blob: ee8318f22d6d8d83026ca490a17a633989975d9b [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
2//
Chris Lattner3e130a22003-01-13 00:32:26 +00003// This file defines a simple peephole instruction selector for the x86 target
Chris Lattner72614082002-10-25 22:55:53 +00004//
5//===----------------------------------------------------------------------===//
6
7#include "X86.h"
Chris Lattner055c9652002-10-29 21:05:24 +00008#include "X86InstrInfo.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +00009#include "X86InstrBuilder.h"
Chris Lattner72614082002-10-25 22:55:53 +000010#include "llvm/Function.h"
11#include "llvm/iTerminators.h"
Brian Gaeke1749d632002-11-07 17:59:21 +000012#include "llvm/iOperators.h"
Brian Gaekea1719c92002-10-31 23:03:59 +000013#include "llvm/iOther.h"
Chris Lattner51b49a92002-11-02 19:45:49 +000014#include "llvm/iPHINode.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +000015#include "llvm/iMemory.h"
Chris Lattner72614082002-10-25 22:55:53 +000016#include "llvm/Type.h"
Brian Gaeke20244b72002-12-12 15:33:40 +000017#include "llvm/DerivedTypes.h"
Chris Lattnerc5291f52002-10-27 21:16:59 +000018#include "llvm/Constants.h"
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000019#include "llvm/Pass.h"
Chris Lattner341a9372002-10-29 17:43:55 +000020#include "llvm/CodeGen/MachineFunction.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000021#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner94af4142002-12-25 05:13:53 +000022#include "llvm/CodeGen/SSARegMap.h"
Chris Lattneraa09b752002-12-28 21:08:28 +000023#include "llvm/CodeGen/MachineFrameInfo.h"
Chris Lattner3e130a22003-01-13 00:32:26 +000024#include "llvm/CodeGen/MachineConstantPool.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000025#include "llvm/Target/TargetMachine.h"
Chris Lattner72614082002-10-25 22:55:53 +000026#include "llvm/Support/InstVisitor.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000027#include "llvm/Target/MRegisterInfo.h"
28#include <map>
Chris Lattner72614082002-10-25 22:55:53 +000029
Chris Lattner333b2fa2002-12-13 10:09:43 +000030/// BMI - A special BuildMI variant that takes an iterator to insert the
31/// instruction at as well as a basic block.
Brian Gaeke71794c02002-12-13 11:22:48 +000032/// this is the version for when you have a destination register in mind.
33inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattner333b2fa2002-12-13 10:09:43 +000034 MachineBasicBlock::iterator &I,
35 MachineOpCode Opcode,
36 unsigned NumOperands,
37 unsigned DestReg) {
Chris Lattnerd7d38722002-12-13 13:04:04 +000038 assert(I >= MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattner333b2fa2002-12-13 10:09:43 +000039 MachineInstr *MI = new MachineInstr(Opcode, NumOperands+1, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000040 I = MBB->insert(I, MI)+1;
Chris Lattner333b2fa2002-12-13 10:09:43 +000041 return MachineInstrBuilder(MI).addReg(DestReg, MOTy::Def);
42}
43
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000044/// BMI - A special BuildMI variant that takes an iterator to insert the
45/// instruction at as well as a basic block.
Brian Gaeke71794c02002-12-13 11:22:48 +000046inline static MachineInstrBuilder BMI(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000047 MachineBasicBlock::iterator &I,
48 MachineOpCode Opcode,
49 unsigned NumOperands) {
Chris Lattnerd7d38722002-12-13 13:04:04 +000050 assert(I > MBB->begin() && I <= MBB->end() && "Bad iterator!");
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000051 MachineInstr *MI = new MachineInstr(Opcode, NumOperands, true, true);
Chris Lattnere8f0d922002-12-24 00:03:11 +000052 I = MBB->insert(I, MI)+1;
Chris Lattnerf08ad9f2002-12-13 10:50:40 +000053 return MachineInstrBuilder(MI);
54}
55
Chris Lattner333b2fa2002-12-13 10:09:43 +000056
Chris Lattner72614082002-10-25 22:55:53 +000057namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000058 struct ISel : public FunctionPass, InstVisitor<ISel> {
59 TargetMachine &TM;
Chris Lattner341a9372002-10-29 17:43:55 +000060 MachineFunction *F; // The function we are compiling into
61 MachineBasicBlock *BB; // The current MBB we are compiling
Chris Lattner72614082002-10-25 22:55:53 +000062
Chris Lattner72614082002-10-25 22:55:53 +000063 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
64
Chris Lattner333b2fa2002-12-13 10:09:43 +000065 // MBBMap - Mapping between LLVM BB -> Machine BB
66 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
67
Chris Lattner3e130a22003-01-13 00:32:26 +000068 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
Chris Lattner72614082002-10-25 22:55:53 +000069
70 /// runOnFunction - Top level implementation of instruction selection for
71 /// the entire function.
72 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000073 bool runOnFunction(Function &Fn) {
Chris Lattner36b36032002-10-29 23:40:58 +000074 F = &MachineFunction::construct(&Fn, TM);
Chris Lattner333b2fa2002-12-13 10:09:43 +000075
Chris Lattner065faeb2002-12-28 20:24:02 +000076 // Create all of the machine basic blocks for the function...
Chris Lattner333b2fa2002-12-13 10:09:43 +000077 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
78 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
79
Chris Lattner14aa7fe2002-12-16 22:54:46 +000080 BB = &F->front();
Chris Lattner065faeb2002-12-28 20:24:02 +000081 LoadArgumentsToVirtualRegs(Fn);
Chris Lattner14aa7fe2002-12-16 22:54:46 +000082
Chris Lattner333b2fa2002-12-13 10:09:43 +000083 // Instruction select everything except PHI nodes
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000084 visit(Fn);
Chris Lattner333b2fa2002-12-13 10:09:43 +000085
86 // Select the PHI nodes
87 SelectPHINodes();
88
Chris Lattner72614082002-10-25 22:55:53 +000089 RegMap.clear();
Chris Lattner333b2fa2002-12-13 10:09:43 +000090 MBBMap.clear();
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000091 F = 0;
Chris Lattner72614082002-10-25 22:55:53 +000092 return false; // We never modify the LLVM itself.
93 }
94
Chris Lattnerf0eb7be2002-12-15 21:13:40 +000095 virtual const char *getPassName() const {
96 return "X86 Simple Instruction Selection";
97 }
98
Chris Lattner72614082002-10-25 22:55:53 +000099 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +0000100 /// block. This simply creates a new MachineBasicBlock to emit code into
101 /// and adds it to the current MachineFunction. Subsequent visit* for
102 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +0000103 ///
104 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000105 BB = MBBMap[&LLVM_BB];
Chris Lattner72614082002-10-25 22:55:53 +0000106 }
107
Chris Lattner065faeb2002-12-28 20:24:02 +0000108 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
109 /// from the stack into virtual registers.
110 ///
111 void LoadArgumentsToVirtualRegs(Function &F);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000112
113 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
114 /// because we have to generate our sources into the source basic blocks,
115 /// not the current one.
116 ///
117 void SelectPHINodes();
118
Chris Lattner72614082002-10-25 22:55:53 +0000119 // Visitation methods for various instructions. These methods simply emit
120 // fixed X86 code for each instruction.
121 //
Brian Gaekefa8d5712002-11-22 11:07:01 +0000122
123 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +0000124 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +0000125 void visitBranchInst(BranchInst &BI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000126
127 struct ValueRecord {
128 unsigned Reg;
129 const Type *Ty;
130 ValueRecord(unsigned R, const Type *T) : Reg(R), Ty(T) {}
131 };
132 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
133 const std::vector<ValueRecord> &Args);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000134 void visitCallInst(CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000135
136 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +0000137 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +0000138 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
139 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattner8a307e82002-12-16 19:32:50 +0000140 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +0000141 unsigned DestReg, const Type *DestTy,
142 unsigned Op0Reg, unsigned Op1Reg);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000143 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +0000144
Chris Lattnerf01729e2002-11-02 20:54:46 +0000145 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
146 void visitRem(BinaryOperator &B) { visitDivRem(B); }
147 void visitDivRem(BinaryOperator &B);
148
Chris Lattnere2954c82002-11-02 20:04:26 +0000149 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +0000150 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
151 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
152 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +0000153
154 // Binary comparison operators
Chris Lattner05093a52002-11-21 15:52:38 +0000155 void visitSetCCInst(SetCondInst &I, unsigned OpNum);
156 void visitSetEQ(SetCondInst &I) { visitSetCCInst(I, 0); }
157 void visitSetNE(SetCondInst &I) { visitSetCCInst(I, 1); }
158 void visitSetLT(SetCondInst &I) { visitSetCCInst(I, 2); }
159 void visitSetGT(SetCondInst &I) { visitSetCCInst(I, 3); }
160 void visitSetLE(SetCondInst &I) { visitSetCCInst(I, 4); }
161 void visitSetGE(SetCondInst &I) { visitSetCCInst(I, 5); }
Chris Lattner6fc3c522002-11-17 21:11:55 +0000162
163 // Memory Instructions
Chris Lattner3e130a22003-01-13 00:32:26 +0000164 MachineInstr *doFPLoad(MachineBasicBlock *MBB,
165 MachineBasicBlock::iterator &MBBI,
166 const Type *Ty, unsigned DestReg);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000167 void visitLoadInst(LoadInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000168 void doFPStore(const Type *Ty, unsigned DestAddrReg, unsigned SrcReg);
Chris Lattner6fc3c522002-11-17 21:11:55 +0000169 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000170 void visitGetElementPtrInst(GetElementPtrInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000171 void visitAllocaInst(AllocaInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000172 void visitMallocInst(MallocInst &I);
173 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000174
Chris Lattnere2954c82002-11-02 20:04:26 +0000175 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000176 void visitShiftInst(ShiftInst &I);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000177 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
Brian Gaekefa8d5712002-11-22 11:07:01 +0000178 void visitCastInst(CastInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000179
180 void visitInstruction(Instruction &I) {
181 std::cerr << "Cannot instruction select: " << I;
182 abort();
183 }
184
Brian Gaeke95780cc2002-12-13 07:56:18 +0000185 /// promote32 - Make a value 32-bits wide, and put it somewhere.
Chris Lattner3e130a22003-01-13 00:32:26 +0000186 ///
187 void promote32(unsigned targetReg, const ValueRecord &VR);
188
189 /// EmitByteSwap - Byteswap SrcReg into DestReg.
190 ///
191 void EmitByteSwap(unsigned DestReg, unsigned SrcReg, unsigned Class);
Brian Gaeke95780cc2002-12-13 07:56:18 +0000192
Chris Lattner3e130a22003-01-13 00:32:26 +0000193 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
194 /// constant expression GEP support.
195 ///
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000196 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator&IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000197 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000198 User::op_iterator IdxEnd, unsigned TargetReg);
199
Chris Lattnerc5291f52002-10-27 21:16:59 +0000200 /// copyConstantToRegister - Output the instructions required to put the
201 /// specified constant into the specified register.
202 ///
Chris Lattner8a307e82002-12-16 19:32:50 +0000203 void copyConstantToRegister(MachineBasicBlock *MBB,
204 MachineBasicBlock::iterator &MBBI,
205 Constant *C, unsigned Reg);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000206
Chris Lattner3e130a22003-01-13 00:32:26 +0000207 /// makeAnotherReg - This method returns the next register number we haven't
208 /// yet used.
