blob: 10a46de8e5e224356a815c208e56b92af0a4b365 [file] [log] [blame]
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for PowerPC --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
Misha Brukman98649d12004-06-24 21:54:47 +000010#define DEBUG_TYPE "isel"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000011#include "PowerPC.h"
12#include "PowerPCInstrBuilder.h"
13#include "PowerPCInstrInfo.h"
14#include "llvm/Constants.h"
15#include "llvm/DerivedTypes.h"
16#include "llvm/Function.h"
17#include "llvm/Instructions.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000018#include "llvm/Pass.h"
Misha Brukman8c9f5202004-06-21 18:30:31 +000019#include "llvm/CodeGen/IntrinsicLowering.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000020#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/SSARegMap.h"
24#include "llvm/Target/MRegisterInfo.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Support/GetElementPtrTypeIterator.h"
27#include "llvm/Support/InstVisitor.h"
Misha Brukman98649d12004-06-24 21:54:47 +000028#include "Support/Debug.h"
29#include <vector>
Misha Brukman5dfe3a92004-06-21 16:55:25 +000030using namespace llvm;
31
32namespace {
Misha Brukman422791f2004-06-21 17:41:12 +000033 /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
34 /// PPC Representation.
Misha Brukman5dfe3a92004-06-21 16:55:25 +000035 ///
36 enum TypeClass {
37 cByte, cShort, cInt, cFP, cLong
38 };
39}
40
41/// getClass - Turn a primitive type into a "class" number which is based on the
42/// size of the type, and whether or not it is floating point.
43///
44static inline TypeClass getClass(const Type *Ty) {
Misha Brukman358829f2004-06-21 17:25:55 +000045 switch (Ty->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +000046 case Type::SByteTyID:
47 case Type::UByteTyID: return cByte; // Byte operands are class #0
48 case Type::ShortTyID:
49 case Type::UShortTyID: return cShort; // Short operands are class #1
50 case Type::IntTyID:
51 case Type::UIntTyID:
52 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
53
54 case Type::FloatTyID:
55 case Type::DoubleTyID: return cFP; // Floating Point is #3
56
57 case Type::LongTyID:
58 case Type::ULongTyID: return cLong; // Longs are class #4
59 default:
60 assert(0 && "Invalid type to getClass!");
61 return cByte; // not reached
62 }
63}
64
65// getClassB - Just like getClass, but treat boolean values as ints.
66static inline TypeClass getClassB(const Type *Ty) {
67 if (Ty == Type::BoolTy) return cInt;
68 return getClass(Ty);
69}
70
71namespace {
72 struct ISel : public FunctionPass, InstVisitor<ISel> {
73 TargetMachine &TM;
74 MachineFunction *F; // The function we are compiling into
75 MachineBasicBlock *BB; // The current MBB we are compiling
76 int VarArgsFrameIndex; // FrameIndex for start of varargs area
77 int ReturnAddressIndex; // FrameIndex for the return address
78
79 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
80
81 // MBBMap - Mapping between LLVM BB -> Machine BB
82 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
83
84 // AllocaMap - Mapping from fixed sized alloca instructions to the
85 // FrameIndex for the alloca.
86 std::map<AllocaInst*, unsigned> AllocaMap;
87
88 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
89
90 /// runOnFunction - Top level implementation of instruction selection for
91 /// the entire function.
92 ///
93 bool runOnFunction(Function &Fn) {
94 // First pass over the function, lower any unknown intrinsic functions
95 // with the IntrinsicLowering class.
96 LowerUnknownIntrinsicFunctionCalls(Fn);
97
98 F = &MachineFunction::construct(&Fn, TM);
99
100 // Create all of the machine basic blocks for the function...
101 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
102 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
103
104 BB = &F->front();
105
106 // Set up a frame object for the return address. This is used by the
107 // llvm.returnaddress & llvm.frameaddress intrinisics.
108 ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
109
110 // Copy incoming arguments off of the stack...
111 LoadArgumentsToVirtualRegs(Fn);
112
113 // Instruction select everything except PHI nodes
114 visit(Fn);
115
116 // Select the PHI nodes
117 SelectPHINodes();
118
119 RegMap.clear();
120 MBBMap.clear();
121 AllocaMap.clear();
122 F = 0;
123 // We always build a machine code representation for the function
124 return true;
125 }
126
127 virtual const char *getPassName() const {
128 return "PowerPC Simple Instruction Selection";
129 }
130
131 /// visitBasicBlock - This method is called when we are visiting a new basic
132 /// block. This simply creates a new MachineBasicBlock to emit code into
133 /// and adds it to the current MachineFunction. Subsequent visit* for
134 /// instructions will be invoked for all instructions in the basic block.
135 ///
136 void visitBasicBlock(BasicBlock &LLVM_BB) {
137 BB = MBBMap[&LLVM_BB];
138 }
139
140 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
141 /// function, lowering any calls to unknown intrinsic functions into the
142 /// equivalent LLVM code.
143 ///
144 void LowerUnknownIntrinsicFunctionCalls(Function &F);
145
146 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
147 /// from the stack into virtual registers.
148 ///
149 void LoadArgumentsToVirtualRegs(Function &F);
150
151 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
152 /// because we have to generate our sources into the source basic blocks,
153 /// not the current one.
154 ///
155 void SelectPHINodes();
156
157 // Visitation methods for various instructions. These methods simply emit
158 // fixed PowerPC code for each instruction.
159
160 // Control flow operators
161 void visitReturnInst(ReturnInst &RI);
162 void visitBranchInst(BranchInst &BI);
163
164 struct ValueRecord {
165 Value *Val;
166 unsigned Reg;
167 const Type *Ty;
168 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
169 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
170 };
171 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
172 const std::vector<ValueRecord> &Args);
173 void visitCallInst(CallInst &I);
174 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
175
176 // Arithmetic operators
177 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
178 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
179 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
180 void visitMul(BinaryOperator &B);
181
182 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
183 void visitRem(BinaryOperator &B) { visitDivRem(B); }
184 void visitDivRem(BinaryOperator &B);
185
186 // Bitwise operators
187 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
188 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
189 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
190
191 // Comparison operators...
192 void visitSetCondInst(SetCondInst &I);
193 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
194 MachineBasicBlock *MBB,
195 MachineBasicBlock::iterator MBBI);
196 void visitSelectInst(SelectInst &SI);
197
198
199 // Memory Instructions
200 void visitLoadInst(LoadInst &I);
201 void visitStoreInst(StoreInst &I);
202 void visitGetElementPtrInst(GetElementPtrInst &I);
203 void visitAllocaInst(AllocaInst &I);
204 void visitMallocInst(MallocInst &I);
205 void visitFreeInst(FreeInst &I);
206
207 // Other operators
208 void visitShiftInst(ShiftInst &I);
209 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
210 void visitCastInst(CastInst &I);
211 void visitVANextInst(VANextInst &I);
212 void visitVAArgInst(VAArgInst &I);
213
214 void visitInstruction(Instruction &I) {
215 std::cerr << "Cannot instruction select: " << I;
216 abort();
217 }
218
219 /// promote32 - Make a value 32-bits wide, and put it somewhere.
220 ///
221 void promote32(unsigned targetReg, const ValueRecord &VR);
222
223 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
224 /// constant expression GEP support.
225 ///
226 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
227 Value *Src, User::op_iterator IdxBegin,
228 User::op_iterator IdxEnd, unsigned TargetReg);
229
230 /// emitCastOperation - Common code shared between visitCastInst and
231 /// constant expression cast support.
232 ///
233 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
234 Value *Src, const Type *DestTy, unsigned TargetReg);
235
236 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
237 /// and constant expression support.
238 ///
239 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
240 MachineBasicBlock::iterator IP,
241 Value *Op0, Value *Op1,
242 unsigned OperatorClass, unsigned TargetReg);
243
244 /// emitBinaryFPOperation - This method handles emission of floating point
245 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
246 void emitBinaryFPOperation(MachineBasicBlock *BB,
247 MachineBasicBlock::iterator IP,
248 Value *Op0, Value *Op1,
249 unsigned OperatorClass, unsigned TargetReg);
250
251 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
252 Value *Op0, Value *Op1, unsigned TargetReg);
253
254 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
255 unsigned DestReg, const Type *DestTy,
256 unsigned Op0Reg, unsigned Op1Reg);
257 void doMultiplyConst(MachineBasicBlock *MBB,
258 MachineBasicBlock::iterator MBBI,
259 unsigned DestReg, const Type *DestTy,
260 unsigned Op0Reg, unsigned Op1Val);
261
262 void emitDivRemOperation(MachineBasicBlock *BB,
263 MachineBasicBlock::iterator IP,
264 Value *Op0, Value *Op1, bool isDiv,
265 unsigned TargetReg);
266
267 /// emitSetCCOperation - Common code shared between visitSetCondInst and
268 /// constant expression support.
269 ///
270 void emitSetCCOperation(MachineBasicBlock *BB,
271 MachineBasicBlock::iterator IP,
272 Value *Op0, Value *Op1, unsigned Opcode,
273 unsigned TargetReg);
274
275 /// emitShiftOperation - Common code shared between visitShiftInst and
276 /// constant expression support.
277 ///
278 void emitShiftOperation(MachineBasicBlock *MBB,
279 MachineBasicBlock::iterator IP,
280 Value *Op, Value *ShiftAmount, bool isLeftShift,
281 const Type *ResultTy, unsigned DestReg);
282
283 /// emitSelectOperation - Common code shared between visitSelectInst and the
284 /// constant expression support.
285 void emitSelectOperation(MachineBasicBlock *MBB,
286 MachineBasicBlock::iterator IP,
287 Value *Cond, Value *TrueVal, Value *FalseVal,
288 unsigned DestReg);
289
290 /// copyConstantToRegister - Output the instructions required to put the
291 /// specified constant into the specified register.
292 ///
293 void copyConstantToRegister(MachineBasicBlock *MBB,
294 MachineBasicBlock::iterator MBBI,
295 Constant *C, unsigned Reg);
296
297 void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
298 unsigned LHS, unsigned RHS);
299
300 /// makeAnotherReg - This method returns the next register number we haven't
301 /// yet used.
302 ///
303 /// Long values are handled somewhat specially. They are always allocated
304 /// as pairs of 32 bit integer values. The register number returned is the
305 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
306 /// of the long value.
307 ///
308 unsigned makeAnotherReg(const Type *Ty) {
309 assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
310 "Current target doesn't have PPC reg info??");
311 const PowerPCRegisterInfo *MRI =
312 static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
313 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
314 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
315 // Create the lower part
316 F->getSSARegMap()->createVirtualRegister(RC);
317 // Create the upper part.
318 return F->getSSARegMap()->createVirtualRegister(RC)-1;
319 }
320
321 // Add the mapping of regnumber => reg class to MachineFunction
322 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
323 return F->getSSARegMap()->createVirtualRegister(RC);
324 }
325
326 /// getReg - This method turns an LLVM value into a register number.
327 ///
328 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
329 unsigned getReg(Value *V) {
330 // Just append to the end of the current bb.
331 MachineBasicBlock::iterator It = BB->end();
332 return getReg(V, BB, It);
333 }
334 unsigned getReg(Value *V, MachineBasicBlock *MBB,
335 MachineBasicBlock::iterator IPt);
336
337 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
338 /// that is to be statically allocated with the initial stack frame
339 /// adjustment.
340 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
341 };
342}
343
344/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
345/// instruction in the entry block, return it. Otherwise, return a null
346/// pointer.
347static AllocaInst *dyn_castFixedAlloca(Value *V) {
348 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
349 BasicBlock *BB = AI->getParent();
350 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
351 return AI;
352 }
353 return 0;
354}
355
356/// getReg - This method turns an LLVM value into a register number.
357///
358unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
359 MachineBasicBlock::iterator IPt) {
360 // If this operand is a constant, emit the code to copy the constant into
361 // the register here...
362 //
363 if (Constant *C = dyn_cast<Constant>(V)) {
364 unsigned Reg = makeAnotherReg(V->getType());
365 copyConstantToRegister(MBB, IPt, C, Reg);
366 return Reg;
367 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
Misha Brukman7e5812c2004-06-28 18:20:59 +0000368 // GV is located at PC + distance
Misha Brukman7e5812c2004-06-28 18:20:59 +0000369 unsigned CurPC = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000370 unsigned Reg1 = makeAnotherReg(V->getType());
Misha Brukman422791f2004-06-21 17:41:12 +0000371 unsigned Reg2 = makeAnotherReg(V->getType());
Misha Brukman7e5812c2004-06-28 18:20:59 +0000372 // Move PC to destination reg
373 BuildMI(*MBB, IPt, PPC32::MovePCtoLR, 0, CurPC);
Misha Brukman7e5812c2004-06-28 18:20:59 +0000374 // Move value at PC + distance into return reg
375 BuildMI(*MBB, IPt, PPC32::LOADHiAddr, 2, Reg1).addReg(CurPC)
Misha Brukman911afde2004-06-25 14:50:41 +0000376 .addGlobalAddress(GV);
Misha Brukman9ecf3bf2004-06-25 14:57:19 +0000377 BuildMI(*MBB, IPt, PPC32::LOADLoAddr, 2, Reg2).addReg(Reg1)
Misha Brukman911afde2004-06-25 14:50:41 +0000378 .addGlobalAddress(GV);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000379 return Reg2;
380 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
381 // Do not emit noop casts at all.
