->precision;
1197
1198 /* If the resulting exponent is too high, overflow according to
1199 the rounding mode. */
Dan Gohman16e02092010-03-24 19:38:02 +00001200 if (exponent + exponentChange > semantics->maxExponent)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001201 return handleOverflow(rounding_mode);
1202
1203 /* Subnormal numbers have exponent minExponent, and their MSB
1204 is forced based on that. */
Dan Gohman16e02092010-03-24 19:38:02 +00001205 if (exponent + exponentChange < semantics->minExponent)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001206 exponentChange = semantics->minExponent - exponent;
1207
1208 /* Shifting left is easy as we don't lose precision. */
Dan Gohman16e02092010-03-24 19:38:02 +00001209 if (exponentChange < 0) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001210 assert(lost_fraction == lfExactlyZero);
1211
1212 shiftSignificandLeft(-exponentChange);
1213
1214 return opOK;
1215 }
1216
Dan Gohman16e02092010-03-24 19:38:02 +00001217 if (exponentChange > 0) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001218 lostFraction lf;
1219
1220 /* Shift right and capture any new lost fraction. */
1221 lf = shiftSignificandRight(exponentChange);
1222
1223 lost_fraction = combineLostFractions(lf, lost_fraction);
1224
1225 /* Keep OMSB up-to-date. */
Dan Gohman16e02092010-03-24 19:38:02 +00001226 if (omsb > (unsigned) exponentChange)
Neil Booth96c74712007-10-12 16:02:31 +00001227 omsb -= exponentChange;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001228 else
Neil Booth4f881702007-09-26 21:33:42 +00001229 omsb = 0;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001230 }
1231 }
1232
1233 /* Now round the number according to rounding_mode given the lost
1234 fraction. */
1235
1236 /* As specified in IEEE 754, since we do not trap we do not report
1237 underflow for exact results. */
Dan Gohman16e02092010-03-24 19:38:02 +00001238 if (lost_fraction == lfExactlyZero) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001239 /* Canonicalize zeroes. */
Dan Gohman16e02092010-03-24 19:38:02 +00001240 if (omsb == 0)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001241 category = fcZero;
1242
1243 return opOK;
1244 }
1245
1246 /* Increment the significand if we're rounding away from zero. */
Dan Gohman16e02092010-03-24 19:38:02 +00001247 if (roundAwayFromZero(rounding_mode, lost_fraction, 0)) {
1248 if (omsb == 0)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001249 exponent = semantics->minExponent;
1250
1251 incrementSignificand();
1252 omsb = significandMSB() + 1;
1253
1254 /* Did the significand increment overflow? */
Dan Gohman16e02092010-03-24 19:38:02 +00001255 if (omsb == (unsigned) semantics->precision + 1) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001256 /* Renormalize by incrementing the exponent and shifting our
Neil Booth4f881702007-09-26 21:33:42 +00001257 significand right one. However if we already have the
1258 maximum exponent we overflow to infinity. */
Dan Gohman16e02092010-03-24 19:38:02 +00001259 if (exponent == semantics->maxExponent) {
Neil Booth4f881702007-09-26 21:33:42 +00001260 category = fcInfinity;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001261
Neil Booth4f881702007-09-26 21:33:42 +00001262 return (opStatus) (opOverflow | opInexact);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001263 }
1264
1265 shiftSignificandRight(1);
1266
1267 return opInexact;
1268 }
1269 }
1270
1271 /* The normal case - we were and are not denormal, and any
1272 significand increment above didn't overflow. */
Dan Gohman16e02092010-03-24 19:38:02 +00001273 if (omsb == semantics->precision)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001274 return opInexact;
1275
1276 /* We have a non-zero denormal. */
1277 assert(omsb < semantics->precision);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001278
1279 /* Canonicalize zeroes. */
Dan Gohman16e02092010-03-24 19:38:02 +00001280 if (omsb == 0)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001281 category = fcZero;
1282
1283 /* The fcZero case is a denormal that underflowed to zero. */
1284 return (opStatus) (opUnderflow | opInexact);
1285}
1286
1287APFloat::opStatus
1288APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract)
1289{
Mike Stumpf3dc0c02009-05-13 23:23:20 +00001290 switch (convolve(category, rhs.category)) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001291 default:
Torok Edwinc23197a2009-07-14 16:55:14 +00001292 llvm_unreachable(0);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001293
Dale Johanneseneaf08942007-08-31 04:03:46 +00001294 case convolve(fcNaN, fcZero):
1295 case convolve(fcNaN, fcNormal):
1296 case convolve(fcNaN, fcInfinity):
1297 case convolve(fcNaN, fcNaN):
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001298 case convolve(fcNormal, fcZero):
1299 case convolve(fcInfinity, fcNormal):
1300 case convolve(fcInfinity, fcZero):
1301 return opOK;
1302
Dale Johanneseneaf08942007-08-31 04:03:46 +00001303 case convolve(fcZero, fcNaN):
1304 case convolve(fcNormal, fcNaN):
1305 case convolve(fcInfinity, fcNaN):
1306 category = fcNaN;
1307 copySignificand(rhs);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001308 return opOK;
1309
1310 case convolve(fcNormal, fcInfinity):
1311 case convolve(fcZero, fcInfinity):
1312 category = fcInfinity;
1313 sign = rhs.sign ^ subtract;
1314 return opOK;
1315
1316 case convolve(fcZero, fcNormal):
1317 assign(rhs);
1318 sign = rhs.sign ^ subtract;
1319 return opOK;
1320
1321 case convolve(fcZero, fcZero):
1322 /* Sign depends on rounding mode; handled by caller. */
1323 return opOK;
1324
1325 case convolve(fcInfinity, fcInfinity):
1326 /* Differently signed infinities can only be validly
1327 subtracted. */
Dan Gohman16e02092010-03-24 19:38:02 +00001328 if (((sign ^ rhs.sign)!=0) != subtract) {
Neil Boothe5e01942007-10-14 10:39:51 +00001329 makeNaN();
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001330 return opInvalidOp;
1331 }
1332
1333 return opOK;
1334
1335 case convolve(fcNormal, fcNormal):
1336 return opDivByZero;
1337 }
1338}
1339
1340/* Add or subtract two normal numbers. */
1341lostFraction
1342APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract)
1343{
1344 integerPart carry;
1345 lostFraction lost_fraction;
1346 int bits;
1347
1348 /* Determine if the operation on the absolute values is effectively
1349 an addition or subtraction. */
Hartmut Kaiser8df77a92007-10-25 23:15:31 +00001350 subtract ^= (sign ^ rhs.sign) ? true : false;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001351
1352 /* Are we bigger exponent-wise than the RHS? */
1353 bits = exponent - rhs.exponent;
1354
1355 /* Subtraction is more subtle than one might naively expect. */
Dan Gohman16e02092010-03-24 19:38:02 +00001356 if (subtract) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001357 APFloat temp_rhs(rhs);
1358 bool reverse;
1359
Chris Lattnerada530b2007-08-24 03:02:34 +00001360 if (bits == 0) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001361 reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan;
1362 lost_fraction = lfExactlyZero;
Chris Lattnerada530b2007-08-24 03:02:34 +00001363 } else if (bits > 0) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001364 lost_fraction = temp_rhs.shiftSignificandRight(bits - 1);
1365 shiftSignificandLeft(1);
1366 reverse = false;
Chris Lattnerada530b2007-08-24 03:02:34 +00001367 } else {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001368 lost_fraction = shiftSignificandRight(-bits - 1);
1369 temp_rhs.shiftSignificandLeft(1);
1370 reverse = true;
1371 }
1372
Chris Lattnerada530b2007-08-24 03:02:34 +00001373 if (reverse) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001374 carry = temp_rhs.subtractSignificand
Neil Booth4f881702007-09-26 21:33:42 +00001375 (*this, lost_fraction != lfExactlyZero);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001376 copySignificand(temp_rhs);
1377 sign = !sign;
1378 } else {
1379 carry = subtractSignificand
Neil Booth4f881702007-09-26 21:33:42 +00001380 (temp_rhs, lost_fraction != lfExactlyZero);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001381 }
1382
1383 /* Invert the lost fraction - it was on the RHS and
1384 subtracted. */
Dan Gohman16e02092010-03-24 19:38:02 +00001385 if (lost_fraction == lfLessThanHalf)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001386 lost_fraction = lfMoreThanHalf;
Dan Gohman16e02092010-03-24 19:38:02 +00001387 else if (lost_fraction == lfMoreThanHalf)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001388 lost_fraction = lfLessThanHalf;
1389
1390 /* The code above is intended to ensure that no borrow is
1391 necessary. */
1392 assert(!carry);
Duncan Sands1f6a3292011-08-12 14:54:45 +00001393 (void)carry;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001394 } else {
Dan Gohman16e02092010-03-24 19:38:02 +00001395 if (bits > 0) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001396 APFloat temp_rhs(rhs);
1397
1398 lost_fraction = temp_rhs.shiftSignificandRight(bits);
1399 carry = addSignificand(temp_rhs);
1400 } else {
1401 lost_fraction = shiftSignificandRight(-bits);
1402 carry = addSignificand(rhs);
1403 }
1404
1405 /* We have a guard bit; generating a carry cannot happen. */
1406 assert(!carry);
Duncan Sands1f6a3292011-08-12 14:54:45 +00001407 (void)carry;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001408 }
1409
1410 return lost_fraction;
1411}
1412
1413APFloat::opStatus
1414APFloat::multiplySpecials(const APFloat &rhs)
1415{
Mike Stumpf3dc0c02009-05-13 23:23:20 +00001416 switch (convolve(category, rhs.category)) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001417 default:
Torok Edwinc23197a2009-07-14 16:55:14 +00001418 llvm_unreachable(0);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001419
Dale Johanneseneaf08942007-08-31 04:03:46 +00001420 case convolve(fcNaN, fcZero):
1421 case convolve(fcNaN, fcNormal):
1422 case convolve(fcNaN, fcInfinity):
1423 case convolve(fcNaN, fcNaN):
1424 return opOK;
1425
1426 case convolve(fcZero, fcNaN):
1427 case convolve(fcNormal, fcNaN):
1428 case convolve(fcInfinity, fcNaN):
1429 category = fcNaN;
1430 copySignificand(rhs);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001431 return opOK;
1432
1433 case convolve(fcNormal, fcInfinity):
1434 case convolve(fcInfinity, fcNormal):
1435 case convolve(fcInfinity, fcInfinity):
1436 category = fcInfinity;
1437 return opOK;
1438
1439 case convolve(fcZero, fcNormal):
1440 case convolve(fcNormal, fcZero):
1441 case convolve(fcZero, fcZero):
1442 category = fcZero;
1443 return opOK;
1444
1445 case convolve(fcZero, fcInfinity):
1446 case convolve(fcInfinity, fcZero):
Neil Boothe5e01942007-10-14 10:39:51 +00001447 makeNaN();
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001448 return opInvalidOp;
1449
1450 case convolve(fcNormal, fcNormal):
1451 return opOK;
1452 }
1453}
1454
1455APFloat::opStatus
1456APFloat::divideSpecials(const APFloat &rhs)
1457{
Mike Stumpf3dc0c02009-05-13 23:23:20 +00001458 switch (convolve(category, rhs.category)) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001459 default:
Torok Edwinc23197a2009-07-14 16:55:14 +00001460 llvm_unreachable(0);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001461
Dale Johanneseneaf08942007-08-31 04:03:46 +00001462 case convolve(fcNaN, fcZero):
1463 case convolve(fcNaN, fcNormal):
1464 case convolve(fcNaN, fcInfinity):
1465 case convolve(fcNaN, fcNaN):
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001466 case convolve(fcInfinity, fcZero):
1467 case convolve(fcInfinity, fcNormal):
1468 case convolve(fcZero, fcInfinity):
1469 case convolve(fcZero, fcNormal):
1470 return opOK;
1471
Dale Johanneseneaf08942007-08-31 04:03:46 +00001472 case convolve(fcZero, fcNaN):
1473 case convolve(fcNormal, fcNaN):
1474 case convolve(fcInfinity, fcNaN):
1475 category = fcNaN;
1476 copySignificand(rhs);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001477 return opOK;
1478
1479 case convolve(fcNormal, fcInfinity):
1480 category = fcZero;
1481 return opOK;
1482
1483 case convolve(fcNormal, fcZero):
1484 category = fcInfinity;
1485 return opDivByZero;
1486
1487 case convolve(fcInfinity, fcInfinity):
1488 case convolve(fcZero, fcZero):
Neil Boothe5e01942007-10-14 10:39:51 +00001489 makeNaN();
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001490 return opInvalidOp;
1491
1492 case convolve(fcNormal, fcNormal):
1493 return opOK;
1494 }
1495}
1496
Dale Johannesened6af242009-01-21 00:35:19 +00001497APFloat::opStatus
1498APFloat::modSpecials(const APFloat &rhs)
1499{
Mike Stumpf3dc0c02009-05-13 23:23:20 +00001500 switch (convolve(category, rhs.category)) {
Dale Johannesened6af242009-01-21 00:35:19 +00001501 default:
Torok Edwinc23197a2009-07-14 16:55:14 +00001502 llvm_unreachable(0);
Dale Johannesened6af242009-01-21 00:35:19 +00001503
1504 case convolve(fcNaN, fcZero):
1505 case convolve(fcNaN, fcNormal):
1506 case convolve(fcNaN, fcInfinity):
1507 case convolve(fcNaN, fcNaN):
1508 case convolve(fcZero, fcInfinity):
1509 case convolve(fcZero, fcNormal):
1510 case convolve(fcNormal, fcInfinity):
1511 return opOK;
1512
1513 case convolve(fcZero, fcNaN):
1514 case convolve(fcNormal, fcNaN):
1515 case convolve(fcInfinity, fcNaN):
1516 category = fcNaN;
1517 copySignificand(rhs);
1518 return opOK;
1519
1520 case convolve(fcNormal, fcZero):
1521 case convolve(fcInfinity, fcZero):
1522 case convolve(fcInfinity, fcNormal):
1523 case convolve(fcInfinity, fcInfinity):
1524 case convolve(fcZero, fcZero):
1525 makeNaN();
1526 return opInvalidOp;
1527
1528 case convolve(fcNormal, fcNormal):
1529 return opOK;
1530 }
1531}
1532
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001533/* Change sign. */
1534void
1535APFloat::changeSign()
1536{
1537 /* Look mummy, this one's easy. */
1538 sign = !sign;
1539}
1540
Dale Johannesene15c2db2007-08-31 23:35:31 +00001541void
1542APFloat::clearSign()
1543{
1544 /* So is this one. */
1545 sign = 0;
1546}
1547
1548void
1549APFloat::copySign(const APFloat &rhs)