209 ///
210 /// Long values are handled somewhat specially. They are always allocated
211 /// as pairs of 32 bit integer values. The register number returned is the
212 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
213 /// of the long value.
214 ///
Chris Lattnerc0812d82002-12-13 06:56:29 +0000215 unsigned makeAnotherReg(const Type *Ty) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000216 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
217 const TargetRegisterClass *RC =
218 TM.getRegisterInfo()->getRegClassForType(Type::IntTy);
219 // Create the lower part
220 F->getSSARegMap()->createVirtualRegister(RC);
221 // Create the upper part.
222 return F->getSSARegMap()->createVirtualRegister(RC)-1;
223 }
224
Chris Lattnerc0812d82002-12-13 06:56:29 +0000225 // Add the mapping of regnumber => reg class to MachineFunction
Chris Lattner94af4142002-12-25 05:13:53 +0000226 const TargetRegisterClass *RC =
227 TM.getRegisterInfo()->getRegClassForType(Ty);
Chris Lattner3e130a22003-01-13 00:32:26 +0000228 return F->getSSARegMap()->createVirtualRegister(RC);
Brian Gaeke20244b72002-12-12 15:33:40 +0000229 }
230
Chris Lattner72614082002-10-25 22:55:53 +0000231 /// getReg - This method turns an LLVM value into a register number. This
232 /// is guaranteed to produce the same register number for a particular value
233 /// every time it is queried.
234 ///
235 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000236 unsigned getReg(Value *V) {
237 // Just append to the end of the current bb.
238 MachineBasicBlock::iterator It = BB->end();
239 return getReg(V, BB, It);
240 }
Brian Gaeke71794c02002-12-13 11:22:48 +0000241 unsigned getReg(Value *V, MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000242 MachineBasicBlock::iterator &IPt) {
Chris Lattner72614082002-10-25 22:55:53 +0000243 unsigned &Reg = RegMap[V];
Misha Brukmand2cc0172002-11-20 00:58:23 +0000244 if (Reg == 0) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000245 Reg = makeAnotherReg(V->getType());
Misha Brukmand2cc0172002-11-20 00:58:23 +0000246 RegMap[V] = Reg;
Misha Brukmand2cc0172002-11-20 00:58:23 +0000247 }
Chris Lattner72614082002-10-25 22:55:53 +0000248
Chris Lattner6f8fd252002-10-27 21:23:43 +0000249 // If this operand is a constant, emit the code to copy the constant into
250 // the register here...
251 //
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000252 if (Constant *C = dyn_cast<Constant>(V)) {
Chris Lattner8a307e82002-12-16 19:32:50 +0000253 copyConstantToRegister(MBB, IPt, C, Reg);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000254 RegMap.erase(V); // Assign a new name to this constant if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000255 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
256 // Move the address of the global into the register
Chris Lattner3e130a22003-01-13 00:32:26 +0000257 BMI(MBB, IPt, X86::MOVir32, 1, Reg).addGlobalAddress(GV);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000258 RegMap.erase(V); // Assign a new name to this address if ref'd again
Chris Lattnerdbf30f72002-12-04 06:45:19 +0000259 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000260
Chris Lattner72614082002-10-25 22:55:53 +0000261 return Reg;
262 }
Chris Lattner72614082002-10-25 22:55:53 +0000263 };
264}
265
Chris Lattner43189d12002-11-17 20:07:45 +0000266/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
267/// Representation.
268///
269enum TypeClass {
Chris Lattner94af4142002-12-25 05:13:53 +0000270 cByte, cShort, cInt, cFP, cLong
Chris Lattner43189d12002-11-17 20:07:45 +0000271};
272
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000273/// getClass - Turn a primitive type into a "class" number which is based on the
274/// size of the type, and whether or not it is floating point.
275///
Chris Lattner43189d12002-11-17 20:07:45 +0000276static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000277 switch (Ty->getPrimitiveID()) {
278 case Type::SByteTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000279 case Type::UByteTyID: return cByte; // Byte operands are class #0
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000280 case Type::ShortTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000281 case Type::UShortTyID: return cShort; // Short operands are class #1
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000282 case Type::IntTyID:
283 case Type::UIntTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000284 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000285
Chris Lattner94af4142002-12-25 05:13:53 +0000286 case Type::FloatTyID:
287 case Type::DoubleTyID: return cFP; // Floating Point is #3
Chris Lattner3e130a22003-01-13 00:32:26 +0000288
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000289 case Type::LongTyID:
Chris Lattner3e130a22003-01-13 00:32:26 +0000290 case Type::ULongTyID: return cLong; // Longs are class #4
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000291 default:
292 assert(0 && "Invalid type to getClass!");
Chris Lattner43189d12002-11-17 20:07:45 +0000293 return cByte; // not reached
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000294 }
295}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000296
Chris Lattner6b993cc2002-12-15 08:02:15 +0000297// getClassB - Just like getClass, but treat boolean values as bytes.
298static inline TypeClass getClassB(const Type *Ty) {
299 if (Ty == Type::BoolTy) return cByte;
300 return getClass(Ty);
301}
302
Chris Lattner06925362002-11-17 21:56:38 +0000303
Chris Lattnerc5291f52002-10-27 21:16:59 +0000304/// copyConstantToRegister - Output the instructions required to put the
305/// specified constant into the specified register.
306///
Chris Lattner8a307e82002-12-16 19:32:50 +0000307void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
308 MachineBasicBlock::iterator &IP,
309 Constant *C, unsigned R) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000310 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
311 if (CE->getOpcode() == Instruction::GetElementPtr) {
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000312 emitGEPOperation(MBB, IP, CE->getOperand(0),
Chris Lattner333b2fa2002-12-13 10:09:43 +0000313 CE->op_begin()+1, CE->op_end(), R);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000314 return;
315 }
316
Brian Gaeke20244b72002-12-12 15:33:40 +0000317 std::cerr << "Offending expr: " << C << "\n";
Chris Lattner94af4142002-12-25 05:13:53 +0000318 assert(0 && "Constant expressions not yet handled!\n");
Brian Gaeke20244b72002-12-12 15:33:40 +0000319 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000320
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000321 if (C->getType()->isIntegral()) {
Chris Lattner6b993cc2002-12-15 08:02:15 +0000322 unsigned Class = getClassB(C->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +0000323
324 if (Class == cLong) {
325 // Copy the value into the register pair.
326 uint64_t Val;
327 if (C->getType()->isSigned())
328 Val = cast<ConstantSInt>(C)->getValue();
329 else
330 Val = cast<ConstantUInt>(C)->getValue();
331
332 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(Val & 0xFFFFFFFF);
333 BMI(MBB, IP, X86::MOVir32, 1, R+1).addZImm(Val >> 32);
334 return;
335 }
336
Chris Lattner94af4142002-12-25 05:13:53 +0000337 assert(Class <= cInt && "Type not handled yet!");
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000338
339 static const unsigned IntegralOpcodeTab[] = {
340 X86::MOVir8, X86::MOVir16, X86::MOVir32
341 };
342
Chris Lattner6b993cc2002-12-15 08:02:15 +0000343 if (C->getType() == Type::BoolTy) {
344 BMI(MBB, IP, X86::MOVir8, 1, R).addZImm(C == ConstantBool::True);
345 } else if (C->getType()->isSigned()) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000346 ConstantSInt *CSI = cast<ConstantSInt>(C);
Chris Lattner3e130a22003-01-13 00:32:26 +0000347 BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CSI->getValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000348 } else {
349 ConstantUInt *CUI = cast<ConstantUInt>(C);
Brian Gaeke71794c02002-12-13 11:22:48 +0000350 BMI(MBB, IP, IntegralOpcodeTab[Class], 1, R).addZImm(CUI->getValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000351 }
Chris Lattner94af4142002-12-25 05:13:53 +0000352 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
353 double Value = CFP->getValue();
354 if (Value == +0.0)
355 BMI(MBB, IP, X86::FLD0, 0, R);
356 else if (Value == +1.0)
357 BMI(MBB, IP, X86::FLD1, 0, R);
358 else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000359 // Otherwise we need to spill the constant to memory...
360 MachineConstantPool *CP = F->getConstantPool();
361 unsigned CPI = CP->getConstantPoolIndex(CFP);
362 addConstantPoolReference(doFPLoad(MBB, IP, CFP->getType(), R), CPI);
Chris Lattner94af4142002-12-25 05:13:53 +0000363 }
364
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000365 } else if (isa<ConstantPointerNull>(C)) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000366 // Copy zero (null pointer) to the register.
Brian Gaeke71794c02002-12-13 11:22:48 +0000367 BMI(MBB, IP, X86::MOVir32, 1, R).addZImm(0);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000368 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000369 unsigned SrcReg = getReg(CPR->getValue(), MBB, IP);
Brian Gaeke71794c02002-12-13 11:22:48 +0000370 BMI(MBB, IP, X86::MOVrr32, 1, R).addReg(SrcReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000371 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +0000372 std::cerr << "Offending constant: " << C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000373 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000374 }
375}
376
Chris Lattner065faeb2002-12-28 20:24:02 +0000377/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
378/// the stack into virtual registers.
379///
380void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
381 // Emit instructions to load the arguments... On entry to a function on the
382 // X86, the stack frame looks like this:
383 //
384 // [ESP] -- return address
Chris Lattner3e130a22003-01-13 00:32:26 +0000385 // [ESP + 4] -- first argument (leftmost lexically)
386 // [ESP + 8] -- second argument, if first argument is four bytes in size
Chris Lattner065faeb2002-12-28 20:24:02 +0000387 // ...
388 //
Chris Lattner3e130a22003-01-13 00:32:26 +0000389 unsigned ArgOffset = 4;
Chris Lattneraa09b752002-12-28 21:08:28 +0000390 MachineFrameInfo *MFI = F->getFrameInfo();
Chris Lattner065faeb2002-12-28 20:24:02 +0000391
392 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
393 unsigned Reg = getReg(*I);
394
Chris Lattner065faeb2002-12-28 20:24:02 +0000395 int FI; // Frame object index
Chris Lattner065faeb2002-12-28 20:24:02 +0000396 switch (getClassB(I->getType())) {
397 case cByte:
Chris Lattneraa09b752002-12-28 21:08:28 +0000398 FI = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000399 addFrameReference(BuildMI(BB, X86::MOVmr8, 4, Reg), FI);
400 break;
401 case cShort:
Chris Lattneraa09b752002-12-28 21:08:28 +0000402 FI = MFI->CreateFixedObject(2, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000403 addFrameReference(BuildMI(BB, X86::MOVmr16, 4, Reg), FI);
404 break;
405 case cInt:
Chris Lattneraa09b752002-12-28 21:08:28 +0000406 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000407 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
408 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000409 case cLong:
410 FI = MFI->CreateFixedObject(8, ArgOffset);
411 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg), FI);
412 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, Reg+1), FI, 4);
413 ArgOffset += 4; // longs require 4 additional bytes
414 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000415 case cFP:
416 unsigned Opcode;
417 if (I->getType() == Type::FloatTy) {
418 Opcode = X86::FLDr32;
Chris Lattneraa09b752002-12-28 21:08:28 +0000419 FI = MFI->CreateFixedObject(4, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000420 } else {
421 Opcode = X86::FLDr64;
Chris Lattneraa09b752002-12-28 21:08:28 +0000422 FI = MFI->CreateFixedObject(8, ArgOffset);
Chris Lattner3e130a22003-01-13 00:32:26 +0000423 ArgOffset += 4; // doubles require 4 additional bytes
Chris Lattner065faeb2002-12-28 20:24:02 +0000424 }
425 addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
426 break;
427 default:
428 assert(0 && "Unhandled argument type!");
429 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000430 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000431 }
432}
433
434
Chris Lattner333b2fa2002-12-13 10:09:43 +0000435/// SelectPHINodes - Insert machine code to generate phis. This is tricky
436/// because we have to generate our sources into the source basic blocks, not
437/// the current one.