382 if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()))
383 return getReg(CI->getOperand(0), MBB, IPt);
384 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
385 unsigned Reg = makeAnotherReg(V->getType());
386 unsigned FI = getFixedSizedAllocaFI(AI);
387 addFrameReference(BuildMI(*MBB, IPt, PPC32::ADDI, 2, Reg), FI, 0, false);
388 return Reg;
389 }
390
391 unsigned &Reg = RegMap[V];
392 if (Reg == 0) {
393 Reg = makeAnotherReg(V->getType());
394 RegMap[V] = Reg;
395 }
396
397 return Reg;
398}
399
400/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
401/// that is to be statically allocated with the initial stack frame
402/// adjustment.
403unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
404 // Already computed this?
405 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
406 if (I != AllocaMap.end() && I->first == AI) return I->second;
407
408 const Type *Ty = AI->getAllocatedType();
409 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
410 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
411 TySize *= CUI->getValue(); // Get total allocated size...
412 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
413
414 // Create a new stack object using the frame manager...
415 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
416 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
417 return FrameIdx;
418}
419
420
421/// copyConstantToRegister - Output the instructions required to put the
422/// specified constant into the specified register.
423///
424void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
425 MachineBasicBlock::iterator IP,
426 Constant *C, unsigned R) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000427 if (C->getType()->isIntegral()) {
428 unsigned Class = getClassB(C->getType());
429
430 if (Class == cLong) {
431 // Copy the value into the register pair.
432 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Misha Brukman422791f2004-06-21 17:41:12 +0000433 unsigned hiTmp = makeAnotherReg(Type::IntTy);
434 unsigned loTmp = makeAnotherReg(Type::IntTy);
Misha Brukman911afde2004-06-25 14:50:41 +0000435 BuildMI(*MBB, IP, PPC32::ADDIS, 2, loTmp).addReg(PPC32::R0)
436 .addImm(Val >> 48);
437 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(loTmp)
438 .addImm((Val >> 32) & 0xFFFF);
439 BuildMI(*MBB, IP, PPC32::ADDIS, 2, hiTmp).addReg(PPC32::R0)
440 .addImm((Val >> 16) & 0xFFFF);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000441 BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(hiTmp).addImm(Val & 0xFFFF);
442 return;
443 }
444
445 assert(Class <= cInt && "Type not handled yet!");
446
447 if (C->getType() == Type::BoolTy) {
Misha Brukman911afde2004-06-25 14:50:41 +0000448 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0)
449 .addImm(C == ConstantBool::True);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000450 } else if (Class == cByte || Class == cShort) {
451 ConstantInt *CI = cast<ConstantInt>(C);
Misha Brukman911afde2004-06-25 14:50:41 +0000452 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0)
453 .addImm(CI->getRawValue());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000454 } else {
455 ConstantInt *CI = cast<ConstantInt>(C);
456 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
457 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman911afde2004-06-25 14:50:41 +0000458 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0)
459 .addImm(CI->getRawValue());
Misha Brukman422791f2004-06-21 17:41:12 +0000460 } else {
461 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman911afde2004-06-25 14:50:41 +0000462 BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0)
463 .addImm(CI->getRawValue() >> 16);
464 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TmpReg)
465 .addImm(CI->getRawValue() & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +0000466 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000467 }
468 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
469 // We need to spill the constant to memory...
470 MachineConstantPool *CP = F->getConstantPool();
471 unsigned CPI = CP->getConstantPoolIndex(CFP);
472 const Type *Ty = CFP->getType();
473
Misha Brukman911afde2004-06-25 14:50:41 +0000474 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000475 unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
476 addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 2, R), CPI);
477 } else if (isa<ConstantPointerNull>(C)) {
478 // Copy zero (null pointer) to the register.
479 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(0);
480 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000481 BuildMI(*MBB, IP, PPC32::ADDIS, 2, R).addReg(PPC32::R0)
482 .addGlobalAddress(CPR->getValue());
483 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(PPC32::R0)
484 .addGlobalAddress(CPR->getValue());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000485 } else {
486 std::cerr << "Offending constant: " << C << "\n";
487 assert(0 && "Type not handled yet!");
488 }
489}
490
491/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
492/// the stack into virtual registers.
493///
494/// FIXME: When we can calculate which args are coming in via registers
495/// source them from there instead.
496void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
497 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
498 unsigned GPR_remaining = 8;
499 unsigned FPR_remaining = 13;
500 unsigned GPR_idx = 3;
501 unsigned FPR_idx = 1;
Misha Brukman422791f2004-06-21 17:41:12 +0000502
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000503 MachineFrameInfo *MFI = F->getFrameInfo();
504
505 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
506 bool ArgLive = !I->use_empty();
507 unsigned Reg = ArgLive ? getReg(*I) : 0;
508 int FI; // Frame object index
509
510 switch (getClassB(I->getType())) {
511 case cByte:
512 if (ArgLive) {
513 FI = MFI->CreateFixedObject(1, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000514 if (GPR_remaining > 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000515 BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx)
516 .addReg(PPC32::R0+GPR_idx);
Misha Brukman422791f2004-06-21 17:41:12 +0000517 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000518 addFrameReference(BuildMI(BB, PPC32::LBZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000519 }
520 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000521 break;
522 case cShort:
523 if (ArgLive) {
524 FI = MFI->CreateFixedObject(2, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000525 if (GPR_remaining > 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000526 BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx)
527 .addReg(PPC32::R0+GPR_idx);
Misha Brukman422791f2004-06-21 17:41:12 +0000528 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000529 addFrameReference(BuildMI(BB, PPC32::LHZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000530 }
531 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000532 break;
533 case cInt:
534 if (ArgLive) {
535 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000536 if (GPR_remaining > 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000537 BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx)
538 .addReg(PPC32::R0+GPR_idx);
Misha Brukman422791f2004-06-21 17:41:12 +0000539 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000540 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000541 }
542 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000543 break;
544 case cLong:
545 if (ArgLive) {
546 FI = MFI->CreateFixedObject(8, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000547 if (GPR_remaining > 1) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000548 BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx)
549 .addReg(PPC32::R0+GPR_idx);
550 BuildMI(BB, PPC32::OR, 2, Reg+1).addReg(PPC32::R0+GPR_idx+1)
551 .addReg(PPC32::R0+GPR_idx+1);
Misha Brukman422791f2004-06-21 17:41:12 +0000552 } else {
553 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
554 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg+1), FI, 4);
555 }
556 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000557 ArgOffset += 4; // longs require 4 additional bytes
Misha Brukman422791f2004-06-21 17:41:12 +0000558 if (GPR_remaining > 1) {
559 GPR_remaining--; // uses up 2 GPRs
560 GPR_idx++;
561 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000562 break;
563 case cFP:
564 if (ArgLive) {
565 unsigned Opcode;
566 if (I->getType() == Type::FloatTy) {
567 Opcode = PPC32::LFS;
568 FI = MFI->CreateFixedObject(4, ArgOffset);
569 } else {
570 Opcode = PPC32::LFD;
571 FI = MFI->CreateFixedObject(8, ArgOffset);
572 }
Misha Brukman422791f2004-06-21 17:41:12 +0000573 if (FPR_remaining > 0) {
574 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(PPC32::F0+FPR_idx);
575 FPR_remaining--;
576 FPR_idx++;
577 } else {
578 addFrameReference(BuildMI(BB, Opcode, 2, Reg), FI);
579 }
580 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000581 if (I->getType() == Type::DoubleTy) {
582 ArgOffset += 4; // doubles require 4 additional bytes
Misha Brukman422791f2004-06-21 17:41:12 +0000583 if (GPR_remaining > 0) {
584 GPR_remaining--; // uses up 2 GPRs
585 GPR_idx++;
586 }
587 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000588 break;
589 default:
590 assert(0 && "Unhandled argument type!");
591 }
592 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Misha Brukman422791f2004-06-21 17:41:12 +0000593 if (GPR_remaining > 0) {
594 GPR_remaining--; // uses up 2 GPRs
595 GPR_idx++;
596 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000597 }
598
599 // If the function takes variable number of arguments, add a frame offset for
600 // the start of the first vararg value... this is used to expand
601 // llvm.va_start.
602 if (Fn.getFunctionType()->isVarArg())
603 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
604}
605
606
607/// SelectPHINodes - Insert machine code to generate phis. This is tricky
608/// because we have to generate our sources into the source basic blocks, not
609/// the current one.
610///
611void ISel::SelectPHINodes() {
612 const TargetInstrInfo &TII = *TM.getInstrInfo();
613 const Function &LF = *F->getFunction(); // The LLVM function...
614 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
615 const BasicBlock *BB = I;
616 MachineBasicBlock &MBB = *MBBMap[I];
617
618 // Loop over all of the PHI nodes in the LLVM basic block...
619 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
620 for (BasicBlock::const_iterator I = BB->begin();
621 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
622
623 // Create a new machine instr PHI node, and insert it.
624 unsigned PHIReg = getReg(*PN);
625 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
626 PPC32::PHI, PN->getNumOperands(), PHIReg);
627
628 MachineInstr *LongPhiMI = 0;
629 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
630 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
631 PPC32::PHI, PN->getNumOperands(), PHIReg+1);
632
633 // PHIValues - Map of blocks to incoming virtual registers. We use this
634 // so that we only initialize one incoming value for a particular block,
635 // even if the block has multiple entries in the PHI node.
636 //
637 std::map<MachineBasicBlock*, unsigned> PHIValues;
638
639 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
640 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
641 unsigned ValReg;
642 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
643 PHIValues.lower_bound(PredMBB);
644
645 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
646 // We already inserted an initialization of the register for this
647 // predecessor. Recycle it.
648 ValReg = EntryIt->second;
649
650 } else {
651 // Get the incoming value into a virtual register.
652 //
653 Value *Val = PN->getIncomingValue(i);
654
655 // If this is a constant or GlobalValue, we may have to insert code
656 // into the basic block to compute it into a virtual register.
657 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
658 isa<GlobalValue>(Val)) {
659 // Simple constants get emitted at the end of the basic block,
660 // before any terminator instructions. We "know" that the code to
661 // move a constant into a register will never clobber any flags.
662 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
663 } else {
664 // Because we don't want to clobber any values which might be in
665 // physical registers with the computation of this constant (which
666 // might be arbitrarily complex if it is a constant expression),
667 // just insert the computation at the top of the basic block.
668 MachineBasicBlock::iterator PI = PredMBB->begin();
669
670 // Skip over any PHI nodes though!
671 while (PI != PredMBB->end() && PI->getOpcode() == PPC32::PHI)
672 ++PI;
673
674 ValReg = getReg(Val, PredMBB, PI);
675 }
676
677 // Remember that we inserted a value for this PHI for this predecessor
678 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
679 }
680
681 PhiMI->addRegOperand(ValReg);
682 PhiMI->addMachineBasicBlockOperand(PredMBB);
683 if (LongPhiMI) {
684 LongPhiMI->addRegOperand(ValReg+1);
685 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
686 }
687 }
688
689 // Now that we emitted all of the incoming values for the PHI node, make
690 // sure to reposition the InsertPoint after the PHI that we just added.
691 // This is needed because we might have inserted a constant into this
692 // block, right after the PHI's which is before the old insert point!
693 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
694 ++PHIInsertPoint;
695 }
696 }
697}
698
699
700// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
701// it into the conditional branch or select instruction which is the only user
702// of the cc instruction. This is the case if the conditional branch is the
703// only user of the setcc, and if the setcc is in the same basic block as the
704// conditional branch. We also don't handle long arguments below, so we reject
705// them here as well.
706//
707static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
708 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
709 if (SCI->hasOneUse()) {
710 Instruction *User = cast<Instruction>(SCI->use_back());
711 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
712 SCI->getParent() == User->getParent() &&
713 (getClassB(SCI->getOperand(0)->getType()) != cLong ||
714 SCI->getOpcode() == Instruction::SetEQ ||
715 SCI->getOpcode() == Instruction::SetNE))
716 return SCI;
717 }
718 return 0;
719}
720
721// Return a fixed numbering for setcc instructions which does not depend on the
722// order of the opcodes.