1550{
1551 /* And this one. */
1552 sign = rhs.sign;
1553}
1554
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001555/* Normalized addition or subtraction. */
1556APFloat::opStatus
1557APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode,
Neil Booth4f881702007-09-26 21:33:42 +00001558 bool subtract)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001559{
1560 opStatus fs;
1561
Neil Boothcaf19d72007-10-14 10:29:28 +00001562 assertArithmeticOK(*semantics);
1563
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001564 fs = addOrSubtractSpecials(rhs, subtract);
1565
1566 /* This return code means it was not a simple case. */
Dan Gohman16e02092010-03-24 19:38:02 +00001567 if (fs == opDivByZero) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001568 lostFraction lost_fraction;
1569
1570 lost_fraction = addOrSubtractSignificand(rhs, subtract);
1571 fs = normalize(rounding_mode, lost_fraction);
1572
1573 /* Can only be zero if we lost no fraction. */
1574 assert(category != fcZero || lost_fraction == lfExactlyZero);
1575 }
1576
1577 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1578 positive zero unless rounding to minus infinity, except that
1579 adding two like-signed zeroes gives that zero. */
Dan Gohman16e02092010-03-24 19:38:02 +00001580 if (category == fcZero) {
1581 if (rhs.category != fcZero || (sign == rhs.sign) == subtract)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001582 sign = (rounding_mode == rmTowardNegative);
1583 }
1584
1585 return fs;
1586}
1587
1588/* Normalized addition. */
1589APFloat::opStatus
1590APFloat::add(const APFloat &rhs, roundingMode rounding_mode)
1591{
1592 return addOrSubtract(rhs, rounding_mode, false);
1593}
1594
1595/* Normalized subtraction. */
1596APFloat::opStatus
1597APFloat::subtract(const APFloat &rhs, roundingMode rounding_mode)
1598{
1599 return addOrSubtract(rhs, rounding_mode, true);
1600}
1601
1602/* Normalized multiply. */
1603APFloat::opStatus
1604APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode)
1605{
1606 opStatus fs;
1607
Neil Boothcaf19d72007-10-14 10:29:28 +00001608 assertArithmeticOK(*semantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001609 sign ^= rhs.sign;
1610 fs = multiplySpecials(rhs);
1611
Dan Gohman16e02092010-03-24 19:38:02 +00001612 if (category == fcNormal) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001613 lostFraction lost_fraction = multiplySignificand(rhs, 0);
1614 fs = normalize(rounding_mode, lost_fraction);
Dan Gohman16e02092010-03-24 19:38:02 +00001615 if (lost_fraction != lfExactlyZero)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001616 fs = (opStatus) (fs | opInexact);
1617 }
1618
1619 return fs;
1620}
1621
1622/* Normalized divide. */
1623APFloat::opStatus
1624APFloat::divide(const APFloat &rhs, roundingMode rounding_mode)
1625{
1626 opStatus fs;
1627
Neil Boothcaf19d72007-10-14 10:29:28 +00001628 assertArithmeticOK(*semantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001629 sign ^= rhs.sign;
1630 fs = divideSpecials(rhs);
1631
Dan Gohman16e02092010-03-24 19:38:02 +00001632 if (category == fcNormal) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001633 lostFraction lost_fraction = divideSignificand(rhs);
1634 fs = normalize(rounding_mode, lost_fraction);
Dan Gohman16e02092010-03-24 19:38:02 +00001635 if (lost_fraction != lfExactlyZero)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001636 fs = (opStatus) (fs | opInexact);
1637 }
1638
1639 return fs;
1640}
1641
Dale Johannesen24b66a82009-01-20 18:35:05 +00001642/* Normalized remainder. This is not currently correct in all cases. */
1643APFloat::opStatus
1644APFloat::remainder(const APFloat &rhs)
1645{
1646 opStatus fs;
1647 APFloat V = *this;
1648 unsigned int origSign = sign;
1649
1650 assertArithmeticOK(*semantics);
1651 fs = V.divide(rhs, rmNearestTiesToEven);
1652 if (fs == opDivByZero)
1653 return fs;
1654
1655 int parts = partCount();
1656 integerPart *x = new integerPart[parts];
1657 bool ignored;
1658 fs = V.convertToInteger(x, parts * integerPartWidth, true,
1659 rmNearestTiesToEven, &ignored);
1660 if (fs==opInvalidOp)
1661 return fs;
1662
1663 fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
1664 rmNearestTiesToEven);
1665 assert(fs==opOK); // should always work
1666
1667 fs = V.multiply(rhs, rmNearestTiesToEven);
1668 assert(fs==opOK || fs==opInexact); // should not overflow or underflow
1669
1670 fs = subtract(V, rmNearestTiesToEven);
1671 assert(fs==opOK || fs==opInexact); // likewise
1672
1673 if (isZero())
1674 sign = origSign; // IEEE754 requires this
1675 delete[] x;
1676 return fs;
1677}
1678
Dan Gohman16e02092010-03-24 19:38:02 +00001679/* Normalized llvm frem (C fmod).
Dale Johannesen24b66a82009-01-20 18:35:05 +00001680 This is not currently correct in all cases. */
Dale Johannesene15c2db2007-08-31 23:35:31 +00001681APFloat::opStatus
1682APFloat::mod(const APFloat &rhs, roundingMode rounding_mode)
1683{
1684 opStatus fs;
Neil Boothcaf19d72007-10-14 10:29:28 +00001685 assertArithmeticOK(*semantics);
Dale Johannesened6af242009-01-21 00:35:19 +00001686 fs = modSpecials(rhs);
Dale Johannesene15c2db2007-08-31 23:35:31 +00001687
Dale Johannesened6af242009-01-21 00:35:19 +00001688 if (category == fcNormal && rhs.category == fcNormal) {
1689 APFloat V = *this;
1690 unsigned int origSign = sign;
Dale Johannesene15c2db2007-08-31 23:35:31 +00001691
Dale Johannesened6af242009-01-21 00:35:19 +00001692 fs = V.divide(rhs, rmNearestTiesToEven);
1693 if (fs == opDivByZero)
1694 return fs;
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001695
Dale Johannesened6af242009-01-21 00:35:19 +00001696 int parts = partCount();
1697 integerPart *x = new integerPart[parts];
1698 bool ignored;
1699 fs = V.convertToInteger(x, parts * integerPartWidth, true,
1700 rmTowardZero, &ignored);
1701 if (fs==opInvalidOp)
1702 return fs;
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001703
Dale Johannesened6af242009-01-21 00:35:19 +00001704 fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
1705 rmNearestTiesToEven);
1706 assert(fs==opOK); // should always work
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00001707
Dale Johannesened6af242009-01-21 00:35:19 +00001708 fs = V.multiply(rhs, rounding_mode);
1709 assert(fs==opOK || fs==opInexact); // should not overflow or underflow
1710
1711 fs = subtract(V, rounding_mode);
1712 assert(fs==opOK || fs==opInexact); // likewise
1713
1714 if (isZero())
1715 sign = origSign; // IEEE754 requires this
1716 delete[] x;
1717 }
Dale Johannesene15c2db2007-08-31 23:35:31 +00001718 return fs;
1719}
1720
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001721/* Normalized fused-multiply-add. */
1722APFloat::opStatus
1723APFloat::fusedMultiplyAdd(const APFloat &multiplicand,
Neil Booth4f881702007-09-26 21:33:42 +00001724 const APFloat &addend,
1725 roundingMode rounding_mode)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001726{
1727 opStatus fs;
1728
Neil Boothcaf19d72007-10-14 10:29:28 +00001729 assertArithmeticOK(*semantics);
1730
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001731 /* Post-multiplication sign, before addition. */
1732 sign ^= multiplicand.sign;
1733
1734 /* If and only if all arguments are normal do we need to do an
1735 extended-precision calculation. */
Dan Gohman16e02092010-03-24 19:38:02 +00001736 if (category == fcNormal &&
1737 multiplicand.category == fcNormal &&
1738 addend.category == fcNormal) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001739 lostFraction lost_fraction;
1740
1741 lost_fraction = multiplySignificand(multiplicand, &addend);
1742 fs = normalize(rounding_mode, lost_fraction);
Dan Gohman16e02092010-03-24 19:38:02 +00001743 if (lost_fraction != lfExactlyZero)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001744 fs = (opStatus) (fs | opInexact);
1745
1746 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1747 positive zero unless rounding to minus infinity, except that
1748 adding two like-signed zeroes gives that zero. */
Dan Gohman16e02092010-03-24 19:38:02 +00001749 if (category == fcZero && sign != addend.sign)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001750 sign = (rounding_mode == rmTowardNegative);
1751 } else {
1752 fs = multiplySpecials(multiplicand);
1753
1754 /* FS can only be opOK or opInvalidOp. There is no more work
1755 to do in the latter case. The IEEE-754R standard says it is
1756 implementation-defined in this case whether, if ADDEND is a
Dale Johanneseneaf08942007-08-31 04:03:46 +00001757 quiet NaN, we raise invalid op; this implementation does so.
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001758
1759 If we need to do the addition we can do so with normal
1760 precision. */
Dan Gohman16e02092010-03-24 19:38:02 +00001761 if (fs == opOK)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001762 fs = addOrSubtract(addend, rounding_mode, false);
1763 }
1764
1765 return fs;
1766}
1767
1768/* Comparison requires normalized numbers. */
1769APFloat::cmpResult
1770APFloat::compare(const APFloat &rhs) const
1771{
1772 cmpResult result;
1773
Neil Boothcaf19d72007-10-14 10:29:28 +00001774 assertArithmeticOK(*semantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001775 assert(semantics == rhs.semantics);
1776
Mike Stumpf3dc0c02009-05-13 23:23:20 +00001777 switch (convolve(category, rhs.category)) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001778 default:
Torok Edwinc23197a2009-07-14 16:55:14 +00001779 llvm_unreachable(0);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001780
Dale Johanneseneaf08942007-08-31 04:03:46 +00001781 case convolve(fcNaN, fcZero):
1782 case convolve(fcNaN, fcNormal):
1783 case convolve(fcNaN, fcInfinity):
1784 case convolve(fcNaN, fcNaN):
1785 case convolve(fcZero, fcNaN):
1786 case convolve(fcNormal, fcNaN):
1787 case convolve(fcInfinity, fcNaN):
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001788 return cmpUnordered;
1789
1790 case convolve(fcInfinity, fcNormal):
1791 case convolve(fcInfinity, fcZero):
1792 case convolve(fcNormal, fcZero):
Dan Gohman16e02092010-03-24 19:38:02 +00001793 if (sign)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001794 return cmpLessThan;
1795 else
1796 return cmpGreaterThan;
1797
1798 case convolve(fcNormal, fcInfinity):
1799 case convolve(fcZero, fcInfinity):
1800 case convolve(fcZero, fcNormal):
Dan Gohman16e02092010-03-24 19:38:02 +00001801 if (rhs.sign)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001802 return cmpGreaterThan;
1803 else
1804 return cmpLessThan;
1805
1806 case convolve(fcInfinity, fcInfinity):
Dan Gohman16e02092010-03-24 19:38:02 +00001807 if (sign == rhs.sign)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001808 return cmpEqual;
Dan Gohman16e02092010-03-24 19:38:02 +00001809 else if (sign)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001810 return cmpLessThan;
1811 else
1812 return cmpGreaterThan;
1813
1814 case convolve(fcZero, fcZero):
1815 return cmpEqual;
1816
1817 case convolve(fcNormal, fcNormal):
1818 break;
1819 }
1820
1821 /* Two normal numbers. Do they have the same sign? */
Dan Gohman16e02092010-03-24 19:38:02 +00001822 if (sign != rhs.sign) {
1823 if (sign)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001824 result = cmpLessThan;
1825 else
1826 result = cmpGreaterThan;
1827 } else {
1828 /* Compare absolute values; invert result if negative. */
1829 result = compareAbsoluteValue(rhs);
1830
Dan Gohman16e02092010-03-24 19:38:02 +00001831 if (sign) {
1832 if (result == cmpLessThan)
Neil Booth4f881702007-09-26 21:33:42 +00001833 result = cmpGreaterThan;
Dan Gohman16e02092010-03-24 19:38:02 +00001834 else if (result == cmpGreaterThan)
Neil Booth4f881702007-09-26 21:33:42 +00001835 result = cmpLessThan;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001836 }
1837 }
1838
1839 return result;
1840}
1841
Dale Johannesen23a98552008-10-09 23:00:39 +00001842/// APFloat::convert - convert a value of one floating point type to another.
1843/// The return value corresponds to the IEEE754 exceptions. *losesInfo
1844/// records whether the transformation lost information, i.e. whether
1845/// converting the result back to the original type will produce the
1846/// original value (this is almost the same as return value==fsOK, but there
1847/// are edge cases where this is not so).
1848
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001849APFloat::opStatus
1850APFloat::convert(const fltSemantics &toSemantics,
Dale Johannesen23a98552008-10-09 23:00:39 +00001851 roundingMode rounding_mode, bool *losesInfo)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001852{
Neil Boothc8db43d2007-09-22 02:56:19 +00001853 lostFraction lostFraction;
1854 unsigned int newPartCount, oldPartCount;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001855 opStatus fs;
Eli Friedman44551422011-11-26 03:38:02 +00001856 int shift;
1857 const fltSemantics &fromSemantics = *semantics;
Neil Booth4f881702007-09-26 21:33:42 +00001858
Eli Friedman44551422011-11-26 03:38:02 +00001859 assertArithmeticOK(fromSemantics);
Dale Johannesen79f82f92008-04-20 01:34:03 +00001860 assertArithmeticOK(toSemantics);
Neil Boothc8db43d2007-09-22 02:56:19 +00001861 lostFraction = lfExactlyZero;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001862 newPartCount = partCountForBits(toSemantics.precision + 1);
Neil Boothc8db43d2007-09-22 02:56:19 +00001863 oldPartCount = partCount();
Eli Friedman44551422011-11-26 03:38:02 +00001864 shift = toSemantics.precision - fromSemantics.precision;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001865
Eli Friedman44551422011-11-26 03:38:02 +00001866 bool X86SpecialNan = false;
1867 if (&fromSemantics == &APFloat::x87DoubleExtended &&
1868 &toSemantics != &APFloat::x87DoubleExtended && category == fcNaN &&
1869 (!(*significandParts() & 0x8000000000000000ULL) ||
1870 !(*significandParts() & 0x4000000000000000ULL))) {
1871 // x86 has some unusual NaNs which cannot be represented in any other
1872 // format; note them here.
