blob: f597f476feecb64abc43fddf9749913d1018ef9c [file] [log] [blame]
Misha Brukman91b5ca82004-07-26 18:45:48 +00001//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnera960d952003-01-13 01:01:59 +00009//
10// This file defines the pass which converts floating point instructions from
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000011// pseudo registers into register stack instructions. This pass uses live
Chris Lattner847df252004-01-30 22:25:18 +000012// variable information to indicate where the FPn registers are used and their
13// lifetimes.
14//
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000015// The x87 hardware tracks liveness of the stack registers, so it is necessary
16// to implement exact liveness tracking between basic blocks. The CFG edges are
17// partitioned into bundles where the same FP registers must be live in
18// identical stack positions. Instructions are inserted at the end of each basic
19// block to rearrange the live registers to match the outgoing bundle.
Chris Lattner847df252004-01-30 22:25:18 +000020//
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000021// This approach avoids splitting critical edges at the potential cost of more
22// live register shuffling instructions when critical edges are present.
Chris Lattnera960d952003-01-13 01:01:59 +000023//
24//===----------------------------------------------------------------------===//
25
Chris Lattner95b2c7d2006-12-19 22:59:26 +000026#define DEBUG_TYPE "x86-codegen"
Chris Lattnera960d952003-01-13 01:01:59 +000027#include "X86.h"
28#include "X86InstrInfo.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000029#include "llvm/ADT/DepthFirstIterator.h"
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000030#include "llvm/ADT/DenseMap.h"
Owen Andersoneaa009d2008-08-14 21:01:00 +000031#include "llvm/ADT/SmallPtrSet.h"
Evan Chengddd2a452006-11-15 20:56:39 +000032#include "llvm/ADT/SmallVector.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000033#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
Bill Wendling0ea8bf32009-08-03 00:11:34 +000035#include "llvm/CodeGen/MachineFunctionPass.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/Passes.h"
Bill Wendling0ea8bf32009-08-03 00:11:34 +000039#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/Target/TargetInstrInfo.h"
43#include "llvm/Target/TargetMachine.h"
Chris Lattnera960d952003-01-13 01:01:59 +000044#include <algorithm>
Chris Lattnerf2e49d42003-12-20 09:58:55 +000045using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000046
Chris Lattner95b2c7d2006-12-19 22:59:26 +000047STATISTIC(NumFXCH, "Number of fxch instructions inserted");
48STATISTIC(NumFP , "Number of floating point instructions");
Chris Lattnera960d952003-01-13 01:01:59 +000049
Chris Lattner95b2c7d2006-12-19 22:59:26 +000050namespace {
Nick Lewycky6726b6d2009-10-25 06:33:48 +000051 struct FPS : public MachineFunctionPass {
Devang Patel19974732007-05-03 01:11:54 +000052 static char ID;
Owen Anderson90c579d2010-08-06 18:33:48 +000053 FPS() : MachineFunctionPass(ID) {
Jakob Stoklund Olesenb47bb132010-07-16 22:00:33 +000054 // This is really only to keep valgrind quiet.
55 // The logic in isLive() is too much for it.
56 memset(Stack, 0, sizeof(Stack));
57 memset(RegMap, 0, sizeof(RegMap));
58 }
Devang Patel794fd752007-05-01 21:15:47 +000059
Evan Chengbbeeb2a2008-09-22 20:58:04 +000060 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Dan Gohmandf090552009-08-01 00:26:16 +000061 AU.setPreservesCFG();
Evan Cheng8b56a902008-09-22 22:21:38 +000062 AU.addPreservedID(MachineLoopInfoID);
63 AU.addPreservedID(MachineDominatorsID);
Evan Chengbbeeb2a2008-09-22 20:58:04 +000064 MachineFunctionPass::getAnalysisUsage(AU);
65 }
66
Chris Lattnera960d952003-01-13 01:01:59 +000067 virtual bool runOnMachineFunction(MachineFunction &MF);
68
69 virtual const char *getPassName() const { return "X86 FP Stackifier"; }
70
Chris Lattnera960d952003-01-13 01:01:59 +000071 private:
Evan Cheng32644ac2006-12-01 10:11:51 +000072 const TargetInstrInfo *TII; // Machine instruction info.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +000073
74 // Two CFG edges are related if they leave the same block, or enter the same
75 // block. The transitive closure of an edge under this relation is a
76 // LiveBundle. It represents a set of CFG edges where the live FP stack
77 // registers must be allocated identically in the x87 stack.
78 //
79 // A LiveBundle is usually all the edges leaving a block, or all the edges
80 // entering a block, but it can contain more edges if critical edges are
81 // present.
82 //
83 // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
84 // but the exact mapping of FP registers to stack slots is fixed later.
85 struct LiveBundle {
86 // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
87 unsigned Mask;
88
89 // Number of pre-assigned live registers in FixStack. This is 0 when the
90 // stack order has not yet been fixed.
91 unsigned FixCount;
92
93 // Assigned stack order for live-in registers.
94 // FixStack[i] == getStackEntry(i) for all i < FixCount.
95 unsigned char FixStack[8];
96
97 LiveBundle(unsigned m = 0) : Mask(m), FixCount(0) {}
98
99 // Have the live registers been assigned a stack order yet?
100 bool isFixed() const { return !Mask || FixCount; }
101 };
102
103 // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
104 // with no live FP registers.
105 SmallVector<LiveBundle, 8> LiveBundles;
106
107 // Map each MBB in the current function to an (ingoing, outgoing) index into
108 // LiveBundles. Blocks with no FP registers live in or out map to (0, 0)
109 // and are not actually stored in the map.
110 DenseMap<MachineBasicBlock*, std::pair<unsigned, unsigned> > BlockBundle;
111
112 // Return a bitmask of FP registers in block's live-in list.
113 unsigned calcLiveInMask(MachineBasicBlock *MBB) {
114 unsigned Mask = 0;
115 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
116 E = MBB->livein_end(); I != E; ++I) {
117 unsigned Reg = *I - X86::FP0;
118 if (Reg < 8)
119 Mask |= 1 << Reg;
120 }
121 return Mask;
122 }
123
124 // Partition all the CFG edges into LiveBundles.
125 void bundleCFG(MachineFunction &MF);
126
Evan Cheng32644ac2006-12-01 10:11:51 +0000127 MachineBasicBlock *MBB; // Current basic block
128 unsigned Stack[8]; // FP<n> Registers in each stack slot...
129 unsigned RegMap[8]; // Track which stack slot contains each register
130 unsigned StackTop; // The current top of the FP stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000131
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000132 // Set up our stack model to match the incoming registers to MBB.
133 void setupBlockStack();
134
135 // Shuffle live registers to match the expectations of successor blocks.
136 void finishBlockStack();
137
Chris Lattnera960d952003-01-13 01:01:59 +0000138 void dumpStack() const {
David Greenef5c95a62010-01-05 01:29:34 +0000139 dbgs() << "Stack contents:";
Chris Lattnera960d952003-01-13 01:01:59 +0000140 for (unsigned i = 0; i != StackTop; ++i) {
David Greenef5c95a62010-01-05 01:29:34 +0000141 dbgs() << " FP" << Stack[i];
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000142 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
Chris Lattnera960d952003-01-13 01:01:59 +0000143 }
David Greenef5c95a62010-01-05 01:29:34 +0000144 dbgs() << "\n";
Chris Lattnera960d952003-01-13 01:01:59 +0000145 }
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000146
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000147 /// getSlot - Return the stack slot number a particular register number is
148 /// in.
Chris Lattnera960d952003-01-13 01:01:59 +0000149 unsigned getSlot(unsigned RegNo) const {
150 assert(RegNo < 8 && "Regno out of range!");
151 return RegMap[RegNo];
152 }
153
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000154 /// isLive - Is RegNo currently live in the stack?
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000155 bool isLive(unsigned RegNo) const {
156 unsigned Slot = getSlot(RegNo);
157 return Slot < StackTop && Stack[Slot] == RegNo;
158 }
159
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000160 /// getScratchReg - Return an FP register that is not currently in use.
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +0000161 unsigned getScratchReg() {
162 for (int i = 7; i >= 0; --i)
163 if (!isLive(i))
164 return i;
165 llvm_unreachable("Ran out of scratch FP registers");
166 }
167
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000168 /// getStackEntry - Return the X86::FP<n> register in register ST(i).
Chris Lattnera960d952003-01-13 01:01:59 +0000169 unsigned getStackEntry(unsigned STi) const {
170 assert(STi < StackTop && "Access past stack top!");
171 return Stack[StackTop-1-STi];
172 }
173
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000174 /// getSTReg - Return the X86::ST(i) register which contains the specified
175 /// FP<RegNo> register.
Chris Lattnera960d952003-01-13 01:01:59 +0000176 unsigned getSTReg(unsigned RegNo) const {
Brian Gaeked0fde302003-11-11 22:41:34 +0000177 return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0;
Chris Lattnera960d952003-01-13 01:01:59 +0000178 }
179
Chris Lattner447ff682008-03-11 03:23:40 +0000180 // pushReg - Push the specified FP<n> register onto the stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000181 void pushReg(unsigned Reg) {
182 assert(Reg < 8 && "Register number out of range!");
183 assert(StackTop < 8 && "Stack overflow!");
184 Stack[StackTop] = Reg;
185 RegMap[Reg] = StackTop++;
186 }
187
188 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
Chris Lattner447ff682008-03-11 03:23:40 +0000189 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000190 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
Chris Lattner447ff682008-03-11 03:23:40 +0000191 if (isAtTop(RegNo)) return;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000192
Chris Lattner447ff682008-03-11 03:23:40 +0000193 unsigned STReg = getSTReg(RegNo);
194 unsigned RegOnTop = getStackEntry(0);
Chris Lattnera960d952003-01-13 01:01:59 +0000195
Chris Lattner447ff682008-03-11 03:23:40 +0000196 // Swap the slots the regs are in.
197 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
Chris Lattnera960d952003-01-13 01:01:59 +0000198
Chris Lattner447ff682008-03-11 03:23:40 +0000199 // Swap stack slot contents.
200 assert(RegMap[RegOnTop] < StackTop);
201 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
Chris Lattnera960d952003-01-13 01:01:59 +0000202
Chris Lattner447ff682008-03-11 03:23:40 +0000203 // Emit an fxch to update the runtime processors version of the state.
