blob: 7a97ff5d1d4159a6606cba055b93fee9ec050b50 [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnere5d947b2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000025 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000026 <li><a href="#functionstructure">Functions</a></li>
Anton Korobeynikovc6c98af2007-04-29 18:02:48 +000027 <li><a href="#aliasstructure">Aliases</a>
Reid Spencerca86e162006-12-31 07:07:53 +000028 <li><a href="#paramattrs">Parameter Attributes</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000029 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000030 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000031 </ol>
32 </li>
Chris Lattner00950542001-06-06 20:29:01 +000033 <li><a href="#typesystem">Type System</a>
34 <ol>
Robert Bocchino7b81c752006-02-17 21:18:08 +000035 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000036 <ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000037 <li><a href="#t_classifications">Type Classifications</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000038 </ol>
39 </li>
Chris Lattner00950542001-06-06 20:29:01 +000040 <li><a href="#t_derived">Derived Types</a>
41 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000042 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000043 <li><a href="#t_function">Function Type</a></li>
44 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000045 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth75e10682006-12-08 17:13:00 +000046 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer485bad12007-02-15 03:07:05 +000047 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000048 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000049 </ol>
50 </li>
51 </ol>
52 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000053 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000054 <ol>
55 <li><a href="#simpleconstants">Simple Constants</a>
56 <li><a href="#aggregateconstants">Aggregate Constants</a>
57 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
58 <li><a href="#undefvalues">Undefined Values</a>
59 <li><a href="#constantexprs">Constant Expressions</a>
60 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000061 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000062 <li><a href="#othervalues">Other Values</a>
63 <ol>
64 <li><a href="#inlineasm">Inline Assembler Expressions</a>
65 </ol>
66 </li>
Chris Lattner00950542001-06-06 20:29:01 +000067 <li><a href="#instref">Instruction Reference</a>
68 <ol>
69 <li><a href="#terminators">Terminator Instructions</a>
70 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000071 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
72 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000073 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
74 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000075 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +000076 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000077 </ol>
78 </li>
Chris Lattner00950542001-06-06 20:29:01 +000079 <li><a href="#binaryops">Binary Operations</a>
80 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000081 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
82 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
83 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +000084 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
85 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
86 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +000087 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
88 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
89 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000090 </ol>
91 </li>
Chris Lattner00950542001-06-06 20:29:01 +000092 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
93 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +000094 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
95 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
96 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000097 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000098 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000099 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000100 </ol>
101 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000102 <li><a href="#vectorops">Vector Operations</a>
103 <ol>
104 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
105 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
106 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000107 </ol>
108 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000109 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000110 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000111 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
112 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
113 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000114 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
115 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
116 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000117 </ol>
118 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000119 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000120 <ol>
121 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
122 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
123 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
124 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
125 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000126 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
127 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
128 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
129 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000130 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
131 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000132 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000133 </ol>
Chris Lattner00950542001-06-06 20:29:01 +0000134 <li><a href="#otherops">Other Operations</a>
135 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000136 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
137 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000138 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000139 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000140 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000141 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000142 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000143 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000144 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000145 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000146 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000147 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000148 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
149 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000150 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
151 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
152 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000153 </ol>
154 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000155 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
156 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000157 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
158 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
159 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000160 </ol>
161 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000162 <li><a href="#int_codegen">Code Generator Intrinsics</a>
163 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000164 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
165 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
166 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
167 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
168 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
169 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
170 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000171 </ol>
172 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000173 <li><a href="#int_libc">Standard C Library Intrinsics</a>
174 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000175 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
176 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
177 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
178 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
179 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000180 </ol>
181 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000182 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000183 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000184 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000185 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
186 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
187 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Reid Spencerf86037f2007-04-11 23:23:49 +0000188 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
189 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000190 </ol>
191 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000192 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000193 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Chandler Carruth2eb93b32007-07-20 19:34:37 +0000194 <li><a href="#int_atomics">Atomic Operations and Synchronization Intrinsics</a>
195 <ol>
196 <li><a href="#int_lcs">'<tt>llvm.atomic.lcs.*</tt>' Intrinsic</a></li>
197 <li><a href="#int_ls">'<tt>llvm.atomic.ls.*</tt>' Intrinsic</a></li>
198 <li><a href="#int_las">'<tt>llvm.atomic.las.*</tt>' Intrinsic</a></li>
199 <li><a href="#int_lss">'<tt>llvm.atomic.lss.*</tt>' Intrinsic</a></li>
200 <li><a href="#int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a></li>
201 </ol>
202 </li>
Duncan Sands36397f52007-07-27 12:58:54 +0000203 <li><a href="#int_trampoline">Trampoline Intrinsics</a>
204 <ol>
205 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
206 <li><a href="#int_at">'<tt>llvm.adjust.trampoline</tt>' Intrinsic</a></li>
207 </ol>
208 </li>
Reid Spencer20677642007-07-20 19:59:11 +0000209 <li><a href="#int_general">General intrinsics</a>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000210 <ol>
Reid Spencer20677642007-07-20 19:59:11 +0000211 <li><a href="#int_var_annotation">
212 <tt>llvm.var.annotation</tt>' Intrinsic</a></li>
213 </ol>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000214 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000215 </ol>
216 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000217</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000218
219<div class="doc_author">
220 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
221 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000222</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000223
Chris Lattner00950542001-06-06 20:29:01 +0000224<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000225<div class="doc_section"> <a name="abstract">Abstract </a></div>
226<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000227
Misha Brukman9d0919f2003-11-08 01:05:38 +0000228<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000229<p>This document is a reference manual for the LLVM assembly language.
230LLVM is an SSA based representation that provides type safety,
231low-level operations, flexibility, and the capability of representing
232'all' high-level languages cleanly. It is the common code
233representation used throughout all phases of the LLVM compilation
234strategy.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000235</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000236
Chris Lattner00950542001-06-06 20:29:01 +0000237<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000238<div class="doc_section"> <a name="introduction">Introduction</a> </div>
239<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000240
Misha Brukman9d0919f2003-11-08 01:05:38 +0000241<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000242
Chris Lattner261efe92003-11-25 01:02:51 +0000243<p>The LLVM code representation is designed to be used in three
Gabor Greif04367bf2007-07-06 22:07:22 +0000244different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner261efe92003-11-25 01:02:51 +0000245representation (suitable for fast loading by a Just-In-Time compiler),
246and as a human readable assembly language representation. This allows
247LLVM to provide a powerful intermediate representation for efficient
248compiler transformations and analysis, while providing a natural means
249to debug and visualize the transformations. The three different forms
250of LLVM are all equivalent. This document describes the human readable
251representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000252
John Criswellc1f786c2005-05-13 22:25:59 +0000253<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner261efe92003-11-25 01:02:51 +0000254while being expressive, typed, and extensible at the same time. It
255aims to be a "universal IR" of sorts, by being at a low enough level
256that high-level ideas may be cleanly mapped to it (similar to how
257microprocessors are "universal IR's", allowing many source languages to
258be mapped to them). By providing type information, LLVM can be used as
259the target of optimizations: for example, through pointer analysis, it
260can be proven that a C automatic variable is never accessed outside of
261the current function... allowing it to be promoted to a simple SSA
262value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000263
Misha Brukman9d0919f2003-11-08 01:05:38 +0000264</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000265
Chris Lattner00950542001-06-06 20:29:01 +0000266<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000267<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000268
Misha Brukman9d0919f2003-11-08 01:05:38 +0000269<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000270
Chris Lattner261efe92003-11-25 01:02:51 +0000271<p>It is important to note that this document describes 'well formed'
272LLVM assembly language. There is a difference between what the parser
273accepts and what is considered 'well formed'. For example, the
274following instruction is syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000275
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000276<div class="doc_code">
Chris Lattnerd7923912004-05-23 21:06:01 +0000277<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000278%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000279</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000280</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000281
Chris Lattner261efe92003-11-25 01:02:51 +0000282<p>...because the definition of <tt>%x</tt> does not dominate all of
283its uses. The LLVM infrastructure provides a verification pass that may
284be used to verify that an LLVM module is well formed. This pass is
John Criswellc1f786c2005-05-13 22:25:59 +0000285automatically run by the parser after parsing input assembly and by
Gabor Greif04367bf2007-07-06 22:07:22 +0000286the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner261efe92003-11-25 01:02:51 +0000287by the verifier pass indicate bugs in transformation passes or input to
288the parser.</p>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000289</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000290
Reid Spencer20677642007-07-20 19:59:11 +0000291<!-- Describe the typesetting conventions here. -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000292
Chris Lattner00950542001-06-06 20:29:01 +0000293<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000294<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000295<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000296
Misha Brukman9d0919f2003-11-08 01:05:38 +0000297<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000298
Reid Spencer2c452282007-08-07 14:34:28 +0000299 <p>LLVM identifiers come in two basic types: global and local. Global
300 identifiers (functions, global variables) begin with the @ character. Local
301 identifiers (register names, types) begin with the % character. Additionally,
302 there are three different formats for identifiers, for different purposes:
Chris Lattnerd7923912004-05-23 21:06:01 +0000303
Chris Lattner00950542001-06-06 20:29:01 +0000304<ol>
Reid Spencer2c452282007-08-07 14:34:28 +0000305 <li>Named values are represented as a string of characters with their prefix.
306 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
307 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000308 Identifiers which require other characters in their names can be surrounded
Reid Spencer2c452282007-08-07 14:34:28 +0000309 with quotes. In this way, anything except a <tt>&quot;</tt> character can
310 be used in a named value.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000311
Reid Spencer2c452282007-08-07 14:34:28 +0000312 <li>Unnamed values are represented as an unsigned numeric value with their
313 prefix. For example, %12, @2, %44.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000314
Reid Spencercc16dc32004-12-09 18:02:53 +0000315 <li>Constants, which are described in a <a href="#constants">section about
316 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000317</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000318
Reid Spencer2c452282007-08-07 14:34:28 +0000319<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnere5d947b2004-12-09 16:36:40 +0000320don't need to worry about name clashes with reserved words, and the set of
321reserved words may be expanded in the future without penalty. Additionally,
322unnamed identifiers allow a compiler to quickly come up with a temporary
323variable without having to avoid symbol table conflicts.</p>
324
Chris Lattner261efe92003-11-25 01:02:51 +0000325<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5c0ef472006-11-11 23:08:07 +0000326languages. There are keywords for different opcodes
327('<tt><a href="#i_add">add</a></tt>',
328 '<tt><a href="#i_bitcast">bitcast</a></tt>',
329 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerca86e162006-12-31 07:07:53 +0000330href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnere5d947b2004-12-09 16:36:40 +0000331and others. These reserved words cannot conflict with variable names, because
Reid Spencer2c452282007-08-07 14:34:28 +0000332none of them start with a prefix character ('%' or '@').</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000333
334<p>Here is an example of LLVM code to multiply the integer variable
335'<tt>%X</tt>' by 8:</p>
336
Misha Brukman9d0919f2003-11-08 01:05:38 +0000337<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000338
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000339<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000340<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000341%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000342</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000343</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000344
Misha Brukman9d0919f2003-11-08 01:05:38 +0000345<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000346
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000347<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000348<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000349%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000350</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000351</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000352
Misha Brukman9d0919f2003-11-08 01:05:38 +0000353<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000354
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000355<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000356<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000357<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
358<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
359%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000360</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000361</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000362
Chris Lattner261efe92003-11-25 01:02:51 +0000363<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
364important lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000365
Chris Lattner00950542001-06-06 20:29:01 +0000366<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000367
368 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
369 line.</li>
370
371 <li>Unnamed temporaries are created when the result of a computation is not
372 assigned to a named value.</li>
373
Misha Brukman9d0919f2003-11-08 01:05:38 +0000374 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000375
Misha Brukman9d0919f2003-11-08 01:05:38 +0000376</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000377
John Criswelle4c57cc2005-05-12 16:52:32 +0000378<p>...and it also shows a convention that we follow in this document. When
Chris Lattnere5d947b2004-12-09 16:36:40 +0000379demonstrating instructions, we will follow an instruction with a comment that
380defines the type and name of value produced. Comments are shown in italic
381text.</p>
382
Misha Brukman9d0919f2003-11-08 01:05:38 +0000383</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000384
385<!-- *********************************************************************** -->
386<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
387<!-- *********************************************************************** -->
388
389<!-- ======================================================================= -->
390<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
391</div>
392
393<div class="doc_text">
394
395<p>LLVM programs are composed of "Module"s, each of which is a
396translation unit of the input programs. Each module consists of
397functions, global variables, and symbol table entries. Modules may be
398combined together with the LLVM linker, which merges function (and
399global variable) definitions, resolves forward declarations, and merges
400symbol table entries. Here is an example of the "hello world" module:</p>
401
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000402<div class="doc_code">
Chris Lattnerfa730212004-12-09 16:11:40 +0000403<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000404<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
405 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000406
407<i>; External declaration of the puts function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000408<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000409
410<i>; Definition of main function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000411define i32 @main() { <i>; i32()* </i>
Reid Spencerca86e162006-12-31 07:07:53 +0000412 <i>; Convert [13x i8 ]* to i8 *...</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000413 %cast210 = <a
Chris Lattner6c0955b2007-06-12 17:01:15 +0000414 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000415
416 <i>; Call puts function to write out the string to stdout...</i>
417 <a
Chris Lattnera89e5f12007-06-12 17:00:26 +0000418 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000419 <a
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000420 href="#i_ret">ret</a> i32 0<br>}<br>
421</pre>
422</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000423
424<p>This example is made up of a <a href="#globalvars">global variable</a>
425named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
426function, and a <a href="#functionstructure">function definition</a>
427for "<tt>main</tt>".</p>
428
Chris Lattnere5d947b2004-12-09 16:36:40 +0000429<p>In general, a module is made up of a list of global values,
430where both functions and global variables are global values. Global values are
431represented by a pointer to a memory location (in this case, a pointer to an
432array of char, and a pointer to a function), and have one of the following <a
433href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000434
Chris Lattnere5d947b2004-12-09 16:36:40 +0000435</div>
436
437<!-- ======================================================================= -->
438<div class="doc_subsection">
439 <a name="linkage">Linkage Types</a>
440</div>
441
442<div class="doc_text">
443
444<p>
445All Global Variables and Functions have one of the following types of linkage:
446</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000447
448<dl>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000449
Chris Lattnerfa730212004-12-09 16:11:40 +0000450 <dt><tt><b><a name="linkage_internal">internal</a></b></tt> </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000451
452 <dd>Global values with internal linkage are only directly accessible by
453 objects in the current module. In particular, linking code into a module with
454 an internal global value may cause the internal to be renamed as necessary to
455 avoid collisions. Because the symbol is internal to the module, all
456 references can be updated. This corresponds to the notion of the
Chris Lattner4887bd82007-01-14 06:51:48 +0000457 '<tt>static</tt>' keyword in C.
Chris Lattnerfa730212004-12-09 16:11:40 +0000458 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000459
Chris Lattnerfa730212004-12-09 16:11:40 +0000460 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000461
Chris Lattner4887bd82007-01-14 06:51:48 +0000462 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
463 the same name when linkage occurs. This is typically used to implement
464 inline functions, templates, or other code which must be generated in each
465 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
466 allowed to be discarded.
Chris Lattnerfa730212004-12-09 16:11:40 +0000467 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000468
Chris Lattnerfa730212004-12-09 16:11:40 +0000469 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000470
471 <dd>"<tt>weak</tt>" linkage is exactly the same as <tt>linkonce</tt> linkage,
472 except that unreferenced <tt>weak</tt> globals may not be discarded. This is
Chris Lattner4887bd82007-01-14 06:51:48 +0000473 used for globals that may be emitted in multiple translation units, but that
474 are not guaranteed to be emitted into every translation unit that uses them.
475 One example of this are common globals in C, such as "<tt>int X;</tt>" at
476 global scope.
Chris Lattnerfa730212004-12-09 16:11:40 +0000477 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000478
Chris Lattnerfa730212004-12-09 16:11:40 +0000479 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000480
481 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
482 pointer to array type. When two global variables with appending linkage are
483 linked together, the two global arrays are appended together. This is the
484 LLVM, typesafe, equivalent of having the system linker append together
485 "sections" with identical names when .o files are linked.
Chris Lattnerfa730212004-12-09 16:11:40 +0000486 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000487
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000488 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
489 <dd>The semantics of this linkage follow the ELF model: the symbol is weak
490 until linked, if not linked, the symbol becomes null instead of being an
491 undefined reference.
492 </dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000493
Chris Lattnerfa730212004-12-09 16:11:40 +0000494 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000495
496 <dd>If none of the above identifiers are used, the global is externally
497 visible, meaning that it participates in linkage and can be used to resolve
498 external symbol references.
Chris Lattnerfa730212004-12-09 16:11:40 +0000499 </dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000500</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000501
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000502 <p>
503 The next two types of linkage are targeted for Microsoft Windows platform
504 only. They are designed to support importing (exporting) symbols from (to)
505 DLLs.
506 </p>
507
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000508 <dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000509 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
510
511 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
512 or variable via a global pointer to a pointer that is set up by the DLL
513 exporting the symbol. On Microsoft Windows targets, the pointer name is
514 formed by combining <code>_imp__</code> and the function or variable name.
515 </dd>
516
517 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
518
519 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
520 pointer to a pointer in a DLL, so that it can be referenced with the
521 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
522 name is formed by combining <code>_imp__</code> and the function or variable
523 name.
524 </dd>
525
Chris Lattnerfa730212004-12-09 16:11:40 +0000526</dl>
527
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000528<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
Chris Lattnerfa730212004-12-09 16:11:40 +0000529variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
530variable and was linked with this one, one of the two would be renamed,
531preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
532external (i.e., lacking any linkage declarations), they are accessible
Reid Spencerac8d2762007-01-05 00:59:10 +0000533outside of the current module.</p>
534<p>It is illegal for a function <i>declaration</i>
535to have any linkage type other than "externally visible", <tt>dllimport</tt>,
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000536or <tt>extern_weak</tt>.</p>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000537<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
538linkages.
Chris Lattnerfa730212004-12-09 16:11:40 +0000539</div>
540
541<!-- ======================================================================= -->
542<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000543 <a name="callingconv">Calling Conventions</a>
544</div>
545
546<div class="doc_text">
547
548<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
549and <a href="#i_invoke">invokes</a> can all have an optional calling convention
550specified for the call. The calling convention of any pair of dynamic
551caller/callee must match, or the behavior of the program is undefined. The
552following calling conventions are supported by LLVM, and more may be added in
553the future:</p>
554
555<dl>
556 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
557
558 <dd>This calling convention (the default if no other calling convention is
559 specified) matches the target C calling conventions. This calling convention
John Criswelle4c57cc2005-05-12 16:52:32 +0000560 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencerc28d2bc2006-12-31 21:30:18 +0000561 prototype and implemented declaration of the function (as does normal C).
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000562 </dd>
563
564 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
565
566 <dd>This calling convention attempts to make calls as fast as possible
567 (e.g. by passing things in registers). This calling convention allows the
568 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattner8cdc5bc2005-05-06 23:08:23 +0000569 without having to conform to an externally specified ABI. Implementations of
570 this convention should allow arbitrary tail call optimization to be supported.
571 This calling convention does not support varargs and requires the prototype of
572 all callees to exactly match the prototype of the function definition.
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000573 </dd>
574
575 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
576
577 <dd>This calling convention attempts to make code in the caller as efficient
578 as possible under the assumption that the call is not commonly executed. As
579 such, these calls often preserve all registers so that the call does not break
580 any live ranges in the caller side. This calling convention does not support
581 varargs and requires the prototype of all callees to exactly match the
582 prototype of the function definition.
583 </dd>
584
Chris Lattnercfe6b372005-05-07 01:46:40 +0000585 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000586
587 <dd>Any calling convention may be specified by number, allowing
588 target-specific calling conventions to be used. Target specific calling
589 conventions start at 64.
590 </dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000591</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000592
593<p>More calling conventions can be added/defined on an as-needed basis, to
594support pascal conventions or any other well-known target-independent
595convention.</p>
596
597</div>
598
599<!-- ======================================================================= -->
600<div class="doc_subsection">
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000601 <a name="visibility">Visibility Styles</a>
602</div>
603
604<div class="doc_text">
605
606<p>
607All Global Variables and Functions have one of the following visibility styles:
608</p>
609
610<dl>
611 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
612
613 <dd>On ELF, default visibility means that the declaration is visible to other
614 modules and, in shared libraries, means that the declared entity may be
615 overridden. On Darwin, default visibility means that the declaration is
616 visible to other modules. Default visibility corresponds to "external
617 linkage" in the language.
618 </dd>
619
620 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
621
622 <dd>Two declarations of an object with hidden visibility refer to the same
623 object if they are in the same shared object. Usually, hidden visibility
624 indicates that the symbol will not be placed into the dynamic symbol table,
625 so no other module (executable or shared library) can reference it
626 directly.
627 </dd>
628
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000629 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
630
631 <dd>On ELF, protected visibility indicates that the symbol will be placed in
632 the dynamic symbol table, but that references within the defining module will
633 bind to the local symbol. That is, the symbol cannot be overridden by another
634 module.
635 </dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000636</dl>
637
638</div>
639
640<!-- ======================================================================= -->
641<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000642 <a name="globalvars">Global Variables</a>
643</div>
644
645<div class="doc_text">
646
Chris Lattner3689a342005-02-12 19:30:21 +0000647<p>Global variables define regions of memory allocated at compilation time
Chris Lattner88f6c462005-11-12 00:45:07 +0000648instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000649an explicit section to be placed in, and may have an optional explicit alignment
650specified. A variable may be defined as "thread_local", which means that it
651will not be shared by threads (each thread will have a separated copy of the
652variable). A variable may be defined as a global "constant," which indicates
653that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner3689a342005-02-12 19:30:21 +0000654optimization, allowing the global data to be placed in the read-only section of
655an executable, etc). Note that variables that need runtime initialization
John Criswell0ec250c2005-10-24 16:17:18 +0000656cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000657
658<p>
659LLVM explicitly allows <em>declarations</em> of global variables to be marked
660constant, even if the final definition of the global is not. This capability
661can be used to enable slightly better optimization of the program, but requires
662the language definition to guarantee that optimizations based on the
663'constantness' are valid for the translation units that do not include the
664definition.
