blob: b69e2a35d19768eadcc8c133e9f4a62a333e59b2 [file] [log] [blame]
Sean Silvaf722b002012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvaf722b002012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko126fde52013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvaf722b002012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva57f429f2013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
131 incrementing counter, starting with 0).
Sean Silvaf722b002012-12-07 10:36:55 +0000132
133It also shows a convention that we follow in this document. When
134demonstrating instructions, we will follow an instruction with a comment
135that defines the type and name of value produced.
136
137High Level Structure
138====================
139
140Module Structure
141----------------
142
143LLVM programs are composed of ``Module``'s, each of which is a
144translation unit of the input programs. Each module consists of
145functions, global variables, and symbol table entries. Modules may be
146combined together with the LLVM linker, which merges function (and
147global variable) definitions, resolves forward declarations, and merges
148symbol table entries. Here is an example of the "hello world" module:
149
150.. code-block:: llvm
151
Michael Liao2faa0f32013-03-06 18:24:34 +0000152 ; Declare the string constant as a global constant.
153 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvaf722b002012-12-07 10:36:55 +0000154
Michael Liao2faa0f32013-03-06 18:24:34 +0000155 ; External declaration of the puts function
156 declare i32 @puts(i8* nocapture) nounwind
Sean Silvaf722b002012-12-07 10:36:55 +0000157
158 ; Definition of main function
Michael Liao2faa0f32013-03-06 18:24:34 +0000159 define i32 @main() { ; i32()*
160 ; Convert [13 x i8]* to i8 *...
Sean Silvaf722b002012-12-07 10:36:55 +0000161 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
162
Michael Liao2faa0f32013-03-06 18:24:34 +0000163 ; Call puts function to write out the string to stdout.
Sean Silvaf722b002012-12-07 10:36:55 +0000164 call i32 @puts(i8* %cast210)
Michael Liao2faa0f32013-03-06 18:24:34 +0000165 ret i32 0
Sean Silvaf722b002012-12-07 10:36:55 +0000166 }
167
168 ; Named metadata
169 !1 = metadata !{i32 42}
170 !foo = !{!1, null}
171
172This example is made up of a :ref:`global variable <globalvars>` named
173"``.str``", an external declaration of the "``puts``" function, a
174:ref:`function definition <functionstructure>` for "``main``" and
175:ref:`named metadata <namedmetadatastructure>` "``foo``".
176
177In general, a module is made up of a list of global values (where both
178functions and global variables are global values). Global values are
179represented by a pointer to a memory location (in this case, a pointer
180to an array of char, and a pointer to a function), and have one of the
181following :ref:`linkage types <linkage>`.
182
183.. _linkage:
184
185Linkage Types
186-------------
187
188All Global Variables and Functions have one of the following types of
189linkage:
190
191``private``
192 Global values with "``private``" linkage are only directly
193 accessible by objects in the current module. In particular, linking
194 code into a module with an private global value may cause the
195 private to be renamed as necessary to avoid collisions. Because the
196 symbol is private to the module, all references can be updated. This
197 doesn't show up in any symbol table in the object file.
198``linker_private``
199 Similar to ``private``, but the symbol is passed through the
200 assembler and evaluated by the linker. Unlike normal strong symbols,
201 they are removed by the linker from the final linked image
202 (executable or dynamic library).
203``linker_private_weak``
204 Similar to "``linker_private``", but the symbol is weak. Note that
205 ``linker_private_weak`` symbols are subject to coalescing by the
206 linker. The symbols are removed by the linker from the final linked
207 image (executable or dynamic library).
208``internal``
209 Similar to private, but the value shows as a local symbol
210 (``STB_LOCAL`` in the case of ELF) in the object file. This
211 corresponds to the notion of the '``static``' keyword in C.
212``available_externally``
213 Globals with "``available_externally``" linkage are never emitted
214 into the object file corresponding to the LLVM module. They exist to
215 allow inlining and other optimizations to take place given knowledge
216 of the definition of the global, which is known to be somewhere
217 outside the module. Globals with ``available_externally`` linkage
218 are allowed to be discarded at will, and are otherwise the same as
219 ``linkonce_odr``. This linkage type is only allowed on definitions,
220 not declarations.
221``linkonce``
222 Globals with "``linkonce``" linkage are merged with other globals of
223 the same name when linkage occurs. This can be used to implement
224 some forms of inline functions, templates, or other code which must
225 be generated in each translation unit that uses it, but where the
226 body may be overridden with a more definitive definition later.
227 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
228 that ``linkonce`` linkage does not actually allow the optimizer to
229 inline the body of this function into callers because it doesn't
230 know if this definition of the function is the definitive definition
231 within the program or whether it will be overridden by a stronger
232 definition. To enable inlining and other optimizations, use
233 "``linkonce_odr``" linkage.
234``weak``
235 "``weak``" linkage has the same merging semantics as ``linkonce``
236 linkage, except that unreferenced globals with ``weak`` linkage may
237 not be discarded. This is used for globals that are declared "weak"
238 in C source code.
239``common``
240 "``common``" linkage is most similar to "``weak``" linkage, but they
241 are used for tentative definitions in C, such as "``int X;``" at
242 global scope. Symbols with "``common``" linkage are merged in the
243 same way as ``weak symbols``, and they may not be deleted if
244 unreferenced. ``common`` symbols may not have an explicit section,
245 must have a zero initializer, and may not be marked
246 ':ref:`constant <globalvars>`'. Functions and aliases may not have
247 common linkage.
248
249.. _linkage_appending:
250
251``appending``
252 "``appending``" linkage may only be applied to global variables of
253 pointer to array type. When two global variables with appending
254 linkage are linked together, the two global arrays are appended
255 together. This is the LLVM, typesafe, equivalent of having the
256 system linker append together "sections" with identical names when
257 .o files are linked.
258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvaf722b002012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
270``linkonce_odr_auto_hide``
271 Similar to "``linkonce_odr``", but nothing in the translation unit
272 takes the address of this definition. For instance, functions that
273 had an inline definition, but the compiler decided not to inline it.
274 ``linkonce_odr_auto_hide`` may have only ``default`` visibility. The
275 symbols are removed by the linker from the final linked image
276 (executable or dynamic library).
277``external``
278 If none of the above identifiers are used, the global is externally
279 visible, meaning that it participates in linkage and can be used to
280 resolve external symbol references.
281
282The next two types of linkage are targeted for Microsoft Windows
283platform only. They are designed to support importing (exporting)
284symbols from (to) DLLs (Dynamic Link Libraries).
285
286``dllimport``
287 "``dllimport``" linkage causes the compiler to reference a function
288 or variable via a global pointer to a pointer that is set up by the
289 DLL exporting the symbol. On Microsoft Windows targets, the pointer
290 name is formed by combining ``__imp_`` and the function or variable
291 name.
292``dllexport``
293 "``dllexport``" linkage causes the compiler to provide a global
294 pointer to a pointer in a DLL, so that it can be referenced with the
295 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
296 name is formed by combining ``__imp_`` and the function or variable
297 name.
298
299For example, since the "``.LC0``" variable is defined to be internal, if
300another module defined a "``.LC0``" variable and was linked with this
301one, one of the two would be renamed, preventing a collision. Since
302"``main``" and "``puts``" are external (i.e., lacking any linkage
303declarations), they are accessible outside of the current module.
304
305It is illegal for a function *declaration* to have any linkage type
306other than ``external``, ``dllimport`` or ``extern_weak``.
307
308Aliases can have only ``external``, ``internal``, ``weak`` or
309``weak_odr`` linkages.
310
311.. _callingconv:
312
313Calling Conventions
314-------------------
315
316LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
317:ref:`invokes <i_invoke>` can all have an optional calling convention
318specified for the call. The calling convention of any pair of dynamic
319caller/callee must match, or the behavior of the program is undefined.
320The following calling conventions are supported by LLVM, and more may be
321added in the future:
322
323"``ccc``" - The C calling convention
324 This calling convention (the default if no other calling convention
325 is specified) matches the target C calling conventions. This calling
326 convention supports varargs function calls and tolerates some
327 mismatch in the declared prototype and implemented declaration of
328 the function (as does normal C).
329"``fastcc``" - The fast calling convention
330 This calling convention attempts to make calls as fast as possible
331 (e.g. by passing things in registers). This calling convention
332 allows the target to use whatever tricks it wants to produce fast
333 code for the target, without having to conform to an externally
334 specified ABI (Application Binary Interface). `Tail calls can only
335 be optimized when this, the GHC or the HiPE convention is
336 used. <CodeGenerator.html#id80>`_ This calling convention does not
337 support varargs and requires the prototype of all callees to exactly
338 match the prototype of the function definition.
339"``coldcc``" - The cold calling convention
340 This calling convention attempts to make code in the caller as
341 efficient as possible under the assumption that the call is not
342 commonly executed. As such, these calls often preserve all registers
343 so that the call does not break any live ranges in the caller side.
344 This calling convention does not support varargs and requires the
345 prototype of all callees to exactly match the prototype of the
346 function definition.
347"``cc 10``" - GHC convention
348 This calling convention has been implemented specifically for use by
349 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
350 It passes everything in registers, going to extremes to achieve this
351 by disabling callee save registers. This calling convention should
352 not be used lightly but only for specific situations such as an
353 alternative to the *register pinning* performance technique often
354 used when implementing functional programming languages. At the
355 moment only X86 supports this convention and it has the following
356 limitations:
357
358 - On *X86-32* only supports up to 4 bit type parameters. No
359 floating point types are supported.
360 - On *X86-64* only supports up to 10 bit type parameters and 6
361 floating point parameters.
362
363 This calling convention supports `tail call
364 optimization <CodeGenerator.html#id80>`_ but requires both the
365 caller and callee are using it.
366"``cc 11``" - The HiPE calling convention
367 This calling convention has been implemented specifically for use by
368 the `High-Performance Erlang
369 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
370 native code compiler of the `Ericsson's Open Source Erlang/OTP
371 system <http://www.erlang.org/download.shtml>`_. It uses more
372 registers for argument passing than the ordinary C calling
373 convention and defines no callee-saved registers. The calling
374 convention properly supports `tail call
375 optimization <CodeGenerator.html#id80>`_ but requires that both the
376 caller and the callee use it. It uses a *register pinning*
377 mechanism, similar to GHC's convention, for keeping frequently
378 accessed runtime components pinned to specific hardware registers.
379 At the moment only X86 supports this convention (both 32 and 64
380 bit).
381"``cc <n>``" - Numbered convention
382 Any calling convention may be specified by number, allowing
383 target-specific calling conventions to be used. Target specific
384 calling conventions start at 64.
385
386More calling conventions can be added/defined on an as-needed basis, to
387support Pascal conventions or any other well-known target-independent
388convention.
389
Eli Bendersky1de14102013-06-07 19:40:08 +0000390.. _visibilitystyles:
391
Sean Silvaf722b002012-12-07 10:36:55 +0000392Visibility Styles
393-----------------
394
395All Global Variables and Functions have one of the following visibility
396styles:
397
398"``default``" - Default style
399 On targets that use the ELF object file format, default visibility
400 means that the declaration is visible to other modules and, in
401 shared libraries, means that the declared entity may be overridden.
402 On Darwin, default visibility means that the declaration is visible
403 to other modules. Default visibility corresponds to "external
404 linkage" in the language.
405"``hidden``" - Hidden style
406 Two declarations of an object with hidden visibility refer to the
407 same object if they are in the same shared object. Usually, hidden
408 visibility indicates that the symbol will not be placed into the
409 dynamic symbol table, so no other module (executable or shared
410 library) can reference it directly.
411"``protected``" - Protected style
412 On ELF, protected visibility indicates that the symbol will be
413 placed in the dynamic symbol table, but that references within the
414 defining module will bind to the local symbol. That is, the symbol
415 cannot be overridden by another module.
416
Eli Bendersky1de14102013-06-07 19:40:08 +0000417.. _namedtypes:
418
Sean Silvaf722b002012-12-07 10:36:55 +0000419Named Types
420-----------
421
422LLVM IR allows you to specify name aliases for certain types. This can
423make it easier to read the IR and make the IR more condensed
424(particularly when recursive types are involved). An example of a name
425specification is:
426
427.. code-block:: llvm
428
429 %mytype = type { %mytype*, i32 }
430
431You may give a name to any :ref:`type <typesystem>` except
432":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
433expected with the syntax "%mytype".
434
435Note that type names are aliases for the structural type that they
436indicate, and that you can therefore specify multiple names for the same
437type. This often leads to confusing behavior when dumping out a .ll
438file. Since LLVM IR uses structural typing, the name is not part of the
439type. When printing out LLVM IR, the printer will pick *one name* to
440render all types of a particular shape. This means that if you have code
441where two different source types end up having the same LLVM type, that
442the dumper will sometimes print the "wrong" or unexpected type. This is
443an important design point and isn't going to change.
444
445.. _globalvars:
446
447Global Variables
448----------------
449
450Global variables define regions of memory allocated at compilation time
451instead of run-time. Global variables may optionally be initialized, may
452have an explicit section to be placed in, and may have an optional
453explicit alignment specified.
454
455A variable may be defined as ``thread_local``, which means that it will
456not be shared by threads (each thread will have a separated copy of the
457variable). Not all targets support thread-local variables. Optionally, a
458TLS model may be specified:
459
460``localdynamic``
461 For variables that are only used within the current shared library.
462``initialexec``
463 For variables in modules that will not be loaded dynamically.
464``localexec``
465 For variables defined in the executable and only used within it.
466
467The models correspond to the ELF TLS models; see `ELF Handling For
468Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
469more information on under which circumstances the different models may
470be used. The target may choose a different TLS model if the specified
471model is not supported, or if a better choice of model can be made.
472
Michael Gottesmanf5735882013-01-31 05:48:48 +0000473A variable may be defined as a global ``constant``, which indicates that
Sean Silvaf722b002012-12-07 10:36:55 +0000474the contents of the variable will **never** be modified (enabling better
475optimization, allowing the global data to be placed in the read-only
476section of an executable, etc). Note that variables that need runtime
Michael Gottesman34804872013-01-31 05:44:04 +0000477initialization cannot be marked ``constant`` as there is a store to the
Sean Silvaf722b002012-12-07 10:36:55 +0000478variable.
479
480LLVM explicitly allows *declarations* of global variables to be marked
481constant, even if the final definition of the global is not. This
482capability can be used to enable slightly better optimization of the
483program, but requires the language definition to guarantee that
484optimizations based on the 'constantness' are valid for the translation
485units that do not include the definition.
486
487As SSA values, global variables define pointer values that are in scope
488(i.e. they dominate) all basic blocks in the program. Global variables
489always define a pointer to their "content" type because they describe a
490region of memory, and all memory objects in LLVM are accessed through
491pointers.
492
493Global variables can be marked with ``unnamed_addr`` which indicates
494that the address is not significant, only the content. Constants marked
495like this can be merged with other constants if they have the same
496initializer. Note that a constant with significant address *can* be
497merged with a ``unnamed_addr`` constant, the result being a constant
498whose address is significant.
499
500A global variable may be declared to reside in a target-specific
501numbered address space. For targets that support them, address spaces
502may affect how optimizations are performed and/or what target
503instructions are used to access the variable. The default address space
504is zero. The address space qualifier must precede any other attributes.
505
506LLVM allows an explicit section to be specified for globals. If the
507target supports it, it will emit globals to the section specified.
508
Michael Gottesman6c355ee2013-02-04 03:22:00 +0000509By default, global initializers are optimized by assuming that global
Michael Gottesman42834992013-02-03 09:57:15 +0000510variables defined within the module are not modified from their
511initial values before the start of the global initializer. This is
512true even for variables potentially accessible from outside the
513module, including those with external linkage or appearing in
Michael Gottesmanfa987f02013-02-03 09:57:18 +0000514``@llvm.used``. This assumption may be suppressed by marking the
515variable with ``externally_initialized``.
Michael Gottesman42834992013-02-03 09:57:15 +0000516
Sean Silvaf722b002012-12-07 10:36:55 +0000517An explicit alignment may be specified for a global, which must be a
518power of 2. If not present, or if the alignment is set to zero, the
519alignment of the global is set by the target to whatever it feels
520convenient. If an explicit alignment is specified, the global is forced
521to have exactly that alignment. Targets and optimizers are not allowed
522to over-align the global if the global has an assigned section. In this
523case, the extra alignment could be observable: for example, code could
524assume that the globals are densely packed in their section and try to
525iterate over them as an array, alignment padding would break this
526iteration.
527
528For example, the following defines a global in a numbered address space
529with an initializer, section, and alignment:
530
531.. code-block:: llvm
532
533 @G = addrspace(5) constant float 1.0, section "foo", align 4
534
535The following example defines a thread-local global with the
536``initialexec`` TLS model:
537
538.. code-block:: llvm
539
540 @G = thread_local(initialexec) global i32 0, align 4
541
542.. _functionstructure:
543
544Functions
545---------
546
547LLVM function definitions consist of the "``define``" keyword, an
548optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
549style <visibility>`, an optional :ref:`calling convention <callingconv>`,
550an optional ``unnamed_addr`` attribute, a return type, an optional
551:ref:`parameter attribute <paramattrs>` for the return type, a function
552name, a (possibly empty) argument list (each with optional :ref:`parameter
553attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
554an optional section, an optional alignment, an optional :ref:`garbage
555collector name <gc>`, an opening curly brace, a list of basic blocks,
556and a closing curly brace.
557
558LLVM function declarations consist of the "``declare``" keyword, an
559optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
560style <visibility>`, an optional :ref:`calling convention <callingconv>`,
561an optional ``unnamed_addr`` attribute, a return type, an optional
562:ref:`parameter attribute <paramattrs>` for the return type, a function
563name, a possibly empty list of arguments, an optional alignment, and an
564optional :ref:`garbage collector name <gc>`.
565
566A function definition contains a list of basic blocks, forming the CFG
567(Control Flow Graph) for the function. Each basic block may optionally
568start with a label (giving the basic block a symbol table entry),
569contains a list of instructions, and ends with a
570:ref:`terminator <terminators>` instruction (such as a branch or function
Sean Silva57f429f2013-05-20 23:31:12 +0000571return). If explicit label is not provided, a block is assigned an
572implicit numbered label, using a next value from the same counter as used
573for unnamed temporaries (:ref:`see above<identifiers>`). For example, if a
574function entry block does not have explicit label, it will be assigned
575label "%0", then first unnamed temporary in that block will be "%1", etc.
Sean Silvaf722b002012-12-07 10:36:55 +0000576
577The first basic block in a function is special in two ways: it is
578immediately executed on entrance to the function, and it is not allowed
579to have predecessor basic blocks (i.e. there can not be any branches to
580the entry block of a function). Because the block can have no
581predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
582
583LLVM allows an explicit section to be specified for functions. If the
584target supports it, it will emit functions to the section specified.
585
586An explicit alignment may be specified for a function. If not present,
587or if the alignment is set to zero, the alignment of the function is set
588by the target to whatever it feels convenient. If an explicit alignment
589is specified, the function is forced to have at least that much
590alignment. All alignments must be a power of 2.
591
592If the ``unnamed_addr`` attribute is given, the address is know to not
593be significant and two identical functions can be merged.
594
595Syntax::
596
597 define [linkage] [visibility]
598 [cconv] [ret attrs]
599 <ResultType> @<FunctionName> ([argument list])
600 [fn Attrs] [section "name"] [align N]
601 [gc] { ... }
602
Eli Bendersky1de14102013-06-07 19:40:08 +0000603.. _langref_aliases:
604
Sean Silvaf722b002012-12-07 10:36:55 +0000605Aliases
606-------
607
608Aliases act as "second name" for the aliasee value (which can be either
609function, global variable, another alias or bitcast of global value).
610Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
611:ref:`visibility style <visibility>`.
612
613Syntax::
614
615 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
616
617.. _namedmetadatastructure:
618
619Named Metadata
620--------------
621
622Named metadata is a collection of metadata. :ref:`Metadata
623nodes <metadata>` (but not metadata strings) are the only valid
624operands for a named metadata.
625
626Syntax::
627
628 ; Some unnamed metadata nodes, which are referenced by the named metadata.
629 !0 = metadata !{metadata !"zero"}
630 !1 = metadata !{metadata !"one"}
631 !2 = metadata !{metadata !"two"}
632 ; A named metadata.
633 !name = !{!0, !1, !2}
634
635.. _paramattrs:
636
637Parameter Attributes
638--------------------
639
640The return type and each parameter of a function type may have a set of
641*parameter attributes* associated with them. Parameter attributes are
642used to communicate additional information about the result or
643parameters of a function. Parameter attributes are considered to be part
644of the function, not of the function type, so functions with different
645parameter attributes can have the same function type.
646
647Parameter attributes are simple keywords that follow the type specified.
648If multiple parameter attributes are needed, they are space separated.
649For example:
650
651.. code-block:: llvm
652
653 declare i32 @printf(i8* noalias nocapture, ...)
654 declare i32 @atoi(i8 zeroext)
655 declare signext i8 @returns_signed_char()
656
657Note that any attributes for the function result (``nounwind``,
658``readonly``) come immediately after the argument list.
659
660Currently, only the following parameter attributes are defined:
661
662``zeroext``
663 This indicates to the code generator that the parameter or return
664 value should be zero-extended to the extent required by the target's
665 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
666 the caller (for a parameter) or the callee (for a return value).
667``signext``
668 This indicates to the code generator that the parameter or return
669 value should be sign-extended to the extent required by the target's
670 ABI (which is usually 32-bits) by the caller (for a parameter) or
671 the callee (for a return value).
672``inreg``
673 This indicates that this parameter or return value should be treated
674 in a special target-dependent fashion during while emitting code for
675 a function call or return (usually, by putting it in a register as
676 opposed to memory, though some targets use it to distinguish between
677 two different kinds of registers). Use of this attribute is
678 target-specific.
679``byval``
680 This indicates that the pointer parameter should really be passed by
681 value to the function. The attribute implies that a hidden copy of
682 the pointee is made between the caller and the callee, so the callee
683 is unable to modify the value in the caller. This attribute is only
684 valid on LLVM pointer arguments. It is generally used to pass
685 structs and arrays by value, but is also valid on pointers to
686 scalars. The copy is considered to belong to the caller not the
687 callee (for example, ``readonly`` functions should not write to
688 ``byval`` parameters). This is not a valid attribute for return
689 values.
690
691 The byval attribute also supports specifying an alignment with the
692 align attribute. It indicates the alignment of the stack slot to
693 form and the known alignment of the pointer specified to the call
694 site. If the alignment is not specified, then the code generator
695 makes a target-specific assumption.
696
697``sret``
698 This indicates that the pointer parameter specifies the address of a
699 structure that is the return value of the function in the source
700 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky98202c02013-01-23 22:05:19 +0000701 loads and stores to the structure may be assumed by the callee
Sean Silvaf722b002012-12-07 10:36:55 +0000702 not to trap and to be properly aligned. This may only be applied to
703 the first parameter. This is not a valid attribute for return
704 values.
705``noalias``
Richard Smith2b185262013-06-04 20:42:42 +0000706 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvaf722b002012-12-07 10:36:55 +0000707 the argument or return value do not alias pointer values which are
708 not *based* on it, ignoring certain "irrelevant" dependencies. For a
709 call to the parent function, dependencies between memory references
710 from before or after the call and from those during the call are
711 "irrelevant" to the ``noalias`` keyword for the arguments and return
712 value used in that call. The caller shares the responsibility with
713 the callee for ensuring that these requirements are met. For further
714 details, please see the discussion of the NoAlias response in `alias
715 analysis <AliasAnalysis.html#MustMayNo>`_.
716
717 Note that this definition of ``noalias`` is intentionally similar
718 to the definition of ``restrict`` in C99 for function arguments,
719 though it is slightly weaker.
720
721 For function return values, C99's ``restrict`` is not meaningful,
722 while LLVM's ``noalias`` is.
723``nocapture``
724 This indicates that the callee does not make any copies of the
725 pointer that outlive the callee itself. This is not a valid
726 attribute for return values.
727
728.. _nest:
729
730``nest``
731 This indicates that the pointer parameter can be excised using the
732 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Lin456ca042013-04-20 05:14:40 +0000733 attribute for return values and can only be applied to one parameter.
734
735``returned``
Stephen Lin8592fba2013-06-20 21:55:10 +0000736 This indicates that the function always returns the argument as its return
737 value. This is an optimization hint to the code generator when generating
738 the caller, allowing tail call optimization and omission of register saves
739 and restores in some cases; it is not checked or enforced when generating
740 the callee. The parameter and the function return type must be valid
741 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
742 valid attribute for return values and can only be applied to one parameter.
Sean Silvaf722b002012-12-07 10:36:55 +0000743
744.. _gc:
745
746Garbage Collector Names
747-----------------------
748
749Each function may specify a garbage collector name, which is simply a
750string:
751
752.. code-block:: llvm
753
754 define void @f() gc "name" { ... }
755
756The compiler declares the supported values of *name*. Specifying a
757collector which will cause the compiler to alter its output in order to
758support the named garbage collection algorithm.
759
Bill Wendling95ce4c22013-02-06 06:52:58 +0000760.. _attrgrp:
761
762Attribute Groups
763----------------
764
765Attribute groups are groups of attributes that are referenced by objects within
766the IR. They are important for keeping ``.ll`` files readable, because a lot of
767functions will use the same set of attributes. In the degenerative case of a
768``.ll`` file that corresponds to a single ``.c`` file, the single attribute
769group will capture the important command line flags used to build that file.
770
771An attribute group is a module-level object. To use an attribute group, an
772object references the attribute group's ID (e.g. ``#37``). An object may refer
773to more than one attribute group. In that situation, the attributes from the
774different groups are merged.
775
776Here is an example of attribute groups for a function that should always be
777inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
778
779.. code-block:: llvm
780
781 ; Target-independent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000782 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000783
784 ; Target-dependent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000785 attributes #1 = { "no-sse" }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000786
787 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
788 define void @f() #0 #1 { ... }
789
Sean Silvaf722b002012-12-07 10:36:55 +0000790.. _fnattrs:
791
792Function Attributes
793-------------------
794
795Function attributes are set to communicate additional information about
796a function. Function attributes are considered to be part of the
797function, not of the function type, so functions with different function
798attributes can have the same function type.
799
800Function attributes are simple keywords that follow the type specified.
801If multiple attributes are needed, they are space separated. For
802example:
803
804.. code-block:: llvm
805
806 define void @f() noinline { ... }
807 define void @f() alwaysinline { ... }
808 define void @f() alwaysinline optsize { ... }
809 define void @f() optsize { ... }
810
Sean Silvaf722b002012-12-07 10:36:55 +0000811``alignstack(<n>)``
812 This attribute indicates that, when emitting the prologue and
813 epilogue, the backend should forcibly align the stack pointer.
814 Specify the desired alignment, which must be a power of two, in
815 parentheses.
816``alwaysinline``
817 This attribute indicates that the inliner should attempt to inline
818 this function into callers whenever possible, ignoring any active
819 inlining size threshold for this caller.
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000820``builtin``
821 This indicates that the callee function at a call site should be
822 recognized as a built-in function, even though the function's declaration
Michael Gottesman550d9bf2013-07-02 21:32:56 +0000823 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000824 direct calls to functions which are declared with the ``nobuiltin``
825 attribute.
Michael Gottesmane19a8582013-06-27 22:48:08 +0000826``cold``
827 This attribute indicates that this function is rarely called. When
828 computing edge weights, basic blocks post-dominated by a cold
829 function call are also considered to be cold; and, thus, given low
830 weight.
Sean Silvaf722b002012-12-07 10:36:55 +0000831``inlinehint``
832 This attribute indicates that the source code contained a hint that
833 inlining this function is desirable (such as the "inline" keyword in
834 C/C++). It is just a hint; it imposes no requirements on the
835 inliner.
836``naked``
837 This attribute disables prologue / epilogue emission for the
838 function. This can have very system-specific consequences.
Eli Benderskyf8416092013-04-18 16:11:44 +0000839``nobuiltin``
Michael Gottesman2253a2f2013-06-27 00:25:01 +0000840 This indicates that the callee function at a call site is not recognized as
841 a built-in function. LLVM will retain the original call and not replace it
842 with equivalent code based on the semantics of the built-in function, unless
843 the call site uses the ``builtin`` attribute. This is valid at call sites
844 and on function declarations and definitions.
Bill Wendlingbe5d7472013-02-06 06:22:58 +0000845``noduplicate``
846 This attribute indicates that calls to the function cannot be
847 duplicated. A call to a ``noduplicate`` function may be moved
848 within its parent function, but may not be duplicated within
849 its parent function.
850
851 A function containing a ``noduplicate`` call may still
852 be an inlining candidate, provided that the call is not
853 duplicated by inlining. That implies that the function has
854 internal linkage and only has one call site, so the original
855 call is dead after inlining.
Sean Silvaf722b002012-12-07 10:36:55 +0000856``noimplicitfloat``
857 This attributes disables implicit floating point instructions.
858``noinline``
859 This attribute indicates that the inliner should never inline this
860 function in any situation. This attribute may not be used together
861 with the ``alwaysinline`` attribute.
Sean Silvae6b10792013-08-06 19:34:37 +0000862``nonlazybind``
863 This attribute suppresses lazy symbol binding for the function. This
864 may make calls to the function faster, at the cost of extra program
865 startup time if the function is not called during program startup.
Sean Silvaf722b002012-12-07 10:36:55 +0000866``noredzone``
867 This attribute indicates that the code generator should not use a
868 red zone, even if the target-specific ABI normally permits it.
869``noreturn``
870 This function attribute indicates that the function never returns
871 normally. This produces undefined behavior at runtime if the
872 function ever does dynamically return.
873``nounwind``
874 This function attribute indicates that the function never returns
875 with an unwind or exceptional control flow. If the function does
876 unwind, its runtime behavior is undefined.
877``optsize``
878 This attribute suggests that optimization passes and code generator
879 passes make choices that keep the code size of this function low,
880 and otherwise do optimizations specifically to reduce code size.
881``readnone``
Nick Lewyckydc897372013-07-06 00:29:58 +0000882 On a function, this attribute indicates that the function computes its
883 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvaf722b002012-12-07 10:36:55 +0000884 without dereferencing any pointer arguments or otherwise accessing
885 any mutable state (e.g. memory, control registers, etc) visible to
886 caller functions. It does not write through any pointer arguments
887 (including ``byval`` arguments) and never changes any state visible
888 to callers. This means that it cannot unwind exceptions by calling
889 the ``C++`` exception throwing methods.
Nick Lewyckydc897372013-07-06 00:29:58 +0000890
891 On an argument, this attribute indicates that the function does not
892 dereference that pointer argument, even though it may read or write the
Nick Lewyckyd1066ef2013-07-06 01:04:47 +0000893 memory that the pointer points to if accessed through other pointers.
Sean Silvaf722b002012-12-07 10:36:55 +0000894``readonly``
Nick Lewyckydc897372013-07-06 00:29:58 +0000895 On a function, this attribute indicates that the function does not write
896 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvaf722b002012-12-07 10:36:55 +0000897 modify any state (e.g. memory, control registers, etc) visible to
898 caller functions. It may dereference pointer arguments and read
899 state that may be set in the caller. A readonly function always
900 returns the same value (or unwinds an exception identically) when
901 called with the same set of arguments and global state. It cannot
902 unwind an exception by calling the ``C++`` exception throwing
903 methods.
Nick Lewyckydc897372013-07-06 00:29:58 +0000904
905 On an argument, this attribute indicates that the function does not write
906 through this pointer argument, even though it may write to the memory that
907 the pointer points to.
Sean Silvaf722b002012-12-07 10:36:55 +0000908``returns_twice``
909 This attribute indicates that this function can return twice. The C
910 ``setjmp`` is an example of such a function. The compiler disables
911 some optimizations (like tail calls) in the caller of these
912 functions.