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000204 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
Dan Gohmanfe601042010-06-22 15:08:57 +0000205 ++NumFXCH;
Chris Lattnera960d952003-01-13 01:01:59 +0000206 }
207
Chris Lattner0526f012004-04-01 04:06:09 +0000208 void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) {
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000209 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +0000210 unsigned STReg = getSTReg(RegNo);
211 pushReg(AsReg); // New register on top of stack
212
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000213 BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
Chris Lattnera960d952003-01-13 01:01:59 +0000214 }
215
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000216 /// popStackAfter - Pop the current value off of the top of the FP stack
217 /// after the specified instruction.
Chris Lattnera960d952003-01-13 01:01:59 +0000218 void popStackAfter(MachineBasicBlock::iterator &I);
219
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000220 /// freeStackSlotAfter - Free the specified register from the register
221 /// stack, so that it is no longer in a register. If the register is
222 /// currently at the top of the stack, we just pop the current instruction,
223 /// otherwise we store the current top-of-stack into the specified slot,
224 /// then pop the top of stack.
Chris Lattner0526f012004-04-01 04:06:09 +0000225 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
226
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000227 /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
228 /// instruction.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000229 MachineBasicBlock::iterator
230 freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
231
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000232 /// Adjust the live registers to be the set in Mask.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000233 void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
234
Chris Lattnera40ce7e2010-07-17 17:40:51 +0000235 /// Shuffle the top FixCount stack entries susch that FP reg FixStack[0] is
236 /// st(0), FP reg FixStack[1] is st(1) etc.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000237 void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
238 MachineBasicBlock::iterator I);
239
Chris Lattnera960d952003-01-13 01:01:59 +0000240 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
241
242 void handleZeroArgFP(MachineBasicBlock::iterator &I);
243 void handleOneArgFP(MachineBasicBlock::iterator &I);
Chris Lattner4a06f352004-02-02 19:23:15 +0000244 void handleOneArgFPRW(MachineBasicBlock::iterator &I);
Chris Lattnera960d952003-01-13 01:01:59 +0000245 void handleTwoArgFP(MachineBasicBlock::iterator &I);
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000246 void handleCompareFP(MachineBasicBlock::iterator &I);
Chris Lattnerc1bab322004-03-31 22:02:36 +0000247 void handleCondMovFP(MachineBasicBlock::iterator &I);
Chris Lattnera960d952003-01-13 01:01:59 +0000248 void handleSpecialFP(MachineBasicBlock::iterator &I);
Jakob Stoklund Olesen7db1e7a2010-07-08 19:46:30 +0000249
250 bool translateCopy(MachineInstr*);
Chris Lattnera960d952003-01-13 01:01:59 +0000251 };
Devang Patel19974732007-05-03 01:11:54 +0000252 char FPS::ID = 0;
Chris Lattnera960d952003-01-13 01:01:59 +0000253}
254
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000255FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
Chris Lattnera960d952003-01-13 01:01:59 +0000256
Chris Lattner3cc83842008-01-14 06:41:29 +0000257/// getFPReg - Return the X86::FPx register number for the specified operand.
258/// For example, this returns 3 for X86::FP3.
259static unsigned getFPReg(const MachineOperand &MO) {
Dan Gohmand735b802008-10-03 15:45:36 +0000260 assert(MO.isReg() && "Expected an FP register!");
Chris Lattner3cc83842008-01-14 06:41:29 +0000261 unsigned Reg = MO.getReg();
262 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
263 return Reg - X86::FP0;
264}
265
Chris Lattnera960d952003-01-13 01:01:59 +0000266/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
267/// register references into FP stack references.
268///
269bool FPS::runOnMachineFunction(MachineFunction &MF) {
Chris Lattner42e25b32005-01-23 23:13:59 +0000270 // We only need to run this pass if there are any FP registers used in this
271 // function. If it is all integer, there is nothing for us to do!
Chris Lattner42e25b32005-01-23 23:13:59 +0000272 bool FPIsUsed = false;
273
274 assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!");
275 for (unsigned i = 0; i <= 6; ++i)
Chris Lattner84bc5422007-12-31 04:13:23 +0000276 if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) {
Chris Lattner42e25b32005-01-23 23:13:59 +0000277 FPIsUsed = true;
278 break;
279 }
280
281 // Early exit.
282 if (!FPIsUsed) return false;
283
Evan Cheng32644ac2006-12-01 10:11:51 +0000284 TII = MF.getTarget().getInstrInfo();
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000285
286 // Prepare cross-MBB liveness.
287 bundleCFG(MF);
288
Chris Lattnera960d952003-01-13 01:01:59 +0000289 StackTop = 0;
290
Chris Lattner847df252004-01-30 22:25:18 +0000291 // Process the function in depth first order so that we process at least one
292 // of the predecessors for every reachable block in the function.
Owen Andersoneaa009d2008-08-14 21:01:00 +0000293 SmallPtrSet<MachineBasicBlock*, 8> Processed;
Chris Lattner22686842004-05-01 21:27:53 +0000294 MachineBasicBlock *Entry = MF.begin();
Chris Lattner847df252004-01-30 22:25:18 +0000295
296 bool Changed = false;
Owen Andersoneaa009d2008-08-14 21:01:00 +0000297 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> >
Chris Lattner847df252004-01-30 22:25:18 +0000298 I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed);
299 I != E; ++I)
Chris Lattner22686842004-05-01 21:27:53 +0000300 Changed |= processBasicBlock(MF, **I);
Chris Lattner847df252004-01-30 22:25:18 +0000301
Chris Lattnerba3598c2009-09-08 04:55:44 +0000302 // Process any unreachable blocks in arbitrary order now.
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000303 if (MF.size() != Processed.size())
304 for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
305 if (Processed.insert(BB))
306 Changed |= processBasicBlock(MF, *BB);
Chris Lattnerba3598c2009-09-08 04:55:44 +0000307
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000308 BlockBundle.clear();
309 LiveBundles.clear();
310
Chris Lattnera960d952003-01-13 01:01:59 +0000311 return Changed;
312}
313
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000314/// bundleCFG - Scan all the basic blocks to determine consistent live-in and
315/// live-out sets for the FP registers. Consistent means that the set of
316/// registers live-out from a block is identical to the live-in set of all
317/// successors. This is not enforced by the normal live-in lists since
318/// registers may be implicitly defined, or not used by all successors.
319void FPS::bundleCFG(MachineFunction &MF) {
320 assert(LiveBundles.empty() && "Stale data in LiveBundles");
321 assert(BlockBundle.empty() && "Stale data in BlockBundle");
322 SmallPtrSet<MachineBasicBlock*, 8> PropDown, PropUp;
323
324 // LiveBundle[0] is the empty live-in set.
325 LiveBundles.resize(1);
326
327 // First gather the actual live-in masks for all MBBs.
328 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
329 MachineBasicBlock *MBB = I;
330 const unsigned Mask = calcLiveInMask(MBB);
331 if (!Mask)
332 continue;
333 // Ingoing bundle index.
334 unsigned &Idx = BlockBundle[MBB].first;
335 // Already assigned an ingoing bundle?
336 if (Idx)
337 continue;
338 // Allocate a new LiveBundle struct for this block's live-ins.
339 const unsigned BundleIdx = Idx = LiveBundles.size();
340 DEBUG(dbgs() << "Creating LB#" << BundleIdx << ": in:BB#"
341 << MBB->getNumber());
342 LiveBundles.push_back(Mask);
343 LiveBundle &Bundle = LiveBundles.back();
344
345 // Make sure all predecessors have the same live-out set.
346 PropUp.insert(MBB);
347
348 // Keep pushing liveness up and down the CFG until convergence.
349 // Only critical edges cause iteration here, but when they do, multiple
350 // blocks can be assigned to the same LiveBundle index.
351 do {
352 // Assign BundleIdx as liveout from predecessors in PropUp.
353 for (SmallPtrSet<MachineBasicBlock*, 16>::iterator I = PropUp.begin(),
354 E = PropUp.end(); I != E; ++I) {
355 MachineBasicBlock *MBB = *I;
356 for (MachineBasicBlock::const_pred_iterator LinkI = MBB->pred_begin(),
357 LinkE = MBB->pred_end(); LinkI != LinkE; ++LinkI) {
358 MachineBasicBlock *PredMBB = *LinkI;
359 // PredMBB's liveout bundle should be set to LIIdx.
360 unsigned &Idx = BlockBundle[PredMBB].second;
361 if (Idx) {
362 assert(Idx == BundleIdx && "Inconsistent CFG");
363 continue;
364 }
365 Idx = BundleIdx;
366 DEBUG(dbgs() << " out:BB#" << PredMBB->getNumber());
367 // Propagate to siblings.
368 if (PredMBB->succ_size() > 1)
369 PropDown.insert(PredMBB);
370 }
371 }
372 PropUp.clear();
373
374 // Assign BundleIdx as livein to successors in PropDown.
375 for (SmallPtrSet<MachineBasicBlock*, 16>::iterator I = PropDown.begin(),
376 E = PropDown.end(); I != E; ++I) {
377 MachineBasicBlock *MBB = *I;
378 for (MachineBasicBlock::const_succ_iterator LinkI = MBB->succ_begin(),
379 LinkE = MBB->succ_end(); LinkI != LinkE; ++LinkI) {
380 MachineBasicBlock *SuccMBB = *LinkI;
381 // LinkMBB's livein bundle should be set to BundleIdx.
382 unsigned &Idx = BlockBundle[SuccMBB].first;
383 if (Idx) {
384 assert(Idx == BundleIdx && "Inconsistent CFG");
385 continue;
386 }
387 Idx = BundleIdx;
388 DEBUG(dbgs() << " in:BB#" << SuccMBB->getNumber());
389 // Propagate to siblings.
390 if (SuccMBB->pred_size() > 1)
391 PropUp.insert(SuccMBB);
392 // Also accumulate the bundle liveness mask from the liveins here.
393 Bundle.Mask |= calcLiveInMask(SuccMBB);
394 }
395 }
396 PropDown.clear();
397 } while (!PropUp.empty());
398 DEBUG({
399 dbgs() << " live:";
400 for (unsigned i = 0; i < 8; ++i)
401 if (Bundle.Mask & (1<<i))
402 dbgs() << " %FP" << i;
403 dbgs() << '\n';
404 });
405 }
406}
407
Chris Lattnera960d952003-01-13 01:01:59 +0000408/// processBasicBlock - Loop over all of the instructions in the basic block,
409/// transforming FP instructions into their stack form.