723//
724static unsigned getSetCCNumber(unsigned Opcode) {
Misha Brukmane9c65512004-07-06 15:32:44 +0000725 switch (Opcode) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000726 default: assert(0 && "Unknown setcc instruction!");
727 case Instruction::SetEQ: return 0;
728 case Instruction::SetNE: return 1;
729 case Instruction::SetLT: return 2;
730 case Instruction::SetGE: return 3;
731 case Instruction::SetGT: return 4;
732 case Instruction::SetLE: return 5;
733 }
734}
735
Misha Brukmane9c65512004-07-06 15:32:44 +0000736static unsigned getPPCOpcodeForSetCCNumber(unsigned Opcode) {
737 switch (Opcode) {
738 default: assert(0 && "Unknown setcc instruction!");
739 case Instruction::SetEQ: return PPC32::BEQ;
740 case Instruction::SetNE: return PPC32::BNE;
741 case Instruction::SetLT: return PPC32::BLT;
742 case Instruction::SetGE: return PPC32::BGE;
743 case Instruction::SetGT: return PPC32::BGT;
744 case Instruction::SetLE: return PPC32::BLE;
745 }
746}
747
748static unsigned invertPPCBranchOpcode(unsigned Opcode) {
749 switch (Opcode) {
750 default: assert(0 && "Unknown PPC32 branch opcode!");
751 case PPC32::BEQ: return PPC32::BNE;
752 case PPC32::BNE: return PPC32::BEQ;
753 case PPC32::BLT: return PPC32::BGE;
754 case PPC32::BGE: return PPC32::BLT;
755 case PPC32::BGT: return PPC32::BLE;
756 case PPC32::BLE: return PPC32::BGT;
757 }
758}
759
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000760/// emitUCOM - emits an unordered FP compare.
761void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
762 unsigned LHS, unsigned RHS) {
Misha Brukman422791f2004-06-21 17:41:12 +0000763 BuildMI(*MBB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(LHS).addReg(RHS);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000764}
765
766// EmitComparison - This function emits a comparison of the two operands,
767// returning the extended setcc code to use.
768unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
769 MachineBasicBlock *MBB,
770 MachineBasicBlock::iterator IP) {
771 // The arguments are already supposed to be of the same type.
772 const Type *CompTy = Op0->getType();
773 unsigned Class = getClassB(CompTy);
774 unsigned Op0r = getReg(Op0, MBB, IP);
775
776 // Special case handling of: cmp R, i
777 if (isa<ConstantPointerNull>(Op1)) {
Misha Brukmane9c65512004-07-06 15:32:44 +0000778 BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(Op0r).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000779 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
780 if (Class == cByte || Class == cShort || Class == cInt) {
781 unsigned Op1v = CI->getRawValue();
782
783 // Mask off any upper bits of the constant, if there are any...
784 Op1v &= (1ULL << (8 << Class)) - 1;
785
Misha Brukman422791f2004-06-21 17:41:12 +0000786 // Compare immediate or promote to reg?
787 if (Op1v <= 32767) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000788 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3,
789 PPC32::CR0).addImm(0).addReg(Op0r).addImm(Op1v);
Misha Brukman422791f2004-06-21 17:41:12 +0000790 } else {
791 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman2fec9902004-06-21 20:22:03 +0000792 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 3,
793 PPC32::CR0).addImm(0).addReg(Op0r).addReg(Op1r);
Misha Brukman422791f2004-06-21 17:41:12 +0000794 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000795 return OpNum;
796 } else {
797 assert(Class == cLong && "Unknown integer class!");
798 unsigned LowCst = CI->getRawValue();
799 unsigned HiCst = CI->getRawValue() >> 32;
800 if (OpNum < 2) { // seteq, setne
801 unsigned LoTmp = Op0r;
802 if (LowCst != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +0000803 unsigned LoLow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000804 unsigned LoTmp = makeAnotherReg(Type::IntTy);
805 BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r).addImm(LowCst);
Misha Brukman2fec9902004-06-21 20:22:03 +0000806 BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow)
807 .addImm(LowCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000808 }
809 unsigned HiTmp = Op0r+1;
810 if (HiCst != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +0000811 unsigned HiLow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000812 unsigned HiTmp = makeAnotherReg(Type::IntTy);
813 BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r+1).addImm(HiCst);
Misha Brukman2fec9902004-06-21 20:22:03 +0000814 BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow)
815 .addImm(HiCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000816 }
817 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
818 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
819 //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0);
820 return OpNum;
821 } else {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000822 // FIXME: Not Yet Implemented
Misha Brukman911afde2004-06-25 14:50:41 +0000823 std::cerr << "EmitComparison unimplemented: Opnum >= 2\n";
824 abort();
Misha Brukman422791f2004-06-21 17:41:12 +0000825 return OpNum;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000826 }
827 }
828 }
829
830 unsigned Op1r = getReg(Op1, MBB, IP);
831 switch (Class) {
832 default: assert(0 && "Unknown type class!");
833 case cByte:
834 case cShort:
835 case cInt:
Misha Brukman2fec9902004-06-21 20:22:03 +0000836 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 2,
837 PPC32::CR0).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000838 break;
839 case cFP:
840 emitUCOM(MBB, IP, Op0r, Op1r);
841 break;
842
843 case cLong:
844 if (OpNum < 2) { // seteq, setne
845 unsigned LoTmp = makeAnotherReg(Type::IntTy);
846 unsigned HiTmp = makeAnotherReg(Type::IntTy);
847 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
848 BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r).addReg(Op1r);
849 BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
850 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
851 //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0);
852 break; // Allow the sete or setne to be generated from flags set by OR
853 } else {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000854 // FIXME: Not Yet Implemented
Misha Brukman911afde2004-06-25 14:50:41 +0000855 std::cerr << "EmitComparison (cLong) unimplemented: Opnum >= 2\n";
856 abort();
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000857 return OpNum;
858 }
859 }
860 return OpNum;
861}
862
Misha Brukman425ff242004-07-01 21:34:10 +0000863/// visitSetCondInst -
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000864///
865void ISel::visitSetCondInst(SetCondInst &I) {
Misha Brukmane9c65512004-07-06 15:32:44 +0000866 // If the only user of this SetCC is a branch or a select, we don't have to
867 // code-gen this instruction, it will be done more compactly for us later.
868 // FIXME: perhaps there could be several branches/selects using this SetCC and
869 // this SetCC could still be a valid candidate for folding? Then the problem
870 // becomes with live range, whether or not the uses span function calls, other
871 // branches with can overwrite the condition register, etc.
872 User *user = I.hasOneUse() ? I.use_back() : 0;
873 if (canFoldSetCCIntoBranchOrSelect(&I) &&
874 (isa<BranchInst>(user) || isa<SelectInst>(user)))
875 return;
876
Misha Brukman425ff242004-07-01 21:34:10 +0000877 unsigned Op0Reg = getReg(I.getOperand(0));
878 unsigned Op1Reg = getReg(I.getOperand(1));
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000879 unsigned DestReg = getReg(I);
Misha Brukman425ff242004-07-01 21:34:10 +0000880 const Type *Ty = I.getOperand (0)->getType();
881
882 assert(getClass(Ty) < cLong && "can't setcc on longs or fp yet");
883 // Compare the two values.
884 BuildMI(BB, PPC32::CMPW, 2, PPC32::CR0).addReg(Op0Reg).addReg(Op1Reg);
885
Misha Brukmane9c65512004-07-06 15:32:44 +0000886 unsigned Opcode = getPPCOpcodeForSetCCNumber(I.getOpcode());
Misha Brukman425ff242004-07-01 21:34:10 +0000887 MachineBasicBlock *thisMBB = BB;
888 const BasicBlock *LLVM_BB = BB->getBasicBlock();
889 // thisMBB:
890 // ...
891 // cmpTY cr0, r1, r2
892 // bCC copy1MBB
893 // b copy0MBB
894
895 // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
896 // if we could insert other, non-terminator instructions after the
897 // bCC. But MBB->getFirstTerminator() can't understand this.
898 MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
899 F->getBasicBlockList().push_back(copy1MBB);
900 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0).addMBB(copy1MBB);
901 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
902 F->getBasicBlockList().push_back(copy0MBB);
903 BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
904 // Update machine-CFG edges
905 BB->addSuccessor(copy1MBB);
906 BB->addSuccessor(copy0MBB);
907
908 // copy0MBB:
909 // %FalseValue = li 0
Misha Brukmane9c65512004-07-06 15:32:44 +0000910 // b sinkMBB
Misha Brukman425ff242004-07-01 21:34:10 +0000911 BB = copy0MBB;
912 unsigned FalseValue = makeAnotherReg(I.getType());
913 BuildMI(BB, PPC32::LI, 1, FalseValue).addZImm(0);
914 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
915 F->getBasicBlockList().push_back(sinkMBB);
916 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
917 // Update machine-CFG edges
918 BB->addSuccessor(sinkMBB);
919
920 DEBUG(std::cerr << "thisMBB is at " << (void*)thisMBB << "\n");
921 DEBUG(std::cerr << "copy1MBB is at " << (void*)copy1MBB << "\n");
922 DEBUG(std::cerr << "copy0MBB is at " << (void*)copy0MBB << "\n");
923 DEBUG(std::cerr << "sinkMBB is at " << (void*)sinkMBB << "\n");
924
925 // copy1MBB:
926 // %TrueValue = li 1
Misha Brukmane9c65512004-07-06 15:32:44 +0000927 // b sinkMBB
Misha Brukman425ff242004-07-01 21:34:10 +0000928 BB = copy1MBB;
929 unsigned TrueValue = makeAnotherReg (I.getType ());
930 BuildMI(BB, PPC32::LI, 1, TrueValue).addZImm(1);
931 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
932 // Update machine-CFG edges
933 BB->addSuccessor(sinkMBB);
934
935 // sinkMBB:
936 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
937 // ...
938 BB = sinkMBB;
939 BuildMI(BB, PPC32::PHI, 4, DestReg).addReg(FalseValue)
940 .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000941}
942
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000943void ISel::visitSelectInst(SelectInst &SI) {
944 unsigned DestReg = getReg(SI);
945 MachineBasicBlock::iterator MII = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +0000946 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
947 SI.getFalseValue(), DestReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000948}
949
950/// emitSelect - Common code shared between visitSelectInst and the constant
951/// expression support.
952/// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has
953/// no select instruction. FSEL only works for comparisons against zero.
954void ISel::emitSelectOperation(MachineBasicBlock *MBB,
955 MachineBasicBlock::iterator IP,
956 Value *Cond, Value *TrueVal, Value *FalseVal,
957 unsigned DestReg) {
958 unsigned SelectClass = getClassB(TrueVal->getType());
959
960 unsigned TrueReg = getReg(TrueVal, MBB, IP);
961 unsigned FalseReg = getReg(FalseVal, MBB, IP);
962
963 if (TrueReg == FalseReg) {
Misha Brukman422791f2004-06-21 17:41:12 +0000964 if (SelectClass == cFP) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000965 BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(TrueReg);
Misha Brukman422791f2004-06-21 17:41:12 +0000966 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000967 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TrueReg).addReg(TrueReg);
Misha Brukman422791f2004-06-21 17:41:12 +0000968 }
969
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000970 if (SelectClass == cLong)
Misha Brukman2fec9902004-06-21 20:22:03 +0000971 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TrueReg+1)
972 .addReg(TrueReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000973 return;
974 }
975
976 unsigned CondReg = getReg(Cond, MBB, IP);
977 unsigned numZeros = makeAnotherReg(Type::IntTy);
978 unsigned falseHi = makeAnotherReg(Type::IntTy);
979 unsigned falseAll = makeAnotherReg(Type::IntTy);
980 unsigned trueAll = makeAnotherReg(Type::IntTy);
981 unsigned Temp1 = makeAnotherReg(Type::IntTy);
982 unsigned Temp2 = makeAnotherReg(Type::IntTy);
983
984 BuildMI(*MBB, IP, PPC32::CNTLZW, 1, numZeros).addReg(CondReg);
Misha Brukman2fec9902004-06-21 20:22:03 +0000985 BuildMI(*MBB, IP, PPC32::RLWINM, 4, falseHi).addReg(numZeros).addImm(26)
986 .addImm(0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000987 BuildMI(*MBB, IP, PPC32::SRAWI, 2, falseAll).addReg(falseHi).addImm(31);
988 BuildMI(*MBB, IP, PPC32::NOR, 2, trueAll).addReg(falseAll).addReg(falseAll);
989 BuildMI(*MBB, IP, PPC32::AND, 2, Temp1).addReg(TrueReg).addReg(trueAll);
990 BuildMI(*MBB, IP, PPC32::AND, 2, Temp2).addReg(FalseReg).addReg(falseAll);
991 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Temp1).addReg(Temp2);
992
993 if (SelectClass == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +0000994 unsigned Temp3 = makeAnotherReg(Type::IntTy);
995 unsigned Temp4 = makeAnotherReg(Type::IntTy);
996 BuildMI(*MBB, IP, PPC32::AND, 2, Temp3).addReg(TrueReg+1).addReg(trueAll);
997 BuildMI(*MBB, IP, PPC32::AND, 2, Temp4).addReg(FalseReg+1).addReg(falseAll);
998 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(Temp3).addReg(Temp4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000999 }
1000
1001 return;
1002}
1003
1004
1005
1006/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
1007/// operand, in the specified target register.