Kostya Serebryany8eec41f2013-02-26 06:58:09 +0000913``sanitize_address``
914 This attribute indicates that AddressSanitizer checks
915 (dynamic address safety analysis) are enabled for this function.
916``sanitize_memory``
917 This attribute indicates that MemorySanitizer checks (dynamic detection
918 of accesses to uninitialized memory) are enabled for this function.
919``sanitize_thread``
920 This attribute indicates that ThreadSanitizer checks
921 (dynamic thread safety analysis) are enabled for this function.
Sean Silvaf722b002012-12-07 10:36:55 +0000922``ssp``
923 This attribute indicates that the function should emit a stack
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000924 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvaf722b002012-12-07 10:36:55 +0000925 placed on the stack before the local variables that's checked upon
926 return from the function to see if it has been overwritten. A
927 heuristic is used to determine if a function needs stack protectors
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000928 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000929
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000930 - Character arrays larger than ``ssp-buffer-size`` (default 8).
931 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
932 - Calls to alloca() with variable sizes or constant sizes greater than
933 ``ssp-buffer-size``.
Sean Silvaf722b002012-12-07 10:36:55 +0000934
935 If a function that has an ``ssp`` attribute is inlined into a
936 function that doesn't have an ``ssp`` attribute, then the resulting
937 function will have an ``ssp`` attribute.
938``sspreq``
939 This attribute indicates that the function should *always* emit a
940 stack smashing protector. This overrides the ``ssp`` function
941 attribute.
942
943 If a function that has an ``sspreq`` attribute is inlined into a
944 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendling114baee2013-01-23 06:41:41 +0000945 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
946 an ``sspreq`` attribute.
947``sspstrong``
948 This attribute indicates that the function should emit a stack smashing
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000949 protector. This attribute causes a strong heuristic to be used when
950 determining if a function needs stack protectors. The strong heuristic
951 will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000952
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000953 - Arrays of any size and type
954 - Aggregates containing an array of any size and type.
955 - Calls to alloca().
956 - Local variables that have had their address taken.
957
958 This overrides the ``ssp`` function attribute.
Bill Wendling114baee2013-01-23 06:41:41 +0000959
960 If a function that has an ``sspstrong`` attribute is inlined into a
961 function that doesn't have an ``sspstrong`` attribute, then the
962 resulting function will have an ``sspstrong`` attribute.
Sean Silvaf722b002012-12-07 10:36:55 +0000963``uwtable``
964 This attribute indicates that the ABI being targeted requires that
965 an unwind table entry be produce for this function even if we can
966 show that no exceptions passes by it. This is normally the case for
967 the ELF x86-64 abi, but it can be disabled for some compilation
968 units.
Sean Silvaf722b002012-12-07 10:36:55 +0000969
970.. _moduleasm:
971
972Module-Level Inline Assembly
973----------------------------
974
975Modules may contain "module-level inline asm" blocks, which corresponds
976to the GCC "file scope inline asm" blocks. These blocks are internally
977concatenated by LLVM and treated as a single unit, but may be separated
978in the ``.ll`` file if desired. The syntax is very simple:
979
980.. code-block:: llvm
981
982 module asm "inline asm code goes here"
983 module asm "more can go here"
984
985The strings can contain any character by escaping non-printable
986characters. The escape sequence used is simply "\\xx" where "xx" is the
987two digit hex code for the number.
988
989The inline asm code is simply printed to the machine code .s file when
990assembly code is generated.
991
Eli Bendersky1de14102013-06-07 19:40:08 +0000992.. _langref_datalayout:
993
Sean Silvaf722b002012-12-07 10:36:55 +0000994Data Layout
995-----------
996
997A module may specify a target specific data layout string that specifies
998how data is to be laid out in memory. The syntax for the data layout is
999simply:
1000
1001.. code-block:: llvm
1002
1003 target datalayout = "layout specification"
1004
1005The *layout specification* consists of a list of specifications
1006separated by the minus sign character ('-'). Each specification starts
1007with a letter and may include other information after the letter to
1008define some aspect of the data layout. The specifications accepted are
1009as follows:
1010
1011``E``
1012 Specifies that the target lays out data in big-endian form. That is,
1013 the bits with the most significance have the lowest address
1014 location.
1015``e``
1016 Specifies that the target lays out data in little-endian form. That
1017 is, the bits with the least significance have the lowest address
1018 location.
1019``S<size>``
1020 Specifies the natural alignment of the stack in bits. Alignment
1021 promotion of stack variables is limited to the natural stack
1022 alignment to avoid dynamic stack realignment. The stack alignment
1023 must be a multiple of 8-bits. If omitted, the natural stack
1024 alignment defaults to "unspecified", which does not prevent any
1025 alignment promotions.
1026``p[n]:<size>:<abi>:<pref>``
1027 This specifies the *size* of a pointer and its ``<abi>`` and
1028 ``<pref>``\erred alignments for address space ``n``. All sizes are in
1029 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
1030 preceding ``:`` should be omitted too. The address space, ``n`` is
1031 optional, and if not specified, denotes the default address space 0.
1032 The value of ``n`` must be in the range [1,2^23).
1033``i<size>:<abi>:<pref>``
1034 This specifies the alignment for an integer type of a given bit
1035 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1036``v<size>:<abi>:<pref>``
1037 This specifies the alignment for a vector type of a given bit
1038 ``<size>``.
1039``f<size>:<abi>:<pref>``
1040 This specifies the alignment for a floating point type of a given bit
1041 ``<size>``. Only values of ``<size>`` that are supported by the target
1042 will work. 32 (float) and 64 (double) are supported on all targets; 80
1043 or 128 (different flavors of long double) are also supported on some
1044 targets.
1045``a<size>:<abi>:<pref>``
1046 This specifies the alignment for an aggregate type of a given bit
1047 ``<size>``.
1048``s<size>:<abi>:<pref>``
1049 This specifies the alignment for a stack object of a given bit
1050 ``<size>``.
1051``n<size1>:<size2>:<size3>...``
1052 This specifies a set of native integer widths for the target CPU in
1053 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1054 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1055 this set are considered to support most general arithmetic operations
1056 efficiently.
1057
1058When constructing the data layout for a given target, LLVM starts with a
1059default set of specifications which are then (possibly) overridden by
1060the specifications in the ``datalayout`` keyword. The default
1061specifications are given in this list:
1062
1063- ``E`` - big endian
Matt Arsenault16e4ed52013-07-31 17:49:08 +00001064- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1065- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1066 same as the default address space.
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001067- ``S0`` - natural stack alignment is unspecified
Sean Silvaf722b002012-12-07 10:36:55 +00001068- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1069- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1070- ``i16:16:16`` - i16 is 16-bit aligned
1071- ``i32:32:32`` - i32 is 32-bit aligned
1072- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1073 alignment of 64-bits
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001074- ``f16:16:16`` - half is 16-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001075- ``f32:32:32`` - float is 32-bit aligned
1076- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001077- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001078- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1079- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001080- ``a0:0:64`` - aggregates are 64-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001081
1082When LLVM is determining the alignment for a given type, it uses the
1083following rules:
1084
1085#. If the type sought is an exact match for one of the specifications,
1086 that specification is used.
1087#. If no match is found, and the type sought is an integer type, then
1088 the smallest integer type that is larger than the bitwidth of the
1089 sought type is used. If none of the specifications are larger than
1090 the bitwidth then the largest integer type is used. For example,
1091 given the default specifications above, the i7 type will use the
1092 alignment of i8 (next largest) while both i65 and i256 will use the
1093 alignment of i64 (largest specified).
1094#. If no match is found, and the type sought is a vector type, then the
1095 largest vector type that is smaller than the sought vector type will
1096 be used as a fall back. This happens because <128 x double> can be
1097 implemented in terms of 64 <2 x double>, for example.
1098
1099The function of the data layout string may not be what you expect.
1100Notably, this is not a specification from the frontend of what alignment
1101the code generator should use.
1102
1103Instead, if specified, the target data layout is required to match what
1104the ultimate *code generator* expects. This string is used by the
1105mid-level optimizers to improve code, and this only works if it matches
1106what the ultimate code generator uses. If you would like to generate IR
1107that does not embed this target-specific detail into the IR, then you
1108don't have to specify the string. This will disable some optimizations
1109that require precise layout information, but this also prevents those
1110optimizations from introducing target specificity into the IR.
1111
1112.. _pointeraliasing:
1113
1114Pointer Aliasing Rules
1115----------------------
1116
1117Any memory access must be done through a pointer value associated with
1118an address range of the memory access, otherwise the behavior is
1119undefined. Pointer values are associated with address ranges according
1120to the following rules:
1121
1122- A pointer value is associated with the addresses associated with any
1123 value it is *based* on.
1124- An address of a global variable is associated with the address range
1125 of the variable's storage.
1126- The result value of an allocation instruction is associated with the
1127 address range of the allocated storage.
1128- A null pointer in the default address-space is associated with no
1129 address.
1130- An integer constant other than zero or a pointer value returned from
1131 a function not defined within LLVM may be associated with address
1132 ranges allocated through mechanisms other than those provided by
1133 LLVM. Such ranges shall not overlap with any ranges of addresses
1134 allocated by mechanisms provided by LLVM.
1135
1136A pointer value is *based* on another pointer value according to the
1137following rules:
1138
1139- A pointer value formed from a ``getelementptr`` operation is *based*
1140 on the first operand of the ``getelementptr``.
1141- The result value of a ``bitcast`` is *based* on the operand of the
1142 ``bitcast``.
1143- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1144 values that contribute (directly or indirectly) to the computation of
1145 the pointer's value.
1146- The "*based* on" relationship is transitive.
1147
1148Note that this definition of *"based"* is intentionally similar to the
1149definition of *"based"* in C99, though it is slightly weaker.
1150
1151LLVM IR does not associate types with memory. The result type of a
1152``load`` merely indicates the size and alignment of the memory from
1153which to load, as well as the interpretation of the value. The first
1154operand type of a ``store`` similarly only indicates the size and
1155alignment of the store.
1156
1157Consequently, type-based alias analysis, aka TBAA, aka
1158``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1159:ref:`Metadata <metadata>` may be used to encode additional information
1160which specialized optimization passes may use to implement type-based
1161alias analysis.
1162
1163.. _volatile:
1164
1165Volatile Memory Accesses
1166------------------------
1167
1168Certain memory accesses, such as :ref:`load <i_load>`'s,
1169:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1170marked ``volatile``. The optimizers must not change the number of
1171volatile operations or change their order of execution relative to other
1172volatile operations. The optimizers *may* change the order of volatile
1173operations relative to non-volatile operations. This is not Java's
1174"volatile" and has no cross-thread synchronization behavior.
1175
Andrew Trick9a6dd022013-01-30 21:19:35 +00001176IR-level volatile loads and stores cannot safely be optimized into
1177llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1178flagged volatile. Likewise, the backend should never split or merge
1179target-legal volatile load/store instructions.
1180
Andrew Trick946317d2013-01-31 00:49:39 +00001181.. admonition:: Rationale
1182
1183 Platforms may rely on volatile loads and stores of natively supported
1184 data width to be executed as single instruction. For example, in C
1185 this holds for an l-value of volatile primitive type with native
1186 hardware support, but not necessarily for aggregate types. The
1187 frontend upholds these expectations, which are intentionally
1188 unspecified in the IR. The rules above ensure that IR transformation
1189 do not violate the frontend's contract with the language.
1190
Sean Silvaf722b002012-12-07 10:36:55 +00001191.. _memmodel:
1192
1193Memory Model for Concurrent Operations
1194--------------------------------------
1195
1196The LLVM IR does not define any way to start parallel threads of
1197execution or to register signal handlers. Nonetheless, there are
1198platform-specific ways to create them, and we define LLVM IR's behavior
1199in their presence. This model is inspired by the C++0x memory model.
1200
1201For a more informal introduction to this model, see the :doc:`Atomics`.
1202
1203We define a *happens-before* partial order as the least partial order
1204that
1205
1206- Is a superset of single-thread program order, and
1207- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1208 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1209 techniques, like pthread locks, thread creation, thread joining,
1210 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1211 Constraints <ordering>`).
1212
1213Note that program order does not introduce *happens-before* edges
1214between a thread and signals executing inside that thread.
1215
1216Every (defined) read operation (load instructions, memcpy, atomic
1217loads/read-modify-writes, etc.) R reads a series of bytes written by
1218(defined) write operations (store instructions, atomic
1219stores/read-modify-writes, memcpy, etc.). For the purposes of this
1220section, initialized globals are considered to have a write of the
1221initializer which is atomic and happens before any other read or write
1222of the memory in question. For each byte of a read R, R\ :sub:`byte`
1223may see any write to the same byte, except:
1224
1225- If write\ :sub:`1` happens before write\ :sub:`2`, and
1226 write\ :sub:`2` happens before R\ :sub:`byte`, then
1227 R\ :sub:`byte` does not see write\ :sub:`1`.
1228- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1229 R\ :sub:`byte` does not see write\ :sub:`3`.
1230
1231Given that definition, R\ :sub:`byte` is defined as follows:
1232
1233- If R is volatile, the result is target-dependent. (Volatile is
1234 supposed to give guarantees which can support ``sig_atomic_t`` in
1235 C/C++, and may be used for accesses to addresses which do not behave
1236 like normal memory. It does not generally provide cross-thread
1237 synchronization.)
1238- Otherwise, if there is no write to the same byte that happens before
1239 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1240- Otherwise, if R\ :sub:`byte` may see exactly one write,
1241 R\ :sub:`byte` returns the value written by that write.
1242- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1243 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1244 Memory Ordering Constraints <ordering>` section for additional
1245 constraints on how the choice is made.
1246- Otherwise R\ :sub:`byte` returns ``undef``.
1247
1248R returns the value composed of the series of bytes it read. This
1249implies that some bytes within the value may be ``undef`` **without**
1250the entire value being ``undef``. Note that this only defines the
1251semantics of the operation; it doesn't mean that targets will emit more
1252than one instruction to read the series of bytes.
1253
1254Note that in cases where none of the atomic intrinsics are used, this
1255model places only one restriction on IR transformations on top of what
1256is required for single-threaded execution: introducing a store to a byte
1257which might not otherwise be stored is not allowed in general.
1258(Specifically, in the case where another thread might write to and read
1259from an address, introducing a store can change a load that may see
1260exactly one write into a load that may see multiple writes.)
1261
1262.. _ordering:
1263
1264Atomic Memory Ordering Constraints
1265----------------------------------
1266
1267Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1268:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1269:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1270an ordering parameter that determines which other atomic instructions on
1271the same address they *synchronize with*. These semantics are borrowed
1272from Java and C++0x, but are somewhat more colloquial. If these
1273descriptions aren't precise enough, check those specs (see spec
1274references in the :doc:`atomics guide <Atomics>`).
1275:ref:`fence <i_fence>` instructions treat these orderings somewhat
1276differently since they don't take an address. See that instruction's
1277documentation for details.
1278
1279For a simpler introduction to the ordering constraints, see the
1280:doc:`Atomics`.
1281
1282``unordered``
1283 The set of values that can be read is governed by the happens-before
1284 partial order. A value cannot be read unless some operation wrote
1285 it. This is intended to provide a guarantee strong enough to model
1286 Java's non-volatile shared variables. This ordering cannot be
1287 specified for read-modify-write operations; it is not strong enough
1288 to make them atomic in any interesting way.
1289``monotonic``
1290 In addition to the guarantees of ``unordered``, there is a single
1291 total order for modifications by ``monotonic`` operations on each
1292 address. All modification orders must be compatible with the
1293 happens-before order. There is no guarantee that the modification
1294 orders can be combined to a global total order for the whole program
1295 (and this often will not be possible). The read in an atomic
1296 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1297 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1298 order immediately before the value it writes. If one atomic read
1299 happens before another atomic read of the same address, the later
1300 read must see the same value or a later value in the address's
1301 modification order. This disallows reordering of ``monotonic`` (or
1302 stronger) operations on the same address. If an address is written
1303 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1304 read that address repeatedly, the other threads must eventually see
1305 the write. This corresponds to the C++0x/C1x
1306 ``memory_order_relaxed``.
1307``acquire``
1308 In addition to the guarantees of ``monotonic``, a
1309 *synchronizes-with* edge may be formed with a ``release`` operation.
1310 This is intended to model C++'s ``memory_order_acquire``.
1311``release``
1312 In addition to the guarantees of ``monotonic``, if this operation
1313 writes a value which is subsequently read by an ``acquire``
1314 operation, it *synchronizes-with* that operation. (This isn't a
1315 complete description; see the C++0x definition of a release
1316 sequence.) This corresponds to the C++0x/C1x
1317 ``memory_order_release``.
1318``acq_rel`` (acquire+release)
1319 Acts as both an ``acquire`` and ``release`` operation on its
1320 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1321``seq_cst`` (sequentially consistent)
1322 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1323 operation which only reads, ``release`` for an operation which only
1324 writes), there is a global total order on all
1325 sequentially-consistent operations on all addresses, which is
1326 consistent with the *happens-before* partial order and with the
1327 modification orders of all the affected addresses. Each
1328 sequentially-consistent read sees the last preceding write to the
1329 same address in this global order. This corresponds to the C++0x/C1x
1330 ``memory_order_seq_cst`` and Java volatile.
1331
1332.. _singlethread:
1333
1334If an atomic operation is marked ``singlethread``, it only *synchronizes
1335with* or participates in modification and seq\_cst total orderings with
1336other operations running in the same thread (for example, in signal
1337handlers).
1338
1339.. _fastmath:
1340
1341Fast-Math Flags
1342---------------
1343
1344LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1345:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1346:ref:`frem <i_frem>`) have the following flags that can set to enable
1347otherwise unsafe floating point operations
1348
1349``nnan``
1350 No NaNs - Allow optimizations to assume the arguments and result are not
1351 NaN. Such optimizations are required to retain defined behavior over
1352 NaNs, but the value of the result is undefined.
1353
1354``ninf``
1355 No Infs - Allow optimizations to assume the arguments and result are not
1356 +/-Inf. Such optimizations are required to retain defined behavior over
1357 +/-Inf, but the value of the result is undefined.
1358
1359``nsz``
1360 No Signed Zeros - Allow optimizations to treat the sign of a zero
1361 argument or result as insignificant.
1362
1363``arcp``
1364 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1365 argument rather than perform division.
1366
1367``fast``
1368 Fast - Allow algebraically equivalent transformations that may
1369 dramatically change results in floating point (e.g. reassociate). This
1370 flag implies all the others.
1371
1372.. _typesystem:
1373
1374Type System
1375===========
1376
1377The LLVM type system is one of the most important features of the
1378intermediate representation. Being typed enables a number of
1379optimizations to be performed on the intermediate representation
1380directly, without having to do extra analyses on the side before the
1381transformation. A strong type system makes it easier to read the
1382generated code and enables novel analyses and transformations that are
1383not feasible to perform on normal three address code representations.
1384
Eli Bendersky88fe6822013-06-07 20:24:43 +00001385.. _typeclassifications:
1386
Sean Silvaf722b002012-12-07 10:36:55 +00001387Type Classifications
1388--------------------
1389
1390The types fall into a few useful classifications:
1391
1392
1393.. list-table::
1394 :header-rows: 1
1395
1396 * - Classification
1397 - Types
1398
1399 * - :ref:`integer <t_integer>`
1400 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1401 ``i64``, ...
1402
1403 * - :ref:`floating point <t_floating>`
1404 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1405 ``ppc_fp128``
1406
1407
1408 * - first class
1409
1410 .. _t_firstclass:
1411
1412 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1413 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1414 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1415 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1416
1417 * - :ref:`primitive <t_primitive>`
1418 - :ref:`label <t_label>`,
1419 :ref:`void <t_void>`,
1420 :ref:`integer <t_integer>`,
1421 :ref:`floating point <t_floating>`,
1422 :ref:`x86mmx <t_x86mmx>`,
1423 :ref:`metadata <t_metadata>`.
1424
1425 * - :ref:`derived <t_derived>`
1426 - :ref:`array <t_array>`,
1427 :ref:`function <t_function>`,
1428 :ref:`pointer <t_pointer>`,
1429 :ref:`structure <t_struct>`,
1430 :ref:`vector <t_vector>`,
1431 :ref:`opaque <t_opaque>`.
1432
1433The :ref:`first class <t_firstclass>` types are perhaps the most important.
1434Values of these types are the only ones which can be produced by
1435instructions.
1436
1437.. _t_primitive:
1438
1439Primitive Types
1440---------------
1441
1442The primitive types are the fundamental building blocks of the LLVM
1443system.
1444
1445.. _t_integer:
1446
1447Integer Type
1448^^^^^^^^^^^^
1449
1450Overview:
1451"""""""""
1452
1453The integer type is a very simple type that simply specifies an
1454arbitrary bit width for the integer type desired. Any bit width from 1
1455bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1456
1457Syntax:
1458"""""""
1459
1460::
1461
1462 iN
1463
1464The number of bits the integer will occupy is specified by the ``N``
1465value.
1466
1467Examples:
1468"""""""""
1469
1470+----------------+------------------------------------------------+
1471| ``i1`` | a single-bit integer. |
1472+----------------+------------------------------------------------+
1473| ``i32`` | a 32-bit integer. |
1474+----------------+------------------------------------------------+
1475| ``i1942652`` | a really big integer of over 1 million bits. |
1476+----------------+------------------------------------------------+
1477
1478.. _t_floating:
1479
1480Floating Point Types
1481^^^^^^^^^^^^^^^^^^^^
1482
1483.. list-table::
1484 :header-rows: 1
1485
1486 * - Type
1487 - Description
1488
1489 * - ``half``
1490 - 16-bit floating point value
1491
1492 * - ``float``
1493 - 32-bit floating point value
1494
1495 * - ``double``
1496 - 64-bit floating point value
1497
1498 * - ``fp128``
1499 - 128-bit floating point value (112-bit mantissa)
1500
1501 * - ``x86_fp80``
1502 - 80-bit floating point value (X87)
1503
1504 * - ``ppc_fp128``
1505 - 128-bit floating point value (two 64-bits)
1506
1507.. _t_x86mmx:
1508
1509X86mmx Type
1510^^^^^^^^^^^
1511
1512Overview:
1513"""""""""
1514
1515The x86mmx type represents a value held in an MMX register on an x86
1516machine. The operations allowed on it are quite limited: parameters and
1517return values, load and store, and bitcast. User-specified MMX
1518instructions are represented as intrinsic or asm calls with arguments
1519and/or results of this type. There are no arrays, vectors or constants
1520of this type.
1521
1522Syntax:
1523"""""""
1524
1525::
1526
1527 x86mmx
1528
1529.. _t_void:
1530
1531Void Type
1532^^^^^^^^^
1533
1534Overview:
1535"""""""""
1536
1537The void type does not represent any value and has no size.
1538
1539Syntax:
1540"""""""
1541
1542::
1543
1544 void
1545
1546.. _t_label:
1547
1548Label Type
1549^^^^^^^^^^
1550
1551Overview:
1552"""""""""
1553
1554The label type represents code labels.
1555
1556Syntax:
1557"""""""
1558
1559::
1560
1561 label
1562
1563.. _t_metadata:
1564
1565Metadata Type
1566^^^^^^^^^^^^^
1567
1568Overview:
1569"""""""""
1570
1571The metadata type represents embedded metadata. No derived types may be
1572created from metadata except for :ref:`function <t_function>` arguments.
1573
1574Syntax:
1575"""""""
1576
1577::
1578
1579 metadata
1580
1581.. _t_derived:
1582
1583Derived Types
1584-------------
1585
1586The real power in LLVM comes from the derived types in the system. This
1587is what allows a programmer to represent arrays, functions, pointers,
1588and other useful types. Each of these types contain one or more element
1589types which may be a primitive type, or another derived type. For
1590example, it is possible to have a two dimensional array, using an array
1591as the element type of another array.
1592
1593.. _t_aggregate:
1594
1595Aggregate Types
1596^^^^^^^^^^^^^^^
1597
1598Aggregate Types are a subset of derived types that can contain multiple
1599member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1600aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1601aggregate types.
1602
1603.. _t_array:
1604
1605Array Type
1606^^^^^^^^^^
1607
1608Overview:
1609"""""""""
1610
1611The array type is a very simple derived type that arranges elements
1612sequentially in memory. The array type requires a size (number of
1613elements) and an underlying data type.
1614
1615Syntax:
1616"""""""
1617
1618::
1619
1620 [<# elements> x <elementtype>]
1621
1622The number of elements is a constant integer value; ``elementtype`` may
1623be any type with a size.
1624
1625Examples:
1626"""""""""
1627
1628+------------------+--------------------------------------+
1629| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1630+------------------+--------------------------------------+
1631| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1632+------------------+--------------------------------------+
1633| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1634+------------------+--------------------------------------+
1635
1636Here are some examples of multidimensional arrays:
1637
1638+-----------------------------+----------------------------------------------------------+
1639| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1640+-----------------------------+----------------------------------------------------------+
1641| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1642+-----------------------------+----------------------------------------------------------+
1643| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1644+-----------------------------+----------------------------------------------------------+
1645
1646There is no restriction on indexing beyond the end of the array implied
1647by a static type (though there are restrictions on indexing beyond the
1648bounds of an allocated object in some cases). This means that
1649single-dimension 'variable sized array' addressing can be implemented in
1650LLVM with a zero length array type. An implementation of 'pascal style
1651arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1652example.
1653
1654.. _t_function:
1655
1656Function Type
1657^^^^^^^^^^^^^
1658
1659Overview:
1660"""""""""
1661
1662The function type can be thought of as a function signature. It consists
1663of a return type and a list of formal parameter types. The return type
1664of a function type is a first class type or a void type.
1665
1666Syntax:
1667"""""""
1668
1669::
1670
1671 <returntype> (<parameter list>)
1672
1673...where '``<parameter list>``' is a comma-separated list of type
1674specifiers. Optionally, the parameter list may include a type ``...``,
1675which indicates that the function takes a variable number of arguments.
1676Variable argument functions can access their arguments with the
1677:ref:`variable argument handling intrinsic <int_varargs>` functions.
1678'``<returntype>``' is any type except :ref:`label <t_label>`.
1679
1680Examples:
1681"""""""""
1682
1683+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1684| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1685+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001686| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001687+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1688| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1689+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1690| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1691+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1692
1693.. _t_struct:
1694
1695Structure Type
1696^^^^^^^^^^^^^^
1697
1698Overview:
1699"""""""""
1700
1701The structure type is used to represent a collection of data members
1702together in memory. The elements of a structure may be any type that has
1703a size.
1704
1705Structures in memory are accessed using '``load``' and '``store``' by
1706getting a pointer to a field with the '``getelementptr``' instruction.
1707Structures in registers are accessed using the '``extractvalue``' and
1708'``insertvalue``' instructions.
1709
1710Structures may optionally be "packed" structures, which indicate that
1711the alignment of the struct is one byte, and that there is no padding
1712between the elements. In non-packed structs, padding between field types
1713is inserted as defined by the DataLayout string in the module, which is
1714required to match what the underlying code generator expects.
1715
1716Structures can either be "literal" or "identified". A literal structure
1717is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1718identified types are always defined at the top level with a name.
1719Literal types are uniqued by their contents and can never be recursive
1720or opaque since there is no way to write one. Identified types can be
1721recursive, can be opaqued, and are never uniqued.
1722
1723Syntax:
1724"""""""
1725
1726::
1727
1728 %T1 = type { <type list> } ; Identified normal struct type
1729 %T2 = type <{ <type list> }> ; Identified packed struct type
1730
1731Examples:
1732"""""""""
1733
1734+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1735| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1736+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001737| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001738+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1739| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1740+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1741
1742.. _t_opaque:
1743
1744Opaque Structure Types
1745^^^^^^^^^^^^^^^^^^^^^^
1746
1747Overview:
1748"""""""""
1749
1750Opaque structure types are used to represent named structure types that
1751do not have a body specified. This corresponds (for example) to the C
1752notion of a forward declared structure.
1753
1754Syntax:
1755"""""""
1756
1757::
1758
1759 %X = type opaque
1760 %52 = type opaque
1761
1762Examples:
1763"""""""""
1764
1765+--------------+-------------------+
1766| ``opaque`` | An opaque type. |
1767+--------------+-------------------+
1768
1769.. _t_pointer:
1770
1771Pointer Type
1772^^^^^^^^^^^^
1773
1774Overview:
1775"""""""""
1776
1777The pointer type is used to specify memory locations. Pointers are
1778commonly used to reference objects in memory.
1779
1780Pointer types may have an optional address space attribute defining the
1781numbered address space where the pointed-to object resides. The default
1782address space is number zero. The semantics of non-zero address spaces
1783are target-specific.
1784
1785Note that LLVM does not permit pointers to void (``void*``) nor does it
1786permit pointers to labels (``label*``). Use ``i8*`` instead.
1787
1788Syntax:
1789"""""""
1790
1791::
1792
1793 <type> *
1794
1795Examples:
1796"""""""""
1797
1798+-------------------------+--------------------------------------------------------------------------------------------------------------+
1799| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1800+-------------------------+--------------------------------------------------------------------------------------------------------------+
1801| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1802+-------------------------+--------------------------------------------------------------------------------------------------------------+
1803| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1804+-------------------------+--------------------------------------------------------------------------------------------------------------+
1805
1806.. _t_vector:
1807
1808Vector Type
1809^^^^^^^^^^^
1810
1811Overview:
1812"""""""""
1813
1814A vector type is a simple derived type that represents a vector of
1815elements. Vector types are used when multiple primitive data are
1816operated in parallel using a single instruction (SIMD). A vector type
1817requires a size (number of elements) and an underlying primitive data
1818type. Vector types are considered :ref:`first class <t_firstclass>`.
1819
1820Syntax:
1821"""""""
1822
1823::
1824
1825 < <# elements> x <elementtype> >
1826
1827The number of elements is a constant integer value larger than 0;
1828elementtype may be any integer or floating point type, or a pointer to
1829these types. Vectors of size zero are not allowed.
1830
1831Examples:
1832"""""""""
1833
1834+-------------------+--------------------------------------------------+
1835| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1836+-------------------+--------------------------------------------------+
1837| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1838+-------------------+--------------------------------------------------+
1839| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1840+-------------------+--------------------------------------------------+
1841| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1842+-------------------+--------------------------------------------------+
1843
1844Constants
1845=========
1846
1847LLVM has several different basic types of constants. This section
1848describes them all and their syntax.
1849
1850Simple Constants
1851----------------
1852
1853**Boolean constants**
1854 The two strings '``true``' and '``false``' are both valid constants
1855 of the ``i1`` type.
1856**Integer constants**
1857 Standard integers (such as '4') are constants of the
1858 :ref:`integer <t_integer>` type. Negative numbers may be used with
1859 integer types.
1860**Floating point constants**
1861 Floating point constants use standard decimal notation (e.g.
1862 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1863 hexadecimal notation (see below). The assembler requires the exact
1864 decimal value of a floating-point constant. For example, the
1865 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1866 decimal in binary. Floating point constants must have a :ref:`floating
1867 point <t_floating>` type.
1868**Null pointer constants**
1869 The identifier '``null``' is recognized as a null pointer constant
1870 and must be of :ref:`pointer type <t_pointer>`.
1871
1872The one non-intuitive notation for constants is the hexadecimal form of
1873floating point constants. For example, the form
1874'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1875than) '``double 4.5e+15``'. The only time hexadecimal floating point
1876constants are required (and the only time that they are generated by the
1877disassembler) is when a floating point constant must be emitted but it
1878cannot be represented as a decimal floating point number in a reasonable
1879number of digits. For example, NaN's, infinities, and other special
1880values are represented in their IEEE hexadecimal format so that assembly
1881and disassembly do not cause any bits to change in the constants.