410///
411bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
Chris Lattnera960d952003-01-13 01:01:59 +0000412 bool Changed = false;
413 MBB = &BB;
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000414
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000415 setupBlockStack();
416
Chris Lattnera960d952003-01-13 01:01:59 +0000417 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000418 MachineInstr *MI = I;
Bruno Cardoso Lopes99405df2010-06-08 22:51:23 +0000419 uint64_t Flags = MI->getDesc().TSFlags;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000420
Chris Lattnere12ecf22008-03-11 19:50:13 +0000421 unsigned FPInstClass = Flags & X86II::FPTypeMask;
Chris Lattner518bb532010-02-09 19:54:29 +0000422 if (MI->isInlineAsm())
Chris Lattnere12ecf22008-03-11 19:50:13 +0000423 FPInstClass = X86II::SpecialFP;
Jakob Stoklund Olesen7db1e7a2010-07-08 19:46:30 +0000424
425 if (MI->isCopy() && translateCopy(MI))
426 FPInstClass = X86II::SpecialFP;
427
Chris Lattnere12ecf22008-03-11 19:50:13 +0000428 if (FPInstClass == X86II::NotFP)
Chris Lattner847df252004-01-30 22:25:18 +0000429 continue; // Efficiently ignore non-fp insts!
Chris Lattnera960d952003-01-13 01:01:59 +0000430
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000431 MachineInstr *PrevMI = 0;
Alkis Evlogimenosf81af212004-02-14 01:18:34 +0000432 if (I != BB.begin())
Chris Lattner6fa2f9c2008-03-09 07:05:32 +0000433 PrevMI = prior(I);
Chris Lattnera960d952003-01-13 01:01:59 +0000434
435 ++NumFP; // Keep track of # of pseudo instrs
David Greenef5c95a62010-01-05 01:29:34 +0000436 DEBUG(dbgs() << "\nFPInst:\t" << *MI);
Chris Lattnera960d952003-01-13 01:01:59 +0000437
438 // Get dead variables list now because the MI pointer may be deleted as part
439 // of processing!
Evan Chengddd2a452006-11-15 20:56:39 +0000440 SmallVector<unsigned, 8> DeadRegs;
441 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
442 const MachineOperand &MO = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +0000443 if (MO.isReg() && MO.isDead())
Evan Chengddd2a452006-11-15 20:56:39 +0000444 DeadRegs.push_back(MO.getReg());
445 }
Chris Lattnera960d952003-01-13 01:01:59 +0000446
Chris Lattnere12ecf22008-03-11 19:50:13 +0000447 switch (FPInstClass) {
Chris Lattner4a06f352004-02-02 19:23:15 +0000448 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
Chris Lattnerc1bab322004-03-31 22:02:36 +0000449 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
Chris Lattner4a06f352004-02-02 19:23:15 +0000450 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
Evan Cheng5cd3e9f2006-11-11 10:21:44 +0000451 case X86II::TwoArgFP: handleTwoArgFP(I); break;
Chris Lattnerab8decc2004-06-11 04:41:24 +0000452 case X86II::CompareFP: handleCompareFP(I); break;
Chris Lattnerc1bab322004-03-31 22:02:36 +0000453 case X86II::CondMovFP: handleCondMovFP(I); break;
Chris Lattner4a06f352004-02-02 19:23:15 +0000454 case X86II::SpecialFP: handleSpecialFP(I); break;
Torok Edwinc23197a2009-07-14 16:55:14 +0000455 default: llvm_unreachable("Unknown FP Type!");
Chris Lattnera960d952003-01-13 01:01:59 +0000456 }
457
458 // Check to see if any of the values defined by this instruction are dead
459 // after definition. If so, pop them.
Evan Chengddd2a452006-11-15 20:56:39 +0000460 for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
461 unsigned Reg = DeadRegs[i];
Chris Lattnera960d952003-01-13 01:01:59 +0000462 if (Reg >= X86::FP0 && Reg <= X86::FP6) {
David Greenef5c95a62010-01-05 01:29:34 +0000463 DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
Chris Lattnerd62d5d72004-06-11 04:25:06 +0000464 freeStackSlotAfter(I, Reg-X86::FP0);
Chris Lattnera960d952003-01-13 01:01:59 +0000465 }
466 }
Misha Brukman0e0a7a452005-04-21 23:38:14 +0000467
Chris Lattnera960d952003-01-13 01:01:59 +0000468 // Print out all of the instructions expanded to if -debug
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000469 DEBUG(
470 MachineBasicBlock::iterator PrevI(PrevMI);
471 if (I == PrevI) {
David Greenef5c95a62010-01-05 01:29:34 +0000472 dbgs() << "Just deleted pseudo instruction\n";
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000473 } else {
474 MachineBasicBlock::iterator Start = I;
475 // Rewind to first instruction newly inserted.
476 while (Start != BB.begin() && prior(Start) != PrevI) --Start;
David Greenef5c95a62010-01-05 01:29:34 +0000477 dbgs() << "Inserted instructions:\n\t";
478 Start->print(dbgs(), &MF.getTarget());
Chris Lattner7896c9f2009-12-03 00:50:42 +0000479 while (++Start != llvm::next(I)) {}
Alkis Evlogimenosb929bca2004-02-15 00:46:41 +0000480 }
481 dumpStack();
482 );
Chris Lattnera960d952003-01-13 01:01:59 +0000483
484 Changed = true;
485 }
486
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000487 finishBlockStack();
488
Chris Lattnera960d952003-01-13 01:01:59 +0000489 return Changed;
490}
491
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000492/// setupBlockStack - Use the BlockBundle map to set up our model of the stack
493/// to match predecessors' live out stack.
494void FPS::setupBlockStack() {
495 DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
496 << " derived from " << MBB->getName() << ".\n");
497 StackTop = 0;
498 const LiveBundle &Bundle = LiveBundles[BlockBundle.lookup(MBB).first];
499
500 if (!Bundle.Mask) {
501 DEBUG(dbgs() << "Block has no FP live-ins.\n");
502 return;
503 }
504
505 // Depth-first iteration should ensure that we always have an assigned stack.
506 assert(Bundle.isFixed() && "Reached block before any predecessors");
507
508 // Push the fixed live-in registers.
509 for (unsigned i = Bundle.FixCount; i > 0; --i) {
510 MBB->addLiveIn(X86::ST0+i-1);
511 DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
512 << unsigned(Bundle.FixStack[i-1]) << '\n');
513 pushReg(Bundle.FixStack[i-1]);
514 }
515
516 // Kill off unwanted live-ins. This can happen with a critical edge.
517 // FIXME: We could keep these live registers around as zombies. They may need
518 // to be revived at the end of a short block. It might save a few instrs.
519 adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
520 DEBUG(MBB->dump());
521}
522
523/// finishBlockStack - Revive live-outs that are implicitly defined out of
524/// MBB. Shuffle live registers to match the expected fixed stack of any
525/// predecessors, and ensure that all predecessors are expecting the same
526/// stack.
527void FPS::finishBlockStack() {
528 // The RET handling below takes care of return blocks for us.
529 if (MBB->succ_empty())
530 return;
531
532 DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
533 << " derived from " << MBB->getName() << ".\n");
534
535 unsigned BundleIdx = BlockBundle.lookup(MBB).second;
536 LiveBundle &Bundle = LiveBundles[BundleIdx];
537
538 // We may need to kill and define some registers to match successors.
539 // FIXME: This can probably be combined with the shuffle below.
540 MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
541 adjustLiveRegs(Bundle.Mask, Term);
542
543 if (!Bundle.Mask) {
544 DEBUG(dbgs() << "No live-outs.\n");
545 return;
546 }
547
548 // Has the stack order been fixed yet?
549 DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
550 if (Bundle.isFixed()) {
551 DEBUG(dbgs() << "Shuffling stack to match.\n");
552 shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
553 } else {
554 // Not fixed yet, we get to choose.
555 DEBUG(dbgs() << "Fixing stack order now.\n");
556 Bundle.FixCount = StackTop;
557 for (unsigned i = 0; i < StackTop; ++i)
558 Bundle.FixStack[i] = getStackEntry(i);
559 }
560}
561
562
Chris Lattnera960d952003-01-13 01:01:59 +0000563//===----------------------------------------------------------------------===//
564// Efficient Lookup Table Support
565//===----------------------------------------------------------------------===//
566
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000567namespace {
568 struct TableEntry {
569 unsigned from;
570 unsigned to;
571 bool operator<(const TableEntry &TE) const { return from < TE.from; }
Jeff Cohen9471c8a2006-01-26 20:41:32 +0000572 friend bool operator<(const TableEntry &TE, unsigned V) {
573 return TE.from < V;
574 }
Chris Lattnerf2e49d42003-12-20 09:58:55 +0000575 };
576}
Chris Lattnera960d952003-01-13 01:01:59 +0000577
Evan Chenga022bdf2008-07-21 20:02:45 +0000578#ifndef NDEBUG
Chris Lattnera960d952003-01-13 01:01:59 +0000579static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) {
580 for (unsigned i = 0; i != NumEntries-1; ++i)
581 if (!(Table[i] < Table[i+1])) return false;
582 return true;
583}
Evan Chenga022bdf2008-07-21 20:02:45 +0000584#endif
Chris Lattnera960d952003-01-13 01:01:59 +0000585
586static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) {
587 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode);
588 if (I != Table+N && I->from == Opcode)
589 return I->to;
590 return -1;
591}
592
Chris Lattnera960d952003-01-13 01:01:59 +0000593#ifdef NDEBUG
594#define ASSERT_SORTED(TABLE)
595#else
596#define ASSERT_SORTED(TABLE) \
597 { static bool TABLE##Checked = false; \
Jim Laskeyc06fe8a2006-07-19 19:33:08 +0000598 if (!TABLE##Checked) { \
Owen Anderson718cb662007-09-07 04:06:50 +0000599 assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \
Chris Lattnera960d952003-01-13 01:01:59 +0000600 "All lookup tables must be sorted for efficient access!"); \
Jim Laskeyc06fe8a2006-07-19 19:33:08 +0000601 TABLE##Checked = true; \
602 } \
Chris Lattnera960d952003-01-13 01:01:59 +0000603 }
604#endif
605
Chris Lattner58fe4592005-12-21 07:47:04 +0000606//===----------------------------------------------------------------------===//
607// Register File -> Register Stack Mapping Methods
608//===----------------------------------------------------------------------===//
609
610// OpcodeTable - Sorted map of register instructions to their stack version.
611// The first element is an register file pseudo instruction, the second is the
612// concrete X86 instruction which uses the register stack.