438///
439void ISel::SelectPHINodes() {
Chris Lattner3501fea2003-01-14 22:00:31 +0000440 const TargetInstrInfo &TII = TM.getInstrInfo();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000441 const Function &LF = *F->getFunction(); // The LLVM function...
442 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
443 const BasicBlock *BB = I;
444 MachineBasicBlock *MBB = MBBMap[I];
445
446 // Loop over all of the PHI nodes in the LLVM basic block...
447 unsigned NumPHIs = 0;
448 for (BasicBlock::const_iterator I = BB->begin();
449 PHINode *PN = (PHINode*)dyn_cast<PHINode>(&*I); ++I) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000450
Chris Lattner333b2fa2002-12-13 10:09:43 +0000451 // Create a new machine instr PHI node, and insert it.
Chris Lattner3e130a22003-01-13 00:32:26 +0000452 unsigned PHIReg = getReg(*PN);
453 MachineInstr *PhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg);
454 MBB->insert(MBB->begin()+NumPHIs++, PhiMI);
455
456 MachineInstr *LongPhiMI = 0;
457 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) {
458 LongPhiMI = BuildMI(X86::PHI, PN->getNumOperands(), PHIReg+1);
459 MBB->insert(MBB->begin()+NumPHIs++, LongPhiMI);
460 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000461
462 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
463 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
464
465 // Get the incoming value into a virtual register. If it is not already
466 // available in a virtual register, insert the computation code into
467 // PredMBB
Chris Lattner92053632002-12-13 11:52:34 +0000468 //
Chris Lattner3e130a22003-01-13 00:32:26 +0000469 MachineBasicBlock::iterator PI = PredMBB->end();
470 while (PI != PredMBB->begin() &&
Chris Lattner3501fea2003-01-14 22:00:31 +0000471 TII.isTerminatorInstr((*(PI-1))->getOpcode()))
Chris Lattner3e130a22003-01-13 00:32:26 +0000472 --PI;
473 unsigned ValReg = getReg(PN->getIncomingValue(i), PredMBB, PI);
474 PhiMI->addRegOperand(ValReg);
475 PhiMI->addMachineBasicBlockOperand(PredMBB);
476 if (LongPhiMI) {
477 LongPhiMI->addRegOperand(ValReg+1);
478 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
479 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000480 }
481 }
482 }
483}
484
485
Chris Lattner06925362002-11-17 21:56:38 +0000486
Brian Gaeke1749d632002-11-07 17:59:21 +0000487/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
488/// register, then move it to wherever the result should be.
Brian Gaeke1749d632002-11-07 17:59:21 +0000489///
Chris Lattner05093a52002-11-21 15:52:38 +0000490void ISel::visitSetCCInst(SetCondInst &I, unsigned OpNum) {
Brian Gaeke1749d632002-11-07 17:59:21 +0000491 // The arguments are already supposed to be of the same type.
Chris Lattner05093a52002-11-21 15:52:38 +0000492 const Type *CompTy = I.getOperand(0)->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +0000493 bool isSigned = CompTy->isSigned();
Chris Lattner05093a52002-11-21 15:52:38 +0000494 unsigned reg1 = getReg(I.getOperand(0));
495 unsigned reg2 = getReg(I.getOperand(1));
Chris Lattner3e130a22003-01-13 00:32:26 +0000496 unsigned DestReg = getReg(I);
Chris Lattner05093a52002-11-21 15:52:38 +0000497
Brian Gaeke1749d632002-11-07 17:59:21 +0000498 // LLVM -> X86 signed X86 unsigned
Chris Lattner3e130a22003-01-13 00:32:26 +0000499 // ----- ---------- ------------
Brian Gaeke1749d632002-11-07 17:59:21 +0000500 // seteq -> sete sete
501 // setne -> setne setne
502 // setlt -> setl setb
503 // setgt -> setg seta
504 // setle -> setle setbe
505 // setge -> setge setae
Chris Lattner05093a52002-11-21 15:52:38 +0000506 static const unsigned OpcodeTab[2][6] = {
Chris Lattner4b4e9dd2002-11-21 16:19:42 +0000507 {X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAr, X86::SETBEr, X86::SETAEr},
508 {X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGr, X86::SETLEr, X86::SETGEr},
Chris Lattner05093a52002-11-21 15:52:38 +0000509 };
510
Chris Lattner3e130a22003-01-13 00:32:26 +0000511 unsigned Class = getClassB(CompTy);
512 switch (Class) {
513 default: assert(0 && "Unknown type class!");
514 // Emit: cmp <var1>, <var2> (do the comparison). We can
515 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
516 // 32-bit.
517 case cByte:
518 BuildMI(BB, X86::CMPrr8, 2).addReg(reg1).addReg(reg2);
519 break;
520 case cShort:
521 BuildMI(BB, X86::CMPrr16, 2).addReg(reg1).addReg(reg2);
522 break;
523 case cInt:
524 BuildMI(BB, X86::CMPrr32, 2).addReg(reg1).addReg(reg2);
525 break;
526 case cFP:
527 BuildMI(BB, X86::FpUCOM, 2).addReg(reg1).addReg(reg2);
528 BuildMI(BB, X86::FNSTSWr8, 0);
529 BuildMI(BB, X86::SAHF, 1);
530 isSigned = false; // Compare with unsigned operators
531 break;
532
533 case cLong:
534 if (OpNum < 2) { // seteq, setne
535 unsigned LoTmp = makeAnotherReg(Type::IntTy);
536 unsigned HiTmp = makeAnotherReg(Type::IntTy);
537 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
538 BuildMI(BB, X86::XORrr32, 2, LoTmp).addReg(reg1).addReg(reg2);
539 BuildMI(BB, X86::XORrr32, 2, HiTmp).addReg(reg1+1).addReg(reg2+1);
540 BuildMI(BB, X86::ORrr32, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
541 break; // Allow the sete or setne to be generated from flags set by OR
542 } else {
543 // Emit a sequence of code which compares the high and low parts once
544 // each, then uses a conditional move to handle the overflow case. For
545 // example, a setlt for long would generate code like this:
546 //
547 // AL = lo(op1) < lo(op2) // Signedness depends on operands
548 // BL = hi(op1) < hi(op2) // Always unsigned comparison
549 // dest = hi(op1) == hi(op2) ? AL : BL;
550 //
551
552 // FIXME: This would be much better if we had heirarchical register
553 // classes! Until then, hardcode registers so that we can deal with their
554 // aliases (because we don't have conditional byte moves).
555 //
556 BuildMI(BB, X86::CMPrr32, 2).addReg(reg1).addReg(reg2);
557 BuildMI(BB, OpcodeTab[0][OpNum], 0, X86::AL);
558 BuildMI(BB, X86::CMPrr32, 2).addReg(reg1+1).addReg(reg2+1);
559 BuildMI(BB, OpcodeTab[isSigned][OpNum], 0, X86::BL);
560 BuildMI(BB, X86::CMOVErr16, 2, X86::BX).addReg(X86::BX).addReg(X86::AX);
561 BuildMI(BB, X86::MOVrr8, 1, DestReg).addReg(X86::BL);
562 return;
563 }
564 }
565
566 BuildMI(BB, OpcodeTab[isSigned][OpNum], 0, DestReg);
Brian Gaeke1749d632002-11-07 17:59:21 +0000567}
Chris Lattner51b49a92002-11-02 19:45:49 +0000568
Brian Gaekec2505982002-11-30 11:57:28 +0000569/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
570/// operand, in the specified target register.
Chris Lattner3e130a22003-01-13 00:32:26 +0000571void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
572 bool isUnsigned = VR.Ty->isUnsigned();
573 switch (getClassB(VR.Ty)) {
Chris Lattner94af4142002-12-25 05:13:53 +0000574 case cByte:
575 // Extend value into target register (8->32)
576 if (isUnsigned)
Chris Lattner3e130a22003-01-13 00:32:26 +0000577 BuildMI(BB, X86::MOVZXr32r8, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000578 else
Chris Lattner3e130a22003-01-13 00:32:26 +0000579 BuildMI(BB, X86::MOVSXr32r8, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000580 break;
581 case cShort:
582 // Extend value into target register (16->32)
583 if (isUnsigned)
Chris Lattner3e130a22003-01-13 00:32:26 +0000584 BuildMI(BB, X86::MOVZXr32r16, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000585 else
Chris Lattner3e130a22003-01-13 00:32:26 +0000586 BuildMI(BB, X86::MOVSXr32r16, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000587 break;
588 case cInt:
589 // Move value into target register (32->32)
Chris Lattner3e130a22003-01-13 00:32:26 +0000590 BuildMI(BB, X86::MOVrr32, 1, targetReg).addReg(VR.Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000591 break;
592 default:
593 assert(0 && "Unpromotable operand class in promote32");
594 }
Brian Gaekec2505982002-11-30 11:57:28 +0000595}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000596
Chris Lattner72614082002-10-25 22:55:53 +0000597/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
598/// we have the following possibilities:
599///
600/// ret void: No return value, simply emit a 'ret' instruction
601/// ret sbyte, ubyte : Extend value into EAX and return
602/// ret short, ushort: Extend value into EAX and return
603/// ret int, uint : Move value into EAX and return
604/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +0000605/// ret long, ulong : Move value into EAX/EDX and return
606/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +0000607///
Chris Lattner3e130a22003-01-13 00:32:26 +0000608void ISel::visitReturnInst(ReturnInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +0000609 if (I.getNumOperands() == 0) {
610 BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
611 return;
612 }
613
614 Value *RetVal = I.getOperand(0);
Chris Lattner3e130a22003-01-13 00:32:26 +0000615 unsigned RetReg = getReg(RetVal);
616 switch (getClassB(RetVal->getType())) {
Chris Lattner94af4142002-12-25 05:13:53 +0000617 case cByte: // integral return values: extend or move into EAX and return
618 case cShort:
619 case cInt:
Chris Lattner3e130a22003-01-13 00:32:26 +0000620 promote32(X86::EAX, ValueRecord(RetReg, RetVal->getType()));
Chris Lattner94af4142002-12-25 05:13:53 +0000621 break;
622 case cFP: // Floats & Doubles: Return in ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +0000623 BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
Chris Lattner94af4142002-12-25 05:13:53 +0000624 break;
625 case cLong:
Chris Lattner3e130a22003-01-13 00:32:26 +0000626 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(RetReg);
627 BuildMI(BB, X86::MOVrr32, 1, X86::EDX).addReg(RetReg+1);
628 break;
Chris Lattner94af4142002-12-25 05:13:53 +0000629 default:
Chris Lattner3e130a22003-01-13 00:32:26 +0000630 visitInstruction(I);
Chris Lattner94af4142002-12-25 05:13:53 +0000631 }
Chris Lattner43189d12002-11-17 20:07:45 +0000632 // Emit a 'ret' instruction
Chris Lattner94af4142002-12-25 05:13:53 +0000633 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +0000634}
635
Chris Lattner51b49a92002-11-02 19:45:49 +0000636/// visitBranchInst - Handle conditional and unconditional branches here. Note
637/// that since code layout is frozen at this point, that if we are trying to
638/// jump to a block that is the immediate successor of the current block, we can
639/// just make a fall-through. (but we don't currently).