665</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000666
667<p>As SSA values, global variables define pointer values that are in
668scope (i.e. they dominate) all basic blocks in the program. Global
669variables always define a pointer to their "content" type because they
670describe a region of memory, and all memory objects in LLVM are
671accessed through pointers.</p>
672
Chris Lattner88f6c462005-11-12 00:45:07 +0000673<p>LLVM allows an explicit section to be specified for globals. If the target
674supports it, it will emit globals to the section specified.</p>
675
Chris Lattner2cbdc452005-11-06 08:02:57 +0000676<p>An explicit alignment may be specified for a global. If not present, or if
677the alignment is set to zero, the alignment of the global is set by the target
678to whatever it feels convenient. If an explicit alignment is specified, the
679global is forced to have at least that much alignment. All alignments must be
680a power of 2.</p>
681
Chris Lattner68027ea2007-01-14 00:27:09 +0000682<p>For example, the following defines a global with an initializer, section,
683 and alignment:</p>
684
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000685<div class="doc_code">
Chris Lattner68027ea2007-01-14 00:27:09 +0000686<pre>
Chris Lattner3e63a9d2007-07-13 20:01:46 +0000687@G = constant float 1.0, section "foo", align 4
Chris Lattner68027ea2007-01-14 00:27:09 +0000688</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000689</div>
Chris Lattner68027ea2007-01-14 00:27:09 +0000690
Chris Lattnerfa730212004-12-09 16:11:40 +0000691</div>
692
693
694<!-- ======================================================================= -->
695<div class="doc_subsection">
696 <a name="functionstructure">Functions</a>
697</div>
698
699<div class="doc_text">
700
Reid Spencerca86e162006-12-31 07:07:53 +0000701<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
702an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000703<a href="#visibility">visibility style</a>, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000704<a href="#callingconv">calling convention</a>, a return type, an optional
705<a href="#paramattrs">parameter attribute</a> for the return type, a function
706name, a (possibly empty) argument list (each with optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000707<a href="#paramattrs">parameter attributes</a>), an optional section, an
708optional alignment, an opening curly brace, a list of basic blocks, and a
709closing curly brace.
710
711LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
712optional <a href="#linkage">linkage type</a>, an optional
713<a href="#visibility">visibility style</a>, an optional
714<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000715<a href="#paramattrs">parameter attribute</a> for the return type, a function
716name, a possibly empty list of arguments, and an optional alignment.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000717
718<p>A function definition contains a list of basic blocks, forming the CFG for
719the function. Each basic block may optionally start with a label (giving the
720basic block a symbol table entry), contains a list of instructions, and ends
721with a <a href="#terminators">terminator</a> instruction (such as a branch or
722function return).</p>
723
Chris Lattner4a3c9012007-06-08 16:52:14 +0000724<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattnerfa730212004-12-09 16:11:40 +0000725executed on entrance to the function, and it is not allowed to have predecessor
726basic blocks (i.e. there can not be any branches to the entry block of a
727function). Because the block can have no predecessors, it also cannot have any
728<a href="#i_phi">PHI nodes</a>.</p>
729
Chris Lattner88f6c462005-11-12 00:45:07 +0000730<p>LLVM allows an explicit section to be specified for functions. If the target
731supports it, it will emit functions to the section specified.</p>
732
Chris Lattner2cbdc452005-11-06 08:02:57 +0000733<p>An explicit alignment may be specified for a function. If not present, or if
734the alignment is set to zero, the alignment of the function is set by the target
735to whatever it feels convenient. If an explicit alignment is specified, the
736function is forced to have at least that much alignment. All alignments must be
737a power of 2.</p>
738
Chris Lattnerfa730212004-12-09 16:11:40 +0000739</div>
740
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000741
742<!-- ======================================================================= -->
743<div class="doc_subsection">
744 <a name="aliasstructure">Aliases</a>
745</div>
746<div class="doc_text">
747 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikova80e1182007-04-28 13:45:00 +0000748 function or global variable or bitcast of global value). Aliases may have an
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000749 optional <a href="#linkage">linkage type</a>, and an
750 optional <a href="#visibility">visibility style</a>.</p>
751
752 <h5>Syntax:</h5>
753
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000754<div class="doc_code">
Bill Wendlingaac388b2007-05-29 09:42:13 +0000755<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000756@&lt;Name&gt; = [Linkage] [Visibility] alias &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendlingaac388b2007-05-29 09:42:13 +0000757</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000758</div>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000759
760</div>
761
762
763
Chris Lattner4e9aba72006-01-23 23:23:47 +0000764<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000765<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
766<div class="doc_text">
767 <p>The return type and each parameter of a function type may have a set of
768 <i>parameter attributes</i> associated with them. Parameter attributes are
769 used to communicate additional information about the result or parameters of
770 a function. Parameter attributes are considered to be part of the function
771 type so two functions types that differ only by the parameter attributes
772 are different function types.</p>
773
Reid Spencer950e9f82007-01-15 18:27:39 +0000774 <p>Parameter attributes are simple keywords that follow the type specified. If
775 multiple parameter attributes are needed, they are space separated. For
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000776 example:</p>
777
778<div class="doc_code">
779<pre>
Reid Spencer9445e9a2007-07-19 23:13:04 +0000780%someFunc = i16 (i8 signext %someParam) zeroext
781%someFunc = i16 (i8 zeroext %someParam) zeroext
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000782</pre>
783</div>
784
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000785 <p>Note that the two function types above are unique because the parameter has
Reid Spencer9445e9a2007-07-19 23:13:04 +0000786 a different attribute (<tt>signext</tt> in the first one, <tt>zeroext</tt> in
787 the second). Also note that the attribute for the function result
788 (<tt>zeroext</tt>) comes immediately after the argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000789
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000790 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000791 <dl>
Reid Spencer9445e9a2007-07-19 23:13:04 +0000792 <dt><tt>zeroext</tt></dt>
Reid Spencerca86e162006-12-31 07:07:53 +0000793 <dd>This indicates that the parameter should be zero extended just before
794 a call to this function.</dd>
Reid Spencer9445e9a2007-07-19 23:13:04 +0000795 <dt><tt>signext</tt></dt>
Reid Spencerca86e162006-12-31 07:07:53 +0000796 <dd>This indicates that the parameter should be sign extended just before
797 a call to this function.</dd>
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000798 <dt><tt>inreg</tt></dt>
799 <dd>This indicates that the parameter should be placed in register (if
Anton Korobeynikov66a8c8c2007-01-28 15:27:21 +0000800 possible) during assembling function call. Support for this attribute is
801 target-specific</dd>
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000802 <dt><tt>sret</tt></dt>
Anton Korobeynikov66a8c8c2007-01-28 15:27:21 +0000803 <dd>This indicates that the parameter specifies the address of a structure
Reid Spencer67606122007-03-22 02:02:11 +0000804 that is the return value of the function in the source program.</dd>
Zhou Shengfebca342007-06-05 05:28:26 +0000805 <dt><tt>noalias</tt></dt>
806 <dd>This indicates that the parameter not alias any other object or any
807 other "noalias" objects during the function call.
Reid Spencer2dc52012007-03-22 02:18:56 +0000808 <dt><tt>noreturn</tt></dt>
809 <dd>This function attribute indicates that the function never returns. This
810 indicates to LLVM that every call to this function should be treated as if
811 an <tt>unreachable</tt> instruction immediately followed the call.</dd>
Reid Spencer67606122007-03-22 02:02:11 +0000812 <dt><tt>nounwind</tt></dt>
813 <dd>This function attribute indicates that the function type does not use
814 the unwind instruction and does not allow stack unwinding to propagate
815 through it.</dd>
Duncan Sands50f19f52007-07-27 19:57:41 +0000816 <dt><tt>nest</tt></dt>
817 <dd>This indicates that the parameter can be excised using the
818 <a href="#int_trampoline">trampoline intrinsics</a>.</dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000819 </dl>
Reid Spencerca86e162006-12-31 07:07:53 +0000820
Reid Spencerca86e162006-12-31 07:07:53 +0000821</div>
822
823<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +0000824<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +0000825 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +0000826</div>
827
828<div class="doc_text">
829<p>
830Modules may contain "module-level inline asm" blocks, which corresponds to the
831GCC "file scope inline asm" blocks. These blocks are internally concatenated by
832LLVM and treated as a single unit, but may be separated in the .ll file if
833desired. The syntax is very simple:
834</p>
835
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000836<div class="doc_code">
837<pre>
838module asm "inline asm code goes here"
839module asm "more can go here"
840</pre>
841</div>
Chris Lattner4e9aba72006-01-23 23:23:47 +0000842
843<p>The strings can contain any character by escaping non-printable characters.
844 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
845 for the number.
846</p>
847
848<p>
849 The inline asm code is simply printed to the machine code .s file when
850 assembly code is generated.
851</p>
852</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000853
Reid Spencerde151942007-02-19 23:54:10 +0000854<!-- ======================================================================= -->
855<div class="doc_subsection">
856 <a name="datalayout">Data Layout</a>
857</div>
858
859<div class="doc_text">
860<p>A module may specify a target specific data layout string that specifies how
Reid Spencerc8910842007-04-11 23:49:50 +0000861data is to be laid out in memory. The syntax for the data layout is simply:</p>
862<pre> target datalayout = "<i>layout specification</i>"</pre>
863<p>The <i>layout specification</i> consists of a list of specifications
864separated by the minus sign character ('-'). Each specification starts with a
865letter and may include other information after the letter to define some
866aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencerde151942007-02-19 23:54:10 +0000867<dl>
868 <dt><tt>E</tt></dt>
869 <dd>Specifies that the target lays out data in big-endian form. That is, the
870 bits with the most significance have the lowest address location.</dd>
871 <dt><tt>e</tt></dt>
872 <dd>Specifies that hte target lays out data in little-endian form. That is,
873 the bits with the least significance have the lowest address location.</dd>
874 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
875 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
876 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
877 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
878 too.</dd>
879 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
880 <dd>This specifies the alignment for an integer type of a given bit
881 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
882 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
883 <dd>This specifies the alignment for a vector type of a given bit
884 <i>size</i>.</dd>
885 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
886 <dd>This specifies the alignment for a floating point type of a given bit
887 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
888 (double).</dd>
889 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
890 <dd>This specifies the alignment for an aggregate type of a given bit
891 <i>size</i>.</dd>
892</dl>
893<p>When constructing the data layout for a given target, LLVM starts with a
894default set of specifications which are then (possibly) overriden by the
895specifications in the <tt>datalayout</tt> keyword. The default specifications
896are given in this list:</p>
897<ul>
898 <li><tt>E</tt> - big endian</li>
899 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
900 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
901 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
902 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
903 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
904 <li><tt>i64:32:64</tt> - i64 has abi alignment of 32-bits but preferred
905 alignment of 64-bits</li>
906 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
907 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
908 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
909 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
910 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
911</ul>
912<p>When llvm is determining the alignment for a given type, it uses the
913following rules:
914<ol>
915 <li>If the type sought is an exact match for one of the specifications, that
916 specification is used.</li>
917 <li>If no match is found, and the type sought is an integer type, then the
918 smallest integer type that is larger than the bitwidth of the sought type is
919 used. If none of the specifications are larger than the bitwidth then the the
920 largest integer type is used. For example, given the default specifications
921 above, the i7 type will use the alignment of i8 (next largest) while both
922 i65 and i256 will use the alignment of i64 (largest specified).</li>
923 <li>If no match is found, and the type sought is a vector type, then the
924 largest vector type that is smaller than the sought vector type will be used
925 as a fall back. This happens because <128 x double> can be implemented in
926 terms of 64 <2 x double>, for example.</li>
927</ol>
928</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000929
Chris Lattner00950542001-06-06 20:29:01 +0000930<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000931<div class="doc_section"> <a name="typesystem">Type System</a> </div>
932<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +0000933
Misha Brukman9d0919f2003-11-08 01:05:38 +0000934<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +0000935
Misha Brukman9d0919f2003-11-08 01:05:38 +0000936<p>The LLVM type system is one of the most important features of the
Chris Lattner261efe92003-11-25 01:02:51 +0000937intermediate representation. Being typed enables a number of
938optimizations to be performed on the IR directly, without having to do
939extra analyses on the side before the transformation. A strong type
940system makes it easier to read the generated code and enables novel
941analyses and transformations that are not feasible to perform on normal
942three address code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000943
944</div>
945
Chris Lattner00950542001-06-06 20:29:01 +0000946<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +0000947<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000948<div class="doc_text">
John Criswell4457dc92004-04-09 16:48:45 +0000949<p>The primitive types are the fundamental building blocks of the LLVM
Chris Lattnerd4f6b172005-03-07 22:13:59 +0000950system. The current set of primitive types is as follows:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +0000951
Reid Spencerd3f876c2004-11-01 08:19:36 +0000952<table class="layout">
953 <tr class="layout">
954 <td class="left">
955 <table>
Chris Lattner261efe92003-11-25 01:02:51 +0000956 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000957 <tr><th>Type</th><th>Description</th></tr>
Duncan Sands8036ca42007-03-30 12:22:09 +0000958 <tr><td><tt><a name="t_void">void</a></tt></td><td>No value</td></tr>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000959 <tr><td><tt>label</tt></td><td>Branch destination</td></tr>
Chris Lattner261efe92003-11-25 01:02:51 +0000960 </tbody>
961 </table>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000962 </td>
963 <td class="right">
964 <table>
Chris Lattner261efe92003-11-25 01:02:51 +0000965 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000966 <tr><th>Type</th><th>Description</th></tr>
Reid Spencer2b916312007-05-16 18:44:01 +0000967 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
Reid Spencerca86e162006-12-31 07:07:53 +0000968 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
Chris Lattner261efe92003-11-25 01:02:51 +0000969 </tbody>
970 </table>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000971 </td>
972 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000973</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000974</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000975
Chris Lattner00950542001-06-06 20:29:01 +0000976<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000977<div class="doc_subsubsection"> <a name="t_classifications">Type
978Classifications</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000979<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000980<p>These different primitive types fall into a few useful
981classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +0000982
983<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +0000984 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000985 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +0000986 <tr>
Chris Lattner261efe92003-11-25 01:02:51 +0000987 <td><a name="t_integer">integer</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +0000988 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +0000989 </tr>
990 <tr>
991 <td><a name="t_floating">floating point</a></td>
992 <td><tt>float, double</tt></td>
993 </tr>
994 <tr>
995 <td><a name="t_firstclass">first class</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +0000996 <td><tt>i1, ..., float, double, <br/>
Reid Spencer485bad12007-02-15 03:07:05 +0000997 <a href="#t_pointer">pointer</a>,<a href="#t_vector">vector</a></tt>
Reid Spencerca86e162006-12-31 07:07:53 +0000998 </td>
Chris Lattner261efe92003-11-25 01:02:51 +0000999 </tr>
1000 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001001</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001002
Chris Lattner261efe92003-11-25 01:02:51 +00001003<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1004most important. Values of these types are the only ones which can be
1005produced by instructions, passed as arguments, or used as operands to
1006instructions. This means that all structures and arrays must be
1007manipulated either by pointer or by component.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001008</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001009
Chris Lattner00950542001-06-06 20:29:01 +00001010<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001011<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001012
Misha Brukman9d0919f2003-11-08 01:05:38 +00001013<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001014
Chris Lattner261efe92003-11-25 01:02:51 +00001015<p>The real power in LLVM comes from the derived types in the system.
1016This is what allows a programmer to represent arrays, functions,
1017pointers, and other useful types. Note that these derived types may be
1018recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001019
Misha Brukman9d0919f2003-11-08 01:05:38 +00001020</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001021
Chris Lattner00950542001-06-06 20:29:01 +00001022<!-- _______________________________________________________________________ -->
Reid Spencer2b916312007-05-16 18:44:01 +00001023<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1024
1025<div class="doc_text">
1026
1027<h5>Overview:</h5>
1028<p>The integer type is a very simple derived type that simply specifies an
1029arbitrary bit width for the integer type desired. Any bit width from 1 bit to
10302^23-1 (about 8 million) can be specified.</p>
1031
1032<h5>Syntax:</h5>
1033
1034<pre>
1035 iN
1036</pre>
1037
1038<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1039value.</p>
1040
1041<h5>Examples:</h5>
1042<table class="layout">
1043 <tr class="layout">
1044 <td class="left">
1045 <tt>i1</tt><br/>
1046 <tt>i4</tt><br/>
1047 <tt>i8</tt><br/>
1048 <tt>i16</tt><br/>
1049 <tt>i32</tt><br/>
1050 <tt>i42</tt><br/>
1051 <tt>i64</tt><br/>
1052 <tt>i1942652</tt><br/>
1053 </td>
1054 <td class="left">
1055 A boolean integer of 1 bit<br/>
1056 A nibble sized integer of 4 bits.<br/>
1057 A byte sized integer of 8 bits.<br/>
1058 A half word sized integer of 16 bits.<br/>
1059 A word sized integer of 32 bits.<br/>
1060 An integer whose bit width is the answer. <br/>
1061 A double word sized integer of 64 bits.<br/>
1062 A really big integer of over 1 million bits.<br/>
1063 </td>
1064 </tr>
1065</table>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001066</div>
Reid Spencer2b916312007-05-16 18:44:01 +00001067
1068<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001069<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001070
Misha Brukman9d0919f2003-11-08 01:05:38 +00001071<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001072
Chris Lattner00950542001-06-06 20:29:01 +00001073<h5>Overview:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001074
Misha Brukman9d0919f2003-11-08 01:05:38 +00001075<p>The array type is a very simple derived type that arranges elements
Chris Lattner261efe92003-11-25 01:02:51 +00001076sequentially in memory. The array type requires a size (number of
1077elements) and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001078
Chris Lattner7faa8832002-04-14 06:13:44 +00001079<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001080
1081<pre>
1082 [&lt;# elements&gt; x &lt;elementtype&gt;]
1083</pre>
1084
John Criswelle4c57cc2005-05-12 16:52:32 +00001085<p>The number of elements is a constant integer value; elementtype may
Chris Lattner261efe92003-11-25 01:02:51 +00001086be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001087
Chris Lattner7faa8832002-04-14 06:13:44 +00001088<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001089<table class="layout">
1090 <tr class="layout">
1091 <td class="left">
Reid Spencerca86e162006-12-31 07:07:53 +00001092 <tt>[40 x i32 ]</tt><br/>
1093 <tt>[41 x i32 ]</tt><br/>
Reid Spencera5173382007-01-04 16:43:23 +00001094 <tt>[40 x i8]</tt><br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001095 </td>
1096 <td class="left">
Reid Spencera5173382007-01-04 16:43:23 +00001097 Array of 40 32-bit integer values.<br/>
1098 Array of 41 32-bit integer values.<br/>
1099 Array of 40 8-bit integer values.<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001100 </td>
1101 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001102</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001103<p>Here are some examples of multidimensional arrays:</p>
1104<table class="layout">
1105 <tr class="layout">
1106 <td class="left">
Reid Spencerca86e162006-12-31 07:07:53 +00001107 <tt>[3 x [4 x i32]]</tt><br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001108 <tt>[12 x [10 x float]]</tt><br/>
Reid Spencera5173382007-01-04 16:43:23 +00001109 <tt>[2 x [3 x [4 x i16]]]</tt><br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001110 </td>
1111 <td class="left">
Reid Spencera5173382007-01-04 16:43:23 +00001112 3x4 array of 32-bit integer values.<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001113 12x10 array of single precision floating point values.<br/>
Reid Spencera5173382007-01-04 16:43:23 +00001114 2x3x4 array of 16-bit integer values.<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001115 </td>
1116 </tr>
1117</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001118
John Criswell0ec250c2005-10-24 16:17:18 +00001119<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1120length array. Normally, accesses past the end of an array are undefined in
Chris Lattnere67a9512005-06-24 17:22:57 +00001121LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1122As a special case, however, zero length arrays are recognized to be variable
1123length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerca86e162006-12-31 07:07:53 +00001124type "{ i32, [0 x float]}", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001125
Misha Brukman9d0919f2003-11-08 01:05:38 +00001126</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001127
Chris Lattner00950542001-06-06 20:29:01 +00001128<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001129<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001130<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001131<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001132<p>The function type can be thought of as a function signature. It
1133consists of a return type and a list of formal parameter types.
John Criswell009900b2003-11-25 21:45:46 +00001134Function types are usually used to build virtual function tables
Chris Lattner261efe92003-11-25 01:02:51 +00001135(which are structures of pointers to functions), for indirect function
1136calls, and when defining a function.</p>
John Criswell009900b2003-11-25 21:45:46 +00001137<p>
1138The return type of a function type cannot be an aggregate type.
1139</p>
Chris Lattner00950542001-06-06 20:29:01 +00001140<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001141<pre> &lt;returntype&gt; (&lt;parameter list&gt;)<br></pre>
John Criswell0ec250c2005-10-24 16:17:18 +00001142<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukmanc24b7582004-08-12 20:16:08 +00001143specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner27f71f22003-09-03 00:41:47 +00001144which indicates that the function takes a variable number of arguments.
1145Variable argument functions can access their arguments with the <a
Chris Lattner261efe92003-11-25 01:02:51 +00001146 href="#int_varargs">variable argument handling intrinsic</a> functions.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001147<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001148<table class="layout">
1149 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001150 <td class="left"><tt>i32 (i32)</tt></td>
1151 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001152 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001153 </tr><tr class="layout">
Reid Spencer9445e9a2007-07-19 23:13:04 +00001154 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001155 </tt></td>
Reid Spencer92f82302006-12-31 07:18:34 +00001156 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1157 an <tt>i16</tt> that should be sign extended and a
Reid Spencerca86e162006-12-31 07:07:53 +00001158 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer92f82302006-12-31 07:18:34 +00001159 <tt>float</tt>.