613//
614static const TableEntry OpcodeTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000615 { X86::ABS_Fp32 , X86::ABS_F },
616 { X86::ABS_Fp64 , X86::ABS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000617 { X86::ABS_Fp80 , X86::ABS_F },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000618 { X86::ADD_Fp32m , X86::ADD_F32m },
619 { X86::ADD_Fp64m , X86::ADD_F64m },
620 { X86::ADD_Fp64m32 , X86::ADD_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000621 { X86::ADD_Fp80m32 , X86::ADD_F32m },
622 { X86::ADD_Fp80m64 , X86::ADD_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000623 { X86::ADD_FpI16m32 , X86::ADD_FI16m },
624 { X86::ADD_FpI16m64 , X86::ADD_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000625 { X86::ADD_FpI16m80 , X86::ADD_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000626 { X86::ADD_FpI32m32 , X86::ADD_FI32m },
627 { X86::ADD_FpI32m64 , X86::ADD_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000628 { X86::ADD_FpI32m80 , X86::ADD_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000629 { X86::CHS_Fp32 , X86::CHS_F },
630 { X86::CHS_Fp64 , X86::CHS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000631 { X86::CHS_Fp80 , X86::CHS_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000632 { X86::CMOVBE_Fp32 , X86::CMOVBE_F },
633 { X86::CMOVBE_Fp64 , X86::CMOVBE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000634 { X86::CMOVBE_Fp80 , X86::CMOVBE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000635 { X86::CMOVB_Fp32 , X86::CMOVB_F },
636 { X86::CMOVB_Fp64 , X86::CMOVB_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000637 { X86::CMOVB_Fp80 , X86::CMOVB_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000638 { X86::CMOVE_Fp32 , X86::CMOVE_F },
639 { X86::CMOVE_Fp64 , X86::CMOVE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000640 { X86::CMOVE_Fp80 , X86::CMOVE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000641 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
642 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000643 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000644 { X86::CMOVNB_Fp32 , X86::CMOVNB_F },
645 { X86::CMOVNB_Fp64 , X86::CMOVNB_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000646 { X86::CMOVNB_Fp80 , X86::CMOVNB_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000647 { X86::CMOVNE_Fp32 , X86::CMOVNE_F },
648 { X86::CMOVNE_Fp64 , X86::CMOVNE_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000649 { X86::CMOVNE_Fp80 , X86::CMOVNE_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000650 { X86::CMOVNP_Fp32 , X86::CMOVNP_F },
651 { X86::CMOVNP_Fp64 , X86::CMOVNP_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000652 { X86::CMOVNP_Fp80 , X86::CMOVNP_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000653 { X86::CMOVP_Fp32 , X86::CMOVP_F },
654 { X86::CMOVP_Fp64 , X86::CMOVP_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000655 { X86::CMOVP_Fp80 , X86::CMOVP_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000656 { X86::COS_Fp32 , X86::COS_F },
657 { X86::COS_Fp64 , X86::COS_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000658 { X86::COS_Fp80 , X86::COS_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000659 { X86::DIVR_Fp32m , X86::DIVR_F32m },
660 { X86::DIVR_Fp64m , X86::DIVR_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000661 { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000662 { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
663 { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000664 { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
665 { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000666 { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000667 { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
668 { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000669 { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000670 { X86::DIV_Fp32m , X86::DIV_F32m },
671 { X86::DIV_Fp64m , X86::DIV_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000672 { X86::DIV_Fp64m32 , X86::DIV_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000673 { X86::DIV_Fp80m32 , X86::DIV_F32m },
674 { X86::DIV_Fp80m64 , X86::DIV_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000675 { X86::DIV_FpI16m32 , X86::DIV_FI16m },
676 { X86::DIV_FpI16m64 , X86::DIV_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000677 { X86::DIV_FpI16m80 , X86::DIV_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000678 { X86::DIV_FpI32m32 , X86::DIV_FI32m },
679 { X86::DIV_FpI32m64 , X86::DIV_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000680 { X86::DIV_FpI32m80 , X86::DIV_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000681 { X86::ILD_Fp16m32 , X86::ILD_F16m },
682 { X86::ILD_Fp16m64 , X86::ILD_F16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000683 { X86::ILD_Fp16m80 , X86::ILD_F16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000684 { X86::ILD_Fp32m32 , X86::ILD_F32m },
685 { X86::ILD_Fp32m64 , X86::ILD_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000686 { X86::ILD_Fp32m80 , X86::ILD_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000687 { X86::ILD_Fp64m32 , X86::ILD_F64m },
688 { X86::ILD_Fp64m64 , X86::ILD_F64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000689 { X86::ILD_Fp64m80 , X86::ILD_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000690 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
691 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
Dale Johannesena996d522007-08-07 01:17:37 +0000692 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000693 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
694 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
Dale Johannesena996d522007-08-07 01:17:37 +0000695 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000696 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
697 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
Dale Johannesena996d522007-08-07 01:17:37 +0000698 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000699 { X86::IST_Fp16m32 , X86::IST_F16m },
700 { X86::IST_Fp16m64 , X86::IST_F16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000701 { X86::IST_Fp16m80 , X86::IST_F16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000702 { X86::IST_Fp32m32 , X86::IST_F32m },
703 { X86::IST_Fp32m64 , X86::IST_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000704 { X86::IST_Fp32m80 , X86::IST_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000705 { X86::IST_Fp64m32 , X86::IST_FP64m },
706 { X86::IST_Fp64m64 , X86::IST_FP64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000707 { X86::IST_Fp64m80 , X86::IST_FP64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000708 { X86::LD_Fp032 , X86::LD_F0 },
709 { X86::LD_Fp064 , X86::LD_F0 },
Dale Johannesen59a58732007-08-05 18:49:15 +0000710 { X86::LD_Fp080 , X86::LD_F0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000711 { X86::LD_Fp132 , X86::LD_F1 },
712 { X86::LD_Fp164 , X86::LD_F1 },
Dale Johannesen59a58732007-08-05 18:49:15 +0000713 { X86::LD_Fp180 , X86::LD_F1 },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000714 { X86::LD_Fp32m , X86::LD_F32m },
Dale Johannesencdbe4d32007-08-07 20:29:26 +0000715 { X86::LD_Fp32m64 , X86::LD_F32m },
716 { X86::LD_Fp32m80 , X86::LD_F32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000717 { X86::LD_Fp64m , X86::LD_F64m },
Dale Johannesencdbe4d32007-08-07 20:29:26 +0000718 { X86::LD_Fp64m80 , X86::LD_F64m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000719 { X86::LD_Fp80m , X86::LD_F80m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000720 { X86::MUL_Fp32m , X86::MUL_F32m },
721 { X86::MUL_Fp64m , X86::MUL_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000722 { X86::MUL_Fp64m32 , X86::MUL_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000723 { X86::MUL_Fp80m32 , X86::MUL_F32m },
724 { X86::MUL_Fp80m64 , X86::MUL_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000725 { X86::MUL_FpI16m32 , X86::MUL_FI16m },
726 { X86::MUL_FpI16m64 , X86::MUL_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000727 { X86::MUL_FpI16m80 , X86::MUL_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000728 { X86::MUL_FpI32m32 , X86::MUL_FI32m },
729 { X86::MUL_FpI32m64 , X86::MUL_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000730 { X86::MUL_FpI32m80 , X86::MUL_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000731 { X86::SIN_Fp32 , X86::SIN_F },
732 { X86::SIN_Fp64 , X86::SIN_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000733 { X86::SIN_Fp80 , X86::SIN_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000734 { X86::SQRT_Fp32 , X86::SQRT_F },
735 { X86::SQRT_Fp64 , X86::SQRT_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000736 { X86::SQRT_Fp80 , X86::SQRT_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000737 { X86::ST_Fp32m , X86::ST_F32m },
738 { X86::ST_Fp64m , X86::ST_F64m },
739 { X86::ST_Fp64m32 , X86::ST_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000740 { X86::ST_Fp80m32 , X86::ST_F32m },
741 { X86::ST_Fp80m64 , X86::ST_F64m },
742 { X86::ST_FpP80m , X86::ST_FP80m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000743 { X86::SUBR_Fp32m , X86::SUBR_F32m },
744 { X86::SUBR_Fp64m , X86::SUBR_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000745 { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000746 { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
747 { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000748 { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
749 { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000750 { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000751 { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
752 { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
Dale Johannesen59a58732007-08-05 18:49:15 +0000753 { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
Dale Johannesene377d4d2007-07-04 21:07:47 +0000754 { X86::SUB_Fp32m , X86::SUB_F32m },
755 { X86::SUB_Fp64m , X86::SUB_F64m },
Dale Johannesenafdc7fd2007-07-10 21:53:30 +0000756 { X86::SUB_Fp64m32 , X86::SUB_F32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000757 { X86::SUB_Fp80m32 , X86::SUB_F32m },
758 { X86::SUB_Fp80m64 , X86::SUB_F64m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000759 { X86::SUB_FpI16m32 , X86::SUB_FI16m },
760 { X86::SUB_FpI16m64 , X86::SUB_FI16m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000761 { X86::SUB_FpI16m80 , X86::SUB_FI16m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000762 { X86::SUB_FpI32m32 , X86::SUB_FI32m },
763 { X86::SUB_FpI32m64 , X86::SUB_FI32m },
Dale Johannesen59a58732007-08-05 18:49:15 +0000764 { X86::SUB_FpI32m80 , X86::SUB_FI32m },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000765 { X86::TST_Fp32 , X86::TST_F },
766 { X86::TST_Fp64 , X86::TST_F },
Dale Johannesen59a58732007-08-05 18:49:15 +0000767 { X86::TST_Fp80 , X86::TST_F },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000768 { X86::UCOM_FpIr32 , X86::UCOM_FIr },
769 { X86::UCOM_FpIr64 , X86::UCOM_FIr },
Dale Johannesen59a58732007-08-05 18:49:15 +0000770 { X86::UCOM_FpIr80 , X86::UCOM_FIr },
Dale Johannesene377d4d2007-07-04 21:07:47 +0000771 { X86::UCOM_Fpr32 , X86::UCOM_Fr },
772 { X86::UCOM_Fpr64 , X86::UCOM_Fr },
Dale Johannesen59a58732007-08-05 18:49:15 +0000773 { X86::UCOM_Fpr80 , X86::UCOM_Fr },
Chris Lattner58fe4592005-12-21 07:47:04 +0000774};
775
776static unsigned getConcreteOpcode(unsigned Opcode) {
777 ASSERT_SORTED(OpcodeTable);
Owen Anderson718cb662007-09-07 04:06:50 +0000778 int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode);
Chris Lattner58fe4592005-12-21 07:47:04 +0000779 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
780 return Opc;
781}
Chris Lattnera960d952003-01-13 01:01:59 +0000782
783//===----------------------------------------------------------------------===//
784// Helper Methods
785//===----------------------------------------------------------------------===//
786
787// PopTable - Sorted map of instructions to their popping version. The first
788// element is an instruction, the second is the version which pops.