1873 X86SpecialNan = true;
1874 }
1875
1876 // If this is a truncation, perform the shift before we narrow the storage.
1877 if (shift < 0 && (category==fcNormal || category==fcNaN))
1878 lostFraction = shiftRight(significandParts(), oldPartCount, -shift);
1879
1880 // Fix the storage so it can hold to new value.
Neil Boothc8db43d2007-09-22 02:56:19 +00001881 if (newPartCount > oldPartCount) {
Eli Friedman44551422011-11-26 03:38:02 +00001882 // The new type requires more storage; make it available.
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001883 integerPart *newParts;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001884 newParts = new integerPart[newPartCount];
1885 APInt::tcSet(newParts, 0, newPartCount);
Dale Johannesen902ff942007-09-25 17:25:00 +00001886 if (category==fcNormal || category==fcNaN)
1887 APInt::tcAssign(newParts, significandParts(), oldPartCount);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001888 freeSignificand();
1889 significand.parts = newParts;
Eli Friedman44551422011-11-26 03:38:02 +00001890 } else if (newPartCount == 1 && oldPartCount != 1) {
1891 // Switch to built-in storage for a single part.
1892 integerPart newPart = 0;
1893 if (category==fcNormal || category==fcNaN)
1894 newPart = significandParts()[0];
1895 freeSignificand();
1896 significand.part = newPart;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001897 }
1898
Eli Friedman44551422011-11-26 03:38:02 +00001899 // Now that we have the right storage, switch the semantics.
1900 semantics = &toSemantics;
1901
1902 // If this is an extension, perform the shift now that the storage is
1903 // available.
1904 if (shift > 0 && (category==fcNormal || category==fcNaN))
1905 APInt::tcShiftLeft(significandParts(), newPartCount, shift);
1906
Dan Gohman16e02092010-03-24 19:38:02 +00001907 if (category == fcNormal) {
Neil Boothc8db43d2007-09-22 02:56:19 +00001908 fs = normalize(rounding_mode, lostFraction);
Dale Johannesen23a98552008-10-09 23:00:39 +00001909 *losesInfo = (fs != opOK);
Dale Johannesen902ff942007-09-25 17:25:00 +00001910 } else if (category == fcNaN) {
Eli Friedman44551422011-11-26 03:38:02 +00001911 *losesInfo = lostFraction != lfExactlyZero || X86SpecialNan;
Dale Johannesen902ff942007-09-25 17:25:00 +00001912 // gcc forces the Quiet bit on, which means (float)(double)(float_sNan)
1913 // does not give you back the same bits. This is dubious, and we
1914 // don't currently do it. You're really supposed to get
1915 // an invalid operation signal at runtime, but nobody does that.
Dale Johannesen23a98552008-10-09 23:00:39 +00001916 fs = opOK;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001917 } else {
Dale Johannesen23a98552008-10-09 23:00:39 +00001918 *losesInfo = false;
Eli Friedmanf9b1cd02011-11-28 18:50:37 +00001919 fs = opOK;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001920 }
1921
1922 return fs;
1923}
1924
1925/* Convert a floating point number to an integer according to the
1926 rounding mode. If the rounded integer value is out of range this
Neil Boothee7ae382007-11-01 22:43:37 +00001927 returns an invalid operation exception and the contents of the
1928 destination parts are unspecified. If the rounded value is in
Chris Lattnerb39cdde2007-08-20 22:49:32 +00001929 range but the floating point number is not the exact integer, the C
1930 standard doesn't require an inexact exception to be raised. IEEE
1931 854 does require it so we do that.
1932
1933 Note that for conversions to integer type the C standard requires
1934 round-to-zero to always be used. */
1935APFloat::opStatus
Neil Boothee7ae382007-11-01 22:43:37 +00001936APFloat::convertToSignExtendedInteger(integerPart *parts, unsigned int width,
1937 bool isSigned,
Dale Johannesen23a98552008-10-09 23:00:39 +00001938 roundingMode rounding_mode,
1939 bool *isExact) const
Neil Boothee7ae382007-11-01 22:43:37 +00001940{
1941 lostFraction lost_fraction;
1942 const integerPart *src;
1943 unsigned int dstPartsCount, truncatedBits;
1944
Evan Cheng794a7db2008-11-26 01:11:57 +00001945 assertArithmeticOK(*semantics);
Neil Boothe3d936a2007-11-02 15:10:05 +00001946
Dale Johannesen23a98552008-10-09 23:00:39 +00001947 *isExact = false;
1948
Neil Boothee7ae382007-11-01 22:43:37 +00001949 /* Handle the three special cases first. */
Dan Gohman16e02092010-03-24 19:38:02 +00001950 if (category == fcInfinity || category == fcNaN)
Neil Boothee7ae382007-11-01 22:43:37 +00001951 return opInvalidOp;
1952
1953 dstPartsCount = partCountForBits(width);
1954
Dan Gohman16e02092010-03-24 19:38:02 +00001955 if (category == fcZero) {
Neil Boothee7ae382007-11-01 22:43:37 +00001956 APInt::tcSet(parts, 0, dstPartsCount);
Dale Johannesene4a42452008-10-07 00:40:01 +00001957 // Negative zero can't be represented as an int.
Dale Johannesen23a98552008-10-09 23:00:39 +00001958 *isExact = !sign;
1959 return opOK;
Neil Boothee7ae382007-11-01 22:43:37 +00001960 }
1961
1962 src = significandParts();
1963
1964 /* Step 1: place our absolute value, with any fraction truncated, in
1965 the destination. */
1966 if (exponent < 0) {
1967 /* Our absolute value is less than one; truncate everything. */
1968 APInt::tcSet(parts, 0, dstPartsCount);
Dale Johannesen1f54f582009-01-19 21:17:05 +00001969 /* For exponent -1 the integer bit represents .5, look at that.
1970 For smaller exponents leftmost truncated bit is 0. */
1971 truncatedBits = semantics->precision -1U - exponent;
Neil Boothee7ae382007-11-01 22:43:37 +00001972 } else {
1973 /* We want the most significant (exponent + 1) bits; the rest are
1974 truncated. */
1975 unsigned int bits = exponent + 1U;
1976
1977 /* Hopelessly large in magnitude? */
1978 if (bits > width)
1979 return opInvalidOp;
1980
1981 if (bits < semantics->precision) {
1982 /* We truncate (semantics->precision - bits) bits. */
1983 truncatedBits = semantics->precision - bits;
1984 APInt::tcExtract(parts, dstPartsCount, src, bits, truncatedBits);
1985 } else {
1986 /* We want at least as many bits as are available. */
1987 APInt::tcExtract(parts, dstPartsCount, src, semantics->precision, 0);
1988 APInt::tcShiftLeft(parts, dstPartsCount, bits - semantics->precision);
1989 truncatedBits = 0;
1990 }
1991 }
1992
1993 /* Step 2: work out any lost fraction, and increment the absolute
1994 value if we would round away from zero. */
1995 if (truncatedBits) {
1996 lost_fraction = lostFractionThroughTruncation(src, partCount(),
1997 truncatedBits);
Dan Gohman16e02092010-03-24 19:38:02 +00001998 if (lost_fraction != lfExactlyZero &&
1999 roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) {
Neil Boothee7ae382007-11-01 22:43:37 +00002000 if (APInt::tcIncrement(parts, dstPartsCount))
2001 return opInvalidOp; /* Overflow. */
2002 }
2003 } else {
2004 lost_fraction = lfExactlyZero;
2005 }
2006
2007 /* Step 3: check if we fit in the destination. */
2008 unsigned int omsb = APInt::tcMSB(parts, dstPartsCount) + 1;
2009
2010 if (sign) {
2011 if (!isSigned) {
2012 /* Negative numbers cannot be represented as unsigned. */
2013 if (omsb != 0)
2014 return opInvalidOp;
2015 } else {
2016 /* It takes omsb bits to represent the unsigned integer value.
2017 We lose a bit for the sign, but care is needed as the
2018 maximally negative integer is a special case. */
2019 if (omsb == width && APInt::tcLSB(parts, dstPartsCount) + 1 != omsb)
2020 return opInvalidOp;
2021
2022 /* This case can happen because of rounding. */
2023 if (omsb > width)
2024 return opInvalidOp;
2025 }
2026
2027 APInt::tcNegate (parts, dstPartsCount);
2028 } else {
2029 if (omsb >= width + !isSigned)
2030 return opInvalidOp;
2031 }
2032
Dale Johannesen23a98552008-10-09 23:00:39 +00002033 if (lost_fraction == lfExactlyZero) {
2034 *isExact = true;
Neil Boothee7ae382007-11-01 22:43:37 +00002035 return opOK;
Dale Johannesen23a98552008-10-09 23:00:39 +00002036 } else
Neil Boothee7ae382007-11-01 22:43:37 +00002037 return opInexact;
2038}
2039
2040/* Same as convertToSignExtendedInteger, except we provide
2041 deterministic values in case of an invalid operation exception,
2042 namely zero for NaNs and the minimal or maximal value respectively
Dale Johannesen23a98552008-10-09 23:00:39 +00002043 for underflow or overflow.
2044 The *isExact output tells whether the result is exact, in the sense
2045 that converting it back to the original floating point type produces
2046 the original value. This is almost equivalent to result==opOK,
2047 except for negative zeroes.
2048*/
Neil Boothee7ae382007-11-01 22:43:37 +00002049APFloat::opStatus
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002050APFloat::convertToInteger(integerPart *parts, unsigned int width,
Neil Booth4f881702007-09-26 21:33:42 +00002051 bool isSigned,
Dale Johannesen23a98552008-10-09 23:00:39 +00002052 roundingMode rounding_mode, bool *isExact) const
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002053{
Neil Boothee7ae382007-11-01 22:43:37 +00002054 opStatus fs;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002055
Dan Gohman16e02092010-03-24 19:38:02 +00002056 fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode,
Dale Johannesen23a98552008-10-09 23:00:39 +00002057 isExact);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002058
Neil Boothee7ae382007-11-01 22:43:37 +00002059 if (fs == opInvalidOp) {
2060 unsigned int bits, dstPartsCount;
2061
2062 dstPartsCount = partCountForBits(width);
2063
2064 if (category == fcNaN)
2065 bits = 0;
2066 else if (sign)
2067 bits = isSigned;
2068 else
2069 bits = width - isSigned;
2070
2071 APInt::tcSetLeastSignificantBits(parts, dstPartsCount, bits);
2072 if (sign && isSigned)
2073 APInt::tcShiftLeft(parts, dstPartsCount, width - 1);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002074 }
2075
Neil Boothee7ae382007-11-01 22:43:37 +00002076 return fs;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002077}
2078
Jeffrey Yasskin3d42bfb2011-07-15 07:04:56 +00002079/* Same as convertToInteger(integerPart*, ...), except the result is returned in
2080 an APSInt, whose initial bit-width and signed-ness are used to determine the
2081 precision of the conversion.
2082 */
2083APFloat::opStatus
2084APFloat::convertToInteger(APSInt &result,
2085 roundingMode rounding_mode, bool *isExact) const
2086{
2087 unsigned bitWidth = result.getBitWidth();
2088 SmallVector<uint64_t, 4> parts(result.getNumWords());
2089 opStatus status = convertToInteger(
2090 parts.data(), bitWidth, result.isSigned(), rounding_mode, isExact);
2091 // Keeps the original signed-ness.