1160 </td>
1161 </tr><tr class="layout">
1162 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1163 <td class="left">A vararg function that takes at least one
Reid Spencera5173382007-01-04 16:43:23 +00001164 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer92f82302006-12-31 07:18:34 +00001165 which returns an integer. This is the signature for <tt>printf</tt> in
1166 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001167 </td>
1168 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001169</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001170
Misha Brukman9d0919f2003-11-08 01:05:38 +00001171</div>
Chris Lattner00950542001-06-06 20:29:01 +00001172<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001173<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001174<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001175<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001176<p>The structure type is used to represent a collection of data members
1177together in memory. The packing of the field types is defined to match
1178the ABI of the underlying processor. The elements of a structure may
1179be any type that has a size.</p>
1180<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1181and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1182field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1183instruction.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001184<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001185<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner00950542001-06-06 20:29:01 +00001186<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001187<table class="layout">
1188 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001189 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1190 <td class="left">A triple of three <tt>i32</tt> values</td>
1191 </tr><tr class="layout">
1192 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1193 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1194 second element is a <a href="#t_pointer">pointer</a> to a
1195 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1196 an <tt>i32</tt>.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001197 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001198</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001199</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001200
Chris Lattner00950542001-06-06 20:29:01 +00001201<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +00001202<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1203</div>
1204<div class="doc_text">
1205<h5>Overview:</h5>
1206<p>The packed structure type is used to represent a collection of data members
1207together in memory. There is no padding between fields. Further, the alignment
1208of a packed structure is 1 byte. The elements of a packed structure may
1209be any type that has a size.</p>
1210<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1211and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1212field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1213instruction.</p>
1214<h5>Syntax:</h5>
1215<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1216<h5>Examples:</h5>
1217<table class="layout">
1218 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001219 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1220 <td class="left">A triple of three <tt>i32</tt> values</td>
1221 </tr><tr class="layout">
1222 <td class="left"><tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}&nbsp;&gt;</tt></td>
1223 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1224 second element is a <a href="#t_pointer">pointer</a> to a
1225 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1226 an <tt>i32</tt>.</td>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001227 </tr>
1228</table>
1229</div>
1230
1231<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001232<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001233<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00001234<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001235<p>As in many languages, the pointer type represents a pointer or
1236reference to another object, which must live in memory.</p>
Chris Lattner7faa8832002-04-14 06:13:44 +00001237<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001238<pre> &lt;type&gt; *<br></pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001239<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001240<table class="layout">
1241 <tr class="layout">
1242 <td class="left">
Reid Spencerca86e162006-12-31 07:07:53 +00001243 <tt>[4x i32]*</tt><br/>
1244 <tt>i32 (i32 *) *</tt><br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001245 </td>
1246 <td class="left">
1247 A <a href="#t_pointer">pointer</a> to <a href="#t_array">array</a> of
Reid Spencerca86e162006-12-31 07:07:53 +00001248 four <tt>i32</tt> values<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001249 A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001250 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
1251 <tt>i32</tt>.<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001252 </td>
1253 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001254</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001255</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001256
Chris Lattnera58561b2004-08-12 19:12:28 +00001257<!-- _______________________________________________________________________ -->
Reid Spencer485bad12007-02-15 03:07:05 +00001258<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001259<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001260
Chris Lattnera58561b2004-08-12 19:12:28 +00001261<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001262
Reid Spencer485bad12007-02-15 03:07:05 +00001263<p>A vector type is a simple derived type that represents a vector
1264of elements. Vector types are used when multiple primitive data
Chris Lattnera58561b2004-08-12 19:12:28 +00001265are operated in parallel using a single instruction (SIMD).
Reid Spencer485bad12007-02-15 03:07:05 +00001266A vector type requires a size (number of
Chris Lattnerb8d172f2005-11-10 01:44:22 +00001267elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer485bad12007-02-15 03:07:05 +00001268of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnera58561b2004-08-12 19:12:28 +00001269considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001270
Chris Lattnera58561b2004-08-12 19:12:28 +00001271<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001272
1273<pre>
1274 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1275</pre>
1276
John Criswellc1f786c2005-05-13 22:25:59 +00001277<p>The number of elements is a constant integer value; elementtype may
Chris Lattner3b19d652007-01-15 01:54:13 +00001278be any integer or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001279
Chris Lattnera58561b2004-08-12 19:12:28 +00001280<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001281
Reid Spencerd3f876c2004-11-01 08:19:36 +00001282<table class="layout">
1283 <tr class="layout">
1284 <td class="left">
Reid Spencerca86e162006-12-31 07:07:53 +00001285 <tt>&lt;4 x i32&gt;</tt><br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001286 <tt>&lt;8 x float&gt;</tt><br/>
Reid Spencera5173382007-01-04 16:43:23 +00001287 <tt>&lt;2 x i64&gt;</tt><br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001288 </td>
1289 <td class="left">
Reid Spencer485bad12007-02-15 03:07:05 +00001290 Vector of 4 32-bit integer values.<br/>
1291 Vector of 8 floating-point values.<br/>
1292 Vector of 2 64-bit integer values.<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001293 </td>
1294 </tr>
1295</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001296</div>
1297
Chris Lattner69c11bb2005-04-25 17:34:15 +00001298<!-- _______________________________________________________________________ -->
1299<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1300<div class="doc_text">
1301
1302<h5>Overview:</h5>
1303
1304<p>Opaque types are used to represent unknown types in the system. This
1305corresponds (for example) to the C notion of a foward declared structure type.
1306In LLVM, opaque types can eventually be resolved to any type (not just a
1307structure type).</p>
1308
1309<h5>Syntax:</h5>
1310
1311<pre>
1312 opaque
1313</pre>
1314
1315<h5>Examples:</h5>
1316
1317<table class="layout">
1318 <tr class="layout">
1319 <td class="left">
1320 <tt>opaque</tt>
1321 </td>
1322 <td class="left">
1323 An opaque type.<br/>
1324 </td>
1325 </tr>
1326</table>
1327</div>
1328
1329
Chris Lattnerc3f59762004-12-09 17:30:23 +00001330<!-- *********************************************************************** -->
1331<div class="doc_section"> <a name="constants">Constants</a> </div>
1332<!-- *********************************************************************** -->
1333
1334<div class="doc_text">
1335
1336<p>LLVM has several different basic types of constants. This section describes
1337them all and their syntax.</p>
1338
1339</div>
1340
1341<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001342<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001343
1344<div class="doc_text">
1345
1346<dl>
1347 <dt><b>Boolean constants</b></dt>
1348
1349 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencerc78f3372007-01-12 03:35:51 +00001350 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattnerc3f59762004-12-09 17:30:23 +00001351 </dd>
1352
1353 <dt><b>Integer constants</b></dt>
1354
Reid Spencercc16dc32004-12-09 18:02:53 +00001355 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencera5173382007-01-04 16:43:23 +00001356 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattnerc3f59762004-12-09 17:30:23 +00001357 integer types.
1358 </dd>
1359
1360 <dt><b>Floating point constants</b></dt>
1361
1362 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1363 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnerc3f59762004-12-09 17:30:23 +00001364 notation (see below). Floating point constants must have a <a
1365 href="#t_floating">floating point</a> type. </dd>
1366
1367 <dt><b>Null pointer constants</b></dt>
1368
John Criswell9e2485c2004-12-10 15:51:16 +00001369 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattnerc3f59762004-12-09 17:30:23 +00001370 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1371
1372</dl>
1373
John Criswell9e2485c2004-12-10 15:51:16 +00001374<p>The one non-intuitive notation for constants is the optional hexadecimal form
Chris Lattnerc3f59762004-12-09 17:30:23 +00001375of floating point constants. For example, the form '<tt>double
13760x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
13774.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencercc16dc32004-12-09 18:02:53 +00001378(and the only time that they are generated by the disassembler) is when a
1379floating point constant must be emitted but it cannot be represented as a
1380decimal floating point number. For example, NaN's, infinities, and other
1381special values are represented in their IEEE hexadecimal format so that
1382assembly and disassembly do not cause any bits to change in the constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001383
1384</div>
1385
1386<!-- ======================================================================= -->
1387<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1388</div>
1389
1390<div class="doc_text">
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001391<p>Aggregate constants arise from aggregation of simple constants
1392and smaller aggregate constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001393
1394<dl>
1395 <dt><b>Structure constants</b></dt>
1396
1397 <dd>Structure constants are represented with notation similar to structure
1398 type definitions (a comma separated list of elements, surrounded by braces
Reid Spencerca86e162006-12-31 07:07:53 +00001399 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* %G }</tt>",
Chris Lattner3e63a9d2007-07-13 20:01:46 +00001400 where "<tt>%G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001401 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattnerc3f59762004-12-09 17:30:23 +00001402 types of elements must match those specified by the type.
1403 </dd>
1404
1405 <dt><b>Array constants</b></dt>
1406
1407 <dd>Array constants are represented with notation similar to array type
1408 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerca86e162006-12-31 07:07:53 +00001409 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattnerc3f59762004-12-09 17:30:23 +00001410 constants must have <a href="#t_array">array type</a>, and the number and
1411 types of elements must match those specified by the type.
1412 </dd>
1413
Reid Spencer485bad12007-02-15 03:07:05 +00001414 <dt><b>Vector constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001415
Reid Spencer485bad12007-02-15 03:07:05 +00001416 <dd>Vector constants are represented with notation similar to vector type
Chris Lattnerc3f59762004-12-09 17:30:23 +00001417 definitions (a comma separated list of elements, surrounded by
Reid Spencerca86e162006-12-31 07:07:53 +00001418 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001419 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer485bad12007-02-15 03:07:05 +00001420 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattnerc3f59762004-12-09 17:30:23 +00001421 match those specified by the type.
1422 </dd>
1423
1424 <dt><b>Zero initialization</b></dt>
1425
1426 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1427 value to zero of <em>any</em> type, including scalar and aggregate types.
1428 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell0ec250c2005-10-24 16:17:18 +00001429 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattnerc3f59762004-12-09 17:30:23 +00001430 initializers.
1431 </dd>
1432</dl>
1433
1434</div>
1435
1436<!-- ======================================================================= -->
1437<div class="doc_subsection">
1438 <a name="globalconstants">Global Variable and Function Addresses</a>
1439</div>
1440
1441<div class="doc_text">
1442
1443<p>The addresses of <a href="#globalvars">global variables</a> and <a
1444href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswell9e2485c2004-12-10 15:51:16 +00001445constants. These constants are explicitly referenced when the <a
1446href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001447href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1448file:</p>
1449
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001450<div class="doc_code">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001451<pre>
Chris Lattnera18a4242007-06-06 18:28:13 +00001452@X = global i32 17
1453@Y = global i32 42
1454@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00001455</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001456</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001457
1458</div>
1459
1460<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001461<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001462<div class="doc_text">
Reid Spencer2dc45b82004-12-09 18:13:12 +00001463 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswellc1f786c2005-05-13 22:25:59 +00001464 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer2dc45b82004-12-09 18:13:12 +00001465 a constant is permitted.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001466
Reid Spencer2dc45b82004-12-09 18:13:12 +00001467 <p>Undefined values indicate to the compiler that the program is well defined
1468 no matter what value is used, giving the compiler more freedom to optimize.
1469 </p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001470</div>
1471
1472<!-- ======================================================================= -->
1473<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1474</div>
1475
1476<div class="doc_text">
1477
1478<p>Constant expressions are used to allow expressions involving other constants
1479to be used as constants. Constant expressions may be of any <a
John Criswellc1f786c2005-05-13 22:25:59 +00001480href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattnerc3f59762004-12-09 17:30:23 +00001481that does not have side effects (e.g. load and call are not supported). The
1482following is the syntax for constant expressions:</p>
1483
1484<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001485 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1486 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattner3b19d652007-01-15 01:54:13 +00001487 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001488
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001489 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1490 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001491 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001492
1493 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1494 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001495 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001496
1497 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1498 <dd>Truncate a floating point constant to another floating point type. The
1499 size of CST must be larger than the size of TYPE. Both types must be
1500 floating point.</dd>
1501
1502 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1503 <dd>Floating point extend a constant to another type. The size of CST must be
1504 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1505
Reid Spencer1539a1c2007-07-31 14:40:14 +00001506 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001507 <dd>Convert a floating point constant to the corresponding unsigned integer
1508 constant. TYPE must be an integer type. CST must be floating point. If the
1509 value won't fit in the integer type, the results are undefined.</dd>
1510
Reid Spencerd4448792006-11-09 23:03:26 +00001511 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001512 <dd>Convert a floating point constant to the corresponding signed integer
1513 constant. TYPE must be an integer type. CST must be floating point. If the
1514 value won't fit in the integer type, the results are undefined.</dd>
1515
Reid Spencerd4448792006-11-09 23:03:26 +00001516 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001517 <dd>Convert an unsigned integer constant to the corresponding floating point
1518 constant. TYPE must be floating point. CST must be of integer type. If the
Jeff Cohencb757312007-04-22 14:56:37 +00001519 value won't fit in the floating point type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001520
Reid Spencerd4448792006-11-09 23:03:26 +00001521 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001522 <dd>Convert a signed integer constant to the corresponding floating point
1523 constant. TYPE must be floating point. CST must be of integer type. If the
Jeff Cohencb757312007-04-22 14:56:37 +00001524 value won't fit in the floating point type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001525
Reid Spencer5c0ef472006-11-11 23:08:07 +00001526 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1527 <dd>Convert a pointer typed constant to the corresponding integer constant
1528 TYPE must be an integer type. CST must be of pointer type. The CST value is
1529 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1530
1531 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1532 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1533 pointer type. CST must be of integer type. The CST value is zero extended,
1534 truncated, or unchanged to make it fit in a pointer size. This one is
1535 <i>really</i> dangerous!</dd>
1536
1537 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001538 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1539 identical (same number of bits). The conversion is done as if the CST value
1540 was stored to memory and read back as TYPE. In other words, no bits change
Reid Spencer5c0ef472006-11-11 23:08:07 +00001541 with this operator, just the type. This can be used for conversion of
Reid Spencer485bad12007-02-15 03:07:05 +00001542 vector types to any other type, as long as they have the same bit width. For
Reid Spencer5c0ef472006-11-11 23:08:07 +00001543 pointers it is only valid to cast to another pointer type.
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001544 </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001545
1546 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1547
1548 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1549 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1550 instruction, the index list may have zero or more indexes, which are required
1551 to make sense for the type of "CSTPTR".</dd>
1552
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001553 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1554
1555 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer01c42592006-12-04 19:23:19 +00001556 constants.</dd>
1557
1558 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1559 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1560
1561 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1562 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001563
1564 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1565
1566 <dd>Perform the <a href="#i_extractelement">extractelement
1567 operation</a> on constants.
1568
Robert Bocchino05ccd702006-01-15 20:48:27 +00001569 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1570
1571 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer01c42592006-12-04 19:23:19 +00001572 operation</a> on constants.</dd>
Robert Bocchino05ccd702006-01-15 20:48:27 +00001573
Chris Lattnerc1989542006-04-08 00:13:41 +00001574
1575 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1576
1577 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer01c42592006-12-04 19:23:19 +00001578 operation</a> on constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00001579
Chris Lattnerc3f59762004-12-09 17:30:23 +00001580 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1581
Reid Spencer2dc45b82004-12-09 18:13:12 +00001582 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1583 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattnerc3f59762004-12-09 17:30:23 +00001584 binary</a> operations. The constraints on operands are the same as those for
1585 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswelle4c57cc2005-05-12 16:52:32 +00001586 values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001587</dl>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001588</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00001589
Chris Lattner00950542001-06-06 20:29:01 +00001590<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00001591<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1592<!-- *********************************************************************** -->
1593
1594<!-- ======================================================================= -->
1595<div class="doc_subsection">
1596<a name="inlineasm">Inline Assembler Expressions</a>
1597</div>
1598
1599<div class="doc_text">
1600
1601<p>
1602LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1603Module-Level Inline Assembly</a>) through the use of a special value. This
1604value represents the inline assembler as a string (containing the instructions
1605to emit), a list of operand constraints (stored as a string), and a flag that
1606indicates whether or not the inline asm expression has side effects. An example
1607inline assembler expression is:
1608</p>
1609
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001610<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001611<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001612i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00001613</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001614</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001615
1616<p>
1617Inline assembler expressions may <b>only</b> be used as the callee operand of
1618a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1619</p>
1620
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001621<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001622<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001623%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00001624</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001625</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001626
1627<p>
1628Inline asms with side effects not visible in the constraint list must be marked
1629as having side effects. This is done through the use of the
1630'<tt>sideeffect</tt>' keyword, like so:
1631</p>
1632
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001633<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00001634<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001635call void asm sideeffect "eieio", ""()
Chris Lattnere87d6532006-01-25 23:47:57 +00001636</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001637</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00001638
1639<p>TODO: The format of the asm and constraints string still need to be
1640documented here. Constraints on what can be done (e.g. duplication, moving, etc
1641need to be documented).
1642</p>
1643
1644</div>
1645
1646<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001647<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1648<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00001649
Misha Brukman9d0919f2003-11-08 01:05:38 +00001650<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001651
Chris Lattner261efe92003-11-25 01:02:51 +00001652<p>The LLVM instruction set consists of several different
1653classifications of instructions: <a href="#terminators">terminator
John Criswellc1f786c2005-05-13 22:25:59 +00001654instructions</a>, <a href="#binaryops">binary instructions</a>,
1655<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner261efe92003-11-25 01:02:51 +00001656 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1657instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001658
Misha Brukman9d0919f2003-11-08 01:05:38 +00001659</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001660
Chris Lattner00950542001-06-06 20:29:01 +00001661<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001662<div class="doc_subsection"> <a name="terminators">Terminator
1663Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001664
Misha Brukman9d0919f2003-11-08 01:05:38 +00001665<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001666
Chris Lattner261efe92003-11-25 01:02:51 +00001667<p>As mentioned <a href="#functionstructure">previously</a>, every
1668basic block in a program ends with a "Terminator" instruction, which
1669indicates which block should be executed after the current block is
1670finished. These terminator instructions typically yield a '<tt>void</tt>'
1671value: they produce control flow, not values (the one exception being
1672the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswell9e2485c2004-12-10 15:51:16 +00001673<p>There are six different terminator instructions: the '<a
Chris Lattner261efe92003-11-25 01:02:51 +00001674 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1675instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner35eca582004-10-16 18:04:13 +00001676the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1677 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1678 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001679
Misha Brukman9d0919f2003-11-08 01:05:38 +00001680</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001681
Chris Lattner00950542001-06-06 20:29:01 +00001682<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001683<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1684Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001685<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001686<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001687<pre> ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001688 ret void <i>; Return from void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00001689</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001690<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001691<p>The '<tt>ret</tt>' instruction is used to return control flow (and a
John Criswellc1f786c2005-05-13 22:25:59 +00001692value) from a function back to the caller.</p>
John Criswell4457dc92004-04-09 16:48:45 +00001693<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Chris Lattner261efe92003-11-25 01:02:51 +00001694returns a value and then causes control flow, and one that just causes
1695control flow to occur.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001696<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001697<p>The '<tt>ret</tt>' instruction may return any '<a
1698 href="#t_firstclass">first class</a>' type. Notice that a function is
1699not <a href="#wellformed">well formed</a> if there exists a '<tt>ret</tt>'
1700instruction inside of the function that returns a value that does not
1701match the return type of the function.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001702<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001703<p>When the '<tt>ret</tt>' instruction is executed, control flow
1704returns back to the calling function's context. If the caller is a "<a
John Criswellfa081872004-06-25 15:16:57 +00001705 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner261efe92003-11-25 01:02:51 +00001706the instruction after the call. If the caller was an "<a
1707 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswelle4c57cc2005-05-12 16:52:32 +00001708at the beginning of the "normal" destination block. If the instruction
Chris Lattner261efe92003-11-25 01:02:51 +00001709returns a value, that value shall set the call or invoke instruction's
1710return value.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001711<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00001712<pre> ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001713 ret void <i>; Return from a void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00001714</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001715</div>
Chris Lattner00950542001-06-06 20:29:01 +00001716<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001717<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001718<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001719<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001720<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00001721</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001722<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001723<p>The '<tt>br</tt>' instruction is used to cause control flow to
1724transfer to a different basic block in the current function. There are
1725two forms of this instruction, corresponding to a conditional branch
1726and an unconditional branch.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001727<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001728<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencerc78f3372007-01-12 03:35:51 +00001729single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencerde151942007-02-19 23:54:10 +00001730unconditional form of the '<tt>br</tt>' instruction takes a single
1731'<tt>label</tt>' value as a target.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001732<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001733<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00001734argument is evaluated. If the value is <tt>true</tt>, control flows
1735to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1736control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001737<h5>Example:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00001738<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerca86e162006-12-31 07:07:53 +00001739 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001740</div>
Chris Lattner00950542001-06-06 20:29:01 +00001741<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001742<div class="doc_subsubsection">
1743 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1744</div>
1745
Misha Brukman9d0919f2003-11-08 01:05:38 +00001746<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001747<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001748
1749<pre>
1750 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1751</pre>
1752
Chris Lattner00950542001-06-06 20:29:01 +00001753<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001754
1755<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1756several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman9d0919f2003-11-08 01:05:38 +00001757instruction, allowing a branch to occur to one of many possible
1758destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001759
1760
Chris Lattner00950542001-06-06 20:29:01 +00001761<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001762
1763<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1764comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1765an array of pairs of comparison value constants and '<tt>label</tt>'s. The
1766table is not allowed to contain duplicate constant entries.</p>
1767
Chris Lattner00950542001-06-06 20:29:01 +00001768<h5>Semantics:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001769
Chris Lattner261efe92003-11-25 01:02:51 +00001770<p>The <tt>switch</tt> instruction specifies a table of values and
1771destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswell84114752004-06-25 16:05:06 +00001772table is searched for the given value. If the value is found, control flow is
1773transfered to the corresponding destination; otherwise, control flow is
1774transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001775
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001776<h5>Implementation:</h5>
1777
1778<p>Depending on properties of the target machine and the particular
1779<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswell84114752004-06-25 16:05:06 +00001780ways. For example, it could be generated as a series of chained conditional
1781branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001782
1783<h5>Example:</h5>
1784
1785<pre>
1786 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00001787 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Reid Spencerca86e162006-12-31 07:07:53 +00001788 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001789
1790 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00001791 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001792
1793 <i>; Implement a jump table:</i>
Reid Spencerca86e162006-12-31 07:07:53 +00001794 switch i32 %val, label %otherwise [ i32 0, label %onzero
1795 i32 1, label %onone
1796 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00001797</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001798</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001799
Chris Lattner00950542001-06-06 20:29:01 +00001800<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001801<div class="doc_subsubsection">
1802 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
1803</div>
1804
Misha Brukman9d0919f2003-11-08 01:05:38 +00001805<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001806
Chris Lattner00950542001-06-06 20:29:01 +00001807<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001808
1809<pre>
1810 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; %&lt;function ptr val&gt;(&lt;function args&gt;)
Chris Lattner76b8a332006-05-14 18:23:06 +00001811 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001812</pre>
1813
Chris Lattner6536cfe2002-05-06 22:08:29 +00001814<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001815
1816<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
1817function, with the possibility of control flow transfer to either the
John Criswelle4c57cc2005-05-12 16:52:32 +00001818'<tt>normal</tt>' label or the
1819'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001820"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
1821"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswelle4c57cc2005-05-12 16:52:32 +00001822href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
1823continued at the dynamically nearest "exception" label.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001824
Chris Lattner00950542001-06-06 20:29:01 +00001825<h5>Arguments:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001826
Misha Brukman9d0919f2003-11-08 01:05:38 +00001827<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001828
Chris Lattner00950542001-06-06 20:29:01 +00001829<ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001830 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00001831 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001832 convention</a> the call should use. If none is specified, the call defaults
1833 to using C calling conventions.