640///
Chris Lattner94af4142002-12-25 05:13:53 +0000641void ISel::visitBranchInst(BranchInst &BI) {
642 if (BI.isConditional()) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000643 unsigned condReg = getReg(BI.getCondition());
Chris Lattner94af4142002-12-25 05:13:53 +0000644 BuildMI(BB, X86::CMPri8, 2).addReg(condReg).addZImm(0);
Chris Lattner94af4142002-12-25 05:13:53 +0000645 BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1));
Chris Lattner94af4142002-12-25 05:13:53 +0000646 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000647 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
Chris Lattner2df035b2002-11-02 19:27:56 +0000648}
649
Chris Lattner3e130a22003-01-13 00:32:26 +0000650
651/// doCall - This emits an abstract call instruction, setting up the arguments
652/// and the return value as appropriate. For the actual function call itself,
653/// it inserts the specified CallMI instruction into the stream.
654///
655void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
656 const std::vector<ValueRecord> &Args) {
657
Chris Lattner065faeb2002-12-28 20:24:02 +0000658 // Count how many bytes are to be pushed on the stack...
659 unsigned NumBytes = 0;
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000660
Chris Lattner3e130a22003-01-13 00:32:26 +0000661 if (!Args.empty()) {
662 for (unsigned i = 0, e = Args.size(); i != e; ++i)
663 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000664 case cByte: case cShort: case cInt:
Chris Lattner3e130a22003-01-13 00:32:26 +0000665 NumBytes += 4; break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000666 case cLong:
Chris Lattner3e130a22003-01-13 00:32:26 +0000667 NumBytes += 8; break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000668 case cFP:
Chris Lattner3e130a22003-01-13 00:32:26 +0000669 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
Chris Lattner065faeb2002-12-28 20:24:02 +0000670 break;
671 default: assert(0 && "Unknown class!");
672 }
673
674 // Adjust the stack pointer for the new arguments...
675 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(NumBytes);
676
677 // Arguments go on the stack in reverse order, as specified by the ABI.
678 unsigned ArgOffset = 0;
Chris Lattner3e130a22003-01-13 00:32:26 +0000679 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
680 unsigned ArgReg = Args[i].Reg;
681 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000682 case cByte:
683 case cShort: {
684 // Promote arg to 32 bits wide into a temporary register...
685 unsigned R = makeAnotherReg(Type::UIntTy);
Chris Lattner3e130a22003-01-13 00:32:26 +0000686 promote32(R, Args[i]);
Chris Lattner065faeb2002-12-28 20:24:02 +0000687 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
688 X86::ESP, ArgOffset).addReg(R);
689 break;
690 }
691 case cInt:
692 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +0000693 X86::ESP, ArgOffset).addReg(ArgReg);
Chris Lattner065faeb2002-12-28 20:24:02 +0000694 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000695 case cLong:
696 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
697 X86::ESP, ArgOffset).addReg(ArgReg);
698 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
699 X86::ESP, ArgOffset+4).addReg(ArgReg+1);
700 ArgOffset += 4; // 8 byte entry, not 4.
701 break;
702
Chris Lattner065faeb2002-12-28 20:24:02 +0000703 case cFP:
Chris Lattner3e130a22003-01-13 00:32:26 +0000704 if (Args[i].Ty == Type::FloatTy) {
Chris Lattner065faeb2002-12-28 20:24:02 +0000705 addRegOffset(BuildMI(BB, X86::FSTr32, 5),
Chris Lattner3e130a22003-01-13 00:32:26 +0000706 X86::ESP, ArgOffset).addReg(ArgReg);
Chris Lattner065faeb2002-12-28 20:24:02 +0000707 } else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000708 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
709 addRegOffset(BuildMI(BB, X86::FSTr64, 5),
710 X86::ESP, ArgOffset).addReg(ArgReg);
711 ArgOffset += 4; // 8 byte entry, not 4.
Chris Lattner065faeb2002-12-28 20:24:02 +0000712 }
713 break;
714
Chris Lattner3e130a22003-01-13 00:32:26 +0000715 default: assert(0 && "Unknown class!");
Chris Lattner065faeb2002-12-28 20:24:02 +0000716 }
717 ArgOffset += 4;
Chris Lattner94af4142002-12-25 05:13:53 +0000718 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000719 } else {
720 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addZImm(0);
Chris Lattner94af4142002-12-25 05:13:53 +0000721 }
Chris Lattner6e49a4b2002-12-13 14:13:27 +0000722
Chris Lattner3e130a22003-01-13 00:32:26 +0000723 BB->push_back(CallMI);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +0000724
Chris Lattner065faeb2002-12-28 20:24:02 +0000725 BuildMI(BB, X86::ADJCALLSTACKUP, 1).addZImm(NumBytes);
Chris Lattnera3243642002-12-04 23:45:28 +0000726
727 // If there is a return value, scavenge the result from the location the call
728 // leaves it in...
729 //
Chris Lattner3e130a22003-01-13 00:32:26 +0000730 if (Ret.Ty != Type::VoidTy) {
731 unsigned DestClass = getClassB(Ret.Ty);
732 switch (DestClass) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000733 case cByte:
734 case cShort:
735 case cInt: {
736 // Integral results are in %eax, or the appropriate portion
737 // thereof.
738 static const unsigned regRegMove[] = {
739 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32
740 };
741 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
Chris Lattner3e130a22003-01-13 00:32:26 +0000742 BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000743 break;
Brian Gaeke20244b72002-12-12 15:33:40 +0000744 }
Chris Lattner94af4142002-12-25 05:13:53 +0000745 case cFP: // Floating-point return values live in %ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +0000746 BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +0000747 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000748 case cLong: // Long values are left in EDX:EAX
749 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg).addReg(X86::EAX);
750 BuildMI(BB, X86::MOVrr32, 1, Ret.Reg+1).addReg(X86::EDX);
751 break;
752 default: assert(0 && "Unknown class!");
Chris Lattner4fa1acc2002-12-04 23:50:28 +0000753 }
Chris Lattnera3243642002-12-04 23:45:28 +0000754 }
Brian Gaekefa8d5712002-11-22 11:07:01 +0000755}
Chris Lattner2df035b2002-11-02 19:27:56 +0000756
Chris Lattner3e130a22003-01-13 00:32:26 +0000757
758/// visitCallInst - Push args on stack and do a procedure call instruction.
759void ISel::visitCallInst(CallInst &CI) {
760 MachineInstr *TheCall;
761 if (Function *F = CI.getCalledFunction()) {
762 // Emit a CALL instruction with PC-relative displacement.
763 TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
764 } else { // Emit an indirect call...
765 unsigned Reg = getReg(CI.getCalledValue());
766 TheCall = BuildMI(X86::CALLr32, 1).addReg(Reg);
767 }
768
769 std::vector<ValueRecord> Args;
770 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
771 Args.push_back(ValueRecord(getReg(CI.getOperand(i)),
772 CI.getOperand(i)->getType()));
773
774 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
775 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
776}
777
778
Chris Lattner68aad932002-11-02 20:13:22 +0000779/// visitSimpleBinary - Implement simple binary operators for integral types...
780/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or,
781/// 4 for Xor.
782///
783void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000784 unsigned Class = getClassB(B.getType());
Chris Lattnere2954c82002-11-02 20:04:26 +0000785
786 static const unsigned OpcodeTab[][4] = {
Chris Lattner68aad932002-11-02 20:13:22 +0000787 // Arithmetic operators
Chris Lattner94af4142002-12-25 05:13:53 +0000788 { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, X86::FpADD }, // ADD
789 { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, X86::FpSUB }, // SUB
Chris Lattner68aad932002-11-02 20:13:22 +0000790
791 // Bitwise operators
Chris Lattnere2954c82002-11-02 20:04:26 +0000792 { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
793 { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
794 { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
795 };
Chris Lattner3e130a22003-01-13 00:32:26 +0000796
797 bool isLong = false;
798 if (Class == cLong) {
799 isLong = true;
800 Class = cInt; // Bottom 32 bits are handled just like ints
801 }
Chris Lattnere2954c82002-11-02 20:04:26 +0000802
803 unsigned Opcode = OpcodeTab[OperatorClass][Class];
Chris Lattner94af4142002-12-25 05:13:53 +0000804 assert(Opcode && "Floating point arguments to logical inst?");
Chris Lattnere2954c82002-11-02 20:04:26 +0000805 unsigned Op0r = getReg(B.getOperand(0));
806 unsigned Op1r = getReg(B.getOperand(1));
Chris Lattner3e130a22003-01-13 00:32:26 +0000807 unsigned DestReg = getReg(B);
808 BuildMI(BB, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
809
810 if (isLong) { // Handle the upper 32 bits of long values...
811 static const unsigned TopTab[] = {
812 X86::ADCrr32, X86::SBBrr32, X86::ANDrr32, X86::ORrr32, X86::XORrr32
813 };
814 BuildMI(BB, TopTab[OperatorClass], 2,
815 DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
816 }
Chris Lattnere2954c82002-11-02 20:04:26 +0000817}
818
Chris Lattner3e130a22003-01-13 00:32:26 +0000819/// doMultiply - Emit appropriate instructions to multiply together the
820/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
821/// result should be given as DestTy.
822///
823/// FIXME: doMultiply should use one of the two address IMUL instructions!
824///
Chris Lattner8a307e82002-12-16 19:32:50 +0000825void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator &MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +0000826 unsigned DestReg, const Type *DestTy,
Chris Lattner8a307e82002-12-16 19:32:50 +0000827 unsigned op0Reg, unsigned op1Reg) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000828 unsigned Class = getClass(DestTy);
Chris Lattner94af4142002-12-25 05:13:53 +0000829 switch (Class) {
830 case cFP: // Floating point multiply
Chris Lattner3e130a22003-01-13 00:32:26 +0000831 BMI(BB, MBBI, X86::FpMUL, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
Chris Lattner94af4142002-12-25 05:13:53 +0000832 return;
833 default:
Chris Lattner3e130a22003-01-13 00:32:26 +0000834 case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
Chris Lattner94af4142002-12-25 05:13:53 +0000835 case cByte:
836 case cShort:
837 case cInt: // Small integerals, handled below...
838 break;
839 }
Brian Gaeke20244b72002-12-12 15:33:40 +0000840
841 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
Chris Lattner3e130a22003-01-13 00:32:26 +0000842 static const unsigned MulOpcode[]={ X86::MULr8 , X86::MULr16 , X86::MULr32 };
Brian Gaeke20244b72002-12-12 15:33:40 +0000843 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
844 unsigned Reg = Regs[Class];
845
846 // Emit a MOV to put the first operand into the appropriately-sized
847 // subreg of EAX.
Chris Lattner3e130a22003-01-13 00:32:26 +0000848 BMI(MBB, MBBI, MovOpcode[Class], 1, Reg).addReg(op0Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +0000849
850 // Emit the appropriate multiply instruction.
Chris Lattner3e130a22003-01-13 00:32:26 +0000851 BMI(MBB, MBBI, MulOpcode[Class], 1).addReg(op1Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +0000852
853 // Emit another MOV to put the result into the destination register.