Jeffrey Yasskin3ba292d2011-07-18 21:45:40 +00002092 result = APInt(bitWidth, parts);
Jeffrey Yasskin3d42bfb2011-07-15 07:04:56 +00002093 return status;
2094}
2095
Neil Booth643ce592007-10-07 12:07:53 +00002096/* Convert an unsigned integer SRC to a floating point number,
2097 rounding according to ROUNDING_MODE. The sign of the floating
2098 point number is not modified. */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002099APFloat::opStatus
Neil Booth643ce592007-10-07 12:07:53 +00002100APFloat::convertFromUnsignedParts(const integerPart *src,
2101 unsigned int srcCount,
2102 roundingMode rounding_mode)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002103{
Neil Booth5477f852007-10-08 14:39:42 +00002104 unsigned int omsb, precision, dstCount;
Neil Booth643ce592007-10-07 12:07:53 +00002105 integerPart *dst;
Neil Booth5477f852007-10-08 14:39:42 +00002106 lostFraction lost_fraction;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002107
Neil Boothcaf19d72007-10-14 10:29:28 +00002108 assertArithmeticOK(*semantics);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002109 category = fcNormal;
Neil Booth5477f852007-10-08 14:39:42 +00002110 omsb = APInt::tcMSB(src, srcCount) + 1;
Neil Booth643ce592007-10-07 12:07:53 +00002111 dst = significandParts();
2112 dstCount = partCount();
Neil Booth5477f852007-10-08 14:39:42 +00002113 precision = semantics->precision;
Neil Booth643ce592007-10-07 12:07:53 +00002114
Nick Lewycky03dd4e82011-10-03 21:30:08 +00002115 /* We want the most significant PRECISION bits of SRC. There may not
Neil Booth5477f852007-10-08 14:39:42 +00002116 be that many; extract what we can. */
2117 if (precision <= omsb) {
2118 exponent = omsb - 1;
Neil Booth643ce592007-10-07 12:07:53 +00002119 lost_fraction = lostFractionThroughTruncation(src, srcCount,
Neil Booth5477f852007-10-08 14:39:42 +00002120 omsb - precision);
2121 APInt::tcExtract(dst, dstCount, src, precision, omsb - precision);
2122 } else {
2123 exponent = precision - 1;
2124 lost_fraction = lfExactlyZero;
2125 APInt::tcExtract(dst, dstCount, src, omsb, 0);
Neil Booth643ce592007-10-07 12:07:53 +00002126 }
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002127
2128 return normalize(rounding_mode, lost_fraction);
2129}
2130
Dan Gohman93c276e2008-02-29 01:26:11 +00002131APFloat::opStatus
2132APFloat::convertFromAPInt(const APInt &Val,
2133 bool isSigned,
2134 roundingMode rounding_mode)
2135{
2136 unsigned int partCount = Val.getNumWords();
2137 APInt api = Val;
2138
2139 sign = false;
2140 if (isSigned && api.isNegative()) {
2141 sign = true;
2142 api = -api;
2143 }
2144
2145 return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
2146}
2147
Neil Boothf16c5952007-10-07 12:15:41 +00002148/* Convert a two's complement integer SRC to a floating point number,
2149 rounding according to ROUNDING_MODE. ISSIGNED is true if the
2150 integer is signed, in which case it must be sign-extended. */
2151APFloat::opStatus
2152APFloat::convertFromSignExtendedInteger(const integerPart *src,
2153 unsigned int srcCount,
2154 bool isSigned,
2155 roundingMode rounding_mode)
2156{
2157 opStatus status;
2158
Neil Boothcaf19d72007-10-14 10:29:28 +00002159 assertArithmeticOK(*semantics);
Dan Gohman16e02092010-03-24 19:38:02 +00002160 if (isSigned &&
2161 APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) {
Neil Boothf16c5952007-10-07 12:15:41 +00002162 integerPart *copy;
2163
2164 /* If we're signed and negative negate a copy. */
2165 sign = true;
2166 copy = new integerPart[srcCount];
2167 APInt::tcAssign(copy, src, srcCount);
2168 APInt::tcNegate(copy, srcCount);
2169 status = convertFromUnsignedParts(copy, srcCount, rounding_mode);
2170 delete [] copy;
2171 } else {
2172 sign = false;
2173 status = convertFromUnsignedParts(src, srcCount, rounding_mode);
2174 }
2175
2176 return status;
2177}
2178
Neil Boothccf596a2007-10-07 11:45:55 +00002179/* FIXME: should this just take a const APInt reference? */
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002180APFloat::opStatus
Neil Boothccf596a2007-10-07 11:45:55 +00002181APFloat::convertFromZeroExtendedInteger(const integerPart *parts,
2182 unsigned int width, bool isSigned,
2183 roundingMode rounding_mode)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002184{
Dale Johannesen910993e2007-09-21 22:09:37 +00002185 unsigned int partCount = partCountForBits(width);
Jeffrey Yasskin3ba292d2011-07-18 21:45:40 +00002186 APInt api = APInt(width, makeArrayRef(parts, partCount));
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002187
2188 sign = false;
Dan Gohman16e02092010-03-24 19:38:02 +00002189 if (isSigned && APInt::tcExtractBit(parts, width - 1)) {
Dale Johannesencce23a42007-09-30 18:17:01 +00002190 sign = true;
2191 api = -api;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002192 }
2193
Neil Booth7a7bc0f2007-10-07 12:10:57 +00002194 return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002195}
2196
2197APFloat::opStatus
Benjamin Kramer38e59892010-07-14 22:38:02 +00002198APFloat::convertFromHexadecimalString(StringRef s, roundingMode rounding_mode)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002199{
Erick Tryzelaarf8bc8012009-08-18 18:20:37 +00002200 lostFraction lost_fraction = lfExactlyZero;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002201 integerPart *significand;
2202 unsigned int bitPos, partsCount;
Erick Tryzelaara15d8902009-08-16 23:36:19 +00002203 StringRef::iterator dot, firstSignificantDigit;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002204
2205 zeroSignificand();
2206 exponent = 0;
2207 category = fcNormal;
2208
2209 significand = significandParts();
2210 partsCount = partCount();
2211 bitPos = partsCount * integerPartWidth;
2212
Neil Booth33d4c922007-10-07 08:51:21 +00002213 /* Skip leading zeroes and any (hexa)decimal point. */
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +00002214 StringRef::iterator begin = s.begin();
2215 StringRef::iterator end = s.end();
2216 StringRef::iterator p = skipLeadingZeroesAndAnyDot(begin, end, &dot);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002217 firstSignificantDigit = p;
2218
Dan Gohman16e02092010-03-24 19:38:02 +00002219 for (; p != end;) {
Dale Johannesen386f3e92008-05-14 22:53:25 +00002220 integerPart hex_value;
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002221
Dan Gohman16e02092010-03-24 19:38:02 +00002222 if (*p == '.') {
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +00002223 assert(dot == end && "String contains multiple dots");
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002224 dot = p++;
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +00002225 if (p == end) {
2226 break;
2227 }
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002228 }
2229
2230 hex_value = hexDigitValue(*p);
Dan Gohman16e02092010-03-24 19:38:02 +00002231 if (hex_value == -1U) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002232 break;
2233 }
2234
2235 p++;
2236
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +00002237 if (p == end) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002238 break;
Erick Tryzelaara15d8902009-08-16 23:36:19 +00002239 } else {
2240 /* Store the number whilst 4-bit nibbles remain. */
Dan Gohman16e02092010-03-24 19:38:02 +00002241 if (bitPos) {
Erick Tryzelaara15d8902009-08-16 23:36:19 +00002242 bitPos -= 4;
2243 hex_value <<= bitPos % integerPartWidth;
2244 significand[bitPos / integerPartWidth] |= hex_value;
2245 } else {
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +00002246 lost_fraction = trailingHexadecimalFraction(p, end, hex_value);
Dan Gohman16e02092010-03-24 19:38:02 +00002247 while (p != end && hexDigitValue(*p) != -1U)
Erick Tryzelaara15d8902009-08-16 23:36:19 +00002248 p++;
2249 break;
2250 }
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002251 }
2252 }
2253
2254 /* Hex floats require an exponent but not a hexadecimal point. */
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +00002255 assert(p != end && "Hex strings require an exponent");
2256 assert((*p == 'p' || *p == 'P') && "Invalid character in significand");
2257 assert(p != begin && "Significand has no digits");
2258 assert((dot == end || p - begin != 1) && "Significand has no digits");
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002259
2260 /* Ignore the exponent if we are zero. */
Dan Gohman16e02092010-03-24 19:38:02 +00002261 if (p != firstSignificantDigit) {
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002262 int expAdjustment;
2263
2264 /* Implicit hexadecimal point? */
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +00002265 if (dot == end)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002266 dot = p;
2267
2268 /* Calculate the exponent adjustment implicit in the number of
2269 significant digits. */
Evan Cheng48e8c802008-05-02 21:15:08 +00002270 expAdjustment = static_cast<int>(dot - firstSignificantDigit);
Dan Gohman16e02092010-03-24 19:38:02 +00002271 if (expAdjustment < 0)
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002272 expAdjustment++;
2273 expAdjustment = expAdjustment * 4 - 1;
2274
2275 /* Adjust for writing the significand starting at the most
2276 significant nibble. */
2277 expAdjustment += semantics->precision;
2278 expAdjustment -= partsCount * integerPartWidth;
2279
2280 /* Adjust for the given exponent. */
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +00002281 exponent = totalExponent(p + 1, end, expAdjustment);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002282 }
2283
2284 return normalize(rounding_mode, lost_fraction);
2285}
2286
2287APFloat::opStatus
Neil Booth96c74712007-10-12 16:02:31 +00002288APFloat::roundSignificandWithExponent(const integerPart *decSigParts,
2289 unsigned sigPartCount, int exp,
2290 roundingMode rounding_mode)
2291{
2292 unsigned int parts, pow5PartCount;
Neil Boothcaf19d72007-10-14 10:29:28 +00002293 fltSemantics calcSemantics = { 32767, -32767, 0, true };
Neil Booth96c74712007-10-12 16:02:31 +00002294 integerPart pow5Parts[maxPowerOfFiveParts];
2295 bool isNearest;
2296
Dan Gohman16e02092010-03-24 19:38:02 +00002297 isNearest = (rounding_mode == rmNearestTiesToEven ||
2298 rounding_mode == rmNearestTiesToAway);
Neil Booth96c74712007-10-12 16:02:31 +00002299
2300 parts = partCountForBits(semantics->precision + 11);
2301
2302 /* Calculate pow(5, abs(exp)). */
2303 pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp);
2304
2305 for (;; parts *= 2) {
2306 opStatus sigStatus, powStatus;
2307 unsigned int excessPrecision, truncatedBits;
2308
2309 calcSemantics.precision = parts * integerPartWidth - 1;
2310 excessPrecision = calcSemantics.precision - semantics->precision;
2311 truncatedBits = excessPrecision;
2312
2313 APFloat decSig(calcSemantics, fcZero, sign);
2314 APFloat pow5(calcSemantics, fcZero, false);
2315
2316 sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount,
2317 rmNearestTiesToEven);
2318 powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount,
2319 rmNearestTiesToEven);
2320 /* Add exp, as 10^n = 5^n * 2^n. */
2321 decSig.exponent += exp;
2322
2323 lostFraction calcLostFraction;
Evan Cheng48e8c802008-05-02 21:15:08 +00002324 integerPart HUerr, HUdistance;
2325 unsigned int powHUerr;
Neil Booth96c74712007-10-12 16:02:31 +00002326
2327 if (exp >= 0) {
2328 /* multiplySignificand leaves the precision-th bit set to 1. */
2329 calcLostFraction = decSig.multiplySignificand(pow5, NULL);
2330 powHUerr = powStatus != opOK;
2331 } else {
2332 calcLostFraction = decSig.divideSignificand(pow5);
2333 /* Denormal numbers have less precision. */
2334 if (decSig.exponent < semantics->minExponent) {
2335 excessPrecision += (semantics->minExponent - decSig.exponent);
2336 truncatedBits = excessPrecision;
2337 if (excessPrecision > calcSemantics.precision)
2338 excessPrecision = calcSemantics.precision;
2339 }
2340 /* Extra half-ulp lost in reciprocal of exponent. */
Evan Cheng48e8c802008-05-02 21:15:08 +00002341 powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2;
Neil Booth96c74712007-10-12 16:02:31 +00002342 }
2343
2344 /* Both multiplySignificand and divideSignificand return the
2345 result with the integer bit set. */
Evan Cheng99ebfa52009-10-27 21:35:42 +00002346 assert(APInt::tcExtractBit
2347 (decSig.significandParts(), calcSemantics.precision - 1) == 1);
Neil Booth96c74712007-10-12 16:02:31 +00002348
2349 HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK,
2350 powHUerr);
2351 HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(),
2352 excessPrecision, isNearest);
2353
2354 /* Are we guaranteed to round correctly if we truncate? */
2355 if (HUdistance >= HUerr) {
2356 APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(),
2357 calcSemantics.precision - excessPrecision,
2358 excessPrecision);
2359 /* Take the exponent of decSig. If we tcExtract-ed less bits
2360 above we must adjust our exponent to compensate for the
2361 implicit right shift. */
2362 exponent = (decSig.exponent + semantics->precision
2363 - (calcSemantics.precision - excessPrecision));
2364 calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(),
2365 decSig.partCount(),
2366 truncatedBits);
2367 return normalize(rounding_mode, calcLostFraction);
2368 }
2369 }
2370}
2371
2372APFloat::opStatus
Benjamin Kramer38e59892010-07-14 22:38:02 +00002373APFloat::convertFromDecimalString(StringRef str, roundingMode rounding_mode)
Neil Booth96c74712007-10-12 16:02:31 +00002374{
Neil Booth1870f292007-10-14 10:16:12 +00002375 decimalInfo D;
Neil Booth96c74712007-10-12 16:02:31 +00002376 opStatus fs;
2377
Neil Booth1870f292007-10-14 10:16:12 +00002378 /* Scan the text. */
Erick Tryzelaara15d8902009-08-16 23:36:19 +00002379 StringRef::iterator p = str.begin();
2380 interpretDecimal(p, str.end(), &D);
Neil Booth96c74712007-10-12 16:02:31 +00002381
Neil Booth686700e2007-10-15 15:00:55 +00002382 /* Handle the quick cases. First the case of no significant digits,
2383 i.e. zero, and then exponents that are obviously too large or too
2384 small. Writing L for log 10 / log 2, a number d.ddddd*10^exp
2385 definitely overflows if
2386
2387 (exp - 1) * L >= maxExponent
2388
2389 and definitely underflows to zero where
2390
2391 (exp + 1) * L <= minExponent - precision
2392
2393 With integer arithmetic the tightest bounds for L are
2394
2395 93/28 < L < 196/59 [ numerator <= 256 ]
2396 42039/12655 < L < 28738/8651 [ numerator <= 65536 ]
2397 */
2398
Neil Boothcc233592007-12-05 13:06:04 +00002399 if (decDigitValue(*D.firstSigDigit) >= 10U) {
Neil Booth96c74712007-10-12 16:02:31 +00002400 category = fcZero;
2401 fs = opOK;
John McCall8b3f3302010-02-26 22:20:41 +00002402
2403 /* Check whether the normalized exponent is high enough to overflow
2404 max during the log-rebasing in the max-exponent check below. */
2405 } else if (D.normalizedExponent - 1 > INT_MAX / 42039) {
2406 fs = handleOverflow(rounding_mode);
2407
2408 /* If it wasn't, then it also wasn't high enough to overflow max
2409 during the log-rebasing in the min-exponent check. Check that it
2410 won't overflow min in either check, then perform the min-exponent
2411 check. */
2412 } else if (D.normalizedExponent - 1 < INT_MIN / 42039 ||
2413 (D.normalizedExponent + 1) * 28738 <=
2414 8651 * (semantics->minExponent - (int) semantics->precision)) {
Neil Booth686700e2007-10-15 15:00:55 +00002415 /* Underflow to zero and round. */
2416 zeroSignificand();
2417 fs = normalize(rounding_mode, lfLessThanHalf);
John McCall8b3f3302010-02-26 22:20:41 +00002418
2419 /* We can finally safely perform the max-exponent check. */
Neil Booth686700e2007-10-15 15:00:55 +00002420 } else if ((D.normalizedExponent - 1) * 42039
2421 >= 12655 * semantics->maxExponent) {
2422 /* Overflow and round. */
2423 fs = handleOverflow(rounding_mode);
Neil Booth96c74712007-10-12 16:02:31 +00002424 } else {
Neil Booth1870f292007-10-14 10:16:12 +00002425 integerPart *decSignificand;
2426 unsigned int partCount;
Neil Booth96c74712007-10-12 16:02:31 +00002427
Neil Booth1870f292007-10-14 10:16:12 +00002428 /* A tight upper bound on number of bits required to hold an
Neil Booth686700e2007-10-15 15:00:55 +00002429 N-digit decimal integer is N * 196 / 59. Allocate enough space
Neil Booth1870f292007-10-14 10:16:12 +00002430 to hold the full significand, and an extra part required by
2431 tcMultiplyPart. */
Evan Cheng48e8c802008-05-02 21:15:08 +00002432 partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1;
Neil Booth686700e2007-10-15 15:00:55 +00002433 partCount = partCountForBits(1 + 196 * partCount / 59);
Neil Booth1870f292007-10-14 10:16:12 +00002434 decSignificand = new integerPart[partCount + 1];
2435 partCount = 0;
Neil Booth96c74712007-10-12 16:02:31 +00002436
Neil Booth1870f292007-10-14 10:16:12 +00002437 /* Convert to binary efficiently - we do almost all multiplication
2438 in an integerPart. When this would overflow do we do a single
2439 bignum multiplication, and then revert again to multiplication
2440 in an integerPart. */
2441 do {
2442 integerPart decValue, val, multiplier;
2443
2444 val = 0;
2445 multiplier = 1;
2446
2447 do {
Erick Tryzelaara15d8902009-08-16 23:36:19 +00002448 if (*p == '.') {
Neil Booth1870f292007-10-14 10:16:12 +00002449 p++;
Erick Tryzelaara15d8902009-08-16 23:36:19 +00002450 if (p == str.end()) {
2451 break;
2452 }
2453 }
Neil Booth1870f292007-10-14 10:16:12 +00002454 decValue = decDigitValue(*p++);
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +00002455 assert(decValue < 10U && "Invalid character in significand");
Neil Booth1870f292007-10-14 10:16:12 +00002456 multiplier *= 10;
2457 val = val * 10 + decValue;
2458 /* The maximum number that can be multiplied by ten with any
2459 digit added without overflowing an integerPart. */
2460 } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10);
2461
2462 /* Multiply out the current part. */
2463 APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val,
2464 partCount, partCount + 1, false);
2465
2466 /* If we used another part (likely but not guaranteed), increase
2467 the count. */
2468 if (decSignificand[partCount])
2469 partCount++;
2470 } while (p <= D.lastSigDigit);
Neil Booth96c74712007-10-12 16:02:31 +00002471
Neil Booth43a4b282007-11-01 22:51:07 +00002472 category = fcNormal;
Neil Booth96c74712007-10-12 16:02:31 +00002473 fs = roundSignificandWithExponent(decSignificand, partCount,
Neil Booth1870f292007-10-14 10:16:12 +00002474 D.exponent, rounding_mode);
Neil Booth96c74712007-10-12 16:02:31 +00002475
Neil Booth1870f292007-10-14 10:16:12 +00002476 delete [] decSignificand;
2477 }
Neil Booth96c74712007-10-12 16:02:31 +00002478
2479 return fs;
2480}
2481
2482APFloat::opStatus
Benjamin Kramer38e59892010-07-14 22:38:02 +00002483APFloat::convertFromString(StringRef str, roundingMode rounding_mode)
Neil Booth4f881702007-09-26 21:33:42 +00002484{
Neil Boothcaf19d72007-10-14 10:29:28 +00002485 assertArithmeticOK(*semantics);
Erick Tryzelaara15d8902009-08-16 23:36:19 +00002486 assert(!str.empty() && "Invalid string length");
Neil Boothcaf19d72007-10-14 10:29:28 +00002487
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002488 /* Handle a leading minus sign. */
Erick Tryzelaara15d8902009-08-16 23:36:19 +00002489 StringRef::iterator p = str.begin();
2490 size_t slen = str.size();
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +00002491 sign = *p == '-' ? 1 : 0;
Dan Gohman16e02092010-03-24 19:38:02 +00002492 if (*p == '-' || *p == '+') {
Erick Tryzelaara15d8902009-08-16 23:36:19 +00002493 p++;
2494 slen--;
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +00002495 assert(slen && "String has no digits");
Erick Tryzelaara15d8902009-08-16 23:36:19 +00002496 }
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002497
Dan Gohman16e02092010-03-24 19:38:02 +00002498 if (slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
Erick Tryzelaara15d8902009-08-16 23:36:19 +00002499 assert(slen - 2 && "Invalid string");
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +00002500 return convertFromHexadecimalString(StringRef(p + 2, slen - 2),
Erick Tryzelaara15d8902009-08-16 23:36:19 +00002501 rounding_mode);
2502 }
Bill Wendlingb7c0d942008-11-27 08:00:12 +00002503
Erick Tryzelaarc78b33b2009-08-20 23:30:43 +00002504 return convertFromDecimalString(StringRef(p, slen), rounding_mode);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002505}
Dale Johannesen343e7702007-08-24 00:56:33 +00002506
Neil Bootha30b0ee2007-10-03 22:26:02 +00002507/* Write out a hexadecimal representation of the floating point value
2508 to DST, which must be of sufficient size, in the C99 form
2509 [-]0xh.hhhhp[+-]d. Return the number of characters written,
2510 excluding the terminating NUL.