1882
1883When using the hexadecimal form, constants of types half, float, and
1884double are represented using the 16-digit form shown above (which
1885matches the IEEE754 representation for double); half and float values
Dmitri Gribenkoc3c8d2a2013-01-16 23:40:37 +00001886must, however, be exactly representable as IEEE 754 half and single
Sean Silvaf722b002012-12-07 10:36:55 +00001887precision, respectively. Hexadecimal format is always used for long
1888double, and there are three forms of long double. The 80-bit format used
1889by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1890128-bit format used by PowerPC (two adjacent doubles) is represented by
1891``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordd07d2922013-05-03 14:32:27 +00001892represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
1893will only work if they match the long double format on your target.
1894The IEEE 16-bit format (half precision) is represented by ``0xH``
1895followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
1896(sign bit at the left).
Sean Silvaf722b002012-12-07 10:36:55 +00001897
1898There are no constants of type x86mmx.
1899
Eli Bendersky88fe6822013-06-07 20:24:43 +00001900.. _complexconstants:
1901
Sean Silvaf722b002012-12-07 10:36:55 +00001902Complex Constants
1903-----------------
1904
1905Complex constants are a (potentially recursive) combination of simple
1906constants and smaller complex constants.
1907
1908**Structure constants**
1909 Structure constants are represented with notation similar to
1910 structure type definitions (a comma separated list of elements,
1911 surrounded by braces (``{}``)). For example:
1912 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
1913 "``@G = external global i32``". Structure constants must have
1914 :ref:`structure type <t_struct>`, and the number and types of elements
1915 must match those specified by the type.
1916**Array constants**
1917 Array constants are represented with notation similar to array type
1918 definitions (a comma separated list of elements, surrounded by
1919 square brackets (``[]``)). For example:
1920 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
1921 :ref:`array type <t_array>`, and the number and types of elements must
1922 match those specified by the type.
1923**Vector constants**
1924 Vector constants are represented with notation similar to vector
1925 type definitions (a comma separated list of elements, surrounded by
1926 less-than/greater-than's (``<>``)). For example:
1927 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
1928 must have :ref:`vector type <t_vector>`, and the number and types of
1929 elements must match those specified by the type.
1930**Zero initialization**
1931 The string '``zeroinitializer``' can be used to zero initialize a
1932 value to zero of *any* type, including scalar and
1933 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
1934 having to print large zero initializers (e.g. for large arrays) and
1935 is always exactly equivalent to using explicit zero initializers.
1936**Metadata node**
1937 A metadata node is a structure-like constant with :ref:`metadata
1938 type <t_metadata>`. For example:
1939 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
1940 constants that are meant to be interpreted as part of the
1941 instruction stream, metadata is a place to attach additional
1942 information such as debug info.
1943
1944Global Variable and Function Addresses
1945--------------------------------------
1946
1947The addresses of :ref:`global variables <globalvars>` and
1948:ref:`functions <functionstructure>` are always implicitly valid
1949(link-time) constants. These constants are explicitly referenced when
1950the :ref:`identifier for the global <identifiers>` is used and always have
1951:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
1952file:
1953
1954.. code-block:: llvm
1955
1956 @X = global i32 17
1957 @Y = global i32 42
1958 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1959
1960.. _undefvalues:
1961
1962Undefined Values
1963----------------
1964
1965The string '``undef``' can be used anywhere a constant is expected, and
1966indicates that the user of the value may receive an unspecified
1967bit-pattern. Undefined values may be of any type (other than '``label``'
1968or '``void``') and be used anywhere a constant is permitted.
1969
1970Undefined values are useful because they indicate to the compiler that
1971the program is well defined no matter what value is used. This gives the
1972compiler more freedom to optimize. Here are some examples of
1973(potentially surprising) transformations that are valid (in pseudo IR):
1974
1975.. code-block:: llvm
1976
1977 %A = add %X, undef
1978 %B = sub %X, undef
1979 %C = xor %X, undef
1980 Safe:
1981 %A = undef
1982 %B = undef
1983 %C = undef
1984
1985This is safe because all of the output bits are affected by the undef
1986bits. Any output bit can have a zero or one depending on the input bits.
1987
1988.. code-block:: llvm
1989
1990 %A = or %X, undef
1991 %B = and %X, undef
1992 Safe:
1993 %A = -1
1994 %B = 0
1995 Unsafe:
1996 %A = undef
1997 %B = undef
1998
1999These logical operations have bits that are not always affected by the
2000input. For example, if ``%X`` has a zero bit, then the output of the
2001'``and``' operation will always be a zero for that bit, no matter what
2002the corresponding bit from the '``undef``' is. As such, it is unsafe to
2003optimize or assume that the result of the '``and``' is '``undef``'.
2004However, it is safe to assume that all bits of the '``undef``' could be
20050, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2006all the bits of the '``undef``' operand to the '``or``' could be set,
2007allowing the '``or``' to be folded to -1.
2008
2009.. code-block:: llvm
2010
2011 %A = select undef, %X, %Y
2012 %B = select undef, 42, %Y
2013 %C = select %X, %Y, undef
2014 Safe:
2015 %A = %X (or %Y)
2016 %B = 42 (or %Y)
2017 %C = %Y
2018 Unsafe:
2019 %A = undef
2020 %B = undef
2021 %C = undef
2022
2023This set of examples shows that undefined '``select``' (and conditional
2024branch) conditions can go *either way*, but they have to come from one
2025of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2026both known to have a clear low bit, then ``%A`` would have to have a
2027cleared low bit. However, in the ``%C`` example, the optimizer is
2028allowed to assume that the '``undef``' operand could be the same as
2029``%Y``, allowing the whole '``select``' to be eliminated.
2030
2031.. code-block:: llvm
2032
2033 %A = xor undef, undef
2034
2035 %B = undef
2036 %C = xor %B, %B
2037
2038 %D = undef
2039 %E = icmp lt %D, 4
2040 %F = icmp gte %D, 4
2041
2042 Safe:
2043 %A = undef
2044 %B = undef
2045 %C = undef
2046 %D = undef
2047 %E = undef
2048 %F = undef
2049
2050This example points out that two '``undef``' operands are not
2051necessarily the same. This can be surprising to people (and also matches
2052C semantics) where they assume that "``X^X``" is always zero, even if
2053``X`` is undefined. This isn't true for a number of reasons, but the
2054short answer is that an '``undef``' "variable" can arbitrarily change
2055its value over its "live range". This is true because the variable
2056doesn't actually *have a live range*. Instead, the value is logically
2057read from arbitrary registers that happen to be around when needed, so
2058the value is not necessarily consistent over time. In fact, ``%A`` and
2059``%C`` need to have the same semantics or the core LLVM "replace all
2060uses with" concept would not hold.
2061
2062.. code-block:: llvm
2063
2064 %A = fdiv undef, %X
2065 %B = fdiv %X, undef
2066 Safe:
2067 %A = undef
2068 b: unreachable
2069
2070These examples show the crucial difference between an *undefined value*
2071and *undefined behavior*. An undefined value (like '``undef``') is
2072allowed to have an arbitrary bit-pattern. This means that the ``%A``
2073operation can be constant folded to '``undef``', because the '``undef``'
2074could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2075However, in the second example, we can make a more aggressive
2076assumption: because the ``undef`` is allowed to be an arbitrary value,
2077we are allowed to assume that it could be zero. Since a divide by zero
2078has *undefined behavior*, we are allowed to assume that the operation
2079does not execute at all. This allows us to delete the divide and all
2080code after it. Because the undefined operation "can't happen", the
2081optimizer can assume that it occurs in dead code.
2082
2083.. code-block:: llvm
2084
2085 a: store undef -> %X
2086 b: store %X -> undef
2087 Safe:
2088 a: <deleted>
2089 b: unreachable
2090
2091These examples reiterate the ``fdiv`` example: a store *of* an undefined
2092value can be assumed to not have any effect; we can assume that the
2093value is overwritten with bits that happen to match what was already
2094there. However, a store *to* an undefined location could clobber
2095arbitrary memory, therefore, it has undefined behavior.
2096
2097.. _poisonvalues:
2098
2099Poison Values
2100-------------
2101
2102Poison values are similar to :ref:`undef values <undefvalues>`, however
2103they also represent the fact that an instruction or constant expression
2104which cannot evoke side effects has nevertheless detected a condition
2105which results in undefined behavior.
2106
2107There is currently no way of representing a poison value in the IR; they
2108only exist when produced by operations such as :ref:`add <i_add>` with
2109the ``nsw`` flag.
2110
2111Poison value behavior is defined in terms of value *dependence*:
2112
2113- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2114- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2115 their dynamic predecessor basic block.
2116- Function arguments depend on the corresponding actual argument values
2117 in the dynamic callers of their functions.
2118- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2119 instructions that dynamically transfer control back to them.
2120- :ref:`Invoke <i_invoke>` instructions depend on the
2121 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2122 call instructions that dynamically transfer control back to them.
2123- Non-volatile loads and stores depend on the most recent stores to all
2124 of the referenced memory addresses, following the order in the IR
2125 (including loads and stores implied by intrinsics such as
2126 :ref:`@llvm.memcpy <int_memcpy>`.)
2127- An instruction with externally visible side effects depends on the
2128 most recent preceding instruction with externally visible side
2129 effects, following the order in the IR. (This includes :ref:`volatile
2130 operations <volatile>`.)
2131- An instruction *control-depends* on a :ref:`terminator
2132 instruction <terminators>` if the terminator instruction has
2133 multiple successors and the instruction is always executed when
2134 control transfers to one of the successors, and may not be executed
2135 when control is transferred to another.
2136- Additionally, an instruction also *control-depends* on a terminator
2137 instruction if the set of instructions it otherwise depends on would
2138 be different if the terminator had transferred control to a different
2139 successor.
2140- Dependence is transitive.
2141
2142Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2143with the additional affect that any instruction which has a *dependence*
2144on a poison value has undefined behavior.
2145
2146Here are some examples:
2147
2148.. code-block:: llvm
2149
2150 entry:
2151 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2152 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2153 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2154 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2155
2156 store i32 %poison, i32* @g ; Poison value stored to memory.
2157 %poison2 = load i32* @g ; Poison value loaded back from memory.
2158
2159 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2160
2161 %narrowaddr = bitcast i32* @g to i16*
2162 %wideaddr = bitcast i32* @g to i64*
2163 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2164 %poison4 = load i64* %wideaddr ; Returns a poison value.
2165
2166 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2167 br i1 %cmp, label %true, label %end ; Branch to either destination.
2168
2169 true:
2170 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2171 ; it has undefined behavior.
2172 br label %end
2173
2174 end:
2175 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2176 ; Both edges into this PHI are
2177 ; control-dependent on %cmp, so this
2178 ; always results in a poison value.
2179
2180 store volatile i32 0, i32* @g ; This would depend on the store in %true
2181 ; if %cmp is true, or the store in %entry
2182 ; otherwise, so this is undefined behavior.
2183
2184 br i1 %cmp, label %second_true, label %second_end
2185 ; The same branch again, but this time the
2186 ; true block doesn't have side effects.
2187
2188 second_true:
2189 ; No side effects!
2190 ret void
2191
2192 second_end:
2193 store volatile i32 0, i32* @g ; This time, the instruction always depends
2194 ; on the store in %end. Also, it is
2195 ; control-equivalent to %end, so this is
2196 ; well-defined (ignoring earlier undefined
2197 ; behavior in this example).
2198
2199.. _blockaddress:
2200
2201Addresses of Basic Blocks
2202-------------------------
2203
2204``blockaddress(@function, %block)``
2205
2206The '``blockaddress``' constant computes the address of the specified
2207basic block in the specified function, and always has an ``i8*`` type.
2208Taking the address of the entry block is illegal.
2209
2210This value only has defined behavior when used as an operand to the
2211':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2212against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002213undefined behavior --- though, again, comparison against null is ok, and
Sean Silvaf722b002012-12-07 10:36:55 +00002214no label is equal to the null pointer. This may be passed around as an
2215opaque pointer sized value as long as the bits are not inspected. This
2216allows ``ptrtoint`` and arithmetic to be performed on these values so
2217long as the original value is reconstituted before the ``indirectbr``
2218instruction.
2219
2220Finally, some targets may provide defined semantics when using the value
2221as the operand to an inline assembly, but that is target specific.
2222
Eli Bendersky88fe6822013-06-07 20:24:43 +00002223.. _constantexprs:
2224
Sean Silvaf722b002012-12-07 10:36:55 +00002225Constant Expressions
2226--------------------
2227
2228Constant expressions are used to allow expressions involving other
2229constants to be used as constants. Constant expressions may be of any
2230:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2231that does not have side effects (e.g. load and call are not supported).
2232The following is the syntax for constant expressions:
2233
2234``trunc (CST to TYPE)``
2235 Truncate a constant to another type. The bit size of CST must be
2236 larger than the bit size of TYPE. Both types must be integers.
2237``zext (CST to TYPE)``
2238 Zero extend a constant to another type. The bit size of CST must be
2239 smaller than the bit size of TYPE. Both types must be integers.
2240``sext (CST to TYPE)``
2241 Sign extend a constant to another type. The bit size of CST must be
2242 smaller than the bit size of TYPE. Both types must be integers.
2243``fptrunc (CST to TYPE)``
2244 Truncate a floating point constant to another floating point type.
2245 The size of CST must be larger than the size of TYPE. Both types
2246 must be floating point.
2247``fpext (CST to TYPE)``
2248 Floating point extend a constant to another type. The size of CST
2249 must be smaller or equal to the size of TYPE. Both types must be
2250 floating point.
2251``fptoui (CST to TYPE)``
2252 Convert a floating point constant to the corresponding unsigned
2253 integer constant. TYPE must be a scalar or vector integer type. CST
2254 must be of scalar or vector floating point type. Both CST and TYPE
2255 must be scalars, or vectors of the same number of elements. If the
2256 value won't fit in the integer type, the results are undefined.
2257``fptosi (CST to TYPE)``
2258 Convert a floating point constant to the corresponding signed
2259 integer constant. TYPE must be a scalar or vector integer type. CST
2260 must be of scalar or vector floating point type. Both CST and TYPE
2261 must be scalars, or vectors of the same number of elements. If the
2262 value won't fit in the integer type, the results are undefined.
2263``uitofp (CST to TYPE)``
2264 Convert an unsigned integer constant to the corresponding floating
2265 point constant. TYPE must be a scalar or vector floating point type.
2266 CST must be of scalar or vector integer type. Both CST and TYPE must
2267 be scalars, or vectors of the same number of elements. If the value
2268 won't fit in the floating point type, the results are undefined.
2269``sitofp (CST to TYPE)``
2270 Convert a signed integer constant to the corresponding floating
2271 point constant. TYPE must be a scalar or vector floating point type.
2272 CST must be of scalar or vector integer type. Both CST and TYPE must
2273 be scalars, or vectors of the same number of elements. If the value
2274 won't fit in the floating point type, the results are undefined.
2275``ptrtoint (CST to TYPE)``
2276 Convert a pointer typed constant to the corresponding integer
Eli Bendersky48f80152013-03-11 16:51:15 +00002277 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvaf722b002012-12-07 10:36:55 +00002278 pointer type. The ``CST`` value is zero extended, truncated, or
2279 unchanged to make it fit in ``TYPE``.
2280``inttoptr (CST to TYPE)``
2281 Convert an integer constant to a pointer constant. TYPE must be a
2282 pointer type. CST must be of integer type. The CST value is zero
2283 extended, truncated, or unchanged to make it fit in a pointer size.
2284 This one is *really* dangerous!
2285``bitcast (CST to TYPE)``
2286 Convert a constant, CST, to another TYPE. The constraints of the
2287 operands are the same as those for the :ref:`bitcast
2288 instruction <i_bitcast>`.
2289``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2290 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2291 constants. As with the :ref:`getelementptr <i_getelementptr>`
2292 instruction, the index list may have zero or more indexes, which are
2293 required to make sense for the type of "CSTPTR".
2294``select (COND, VAL1, VAL2)``
2295 Perform the :ref:`select operation <i_select>` on constants.
2296``icmp COND (VAL1, VAL2)``
2297 Performs the :ref:`icmp operation <i_icmp>` on constants.
2298``fcmp COND (VAL1, VAL2)``
2299 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2300``extractelement (VAL, IDX)``
2301 Perform the :ref:`extractelement operation <i_extractelement>` on
2302 constants.
2303``insertelement (VAL, ELT, IDX)``
2304 Perform the :ref:`insertelement operation <i_insertelement>` on
2305 constants.
2306``shufflevector (VEC1, VEC2, IDXMASK)``
2307 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2308 constants.
2309``extractvalue (VAL, IDX0, IDX1, ...)``
2310 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2311 constants. The index list is interpreted in a similar manner as
2312 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2313 least one index value must be specified.
2314``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2315 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2316 The index list is interpreted in a similar manner as indices in a
2317 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2318 value must be specified.
2319``OPCODE (LHS, RHS)``
2320 Perform the specified operation of the LHS and RHS constants. OPCODE
2321 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2322 binary <bitwiseops>` operations. The constraints on operands are
2323 the same as those for the corresponding instruction (e.g. no bitwise
2324 operations on floating point values are allowed).
2325
2326Other Values
2327============
2328
Eli Bendersky88fe6822013-06-07 20:24:43 +00002329.. _inlineasmexprs:
2330
Sean Silvaf722b002012-12-07 10:36:55 +00002331Inline Assembler Expressions
2332----------------------------
2333
2334LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2335Inline Assembly <moduleasm>`) through the use of a special value. This
2336value represents the inline assembler as a string (containing the
2337instructions to emit), a list of operand constraints (stored as a
2338string), a flag that indicates whether or not the inline asm expression
2339has side effects, and a flag indicating whether the function containing
2340the asm needs to align its stack conservatively. An example inline
2341assembler expression is:
2342
2343.. code-block:: llvm
2344
2345 i32 (i32) asm "bswap $0", "=r,r"
2346
2347Inline assembler expressions may **only** be used as the callee operand
2348of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2349Thus, typically we have:
2350
2351.. code-block:: llvm
2352
2353 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2354
2355Inline asms with side effects not visible in the constraint list must be
2356marked as having side effects. This is done through the use of the
2357'``sideeffect``' keyword, like so:
2358
2359.. code-block:: llvm
2360
2361 call void asm sideeffect "eieio", ""()
2362
2363In some cases inline asms will contain code that will not work unless
2364the stack is aligned in some way, such as calls or SSE instructions on
2365x86, yet will not contain code that does that alignment within the asm.
2366The compiler should make conservative assumptions about what the asm
2367might contain and should generate its usual stack alignment code in the
2368prologue if the '``alignstack``' keyword is present:
2369
2370.. code-block:: llvm
2371
2372 call void asm alignstack "eieio", ""()
2373
2374Inline asms also support using non-standard assembly dialects. The
2375assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2376the inline asm is using the Intel dialect. Currently, ATT and Intel are
2377the only supported dialects. An example is:
2378
2379.. code-block:: llvm
2380
2381 call void asm inteldialect "eieio", ""()
2382
2383If multiple keywords appear the '``sideeffect``' keyword must come
2384first, the '``alignstack``' keyword second and the '``inteldialect``'
2385keyword last.
2386
2387Inline Asm Metadata
2388^^^^^^^^^^^^^^^^^^^
2389
2390The call instructions that wrap inline asm nodes may have a
2391"``!srcloc``" MDNode attached to it that contains a list of constant
2392integers. If present, the code generator will use the integer as the
2393location cookie value when report errors through the ``LLVMContext``
2394error reporting mechanisms. This allows a front-end to correlate backend
2395errors that occur with inline asm back to the source code that produced
2396it. For example:
2397
2398.. code-block:: llvm
2399
2400 call void asm sideeffect "something bad", ""(), !srcloc !42
2401 ...
2402 !42 = !{ i32 1234567 }
2403
2404It is up to the front-end to make sense of the magic numbers it places
2405in the IR. If the MDNode contains multiple constants, the code generator
2406will use the one that corresponds to the line of the asm that the error
2407occurs on.
2408
2409.. _metadata:
2410
2411Metadata Nodes and Metadata Strings
2412-----------------------------------
2413
2414LLVM IR allows metadata to be attached to instructions in the program
2415that can convey extra information about the code to the optimizers and
2416code generator. One example application of metadata is source-level
2417debug information. There are two metadata primitives: strings and nodes.
2418All metadata has the ``metadata`` type and is identified in syntax by a
2419preceding exclamation point ('``!``').
2420
2421A metadata string is a string surrounded by double quotes. It can
2422contain any character by escaping non-printable characters with
2423"``\xx``" where "``xx``" is the two digit hex code. For example:
2424"``!"test\00"``".
2425
2426Metadata nodes are represented with notation similar to structure
2427constants (a comma separated list of elements, surrounded by braces and
2428preceded by an exclamation point). Metadata nodes can have any values as
2429their operand. For example:
2430
2431.. code-block:: llvm
2432
2433 !{ metadata !"test\00", i32 10}
2434
2435A :ref:`named metadata <namedmetadatastructure>` is a collection of
2436metadata nodes, which can be looked up in the module symbol table. For
2437example:
2438
2439.. code-block:: llvm
2440
2441 !foo = metadata !{!4, !3}
2442
2443Metadata can be used as function arguments. Here ``llvm.dbg.value``
2444function is using two metadata arguments:
2445
2446.. code-block:: llvm
2447
2448 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2449
2450Metadata can be attached with an instruction. Here metadata ``!21`` is
2451attached to the ``add`` instruction using the ``!dbg`` identifier:
2452
2453.. code-block:: llvm
2454
2455 %indvar.next = add i64 %indvar, 1, !dbg !21
2456
2457More information about specific metadata nodes recognized by the
2458optimizers and code generator is found below.
2459
2460'``tbaa``' Metadata
2461^^^^^^^^^^^^^^^^^^^
2462
2463In LLVM IR, memory does not have types, so LLVM's own type system is not
2464suitable for doing TBAA. Instead, metadata is added to the IR to
2465describe a type system of a higher level language. This can be used to
2466implement typical C/C++ TBAA, but it can also be used to implement
2467custom alias analysis behavior for other languages.
2468
2469The current metadata format is very simple. TBAA metadata nodes have up
2470to three fields, e.g.:
2471
2472.. code-block:: llvm
2473
2474 !0 = metadata !{ metadata !"an example type tree" }
2475 !1 = metadata !{ metadata !"int", metadata !0 }
2476 !2 = metadata !{ metadata !"float", metadata !0 }
2477 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2478
2479The first field is an identity field. It can be any value, usually a
2480metadata string, which uniquely identifies the type. The most important
2481name in the tree is the name of the root node. Two trees with different
2482root node names are entirely disjoint, even if they have leaves with
2483common names.
2484
2485The second field identifies the type's parent node in the tree, or is
2486null or omitted for a root node. A type is considered to alias all of
2487its descendants and all of its ancestors in the tree. Also, a type is
2488considered to alias all types in other trees, so that bitcode produced
2489from multiple front-ends is handled conservatively.
2490
2491If the third field is present, it's an integer which if equal to 1
2492indicates that the type is "constant" (meaning
2493``pointsToConstantMemory`` should return true; see `other useful
2494AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2495
2496'``tbaa.struct``' Metadata
2497^^^^^^^^^^^^^^^^^^^^^^^^^^
2498
2499The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2500aggregate assignment operations in C and similar languages, however it
2501is defined to copy a contiguous region of memory, which is more than
2502strictly necessary for aggregate types which contain holes due to
2503padding. Also, it doesn't contain any TBAA information about the fields
2504of the aggregate.
2505
2506``!tbaa.struct`` metadata can describe which memory subregions in a
2507memcpy are padding and what the TBAA tags of the struct are.
2508
2509The current metadata format is very simple. ``!tbaa.struct`` metadata
2510nodes are a list of operands which are in conceptual groups of three.
2511For each group of three, the first operand gives the byte offset of a
2512field in bytes, the second gives its size in bytes, and the third gives
2513its tbaa tag. e.g.:
2514
2515.. code-block:: llvm
2516
2517 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2518
2519This describes a struct with two fields. The first is at offset 0 bytes
2520with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2521and has size 4 bytes and has tbaa tag !2.
2522
2523Note that the fields need not be contiguous. In this example, there is a
25244 byte gap between the two fields. This gap represents padding which
2525does not carry useful data and need not be preserved.
2526
2527'``fpmath``' Metadata
2528^^^^^^^^^^^^^^^^^^^^^
2529
2530``fpmath`` metadata may be attached to any instruction of floating point
2531type. It can be used to express the maximum acceptable error in the
2532result of that instruction, in ULPs, thus potentially allowing the
2533compiler to use a more efficient but less accurate method of computing
2534it. ULP is defined as follows:
2535
2536 If ``x`` is a real number that lies between two finite consecutive
2537 floating-point numbers ``a`` and ``b``, without being equal to one
2538 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2539 distance between the two non-equal finite floating-point numbers
2540 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2541
2542The metadata node shall consist of a single positive floating point
2543number representing the maximum relative error, for example:
2544
2545.. code-block:: llvm
2546
2547 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2548
2549'``range``' Metadata
2550^^^^^^^^^^^^^^^^^^^^
2551
2552``range`` metadata may be attached only to loads of integer types. It
2553expresses the possible ranges the loaded value is in. The ranges are
2554represented with a flattened list of integers. The loaded value is known
2555to be in the union of the ranges defined by each consecutive pair. Each
2556pair has the following properties:
2557
2558- The type must match the type loaded by the instruction.
2559- The pair ``a,b`` represents the range ``[a,b)``.
2560- Both ``a`` and ``b`` are constants.
2561- The range is allowed to wrap.
2562- The range should not represent the full or empty set. That is,
2563 ``a!=b``.
2564
2565In addition, the pairs must be in signed order of the lower bound and
2566they must be non-contiguous.
2567
2568Examples:
2569
2570.. code-block:: llvm
2571
2572 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2573 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2574 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2575 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2576 ...
2577 !0 = metadata !{ i8 0, i8 2 }
2578 !1 = metadata !{ i8 255, i8 2 }
2579 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2580 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2581
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002582'``llvm.loop``'
2583^^^^^^^^^^^^^^^
2584
2585It is sometimes useful to attach information to loop constructs. Currently,
2586loop metadata is implemented as metadata attached to the branch instruction
2587in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault16e4ed52013-07-31 17:49:08 +00002588guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmondee21b6f2013-05-28 20:00:34 +00002589specified with the name ``llvm.loop``.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002590
2591The loop identifier metadata is implemented using a metadata that refers to
Michael Liao2faa0f32013-03-06 18:24:34 +00002592itself to avoid merging it with any other identifier metadata, e.g.,
2593during module linkage or function inlining. That is, each loop should refer
2594to their own identification metadata even if they reside in separate functions.
2595The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002596constructs:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002597
2598.. code-block:: llvm
Paul Redmond8f0696c2013-02-21 17:20:45 +00002599
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002600 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002601 !1 = metadata !{ metadata !1 }
2602
Paul Redmondee21b6f2013-05-28 20:00:34 +00002603The loop identifier metadata can be used to specify additional per-loop
2604metadata. Any operands after the first operand can be treated as user-defined
2605metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2606by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002607
Paul Redmondee21b6f2013-05-28 20:00:34 +00002608.. code-block:: llvm
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002609
Paul Redmondee21b6f2013-05-28 20:00:34 +00002610 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2611 ...
2612 !0 = metadata !{ metadata !0, metadata !1 }
2613 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002614
2615'``llvm.mem``'
2616^^^^^^^^^^^^^^^
2617
2618Metadata types used to annotate memory accesses with information helpful
2619for optimizations are prefixed with ``llvm.mem``.
2620
2621'``llvm.mem.parallel_loop_access``' Metadata
2622^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2623
2624For a loop to be parallel, in addition to using
Paul Redmondee21b6f2013-05-28 20:00:34 +00002625the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002626also all of the memory accessing instructions in the loop body need to be
2627marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2628is at least one memory accessing instruction not marked with the metadata,
Paul Redmondee21b6f2013-05-28 20:00:34 +00002629the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002630converted to sequential loops due to optimization passes that are unaware of
2631the parallel semantics and that insert new memory instructions to the loop
2632body.
2633
2634Example of a loop that is considered parallel due to its correct use of
Paul Redmondee21b6f2013-05-28 20:00:34 +00002635both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002636metadata types that refer to the same loop identifier metadata.
2637
2638.. code-block:: llvm
2639
2640 for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002641 ...
2642 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2643 ...
2644 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2645 ...
2646 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002647
2648 for.end:
2649 ...
2650 !0 = metadata !{ metadata !0 }
2651
2652It is also possible to have nested parallel loops. In that case the
2653memory accesses refer to a list of loop identifier metadata nodes instead of
2654the loop identifier metadata node directly:
2655
2656.. code-block:: llvm
2657
2658 outer.for.body:
2659 ...
2660
2661 inner.for.body:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002662 ...
2663 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2664 ...
2665 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2666 ...
2667 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002668
2669 inner.for.end:
Paul Redmondee21b6f2013-05-28 20:00:34 +00002670 ...
2671 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2672 ...
2673 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2674 ...
2675 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002676
2677 outer.for.end: ; preds = %for.body
2678 ...
Paul Redmondee21b6f2013-05-28 20:00:34 +00002679 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2680 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2681 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002682
Paul Redmondee21b6f2013-05-28 20:00:34 +00002683'``llvm.vectorizer``'
2684^^^^^^^^^^^^^^^^^^^^^
2685
2686Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2687vectorization parameters such as vectorization factor and unroll factor.
2688
2689``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2690loop identification metadata.
2691
2692'``llvm.vectorizer.unroll``' Metadata
2693^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2694
2695This metadata instructs the loop vectorizer to unroll the specified
2696loop exactly ``N`` times.
2697
2698The first operand is the string ``llvm.vectorizer.unroll`` and the second
2699operand is an integer specifying the unroll factor. For example:
2700
2701.. code-block:: llvm
2702
2703 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2704
2705Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2706loop.
2707
2708If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2709determined automatically.
2710
2711'``llvm.vectorizer.width``' Metadata
2712^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2713
Paul Redmondf95ac8a2013-05-30 17:22:46 +00002714This metadata sets the target width of the vectorizer to ``N``. Without
2715this metadata, the vectorizer will choose a width automatically.
2716Regardless of this metadata, the vectorizer will only vectorize loops if
2717it believes it is valid to do so.
Paul Redmondee21b6f2013-05-28 20:00:34 +00002718
2719The first operand is the string ``llvm.vectorizer.width`` and the second
2720operand is an integer specifying the width. For example:
2721
2722.. code-block:: llvm
2723
2724 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2725
2726Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2727loop.
2728
2729If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2730automatically.
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002731
Sean Silvaf722b002012-12-07 10:36:55 +00002732Module Flags Metadata
2733=====================
2734
2735Information about the module as a whole is difficult to convey to LLVM's
2736subsystems. The LLVM IR isn't sufficient to transmit this information.
2737The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002738this. These flags are in the form of key / value pairs --- much like a
2739dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvaf722b002012-12-07 10:36:55 +00002740look it up.
2741
2742The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2743Each triplet has the following form:
2744
2745- The first element is a *behavior* flag, which specifies the behavior
2746 when two (or more) modules are merged together, and it encounters two
2747 (or more) metadata with the same ID. The supported behaviors are
2748 described below.
2749- The second element is a metadata string that is a unique ID for the
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002750 metadata. Each module may only have one flag entry for each unique ID (not
2751 including entries with the **Require** behavior).
Sean Silvaf722b002012-12-07 10:36:55 +00002752- The third element is the value of the flag.
2753
2754When two (or more) modules are merged together, the resulting
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002755``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2756each unique metadata ID string, there will be exactly one entry in the merged
2757modules ``llvm.module.flags`` metadata table, and the value for that entry will
2758be determined by the merge behavior flag, as described below. The only exception
2759is that entries with the *Require* behavior are always preserved.