1008///
1009void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
1010 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
1011
1012 Value *Val = VR.Val;
1013 const Type *Ty = VR.Ty;
1014 if (Val) {
1015 if (Constant *C = dyn_cast<Constant>(Val)) {
1016 Val = ConstantExpr::getCast(C, Type::IntTy);
1017 Ty = Type::IntTy;
1018 }
1019
Misha Brukman2fec9902004-06-21 20:22:03 +00001020 // If this is a simple constant, just emit a load directly to avoid the copy
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001021 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1022 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
1023
1024 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman422791f2004-06-21 17:41:12 +00001025 BuildMI(BB, PPC32::ADDI, 2, targetReg).addReg(PPC32::R0).addImm(TheVal);
1026 } else {
1027 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001028 BuildMI(BB, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0)
1029 .addImm(TheVal >> 16);
1030 BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(TmpReg)
1031 .addImm(TheVal & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +00001032 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001033 return;
1034 }
1035 }
1036
1037 // Make sure we have the register number for this value...
1038 unsigned Reg = Val ? getReg(Val) : VR.Reg;
1039
1040 switch (getClassB(Ty)) {
1041 case cByte:
1042 // Extend value into target register (8->32)
1043 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001044 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1045 .addZImm(24).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001046 else
1047 BuildMI(BB, PPC32::EXTSB, 1, targetReg).addReg(Reg);
1048 break;
1049 case cShort:
1050 // Extend value into target register (16->32)
1051 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001052 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1053 .addZImm(16).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001054 else
1055 BuildMI(BB, PPC32::EXTSH, 1, targetReg).addReg(Reg);
1056 break;
1057 case cInt:
1058 // Move value into target register (32->32)
Misha Brukman972569a2004-06-25 18:36:53 +00001059 BuildMI(BB, PPC32::OR, 2, targetReg).addReg(Reg).addReg(Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001060 break;
1061 default:
1062 assert(0 && "Unpromotable operand class in promote32");
1063 }
1064}
1065
Misha Brukman2fec9902004-06-21 20:22:03 +00001066/// visitReturnInst - implemented with BLR
1067///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001068void ISel::visitReturnInst(ReturnInst &I) {
Misha Brukmand47bbf72004-06-25 19:04:27 +00001069 // Only do the processing if this is a non-void return
1070 if (I.getNumOperands() > 0) {
1071 Value *RetVal = I.getOperand(0);
1072 switch (getClassB(RetVal->getType())) {
1073 case cByte: // integral return values: extend or move into r3 and return
1074 case cShort:
1075 case cInt:
1076 promote32(PPC32::R3, ValueRecord(RetVal));
1077 break;
1078 case cFP: { // Floats & Doubles: Return in f1
1079 unsigned RetReg = getReg(RetVal);
1080 BuildMI(BB, PPC32::FMR, 1, PPC32::F1).addReg(RetReg);
1081 break;
1082 }
1083 case cLong: {
1084 unsigned RetReg = getReg(RetVal);
1085 BuildMI(BB, PPC32::OR, 2, PPC32::R3).addReg(RetReg).addReg(RetReg);
1086 BuildMI(BB, PPC32::OR, 2, PPC32::R4).addReg(RetReg+1).addReg(RetReg+1);
1087 break;
1088 }
1089 default:
1090 visitInstruction(I);
1091 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001092 }
1093 BuildMI(BB, PPC32::BLR, 1).addImm(0);
1094}
1095
1096// getBlockAfter - Return the basic block which occurs lexically after the
1097// specified one.
1098static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1099 Function::iterator I = BB; ++I; // Get iterator to next block
1100 return I != BB->getParent()->end() ? &*I : 0;
1101}
1102
1103/// visitBranchInst - Handle conditional and unconditional branches here. Note
1104/// that since code layout is frozen at this point, that if we are trying to
1105/// jump to a block that is the immediate successor of the current block, we can
1106/// just make a fall-through (but we don't currently).
1107///
1108void ISel::visitBranchInst(BranchInst &BI) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001109 // Update machine-CFG edges
1110 BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
1111 if (BI.isConditional())
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001112 BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
Misha Brukman2fec9902004-06-21 20:22:03 +00001113
1114 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
Misha Brukmane9c65512004-07-06 15:32:44 +00001115
Misha Brukman2fec9902004-06-21 20:22:03 +00001116 if (!BI.isConditional()) { // Unconditional branch?
Misha Brukmane9c65512004-07-06 15:32:44 +00001117 if (BI.getSuccessor(0) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001118 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1119 return;
Misha Brukman2fec9902004-06-21 20:22:03 +00001120 }
1121
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001122 // See if we can fold the setcc into the branch itself...
1123 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
1124 if (SCI == 0) {
1125 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1126 // computed some other way...
1127 unsigned condReg = getReg(BI.getCondition());
Misha Brukmane9c65512004-07-06 15:32:44 +00001128 BuildMI(BB, PPC32::CMPLI, 3, PPC32::CR1).addImm(0).addReg(condReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00001129 .addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001130 if (BI.getSuccessor(1) == NextBB) {
1131 if (BI.getSuccessor(0) != NextBB)
Misha Brukmane9c65512004-07-06 15:32:44 +00001132 BuildMI(BB, PPC32::BNE, 2).addReg(PPC32::CR1)
Misha Brukman2fec9902004-06-21 20:22:03 +00001133 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001134 } else {
Misha Brukmane9c65512004-07-06 15:32:44 +00001135 BuildMI(BB, PPC32::BNE, 2).addReg(PPC32::CR1)
Misha Brukman2fec9902004-06-21 20:22:03 +00001136 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001137
1138 if (BI.getSuccessor(0) != NextBB)
1139 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1140 }
1141 return;
1142 }
1143
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001144 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Misha Brukmane9c65512004-07-06 15:32:44 +00001145 unsigned Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001146 MachineBasicBlock::iterator MII = BB->end();
1147 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001148
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001149 if (BI.getSuccessor(0) != NextBB) {
Misha Brukmane9c65512004-07-06 15:32:44 +00001150 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001151 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001152 if (BI.getSuccessor(1) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001153 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001154 } else {
1155 // Change to the inverse condition...
1156 if (BI.getSuccessor(1) != NextBB) {
Misha Brukmane9c65512004-07-06 15:32:44 +00001157 Opcode = invertPPCBranchOpcode(Opcode);
1158 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0)
Misha Brukman2fec9902004-06-21 20:22:03 +00001159 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001160 }
1161 }
1162}
1163
1164
1165/// doCall - This emits an abstract call instruction, setting up the arguments
1166/// and the return value as appropriate. For the actual function call itself,
1167/// it inserts the specified CallMI instruction into the stream.
1168///
1169/// FIXME: See Documentation at the following URL for "correct" behavior
1170/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html>
1171void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
1172 const std::vector<ValueRecord> &Args) {
1173 // Count how many bytes are to be pushed on the stack...
1174 unsigned NumBytes = 0;
1175
1176 if (!Args.empty()) {
1177 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1178 switch (getClassB(Args[i].Ty)) {
1179 case cByte: case cShort: case cInt:
1180 NumBytes += 4; break;
1181 case cLong:
1182 NumBytes += 8; break;
1183 case cFP:
1184 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
1185 break;
1186 default: assert(0 && "Unknown class!");
1187 }
1188
1189 // Adjust the stack pointer for the new arguments...
1190 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
1191
1192 // Arguments go on the stack in reverse order, as specified by the ABI.
1193 unsigned ArgOffset = 0;
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001194 int GPR_remaining = 8, FPR_remaining = 8;
1195 unsigned GPR[] = {
1196 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
1197 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
1198 };
1199 unsigned FPR[] = {
1200 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4,
1201 PPC32::F5, PPC32::F6, PPC32::F7, PPC32::F8
1202 };
1203 unsigned GPR_idx = 0, FPR_idx = 0;
Misha Brukman422791f2004-06-21 17:41:12 +00001204
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001205 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1206 unsigned ArgReg;
1207 switch (getClassB(Args[i].Ty)) {
1208 case cByte:
1209 case cShort:
1210 // Promote arg to 32 bits wide into a temporary register...
1211 ArgReg = makeAnotherReg(Type::UIntTy);
1212 promote32(ArgReg, Args[i]);
Misha Brukman422791f2004-06-21 17:41:12 +00001213
1214 // Reg or stack?
1215 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001216 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001217 .addReg(ArgReg);
Misha Brukman422791f2004-06-21 17:41:12 +00001218 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001219 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1220 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001221 }
1222 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001223 case cInt:
1224 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1225
Misha Brukman422791f2004-06-21 17:41:12 +00001226 // Reg or stack?
1227 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001228 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001229 .addReg(ArgReg);
Misha Brukman422791f2004-06-21 17:41:12 +00001230 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001231 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1232 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001233 }
1234 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001235 case cLong:
Misha Brukman422791f2004-06-21 17:41:12 +00001236 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001237
Misha Brukman422791f2004-06-21 17:41:12 +00001238 // Reg or stack?
1239 if (GPR_remaining > 1) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001240 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001241 .addReg(ArgReg);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001242 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx + 1]).addReg(ArgReg+1)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001243 .addReg(ArgReg+1);
Misha Brukman422791f2004-06-21 17:41:12 +00001244 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001245 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1246 .addReg(PPC32::R1);
1247 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addImm(ArgOffset+4)
1248 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001249 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001250
1251 ArgOffset += 4; // 8 byte entry, not 4.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001252 GPR_remaining -= 1; // uses up 2 GPRs
1253 GPR_idx += 1;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001254 break;
1255 case cFP:
1256 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1257 if (Args[i].Ty == Type::FloatTy) {
Misha Brukman1916bf92004-06-24 21:56:15 +00001258 // Reg or stack?
1259 if (FPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001260 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001261 FPR_remaining--;
1262 FPR_idx++;
Misha Brukman1916bf92004-06-24 21:56:15 +00001263 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001264 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addImm(ArgOffset)
1265 .addReg(PPC32::R1);
Misha Brukman1916bf92004-06-24 21:56:15 +00001266 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001267 } else {
1268 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman1916bf92004-06-24 21:56:15 +00001269 // Reg or stack?
1270 if (FPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001271 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001272 FPR_remaining--;
1273 FPR_idx++;
Misha Brukman1916bf92004-06-24 21:56:15 +00001274 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001275 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset)
1276 .addReg(PPC32::R1);
Misha Brukman1916bf92004-06-24 21:56:15 +00001277 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001278
Misha Brukman1916bf92004-06-24 21:56:15 +00001279 ArgOffset += 4; // 8 byte entry, not 4.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001280 GPR_remaining--; // uses up 2 GPRs
1281 GPR_idx++;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001282 }
1283 break;
1284
1285 default: assert(0 && "Unknown class!");
1286 }
1287 ArgOffset += 4;
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001288 GPR_remaining--;
1289 GPR_idx++;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001290 }
1291 } else {
1292 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(0);
1293 }
1294
1295 BB->push_back(CallMI);
1296
1297 BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addImm(NumBytes);
1298
1299 // If there is a return value, scavenge the result from the location the call
1300 // leaves it in...
1301 //
1302 if (Ret.Ty != Type::VoidTy) {
1303 unsigned DestClass = getClassB(Ret.Ty);
1304 switch (DestClass) {
1305 case cByte:
1306 case cShort:
1307 case cInt:
1308 // Integral results are in r3
Misha Brukman422791f2004-06-21 17:41:12 +00001309 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
Misha Brukmane327e492004-06-24 23:53:24 +00001310 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001311 case cFP: // Floating-point return values live in f1
1312 BuildMI(BB, PPC32::FMR, 1, Ret.Reg).addReg(PPC32::F1);
1313 break;
1314 case cLong: // Long values are in r3:r4
Misha Brukman422791f2004-06-21 17:41:12 +00001315 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
1316 BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R4).addReg(PPC32::R4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001317 break;
1318 default: assert(0 && "Unknown class!");
1319 }
1320 }
1321}
1322
1323
1324/// visitCallInst - Push args on stack and do a procedure call instruction.
1325void ISel::visitCallInst(CallInst &CI) {
1326 MachineInstr *TheCall;
1327 if (Function *F = CI.getCalledFunction()) {
1328 // Is it an intrinsic function call?
1329 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
1330 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1331 return;
1332 }
1333
1334 // Emit a CALL instruction with PC-relative displacement.