1834 </li>
1835 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
1836 function value being invoked. In most cases, this is a direct function
1837 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
1838 an arbitrary pointer to function value.
1839 </li>
1840
1841 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
1842 function to be invoked. </li>
1843
1844 <li>'<tt>function args</tt>': argument list whose types match the function
1845 signature argument types. If the function signature indicates the function
1846 accepts a variable number of arguments, the extra arguments can be
1847 specified. </li>
1848
1849 <li>'<tt>normal label</tt>': the label reached when the called function
1850 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
1851
1852 <li>'<tt>exception label</tt>': the label reached when a callee returns with
1853 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
1854
Chris Lattner00950542001-06-06 20:29:01 +00001855</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001856
Chris Lattner00950542001-06-06 20:29:01 +00001857<h5>Semantics:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001858
Misha Brukman9d0919f2003-11-08 01:05:38 +00001859<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001860href="#i_call">call</a></tt>' instruction in most regards. The primary
1861difference is that it establishes an association with a label, which is used by
1862the runtime library to unwind the stack.</p>
1863
1864<p>This instruction is used in languages with destructors to ensure that proper
1865cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
1866exception. Additionally, this is important for implementation of
1867'<tt>catch</tt>' clauses in high-level languages that support them.</p>
1868
Chris Lattner00950542001-06-06 20:29:01 +00001869<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001870<pre>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001871 %retval = invoke i32 %Test(i32 15) to label %Continue
1872 unwind label %TestCleanup <i>; {i32}:retval set</i>
1873 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Test(i32 15) to label %Continue
1874 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00001875</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001876</div>
Chris Lattner35eca582004-10-16 18:04:13 +00001877
1878
Chris Lattner27f71f22003-09-03 00:41:47 +00001879<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00001880
Chris Lattner261efe92003-11-25 01:02:51 +00001881<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
1882Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00001883
Misha Brukman9d0919f2003-11-08 01:05:38 +00001884<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00001885
Chris Lattner27f71f22003-09-03 00:41:47 +00001886<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00001887<pre>
1888 unwind
1889</pre>
1890
Chris Lattner27f71f22003-09-03 00:41:47 +00001891<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00001892
1893<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
1894at the first callee in the dynamic call stack which used an <a
1895href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
1896primarily used to implement exception handling.</p>
1897
Chris Lattner27f71f22003-09-03 00:41:47 +00001898<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00001899
1900<p>The '<tt>unwind</tt>' intrinsic causes execution of the current function to
1901immediately halt. The dynamic call stack is then searched for the first <a
1902href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
1903execution continues at the "exceptional" destination block specified by the
1904<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
1905dynamic call chain, undefined behavior results.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001906</div>
Chris Lattner35eca582004-10-16 18:04:13 +00001907
1908<!-- _______________________________________________________________________ -->
1909
1910<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
1911Instruction</a> </div>
1912
1913<div class="doc_text">
1914
1915<h5>Syntax:</h5>
1916<pre>
1917 unreachable
1918</pre>
1919
1920<h5>Overview:</h5>
1921
1922<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
1923instruction is used to inform the optimizer that a particular portion of the
1924code is not reachable. This can be used to indicate that the code after a
1925no-return function cannot be reached, and other facts.</p>
1926
1927<h5>Semantics:</h5>
1928
1929<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
1930</div>
1931
1932
1933
Chris Lattner00950542001-06-06 20:29:01 +00001934<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001935<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001936<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00001937<p>Binary operators are used to do most of the computation in a
1938program. They require two operands, execute an operation on them, and
John Criswell9e2485c2004-12-10 15:51:16 +00001939produce a single value. The operands might represent
Reid Spencer485bad12007-02-15 03:07:05 +00001940multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattnera58561b2004-08-12 19:12:28 +00001941The result value of a binary operator is not
Chris Lattner261efe92003-11-25 01:02:51 +00001942necessarily the same type as its operands.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001943<p>There are several different binary operators:</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001944</div>
Chris Lattner00950542001-06-06 20:29:01 +00001945<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001946<div class="doc_subsubsection"> <a name="i_add">'<tt>add</tt>'
1947Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001948<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001949<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001950<pre> &lt;result&gt; = add &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00001951</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001952<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001953<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001954<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001955<p>The two arguments to the '<tt>add</tt>' instruction must be either <a
Chris Lattnera58561b2004-08-12 19:12:28 +00001956 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values.
Reid Spencer485bad12007-02-15 03:07:05 +00001957 This instruction can also take <a href="#t_vector">vector</a> versions of the values.
Chris Lattnera58561b2004-08-12 19:12:28 +00001958Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001959<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001960<p>The value produced is the integer or floating point sum of the two
1961operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001962<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00001963<pre> &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00001964</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001965</div>
Chris Lattner00950542001-06-06 20:29:01 +00001966<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001967<div class="doc_subsubsection"> <a name="i_sub">'<tt>sub</tt>'
1968Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001969<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001970<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001971<pre> &lt;result&gt; = sub &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00001972</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001973<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001974<p>The '<tt>sub</tt>' instruction returns the difference of its two
1975operands.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001976<p>Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>'
1977instruction present in most other intermediate representations.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001978<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001979<p>The two arguments to the '<tt>sub</tt>' instruction must be either <a
Chris Lattner261efe92003-11-25 01:02:51 +00001980 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
Chris Lattnera58561b2004-08-12 19:12:28 +00001981values.
Reid Spencer485bad12007-02-15 03:07:05 +00001982This instruction can also take <a href="#t_vector">vector</a> versions of the values.
Chris Lattnera58561b2004-08-12 19:12:28 +00001983Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001984<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001985<p>The value produced is the integer or floating point difference of
1986the two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001987<h5>Example:</h5>
Bill Wendlingaac388b2007-05-29 09:42:13 +00001988<pre>
1989 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00001990 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00001991</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001992</div>
Chris Lattner00950542001-06-06 20:29:01 +00001993<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001994<div class="doc_subsubsection"> <a name="i_mul">'<tt>mul</tt>'
1995Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001996<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001997<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001998<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00001999</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002000<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002001<p>The '<tt>mul</tt>' instruction returns the product of its two
2002operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002003<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002004<p>The two arguments to the '<tt>mul</tt>' instruction must be either <a
Chris Lattner261efe92003-11-25 01:02:51 +00002005 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
Chris Lattnera58561b2004-08-12 19:12:28 +00002006values.
Reid Spencer485bad12007-02-15 03:07:05 +00002007This instruction can also take <a href="#t_vector">vector</a> versions of the values.
Chris Lattnera58561b2004-08-12 19:12:28 +00002008Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002009<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002010<p>The value produced is the integer or floating point product of the
Misha Brukman9d0919f2003-11-08 01:05:38 +00002011two operands.</p>
Reid Spencera5173382007-01-04 16:43:23 +00002012<p>Because the operands are the same width, the result of an integer
2013multiplication is the same whether the operands should be deemed unsigned or
2014signed.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002015<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002016<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002017</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002018</div>
Chris Lattner00950542001-06-06 20:29:01 +00002019<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00002020<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2021</a></div>
2022<div class="doc_text">
2023<h5>Syntax:</h5>
2024<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2025</pre>
2026<h5>Overview:</h5>
2027<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2028operands.</p>
2029<h5>Arguments:</h5>
2030<p>The two arguments to the '<tt>udiv</tt>' instruction must be
2031<a href="#t_integer">integer</a> values. Both arguments must have identical
Reid Spencer485bad12007-02-15 03:07:05 +00002032types. This instruction can also take <a href="#t_vector">vector</a> versions
Reid Spencer1628cec2006-10-26 06:15:43 +00002033of the values in which case the elements must be integers.</p>
2034<h5>Semantics:</h5>
2035<p>The value produced is the unsigned integer quotient of the two operands. This
2036instruction always performs an unsigned division operation, regardless of
2037whether the arguments are unsigned or not.</p>
2038<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002039<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002040</pre>
2041</div>
2042<!-- _______________________________________________________________________ -->
2043<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2044</a> </div>
2045<div class="doc_text">
2046<h5>Syntax:</h5>
2047<pre> &lt;result&gt; = sdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2048</pre>
2049<h5>Overview:</h5>
2050<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2051operands.</p>
2052<h5>Arguments:</h5>
2053<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2054<a href="#t_integer">integer</a> values. Both arguments must have identical
Reid Spencer485bad12007-02-15 03:07:05 +00002055types. This instruction can also take <a href="#t_vector">vector</a> versions
Reid Spencer1628cec2006-10-26 06:15:43 +00002056of the values in which case the elements must be integers.</p>
2057<h5>Semantics:</h5>
2058<p>The value produced is the signed integer quotient of the two operands. This
2059instruction always performs a signed division operation, regardless of whether
2060the arguments are signed or not.</p>
2061<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002062<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002063</pre>
2064</div>
2065<!-- _______________________________________________________________________ -->
2066<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002067Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002068<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002069<h5>Syntax:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00002070<pre> &lt;result&gt; = fdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002071</pre>
2072<h5>Overview:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00002073<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner261efe92003-11-25 01:02:51 +00002074operands.</p>
2075<h5>Arguments:</h5>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002076<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Reid Spencer1628cec2006-10-26 06:15:43 +00002077<a href="#t_floating">floating point</a> values. Both arguments must have
Reid Spencer485bad12007-02-15 03:07:05 +00002078identical types. This instruction can also take <a href="#t_vector">vector</a>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002079versions of floating point values.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002080<h5>Semantics:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00002081<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002082<h5>Example:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00002083<pre> &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002084</pre>
2085</div>
2086<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00002087<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2088</div>
2089<div class="doc_text">
2090<h5>Syntax:</h5>
2091<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2092</pre>
2093<h5>Overview:</h5>
2094<p>The '<tt>urem</tt>' instruction returns the remainder from the
2095unsigned division of its two arguments.</p>
2096<h5>Arguments:</h5>
2097<p>The two arguments to the '<tt>urem</tt>' instruction must be
2098<a href="#t_integer">integer</a> values. Both arguments must have identical
2099types.</p>
2100<h5>Semantics:</h5>
2101<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
2102This instruction always performs an unsigned division to get the remainder,
2103regardless of whether the arguments are unsigned or not.</p>
2104<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002105<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002106</pre>
2107
2108</div>
2109<!-- _______________________________________________________________________ -->
2110<div class="doc_subsubsection"> <a name="i_srem">'<tt>srem</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002111Instruction</a> </div>
2112<div class="doc_text">
2113<h5>Syntax:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00002114<pre> &lt;result&gt; = srem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002115</pre>
2116<h5>Overview:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00002117<p>The '<tt>srem</tt>' instruction returns the remainder from the
2118signed division of its two operands.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002119<h5>Arguments:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00002120<p>The two arguments to the '<tt>srem</tt>' instruction must be
2121<a href="#t_integer">integer</a> values. Both arguments must have identical
2122types.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002123<h5>Semantics:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00002124<p>This instruction returns the <i>remainder</i> of a division (where the result
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002125has the same sign as the dividend, <tt>var1</tt>), not the <i>modulo</i>
2126operator (where the result has the same sign as the divisor, <tt>var2</tt>) of
2127a value. For more information about the difference, see <a
Chris Lattner261efe92003-11-25 01:02:51 +00002128 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002129Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencer64f5c6c2007-03-24 22:40:44 +00002130please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002131Wikipedia: modulo operation</a>.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002132<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002133<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002134</pre>
2135
2136</div>
2137<!-- _______________________________________________________________________ -->
2138<div class="doc_subsubsection"> <a name="i_frem">'<tt>frem</tt>'
2139Instruction</a> </div>
2140<div class="doc_text">
2141<h5>Syntax:</h5>
2142<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2143</pre>
2144<h5>Overview:</h5>
2145<p>The '<tt>frem</tt>' instruction returns the remainder from the
2146division of its two operands.</p>
2147<h5>Arguments:</h5>
2148<p>The two arguments to the '<tt>frem</tt>' instruction must be
2149<a href="#t_floating">floating point</a> values. Both arguments must have
2150identical types.</p>
2151<h5>Semantics:</h5>
2152<p>This instruction returns the <i>remainder</i> of a division.</p>
2153<h5>Example:</h5>
2154<pre> &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002155</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002156</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00002157
Reid Spencer8e11bf82007-02-02 13:57:07 +00002158<!-- ======================================================================= -->
2159<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2160Operations</a> </div>
2161<div class="doc_text">
2162<p>Bitwise binary operators are used to do various forms of
2163bit-twiddling in a program. They are generally very efficient
2164instructions and can commonly be strength reduced from other
2165instructions. They require two operands, execute an operation on them,
2166and produce a single value. The resulting value of the bitwise binary
2167operators is always the same type as its first operand.</p>
2168</div>
2169
Reid Spencer569f2fa2007-01-31 21:39:12 +00002170<!-- _______________________________________________________________________ -->
2171<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2172Instruction</a> </div>
2173<div class="doc_text">
2174<h5>Syntax:</h5>
2175<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2176</pre>
2177<h5>Overview:</h5>
2178<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2179the left a specified number of bits.</p>
2180<h5>Arguments:</h5>
2181<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
2182 href="#t_integer">integer</a> type.</p>
2183<h5>Semantics:</h5>
2184<p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>.</p>
2185<h5>Example:</h5><pre>
2186 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2187 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2188 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
2189</pre>
2190</div>
2191<!-- _______________________________________________________________________ -->
2192<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2193Instruction</a> </div>
2194<div class="doc_text">
2195<h5>Syntax:</h5>
2196<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2197</pre>
2198
2199<h5>Overview:</h5>
2200<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002201operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002202
2203<h5>Arguments:</h5>
2204<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
2205<a href="#t_integer">integer</a> type.</p>
2206
2207<h5>Semantics:</h5>
2208<p>This instruction always performs a logical shift right operation. The most
2209significant bits of the result will be filled with zero bits after the
2210shift.</p>
2211
2212<h5>Example:</h5>
2213<pre>
2214 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2215 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2216 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2217 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
2218</pre>
2219</div>
2220
Reid Spencer8e11bf82007-02-02 13:57:07 +00002221<!-- _______________________________________________________________________ -->
Reid Spencer569f2fa2007-01-31 21:39:12 +00002222<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2223Instruction</a> </div>
2224<div class="doc_text">
2225
2226<h5>Syntax:</h5>
2227<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2228</pre>
2229
2230<h5>Overview:</h5>
2231<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002232operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002233
2234<h5>Arguments:</h5>
2235<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
2236<a href="#t_integer">integer</a> type.</p>
2237
2238<h5>Semantics:</h5>
2239<p>This instruction always performs an arithmetic shift right operation,
2240The most significant bits of the result will be filled with the sign bit
2241of <tt>var1</tt>.</p>
2242
2243<h5>Example:</h5>
2244<pre>
2245 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2246 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2247 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2248 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
2249</pre>
2250</div>
2251
Chris Lattner00950542001-06-06 20:29:01 +00002252<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002253<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2254Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002255<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002256<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002257<pre> &lt;result&gt; = and &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002258</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002259<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002260<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2261its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002262<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002263<p>The two arguments to the '<tt>and</tt>' instruction must be <a
Chris Lattner3b19d652007-01-15 01:54:13 +00002264 href="#t_integer">integer</a> values. Both arguments must have
Chris Lattner261efe92003-11-25 01:02:51 +00002265identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002266<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002267<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002268<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002269<div style="align: center">
Misha Brukman9d0919f2003-11-08 01:05:38 +00002270<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00002271 <tbody>
2272 <tr>
2273 <td>In0</td>
2274 <td>In1</td>
2275 <td>Out</td>
2276 </tr>
2277 <tr>
2278 <td>0</td>
2279 <td>0</td>
2280 <td>0</td>
2281 </tr>
2282 <tr>
2283 <td>0</td>
2284 <td>1</td>
2285 <td>0</td>
2286 </tr>
2287 <tr>
2288 <td>1</td>
2289 <td>0</td>
2290 <td>0</td>
2291 </tr>
2292 <tr>
2293 <td>1</td>
2294 <td>1</td>
2295 <td>1</td>
2296 </tr>
2297 </tbody>
2298</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002299</div>
Chris Lattner00950542001-06-06 20:29:01 +00002300<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002301<pre> &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
2302 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2303 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00002304</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002305</div>
Chris Lattner00950542001-06-06 20:29:01 +00002306<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002307<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002308<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002309<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002310<pre> &lt;result&gt; = or &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002311</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00002312<h5>Overview:</h5>
2313<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2314or of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002315<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002316<p>The two arguments to the '<tt>or</tt>' instruction must be <a
Chris Lattner3b19d652007-01-15 01:54:13 +00002317 href="#t_integer">integer</a> values. Both arguments must have
Chris Lattner261efe92003-11-25 01:02:51 +00002318identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002319<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002320<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002321<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002322<div style="align: center">
Chris Lattner261efe92003-11-25 01:02:51 +00002323<table border="1" cellspacing="0" cellpadding="4">
2324 <tbody>
2325 <tr>
2326 <td>In0</td>
2327 <td>In1</td>
2328 <td>Out</td>
2329 </tr>
2330 <tr>
2331 <td>0</td>
2332 <td>0</td>
2333 <td>0</td>
2334 </tr>
2335 <tr>
2336 <td>0</td>
2337 <td>1</td>
2338 <td>1</td>
2339 </tr>
2340 <tr>
2341 <td>1</td>
2342 <td>0</td>
2343 <td>1</td>
2344 </tr>
2345 <tr>
2346 <td>1</td>
2347 <td>1</td>
2348 <td>1</td>
2349 </tr>
2350 </tbody>
2351</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002352</div>
Chris Lattner00950542001-06-06 20:29:01 +00002353<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002354<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2355 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2356 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00002357</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002358</div>
Chris Lattner00950542001-06-06 20:29:01 +00002359<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002360<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2361Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002362<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002363<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002364<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002365</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002366<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002367<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2368or of its two operands. The <tt>xor</tt> is used to implement the
2369"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002370<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002371<p>The two arguments to the '<tt>xor</tt>' instruction must be <a
Chris Lattner3b19d652007-01-15 01:54:13 +00002372 href="#t_integer">integer</a> values. Both arguments must have
Chris Lattner261efe92003-11-25 01:02:51 +00002373identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002374<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002375<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002376<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002377<div style="align: center">
Chris Lattner261efe92003-11-25 01:02:51 +00002378<table border="1" cellspacing="0" cellpadding="4">
2379 <tbody>
2380 <tr>
2381 <td>In0</td>
2382 <td>In1</td>
2383 <td>Out</td>
2384 </tr>
2385 <tr>
2386 <td>0</td>
2387 <td>0</td>
2388 <td>0</td>
2389 </tr>
2390 <tr>
2391 <td>0</td>
2392 <td>1</td>
2393 <td>1</td>
2394 </tr>
2395 <tr>
2396 <td>1</td>
2397 <td>0</td>
2398 <td>1</td>
2399 </tr>
2400 <tr>
2401 <td>1</td>
2402 <td>1</td>
2403 <td>0</td>
2404 </tr>
2405 </tbody>
2406</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002407</div>
Chris Lattner261efe92003-11-25 01:02:51 +00002408<p> </p>
Chris Lattner00950542001-06-06 20:29:01 +00002409<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002410<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2411 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2412 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2413 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00002414</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002415</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002416
Chris Lattner00950542001-06-06 20:29:01 +00002417<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002418<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00002419 <a name="vectorops">Vector Operations</a>
2420</div>
2421
2422<div class="doc_text">
2423
2424<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002425target-independent manner. These instructions cover the element-access and
Chris Lattner3df241e2006-04-08 23:07:04 +00002426vector-specific operations needed to process vectors effectively. While LLVM
2427does directly support these vector operations, many sophisticated algorithms
2428will want to use target-specific intrinsics to take full advantage of a specific
2429target.</p>
2430
2431</div>
2432
2433<!-- _______________________________________________________________________ -->
2434<div class="doc_subsubsection">
2435 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2436</div>
2437
2438<div class="doc_text">
2439
2440<h5>Syntax:</h5>
2441
2442<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002443 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002444</pre>
2445
2446<h5>Overview:</h5>
2447
2448<p>
2449The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002450element from a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002451</p>
2452
2453
2454<h5>Arguments:</h5>
2455
2456<p>
2457The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002458value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattner3df241e2006-04-08 23:07:04 +00002459an index indicating the position from which to extract the element.
2460The index may be a variable.</p>
2461
2462<h5>Semantics:</h5>
2463
2464<p>
2465The result is a scalar of the same type as the element type of
2466<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2467<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2468results are undefined.
2469</p>
2470
2471<h5>Example:</h5>
2472
2473<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002474 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002475</pre>
2476</div>
2477
2478
2479<!-- _______________________________________________________________________ -->
2480<div class="doc_subsubsection">
2481 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2482</div>
2483
2484<div class="doc_text">
2485
2486<h5>Syntax:</h5>
2487
2488<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002489 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002490</pre>
2491
2492<h5>Overview:</h5>
2493
2494<p>
2495The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer485bad12007-02-15 03:07:05 +00002496element into a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00002497</p>
2498
2499
2500<h5>Arguments:</h5>
2501
2502<p>
2503The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00002504value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattner3df241e2006-04-08 23:07:04 +00002505scalar value whose type must equal the element type of the first
2506operand. The third operand is an index indicating the position at
2507which to insert the value. The index may be a variable.</p>
2508
2509<h5>Semantics:</h5>
2510
2511<p>
Reid Spencer485bad12007-02-15 03:07:05 +00002512The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattner3df241e2006-04-08 23:07:04 +00002513element values are those of <tt>val</tt> except at position
2514<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2515exceeds the length of <tt>val</tt>, the results are undefined.
2516</p>
2517
2518<h5>Example:</h5>
2519
2520<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002521 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002522</pre>
2523</div>
2524
2525<!-- _______________________________________________________________________ -->
2526<div class="doc_subsubsection">
2527 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2528</div>
2529
2530<div class="doc_text">
2531
2532<h5>Syntax:</h5>
2533
2534<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002535 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00002536</pre>
2537
2538<h5>Overview:</h5>
2539
2540<p>
2541The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2542from two input vectors, returning a vector of the same type.
2543</p>
2544
2545<h5>Arguments:</h5>
2546
2547<p>
2548The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2549with types that match each other and types that match the result of the
2550instruction. The third argument is a shuffle mask, which has the same number
Reid Spencerca86e162006-12-31 07:07:53 +00002551of elements as the other vector type, but whose element type is always 'i32'.
Chris Lattner3df241e2006-04-08 23:07:04 +00002552</p>
2553
2554<p>
2555The shuffle mask operand is required to be a constant vector with either
2556constant integer or undef values.
