Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 1 | //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// |
Misha Brukman | f976c85 | 2005-04-21 22:55:34 +0000 | [diff] [blame] | 2 | // |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file was developed by the LLVM research group and is distributed under |
| 6 | // the University of Illinois Open Source License. See LICENSE.TXT for details. |
Misha Brukman | f976c85 | 2005-04-21 22:55:34 +0000 | [diff] [blame] | 7 | // |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This implements the TargetLowering class. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/Target/TargetLowering.h" |
Owen Anderson | 07000c6 | 2006-05-12 06:33:49 +0000 | [diff] [blame] | 15 | #include "llvm/Target/TargetData.h" |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 16 | #include "llvm/Target/TargetMachine.h" |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 17 | #include "llvm/Target/MRegisterInfo.h" |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 18 | #include "llvm/DerivedTypes.h" |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 19 | #include "llvm/CodeGen/SelectionDAG.h" |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 20 | #include "llvm/ADT/StringExtras.h" |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 21 | #include "llvm/Support/MathExtras.h" |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 22 | using namespace llvm; |
| 23 | |
Evan Cheng | 5696622 | 2007-01-12 02:11:51 +0000 | [diff] [blame] | 24 | /// InitLibcallNames - Set default libcall names. |
| 25 | /// |
Evan Cheng | 79cca50 | 2007-01-12 22:51:10 +0000 | [diff] [blame] | 26 | static void InitLibcallNames(const char **Names) { |
Evan Cheng | 5696622 | 2007-01-12 02:11:51 +0000 | [diff] [blame] | 27 | Names[RTLIB::SHL_I32] = "__ashlsi3"; |
| 28 | Names[RTLIB::SHL_I64] = "__ashldi3"; |
| 29 | Names[RTLIB::SRL_I32] = "__lshrsi3"; |
| 30 | Names[RTLIB::SRL_I64] = "__lshrdi3"; |
| 31 | Names[RTLIB::SRA_I32] = "__ashrsi3"; |
| 32 | Names[RTLIB::SRA_I64] = "__ashrdi3"; |
| 33 | Names[RTLIB::MUL_I32] = "__mulsi3"; |
| 34 | Names[RTLIB::MUL_I64] = "__muldi3"; |
| 35 | Names[RTLIB::SDIV_I32] = "__divsi3"; |
| 36 | Names[RTLIB::SDIV_I64] = "__divdi3"; |
| 37 | Names[RTLIB::UDIV_I32] = "__udivsi3"; |
| 38 | Names[RTLIB::UDIV_I64] = "__udivdi3"; |
| 39 | Names[RTLIB::SREM_I32] = "__modsi3"; |
| 40 | Names[RTLIB::SREM_I64] = "__moddi3"; |
| 41 | Names[RTLIB::UREM_I32] = "__umodsi3"; |
| 42 | Names[RTLIB::UREM_I64] = "__umoddi3"; |
| 43 | Names[RTLIB::NEG_I32] = "__negsi2"; |
| 44 | Names[RTLIB::NEG_I64] = "__negdi2"; |
| 45 | Names[RTLIB::ADD_F32] = "__addsf3"; |
| 46 | Names[RTLIB::ADD_F64] = "__adddf3"; |
| 47 | Names[RTLIB::SUB_F32] = "__subsf3"; |
| 48 | Names[RTLIB::SUB_F64] = "__subdf3"; |
| 49 | Names[RTLIB::MUL_F32] = "__mulsf3"; |
| 50 | Names[RTLIB::MUL_F64] = "__muldf3"; |
| 51 | Names[RTLIB::DIV_F32] = "__divsf3"; |
| 52 | Names[RTLIB::DIV_F64] = "__divdf3"; |
| 53 | Names[RTLIB::REM_F32] = "fmodf"; |
| 54 | Names[RTLIB::REM_F64] = "fmod"; |
| 55 | Names[RTLIB::NEG_F32] = "__negsf2"; |
| 56 | Names[RTLIB::NEG_F64] = "__negdf2"; |
| 57 | Names[RTLIB::POWI_F32] = "__powisf2"; |
| 58 | Names[RTLIB::POWI_F64] = "__powidf2"; |
| 59 | Names[RTLIB::SQRT_F32] = "sqrtf"; |
| 60 | Names[RTLIB::SQRT_F64] = "sqrt"; |
| 61 | Names[RTLIB::SIN_F32] = "sinf"; |
| 62 | Names[RTLIB::SIN_F64] = "sin"; |
| 63 | Names[RTLIB::COS_F32] = "cosf"; |
| 64 | Names[RTLIB::COS_F64] = "cos"; |
| 65 | Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2"; |
| 66 | Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2"; |
| 67 | Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi"; |
| 68 | Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi"; |
| 69 | Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi"; |
| 70 | Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi"; |
| 71 | Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi"; |
| 72 | Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi"; |
| 73 | Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi"; |
| 74 | Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi"; |
| 75 | Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf"; |
| 76 | Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf"; |
| 77 | Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf"; |
| 78 | Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf"; |
| 79 | Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf"; |
| 80 | Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf"; |
| 81 | Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf"; |
| 82 | Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf"; |
| 83 | Names[RTLIB::OEQ_F32] = "__eqsf2"; |
| 84 | Names[RTLIB::OEQ_F64] = "__eqdf2"; |
| 85 | Names[RTLIB::UNE_F32] = "__nesf2"; |
| 86 | Names[RTLIB::UNE_F64] = "__nedf2"; |
| 87 | Names[RTLIB::OGE_F32] = "__gesf2"; |
| 88 | Names[RTLIB::OGE_F64] = "__gedf2"; |
| 89 | Names[RTLIB::OLT_F32] = "__ltsf2"; |
| 90 | Names[RTLIB::OLT_F64] = "__ltdf2"; |
| 91 | Names[RTLIB::OLE_F32] = "__lesf2"; |
| 92 | Names[RTLIB::OLE_F64] = "__ledf2"; |
| 93 | Names[RTLIB::OGT_F32] = "__gtsf2"; |
| 94 | Names[RTLIB::OGT_F64] = "__gtdf2"; |
| 95 | Names[RTLIB::UO_F32] = "__unordsf2"; |
| 96 | Names[RTLIB::UO_F64] = "__unorddf2"; |
Evan Cheng | d385fd6 | 2007-01-31 09:29:11 +0000 | [diff] [blame] | 97 | Names[RTLIB::O_F32] = "__unordsf2"; |
| 98 | Names[RTLIB::O_F64] = "__unorddf2"; |
| 99 | } |
| 100 | |
| 101 | /// InitCmpLibcallCCs - Set default comparison libcall CC. |
| 102 | /// |
| 103 | static void InitCmpLibcallCCs(ISD::CondCode *CCs) { |
| 104 | memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL); |
| 105 | CCs[RTLIB::OEQ_F32] = ISD::SETEQ; |
| 106 | CCs[RTLIB::OEQ_F64] = ISD::SETEQ; |
| 107 | CCs[RTLIB::UNE_F32] = ISD::SETNE; |
| 108 | CCs[RTLIB::UNE_F64] = ISD::SETNE; |
| 109 | CCs[RTLIB::OGE_F32] = ISD::SETGE; |
| 110 | CCs[RTLIB::OGE_F64] = ISD::SETGE; |
| 111 | CCs[RTLIB::OLT_F32] = ISD::SETLT; |
| 112 | CCs[RTLIB::OLT_F64] = ISD::SETLT; |
| 113 | CCs[RTLIB::OLE_F32] = ISD::SETLE; |
| 114 | CCs[RTLIB::OLE_F64] = ISD::SETLE; |
| 115 | CCs[RTLIB::OGT_F32] = ISD::SETGT; |
| 116 | CCs[RTLIB::OGT_F64] = ISD::SETGT; |
| 117 | CCs[RTLIB::UO_F32] = ISD::SETNE; |
| 118 | CCs[RTLIB::UO_F64] = ISD::SETNE; |
| 119 | CCs[RTLIB::O_F32] = ISD::SETEQ; |
| 120 | CCs[RTLIB::O_F64] = ISD::SETEQ; |
Evan Cheng | 5696622 | 2007-01-12 02:11:51 +0000 | [diff] [blame] | 121 | } |
| 122 | |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 123 | TargetLowering::TargetLowering(TargetMachine &tm) |
Chris Lattner | 3e6e8cc | 2006-01-29 08:41:12 +0000 | [diff] [blame] | 124 | : TM(tm), TD(TM.getTargetData()) { |
Evan Cheng | 33143dc | 2006-03-03 06:58:59 +0000 | [diff] [blame] | 125 | assert(ISD::BUILTIN_OP_END <= 156 && |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 126 | "Fixed size array in TargetLowering is not large enough!"); |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 127 | // All operations default to being supported. |
| 128 | memset(OpActions, 0, sizeof(OpActions)); |
Evan Cheng | c548428 | 2006-10-04 00:56:09 +0000 | [diff] [blame] | 129 | memset(LoadXActions, 0, sizeof(LoadXActions)); |
Evan Cheng | 8b2794a | 2006-10-13 21:14:26 +0000 | [diff] [blame] | 130 | memset(&StoreXActions, 0, sizeof(StoreXActions)); |
Evan Cheng | 5ff839f | 2006-11-09 18:56:43 +0000 | [diff] [blame] | 131 | // Initialize all indexed load / store to expand. |
| 132 | for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) { |
| 133 | for (unsigned IM = (unsigned)ISD::PRE_INC; |
| 134 | IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { |
| 135 | setIndexedLoadAction(IM, (MVT::ValueType)VT, Expand); |
| 136 | setIndexedStoreAction(IM, (MVT::ValueType)VT, Expand); |
| 137 | } |
| 138 | } |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 139 | |
Owen Anderson | a69571c | 2006-05-03 01:29:57 +0000 | [diff] [blame] | 140 | IsLittleEndian = TD->isLittleEndian(); |
Chris Lattner | cf9668f | 2006-10-06 22:52:08 +0000 | [diff] [blame] | 141 | UsesGlobalOffsetTable = false; |
Owen Anderson | a69571c | 2006-05-03 01:29:57 +0000 | [diff] [blame] | 142 | ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD->getIntPtrType()); |
Chris Lattner | d6e4967 | 2005-01-19 03:36:14 +0000 | [diff] [blame] | 143 | ShiftAmtHandling = Undefined; |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 144 | memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*)); |
Chris Lattner | 00ffed0 | 2006-03-01 04:52:55 +0000 | [diff] [blame] | 145 | memset(TargetDAGCombineArray, 0, |
| 146 | sizeof(TargetDAGCombineArray)/sizeof(TargetDAGCombineArray[0])); |
Evan Cheng | a03a5dc | 2006-02-14 08:38:30 +0000 | [diff] [blame] | 147 | maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8; |
Reid Spencer | 0f9beca | 2005-08-27 19:09:02 +0000 | [diff] [blame] | 148 | allowUnalignedMemoryAccesses = false; |
Anton Korobeynikov | d27a258 | 2006-12-10 23:12:42 +0000 | [diff] [blame] | 149 | UseUnderscoreSetJmp = false; |
| 150 | UseUnderscoreLongJmp = false; |
Nate Begeman | 405e3ec | 2005-10-21 00:02:42 +0000 | [diff] [blame] | 151 | IntDivIsCheap = false; |
| 152 | Pow2DivIsCheap = false; |
Chris Lattner | ee4a765 | 2006-01-25 18:57:15 +0000 | [diff] [blame] | 153 | StackPointerRegisterToSaveRestore = 0; |
Evan Cheng | 0577a22 | 2006-01-25 18:52:42 +0000 | [diff] [blame] | 154 | SchedPreferenceInfo = SchedulingForLatency; |
Chris Lattner | 7acf5f3 | 2006-09-05 17:39:15 +0000 | [diff] [blame] | 155 | JumpBufSize = 0; |
Duraid Madina | 0c9e0ff | 2006-09-04 07:44:11 +0000 | [diff] [blame] | 156 | JumpBufAlignment = 0; |
Evan Cheng | 5696622 | 2007-01-12 02:11:51 +0000 | [diff] [blame] | 157 | |
| 158 | InitLibcallNames(LibcallRoutineNames); |
Evan Cheng | d385fd6 | 2007-01-31 09:29:11 +0000 | [diff] [blame] | 159 | InitCmpLibcallCCs(CmpLibcallCCs); |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 160 | } |
| 161 | |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 162 | TargetLowering::~TargetLowering() {} |
| 163 | |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 164 | /// setValueTypeAction - Set the action for a particular value type. This |
| 165 | /// assumes an action has not already been set for this value type. |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 166 | static void SetValueTypeAction(MVT::ValueType VT, |
| 167 | TargetLowering::LegalizeAction Action, |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 168 | TargetLowering &TLI, |
| 169 | MVT::ValueType *TransformToType, |
Chris Lattner | 3e6e8cc | 2006-01-29 08:41:12 +0000 | [diff] [blame] | 170 | TargetLowering::ValueTypeActionImpl &ValueTypeActions) { |
| 171 | ValueTypeActions.setTypeAction(VT, Action); |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 172 | if (Action == TargetLowering::Promote) { |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 173 | MVT::ValueType PromoteTo; |