1335 TheCall = BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(F, true);
1336 } else { // Emit an indirect call through the CTR
1337 unsigned Reg = getReg(CI.getCalledValue());
1338 BuildMI(PPC32::MTSPR, 2).addZImm(9).addReg(Reg);
1339 TheCall = BuildMI(PPC32::CALLindirect, 1).addZImm(20).addZImm(0);
1340 }
1341
1342 std::vector<ValueRecord> Args;
1343 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
1344 Args.push_back(ValueRecord(CI.getOperand(i)));
1345
1346 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
1347 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
1348}
1349
1350
1351/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
1352///
1353static Value *dyncastIsNan(Value *V) {
1354 if (CallInst *CI = dyn_cast<CallInst>(V))
1355 if (Function *F = CI->getCalledFunction())
Misha Brukmana2916ce2004-06-21 17:58:36 +00001356 if (F->getIntrinsicID() == Intrinsic::isunordered)
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001357 return CI->getOperand(1);
1358 return 0;
1359}
1360
1361/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
1362/// or's whos operands are all calls to the isnan predicate.
1363static bool isOnlyUsedByUnorderedComparisons(Value *V) {
1364 assert(dyncastIsNan(V) && "The value isn't an isnan call!");
1365
1366 // Check all uses, which will be or's of isnans if this predicate is true.
1367 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1368 Instruction *I = cast<Instruction>(*UI);
1369 if (I->getOpcode() != Instruction::Or) return false;
1370 if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
1371 if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
1372 }
1373
1374 return true;
1375}
1376
1377/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1378/// function, lowering any calls to unknown intrinsic functions into the
1379/// equivalent LLVM code.
1380///
1381void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1382 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1383 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1384 if (CallInst *CI = dyn_cast<CallInst>(I++))
1385 if (Function *F = CI->getCalledFunction())
1386 switch (F->getIntrinsicID()) {
1387 case Intrinsic::not_intrinsic:
1388 case Intrinsic::vastart:
1389 case Intrinsic::vacopy:
1390 case Intrinsic::vaend:
1391 case Intrinsic::returnaddress:
1392 case Intrinsic::frameaddress:
Misha Brukmana2916ce2004-06-21 17:58:36 +00001393 // FIXME: should lower this ourselves
1394 // case Intrinsic::isunordered:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001395 // We directly implement these intrinsics
1396 break;
1397 case Intrinsic::readio: {
1398 // On PPC, memory operations are in-order. Lower this intrinsic
1399 // into a volatile load.
1400 Instruction *Before = CI->getPrev();
1401 LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
1402 CI->replaceAllUsesWith(LI);
1403 BB->getInstList().erase(CI);
1404 break;
1405 }
1406 case Intrinsic::writeio: {
1407 // On PPC, memory operations are in-order. Lower this intrinsic
1408 // into a volatile store.
1409 Instruction *Before = CI->getPrev();
1410 StoreInst *LI = new StoreInst(CI->getOperand(1),
1411 CI->getOperand(2), true, CI);
1412 CI->replaceAllUsesWith(LI);
1413 BB->getInstList().erase(CI);
1414 break;
1415 }
1416 default:
1417 // All other intrinsic calls we must lower.
1418 Instruction *Before = CI->getPrev();
1419 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
1420 if (Before) { // Move iterator to instruction after call
1421 I = Before; ++I;
1422 } else {
1423 I = BB->begin();
1424 }
1425 }
1426}
1427
1428void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
1429 unsigned TmpReg1, TmpReg2, TmpReg3;
1430 switch (ID) {
1431 case Intrinsic::vastart:
1432 // Get the address of the first vararg value...
1433 TmpReg1 = getReg(CI);
1434 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1), VarArgsFrameIndex);
1435 return;
1436
1437 case Intrinsic::vacopy:
1438 TmpReg1 = getReg(CI);
1439 TmpReg2 = getReg(CI.getOperand(1));
1440 BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
1441 return;
1442 case Intrinsic::vaend: return;
1443
1444 case Intrinsic::returnaddress:
1445 case Intrinsic::frameaddress:
1446 TmpReg1 = getReg(CI);
1447 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1448 if (ID == Intrinsic::returnaddress) {
1449 // Just load the return address
1450 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, TmpReg1),
1451 ReturnAddressIndex);
1452 } else {
1453 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1),
1454 ReturnAddressIndex, -4, false);
1455 }
1456 } else {
1457 // Values other than zero are not implemented yet.
1458 BuildMI(BB, PPC32::ADDI, 2, TmpReg1).addReg(PPC32::R0).addImm(0);
1459 }
1460 return;
1461
Misha Brukmana2916ce2004-06-21 17:58:36 +00001462#if 0
1463 // This may be useful for supporting isunordered
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001464 case Intrinsic::isnan:
1465 // If this is only used by 'isunordered' style comparisons, don't emit it.
1466 if (isOnlyUsedByUnorderedComparisons(&CI)) return;
1467 TmpReg1 = getReg(CI.getOperand(1));
1468 emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
Misha Brukman422791f2004-06-21 17:41:12 +00001469 TmpReg2 = makeAnotherReg(Type::IntTy);
1470 BuildMI(BB, PPC32::MFCR, TmpReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001471 TmpReg3 = getReg(CI);
1472 BuildMI(BB, PPC32::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
1473 return;
Misha Brukmana2916ce2004-06-21 17:58:36 +00001474#endif
1475
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001476 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
1477 }
1478}
1479
1480/// visitSimpleBinary - Implement simple binary operators for integral types...
1481/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1482/// Xor.
1483///
1484void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1485 unsigned DestReg = getReg(B);
1486 MachineBasicBlock::iterator MI = BB->end();
1487 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
1488 unsigned Class = getClassB(B.getType());
1489
1490 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
1491}
1492
1493/// emitBinaryFPOperation - This method handles emission of floating point
1494/// Add (0), Sub (1), Mul (2), and Div (3) operations.
1495void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
1496 MachineBasicBlock::iterator IP,
1497 Value *Op0, Value *Op1,
1498 unsigned OperatorClass, unsigned DestReg) {
1499
1500 // Special case: op Reg, <const fp>
1501 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001502 // Create a constant pool entry for this constant.
1503 MachineConstantPool *CP = F->getConstantPool();
1504 unsigned CPI = CP->getConstantPoolIndex(Op1C);
1505 const Type *Ty = Op1->getType();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001506
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001507 static const unsigned OpcodeTab[][4] = {
1508 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1509 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
1510 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001511
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001512 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1513 unsigned TempReg = makeAnotherReg(Ty);
1514 unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
1515 addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001516
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001517 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
1518 unsigned Op0r = getReg(Op0, BB, IP);
1519 BuildMI(*BB, IP, Opcode, DestReg).addReg(Op0r).addReg(TempReg);
1520 return;
1521 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001522
1523 // Special case: R1 = op <const fp>, R2
1524 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
1525 if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) {
1526 // -0.0 - X === -X
1527 unsigned op1Reg = getReg(Op1, BB, IP);
1528 BuildMI(*BB, IP, PPC32::FNEG, 1, DestReg).addReg(op1Reg);
1529 return;
1530 } else {
1531 // R1 = op CST, R2 --> R1 = opr R2, CST
1532
1533 // Create a constant pool entry for this constant.
1534 MachineConstantPool *CP = F->getConstantPool();
1535 unsigned CPI = CP->getConstantPoolIndex(CFP);
1536 const Type *Ty = CFP->getType();
1537
1538 static const unsigned OpcodeTab[][4] = {
1539 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1540 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
1541 };
1542
1543 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman422791f2004-06-21 17:41:12 +00001544 unsigned TempReg = makeAnotherReg(Ty);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001545 unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
1546 addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI);
1547
1548 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
1549 unsigned Op1r = getReg(Op1, BB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001550 BuildMI(*BB, IP, Opcode, DestReg).addReg(TempReg).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001551 return;
1552 }
1553
1554 // General case.
Misha Brukman911afde2004-06-25 14:50:41 +00001555 static const unsigned OpcodeTab[] = {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001556 PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV
1557 };
1558
1559 unsigned Opcode = OpcodeTab[OperatorClass];
1560 unsigned Op0r = getReg(Op0, BB, IP);
1561 unsigned Op1r = getReg(Op1, BB, IP);
1562 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1563}
1564
1565/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1566/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1567/// Or, 4 for Xor.
1568///
1569/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1570/// and constant expression support.
1571///
1572void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
1573 MachineBasicBlock::iterator IP,
1574 Value *Op0, Value *Op1,
1575 unsigned OperatorClass, unsigned DestReg) {
1576 unsigned Class = getClassB(Op0->getType());
1577
Misha Brukman422791f2004-06-21 17:41:12 +00001578 // Arithmetic and Bitwise operators
Misha Brukman911afde2004-06-25 14:50:41 +00001579 static const unsigned OpcodeTab[] = {
Misha Brukman422791f2004-06-21 17:41:12 +00001580 PPC32::ADD, PPC32::SUB, PPC32::AND, PPC32::OR, PPC32::XOR
1581 };
1582 // Otherwise, code generate the full operation with a constant.
1583 static const unsigned BottomTab[] = {
1584 PPC32::ADDC, PPC32::SUBC, PPC32::AND, PPC32::OR, PPC32::XOR
1585 };
1586 static const unsigned TopTab[] = {
1587 PPC32::ADDE, PPC32::SUBFE, PPC32::AND, PPC32::OR, PPC32::XOR
1588 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001589
1590 if (Class == cFP) {
1591 assert(OperatorClass < 2 && "No logical ops for FP!");
1592 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
1593 return;
1594 }
1595
1596 if (Op0->getType() == Type::BoolTy) {
1597 if (OperatorClass == 3)
1598 // If this is an or of two isnan's, emit an FP comparison directly instead
1599 // of or'ing two isnan's together.
1600 if (Value *LHS = dyncastIsNan(Op0))
1601 if (Value *RHS = dyncastIsNan(Op1)) {
1602 unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001603 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001604 emitUCOM(MBB, IP, Op0Reg, Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00001605 BuildMI(*MBB, IP, PPC32::MFCR, TmpReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001606 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
1607 .addImm(31).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001608 return;
1609 }
1610 }
1611
1612 // sub 0, X -> neg X
1613 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
1614 if (OperatorClass == 1 && CI->isNullValue()) {
1615 unsigned op1Reg = getReg(Op1, MBB, IP);
1616 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg).addReg(op1Reg);
1617
1618 if (Class == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001619 unsigned zeroes = makeAnotherReg(Type::IntTy);
1620 unsigned overflow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001621 unsigned T = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00001622 BuildMI(*MBB, IP, PPC32::CNTLZW, 1, zeroes).addReg(op1Reg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001623 BuildMI(*MBB, IP, PPC32::RLWINM, 4, overflow).addReg(zeroes).addImm(27)
1624 .addImm(5).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00001625 BuildMI(*MBB, IP, PPC32::ADD, 2, T).addReg(op1Reg+1).addReg(overflow);
1626 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg+1).addReg(T);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001627 }
1628 return;
1629 }
1630
1631 // Special case: op Reg, <const int>
1632 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1633 unsigned Op0r = getReg(Op0, MBB, IP);
1634
1635 // xor X, -1 -> not X
1636 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1637 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1638 if (Class == cLong) // Invert the top part too
Misha Brukman2fec9902004-06-21 20:22:03 +00001639 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg+1).addReg(Op0r+1)
1640 .addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001641 return;
1642 }
1643
1644 unsigned Opcode = OpcodeTab[OperatorClass];
1645 unsigned Op1r = getReg(Op1, MBB, IP);
1646
1647 if (Class != cLong) {
1648 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1649 return;
1650 }
1651
1652 // If the constant is zero in the low 32-bits, just copy the low part
1653 // across and apply the normal 32-bit operation to the high parts. There
1654 // will be no carry or borrow into the top.
1655 if (cast<ConstantInt>(Op1C)->getRawValue() == 0) {
1656 if (OperatorClass != 2) // All but and...
1657 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1658 else
1659 BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
Misha Brukman422791f2004-06-21 17:41:12 +00001660 BuildMI(*MBB, IP, Opcode, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001661 return;
1662 }
1663
1664 // If this is a long value and the high or low bits have a special
1665 // property, emit some special cases.
1666 unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
1667
1668 // If this is a logical operation and the top 32-bits are zero, just
1669 // operate on the lower 32.
1670 if (Op1h == 0 && OperatorClass > 1) {
1671 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1672 if (OperatorClass != 2) // All but and
Misha Brukman2fec9902004-06-21 20:22:03 +00001673 BuildMI(*MBB, IP, PPC32::OR, 2,DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001674 else
Misha Brukman2fec9902004-06-21 20:22:03 +00001675 BuildMI(*MBB, IP, PPC32::ADDI, 2,DestReg+1).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001676 return;
1677 }
1678
1679 // TODO: We could handle lots of other special cases here, such as AND'ing
1680 // with 0xFFFFFFFF00000000 -> noop, etc.