2557</p>
2558
2559<h5>Semantics:</h5>
2560
2561<p>
2562The elements of the two input vectors are numbered from left to right across
2563both of the vectors. The shuffle mask operand specifies, for each element of
2564the result vector, which element of the two input registers the result element
2565gets. The element selector may be undef (meaning "don't care") and the second
2566operand may be undef if performing a shuffle from only one vector.
2567</p>
2568
2569<h5>Example:</h5>
2570
2571<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002572 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002573 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002574 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2575 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Chris Lattner3df241e2006-04-08 23:07:04 +00002576</pre>
2577</div>
2578
Tanya Lattner09474292006-04-14 19:24:33 +00002579
Chris Lattner3df241e2006-04-08 23:07:04 +00002580<!-- ======================================================================= -->
2581<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00002582 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002583</div>
2584
Misha Brukman9d0919f2003-11-08 01:05:38 +00002585<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002586
Chris Lattner261efe92003-11-25 01:02:51 +00002587<p>A key design point of an SSA-based representation is how it
2588represents memory. In LLVM, no memory locations are in SSA form, which
2589makes things very simple. This section describes how to read, write,
John Criswell9e2485c2004-12-10 15:51:16 +00002590allocate, and free memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002591
Misha Brukman9d0919f2003-11-08 01:05:38 +00002592</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002593
Chris Lattner00950542001-06-06 20:29:01 +00002594<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002595<div class="doc_subsubsection">
2596 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
2597</div>
2598
Misha Brukman9d0919f2003-11-08 01:05:38 +00002599<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002600
Chris Lattner00950542001-06-06 20:29:01 +00002601<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002602
2603<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002604 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002605</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002606
Chris Lattner00950542001-06-06 20:29:01 +00002607<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002608
Chris Lattner261efe92003-11-25 01:02:51 +00002609<p>The '<tt>malloc</tt>' instruction allocates memory from the system
2610heap and returns a pointer to it.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002611
Chris Lattner00950542001-06-06 20:29:01 +00002612<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002613
2614<p>The '<tt>malloc</tt>' instruction allocates
2615<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswell6e4ca612004-02-24 16:13:56 +00002616bytes of memory from the operating system and returns a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00002617appropriate type to the program. If "NumElements" is specified, it is the
2618number of elements allocated. If an alignment is specified, the value result
2619of the allocation is guaranteed to be aligned to at least that boundary. If
2620not specified, or if zero, the target can choose to align the allocation on any
2621convenient boundary.</p>
2622
Misha Brukman9d0919f2003-11-08 01:05:38 +00002623<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002624
Chris Lattner00950542001-06-06 20:29:01 +00002625<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002626
Chris Lattner261efe92003-11-25 01:02:51 +00002627<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
2628a pointer is returned.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002629
Chris Lattner2cbdc452005-11-06 08:02:57 +00002630<h5>Example:</h5>
2631
2632<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002633 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002634
Bill Wendlingaac388b2007-05-29 09:42:13 +00002635 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
2636 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
2637 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
2638 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
2639 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00002640</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002641</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002642
Chris Lattner00950542001-06-06 20:29:01 +00002643<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002644<div class="doc_subsubsection">
2645 <a name="i_free">'<tt>free</tt>' Instruction</a>
2646</div>
2647
Misha Brukman9d0919f2003-11-08 01:05:38 +00002648<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002649
Chris Lattner00950542001-06-06 20:29:01 +00002650<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002651
2652<pre>
2653 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00002654</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002655
Chris Lattner00950542001-06-06 20:29:01 +00002656<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002657
Chris Lattner261efe92003-11-25 01:02:51 +00002658<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswellc1f786c2005-05-13 22:25:59 +00002659memory heap to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002660
Chris Lattner00950542001-06-06 20:29:01 +00002661<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002662
Chris Lattner261efe92003-11-25 01:02:51 +00002663<p>'<tt>value</tt>' shall be a pointer value that points to a value
2664that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
2665instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002666
Chris Lattner00950542001-06-06 20:29:01 +00002667<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002668
John Criswell9e2485c2004-12-10 15:51:16 +00002669<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattner261efe92003-11-25 01:02:51 +00002670after this instruction executes.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002671
Chris Lattner00950542001-06-06 20:29:01 +00002672<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002673
2674<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002675 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
2676 free [4 x i8]* %array
Chris Lattner00950542001-06-06 20:29:01 +00002677</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002678</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002679
Chris Lattner00950542001-06-06 20:29:01 +00002680<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002681<div class="doc_subsubsection">
2682 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
2683</div>
2684
Misha Brukman9d0919f2003-11-08 01:05:38 +00002685<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002686
Chris Lattner00950542001-06-06 20:29:01 +00002687<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002688
2689<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002690 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002691</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002692
Chris Lattner00950542001-06-06 20:29:01 +00002693<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002694
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002695<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
2696currently executing function, to be automatically released when this function
Chris Lattner261efe92003-11-25 01:02:51 +00002697returns to its caller.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002698
Chris Lattner00950542001-06-06 20:29:01 +00002699<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002700
John Criswell9e2485c2004-12-10 15:51:16 +00002701<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00002702bytes of memory on the runtime stack, returning a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00002703appropriate type to the program. If "NumElements" is specified, it is the
2704number of elements allocated. If an alignment is specified, the value result
2705of the allocation is guaranteed to be aligned to at least that boundary. If
2706not specified, or if zero, the target can choose to align the allocation on any
2707convenient boundary.</p>
2708
Misha Brukman9d0919f2003-11-08 01:05:38 +00002709<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002710
Chris Lattner00950542001-06-06 20:29:01 +00002711<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002712
John Criswellc1f786c2005-05-13 22:25:59 +00002713<p>Memory is allocated; a pointer is returned. '<tt>alloca</tt>'d
Chris Lattner261efe92003-11-25 01:02:51 +00002714memory is automatically released when the function returns. The '<tt>alloca</tt>'
2715instruction is commonly used to represent automatic variables that must
2716have an address available. When the function returns (either with the <tt><a
John Criswelldae2e932005-05-12 16:55:34 +00002717 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002718instructions), the memory is reclaimed.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002719
Chris Lattner00950542001-06-06 20:29:01 +00002720<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002721
2722<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002723 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002724 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
2725 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002726 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00002727</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002728</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002729
Chris Lattner00950542001-06-06 20:29:01 +00002730<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002731<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
2732Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002733<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00002734<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00002735<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002736<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002737<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002738<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002739<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell0ec250c2005-10-24 16:17:18 +00002740address from which to load. The pointer must point to a <a
Chris Lattnere53e5082004-06-03 22:57:15 +00002741 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell0ec250c2005-10-24 16:17:18 +00002742marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner261efe92003-11-25 01:02:51 +00002743the number or order of execution of this <tt>load</tt> with other
2744volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
2745instructions. </p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002746<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002747<p>The location of memory pointed to is loaded.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002748<h5>Examples:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002749<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002750 <a
Reid Spencerca86e162006-12-31 07:07:53 +00002751 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
2752 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002753</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002754</div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002755<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002756<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
2757Instruction</a> </div>
Reid Spencer035ab572006-11-09 21:18:01 +00002758<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00002759<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00002760<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
2761 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002762</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002763<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002764<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002765<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002766<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002767to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002768operand must be a pointer to the type of the '<tt>&lt;value&gt;</tt>'
John Criswellc1f786c2005-05-13 22:25:59 +00002769operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner261efe92003-11-25 01:02:51 +00002770optimizer is not allowed to modify the number or order of execution of
2771this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
2772 href="#i_store">store</a></tt> instructions.</p>
2773<h5>Semantics:</h5>
2774<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
2775at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002776<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002777<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002778 <a
Reid Spencerca86e162006-12-31 07:07:53 +00002779 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
2780 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002781</pre>
Reid Spencer47ce1792006-11-09 21:15:49 +00002782</div>
2783
Chris Lattner2b7d3202002-05-06 03:03:22 +00002784<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002785<div class="doc_subsubsection">
2786 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
2787</div>
2788
Misha Brukman9d0919f2003-11-08 01:05:38 +00002789<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00002790<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002791<pre>
2792 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
2793</pre>
2794
Chris Lattner7faa8832002-04-14 06:13:44 +00002795<h5>Overview:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002796
2797<p>
2798The '<tt>getelementptr</tt>' instruction is used to get the address of a
2799subelement of an aggregate data structure.</p>
2800
Chris Lattner7faa8832002-04-14 06:13:44 +00002801<h5>Arguments:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002802
Reid Spencer85f5b5b2006-12-04 21:29:24 +00002803<p>This instruction takes a list of integer operands that indicate what
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002804elements of the aggregate object to index to. The actual types of the arguments
2805provided depend on the type of the first pointer argument. The
2806'<tt>getelementptr</tt>' instruction is used to index down through the type
John Criswellfc6b8952005-05-16 16:17:45 +00002807levels of a structure or to a specific index in an array. When indexing into a
Reid Spencerca86e162006-12-31 07:07:53 +00002808structure, only <tt>i32</tt> integer constants are allowed. When indexing
Reid Spencer85f5b5b2006-12-04 21:29:24 +00002809into an array or pointer, only integers of 32 or 64 bits are allowed, and will
2810be sign extended to 64-bit values.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002811
Chris Lattner261efe92003-11-25 01:02:51 +00002812<p>For example, let's consider a C code fragment and how it gets
2813compiled to LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002814
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002815<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002816<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002817struct RT {
2818 char A;
Chris Lattnercabc8462007-05-29 15:43:56 +00002819 int B[10][20];
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002820 char C;
2821};
2822struct ST {
Chris Lattnercabc8462007-05-29 15:43:56 +00002823 int X;
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002824 double Y;
2825 struct RT Z;
2826};
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002827
Chris Lattnercabc8462007-05-29 15:43:56 +00002828int *foo(struct ST *s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002829 return &amp;s[1].Z.B[5][13];
2830}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002831</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002832</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002833
Misha Brukman9d0919f2003-11-08 01:05:38 +00002834<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002835
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002836<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002837<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002838%RT = type { i8 , [10 x [20 x i32]], i8 }
2839%ST = type { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002840
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002841define i32* %foo(%ST* %s) {
2842entry:
2843 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
2844 ret i32* %reg
2845}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002846</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002847</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002848
Chris Lattner7faa8832002-04-14 06:13:44 +00002849<h5>Semantics:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002850
2851<p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
John Criswellc1f786c2005-05-13 22:25:59 +00002852on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
Reid Spencer85f5b5b2006-12-04 21:29:24 +00002853and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
Reid Spencer42ddd842006-12-03 16:53:48 +00002854<a href="#t_integer">integer</a> type but the value will always be sign extended
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002855to 64-bits. <a href="#t_struct">Structure</a> types require <tt>i32</tt>
Reid Spencer42ddd842006-12-03 16:53:48 +00002856<b>constants</b>.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002857
Misha Brukman9d0919f2003-11-08 01:05:38 +00002858<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerca86e162006-12-31 07:07:53 +00002859type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002860}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerca86e162006-12-31 07:07:53 +00002861the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
2862i8 }</tt>' type, another structure. The third index indexes into the second
2863element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002864array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerca86e162006-12-31 07:07:53 +00002865'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
2866to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002867
Chris Lattner261efe92003-11-25 01:02:51 +00002868<p>Note that it is perfectly legal to index partially through a
2869structure, returning a pointer to an inner element. Because of this,
2870the LLVM code for the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002871
2872<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002873 define i32* %foo(%ST* %s) {
2874 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002875 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
2876 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002877 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
2878 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
2879 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002880 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00002881</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00002882
2883<p>Note that it is undefined to access an array out of bounds: array and
2884pointer indexes must always be within the defined bounds of the array type.
2885The one exception for this rules is zero length arrays. These arrays are
2886defined to be accessible as variable length arrays, which requires access
2887beyond the zero'th element.</p>
2888
Chris Lattner884a9702006-08-15 00:45:58 +00002889<p>The getelementptr instruction is often confusing. For some more insight
2890into how it works, see <a href="GetElementPtr.html">the getelementptr
2891FAQ</a>.</p>
2892
Chris Lattner7faa8832002-04-14 06:13:44 +00002893<h5>Example:</h5>
Chris Lattnere67a9512005-06-24 17:22:57 +00002894
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002895<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002896 <i>; yields [12 x i8]*:aptr</i>
2897 %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002898</pre>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002899</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00002900
Chris Lattner00950542001-06-06 20:29:01 +00002901<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00002902<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002903</div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002904<div class="doc_text">
Reid Spencer2fd21e62006-11-08 01:18:52 +00002905<p>The instructions in this category are the conversion instructions (casting)
2906which all take a single operand and a type. They perform various bit conversions
2907on the operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002908</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00002909
Chris Lattner6536cfe2002-05-06 22:08:29 +00002910<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00002911<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002912 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
2913</div>
2914<div class="doc_text">
2915
2916<h5>Syntax:</h5>
2917<pre>
2918 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2919</pre>
2920
2921<h5>Overview:</h5>
2922<p>
2923The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
2924</p>
2925
2926<h5>Arguments:</h5>
2927<p>
2928The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
2929be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattner3b19d652007-01-15 01:54:13 +00002930and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencerd4448792006-11-09 23:03:26 +00002931type. The bit size of <tt>value</tt> must be larger than the bit size of
2932<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002933
2934<h5>Semantics:</h5>
2935<p>
2936The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencerd4448792006-11-09 23:03:26 +00002937and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
2938larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
2939It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002940
2941<h5>Example:</h5>
2942<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002943 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00002944 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
2945 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002946</pre>
2947</div>
2948
2949<!-- _______________________________________________________________________ -->
2950<div class="doc_subsubsection">
2951 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
2952</div>
2953<div class="doc_text">
2954
2955<h5>Syntax:</h5>
2956<pre>
2957 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2958</pre>
2959
2960<h5>Overview:</h5>
2961<p>The '<tt>zext</tt>' instruction zero extends its operand to type
2962<tt>ty2</tt>.</p>
2963
2964
2965<h5>Arguments:</h5>
2966<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00002967<a href="#t_integer">integer</a> type, and a type to cast it to, which must
2968also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00002969<tt>value</tt> must be smaller than the bit size of the destination type,
2970<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002971
2972<h5>Semantics:</h5>
2973<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerd1d25172007-05-24 19:13:27 +00002974bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002975
Reid Spencerb5929522007-01-12 15:46:11 +00002976<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002977
2978<h5>Example:</h5>
2979<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00002980 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00002981 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002982</pre>
2983</div>
2984
2985<!-- _______________________________________________________________________ -->
2986<div class="doc_subsubsection">
2987 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
2988</div>
2989<div class="doc_text">
2990
2991<h5>Syntax:</h5>
2992<pre>
2993 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2994</pre>
2995
2996<h5>Overview:</h5>
2997<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
2998
2999<h5>Arguments:</h5>
3000<p>
3001The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003002<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3003also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003004<tt>value</tt> must be smaller than the bit size of the destination type,
3005<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003006
3007<h5>Semantics:</h5>
3008<p>
3009The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3010bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerd1d25172007-05-24 19:13:27 +00003011the type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003012
Reid Spencerc78f3372007-01-12 03:35:51 +00003013<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003014
3015<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003016<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003017 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003018 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003019</pre>
3020</div>
3021
3022<!-- _______________________________________________________________________ -->
3023<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00003024 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3025</div>
3026
3027<div class="doc_text">
3028
3029<h5>Syntax:</h5>
3030
3031<pre>
3032 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3033</pre>
3034
3035<h5>Overview:</h5>
3036<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3037<tt>ty2</tt>.</p>
3038
3039
3040<h5>Arguments:</h5>
3041<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3042 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3043cast it to. The size of <tt>value</tt> must be larger than the size of
3044<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3045<i>no-op cast</i>.</p>
3046
3047<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003048<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3049<a href="#t_floating">floating point</a> type to a smaller
3050<a href="#t_floating">floating point</a> type. If the value cannot fit within
3051the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00003052
3053<h5>Example:</h5>
3054<pre>
3055 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3056 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3057</pre>
3058</div>
3059
3060<!-- _______________________________________________________________________ -->
3061<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003062 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3063</div>
3064<div class="doc_text">
3065
3066<h5>Syntax:</h5>
3067<pre>
3068 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3069</pre>
3070
3071<h5>Overview:</h5>
3072<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3073floating point value.</p>
3074
3075<h5>Arguments:</h5>
3076<p>The '<tt>fpext</tt>' instruction takes a
3077<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencerd4448792006-11-09 23:03:26 +00003078and a <a href="#t_floating">floating point</a> type to cast it to. The source
3079type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003080
3081<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003082<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands8036ca42007-03-30 12:22:09 +00003083<a href="#t_floating">floating point</a> type to a larger
3084<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencerd4448792006-11-09 23:03:26 +00003085used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5c0ef472006-11-11 23:08:07 +00003086<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003087
3088<h5>Example:</h5>
3089<pre>
3090 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3091 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3092</pre>
3093</div>
3094
3095<!-- _______________________________________________________________________ -->
3096<div class="doc_subsubsection">
Reid Spencer24d6da52007-01-21 00:29:26 +00003097 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003098</div>
3099<div class="doc_text">
3100
3101<h5>Syntax:</h5>
3102<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003103 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003104</pre>
3105
3106<h5>Overview:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003107<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003108unsigned integer equivalent of type <tt>ty2</tt>.
3109</p>
3110
3111<h5>Arguments:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003112<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003113<a href="#t_floating">floating point</a> value, and a type to cast it to, which
Chris Lattner3b19d652007-01-15 01:54:13 +00003114must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003115
3116<h5>Semantics:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003117<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003118<a href="#t_floating">floating point</a> operand into the nearest (rounding
3119towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3120the results are undefined.</p>
3121
Reid Spencerc78f3372007-01-12 03:35:51 +00003122<p>When converting to i1, the conversion is done as a comparison against
3123zero. If the <tt>value</tt> was zero, the i1 result will be <tt>false</tt>.
3124If the <tt>value</tt> was non-zero, the i1 result will be <tt>true</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003125
3126<h5>Example:</h5>
3127<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00003128 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
3129 %Y = fptoui float 1.0E+300 to i1 <i>; yields i1:true</i>
3130 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003131</pre>
3132</div>
3133
3134<!-- _______________________________________________________________________ -->
3135<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003136 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003137</div>
3138<div class="doc_text">
3139
3140<h5>Syntax:</h5>
3141<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003142 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003143</pre>
3144
3145<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003146<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003147<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnercc37aae2004-03-12 05:50:16 +00003148</p>
3149
3150
Chris Lattner6536cfe2002-05-06 22:08:29 +00003151<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003152<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003153<a href="#t_floating">floating point</a> value, and a type to cast it to, which
Chris Lattner3b19d652007-01-15 01:54:13 +00003154must also be an <a href="#t_integer">integer</a> type.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003155
Chris Lattner6536cfe2002-05-06 22:08:29 +00003156<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003157<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003158<a href="#t_floating">floating point</a> operand into the nearest (rounding
3159towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3160the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003161
Reid Spencerc78f3372007-01-12 03:35:51 +00003162<p>When converting to i1, the conversion is done as a comparison against
3163zero. If the <tt>value</tt> was zero, the i1 result will be <tt>false</tt>.
3164If the <tt>value</tt> was non-zero, the i1 result will be <tt>true</tt>.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003165
Chris Lattner33ba0d92001-07-09 00:26:23 +00003166<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003167<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003168 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
3169 %Y = fptosi float 1.0E-247 to i1 <i>; yields i1:true</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003170 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003171</pre>
3172</div>
3173
3174<!-- _______________________________________________________________________ -->
3175<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003176 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003177</div>
3178<div class="doc_text">
3179
3180<h5>Syntax:</h5>
3181<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003182 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003183</pre>
3184
3185<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003186<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003187integer and converts that value to the <tt>ty2</tt> type.</p>
3188
3189
3190<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003191<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be an
Chris Lattner3b19d652007-01-15 01:54:13 +00003192<a href="#t_integer">integer</a> value, and a type to cast it to, which must
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003193be a <a href="#t_floating">floating point</a> type.</p>
3194
3195<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003196<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003197integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003198the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003199
3200
3201<h5>Example:</h5>
3202<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003203 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003204 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003205</pre>
3206</div>
3207
3208<!-- _______________________________________________________________________ -->
3209<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00003210 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003211</div>
3212<div class="doc_text">
3213
3214<h5>Syntax:</h5>
3215<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00003216 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003217</pre>
3218
3219<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003220<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003221integer and converts that value to the <tt>ty2</tt> type.</p>
3222
3223<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003224<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be an
Chris Lattner3b19d652007-01-15 01:54:13 +00003225<a href="#t_integer">integer</a> value, and a type to cast it to, which must be
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003226a <a href="#t_floating">floating point</a> type.</p>
3227
3228<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00003229<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003230integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00003231the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003232
3233<h5>Example:</h5>
3234<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003235 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003236 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003237</pre>
3238</div>
3239
3240<!-- _______________________________________________________________________ -->
3241<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00003242 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3243</div>
3244<div class="doc_text">
3245
3246<h5>Syntax:</h5>
3247<pre>
3248 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3249</pre>
3250
3251<h5>Overview:</h5>
3252<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3253the integer type <tt>ty2</tt>.</p>
3254
3255<h5>Arguments:</h5>
3256<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands8036ca42007-03-30 12:22:09 +00003257must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Reid Spencer72679252006-11-11 21:00:47 +00003258<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3259
3260<h5>Semantics:</h5>
3261<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3262<tt>ty2</tt> by interpreting the pointer value as an integer and either
3263truncating or zero extending that value to the size of the integer type. If
3264<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3265<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohenb627eab2007-04-29 01:07:00 +00003266are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3267change.</p>
Reid Spencer72679252006-11-11 21:00:47 +00003268
3269<h5>Example:</h5>
3270<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003271 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3272 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003273</pre>
3274</div>
3275
3276<!-- _______________________________________________________________________ -->
3277<div class="doc_subsubsection">
3278 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3279</div>
3280<div class="doc_text">
3281
3282<h5>Syntax:</h5>
3283<pre>
3284 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3285</pre>
3286
3287<h5>Overview:</h5>
3288<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3289a pointer type, <tt>ty2</tt>.</p>
3290
3291<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00003292<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencer72679252006-11-11 21:00:47 +00003293value to cast, and a type to cast it to, which must be a
Anton Korobeynikov7f705592007-01-12 19:20:47 +00003294<a href="#t_pointer">pointer</a> type.