Chris Lattner3e130a22003-01-13 00:32:26 +0000854 BMI(MBB, MBBI, MovOpcode[Class], 1, DestReg).addReg(Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +0000855}
856
Chris Lattnerca9671d2002-11-02 20:28:58 +0000857/// visitMul - Multiplies are not simple binary operators because they must deal
858/// with the EAX register explicitly.
859///
860void ISel::visitMul(BinaryOperator &I) {
Chris Lattner202a2d02002-12-13 13:07:42 +0000861 unsigned Op0Reg = getReg(I.getOperand(0));
862 unsigned Op1Reg = getReg(I.getOperand(1));
Chris Lattner3e130a22003-01-13 00:32:26 +0000863 unsigned DestReg = getReg(I);
864
865 // Simple scalar multiply?
866 if (I.getType() != Type::LongTy && I.getType() != Type::ULongTy) {
867 MachineBasicBlock::iterator MBBI = BB->end();
868 doMultiply(BB, MBBI, DestReg, I.getType(), Op0Reg, Op1Reg);
869 } else {
870 // Long value. We have to do things the hard way...
871 // Multiply the two low parts... capturing carry into EDX
872 BuildMI(BB, X86::MOVrr32, 1, X86::EAX).addReg(Op0Reg);
873 BuildMI(BB, X86::MULr32, 1).addReg(Op1Reg); // AL*BL
874
875 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
876 BuildMI(BB, X86::MOVrr32, 1, DestReg).addReg(X86::EAX); // AL*BL
877 BuildMI(BB, X86::MOVrr32, 1, OverflowReg).addReg(X86::EDX); // AL*BL >> 32
878
879 MachineBasicBlock::iterator MBBI = BB->end();
880 unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
881 doMultiply(BB, MBBI, AHBLReg, Type::UIntTy, Op0Reg+1, Op1Reg); // AH*BL
882
883 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
884 BuildMI(BB, X86::ADDrr32, 2, // AH*BL+(AL*BL >> 32)
885 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
886
887 MBBI = BB->end();
888 unsigned ALBHReg = makeAnotherReg(Type::UIntTy);
889 doMultiply(BB, MBBI, ALBHReg, Type::UIntTy, Op0Reg, Op1Reg+1); // AL*BH
890
891 BuildMI(BB, X86::ADDrr32, 2, // AL*BH + AH*BL + (AL*BL >> 32)
892 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
893 }
Chris Lattnerf01729e2002-11-02 20:54:46 +0000894}
Chris Lattnerca9671d2002-11-02 20:28:58 +0000895
Chris Lattner06925362002-11-17 21:56:38 +0000896
Chris Lattnerf01729e2002-11-02 20:54:46 +0000897/// visitDivRem - Handle division and remainder instructions... these
898/// instruction both require the same instructions to be generated, they just
899/// select the result from a different register. Note that both of these
900/// instructions work differently for signed and unsigned operands.
901///
902void ISel::visitDivRem(BinaryOperator &I) {
Chris Lattner94af4142002-12-25 05:13:53 +0000903 unsigned Class = getClass(I.getType());
904 unsigned Op0Reg = getReg(I.getOperand(0));
905 unsigned Op1Reg = getReg(I.getOperand(1));
906 unsigned ResultReg = getReg(I);
907
908 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000909 case cFP: // Floating point divide
Chris Lattner94af4142002-12-25 05:13:53 +0000910 if (I.getOpcode() == Instruction::Div)
911 BuildMI(BB, X86::FpDIV, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +0000912 else { // Floating point remainder...
913 MachineInstr *TheCall =
914 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
915 std::vector<ValueRecord> Args;
916 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
917 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
918 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
919 }
Chris Lattner94af4142002-12-25 05:13:53 +0000920 return;
Chris Lattner3e130a22003-01-13 00:32:26 +0000921 case cLong: {
922 static const char *FnName[] =
923 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
924
925 unsigned NameIdx = I.getType()->isUnsigned()*2;
926 NameIdx += I.getOpcode() == Instruction::Div;
927 MachineInstr *TheCall =
928 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
929
930 std::vector<ValueRecord> Args;
931 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
932 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
933 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
934 return;
935 }
936 case cByte: case cShort: case cInt:
937 break; // Small integerals, handled below...
938 default: assert(0 && "Unknown class!");
Chris Lattner94af4142002-12-25 05:13:53 +0000939 }
Chris Lattnerf01729e2002-11-02 20:54:46 +0000940
941 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
942 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
Brian Gaeke6559bb92002-11-14 22:32:30 +0000943 static const unsigned ExtOpcode[]={ X86::CBW , X86::CWD , X86::CDQ };
Chris Lattnerf01729e2002-11-02 20:54:46 +0000944 static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 };
945 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
946
947 static const unsigned DivOpcode[][4] = {
Chris Lattner3e130a22003-01-13 00:32:26 +0000948 { X86::DIVr8 , X86::DIVr16 , X86::DIVr32 , 0 }, // Unsigned division
949 { X86::IDIVr8, X86::IDIVr16, X86::IDIVr32, 0 }, // Signed division
Chris Lattnerf01729e2002-11-02 20:54:46 +0000950 };
951
952 bool isSigned = I.getType()->isSigned();
953 unsigned Reg = Regs[Class];
954 unsigned ExtReg = ExtRegs[Class];
Chris Lattnerf01729e2002-11-02 20:54:46 +0000955
956 // Put the first operand into one of the A registers...
957 BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
958
959 if (isSigned) {
960 // Emit a sign extension instruction...
Chris Lattnera4978cc2002-12-01 23:24:58 +0000961 BuildMI(BB, ExtOpcode[Class], 0);
Chris Lattnerf01729e2002-11-02 20:54:46 +0000962 } else {
963 // If unsigned, emit a zeroing instruction... (reg = xor reg, reg)
964 BuildMI(BB, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg);
965 }
966
Chris Lattner06925362002-11-17 21:56:38 +0000967 // Emit the appropriate divide or remainder instruction...
Chris Lattner92845e32002-11-21 18:54:29 +0000968 BuildMI(BB, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
Chris Lattner06925362002-11-17 21:56:38 +0000969
Chris Lattnerf01729e2002-11-02 20:54:46 +0000970 // Figure out which register we want to pick the result out of...
971 unsigned DestReg = (I.getOpcode() == Instruction::Div) ? Reg : ExtReg;
972
Chris Lattnerf01729e2002-11-02 20:54:46 +0000973 // Put the result into the destination register...
Chris Lattner94af4142002-12-25 05:13:53 +0000974 BuildMI(BB, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000975}
Chris Lattnere2954c82002-11-02 20:04:26 +0000976
Chris Lattner06925362002-11-17 21:56:38 +0000977
Brian Gaekea1719c92002-10-31 23:03:59 +0000978/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
979/// for constant immediate shift values, and for constant immediate
980/// shift values equal to 1. Even the general case is sort of special,
981/// because the shift amount has to be in CL, not just any old register.
982///
Chris Lattner3e130a22003-01-13 00:32:26 +0000983void ISel::visitShiftInst(ShiftInst &I) {
984 unsigned SrcReg = getReg(I.getOperand(0));
Chris Lattnerf01729e2002-11-02 20:54:46 +0000985 unsigned DestReg = getReg(I);
Chris Lattnere9913f22002-11-02 01:41:55 +0000986 bool isLeftShift = I.getOpcode() == Instruction::Shl;
Chris Lattner3e130a22003-01-13 00:32:26 +0000987 bool isSigned = I.getType()->isSigned();
988 unsigned Class = getClass(I.getType());
989
990 static const unsigned ConstantOperand[][4] = {
991 { X86::SHRir8, X86::SHRir16, X86::SHRir32, X86::SHRDir32 }, // SHR
992 { X86::SARir8, X86::SARir16, X86::SARir32, X86::SHRDir32 }, // SAR
993 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SHL
994 { X86::SHLir8, X86::SHLir16, X86::SHLir32, X86::SHLDir32 }, // SAL = SHL
995 };
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000996
Chris Lattner3e130a22003-01-13 00:32:26 +0000997 static const unsigned NonConstantOperand[][4] = {
998 { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32 }, // SHR
999 { X86::SARrr8, X86::SARrr16, X86::SARrr32 }, // SAR
1000 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SHL
1001 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32 }, // SAL = SHL
1002 };
Chris Lattner796df732002-11-02 00:44:25 +00001003
Chris Lattner3e130a22003-01-13 00:32:26 +00001004 // Longs, as usual, are handled specially...
1005 if (Class == cLong) {
1006 // If we have a constant shift, we can generate much more efficient code
1007 // than otherwise...
1008 //
1009 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getOperand(1))) {
1010 unsigned Amount = CUI->getValue();
1011 if (Amount < 32) {
1012 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
1013 if (isLeftShift) {
1014 BuildMI(BB, Opc[3], 3,
1015 DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addZImm(Amount);
1016 BuildMI(BB, Opc[2], 2, DestReg).addReg(SrcReg).addZImm(Amount);
1017 } else {
1018 BuildMI(BB, Opc[3], 3,
1019 DestReg).addReg(SrcReg ).addReg(SrcReg+1).addZImm(Amount);
1020 BuildMI(BB, Opc[2], 2, DestReg+1).addReg(SrcReg+1).addZImm(Amount);
1021 }
1022 } else { // Shifting more than 32 bits
1023 Amount -= 32;
1024 if (isLeftShift) {
1025 BuildMI(BB, X86::SHLir32, 2,DestReg+1).addReg(SrcReg).addZImm(Amount);
1026 BuildMI(BB, X86::MOVir32, 1,DestReg ).addZImm(0);
1027 } else {
1028 unsigned Opcode = isSigned ? X86::SARir32 : X86::SHRir32;
1029 BuildMI(BB, Opcode, 2, DestReg).addReg(SrcReg+1).addZImm(Amount);
1030 BuildMI(BB, X86::MOVir32, 1, DestReg+1).addZImm(0);
1031 }
1032 }
1033 } else {
1034 visitInstruction(I); // FIXME: Implement long shift by non-constant
Brian Gaekea1719c92002-10-31 23:03:59 +00001035 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001036 return;
1037 }
Chris Lattnere9913f22002-11-02 01:41:55 +00001038
Chris Lattner3e130a22003-01-13 00:32:26 +00001039 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getOperand(1))) {
1040 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
1041 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001042
Chris Lattner3e130a22003-01-13 00:32:26 +00001043 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
1044 BuildMI(BB, Opc[Class], 2, DestReg).addReg(SrcReg).addZImm(CUI->getValue());
1045 } else { // The shift amount is non-constant.
1046 BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(getReg(I.getOperand(1)));
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001047
Chris Lattner3e130a22003-01-13 00:32:26 +00001048 const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
1049 BuildMI(BB, Opc[Class], 1, DestReg).addReg(SrcReg);
1050 }
1051}
Chris Lattnerb1761fc2002-11-02 01:15:18 +00001052
Chris Lattner3e130a22003-01-13 00:32:26 +00001053
1054/// doFPLoad - This method is used to load an FP value from memory using the
1055/// current endianness. NOTE: This method returns a partially constructed load
1056/// instruction which needs to have the memory source filled in still.
1057///
1058MachineInstr *ISel::doFPLoad(MachineBasicBlock *MBB,
1059 MachineBasicBlock::iterator &MBBI,
1060 const Type *Ty, unsigned DestReg) {
1061 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1062 unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLDr32 : X86::FLDr64;
1063
1064 if (TM.getTargetData().isLittleEndian()) // fast path...