2511
2512 If UPPERCASE, the output is in upper case, otherwise in lower case.
2513
2514 HEXDIGITS digits appear altogether, rounding the value if
2515 necessary. If HEXDIGITS is 0, the minimal precision to display the
2516 number precisely is used instead. If nothing would appear after
2517 the decimal point it is suppressed.
2518
2519 The decimal exponent is always printed and has at least one digit.
2520 Zero values display an exponent of zero. Infinities and NaNs
2521 appear as "infinity" or "nan" respectively.
2522
2523 The above rules are as specified by C99. There is ambiguity about
2524 what the leading hexadecimal digit should be. This implementation
2525 uses whatever is necessary so that the exponent is displayed as
2526 stored. This implies the exponent will fall within the IEEE format
2527 range, and the leading hexadecimal digit will be 0 (for denormals),
2528 1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with
2529 any other digits zero).
2530*/
2531unsigned int
2532APFloat::convertToHexString(char *dst, unsigned int hexDigits,
2533 bool upperCase, roundingMode rounding_mode) const
2534{
2535 char *p;
2536
Neil Boothcaf19d72007-10-14 10:29:28 +00002537 assertArithmeticOK(*semantics);
2538
Neil Bootha30b0ee2007-10-03 22:26:02 +00002539 p = dst;
2540 if (sign)
2541 *dst++ = '-';
2542
2543 switch (category) {
2544 case fcInfinity:
2545 memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1);
2546 dst += sizeof infinityL - 1;
2547 break;
2548
2549 case fcNaN:
2550 memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1);
2551 dst += sizeof NaNU - 1;
2552 break;
2553
2554 case fcZero:
2555 *dst++ = '0';
2556 *dst++ = upperCase ? 'X': 'x';
2557 *dst++ = '0';
2558 if (hexDigits > 1) {
2559 *dst++ = '.';
2560 memset (dst, '0', hexDigits - 1);
2561 dst += hexDigits - 1;
2562 }
2563 *dst++ = upperCase ? 'P': 'p';
2564 *dst++ = '0';
2565 break;
2566
2567 case fcNormal:
2568 dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode);
2569 break;
2570 }
2571
2572 *dst = 0;
2573
Evan Cheng48e8c802008-05-02 21:15:08 +00002574 return static_cast<unsigned int>(dst - p);
Neil Bootha30b0ee2007-10-03 22:26:02 +00002575}
2576
2577/* Does the hard work of outputting the correctly rounded hexadecimal
2578 form of a normal floating point number with the specified number of
2579 hexadecimal digits. If HEXDIGITS is zero the minimum number of
2580 digits necessary to print the value precisely is output. */
2581char *
2582APFloat::convertNormalToHexString(char *dst, unsigned int hexDigits,
2583 bool upperCase,
2584 roundingMode rounding_mode) const
2585{
2586 unsigned int count, valueBits, shift, partsCount, outputDigits;
2587 const char *hexDigitChars;
2588 const integerPart *significand;
2589 char *p;
2590 bool roundUp;
2591
2592 *dst++ = '0';
2593 *dst++ = upperCase ? 'X': 'x';
2594
2595 roundUp = false;
2596 hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower;
2597
2598 significand = significandParts();
2599 partsCount = partCount();
2600
2601 /* +3 because the first digit only uses the single integer bit, so
2602 we have 3 virtual zero most-significant-bits. */
2603 valueBits = semantics->precision + 3;
2604 shift = integerPartWidth - valueBits % integerPartWidth;
2605
2606 /* The natural number of digits required ignoring trailing
2607 insignificant zeroes. */
2608 outputDigits = (valueBits - significandLSB () + 3) / 4;
2609
2610 /* hexDigits of zero means use the required number for the
2611 precision. Otherwise, see if we are truncating. If we are,
Neil Booth978661d2007-10-06 00:24:48 +00002612 find out if we need to round away from zero. */
Neil Bootha30b0ee2007-10-03 22:26:02 +00002613 if (hexDigits) {
2614 if (hexDigits < outputDigits) {
2615 /* We are dropping non-zero bits, so need to check how to round.
2616 "bits" is the number of dropped bits. */
2617 unsigned int bits;
2618 lostFraction fraction;
2619
2620 bits = valueBits - hexDigits * 4;
2621 fraction = lostFractionThroughTruncation (significand, partsCount, bits);
2622 roundUp = roundAwayFromZero(rounding_mode, fraction, bits);
2623 }
2624 outputDigits = hexDigits;
2625 }
2626
2627 /* Write the digits consecutively, and start writing in the location
2628 of the hexadecimal point. We move the most significant digit
2629 left and add the hexadecimal point later. */
2630 p = ++dst;
2631
2632 count = (valueBits + integerPartWidth - 1) / integerPartWidth;
2633
2634 while (outputDigits && count) {
2635 integerPart part;
2636
2637 /* Put the most significant integerPartWidth bits in "part". */
2638 if (--count == partsCount)
2639 part = 0; /* An imaginary higher zero part. */
2640 else
2641 part = significand[count] << shift;
2642
2643 if (count && shift)
2644 part |= significand[count - 1] >> (integerPartWidth - shift);
2645
2646 /* Convert as much of "part" to hexdigits as we can. */
2647 unsigned int curDigits = integerPartWidth / 4;
2648
2649 if (curDigits > outputDigits)
2650 curDigits = outputDigits;
2651 dst += partAsHex (dst, part, curDigits, hexDigitChars);
2652 outputDigits -= curDigits;
2653 }
2654
2655 if (roundUp) {
2656 char *q = dst;
2657
2658 /* Note that hexDigitChars has a trailing '0'. */
2659 do {
2660 q--;
2661 *q = hexDigitChars[hexDigitValue (*q) + 1];
Neil Booth978661d2007-10-06 00:24:48 +00002662 } while (*q == '0');
Evan Cheng99ebfa52009-10-27 21:35:42 +00002663 assert(q >= p);
Neil Bootha30b0ee2007-10-03 22:26:02 +00002664 } else {
2665 /* Add trailing zeroes. */
2666 memset (dst, '0', outputDigits);
2667 dst += outputDigits;
2668 }
2669
2670 /* Move the most significant digit to before the point, and if there
2671 is something after the decimal point add it. This must come
2672 after rounding above. */
2673 p[-1] = p[0];
2674 if (dst -1 == p)
2675 dst--;
2676 else
2677 p[0] = '.';
2678
2679 /* Finally output the exponent. */
2680 *dst++ = upperCase ? 'P': 'p';
2681
Neil Booth92f7e8d2007-10-06 07:29:25 +00002682 return writeSignedDecimal (dst, exponent);
Neil Bootha30b0ee2007-10-03 22:26:02 +00002683}
2684
Chandler Carruthed7692a2012-03-04 12:02:57 +00002685hash_code llvm::hash_value(const APFloat &Arg) {
2686 if (Arg.category != APFloat::fcNormal)
2687 return hash_combine((uint8_t)Arg.category,
2688 // NaN has no sign, fix it at zero.
2689 Arg.isNaN() ? (uint8_t)0 : (uint8_t)Arg.sign,
2690 Arg.semantics->precision);
2691
2692 // Normal floats need their exponent and significand hashed.
2693 return hash_combine((uint8_t)Arg.category, (uint8_t)Arg.sign,
2694 Arg.semantics->precision, Arg.exponent,
2695 hash_combine_range(
2696 Arg.significandParts(),
2697 Arg.significandParts() + Arg.partCount()));
Dale Johannesen343e7702007-08-24 00:56:33 +00002698}
2699
2700// Conversion from APFloat to/from host float/double. It may eventually be
2701// possible to eliminate these and have everybody deal with APFloats, but that
2702// will take a while. This approach will not easily extend to long double.
Dale Johannesena72a5a02007-09-20 23:47:58 +00002703// Current implementation requires integerPartWidth==64, which is correct at
2704// the moment but could be made more general.
Dale Johannesen343e7702007-08-24 00:56:33 +00002705
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002706// Denormals have exponent minExponent in APFloat, but minExponent-1 in
Dale Johannesena72a5a02007-09-20 23:47:58 +00002707// the actual IEEE respresentations. We compensate for that here.