Reid Spencer72679252006-11-11 21:00:47 +00003295
3296<h5>Semantics:</h5>
3297<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3298<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3299the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3300size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3301the size of a pointer then a zero extension is done. If they are the same size,
3302nothing is done (<i>no-op cast</i>).</p>
3303
3304<h5>Example:</h5>
3305<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003306 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3307 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3308 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00003309</pre>
3310</div>
3311
3312<!-- _______________________________________________________________________ -->
3313<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00003314 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003315</div>
3316<div class="doc_text">
3317
3318<h5>Syntax:</h5>
3319<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003320 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003321</pre>
3322
3323<h5>Overview:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003324<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003325<tt>ty2</tt> without changing any bits.</p>
3326
3327<h5>Arguments:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003328<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003329a first class value, and a type to cast it to, which must also be a <a
3330 href="#t_firstclass">first class</a> type. The bit sizes of <tt>value</tt>
Reid Spencer19b569f2007-01-09 20:08:58 +00003331and the destination type, <tt>ty2</tt>, must be identical. If the source
3332type is a pointer, the destination type must also be a pointer.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003333
3334<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003335<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer72679252006-11-11 21:00:47 +00003336<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3337this conversion. The conversion is done as if the <tt>value</tt> had been
3338stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3339converted to other pointer types with this instruction. To convert pointers to
3340other types, use the <a href="#i_inttoptr">inttoptr</a> or
3341<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003342
3343<h5>Example:</h5>
3344<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003345 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003346 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3347 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00003348</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003349</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003350
Reid Spencer2fd21e62006-11-08 01:18:52 +00003351<!-- ======================================================================= -->
3352<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3353<div class="doc_text">
3354<p>The instructions in this category are the "miscellaneous"
3355instructions, which defy better classification.</p>
3356</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003357
3358<!-- _______________________________________________________________________ -->
3359<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3360</div>
3361<div class="doc_text">
3362<h5>Syntax:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003363<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003364</pre>
3365<h5>Overview:</h5>
3366<p>The '<tt>icmp</tt>' instruction returns a boolean value based on comparison
3367of its two integer operands.</p>
3368<h5>Arguments:</h5>
3369<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00003370the condition code indicating the kind of comparison to perform. It is not
3371a value, just a keyword. The possible condition code are:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003372<ol>
3373 <li><tt>eq</tt>: equal</li>
3374 <li><tt>ne</tt>: not equal </li>
3375 <li><tt>ugt</tt>: unsigned greater than</li>
3376 <li><tt>uge</tt>: unsigned greater or equal</li>
3377 <li><tt>ult</tt>: unsigned less than</li>
3378 <li><tt>ule</tt>: unsigned less or equal</li>
3379 <li><tt>sgt</tt>: signed greater than</li>
3380 <li><tt>sge</tt>: signed greater or equal</li>
3381 <li><tt>slt</tt>: signed less than</li>
3382 <li><tt>sle</tt>: signed less or equal</li>
3383</ol>
Chris Lattner3b19d652007-01-15 01:54:13 +00003384<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Reid Spencer350f8aa2007-01-04 05:19:58 +00003385<a href="#t_pointer">pointer</a> typed. They must also be identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003386<h5>Semantics:</h5>
3387<p>The '<tt>icmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3388the condition code given as <tt>cond</tt>. The comparison performed always
Reid Spencerc78f3372007-01-12 03:35:51 +00003389yields a <a href="#t_primitive">i1</a> result, as follows:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003390<ol>
3391 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3392 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3393 </li>
3394 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3395 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3396 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
3397 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3398 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
3399 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3400 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
3401 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3402 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
3403 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3404 <li><tt>sgt</tt>: interprets the operands as signed values and yields
3405 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3406 <li><tt>sge</tt>: interprets the operands as signed values and yields
3407 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3408 <li><tt>slt</tt>: interprets the operands as signed values and yields
3409 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3410 <li><tt>sle</tt>: interprets the operands as signed values and yields
3411 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003412</ol>
3413<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohenb627eab2007-04-29 01:07:00 +00003414values are compared as if they were integers.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003415
3416<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003417<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3418 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3419 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3420 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3421 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3422 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003423</pre>
3424</div>
3425
3426<!-- _______________________________________________________________________ -->
3427<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3428</div>
3429<div class="doc_text">
3430<h5>Syntax:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003431<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003432</pre>
3433<h5>Overview:</h5>
3434<p>The '<tt>fcmp</tt>' instruction returns a boolean value based on comparison
3435of its floating point operands.</p>
3436<h5>Arguments:</h5>
3437<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00003438the condition code indicating the kind of comparison to perform. It is not
3439a value, just a keyword. The possible condition code are:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003440<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00003441 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003442 <li><tt>oeq</tt>: ordered and equal</li>
3443 <li><tt>ogt</tt>: ordered and greater than </li>
3444 <li><tt>oge</tt>: ordered and greater than or equal</li>
3445 <li><tt>olt</tt>: ordered and less than </li>
3446 <li><tt>ole</tt>: ordered and less than or equal</li>
3447 <li><tt>one</tt>: ordered and not equal</li>
3448 <li><tt>ord</tt>: ordered (no nans)</li>
3449 <li><tt>ueq</tt>: unordered or equal</li>
3450 <li><tt>ugt</tt>: unordered or greater than </li>
3451 <li><tt>uge</tt>: unordered or greater than or equal</li>
3452 <li><tt>ult</tt>: unordered or less than </li>
3453 <li><tt>ule</tt>: unordered or less than or equal</li>
3454 <li><tt>une</tt>: unordered or not equal</li>
3455 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003456 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003457</ol>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003458<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer93a49852006-12-06 07:08:07 +00003459<i>unordered</i> means that either operand may be a QNAN.</p>
Reid Spencer350f8aa2007-01-04 05:19:58 +00003460<p>The <tt>val1</tt> and <tt>val2</tt> arguments must be
3461<a href="#t_floating">floating point</a> typed. They must have identical
3462types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003463<h5>Semantics:</h5>
3464<p>The '<tt>fcmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3465the condition code given as <tt>cond</tt>. The comparison performed always
Reid Spencerc78f3372007-01-12 03:35:51 +00003466yields a <a href="#t_primitive">i1</a> result, as follows:
Reid Spencerf3a70a62006-11-18 21:50:54 +00003467<ol>
3468 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003469 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003470 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003471 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003472 <tt>var1</tt> is greather than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003473 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003474 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003475 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003476 <tt>var1</tt> is less than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003477 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003478 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003479 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003480 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003481 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
3482 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003483 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003484 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003485 <tt>var1</tt> is greater than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003486 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003487 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003488 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003489 <tt>var1</tt> is less than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003490 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003491 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003492 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003493 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003494 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003495 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
3496</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003497
3498<h5>Example:</h5>
3499<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
3500 &lt;result&gt; = icmp one float 4.0, 5.0 <i>; yields: result=true</i>
3501 &lt;result&gt; = icmp olt float 4.0, 5.0 <i>; yields: result=true</i>
3502 &lt;result&gt; = icmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
3503</pre>
3504</div>
3505
Reid Spencer2fd21e62006-11-08 01:18:52 +00003506<!-- _______________________________________________________________________ -->
3507<div class="doc_subsubsection"> <a name="i_phi">'<tt>phi</tt>'
3508Instruction</a> </div>
3509<div class="doc_text">
3510<h5>Syntax:</h5>
3511<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
3512<h5>Overview:</h5>
3513<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
3514the SSA graph representing the function.</p>
3515<h5>Arguments:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003516<p>The type of the incoming values is specified with the first type
Reid Spencer2fd21e62006-11-08 01:18:52 +00003517field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
3518as arguments, with one pair for each predecessor basic block of the
3519current block. Only values of <a href="#t_firstclass">first class</a>
3520type may be used as the value arguments to the PHI node. Only labels
3521may be used as the label arguments.</p>
3522<p>There must be no non-phi instructions between the start of a basic
3523block and the PHI instructions: i.e. PHI instructions must be first in
3524a basic block.</p>
3525<h5>Semantics:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003526<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
3527specified by the pair corresponding to the predecessor basic block that executed
3528just prior to the current block.</p>
Reid Spencer2fd21e62006-11-08 01:18:52 +00003529<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003530<pre>Loop: ; Infinite loop that counts from 0 on up...<br> %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]<br> %nextindvar = add i32 %indvar, 1<br> br label %Loop<br></pre>
Reid Spencer2fd21e62006-11-08 01:18:52 +00003531</div>
3532
Chris Lattnercc37aae2004-03-12 05:50:16 +00003533<!-- _______________________________________________________________________ -->
3534<div class="doc_subsubsection">
3535 <a name="i_select">'<tt>select</tt>' Instruction</a>
3536</div>
3537
3538<div class="doc_text">
3539
3540<h5>Syntax:</h5>
3541
3542<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003543 &lt;result&gt; = select i1 &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003544</pre>
3545
3546<h5>Overview:</h5>
3547
3548<p>
3549The '<tt>select</tt>' instruction is used to choose one value based on a
3550condition, without branching.
3551</p>
3552
3553
3554<h5>Arguments:</h5>
3555
3556<p>
3557The '<tt>select</tt>' instruction requires a boolean value indicating the condition, and two values of the same <a href="#t_firstclass">first class</a> type.
3558</p>
3559
3560<h5>Semantics:</h5>
3561
3562<p>
3563If the boolean condition evaluates to true, the instruction returns the first
John Criswellfc6b8952005-05-16 16:17:45 +00003564value argument; otherwise, it returns the second value argument.
Chris Lattnercc37aae2004-03-12 05:50:16 +00003565</p>
3566
3567<h5>Example:</h5>
3568
3569<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00003570 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003571</pre>
3572</div>
3573
Robert Bocchino05ccd702006-01-15 20:48:27 +00003574
3575<!-- _______________________________________________________________________ -->
3576<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00003577 <a name="i_call">'<tt>call</tt>' Instruction</a>
3578</div>
3579
Misha Brukman9d0919f2003-11-08 01:05:38 +00003580<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00003581
Chris Lattner00950542001-06-06 20:29:01 +00003582<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003583<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00003584 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;param list&gt;)
Chris Lattner2bff5242005-05-06 05:47:36 +00003585</pre>
3586
Chris Lattner00950542001-06-06 20:29:01 +00003587<h5>Overview:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003588
Misha Brukman9d0919f2003-11-08 01:05:38 +00003589<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00003590
Chris Lattner00950542001-06-06 20:29:01 +00003591<h5>Arguments:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003592
Misha Brukman9d0919f2003-11-08 01:05:38 +00003593<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00003594
Chris Lattner6536cfe2002-05-06 22:08:29 +00003595<ol>
Chris Lattner261efe92003-11-25 01:02:51 +00003596 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003597 <p>The optional "tail" marker indicates whether the callee function accesses
3598 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattner2bff5242005-05-06 05:47:36 +00003599 function call is eligible for tail call optimization. Note that calls may
3600 be marked "tail" even if they do not occur before a <a
3601 href="#i_ret"><tt>ret</tt></a> instruction.
Chris Lattner261efe92003-11-25 01:02:51 +00003602 </li>
3603 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00003604 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003605 convention</a> the call should use. If none is specified, the call defaults
3606 to using C calling conventions.
3607 </li>
3608 <li>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00003609 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
3610 the type of the return value. Functions that return no value are marked
3611 <tt><a href="#t_void">void</a></tt>.</p>
3612 </li>
3613 <li>
3614 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
3615 value being invoked. The argument types must match the types implied by
3616 this signature. This type can be omitted if the function is not varargs
3617 and if the function type does not return a pointer to a function.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00003618 </li>
3619 <li>
3620 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
3621 be invoked. In most cases, this is a direct function invocation, but
3622 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswellfc6b8952005-05-16 16:17:45 +00003623 to function value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003624 </li>
3625 <li>
3626 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencera7e302a2005-05-01 22:22:57 +00003627 function signature argument types. All arguments must be of
3628 <a href="#t_firstclass">first class</a> type. If the function signature
3629 indicates the function accepts a variable number of arguments, the extra
3630 arguments can be specified.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003631 </li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00003632</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00003633
Chris Lattner00950542001-06-06 20:29:01 +00003634<h5>Semantics:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003635
Chris Lattner261efe92003-11-25 01:02:51 +00003636<p>The '<tt>call</tt>' instruction is used to cause control flow to
3637transfer to a specified function, with its incoming arguments bound to
3638the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
3639instruction in the called function, control flow continues with the
3640instruction after the function call, and the return value of the
3641function is bound to the result argument. This is a simpler case of
3642the <a href="#i_invoke">invoke</a> instruction.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00003643
Chris Lattner00950542001-06-06 20:29:01 +00003644<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003645
3646<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00003647 %retval = call i32 @test(i32 %argc)
3648 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42);
3649 %X = tail call i32 @foo()
3650 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo()
3651 %Z = call void %foo(i8 97 signext)
Chris Lattner2bff5242005-05-06 05:47:36 +00003652</pre>
3653
Misha Brukman9d0919f2003-11-08 01:05:38 +00003654</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003655
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003656<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00003657<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00003658 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003659</div>
3660
Misha Brukman9d0919f2003-11-08 01:05:38 +00003661<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00003662
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003663<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003664
3665<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003666 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00003667</pre>
3668
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003669<h5>Overview:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003670
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003671<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattnere19d7a72004-09-27 21:51:25 +00003672the "variable argument" area of a function call. It is used to implement the
3673<tt>va_arg</tt> macro in C.</p>
3674
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003675<h5>Arguments:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003676
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003677<p>This instruction takes a <tt>va_list*</tt> value and the type of
3678the argument. It returns a value of the specified argument type and
Jeff Cohenb627eab2007-04-29 01:07:00 +00003679increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003680actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003681
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003682<h5>Semantics:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003683
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003684<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
3685type from the specified <tt>va_list</tt> and causes the
3686<tt>va_list</tt> to point to the next argument. For more information,
3687see the variable argument handling <a href="#int_varargs">Intrinsic
3688Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003689
3690<p>It is legal for this instruction to be called in a function which does not
3691take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003692function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003693
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003694<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswellfc6b8952005-05-16 16:17:45 +00003695href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattnere19d7a72004-09-27 21:51:25 +00003696argument.</p>
3697
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003698<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003699
3700<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
3701
Misha Brukman9d0919f2003-11-08 01:05:38 +00003702</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003703
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003704<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00003705<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
3706<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003707
Misha Brukman9d0919f2003-11-08 01:05:38 +00003708<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00003709
3710<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer409e28f2007-04-01 08:04:23 +00003711well known names and semantics and are required to follow certain restrictions.
3712Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohenb627eab2007-04-29 01:07:00 +00003713language that does not require changing all of the transformations in LLVM when
Gabor Greif04367bf2007-07-06 22:07:22 +00003714adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00003715
John Criswellfc6b8952005-05-16 16:17:45 +00003716<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohenb627eab2007-04-29 01:07:00 +00003717prefix is reserved in LLVM for intrinsic names; thus, function names may not
3718begin with this prefix. Intrinsic functions must always be external functions:
3719you cannot define the body of intrinsic functions. Intrinsic functions may
3720only be used in call or invoke instructions: it is illegal to take the address
3721of an intrinsic function. Additionally, because intrinsic functions are part
3722of the LLVM language, it is required if any are added that they be documented
3723here.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00003724
Chandler Carruth69940402007-08-04 01:51:18 +00003725<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
3726a family of functions that perform the same operation but on different data
3727types. Because LLVM can represent over 8 million different integer types,
3728overloading is used commonly to allow an intrinsic function to operate on any
3729integer type. One or more of the argument types or the result type can be
3730overloaded to accept any integer type. Argument types may also be defined as
3731exactly matching a previous argument's type or the result type. This allows an
3732intrinsic function which accepts multiple arguments, but needs all of them to
3733be of the same type, to only be overloaded with respect to a single argument or
3734the result.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00003735
Chandler Carruth69940402007-08-04 01:51:18 +00003736<p>Overloaded intrinsics will have the names of its overloaded argument types
3737encoded into its function name, each preceded by a period. Only those types
3738which are overloaded result in a name suffix. Arguments whose type is matched
3739against another type do not. For example, the <tt>llvm.ctpop</tt> function can
3740take an integer of any width and returns an integer of exactly the same integer
3741width. This leads to a family of functions such as
3742<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
3743Only one type, the return type, is overloaded, and only one type suffix is
3744required. Because the argument's type is matched against the return type, it
3745does not require its own name suffix.</p>
Reid Spencer409e28f2007-04-01 08:04:23 +00003746
3747<p>To learn how to add an intrinsic function, please see the
3748<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattner33aec9e2004-02-12 17:01:32 +00003749</p>
3750
Misha Brukman9d0919f2003-11-08 01:05:38 +00003751</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003752
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003753<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003754<div class="doc_subsection">
3755 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
3756</div>
3757
Misha Brukman9d0919f2003-11-08 01:05:38 +00003758<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00003759
Misha Brukman9d0919f2003-11-08 01:05:38 +00003760<p>Variable argument support is defined in LLVM with the <a
Chris Lattnerfb6977d2006-01-13 23:26:01 +00003761 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner261efe92003-11-25 01:02:51 +00003762intrinsic functions. These functions are related to the similarly
3763named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003764
Chris Lattner261efe92003-11-25 01:02:51 +00003765<p>All of these functions operate on arguments that use a
3766target-specific value type "<tt>va_list</tt>". The LLVM assembly
3767language reference manual does not define what this type is, so all
Jeff Cohenb627eab2007-04-29 01:07:00 +00003768transformations should be prepared to handle these functions regardless of
3769the type used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003770
Chris Lattner374ab302006-05-15 17:26:46 +00003771<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner261efe92003-11-25 01:02:51 +00003772instruction and the variable argument handling intrinsic functions are
3773used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003774
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003775<div class="doc_code">
Chris Lattner33aec9e2004-02-12 17:01:32 +00003776<pre>
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00003777define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00003778 ; Initialize variable argument processing
Jeff Cohenb627eab2007-04-29 01:07:00 +00003779 %ap = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00003780 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00003781 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00003782
3783 ; Read a single integer argument
Jeff Cohenb627eab2007-04-29 01:07:00 +00003784 %tmp = va_arg i8** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00003785
3786 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohenb627eab2007-04-29 01:07:00 +00003787 %aq = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00003788 %aq2 = bitcast i8** %aq to i8*
Jeff Cohenb627eab2007-04-29 01:07:00 +00003789 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00003790 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00003791
3792 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00003793 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00003794 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00003795}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00003796
3797declare void @llvm.va_start(i8*)
3798declare void @llvm.va_copy(i8*, i8*)
3799declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00003800</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003801</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003802
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003803</div>
3804
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003805<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003806<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00003807 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00003808</div>
3809
3810
Misha Brukman9d0919f2003-11-08 01:05:38 +00003811<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003812<h5>Syntax:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00003813<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003814<h5>Overview:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003815<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
3816<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
3817href="#i_va_arg">va_arg</a></tt>.</p>
3818
3819<h5>Arguments:</h5>
3820
3821<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
3822
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003823<h5>Semantics:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003824
3825<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
3826macro available in C. In a target-dependent way, it initializes the
Jeff Cohenb627eab2007-04-29 01:07:00 +00003827<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003828<tt>va_arg</tt> will produce the first variable argument passed to the function.
3829Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohenb627eab2007-04-29 01:07:00 +00003830last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003831
Misha Brukman9d0919f2003-11-08 01:05:38 +00003832</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003833
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003834<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003835<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00003836 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00003837</div>
3838
Misha Brukman9d0919f2003-11-08 01:05:38 +00003839<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003840<h5>Syntax:</h5>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00003841<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003842<h5>Overview:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00003843
Jeff Cohenb627eab2007-04-29 01:07:00 +00003844<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencera3e435f2007-04-04 02:42:35 +00003845which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner261efe92003-11-25 01:02:51 +00003846or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00003847
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003848<h5>Arguments:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00003849
Jeff Cohenb627eab2007-04-29 01:07:00 +00003850<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00003851
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003852<h5>Semantics:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00003853
Misha Brukman9d0919f2003-11-08 01:05:38 +00003854<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohenb627eab2007-04-29 01:07:00 +00003855macro available in C. In a target-dependent way, it destroys the
3856<tt>va_list</tt> element to which the argument points. Calls to <a
3857href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
3858<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
3859<tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00003860
Misha Brukman9d0919f2003-11-08 01:05:38 +00003861</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003862
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003863<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003864<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00003865 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00003866</div>
3867
Misha Brukman9d0919f2003-11-08 01:05:38 +00003868<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00003869
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003870<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00003871
3872<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00003873 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00003874</pre>
3875
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003876<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00003877
Jeff Cohenb627eab2007-04-29 01:07:00 +00003878<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
3879from the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003880
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003881<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00003882
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003883<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00003884The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003885
Chris Lattnerd7923912004-05-23 21:06:01 +00003886
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003887<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00003888
Jeff Cohenb627eab2007-04-29 01:07:00 +00003889<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
3890macro available in C. In a target-dependent way, it copies the source
3891<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
3892intrinsic is necessary because the <tt><a href="#int_va_start">
3893llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
3894example, memory allocation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003895
Misha Brukman9d0919f2003-11-08 01:05:38 +00003896</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003897
Chris Lattner33aec9e2004-02-12 17:01:32 +00003898<!-- ======================================================================= -->
3899<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00003900 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
3901</div>
3902
3903<div class="doc_text">
3904
3905<p>
3906LLVM support for <a href="GarbageCollection.html">Accurate Garbage
3907Collection</a> requires the implementation and generation of these intrinsics.
Reid Spencera3e435f2007-04-04 02:42:35 +00003908These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattnerd7923912004-05-23 21:06:01 +00003909stack</a>, as well as garbage collector implementations that require <a
Reid Spencera3e435f2007-04-04 02:42:35 +00003910href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattnerd7923912004-05-23 21:06:01 +00003911Front-ends for type-safe garbage collected languages should generate these
3912intrinsics to make use of the LLVM garbage collectors. For more details, see <a
3913href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
3914</p>
3915</div>
3916
3917<!-- _______________________________________________________________________ -->
3918<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00003919 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00003920</div>
3921
3922<div class="doc_text">
3923
3924<h5>Syntax:</h5>
3925
3926<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00003927 declare void @llvm.gcroot(&lt;ty&gt;** %ptrloc, &lt;ty2&gt;* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00003928</pre>
3929
3930<h5>Overview:</h5>
3931
John Criswell9e2485c2004-12-10 15:51:16 +00003932<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattnerd7923912004-05-23 21:06:01 +00003933the code generator, and allows some metadata to be associated with it.</p>
3934
3935<h5>Arguments:</h5>
3936
3937<p>The first argument specifies the address of a stack object that contains the
3938root pointer. The second pointer (which must be either a constant or a global
3939value address) contains the meta-data to be associated with the root.</p>
3940
3941<h5>Semantics:</h5>
3942
3943<p>At runtime, a call to this intrinsics stores a null pointer into the "ptrloc"
3944location. At compile-time, the code generator generates information to allow
3945the runtime to find the pointer at GC safe points.