| 174 | if (VT == MVT::f32) |
| 175 | PromoteTo = MVT::f64; |
| 176 | else { |
| 177 | unsigned LargerReg = VT+1; |
Chris Lattner | 9ed62c1 | 2005-08-24 16:34:12 +0000 | [diff] [blame] | 178 | while (!TLI.isTypeLegal((MVT::ValueType)LargerReg)) { |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 179 | ++LargerReg; |
| 180 | assert(MVT::isInteger((MVT::ValueType)LargerReg) && |
| 181 | "Nothing to promote to??"); |
| 182 | } |
| 183 | PromoteTo = (MVT::ValueType)LargerReg; |
| 184 | } |
| 185 | |
| 186 | assert(MVT::isInteger(VT) == MVT::isInteger(PromoteTo) && |
| 187 | MVT::isFloatingPoint(VT) == MVT::isFloatingPoint(PromoteTo) && |
| 188 | "Can only promote from int->int or fp->fp!"); |
| 189 | assert(VT < PromoteTo && "Must promote to a larger type!"); |
| 190 | TransformToType[VT] = PromoteTo; |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 191 | } else if (Action == TargetLowering::Expand) { |
Evan Cheng | 1a8f1fe | 2006-12-09 02:42:38 +0000 | [diff] [blame] | 192 | // f32 and f64 is each expanded to corresponding integer type of same size. |
| 193 | if (VT == MVT::f32) |
| 194 | TransformToType[VT] = MVT::i32; |
| 195 | else if (VT == MVT::f64) |
| 196 | TransformToType[VT] = MVT::i64; |
| 197 | else { |
| 198 | assert((VT == MVT::Vector || MVT::isInteger(VT)) && VT > MVT::i8 && |
| 199 | "Cannot expand this type: target must support SOME integer reg!"); |
| 200 | // Expand to the next smaller integer type! |
| 201 | TransformToType[VT] = (MVT::ValueType)(VT-1); |
| 202 | } |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 203 | } |
| 204 | } |
| 205 | |
| 206 | |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 207 | /// computeRegisterProperties - Once all of the register classes are added, |
| 208 | /// this allows us to compute derived properties we expose. |
| 209 | void TargetLowering::computeRegisterProperties() { |
Nate Begeman | 6a64861 | 2005-11-29 05:45:29 +0000 | [diff] [blame] | 210 | assert(MVT::LAST_VALUETYPE <= 32 && |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 211 | "Too many value types for ValueTypeActions to hold!"); |
| 212 | |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 213 | // Everything defaults to one. |
| 214 | for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) |
| 215 | NumElementsForVT[i] = 1; |
Misha Brukman | f976c85 | 2005-04-21 22:55:34 +0000 | [diff] [blame] | 216 | |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 217 | // Find the largest integer register class. |
| 218 | unsigned LargestIntReg = MVT::i128; |
| 219 | for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg) |
| 220 | assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); |
| 221 | |
| 222 | // Every integer value type larger than this largest register takes twice as |
| 223 | // many registers to represent as the previous ValueType. |
| 224 | unsigned ExpandedReg = LargestIntReg; ++LargestIntReg; |
| 225 | for (++ExpandedReg; MVT::isInteger((MVT::ValueType)ExpandedReg);++ExpandedReg) |
| 226 | NumElementsForVT[ExpandedReg] = 2*NumElementsForVT[ExpandedReg-1]; |
Chris Lattner | 310968c | 2005-01-07 07:44:53 +0000 | [diff] [blame] | 227 | |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 228 | // Inspect all of the ValueType's possible, deciding how to process them. |
| 229 | for (unsigned IntReg = MVT::i1; IntReg <= MVT::i128; ++IntReg) |
| 230 | // If we are expanding this type, expand it! |
| 231 | if (getNumElements((MVT::ValueType)IntReg) != 1) |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 232 | SetValueTypeAction((MVT::ValueType)IntReg, Expand, *this, TransformToType, |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 233 | ValueTypeActions); |
Chris Lattner | 9ed62c1 | 2005-08-24 16:34:12 +0000 | [diff] [blame] | 234 | else if (!isTypeLegal((MVT::ValueType)IntReg)) |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 235 | // Otherwise, if we don't have native support, we must promote to a |
| 236 | // larger type. |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 237 | SetValueTypeAction((MVT::ValueType)IntReg, Promote, *this, |
| 238 | TransformToType, ValueTypeActions); |
Chris Lattner | cfdfe4c | 2005-01-16 01:20:18 +0000 | [diff] [blame] | 239 | else |
| 240 | TransformToType[(MVT::ValueType)IntReg] = (MVT::ValueType)IntReg; |
Misha Brukman | f976c85 | 2005-04-21 22:55:34 +0000 | [diff] [blame] | 241 | |
Evan Cheng | 1a8f1fe | 2006-12-09 02:42:38 +0000 | [diff] [blame] | 242 | // If the target does not have native F64 support, expand it to I64. We will |
| 243 | // be generating soft float library calls. If the target does not have native |
| 244 | // support for F32, promote it to F64 if it is legal. Otherwise, expand it to |
| 245 | // I32. |
| 246 | if (isTypeLegal(MVT::f64)) |
| 247 | TransformToType[MVT::f64] = MVT::f64; |
| 248 | else { |
| 249 | NumElementsForVT[MVT::f64] = NumElementsForVT[MVT::i64]; |
| 250 | SetValueTypeAction(MVT::f64, Expand, *this, TransformToType, |
| 251 | ValueTypeActions); |
| 252 | } |
| 253 | if (isTypeLegal(MVT::f32)) |
Chris Lattner | cfdfe4c | 2005-01-16 01:20:18 +0000 | [diff] [blame] | 254 | TransformToType[MVT::f32] = MVT::f32; |
Evan Cheng | 1a8f1fe | 2006-12-09 02:42:38 +0000 | [diff] [blame] | 255 | else if (isTypeLegal(MVT::f64)) |
| 256 | SetValueTypeAction(MVT::f32, Promote, *this, TransformToType, |
| 257 | ValueTypeActions); |
| 258 | else { |
| 259 | NumElementsForVT[MVT::f32] = NumElementsForVT[MVT::i32]; |
| 260 | SetValueTypeAction(MVT::f32, Expand, *this, TransformToType, |
| 261 | ValueTypeActions); |
| 262 | } |
Nate Begeman | 4ef3b81 | 2005-11-22 01:29:36 +0000 | [diff] [blame] | 263 | |
| 264 | // Set MVT::Vector to always be Expanded |
| 265 | SetValueTypeAction(MVT::Vector, Expand, *this, TransformToType, |
| 266 | ValueTypeActions); |
Chris Lattner | 3a593584 | 2006-03-16 19:50:01 +0000 | [diff] [blame] | 267 | |
| 268 | // Loop over all of the legal vector value types, specifying an identity type |
| 269 | // transformation. |
| 270 | for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; |
Evan Cheng | 677274b | 2006-03-23 23:24:51 +0000 | [diff] [blame] | 271 | i <= MVT::LAST_VECTOR_VALUETYPE; ++i) { |
Chris Lattner | 3a593584 | 2006-03-16 19:50:01 +0000 | [diff] [blame] | 272 | if (isTypeLegal((MVT::ValueType)i)) |
| 273 | TransformToType[i] = (MVT::ValueType)i; |
| 274 | } |
Chris Lattner | bb97d81 | 2005-01-16 01:10:58 +0000 | [diff] [blame] | 275 | } |
Chris Lattner | cba82f9 | 2005-01-16 07:28:11 +0000 | [diff] [blame] | 276 | |
Evan Cheng | 7226158 | 2005-12-20 06:22:03 +0000 | [diff] [blame] | 277 | const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { |
| 278 | return NULL; |
| 279 | } |
Evan Cheng | 3a03ebb | 2005-12-21 23:05:39 +0000 | [diff] [blame] | 280 | |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 281 | /// getPackedTypeBreakdown - Packed types are broken down into some number of |
Evan Cheng | 7e399c1 | 2006-05-17 18:22:14 +0000 | [diff] [blame] | 282 | /// legal first class types. For example, <8 x float> maps to 2 MVT::v4f32 |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 283 | /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. |
| 284 | /// |
| 285 | /// This method returns the number and type of the resultant breakdown. |
| 286 | /// |
Chris Lattner | 79227e2 | 2006-03-31 00:46:36 +0000 | [diff] [blame] | 287 | unsigned TargetLowering::getPackedTypeBreakdown(const PackedType *PTy, |
| 288 | MVT::ValueType &PTyElementVT, |
| 289 | MVT::ValueType &PTyLegalElementVT) const { |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 290 | // Figure out the right, legal destination reg to copy into. |
| 291 | unsigned NumElts = PTy->getNumElements(); |
| 292 | MVT::ValueType EltTy = getValueType(PTy->getElementType()); |
| 293 | |
| 294 | unsigned NumVectorRegs = 1; |
| 295 | |
| 296 | // Divide the input until we get to a supported size. This will always |
| 297 | // end with a scalar if the target doesn't support vectors. |
| 298 | while (NumElts > 1 && !isTypeLegal(getVectorType(EltTy, NumElts))) { |
| 299 | NumElts >>= 1; |
| 300 | NumVectorRegs <<= 1; |
| 301 | } |
| 302 | |
| 303 | MVT::ValueType VT; |
Chris Lattner | a6c9de4 | 2006-03-31 01:50:09 +0000 | [diff] [blame] | 304 | if (NumElts == 1) { |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 305 | VT = EltTy; |
Chris Lattner | a6c9de4 | 2006-03-31 01:50:09 +0000 | [diff] [blame] | 306 | } else { |
| 307 | VT = getVectorType(EltTy, NumElts); |
| 308 | } |
| 309 | PTyElementVT = VT; |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 310 | |
| 311 | MVT::ValueType DestVT = getTypeToTransformTo(VT); |
Chris Lattner | 79227e2 | 2006-03-31 00:46:36 +0000 | [diff] [blame] | 312 | PTyLegalElementVT = DestVT; |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 313 | if (DestVT < VT) { |
| 314 | // Value is expanded, e.g. i64 -> i16. |
Chris Lattner | 79227e2 | 2006-03-31 00:46:36 +0000 | [diff] [blame] | 315 | return NumVectorRegs*(MVT::getSizeInBits(VT)/MVT::getSizeInBits(DestVT)); |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 316 | } else { |
| 317 | // Otherwise, promotion or legal types use the same number of registers as |
| 318 | // the vector decimated to the appropriate level. |
Chris Lattner | 79227e2 | 2006-03-31 00:46:36 +0000 | [diff] [blame] | 319 | return NumVectorRegs; |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 320 | } |
| 321 | |
Evan Cheng | e9b3da1 | 2006-05-17 18:10:06 +0000 | [diff] [blame] | 322 | return 1; |
Chris Lattner | dc87929 | 2006-03-31 00:28:56 +0000 | [diff] [blame] | 323 | } |
| 324 | |
Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 325 | //===----------------------------------------------------------------------===// |
| 326 | // Optimization Methods |
| 327 | //===----------------------------------------------------------------------===// |
| 328 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 329 | /// ShrinkDemandedConstant - Check to see if the specified operand of the |
| 330 | /// specified instruction is a constant integer. If so, check to see if there |
| 331 | /// are any bits set in the constant that are not demanded. If so, shrink the |
| 332 | /// constant and return true. |
| 333 | bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op, |
| 334 | uint64_t Demanded) { |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 335 | // FIXME: ISD::SELECT, ISD::SELECT_CC |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 336 | switch(Op.getOpcode()) { |
| 337 | default: break; |
Nate Begeman | de99629 | 2006-02-03 22:24:05 +0000 | [diff] [blame] | 338 | case ISD::AND: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 339 | case ISD::OR: |
| 340 | case ISD::XOR: |
| 341 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) |
| 342 | if ((~Demanded & C->getValue()) != 0) { |