789//
790static const TableEntry PopTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +0000791 { X86::ADD_FrST0 , X86::ADD_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000792
Dale Johannesene377d4d2007-07-04 21:07:47 +0000793 { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
794 { X86::DIV_FrST0 , X86::DIV_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000795
Dale Johannesene377d4d2007-07-04 21:07:47 +0000796 { X86::IST_F16m , X86::IST_FP16m },
797 { X86::IST_F32m , X86::IST_FP32m },
Chris Lattnera960d952003-01-13 01:01:59 +0000798
Dale Johannesene377d4d2007-07-04 21:07:47 +0000799 { X86::MUL_FrST0 , X86::MUL_FPrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +0000800
Dale Johannesene377d4d2007-07-04 21:07:47 +0000801 { X86::ST_F32m , X86::ST_FP32m },
802 { X86::ST_F64m , X86::ST_FP64m },
803 { X86::ST_Frr , X86::ST_FPrr },
Chris Lattner113455b2003-08-03 21:56:36 +0000804
Dale Johannesene377d4d2007-07-04 21:07:47 +0000805 { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
806 { X86::SUB_FrST0 , X86::SUB_FPrST0 },
Chris Lattner113455b2003-08-03 21:56:36 +0000807
Dale Johannesene377d4d2007-07-04 21:07:47 +0000808 { X86::UCOM_FIr , X86::UCOM_FIPr },
Chris Lattnerc040bca2004-04-12 01:39:15 +0000809
Dale Johannesene377d4d2007-07-04 21:07:47 +0000810 { X86::UCOM_FPr , X86::UCOM_FPPr },
811 { X86::UCOM_Fr , X86::UCOM_FPr },
Chris Lattnera960d952003-01-13 01:01:59 +0000812};
813
814/// popStackAfter - Pop the current value off of the top of the FP stack after
815/// the specified instruction. This attempts to be sneaky and combine the pop
816/// into the instruction itself if possible. The iterator is left pointing to
817/// the last instruction, be it a new pop instruction inserted, or the old
818/// instruction if it was modified in place.
819///
820void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000821 MachineInstr* MI = I;
822 DebugLoc dl = MI->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +0000823 ASSERT_SORTED(PopTable);
824 assert(StackTop > 0 && "Cannot pop empty stack!");
825 RegMap[Stack[--StackTop]] = ~0; // Update state
826
827 // Check to see if there is a popping version of this instruction...
Owen Anderson718cb662007-09-07 04:06:50 +0000828 int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode());
Chris Lattnera960d952003-01-13 01:01:59 +0000829 if (Opcode != -1) {
Chris Lattner5080f4d2008-01-11 18:10:50 +0000830 I->setDesc(TII->get(Opcode));
Dale Johannesene377d4d2007-07-04 21:07:47 +0000831 if (Opcode == X86::UCOM_FPPr)
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000832 I->RemoveOperand(0);
Chris Lattnera960d952003-01-13 01:01:59 +0000833 } else { // Insert an explicit pop
Dale Johannesen8d13f8f2009-02-13 02:33:27 +0000834 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
Chris Lattnera960d952003-01-13 01:01:59 +0000835 }
836}
837
Chris Lattner0526f012004-04-01 04:06:09 +0000838/// freeStackSlotAfter - Free the specified register from the register stack, so
839/// that it is no longer in a register. If the register is currently at the top
840/// of the stack, we just pop the current instruction, otherwise we store the
841/// current top-of-stack into the specified slot, then pop the top of stack.
842void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
843 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
844 popStackAfter(I);
845 return;
846 }
847
848 // Otherwise, store the top of stack into the dead slot, killing the operand
849 // without having to add in an explicit xchg then pop.
850 //
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000851 I = freeStackSlotBefore(++I, FPRegNo);
852}
853
854/// freeStackSlotBefore - Free the specified register without trying any
855/// folding.
856MachineBasicBlock::iterator
857FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
Chris Lattner0526f012004-04-01 04:06:09 +0000858 unsigned STReg = getSTReg(FPRegNo);
859 unsigned OldSlot = getSlot(FPRegNo);
860 unsigned TopReg = Stack[StackTop-1];
861 Stack[OldSlot] = TopReg;
862 RegMap[TopReg] = OldSlot;
863 RegMap[FPRegNo] = ~0;
864 Stack[--StackTop] = ~0;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +0000865 return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr)).addReg(STReg);
866}
867
868/// adjustLiveRegs - Kill and revive registers such that exactly the FP
869/// registers with a bit in Mask are live.
870void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
871 unsigned Defs = Mask;
872 unsigned Kills = 0;
873 for (unsigned i = 0; i < StackTop; ++i) {
874 unsigned RegNo = Stack[i];
875 if (!(Defs & (1 << RegNo)))
876 // This register is live, but we don't want it.
877 Kills |= (1 << RegNo);
878 else
879 // We don't need to imp-def this live register.
880 Defs &= ~(1 << RegNo);
881 }
882 assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
883
884 // Produce implicit-defs for free by using killed registers.
885 while (Kills && Defs) {
886 unsigned KReg = CountTrailingZeros_32(Kills);
887 unsigned DReg = CountTrailingZeros_32(Defs);
888 DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
889 std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
890 std::swap(RegMap[KReg], RegMap[DReg]);
891 Kills &= ~(1 << KReg);
892 Defs &= ~(1 << DReg);
893 }
894
895 // Kill registers by popping.
896 if (Kills && I != MBB->begin()) {
897 MachineBasicBlock::iterator I2 = llvm::prior(I);
898 for (;;) {
899 unsigned KReg = getStackEntry(0);
900 if (!(Kills & (1 << KReg)))
901 break;
902 DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
903 popStackAfter(I2);
904 Kills &= ~(1 << KReg);
905 }
906 }
907
908 // Manually kill the rest.
909 while (Kills) {
910 unsigned KReg = CountTrailingZeros_32(Kills);
911 DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
912 freeStackSlotBefore(I, KReg);
913 Kills &= ~(1 << KReg);
914 }
915
916 // Load zeros for all the imp-defs.
917 while(Defs) {
918 unsigned DReg = CountTrailingZeros_32(Defs);
919 DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
920 BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
921 pushReg(DReg);
922 Defs &= ~(1 << DReg);
923 }
924
925 // Now we should have the correct registers live.
926 DEBUG(dumpStack());
927 assert(StackTop == CountPopulation_32(Mask) && "Live count mismatch");
928}
929
930/// shuffleStackTop - emit fxch instructions before I to shuffle the top
931/// FixCount entries into the order given by FixStack.
932/// FIXME: Is there a better algorithm than insertion sort?
933void FPS::shuffleStackTop(const unsigned char *FixStack,
934 unsigned FixCount,
935 MachineBasicBlock::iterator I) {
936 // Move items into place, starting from the desired stack bottom.
937 while (FixCount--) {
938 // Old register at position FixCount.
939 unsigned OldReg = getStackEntry(FixCount);
940 // Desired register at position FixCount.
941 unsigned Reg = FixStack[FixCount];
942 if (Reg == OldReg)
943 continue;
944 // (Reg st0) (OldReg st0) = (Reg OldReg st0)
945 moveToTop(Reg, I);
946 moveToTop(OldReg, I);
947 }
948 DEBUG(dumpStack());
Chris Lattner0526f012004-04-01 04:06:09 +0000949}
950
951
Chris Lattnera960d952003-01-13 01:01:59 +0000952//===----------------------------------------------------------------------===//
953// Instruction transformation implementation
954//===----------------------------------------------------------------------===//
955
956/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
Chris Lattner4a06f352004-02-02 19:23:15 +0000957///
Chris Lattnera960d952003-01-13 01:01:59 +0000958void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000959 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +0000960 unsigned DestReg = getFPReg(MI->getOperand(0));
Chris Lattnera960d952003-01-13 01:01:59 +0000961
Chris Lattner58fe4592005-12-21 07:47:04 +0000962 // Change from the pseudo instruction to the concrete instruction.
963 MI->RemoveOperand(0); // Remove the explicit ST(0) operand
Chris Lattner5080f4d2008-01-11 18:10:50 +0000964 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner58fe4592005-12-21 07:47:04 +0000965
966 // Result gets pushed on the stack.
Chris Lattnera960d952003-01-13 01:01:59 +0000967 pushReg(DestReg);
968}
969
Chris Lattner4a06f352004-02-02 19:23:15 +0000970/// handleOneArgFP - fst <mem>, ST(0)
971///
Chris Lattnera960d952003-01-13 01:01:59 +0000972void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +0000973 MachineInstr *MI = I;
Chris Lattner749c6f62008-01-07 07:27:27 +0000974 unsigned NumOps = MI->getDesc().getNumOperands();
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000975 assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
Chris Lattnerb97046a2004-02-03 07:27:34 +0000976 "Can only handle fst* & ftst instructions!");
Chris Lattnera960d952003-01-13 01:01:59 +0000977
Chris Lattner4a06f352004-02-02 19:23:15 +0000978 // Is this the last use of the source register?
Evan Cheng171d09e2006-11-10 01:28:43 +0000979 unsigned Reg = getFPReg(MI->getOperand(NumOps-1));
Evan Cheng6130f662008-03-05 00:59:57 +0000980 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Chris Lattnera960d952003-01-13 01:01:59 +0000981
Evan Cheng2b152712006-02-18 02:36:28 +0000982 // FISTP64m is strange because there isn't a non-popping versions.
Chris Lattnera960d952003-01-13 01:01:59 +0000983 // If we have one _and_ we don't want to pop the operand, duplicate the value
984 // on the stack instead of moving it. This ensure that popping the value is
985 // always ok.