3946</p>
3947
3948</div>
3949
3950
3951<!-- _______________________________________________________________________ -->
3952<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00003953 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00003954</div>
3955
3956<div class="doc_text">
3957
3958<h5>Syntax:</h5>
3959
3960<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00003961 declare i8 * @llvm.gcread(i8 * %ObjPtr, i8 ** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00003962</pre>
3963
3964<h5>Overview:</h5>
3965
3966<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
3967locations, allowing garbage collector implementations that require read
3968barriers.</p>
3969
3970<h5>Arguments:</h5>
3971
Chris Lattner80626e92006-03-14 20:02:51 +00003972<p>The second argument is the address to read from, which should be an address
3973allocated from the garbage collector. The first object is a pointer to the
3974start of the referenced object, if needed by the language runtime (otherwise
3975null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003976
3977<h5>Semantics:</h5>
3978
3979<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
3980instruction, but may be replaced with substantially more complex code by the
3981garbage collector runtime, as needed.</p>
3982
3983</div>
3984
3985
3986<!-- _______________________________________________________________________ -->
3987<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00003988 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00003989</div>
3990
3991<div class="doc_text">
3992
3993<h5>Syntax:</h5>
3994
3995<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00003996 declare void @llvm.gcwrite(i8 * %P1, i8 * %Obj, i8 ** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00003997</pre>
3998
3999<h5>Overview:</h5>
4000
4001<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4002locations, allowing garbage collector implementations that require write
4003barriers (such as generational or reference counting collectors).</p>
4004
4005<h5>Arguments:</h5>
4006
Chris Lattner80626e92006-03-14 20:02:51 +00004007<p>The first argument is the reference to store, the second is the start of the
4008object to store it to, and the third is the address of the field of Obj to
4009store to. If the runtime does not require a pointer to the object, Obj may be
4010null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004011
4012<h5>Semantics:</h5>
4013
4014<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4015instruction, but may be replaced with substantially more complex code by the
4016garbage collector runtime, as needed.</p>
4017
4018</div>
4019
4020
4021
4022<!-- ======================================================================= -->
4023<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00004024 <a name="int_codegen">Code Generator Intrinsics</a>
4025</div>
4026
4027<div class="doc_text">
4028<p>
4029These intrinsics are provided by LLVM to expose special features that may only
4030be implemented with code generator support.
4031</p>
4032
4033</div>
4034
4035<!-- _______________________________________________________________________ -->
4036<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004037 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004038</div>
4039
4040<div class="doc_text">
4041
4042<h5>Syntax:</h5>
4043<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004044 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004045</pre>
4046
4047<h5>Overview:</h5>
4048
4049<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004050The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4051target-specific value indicating the return address of the current function
4052or one of its callers.
Chris Lattner10610642004-02-14 04:08:35 +00004053</p>
4054
4055<h5>Arguments:</h5>
4056
4057<p>
4058The argument to this intrinsic indicates which function to return the address
4059for. Zero indicates the calling function, one indicates its caller, etc. The
4060argument is <b>required</b> to be a constant integer value.
4061</p>
4062
4063<h5>Semantics:</h5>
4064
4065<p>
4066The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4067the return address of the specified call frame, or zero if it cannot be
4068identified. The value returned by this intrinsic is likely to be incorrect or 0
4069for arguments other than zero, so it should only be used for debugging purposes.
4070</p>
4071
4072<p>
4073Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004074aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004075source-language caller.
4076</p>
4077</div>
4078
4079
4080<!-- _______________________________________________________________________ -->
4081<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004082 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00004083</div>
4084
4085<div class="doc_text">
4086
4087<h5>Syntax:</h5>
4088<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004089 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004090</pre>
4091
4092<h5>Overview:</h5>
4093
4094<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00004095The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4096target-specific frame pointer value for the specified stack frame.
Chris Lattner10610642004-02-14 04:08:35 +00004097</p>
4098
4099<h5>Arguments:</h5>
4100
4101<p>
4102The argument to this intrinsic indicates which function to return the frame
4103pointer for. Zero indicates the calling function, one indicates its caller,
4104etc. The argument is <b>required</b> to be a constant integer value.
4105</p>
4106
4107<h5>Semantics:</h5>
4108
4109<p>
4110The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4111the frame address of the specified call frame, or zero if it cannot be
4112identified. The value returned by this intrinsic is likely to be incorrect or 0
4113for arguments other than zero, so it should only be used for debugging purposes.
4114</p>
4115
4116<p>
4117Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00004118aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00004119source-language caller.
4120</p>
4121</div>
4122
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004123<!-- _______________________________________________________________________ -->
4124<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004125 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004126</div>
4127
4128<div class="doc_text">
4129
4130<h5>Syntax:</h5>
4131<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004132 declare i8 *@llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00004133</pre>
4134
4135<h5>Overview:</h5>
4136
4137<p>
4138The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencera3e435f2007-04-04 02:42:35 +00004139the function stack, for use with <a href="#int_stackrestore">
Chris Lattner57e1f392006-01-13 02:03:13 +00004140<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4141features like scoped automatic variable sized arrays in C99.
4142</p>
4143
4144<h5>Semantics:</h5>
4145
4146<p>
4147This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004148href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner57e1f392006-01-13 02:03:13 +00004149<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4150<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4151state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4152practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4153that were allocated after the <tt>llvm.stacksave</tt> was executed.
4154</p>
4155
4156</div>
4157
4158<!-- _______________________________________________________________________ -->
4159<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004160 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00004161</div>
4162
4163<div class="doc_text">
4164
4165<h5>Syntax:</h5>
4166<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004167 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00004168</pre>
4169
4170<h5>Overview:</h5>
4171
4172<p>
4173The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4174the function stack to the state it was in when the corresponding <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004175href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner57e1f392006-01-13 02:03:13 +00004176useful for implementing language features like scoped automatic variable sized
4177arrays in C99.
4178</p>
4179
4180<h5>Semantics:</h5>
4181
4182<p>
Reid Spencera3e435f2007-04-04 02:42:35 +00004183See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner57e1f392006-01-13 02:03:13 +00004184</p>
4185
4186</div>
4187
4188
4189<!-- _______________________________________________________________________ -->
4190<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004191 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004192</div>
4193
4194<div class="doc_text">
4195
4196<h5>Syntax:</h5>
4197<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004198 declare void @llvm.prefetch(i8 * &lt;address&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004199 i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004200</pre>
4201
4202<h5>Overview:</h5>
4203
4204
4205<p>
4206The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswellfc6b8952005-05-16 16:17:45 +00004207a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4208no
4209effect on the behavior of the program but can change its performance
Chris Lattner2a615362005-02-28 19:47:14 +00004210characteristics.
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004211</p>
4212
4213<h5>Arguments:</h5>
4214
4215<p>
4216<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4217determining if the fetch should be for a read (0) or write (1), and
4218<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattneraeffb4a2005-03-07 20:31:38 +00004219locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00004220<tt>locality</tt> arguments must be constant integers.
4221</p>
4222
4223<h5>Semantics:</h5>
4224
4225<p>
4226This intrinsic does not modify the behavior of the program. In particular,
4227prefetches cannot trap and do not produce a value. On targets that support this
4228intrinsic, the prefetch can provide hints to the processor cache for better
4229performance.
4230</p>
4231
4232</div>
4233
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004234<!-- _______________________________________________________________________ -->
4235<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004236 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004237</div>
4238
4239<div class="doc_text">
4240
4241<h5>Syntax:</h5>
4242<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004243 declare void @llvm.pcmarker( i32 &lt;id&gt; )
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004244</pre>
4245
4246<h5>Overview:</h5>
4247
4248
4249<p>
John Criswellfc6b8952005-05-16 16:17:45 +00004250The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
4251(PC) in a region of
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004252code to simulators and other tools. The method is target specific, but it is
4253expected that the marker will use exported symbols to transmit the PC of the marker.
Jeff Cohen25d4f7e2005-11-11 02:15:27 +00004254The marker makes no guarantees that it will remain with any specific instruction
Chris Lattnerd07c3f42005-11-15 06:07:55 +00004255after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb3e7afd2006-03-24 07:16:10 +00004256optimizations. The intended use is to be inserted after optimizations to allow
John Criswellfc6b8952005-05-16 16:17:45 +00004257correlations of simulation runs.
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00004258</p>
4259
4260<h5>Arguments:</h5>
4261
4262<p>
4263<tt>id</tt> is a numerical id identifying the marker.
4264</p>
4265
4266<h5>Semantics:</h5>
4267
4268<p>
4269This intrinsic does not modify the behavior of the program. Backends that do not
4270support this intrinisic may ignore it.
4271</p>
4272
4273</div>
4274
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004275<!-- _______________________________________________________________________ -->
4276<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004277 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004278</div>
4279
4280<div class="doc_text">
4281
4282<h5>Syntax:</h5>
4283<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004284 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00004285</pre>
4286
4287<h5>Overview:</h5>
4288
4289
4290<p>
4291The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
4292counter register (or similar low latency, high accuracy clocks) on those targets
4293that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
4294As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
4295should only be used for small timings.
4296</p>
4297
4298<h5>Semantics:</h5>
4299
4300<p>
4301When directly supported, reading the cycle counter should not modify any memory.
4302Implementations are allowed to either return a application specific value or a
4303system wide value. On backends without support, this is lowered to a constant 0.
4304</p>
4305
4306</div>
4307
Chris Lattner10610642004-02-14 04:08:35 +00004308<!-- ======================================================================= -->
4309<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004310 <a name="int_libc">Standard C Library Intrinsics</a>
4311</div>
4312
4313<div class="doc_text">
4314<p>
Chris Lattner10610642004-02-14 04:08:35 +00004315LLVM provides intrinsics for a few important standard C library functions.
4316These intrinsics allow source-language front-ends to pass information about the
4317alignment of the pointer arguments to the code generator, providing opportunity
4318for more efficient code generation.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004319</p>
4320
4321</div>
4322
4323<!-- _______________________________________________________________________ -->
4324<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004325 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004326</div>
4327
4328<div class="doc_text">
4329
4330<h5>Syntax:</h5>
4331<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004332 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004333 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004334 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004335 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004336</pre>
4337
4338<h5>Overview:</h5>
4339
4340<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004341The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00004342location to the destination location.
4343</p>
4344
4345<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004346Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
4347intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004348</p>
4349
4350<h5>Arguments:</h5>
4351
4352<p>
4353The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00004354the source. The third argument is an integer argument
Chris Lattner33aec9e2004-02-12 17:01:32 +00004355specifying the number of bytes to copy, and the fourth argument is the alignment
4356of the source and destination locations.
4357</p>
4358
Chris Lattner3301ced2004-02-12 21:18:15 +00004359<p>
4360If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00004361the caller guarantees that both the source and destination pointers are aligned
4362to that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00004363</p>
4364
Chris Lattner33aec9e2004-02-12 17:01:32 +00004365<h5>Semantics:</h5>
4366
4367<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004368The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00004369location to the destination location, which are not allowed to overlap. It
4370copies "len" bytes of memory over. If the argument is known to be aligned to
4371some boundary, this can be specified as the fourth argument, otherwise it should
4372be set to 0 or 1.
4373</p>
4374</div>
4375
4376
Chris Lattner0eb51b42004-02-12 18:10:10 +00004377<!-- _______________________________________________________________________ -->
4378<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004379 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattner0eb51b42004-02-12 18:10:10 +00004380</div>
4381
4382<div class="doc_text">
4383
4384<h5>Syntax:</h5>
4385<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004386 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004387 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004388 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004389 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00004390</pre>
4391
4392<h5>Overview:</h5>
4393
4394<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004395The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
4396location to the destination location. It is similar to the
4397'<tt>llvm.memcmp</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattner0eb51b42004-02-12 18:10:10 +00004398</p>
4399
4400<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004401Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
4402intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner0eb51b42004-02-12 18:10:10 +00004403</p>
4404
4405<h5>Arguments:</h5>
4406
4407<p>
4408The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00004409the source. The third argument is an integer argument
Chris Lattner0eb51b42004-02-12 18:10:10 +00004410specifying the number of bytes to copy, and the fourth argument is the alignment
4411of the source and destination locations.
4412</p>
4413
Chris Lattner3301ced2004-02-12 21:18:15 +00004414<p>
4415If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00004416the caller guarantees that the source and destination pointers are aligned to
4417that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00004418</p>
4419
Chris Lattner0eb51b42004-02-12 18:10:10 +00004420<h5>Semantics:</h5>
4421
4422<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004423The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner0eb51b42004-02-12 18:10:10 +00004424location to the destination location, which may overlap. It
4425copies "len" bytes of memory over. If the argument is known to be aligned to
4426some boundary, this can be specified as the fourth argument, otherwise it should
4427be set to 0 or 1.
4428</p>
4429</div>
4430
Chris Lattner8ff75902004-01-06 05:31:32 +00004431
Chris Lattner10610642004-02-14 04:08:35 +00004432<!-- _______________________________________________________________________ -->
4433<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004434 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00004435</div>
4436
4437<div class="doc_text">
4438
4439<h5>Syntax:</h5>
4440<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004441 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004442 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004443 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00004444 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004445</pre>
4446
4447<h5>Overview:</h5>
4448
4449<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004450The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner10610642004-02-14 04:08:35 +00004451byte value.
4452</p>
4453
4454<p>
4455Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
4456does not return a value, and takes an extra alignment argument.
4457</p>
4458
4459<h5>Arguments:</h5>
4460
4461<p>
4462The first argument is a pointer to the destination to fill, the second is the
Chris Lattner5b310c32006-03-03 00:07:20 +00004463byte value to fill it with, the third argument is an integer
Chris Lattner10610642004-02-14 04:08:35 +00004464argument specifying the number of bytes to fill, and the fourth argument is the
4465known alignment of destination location.
4466</p>
4467
4468<p>
4469If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00004470the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner10610642004-02-14 04:08:35 +00004471</p>
4472
4473<h5>Semantics:</h5>
4474
4475<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004476The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
4477the
Chris Lattner10610642004-02-14 04:08:35 +00004478destination location. If the argument is known to be aligned to some boundary,
4479this can be specified as the fourth argument, otherwise it should be set to 0 or
44801.
4481</p>
4482</div>
4483
4484
Chris Lattner32006282004-06-11 02:28:03 +00004485<!-- _______________________________________________________________________ -->
4486<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004487 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00004488</div>
4489
4490<div class="doc_text">
4491
4492<h5>Syntax:</h5>
4493<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004494 declare float @llvm.sqrt.f32(float %Val)
4495 declare double @llvm.sqrt.f64(double %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00004496</pre>
4497
4498<h5>Overview:</h5>
4499
4500<p>
Reid Spencer0b118202006-01-16 21:12:35 +00004501The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Chris Lattnera4d74142005-07-21 01:29:16 +00004502returning the same value as the libm '<tt>sqrt</tt>' function would. Unlike
4503<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
4504negative numbers (which allows for better optimization).
4505</p>
4506
4507<h5>Arguments:</h5>
4508
4509<p>
4510The argument and return value are floating point numbers of the same type.
4511</p>
4512
4513<h5>Semantics:</h5>
4514
4515<p>
Dan Gohmand6257fe2007-07-16 14:37:41 +00004516This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattnera4d74142005-07-21 01:29:16 +00004517floating point number.
4518</p>
4519</div>
4520
Chris Lattnerf4d252d2006-09-08 06:34:02 +00004521<!-- _______________________________________________________________________ -->
4522<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004523 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00004524</div>
4525
4526<div class="doc_text">
4527
4528<h5>Syntax:</h5>
4529<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004530 declare float @llvm.powi.f32(float %Val, i32 %power)
4531 declare double @llvm.powi.f64(double %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00004532</pre>
4533
4534<h5>Overview:</h5>
4535
4536<p>
4537The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
4538specified (positive or negative) power. The order of evaluation of
4539multiplications is not defined.
4540</p>
4541
4542<h5>Arguments:</h5>
4543
4544<p>
4545The second argument is an integer power, and the first is a value to raise to
4546that power.
4547</p>
4548
4549<h5>Semantics:</h5>
4550
4551<p>
4552This function returns the first value raised to the second power with an
4553unspecified sequence of rounding operations.</p>
4554</div>
4555
4556
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004557<!-- ======================================================================= -->
4558<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00004559 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004560</div>
4561
4562<div class="doc_text">
4563<p>
Nate Begeman7e36c472006-01-13 23:26:38 +00004564LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004565These allow efficient code generation for some algorithms.
4566</p>
4567
4568</div>
4569
4570<!-- _______________________________________________________________________ -->
4571<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004572 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman7e36c472006-01-13 23:26:38 +00004573</div>
4574
4575<div class="doc_text">
4576
4577<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00004578<p>This is an overloaded intrinsic function. You can use bswap on any integer
Chandler Carruth69940402007-08-04 01:51:18 +00004579type that is an even number of bytes (i.e. BitWidth % 16 == 0).
Nate Begeman7e36c472006-01-13 23:26:38 +00004580<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00004581 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
4582 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
4583 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00004584</pre>
4585
4586<h5>Overview:</h5>
4587
4588<p>
Reid Spencer338ea092007-04-02 02:25:19 +00004589The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer409e28f2007-04-01 08:04:23 +00004590values with an even number of bytes (positive multiple of 16 bits). These are
4591useful for performing operations on data that is not in the target's native
4592byte order.
Nate Begeman7e36c472006-01-13 23:26:38 +00004593</p>
4594
4595<h5>Semantics:</h5>
4596
4597<p>
Chandler Carruth69940402007-08-04 01:51:18 +00004598The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerca86e162006-12-31 07:07:53 +00004599and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
4600intrinsic returns an i32 value that has the four bytes of the input i32
4601swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth69940402007-08-04 01:51:18 +00004602i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
4603<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer409e28f2007-04-01 08:04:23 +00004604additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman7e36c472006-01-13 23:26:38 +00004605</p>
4606
4607</div>
4608
4609<!-- _______________________________________________________________________ -->
4610<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00004611 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004612</div>
4613
4614<div class="doc_text">
4615
4616<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00004617<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
4618width. Not all targets support all bit widths however.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004619<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00004620 declare i8 @llvm.ctpop.i8 (i8 &lt;src&gt;)
4621 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004622 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00004623 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
4624 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004625</pre>
4626
4627<h5>Overview:</h5>
4628
4629<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00004630The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
4631value.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004632</p>
4633
4634<h5>Arguments:</h5>
4635
4636<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00004637The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00004638integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004639</p>
4640
4641<h5>Semantics:</h5>
4642
4643<p>
4644The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
4645</p>
4646</div>
4647
4648<!-- _______________________________________________________________________ -->
4649<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00004650 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004651</div>
4652
4653<div class="doc_text">
4654
4655<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00004656<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
4657integer bit width. Not all targets support all bit widths however.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004658<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00004659 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
4660 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004661 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00004662 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
4663 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004664</pre>
4665
4666<h5>Overview:</h5>
4667
4668<p>
Reid Spencer0b118202006-01-16 21:12:35 +00004669The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
4670leading zeros in a variable.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004671</p>
4672
4673<h5>Arguments:</h5>
4674
4675<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00004676The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00004677integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004678</p>
4679
4680<h5>Semantics:</h5>
4681
4682<p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00004683The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
4684in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerca86e162006-12-31 07:07:53 +00004685of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004686</p>
4687</div>
Chris Lattner32006282004-06-11 02:28:03 +00004688
4689
Chris Lattnereff29ab2005-05-15 19:39:26 +00004690
4691<!-- _______________________________________________________________________ -->
4692<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00004693 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00004694</div>
4695
4696<div class="doc_text">
4697
4698<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00004699<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
4700integer bit width. Not all targets support all bit widths however.
Chris Lattnereff29ab2005-05-15 19:39:26 +00004701<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00004702 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
4703 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004704 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00004705 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
4706 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00004707</pre>
4708
4709<h5>Overview:</h5>
4710
4711<p>
Reid Spencer0b118202006-01-16 21:12:35 +00004712The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
4713trailing zeros.
Chris Lattnereff29ab2005-05-15 19:39:26 +00004714</p>
4715
4716<h5>Arguments:</h5>
4717
4718<p>
4719The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00004720integer type. The return type must match the argument type.
Chris Lattnereff29ab2005-05-15 19:39:26 +00004721</p>
4722
4723<h5>Semantics:</h5>
4724
4725<p>
4726The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
4727in a variable. If the src == 0 then the result is the size in bits of the type
4728of src. For example, <tt>llvm.cttz(2) = 1</tt>.
4729</p>
4730</div>
4731
Reid Spencer497d93e2007-04-01 08:27:01 +00004732<!-- _______________________________________________________________________ -->
4733<div class="doc_subsubsection">
Reid Spencerbeacf662007-04-10 02:51:31 +00004734 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
Reid Spencera13ba7d2007-04-01 19:00:37 +00004735</div>
4736
4737<div class="doc_text">
4738
4739<h5>Syntax:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00004740<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
Reid Spencera13ba7d2007-04-01 19:00:37 +00004741on any integer bit width.
4742<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00004743 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
4744 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Reid Spencera13ba7d2007-04-01 19:00:37 +00004745</pre>
4746
4747<h5>Overview:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00004748<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
Reid Spencera13ba7d2007-04-01 19:00:37 +00004749range of bits from an integer value and returns them in the same bit width as
4750the original value.</p>
4751
4752<h5>Arguments:</h5>
4753<p>The first argument, <tt>%val</tt> and the result may be integer types of
4754any bit width but they must have the same bit width. The second and third
Reid Spencera3e435f2007-04-04 02:42:35 +00004755arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00004756
4757<h5>Semantics:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00004758<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
Reid Spencera3e435f2007-04-04 02:42:35 +00004759of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
4760<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
4761operates in forward mode.</p>
4762<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
4763right by <tt>%loBit</tt> bits and then ANDing it with a mask with
Reid Spencera13ba7d2007-04-01 19:00:37 +00004764only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
4765<ol>
4766 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
4767 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
4768 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
4769 to determine the number of bits to retain.</li>
4770 <li>A mask of the retained bits is created by shifting a -1 value.</li>
4771 <li>The mask is ANDed with <tt>%val</tt> to produce the result.