| 343 | MVT::ValueType VT = Op.getValueType(); |
| 344 | SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0), |
| 345 | DAG.getConstant(Demanded & C->getValue(), |
| 346 | VT)); |
| 347 | return CombineTo(Op, New); |
Nate Begeman | de99629 | 2006-02-03 22:24:05 +0000 | [diff] [blame] | 348 | } |
Nate Begeman | de99629 | 2006-02-03 22:24:05 +0000 | [diff] [blame] | 349 | break; |
| 350 | } |
| 351 | return false; |
| 352 | } |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 353 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 354 | /// SimplifyDemandedBits - Look at Op. At this point, we know that only the |
| 355 | /// DemandedMask bits of the result of Op are ever used downstream. If we can |
| 356 | /// use this information to simplify Op, create a new simplified DAG node and |
| 357 | /// return true, returning the original and new nodes in Old and New. Otherwise, |
| 358 | /// analyze the expression and return a mask of KnownOne and KnownZero bits for |
| 359 | /// the expression (used to simplify the caller). The KnownZero/One bits may |
| 360 | /// only be accurate for those bits in the DemandedMask. |
| 361 | bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask, |
| 362 | uint64_t &KnownZero, |
| 363 | uint64_t &KnownOne, |
| 364 | TargetLoweringOpt &TLO, |
| 365 | unsigned Depth) const { |
| 366 | KnownZero = KnownOne = 0; // Don't know anything. |
| 367 | // Other users may use these bits. |
| 368 | if (!Op.Val->hasOneUse()) { |
| 369 | if (Depth != 0) { |
| 370 | // If not at the root, Just compute the KnownZero/KnownOne bits to |
| 371 | // simplify things downstream. |
| 372 | ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth); |
| 373 | return false; |
| 374 | } |
| 375 | // If this is the root being simplified, allow it to have multiple uses, |
| 376 | // just set the DemandedMask to all bits. |
| 377 | DemandedMask = MVT::getIntVTBitMask(Op.getValueType()); |
| 378 | } else if (DemandedMask == 0) { |
| 379 | // Not demanding any bits from Op. |
| 380 | if (Op.getOpcode() != ISD::UNDEF) |
| 381 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType())); |
| 382 | return false; |
| 383 | } else if (Depth == 6) { // Limit search depth. |
| 384 | return false; |
| 385 | } |
| 386 | |
| 387 | uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 388 | switch (Op.getOpcode()) { |
| 389 | case ISD::Constant: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 390 | // We know all of the bits for a constant! |
| 391 | KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask; |
| 392 | KnownZero = ~KnownOne & DemandedMask; |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 393 | return false; // Don't fall through, will infinitely loop. |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 394 | case ISD::AND: |
Chris Lattner | 81cd355 | 2006-02-27 00:36:27 +0000 | [diff] [blame] | 395 | // If the RHS is a constant, check to see if the LHS would be zero without |
| 396 | // using the bits from the RHS. Below, we use knowledge about the RHS to |
| 397 | // simplify the LHS, here we're using information from the LHS to simplify |
| 398 | // the RHS. |
| 399 | if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 400 | uint64_t LHSZero, LHSOne; |
| 401 | ComputeMaskedBits(Op.getOperand(0), DemandedMask, |
| 402 | LHSZero, LHSOne, Depth+1); |
| 403 | // If the LHS already has zeros where RHSC does, this and is dead. |
| 404 | if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask)) |
| 405 | return TLO.CombineTo(Op, Op.getOperand(0)); |
| 406 | // If any of the set bits in the RHS are known zero on the LHS, shrink |
| 407 | // the constant. |
| 408 | if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask)) |
| 409 | return true; |
| 410 | } |
| 411 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 412 | if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero, |
| 413 | KnownOne, TLO, Depth+1)) |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 414 | return true; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 415 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 416 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero, |
| 417 | KnownZero2, KnownOne2, TLO, Depth+1)) |
| 418 | return true; |
| 419 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 420 | |
| 421 | // If all of the demanded bits are known one on one side, return the other. |
| 422 | // These bits cannot contribute to the result of the 'and'. |
| 423 | if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2)) |
| 424 | return TLO.CombineTo(Op, Op.getOperand(0)); |
| 425 | if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero)) |
| 426 | return TLO.CombineTo(Op, Op.getOperand(1)); |
| 427 | // If all of the demanded bits in the inputs are known zeros, return zero. |
| 428 | if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask) |
| 429 | return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType())); |
| 430 | // If the RHS is a constant, see if we can simplify it. |
| 431 | if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2)) |
| 432 | return true; |
Chris Lattner | 5f0c658 | 2006-02-27 00:22:28 +0000 | [diff] [blame] | 433 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 434 | // Output known-1 bits are only known if set in both the LHS & RHS. |
| 435 | KnownOne &= KnownOne2; |
| 436 | // Output known-0 are known to be clear if zero in either the LHS | RHS. |
| 437 | KnownZero |= KnownZero2; |
| 438 | break; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 439 | case ISD::OR: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 440 | if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero, |
| 441 | KnownOne, TLO, Depth+1)) |
| 442 | return true; |
| 443 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 444 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne, |
| 445 | KnownZero2, KnownOne2, TLO, Depth+1)) |
| 446 | return true; |
| 447 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 448 | |
| 449 | // If all of the demanded bits are known zero on one side, return the other. |
| 450 | // These bits cannot contribute to the result of the 'or'. |
Jeff Cohen | 5755b17 | 2006-02-17 02:12:18 +0000 | [diff] [blame] | 451 | if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2)) |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 452 | return TLO.CombineTo(Op, Op.getOperand(0)); |
Jeff Cohen | 5755b17 | 2006-02-17 02:12:18 +0000 | [diff] [blame] | 453 | if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne)) |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 454 | return TLO.CombineTo(Op, Op.getOperand(1)); |
| 455 | // If all of the potentially set bits on one side are known to be set on |
| 456 | // the other side, just use the 'other' side. |
| 457 | if ((DemandedMask & (~KnownZero) & KnownOne2) == |
| 458 | (DemandedMask & (~KnownZero))) |
| 459 | return TLO.CombineTo(Op, Op.getOperand(0)); |
| 460 | if ((DemandedMask & (~KnownZero2) & KnownOne) == |
| 461 | (DemandedMask & (~KnownZero2))) |
| 462 | return TLO.CombineTo(Op, Op.getOperand(1)); |
| 463 | // If the RHS is a constant, see if we can simplify it. |
| 464 | if (TLO.ShrinkDemandedConstant(Op, DemandedMask)) |
| 465 | return true; |
| 466 | |
| 467 | // Output known-0 bits are only known if clear in both the LHS & RHS. |
| 468 | KnownZero &= KnownZero2; |
| 469 | // Output known-1 are known to be set if set in either the LHS | RHS. |
| 470 | KnownOne |= KnownOne2; |
| 471 | break; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 472 | case ISD::XOR: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 473 | if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero, |
| 474 | KnownOne, TLO, Depth+1)) |
| 475 | return true; |
| 476 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 477 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2, |
| 478 | KnownOne2, TLO, Depth+1)) |
| 479 | return true; |
| 480 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 481 | |
| 482 | // If all of the demanded bits are known zero on one side, return the other. |
| 483 | // These bits cannot contribute to the result of the 'xor'. |
| 484 | if ((DemandedMask & KnownZero) == DemandedMask) |
| 485 | return TLO.CombineTo(Op, Op.getOperand(0)); |
| 486 | if ((DemandedMask & KnownZero2) == DemandedMask) |
| 487 | return TLO.CombineTo(Op, Op.getOperand(1)); |
Chris Lattner | 3687c1a | 2006-11-27 21:50:02 +0000 | [diff] [blame] | 488 | |
| 489 | // If all of the unknown bits are known to be zero on one side or the other |
| 490 | // (but not both) turn this into an *inclusive* or. |
| 491 | // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 |
| 492 | if ((DemandedMask & ~KnownZero & ~KnownZero2) == 0) |
| 493 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(), |
| 494 | Op.getOperand(0), |
| 495 | Op.getOperand(1))); |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 496 | |
| 497 | // Output known-0 bits are known if clear or set in both the LHS & RHS. |
| 498 | KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); |
| 499 | // Output known-1 are known to be set if set in only one of the LHS, RHS. |
| 500 | KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); |
| 501 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 502 | // If all of the demanded bits on one side are known, and all of the set |
| 503 | // bits on that side are also known to be set on the other side, turn this |
| 504 | // into an AND, as we know the bits will be cleared. |
| 505 | // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 |
| 506 | if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known |
| 507 | if ((KnownOne & KnownOne2) == KnownOne) { |
| 508 | MVT::ValueType VT = Op.getValueType(); |
| 509 | SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT); |
| 510 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0), |
| 511 | ANDC)); |
| 512 | } |
| 513 | } |
| 514 | |
| 515 | // If the RHS is a constant, see if we can simplify it. |
| 516 | // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. |
| 517 | if (TLO.ShrinkDemandedConstant(Op, DemandedMask)) |
| 518 | return true; |
| 519 | |
| 520 | KnownZero = KnownZeroOut; |
| 521 | KnownOne = KnownOneOut; |
| 522 | break; |
| 523 | case ISD::SETCC: |
| 524 | // If we know the result of a setcc has the top bits zero, use this info. |
| 525 | if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) |
| 526 | KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL); |
| 527 | break; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 528 | case ISD::SELECT: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 529 | if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero, |
| 530 | KnownOne, TLO, Depth+1)) |
| 531 | return true; |
| 532 | if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2, |
| 533 | KnownOne2, TLO, Depth+1)) |