Sean Silvaf722b002012-12-07 10:36:55 +00002760
2761The following behaviors are supported:
2762
2763.. list-table::
2764 :header-rows: 1
2765 :widths: 10 90
2766
2767 * - Value
2768 - Behavior
2769
2770 * - 1
2771 - **Error**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002772 Emits an error if two values disagree, otherwise the resulting value
2773 is that of the operands.
Sean Silvaf722b002012-12-07 10:36:55 +00002774
2775 * - 2
2776 - **Warning**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002777 Emits a warning if two values disagree. The result value will be the
2778 operand for the flag from the first module being linked.
Sean Silvaf722b002012-12-07 10:36:55 +00002779
2780 * - 3
2781 - **Require**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002782 Adds a requirement that another module flag be present and have a
2783 specified value after linking is performed. The value must be a
2784 metadata pair, where the first element of the pair is the ID of the
2785 module flag to be restricted, and the second element of the pair is
2786 the value the module flag should be restricted to. This behavior can
2787 be used to restrict the allowable results (via triggering of an
2788 error) of linking IDs with the **Override** behavior.
Sean Silvaf722b002012-12-07 10:36:55 +00002789
2790 * - 4
2791 - **Override**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002792 Uses the specified value, regardless of the behavior or value of the
2793 other module. If both modules specify **Override**, but the values
2794 differ, an error will be emitted.
2795
Daniel Dunbar5db391c2013-01-16 21:38:56 +00002796 * - 5
2797 - **Append**
2798 Appends the two values, which are required to be metadata nodes.
2799
2800 * - 6
2801 - **AppendUnique**
2802 Appends the two values, which are required to be metadata
2803 nodes. However, duplicate entries in the second list are dropped
2804 during the append operation.
2805
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002806It is an error for a particular unique flag ID to have multiple behaviors,
2807except in the case of **Require** (which adds restrictions on another metadata
2808value) or **Override**.
Sean Silvaf722b002012-12-07 10:36:55 +00002809
2810An example of module flags:
2811
2812.. code-block:: llvm
2813
2814 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2815 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2816 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2817 !3 = metadata !{ i32 3, metadata !"qux",
2818 metadata !{
2819 metadata !"foo", i32 1
2820 }
2821 }
2822 !llvm.module.flags = !{ !0, !1, !2, !3 }
2823
2824- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2825 if two or more ``!"foo"`` flags are seen is to emit an error if their
2826 values are not equal.
2827
2828- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2829 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002830 '37'.
Sean Silvaf722b002012-12-07 10:36:55 +00002831
2832- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2833 behavior if two or more ``!"qux"`` flags are seen is to emit a
2834 warning if their values are not equal.
2835
2836- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2837
2838 ::
2839
2840 metadata !{ metadata !"foo", i32 1 }
2841
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002842 The behavior is to emit an error if the ``llvm.module.flags`` does not
2843 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2844 performed.
Sean Silvaf722b002012-12-07 10:36:55 +00002845
2846Objective-C Garbage Collection Module Flags Metadata
2847----------------------------------------------------
2848
2849On the Mach-O platform, Objective-C stores metadata about garbage
2850collection in a special section called "image info". The metadata
2851consists of a version number and a bitmask specifying what types of
2852garbage collection are supported (if any) by the file. If two or more
2853modules are linked together their garbage collection metadata needs to
2854be merged rather than appended together.
2855
2856The Objective-C garbage collection module flags metadata consists of the
2857following key-value pairs:
2858
2859.. list-table::
2860 :header-rows: 1
2861 :widths: 30 70
2862
2863 * - Key
2864 - Value
2865
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002866 * - ``Objective-C Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002867 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvaf722b002012-12-07 10:36:55 +00002868
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002869 * - ``Objective-C Image Info Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002870 - **[Required]** --- The version of the image info section. Currently
Sean Silvaf722b002012-12-07 10:36:55 +00002871 always 0.
2872
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002873 * - ``Objective-C Image Info Section``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002874 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvaf722b002012-12-07 10:36:55 +00002875 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2876 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2877 Objective-C ABI version 2.
2878
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002879 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002880 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvaf722b002012-12-07 10:36:55 +00002881 not. Valid values are 0, for no garbage collection, and 2, for garbage
2882 collection supported.
2883
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002884 * - ``Objective-C GC Only``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002885 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvaf722b002012-12-07 10:36:55 +00002886 If present, its value must be 6. This flag requires that the
2887 ``Objective-C Garbage Collection`` flag have the value 2.
2888
2889Some important flag interactions:
2890
2891- If a module with ``Objective-C Garbage Collection`` set to 0 is
2892 merged with a module with ``Objective-C Garbage Collection`` set to
2893 2, then the resulting module has the
2894 ``Objective-C Garbage Collection`` flag set to 0.
2895- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2896 merged with a module with ``Objective-C GC Only`` set to 6.
2897
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002898Automatic Linker Flags Module Flags Metadata
2899--------------------------------------------
2900
2901Some targets support embedding flags to the linker inside individual object
2902files. Typically this is used in conjunction with language extensions which
2903allow source files to explicitly declare the libraries they depend on, and have
2904these automatically be transmitted to the linker via object files.
2905
2906These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002907using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002908to be ``AppendUnique``, and the value for the key is expected to be a metadata
2909node which should be a list of other metadata nodes, each of which should be a
2910list of metadata strings defining linker options.
2911
2912For example, the following metadata section specifies two separate sets of
2913linker options, presumably to link against ``libz`` and the ``Cocoa``
2914framework::
2915
Michael Liao2faa0f32013-03-06 18:24:34 +00002916 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002917 metadata !{
Daniel Dunbar6d49b682013-01-18 19:37:00 +00002918 metadata !{ metadata !"-lz" },
2919 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002920 !llvm.module.flags = !{ !0 }
2921
2922The metadata encoding as lists of lists of options, as opposed to a collapsed
2923list of options, is chosen so that the IR encoding can use multiple option
2924strings to specify e.g., a single library, while still having that specifier be
2925preserved as an atomic element that can be recognized by a target specific
2926assembly writer or object file emitter.
2927
2928Each individual option is required to be either a valid option for the target's
2929linker, or an option that is reserved by the target specific assembly writer or
2930object file emitter. No other aspect of these options is defined by the IR.
2931
Eli Bendersky88fe6822013-06-07 20:24:43 +00002932.. _intrinsicglobalvariables:
2933
Sean Silvaf722b002012-12-07 10:36:55 +00002934Intrinsic Global Variables
2935==========================
2936
2937LLVM has a number of "magic" global variables that contain data that
2938affect code generation or other IR semantics. These are documented here.
2939All globals of this sort should have a section specified as
2940"``llvm.metadata``". This section and all globals that start with
2941"``llvm.``" are reserved for use by LLVM.
2942
Eli Bendersky88fe6822013-06-07 20:24:43 +00002943.. _gv_llvmused:
2944
Sean Silvaf722b002012-12-07 10:36:55 +00002945The '``llvm.used``' Global Variable
2946-----------------------------------
2947
Rafael Espindolacde25b42013-04-22 14:58:02 +00002948The ``@llvm.used`` global is an array which has
Paul Redmond26266a12013-05-30 17:24:32 +00002949:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola9f8e6da2013-06-11 13:18:13 +00002950pointers to named global variables, functions and aliases which may optionally
2951have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvaf722b002012-12-07 10:36:55 +00002952use of it is:
2953
2954.. code-block:: llvm
2955
2956 @X = global i8 4
2957 @Y = global i32 123
2958
2959 @llvm.used = appending global [2 x i8*] [
2960 i8* @X,
2961 i8* bitcast (i32* @Y to i8*)
2962 ], section "llvm.metadata"
2963
Rafael Espindolacde25b42013-04-22 14:58:02 +00002964If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
2965and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola9f8e6da2013-06-11 13:18:13 +00002966symbol that it cannot see (which is why they have to be named). For example, if
2967a variable has internal linkage and no references other than that from the
2968``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
2969references from inline asms and other things the compiler cannot "see", and
2970corresponds to "``attribute((used))``" in GNU C.
Sean Silvaf722b002012-12-07 10:36:55 +00002971
2972On some targets, the code generator must emit a directive to the
2973assembler or object file to prevent the assembler and linker from
2974molesting the symbol.
2975
Eli Bendersky88fe6822013-06-07 20:24:43 +00002976.. _gv_llvmcompilerused:
2977
Sean Silvaf722b002012-12-07 10:36:55 +00002978The '``llvm.compiler.used``' Global Variable
2979--------------------------------------------
2980
2981The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
2982directive, except that it only prevents the compiler from touching the
2983symbol. On targets that support it, this allows an intelligent linker to
2984optimize references to the symbol without being impeded as it would be
2985by ``@llvm.used``.
2986
2987This is a rare construct that should only be used in rare circumstances,
2988and should not be exposed to source languages.
2989
Eli Bendersky88fe6822013-06-07 20:24:43 +00002990.. _gv_llvmglobalctors:
2991
Sean Silvaf722b002012-12-07 10:36:55 +00002992The '``llvm.global_ctors``' Global Variable
2993-------------------------------------------
2994
2995.. code-block:: llvm
2996
2997 %0 = type { i32, void ()* }
2998 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
2999
3000The ``@llvm.global_ctors`` array contains a list of constructor
3001functions and associated priorities. The functions referenced by this
3002array will be called in ascending order of priority (i.e. lowest first)
3003when the module is loaded. The order of functions with the same priority
3004is not defined.
3005
Eli Bendersky88fe6822013-06-07 20:24:43 +00003006.. _llvmglobaldtors:
3007
Sean Silvaf722b002012-12-07 10:36:55 +00003008The '``llvm.global_dtors``' Global Variable
3009-------------------------------------------
3010
3011.. code-block:: llvm
3012
3013 %0 = type { i32, void ()* }
3014 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
3015
3016The ``@llvm.global_dtors`` array contains a list of destructor functions
3017and associated priorities. The functions referenced by this array will
3018be called in descending order of priority (i.e. highest first) when the
3019module is loaded. The order of functions with the same priority is not
3020defined.
3021
3022Instruction Reference
3023=====================
3024
3025The LLVM instruction set consists of several different classifications
3026of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3027instructions <binaryops>`, :ref:`bitwise binary
3028instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3029:ref:`other instructions <otherops>`.
3030
3031.. _terminators:
3032
3033Terminator Instructions
3034-----------------------
3035
3036As mentioned :ref:`previously <functionstructure>`, every basic block in a
3037program ends with a "Terminator" instruction, which indicates which
3038block should be executed after the current block is finished. These
3039terminator instructions typically yield a '``void``' value: they produce
3040control flow, not values (the one exception being the
3041':ref:`invoke <i_invoke>`' instruction).
3042
3043The terminator instructions are: ':ref:`ret <i_ret>`',
3044':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3045':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3046':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3047
3048.. _i_ret:
3049
3050'``ret``' Instruction
3051^^^^^^^^^^^^^^^^^^^^^
3052
3053Syntax:
3054"""""""
3055
3056::
3057
3058 ret <type> <value> ; Return a value from a non-void function
3059 ret void ; Return from void function
3060
3061Overview:
3062"""""""""
3063
3064The '``ret``' instruction is used to return control flow (and optionally
3065a value) from a function back to the caller.
3066
3067There are two forms of the '``ret``' instruction: one that returns a
3068value and then causes control flow, and one that just causes control
3069flow to occur.
3070
3071Arguments:
3072""""""""""
3073
3074The '``ret``' instruction optionally accepts a single argument, the
3075return value. The type of the return value must be a ':ref:`first
3076class <t_firstclass>`' type.
3077
3078A function is not :ref:`well formed <wellformed>` if it it has a non-void
3079return type and contains a '``ret``' instruction with no return value or
3080a return value with a type that does not match its type, or if it has a
3081void return type and contains a '``ret``' instruction with a return
3082value.
3083
3084Semantics:
3085""""""""""
3086
3087When the '``ret``' instruction is executed, control flow returns back to
3088the calling function's context. If the caller is a
3089":ref:`call <i_call>`" instruction, execution continues at the
3090instruction after the call. If the caller was an
3091":ref:`invoke <i_invoke>`" instruction, execution continues at the
3092beginning of the "normal" destination block. If the instruction returns
3093a value, that value shall set the call or invoke instruction's return
3094value.
3095
3096Example:
3097""""""""
3098
3099.. code-block:: llvm
3100
3101 ret i32 5 ; Return an integer value of 5
3102 ret void ; Return from a void function
3103 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3104
3105.. _i_br:
3106
3107'``br``' Instruction
3108^^^^^^^^^^^^^^^^^^^^
3109
3110Syntax:
3111"""""""
3112
3113::
3114
3115 br i1 <cond>, label <iftrue>, label <iffalse>
3116 br label <dest> ; Unconditional branch
3117
3118Overview:
3119"""""""""
3120
3121The '``br``' instruction is used to cause control flow to transfer to a
3122different basic block in the current function. There are two forms of
3123this instruction, corresponding to a conditional branch and an
3124unconditional branch.
3125
3126Arguments:
3127""""""""""
3128
3129The conditional branch form of the '``br``' instruction takes a single
3130'``i1``' value and two '``label``' values. The unconditional form of the
3131'``br``' instruction takes a single '``label``' value as a target.
3132
3133Semantics:
3134""""""""""
3135
3136Upon execution of a conditional '``br``' instruction, the '``i1``'
3137argument is evaluated. If the value is ``true``, control flows to the
3138'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3139to the '``iffalse``' ``label`` argument.
3140
3141Example:
3142""""""""
3143
3144.. code-block:: llvm
3145
3146 Test:
3147 %cond = icmp eq i32 %a, %b
3148 br i1 %cond, label %IfEqual, label %IfUnequal
3149 IfEqual:
3150 ret i32 1
3151 IfUnequal:
3152 ret i32 0
3153
3154.. _i_switch:
3155
3156'``switch``' Instruction
3157^^^^^^^^^^^^^^^^^^^^^^^^
3158
3159Syntax:
3160"""""""
3161
3162::
3163
3164 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3165
3166Overview:
3167"""""""""
3168
3169The '``switch``' instruction is used to transfer control flow to one of
3170several different places. It is a generalization of the '``br``'
3171instruction, allowing a branch to occur to one of many possible
3172destinations.
3173
3174Arguments:
3175""""""""""
3176
3177The '``switch``' instruction uses three parameters: an integer
3178comparison value '``value``', a default '``label``' destination, and an
3179array of pairs of comparison value constants and '``label``'s. The table
3180is not allowed to contain duplicate constant entries.
3181
3182Semantics:
3183""""""""""
3184
3185The ``switch`` instruction specifies a table of values and destinations.
3186When the '``switch``' instruction is executed, this table is searched
3187for the given value. If the value is found, control flow is transferred
3188to the corresponding destination; otherwise, control flow is transferred
3189to the default destination.
3190
3191Implementation:
3192"""""""""""""""
3193
3194Depending on properties of the target machine and the particular
3195``switch`` instruction, this instruction may be code generated in
3196different ways. For example, it could be generated as a series of
3197chained conditional branches or with a lookup table.
3198
3199Example:
3200""""""""
3201
3202.. code-block:: llvm
3203
3204 ; Emulate a conditional br instruction
3205 %Val = zext i1 %value to i32
3206 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3207
3208 ; Emulate an unconditional br instruction
3209 switch i32 0, label %dest [ ]
3210
3211 ; Implement a jump table:
3212 switch i32 %val, label %otherwise [ i32 0, label %onzero
3213 i32 1, label %onone
3214 i32 2, label %ontwo ]
3215
3216.. _i_indirectbr:
3217
3218'``indirectbr``' Instruction
3219^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3220
3221Syntax:
3222"""""""
3223
3224::
3225
3226 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3227
3228Overview:
3229"""""""""
3230
3231The '``indirectbr``' instruction implements an indirect branch to a
3232label within the current function, whose address is specified by
3233"``address``". Address must be derived from a
3234:ref:`blockaddress <blockaddress>` constant.
3235
3236Arguments:
3237""""""""""
3238
3239The '``address``' argument is the address of the label to jump to. The
3240rest of the arguments indicate the full set of possible destinations
3241that the address may point to. Blocks are allowed to occur multiple
3242times in the destination list, though this isn't particularly useful.
3243
3244This destination list is required so that dataflow analysis has an
3245accurate understanding of the CFG.
3246
3247Semantics:
3248""""""""""
3249
3250Control transfers to the block specified in the address argument. All
3251possible destination blocks must be listed in the label list, otherwise
3252this instruction has undefined behavior. This implies that jumps to
3253labels defined in other functions have undefined behavior as well.
3254
3255Implementation:
3256"""""""""""""""
3257
3258This is typically implemented with a jump through a register.
3259
3260Example:
3261""""""""
3262
3263.. code-block:: llvm
3264
3265 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3266
3267.. _i_invoke:
3268
3269'``invoke``' Instruction
3270^^^^^^^^^^^^^^^^^^^^^^^^
3271
3272Syntax:
3273"""""""
3274
3275::
3276
3277 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3278 to label <normal label> unwind label <exception label>
3279
3280Overview:
3281"""""""""
3282
3283The '``invoke``' instruction causes control to transfer to a specified
3284function, with the possibility of control flow transfer to either the
3285'``normal``' label or the '``exception``' label. If the callee function
3286returns with the "``ret``" instruction, control flow will return to the
3287"normal" label. If the callee (or any indirect callees) returns via the
3288":ref:`resume <i_resume>`" instruction or other exception handling
3289mechanism, control is interrupted and continued at the dynamically
3290nearest "exception" label.
3291
3292The '``exception``' label is a `landing
3293pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3294'``exception``' label is required to have the
3295":ref:`landingpad <i_landingpad>`" instruction, which contains the
3296information about the behavior of the program after unwinding happens,
3297as its first non-PHI instruction. The restrictions on the
3298"``landingpad``" instruction's tightly couples it to the "``invoke``"
3299instruction, so that the important information contained within the
3300"``landingpad``" instruction can't be lost through normal code motion.
3301
3302Arguments:
3303""""""""""
3304
3305This instruction requires several arguments:
3306
3307#. The optional "cconv" marker indicates which :ref:`calling
3308 convention <callingconv>` the call should use. If none is
3309 specified, the call defaults to using C calling conventions.
3310#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3311 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3312 are valid here.
3313#. '``ptr to function ty``': shall be the signature of the pointer to
3314 function value being invoked. In most cases, this is a direct
3315 function invocation, but indirect ``invoke``'s are just as possible,
3316 branching off an arbitrary pointer to function value.
3317#. '``function ptr val``': An LLVM value containing a pointer to a
3318 function to be invoked.
3319#. '``function args``': argument list whose types match the function
3320 signature argument types and parameter attributes. All arguments must
3321 be of :ref:`first class <t_firstclass>` type. If the function signature
3322 indicates the function accepts a variable number of arguments, the
3323 extra arguments can be specified.
3324#. '``normal label``': the label reached when the called function
3325 executes a '``ret``' instruction.
3326#. '``exception label``': the label reached when a callee returns via
3327 the :ref:`resume <i_resume>` instruction or other exception handling
3328 mechanism.
3329#. The optional :ref:`function attributes <fnattrs>` list. Only
3330 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3331 attributes are valid here.
3332
3333Semantics:
3334""""""""""
3335
3336This instruction is designed to operate as a standard '``call``'
3337instruction in most regards. The primary difference is that it
3338establishes an association with a label, which is used by the runtime
3339library to unwind the stack.
3340
3341This instruction is used in languages with destructors to ensure that
3342proper cleanup is performed in the case of either a ``longjmp`` or a
3343thrown exception. Additionally, this is important for implementation of
3344'``catch``' clauses in high-level languages that support them.
3345
3346For the purposes of the SSA form, the definition of the value returned
3347by the '``invoke``' instruction is deemed to occur on the edge from the
3348current block to the "normal" label. If the callee unwinds then no
3349return value is available.
3350
3351Example:
3352""""""""
3353
3354.. code-block:: llvm
3355
3356 %retval = invoke i32 @Test(i32 15) to label %Continue
3357 unwind label %TestCleanup ; {i32}:retval set
3358 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3359 unwind label %TestCleanup ; {i32}:retval set
3360
3361.. _i_resume:
3362
3363'``resume``' Instruction
3364^^^^^^^^^^^^^^^^^^^^^^^^
3365
3366Syntax:
3367"""""""
3368
3369::
3370
3371 resume <type> <value>
3372
3373Overview:
3374"""""""""
3375
3376The '``resume``' instruction is a terminator instruction that has no
3377successors.
3378
3379Arguments:
3380""""""""""
3381
3382The '``resume``' instruction requires one argument, which must have the
3383same type as the result of any '``landingpad``' instruction in the same
3384function.
3385
3386Semantics:
3387""""""""""
3388
3389The '``resume``' instruction resumes propagation of an existing
3390(in-flight) exception whose unwinding was interrupted with a
3391:ref:`landingpad <i_landingpad>` instruction.
3392
3393Example:
3394""""""""
3395
3396.. code-block:: llvm
3397
3398 resume { i8*, i32 } %exn
3399
3400.. _i_unreachable:
3401
3402'``unreachable``' Instruction
3403^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3404
3405Syntax:
3406"""""""
3407
3408::
3409
3410 unreachable
3411
3412Overview:
3413"""""""""
3414
3415The '``unreachable``' instruction has no defined semantics. This
3416instruction is used to inform the optimizer that a particular portion of
3417the code is not reachable. This can be used to indicate that the code
3418after a no-return function cannot be reached, and other facts.
3419
3420Semantics:
3421""""""""""
3422
3423The '``unreachable``' instruction has no defined semantics.
3424
3425.. _binaryops:
3426
3427Binary Operations
3428-----------------
3429
3430Binary operators are used to do most of the computation in a program.
3431They require two operands of the same type, execute an operation on
3432them, and produce a single value. The operands might represent multiple
3433data, as is the case with the :ref:`vector <t_vector>` data type. The
3434result value has the same type as its operands.
3435
3436There are several different binary operators:
3437
3438.. _i_add:
3439
3440'``add``' Instruction
3441^^^^^^^^^^^^^^^^^^^^^
3442
3443Syntax:
3444"""""""
3445
3446::
3447
3448 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3449 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3450 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3451 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3452
3453Overview:
3454"""""""""
3455
3456The '``add``' instruction returns the sum of its two operands.
3457
3458Arguments:
3459""""""""""
3460
3461The two arguments to the '``add``' instruction must be
3462:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3463arguments must have identical types.
3464
3465Semantics:
3466""""""""""
3467
3468The value produced is the integer sum of the two operands.
3469
3470If the sum has unsigned overflow, the result returned is the
3471mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3472the result.
3473
3474Because LLVM integers use a two's complement representation, this
3475instruction is appropriate for both signed and unsigned integers.
3476
3477``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3478respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3479result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3480unsigned and/or signed overflow, respectively, occurs.
3481
3482Example:
3483""""""""
3484
3485.. code-block:: llvm
3486
3487 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3488
3489.. _i_fadd:
3490
3491'``fadd``' Instruction
3492^^^^^^^^^^^^^^^^^^^^^^
3493
3494Syntax:
3495"""""""
3496
3497::
3498
3499 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3500
3501Overview:
3502"""""""""
3503
3504The '``fadd``' instruction returns the sum of its two operands.
3505
3506Arguments:
3507""""""""""
3508
3509The two arguments to the '``fadd``' instruction must be :ref:`floating
3510point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3511Both arguments must have identical types.
3512
3513Semantics:
3514""""""""""
3515
3516The value produced is the floating point sum of the two operands. This
3517instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3518which are optimization hints to enable otherwise unsafe floating point
3519optimizations:
3520
3521Example:
3522""""""""
3523
3524.. code-block:: llvm
3525
3526 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3527
3528'``sub``' Instruction
3529^^^^^^^^^^^^^^^^^^^^^
3530
3531Syntax:
3532"""""""
3533
3534::
3535
3536 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3537 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3538 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3539 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3540
3541Overview:
3542"""""""""
3543
3544The '``sub``' instruction returns the difference of its two operands.
3545
3546Note that the '``sub``' instruction is used to represent the '``neg``'
3547instruction present in most other intermediate representations.
3548
3549Arguments:
3550""""""""""
3551
3552The two arguments to the '``sub``' instruction must be
3553:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3554arguments must have identical types.
3555
3556Semantics:
3557""""""""""
3558
3559The value produced is the integer difference of the two operands.
3560
3561If the difference has unsigned overflow, the result returned is the
3562mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3563the result.
3564
3565Because LLVM integers use a two's complement representation, this
3566instruction is appropriate for both signed and unsigned integers.
3567
3568``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3569respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3570result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3571unsigned and/or signed overflow, respectively, occurs.
3572
3573Example:
3574""""""""
3575
3576.. code-block:: llvm
3577
3578 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3579 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3580
3581.. _i_fsub:
3582
3583'``fsub``' Instruction
3584^^^^^^^^^^^^^^^^^^^^^^
3585
3586Syntax:
3587"""""""
3588
3589::
3590
3591 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3592
3593Overview:
3594"""""""""
3595
3596The '``fsub``' instruction returns the difference of its two operands.
3597
3598Note that the '``fsub``' instruction is used to represent the '``fneg``'
3599instruction present in most other intermediate representations.
3600
3601Arguments:
3602""""""""""
3603
3604The two arguments to the '``fsub``' instruction must be :ref:`floating
3605point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3606Both arguments must have identical types.
3607
3608Semantics:
3609""""""""""
3610
3611The value produced is the floating point difference of the two operands.
3612This instruction can also take any number of :ref:`fast-math
3613flags <fastmath>`, which are optimization hints to enable otherwise
3614unsafe floating point optimizations:
3615
3616Example:
3617""""""""
3618
3619.. code-block:: llvm
3620
3621 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3622 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3623
3624'``mul``' Instruction
3625^^^^^^^^^^^^^^^^^^^^^
3626
3627Syntax:
3628"""""""
3629
3630::
3631
3632 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3633 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3634 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3635 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3636
3637Overview:
3638"""""""""
3639
3640The '``mul``' instruction returns the product of its two operands.
3641
3642Arguments:
3643""""""""""
3644
3645The two arguments to the '``mul``' instruction must be
3646:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3647arguments must have identical types.
3648
3649Semantics:
3650""""""""""
3651
3652The value produced is the integer product of the two operands.
3653
3654If the result of the multiplication has unsigned overflow, the result
3655returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3656bit width of the result.
3657
3658Because LLVM integers use a two's complement representation, and the
3659result is the same width as the operands, this instruction returns the
3660correct result for both signed and unsigned integers. If a full product
3661(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3662sign-extended or zero-extended as appropriate to the width of the full
3663product.
3664
3665``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3666respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3667result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3668unsigned and/or signed overflow, respectively, occurs.
3669
3670Example:
3671""""""""
3672
3673.. code-block:: llvm
3674
3675 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3676
3677.. _i_fmul:
3678
3679'``fmul``' Instruction
3680^^^^^^^^^^^^^^^^^^^^^^
3681
3682Syntax:
3683"""""""
3684
3685::
3686
3687 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3688
3689Overview:
3690"""""""""
3691
3692The '``fmul``' instruction returns the product of its two operands.
3693
3694Arguments:
3695""""""""""
3696
3697The two arguments to the '``fmul``' instruction must be :ref:`floating
3698point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3699Both arguments must have identical types.
3700
3701Semantics:
3702""""""""""
3703
3704The value produced is the floating point product of the two operands.
3705This instruction can also take any number of :ref:`fast-math
3706flags <fastmath>`, which are optimization hints to enable otherwise
3707unsafe floating point optimizations:
3708
3709Example:
3710""""""""
3711
3712.. code-block:: llvm
3713
3714 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3715
3716'``udiv``' Instruction
3717^^^^^^^^^^^^^^^^^^^^^^
3718
3719Syntax:
3720"""""""
3721
3722::
3723
3724 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3725 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3726
3727Overview:
3728"""""""""
3729
3730The '``udiv``' instruction returns the quotient of its two operands.
3731
3732Arguments:
3733""""""""""
3734
3735The two arguments to the '``udiv``' instruction must be
3736:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3737arguments must have identical types.
3738
3739Semantics:
3740""""""""""
3741
3742The value produced is the unsigned integer quotient of the two operands.
3743
3744Note that unsigned integer division and signed integer division are
3745distinct operations; for signed integer division, use '``sdiv``'.
3746
3747Division by zero leads to undefined behavior.
3748
3749If the ``exact`` keyword is present, the result value of the ``udiv`` is
3750a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3751such, "((a udiv exact b) mul b) == a").
3752
3753Example:
3754""""""""
3755
3756.. code-block:: llvm
3757
3758 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3759
3760'``sdiv``' Instruction
3761^^^^^^^^^^^^^^^^^^^^^^
3762
3763Syntax:
3764"""""""
3765
3766::
3767
3768 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3769 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3770
3771Overview:
3772"""""""""
3773
3774The '``sdiv``' instruction returns the quotient of its two operands.
3775
3776Arguments:
3777""""""""""
3778
3779The two arguments to the '``sdiv``' instruction must be
3780:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3781arguments must have identical types.
3782
3783Semantics:
3784""""""""""
3785
3786The value produced is the signed integer quotient of the two operands
3787rounded towards zero.
3788
3789Note that signed integer division and unsigned integer division are
3790distinct operations; for unsigned integer division, use '``udiv``'.
3791
3792Division by zero leads to undefined behavior. Overflow also leads to
3793undefined behavior; this is a rare case, but can occur, for example, by
3794doing a 32-bit division of -2147483648 by -1.
3795
3796If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3797a :ref:`poison value <poisonvalues>` if the result would be rounded.
3798
3799Example:
3800""""""""
3801
3802.. code-block:: llvm
3803
3804 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3805
3806.. _i_fdiv:
3807
3808'``fdiv``' Instruction
3809^^^^^^^^^^^^^^^^^^^^^^
3810
3811Syntax:
3812"""""""
3813
3814::
3815
3816 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3817
3818Overview:
3819"""""""""
3820
3821The '``fdiv``' instruction returns the quotient of its two operands.
3822
3823Arguments:
3824""""""""""
3825
3826The two arguments to the '``fdiv``' instruction must be :ref:`floating
3827point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3828Both arguments must have identical types.
3829
3830Semantics:
3831""""""""""
3832
3833The value produced is the floating point quotient of the two operands.
3834This instruction can also take any number of :ref:`fast-math
3835flags <fastmath>`, which are optimization hints to enable otherwise
3836unsafe floating point optimizations:
3837
3838Example:
3839""""""""
3840
3841.. code-block:: llvm
3842
3843 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3844
3845'``urem``' Instruction
3846^^^^^^^^^^^^^^^^^^^^^^
3847
3848Syntax:
3849"""""""
3850
3851::
3852
3853 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3854
3855Overview:
3856"""""""""
3857
3858The '``urem``' instruction returns the remainder from the unsigned
3859division of its two arguments.
3860
3861Arguments:
3862""""""""""
3863
3864The two arguments to the '``urem``' instruction must be
3865:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3866arguments must have identical types.
3867
3868Semantics:
3869""""""""""
3870
3871This instruction returns the unsigned integer *remainder* of a division.
3872This instruction always performs an unsigned division to get the
3873remainder.
3874
3875Note that unsigned integer remainder and signed integer remainder are
3876distinct operations; for signed integer remainder, use '``srem``'.
3877
3878Taking the remainder of a division by zero leads to undefined behavior.
3879
3880Example:
3881""""""""
3882
3883.. code-block:: llvm
3884
3885 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3886
3887'``srem``' Instruction
3888^^^^^^^^^^^^^^^^^^^^^^
3889
3890Syntax:
3891"""""""
3892
3893::
3894
3895 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3896
3897Overview:
3898"""""""""
3899
3900The '``srem``' instruction returns the remainder from the signed
3901division of its two operands. This instruction can also take
3902:ref:`vector <t_vector>` versions of the values in which case the elements
3903must be integers.