4772</ol>
Reid Spencerd6a85b52007-05-14 16:14:57 +00004773<p>In reverse mode, a similar computation is made except that the bits are
4774returned in the reverse order. So, for example, if <tt>X</tt> has the value
4775<tt>i16 0x0ACF (101011001111)</tt> and we apply
4776<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
4777<tt>i16 0x0026 (000000100110)</tt>.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00004778</div>
4779
Reid Spencerf86037f2007-04-11 23:23:49 +00004780<div class="doc_subsubsection">
4781 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
4782</div>
4783
4784<div class="doc_text">
4785
4786<h5>Syntax:</h5>
4787<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
4788on any integer bit width.
4789<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00004790 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
4791 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Reid Spencerf86037f2007-04-11 23:23:49 +00004792</pre>
4793
4794<h5>Overview:</h5>
4795<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
4796of bits in an integer value with another integer value. It returns the integer
4797with the replaced bits.</p>
4798
4799<h5>Arguments:</h5>
4800<p>The first argument, <tt>%val</tt> and the result may be integer types of
4801any bit width but they must have the same bit width. <tt>%val</tt> is the value
4802whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
4803integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
4804type since they specify only a bit index.</p>
4805
4806<h5>Semantics:</h5>
4807<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
4808of operation: forwards and reverse. If <tt>%lo</tt> is greater than
4809<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
4810operates in forward mode.</p>
4811<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
4812truncating it down to the size of the replacement area or zero extending it
4813up to that size.</p>
4814<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
4815are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
4816in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
4817to the <tt>%hi</tt>th bit.
Reid Spencerc6749c42007-05-14 16:50:20 +00004818<p>In reverse mode, a similar computation is made except that the bits are
4819reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
4820<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.
Reid Spencerf86037f2007-04-11 23:23:49 +00004821<h5>Examples:</h5>
4822<pre>
Reid Spencerf0dbf642007-04-12 01:03:03 +00004823 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
Reid Spencerc6749c42007-05-14 16:50:20 +00004824 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
4825 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
4826 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
Reid Spencerf0dbf642007-04-12 01:03:03 +00004827 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
Reid Spencerc8910842007-04-11 23:49:50 +00004828</pre>
Reid Spencerf86037f2007-04-11 23:23:49 +00004829</div>
4830
Chris Lattner8ff75902004-01-06 05:31:32 +00004831<!-- ======================================================================= -->
4832<div class="doc_subsection">
4833 <a name="int_debugger">Debugger Intrinsics</a>
4834</div>
4835
4836<div class="doc_text">
4837<p>
4838The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
4839are described in the <a
4840href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
4841Debugging</a> document.
4842</p>
4843</div>
4844
4845
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00004846<!-- ======================================================================= -->
4847<div class="doc_subsection">
4848 <a name="int_eh">Exception Handling Intrinsics</a>
4849</div>
4850
4851<div class="doc_text">
4852<p> The LLVM exception handling intrinsics (which all start with
4853<tt>llvm.eh.</tt> prefix), are described in the <a
4854href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
4855Handling</a> document. </p>
4856</div>
4857
Tanya Lattner6d806e92007-06-15 20:50:54 +00004858<!-- ======================================================================= -->
4859<div class="doc_subsection">
Chandler Carruth2eb93b32007-07-20 19:34:37 +00004860 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
4861</div>
4862
4863<div class="doc_text">
4864<p>
4865 These intrinsic functions expand the "universal IR" of LLVM to represent
4866 hardware constructs for atomic operations and memory synchronization. This
4867 provides an interface to the hardware, not an interface to the programmer. It
4868 is aimed at a low enough level to allow any programming models or APIs which
4869 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
Chandler Carruth6813c152007-07-20 20:14:52 +00004870 hardware behavior. Just as hardware provides a "universal IR" for source
Chandler Carruth2eb93b32007-07-20 19:34:37 +00004871 languages, it also provides a starting point for developing a "universal"
4872 atomic operation and synchronization IR.
4873</p>
4874<p>
4875 These do <em>not</em> form an API such as high-level threading libraries,
4876 software transaction memory systems, atomic primitives, and intrinsic
Reid Spencer20677642007-07-20 19:59:11 +00004877 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
Chandler Carruth2eb93b32007-07-20 19:34:37 +00004878 application libraries. The hardware interface provided by LLVM should allow
4879 a clean implementation of all of these APIs and parallel programming models.
4880 No one model or paradigm should be selected above others unless the hardware
4881 itself ubiquitously does so.
4882</p>
4883</div>
4884
4885<!-- _______________________________________________________________________ -->
4886<div class="doc_subsubsection">
4887 <a name="int_lcs">'<tt>llvm.atomic.lcs.*</tt>' Intrinsic</a>
4888</div>
4889<div class="doc_text">
4890<h5>Syntax:</h5>
4891<p>
4892 This is an overloaded intrinsic. You can use <tt>llvm.atomic.lcs</tt> on any
Reid Spencer20677642007-07-20 19:59:11 +00004893 integer bit width. Not all targets support all bit widths however.</p>
Chandler Carruth2eb93b32007-07-20 19:34:37 +00004894<pre>
4895declare i8 @llvm.atomic.lcs.i8.i8p.i8.i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
4896declare i16 @llvm.atomic.lcs.i16.i16p.i16.i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
4897declare i32 @llvm.atomic.lcs.i32.i32p.i32.i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
4898declare i64 @llvm.atomic.lcs.i64.i64p.i64.i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
4899</pre>
Chandler Carruth2eb93b32007-07-20 19:34:37 +00004900<h5>Overview:</h5>
4901<p>
Chandler Carruth6813c152007-07-20 20:14:52 +00004902 This loads a value in memory and compares it to a given value. If they are
4903 equal, it stores a new value into the memory.
Chandler Carruth2eb93b32007-07-20 19:34:37 +00004904</p>
4905<h5>Arguments:</h5>
4906<p>
4907 The <tt>llvm.atomic.lcs</tt> intrinsic takes three arguments. The result as
4908 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
4909 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
4910 this integer type. While any bit width integer may be used, targets may only
4911 lower representations they support in hardware.
4912</p>
4913<h5>Semantics:</h5>
4914<p>
4915 This entire intrinsic must be executed atomically. It first loads the value
Chandler Carruth6813c152007-07-20 20:14:52 +00004916 in memory pointed to by <tt>ptr</tt> and compares it with the value
4917 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
4918 loaded value is yielded in all cases. This provides the equivalent of an
4919 atomic compare-and-swap operation within the SSA framework.
Chandler Carruth2eb93b32007-07-20 19:34:37 +00004920</p>
4921<h5>Examples:</h5>
4922<pre>
4923%ptr = malloc i32
4924 store i32 4, %ptr
4925
4926%val1 = add i32 4, 4
4927%result1 = call i32 @llvm.atomic.lcs( i32* %ptr, i32 4, %val1 )
4928 <i>; yields {i32}:result1 = 4</i>
4929%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
4930%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
4931
4932%val2 = add i32 1, 1
4933%result2 = call i32 @llvm.atomic.lcs( i32* %ptr, i32 5, %val2 )
4934 <i>; yields {i32}:result2 = 8</i>
4935%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
4936%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
4937</pre>
4938</div>
4939
4940<!-- _______________________________________________________________________ -->
4941<div class="doc_subsubsection">
4942 <a name="int_ls">'<tt>llvm.atomic.ls.*</tt>' Intrinsic</a>
4943</div>
4944<div class="doc_text">
4945<h5>Syntax:</h5>
4946<p>
4947 This is an overloaded intrinsic. You can use <tt>llvm.atomic.ls</tt> on any
Reid Spencer20677642007-07-20 19:59:11 +00004948 integer bit width. Not all targets support all bit widths however.</p>
Chandler Carruth2eb93b32007-07-20 19:34:37 +00004949<pre>
4950declare i8 @llvm.atomic.ls.i8.i8p.i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
4951declare i16 @llvm.atomic.ls.i16.i16p.i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
4952declare i32 @llvm.atomic.ls.i32.i32p.i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
4953declare i64 @llvm.atomic.ls.i64.i64p.i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
4954</pre>
Chandler Carruth2eb93b32007-07-20 19:34:37 +00004955<h5>Overview:</h5>
4956<p>
Chandler Carruth6813c152007-07-20 20:14:52 +00004957 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
4958 the value from memory. It then stores the value in <tt>val</tt> in the memory
4959 at <tt>ptr</tt>.
Chandler Carruth2eb93b32007-07-20 19:34:37 +00004960</p>
4961<h5>Arguments:</h5>
4962<p>
4963 The <tt>llvm.atomic.ls</tt> intrinsic takes two arguments. Both the
4964 <tt>val</tt> argument and the result must be integers of the same bit width.
4965 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
4966 integer type. The targets may only lower integer representations they
4967 support.
4968</p>
4969<h5>Semantics:</h5>
4970<p>
4971 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
4972 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
4973 equivalent of an atomic swap operation within the SSA framework.
4974</p>
4975<h5>Examples:</h5>
4976<pre>
4977%ptr = malloc i32
4978 store i32 4, %ptr
4979
4980%val1 = add i32 4, 4
4981%result1 = call i32 @llvm.atomic.ls( i32* %ptr, i32 %val1 )
4982 <i>; yields {i32}:result1 = 4</i>
4983%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
4984%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
4985
4986%val2 = add i32 1, 1
4987%result2 = call i32 @llvm.atomic.ls( i32* %ptr, i32 %val2 )
4988 <i>; yields {i32}:result2 = 8</i>
4989%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
4990%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
4991</pre>
4992 </div>
4993
4994<!-- _______________________________________________________________________ -->
4995<div class="doc_subsubsection">
4996 <a name="int_las">'<tt>llvm.atomic.las.*</tt>' Intrinsic</a>
4997</div>
4998<div class="doc_text">
4999<h5>Syntax:</h5>
5000<p>
5001 This is an overloaded intrinsic. You can use <tt>llvm.atomic.las</tt> on any
Reid Spencer20677642007-07-20 19:59:11 +00005002 integer bit width. Not all targets support all bit widths however.</p>
Chandler Carruth2eb93b32007-07-20 19:34:37 +00005003<pre>
5004declare i8 @llvm.atomic.las.i8.i8p.i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
5005declare i16 @llvm.atomic.las.i16.i16p.i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
5006declare i32 @llvm.atomic.las.i32.i32p.i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
5007declare i64 @llvm.atomic.las.i64.i64p.i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
5008</pre>
Chandler Carruth2eb93b32007-07-20 19:34:37 +00005009<h5>Overview:</h5>
5010<p>
Chandler Carruth6813c152007-07-20 20:14:52 +00005011 This intrinsic adds <tt>delta</tt> to the value stored in memory at
Chandler Carruth2eb93b32007-07-20 19:34:37 +00005012 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
5013</p>
5014<h5>Arguments:</h5>
5015<p>
5016 The intrinsic takes two arguments, the first a pointer to an integer value
5017 and the second an integer value. The result is also an integer value. These
5018 integer types can have any bit width, but they must all have the same bit
5019 width. The targets may only lower integer representations they support.
5020</p>
5021<h5>Semantics:</h5>
5022<p>
5023 This intrinsic does a series of operations atomically. It first loads the
5024 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
5025 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
5026</p>
5027<h5>Examples:</h5>
5028<pre>
5029%ptr = malloc i32
5030 store i32 4, %ptr
5031%result1 = call i32 @llvm.atomic.las( i32* %ptr, i32 4 )
5032 <i>; yields {i32}:result1 = 4</i>
5033%result2 = call i32 @llvm.atomic.las( i32* %ptr, i32 2 )
5034 <i>; yields {i32}:result2 = 8</i>
5035%result3 = call i32 @llvm.atomic.las( i32* %ptr, i32 5 )
5036 <i>; yields {i32}:result3 = 10</i>
5037%memval = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
5038</pre>
5039</div>
5040
5041<!-- _______________________________________________________________________ -->
5042<div class="doc_subsubsection">
5043 <a name="int_lss">'<tt>llvm.atomic.lss.*</tt>' Intrinsic</a>
5044</div>
5045<div class="doc_text">
5046<h5>Syntax:</h5>
5047<p>
5048 This is an overloaded intrinsic. You can use <tt>llvm.atomic.lss</tt> on any
Reid Spencer20677642007-07-20 19:59:11 +00005049 integer bit width. Not all targets support all bit widths however.</p>
Chandler Carruth2eb93b32007-07-20 19:34:37 +00005050<pre>
5051declare i8 @llvm.atomic.lss.i8.i8.i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
5052declare i16 @llvm.atomic.lss.i16.i16.i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
5053declare i32 @llvm.atomic.lss.i32.i32.i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
5054declare i64 @llvm.atomic.lss.i64.i64.i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
5055</pre>
Chandler Carruth2eb93b32007-07-20 19:34:37 +00005056<h5>Overview:</h5>
5057<p>
Chandler Carruth6813c152007-07-20 20:14:52 +00005058 This intrinsic subtracts <tt>delta</tt> from the value stored in memory at
5059 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
Chandler Carruth2eb93b32007-07-20 19:34:37 +00005060</p>
5061<h5>Arguments:</h5>
5062<p>
5063 The intrinsic takes two arguments, the first a pointer to an integer value
5064 and the second an integer value. The result is also an integer value. These
5065 integer types can have any bit width, but they must all have the same bit
5066 width. The targets may only lower integer representations they support.
5067</p>
5068<h5>Semantics:</h5>
5069<p>
5070 This intrinsic does a series of operations atomically. It first loads the
5071 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>,
5072 stores the result to <tt>ptr</tt>. It yields the original value stored
5073 at <tt>ptr</tt>.
5074</p>
5075<h5>Examples:</h5>
5076<pre>
5077%ptr = malloc i32
5078 store i32 32, %ptr
5079%result1 = call i32 @llvm.atomic.lss( i32* %ptr, i32 4 )
5080 <i>; yields {i32}:result1 = 32</i>
5081%result2 = call i32 @llvm.atomic.lss( i32* %ptr, i32 2 )
5082 <i>; yields {i32}:result2 = 28</i>
5083%result3 = call i32 @llvm.atomic.lss( i32* %ptr, i32 5 )
5084 <i>; yields {i32}:result3 = 26</i>
5085%memval = load i32* %ptr <i>; yields {i32}:memval1 = 21</i>
5086</pre>
5087</div>
5088
5089<!-- _______________________________________________________________________ -->
5090<div class="doc_subsubsection">
5091 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
5092</div>
5093<div class="doc_text">
5094<h5>Syntax:</h5>
Chandler Carruth2eb93b32007-07-20 19:34:37 +00005095<pre>
5096declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt; )
5097</pre>
Chandler Carruth2eb93b32007-07-20 19:34:37 +00005098<h5>Overview:</h5>
5099<p>
5100 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
5101 specific pairs of memory access types.
5102</p>
5103<h5>Arguments:</h5>
5104<p>
5105 The <tt>llvm.memory.barrier</tt> intrinsic requires four boolean arguments.
5106 Each argument enables a specific barrier as listed below.
Reid Spencer1cff4082007-07-20 20:03:33 +00005107</p>
Chandler Carruth2eb93b32007-07-20 19:34:37 +00005108 <ul>
5109 <li><tt>ll</tt>: load-load barrier</li>
5110 <li><tt>ls</tt>: load-store barrier</li>
5111 <li><tt>sl</tt>: store-load barrier</li>
5112 <li><tt>ss</tt>: store-store barrier</li>
5113 </ul>
Chandler Carruth2eb93b32007-07-20 19:34:37 +00005114<h5>Semantics:</h5>
5115<p>
5116 This intrinsic causes the system to enforce some ordering constraints upon
5117 the loads and stores of the program. This barrier does not indicate
5118 <em>when</em> any events will occur, it only enforces an <em>order</em> in
5119 which they occur. For any of the specified pairs of load and store operations
5120 (f.ex. load-load, or store-load), all of the first operations preceding the
5121 barrier will complete before any of the second operations succeeding the
5122 barrier begin. Specifically the semantics for each pairing is as follows:
Reid Spencer1cff4082007-07-20 20:03:33 +00005123</p>
Chandler Carruth2eb93b32007-07-20 19:34:37 +00005124 <ul>
5125 <li><tt>ll</tt>: All loads before the barrier must complete before any load
5126 after the barrier begins.</li>
5127 <li><tt>ls</tt>: All loads before the barrier must complete before any
5128 store after the barrier begins.</li>
5129 <li><tt>ss</tt>: All stores before the barrier must complete before any
5130 store after the barrier begins.</li>
5131 <li><tt>sl</tt>: All stores before the barrier must complete before any
5132 load after the barrier begins.</li>
5133 </ul>
Reid Spencer1cff4082007-07-20 20:03:33 +00005134<p>
Chandler Carruth2eb93b32007-07-20 19:34:37 +00005135 These semantics are applied with a logical "and" behavior when more than one
5136 is enabled in a single memory barrier intrinsic.
5137</p>
5138<h5>Example:</h5>
5139<pre>
5140%ptr = malloc i32
5141 store i32 4, %ptr
5142
5143%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
5144 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
5145 <i>; guarantee the above finishes</i>
5146 store i32 8, %ptr <i>; before this begins</i>
5147</pre>
5148</div>
5149
5150<!-- ======================================================================= -->
5151<div class="doc_subsection">
Duncan Sands36397f52007-07-27 12:58:54 +00005152 <a name="int_trampoline">Trampoline Intrinsics</a>
5153</div>
5154
5155<div class="doc_text">
5156<p>
5157 These intrinsics make it possible to excise one parameter, marked with
5158 the <tt>nest</tt> attribute, from a function. The result is a callable
5159 function pointer lacking the nest parameter - the caller does not need
5160 to provide a value for it. Instead, the value to use is stored in
5161 advance in a "trampoline", a block of memory usually allocated
5162 on the stack, which also contains code to splice the nest value into the
5163 argument list. This is used to implement the GCC nested function address
5164 extension.
5165</p>
5166<p>
5167 For example, if the function is
5168 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
5169 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:
5170<pre>
5171 %tramp1 = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5172 %tramp = getelementptr [10 x i8]* %tramp1, i32 0, i32 0
5173 call void @llvm.init.trampoline( i8* %tramp, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5174 %adj = call i8* @llvm.adjust.trampoline( i8* %tramp )
5175 %fp = bitcast i8* %adj to i32 (i32, i32)*
5176</pre>
5177 The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent to
5178 <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.
5179</p>
Duncan Sands36397f52007-07-27 12:58:54 +00005180</div>
5181
5182<!-- _______________________________________________________________________ -->
5183<div class="doc_subsubsection">
5184 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5185</div>
5186<div class="doc_text">
5187<h5>Syntax:</h5>
5188<pre>
5189declare void @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
5190</pre>
5191<h5>Overview:</h5>
5192<p>
5193 This initializes the memory pointed to by <tt>tramp</tt> as a trampoline.
5194</p>
5195<h5>Arguments:</h5>
5196<p>
5197 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5198 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
5199 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsc00c2ba2007-08-22 23:39:54 +00005200 intrinsic. Note that the size and the alignment are target-specific - LLVM
5201 currently provides no portable way of determining them, so a front-end that
5202 generates this intrinsic needs to have some target-specific knowledge.
5203 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands36397f52007-07-27 12:58:54 +00005204</p>
5205<h5>Semantics:</h5>
5206<p>
5207 The block of memory pointed to by <tt>tramp</tt> is filled with target
5208 dependent code, turning it into a function.
5209 The new function's signature is the same as that of <tt>func</tt> with
5210 any arguments marked with the <tt>nest</tt> attribute removed. At most
5211 one such <tt>nest</tt> argument is allowed, and it must be of pointer
5212 type. Calling the new function is equivalent to calling <tt>func</tt>
5213 with the same argument list, but with <tt>nval</tt> used for the missing
5214 <tt>nest</tt> argument.
5215</p>
5216</div>
5217
5218<!-- _______________________________________________________________________ -->
5219<div class="doc_subsubsection">
5220 <a name="int_at">'<tt>llvm.adjust.trampoline</tt>' Intrinsic</a>
5221</div>
5222<div class="doc_text">
5223<h5>Syntax:</h5>
5224<pre>
5225declare i8* @llvm.adjust.trampoline(i8* &lt;tramp&gt;)
5226</pre>
5227<h5>Overview:</h5>
5228<p>
5229 This intrinsic returns a function pointer suitable for executing
5230 the trampoline code pointed to by <tt>tramp</tt>.
5231</p>
5232<h5>Arguments:</h5>
5233<p>
5234 The <tt>llvm.adjust.trampoline</tt> takes one argument, a pointer to a
5235 trampoline initialized by the
5236 <a href="#int_it">'<tt>llvm.init.trampoline</tt>' intrinsic</a>.
5237</p>
5238<h5>Semantics:</h5>
5239<p>
5240 A function pointer that can be used to execute the trampoline code in
5241 <tt>tramp</tt> is returned. The returned value should be bitcast to an
5242 <a href="#int_trampoline">appropriate function pointer type</a>
5243 before being called.
5244</p>
5245</div>
5246
5247<!-- ======================================================================= -->
5248<div class="doc_subsection">
Tanya Lattner6d806e92007-06-15 20:50:54 +00005249 <a name="int_general">General Intrinsics</a>
5250</div>
5251
5252<div class="doc_text">
5253<p> This class of intrinsics is designed to be generic and has
5254no specific purpose. </p>
5255</div>
5256
5257<!-- _______________________________________________________________________ -->
5258<div class="doc_subsubsection">
5259 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
5260</div>
5261
5262<div class="doc_text">
5263
5264<h5>Syntax:</h5>
5265<pre>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00005266 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner6d806e92007-06-15 20:50:54 +00005267</pre>
5268
5269<h5>Overview:</h5>
5270
5271<p>
5272The '<tt>llvm.var.annotation</tt>' intrinsic
5273</p>
5274
5275<h5>Arguments:</h5>
5276
5277<p>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00005278The first argument is a pointer to a value, the second is a pointer to a
5279global string, the third is a pointer to a global string which is the source
5280file name, and the last argument is the line number.
Tanya Lattner6d806e92007-06-15 20:50:54 +00005281</p>
5282
5283<h5>Semantics:</h5>
5284
5285<p>
5286This intrinsic allows annotation of local variables with arbitrary strings.
5287This can be useful for special purpose optimizations that want to look for these
5288 annotations. These have no other defined use, they are ignored by code
5289 generation and optimization.
5290</div>
5291
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00005292
Chris Lattner00950542001-06-06 20:29:01 +00005293<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00005294<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00005295<address>
5296 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
5297 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
5298 <a href="http://validator.w3.org/check/referer"><img
5299 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a>
5300
5301 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00005302 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00005303 Last modified: $Date$
5304</address>
Misha Brukman9d0919f2003-11-08 01:05:38 +00005305</body>
5306</html>