1065 return BMI(MBB, MBBI, LoadOpcode, 4, DestReg);
1066
1067 // If we are big-endian, start by creating an LEA instruction to represent the
1068 // address of the memory location to load from...
1069 //
1070 unsigned SrcAddrReg = makeAnotherReg(Type::UIntTy);
1071 MachineInstr *Result = BMI(MBB, MBBI, X86::LEAr32, 5, SrcAddrReg);
1072
1073 // Allocate a temporary stack slot to transform the value into...
1074 int FrameIdx = F->getFrameInfo()->CreateStackObject(Ty, TM.getTargetData());
1075
1076 // Perform the bswaps 32 bits at a time...
1077 unsigned TmpReg1 = makeAnotherReg(Type::UIntTy);
1078 unsigned TmpReg2 = makeAnotherReg(Type::UIntTy);
1079 addDirectMem(BMI(MBB, MBBI, X86::MOVmr32, 4, TmpReg1), SrcAddrReg);
1080 BMI(MBB, MBBI, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1081 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1082 addFrameReference(BMI(MBB, MBBI, X86::MOVrm32, 5),
1083 FrameIdx, Offset).addReg(TmpReg2);
1084
1085 if (Ty == Type::DoubleTy) { // Swap the other 32 bits of a double value...
1086 TmpReg1 = makeAnotherReg(Type::UIntTy);
1087 TmpReg2 = makeAnotherReg(Type::UIntTy);
1088
1089 addRegOffset(BMI(MBB, MBBI, X86::MOVmr32, 4, TmpReg1), SrcAddrReg, 4);
1090 BMI(MBB, MBBI, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1091 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1092 addFrameReference(BMI(MBB, MBBI, X86::MOVrm32,5), FrameIdx).addReg(TmpReg2);
1093 }
1094
1095 // Now we can reload the final byteswapped result into the final destination.
1096 addFrameReference(BMI(MBB, MBBI, LoadOpcode, 4, DestReg), FrameIdx);
1097 return Result;
1098}
1099
1100/// EmitByteSwap - Byteswap SrcReg into DestReg.
1101///
1102void ISel::EmitByteSwap(unsigned DestReg, unsigned SrcReg, unsigned Class) {
1103 // Emit the byte swap instruction...
1104 switch (Class) {
1105 case cByte:
1106 // No byteswap neccesary for 8 bit value...
1107 BuildMI(BB, X86::MOVrr8, 1, DestReg).addReg(SrcReg);
1108 break;
1109 case cInt:
1110 // Use the 32 bit bswap instruction to do a 32 bit swap...
1111 BuildMI(BB, X86::BSWAPr32, 1, DestReg).addReg(SrcReg);
1112 break;
1113
1114 case cShort:
1115 // For 16 bit we have to use an xchg instruction, because there is no
1116 // 16-bit bswap. XCHG is neccesarily not in SSA form, so we force things
1117 // into AX to do the xchg.
1118 //
1119 BuildMI(BB, X86::MOVrr16, 1, X86::AX).addReg(SrcReg);
1120 BuildMI(BB, X86::XCHGrr8, 2).addReg(X86::AL, MOTy::UseAndDef)
1121 .addReg(X86::AH, MOTy::UseAndDef);
1122 BuildMI(BB, X86::MOVrr16, 1, DestReg).addReg(X86::AX);
1123 break;
1124 default: assert(0 && "Cannot byteswap this class!");
1125 }
Brian Gaekea1719c92002-10-31 23:03:59 +00001126}
1127
Chris Lattner06925362002-11-17 21:56:38 +00001128
Chris Lattner6fc3c522002-11-17 21:11:55 +00001129/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
Chris Lattnere8f0d922002-12-24 00:03:11 +00001130/// instruction. The load and store instructions are the only place where we
1131/// need to worry about the memory layout of the target machine.
Chris Lattner6fc3c522002-11-17 21:11:55 +00001132///
1133void ISel::visitLoadInst(LoadInst &I) {
Chris Lattnere8f0d922002-12-24 00:03:11 +00001134 bool isLittleEndian = TM.getTargetData().isLittleEndian();
1135 bool hasLongPointers = TM.getTargetData().getPointerSize() == 8;
Chris Lattner94af4142002-12-25 05:13:53 +00001136 unsigned SrcAddrReg = getReg(I.getOperand(0));
1137 unsigned DestReg = getReg(I);
Chris Lattnere8f0d922002-12-24 00:03:11 +00001138
Chris Lattner6fc3c522002-11-17 21:11:55 +00001139 unsigned Class = getClass(I.getType());
Chris Lattner94af4142002-12-25 05:13:53 +00001140 switch (Class) {
Chris Lattner94af4142002-12-25 05:13:53 +00001141 case cFP: {
Chris Lattner3e130a22003-01-13 00:32:26 +00001142 MachineBasicBlock::iterator MBBI = BB->end();
1143 addDirectMem(doFPLoad(BB, MBBI, I.getType(), DestReg), SrcAddrReg);
Chris Lattner94af4142002-12-25 05:13:53 +00001144 return;
1145 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001146 case cLong: case cInt: case cShort: case cByte:
1147 break; // Integers of various sizes handled below
1148 default: assert(0 && "Unknown memory class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001149 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00001150
Chris Lattnere8f0d922002-12-24 00:03:11 +00001151 // We need to adjust the input pointer if we are emulating a big-endian
1152 // long-pointer target. On these systems, the pointer that we are interested
1153 // in is in the upper part of the eight byte memory image of the pointer. It
1154 // also happens to be byte-swapped, but this will be handled later.
1155 //
1156 if (!isLittleEndian && hasLongPointers && isa<PointerType>(I.getType())) {
1157 unsigned R = makeAnotherReg(Type::UIntTy);
1158 BuildMI(BB, X86::ADDri32, 2, R).addReg(SrcAddrReg).addZImm(4);
1159 SrcAddrReg = R;
1160 }
Chris Lattner94af4142002-12-25 05:13:53 +00001161
Chris Lattnere8f0d922002-12-24 00:03:11 +00001162 unsigned IReg = DestReg;
Chris Lattner3e130a22003-01-13 00:32:26 +00001163 if (!isLittleEndian) // If big endian we need an intermediate stage
1164 DestReg = makeAnotherReg(Class != cLong ? I.getType() : Type::UIntTy);
Chris Lattner94af4142002-12-25 05:13:53 +00001165
Chris Lattner3e130a22003-01-13 00:32:26 +00001166 static const unsigned Opcode[] = {
1167 X86::MOVmr8, X86::MOVmr16, X86::MOVmr32, 0, X86::MOVmr32
1168 };
Chris Lattnere8f0d922002-12-24 00:03:11 +00001169 addDirectMem(BuildMI(BB, Opcode[Class], 4, DestReg), SrcAddrReg);
1170
Chris Lattner3e130a22003-01-13 00:32:26 +00001171 // Handle long values now...
1172 if (Class == cLong) {
1173 if (isLittleEndian) {
1174 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), SrcAddrReg, 4);
1175 } else {
1176 EmitByteSwap(IReg+1, DestReg, cInt);
1177 unsigned TempReg = makeAnotherReg(Type::IntTy);
1178 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, TempReg), SrcAddrReg, 4);
1179 EmitByteSwap(IReg, TempReg, cInt);
Chris Lattner94af4142002-12-25 05:13:53 +00001180 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001181 return;
1182 }
1183
1184 if (!isLittleEndian)
1185 EmitByteSwap(IReg, DestReg, Class);
1186}
1187
1188
1189/// doFPStore - This method is used to store an FP value to memory using the
1190/// current endianness.
1191///
1192void ISel::doFPStore(const Type *Ty, unsigned DestAddrReg, unsigned SrcReg) {
1193 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1194 unsigned StoreOpcode = Ty == Type::FloatTy ? X86::FSTr32 : X86::FSTr64;
1195
1196 if (TM.getTargetData().isLittleEndian()) { // fast path...
1197 addDirectMem(BuildMI(BB, StoreOpcode,5), DestAddrReg).addReg(SrcReg);
1198 return;
1199 }
1200
1201 // Allocate a temporary stack slot to transform the value into...
1202 int FrameIdx = F->getFrameInfo()->CreateStackObject(Ty, TM.getTargetData());
1203 unsigned SrcAddrReg = makeAnotherReg(Type::UIntTy);
1204 addFrameReference(BuildMI(BB, X86::LEAr32, 5, SrcAddrReg), FrameIdx);
1205
1206 // Store the value into a temporary stack slot...
1207 addDirectMem(BuildMI(BB, StoreOpcode, 5), SrcAddrReg).addReg(SrcReg);
1208
1209 // Perform the bswaps 32 bits at a time...
1210 unsigned TmpReg1 = makeAnotherReg(Type::UIntTy);
1211 unsigned TmpReg2 = makeAnotherReg(Type::UIntTy);
1212 addDirectMem(BuildMI(BB, X86::MOVmr32, 4, TmpReg1), SrcAddrReg);
1213 BuildMI(BB, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1214 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1215 addRegOffset(BuildMI(BB, X86::MOVrm32, 5),
1216 DestAddrReg, Offset).addReg(TmpReg2);
1217
1218 if (Ty == Type::DoubleTy) { // Swap the other 32 bits of a double value...
1219 TmpReg1 = makeAnotherReg(Type::UIntTy);
1220 TmpReg2 = makeAnotherReg(Type::UIntTy);
1221
1222 addRegOffset(BuildMI(BB, X86::MOVmr32, 4, TmpReg1), SrcAddrReg, 4);
1223 BuildMI(BB, X86::BSWAPr32, 1, TmpReg2).addReg(TmpReg1);
1224 unsigned Offset = (Ty == Type::DoubleTy) << 2;
1225 addDirectMem(BuildMI(BB, X86::MOVrm32, 5), DestAddrReg).addReg(TmpReg2);
Chris Lattnere8f0d922002-12-24 00:03:11 +00001226 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00001227}
1228
Chris Lattner06925362002-11-17 21:56:38 +00001229
Chris Lattner6fc3c522002-11-17 21:11:55 +00001230/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
1231/// instruction.