| 534 | return true; |
| 535 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 536 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 537 | |
| 538 | // If the operands are constants, see if we can simplify them. |
| 539 | if (TLO.ShrinkDemandedConstant(Op, DemandedMask)) |
| 540 | return true; |
| 541 | |
| 542 | // Only known if known in both the LHS and RHS. |
| 543 | KnownOne &= KnownOne2; |
| 544 | KnownZero &= KnownZero2; |
| 545 | break; |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 546 | case ISD::SELECT_CC: |
| 547 | if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero, |
| 548 | KnownOne, TLO, Depth+1)) |
| 549 | return true; |
| 550 | if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2, |
| 551 | KnownOne2, TLO, Depth+1)) |
| 552 | return true; |
| 553 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 554 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 555 | |
| 556 | // If the operands are constants, see if we can simplify them. |
| 557 | if (TLO.ShrinkDemandedConstant(Op, DemandedMask)) |
| 558 | return true; |
| 559 | |
| 560 | // Only known if known in both the LHS and RHS. |
| 561 | KnownOne &= KnownOne2; |
| 562 | KnownZero &= KnownZero2; |
| 563 | break; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 564 | case ISD::SHL: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 565 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 566 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> SA->getValue(), |
| 567 | KnownZero, KnownOne, TLO, Depth+1)) |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 568 | return true; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 569 | KnownZero <<= SA->getValue(); |
| 570 | KnownOne <<= SA->getValue(); |
| 571 | KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero. |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 572 | } |
| 573 | break; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 574 | case ISD::SRL: |
| 575 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 576 | MVT::ValueType VT = Op.getValueType(); |
| 577 | unsigned ShAmt = SA->getValue(); |
| 578 | |
| 579 | // Compute the new bits that are at the top now. |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 580 | uint64_t TypeMask = MVT::getIntVTBitMask(VT); |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 581 | if (SimplifyDemandedBits(Op.getOperand(0), |
| 582 | (DemandedMask << ShAmt) & TypeMask, |
| 583 | KnownZero, KnownOne, TLO, Depth+1)) |
| 584 | return true; |
| 585 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 586 | KnownZero &= TypeMask; |
| 587 | KnownOne &= TypeMask; |
| 588 | KnownZero >>= ShAmt; |
| 589 | KnownOne >>= ShAmt; |
Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 590 | |
| 591 | uint64_t HighBits = (1ULL << ShAmt)-1; |
| 592 | HighBits <<= MVT::getSizeInBits(VT) - ShAmt; |
| 593 | KnownZero |= HighBits; // High bits known zero. |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 594 | } |
| 595 | break; |
| 596 | case ISD::SRA: |
| 597 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 598 | MVT::ValueType VT = Op.getValueType(); |
| 599 | unsigned ShAmt = SA->getValue(); |
| 600 | |
| 601 | // Compute the new bits that are at the top now. |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 602 | uint64_t TypeMask = MVT::getIntVTBitMask(VT); |
| 603 | |
Chris Lattner | 1b73713 | 2006-05-08 17:22:53 +0000 | [diff] [blame] | 604 | uint64_t InDemandedMask = (DemandedMask << ShAmt) & TypeMask; |
| 605 | |
| 606 | // If any of the demanded bits are produced by the sign extension, we also |
| 607 | // demand the input sign bit. |
Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 608 | uint64_t HighBits = (1ULL << ShAmt)-1; |
| 609 | HighBits <<= MVT::getSizeInBits(VT) - ShAmt; |
Chris Lattner | 1b73713 | 2006-05-08 17:22:53 +0000 | [diff] [blame] | 610 | if (HighBits & DemandedMask) |
| 611 | InDemandedMask |= MVT::getIntVTSignBit(VT); |
| 612 | |
| 613 | if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 614 | KnownZero, KnownOne, TLO, Depth+1)) |
| 615 | return true; |
| 616 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 617 | KnownZero &= TypeMask; |
| 618 | KnownOne &= TypeMask; |
Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 619 | KnownZero >>= ShAmt; |
| 620 | KnownOne >>= ShAmt; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 621 | |
| 622 | // Handle the sign bits. |
| 623 | uint64_t SignBit = MVT::getIntVTSignBit(VT); |
Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 624 | SignBit >>= ShAmt; // Adjust to where it is now in the mask. |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 625 | |
| 626 | // If the input sign bit is known to be zero, or if none of the top bits |
| 627 | // are demanded, turn this into an unsigned shift right. |
| 628 | if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) { |
| 629 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0), |
| 630 | Op.getOperand(1))); |
| 631 | } else if (KnownOne & SignBit) { // New bits are known one. |
| 632 | KnownOne |= HighBits; |
| 633 | } |
| 634 | } |
| 635 | break; |
| 636 | case ISD::SIGN_EXTEND_INREG: { |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 637 | MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| 638 | |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 639 | // Sign extension. Compute the demanded bits in the result that are not |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 640 | // present in the input. |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 641 | uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 642 | |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 643 | // If none of the extended bits are demanded, eliminate the sextinreg. |
| 644 | if (NewBits == 0) |
| 645 | return TLO.CombineTo(Op, Op.getOperand(0)); |
| 646 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 647 | uint64_t InSignBit = MVT::getIntVTSignBit(EVT); |
| 648 | int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT); |
| 649 | |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 650 | // Since the sign extended bits are demanded, we know that the sign |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 651 | // bit is demanded. |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 652 | InputDemandedBits |= InSignBit; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 653 | |
| 654 | if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, |
| 655 | KnownZero, KnownOne, TLO, Depth+1)) |
| 656 | return true; |
| 657 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 658 | |
| 659 | // If the sign bit of the input is known set or clear, then we know the |
| 660 | // top bits of the result. |
| 661 | |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 662 | // If the input sign bit is known zero, convert this into a zero extension. |
| 663 | if (KnownZero & InSignBit) |
| 664 | return TLO.CombineTo(Op, |
| 665 | TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT)); |
| 666 | |
| 667 | if (KnownOne & InSignBit) { // Input sign bit known set |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 668 | KnownOne |= NewBits; |
| 669 | KnownZero &= ~NewBits; |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 670 | } else { // Input sign bit unknown |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 671 | KnownZero &= ~NewBits; |
| 672 | KnownOne &= ~NewBits; |
| 673 | } |
| 674 | break; |
| 675 | } |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 676 | case ISD::CTTZ: |
| 677 | case ISD::CTLZ: |
| 678 | case ISD::CTPOP: { |
| 679 | MVT::ValueType VT = Op.getValueType(); |
| 680 | unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1; |
| 681 | KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT); |
| 682 | KnownOne = 0; |
| 683 | break; |
| 684 | } |
Evan Cheng | 466685d | 2006-10-09 20:57:25 +0000 | [diff] [blame] | 685 | case ISD::LOAD: { |
Evan Cheng | c548428 | 2006-10-04 00:56:09 +0000 | [diff] [blame] | 686 | if (ISD::isZEXTLoad(Op.Val)) { |
Evan Cheng | 466685d | 2006-10-09 20:57:25 +0000 | [diff] [blame] | 687 | LoadSDNode *LD = cast<LoadSDNode>(Op); |
Evan Cheng | 2e49f09 | 2006-10-11 07:10:22 +0000 | [diff] [blame] | 688 | MVT::ValueType VT = LD->getLoadedVT(); |
Evan Cheng | c548428 | 2006-10-04 00:56:09 +0000 | [diff] [blame] | 689 | KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask; |
| 690 | } |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 691 | break; |
| 692 | } |
| 693 | case ISD::ZERO_EXTEND: { |
| 694 | uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType()); |
| 695 | |
| 696 | // If none of the top bits are demanded, convert this into an any_extend. |
| 697 | uint64_t NewBits = (~InMask) & DemandedMask; |
| 698 | if (NewBits == 0) |
| 699 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, |
| 700 | Op.getValueType(), |
| 701 | Op.getOperand(0))); |
| 702 | |
| 703 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask, |
| 704 | KnownZero, KnownOne, TLO, Depth+1)) |
| 705 | return true; |
| 706 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 707 | KnownZero |= NewBits; |
| 708 | break; |
| 709 | } |
| 710 | case ISD::SIGN_EXTEND: { |
| 711 | MVT::ValueType InVT = Op.getOperand(0).getValueType(); |
| 712 | uint64_t InMask = MVT::getIntVTBitMask(InVT); |
| 713 | uint64_t InSignBit = MVT::getIntVTSignBit(InVT); |
| 714 | uint64_t NewBits = (~InMask) & DemandedMask; |
| 715 | |
| 716 | // If none of the top bits are demanded, convert this into an any_extend. |
| 717 | if (NewBits == 0) |
Chris Lattner | fea997a | 2007-02-01 04:55:59 +0000 | [diff] [blame^] | 718 | return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(), |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 719 | Op.getOperand(0))); |
| 720 | |
| 721 | // Since some of the sign extended bits are demanded, we know that the sign |
| 722 | // bit is demanded. |
| 723 | uint64_t InDemandedBits = DemandedMask & InMask; |
| 724 | InDemandedBits |= InSignBit; |
| 725 | |
| 726 | if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, |
| 727 | KnownOne, TLO, Depth+1)) |
| 728 | return true; |
| 729 | |
| 730 | // If the sign bit is known zero, convert this to a zero extend. |
| 731 | if (KnownZero & InSignBit) |
| 732 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, |
| 733 | Op.getValueType(), |
| 734 | Op.getOperand(0))); |
| 735 | |
| 736 | // If the sign bit is known one, the top bits match. |
| 737 | if (KnownOne & InSignBit) { |
| 738 | KnownOne |= NewBits; |
| 739 | KnownZero &= ~NewBits; |
| 740 | } else { // Otherwise, top bits aren't known. |
| 741 | KnownOne &= ~NewBits; |
| 742 | KnownZero &= ~NewBits; |
| 743 | } |
| 744 | break; |
| 745 | } |
| 746 | case ISD::ANY_EXTEND: { |
| 747 | uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType()); |
| 748 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask, |