Dale Johannesenca8035e2007-09-17 20:15:38 +0000986 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
Chris Lattnera960d952003-01-13 01:01:59 +0000987 //
Evan Cheng2b152712006-02-18 02:36:28 +0000988 if (!KillsSrc &&
Dale Johannesene377d4d2007-07-04 21:07:47 +0000989 (MI->getOpcode() == X86::IST_Fp64m32 ||
990 MI->getOpcode() == X86::ISTT_Fp16m32 ||
991 MI->getOpcode() == X86::ISTT_Fp32m32 ||
992 MI->getOpcode() == X86::ISTT_Fp64m32 ||
993 MI->getOpcode() == X86::IST_Fp64m64 ||
994 MI->getOpcode() == X86::ISTT_Fp16m64 ||
995 MI->getOpcode() == X86::ISTT_Fp32m64 ||
Dale Johannesen59a58732007-08-05 18:49:15 +0000996 MI->getOpcode() == X86::ISTT_Fp64m64 ||
Dale Johannesen41de4362007-09-20 01:27:54 +0000997 MI->getOpcode() == X86::IST_Fp64m80 ||
Dale Johannesena996d522007-08-07 01:17:37 +0000998 MI->getOpcode() == X86::ISTT_Fp16m80 ||
999 MI->getOpcode() == X86::ISTT_Fp32m80 ||
1000 MI->getOpcode() == X86::ISTT_Fp64m80 ||
Dale Johannesen59a58732007-08-05 18:49:15 +00001001 MI->getOpcode() == X86::ST_FpP80m)) {
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +00001002 duplicateToTop(Reg, getScratchReg(), I);
Chris Lattnera960d952003-01-13 01:01:59 +00001003 } else {
1004 moveToTop(Reg, I); // Move to the top of the stack...
1005 }
Chris Lattner58fe4592005-12-21 07:47:04 +00001006
1007 // Convert from the pseudo instruction to the concrete instruction.
Evan Cheng171d09e2006-11-10 01:28:43 +00001008 MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand
Chris Lattner5080f4d2008-01-11 18:10:50 +00001009 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001010
Dale Johannesene377d4d2007-07-04 21:07:47 +00001011 if (MI->getOpcode() == X86::IST_FP64m ||
1012 MI->getOpcode() == X86::ISTT_FP16m ||
1013 MI->getOpcode() == X86::ISTT_FP32m ||
Dale Johannesen88835732007-08-06 19:50:32 +00001014 MI->getOpcode() == X86::ISTT_FP64m ||
1015 MI->getOpcode() == X86::ST_FP80m) {
Chris Lattnera960d952003-01-13 01:01:59 +00001016 assert(StackTop > 0 && "Stack empty??");
1017 --StackTop;
1018 } else if (KillsSrc) { // Last use of operand?
1019 popStackAfter(I);
1020 }
1021}
1022
Chris Lattner4a06f352004-02-02 19:23:15 +00001023
Chris Lattner4cf15e72004-04-11 20:21:06 +00001024/// handleOneArgFPRW: Handle instructions that read from the top of stack and
1025/// replace the value with a newly computed value. These instructions may have
1026/// non-fp operands after their FP operands.
1027///
1028/// Examples:
1029/// R1 = fchs R2
1030/// R1 = fadd R2, [mem]
Chris Lattner4a06f352004-02-02 19:23:15 +00001031///
1032void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001033 MachineInstr *MI = I;
Evan Chenga022bdf2008-07-21 20:02:45 +00001034#ifndef NDEBUG
Chris Lattner749c6f62008-01-07 07:27:27 +00001035 unsigned NumOps = MI->getDesc().getNumOperands();
Evan Cheng171d09e2006-11-10 01:28:43 +00001036 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
Evan Chenga022bdf2008-07-21 20:02:45 +00001037#endif
Chris Lattner4a06f352004-02-02 19:23:15 +00001038
1039 // Is this the last use of the source register?
1040 unsigned Reg = getFPReg(MI->getOperand(1));
Evan Cheng6130f662008-03-05 00:59:57 +00001041 bool KillsSrc = MI->killsRegister(X86::FP0+Reg);
Chris Lattner4a06f352004-02-02 19:23:15 +00001042
1043 if (KillsSrc) {
1044 // If this is the last use of the source register, just make sure it's on
1045 // the top of the stack.
1046 moveToTop(Reg, I);
1047 assert(StackTop > 0 && "Stack cannot be empty!");
1048 --StackTop;
1049 pushReg(getFPReg(MI->getOperand(0)));
1050 } else {
1051 // If this is not the last use of the source register, _copy_ it to the top
1052 // of the stack.
1053 duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I);
1054 }
1055
Chris Lattner58fe4592005-12-21 07:47:04 +00001056 // Change from the pseudo instruction to the concrete instruction.
Chris Lattner4a06f352004-02-02 19:23:15 +00001057 MI->RemoveOperand(1); // Drop the source operand.
1058 MI->RemoveOperand(0); // Drop the destination operand.
Chris Lattner5080f4d2008-01-11 18:10:50 +00001059 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner4a06f352004-02-02 19:23:15 +00001060}
1061
1062
Chris Lattnera960d952003-01-13 01:01:59 +00001063//===----------------------------------------------------------------------===//
1064// Define tables of various ways to map pseudo instructions
1065//
1066
1067// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
1068static const TableEntry ForwardST0Table[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001069 { X86::ADD_Fp32 , X86::ADD_FST0r },
1070 { X86::ADD_Fp64 , X86::ADD_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001071 { X86::ADD_Fp80 , X86::ADD_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001072 { X86::DIV_Fp32 , X86::DIV_FST0r },
1073 { X86::DIV_Fp64 , X86::DIV_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001074 { X86::DIV_Fp80 , X86::DIV_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001075 { X86::MUL_Fp32 , X86::MUL_FST0r },
1076 { X86::MUL_Fp64 , X86::MUL_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001077 { X86::MUL_Fp80 , X86::MUL_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001078 { X86::SUB_Fp32 , X86::SUB_FST0r },
1079 { X86::SUB_Fp64 , X86::SUB_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001080 { X86::SUB_Fp80 , X86::SUB_FST0r },
Chris Lattnera960d952003-01-13 01:01:59 +00001081};
1082
1083// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
1084static const TableEntry ReverseST0Table[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001085 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
1086 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001087 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001088 { X86::DIV_Fp32 , X86::DIVR_FST0r },
1089 { X86::DIV_Fp64 , X86::DIVR_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001090 { X86::DIV_Fp80 , X86::DIVR_FST0r },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001091 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
1092 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001093 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001094 { X86::SUB_Fp32 , X86::SUBR_FST0r },
1095 { X86::SUB_Fp64 , X86::SUBR_FST0r },
Dale Johannesen6a308112007-08-06 21:31:06 +00001096 { X86::SUB_Fp80 , X86::SUBR_FST0r },
Chris Lattnera960d952003-01-13 01:01:59 +00001097};
1098
1099// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
1100static const TableEntry ForwardSTiTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001101 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
1102 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001103 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001104 { X86::DIV_Fp32 , X86::DIVR_FrST0 },
1105 { X86::DIV_Fp64 , X86::DIVR_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001106 { X86::DIV_Fp80 , X86::DIVR_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001107 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
1108 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
Dale Johannesen6a308112007-08-06 21:31:06 +00001109 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
Dale Johannesene377d4d2007-07-04 21:07:47 +00001110 { X86::SUB_Fp32 , X86::SUBR_FrST0 },
1111 { X86::SUB_Fp64 , X86::SUBR_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001112 { X86::SUB_Fp80 , X86::SUBR_FrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +00001113};
1114
1115// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
1116static const TableEntry ReverseSTiTable[] = {
Dale Johannesene377d4d2007-07-04 21:07:47 +00001117 { X86::ADD_Fp32 , X86::ADD_FrST0 },
1118 { X86::ADD_Fp64 , X86::ADD_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001119 { X86::ADD_Fp80 , X86::ADD_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001120 { X86::DIV_Fp32 , X86::DIV_FrST0 },
1121 { X86::DIV_Fp64 , X86::DIV_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001122 { X86::DIV_Fp80 , X86::DIV_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001123 { X86::MUL_Fp32 , X86::MUL_FrST0 },
1124 { X86::MUL_Fp64 , X86::MUL_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001125 { X86::MUL_Fp80 , X86::MUL_FrST0 },
Dale Johannesene377d4d2007-07-04 21:07:47 +00001126 { X86::SUB_Fp32 , X86::SUB_FrST0 },
1127 { X86::SUB_Fp64 , X86::SUB_FrST0 },
Dale Johannesen6a308112007-08-06 21:31:06 +00001128 { X86::SUB_Fp80 , X86::SUB_FrST0 },
Chris Lattnera960d952003-01-13 01:01:59 +00001129};
1130
1131
1132/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1133/// instructions which need to be simplified and possibly transformed.
1134///
1135/// Result: ST(0) = fsub ST(0), ST(i)
1136/// ST(i) = fsub ST(0), ST(i)
1137/// ST(0) = fsubr ST(0), ST(i)
1138/// ST(i) = fsubr ST(0), ST(i)
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001139///
Chris Lattnera960d952003-01-13 01:01:59 +00001140void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1141 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1142 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001143 MachineInstr *MI = I;
Chris Lattnera960d952003-01-13 01:01:59 +00001144
Chris Lattner749c6f62008-01-07 07:27:27 +00001145 unsigned NumOperands = MI->getDesc().getNumOperands();
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001146 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
Chris Lattnera960d952003-01-13 01:01:59 +00001147 unsigned Dest = getFPReg(MI->getOperand(0));
1148 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1149 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Cheng6130f662008-03-05 00:59:57 +00001150 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1151 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Dale Johannesen8d13f8f2009-02-13 02:33:27 +00001152 DebugLoc dl = MI->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +00001153
Chris Lattnera960d952003-01-13 01:01:59 +00001154 unsigned TOS = getStackEntry(0);
1155
1156 // One of our operands must be on the top of the stack. If neither is yet, we
1157 // need to move one.
1158 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
1159 // We can choose to move either operand to the top of the stack. If one of
1160 // the operands is killed by this instruction, we want that one so that we
1161 // can update right on top of the old version.
1162 if (KillsOp0) {
1163 moveToTop(Op0, I); // Move dead operand to TOS.
1164 TOS = Op0;
1165 } else if (KillsOp1) {
1166 moveToTop(Op1, I);
1167 TOS = Op1;
1168 } else {
1169 // All of the operands are live after this instruction executes, so we
1170 // cannot update on top of any operand. Because of this, we must
1171 // duplicate one of the stack elements to the top. It doesn't matter
1172 // which one we pick.
1173 //
1174 duplicateToTop(Op0, Dest, I);
1175 Op0 = TOS = Dest;
1176 KillsOp0 = true;
1177 }
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001178 } else if (!KillsOp0 && !KillsOp1) {
Chris Lattnera960d952003-01-13 01:01:59 +00001179 // If we DO have one of our operands at the top of the stack, but we don't
1180 // have a dead operand, we must duplicate one of the operands to a new slot
1181 // on the stack.