1232///
1233void ISel::visitStoreInst(StoreInst &I) {
Chris Lattnere8f0d922002-12-24 00:03:11 +00001234 bool isLittleEndian = TM.getTargetData().isLittleEndian();
1235 bool hasLongPointers = TM.getTargetData().getPointerSize() == 8;
Chris Lattner3e130a22003-01-13 00:32:26 +00001236 unsigned ValReg = getReg(I.getOperand(0));
1237 unsigned AddressReg = getReg(I.getOperand(1));
Chris Lattnere8f0d922002-12-24 00:03:11 +00001238
Chris Lattner94af4142002-12-25 05:13:53 +00001239 unsigned Class = getClass(I.getOperand(0)->getType());
1240 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001241 case cLong:
1242 if (isLittleEndian) {
1243 addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(ValReg);
1244 addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4),
1245 AddressReg, 4).addReg(ValReg+1);
1246 } else {
1247 unsigned T1 = makeAnotherReg(Type::IntTy);
1248 unsigned T2 = makeAnotherReg(Type::IntTy);
1249 EmitByteSwap(T1, ValReg , cInt);
1250 EmitByteSwap(T2, ValReg+1, cInt);
1251 addDirectMem(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg).addReg(T2);
1252 addRegOffset(BuildMI(BB, X86::MOVrm32, 1+4), AddressReg, 4).addReg(T1);
1253 }
Chris Lattner94af4142002-12-25 05:13:53 +00001254 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00001255 case cFP:
1256 doFPStore(I.getOperand(0)->getType(), AddressReg, ValReg);
1257 return;
1258 case cInt: case cShort: case cByte:
1259 break; // Integers of various sizes handled below
1260 default: assert(0 && "Unknown memory class!");
Chris Lattner94af4142002-12-25 05:13:53 +00001261 }
1262
1263 if (!isLittleEndian && hasLongPointers &&
1264 isa<PointerType>(I.getOperand(0)->getType())) {
Chris Lattnere8f0d922002-12-24 00:03:11 +00001265 unsigned R = makeAnotherReg(Type::UIntTy);
1266 BuildMI(BB, X86::ADDri32, 2, R).addReg(AddressReg).addZImm(4);
1267 AddressReg = R;
1268 }
1269
Chris Lattner94af4142002-12-25 05:13:53 +00001270 if (!isLittleEndian && Class != cByte) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001271 unsigned R = makeAnotherReg(I.getOperand(0)->getType());
1272 EmitByteSwap(R, ValReg, Class);
1273 ValReg = R;
Chris Lattnere8f0d922002-12-24 00:03:11 +00001274 }
1275
Chris Lattner94af4142002-12-25 05:13:53 +00001276 static const unsigned Opcode[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
Chris Lattner6fc3c522002-11-17 21:11:55 +00001277 addDirectMem(BuildMI(BB, Opcode[Class], 1+4), AddressReg).addReg(ValReg);
1278}
1279
1280
Brian Gaekec11232a2002-11-26 10:43:30 +00001281/// visitCastInst - Here we have various kinds of copying with or without
1282/// sign extension going on.
Chris Lattner3e130a22003-01-13 00:32:26 +00001283void ISel::visitCastInst(CastInst &CI) {
1284 const Type *DestTy = CI.getType();
1285 Value *Src = CI.getOperand(0);
1286 unsigned SrcReg = getReg(Src);
1287 const Type *SrcTy = Src->getType();
1288 unsigned SrcClass = getClassB(SrcTy);
1289 unsigned DestReg = getReg(CI);
1290 unsigned DestClass = getClassB(DestTy);
Chris Lattner7d255892002-12-13 11:31:59 +00001291
Chris Lattner3e130a22003-01-13 00:32:26 +00001292 // Implement casts to bool by using compare on the operand followed by set if
1293 // not zero on the result.
1294 if (DestTy == Type::BoolTy) {
1295 if (SrcClass == cFP || SrcClass == cLong)
1296 visitInstruction(CI);
1297
1298 BuildMI(BB, X86::CMPri8, 2).addReg(SrcReg).addZImm(0);
1299 BuildMI(BB, X86::SETNEr, 1, DestReg);
Chris Lattner94af4142002-12-25 05:13:53 +00001300 return;
1301 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001302
1303 static const unsigned RegRegMove[] = {
1304 X86::MOVrr8, X86::MOVrr16, X86::MOVrr32, X86::FpMOV, X86::MOVrr32
1305 };
1306
1307 // Implement casts between values of the same type class (as determined by
1308 // getClass) by using a register-to-register move.
1309 if (SrcClass == DestClass) {
1310 if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
1311 BuildMI(BB, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
1312 } else if (SrcClass == cFP) {
1313 if (SrcTy == Type::FloatTy) { // double -> float
1314 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
1315 BuildMI(BB, X86::FpMOV, 1, DestReg).addReg(SrcReg);
1316 } else { // float -> double
1317 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
1318 "Unknown cFP member!");
1319 // Truncate from double to float by storing to memory as short, then
1320 // reading it back.
1321 unsigned FltAlign = TM.getTargetData().getFloatAlignment();
1322 int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
1323 addFrameReference(BuildMI(BB, X86::FSTr32, 5), FrameIdx).addReg(SrcReg);
1324 addFrameReference(BuildMI(BB, X86::FLDr32, 5, DestReg), FrameIdx);
1325 }
1326 } else if (SrcClass == cLong) {
1327 BuildMI(BB, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
1328 BuildMI(BB, X86::MOVrr32, 1, DestReg+1).addReg(SrcReg+1);
1329 } else {
1330 visitInstruction(CI);
Brian Gaeked474e9c2002-12-06 10:49:33 +00001331 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001332 return;
1333 }
1334
1335 // Handle cast of SMALLER int to LARGER int using a move with sign extension
1336 // or zero extension, depending on whether the source type was signed.
1337 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
1338 SrcClass < DestClass) {
1339 bool isLong = DestClass == cLong;
1340 if (isLong) DestClass = cInt;
1341
1342 static const unsigned Opc[][4] = {
1343 { X86::MOVSXr16r8, X86::MOVSXr32r8, X86::MOVSXr32r16, X86::MOVrr32 }, // s
1344 { X86::MOVZXr16r8, X86::MOVZXr32r8, X86::MOVZXr32r16, X86::MOVrr32 } // u
1345 };
1346
1347 bool isUnsigned = SrcTy->isUnsigned();
1348 BuildMI(BB, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
1349 DestReg).addReg(SrcReg);
1350
1351 if (isLong) { // Handle upper 32 bits as appropriate...
1352 if (isUnsigned) // Zero out top bits...
1353 BuildMI(BB, X86::MOVir32, 1, DestReg+1).addZImm(0);
1354 else // Sign extend bottom half...
1355 BuildMI(BB, X86::SARir32, 2, DestReg+1).addReg(DestReg).addZImm(31);
Brian Gaeked474e9c2002-12-06 10:49:33 +00001356 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001357 return;
1358 }
1359
1360 // Special case long -> int ...
1361 if (SrcClass == cLong && DestClass == cInt) {
1362 BuildMI(BB, X86::MOVrr32, 1, DestReg).addReg(SrcReg);
1363 return;
1364 }
1365
1366 // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
1367 // move out of AX or AL.
1368 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
1369 && SrcClass > DestClass) {
1370 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
1371 BuildMI(BB, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
1372 BuildMI(BB, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
1373 return;
1374 }
1375
1376 // Handle casts from integer to floating point now...
1377 if (DestClass == cFP) {
1378 // unsigned int -> load as 64 bit int.
1379 // unsigned long long -> more complex
1380 if (SrcTy->isUnsigned() && SrcTy != Type::UByteTy)
1381 visitInstruction(CI); // don't handle unsigned src yet!
1382
1383 // We don't have the facilities for directly loading byte sized data from
1384 // memory. Promote it to 16 bits.
1385 if (SrcClass == cByte) {
1386 unsigned TmpReg = makeAnotherReg(Type::ShortTy);
1387 BuildMI(BB, SrcTy->isSigned() ? X86::MOVSXr16r8 : X86::MOVZXr16r8,
1388 1, TmpReg).addReg(SrcReg);
1389 SrcTy = Type::ShortTy; // Pretend the short is our input now!
1390 SrcClass = cShort;
1391 SrcReg = TmpReg;
1392 }
1393
1394 // Spill the integer to memory and reload it from there...
1395 int FrameIdx =
1396 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
1397
1398 if (SrcClass == cLong) {
1399 if (SrcTy == Type::ULongTy) visitInstruction(CI);
1400 addFrameReference(BuildMI(BB, X86::MOVrm32, 5), FrameIdx).addReg(SrcReg);
1401 addFrameReference(BuildMI(BB, X86::MOVrm32, 5),
1402 FrameIdx, 4).addReg(SrcReg+1);
1403 } else {
1404 static const unsigned Op1[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
1405 addFrameReference(BuildMI(BB, Op1[SrcClass], 5), FrameIdx).addReg(SrcReg);
1406 }
1407
1408 static const unsigned Op2[] =
1409 { 0, X86::FILDr16, X86::FILDr32, 0, X86::FILDr64 };
1410 addFrameReference(BuildMI(BB, Op2[SrcClass], 5, DestReg), FrameIdx);
1411 return;
1412 }
1413
1414 // Handle casts from floating point to integer now...
1415 if (SrcClass == cFP) {
1416 // Change the floating point control register to use "round towards zero"
1417 // mode when truncating to an integer value.
1418 //
1419 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
1420 addFrameReference(BuildMI(BB, X86::FNSTCWm16, 4), CWFrameIdx);
1421
1422 // Load the old value of the high byte of the control word...
1423 unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
1424 addFrameReference(BuildMI(BB, X86::MOVmr8, 4, HighPartOfCW), CWFrameIdx, 1);
1425
1426 // Set the high part to be round to zero...
1427 addFrameReference(BuildMI(BB, X86::MOVim8, 5), CWFrameIdx, 1).addZImm(12);
1428
1429 // Reload the modified control word now...
1430 addFrameReference(BuildMI(BB, X86::FLDCWm16, 4), CWFrameIdx);
1431
1432 // Restore the memory image of control word to original value
1433 addFrameReference(BuildMI(BB, X86::MOVrm8, 5),
1434 CWFrameIdx, 1).addReg(HighPartOfCW);
1435
1436 // We don't have the facilities for directly storing byte sized data to
1437 // memory. Promote it to 16 bits. We also must promote unsigned values to
1438 // larger classes because we only have signed FP stores.
1439 unsigned StoreClass = DestClass;
1440 const Type *StoreTy = DestTy;
1441 if (StoreClass == cByte || DestTy->isUnsigned())
1442 switch (StoreClass) {
1443 case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
1444 case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
1445 case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
1446 case cLong: visitInstruction(CI); // unsigned long long -> more complex
1447 default: assert(0 && "Unknown store class!");
1448 }
1449
1450 // Spill the integer to memory and reload it from there...
1451 int FrameIdx =
1452 F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
1453
1454 static const unsigned Op1[] =
1455 { 0, X86::FISTr16, X86::FISTr32, 0, X86::FISTPr64 };
1456 addFrameReference(BuildMI(BB, Op1[StoreClass], 5), FrameIdx).addReg(SrcReg);
1457
1458 if (DestClass == cLong) {
1459 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, DestReg), FrameIdx);
1460 addFrameReference(BuildMI(BB, X86::MOVmr32, 4, DestReg+1), FrameIdx, 4);
1461 } else {
1462 static const unsigned Op2[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
1463 addFrameReference(BuildMI(BB, Op2[DestClass], 4, DestReg), FrameIdx);
1464 }
1465
1466 // Reload the original control word now...
1467 addFrameReference(BuildMI(BB, X86::FLDCWm16, 4), CWFrameIdx);
1468 return;
1469 }
1470
Brian Gaeked474e9c2002-12-06 10:49:33 +00001471 // Anything we haven't handled already, we can't (yet) handle at all.
Brian Gaekefa8d5712002-11-22 11:07:01 +00001472 visitInstruction (CI);
1473}
Brian Gaekea1719c92002-10-31 23:03:59 +00001474
Chris Lattner8a307e82002-12-16 19:32:50 +00001475// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1476// returns zero when the input is not exactly a power of two.