3904
3905Arguments:
3906""""""""""
3907
3908The two arguments to the '``srem``' instruction must be
3909:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3910arguments must have identical types.
3911
3912Semantics:
3913""""""""""
3914
3915This instruction returns the *remainder* of a division (where the result
3916is either zero or has the same sign as the dividend, ``op1``), not the
3917*modulo* operator (where the result is either zero or has the same sign
3918as the divisor, ``op2``) of a value. For more information about the
3919difference, see `The Math
3920Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
3921table of how this is implemented in various languages, please see
3922`Wikipedia: modulo
3923operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
3924
3925Note that signed integer remainder and unsigned integer remainder are
3926distinct operations; for unsigned integer remainder, use '``urem``'.
3927
3928Taking the remainder of a division by zero leads to undefined behavior.
3929Overflow also leads to undefined behavior; this is a rare case, but can
3930occur, for example, by taking the remainder of a 32-bit division of
3931-2147483648 by -1. (The remainder doesn't actually overflow, but this
3932rule lets srem be implemented using instructions that return both the
3933result of the division and the remainder.)
3934
3935Example:
3936""""""""
3937
3938.. code-block:: llvm
3939
3940 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
3941
3942.. _i_frem:
3943
3944'``frem``' Instruction
3945^^^^^^^^^^^^^^^^^^^^^^
3946
3947Syntax:
3948"""""""
3949
3950::
3951
3952 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3953
3954Overview:
3955"""""""""
3956
3957The '``frem``' instruction returns the remainder from the division of
3958its two operands.
3959
3960Arguments:
3961""""""""""
3962
3963The two arguments to the '``frem``' instruction must be :ref:`floating
3964point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3965Both arguments must have identical types.
3966
3967Semantics:
3968""""""""""
3969
3970This instruction returns the *remainder* of a division. The remainder
3971has the same sign as the dividend. This instruction can also take any
3972number of :ref:`fast-math flags <fastmath>`, which are optimization hints
3973to enable otherwise unsafe floating point optimizations:
3974
3975Example:
3976""""""""
3977
3978.. code-block:: llvm
3979
3980 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
3981
3982.. _bitwiseops:
3983
3984Bitwise Binary Operations
3985-------------------------
3986
3987Bitwise binary operators are used to do various forms of bit-twiddling
3988in a program. They are generally very efficient instructions and can
3989commonly be strength reduced from other instructions. They require two
3990operands of the same type, execute an operation on them, and produce a
3991single value. The resulting value is the same type as its operands.
3992
3993'``shl``' Instruction
3994^^^^^^^^^^^^^^^^^^^^^
3995
3996Syntax:
3997"""""""
3998
3999::
4000
4001 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4002 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4003 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4004 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4005
4006Overview:
4007"""""""""
4008
4009The '``shl``' instruction returns the first operand shifted to the left
4010a specified number of bits.
4011
4012Arguments:
4013""""""""""
4014
4015Both arguments to the '``shl``' instruction must be the same
4016:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4017'``op2``' is treated as an unsigned value.
4018
4019Semantics:
4020""""""""""
4021
4022The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4023where ``n`` is the width of the result. If ``op2`` is (statically or
4024dynamically) negative or equal to or larger than the number of bits in
4025``op1``, the result is undefined. If the arguments are vectors, each
4026vector element of ``op1`` is shifted by the corresponding shift amount
4027in ``op2``.
4028
4029If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4030value <poisonvalues>` if it shifts out any non-zero bits. If the
4031``nsw`` keyword is present, then the shift produces a :ref:`poison
4032value <poisonvalues>` if it shifts out any bits that disagree with the
4033resultant sign bit. As such, NUW/NSW have the same semantics as they
4034would if the shift were expressed as a mul instruction with the same
4035nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4036
4037Example:
4038""""""""
4039
4040.. code-block:: llvm
4041
4042 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4043 <result> = shl i32 4, 2 ; yields {i32}: 16
4044 <result> = shl i32 1, 10 ; yields {i32}: 1024
4045 <result> = shl i32 1, 32 ; undefined
4046 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4047
4048'``lshr``' Instruction
4049^^^^^^^^^^^^^^^^^^^^^^
4050
4051Syntax:
4052"""""""
4053
4054::
4055
4056 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4057 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4058
4059Overview:
4060"""""""""
4061
4062The '``lshr``' instruction (logical shift right) returns the first
4063operand shifted to the right a specified number of bits with zero fill.
4064
4065Arguments:
4066""""""""""
4067
4068Both arguments to the '``lshr``' instruction must be the same
4069:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4070'``op2``' is treated as an unsigned value.
4071
4072Semantics:
4073""""""""""
4074
4075This instruction always performs a logical shift right operation. The
4076most significant bits of the result will be filled with zero bits after
4077the shift. If ``op2`` is (statically or dynamically) equal to or larger
4078than the number of bits in ``op1``, the result is undefined. If the
4079arguments are vectors, each vector element of ``op1`` is shifted by the
4080corresponding shift amount in ``op2``.
4081
4082If the ``exact`` keyword is present, the result value of the ``lshr`` is
4083a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4084non-zero.
4085
4086Example:
4087""""""""
4088
4089.. code-block:: llvm
4090
4091 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4092 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4093 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover338eba72013-05-07 06:17:14 +00004094 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvaf722b002012-12-07 10:36:55 +00004095 <result> = lshr i32 1, 32 ; undefined
4096 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4097
4098'``ashr``' Instruction
4099^^^^^^^^^^^^^^^^^^^^^^
4100
4101Syntax:
4102"""""""
4103
4104::
4105
4106 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4107 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4108
4109Overview:
4110"""""""""
4111
4112The '``ashr``' instruction (arithmetic shift right) returns the first
4113operand shifted to the right a specified number of bits with sign
4114extension.
4115
4116Arguments:
4117""""""""""
4118
4119Both arguments to the '``ashr``' instruction must be the same
4120:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4121'``op2``' is treated as an unsigned value.
4122
4123Semantics:
4124""""""""""
4125
4126This instruction always performs an arithmetic shift right operation,
4127The most significant bits of the result will be filled with the sign bit
4128of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4129than the number of bits in ``op1``, the result is undefined. If the
4130arguments are vectors, each vector element of ``op1`` is shifted by the
4131corresponding shift amount in ``op2``.
4132
4133If the ``exact`` keyword is present, the result value of the ``ashr`` is
4134a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4135non-zero.
4136
4137Example:
4138""""""""
4139
4140.. code-block:: llvm
4141
4142 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4143 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4144 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4145 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4146 <result> = ashr i32 1, 32 ; undefined
4147 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4148
4149'``and``' Instruction
4150^^^^^^^^^^^^^^^^^^^^^
4151
4152Syntax:
4153"""""""
4154
4155::
4156
4157 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4158
4159Overview:
4160"""""""""
4161
4162The '``and``' instruction returns the bitwise logical and of its two
4163operands.
4164
4165Arguments:
4166""""""""""
4167
4168The two arguments to the '``and``' instruction must be
4169:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4170arguments must have identical types.
4171
4172Semantics:
4173""""""""""
4174
4175The truth table used for the '``and``' instruction is:
4176
4177+-----+-----+-----+
4178| In0 | In1 | Out |
4179+-----+-----+-----+
4180| 0 | 0 | 0 |
4181+-----+-----+-----+
4182| 0 | 1 | 0 |
4183+-----+-----+-----+
4184| 1 | 0 | 0 |
4185+-----+-----+-----+
4186| 1 | 1 | 1 |
4187+-----+-----+-----+
4188
4189Example:
4190""""""""
4191
4192.. code-block:: llvm
4193
4194 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4195 <result> = and i32 15, 40 ; yields {i32}:result = 8
4196 <result> = and i32 4, 8 ; yields {i32}:result = 0
4197
4198'``or``' Instruction
4199^^^^^^^^^^^^^^^^^^^^
4200
4201Syntax:
4202"""""""
4203
4204::
4205
4206 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4207
4208Overview:
4209"""""""""
4210
4211The '``or``' instruction returns the bitwise logical inclusive or of its
4212two operands.
4213
4214Arguments:
4215""""""""""
4216
4217The two arguments to the '``or``' instruction must be
4218:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4219arguments must have identical types.
4220
4221Semantics:
4222""""""""""
4223
4224The truth table used for the '``or``' instruction is:
4225
4226+-----+-----+-----+
4227| In0 | In1 | Out |
4228+-----+-----+-----+
4229| 0 | 0 | 0 |
4230+-----+-----+-----+
4231| 0 | 1 | 1 |
4232+-----+-----+-----+
4233| 1 | 0 | 1 |
4234+-----+-----+-----+
4235| 1 | 1 | 1 |
4236+-----+-----+-----+
4237
4238Example:
4239""""""""
4240
4241::
4242
4243 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4244 <result> = or i32 15, 40 ; yields {i32}:result = 47
4245 <result> = or i32 4, 8 ; yields {i32}:result = 12
4246
4247'``xor``' Instruction
4248^^^^^^^^^^^^^^^^^^^^^
4249
4250Syntax:
4251"""""""
4252
4253::
4254
4255 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4256
4257Overview:
4258"""""""""
4259
4260The '``xor``' instruction returns the bitwise logical exclusive or of
4261its two operands. The ``xor`` is used to implement the "one's
4262complement" operation, which is the "~" operator in C.
4263
4264Arguments:
4265""""""""""
4266
4267The two arguments to the '``xor``' instruction must be
4268:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4269arguments must have identical types.
4270
4271Semantics:
4272""""""""""
4273
4274The truth table used for the '``xor``' instruction is:
4275
4276+-----+-----+-----+
4277| In0 | In1 | Out |
4278+-----+-----+-----+
4279| 0 | 0 | 0 |
4280+-----+-----+-----+
4281| 0 | 1 | 1 |
4282+-----+-----+-----+
4283| 1 | 0 | 1 |
4284+-----+-----+-----+
4285| 1 | 1 | 0 |
4286+-----+-----+-----+
4287
4288Example:
4289""""""""
4290
4291.. code-block:: llvm
4292
4293 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4294 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4295 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4296 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4297
4298Vector Operations
4299-----------------
4300
4301LLVM supports several instructions to represent vector operations in a
4302target-independent manner. These instructions cover the element-access
4303and vector-specific operations needed to process vectors effectively.
4304While LLVM does directly support these vector operations, many
4305sophisticated algorithms will want to use target-specific intrinsics to
4306take full advantage of a specific target.
4307
4308.. _i_extractelement:
4309
4310'``extractelement``' Instruction
4311^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4312
4313Syntax:
4314"""""""
4315
4316::
4317
4318 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4319
4320Overview:
4321"""""""""
4322
4323The '``extractelement``' instruction extracts a single scalar element
4324from a vector at a specified index.
4325
4326Arguments:
4327""""""""""
4328
4329The first operand of an '``extractelement``' instruction is a value of
4330:ref:`vector <t_vector>` type. The second operand is an index indicating
4331the position from which to extract the element. The index may be a
4332variable.
4333
4334Semantics:
4335""""""""""
4336
4337The result is a scalar of the same type as the element type of ``val``.
4338Its value is the value at position ``idx`` of ``val``. If ``idx``
4339exceeds the length of ``val``, the results are undefined.
4340
4341Example:
4342""""""""
4343
4344.. code-block:: llvm
4345
4346 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4347
4348.. _i_insertelement:
4349
4350'``insertelement``' Instruction
4351^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4352
4353Syntax:
4354"""""""
4355
4356::
4357
4358 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4359
4360Overview:
4361"""""""""
4362
4363The '``insertelement``' instruction inserts a scalar element into a
4364vector at a specified index.
4365
4366Arguments:
4367""""""""""
4368
4369The first operand of an '``insertelement``' instruction is a value of
4370:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4371type must equal the element type of the first operand. The third operand
4372is an index indicating the position at which to insert the value. The
4373index may be a variable.
4374
4375Semantics:
4376""""""""""
4377
4378The result is a vector of the same type as ``val``. Its element values
4379are those of ``val`` except at position ``idx``, where it gets the value
4380``elt``. If ``idx`` exceeds the length of ``val``, the results are
4381undefined.
4382
4383Example:
4384""""""""
4385
4386.. code-block:: llvm
4387
4388 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4389
4390.. _i_shufflevector:
4391
4392'``shufflevector``' Instruction
4393^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4394
4395Syntax:
4396"""""""
4397
4398::
4399
4400 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4401
4402Overview:
4403"""""""""
4404
4405The '``shufflevector``' instruction constructs a permutation of elements
4406from two input vectors, returning a vector with the same element type as
4407the input and length that is the same as the shuffle mask.
4408
4409Arguments:
4410""""""""""
4411
4412The first two operands of a '``shufflevector``' instruction are vectors
4413with the same type. The third argument is a shuffle mask whose element
4414type is always 'i32'. The result of the instruction is a vector whose
4415length is the same as the shuffle mask and whose element type is the
4416same as the element type of the first two operands.
4417
4418The shuffle mask operand is required to be a constant vector with either
4419constant integer or undef values.
4420
4421Semantics:
4422""""""""""
4423
4424The elements of the two input vectors are numbered from left to right
4425across both of the vectors. The shuffle mask operand specifies, for each
4426element of the result vector, which element of the two input vectors the
4427result element gets. The element selector may be undef (meaning "don't
4428care") and the second operand may be undef if performing a shuffle from
4429only one vector.
4430
4431Example:
4432""""""""
4433
4434.. code-block:: llvm
4435
4436 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4437 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4438 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4439 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4440 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4441 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4442 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4443 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4444
4445Aggregate Operations
4446--------------------
4447
4448LLVM supports several instructions for working with
4449:ref:`aggregate <t_aggregate>` values.
4450
4451.. _i_extractvalue:
4452
4453'``extractvalue``' Instruction
4454^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4455
4456Syntax:
4457"""""""
4458
4459::
4460
4461 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4462
4463Overview:
4464"""""""""
4465
4466The '``extractvalue``' instruction extracts the value of a member field
4467from an :ref:`aggregate <t_aggregate>` value.
4468
4469Arguments:
4470""""""""""
4471
4472The first operand of an '``extractvalue``' instruction is a value of
4473:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4474constant indices to specify which value to extract in a similar manner
4475as indices in a '``getelementptr``' instruction.
4476
4477The major differences to ``getelementptr`` indexing are:
4478
4479- Since the value being indexed is not a pointer, the first index is
4480 omitted and assumed to be zero.
4481- At least one index must be specified.
4482- Not only struct indices but also array indices must be in bounds.
4483
4484Semantics:
4485""""""""""
4486
4487The result is the value at the position in the aggregate specified by
4488the index operands.
4489
4490Example:
4491""""""""
4492
4493.. code-block:: llvm
4494
4495 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4496
4497.. _i_insertvalue:
4498
4499'``insertvalue``' Instruction
4500^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4501
4502Syntax:
4503"""""""
4504
4505::
4506
4507 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4508
4509Overview:
4510"""""""""
4511
4512The '``insertvalue``' instruction inserts a value into a member field in
4513an :ref:`aggregate <t_aggregate>` value.
4514
4515Arguments:
4516""""""""""
4517
4518The first operand of an '``insertvalue``' instruction is a value of
4519:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4520a first-class value to insert. The following operands are constant
4521indices indicating the position at which to insert the value in a
4522similar manner as indices in a '``extractvalue``' instruction. The value
4523to insert must have the same type as the value identified by the
4524indices.
4525
4526Semantics:
4527""""""""""
4528
4529The result is an aggregate of the same type as ``val``. Its value is
4530that of ``val`` except that the value at the position specified by the
4531indices is that of ``elt``.
4532
4533Example:
4534""""""""
4535
4536.. code-block:: llvm
4537
4538 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4539 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4540 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4541
4542.. _memoryops:
4543
4544Memory Access and Addressing Operations
4545---------------------------------------
4546
4547A key design point of an SSA-based representation is how it represents
4548memory. In LLVM, no memory locations are in SSA form, which makes things
4549very simple. This section describes how to read, write, and allocate
4550memory in LLVM.
4551
4552.. _i_alloca:
4553
4554'``alloca``' Instruction
4555^^^^^^^^^^^^^^^^^^^^^^^^
4556
4557Syntax:
4558"""""""
4559
4560::
4561
4562 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4563
4564Overview:
4565"""""""""
4566
4567The '``alloca``' instruction allocates memory on the stack frame of the
4568currently executing function, to be automatically released when this
4569function returns to its caller. The object is always allocated in the
4570generic address space (address space zero).
4571
4572Arguments:
4573""""""""""
4574
4575The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4576bytes of memory on the runtime stack, returning a pointer of the
4577appropriate type to the program. If "NumElements" is specified, it is
4578the number of elements allocated, otherwise "NumElements" is defaulted
4579to be one. If a constant alignment is specified, the value result of the
4580allocation is guaranteed to be aligned to at least that boundary. If not
4581specified, or if zero, the target can choose to align the allocation on
4582any convenient boundary compatible with the type.
4583
4584'``type``' may be any sized type.
4585
4586Semantics:
4587""""""""""
4588
4589Memory is allocated; a pointer is returned. The operation is undefined
4590if there is insufficient stack space for the allocation. '``alloca``'d
4591memory is automatically released when the function returns. The
4592'``alloca``' instruction is commonly used to represent automatic
4593variables that must have an address available. When the function returns
4594(either with the ``ret`` or ``resume`` instructions), the memory is
4595reclaimed. Allocating zero bytes is legal, but the result is undefined.
4596The order in which memory is allocated (ie., which way the stack grows)
4597is not specified.
4598
4599Example:
4600""""""""
4601
4602.. code-block:: llvm
4603
4604 %ptr = alloca i32 ; yields {i32*}:ptr
4605 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4606 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4607 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4608
4609.. _i_load:
4610
4611'``load``' Instruction
4612^^^^^^^^^^^^^^^^^^^^^^
4613
4614Syntax:
4615"""""""
4616
4617::
4618
4619 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4620 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4621 !<index> = !{ i32 1 }
4622
4623Overview:
4624"""""""""
4625
4626The '``load``' instruction is used to read from memory.
4627
4628Arguments:
4629""""""""""
4630
Eli Bendersky8c493382013-04-17 20:17:08 +00004631The argument to the ``load`` instruction specifies the memory address
Sean Silvaf722b002012-12-07 10:36:55 +00004632from which to load. The pointer must point to a :ref:`first
4633class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4634then the optimizer is not allowed to modify the number or order of
4635execution of this ``load`` with other :ref:`volatile
4636operations <volatile>`.
4637
4638If the ``load`` is marked as ``atomic``, it takes an extra
4639:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4640``release`` and ``acq_rel`` orderings are not valid on ``load``
4641instructions. Atomic loads produce :ref:`defined <memmodel>` results
4642when they may see multiple atomic stores. The type of the pointee must
4643be an integer type whose bit width is a power of two greater than or
4644equal to eight and less than or equal to a target-specific size limit.
4645``align`` must be explicitly specified on atomic loads, and the load has
4646undefined behavior if the alignment is not set to a value which is at
4647least the size in bytes of the pointee. ``!nontemporal`` does not have
4648any defined semantics for atomic loads.
4649
4650The optional constant ``align`` argument specifies the alignment of the
4651operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8c493382013-04-17 20:17:08 +00004652or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004653alignment for the target. It is the responsibility of the code emitter
4654to ensure that the alignment information is correct. Overestimating the
4655alignment results in undefined behavior. Underestimating the alignment
4656may produce less efficient code. An alignment of 1 is always safe.
4657
4658The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004659metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvaf722b002012-12-07 10:36:55 +00004660``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004661metadata on the instruction tells the optimizer and code generator
Sean Silvaf722b002012-12-07 10:36:55 +00004662that this load is not expected to be reused in the cache. The code
4663generator may select special instructions to save cache bandwidth, such
4664as the ``MOVNT`` instruction on x86.
4665
4666The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004667metadata name ``<index>`` corresponding to a metadata node with no
4668entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvaf722b002012-12-07 10:36:55 +00004669instruction tells the optimizer and code generator that this load
4670address points to memory which does not change value during program
4671execution. The optimizer may then move this load around, for example, by
4672hoisting it out of loops using loop invariant code motion.
4673
4674Semantics:
4675""""""""""
4676
4677The location of memory pointed to is loaded. If the value being loaded
4678is of scalar type then the number of bytes read does not exceed the
4679minimum number of bytes needed to hold all bits of the type. For
4680example, loading an ``i24`` reads at most three bytes. When loading a
4681value of a type like ``i20`` with a size that is not an integral number
4682of bytes, the result is undefined if the value was not originally
4683written using a store of the same type.
4684
4685Examples:
4686"""""""""
4687
4688.. code-block:: llvm
4689
4690 %ptr = alloca i32 ; yields {i32*}:ptr
4691 store i32 3, i32* %ptr ; yields {void}
4692 %val = load i32* %ptr ; yields {i32}:val = i32 3
4693
4694.. _i_store:
4695
4696'``store``' Instruction
4697^^^^^^^^^^^^^^^^^^^^^^^
4698
4699Syntax:
4700"""""""
4701
4702::
4703
4704 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4705 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4706
4707Overview:
4708"""""""""
4709
4710The '``store``' instruction is used to write to memory.
4711
4712Arguments:
4713""""""""""
4714
Eli Bendersky8952d902013-04-17 17:17:20 +00004715There are two arguments to the ``store`` instruction: a value to store
4716and an address at which to store it. The type of the ``<pointer>``
Sean Silvaf722b002012-12-07 10:36:55 +00004717operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Bendersky8952d902013-04-17 17:17:20 +00004718the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvaf722b002012-12-07 10:36:55 +00004719then the optimizer is not allowed to modify the number or order of
4720execution of this ``store`` with other :ref:`volatile
4721operations <volatile>`.
4722
4723If the ``store`` is marked as ``atomic``, it takes an extra
4724:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4725``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4726instructions. Atomic loads produce :ref:`defined <memmodel>` results
4727when they may see multiple atomic stores. The type of the pointee must
4728be an integer type whose bit width is a power of two greater than or
4729equal to eight and less than or equal to a target-specific size limit.
4730``align`` must be explicitly specified on atomic stores, and the store
4731has undefined behavior if the alignment is not set to a value which is
4732at least the size in bytes of the pointee. ``!nontemporal`` does not
4733have any defined semantics for atomic stores.
4734
Eli Bendersky8952d902013-04-17 17:17:20 +00004735The optional constant ``align`` argument specifies the alignment of the
Sean Silvaf722b002012-12-07 10:36:55 +00004736operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8952d902013-04-17 17:17:20 +00004737or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004738alignment for the target. It is the responsibility of the code emitter
4739to ensure that the alignment information is correct. Overestimating the
Eli Bendersky8952d902013-04-17 17:17:20 +00004740alignment results in undefined behavior. Underestimating the
Sean Silvaf722b002012-12-07 10:36:55 +00004741alignment may produce less efficient code. An alignment of 1 is always
4742safe.
4743
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004744The optional ``!nontemporal`` metadata must reference a single metadata
Eli Bendersky8952d902013-04-17 17:17:20 +00004745name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toitafea27b2013-06-20 14:02:44 +00004746value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvaf722b002012-12-07 10:36:55 +00004747tells the optimizer and code generator that this load is not expected to
4748be reused in the cache. The code generator may select special
4749instructions to save cache bandwidth, such as the MOVNT instruction on
4750x86.
4751
4752Semantics:
4753""""""""""
4754
Eli Bendersky8952d902013-04-17 17:17:20 +00004755The contents of memory are updated to contain ``<value>`` at the
4756location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvaf722b002012-12-07 10:36:55 +00004757of scalar type then the number of bytes written does not exceed the
4758minimum number of bytes needed to hold all bits of the type. For
4759example, storing an ``i24`` writes at most three bytes. When writing a
4760value of a type like ``i20`` with a size that is not an integral number
4761of bytes, it is unspecified what happens to the extra bits that do not
4762belong to the type, but they will typically be overwritten.
4763
4764Example:
4765""""""""
4766
4767.. code-block:: llvm
4768
4769 %ptr = alloca i32 ; yields {i32*}:ptr
4770 store i32 3, i32* %ptr ; yields {void}
4771 %val = load i32* %ptr ; yields {i32}:val = i32 3
4772
4773.. _i_fence:
4774
4775'``fence``' Instruction
4776^^^^^^^^^^^^^^^^^^^^^^^
4777
4778Syntax:
4779"""""""
4780
4781::
4782
4783 fence [singlethread] <ordering> ; yields {void}
4784
4785Overview:
4786"""""""""
4787
4788The '``fence``' instruction is used to introduce happens-before edges
4789between operations.
4790
4791Arguments:
4792""""""""""
4793
4794'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4795defines what *synchronizes-with* edges they add. They can only be given
4796``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4797
4798Semantics:
4799""""""""""
4800
4801A fence A which has (at least) ``release`` ordering semantics
4802*synchronizes with* a fence B with (at least) ``acquire`` ordering
4803semantics if and only if there exist atomic operations X and Y, both
4804operating on some atomic object M, such that A is sequenced before X, X
4805modifies M (either directly or through some side effect of a sequence
4806headed by X), Y is sequenced before B, and Y observes M. This provides a
4807*happens-before* dependency between A and B. Rather than an explicit
4808``fence``, one (but not both) of the atomic operations X or Y might
4809provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4810still *synchronize-with* the explicit ``fence`` and establish the
4811*happens-before* edge.
4812
4813A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4814``acquire`` and ``release`` semantics specified above, participates in
4815the global program order of other ``seq_cst`` operations and/or fences.
4816
4817The optional ":ref:`singlethread <singlethread>`" argument specifies
4818that the fence only synchronizes with other fences in the same thread.
4819(This is useful for interacting with signal handlers.)
4820
4821Example:
4822""""""""
4823
4824.. code-block:: llvm
4825
4826 fence acquire ; yields {void}
4827 fence singlethread seq_cst ; yields {void}
4828
4829.. _i_cmpxchg:
4830
4831'``cmpxchg``' Instruction
4832^^^^^^^^^^^^^^^^^^^^^^^^^
4833
4834Syntax:
4835"""""""
4836
4837::
4838
4839 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4840
4841Overview:
4842"""""""""
4843
4844The '``cmpxchg``' instruction is used to atomically modify memory. It
4845loads a value in memory and compares it to a given value. If they are
4846equal, it stores a new value into the memory.
4847
4848Arguments:
4849""""""""""
4850
4851There are three arguments to the '``cmpxchg``' instruction: an address
4852to operate on, a value to compare to the value currently be at that
4853address, and a new value to place at that address if the compared values
4854are equal. The type of '<cmp>' must be an integer type whose bit width
4855is a power of two greater than or equal to eight and less than or equal
4856to a target-specific size limit. '<cmp>' and '<new>' must have the same
4857type, and the type of '<pointer>' must be a pointer to that type. If the
4858``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4859to modify the number or order of execution of this ``cmpxchg`` with
4860other :ref:`volatile operations <volatile>`.
4861
4862The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4863synchronizes with other atomic operations.
4864
4865The optional "``singlethread``" argument declares that the ``cmpxchg``
4866is only atomic with respect to code (usually signal handlers) running in
4867the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4868respect to all other code in the system.
4869
4870The pointer passed into cmpxchg must have alignment greater than or
4871equal to the size in memory of the operand.
4872
4873Semantics:
4874""""""""""
4875
4876The contents of memory at the location specified by the '``<pointer>``'
4877operand is read and compared to '``<cmp>``'; if the read value is the
4878equal, '``<new>``' is written. The original value at the location is
4879returned.
4880
4881A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4882of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4883atomic load with an ordering parameter determined by dropping any
4884``release`` part of the ``cmpxchg``'s ordering.
4885
4886Example:
4887""""""""
4888
4889.. code-block:: llvm
4890
4891 entry:
4892 %orig = atomic load i32* %ptr unordered ; yields {i32}
4893 br label %loop
4894
4895 loop:
4896 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4897 %squared = mul i32 %cmp, %cmp
4898 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4899 %success = icmp eq i32 %cmp, %old
4900 br i1 %success, label %done, label %loop
4901
4902 done:
4903 ...
4904
4905.. _i_atomicrmw:
4906
4907'``atomicrmw``' Instruction
4908^^^^^^^^^^^^^^^^^^^^^^^^^^^
4909
4910Syntax:
4911"""""""
4912
4913::
4914
4915 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
4916
4917Overview:
4918"""""""""
4919
4920The '``atomicrmw``' instruction is used to atomically modify memory.
4921
4922Arguments:
4923""""""""""
4924
4925There are three arguments to the '``atomicrmw``' instruction: an
4926operation to apply, an address whose value to modify, an argument to the
4927operation. The operation must be one of the following keywords:
4928
4929- xchg
4930- add
4931- sub
4932- and
4933- nand
4934- or
4935- xor
4936- max
4937- min
4938- umax
4939- umin
4940
4941The type of '<value>' must be an integer type whose bit width is a power
4942of two greater than or equal to eight and less than or equal to a
4943target-specific size limit. The type of the '``<pointer>``' operand must
4944be a pointer to that type. If the ``atomicrmw`` is marked as
4945``volatile``, then the optimizer is not allowed to modify the number or
4946order of execution of this ``atomicrmw`` with other :ref:`volatile
4947operations <volatile>`.
4948
4949Semantics:
4950""""""""""
4951
4952The contents of memory at the location specified by the '``<pointer>``'
4953operand are atomically read, modified, and written back. The original
4954value at the location is returned. The modification is specified by the
4955operation argument:
4956
4957- xchg: ``*ptr = val``
4958- add: ``*ptr = *ptr + val``
4959- sub: ``*ptr = *ptr - val``
4960- and: ``*ptr = *ptr & val``
4961- nand: ``*ptr = ~(*ptr & val)``
4962- or: ``*ptr = *ptr | val``
4963- xor: ``*ptr = *ptr ^ val``
4964- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
4965- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
4966- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
4967 comparison)
4968- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
4969 comparison)
4970
4971Example:
4972""""""""
4973
4974.. code-block:: llvm
4975
4976 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
4977
4978.. _i_getelementptr:
4979
4980'``getelementptr``' Instruction
4981^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4982
4983Syntax:
4984"""""""
4985
4986::
4987
4988 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
4989 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
4990 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
4991
4992Overview:
4993"""""""""
4994
4995The '``getelementptr``' instruction is used to get the address of a
4996subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
4997address calculation only and does not access memory.
4998
4999Arguments:
5000""""""""""
5001
5002The first argument is always a pointer or a vector of pointers, and
5003forms the basis of the calculation. The remaining arguments are indices
5004that indicate which of the elements of the aggregate object are indexed.
5005The interpretation of each index is dependent on the type being indexed
5006into. The first index always indexes the pointer value given as the
5007first argument, the second index indexes a value of the type pointed to
5008(not necessarily the value directly pointed to, since the first index
5009can be non-zero), etc. The first type indexed into must be a pointer
5010value, subsequent types can be arrays, vectors, and structs. Note that
5011subsequent types being indexed into can never be pointers, since that
5012would require loading the pointer before continuing calculation.
5013
5014The type of each index argument depends on the type it is indexing into.
5015When indexing into a (optionally packed) structure, only ``i32`` integer
5016**constants** are allowed (when using a vector of indices they must all
5017be the **same** ``i32`` integer constant). When indexing into an array,
5018pointer or vector, integers of any width are allowed, and they are not
5019required to be constant. These integers are treated as signed values
5020where relevant.