1681
Misha Brukman2fec9902004-06-21 20:22:03 +00001682 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
1683 .addImm(Op1r);
1684 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
1685 .addImm(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001686 return;
1687 }
1688
1689 unsigned Op0r = getReg(Op0, MBB, IP);
1690 unsigned Op1r = getReg(Op1, MBB, IP);
1691
1692 if (Class != cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001693 unsigned Opcode = OpcodeTab[OperatorClass];
1694 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001695 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00001696 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
1697 .addImm(Op1r);
1698 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
1699 .addImm(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001700 }
1701 return;
1702}
1703
1704/// doMultiply - Emit appropriate instructions to multiply together the
1705/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1706/// result should be given as DestTy.
1707///
1708void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
1709 unsigned DestReg, const Type *DestTy,
1710 unsigned op0Reg, unsigned op1Reg) {
1711 unsigned Class = getClass(DestTy);
1712 switch (Class) {
1713 case cLong:
Misha Brukman2fec9902004-06-21 20:22:03 +00001714 BuildMI(*MBB, MBBI, PPC32::MULHW, 2, DestReg+1).addReg(op0Reg+1)
1715 .addReg(op1Reg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001716 case cInt:
1717 case cShort:
1718 case cByte:
1719 BuildMI(*MBB, MBBI, PPC32::MULLW, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
1720 return;
1721 default:
Misha Brukman422791f2004-06-21 17:41:12 +00001722 assert(0 && "doMultiply cannot operate on unknown type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001723 }
1724}
1725
1726// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1727// returns zero when the input is not exactly a power of two.
1728static unsigned ExactLog2(unsigned Val) {
1729 if (Val == 0 || (Val & (Val-1))) return 0;
1730 unsigned Count = 0;
1731 while (Val != 1) {
1732 Val >>= 1;
1733 ++Count;
1734 }
1735 return Count+1;
1736}
1737
1738
1739/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
1740/// 16, or 32-bit integer multiply by a constant.
Misha Brukman2fec9902004-06-21 20:22:03 +00001741///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001742void ISel::doMultiplyConst(MachineBasicBlock *MBB,
1743 MachineBasicBlock::iterator IP,
1744 unsigned DestReg, const Type *DestTy,
1745 unsigned op0Reg, unsigned ConstRHS) {
1746 unsigned Class = getClass(DestTy);
1747 // Handle special cases here.
1748 switch (ConstRHS) {
1749 case 0:
1750 BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
1751 return;
1752 case 1:
1753 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(op0Reg).addReg(op0Reg);
1754 return;
1755 case 2:
1756 BuildMI(*MBB, IP, PPC32::ADD, 2,DestReg).addReg(op0Reg).addReg(op0Reg);
1757 return;
1758 }
1759
1760 // If the element size is exactly a power of 2, use a shift to get it.
1761 if (unsigned Shift = ExactLog2(ConstRHS)) {
1762 switch (Class) {
1763 default: assert(0 && "Unknown class for this function!");
1764 case cByte:
1765 case cShort:
1766 case cInt:
Misha Brukman2fec9902004-06-21 20:22:03 +00001767 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(op0Reg)
1768 .addImm(Shift-1).addImm(0).addImm(31-Shift-1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001769 return;
1770 }
1771 }
1772
1773 // Most general case, emit a normal multiply...
1774 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
1775 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001776 BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg1).addReg(PPC32::R0)
1777 .addImm(ConstRHS >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001778 BuildMI(*MBB, IP, PPC32::ORI, 2, TmpReg2).addReg(TmpReg1).addImm(ConstRHS);
1779
1780 // Emit a MUL to multiply the register holding the index by
1781 // elementSize, putting the result in OffsetReg.
1782 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg2);
1783}
1784
1785void ISel::visitMul(BinaryOperator &I) {
1786 unsigned ResultReg = getReg(I);
1787
1788 Value *Op0 = I.getOperand(0);
1789 Value *Op1 = I.getOperand(1);
1790
1791 MachineBasicBlock::iterator IP = BB->end();
1792 emitMultiply(BB, IP, Op0, Op1, ResultReg);
1793}
1794
1795void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
1796 Value *Op0, Value *Op1, unsigned DestReg) {
1797 MachineBasicBlock &BB = *MBB;
1798 TypeClass Class = getClass(Op0->getType());
1799
1800 // Simple scalar multiply?
1801 unsigned Op0Reg = getReg(Op0, &BB, IP);
1802 switch (Class) {
1803 case cByte:
1804 case cShort:
1805 case cInt:
1806 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1807 unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
1808 doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
1809 } else {
1810 unsigned Op1Reg = getReg(Op1, &BB, IP);
1811 doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
1812 }
1813 return;
1814 case cFP:
1815 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
1816 return;
1817 case cLong:
1818 break;
1819 }
1820
1821 // Long value. We have to do things the hard way...
1822 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1823 unsigned CLow = CI->getRawValue();
1824 unsigned CHi = CI->getRawValue() >> 32;
1825
1826 if (CLow == 0) {
1827 // If the low part of the constant is all zeros, things are simple.
1828 BuildMI(BB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
1829 doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
1830 return;
1831 }
1832
1833 // Multiply the two low parts
1834 unsigned OverflowReg = 0;
1835 if (CLow == 1) {
1836 BuildMI(BB, IP, PPC32::OR, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg);
1837 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00001838 unsigned TmpRegL = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001839 unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
1840 OverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001841 BuildMI(BB, IP, PPC32::ADDIS, 2, TmpRegL).addReg(PPC32::R0)
1842 .addImm(CLow >> 16);
Misha Brukman422791f2004-06-21 17:41:12 +00001843 BuildMI(BB, IP, PPC32::ORI, 2, Op1RegL).addReg(TmpRegL).addImm(CLow);
1844 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1RegL);
Misha Brukman2fec9902004-06-21 20:22:03 +00001845 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg)
1846 .addReg(Op1RegL);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001847 }
1848
1849 unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
1850 doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
1851
1852 unsigned AHBLplusOverflowReg;
1853 if (OverflowReg) {
1854 AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001855 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001856 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
1857 } else {
1858 AHBLplusOverflowReg = AHBLReg;
1859 }
1860
1861 if (CHi == 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001862 BuildMI(BB, IP, PPC32::OR, 2, DestReg+1).addReg(AHBLplusOverflowReg)
1863 .addReg(AHBLplusOverflowReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001864 } else {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001865 unsigned ALBHReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001866 doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
1867
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001868 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001869 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1870 }
1871 return;
1872 }
1873
1874 // General 64x64 multiply
1875
1876 unsigned Op1Reg = getReg(Op1, &BB, IP);
1877
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001878 // Multiply the two low parts...
1879 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001880
1881 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001882 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001883
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001884 unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001885 BuildMI(BB, IP, PPC32::MULLW, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
1886
1887 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001888 BuildMI(BB, IP, PPC32::ADD, 2, AHBLplusOverflowReg).addReg(AHBLReg)
1889 .addReg(OverflowReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001890
1891 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
1892 BuildMI(BB, IP, PPC32::MULLW, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
1893
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001894 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001895 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1896}
1897
1898
1899/// visitDivRem - Handle division and remainder instructions... these
1900/// instruction both require the same instructions to be generated, they just
1901/// select the result from a different register. Note that both of these
1902/// instructions work differently for signed and unsigned operands.
1903///
1904void ISel::visitDivRem(BinaryOperator &I) {
1905 unsigned ResultReg = getReg(I);
1906 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1907
1908 MachineBasicBlock::iterator IP = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00001909 emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
1910 ResultReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001911}
1912
1913void ISel::emitDivRemOperation(MachineBasicBlock *BB,
1914 MachineBasicBlock::iterator IP,
1915 Value *Op0, Value *Op1, bool isDiv,
1916 unsigned ResultReg) {
1917 const Type *Ty = Op0->getType();
1918 unsigned Class = getClass(Ty);
1919 switch (Class) {
1920 case cFP: // Floating point divide
1921 if (isDiv) {
1922 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
1923 return;
1924 } else { // Floating point remainder...
1925 unsigned Op0Reg = getReg(Op0, BB, IP);
1926 unsigned Op1Reg = getReg(Op1, BB, IP);
Misha Brukman425ff242004-07-01 21:34:10 +00001927 // FIXME: Make sure the module has external function
1928 // double fmod(double, double)
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001929 MachineInstr *TheCall =
1930 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("fmod", true);
1931 std::vector<ValueRecord> Args;
1932 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
1933 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
1934 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
1935 }
1936 return;
1937 case cLong: {
Misha Brukman425ff242004-07-01 21:34:10 +00001938 // FIXME: Make sure the module has external function
1939 static const char *FnName[] =
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001940 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
1941 unsigned Op0Reg = getReg(Op0, BB, IP);
1942 unsigned Op1Reg = getReg(Op1, BB, IP);
1943 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
1944 MachineInstr *TheCall =
1945 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol(FnName[NameIdx], true);
1946
1947 std::vector<ValueRecord> Args;
1948 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
1949 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
1950 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
1951 return;
1952 }
1953 case cByte: case cShort: case cInt:
1954 break; // Small integrals, handled below...
1955 default: assert(0 && "Unknown class!");
1956 }
1957
1958 // Special case signed division by power of 2.
1959 if (isDiv)
1960 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
1961 assert(Class != cLong && "This doesn't handle 64-bit divides!");
1962 int V = CI->getValue();
1963
1964 if (V == 1) { // X /s 1 => X
1965 unsigned Op0Reg = getReg(Op0, BB, IP);
1966 BuildMI(*BB, IP, PPC32::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
1967 return;
1968 }
1969
1970 if (V == -1) { // X /s -1 => -X
1971 unsigned Op0Reg = getReg(Op0, BB, IP);
1972 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(Op0Reg);
1973 return;
1974 }
1975
1976 bool isNeg = false;
1977 if (V < 0) { // Not a positive power of 2?
1978 V = -V;
1979 isNeg = true; // Maybe it's a negative power of 2.
1980 }
1981 if (unsigned Log = ExactLog2(V)) {
1982 --Log;
1983 unsigned Op0Reg = getReg(Op0, BB, IP);
1984 unsigned TmpReg = makeAnotherReg(Op0->getType());
1985 if (Log != 1)
Misha Brukman2fec9902004-06-21 20:22:03 +00001986 BuildMI(*BB, IP, PPC32::SRAWI,2, TmpReg).addReg(Op0Reg).addImm(Log-1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001987 else
1988 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(Op0Reg).addReg(Op0Reg);
1989
1990 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
Misha Brukman2fec9902004-06-21 20:22:03 +00001991 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg2).addReg(TmpReg).addImm(Log)
1992 .addImm(32-Log).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001993
1994 unsigned TmpReg3 = makeAnotherReg(Op0->getType());
1995 BuildMI(*BB, IP, PPC32::ADD, 2, TmpReg3).addReg(Op0Reg).addReg(TmpReg2);
1996
1997 unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg;
1998 BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg4).addReg(Op0Reg).addImm(Log);
1999
2000 if (isNeg)
2001 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(TmpReg4);
2002 return;
2003 }
2004 }
2005
2006 unsigned Op0Reg = getReg(Op0, BB, IP);
2007 unsigned Op1Reg = getReg(Op1, BB, IP);
2008
2009 if (isDiv) {
Misha Brukman422791f2004-06-21 17:41:12 +00002010 if (Ty->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002011 BuildMI(*BB, IP, PPC32::DIVW, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002012 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002013 BuildMI(*BB, IP,PPC32::DIVWU, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002014 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002015 } else { // Remainder
Misha Brukman422791f2004-06-21 17:41:12 +00002016 unsigned TmpReg1 = makeAnotherReg(Op0->getType());
2017 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2018
2019 if (Ty->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002020 BuildMI(*BB, IP, PPC32::DIVW, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002021 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002022 BuildMI(*BB, IP, PPC32::DIVWU, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002023 }
2024 BuildMI(*BB, IP, PPC32::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
2025 BuildMI(*BB, IP, PPC32::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002026 }
2027}
2028
2029
2030/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2031/// for constant immediate shift values, and for constant immediate
2032/// shift values equal to 1. Even the general case is sort of special,
2033/// because the shift amount has to be in CL, not just any old register.
2034///
2035void ISel::visitShiftInst(ShiftInst &I) {
2036 MachineBasicBlock::iterator IP = BB->end ();
Misha Brukman2fec9902004-06-21 20:22:03 +00002037 emitShiftOperation(BB, IP, I.getOperand (0), I.getOperand (1),
2038 I.getOpcode () == Instruction::Shl, I.getType (),
2039 getReg (I));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002040}
2041
2042/// emitShiftOperation - Common code shared between visitShiftInst and
2043/// constant expression support.