1182 duplicateToTop(Op0, Dest, I);
1183 Op0 = TOS = Dest;
1184 KillsOp0 = true;
1185 }
1186
1187 // Now we know that one of our operands is on the top of the stack, and at
1188 // least one of our operands is killed by this instruction.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001189 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1190 "Stack conditions not set up right!");
Chris Lattnera960d952003-01-13 01:01:59 +00001191
1192 // We decide which form to use based on what is on the top of the stack, and
1193 // which operand is killed by this instruction.
1194 const TableEntry *InstTable;
1195 bool isForward = TOS == Op0;
1196 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1197 if (updateST0) {
1198 if (isForward)
1199 InstTable = ForwardST0Table;
1200 else
1201 InstTable = ReverseST0Table;
1202 } else {
1203 if (isForward)
1204 InstTable = ForwardSTiTable;
1205 else
1206 InstTable = ReverseSTiTable;
1207 }
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001208
Owen Anderson718cb662007-09-07 04:06:50 +00001209 int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table),
1210 MI->getOpcode());
Chris Lattnera960d952003-01-13 01:01:59 +00001211 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1212
1213 // NotTOS - The register which is not on the top of stack...
1214 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1215
1216 // Replace the old instruction with a new instruction
Chris Lattnerc1bab322004-03-31 22:02:36 +00001217 MBB->remove(I++);
Dale Johannesen8d13f8f2009-02-13 02:33:27 +00001218 I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
Chris Lattnera960d952003-01-13 01:01:59 +00001219
1220 // If both operands are killed, pop one off of the stack in addition to
1221 // overwriting the other one.
1222 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1223 assert(!updateST0 && "Should have updated other operand!");
1224 popStackAfter(I); // Pop the top of stack
1225 }
1226
Chris Lattnera960d952003-01-13 01:01:59 +00001227 // Update stack information so that we know the destination register is now on
1228 // the stack.
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001229 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1230 assert(UpdatedSlot < StackTop && Dest < 7);
1231 Stack[UpdatedSlot] = Dest;
1232 RegMap[Dest] = UpdatedSlot;
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001233 MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001234}
1235
Chris Lattner0ca2c8e2004-06-11 04:49:02 +00001236/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001237/// register arguments and no explicit destinations.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00001238///
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001239void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1240 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1241 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1242 MachineInstr *MI = I;
1243
Chris Lattner749c6f62008-01-07 07:27:27 +00001244 unsigned NumOperands = MI->getDesc().getNumOperands();
Chris Lattner0ca2c8e2004-06-11 04:49:02 +00001245 assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001246 unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2));
1247 unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1));
Evan Cheng6130f662008-03-05 00:59:57 +00001248 bool KillsOp0 = MI->killsRegister(X86::FP0+Op0);
1249 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001250
1251 // Make sure the first operand is on the top of stack, the other one can be
1252 // anywhere.
1253 moveToTop(Op0, I);
1254
Chris Lattner58fe4592005-12-21 07:47:04 +00001255 // Change from the pseudo instruction to the concrete instruction.
Chris Lattner57790422004-06-11 05:22:44 +00001256 MI->getOperand(0).setReg(getSTReg(Op1));
1257 MI->RemoveOperand(1);
Chris Lattner5080f4d2008-01-11 18:10:50 +00001258 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner57790422004-06-11 05:22:44 +00001259
Chris Lattnerd62d5d72004-06-11 04:25:06 +00001260 // If any of the operands are killed by this instruction, free them.
1261 if (KillsOp0) freeStackSlotAfter(I, Op0);
1262 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
Chris Lattnera960d952003-01-13 01:01:59 +00001263}
1264
Chris Lattnerc1bab322004-03-31 22:02:36 +00001265/// handleCondMovFP - Handle two address conditional move instructions. These
1266/// instructions move a st(i) register to st(0) iff a condition is true. These
1267/// instructions require that the first operand is at the top of the stack, but
1268/// otherwise don't modify the stack at all.
1269void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1270 MachineInstr *MI = I;
1271
1272 unsigned Op0 = getFPReg(MI->getOperand(0));
Chris Lattner6cdb1ea2006-09-05 20:27:32 +00001273 unsigned Op1 = getFPReg(MI->getOperand(2));
Evan Cheng6130f662008-03-05 00:59:57 +00001274 bool KillsOp1 = MI->killsRegister(X86::FP0+Op1);
Chris Lattnerc1bab322004-03-31 22:02:36 +00001275
1276 // The first operand *must* be on the top of the stack.
1277 moveToTop(Op0, I);
1278
1279 // Change the second operand to the stack register that the operand is in.
Chris Lattner58fe4592005-12-21 07:47:04 +00001280 // Change from the pseudo instruction to the concrete instruction.
Chris Lattnerc1bab322004-03-31 22:02:36 +00001281 MI->RemoveOperand(0);
Chris Lattner6cdb1ea2006-09-05 20:27:32 +00001282 MI->RemoveOperand(1);
Chris Lattnerc1bab322004-03-31 22:02:36 +00001283 MI->getOperand(0).setReg(getSTReg(Op1));
Chris Lattner5080f4d2008-01-11 18:10:50 +00001284 MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode())));
Chris Lattner58fe4592005-12-21 07:47:04 +00001285
Chris Lattnerc1bab322004-03-31 22:02:36 +00001286 // If we kill the second operand, make sure to pop it from the stack.
Evan Chengddd2a452006-11-15 20:56:39 +00001287 if (Op0 != Op1 && KillsOp1) {
Chris Lattner76eb08b2005-08-23 22:49:55 +00001288 // Get this value off of the register stack.
1289 freeStackSlotAfter(I, Op1);
1290 }
Chris Lattnerc1bab322004-03-31 22:02:36 +00001291}
1292
Chris Lattnera960d952003-01-13 01:01:59 +00001293
1294/// handleSpecialFP - Handle special instructions which behave unlike other
Misha Brukmancf00c4a2003-10-10 17:57:28 +00001295/// floating point instructions. This is primarily intended for use by pseudo
Chris Lattnera960d952003-01-13 01:01:59 +00001296/// instructions.
1297///
1298void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) {
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001299 MachineInstr *MI = I;
Dale Johannesen8d13f8f2009-02-13 02:33:27 +00001300 DebugLoc dl = MI->getDebugLoc();
Chris Lattnera960d952003-01-13 01:01:59 +00001301 switch (MI->getOpcode()) {
Torok Edwinc23197a2009-07-14 16:55:14 +00001302 default: llvm_unreachable("Unknown SpecialFP instruction!");
Chris Lattner6fa2f9c2008-03-09 07:05:32 +00001303 case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type!
1304 case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type!
1305 case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type!
Chris Lattnera960d952003-01-13 01:01:59 +00001306 assert(StackTop == 0 && "Stack should be empty after a call!");
1307 pushReg(getFPReg(MI->getOperand(0)));
1308 break;
Chris Lattner24e0a542008-03-21 06:38:26 +00001309 case X86::FpGET_ST1_32:// Appears immediately after a call returning FP type!
1310 case X86::FpGET_ST1_64:// Appears immediately after a call returning FP type!
1311 case X86::FpGET_ST1_80:{// Appears immediately after a call returning FP type!
1312 // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm.
1313 // The pattern we expect is:
1314 // CALL
1315 // FP1 = FpGET_ST0
1316 // FP4 = FpGET_ST1
1317 //
1318 // At this point, we've pushed FP1 on the top of stack, so it should be
1319 // present if it isn't dead. If it was dead, we already emitted a pop to
1320 // remove it from the stack and StackTop = 0.
1321
1322 // Push FP4 as top of stack next.
1323 pushReg(getFPReg(MI->getOperand(0)));
1324
1325 // If StackTop was 0 before we pushed our operand, then ST(0) must have been
1326 // dead. In this case, the ST(1) value is the only thing that is live, so
1327 // it should be on the TOS (after the pop that was emitted) and is. Just
1328 // continue in this case.
1329 if (StackTop == 1)
1330 break;
1331
1332 // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top
1333 // elements so that our accounting is correct.
1334 unsigned RegOnTop = getStackEntry(0);
1335 unsigned RegNo = getStackEntry(1);
1336
1337 // Swap the slots the regs are in.
1338 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
1339
1340 // Swap stack slot contents.
1341 assert(RegMap[RegOnTop] < StackTop);
1342 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
1343 break;
1344 }
Chris Lattnerafb23f42008-03-09 07:08:44 +00001345 case X86::FpSET_ST0_32:
1346 case X86::FpSET_ST0_64:
Rafael Espindolaf55715c2009-06-30 12:18:16 +00001347 case X86::FpSET_ST0_80: {
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001348 // FpSET_ST0_80 is generated by copyRegToReg for setting up inline asm
1349 // arguments that use an st constraint. We expect a sequence of
1350 // instructions: Fp_SET_ST0 Fp_SET_ST1? INLINEASM
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +00001351 unsigned Op0 = getFPReg(MI->getOperand(0));
1352
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +00001353 if (!MI->killsRegister(X86::FP0 + Op0)) {
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001354 // Duplicate Op0 into a temporary on the stack top.
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +00001355 duplicateToTop(Op0, getScratchReg(), I);
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +00001356 } else {
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001357 // Op0 is killed, so just swap it into position.
Rafael Espindolaaf5f6ba2009-06-30 16:40:03 +00001358 moveToTop(Op0, I);
Rafael Espindola1c3329f2009-06-21 12:02:51 +00001359 }
Evan Chenga0eedac2009-02-09 23:32:07 +00001360 --StackTop; // "Forget" we have something on the top of stack!
1361 break;
Rafael Espindolaf55715c2009-06-30 12:18:16 +00001362 }
Evan Chenga0eedac2009-02-09 23:32:07 +00001363 case X86::FpSET_ST1_32:
1364 case X86::FpSET_ST1_64:
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001365 case X86::FpSET_ST1_80: {
1366 // Set up st(1) for inline asm. We are assuming that st(0) has already been
1367 // set up by FpSET_ST0, and our StackTop is off by one because of it.
1368 unsigned Op0 = getFPReg(MI->getOperand(0));
1369 // Restore the actual StackTop from before Fp_SET_ST0.
1370 // Note we can't handle Fp_SET_ST1 without a preceeding Fp_SET_ST0, and we
1371 // are not enforcing the constraint.
1372 ++StackTop;
1373 unsigned RegOnTop = getStackEntry(0); // This reg must remain in st(0).
1374 if (!MI->killsRegister(X86::FP0 + Op0)) {
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +00001375 duplicateToTop(Op0, getScratchReg(), I);
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001376 moveToTop(RegOnTop, I);
1377 } else if (getSTReg(Op0) != X86::ST1) {
1378 // We have the wrong value at st(1). Shuffle! Untested!