1477static unsigned ExactLog2(unsigned Val) {
1478 if (Val == 0) return 0;
1479 unsigned Count = 0;
1480 while (Val != 1) {
1481 if (Val & 1) return 0;
1482 Val >>= 1;
1483 ++Count;
1484 }
1485 return Count+1;
1486}
1487
Chris Lattner3e130a22003-01-13 00:32:26 +00001488void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
1489 unsigned outputReg = getReg(I);
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00001490 MachineBasicBlock::iterator MI = BB->end();
1491 emitGEPOperation(BB, MI, I.getOperand(0),
Brian Gaeke68b1edc2002-12-16 04:23:29 +00001492 I.op_begin()+1, I.op_end(), outputReg);
Chris Lattnerc0812d82002-12-13 06:56:29 +00001493}
1494
Brian Gaeke71794c02002-12-13 11:22:48 +00001495void ISel::emitGEPOperation(MachineBasicBlock *MBB,
Chris Lattnerf08ad9f2002-12-13 10:50:40 +00001496 MachineBasicBlock::iterator &IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +00001497 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +00001498 User::op_iterator IdxEnd, unsigned TargetReg) {
1499 const TargetData &TD = TM.getTargetData();
1500 const Type *Ty = Src->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +00001501 unsigned BaseReg = getReg(Src, MBB, IP);
Chris Lattnerc0812d82002-12-13 06:56:29 +00001502
Brian Gaeke20244b72002-12-12 15:33:40 +00001503 // GEPs have zero or more indices; we must perform a struct access
1504 // or array access for each one.
Chris Lattnerc0812d82002-12-13 06:56:29 +00001505 for (GetElementPtrInst::op_iterator oi = IdxBegin,
1506 oe = IdxEnd; oi != oe; ++oi) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001507 Value *idx = *oi;
Chris Lattner3e130a22003-01-13 00:32:26 +00001508 unsigned NextReg = BaseReg;
Chris Lattner065faeb2002-12-28 20:24:02 +00001509 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001510 // It's a struct access. idx is the index into the structure,
1511 // which names the field. This index must have ubyte type.
Chris Lattner065faeb2002-12-28 20:24:02 +00001512 const ConstantUInt *CUI = cast<ConstantUInt>(idx);
1513 assert(CUI->getType() == Type::UByteTy
Brian Gaeke20244b72002-12-12 15:33:40 +00001514 && "Funny-looking structure index in GEP");
1515 // Use the TargetData structure to pick out what the layout of
1516 // the structure is in memory. Since the structure index must
1517 // be constant, we can get its value and use it to find the
1518 // right byte offset from the StructLayout class's list of
1519 // structure member offsets.
Chris Lattnere8f0d922002-12-24 00:03:11 +00001520 unsigned idxValue = CUI->getValue();
Chris Lattner3e130a22003-01-13 00:32:26 +00001521 unsigned FieldOff = TD.getStructLayout(StTy)->MemberOffsets[idxValue];
1522 if (FieldOff) {
1523 NextReg = makeAnotherReg(Type::UIntTy);
1524 // Emit an ADD to add FieldOff to the basePtr.
1525 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(FieldOff);
1526 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001527 // The next type is the member of the structure selected by the
1528 // index.
Chris Lattner065faeb2002-12-28 20:24:02 +00001529 Ty = StTy->getElementTypes()[idxValue];
1530 } else if (const SequentialType *SqTy = cast<SequentialType>(Ty)) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001531 // It's an array or pointer access: [ArraySize x ElementType].
Chris Lattner8a307e82002-12-16 19:32:50 +00001532
Brian Gaeke20244b72002-12-12 15:33:40 +00001533 // idx is the index into the array. Unlike with structure
1534 // indices, we may not know its actual value at code-generation
1535 // time.
Chris Lattner8a307e82002-12-16 19:32:50 +00001536 assert(idx->getType() == Type::LongTy && "Bad GEP array index!");
1537
Chris Lattner3e130a22003-01-13 00:32:26 +00001538 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
Chris Lattner8a307e82002-12-16 19:32:50 +00001539 // must find the size of the pointed-to type (Not coincidentally, the next
1540 // type is the type of the elements in the array).
1541 Ty = SqTy->getElementType();
1542 unsigned elementSize = TD.getTypeSize(Ty);
1543
1544 // If idxReg is a constant, we don't need to perform the multiply!
1545 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001546 if (!CSI->isNullValue()) {
Chris Lattner8a307e82002-12-16 19:32:50 +00001547 unsigned Offset = elementSize*CSI->getValue();
Chris Lattner3e130a22003-01-13 00:32:26 +00001548 NextReg = makeAnotherReg(Type::UIntTy);
1549 BMI(MBB, IP, X86::ADDri32, 2,NextReg).addReg(BaseReg).addZImm(Offset);
Chris Lattner8a307e82002-12-16 19:32:50 +00001550 }
1551 } else if (elementSize == 1) {
1552 // If the element size is 1, we don't have to multiply, just add
1553 unsigned idxReg = getReg(idx, MBB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001554 NextReg = makeAnotherReg(Type::UIntTy);
1555 BMI(MBB, IP, X86::ADDrr32, 2, NextReg).addReg(BaseReg).addReg(idxReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00001556 } else {
1557 unsigned idxReg = getReg(idx, MBB, IP);
1558 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
1559 if (unsigned Shift = ExactLog2(elementSize)) {
1560 // If the element size is exactly a power of 2, use a shift to get it.
Chris Lattner8a307e82002-12-16 19:32:50 +00001561 BMI(MBB, IP, X86::SHLir32, 2,
1562 OffsetReg).addReg(idxReg).addZImm(Shift-1);
1563 } else {
1564 // Most general case, emit a multiply...
1565 unsigned elementSizeReg = makeAnotherReg(Type::LongTy);
1566 BMI(MBB, IP, X86::MOVir32, 1, elementSizeReg).addZImm(elementSize);
1567
1568 // Emit a MUL to multiply the register holding the index by
1569 // elementSize, putting the result in OffsetReg.
Chris Lattner3e130a22003-01-13 00:32:26 +00001570 doMultiply(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSizeReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00001571 }
1572 // Emit an ADD to add OffsetReg to the basePtr.
Chris Lattner3e130a22003-01-13 00:32:26 +00001573 NextReg = makeAnotherReg(Type::UIntTy);
1574 BMI(MBB, IP, X86::ADDrr32, 2,NextReg).addReg(BaseReg).addReg(OffsetReg);
Chris Lattner8a307e82002-12-16 19:32:50 +00001575 }
Brian Gaeke20244b72002-12-12 15:33:40 +00001576 }
1577 // Now that we are here, further indices refer to subtypes of this
Chris Lattner3e130a22003-01-13 00:32:26 +00001578 // one, so we don't need to worry about BaseReg itself, anymore.
1579 BaseReg = NextReg;
Brian Gaeke20244b72002-12-12 15:33:40 +00001580 }
1581 // After we have processed all the indices, the result is left in
Chris Lattner3e130a22003-01-13 00:32:26 +00001582 // BaseReg. Move it to the register where we were expected to
Brian Gaeke20244b72002-12-12 15:33:40 +00001583 // put the answer. A 32-bit move should do it, because we are in
1584 // ILP32 land.
Chris Lattner3e130a22003-01-13 00:32:26 +00001585 BMI(MBB, IP, X86::MOVrr32, 1, TargetReg).addReg(BaseReg);
Brian Gaeke20244b72002-12-12 15:33:40 +00001586}
1587
1588
Chris Lattner065faeb2002-12-28 20:24:02 +00001589/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
1590/// frame manager, otherwise do it the hard way.
1591///
1592void ISel::visitAllocaInst(AllocaInst &I) {
Brian Gaekee48ec012002-12-13 06:46:31 +00001593 // Find the data size of the alloca inst's getAllocatedType.
Chris Lattner065faeb2002-12-28 20:24:02 +00001594 const Type *Ty = I.getAllocatedType();
1595 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
1596
1597 // If this is a fixed size alloca in the entry block for the function,
1598 // statically stack allocate the space.
1599 //
1600 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getArraySize())) {
1601 if (I.getParent() == I.getParent()->getParent()->begin()) {
1602 TySize *= CUI->getValue(); // Get total allocated size...
1603 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
1604
1605 // Create a new stack object using the frame manager...
1606 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
1607 addFrameReference(BuildMI(BB, X86::LEAr32, 5, getReg(I)), FrameIdx);
1608 return;
1609 }
1610 }
1611
1612 // Create a register to hold the temporary result of multiplying the type size
1613 // constant by the variable amount.
1614 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
1615 unsigned SrcReg1 = getReg(I.getArraySize());
1616 unsigned SizeReg = makeAnotherReg(Type::UIntTy);
1617 BuildMI(BB, X86::MOVir32, 1, SizeReg).addZImm(TySize);
1618
1619 // TotalSizeReg = mul <numelements>, <TypeSize>
1620 MachineBasicBlock::iterator MBBI = BB->end();
1621 doMultiply(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, SizeReg);
1622
1623 // AddedSize = add <TotalSizeReg>, 15
1624 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
1625 BuildMI(BB, X86::ADDri32, 2, AddedSizeReg).addReg(TotalSizeReg).addZImm(15);
1626
1627 // AlignedSize = and <AddedSize>, ~15
1628 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
1629 BuildMI(BB, X86::ANDri32, 2, AlignedSize).addReg(AddedSizeReg).addZImm(~15);
1630
Brian Gaekee48ec012002-12-13 06:46:31 +00001631 // Subtract size from stack pointer, thereby allocating some space.
Chris Lattner3e130a22003-01-13 00:32:26 +00001632 BuildMI(BB, X86::SUBrr32, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
Chris Lattner065faeb2002-12-28 20:24:02 +00001633
Brian Gaekee48ec012002-12-13 06:46:31 +00001634 // Put a pointer to the space into the result register, by copying
1635 // the stack pointer.
Chris Lattner065faeb2002-12-28 20:24:02 +00001636 BuildMI(BB, X86::MOVrr32, 1, getReg(I)).addReg(X86::ESP);
1637
1638 // Inform the Frame Information that we have just allocated a variable sized
1639 // object.
1640 F->getFrameInfo()->CreateVariableSizedObject();
Brian Gaeke20244b72002-12-12 15:33:40 +00001641}
Chris Lattner3e130a22003-01-13 00:32:26 +00001642
1643/// visitMallocInst - Malloc instructions are code generated into direct calls
1644/// to the library malloc.
1645///
1646void ISel::visitMallocInst(MallocInst &I) {
1647 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
1648 unsigned Arg;
1649
1650 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
1651 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
1652 } else {
1653 Arg = makeAnotherReg(Type::UIntTy);
1654 unsigned Op0Reg = getReg(ConstantUInt::get(Type::UIntTy, AllocSize));
1655 unsigned Op1Reg = getReg(I.getOperand(0));
1656 MachineBasicBlock::iterator MBBI = BB->end();
1657 doMultiply(BB, MBBI, Arg, Type::UIntTy, Op0Reg, Op1Reg);
1658
1659
1660 }
1661
1662 std::vector<ValueRecord> Args;
1663 Args.push_back(ValueRecord(Arg, Type::UIntTy));
1664 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
1665 1).addExternalSymbol("malloc", true);
1666 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
1667}
1668
1669
1670/// visitFreeInst - Free instructions are code gen'd to call the free libc
1671/// function.
1672///
1673void ISel::visitFreeInst(FreeInst &I) {
1674 std::vector<ValueRecord> Args;
1675 Args.push_back(ValueRecord(getReg(I.getOperand(0)),
1676 I.getOperand(0)->getType()));
1677 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
1678 1).addExternalSymbol("free", true);
1679 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
1680}
1681
Brian Gaeke20244b72002-12-12 15:33:40 +00001682
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00001683/// createSimpleX86InstructionSelector - This pass converts an LLVM function
1684/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +00001685/// generated code sucks but the implementation is nice and simple.
1686///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00001687Pass *createSimpleX86InstructionSelector(TargetMachine &TM) {
1688 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +00001689}