Misha Brukman2fec9902004-06-21 20:22:03 +00002044///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002045void ISel::emitShiftOperation(MachineBasicBlock *MBB,
2046 MachineBasicBlock::iterator IP,
2047 Value *Op, Value *ShiftAmount, bool isLeftShift,
2048 const Type *ResultTy, unsigned DestReg) {
2049 unsigned SrcReg = getReg (Op, MBB, IP);
2050 bool isSigned = ResultTy->isSigned ();
2051 unsigned Class = getClass (ResultTy);
2052
2053 // Longs, as usual, are handled specially...
2054 if (Class == cLong) {
2055 // If we have a constant shift, we can generate much more efficient code
2056 // than otherwise...
2057 //
2058 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2059 unsigned Amount = CUI->getValue();
2060 if (Amount < 32) {
2061 if (isLeftShift) {
Misha Brukman422791f2004-06-21 17:41:12 +00002062 // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002063 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2064 .addImm(Amount).addImm(0).addImm(31-Amount);
2065 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg)
2066 .addImm(Amount).addImm(32-Amount).addImm(31);
2067 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2068 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002069 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002070 // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002071 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2072 .addImm(32-Amount).addImm(Amount).addImm(31);
2073 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1)
2074 .addImm(32-Amount).addImm(0).addImm(Amount-1);
2075 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2076 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002077 }
2078 } else { // Shifting more than 32 bits
2079 Amount -= 32;
2080 if (isLeftShift) {
2081 if (Amount != 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002082 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg)
2083 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002084 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002085 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2086 .addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002087 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002088 BuildMI(*MBB, IP, PPC32::ADDI, 2,DestReg).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002089 } else {
2090 if (Amount != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +00002091 if (isSigned)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00002092 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg+1)
2093 .addImm(Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002094 else
Misha Brukmanfadb82f2004-06-24 22:00:15 +00002095 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1)
2096 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002097 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002098 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1)
2099 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002100 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002101 BuildMI(*MBB, IP,PPC32::ADDI,2,DestReg+1).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002102 }
2103 }
2104 } else {
2105 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
2106 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002107 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
2108 unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
2109 unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
2110 unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
2111 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2112
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002113 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002114 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
2115 .addImm(32);
2116 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg+1)
2117 .addReg(ShiftAmountReg);
2118 BuildMI(*MBB, IP, PPC32::SRW, 2,TmpReg3).addReg(SrcReg).addReg(TmpReg1);
2119 BuildMI(*MBB, IP, PPC32::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
2120 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
2121 .addImm(-32);
2122 BuildMI(*MBB, IP, PPC32::SLW, 2,TmpReg6).addReg(SrcReg).addReg(TmpReg5);
2123 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4)
2124 .addReg(TmpReg6);
2125 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2126 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002127 } else {
2128 if (isSigned) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002129 // FIXME: Unimplemented
Misha Brukman2fec9902004-06-21 20:22:03 +00002130 // Page C-3 of the PowerPC 32bit Programming Environments Manual
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002131 std::cerr << "Unimplemented: signed right shift\n";
2132 abort();
Misha Brukman422791f2004-06-21 17:41:12 +00002133 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002134 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
2135 .addImm(32);
2136 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg)
2137 .addReg(ShiftAmountReg);
2138 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg+1)
2139 .addReg(TmpReg1);
2140 BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2)
2141 .addReg(TmpReg3);
2142 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
2143 .addImm(-32);
2144 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg+1)
2145 .addReg(TmpReg5);
2146 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4)
2147 .addReg(TmpReg6);
2148 BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg+1).addReg(SrcReg+1)
2149 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002150 }
2151 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002152 }
2153 return;
2154 }
2155
2156 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2157 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
2158 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
2159 unsigned Amount = CUI->getValue();
2160
Misha Brukman422791f2004-06-21 17:41:12 +00002161 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002162 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2163 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002164 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002165 if (isSigned) {
2166 BuildMI(*MBB, IP, PPC32::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
2167 } else {
2168 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2169 .addImm(32-Amount).addImm(Amount).addImm(31);
2170 }
Misha Brukman422791f2004-06-21 17:41:12 +00002171 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002172 } else { // The shift amount is non-constant.
2173 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2174
Misha Brukman422791f2004-06-21 17:41:12 +00002175 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002176 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2177 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002178 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002179 BuildMI(*MBB, IP, isSigned ? PPC32::SRAW : PPC32::SRW, 2, DestReg)
2180 .addReg(SrcReg).addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002181 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002182 }
2183}
2184
2185
2186/// visitLoadInst - Implement LLVM load instructions
2187///
2188void ISel::visitLoadInst(LoadInst &I) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002189 static const unsigned Opcodes[] = {
2190 PPC32::LBZ, PPC32::LHZ, PPC32::LWZ, PPC32::LFS
2191 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002192 unsigned Class = getClassB(I.getType());
2193 unsigned Opcode = Opcodes[Class];
2194 if (I.getType() == Type::DoubleTy) Opcode = PPC32::LFD;
2195
2196 unsigned DestReg = getReg(I);
2197
2198 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
Misha Brukman422791f2004-06-21 17:41:12 +00002199 unsigned FI = getFixedSizedAllocaFI(AI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002200 if (Class == cLong) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002201 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg), FI);
2202 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg+1), FI, 4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002203 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002204 addFrameReference(BuildMI(BB, Opcode, 2, DestReg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +00002205 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002206 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002207 unsigned SrcAddrReg = getReg(I.getOperand(0));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002208
2209 if (Class == cLong) {
2210 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2211 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(SrcAddrReg);
2212 } else {
2213 BuildMI(BB, Opcode, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2214 }
2215 }
2216}
2217
2218/// visitStoreInst - Implement LLVM store instructions
2219///
2220void ISel::visitStoreInst(StoreInst &I) {
2221 unsigned ValReg = getReg(I.getOperand(0));
2222 unsigned AddressReg = getReg(I.getOperand(1));
2223
2224 const Type *ValTy = I.getOperand(0)->getType();
2225 unsigned Class = getClassB(ValTy);
2226
2227 if (Class == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00002228 BuildMI(BB, PPC32::STW, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002229 BuildMI(BB, PPC32::STW, 3).addReg(ValReg+1).addImm(4).addReg(AddressReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002230 return;
2231 }
2232
2233 static const unsigned Opcodes[] = {
2234 PPC32::STB, PPC32::STH, PPC32::STW, PPC32::STFS
2235 };
2236 unsigned Opcode = Opcodes[Class];
2237 if (ValTy == Type::DoubleTy) Opcode = PPC32::STFD;
2238 BuildMI(BB, Opcode, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
2239}
2240
2241
2242/// visitCastInst - Here we have various kinds of copying with or without sign
2243/// extension going on.
2244///
2245void ISel::visitCastInst(CastInst &CI) {
2246 Value *Op = CI.getOperand(0);
2247
2248 unsigned SrcClass = getClassB(Op->getType());
2249 unsigned DestClass = getClassB(CI.getType());
2250 // Noop casts are not emitted: getReg will return the source operand as the
2251 // register to use for any uses of the noop cast.
2252 if (DestClass == SrcClass)
2253 return;
2254
2255 // If this is a cast from a 32-bit integer to a Long type, and the only uses
2256 // of the case are GEP instructions, then the cast does not need to be
2257 // generated explicitly, it will be folded into the GEP.
2258 if (DestClass == cLong && SrcClass == cInt) {
2259 bool AllUsesAreGEPs = true;
2260 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
2261 if (!isa<GetElementPtrInst>(*I)) {
2262 AllUsesAreGEPs = false;
2263 break;
2264 }
2265
2266 // No need to codegen this cast if all users are getelementptr instrs...
2267 if (AllUsesAreGEPs) return;
2268 }
2269
2270 unsigned DestReg = getReg(CI);
2271 MachineBasicBlock::iterator MI = BB->end();
2272 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
2273}
2274
2275/// emitCastOperation - Common code shared between visitCastInst and constant
2276/// expression cast support.
2277///
2278void ISel::emitCastOperation(MachineBasicBlock *BB,
2279 MachineBasicBlock::iterator IP,
2280 Value *Src, const Type *DestTy,
2281 unsigned DestReg) {
2282 const Type *SrcTy = Src->getType();
2283 unsigned SrcClass = getClassB(SrcTy);
2284 unsigned DestClass = getClassB(DestTy);
2285 unsigned SrcReg = getReg(Src, BB, IP);
2286
2287 // Implement casts to bool by using compare on the operand followed by set if
2288 // not zero on the result.
2289 if (DestTy == Type::BoolTy) {
2290 switch (SrcClass) {
2291 case cByte:
Misha Brukman422791f2004-06-21 17:41:12 +00002292 case cShort:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002293 case cInt: {
2294 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002295 BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addImm(-1);
2296 BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002297 break;
2298 }
2299 case cLong: {
2300 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2301 unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
2302 BuildMI(*BB, IP, PPC32::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
Misha Brukman422791f2004-06-21 17:41:12 +00002303 BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addImm(-1);
2304 BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002305 break;
2306 }
2307 case cFP:
2308 // FIXME
Misha Brukman422791f2004-06-21 17:41:12 +00002309 // Load -0.0
2310 // Compare
2311 // move to CR1
2312 // Negate -0.0
2313 // Compare
2314 // CROR
2315 // MFCR
2316 // Left-align
2317 // SRA ?
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002318 break;
2319 }
2320 return;
2321 }
2322
2323 // Implement casts between values of the same type class (as determined by
2324 // getClass) by using a register-to-register move.
2325 if (SrcClass == DestClass) {
Misha Brukman422791f2004-06-21 17:41:12 +00002326 if (SrcClass <= cInt) {
2327 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2328 } else if (SrcClass == cFP && SrcTy == DestTy) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002329 BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2330 } else if (SrcClass == cFP) {
2331 if (SrcTy == Type::FloatTy) { // float -> double
2332 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
2333 BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2334 } else { // double -> float
2335 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
2336 "Unknown cFP member!");
Misha Brukman422791f2004-06-21 17:41:12 +00002337 BuildMI(*BB, IP, PPC32::FRSP, 1, DestReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002338 }
2339 } else if (SrcClass == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00002340 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002341 BuildMI(*BB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
2342 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002343 } else {
2344 assert(0 && "Cannot handle this type of cast instruction!");
2345 abort();
2346 }
2347 return;
2348 }
2349
2350 // Handle cast of SMALLER int to LARGER int using a move with sign extension
2351 // or zero extension, depending on whether the source type was signed.
2352 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
2353 SrcClass < DestClass) {
2354 bool isLong = DestClass == cLong;
2355 if (isLong) DestClass = cInt;
2356
2357 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
2358 if (SrcClass < cInt) {
2359 if (isUnsigned) {
Misha Brukman422791f2004-06-21 17:41:12 +00002360 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002361 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2362 .addImm(shift).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002363 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002364 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH,
2365 1, DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002366 }
2367 } else {
2368 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2369 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002370
2371 if (isLong) { // Handle upper 32 bits as appropriate...
2372 if (isUnsigned) // Zero out top bits...
2373 BuildMI(*BB, IP, PPC32::ADDI, 2, DestReg+1).addReg(PPC32::R0).addImm(0);
2374 else // Sign extend bottom half...
2375 BuildMI(*BB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(DestReg).addImm(31);
2376 }
2377 return;
2378 }
2379
2380 // Special case long -> int ...
2381 if (SrcClass == cLong && DestClass == cInt) {
2382 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2383 return;
2384 }
2385
2386 // Handle cast of LARGER int to SMALLER int with a clear or sign extend
2387 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
2388 && SrcClass > DestClass) {
2389 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
Misha Brukman422791f2004-06-21 17:41:12 +00002390 if (isUnsigned) {
2391 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002392 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2393 .addImm(shift).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00002394 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002395 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH, 1,
2396 DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002397 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002398 return;
2399 }
2400
2401 // Handle casts from integer to floating point now...
2402 if (DestClass == cFP) {
2403
Misha Brukman422791f2004-06-21 17:41:12 +00002404 // Emit a library call for long to float conversion
2405 if (SrcClass == cLong) {
2406 std::vector<ValueRecord> Args;
2407 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002408 MachineInstr *TheCall =
2409 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("__floatdidf", true);
Misha Brukman422791f2004-06-21 17:41:12 +00002410 doCall(ValueRecord(DestReg, DestTy), TheCall, Args);
2411 return;
2412 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002413
2414 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman358829f2004-06-21 17:25:55 +00002415 switch (SrcTy->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002416 case Type::BoolTyID:
2417 case Type::SByteTyID:
2418 BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
2419 break;
2420 case Type::UByteTyID:
Misha Brukman2fec9902004-06-21 20:22:03 +00002421 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0)
2422 .addImm(24).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002423 break;
2424 case Type::ShortTyID:
2425 BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
2426 break;
2427 case Type::UShortTyID:
Misha Brukman2fec9902004-06-21 20:22:03 +00002428 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0)
2429 .addImm(16).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002430 break;
Misha Brukman422791f2004-06-21 17:41:12 +00002431 case Type::IntTyID:
2432 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
2433 break;
2434 case Type::UIntTyID:
2435 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
2436 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002437 default: // No promotion needed...