5021
5022For example, let's consider a C code fragment and how it gets compiled
5023to LLVM:
5024
5025.. code-block:: c
5026
5027 struct RT {
5028 char A;
5029 int B[10][20];
5030 char C;
5031 };
5032 struct ST {
5033 int X;
5034 double Y;
5035 struct RT Z;
5036 };
5037
5038 int *foo(struct ST *s) {
5039 return &s[1].Z.B[5][13];
5040 }
5041
5042The LLVM code generated by Clang is:
5043
5044.. code-block:: llvm
5045
5046 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5047 %struct.ST = type { i32, double, %struct.RT }
5048
5049 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5050 entry:
5051 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5052 ret i32* %arrayidx
5053 }
5054
5055Semantics:
5056""""""""""
5057
5058In the example above, the first index is indexing into the
5059'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5060= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5061indexes into the third element of the structure, yielding a
5062'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5063structure. The third index indexes into the second element of the
5064structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5065dimensions of the array are subscripted into, yielding an '``i32``'
5066type. The '``getelementptr``' instruction returns a pointer to this
5067element, thus computing a value of '``i32*``' type.
5068
5069Note that it is perfectly legal to index partially through a structure,
5070returning a pointer to an inner element. Because of this, the LLVM code
5071for the given testcase is equivalent to:
5072
5073.. code-block:: llvm
5074
5075 define i32* @foo(%struct.ST* %s) {
5076 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5077 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5078 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5079 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5080 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5081 ret i32* %t5
5082 }
5083
5084If the ``inbounds`` keyword is present, the result value of the
5085``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5086pointer is not an *in bounds* address of an allocated object, or if any
5087of the addresses that would be formed by successive addition of the
5088offsets implied by the indices to the base address with infinitely
5089precise signed arithmetic are not an *in bounds* address of that
5090allocated object. The *in bounds* addresses for an allocated object are
5091all the addresses that point into the object, plus the address one byte
5092past the end. In cases where the base is a vector of pointers the
5093``inbounds`` keyword applies to each of the computations element-wise.
5094
5095If the ``inbounds`` keyword is not present, the offsets are added to the
5096base address with silently-wrapping two's complement arithmetic. If the
5097offsets have a different width from the pointer, they are sign-extended
5098or truncated to the width of the pointer. The result value of the
5099``getelementptr`` may be outside the object pointed to by the base
5100pointer. The result value may not necessarily be used to access memory
5101though, even if it happens to point into allocated storage. See the
5102:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5103information.
5104
5105The getelementptr instruction is often confusing. For some more insight
5106into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5107
5108Example:
5109""""""""
5110
5111.. code-block:: llvm
5112
5113 ; yields [12 x i8]*:aptr
5114 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5115 ; yields i8*:vptr
5116 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5117 ; yields i8*:eptr
5118 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5119 ; yields i32*:iptr
5120 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5121
5122In cases where the pointer argument is a vector of pointers, each index
5123must be a vector with the same number of elements. For example:
5124
5125.. code-block:: llvm
5126
5127 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5128
5129Conversion Operations
5130---------------------
5131
5132The instructions in this category are the conversion instructions
5133(casting) which all take a single operand and a type. They perform
5134various bit conversions on the operand.
5135
5136'``trunc .. to``' Instruction
5137^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5138
5139Syntax:
5140"""""""
5141
5142::
5143
5144 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5145
5146Overview:
5147"""""""""
5148
5149The '``trunc``' instruction truncates its operand to the type ``ty2``.
5150
5151Arguments:
5152""""""""""
5153
5154The '``trunc``' instruction takes a value to trunc, and a type to trunc
5155it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5156of the same number of integers. The bit size of the ``value`` must be
5157larger than the bit size of the destination type, ``ty2``. Equal sized
5158types are not allowed.
5159
5160Semantics:
5161""""""""""
5162
5163The '``trunc``' instruction truncates the high order bits in ``value``
5164and converts the remaining bits to ``ty2``. Since the source size must
5165be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5166It will always truncate bits.
5167
5168Example:
5169""""""""
5170
5171.. code-block:: llvm
5172
5173 %X = trunc i32 257 to i8 ; yields i8:1
5174 %Y = trunc i32 123 to i1 ; yields i1:true
5175 %Z = trunc i32 122 to i1 ; yields i1:false
5176 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5177
5178'``zext .. to``' Instruction
5179^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5180
5181Syntax:
5182"""""""
5183
5184::
5185
5186 <result> = zext <ty> <value> to <ty2> ; yields ty2
5187
5188Overview:
5189"""""""""
5190
5191The '``zext``' instruction zero extends its operand to type ``ty2``.
5192
5193Arguments:
5194""""""""""
5195
5196The '``zext``' instruction takes a value to cast, and a type to cast it
5197to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5198the same number of integers. The bit size of the ``value`` must be
5199smaller than the bit size of the destination type, ``ty2``.
5200
5201Semantics:
5202""""""""""
5203
5204The ``zext`` fills the high order bits of the ``value`` with zero bits
5205until it reaches the size of the destination type, ``ty2``.
5206
5207When zero extending from i1, the result will always be either 0 or 1.
5208
5209Example:
5210""""""""
5211
5212.. code-block:: llvm
5213
5214 %X = zext i32 257 to i64 ; yields i64:257
5215 %Y = zext i1 true to i32 ; yields i32:1
5216 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5217
5218'``sext .. to``' Instruction
5219^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5220
5221Syntax:
5222"""""""
5223
5224::
5225
5226 <result> = sext <ty> <value> to <ty2> ; yields ty2
5227
5228Overview:
5229"""""""""
5230
5231The '``sext``' sign extends ``value`` to the type ``ty2``.
5232
5233Arguments:
5234""""""""""
5235
5236The '``sext``' instruction takes a value to cast, and a type to cast it
5237to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5238the same number of integers. The bit size of the ``value`` must be
5239smaller than the bit size of the destination type, ``ty2``.
5240
5241Semantics:
5242""""""""""
5243
5244The '``sext``' instruction performs a sign extension by copying the sign
5245bit (highest order bit) of the ``value`` until it reaches the bit size
5246of the type ``ty2``.
5247
5248When sign extending from i1, the extension always results in -1 or 0.
5249
5250Example:
5251""""""""
5252
5253.. code-block:: llvm
5254
5255 %X = sext i8 -1 to i16 ; yields i16 :65535
5256 %Y = sext i1 true to i32 ; yields i32:-1
5257 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5258
5259'``fptrunc .. to``' Instruction
5260^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5261
5262Syntax:
5263"""""""
5264
5265::
5266
5267 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5268
5269Overview:
5270"""""""""
5271
5272The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5273
5274Arguments:
5275""""""""""
5276
5277The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5278value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5279The size of ``value`` must be larger than the size of ``ty2``. This
5280implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5281
5282Semantics:
5283""""""""""
5284
5285The '``fptrunc``' instruction truncates a ``value`` from a larger
5286:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5287point <t_floating>` type. If the value cannot fit within the
5288destination type, ``ty2``, then the results are undefined.
5289
5290Example:
5291""""""""
5292
5293.. code-block:: llvm
5294
5295 %X = fptrunc double 123.0 to float ; yields float:123.0
5296 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5297
5298'``fpext .. to``' Instruction
5299^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5300
5301Syntax:
5302"""""""
5303
5304::
5305
5306 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5307
5308Overview:
5309"""""""""
5310
5311The '``fpext``' extends a floating point ``value`` to a larger floating
5312point value.
5313
5314Arguments:
5315""""""""""
5316
5317The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5318``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5319to. The source type must be smaller than the destination type.
5320
5321Semantics:
5322""""""""""
5323
5324The '``fpext``' instruction extends the ``value`` from a smaller
5325:ref:`floating point <t_floating>` type to a larger :ref:`floating
5326point <t_floating>` type. The ``fpext`` cannot be used to make a
5327*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5328*no-op cast* for a floating point cast.
5329
5330Example:
5331""""""""
5332
5333.. code-block:: llvm
5334
5335 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5336 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5337
5338'``fptoui .. to``' Instruction
5339^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5340
5341Syntax:
5342"""""""
5343
5344::
5345
5346 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5347
5348Overview:
5349"""""""""
5350
5351The '``fptoui``' converts a floating point ``value`` to its unsigned
5352integer equivalent of type ``ty2``.
5353
5354Arguments:
5355""""""""""
5356
5357The '``fptoui``' instruction takes a value to cast, which must be a
5358scalar or vector :ref:`floating point <t_floating>` value, and a type to
5359cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5360``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5361type with the same number of elements as ``ty``
5362
5363Semantics:
5364""""""""""
5365
5366The '``fptoui``' instruction converts its :ref:`floating
5367point <t_floating>` operand into the nearest (rounding towards zero)
5368unsigned integer value. If the value cannot fit in ``ty2``, the results
5369are undefined.
5370
5371Example:
5372""""""""
5373
5374.. code-block:: llvm
5375
5376 %X = fptoui double 123.0 to i32 ; yields i32:123
5377 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5378 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5379
5380'``fptosi .. to``' Instruction
5381^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5382
5383Syntax:
5384"""""""
5385
5386::
5387
5388 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5389
5390Overview:
5391"""""""""
5392
5393The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5394``value`` to type ``ty2``.
5395
5396Arguments:
5397""""""""""
5398
5399The '``fptosi``' instruction takes a value to cast, which must be a
5400scalar or vector :ref:`floating point <t_floating>` value, and a type to
5401cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5402``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5403type with the same number of elements as ``ty``
5404
5405Semantics:
5406""""""""""
5407
5408The '``fptosi``' instruction converts its :ref:`floating
5409point <t_floating>` operand into the nearest (rounding towards zero)
5410signed integer value. If the value cannot fit in ``ty2``, the results
5411are undefined.
5412
5413Example:
5414""""""""
5415
5416.. code-block:: llvm
5417
5418 %X = fptosi double -123.0 to i32 ; yields i32:-123
5419 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5420 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5421
5422'``uitofp .. to``' Instruction
5423^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5424
5425Syntax:
5426"""""""
5427
5428::
5429
5430 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5431
5432Overview:
5433"""""""""
5434
5435The '``uitofp``' instruction regards ``value`` as an unsigned integer
5436and converts that value to the ``ty2`` type.
5437
5438Arguments:
5439""""""""""
5440
5441The '``uitofp``' instruction takes a value to cast, which must be a
5442scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5443``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5444``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5445type with the same number of elements as ``ty``
5446
5447Semantics:
5448""""""""""
5449
5450The '``uitofp``' instruction interprets its operand as an unsigned
5451integer quantity and converts it to the corresponding floating point
5452value. If the value cannot fit in the floating point value, the results
5453are undefined.
5454
5455Example:
5456""""""""
5457
5458.. code-block:: llvm
5459
5460 %X = uitofp i32 257 to float ; yields float:257.0
5461 %Y = uitofp i8 -1 to double ; yields double:255.0
5462
5463'``sitofp .. to``' Instruction
5464^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5465
5466Syntax:
5467"""""""
5468
5469::
5470
5471 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5472
5473Overview:
5474"""""""""
5475
5476The '``sitofp``' instruction regards ``value`` as a signed integer and
5477converts that value to the ``ty2`` type.
5478
5479Arguments:
5480""""""""""
5481
5482The '``sitofp``' instruction takes a value to cast, which must be a
5483scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5484``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5485``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5486type with the same number of elements as ``ty``
5487
5488Semantics:
5489""""""""""
5490
5491The '``sitofp``' instruction interprets its operand as a signed integer
5492quantity and converts it to the corresponding floating point value. If
5493the value cannot fit in the floating point value, the results are
5494undefined.
5495
5496Example:
5497""""""""
5498
5499.. code-block:: llvm
5500
5501 %X = sitofp i32 257 to float ; yields float:257.0
5502 %Y = sitofp i8 -1 to double ; yields double:-1.0
5503
5504.. _i_ptrtoint:
5505
5506'``ptrtoint .. to``' Instruction
5507^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5508
5509Syntax:
5510"""""""
5511
5512::
5513
5514 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5515
5516Overview:
5517"""""""""
5518
5519The '``ptrtoint``' instruction converts the pointer or a vector of
5520pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5521
5522Arguments:
5523""""""""""
5524
5525The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5526a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5527type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5528a vector of integers type.
5529
5530Semantics:
5531""""""""""
5532
5533The '``ptrtoint``' instruction converts ``value`` to integer type
5534``ty2`` by interpreting the pointer value as an integer and either
5535truncating or zero extending that value to the size of the integer type.
5536If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5537``value`` is larger than ``ty2`` then a truncation is done. If they are
5538the same size, then nothing is done (*no-op cast*) other than a type
5539change.
5540
5541Example:
5542""""""""
5543
5544.. code-block:: llvm
5545
5546 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5547 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5548 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5549
5550.. _i_inttoptr:
5551
5552'``inttoptr .. to``' Instruction
5553^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5554
5555Syntax:
5556"""""""
5557
5558::
5559
5560 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5561
5562Overview:
5563"""""""""
5564
5565The '``inttoptr``' instruction converts an integer ``value`` to a
5566pointer type, ``ty2``.
5567
5568Arguments:
5569""""""""""
5570
5571The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5572cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5573type.
5574
5575Semantics:
5576""""""""""
5577
5578The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5579applying either a zero extension or a truncation depending on the size
5580of the integer ``value``. If ``value`` is larger than the size of a
5581pointer then a truncation is done. If ``value`` is smaller than the size
5582of a pointer then a zero extension is done. If they are the same size,
5583nothing is done (*no-op cast*).
5584
5585Example:
5586""""""""
5587
5588.. code-block:: llvm
5589
5590 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5591 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5592 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5593 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5594
5595.. _i_bitcast:
5596
5597'``bitcast .. to``' Instruction
5598^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5599
5600Syntax:
5601"""""""
5602
5603::
5604
5605 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5606
5607Overview:
5608"""""""""
5609
5610The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5611changing any bits.
5612
5613Arguments:
5614""""""""""
5615
5616The '``bitcast``' instruction takes a value to cast, which must be a
5617non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault16e4ed52013-07-31 17:49:08 +00005618also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5619bit sizes of ``value`` and the destination type, ``ty2``, must be
5620identical. If the source type is a pointer, the destination type must
5621also be a pointer of the same size. This instruction supports bitwise
5622conversion of vectors to integers and to vectors of other types (as
5623long as they have the same size).
Sean Silvaf722b002012-12-07 10:36:55 +00005624
5625Semantics:
5626""""""""""
5627
Matt Arsenault16e4ed52013-07-31 17:49:08 +00005628The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5629is always a *no-op cast* because no bits change with this
5630conversion. The conversion is done as if the ``value`` had been stored
5631to memory and read back as type ``ty2``. Pointer (or vector of
5632pointers) types may only be converted to other pointer (or vector of
5633pointers) types with this instruction if the pointer sizes are
5634equal. To convert pointers to other types, use the :ref:`inttoptr
5635<i_inttoptr>` or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvaf722b002012-12-07 10:36:55 +00005636
5637Example:
5638""""""""
5639
5640.. code-block:: llvm
5641
5642 %X = bitcast i8 255 to i8 ; yields i8 :-1
5643 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5644 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5645 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5646
5647.. _otherops:
5648
5649Other Operations
5650----------------
5651
5652The instructions in this category are the "miscellaneous" instructions,
5653which defy better classification.
5654
5655.. _i_icmp:
5656
5657'``icmp``' Instruction
5658^^^^^^^^^^^^^^^^^^^^^^
5659
5660Syntax:
5661"""""""
5662
5663::
5664
5665 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5666
5667Overview:
5668"""""""""
5669
5670The '``icmp``' instruction returns a boolean value or a vector of
5671boolean values based on comparison of its two integer, integer vector,
5672pointer, or pointer vector operands.
5673
5674Arguments:
5675""""""""""
5676
5677The '``icmp``' instruction takes three operands. The first operand is
5678the condition code indicating the kind of comparison to perform. It is
5679not a value, just a keyword. The possible condition code are:
5680
5681#. ``eq``: equal
5682#. ``ne``: not equal
5683#. ``ugt``: unsigned greater than
5684#. ``uge``: unsigned greater or equal
5685#. ``ult``: unsigned less than
5686#. ``ule``: unsigned less or equal
5687#. ``sgt``: signed greater than
5688#. ``sge``: signed greater or equal
5689#. ``slt``: signed less than
5690#. ``sle``: signed less or equal
5691
5692The remaining two arguments must be :ref:`integer <t_integer>` or
5693:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5694must also be identical types.
5695
5696Semantics:
5697""""""""""
5698
5699The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5700code given as ``cond``. The comparison performed always yields either an
5701:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5702
5703#. ``eq``: yields ``true`` if the operands are equal, ``false``
5704 otherwise. No sign interpretation is necessary or performed.
5705#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5706 otherwise. No sign interpretation is necessary or performed.
5707#. ``ugt``: interprets the operands as unsigned values and yields
5708 ``true`` if ``op1`` is greater than ``op2``.
5709#. ``uge``: interprets the operands as unsigned values and yields
5710 ``true`` if ``op1`` is greater than or equal to ``op2``.
5711#. ``ult``: interprets the operands as unsigned values and yields
5712 ``true`` if ``op1`` is less than ``op2``.
5713#. ``ule``: interprets the operands as unsigned values and yields
5714 ``true`` if ``op1`` is less than or equal to ``op2``.
5715#. ``sgt``: interprets the operands as signed values and yields ``true``
5716 if ``op1`` is greater than ``op2``.
5717#. ``sge``: interprets the operands as signed values and yields ``true``
5718 if ``op1`` is greater than or equal to ``op2``.
5719#. ``slt``: interprets the operands as signed values and yields ``true``
5720 if ``op1`` is less than ``op2``.
5721#. ``sle``: interprets the operands as signed values and yields ``true``
5722 if ``op1`` is less than or equal to ``op2``.
5723
5724If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5725are compared as if they were integers.
5726
5727If the operands are integer vectors, then they are compared element by
5728element. The result is an ``i1`` vector with the same number of elements
5729as the values being compared. Otherwise, the result is an ``i1``.
5730
5731Example:
5732""""""""
5733
5734.. code-block:: llvm
5735
5736 <result> = icmp eq i32 4, 5 ; yields: result=false
5737 <result> = icmp ne float* %X, %X ; yields: result=false
5738 <result> = icmp ult i16 4, 5 ; yields: result=true
5739 <result> = icmp sgt i16 4, 5 ; yields: result=false
5740 <result> = icmp ule i16 -4, 5 ; yields: result=false
5741 <result> = icmp sge i16 4, 5 ; yields: result=false
5742
5743Note that the code generator does not yet support vector types with the
5744``icmp`` instruction.
5745
5746.. _i_fcmp:
5747
5748'``fcmp``' Instruction
5749^^^^^^^^^^^^^^^^^^^^^^
5750
5751Syntax:
5752"""""""
5753
5754::
5755
5756 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5757
5758Overview:
5759"""""""""
5760
5761The '``fcmp``' instruction returns a boolean value or vector of boolean
5762values based on comparison of its operands.
5763
5764If the operands are floating point scalars, then the result type is a
5765boolean (:ref:`i1 <t_integer>`).
5766
5767If the operands are floating point vectors, then the result type is a
5768vector of boolean with the same number of elements as the operands being
5769compared.
5770
5771Arguments:
5772""""""""""
5773
5774The '``fcmp``' instruction takes three operands. The first operand is
5775the condition code indicating the kind of comparison to perform. It is
5776not a value, just a keyword. The possible condition code are:
5777
5778#. ``false``: no comparison, always returns false
5779#. ``oeq``: ordered and equal
5780#. ``ogt``: ordered and greater than
5781#. ``oge``: ordered and greater than or equal
5782#. ``olt``: ordered and less than
5783#. ``ole``: ordered and less than or equal
5784#. ``one``: ordered and not equal
5785#. ``ord``: ordered (no nans)
5786#. ``ueq``: unordered or equal
5787#. ``ugt``: unordered or greater than
5788#. ``uge``: unordered or greater than or equal
5789#. ``ult``: unordered or less than
5790#. ``ule``: unordered or less than or equal
5791#. ``une``: unordered or not equal
5792#. ``uno``: unordered (either nans)
5793#. ``true``: no comparison, always returns true
5794
5795*Ordered* means that neither operand is a QNAN while *unordered* means
5796that either operand may be a QNAN.
5797
5798Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5799point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5800type. They must have identical types.
5801
5802Semantics:
5803""""""""""
5804
5805The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5806condition code given as ``cond``. If the operands are vectors, then the
5807vectors are compared element by element. Each comparison performed
5808always yields an :ref:`i1 <t_integer>` result, as follows:
5809
5810#. ``false``: always yields ``false``, regardless of operands.
5811#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5812 is equal to ``op2``.
5813#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5814 is greater than ``op2``.
5815#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5816 is greater than or equal to ``op2``.
5817#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5818 is less than ``op2``.
5819#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5820 is less than or equal to ``op2``.
5821#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5822 is not equal to ``op2``.
5823#. ``ord``: yields ``true`` if both operands are not a QNAN.
5824#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5825 equal to ``op2``.
5826#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5827 greater than ``op2``.
5828#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5829 greater than or equal to ``op2``.
5830#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5831 less than ``op2``.
5832#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5833 less than or equal to ``op2``.
5834#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5835 not equal to ``op2``.
5836#. ``uno``: yields ``true`` if either operand is a QNAN.
5837#. ``true``: always yields ``true``, regardless of operands.
5838
5839Example:
5840""""""""
5841
5842.. code-block:: llvm
5843
5844 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5845 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5846 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5847 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5848
5849Note that the code generator does not yet support vector types with the
5850``fcmp`` instruction.
5851
5852.. _i_phi:
5853
5854'``phi``' Instruction
5855^^^^^^^^^^^^^^^^^^^^^
5856
5857Syntax:
5858"""""""
5859
5860::
5861
5862 <result> = phi <ty> [ <val0>, <label0>], ...
5863
5864Overview:
5865"""""""""
5866
5867The '``phi``' instruction is used to implement the φ node in the SSA
5868graph representing the function.
5869
5870Arguments:
5871""""""""""
5872
5873The type of the incoming values is specified with the first type field.
5874After this, the '``phi``' instruction takes a list of pairs as
5875arguments, with one pair for each predecessor basic block of the current
5876block. Only values of :ref:`first class <t_firstclass>` type may be used as
5877the value arguments to the PHI node. Only labels may be used as the
5878label arguments.
5879
5880There must be no non-phi instructions between the start of a basic block
5881and the PHI instructions: i.e. PHI instructions must be first in a basic
5882block.
5883
5884For the purposes of the SSA form, the use of each incoming value is
5885deemed to occur on the edge from the corresponding predecessor block to
5886the current block (but after any definition of an '``invoke``'
5887instruction's return value on the same edge).
5888
5889Semantics:
5890""""""""""
5891
5892At runtime, the '``phi``' instruction logically takes on the value
5893specified by the pair corresponding to the predecessor basic block that
5894executed just prior to the current block.
5895
5896Example:
5897""""""""
5898
5899.. code-block:: llvm
5900
5901 Loop: ; Infinite loop that counts from 0 on up...
5902 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5903 %nextindvar = add i32 %indvar, 1
5904 br label %Loop
5905
5906.. _i_select:
5907
5908'``select``' Instruction
5909^^^^^^^^^^^^^^^^^^^^^^^^
5910
5911Syntax:
5912"""""""
5913
5914::
5915
5916 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
5917
5918 selty is either i1 or {<N x i1>}
5919
5920Overview:
5921"""""""""
5922
5923The '``select``' instruction is used to choose one value based on a
5924condition, without branching.
5925
5926Arguments:
5927""""""""""
5928
5929The '``select``' instruction requires an 'i1' value or a vector of 'i1'
5930values indicating the condition, and two values of the same :ref:`first
5931class <t_firstclass>` type. If the val1/val2 are vectors and the
5932condition is a scalar, then entire vectors are selected, not individual
5933elements.
5934
5935Semantics:
5936""""""""""
5937
5938If the condition is an i1 and it evaluates to 1, the instruction returns
5939the first value argument; otherwise, it returns the second value
5940argument.
5941
5942If the condition is a vector of i1, then the value arguments must be
5943vectors of the same size, and the selection is done element by element.
5944
5945Example:
5946""""""""
5947
5948.. code-block:: llvm
5949
5950 %X = select i1 true, i8 17, i8 42 ; yields i8:17
5951
5952.. _i_call:
5953
5954'``call``' Instruction
5955^^^^^^^^^^^^^^^^^^^^^^
5956
5957Syntax:
5958"""""""
5959
5960::
5961
5962 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
5963
5964Overview:
5965"""""""""
5966
5967The '``call``' instruction represents a simple function call.
5968
5969Arguments:
5970""""""""""
5971
5972This instruction requires several arguments:
5973
5974#. The optional "tail" marker indicates that the callee function does
5975 not access any allocas or varargs in the caller. Note that calls may
5976 be marked "tail" even if they do not occur before a
5977 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
5978 function call is eligible for tail call optimization, but `might not
5979 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
5980 The code generator may optimize calls marked "tail" with either 1)
5981 automatic `sibling call
5982 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
5983 callee have matching signatures, or 2) forced tail call optimization
5984 when the following extra requirements are met:
5985
5986 - Caller and callee both have the calling convention ``fastcc``.
5987 - The call is in tail position (ret immediately follows call and ret
5988 uses value of call or is void).
5989 - Option ``-tailcallopt`` is enabled, or
5990 ``llvm::GuaranteedTailCallOpt`` is ``true``.
5991 - `Platform specific constraints are
5992 met. <CodeGenerator.html#tailcallopt>`_
5993
5994#. The optional "cconv" marker indicates which :ref:`calling
5995 convention <callingconv>` the call should use. If none is
5996 specified, the call defaults to using C calling conventions. The
5997 calling convention of the call must match the calling convention of
5998 the target function, or else the behavior is undefined.
5999#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6000 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6001 are valid here.
6002#. '``ty``': the type of the call instruction itself which is also the
6003 type of the return value. Functions that return no value are marked
6004 ``void``.
6005#. '``fnty``': shall be the signature of the pointer to function value
6006 being invoked. The argument types must match the types implied by
6007 this signature. This type can be omitted if the function is not
6008 varargs and if the function type does not return a pointer to a
6009 function.
6010#. '``fnptrval``': An LLVM value containing a pointer to a function to
6011 be invoked. In most cases, this is a direct function invocation, but
6012 indirect ``call``'s are just as possible, calling an arbitrary pointer
6013 to function value.
6014#. '``function args``': argument list whose types match the function
6015 signature argument types and parameter attributes. All arguments must
6016 be of :ref:`first class <t_firstclass>` type. If the function signature
6017 indicates the function accepts a variable number of arguments, the
6018 extra arguments can be specified.
6019#. The optional :ref:`function attributes <fnattrs>` list. Only
6020 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6021 attributes are valid here.
6022
6023Semantics:
6024""""""""""
6025
6026The '``call``' instruction is used to cause control flow to transfer to
6027a specified function, with its incoming arguments bound to the specified
6028values. Upon a '``ret``' instruction in the called function, control
6029flow continues with the instruction after the function call, and the
6030return value of the function is bound to the result argument.
6031
6032Example:
6033""""""""
6034
6035.. code-block:: llvm
6036
6037 %retval = call i32 @test(i32 %argc)
6038 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6039 %X = tail call i32 @foo() ; yields i32
6040 %Y = tail call fastcc i32 @foo() ; yields i32
6041 call void %foo(i8 97 signext)
6042
6043 %struct.A = type { i32, i8 }
6044 %r = call %struct.A @foo() ; yields { 32, i8 }
6045 %gr = extractvalue %struct.A %r, 0 ; yields i32
6046 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6047 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6048 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6049
6050llvm treats calls to some functions with names and arguments that match
6051the standard C99 library as being the C99 library functions, and may
6052perform optimizations or generate code for them under that assumption.
6053This is something we'd like to change in the future to provide better
6054support for freestanding environments and non-C-based languages.
6055
6056.. _i_va_arg:
6057
6058'``va_arg``' Instruction
6059^^^^^^^^^^^^^^^^^^^^^^^^
6060
6061Syntax:
6062"""""""
6063
6064::
6065
6066 <resultval> = va_arg <va_list*> <arglist>, <argty>
6067
6068Overview:
6069"""""""""
6070
6071The '``va_arg``' instruction is used to access arguments passed through
6072the "variable argument" area of a function call. It is used to implement
6073the ``va_arg`` macro in C.
6074
6075Arguments:
6076""""""""""
6077
6078This instruction takes a ``va_list*`` value and the type of the
6079argument. It returns a value of the specified argument type and
6080increments the ``va_list`` to point to the next argument. The actual
6081type of ``va_list`` is target specific.
6082
6083Semantics:
6084""""""""""
6085
6086The '``va_arg``' instruction loads an argument of the specified type
6087from the specified ``va_list`` and causes the ``va_list`` to point to
6088the next argument. For more information, see the variable argument
6089handling :ref:`Intrinsic Functions <int_varargs>`.
6090
6091It is legal for this instruction to be called in a function which does
6092not take a variable number of arguments, for example, the ``vfprintf``
6093function.
6094
6095``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6096function <intrinsics>` because it takes a type as an argument.
6097
6098Example:
6099""""""""
6100
6101See the :ref:`variable argument processing <int_varargs>` section.
6102
6103Note that the code generator does not yet fully support va\_arg on many
6104targets. Also, it does not currently support va\_arg with aggregate
6105types on any target.
6106
6107.. _i_landingpad:
6108
6109'``landingpad``' Instruction
6110^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6111
6112Syntax:
6113"""""""
6114
6115::
6116
6117 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6118 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6119
6120 <clause> := catch <type> <value>
6121 <clause> := filter <array constant type> <array constant>
6122
6123Overview:
6124"""""""""
6125
6126The '``landingpad``' instruction is used by `LLVM's exception handling
6127system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006128is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvaf722b002012-12-07 10:36:55 +00006129code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6130defines values supplied by the personality function (``pers_fn``) upon
6131re-entry to the function. The ``resultval`` has the type ``resultty``.
6132
6133Arguments:
6134""""""""""
6135
6136This instruction takes a ``pers_fn`` value. This is the personality
6137function associated with the unwinding mechanism. The optional
6138``cleanup`` flag indicates that the landing pad block is a cleanup.
6139
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006140A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvaf722b002012-12-07 10:36:55 +00006141contains the global variable representing the "type" that may be caught
6142or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6143clause takes an array constant as its argument. Use
6144"``[0 x i8**] undef``" for a filter which cannot throw. The
6145'``landingpad``' instruction must contain *at least* one ``clause`` or
6146the ``cleanup`` flag.
6147
6148Semantics:
6149""""""""""
6150
6151The '``landingpad``' instruction defines the values which are set by the
6152personality function (``pers_fn``) upon re-entry to the function, and
6153therefore the "result type" of the ``landingpad`` instruction. As with
6154calling conventions, how the personality function results are
6155represented in LLVM IR is target specific.
6156
6157The clauses are applied in order from top to bottom. If two
6158``landingpad`` instructions are merged together through inlining, the
6159clauses from the calling function are appended to the list of clauses.
6160When the call stack is being unwound due to an exception being thrown,
6161the exception is compared against each ``clause`` in turn. If it doesn't
6162match any of the clauses, and the ``cleanup`` flag is not set, then
6163unwinding continues further up the call stack.
6164
6165The ``landingpad`` instruction has several restrictions:
6166
6167- A landing pad block is a basic block which is the unwind destination
6168 of an '``invoke``' instruction.
6169- A landing pad block must have a '``landingpad``' instruction as its
6170 first non-PHI instruction.
6171- There can be only one '``landingpad``' instruction within the landing
6172 pad block.
6173- A basic block that is not a landing pad block may not include a
6174 '``landingpad``' instruction.
6175- All '``landingpad``' instructions in a function must have the same
6176 personality function.
6177
6178Example:
6179""""""""
6180
6181.. code-block:: llvm
6182
6183 ;; A landing pad which can catch an integer.
6184 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6185 catch i8** @_ZTIi
6186 ;; A landing pad that is a cleanup.
6187 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6188 cleanup
6189 ;; A landing pad which can catch an integer and can only throw a double.