| 749 | KnownZero, KnownOne, TLO, Depth+1)) |
| 750 | return true; |
| 751 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 752 | break; |
| 753 | } |
Chris Lattner | fe8babf | 2006-05-05 22:32:12 +0000 | [diff] [blame] | 754 | case ISD::TRUNCATE: { |
Chris Lattner | c93dfda | 2006-05-06 00:11:52 +0000 | [diff] [blame] | 755 | // Simplify the input, using demanded bit information, and compute the known |
| 756 | // zero/one bits live out. |
Chris Lattner | fe8babf | 2006-05-05 22:32:12 +0000 | [diff] [blame] | 757 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, |
| 758 | KnownZero, KnownOne, TLO, Depth+1)) |
| 759 | return true; |
Chris Lattner | c93dfda | 2006-05-06 00:11:52 +0000 | [diff] [blame] | 760 | |
| 761 | // If the input is only used by this truncate, see if we can shrink it based |
| 762 | // on the known demanded bits. |
| 763 | if (Op.getOperand(0).Val->hasOneUse()) { |
| 764 | SDOperand In = Op.getOperand(0); |
| 765 | switch (In.getOpcode()) { |
| 766 | default: break; |
| 767 | case ISD::SRL: |
| 768 | // Shrink SRL by a constant if none of the high bits shifted in are |
| 769 | // demanded. |
| 770 | if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){ |
| 771 | uint64_t HighBits = MVT::getIntVTBitMask(In.getValueType()); |
| 772 | HighBits &= ~MVT::getIntVTBitMask(Op.getValueType()); |
| 773 | HighBits >>= ShAmt->getValue(); |
| 774 | |
| 775 | if (ShAmt->getValue() < MVT::getSizeInBits(Op.getValueType()) && |
| 776 | (DemandedMask & HighBits) == 0) { |
| 777 | // None of the shifted in bits are needed. Add a truncate of the |
| 778 | // shift input, then shift it. |
| 779 | SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, |
| 780 | Op.getValueType(), |
| 781 | In.getOperand(0)); |
| 782 | return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(), |
| 783 | NewTrunc, In.getOperand(1))); |
| 784 | } |
| 785 | } |
| 786 | break; |
| 787 | } |
| 788 | } |
| 789 | |
Chris Lattner | fe8babf | 2006-05-05 22:32:12 +0000 | [diff] [blame] | 790 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 791 | uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType()); |
| 792 | KnownZero &= OutMask; |
| 793 | KnownOne &= OutMask; |
| 794 | break; |
| 795 | } |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 796 | case ISD::AssertZext: { |
| 797 | MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| 798 | uint64_t InMask = MVT::getIntVTBitMask(VT); |
| 799 | if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask, |
| 800 | KnownZero, KnownOne, TLO, Depth+1)) |
| 801 | return true; |
| 802 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 803 | KnownZero |= ~InMask & DemandedMask; |
| 804 | break; |
| 805 | } |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 806 | case ISD::ADD: |
Chris Lattner | a6bc5a4 | 2006-02-27 01:00:42 +0000 | [diff] [blame] | 807 | case ISD::SUB: |
Chris Lattner | 1482b5f | 2006-04-02 06:15:09 +0000 | [diff] [blame] | 808 | case ISD::INTRINSIC_WO_CHAIN: |
| 809 | case ISD::INTRINSIC_W_CHAIN: |
| 810 | case ISD::INTRINSIC_VOID: |
| 811 | // Just use ComputeMaskedBits to compute output bits. |
Chris Lattner | a6bc5a4 | 2006-02-27 01:00:42 +0000 | [diff] [blame] | 812 | ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth); |
| 813 | break; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 814 | } |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 815 | |
| 816 | // If we know the value of all of the demanded bits, return this as a |
| 817 | // constant. |
| 818 | if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) |
| 819 | return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType())); |
| 820 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 821 | return false; |
| 822 | } |
| 823 | |
| 824 | /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use |
| 825 | /// this predicate to simplify operations downstream. Mask is known to be zero |
| 826 | /// for bits that V cannot have. |
| 827 | bool TargetLowering::MaskedValueIsZero(SDOperand Op, uint64_t Mask, |
| 828 | unsigned Depth) const { |
| 829 | uint64_t KnownZero, KnownOne; |
| 830 | ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth); |
| 831 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 832 | return (KnownZero & Mask) == Mask; |
| 833 | } |
| 834 | |
| 835 | /// ComputeMaskedBits - Determine which of the bits specified in Mask are |
| 836 | /// known to be either zero or one and return them in the KnownZero/KnownOne |
| 837 | /// bitsets. This code only analyzes bits in Mask, in order to short-circuit |
| 838 | /// processing. |
| 839 | void TargetLowering::ComputeMaskedBits(SDOperand Op, uint64_t Mask, |
| 840 | uint64_t &KnownZero, uint64_t &KnownOne, |
| 841 | unsigned Depth) const { |
| 842 | KnownZero = KnownOne = 0; // Don't know anything. |
| 843 | if (Depth == 6 || Mask == 0) |
| 844 | return; // Limit search depth. |
| 845 | |
| 846 | uint64_t KnownZero2, KnownOne2; |
| 847 | |
| 848 | switch (Op.getOpcode()) { |
| 849 | case ISD::Constant: |
| 850 | // We know all of the bits for a constant! |
| 851 | KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask; |
| 852 | KnownZero = ~KnownOne & Mask; |
| 853 | return; |
| 854 | case ISD::AND: |
| 855 | // If either the LHS or the RHS are Zero, the result is zero. |
| 856 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| 857 | Mask &= ~KnownZero; |
| 858 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); |
| 859 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 860 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 861 | |
| 862 | // Output known-1 bits are only known if set in both the LHS & RHS. |
| 863 | KnownOne &= KnownOne2; |
| 864 | // Output known-0 are known to be clear if zero in either the LHS | RHS. |
| 865 | KnownZero |= KnownZero2; |
| 866 | return; |
| 867 | case ISD::OR: |
| 868 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| 869 | Mask &= ~KnownOne; |
| 870 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); |
| 871 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 872 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 873 | |
| 874 | // Output known-0 bits are only known if clear in both the LHS & RHS. |
| 875 | KnownZero &= KnownZero2; |
| 876 | // Output known-1 are known to be set if set in either the LHS | RHS. |
| 877 | KnownOne |= KnownOne2; |
| 878 | return; |
| 879 | case ISD::XOR: { |
| 880 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| 881 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); |
| 882 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 883 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 884 | |
| 885 | // Output known-0 bits are known if clear or set in both the LHS & RHS. |
| 886 | uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); |
| 887 | // Output known-1 are known to be set if set in only one of the LHS, RHS. |
| 888 | KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); |
| 889 | KnownZero = KnownZeroOut; |
| 890 | return; |
| 891 | } |
| 892 | case ISD::SELECT: |
| 893 | ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1); |
| 894 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1); |
| 895 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 896 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 897 | |
| 898 | // Only known if known in both the LHS and RHS. |
| 899 | KnownOne &= KnownOne2; |
| 900 | KnownZero &= KnownZero2; |
| 901 | return; |
| 902 | case ISD::SELECT_CC: |
| 903 | ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1); |
| 904 | ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1); |
| 905 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 906 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 907 | |
| 908 | // Only known if known in both the LHS and RHS. |
| 909 | KnownOne &= KnownOne2; |
| 910 | KnownZero &= KnownZero2; |
| 911 | return; |
| 912 | case ISD::SETCC: |
| 913 | // If we know the result of a setcc has the top bits zero, use this info. |
| 914 | if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) |
| 915 | KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL); |
| 916 | return; |
| 917 | case ISD::SHL: |
| 918 | // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 |
| 919 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 920 | ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(), |
| 921 | KnownZero, KnownOne, Depth+1); |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 922 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 923 | KnownZero <<= SA->getValue(); |
| 924 | KnownOne <<= SA->getValue(); |
Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 925 | KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero. |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 926 | } |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 927 | return; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 928 | case ISD::SRL: |
| 929 | // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 |
| 930 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 931 | MVT::ValueType VT = Op.getValueType(); |
| 932 | unsigned ShAmt = SA->getValue(); |
| 933 | |
| 934 | uint64_t TypeMask = MVT::getIntVTBitMask(VT); |
| 935 | ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask, |
| 936 | KnownZero, KnownOne, Depth+1); |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 937 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 938 | KnownZero &= TypeMask; |
| 939 | KnownOne &= TypeMask; |
| 940 | KnownZero >>= ShAmt; |
| 941 | KnownOne >>= ShAmt; |
| 942 | |
| 943 | uint64_t HighBits = (1ULL << ShAmt)-1; |
| 944 | HighBits <<= MVT::getSizeInBits(VT)-ShAmt; |
| 945 | KnownZero |= HighBits; // High bits known zero. |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 946 | } |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 947 | return; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 948 | case ISD::SRA: |
| 949 | if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 950 | MVT::ValueType VT = Op.getValueType(); |
| 951 | unsigned ShAmt = SA->getValue(); |
| 952 | |
| 953 | // Compute the new bits that are at the top now. |
| 954 | uint64_t TypeMask = MVT::getIntVTBitMask(VT); |
| 955 | |
| 956 | uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask; |
| 957 | // If any of the demanded bits are produced by the sign extension, we also |
| 958 | // demand the input sign bit. |
| 959 | uint64_t HighBits = (1ULL << ShAmt)-1; |
| 960 | HighBits <<= MVT::getSizeInBits(VT) - ShAmt; |
| 961 | if (HighBits & Mask) |
| 962 | InDemandedMask |= MVT::getIntVTSignBit(VT); |
| 963 | |
| 964 | ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne, |
| 965 | Depth+1); |
| 966 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 967 | KnownZero &= TypeMask; |
| 968 | KnownOne &= TypeMask; |
| 969 | KnownZero >>= ShAmt; |