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002708
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002709APInt
Neil Booth4f881702007-09-26 21:33:42 +00002710APFloat::convertF80LongDoubleAPFloatToAPInt() const
2711{
Dan Gohmanb10abe12008-01-29 12:08:20 +00002712 assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended);
Evan Cheng99ebfa52009-10-27 21:35:42 +00002713 assert(partCount()==2);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002714
2715 uint64_t myexponent, mysignificand;
2716
2717 if (category==fcNormal) {
2718 myexponent = exponent+16383; //bias
Dale Johannesena72a5a02007-09-20 23:47:58 +00002719 mysignificand = significandParts()[0];
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002720 if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL))
2721 myexponent = 0; // denormal
2722 } else if (category==fcZero) {
2723 myexponent = 0;
2724 mysignificand = 0;
2725 } else if (category==fcInfinity) {
2726 myexponent = 0x7fff;
2727 mysignificand = 0x8000000000000000ULL;
Chris Lattnera11ef822007-10-06 06:13:42 +00002728 } else {
2729 assert(category == fcNaN && "Unknown category");
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002730 myexponent = 0x7fff;
Dale Johannesena72a5a02007-09-20 23:47:58 +00002731 mysignificand = significandParts()[0];
Chris Lattnera11ef822007-10-06 06:13:42 +00002732 }
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002733
2734 uint64_t words[2];
Dale Johannesen1b25cb22009-03-23 21:16:53 +00002735 words[0] = mysignificand;
2736 words[1] = ((uint64_t)(sign & 1) << 15) |
2737 (myexponent & 0x7fffLL);
Jeffrey Yasskin3ba292d2011-07-18 21:45:40 +00002738 return APInt(80, words);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002739}
2740
2741APInt
Dale Johannesena471c2e2007-10-11 18:07:22 +00002742APFloat::convertPPCDoubleDoubleAPFloatToAPInt() const
2743{
Dan Gohmanb10abe12008-01-29 12:08:20 +00002744 assert(semantics == (const llvm::fltSemantics*)&PPCDoubleDouble);
Evan Cheng99ebfa52009-10-27 21:35:42 +00002745 assert(partCount()==2);
Dale Johannesena471c2e2007-10-11 18:07:22 +00002746
2747 uint64_t myexponent, mysignificand, myexponent2, mysignificand2;
2748
2749 if (category==fcNormal) {
2750 myexponent = exponent + 1023; //bias
2751 myexponent2 = exponent2 + 1023;
2752 mysignificand = significandParts()[0];
2753 mysignificand2 = significandParts()[1];
2754 if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
2755 myexponent = 0; // denormal
2756 if (myexponent2==1 && !(mysignificand2 & 0x10000000000000LL))
2757 myexponent2 = 0; // denormal
2758 } else if (category==fcZero) {
2759 myexponent = 0;
2760 mysignificand = 0;
2761 myexponent2 = 0;
2762 mysignificand2 = 0;
2763 } else if (category==fcInfinity) {
2764 myexponent = 0x7ff;
2765 myexponent2 = 0;
2766 mysignificand = 0;
2767 mysignificand2 = 0;
2768 } else {
2769 assert(category == fcNaN && "Unknown category");
2770 myexponent = 0x7ff;
2771 mysignificand = significandParts()[0];
2772 myexponent2 = exponent2;
2773 mysignificand2 = significandParts()[1];
2774 }
2775
2776 uint64_t words[2];
Evan Cheng48e8c802008-05-02 21:15:08 +00002777 words[0] = ((uint64_t)(sign & 1) << 63) |
Dale Johannesena471c2e2007-10-11 18:07:22 +00002778 ((myexponent & 0x7ff) << 52) |
2779 (mysignificand & 0xfffffffffffffLL);
Evan Cheng48e8c802008-05-02 21:15:08 +00002780 words[1] = ((uint64_t)(sign2 & 1) << 63) |
Dale Johannesena471c2e2007-10-11 18:07:22 +00002781 ((myexponent2 & 0x7ff) << 52) |
2782 (mysignificand2 & 0xfffffffffffffLL);
Jeffrey Yasskin3ba292d2011-07-18 21:45:40 +00002783 return APInt(128, words);
Dale Johannesena471c2e2007-10-11 18:07:22 +00002784}
2785
2786APInt
Anton Korobeynikov7e844f12009-08-21 22:10:30 +00002787APFloat::convertQuadrupleAPFloatToAPInt() const
2788{
2789 assert(semantics == (const llvm::fltSemantics*)&IEEEquad);
Evan Cheng99ebfa52009-10-27 21:35:42 +00002790 assert(partCount()==2);
Anton Korobeynikov7e844f12009-08-21 22:10:30 +00002791
2792 uint64_t myexponent, mysignificand, mysignificand2;
2793
2794 if (category==fcNormal) {
2795 myexponent = exponent+16383; //bias
2796 mysignificand = significandParts()[0];
2797 mysignificand2 = significandParts()[1];
2798 if (myexponent==1 && !(mysignificand2 & 0x1000000000000LL))
2799 myexponent = 0; // denormal
2800 } else if (category==fcZero) {
2801 myexponent = 0;
2802 mysignificand = mysignificand2 = 0;
2803 } else if (category==fcInfinity) {
2804 myexponent = 0x7fff;
2805 mysignificand = mysignificand2 = 0;
2806 } else {
2807 assert(category == fcNaN && "Unknown category!");
2808 myexponent = 0x7fff;
2809 mysignificand = significandParts()[0];
2810 mysignificand2 = significandParts()[1];
2811 }
2812
2813 uint64_t words[2];
2814 words[0] = mysignificand;
2815 words[1] = ((uint64_t)(sign & 1) << 63) |
2816 ((myexponent & 0x7fff) << 48) |
Anton Korobeynikov4755e992009-08-21 23:09:47 +00002817 (mysignificand2 & 0xffffffffffffLL);
Anton Korobeynikov7e844f12009-08-21 22:10:30 +00002818
Jeffrey Yasskin3ba292d2011-07-18 21:45:40 +00002819 return APInt(128, words);
Anton Korobeynikov7e844f12009-08-21 22:10:30 +00002820}
2821
2822APInt
Neil Booth4f881702007-09-26 21:33:42 +00002823APFloat::convertDoubleAPFloatToAPInt() const
2824{
Dan Gohmancb648f92007-09-14 20:08:19 +00002825 assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
Evan Cheng99ebfa52009-10-27 21:35:42 +00002826 assert(partCount()==1);
Dale Johannesen343e7702007-08-24 00:56:33 +00002827
Dale Johanneseneaf08942007-08-31 04:03:46 +00002828 uint64_t myexponent, mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00002829
2830 if (category==fcNormal) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002831 myexponent = exponent+1023; //bias
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002832 mysignificand = *significandParts();
2833 if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
2834 myexponent = 0; // denormal
Dale Johannesen343e7702007-08-24 00:56:33 +00002835 } else if (category==fcZero) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002836 myexponent = 0;
2837 mysignificand = 0;
2838 } else if (category==fcInfinity) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002839 myexponent = 0x7ff;
2840 mysignificand = 0;
Chris Lattnera11ef822007-10-06 06:13:42 +00002841 } else {
2842 assert(category == fcNaN && "Unknown category!");
Dale Johannesen343e7702007-08-24 00:56:33 +00002843 myexponent = 0x7ff;
Dale Johanneseneaf08942007-08-31 04:03:46 +00002844 mysignificand = *significandParts();
Chris Lattnera11ef822007-10-06 06:13:42 +00002845 }
Dale Johannesen343e7702007-08-24 00:56:33 +00002846
Evan Cheng48e8c802008-05-02 21:15:08 +00002847 return APInt(64, ((((uint64_t)(sign & 1) << 63) |
Chris Lattnera11ef822007-10-06 06:13:42 +00002848 ((myexponent & 0x7ff) << 52) |
2849 (mysignificand & 0xfffffffffffffLL))));
Dale Johannesen343e7702007-08-24 00:56:33 +00002850}
2851
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002852APInt
Neil Booth4f881702007-09-26 21:33:42 +00002853APFloat::convertFloatAPFloatToAPInt() const
2854{
Dan Gohmancb648f92007-09-14 20:08:19 +00002855 assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
Evan Cheng99ebfa52009-10-27 21:35:42 +00002856 assert(partCount()==1);
Neil Booth4f881702007-09-26 21:33:42 +00002857
Dale Johanneseneaf08942007-08-31 04:03:46 +00002858 uint32_t myexponent, mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00002859
2860 if (category==fcNormal) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002861 myexponent = exponent+127; //bias
Evan Cheng48e8c802008-05-02 21:15:08 +00002862 mysignificand = (uint32_t)*significandParts();
Dale Johannesend0763b92007-11-17 01:02:27 +00002863 if (myexponent == 1 && !(mysignificand & 0x800000))
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002864 myexponent = 0; // denormal
Dale Johannesen343e7702007-08-24 00:56:33 +00002865 } else if (category==fcZero) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002866 myexponent = 0;
2867 mysignificand = 0;
2868 } else if (category==fcInfinity) {
Dale Johannesen343e7702007-08-24 00:56:33 +00002869 myexponent = 0xff;
2870 mysignificand = 0;
Chris Lattnera11ef822007-10-06 06:13:42 +00002871 } else {
2872 assert(category == fcNaN && "Unknown category!");
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00002873 myexponent = 0xff;
Evan Cheng48e8c802008-05-02 21:15:08 +00002874 mysignificand = (uint32_t)*significandParts();
Chris Lattnera11ef822007-10-06 06:13:42 +00002875 }
Dale Johannesen343e7702007-08-24 00:56:33 +00002876
Chris Lattnera11ef822007-10-06 06:13:42 +00002877 return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) |
2878 (mysignificand & 0x7fffff)));
Dale Johannesen343e7702007-08-24 00:56:33 +00002879}
2880
Chris Lattnercc4287a2009-10-16 02:13:51 +00002881APInt
2882APFloat::convertHalfAPFloatToAPInt() const
2883{
2884 assert(semantics == (const llvm::fltSemantics*)&IEEEhalf);
Evan Cheng99ebfa52009-10-27 21:35:42 +00002885 assert(partCount()==1);
Chris Lattnercc4287a2009-10-16 02:13:51 +00002886
2887 uint32_t myexponent, mysignificand;
2888
2889 if (category==fcNormal) {
2890 myexponent = exponent+15; //bias
2891 mysignificand = (uint32_t)*significandParts();
2892 if (myexponent == 1 && !(mysignificand & 0x400))
2893 myexponent = 0; // denormal
2894 } else if (category==fcZero) {
2895 myexponent = 0;
2896 mysignificand = 0;
2897 } else if (category==fcInfinity) {
Dale Johannesena223aed2009-10-23 04:02:51 +00002898 myexponent = 0x1f;
Chris Lattnercc4287a2009-10-16 02:13:51 +00002899 mysignificand = 0;
2900 } else {
2901 assert(category == fcNaN && "Unknown category!");
Dale Johannesena223aed2009-10-23 04:02:51 +00002902 myexponent = 0x1f;
Chris Lattnercc4287a2009-10-16 02:13:51 +00002903 mysignificand = (uint32_t)*significandParts();
2904 }
2905
2906 return APInt(16, (((sign&1) << 15) | ((myexponent&0x1f) << 10) |
2907 (mysignificand & 0x3ff)));
2908}
2909
Dale Johannesena471c2e2007-10-11 18:07:22 +00002910// This function creates an APInt that is just a bit map of the floating
2911// point constant as it would appear in memory. It is not a conversion,
2912// and treating the result as a normal integer is unlikely to be useful.
2913
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002914APInt
Dale Johannesen7111b022008-10-09 18:53:47 +00002915APFloat::bitcastToAPInt() const
Neil Booth4f881702007-09-26 21:33:42 +00002916{
Chris Lattnercc4287a2009-10-16 02:13:51 +00002917 if (semantics == (const llvm::fltSemantics*)&IEEEhalf)
2918 return convertHalfAPFloatToAPInt();
2919
Dan Gohmanb10abe12008-01-29 12:08:20 +00002920 if (semantics == (const llvm::fltSemantics*)&IEEEsingle)
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002921 return convertFloatAPFloatToAPInt();
Anton Korobeynikov7e844f12009-08-21 22:10:30 +00002922
Dan Gohmanb10abe12008-01-29 12:08:20 +00002923 if (semantics == (const llvm::fltSemantics*)&IEEEdouble)
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002924 return convertDoubleAPFloatToAPInt();
Neil Booth4f881702007-09-26 21:33:42 +00002925
Anton Korobeynikov7e844f12009-08-21 22:10:30 +00002926 if (semantics == (const llvm::fltSemantics*)&IEEEquad)
2927 return convertQuadrupleAPFloatToAPInt();
2928
Dan Gohmanb10abe12008-01-29 12:08:20 +00002929 if (semantics == (const llvm::fltSemantics*)&PPCDoubleDouble)
Dale Johannesena471c2e2007-10-11 18:07:22 +00002930 return convertPPCDoubleDoubleAPFloatToAPInt();
2931
Dan Gohmanb10abe12008-01-29 12:08:20 +00002932 assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended &&
Chris Lattnera11ef822007-10-06 06:13:42 +00002933 "unknown format!");
2934 return convertF80LongDoubleAPFloatToAPInt();
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002935}
2936
Neil Booth4f881702007-09-26 21:33:42 +00002937float
2938APFloat::convertToFloat() const
2939{
Chris Lattnerad785002009-09-24 21:44:20 +00002940 assert(semantics == (const llvm::fltSemantics*)&IEEEsingle &&
2941 "Float semantics are not IEEEsingle");
Dale Johannesen7111b022008-10-09 18:53:47 +00002942 APInt api = bitcastToAPInt();
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002943 return api.bitsToFloat();
2944}
2945
Neil Booth4f881702007-09-26 21:33:42 +00002946double
2947APFloat::convertToDouble() const
2948{
Chris Lattnerad785002009-09-24 21:44:20 +00002949 assert(semantics == (const llvm::fltSemantics*)&IEEEdouble &&
2950 "Float semantics are not IEEEdouble");
Dale Johannesen7111b022008-10-09 18:53:47 +00002951 APInt api = bitcastToAPInt();
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002952 return api.bitsToDouble();
2953}
2954
Dale Johannesend3d8ce32008-10-06 18:22:29 +00002955/// Integer bit is explicit in this format. Intel hardware (387 and later)
2956/// does not support these bit patterns:
2957/// exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity")
2958/// exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN")
2959/// exponent = 0, integer bit 1 ("pseudodenormal")
2960/// exponent!=0 nor all 1's, integer bit 0 ("unnormal")
2961/// At the moment, the first two are treated as NaNs, the second two as Normal.
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002962void
Neil Booth4f881702007-09-26 21:33:42 +00002963APFloat::initFromF80LongDoubleAPInt(const APInt &api)
2964{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002965 assert(api.getBitWidth()==80);
2966 uint64_t i1 = api.getRawData()[0];
2967 uint64_t i2 = api.getRawData()[1];
Dale Johannesen1b25cb22009-03-23 21:16:53 +00002968 uint64_t myexponent = (i2 & 0x7fff);
2969 uint64_t mysignificand = i1;
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002970
2971 initialize(&APFloat::x87DoubleExtended);
Dale Johannesena72a5a02007-09-20 23:47:58 +00002972 assert(partCount()==2);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002973
Dale Johannesen1b25cb22009-03-23 21:16:53 +00002974 sign = static_cast<unsigned int>(i2>>15);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002975 if (myexponent==0 && mysignificand==0) {
2976 // exponent, significand meaningless
2977 category = fcZero;
2978 } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) {
2979 // exponent, significand meaningless
2980 category = fcInfinity;
2981 } else if (myexponent==0x7fff && mysignificand!=0x8000000000000000ULL) {
2982 // exponent meaningless
2983 category = fcNaN;
Dale Johannesena72a5a02007-09-20 23:47:58 +00002984 significandParts()[0] = mysignificand;
2985 significandParts()[1] = 0;
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002986 } else {
2987 category = fcNormal;
2988 exponent = myexponent - 16383;
Dale Johannesena72a5a02007-09-20 23:47:58 +00002989 significandParts()[0] = mysignificand;
2990 significandParts()[1] = 0;
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002991 if (myexponent==0) // denormal
2992 exponent = -16382;
Neil Booth4f881702007-09-26 21:33:42 +00002993 }
Dale Johannesen3f6eb742007-09-11 18:32:33 +00002994}
2995
2996void
Dale Johannesena471c2e2007-10-11 18:07:22 +00002997APFloat::initFromPPCDoubleDoubleAPInt(const APInt &api)
2998{
2999 assert(api.getBitWidth()==128);
3000 uint64_t i1 = api.getRawData()[0];
3001 uint64_t i2 = api.getRawData()[1];
3002 uint64_t myexponent = (i1 >> 52) & 0x7ff;
3003 uint64_t mysignificand = i1 & 0xfffffffffffffLL;
3004 uint64_t myexponent2 = (i2 >> 52) & 0x7ff;
3005 uint64_t mysignificand2 = i2 & 0xfffffffffffffLL;
3006
3007 initialize(&APFloat::PPCDoubleDouble);
3008 assert(partCount()==2);
3009
Evan Cheng48e8c802008-05-02 21:15:08 +00003010 sign = static_cast<unsigned int>(i1>>63);
3011 sign2 = static_cast<unsigned int>(i2>>63);
Dale Johannesena471c2e2007-10-11 18:07:22 +00003012 if (myexponent==0 && mysignificand==0) {
3013 // exponent, significand meaningless
3014 // exponent2 and significand2 are required to be 0; we don't check
3015 category = fcZero;
3016 } else if (myexponent==0x7ff && mysignificand==0) {
3017 // exponent, significand meaningless
3018 // exponent2 and significand2 are required to be 0; we don't check
3019 category = fcInfinity;
3020 } else if (myexponent==0x7ff && mysignificand!=0) {
Dan Gohman16e02092010-03-24 19:38:02 +00003021 // exponent meaningless. So is the whole second word, but keep it
Dale Johannesena471c2e2007-10-11 18:07:22 +00003022 // for determinism.