6190 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6191 catch i8** @_ZTIi
6192 filter [1 x i8**] [@_ZTId]
6193
6194.. _intrinsics:
6195
6196Intrinsic Functions
6197===================
6198
6199LLVM supports the notion of an "intrinsic function". These functions
6200have well known names and semantics and are required to follow certain
6201restrictions. Overall, these intrinsics represent an extension mechanism
6202for the LLVM language that does not require changing all of the
6203transformations in LLVM when adding to the language (or the bitcode
6204reader/writer, the parser, etc...).
6205
6206Intrinsic function names must all start with an "``llvm.``" prefix. This
6207prefix is reserved in LLVM for intrinsic names; thus, function names may
6208not begin with this prefix. Intrinsic functions must always be external
6209functions: you cannot define the body of intrinsic functions. Intrinsic
6210functions may only be used in call or invoke instructions: it is illegal
6211to take the address of an intrinsic function. Additionally, because
6212intrinsic functions are part of the LLVM language, it is required if any
6213are added that they be documented here.
6214
6215Some intrinsic functions can be overloaded, i.e., the intrinsic
6216represents a family of functions that perform the same operation but on
6217different data types. Because LLVM can represent over 8 million
6218different integer types, overloading is used commonly to allow an
6219intrinsic function to operate on any integer type. One or more of the
6220argument types or the result type can be overloaded to accept any
6221integer type. Argument types may also be defined as exactly matching a
6222previous argument's type or the result type. This allows an intrinsic
6223function which accepts multiple arguments, but needs all of them to be
6224of the same type, to only be overloaded with respect to a single
6225argument or the result.
6226
6227Overloaded intrinsics will have the names of its overloaded argument
6228types encoded into its function name, each preceded by a period. Only
6229those types which are overloaded result in a name suffix. Arguments
6230whose type is matched against another type do not. For example, the
6231``llvm.ctpop`` function can take an integer of any width and returns an
6232integer of exactly the same integer width. This leads to a family of
6233functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6234``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6235overloaded, and only one type suffix is required. Because the argument's
6236type is matched against the return type, it does not require its own
6237name suffix.
6238
6239To learn how to add an intrinsic function, please see the `Extending
6240LLVM Guide <ExtendingLLVM.html>`_.
6241
6242.. _int_varargs:
6243
6244Variable Argument Handling Intrinsics
6245-------------------------------------
6246
6247Variable argument support is defined in LLVM with the
6248:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6249functions. These functions are related to the similarly named macros
6250defined in the ``<stdarg.h>`` header file.
6251
6252All of these functions operate on arguments that use a target-specific
6253value type "``va_list``". The LLVM assembly language reference manual
6254does not define what this type is, so all transformations should be
6255prepared to handle these functions regardless of the type used.
6256
6257This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6258variable argument handling intrinsic functions are used.
6259
6260.. code-block:: llvm
6261
6262 define i32 @test(i32 %X, ...) {
6263 ; Initialize variable argument processing
6264 %ap = alloca i8*
6265 %ap2 = bitcast i8** %ap to i8*
6266 call void @llvm.va_start(i8* %ap2)
6267
6268 ; Read a single integer argument
6269 %tmp = va_arg i8** %ap, i32
6270
6271 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6272 %aq = alloca i8*
6273 %aq2 = bitcast i8** %aq to i8*
6274 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6275 call void @llvm.va_end(i8* %aq2)
6276
6277 ; Stop processing of arguments.
6278 call void @llvm.va_end(i8* %ap2)
6279 ret i32 %tmp
6280 }
6281
6282 declare void @llvm.va_start(i8*)
6283 declare void @llvm.va_copy(i8*, i8*)
6284 declare void @llvm.va_end(i8*)
6285
6286.. _int_va_start:
6287
6288'``llvm.va_start``' Intrinsic
6289^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6290
6291Syntax:
6292"""""""
6293
6294::
6295
6296 declare void %llvm.va_start(i8* <arglist>)
6297
6298Overview:
6299"""""""""
6300
6301The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6302subsequent use by ``va_arg``.
6303
6304Arguments:
6305""""""""""
6306
6307The argument is a pointer to a ``va_list`` element to initialize.
6308
6309Semantics:
6310""""""""""
6311
6312The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6313available in C. In a target-dependent way, it initializes the
6314``va_list`` element to which the argument points, so that the next call
6315to ``va_arg`` will produce the first variable argument passed to the
6316function. Unlike the C ``va_start`` macro, this intrinsic does not need
6317to know the last argument of the function as the compiler can figure
6318that out.
6319
6320'``llvm.va_end``' Intrinsic
6321^^^^^^^^^^^^^^^^^^^^^^^^^^^
6322
6323Syntax:
6324"""""""
6325
6326::
6327
6328 declare void @llvm.va_end(i8* <arglist>)
6329
6330Overview:
6331"""""""""
6332
6333The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6334initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6335
6336Arguments:
6337""""""""""
6338
6339The argument is a pointer to a ``va_list`` to destroy.
6340
6341Semantics:
6342""""""""""
6343
6344The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6345available in C. In a target-dependent way, it destroys the ``va_list``
6346element to which the argument points. Calls to
6347:ref:`llvm.va_start <int_va_start>` and
6348:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6349``llvm.va_end``.
6350
6351.. _int_va_copy:
6352
6353'``llvm.va_copy``' Intrinsic
6354^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6355
6356Syntax:
6357"""""""
6358
6359::
6360
6361 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6362
6363Overview:
6364"""""""""
6365
6366The '``llvm.va_copy``' intrinsic copies the current argument position
6367from the source argument list to the destination argument list.
6368
6369Arguments:
6370""""""""""
6371
6372The first argument is a pointer to a ``va_list`` element to initialize.
6373The second argument is a pointer to a ``va_list`` element to copy from.
6374
6375Semantics:
6376""""""""""
6377
6378The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6379available in C. In a target-dependent way, it copies the source
6380``va_list`` element into the destination ``va_list`` element. This
6381intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6382arbitrarily complex and require, for example, memory allocation.
6383
6384Accurate Garbage Collection Intrinsics
6385--------------------------------------
6386
6387LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6388(GC) requires the implementation and generation of these intrinsics.
6389These intrinsics allow identification of :ref:`GC roots on the
6390stack <int_gcroot>`, as well as garbage collector implementations that
6391require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6392Front-ends for type-safe garbage collected languages should generate
6393these intrinsics to make use of the LLVM garbage collectors. For more
6394details, see `Accurate Garbage Collection with
6395LLVM <GarbageCollection.html>`_.
6396
6397The garbage collection intrinsics only operate on objects in the generic
6398address space (address space zero).
6399
6400.. _int_gcroot:
6401
6402'``llvm.gcroot``' Intrinsic
6403^^^^^^^^^^^^^^^^^^^^^^^^^^^
6404
6405Syntax:
6406"""""""
6407
6408::
6409
6410 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6411
6412Overview:
6413"""""""""
6414
6415The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6416the code generator, and allows some metadata to be associated with it.
6417
6418Arguments:
6419""""""""""
6420
6421The first argument specifies the address of a stack object that contains
6422the root pointer. The second pointer (which must be either a constant or
6423a global value address) contains the meta-data to be associated with the
6424root.
6425
6426Semantics:
6427""""""""""
6428
6429At runtime, a call to this intrinsic stores a null pointer into the
6430"ptrloc" location. At compile-time, the code generator generates
6431information to allow the runtime to find the pointer at GC safe points.
6432The '``llvm.gcroot``' intrinsic may only be used in a function which
6433:ref:`specifies a GC algorithm <gc>`.
6434
6435.. _int_gcread:
6436
6437'``llvm.gcread``' Intrinsic
6438^^^^^^^^^^^^^^^^^^^^^^^^^^^
6439
6440Syntax:
6441"""""""
6442
6443::
6444
6445 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6446
6447Overview:
6448"""""""""
6449
6450The '``llvm.gcread``' intrinsic identifies reads of references from heap
6451locations, allowing garbage collector implementations that require read
6452barriers.
6453
6454Arguments:
6455""""""""""
6456
6457The second argument is the address to read from, which should be an
6458address allocated from the garbage collector. The first object is a
6459pointer to the start of the referenced object, if needed by the language
6460runtime (otherwise null).
6461
6462Semantics:
6463""""""""""
6464
6465The '``llvm.gcread``' intrinsic has the same semantics as a load
6466instruction, but may be replaced with substantially more complex code by
6467the garbage collector runtime, as needed. The '``llvm.gcread``'
6468intrinsic may only be used in a function which :ref:`specifies a GC
6469algorithm <gc>`.
6470
6471.. _int_gcwrite:
6472
6473'``llvm.gcwrite``' Intrinsic
6474^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6475
6476Syntax:
6477"""""""
6478
6479::
6480
6481 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6482
6483Overview:
6484"""""""""
6485
6486The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6487locations, allowing garbage collector implementations that require write
6488barriers (such as generational or reference counting collectors).
6489
6490Arguments:
6491""""""""""
6492
6493The first argument is the reference to store, the second is the start of
6494the object to store it to, and the third is the address of the field of
6495Obj to store to. If the runtime does not require a pointer to the
6496object, Obj may be null.
6497
6498Semantics:
6499""""""""""
6500
6501The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6502instruction, but may be replaced with substantially more complex code by
6503the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6504intrinsic may only be used in a function which :ref:`specifies a GC
6505algorithm <gc>`.
6506
6507Code Generator Intrinsics
6508-------------------------
6509
6510These intrinsics are provided by LLVM to expose special features that
6511may only be implemented with code generator support.
6512
6513'``llvm.returnaddress``' Intrinsic
6514^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6515
6516Syntax:
6517"""""""
6518
6519::
6520
6521 declare i8 *@llvm.returnaddress(i32 <level>)
6522
6523Overview:
6524"""""""""
6525
6526The '``llvm.returnaddress``' intrinsic attempts to compute a
6527target-specific value indicating the return address of the current
6528function or one of its callers.
6529
6530Arguments:
6531""""""""""
6532
6533The argument to this intrinsic indicates which function to return the
6534address for. Zero indicates the calling function, one indicates its
6535caller, etc. The argument is **required** to be a constant integer
6536value.
6537
6538Semantics:
6539""""""""""
6540
6541The '``llvm.returnaddress``' intrinsic either returns a pointer
6542indicating the return address of the specified call frame, or zero if it
6543cannot be identified. The value returned by this intrinsic is likely to
6544be incorrect or 0 for arguments other than zero, so it should only be
6545used for debugging purposes.
6546
6547Note that calling this intrinsic does not prevent function inlining or
6548other aggressive transformations, so the value returned may not be that
6549of the obvious source-language caller.
6550
6551'``llvm.frameaddress``' Intrinsic
6552^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6553
6554Syntax:
6555"""""""
6556
6557::
6558
6559 declare i8* @llvm.frameaddress(i32 <level>)
6560
6561Overview:
6562"""""""""
6563
6564The '``llvm.frameaddress``' intrinsic attempts to return the
6565target-specific frame pointer value for the specified stack frame.
6566
6567Arguments:
6568""""""""""
6569
6570The argument to this intrinsic indicates which function to return the
6571frame pointer for. Zero indicates the calling function, one indicates
6572its caller, etc. The argument is **required** to be a constant integer
6573value.
6574
6575Semantics:
6576""""""""""
6577
6578The '``llvm.frameaddress``' intrinsic either returns a pointer
6579indicating the frame address of the specified call frame, or zero if it
6580cannot be identified. The value returned by this intrinsic is likely to
6581be incorrect or 0 for arguments other than zero, so it should only be
6582used for debugging purposes.
6583
6584Note that calling this intrinsic does not prevent function inlining or
6585other aggressive transformations, so the value returned may not be that
6586of the obvious source-language caller.
6587
6588.. _int_stacksave:
6589
6590'``llvm.stacksave``' Intrinsic
6591^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6592
6593Syntax:
6594"""""""
6595
6596::
6597
6598 declare i8* @llvm.stacksave()
6599
6600Overview:
6601"""""""""
6602
6603The '``llvm.stacksave``' intrinsic is used to remember the current state
6604of the function stack, for use with
6605:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6606implementing language features like scoped automatic variable sized
6607arrays in C99.
6608
6609Semantics:
6610""""""""""
6611
6612This intrinsic returns a opaque pointer value that can be passed to
6613:ref:`llvm.stackrestore <int_stackrestore>`. When an
6614``llvm.stackrestore`` intrinsic is executed with a value saved from
6615``llvm.stacksave``, it effectively restores the state of the stack to
6616the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6617practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6618were allocated after the ``llvm.stacksave`` was executed.
6619
6620.. _int_stackrestore:
6621
6622'``llvm.stackrestore``' Intrinsic
6623^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6624
6625Syntax:
6626"""""""
6627
6628::
6629
6630 declare void @llvm.stackrestore(i8* %ptr)
6631
6632Overview:
6633"""""""""
6634
6635The '``llvm.stackrestore``' intrinsic is used to restore the state of
6636the function stack to the state it was in when the corresponding
6637:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6638useful for implementing language features like scoped automatic variable
6639sized arrays in C99.
6640
6641Semantics:
6642""""""""""
6643
6644See the description for :ref:`llvm.stacksave <int_stacksave>`.
6645
6646'``llvm.prefetch``' Intrinsic
6647^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6648
6649Syntax:
6650"""""""
6651
6652::
6653
6654 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6655
6656Overview:
6657"""""""""
6658
6659The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6660insert a prefetch instruction if supported; otherwise, it is a noop.
6661Prefetches have no effect on the behavior of the program but can change
6662its performance characteristics.
6663
6664Arguments:
6665""""""""""
6666
6667``address`` is the address to be prefetched, ``rw`` is the specifier
6668determining if the fetch should be for a read (0) or write (1), and
6669``locality`` is a temporal locality specifier ranging from (0) - no
6670locality, to (3) - extremely local keep in cache. The ``cache type``
6671specifies whether the prefetch is performed on the data (1) or
6672instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6673arguments must be constant integers.
6674
6675Semantics:
6676""""""""""
6677
6678This intrinsic does not modify the behavior of the program. In
6679particular, prefetches cannot trap and do not produce a value. On
6680targets that support this intrinsic, the prefetch can provide hints to
6681the processor cache for better performance.
6682
6683'``llvm.pcmarker``' Intrinsic
6684^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6685
6686Syntax:
6687"""""""
6688
6689::
6690
6691 declare void @llvm.pcmarker(i32 <id>)
6692
6693Overview:
6694"""""""""
6695
6696The '``llvm.pcmarker``' intrinsic is a method to export a Program
6697Counter (PC) in a region of code to simulators and other tools. The
6698method is target specific, but it is expected that the marker will use
6699exported symbols to transmit the PC of the marker. The marker makes no
6700guarantees that it will remain with any specific instruction after
6701optimizations. It is possible that the presence of a marker will inhibit
6702optimizations. The intended use is to be inserted after optimizations to
6703allow correlations of simulation runs.
6704
6705Arguments:
6706""""""""""
6707
6708``id`` is a numerical id identifying the marker.
6709
6710Semantics:
6711""""""""""
6712
6713This intrinsic does not modify the behavior of the program. Backends
6714that do not support this intrinsic may ignore it.
6715
6716'``llvm.readcyclecounter``' Intrinsic
6717^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6718
6719Syntax:
6720"""""""
6721
6722::
6723
6724 declare i64 @llvm.readcyclecounter()
6725
6726Overview:
6727"""""""""
6728
6729The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6730counter register (or similar low latency, high accuracy clocks) on those
6731targets that support it. On X86, it should map to RDTSC. On Alpha, it
6732should map to RPCC. As the backing counters overflow quickly (on the
6733order of 9 seconds on alpha), this should only be used for small
6734timings.
6735
6736Semantics:
6737""""""""""
6738
6739When directly supported, reading the cycle counter should not modify any
6740memory. Implementations are allowed to either return a application
6741specific value or a system wide value. On backends without support, this
6742is lowered to a constant 0.
6743
Tim Northover5a02fc42013-05-23 19:11:20 +00006744Note that runtime support may be conditional on the privilege-level code is
6745running at and the host platform.
6746
Sean Silvaf722b002012-12-07 10:36:55 +00006747Standard C Library Intrinsics
6748-----------------------------
6749
6750LLVM provides intrinsics for a few important standard C library
6751functions. These intrinsics allow source-language front-ends to pass
6752information about the alignment of the pointer arguments to the code
6753generator, providing opportunity for more efficient code generation.
6754
6755.. _int_memcpy:
6756
6757'``llvm.memcpy``' Intrinsic
6758^^^^^^^^^^^^^^^^^^^^^^^^^^^
6759
6760Syntax:
6761"""""""
6762
6763This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6764integer bit width and for different address spaces. Not all targets
6765support all bit widths however.
6766
6767::
6768
6769 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6770 i32 <len>, i32 <align>, i1 <isvolatile>)
6771 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6772 i64 <len>, i32 <align>, i1 <isvolatile>)
6773
6774Overview:
6775"""""""""
6776
6777The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6778source location to the destination location.
6779
6780Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6781intrinsics do not return a value, takes extra alignment/isvolatile
6782arguments and the pointers can be in specified address spaces.
6783
6784Arguments:
6785""""""""""
6786
6787The first argument is a pointer to the destination, the second is a
6788pointer to the source. The third argument is an integer argument
6789specifying the number of bytes to copy, the fourth argument is the
6790alignment of the source and destination locations, and the fifth is a
6791boolean indicating a volatile access.
6792
6793If the call to this intrinsic has an alignment value that is not 0 or 1,
6794then the caller guarantees that both the source and destination pointers
6795are aligned to that boundary.
6796
6797If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6798a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6799very cleanly specified and it is unwise to depend on it.
6800
6801Semantics:
6802""""""""""
6803
6804The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6805source location to the destination location, which are not allowed to
6806overlap. It copies "len" bytes of memory over. If the argument is known
6807to be aligned to some boundary, this can be specified as the fourth
6808argument, otherwise it should be set to 0 or 1.
6809
6810'``llvm.memmove``' Intrinsic
6811^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6812
6813Syntax:
6814"""""""
6815
6816This is an overloaded intrinsic. You can use llvm.memmove on any integer
6817bit width and for different address space. Not all targets support all
6818bit widths however.
6819
6820::
6821
6822 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6823 i32 <len>, i32 <align>, i1 <isvolatile>)
6824 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6825 i64 <len>, i32 <align>, i1 <isvolatile>)
6826
6827Overview:
6828"""""""""
6829
6830The '``llvm.memmove.*``' intrinsics move a block of memory from the
6831source location to the destination location. It is similar to the
6832'``llvm.memcpy``' intrinsic but allows the two memory locations to
6833overlap.
6834
6835Note that, unlike the standard libc function, the ``llvm.memmove.*``
6836intrinsics do not return a value, takes extra alignment/isvolatile
6837arguments and the pointers can be in specified address spaces.
6838
6839Arguments:
6840""""""""""
6841
6842The first argument is a pointer to the destination, the second is a
6843pointer to the source. The third argument is an integer argument
6844specifying the number of bytes to copy, the fourth argument is the
6845alignment of the source and destination locations, and the fifth is a
6846boolean indicating a volatile access.
6847
6848If the call to this intrinsic has an alignment value that is not 0 or 1,
6849then the caller guarantees that the source and destination pointers are
6850aligned to that boundary.
6851
6852If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6853is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6854not very cleanly specified and it is unwise to depend on it.
6855
6856Semantics:
6857""""""""""
6858
6859The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6860source location to the destination location, which may overlap. It
6861copies "len" bytes of memory over. If the argument is known to be
6862aligned to some boundary, this can be specified as the fourth argument,
6863otherwise it should be set to 0 or 1.
6864
6865'``llvm.memset.*``' Intrinsics
6866^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6867
6868Syntax:
6869"""""""
6870
6871This is an overloaded intrinsic. You can use llvm.memset on any integer
6872bit width and for different address spaces. However, not all targets
6873support all bit widths.
6874
6875::
6876
6877 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6878 i32 <len>, i32 <align>, i1 <isvolatile>)
6879 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6880 i64 <len>, i32 <align>, i1 <isvolatile>)
6881
6882Overview:
6883"""""""""
6884
6885The '``llvm.memset.*``' intrinsics fill a block of memory with a
6886particular byte value.
6887
6888Note that, unlike the standard libc function, the ``llvm.memset``
6889intrinsic does not return a value and takes extra alignment/volatile
6890arguments. Also, the destination can be in an arbitrary address space.
6891
6892Arguments:
6893""""""""""
6894
6895The first argument is a pointer to the destination to fill, the second
6896is the byte value with which to fill it, the third argument is an
6897integer argument specifying the number of bytes to fill, and the fourth
6898argument is the known alignment of the destination location.
6899
6900If the call to this intrinsic has an alignment value that is not 0 or 1,
6901then the caller guarantees that the destination pointer is aligned to
6902that boundary.
6903
6904If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
6905a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6906very cleanly specified and it is unwise to depend on it.
6907
6908Semantics:
6909""""""""""
6910
6911The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
6912at the destination location. If the argument is known to be aligned to
6913some boundary, this can be specified as the fourth argument, otherwise
6914it should be set to 0 or 1.
6915
6916'``llvm.sqrt.*``' Intrinsic
6917^^^^^^^^^^^^^^^^^^^^^^^^^^^
6918
6919Syntax:
6920"""""""
6921
6922This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
6923floating point or vector of floating point type. Not all targets support
6924all types however.
6925
6926::
6927
6928 declare float @llvm.sqrt.f32(float %Val)
6929 declare double @llvm.sqrt.f64(double %Val)
6930 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6931 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6932 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
6933
6934Overview:
6935"""""""""
6936
6937The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
6938returning the same value as the libm '``sqrt``' functions would. Unlike
6939``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
6940negative numbers other than -0.0 (which allows for better optimization,
6941because there is no need to worry about errno being set).
6942``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
6943
6944Arguments:
6945""""""""""
6946
6947The argument and return value are floating point numbers of the same
6948type.
6949
6950Semantics:
6951""""""""""
6952
6953This function returns the sqrt of the specified operand if it is a
6954nonnegative floating point number.
6955
6956'``llvm.powi.*``' Intrinsic
6957^^^^^^^^^^^^^^^^^^^^^^^^^^^
6958
6959Syntax:
6960"""""""
6961
6962This is an overloaded intrinsic. You can use ``llvm.powi`` on any
6963floating point or vector of floating point type. Not all targets support
6964all types however.
6965
6966::
6967
6968 declare float @llvm.powi.f32(float %Val, i32 %power)
6969 declare double @llvm.powi.f64(double %Val, i32 %power)
6970 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6971 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6972 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
6973
6974Overview:
6975"""""""""
6976
6977The '``llvm.powi.*``' intrinsics return the first operand raised to the
6978specified (positive or negative) power. The order of evaluation of
6979multiplications is not defined. When a vector of floating point type is
6980used, the second argument remains a scalar integer value.
6981
6982Arguments:
6983""""""""""
6984
6985The second argument is an integer power, and the first is a value to
6986raise to that power.
6987
6988Semantics:
6989""""""""""
6990
6991This function returns the first value raised to the second power with an
6992unspecified sequence of rounding operations.
6993
6994'``llvm.sin.*``' Intrinsic
6995^^^^^^^^^^^^^^^^^^^^^^^^^^
6996
6997Syntax:
6998"""""""
6999
7000This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7001floating point or vector of floating point type. Not all targets support
7002all types however.
7003
7004::
7005
7006 declare float @llvm.sin.f32(float %Val)
7007 declare double @llvm.sin.f64(double %Val)
7008 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7009 declare fp128 @llvm.sin.f128(fp128 %Val)
7010 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7011
7012Overview:
7013"""""""""
7014
7015The '``llvm.sin.*``' intrinsics return the sine of the operand.
7016
7017Arguments:
7018""""""""""
7019
7020The argument and return value are floating point numbers of the same
7021type.
7022
7023Semantics:
7024""""""""""
7025
7026This function returns the sine of the specified operand, returning the
7027same values as the libm ``sin`` functions would, and handles error
7028conditions in the same way.
7029
7030'``llvm.cos.*``' Intrinsic
7031^^^^^^^^^^^^^^^^^^^^^^^^^^
7032
7033Syntax:
7034"""""""
7035
7036This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7037floating point or vector of floating point type. Not all targets support
7038all types however.
7039
7040::
7041
7042 declare float @llvm.cos.f32(float %Val)
7043 declare double @llvm.cos.f64(double %Val)
7044 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7045 declare fp128 @llvm.cos.f128(fp128 %Val)
7046 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7047
7048Overview:
7049"""""""""
7050
7051The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7052
7053Arguments:
7054""""""""""
7055
7056The argument and return value are floating point numbers of the same
7057type.
7058
7059Semantics:
7060""""""""""
7061
7062This function returns the cosine of the specified operand, returning the
7063same values as the libm ``cos`` functions would, and handles error
7064conditions in the same way.
7065
7066'``llvm.pow.*``' Intrinsic
7067^^^^^^^^^^^^^^^^^^^^^^^^^^
7068
7069Syntax:
7070"""""""
7071
7072This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7073floating point or vector of floating point type. Not all targets support
7074all types however.
7075
7076::
7077
7078 declare float @llvm.pow.f32(float %Val, float %Power)
7079 declare double @llvm.pow.f64(double %Val, double %Power)
7080 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7081 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7082 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7083
7084Overview:
7085"""""""""
7086
7087The '``llvm.pow.*``' intrinsics return the first operand raised to the
7088specified (positive or negative) power.
7089
7090Arguments:
7091""""""""""
7092
7093The second argument is a floating point power, and the first is a value
7094to raise to that power.
7095
7096Semantics:
7097""""""""""
7098
7099This function returns the first value raised to the second power,
7100returning the same values as the libm ``pow`` functions would, and
7101handles error conditions in the same way.
7102
7103'``llvm.exp.*``' Intrinsic
7104^^^^^^^^^^^^^^^^^^^^^^^^^^
7105
7106Syntax:
7107"""""""
7108
7109This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7110floating point or vector of floating point type. Not all targets support
7111all types however.
7112
7113::
7114
7115 declare float @llvm.exp.f32(float %Val)
7116 declare double @llvm.exp.f64(double %Val)
7117 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7118 declare fp128 @llvm.exp.f128(fp128 %Val)
7119 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7120
7121Overview:
7122"""""""""
7123
7124The '``llvm.exp.*``' intrinsics perform the exp function.
7125
7126Arguments:
7127""""""""""
7128
7129The argument and return value are floating point numbers of the same
7130type.
7131
7132Semantics:
7133""""""""""
7134
7135This function returns the same values as the libm ``exp`` functions
7136would, and handles error conditions in the same way.
7137
7138'``llvm.exp2.*``' Intrinsic
7139^^^^^^^^^^^^^^^^^^^^^^^^^^^
7140
7141Syntax:
7142"""""""
7143
7144This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7145floating point or vector of floating point type. Not all targets support
7146all types however.
7147
7148::
7149
7150 declare float @llvm.exp2.f32(float %Val)
7151 declare double @llvm.exp2.f64(double %Val)
7152 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7153 declare fp128 @llvm.exp2.f128(fp128 %Val)
7154 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7155
7156Overview:
7157"""""""""
7158
7159The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7160
7161Arguments:
7162""""""""""
7163
7164The argument and return value are floating point numbers of the same
7165type.
7166
7167Semantics:
7168""""""""""
7169
7170This function returns the same values as the libm ``exp2`` functions
7171would, and handles error conditions in the same way.
7172
7173'``llvm.log.*``' Intrinsic
7174^^^^^^^^^^^^^^^^^^^^^^^^^^
7175
7176Syntax:
7177"""""""
7178
7179This is an overloaded intrinsic. You can use ``llvm.log`` on any
7180floating point or vector of floating point type. Not all targets support
7181all types however.
7182
7183::
7184
7185 declare float @llvm.log.f32(float %Val)
7186 declare double @llvm.log.f64(double %Val)
7187 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7188 declare fp128 @llvm.log.f128(fp128 %Val)
7189 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7190
7191Overview:
7192"""""""""
7193
7194The '``llvm.log.*``' intrinsics perform the log function.
7195
7196Arguments:
7197""""""""""
7198
7199The argument and return value are floating point numbers of the same
7200type.
7201
7202Semantics:
7203""""""""""
7204
7205This function returns the same values as the libm ``log`` functions
7206would, and handles error conditions in the same way.
7207
7208'``llvm.log10.*``' Intrinsic
7209^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7210
7211Syntax:
7212"""""""
7213
7214This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7215floating point or vector of floating point type. Not all targets support
7216all types however.
7217
7218::
7219
7220 declare float @llvm.log10.f32(float %Val)
7221 declare double @llvm.log10.f64(double %Val)
7222 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7223 declare fp128 @llvm.log10.f128(fp128 %Val)
7224 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7225
7226Overview:
7227"""""""""
7228
7229The '``llvm.log10.*``' intrinsics perform the log10 function.
7230
7231Arguments:
7232""""""""""
7233
7234The argument and return value are floating point numbers of the same
7235type.
7236
7237Semantics:
7238""""""""""
7239
7240This function returns the same values as the libm ``log10`` functions
7241would, and handles error conditions in the same way.
7242
7243'``llvm.log2.*``' Intrinsic
7244^^^^^^^^^^^^^^^^^^^^^^^^^^^
7245
7246Syntax:
7247"""""""
7248
7249This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7250floating point or vector of floating point type. Not all targets support
7251all types however.
7252
7253::
7254
7255 declare float @llvm.log2.f32(float %Val)
7256 declare double @llvm.log2.f64(double %Val)
7257 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7258 declare fp128 @llvm.log2.f128(fp128 %Val)
7259 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7260
7261Overview:
7262"""""""""
7263
7264The '``llvm.log2.*``' intrinsics perform the log2 function.
7265
7266Arguments:
7267""""""""""
7268
7269The argument and return value are floating point numbers of the same
7270type.
7271
7272Semantics:
7273""""""""""
7274
7275This function returns the same values as the libm ``log2`` functions
7276would, and handles error conditions in the same way.
7277
7278'``llvm.fma.*``' Intrinsic
7279^^^^^^^^^^^^^^^^^^^^^^^^^^
7280
7281Syntax:
7282"""""""
7283
7284This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7285floating point or vector of floating point type. Not all targets support
7286all types however.
7287
7288::
7289
7290 declare float @llvm.fma.f32(float %a, float %b, float %c)
7291 declare double @llvm.fma.f64(double %a, double %b, double %c)
7292 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7293 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7294 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7295
7296Overview:
7297"""""""""
7298
7299The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7300operation.
7301
7302Arguments:
7303""""""""""
7304
7305The argument and return value are floating point numbers of the same
7306type.
7307
7308Semantics:
7309""""""""""
7310
7311This function returns the same values as the libm ``fma`` functions
7312would.
7313
7314'``llvm.fabs.*``' Intrinsic
7315^^^^^^^^^^^^^^^^^^^^^^^^^^^
7316
7317Syntax:
7318"""""""
7319
7320This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7321floating point or vector of floating point type. Not all targets support
7322all types however.
7323
7324::
7325
7326 declare float @llvm.fabs.f32(float %Val)
7327 declare double @llvm.fabs.f64(double %Val)
7328 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7329 declare fp128 @llvm.fabs.f128(fp128 %Val)
7330 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7331
7332Overview:
7333"""""""""
7334
7335The '``llvm.fabs.*``' intrinsics return the absolute value of the
7336operand.
7337
7338Arguments:
7339""""""""""
7340
7341The argument and return value are floating point numbers of the same
7342type.
7343
7344Semantics:
7345""""""""""
7346
7347This function returns the same values as the libm ``fabs`` functions
7348would, and handles error conditions in the same way.
7349
7350'``llvm.floor.*``' Intrinsic
7351^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7352
7353Syntax:
7354"""""""
7355
7356This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7357floating point or vector of floating point type. Not all targets support
7358all types however.
7359
7360::
7361
7362 declare float @llvm.floor.f32(float %Val)
7363 declare double @llvm.floor.f64(double %Val)
7364 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7365 declare fp128 @llvm.floor.f128(fp128 %Val)
7366 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7367
7368Overview:
7369"""""""""
7370
7371The '``llvm.floor.*``' intrinsics return the floor of the operand.