| 970 | KnownOne >>= ShAmt; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 971 | |
| 972 | // Handle the sign bits. |
Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 973 | uint64_t SignBit = MVT::getIntVTSignBit(VT); |
| 974 | SignBit >>= ShAmt; // Adjust to where it is now in the mask. |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 975 | |
Jim Laskey | 9bfa2dc | 2006-06-13 13:08:58 +0000 | [diff] [blame] | 976 | if (KnownZero & SignBit) { |
Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 977 | KnownZero |= HighBits; // New bits are known zero. |
Jim Laskey | 9bfa2dc | 2006-06-13 13:08:58 +0000 | [diff] [blame] | 978 | } else if (KnownOne & SignBit) { |
Chris Lattner | c4fa603 | 2006-06-13 16:52:37 +0000 | [diff] [blame] | 979 | KnownOne |= HighBits; // New bits are known one. |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 980 | } |
| 981 | } |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 982 | return; |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 983 | case ISD::SIGN_EXTEND_INREG: { |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 984 | MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| 985 | |
| 986 | // Sign extension. Compute the demanded bits in the result that are not |
| 987 | // present in the input. |
| 988 | uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask; |
| 989 | |
| 990 | uint64_t InSignBit = MVT::getIntVTSignBit(EVT); |
| 991 | int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT); |
| 992 | |
| 993 | // If the sign extended bits are demanded, we know that the sign |
| 994 | // bit is demanded. |
| 995 | if (NewBits) |
| 996 | InputDemandedBits |= InSignBit; |
| 997 | |
| 998 | ComputeMaskedBits(Op.getOperand(0), InputDemandedBits, |
| 999 | KnownZero, KnownOne, Depth+1); |
| 1000 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 1001 | |
| 1002 | // If the sign bit of the input is known set or clear, then we know the |
| 1003 | // top bits of the result. |
| 1004 | if (KnownZero & InSignBit) { // Input sign bit known clear |
| 1005 | KnownZero |= NewBits; |
| 1006 | KnownOne &= ~NewBits; |
| 1007 | } else if (KnownOne & InSignBit) { // Input sign bit known set |
| 1008 | KnownOne |= NewBits; |
| 1009 | KnownZero &= ~NewBits; |
| 1010 | } else { // Input sign bit unknown |
| 1011 | KnownZero &= ~NewBits; |
| 1012 | KnownOne &= ~NewBits; |
| 1013 | } |
| 1014 | return; |
| 1015 | } |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 1016 | case ISD::CTTZ: |
| 1017 | case ISD::CTLZ: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 1018 | case ISD::CTPOP: { |
| 1019 | MVT::ValueType VT = Op.getValueType(); |
| 1020 | unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1; |
| 1021 | KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT); |
| 1022 | KnownOne = 0; |
| 1023 | return; |
| 1024 | } |
Evan Cheng | 466685d | 2006-10-09 20:57:25 +0000 | [diff] [blame] | 1025 | case ISD::LOAD: { |
Evan Cheng | c548428 | 2006-10-04 00:56:09 +0000 | [diff] [blame] | 1026 | if (ISD::isZEXTLoad(Op.Val)) { |
Evan Cheng | 466685d | 2006-10-09 20:57:25 +0000 | [diff] [blame] | 1027 | LoadSDNode *LD = cast<LoadSDNode>(Op); |
Evan Cheng | 2e49f09 | 2006-10-11 07:10:22 +0000 | [diff] [blame] | 1028 | MVT::ValueType VT = LD->getLoadedVT(); |
Evan Cheng | c548428 | 2006-10-04 00:56:09 +0000 | [diff] [blame] | 1029 | KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask; |
| 1030 | } |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 1031 | return; |
| 1032 | } |
| 1033 | case ISD::ZERO_EXTEND: { |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 1034 | uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType()); |
| 1035 | uint64_t NewBits = (~InMask) & Mask; |
| 1036 | ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero, |
| 1037 | KnownOne, Depth+1); |
| 1038 | KnownZero |= NewBits & Mask; |
| 1039 | KnownOne &= ~NewBits; |
| 1040 | return; |
| 1041 | } |
| 1042 | case ISD::SIGN_EXTEND: { |
| 1043 | MVT::ValueType InVT = Op.getOperand(0).getValueType(); |
| 1044 | unsigned InBits = MVT::getSizeInBits(InVT); |
| 1045 | uint64_t InMask = MVT::getIntVTBitMask(InVT); |
| 1046 | uint64_t InSignBit = 1ULL << (InBits-1); |
| 1047 | uint64_t NewBits = (~InMask) & Mask; |
| 1048 | uint64_t InDemandedBits = Mask & InMask; |
| 1049 | |
| 1050 | // If any of the sign extended bits are demanded, we know that the sign |
| 1051 | // bit is demanded. |
| 1052 | if (NewBits & Mask) |
| 1053 | InDemandedBits |= InSignBit; |
| 1054 | |
| 1055 | ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero, |
| 1056 | KnownOne, Depth+1); |
| 1057 | // If the sign bit is known zero or one, the top bits match. |
| 1058 | if (KnownZero & InSignBit) { |
| 1059 | KnownZero |= NewBits; |
| 1060 | KnownOne &= ~NewBits; |
| 1061 | } else if (KnownOne & InSignBit) { |
| 1062 | KnownOne |= NewBits; |
| 1063 | KnownZero &= ~NewBits; |
| 1064 | } else { // Otherwise, top bits aren't known. |
| 1065 | KnownOne &= ~NewBits; |
| 1066 | KnownZero &= ~NewBits; |
| 1067 | } |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 1068 | return; |
| 1069 | } |
| 1070 | case ISD::ANY_EXTEND: { |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 1071 | MVT::ValueType VT = Op.getOperand(0).getValueType(); |
| 1072 | ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT), |
| 1073 | KnownZero, KnownOne, Depth+1); |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 1074 | return; |
| 1075 | } |
Chris Lattner | fe8babf | 2006-05-05 22:32:12 +0000 | [diff] [blame] | 1076 | case ISD::TRUNCATE: { |
| 1077 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); |
| 1078 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 1079 | uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType()); |
| 1080 | KnownZero &= OutMask; |
| 1081 | KnownOne &= OutMask; |
| 1082 | break; |
| 1083 | } |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 1084 | case ISD::AssertZext: { |
Chris Lattner | ec66515 | 2006-02-26 23:36:02 +0000 | [diff] [blame] | 1085 | MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| 1086 | uint64_t InMask = MVT::getIntVTBitMask(VT); |
| 1087 | ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero, |
| 1088 | KnownOne, Depth+1); |
| 1089 | KnownZero |= (~InMask) & Mask; |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 1090 | return; |
| 1091 | } |
| 1092 | case ISD::ADD: { |
| 1093 | // If either the LHS or the RHS are Zero, the result is zero. |
| 1094 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| 1095 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); |
| 1096 | assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); |
| 1097 | assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); |
| 1098 | |
| 1099 | // Output known-0 bits are known if clear or set in both the low clear bits |
Chris Lattner | b6b17ff | 2006-03-13 06:42:16 +0000 | [diff] [blame] | 1100 | // common to both LHS & RHS. For example, 8+(X<<3) is known to have the |
| 1101 | // low 3 bits clear. |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 1102 | uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero), |
| 1103 | CountTrailingZeros_64(~KnownZero2)); |
| 1104 | |
| 1105 | KnownZero = (1ULL << KnownZeroOut) - 1; |
| 1106 | KnownOne = 0; |
| 1107 | return; |
| 1108 | } |
Chris Lattner | a6bc5a4 | 2006-02-27 01:00:42 +0000 | [diff] [blame] | 1109 | case ISD::SUB: { |
| 1110 | ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)); |
| 1111 | if (!CLHS) return; |
| 1112 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 1113 | // We know that the top bits of C-X are clear if X contains less bits |
| 1114 | // than C (i.e. no wrap-around can happen). For example, 20-X is |
Chris Lattner | a6bc5a4 | 2006-02-27 01:00:42 +0000 | [diff] [blame] | 1115 | // positive if we can prove that X is >= 0 and < 16. |
| 1116 | MVT::ValueType VT = CLHS->getValueType(0); |
| 1117 | if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) { // sign bit clear |
| 1118 | unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1); |
| 1119 | uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit |
| 1120 | MaskV = ~MaskV & MVT::getIntVTBitMask(VT); |
| 1121 | ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1); |
| 1122 | |
| 1123 | // If all of the MaskV bits are known to be zero, then we know the output |
| 1124 | // top bits are zero, because we now know that the output is from [0-C]. |
| 1125 | if ((KnownZero & MaskV) == MaskV) { |
| 1126 | unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue()); |
| 1127 | KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask; // Top bits known zero. |
| 1128 | KnownOne = 0; // No one bits known. |
| 1129 | } else { |
Evan Cheng | 42f75a9 | 2006-07-07 21:37:21 +0000 | [diff] [blame] | 1130 | KnownZero = KnownOne = 0; // Otherwise, nothing known. |
Chris Lattner | a6bc5a4 | 2006-02-27 01:00:42 +0000 | [diff] [blame] | 1131 | } |
| 1132 | } |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 1133 | return; |
Chris Lattner | a6bc5a4 | 2006-02-27 01:00:42 +0000 | [diff] [blame] | 1134 | } |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 1135 | default: |
| 1136 | // Allow the target to implement this method for its nodes. |
Chris Lattner | 1482b5f | 2006-04-02 06:15:09 +0000 | [diff] [blame] | 1137 | if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { |
| 1138 | case ISD::INTRINSIC_WO_CHAIN: |
| 1139 | case ISD::INTRINSIC_W_CHAIN: |
| 1140 | case ISD::INTRINSIC_VOID: |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 1141 | computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne); |
Chris Lattner | 1482b5f | 2006-04-02 06:15:09 +0000 | [diff] [blame] | 1142 | } |
Nate Begeman | 003a272 | 2006-02-18 02:43:25 +0000 | [diff] [blame] | 1143 | return; |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 1144 | } |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 1145 | } |
| 1146 | |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 1147 | /// computeMaskedBitsForTargetNode - Determine which of the bits specified |
| 1148 | /// in Mask are known to be either zero or one and return them in the |
| 1149 | /// KnownZero/KnownOne bitsets. |
| 1150 | void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op, |
| 1151 | uint64_t Mask, |
| 1152 | uint64_t &KnownZero, |
| 1153 | uint64_t &KnownOne, |
| 1154 | unsigned Depth) const { |
Chris Lattner | 1b5232a | 2006-04-02 06:19:46 +0000 | [diff] [blame] | 1155 | assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || |
| 1156 | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
| 1157 | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
| 1158 | Op.getOpcode() == ISD::INTRINSIC_VOID) && |
Chris Lattner | c6fd6cd | 2006-01-30 04:09:27 +0000 | [diff] [blame] | 1159 | "Should use MaskedValueIsZero if you don't know whether Op" |
| 1160 | " is a target node!"); |