1379 moveToTop(getStackEntry(1), I);
1380 moveToTop(Op0, I);
1381 moveToTop(RegOnTop, I);
Evan Chenga0eedac2009-02-09 23:32:07 +00001382 }
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001383 assert(StackTop >= 2 && "Too few live registers");
1384 StackTop -= 2; // "Forget" both st(0) and st(1).
Chris Lattnera960d952003-01-13 01:01:59 +00001385 break;
Jakob Stoklund Olesen2b336bc2010-07-10 17:42:34 +00001386 }
Dale Johannesene377d4d2007-07-04 21:07:47 +00001387 case X86::MOV_Fp3232:
1388 case X86::MOV_Fp3264:
1389 case X86::MOV_Fp6432:
Dale Johannesen59a58732007-08-05 18:49:15 +00001390 case X86::MOV_Fp6464:
1391 case X86::MOV_Fp3280:
1392 case X86::MOV_Fp6480:
1393 case X86::MOV_Fp8032:
1394 case X86::MOV_Fp8064:
1395 case X86::MOV_Fp8080: {
Evan Chengfb112882009-03-23 08:01:15 +00001396 const MachineOperand &MO1 = MI->getOperand(1);
1397 unsigned SrcReg = getFPReg(MO1);
Chris Lattnera960d952003-01-13 01:01:59 +00001398
Evan Chengfb112882009-03-23 08:01:15 +00001399 const MachineOperand &MO0 = MI->getOperand(0);
Evan Chengfb112882009-03-23 08:01:15 +00001400 unsigned DestReg = getFPReg(MO0);
Evan Cheng6130f662008-03-05 00:59:57 +00001401 if (MI->killsRegister(X86::FP0+SrcReg)) {
Chris Lattnera960d952003-01-13 01:01:59 +00001402 // If the input operand is killed, we can just change the owner of the
1403 // incoming stack slot into the result.
1404 unsigned Slot = getSlot(SrcReg);
1405 assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!");
1406 Stack[Slot] = DestReg;
1407 RegMap[DestReg] = Slot;
1408
1409 } else {
1410 // For FMOV we just duplicate the specified value to a new stack slot.
1411 // This could be made better, but would require substantial changes.
1412 duplicateToTop(SrcReg, DestReg, I);
1413 }
Nick Lewycky3c786972008-03-11 05:56:09 +00001414 }
Chris Lattnera960d952003-01-13 01:01:59 +00001415 break;
Chris Lattner518bb532010-02-09 19:54:29 +00001416 case TargetOpcode::INLINEASM: {
Chris Lattnere12ecf22008-03-11 19:50:13 +00001417 // The inline asm MachineInstr currently only *uses* FP registers for the
1418 // 'f' constraint. These should be turned into the current ST(x) register
1419 // in the machine instr. Also, any kills should be explicitly popped after
1420 // the inline asm.
Jakob Stoklund Olesen7261fb22010-04-28 18:28:37 +00001421 unsigned Kills = 0;
Chris Lattnere12ecf22008-03-11 19:50:13 +00001422 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1423 MachineOperand &Op = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00001424 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
Chris Lattnere12ecf22008-03-11 19:50:13 +00001425 continue;
1426 assert(Op.isUse() && "Only handle inline asm uses right now");
1427
1428 unsigned FPReg = getFPReg(Op);
1429 Op.setReg(getSTReg(FPReg));
1430
1431 // If we kill this operand, make sure to pop it from the stack after the
1432 // asm. We just remember it for now, and pop them all off at the end in
1433 // a batch.
1434 if (Op.isKill())
Jakob Stoklund Olesen7261fb22010-04-28 18:28:37 +00001435 Kills |= 1U << FPReg;
Chris Lattnere12ecf22008-03-11 19:50:13 +00001436 }
1437
1438 // If this asm kills any FP registers (is the last use of them) we must
1439 // explicitly emit pop instructions for them. Do this now after the asm has
1440 // executed so that the ST(x) numbers are not off (which would happen if we
1441 // did this inline with operand rewriting).
1442 //
1443 // Note: this might be a non-optimal pop sequence. We might be able to do
1444 // better by trying to pop in stack order or something.
1445 MachineBasicBlock::iterator InsertPt = MI;
Jakob Stoklund Olesen7261fb22010-04-28 18:28:37 +00001446 while (Kills) {
1447 unsigned FPReg = CountTrailingZeros_32(Kills);
1448 freeStackSlotAfter(InsertPt, FPReg);
1449 Kills &= ~(1U << FPReg);
1450 }
Chris Lattnere12ecf22008-03-11 19:50:13 +00001451 // Don't delete the inline asm!
1452 return;
1453 }
1454
Chris Lattner447ff682008-03-11 03:23:40 +00001455 case X86::RET:
1456 case X86::RETI:
1457 // If RET has an FP register use operand, pass the first one in ST(0) and
1458 // the second one in ST(1).
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001459
Chris Lattner447ff682008-03-11 03:23:40 +00001460 // Find the register operands.
1461 unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001462 unsigned LiveMask = 0;
1463
Chris Lattner447ff682008-03-11 03:23:40 +00001464 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1465 MachineOperand &Op = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00001466 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
Chris Lattner447ff682008-03-11 03:23:40 +00001467 continue;
Chris Lattner35831d02008-03-21 20:41:27 +00001468 // FP Register uses must be kills unless there are two uses of the same
1469 // register, in which case only one will be a kill.
1470 assert(Op.isUse() &&
1471 (Op.isKill() || // Marked kill.
1472 getFPReg(Op) == FirstFPRegOp || // Second instance.
1473 MI->killsRegister(Op.getReg())) && // Later use is marked kill.
1474 "Ret only defs operands, and values aren't live beyond it");
Chris Lattner447ff682008-03-11 03:23:40 +00001475
1476 if (FirstFPRegOp == ~0U)
1477 FirstFPRegOp = getFPReg(Op);
1478 else {
1479 assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1480 SecondFPRegOp = getFPReg(Op);
1481 }
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001482 LiveMask |= (1 << getFPReg(Op));
Chris Lattner447ff682008-03-11 03:23:40 +00001483
1484 // Remove the operand so that later passes don't see it.
1485 MI->RemoveOperand(i);
1486 --i, --e;
1487 }
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001488
1489 // We may have been carrying spurious live-ins, so make sure only the returned
1490 // registers are left live.
1491 adjustLiveRegs(LiveMask, MI);
1492 if (!LiveMask) return; // Quick check to see if any are possible.
1493
Chris Lattner447ff682008-03-11 03:23:40 +00001494 // There are only four possibilities here:
1495 // 1) we are returning a single FP value. In this case, it has to be in
1496 // ST(0) already, so just declare success by removing the value from the
1497 // FP Stack.
1498 if (SecondFPRegOp == ~0U) {
1499 // Assert that the top of stack contains the right FP register.
1500 assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1501 "Top of stack not the right register for RET!");
1502
1503 // Ok, everything is good, mark the value as not being on the stack
1504 // anymore so that our assertion about the stack being empty at end of
1505 // block doesn't fire.
1506 StackTop = 0;
1507 return;
1508 }
1509
Chris Lattner447ff682008-03-11 03:23:40 +00001510 // Otherwise, we are returning two values:
1511 // 2) If returning the same value for both, we only have one thing in the FP
1512 // stack. Consider: RET FP1, FP1
1513 if (StackTop == 1) {
1514 assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1515 "Stack misconfiguration for RET!");
1516
1517 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1518 // register to hold it.
Jakob Stoklund Olesene098e7a2010-07-16 17:41:40 +00001519 unsigned NewReg = getScratchReg();
Chris Lattner447ff682008-03-11 03:23:40 +00001520 duplicateToTop(FirstFPRegOp, NewReg, MI);
1521 FirstFPRegOp = NewReg;
1522 }
1523
1524 /// Okay we know we have two different FPx operands now:
1525 assert(StackTop == 2 && "Must have two values live!");
1526
1527 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1528 /// in ST(1). In this case, emit an fxch.
1529 if (getStackEntry(0) == SecondFPRegOp) {
1530 assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1531 moveToTop(FirstFPRegOp, MI);
1532 }
1533
1534 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1535 /// ST(1). Just remove both from our understanding of the stack and return.
1536 assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
Chris Lattner03535262008-03-21 05:57:20 +00001537 assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
Chris Lattner447ff682008-03-11 03:23:40 +00001538 StackTop = 0;
1539 return;
Chris Lattnera960d952003-01-13 01:01:59 +00001540 }
Chris Lattnera960d952003-01-13 01:01:59 +00001541
Alkis Evlogimenosc0b9dc52004-02-12 02:27:10 +00001542 I = MBB->erase(I); // Remove the pseudo instruction
Jakob Stoklund Olesene928ec92010-07-16 16:38:12 +00001543
1544 // We want to leave I pointing to the previous instruction, but what if we
1545 // just erased the first instruction?
1546 if (I == MBB->begin()) {
1547 DEBUG(dbgs() << "Inserting dummy KILL\n");
1548 I = BuildMI(*MBB, I, DebugLoc(), TII->get(TargetOpcode::KILL));
1549 } else
1550 --I;
Chris Lattnera960d952003-01-13 01:01:59 +00001551}
Jakob Stoklund Olesen7db1e7a2010-07-08 19:46:30 +00001552
1553// Translate a COPY instruction to a pseudo-op that handleSpecialFP understands.
1554bool FPS::translateCopy(MachineInstr *MI) {
1555 unsigned DstReg = MI->getOperand(0).getReg();
1556 unsigned SrcReg = MI->getOperand(1).getReg();
1557
1558 if (DstReg == X86::ST0) {
1559 MI->setDesc(TII->get(X86::FpSET_ST0_80));
1560 MI->RemoveOperand(0);
1561 return true;
1562 }
1563 if (DstReg == X86::ST1) {
1564 MI->setDesc(TII->get(X86::FpSET_ST1_80));
1565 MI->RemoveOperand(0);
1566 return true;
1567 }
1568 if (SrcReg == X86::ST0) {
1569 MI->setDesc(TII->get(X86::FpGET_ST0_80));
1570 return true;
1571 }
1572 if (SrcReg == X86::ST1) {
1573 MI->setDesc(TII->get(X86::FpGET_ST1_80));
1574 return true;
1575 }
1576 if (X86::RFP80RegClass.contains(DstReg, SrcReg)) {
1577 MI->setDesc(TII->get(X86::MOV_Fp8080));
1578 return true;
1579 }
1580 return false;
1581}