3023 category = fcNaN;
3024 exponent2 = myexponent2;
3025 significandParts()[0] = mysignificand;
3026 significandParts()[1] = mysignificand2;
3027 } else {
3028 category = fcNormal;
3029 // Note there is no category2; the second word is treated as if it is
3030 // fcNormal, although it might be something else considered by itself.
3031 exponent = myexponent - 1023;
3032 exponent2 = myexponent2 - 1023;
3033 significandParts()[0] = mysignificand;
3034 significandParts()[1] = mysignificand2;
3035 if (myexponent==0) // denormal
3036 exponent = -1022;
3037 else
3038 significandParts()[0] |= 0x10000000000000LL; // integer bit
Dan Gohman16e02092010-03-24 19:38:02 +00003039 if (myexponent2==0)
Dale Johannesena471c2e2007-10-11 18:07:22 +00003040 exponent2 = -1022;
3041 else
3042 significandParts()[1] |= 0x10000000000000LL; // integer bit
3043 }
3044}
3045
3046void
Anton Korobeynikov7e844f12009-08-21 22:10:30 +00003047APFloat::initFromQuadrupleAPInt(const APInt &api)
3048{
3049 assert(api.getBitWidth()==128);
3050 uint64_t i1 = api.getRawData()[0];
3051 uint64_t i2 = api.getRawData()[1];
3052 uint64_t myexponent = (i2 >> 48) & 0x7fff;
3053 uint64_t mysignificand = i1;
3054 uint64_t mysignificand2 = i2 & 0xffffffffffffLL;
3055
3056 initialize(&APFloat::IEEEquad);
3057 assert(partCount()==2);
3058
3059 sign = static_cast<unsigned int>(i2>>63);
3060 if (myexponent==0 &&
3061 (mysignificand==0 && mysignificand2==0)) {
3062 // exponent, significand meaningless
3063 category = fcZero;
3064 } else if (myexponent==0x7fff &&
3065 (mysignificand==0 && mysignificand2==0)) {
3066 // exponent, significand meaningless
3067 category = fcInfinity;
3068 } else if (myexponent==0x7fff &&
3069 (mysignificand!=0 || mysignificand2 !=0)) {
3070 // exponent meaningless
3071 category = fcNaN;
3072 significandParts()[0] = mysignificand;
3073 significandParts()[1] = mysignificand2;
3074 } else {
3075 category = fcNormal;
3076 exponent = myexponent - 16383;
3077 significandParts()[0] = mysignificand;
3078 significandParts()[1] = mysignificand2;
3079 if (myexponent==0) // denormal
3080 exponent = -16382;
3081 else
3082 significandParts()[1] |= 0x1000000000000LL; // integer bit
3083 }
3084}
3085
3086void
Neil Booth4f881702007-09-26 21:33:42 +00003087APFloat::initFromDoubleAPInt(const APInt &api)
3088{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00003089 assert(api.getBitWidth()==64);
3090 uint64_t i = *api.getRawData();
Dale Johannesend3b51fd2007-08-24 05:08:11 +00003091 uint64_t myexponent = (i >> 52) & 0x7ff;
3092 uint64_t mysignificand = i & 0xfffffffffffffLL;
3093
Dale Johannesen343e7702007-08-24 00:56:33 +00003094 initialize(&APFloat::IEEEdouble);
Dale Johannesen343e7702007-08-24 00:56:33 +00003095 assert(partCount()==1);
3096
Evan Cheng48e8c802008-05-02 21:15:08 +00003097 sign = static_cast<unsigned int>(i>>63);
Dale Johannesen343e7702007-08-24 00:56:33 +00003098 if (myexponent==0 && mysignificand==0) {
3099 // exponent, significand meaningless
3100 category = fcZero;
Dale Johannesen343e7702007-08-24 00:56:33 +00003101 } else if (myexponent==0x7ff && mysignificand==0) {
3102 // exponent, significand meaningless
3103 category = fcInfinity;
Dale Johanneseneaf08942007-08-31 04:03:46 +00003104 } else if (myexponent==0x7ff && mysignificand!=0) {
3105 // exponent meaningless
3106 category = fcNaN;
3107 *significandParts() = mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00003108 } else {
Dale Johannesen343e7702007-08-24 00:56:33 +00003109 category = fcNormal;
3110 exponent = myexponent - 1023;
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00003111 *significandParts() = mysignificand;
3112 if (myexponent==0) // denormal
3113 exponent = -1022;
3114 else
3115 *significandParts() |= 0x10000000000000LL; // integer bit
Neil Booth4f881702007-09-26 21:33:42 +00003116 }
Dale Johannesen343e7702007-08-24 00:56:33 +00003117}
3118
Dale Johannesen3f6eb742007-09-11 18:32:33 +00003119void
Neil Booth4f881702007-09-26 21:33:42 +00003120APFloat::initFromFloatAPInt(const APInt & api)
3121{
Dale Johannesen3f6eb742007-09-11 18:32:33 +00003122 assert(api.getBitWidth()==32);
3123 uint32_t i = (uint32_t)*api.getRawData();
Dale Johannesend3b51fd2007-08-24 05:08:11 +00003124 uint32_t myexponent = (i >> 23) & 0xff;
3125 uint32_t mysignificand = i & 0x7fffff;
3126
Dale Johannesen343e7702007-08-24 00:56:33 +00003127 initialize(&APFloat::IEEEsingle);
Dale Johannesen343e7702007-08-24 00:56:33 +00003128 assert(partCount()==1);
3129
Dale Johanneseneaf08942007-08-31 04:03:46 +00003130 sign = i >> 31;
Dale Johannesen343e7702007-08-24 00:56:33 +00003131 if (myexponent==0 && mysignificand==0) {
3132 // exponent, significand meaningless
3133 category = fcZero;
Dale Johannesen343e7702007-08-24 00:56:33 +00003134 } else if (myexponent==0xff && mysignificand==0) {
3135 // exponent, significand meaningless
3136 category = fcInfinity;
Dale Johannesen902ff942007-09-25 17:25:00 +00003137 } else if (myexponent==0xff && mysignificand!=0) {
Dale Johannesen343e7702007-08-24 00:56:33 +00003138 // sign, exponent, significand meaningless
Dale Johanneseneaf08942007-08-31 04:03:46 +00003139 category = fcNaN;
3140 *significandParts() = mysignificand;
Dale Johannesen343e7702007-08-24 00:56:33 +00003141 } else {
3142 category = fcNormal;
Dale Johannesen343e7702007-08-24 00:56:33 +00003143 exponent = myexponent - 127; //bias
Dale Johannesen58c2e4c2007-09-05 20:39:49 +00003144 *significandParts() = mysignificand;
3145 if (myexponent==0) // denormal
3146 exponent = -126;
3147 else
3148 *significandParts() |= 0x800000; // integer bit
Dale Johannesen343e7702007-08-24 00:56:33 +00003149 }
3150}
Dale Johannesen3f6eb742007-09-11 18:32:33 +00003151
Chris Lattnercc4287a2009-10-16 02:13:51 +00003152void
3153APFloat::initFromHalfAPInt(const APInt & api)
3154{
3155 assert(api.getBitWidth()==16);
3156 uint32_t i = (uint32_t)*api.getRawData();
Dale Johannesena223aed2009-10-23 04:02:51 +00003157 uint32_t myexponent = (i >> 10) & 0x1f;
Chris Lattnercc4287a2009-10-16 02:13:51 +00003158 uint32_t mysignificand = i & 0x3ff;
3159
3160 initialize(&APFloat::IEEEhalf);
3161 assert(partCount()==1);
3162
3163 sign = i >> 15;
3164 if (myexponent==0 && mysignificand==0) {
3165 // exponent, significand meaningless
3166 category = fcZero;
3167 } else if (myexponent==0x1f && mysignificand==0) {
3168 // exponent, significand meaningless
3169 category = fcInfinity;
3170 } else if (myexponent==0x1f && mysignificand!=0) {
3171 // sign, exponent, significand meaningless
3172 category = fcNaN;
3173 *significandParts() = mysignificand;
3174 } else {
3175 category = fcNormal;
3176 exponent = myexponent - 15; //bias
3177 *significandParts() = mysignificand;
3178 if (myexponent==0) // denormal
3179 exponent = -14;
3180 else
3181 *significandParts() |= 0x400; // integer bit
3182 }
3183}
3184
Dale Johannesen3f6eb742007-09-11 18:32:33 +00003185/// Treat api as containing the bits of a floating point number. Currently
Dale Johannesena471c2e2007-10-11 18:07:22 +00003186/// we infer the floating point type from the size of the APInt. The
3187/// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful
3188/// when the size is anything else).
Dale Johannesen3f6eb742007-09-11 18:32:33 +00003189void
Dale Johannesena471c2e2007-10-11 18:07:22 +00003190APFloat::initFromAPInt(const APInt& api, bool isIEEE)
Neil Booth4f881702007-09-26 21:33:42 +00003191{
Chris Lattnercc4287a2009-10-16 02:13:51 +00003192 if (api.getBitWidth() == 16)
3193 return initFromHalfAPInt(api);
3194 else if (api.getBitWidth() == 32)
Dale Johannesen3f6eb742007-09-11 18:32:33 +00003195 return initFromFloatAPInt(api);
3196 else if (api.getBitWidth()==64)
3197 return initFromDoubleAPInt(api);
3198 else if (api.getBitWidth()==80)
3199 return initFromF80LongDoubleAPInt(api);
Anton Korobeynikov7e844f12009-08-21 22:10:30 +00003200 else if (api.getBitWidth()==128)
3201 return (isIEEE ?
3202 initFromQuadrupleAPInt(api) : initFromPPCDoubleDoubleAPInt(api));
Dale Johannesen3f6eb742007-09-11 18:32:33 +00003203 else
Torok Edwinc23197a2009-07-14 16:55:14 +00003204 llvm_unreachable(0);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00003205}
3206
Nadav Rotem093399c2011-02-17 21:22:27 +00003207APFloat
3208APFloat::getAllOnesValue(unsigned BitWidth, bool isIEEE)
3209{
3210 return APFloat(APInt::getAllOnesValue(BitWidth), isIEEE);
3211}
3212
John McCall00e65de2009-12-24 08:56:26 +00003213APFloat APFloat::getLargest(const fltSemantics &Sem, bool Negative) {
3214 APFloat Val(Sem, fcNormal, Negative);
3215
3216 // We want (in interchange format):
3217 // sign = {Negative}
3218 // exponent = 1..10
3219 // significand = 1..1
3220
3221 Val.exponent = Sem.maxExponent; // unbiased
3222
3223 // 1-initialize all bits....
3224 Val.zeroSignificand();
3225 integerPart *significand = Val.significandParts();
3226 unsigned N = partCountForBits(Sem.precision);
3227 for (unsigned i = 0; i != N; ++i)
3228 significand[i] = ~((integerPart) 0);
3229
3230 // ...and then clear the top bits for internal consistency.
Eli Friedman7247a5f2011-10-12 21:51:36 +00003231 if (Sem.precision % integerPartWidth != 0)
3232 significand[N-1] &=
3233 (((integerPart) 1) << (Sem.precision % integerPartWidth)) - 1;
John McCall00e65de2009-12-24 08:56:26 +00003234
3235 return Val;
3236}
3237
3238APFloat APFloat::getSmallest(const fltSemantics &Sem, bool Negative) {
3239 APFloat Val(Sem, fcNormal, Negative);
3240
3241 // We want (in interchange format):
3242 // sign = {Negative}
3243 // exponent = 0..0
3244 // significand = 0..01
3245
3246 Val.exponent = Sem.minExponent; // unbiased
3247 Val.zeroSignificand();
3248 Val.significandParts()[0] = 1;
3249 return Val;
3250}
3251
3252APFloat APFloat::getSmallestNormalized(const fltSemantics &Sem, bool Negative) {
3253 APFloat Val(Sem, fcNormal, Negative);
3254
3255 // We want (in interchange format):
3256 // sign = {Negative}
3257 // exponent = 0..0
3258 // significand = 10..0
3259
3260 Val.exponent = Sem.minExponent;
3261 Val.zeroSignificand();
Dan Gohman16e02092010-03-24 19:38:02 +00003262 Val.significandParts()[partCountForBits(Sem.precision)-1] |=
Eli Friedman90196fc2011-10-12 21:56:19 +00003263 (((integerPart) 1) << ((Sem.precision - 1) % integerPartWidth));
John McCall00e65de2009-12-24 08:56:26 +00003264
3265 return Val;
3266}
3267
Bill Wendlingf09a8b52011-03-18 09:09:44 +00003268APFloat::APFloat(const APInt& api, bool isIEEE) : exponent2(0), sign2(0) {
Dale Johannesena471c2e2007-10-11 18:07:22 +00003269 initFromAPInt(api, isIEEE);
Dale Johannesen3f6eb742007-09-11 18:32:33 +00003270}
3271
Bill Wendlingf09a8b52011-03-18 09:09:44 +00003272APFloat::APFloat(float f) : exponent2(0), sign2(0) {
Jay Foade4d19c92010-11-28 21:04:48 +00003273 initFromAPInt(APInt::floatToBits(f));
Dale Johannesen3f6eb742007-09-11 18:32:33 +00003274}
3275
Bill Wendlingf09a8b52011-03-18 09:09:44 +00003276APFloat::APFloat(double d) : exponent2(0), sign2(0) {
Jay Foade4d19c92010-11-28 21:04:48 +00003277 initFromAPInt(APInt::doubleToBits(d));
Dale Johannesen3f6eb742007-09-11 18:32:33 +00003278}
John McCall00e65de2009-12-24 08:56:26 +00003279
3280namespace {
David Blaikie9f14ed12012-07-25 18:04:24 +00003281 void append(SmallVectorImpl<char> &Buffer, StringRef Str) {
3282 Buffer.append(Str.begin(), Str.end());
John McCall00e65de2009-12-24 08:56:26 +00003283 }
3284
John McCall003a09c2009-12-24 12:16:56 +00003285 /// Removes data from the given significand until it is no more
3286 /// precise than is required for the desired precision.