Nate Begeman | 368e18d | 2006-02-16 21:11:51 +0000 | [diff] [blame] | 1161 | KnownZero = 0; |
| 1162 | KnownOne = 0; |
Evan Cheng | 3a03ebb | 2005-12-21 23:05:39 +0000 | [diff] [blame] | 1163 | } |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 1164 | |
Chris Lattner | 5c3e21d | 2006-05-06 09:27:13 +0000 | [diff] [blame] | 1165 | /// ComputeNumSignBits - Return the number of times the sign bit of the |
| 1166 | /// register is replicated into the other bits. We know that at least 1 bit |
| 1167 | /// is always equal to the sign bit (itself), but other cases can give us |
| 1168 | /// information. For example, immediately after an "SRA X, 2", we know that |
| 1169 | /// the top 3 bits are all equal to each other, so we return 3. |
| 1170 | unsigned TargetLowering::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{ |
| 1171 | MVT::ValueType VT = Op.getValueType(); |
| 1172 | assert(MVT::isInteger(VT) && "Invalid VT!"); |
| 1173 | unsigned VTBits = MVT::getSizeInBits(VT); |
| 1174 | unsigned Tmp, Tmp2; |
| 1175 | |
| 1176 | if (Depth == 6) |
| 1177 | return 1; // Limit search depth. |
| 1178 | |
| 1179 | switch (Op.getOpcode()) { |
Chris Lattner | d6f7fe7 | 2006-05-06 22:39:59 +0000 | [diff] [blame] | 1180 | default: break; |
Chris Lattner | 5c3e21d | 2006-05-06 09:27:13 +0000 | [diff] [blame] | 1181 | case ISD::AssertSext: |
| 1182 | Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT()); |
| 1183 | return VTBits-Tmp+1; |
| 1184 | case ISD::AssertZext: |
| 1185 | Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT()); |
| 1186 | return VTBits-Tmp; |
Chris Lattner | d6f7fe7 | 2006-05-06 22:39:59 +0000 | [diff] [blame] | 1187 | |
| 1188 | case ISD::Constant: { |
| 1189 | uint64_t Val = cast<ConstantSDNode>(Op)->getValue(); |
| 1190 | // If negative, invert the bits, then look at it. |
| 1191 | if (Val & MVT::getIntVTSignBit(VT)) |
| 1192 | Val = ~Val; |
| 1193 | |
| 1194 | // Shift the bits so they are the leading bits in the int64_t. |
| 1195 | Val <<= 64-VTBits; |
| 1196 | |
| 1197 | // Return # leading zeros. We use 'min' here in case Val was zero before |
| 1198 | // shifting. We don't want to return '64' as for an i32 "0". |
| 1199 | return std::min(VTBits, CountLeadingZeros_64(Val)); |
| 1200 | } |
| 1201 | |
| 1202 | case ISD::SIGN_EXTEND: |
| 1203 | Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType()); |
| 1204 | return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp; |
| 1205 | |
Chris Lattner | 5c3e21d | 2006-05-06 09:27:13 +0000 | [diff] [blame] | 1206 | case ISD::SIGN_EXTEND_INREG: |
| 1207 | // Max of the input and what this extends. |
| 1208 | Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT()); |
| 1209 | Tmp = VTBits-Tmp+1; |
| 1210 | |
| 1211 | Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| 1212 | return std::max(Tmp, Tmp2); |
| 1213 | |
| 1214 | case ISD::SRA: |
| 1215 | Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| 1216 | // SRA X, C -> adds C sign bits. |
| 1217 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 1218 | Tmp += C->getValue(); |
| 1219 | if (Tmp > VTBits) Tmp = VTBits; |
| 1220 | } |
| 1221 | return Tmp; |
Chris Lattner | d6f7fe7 | 2006-05-06 22:39:59 +0000 | [diff] [blame] | 1222 | case ISD::SHL: |
| 1223 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 1224 | // shl destroys sign bits. |
| 1225 | Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| 1226 | if (C->getValue() >= VTBits || // Bad shift. |
| 1227 | C->getValue() >= Tmp) break; // Shifted all sign bits out. |
| 1228 | return Tmp - C->getValue(); |
| 1229 | } |
| 1230 | break; |
Chris Lattner | d6f7fe7 | 2006-05-06 22:39:59 +0000 | [diff] [blame] | 1231 | case ISD::AND: |
| 1232 | case ISD::OR: |
| 1233 | case ISD::XOR: // NOT is handled here. |
| 1234 | // Logical binary ops preserve the number of sign bits. |
| 1235 | Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| 1236 | if (Tmp == 1) return 1; // Early out. |
| 1237 | Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); |
| 1238 | return std::min(Tmp, Tmp2); |
| 1239 | |
| 1240 | case ISD::SELECT: |
| 1241 | Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| 1242 | if (Tmp == 1) return 1; // Early out. |
| 1243 | Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); |
| 1244 | return std::min(Tmp, Tmp2); |
| 1245 | |
| 1246 | case ISD::SETCC: |
| 1247 | // If setcc returns 0/-1, all bits are sign bits. |
| 1248 | if (getSetCCResultContents() == ZeroOrNegativeOneSetCCResult) |
| 1249 | return VTBits; |
| 1250 | break; |
Chris Lattner | e60351b | 2006-05-06 23:40:29 +0000 | [diff] [blame] | 1251 | case ISD::ROTL: |
| 1252 | case ISD::ROTR: |
| 1253 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { |
| 1254 | unsigned RotAmt = C->getValue() & (VTBits-1); |
| 1255 | |
| 1256 | // Handle rotate right by N like a rotate left by 32-N. |
| 1257 | if (Op.getOpcode() == ISD::ROTR) |
| 1258 | RotAmt = (VTBits-RotAmt) & (VTBits-1); |
| 1259 | |
| 1260 | // If we aren't rotating out all of the known-in sign bits, return the |
| 1261 | // number that are left. This handles rotl(sext(x), 1) for example. |
| 1262 | Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| 1263 | if (Tmp > RotAmt+1) return Tmp-RotAmt; |
| 1264 | } |
| 1265 | break; |
| 1266 | case ISD::ADD: |
| 1267 | // Add can have at most one carry bit. Thus we know that the output |
| 1268 | // is, at worst, one more bit than the inputs. |
| 1269 | Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| 1270 | if (Tmp == 1) return 1; // Early out. |
| 1271 | |
| 1272 | // Special case decrementing a value (ADD X, -1): |
| 1273 | if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) |
| 1274 | if (CRHS->isAllOnesValue()) { |
| 1275 | uint64_t KnownZero, KnownOne; |
| 1276 | uint64_t Mask = MVT::getIntVTBitMask(VT); |
| 1277 | ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); |
| 1278 | |
| 1279 | // If the input is known to be 0 or 1, the output is 0/-1, which is all |
| 1280 | // sign bits set. |
| 1281 | if ((KnownZero|1) == Mask) |
| 1282 | return VTBits; |
| 1283 | |
| 1284 | // If we are subtracting one from a positive number, there is no carry |
| 1285 | // out of the result. |
| 1286 | if (KnownZero & MVT::getIntVTSignBit(VT)) |
| 1287 | return Tmp; |
| 1288 | } |
| 1289 | |
| 1290 | Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); |
| 1291 | if (Tmp2 == 1) return 1; |
| 1292 | return std::min(Tmp, Tmp2)-1; |
| 1293 | break; |
| 1294 | |
| 1295 | case ISD::SUB: |
| 1296 | Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); |
| 1297 | if (Tmp2 == 1) return 1; |
| 1298 | |
| 1299 | // Handle NEG. |
| 1300 | if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) |
| 1301 | if (CLHS->getValue() == 0) { |
| 1302 | uint64_t KnownZero, KnownOne; |
| 1303 | uint64_t Mask = MVT::getIntVTBitMask(VT); |
| 1304 | ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); |
| 1305 | // If the input is known to be 0 or 1, the output is 0/-1, which is all |
| 1306 | // sign bits set. |
| 1307 | if ((KnownZero|1) == Mask) |
| 1308 | return VTBits; |
| 1309 | |
| 1310 | // If the input is known to be positive (the sign bit is known clear), |
| 1311 | // the output of the NEG has the same number of sign bits as the input. |
| 1312 | if (KnownZero & MVT::getIntVTSignBit(VT)) |
| 1313 | return Tmp2; |
| 1314 | |
| 1315 | // Otherwise, we treat this like a SUB. |
| 1316 | } |
| 1317 | |
| 1318 | // Sub can have at most one carry bit. Thus we know that the output |
| 1319 | // is, at worst, one more bit than the inputs. |
| 1320 | Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); |
| 1321 | if (Tmp == 1) return 1; // Early out. |
| 1322 | return std::min(Tmp, Tmp2)-1; |
| 1323 | break; |
| 1324 | case ISD::TRUNCATE: |
| 1325 | // FIXME: it's tricky to do anything useful for this, but it is an important |
| 1326 | // case for targets like X86. |
| 1327 | break; |
Chris Lattner | 5c3e21d | 2006-05-06 09:27:13 +0000 | [diff] [blame] | 1328 | } |
| 1329 | |
Evan Cheng | c548428 | 2006-10-04 00:56:09 +0000 | [diff] [blame] | 1330 | // Handle LOADX separately here. EXTLOAD case will fallthrough. |
Evan Cheng | 466685d | 2006-10-09 20:57:25 +0000 | [diff] [blame] | 1331 | if (Op.getOpcode() == ISD::LOAD) { |
| 1332 | LoadSDNode *LD = cast<LoadSDNode>(Op); |
| 1333 | unsigned ExtType = LD->getExtensionType(); |
| 1334 | switch (ExtType) { |
Evan Cheng | c548428 | 2006-10-04 00:56:09 +0000 | [diff] [blame] | 1335 | default: break; |
| 1336 | case ISD::SEXTLOAD: // '17' bits known |
Evan Cheng | 2e49f09 | 2006-10-11 07:10:22 +0000 | [diff] [blame] | 1337 | Tmp = MVT::getSizeInBits(LD->getLoadedVT()); |
Evan Cheng | c548428 | 2006-10-04 00:56:09 +0000 | [diff] [blame] | 1338 | return VTBits-Tmp+1; |
| 1339 | case ISD::ZEXTLOAD: // '16' bits known |
Evan Cheng | 2e49f09 | 2006-10-11 07:10:22 +0000 | [diff] [blame] | 1340 | Tmp = MVT::getSizeInBits(LD->getLoadedVT()); |
Evan Cheng | c548428 | 2006-10-04 00:56:09 +0000 | [diff] [blame] | 1341 | return VTBits-Tmp; |
| 1342 | } |
| 1343 | } |
| 1344 | |
Chris Lattner | d6f7fe7 | 2006-05-06 22:39:59 +0000 | [diff] [blame] | 1345 | // Allow the target to implement this method for its nodes. |
| 1346 | if (Op.getOpcode() >= ISD::BUILTIN_OP_END || |
| 1347 | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
| 1348 | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
| 1349 | Op.getOpcode() == ISD::INTRINSIC_VOID) { |
| 1350 | unsigned NumBits = ComputeNumSignBitsForTargetNode(Op, Depth); |
| 1351 | if (NumBits > 1) return NumBits; |
| 1352 | } |
| 1353 | |
Chris Lattner | 822db93 | 2006-05-06 23:48:13 +0000 | [diff] [blame] | 1354 | // Finally, if we can prove that the top bits of the result are 0's or 1's, |
| 1355 | // use this information. |
| 1356 | uint64_t KnownZero, KnownOne; |
| 1357 | uint64_t Mask = MVT::getIntVTBitMask(VT); |
| 1358 | ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth); |
| 1359 | |
| 1360 | uint64_t SignBit = MVT::getIntVTSignBit(VT); |
| 1361 | if (KnownZero & SignBit) { // SignBit is 0 |
| 1362 | Mask = KnownZero; |
| 1363 | } else if (KnownOne & SignBit) { // SignBit is 1; |
| 1364 | Mask = KnownOne; |
| 1365 | } else { |
| 1366 | // Nothing known. |
| 1367 | return 1; |
| 1368 | } |
| 1369 | |
| 1370 | // Okay, we know that the sign bit in Mask is set. Use CLZ to determine |
| 1371 | // the number of identical bits in the top of the input value. |
| 1372 | Mask ^= ~0ULL; |
| 1373 | Mask <<= 64-VTBits; |
| 1374 | // Return # leading zeros. We use 'min' here in case Val was zero before |
| 1375 | // shifting. We don't want to return '64' as for an i32 "0". |
| 1376 | return std::min(VTBits, CountLeadingZeros_64(Mask)); |
Chris Lattner | 5c3e21d | 2006-05-06 09:27:13 +0000 | [diff] [blame] | 1377 | } |
| 1378 | |
| 1379 | |
| 1380 | |
| 1381 | /// ComputeNumSignBitsForTargetNode - This method can be implemented by |