7372
7373Arguments:
7374""""""""""
7375
7376The argument and return value are floating point numbers of the same
7377type.
7378
7379Semantics:
7380""""""""""
7381
7382This function returns the same values as the libm ``floor`` functions
7383would, and handles error conditions in the same way.
7384
7385'``llvm.ceil.*``' Intrinsic
7386^^^^^^^^^^^^^^^^^^^^^^^^^^^
7387
7388Syntax:
7389"""""""
7390
7391This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7392floating point or vector of floating point type. Not all targets support
7393all types however.
7394
7395::
7396
7397 declare float @llvm.ceil.f32(float %Val)
7398 declare double @llvm.ceil.f64(double %Val)
7399 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7400 declare fp128 @llvm.ceil.f128(fp128 %Val)
7401 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7402
7403Overview:
7404"""""""""
7405
7406The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7407
7408Arguments:
7409""""""""""
7410
7411The argument and return value are floating point numbers of the same
7412type.
7413
7414Semantics:
7415""""""""""
7416
7417This function returns the same values as the libm ``ceil`` functions
7418would, and handles error conditions in the same way.
7419
7420'``llvm.trunc.*``' Intrinsic
7421^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7422
7423Syntax:
7424"""""""
7425
7426This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7427floating point or vector of floating point type. Not all targets support
7428all types however.
7429
7430::
7431
7432 declare float @llvm.trunc.f32(float %Val)
7433 declare double @llvm.trunc.f64(double %Val)
7434 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7435 declare fp128 @llvm.trunc.f128(fp128 %Val)
7436 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7437
7438Overview:
7439"""""""""
7440
7441The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7442nearest integer not larger in magnitude than the operand.
7443
7444Arguments:
7445""""""""""
7446
7447The argument and return value are floating point numbers of the same
7448type.
7449
7450Semantics:
7451""""""""""
7452
7453This function returns the same values as the libm ``trunc`` functions
7454would, and handles error conditions in the same way.
7455
7456'``llvm.rint.*``' Intrinsic
7457^^^^^^^^^^^^^^^^^^^^^^^^^^^
7458
7459Syntax:
7460"""""""
7461
7462This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7463floating point or vector of floating point type. Not all targets support
7464all types however.
7465
7466::
7467
7468 declare float @llvm.rint.f32(float %Val)
7469 declare double @llvm.rint.f64(double %Val)
7470 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7471 declare fp128 @llvm.rint.f128(fp128 %Val)
7472 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7473
7474Overview:
7475"""""""""
7476
7477The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7478nearest integer. It may raise an inexact floating-point exception if the
7479operand isn't an integer.
7480
7481Arguments:
7482""""""""""
7483
7484The argument and return value are floating point numbers of the same
7485type.
7486
7487Semantics:
7488""""""""""
7489
7490This function returns the same values as the libm ``rint`` functions
7491would, and handles error conditions in the same way.
7492
7493'``llvm.nearbyint.*``' Intrinsic
7494^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7495
7496Syntax:
7497"""""""
7498
7499This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7500floating point or vector of floating point type. Not all targets support
7501all types however.
7502
7503::
7504
7505 declare float @llvm.nearbyint.f32(float %Val)
7506 declare double @llvm.nearbyint.f64(double %Val)
7507 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7508 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7509 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7510
7511Overview:
7512"""""""""
7513
7514The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7515nearest integer.
7516
7517Arguments:
7518""""""""""
7519
7520The argument and return value are floating point numbers of the same
7521type.
7522
7523Semantics:
7524""""""""""
7525
7526This function returns the same values as the libm ``nearbyint``
7527functions would, and handles error conditions in the same way.
7528
7529Bit Manipulation Intrinsics
7530---------------------------
7531
7532LLVM provides intrinsics for a few important bit manipulation
7533operations. These allow efficient code generation for some algorithms.
7534
7535'``llvm.bswap.*``' Intrinsics
7536^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7537
7538Syntax:
7539"""""""
7540
7541This is an overloaded intrinsic function. You can use bswap on any
7542integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7543
7544::
7545
7546 declare i16 @llvm.bswap.i16(i16 <id>)
7547 declare i32 @llvm.bswap.i32(i32 <id>)
7548 declare i64 @llvm.bswap.i64(i64 <id>)
7549
7550Overview:
7551"""""""""
7552
7553The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7554values with an even number of bytes (positive multiple of 16 bits).
7555These are useful for performing operations on data that is not in the
7556target's native byte order.
7557
7558Semantics:
7559""""""""""
7560
7561The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7562and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7563intrinsic returns an i32 value that has the four bytes of the input i32
7564swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7565returned i32 will have its bytes in 3, 2, 1, 0 order. The
7566``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7567concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7568respectively).
7569
7570'``llvm.ctpop.*``' Intrinsic
7571^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7572
7573Syntax:
7574"""""""
7575
7576This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7577bit width, or on any vector with integer elements. Not all targets
7578support all bit widths or vector types, however.
7579
7580::
7581
7582 declare i8 @llvm.ctpop.i8(i8 <src>)
7583 declare i16 @llvm.ctpop.i16(i16 <src>)
7584 declare i32 @llvm.ctpop.i32(i32 <src>)
7585 declare i64 @llvm.ctpop.i64(i64 <src>)
7586 declare i256 @llvm.ctpop.i256(i256 <src>)
7587 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7588
7589Overview:
7590"""""""""
7591
7592The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7593in a value.
7594
7595Arguments:
7596""""""""""
7597
7598The only argument is the value to be counted. The argument may be of any
7599integer type, or a vector with integer elements. The return type must
7600match the argument type.
7601
7602Semantics:
7603""""""""""
7604
7605The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7606each element of a vector.
7607
7608'``llvm.ctlz.*``' Intrinsic
7609^^^^^^^^^^^^^^^^^^^^^^^^^^^
7610
7611Syntax:
7612"""""""
7613
7614This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7615integer bit width, or any vector whose elements are integers. Not all
7616targets support all bit widths or vector types, however.
7617
7618::
7619
7620 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7621 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7622 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7623 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7624 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7625 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7626
7627Overview:
7628"""""""""
7629
7630The '``llvm.ctlz``' family of intrinsic functions counts the number of
7631leading zeros in a variable.
7632
7633Arguments:
7634""""""""""
7635
7636The first argument is the value to be counted. This argument may be of
7637any integer type, or a vectory with integer element type. The return
7638type must match the first argument type.
7639
7640The second argument must be a constant and is a flag to indicate whether
7641the intrinsic should ensure that a zero as the first argument produces a
7642defined result. Historically some architectures did not provide a
7643defined result for zero values as efficiently, and many algorithms are
7644now predicated on avoiding zero-value inputs.
7645
7646Semantics:
7647""""""""""
7648
7649The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7650zeros in a variable, or within each element of the vector. If
7651``src == 0`` then the result is the size in bits of the type of ``src``
7652if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7653``llvm.ctlz(i32 2) = 30``.
7654
7655'``llvm.cttz.*``' Intrinsic
7656^^^^^^^^^^^^^^^^^^^^^^^^^^^
7657
7658Syntax:
7659"""""""
7660
7661This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7662integer bit width, or any vector of integer elements. Not all targets
7663support all bit widths or vector types, however.
7664
7665::
7666
7667 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7668 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7669 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7670 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7671 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7672 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7673
7674Overview:
7675"""""""""
7676
7677The '``llvm.cttz``' family of intrinsic functions counts the number of
7678trailing zeros.
7679
7680Arguments:
7681""""""""""
7682
7683The first argument is the value to be counted. This argument may be of
7684any integer type, or a vectory with integer element type. The return
7685type must match the first argument type.
7686
7687The second argument must be a constant and is a flag to indicate whether
7688the intrinsic should ensure that a zero as the first argument produces a
7689defined result. Historically some architectures did not provide a
7690defined result for zero values as efficiently, and many algorithms are
7691now predicated on avoiding zero-value inputs.
7692
7693Semantics:
7694""""""""""
7695
7696The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7697zeros in a variable, or within each element of a vector. If ``src == 0``
7698then the result is the size in bits of the type of ``src`` if
7699``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7700``llvm.cttz(2) = 1``.
7701
7702Arithmetic with Overflow Intrinsics
7703-----------------------------------
7704
7705LLVM provides intrinsics for some arithmetic with overflow operations.
7706
7707'``llvm.sadd.with.overflow.*``' Intrinsics
7708^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7709
7710Syntax:
7711"""""""
7712
7713This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7714on any integer bit width.
7715
7716::
7717
7718 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7719 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7720 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7721
7722Overview:
7723"""""""""
7724
7725The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7726a signed addition of the two arguments, and indicate whether an overflow
7727occurred during the signed summation.
7728
7729Arguments:
7730""""""""""
7731
7732The arguments (%a and %b) and the first element of the result structure
7733may be of integer types of any bit width, but they must have the same
7734bit width. The second element of the result structure must be of type
7735``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7736addition.
7737
7738Semantics:
7739""""""""""
7740
7741The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007742a signed addition of the two variables. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007743first element of which is the signed summation, and the second element
7744of which is a bit specifying if the signed summation resulted in an
7745overflow.
7746
7747Examples:
7748"""""""""
7749
7750.. code-block:: llvm
7751
7752 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7753 %sum = extractvalue {i32, i1} %res, 0
7754 %obit = extractvalue {i32, i1} %res, 1
7755 br i1 %obit, label %overflow, label %normal
7756
7757'``llvm.uadd.with.overflow.*``' Intrinsics
7758^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7759
7760Syntax:
7761"""""""
7762
7763This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7764on any integer bit width.
7765
7766::
7767
7768 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7769 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7770 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7771
7772Overview:
7773"""""""""
7774
7775The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7776an unsigned addition of the two arguments, and indicate whether a carry
7777occurred during the unsigned summation.
7778
7779Arguments:
7780""""""""""
7781
7782The arguments (%a and %b) and the first element of the result structure
7783may be of integer types of any bit width, but they must have the same
7784bit width. The second element of the result structure must be of type
7785``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7786addition.
7787
7788Semantics:
7789""""""""""
7790
7791The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007792an unsigned addition of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007793first element of which is the sum, and the second element of which is a
7794bit specifying if the unsigned summation resulted in a carry.
7795
7796Examples:
7797"""""""""
7798
7799.. code-block:: llvm
7800
7801 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7802 %sum = extractvalue {i32, i1} %res, 0
7803 %obit = extractvalue {i32, i1} %res, 1
7804 br i1 %obit, label %carry, label %normal
7805
7806'``llvm.ssub.with.overflow.*``' Intrinsics
7807^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7808
7809Syntax:
7810"""""""
7811
7812This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
7813on any integer bit width.
7814
7815::
7816
7817 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7818 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7819 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7820
7821Overview:
7822"""""""""
7823
7824The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7825a signed subtraction of the two arguments, and indicate whether an
7826overflow occurred during the signed subtraction.
7827
7828Arguments:
7829""""""""""
7830
7831The arguments (%a and %b) and the first element of the result structure
7832may be of integer types of any bit width, but they must have the same
7833bit width. The second element of the result structure must be of type
7834``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7835subtraction.
7836
7837Semantics:
7838""""""""""
7839
7840The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007841a signed subtraction of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007842first element of which is the subtraction, and the second element of
7843which is a bit specifying if the signed subtraction resulted in an
7844overflow.
7845
7846Examples:
7847"""""""""
7848
7849.. code-block:: llvm
7850
7851 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7852 %sum = extractvalue {i32, i1} %res, 0
7853 %obit = extractvalue {i32, i1} %res, 1
7854 br i1 %obit, label %overflow, label %normal
7855
7856'``llvm.usub.with.overflow.*``' Intrinsics
7857^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7858
7859Syntax:
7860"""""""
7861
7862This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
7863on any integer bit width.
7864
7865::
7866
7867 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7868 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7869 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7870
7871Overview:
7872"""""""""
7873
7874The '``llvm.usub.with.overflow``' family of intrinsic functions perform
7875an unsigned subtraction of the two arguments, and indicate whether an
7876overflow occurred during the unsigned subtraction.
7877
7878Arguments:
7879""""""""""
7880
7881The arguments (%a and %b) and the first element of the result structure
7882may be of integer types of any bit width, but they must have the same
7883bit width. The second element of the result structure must be of type
7884``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7885subtraction.
7886
7887Semantics:
7888""""""""""
7889
7890The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007891an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007892the first element of which is the subtraction, and the second element of
7893which is a bit specifying if the unsigned subtraction resulted in an
7894overflow.
7895
7896Examples:
7897"""""""""
7898
7899.. code-block:: llvm
7900
7901 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7902 %sum = extractvalue {i32, i1} %res, 0
7903 %obit = extractvalue {i32, i1} %res, 1
7904 br i1 %obit, label %overflow, label %normal
7905
7906'``llvm.smul.with.overflow.*``' Intrinsics
7907^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7908
7909Syntax:
7910"""""""
7911
7912This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
7913on any integer bit width.
7914
7915::
7916
7917 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
7918 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7919 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
7920
7921Overview:
7922"""""""""
7923
7924The '``llvm.smul.with.overflow``' family of intrinsic functions perform
7925a signed multiplication of the two arguments, and indicate whether an
7926overflow occurred during the signed multiplication.
7927
7928Arguments:
7929""""""""""
7930
7931The arguments (%a and %b) and the first element of the result structure
7932may be of integer types of any bit width, but they must have the same
7933bit width. The second element of the result structure must be of type
7934``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7935multiplication.
7936
7937Semantics:
7938""""""""""
7939
7940The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007941a signed multiplication of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007942the first element of which is the multiplication, and the second element
7943of which is a bit specifying if the signed multiplication resulted in an
7944overflow.
7945
7946Examples:
7947"""""""""
7948
7949.. code-block:: llvm
7950
7951 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7952 %sum = extractvalue {i32, i1} %res, 0
7953 %obit = extractvalue {i32, i1} %res, 1
7954 br i1 %obit, label %overflow, label %normal
7955
7956'``llvm.umul.with.overflow.*``' Intrinsics
7957^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7958
7959Syntax:
7960"""""""
7961
7962This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
7963on any integer bit width.
7964
7965::
7966
7967 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
7968 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7969 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
7970
7971Overview:
7972"""""""""
7973
7974The '``llvm.umul.with.overflow``' family of intrinsic functions perform
7975a unsigned multiplication of the two arguments, and indicate whether an
7976overflow occurred during the unsigned multiplication.
7977
7978Arguments:
7979""""""""""
7980
7981The arguments (%a and %b) and the first element of the result structure
7982may be of integer types of any bit width, but they must have the same
7983bit width. The second element of the result structure must be of type
7984``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7985multiplication.
7986
7987Semantics:
7988""""""""""
7989
7990The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007991an unsigned multiplication of the two arguments. They return a structure ---
7992the first element of which is the multiplication, and the second
Sean Silvaf722b002012-12-07 10:36:55 +00007993element of which is a bit specifying if the unsigned multiplication
7994resulted in an overflow.
7995
7996Examples:
7997"""""""""
7998
7999.. code-block:: llvm
8000
8001 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8002 %sum = extractvalue {i32, i1} %res, 0
8003 %obit = extractvalue {i32, i1} %res, 1
8004 br i1 %obit, label %overflow, label %normal
8005
8006Specialised Arithmetic Intrinsics
8007---------------------------------
8008
8009'``llvm.fmuladd.*``' Intrinsic
8010^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8011
8012Syntax:
8013"""""""
8014
8015::
8016
8017 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8018 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8019
8020Overview:
8021"""""""""
8022
8023The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hamesb0ec16b2013-01-17 00:00:49 +00008024expressions that can be fused if the code generator determines that (a) the
8025target instruction set has support for a fused operation, and (b) that the
8026fused operation is more efficient than the equivalent, separate pair of mul
8027and add instructions.
Sean Silvaf722b002012-12-07 10:36:55 +00008028
8029Arguments:
8030""""""""""
8031
8032The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8033multiplicands, a and b, and an addend c.
8034
8035Semantics:
8036""""""""""
8037
8038The expression:
8039
8040::
8041
8042 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8043
8044is equivalent to the expression a \* b + c, except that rounding will
8045not be performed between the multiplication and addition steps if the
8046code generator fuses the operations. Fusion is not guaranteed, even if
8047the target platform supports it. If a fused multiply-add is required the
8048corresponding llvm.fma.\* intrinsic function should be used instead.
8049
8050Examples:
8051"""""""""
8052
8053.. code-block:: llvm
8054
8055 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8056
8057Half Precision Floating Point Intrinsics
8058----------------------------------------
8059
8060For most target platforms, half precision floating point is a
8061storage-only format. This means that it is a dense encoding (in memory)
8062but does not support computation in the format.
8063
8064This means that code must first load the half-precision floating point
8065value as an i16, then convert it to float with
8066:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8067then be performed on the float value (including extending to double
8068etc). To store the value back to memory, it is first converted to float
8069if needed, then converted to i16 with
8070:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8071i16 value.
8072
8073.. _int_convert_to_fp16:
8074
8075'``llvm.convert.to.fp16``' Intrinsic
8076^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8077
8078Syntax:
8079"""""""
8080
8081::
8082
8083 declare i16 @llvm.convert.to.fp16(f32 %a)
8084
8085Overview:
8086"""""""""
8087
8088The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8089from single precision floating point format to half precision floating
8090point format.
8091
8092Arguments:
8093""""""""""
8094
8095The intrinsic function contains single argument - the value to be
8096converted.
8097
8098Semantics:
8099""""""""""
8100
8101The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8102from single precision floating point format to half precision floating
8103point format. The return value is an ``i16`` which contains the
8104converted number.
8105
8106Examples:
8107"""""""""
8108
8109.. code-block:: llvm
8110
8111 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8112 store i16 %res, i16* @x, align 2
8113
8114.. _int_convert_from_fp16:
8115
8116'``llvm.convert.from.fp16``' Intrinsic
8117^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8118
8119Syntax:
8120"""""""
8121
8122::
8123
8124 declare f32 @llvm.convert.from.fp16(i16 %a)
8125
8126Overview:
8127"""""""""
8128
8129The '``llvm.convert.from.fp16``' intrinsic function performs a
8130conversion from half precision floating point format to single precision
8131floating point format.
8132
8133Arguments:
8134""""""""""
8135
8136The intrinsic function contains single argument - the value to be
8137converted.
8138
8139Semantics:
8140""""""""""
8141
8142The '``llvm.convert.from.fp16``' intrinsic function performs a
8143conversion from half single precision floating point format to single
8144precision floating point format. The input half-float value is
8145represented by an ``i16`` value.
8146
8147Examples:
8148"""""""""
8149
8150.. code-block:: llvm
8151
8152 %a = load i16* @x, align 2
8153 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8154
8155Debugger Intrinsics
8156-------------------
8157
8158The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8159prefix), are described in the `LLVM Source Level
8160Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8161document.
8162
8163Exception Handling Intrinsics
8164-----------------------------
8165
8166The LLVM exception handling intrinsics (which all start with
8167``llvm.eh.`` prefix), are described in the `LLVM Exception
8168Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8169
8170.. _int_trampoline:
8171
8172Trampoline Intrinsics
8173---------------------
8174
8175These intrinsics make it possible to excise one parameter, marked with
8176the :ref:`nest <nest>` attribute, from a function. The result is a
8177callable function pointer lacking the nest parameter - the caller does
8178not need to provide a value for it. Instead, the value to use is stored
8179in advance in a "trampoline", a block of memory usually allocated on the
8180stack, which also contains code to splice the nest value into the
8181argument list. This is used to implement the GCC nested function address
8182extension.
8183
8184For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8185then the resulting function pointer has signature ``i32 (i32, i32)*``.
8186It can be created as follows:
8187
8188.. code-block:: llvm
8189
8190 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8191 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8192 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8193 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8194 %fp = bitcast i8* %p to i32 (i32, i32)*
8195
8196The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8197``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8198
8199.. _int_it:
8200
8201'``llvm.init.trampoline``' Intrinsic
8202^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8203
8204Syntax:
8205"""""""
8206
8207::
8208
8209 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8210
8211Overview:
8212"""""""""
8213
8214This fills the memory pointed to by ``tramp`` with executable code,
8215turning it into a trampoline.
8216
8217Arguments:
8218""""""""""
8219
8220The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8221pointers. The ``tramp`` argument must point to a sufficiently large and
8222sufficiently aligned block of memory; this memory is written to by the
8223intrinsic. Note that the size and the alignment are target-specific -
8224LLVM currently provides no portable way of determining them, so a
8225front-end that generates this intrinsic needs to have some
8226target-specific knowledge. The ``func`` argument must hold a function
8227bitcast to an ``i8*``.
8228
8229Semantics:
8230""""""""""
8231
8232The block of memory pointed to by ``tramp`` is filled with target
8233dependent code, turning it into a function. Then ``tramp`` needs to be
8234passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8235be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8236function's signature is the same as that of ``func`` with any arguments
8237marked with the ``nest`` attribute removed. At most one such ``nest``
8238argument is allowed, and it must be of pointer type. Calling the new
8239function is equivalent to calling ``func`` with the same argument list,
8240but with ``nval`` used for the missing ``nest`` argument. If, after
8241calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8242modified, then the effect of any later call to the returned function
8243pointer is undefined.
8244
8245.. _int_at:
8246
8247'``llvm.adjust.trampoline``' Intrinsic
8248^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8249
8250Syntax:
8251"""""""
8252
8253::
8254
8255 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8256
8257Overview:
8258"""""""""
8259
8260This performs any required machine-specific adjustment to the address of
8261a trampoline (passed as ``tramp``).
8262
8263Arguments:
8264""""""""""
8265
8266``tramp`` must point to a block of memory which already has trampoline
8267code filled in by a previous call to
8268:ref:`llvm.init.trampoline <int_it>`.
8269
8270Semantics:
8271""""""""""
8272
8273On some architectures the address of the code to be executed needs to be
8274different to the address where the trampoline is actually stored. This
8275intrinsic returns the executable address corresponding to ``tramp``
8276after performing the required machine specific adjustments. The pointer
8277returned can then be :ref:`bitcast and executed <int_trampoline>`.
8278
8279Memory Use Markers
8280------------------
8281
8282This class of intrinsics exists to information about the lifetime of
8283memory objects and ranges where variables are immutable.
8284
8285'``llvm.lifetime.start``' Intrinsic
8286^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8287
8288Syntax:
8289"""""""
8290
8291::
8292
8293 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8294
8295Overview:
8296"""""""""
8297
8298The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8299object's lifetime.
8300
8301Arguments:
8302""""""""""
8303
8304The first argument is a constant integer representing the size of the
8305object, or -1 if it is variable sized. The second argument is a pointer
8306to the object.
8307
8308Semantics:
8309""""""""""
8310
8311This intrinsic indicates that before this point in the code, the value
8312of the memory pointed to by ``ptr`` is dead. This means that it is known
8313to never be used and has an undefined value. A load from the pointer
8314that precedes this intrinsic can be replaced with ``'undef'``.
8315
8316'``llvm.lifetime.end``' Intrinsic
8317^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8318
8319Syntax:
8320"""""""
8321
8322::
8323
8324 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8325
8326Overview:
8327"""""""""
8328
8329The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8330object's lifetime.
8331
8332Arguments:
8333""""""""""
8334
8335The first argument is a constant integer representing the size of the
8336object, or -1 if it is variable sized. The second argument is a pointer
8337to the object.
8338
8339Semantics:
8340""""""""""
8341
8342This intrinsic indicates that after this point in the code, the value of
8343the memory pointed to by ``ptr`` is dead. This means that it is known to
8344never be used and has an undefined value. Any stores into the memory
8345object following this intrinsic may be removed as dead.
8346
8347'``llvm.invariant.start``' Intrinsic
8348^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8349
8350Syntax:
8351"""""""
8352
8353::
8354
8355 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8356
8357Overview:
8358"""""""""
8359
8360The '``llvm.invariant.start``' intrinsic specifies that the contents of
8361a memory object will not change.
8362
8363Arguments:
8364""""""""""
8365
8366The first argument is a constant integer representing the size of the
8367object, or -1 if it is variable sized. The second argument is a pointer
8368to the object.
8369
8370Semantics:
8371""""""""""
8372
8373This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8374the return value, the referenced memory location is constant and
8375unchanging.
8376
8377'``llvm.invariant.end``' Intrinsic
8378^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8379
8380Syntax:
8381"""""""
8382
8383::
8384
8385 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8386
8387Overview:
8388"""""""""
8389
8390The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8391memory object are mutable.
8392
8393Arguments:
8394""""""""""
8395
8396The first argument is the matching ``llvm.invariant.start`` intrinsic.
8397The second argument is a constant integer representing the size of the
8398object, or -1 if it is variable sized and the third argument is a
8399pointer to the object.
8400
8401Semantics:
8402""""""""""
8403
8404This intrinsic indicates that the memory is mutable again.
8405
8406General Intrinsics
8407------------------
8408
8409This class of intrinsics is designed to be generic and has no specific
8410purpose.
8411
8412'``llvm.var.annotation``' Intrinsic
8413^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8414
8415Syntax:
8416"""""""
8417
8418::
8419
8420 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8421
8422Overview:
8423"""""""""
8424
8425The '``llvm.var.annotation``' intrinsic.
8426
8427Arguments:
8428""""""""""
8429
8430The first argument is a pointer to a value, the second is a pointer to a
8431global string, the third is a pointer to a global string which is the
8432source file name, and the last argument is the line number.
8433
8434Semantics:
8435""""""""""
8436
8437This intrinsic allows annotation of local variables with arbitrary
8438strings. This can be useful for special purpose optimizations that want
8439to look for these annotations. These have no other defined use; they are
8440ignored by code generation and optimization.
8441
Michael Gottesman872b4e52013-03-26 00:34:27 +00008442'``llvm.ptr.annotation.*``' Intrinsic
8443^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8444
8445Syntax:
8446"""""""
8447
8448This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8449pointer to an integer of any width. *NOTE* you must specify an address space for
8450the pointer. The identifier for the default address space is the integer
8451'``0``'.
8452
8453::
8454
8455 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8456 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8457 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8458 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8459 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8460
8461Overview:
8462"""""""""
8463
8464The '``llvm.ptr.annotation``' intrinsic.
8465
8466Arguments:
8467""""""""""
8468
8469The first argument is a pointer to an integer value of arbitrary bitwidth
8470(result of some expression), the second is a pointer to a global string, the
8471third is a pointer to a global string which is the source file name, and the
8472last argument is the line number. It returns the value of the first argument.
8473
8474Semantics:
8475""""""""""
8476
8477This intrinsic allows annotation of a pointer to an integer with arbitrary
8478strings. This can be useful for special purpose optimizations that want to look
8479for these annotations. These have no other defined use; they are ignored by code
8480generation and optimization.
8481
Sean Silvaf722b002012-12-07 10:36:55 +00008482'``llvm.annotation.*``' Intrinsic
8483^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8484
8485Syntax:
8486"""""""
8487
8488This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8489any integer bit width.
8490
8491::
8492
8493 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8494 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8495 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8496 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8497 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8498
8499Overview:
8500"""""""""
8501
8502The '``llvm.annotation``' intrinsic.
8503
8504Arguments:
8505""""""""""
8506
8507The first argument is an integer value (result of some expression), the
8508second is a pointer to a global string, the third is a pointer to a
8509global string which is the source file name, and the last argument is
8510the line number. It returns the value of the first argument.
8511
8512Semantics:
8513""""""""""
8514
8515This intrinsic allows annotations to be put on arbitrary expressions
8516with arbitrary strings. This can be useful for special purpose
8517optimizations that want to look for these annotations. These have no
8518other defined use; they are ignored by code generation and optimization.
8519
8520'``llvm.trap``' Intrinsic
8521^^^^^^^^^^^^^^^^^^^^^^^^^
8522
8523Syntax:
8524"""""""
8525
8526::
8527
8528 declare void @llvm.trap() noreturn nounwind
8529
8530Overview:
8531"""""""""
8532
8533The '``llvm.trap``' intrinsic.
8534
8535Arguments:
8536""""""""""
8537
8538None.
8539
8540Semantics:
8541""""""""""
8542
8543This intrinsic is lowered to the target dependent trap instruction. If
8544the target does not have a trap instruction, this intrinsic will be
8545lowered to a call of the ``abort()`` function.
8546
8547'``llvm.debugtrap``' Intrinsic
8548^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8549
8550Syntax:
8551"""""""
8552
8553::
8554
8555 declare void @llvm.debugtrap() nounwind
8556
8557Overview:
8558"""""""""
8559
8560The '``llvm.debugtrap``' intrinsic.
8561
8562Arguments:
8563""""""""""
8564
8565None.
8566
8567Semantics:
8568""""""""""
8569
8570This intrinsic is lowered to code which is intended to cause an
8571execution trap with the intention of requesting the attention of a
8572debugger.
8573
8574'``llvm.stackprotector``' Intrinsic
8575^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8576
8577Syntax:
8578"""""""
8579
8580::
8581
8582 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8583
8584Overview:
8585"""""""""
8586
8587The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8588onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8589is placed on the stack before local variables.
8590
8591Arguments:
8592""""""""""
8593
8594The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8595The first argument is the value loaded from the stack guard
8596``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8597enough space to hold the value of the guard.
8598
8599Semantics:
8600""""""""""
8601
8602This intrinsic causes the prologue/epilogue inserter to force the
8603position of the ``AllocaInst`` stack slot to be before local variables
8604on the stack. This is to ensure that if a local variable on the stack is
8605overwritten, it will destroy the value of the guard. When the function
8606exits, the guard on the stack is checked against the original guard. If
8607they are different, then the program aborts by calling the
8608``__stack_chk_fail()`` function.
8609
8610'``llvm.objectsize``' Intrinsic
8611^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8612
8613Syntax:
8614"""""""
8615
8616::
8617
8618 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8619 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8620
8621Overview:
8622"""""""""
8623
8624The ``llvm.objectsize`` intrinsic is designed to provide information to
8625the optimizers to determine at compile time whether a) an operation
8626(like memcpy) will overflow a buffer that corresponds to an object, or
8627b) that a runtime check for overflow isn't necessary. An object in this
8628context means an allocation of a specific class, structure, array, or
8629other object.
8630
8631Arguments:
8632""""""""""
8633
8634The ``llvm.objectsize`` intrinsic takes two arguments. The first
8635argument is a pointer to or into the ``object``. The second argument is
8636a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8637or -1 (if false) when the object size is unknown. The second argument
8638only accepts constants.
8639
8640Semantics:
8641""""""""""
8642
8643The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8644the size of the object concerned. If the size cannot be determined at
8645compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8646on the ``min`` argument).
8647
8648'``llvm.expect``' Intrinsic
8649^^^^^^^^^^^^^^^^^^^^^^^^^^^
8650
8651Syntax:
8652"""""""
8653
8654::
8655
8656 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8657 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8658
8659Overview:
8660"""""""""
8661
8662The ``llvm.expect`` intrinsic provides information about expected (the
8663most probable) value of ``val``, which can be used by optimizers.
8664
8665Arguments:
8666""""""""""
8667
8668The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8669a value. The second argument is an expected value, this needs to be a
8670constant value, variables are not allowed.
8671
8672Semantics:
8673""""""""""
8674
8675This intrinsic is lowered to the ``val``.
8676
8677'``llvm.donothing``' Intrinsic
8678^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8679
8680Syntax:
8681"""""""
8682
8683::
8684
8685 declare void @llvm.donothing() nounwind readnone
8686
8687Overview:
8688"""""""""
8689
8690The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8691only intrinsic that can be called with an invoke instruction.
8692
8693Arguments:
8694""""""""""
8695
8696None.
8697
8698Semantics:
8699""""""""""
8700
8701This intrinsic does nothing, and it's removed by optimizers and ignored
8702by codegen.