3287 void AdjustToPrecision(APInt &significand,
3288 int &exp, unsigned FormatPrecision) {
3289 unsigned bits = significand.getActiveBits();
3290
3291 // 196/59 is a very slight overestimate of lg_2(10).
3292 unsigned bitsRequired = (FormatPrecision * 196 + 58) / 59;
3293
3294 if (bits <= bitsRequired) return;
3295
3296 unsigned tensRemovable = (bits - bitsRequired) * 59 / 196;
3297 if (!tensRemovable) return;
3298
3299 exp += tensRemovable;
3300
3301 APInt divisor(significand.getBitWidth(), 1);
3302 APInt powten(significand.getBitWidth(), 10);
3303 while (true) {
3304 if (tensRemovable & 1)
3305 divisor *= powten;
3306 tensRemovable >>= 1;
3307 if (!tensRemovable) break;
3308 powten *= powten;
3309 }
3310
3311 significand = significand.udiv(divisor);
3312
3313 // Truncate the significand down to its active bit count, but
3314 // don't try to drop below 32.
John McCall6a09aff2009-12-24 23:18:09 +00003315 unsigned newPrecision = std::max(32U, significand.getActiveBits());
Jay Foad40f8f622010-12-07 08:25:19 +00003316 significand = significand.trunc(newPrecision);
John McCall003a09c2009-12-24 12:16:56 +00003317 }
3318
3319
John McCall00e65de2009-12-24 08:56:26 +00003320 void AdjustToPrecision(SmallVectorImpl<char> &buffer,
3321 int &exp, unsigned FormatPrecision) {
3322 unsigned N = buffer.size();
3323 if (N <= FormatPrecision) return;
3324
3325 // The most significant figures are the last ones in the buffer.
3326 unsigned FirstSignificant = N - FormatPrecision;
3327
3328 // Round.
3329 // FIXME: this probably shouldn't use 'round half up'.
3330
3331 // Rounding down is just a truncation, except we also want to drop
3332 // trailing zeros from the new result.
3333 if (buffer[FirstSignificant - 1] < '5') {
NAKAMURA Takumi752b2f02012-02-19 03:18:29 +00003334 while (FirstSignificant < N && buffer[FirstSignificant] == '0')
John McCall00e65de2009-12-24 08:56:26 +00003335 FirstSignificant++;
3336
3337 exp += FirstSignificant;
3338 buffer.erase(&buffer[0], &buffer[FirstSignificant]);
3339 return;
3340 }
3341
3342 // Rounding up requires a decimal add-with-carry. If we continue
3343 // the carry, the newly-introduced zeros will just be truncated.
3344 for (unsigned I = FirstSignificant; I != N; ++I) {
3345 if (buffer[I] == '9') {
3346 FirstSignificant++;
3347 } else {
3348 buffer[I]++;
3349 break;
3350 }
3351 }
3352
3353 // If we carried through, we have exactly one digit of precision.
3354 if (FirstSignificant == N) {
3355 exp += FirstSignificant;
3356 buffer.clear();
3357 buffer.push_back('1');
3358 return;
3359 }
3360
3361 exp += FirstSignificant;
3362 buffer.erase(&buffer[0], &buffer[FirstSignificant]);
3363 }
3364}
3365
3366void APFloat::toString(SmallVectorImpl<char> &Str,
3367 unsigned FormatPrecision,
Chris Lattner0ddda3b2010-03-06 19:20:13 +00003368 unsigned FormatMaxPadding) const {
John McCall00e65de2009-12-24 08:56:26 +00003369 switch (category) {
3370 case fcInfinity:
3371 if (isNegative())
3372 return append(Str, "-Inf");
3373 else
3374 return append(Str, "+Inf");
3375
3376 case fcNaN: return append(Str, "NaN");
3377
3378 case fcZero:
3379 if (isNegative())
3380 Str.push_back('-');
3381
3382 if (!FormatMaxPadding)
3383 append(Str, "0.0E+0");
3384 else
3385 Str.push_back('0');
3386 return;
3387
3388 case fcNormal:
3389 break;
3390 }
3391
3392 if (isNegative())
3393 Str.push_back('-');
3394
3395 // Decompose the number into an APInt and an exponent.
3396 int exp = exponent - ((int) semantics->precision - 1);
3397 APInt significand(semantics->precision,
Jeffrey Yasskin3ba292d2011-07-18 21:45:40 +00003398 makeArrayRef(significandParts(),
3399 partCountForBits(semantics->precision)));
John McCall00e65de2009-12-24 08:56:26 +00003400
John McCall6a09aff2009-12-24 23:18:09 +00003401 // Set FormatPrecision if zero. We want to do this before we
3402 // truncate trailing zeros, as those are part of the precision.
3403 if (!FormatPrecision) {
3404 // It's an interesting question whether to use the nominal
3405 // precision or the active precision here for denormals.
3406
3407 // FormatPrecision = ceil(significandBits / lg_2(10))
3408 FormatPrecision = (semantics->precision * 59 + 195) / 196;
3409 }
3410
John McCall00e65de2009-12-24 08:56:26 +00003411 // Ignore trailing binary zeros.
3412 int trailingZeros = significand.countTrailingZeros();
3413 exp += trailingZeros;
3414 significand = significand.lshr(trailingZeros);
3415
3416 // Change the exponent from 2^e to 10^e.
3417 if (exp == 0) {
3418 // Nothing to do.
3419 } else if (exp > 0) {
3420 // Just shift left.
Jay Foad40f8f622010-12-07 08:25:19 +00003421 significand = significand.zext(semantics->precision + exp);
John McCall00e65de2009-12-24 08:56:26 +00003422 significand <<= exp;
3423 exp = 0;
3424 } else { /* exp < 0 */
3425 int texp = -exp;
3426
3427 // We transform this using the identity:
3428 // (N)(2^-e) == (N)(5^e)(10^-e)
3429 // This means we have to multiply N (the significand) by 5^e.
3430 // To avoid overflow, we have to operate on numbers large
3431 // enough to store N * 5^e:
3432 // log2(N * 5^e) == log2(N) + e * log2(5)
John McCall6a09aff2009-12-24 23:18:09 +00003433 // <= semantics->precision + e * 137 / 59
3434 // (log_2(5) ~ 2.321928 < 2.322034 ~ 137/59)
Dan Gohman16e02092010-03-24 19:38:02 +00003435
Eli Friedman9eb6b4d2011-10-07 23:40:49 +00003436 unsigned precision = semantics->precision + (137 * texp + 136) / 59;
John McCall00e65de2009-12-24 08:56:26 +00003437
3438 // Multiply significand by 5^e.
3439 // N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8)
Jay Foad40f8f622010-12-07 08:25:19 +00003440 significand = significand.zext(precision);
John McCall00e65de2009-12-24 08:56:26 +00003441 APInt five_to_the_i(precision, 5);
3442 while (true) {
3443 if (texp & 1) significand *= five_to_the_i;
Dan Gohman16e02092010-03-24 19:38:02 +00003444
John McCall00e65de2009-12-24 08:56:26 +00003445 texp >>= 1;
3446 if (!texp) break;
3447 five_to_the_i *= five_to_the_i;
3448 }
3449 }
3450
John McCall003a09c2009-12-24 12:16:56 +00003451 AdjustToPrecision(significand, exp, FormatPrecision);
3452
John McCall00e65de2009-12-24 08:56:26 +00003453 llvm::SmallVector<char, 256> buffer;
3454
3455 // Fill the buffer.
3456 unsigned precision = significand.getBitWidth();
3457 APInt ten(precision, 10);
3458 APInt digit(precision, 0);
3459
3460 bool inTrail = true;
3461 while (significand != 0) {
3462 // digit <- significand % 10
3463 // significand <- significand / 10
3464 APInt::udivrem(significand, ten, significand, digit);
3465
3466 unsigned d = digit.getZExtValue();
3467
3468 // Drop trailing zeros.
3469 if (inTrail && !d) exp++;
3470 else {
3471 buffer.push_back((char) ('0' + d));
3472 inTrail = false;
3473 }
3474 }
3475
3476 assert(!buffer.empty() && "no characters in buffer!");
3477
3478 // Drop down to FormatPrecision.
3479 // TODO: don't do more precise calculations above than are required.
3480 AdjustToPrecision(buffer, exp, FormatPrecision);
3481
3482 unsigned NDigits = buffer.size();
3483
John McCall6a09aff2009-12-24 23:18:09 +00003484 // Check whether we should use scientific notation.
John McCall00e65de2009-12-24 08:56:26 +00003485 bool FormatScientific;
3486 if (!FormatMaxPadding)
3487 FormatScientific = true;
3488 else {
John McCall00e65de2009-12-24 08:56:26 +00003489 if (exp >= 0) {
John McCall6a09aff2009-12-24 23:18:09 +00003490 // 765e3 --> 765000
3491 // ^^^
3492 // But we shouldn't make the number look more precise than it is.
3493 FormatScientific = ((unsigned) exp > FormatMaxPadding ||
3494 NDigits + (unsigned) exp > FormatPrecision);
John McCall00e65de2009-12-24 08:56:26 +00003495 } else {
John McCall6a09aff2009-12-24 23:18:09 +00003496 // Power of the most significant digit.
3497 int MSD = exp + (int) (NDigits - 1);
3498 if (MSD >= 0) {
John McCall00e65de2009-12-24 08:56:26 +00003499 // 765e-2 == 7.65
John McCall6a09aff2009-12-24 23:18:09 +00003500 FormatScientific = false;
John McCall00e65de2009-12-24 08:56:26 +00003501 } else {
3502 // 765e-5 == 0.00765
3503 // ^ ^^
John McCall6a09aff2009-12-24 23:18:09 +00003504 FormatScientific = ((unsigned) -MSD) > FormatMaxPadding;
John McCall00e65de2009-12-24 08:56:26 +00003505 }
3506 }
John McCall00e65de2009-12-24 08:56:26 +00003507 }
3508
3509 // Scientific formatting is pretty straightforward.
3510 if (FormatScientific) {
3511 exp += (NDigits - 1);
3512
3513 Str.push_back(buffer[NDigits-1]);
3514 Str.push_back('.');
3515 if (NDigits == 1)
3516 Str.push_back('0');
3517 else
3518 for (unsigned I = 1; I != NDigits; ++I)
3519 Str.push_back(buffer[NDigits-1-I]);
3520 Str.push_back('E');
3521
3522 Str.push_back(exp >= 0 ? '+' : '-');
3523 if (exp < 0) exp = -exp;
3524 SmallVector<char, 6> expbuf;
3525 do {
3526 expbuf.push_back((char) ('0' + (exp % 10)));
3527 exp /= 10;
3528 } while (exp);
3529 for (unsigned I = 0, E = expbuf.size(); I != E; ++I)
3530 Str.push_back(expbuf[E-1-I]);
3531 return;
3532 }
3533
3534 // Non-scientific, positive exponents.
3535 if (exp >= 0) {
3536 for (unsigned I = 0; I != NDigits; ++I)
3537 Str.push_back(buffer[NDigits-1-I]);
3538 for (unsigned I = 0; I != (unsigned) exp; ++I)
3539 Str.push_back('0');
3540 return;
3541 }
3542
3543 // Non-scientific, negative exponents.
3544
3545 // The number of digits to the left of the decimal point.
3546 int NWholeDigits = exp + (int) NDigits;
3547
3548 unsigned I = 0;
3549 if (NWholeDigits > 0) {
3550 for (; I != (unsigned) NWholeDigits; ++I)
3551 Str.push_back(buffer[NDigits-I-1]);
3552 Str.push_back('.');
3553 } else {
3554 unsigned NZeros = 1 + (unsigned) -NWholeDigits;
3555
3556 Str.push_back('0');
3557 Str.push_back('.');
3558 for (unsigned Z = 1; Z != NZeros; ++Z)
3559 Str.push_back('0');
3560 }
3561
3562 for (; I != NDigits; ++I)
3563 Str.push_back(buffer[NDigits-I-1]);
3564}
Benjamin Kramer27460002011-03-30 15:42:27 +00003565
3566bool APFloat::getExactInverse(APFloat *inv) const {
Chris Lattner7a2bdde2011-04-15 05:18:47 +00003567 // We can only guarantee the existence of an exact inverse for IEEE floats.
Benjamin Kramer27460002011-03-30 15:42:27 +00003568 if (semantics != &IEEEhalf && semantics != &IEEEsingle &&
3569 semantics != &IEEEdouble && semantics != &IEEEquad)
3570 return false;
3571
3572 // Special floats and denormals have no exact inverse.
3573 if (category != fcNormal)
3574 return false;
3575
3576 // Check that the number is a power of two by making sure that only the
3577 // integer bit is set in the significand.
3578 if (significandLSB() != semantics->precision - 1)
3579 return false;
3580
3581 // Get the inverse.
3582 APFloat reciprocal(*semantics, 1ULL);
3583 if (reciprocal.divide(*this, rmNearestTiesToEven) != opOK)
3584 return false;
3585
Benjamin Kramer83985122011-03-30 17:02:54 +00003586 // Avoid multiplication with a denormal, it is not safe on all platforms and
3587 // may be slower than a normal division.
3588 if (reciprocal.significandMSB() + 1 < reciprocal.semantics->precision)
3589 return false;
3590
3591 assert(reciprocal.category == fcNormal &&
3592 reciprocal.significandLSB() == reciprocal.semantics->precision - 1);
3593
Benjamin Kramer27460002011-03-30 15:42:27 +00003594 if (inv)
3595 *inv = reciprocal;
3596
3597 return true;
3598}