2438 break;
2439 }
2440
2441 SrcReg = TmpReg;
Misha Brukman422791f2004-06-21 17:41:12 +00002442
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002443 // Spill the integer to memory and reload it from there.
Misha Brukman422791f2004-06-21 17:41:12 +00002444 // Also spill room for a special conversion constant
2445 int ConstantFrameIndex =
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002446 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2447 int ValueFrameIdx =
2448 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2449
Misha Brukman422791f2004-06-21 17:41:12 +00002450 unsigned constantHi = makeAnotherReg(Type::IntTy);
2451 unsigned constantLo = makeAnotherReg(Type::IntTy);
2452 unsigned ConstF = makeAnotherReg(Type::DoubleTy);
2453 unsigned TempF = makeAnotherReg(Type::DoubleTy);
2454
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002455 if (!SrcTy->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002456 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0)
2457 .addImm(0x4330);
Misha Brukman422791f2004-06-21 17:41:12 +00002458 BuildMI(*BB, IP, PPC32::ADDI, 2, constantLo).addReg(PPC32::R0).addImm(0);
Misha Brukman2fec9902004-06-21 20:22:03 +00002459 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2460 ConstantFrameIndex);
2461 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2462 ConstantFrameIndex, 4);
2463 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2464 ValueFrameIdx);
2465 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(SrcReg),
2466 ValueFrameIdx, 4);
2467 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2468 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002469 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
2470 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
2471 } else {
2472 unsigned TempLo = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00002473 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0)
2474 .addImm(0x4330);
2475 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantLo).addReg(PPC32::R0)
2476 .addImm(0x8000);
2477 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2478 ConstantFrameIndex);
2479 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2480 ConstantFrameIndex, 4);
2481 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2482 ValueFrameIdx);
Misha Brukman422791f2004-06-21 17:41:12 +00002483 BuildMI(*BB, IP, PPC32::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002484 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(TempLo),
2485 ValueFrameIdx, 4);
2486 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2487 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002488 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
Misha Brukman2fec9902004-06-21 20:22:03 +00002489 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF ).addReg(ConstF);
Misha Brukman422791f2004-06-21 17:41:12 +00002490 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002491 return;
2492 }
2493
2494 // Handle casts from floating point to integer now...
2495 if (SrcClass == cFP) {
2496
Misha Brukman422791f2004-06-21 17:41:12 +00002497 // emit library call
2498 if (DestClass == cLong) {
2499 std::vector<ValueRecord> Args;
2500 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002501 MachineInstr *TheCall =
2502 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("__fixdfdi", true);
Misha Brukman422791f2004-06-21 17:41:12 +00002503 doCall(ValueRecord(DestReg, DestTy), TheCall, Args);
2504 return;
2505 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002506
2507 int ValueFrameIdx =
2508 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2509
Misha Brukman422791f2004-06-21 17:41:12 +00002510 // load into 32 bit value, and then truncate as necessary
2511 // FIXME: This is wrong for unsigned dest types
2512 //if (DestTy->isSigned()) {
2513 unsigned TempReg = makeAnotherReg(Type::DoubleTy);
2514 BuildMI(*BB, IP, PPC32::FCTIWZ, 1, TempReg).addReg(SrcReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002515 addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3)
2516 .addReg(TempReg), ValueFrameIdx);
2517 addFrameReference(BuildMI(*BB, IP, PPC32::LWZ, 2, DestReg),
2518 ValueFrameIdx+4);
Misha Brukman422791f2004-06-21 17:41:12 +00002519 //} else {
2520 //}
2521
2522 // FIXME: Truncate return value
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002523 return;
2524 }
2525
2526 // Anything we haven't handled already, we can't (yet) handle at all.
2527 assert(0 && "Unhandled cast instruction!");
2528 abort();
2529}
2530
2531/// visitVANextInst - Implement the va_next instruction...
2532///
2533void ISel::visitVANextInst(VANextInst &I) {
2534 unsigned VAList = getReg(I.getOperand(0));
2535 unsigned DestReg = getReg(I);
2536
2537 unsigned Size;
Misha Brukman358829f2004-06-21 17:25:55 +00002538 switch (I.getArgType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002539 default:
2540 std::cerr << I;
2541 assert(0 && "Error: bad type for va_next instruction!");
2542 return;
2543 case Type::PointerTyID:
2544 case Type::UIntTyID:
2545 case Type::IntTyID:
2546 Size = 4;
2547 break;
2548 case Type::ULongTyID:
2549 case Type::LongTyID:
2550 case Type::DoubleTyID:
2551 Size = 8;
2552 break;
2553 }
2554
2555 // Increment the VAList pointer...
2556 BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addImm(Size);
2557}
2558
2559void ISel::visitVAArgInst(VAArgInst &I) {
2560 unsigned VAList = getReg(I.getOperand(0));
2561 unsigned DestReg = getReg(I);
2562
Misha Brukman358829f2004-06-21 17:25:55 +00002563 switch (I.getType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002564 default:
2565 std::cerr << I;
2566 assert(0 && "Error: bad type for va_next instruction!");
2567 return;
2568 case Type::PointerTyID:
2569 case Type::UIntTyID:
2570 case Type::IntTyID:
2571 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2572 break;
2573 case Type::ULongTyID:
2574 case Type::LongTyID:
2575 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2576 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(VAList);
2577 break;
2578 case Type::DoubleTyID:
2579 BuildMI(BB, PPC32::LFD, 2, DestReg).addImm(0).addReg(VAList);
2580 break;
2581 }
2582}
2583
2584/// visitGetElementPtrInst - instruction-select GEP instructions
2585///
2586void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
2587 unsigned outputReg = getReg(I);
Misha Brukman2fec9902004-06-21 20:22:03 +00002588 emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(),
2589 outputReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002590}
2591
2592void ISel::emitGEPOperation(MachineBasicBlock *MBB,
2593 MachineBasicBlock::iterator IP,
2594 Value *Src, User::op_iterator IdxBegin,
2595 User::op_iterator IdxEnd, unsigned TargetReg) {
2596 const TargetData &TD = TM.getTargetData();
2597 if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src))
2598 Src = CPR->getValue();
2599
2600 std::vector<Value*> GEPOps;
2601 GEPOps.resize(IdxEnd-IdxBegin+1);
2602 GEPOps[0] = Src;
2603 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
2604
2605 std::vector<const Type*> GEPTypes;
2606 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
2607 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
2608
2609 // Keep emitting instructions until we consume the entire GEP instruction.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002610 while (!GEPOps.empty()) {
2611 if (GEPTypes.empty()) {
2612 // Load the base pointer into a register.
2613 unsigned Reg = getReg(Src, MBB, IP);
2614 BuildMI(*MBB, IP, PPC32::OR, 2, TargetReg).addReg(Reg).addReg(Reg);
2615 break; // we are now done
2616 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002617 // It's an array or pointer access: [ArraySize x ElementType].
2618 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
2619 Value *idx = GEPOps.back();
2620 GEPOps.pop_back(); // Consume a GEP operand
2621 GEPTypes.pop_back();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002622
Misha Brukman2fec9902004-06-21 20:22:03 +00002623 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002624 // operand. Handle this case directly now...
Misha Brukman2fec9902004-06-21 20:22:03 +00002625 if (CastInst *CI = dyn_cast<CastInst>(idx))
2626 if (CI->getOperand(0)->getType() == Type::IntTy ||
2627 CI->getOperand(0)->getType() == Type::UIntTy)
2628 idx = CI->getOperand(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002629
Misha Brukman2fec9902004-06-21 20:22:03 +00002630 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
2631 // must find the size of the pointed-to type (Not coincidentally, the next
2632 // type is the type of the elements in the array).
2633 const Type *ElTy = SqTy->getElementType();
2634 unsigned elementSize = TD.getTypeSize(ElTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002635
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002636 if (idx == Constant::getNullValue(idx->getType())) {
2637 // GEP with idx 0 is a no-op
2638 } else if (elementSize == 1) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002639 // If the element size is 1, we don't have to multiply, just add
2640 unsigned idxReg = getReg(idx, MBB, IP);
2641 unsigned Reg = makeAnotherReg(Type::UIntTy);
2642 BuildMI(*MBB, IP, PPC32::ADD, 2,TargetReg).addReg(Reg).addReg(idxReg);
2643 --IP; // Insert the next instruction before this one.
2644 TargetReg = Reg; // Codegen the rest of the GEP into this
2645 } else {
2646 unsigned idxReg = getReg(idx, MBB, IP);
2647 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002648
Misha Brukman2fec9902004-06-21 20:22:03 +00002649 // Make sure we can back the iterator up to point to the first
2650 // instruction emitted.
2651 MachineBasicBlock::iterator BeforeIt = IP;
2652 if (IP == MBB->begin())
2653 BeforeIt = MBB->end();
2654 else
2655 --BeforeIt;
2656 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002657
Misha Brukman2fec9902004-06-21 20:22:03 +00002658 // Emit an ADD to add OffsetReg to the basePtr.
2659 unsigned Reg = makeAnotherReg(Type::UIntTy);
2660 BuildMI(*MBB, IP, PPC32::ADD, 2, TargetReg).addReg(Reg).addReg(OffsetReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002661
Misha Brukman2fec9902004-06-21 20:22:03 +00002662 // Step to the first instruction of the multiply.
2663 if (BeforeIt == MBB->end())
2664 IP = MBB->begin();
2665 else
2666 IP = ++BeforeIt;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002667
Misha Brukman2fec9902004-06-21 20:22:03 +00002668 TargetReg = Reg; // Codegen the rest of the GEP into this
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002669 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002670 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002671}
2672
2673/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2674/// frame manager, otherwise do it the hard way.
2675///
2676void ISel::visitAllocaInst(AllocaInst &I) {
2677 // If this is a fixed size alloca in the entry block for the function, we
2678 // statically stack allocate the space, so we don't need to do anything here.
2679 //
2680 if (dyn_castFixedAlloca(&I)) return;
2681
2682 // Find the data size of the alloca inst's getAllocatedType.
2683 const Type *Ty = I.getAllocatedType();
2684 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2685
2686 // Create a register to hold the temporary result of multiplying the type size
2687 // constant by the variable amount.
2688 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2689 unsigned SrcReg1 = getReg(I.getArraySize());
2690
2691 // TotalSizeReg = mul <numelements>, <TypeSize>
2692 MachineBasicBlock::iterator MBBI = BB->end();
2693 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
2694
2695 // AddedSize = add <TotalSizeReg>, 15
2696 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2697 BuildMI(BB, PPC32::ADD, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
2698
2699 // AlignedSize = and <AddedSize>, ~15
2700 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00002701 BuildMI(BB, PPC32::RLWNM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
2702 .addImm(0).addImm(27);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002703
2704 // Subtract size from stack pointer, thereby allocating some space.
2705 BuildMI(BB, PPC32::SUB, 2, PPC32::R1).addReg(PPC32::R1).addReg(AlignedSize);
2706
2707 // Put a pointer to the space into the result register, by copying
2708 // the stack pointer.
2709 BuildMI(BB, PPC32::OR, 2, getReg(I)).addReg(PPC32::R1).addReg(PPC32::R1);
2710
2711 // Inform the Frame Information that we have just allocated a variable-sized
2712 // object.
2713 F->getFrameInfo()->CreateVariableSizedObject();
2714}
2715
2716/// visitMallocInst - Malloc instructions are code generated into direct calls
2717/// to the library malloc.
2718///
2719void ISel::visitMallocInst(MallocInst &I) {
2720 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2721 unsigned Arg;
2722
2723 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2724 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2725 } else {
2726 Arg = makeAnotherReg(Type::UIntTy);
2727 unsigned Op0Reg = getReg(I.getOperand(0));
2728 MachineBasicBlock::iterator MBBI = BB->end();
2729 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
2730 }
2731
2732 std::vector<ValueRecord> Args;
2733 Args.push_back(ValueRecord(Arg, Type::UIntTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002734 MachineInstr *TheCall =
2735 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("malloc", true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002736 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
2737}
2738
2739
2740/// visitFreeInst - Free instructions are code gen'd to call the free libc
2741/// function.
2742///
2743void ISel::visitFreeInst(FreeInst &I) {
2744 std::vector<ValueRecord> Args;
2745 Args.push_back(ValueRecord(I.getOperand(0)));
Misha Brukman2fec9902004-06-21 20:22:03 +00002746 MachineInstr *TheCall =
2747 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("free", true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002748 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
2749}
2750
2751/// createPPC32SimpleInstructionSelector - This pass converts an LLVM function
2752/// into a machine code representation is a very simple peep-hole fashion. The
2753/// generated code sucks but the implementation is nice and simple.
2754///
2755FunctionPass *llvm::createPPCSimpleInstructionSelector(TargetMachine &TM) {
2756 return new ISel(TM);
2757}