| 1382 | /// targets that want to expose additional information about sign bits to the |
| 1383 | /// DAG Combiner. |
| 1384 | unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op, |
| 1385 | unsigned Depth) const { |
| 1386 | assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || |
| 1387 | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
| 1388 | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
| 1389 | Op.getOpcode() == ISD::INTRINSIC_VOID) && |
| 1390 | "Should use ComputeNumSignBits if you don't know whether Op" |
| 1391 | " is a target node!"); |
| 1392 | return 1; |
| 1393 | } |
| 1394 | |
| 1395 | |
Chris Lattner | 00ffed0 | 2006-03-01 04:52:55 +0000 | [diff] [blame] | 1396 | SDOperand TargetLowering:: |
| 1397 | PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { |
| 1398 | // Default implementation: no optimization. |
| 1399 | return SDOperand(); |
| 1400 | } |
| 1401 | |
Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 1402 | //===----------------------------------------------------------------------===// |
| 1403 | // Inline Assembler Implementation Methods |
| 1404 | //===----------------------------------------------------------------------===// |
| 1405 | |
| 1406 | TargetLowering::ConstraintType |
| 1407 | TargetLowering::getConstraintType(char ConstraintLetter) const { |
| 1408 | // FIXME: lots more standard ones to handle. |
| 1409 | switch (ConstraintLetter) { |
| 1410 | default: return C_Unknown; |
| 1411 | case 'r': return C_RegisterClass; |
Chris Lattner | 2b7401e | 2006-02-24 01:10:46 +0000 | [diff] [blame] | 1412 | case 'm': // memory |
| 1413 | case 'o': // offsetable |
| 1414 | case 'V': // not offsetable |
| 1415 | return C_Memory; |
Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 1416 | case 'i': // Simple Integer or Relocatable Constant |
| 1417 | case 'n': // Simple Integer |
| 1418 | case 's': // Relocatable Constant |
| 1419 | case 'I': // Target registers. |
| 1420 | case 'J': |
| 1421 | case 'K': |
| 1422 | case 'L': |
| 1423 | case 'M': |
| 1424 | case 'N': |
| 1425 | case 'O': |
Chris Lattner | 2b7401e | 2006-02-24 01:10:46 +0000 | [diff] [blame] | 1426 | case 'P': |
| 1427 | return C_Other; |
Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 1428 | } |
| 1429 | } |
| 1430 | |
Chris Lattner | dba1aee | 2006-10-31 19:40:43 +0000 | [diff] [blame] | 1431 | /// isOperandValidForConstraint - Return the specified operand (possibly |
| 1432 | /// modified) if the specified SDOperand is valid for the specified target |
| 1433 | /// constraint letter, otherwise return null. |
| 1434 | SDOperand TargetLowering::isOperandValidForConstraint(SDOperand Op, |
| 1435 | char ConstraintLetter, |
| 1436 | SelectionDAG &DAG) { |
Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 1437 | switch (ConstraintLetter) { |
Chris Lattner | dba1aee | 2006-10-31 19:40:43 +0000 | [diff] [blame] | 1438 | default: return SDOperand(0,0); |
Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 1439 | case 'i': // Simple Integer or Relocatable Constant |
| 1440 | case 'n': // Simple Integer |
| 1441 | case 's': // Relocatable Constant |
Chris Lattner | dba1aee | 2006-10-31 19:40:43 +0000 | [diff] [blame] | 1442 | return Op; // FIXME: not right. |
Chris Lattner | eb8146b | 2006-02-04 02:13:02 +0000 | [diff] [blame] | 1443 | } |
| 1444 | } |
| 1445 | |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 1446 | std::vector<unsigned> TargetLowering:: |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1447 | getRegClassForInlineAsmConstraint(const std::string &Constraint, |
| 1448 | MVT::ValueType VT) const { |
| 1449 | return std::vector<unsigned>(); |
| 1450 | } |
| 1451 | |
| 1452 | |
| 1453 | std::pair<unsigned, const TargetRegisterClass*> TargetLowering:: |
Chris Lattner | 4217ca8dc | 2006-02-21 23:11:00 +0000 | [diff] [blame] | 1454 | getRegForInlineAsmConstraint(const std::string &Constraint, |
| 1455 | MVT::ValueType VT) const { |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1456 | if (Constraint[0] != '{') |
| 1457 | return std::pair<unsigned, const TargetRegisterClass*>(0, 0); |
Chris Lattner | a55079a | 2006-02-01 01:29:47 +0000 | [diff] [blame] | 1458 | assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); |
| 1459 | |
| 1460 | // Remove the braces from around the name. |
| 1461 | std::string RegName(Constraint.begin()+1, Constraint.end()-1); |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1462 | |
| 1463 | // Figure out which register class contains this reg. |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 1464 | const MRegisterInfo *RI = TM.getRegisterInfo(); |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1465 | for (MRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), |
| 1466 | E = RI->regclass_end(); RCI != E; ++RCI) { |
| 1467 | const TargetRegisterClass *RC = *RCI; |
Chris Lattner | b3befd4 | 2006-02-22 23:00:51 +0000 | [diff] [blame] | 1468 | |
| 1469 | // If none of the the value types for this register class are valid, we |
| 1470 | // can't use it. For example, 64-bit reg classes on 32-bit targets. |
| 1471 | bool isLegal = false; |
| 1472 | for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); |
| 1473 | I != E; ++I) { |
| 1474 | if (isTypeLegal(*I)) { |
| 1475 | isLegal = true; |
| 1476 | break; |
| 1477 | } |
| 1478 | } |
| 1479 | |
| 1480 | if (!isLegal) continue; |
| 1481 | |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1482 | for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); |
| 1483 | I != E; ++I) { |
Chris Lattner | b3befd4 | 2006-02-22 23:00:51 +0000 | [diff] [blame] | 1484 | if (StringsEqualNoCase(RegName, RI->get(*I).Name)) |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1485 | return std::make_pair(*I, RC); |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1486 | } |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 1487 | } |
Chris Lattner | a55079a | 2006-02-01 01:29:47 +0000 | [diff] [blame] | 1488 | |
Chris Lattner | 1efa40f | 2006-02-22 00:56:39 +0000 | [diff] [blame] | 1489 | return std::pair<unsigned, const TargetRegisterClass*>(0, 0); |
Chris Lattner | 4ccb070 | 2006-01-26 20:37:03 +0000 | [diff] [blame] | 1490 | } |
Evan Cheng | 30b37b5 | 2006-03-13 23:18:16 +0000 | [diff] [blame] | 1491 | |
| 1492 | //===----------------------------------------------------------------------===// |
| 1493 | // Loop Strength Reduction hooks |
| 1494 | //===----------------------------------------------------------------------===// |
| 1495 | |
| 1496 | /// isLegalAddressImmediate - Return true if the integer value or |
| 1497 | /// GlobalValue can be used as the offset of the target addressing mode. |
| 1498 | bool TargetLowering::isLegalAddressImmediate(int64_t V) const { |
| 1499 | return false; |
| 1500 | } |
| 1501 | bool TargetLowering::isLegalAddressImmediate(GlobalValue *GV) const { |
| 1502 | return false; |
| 1503 | } |
Andrew Lenharth | dae9cbe | 2006-05-16 17:42:15 +0000 | [diff] [blame] | 1504 | |
| 1505 | |
| 1506 | // Magic for divide replacement |
| 1507 | |
| 1508 | struct ms { |
| 1509 | int64_t m; // magic number |
| 1510 | int64_t s; // shift amount |
| 1511 | }; |
| 1512 | |
| 1513 | struct mu { |
| 1514 | uint64_t m; // magic number |
| 1515 | int64_t a; // add indicator |
| 1516 | int64_t s; // shift amount |
| 1517 | }; |
| 1518 | |
| 1519 | /// magic - calculate the magic numbers required to codegen an integer sdiv as |
| 1520 | /// a sequence of multiply and shifts. Requires that the divisor not be 0, 1, |
| 1521 | /// or -1. |
| 1522 | static ms magic32(int32_t d) { |
| 1523 | int32_t p; |
| 1524 | uint32_t ad, anc, delta, q1, r1, q2, r2, t; |
| 1525 | const uint32_t two31 = 0x80000000U; |
| 1526 | struct ms mag; |
| 1527 | |
| 1528 | ad = abs(d); |
| 1529 | t = two31 + ((uint32_t)d >> 31); |
| 1530 | anc = t - 1 - t%ad; // absolute value of nc |
| 1531 | p = 31; // initialize p |
| 1532 | q1 = two31/anc; // initialize q1 = 2p/abs(nc) |
| 1533 | r1 = two31 - q1*anc; // initialize r1 = rem(2p,abs(nc)) |
| 1534 | q2 = two31/ad; // initialize q2 = 2p/abs(d) |
| 1535 | r2 = two31 - q2*ad; // initialize r2 = rem(2p,abs(d)) |
| 1536 | do { |
| 1537 | p = p + 1; |
| 1538 | q1 = 2*q1; // update q1 = 2p/abs(nc) |
| 1539 | r1 = 2*r1; // update r1 = rem(2p/abs(nc)) |
| 1540 | if (r1 >= anc) { // must be unsigned comparison |
| 1541 | q1 = q1 + 1; |
| 1542 | r1 = r1 - anc; |
| 1543 | } |
| 1544 | q2 = 2*q2; // update q2 = 2p/abs(d) |
| 1545 | r2 = 2*r2; // update r2 = rem(2p/abs(d)) |
| 1546 | if (r2 >= ad) { // must be unsigned comparison |
| 1547 | q2 = q2 + 1; |
| 1548 | r2 = r2 - ad; |
| 1549 | } |
| 1550 | delta = ad - r2; |
| 1551 | } while (q1 < delta || (q1 == delta && r1 == 0)); |
| 1552 | |
| 1553 | mag.m = (int32_t)(q2 + 1); // make sure to sign extend |
| 1554 | if (d < 0) mag.m = -mag.m; // resulting magic number |
| 1555 | mag.s = p - 32; // resulting shift |
| 1556 | return mag; |
| 1557 | } |
| 1558 | |
| 1559 | /// magicu - calculate the magic numbers required to codegen an integer udiv as |
| 1560 | /// a sequence of multiply, add and shifts. Requires that the divisor not be 0. |
| 1561 | static mu magicu32(uint32_t d) { |
| 1562 | int32_t p; |
| 1563 | uint32_t nc, delta, q1, r1, q2, r2; |
| 1564 | struct mu magu; |
| 1565 | magu.a = 0; // initialize "add" indicator |
| 1566 | nc = - 1 - (-d)%d; |
| 1567 | p = 31; // initialize p |
| 1568 | q1 = 0x80000000/nc; // initialize q1 = 2p/nc |
| 1569 | r1 = 0x80000000 - q1*nc; // initialize r1 = rem(2p,nc) |
| 1570 | q2 = 0x7FFFFFFF/d; // initialize q2 = (2p-1)/d |
| 1571 | r2 = 0x7FFFFFFF - q2*d; // initialize r2 = rem((2p-1),d) |
| 1572 | do { |
| 1573 | p = p + 1; |
| 1574 | if (r1 >= nc - r1 ) { |
| 1575 | q1 = 2*q1 + 1; // update q1 |
| 1576 | r1 = 2*r1 - nc; // update r1 |
| 1577 | } |
| 1578 | else { |
| 1579 | q1 = 2*q1; // update q1 |
| 1580 | r1 = 2*r1; // update r1 |
| 1581 | } |
| 1582 | if (r2 + 1 >= d - r2) { |
| 1583 | if (q2 >= 0x7FFFFFFF) magu.a = 1; |
| 1584 | q2 = 2*q2 + 1; // update q2 |
| 1585 | r2 = 2*r2 + 1 - d; // update r2 |
| 1586 | } |
| 1587 | else { |
| 1588 | if (q2 >= 0x80000000) magu.a = 1; |
| 1589 | q2 = 2*q2; // update q2 |
| 1590 | r2 = 2*r2 + 1; // update r2 |
| 1591 | } |
| 1592 | delta = d - 1 - r2; |
| 1593 | } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0))); |
| 1594 | magu.m = q2 + 1; // resulting magic number |
| 1595 | magu.s = p - 32; // resulting shift |
| 1596 | return magu; |
| 1597 | } |
| 1598 | |
| 1599 | /// magic - calculate the magic numbers required to codegen an integer sdiv as |
| 1600 | /// a sequence of multiply and shifts. Requires that the divisor not be 0, 1, |
| 1601 | /// or -1. |
| 1602 | static ms magic64(int64_t d) { |
| 1603 | int64_t p; |
| 1604 | uint64_t ad, anc, delta, q1, r1, q2, r2, t; |
| 1605 | const uint64_t two63 = 9223372036854775808ULL; // 2^63 |
| 1606 | struct ms mag; |
| 1607 | |
| 1608 | ad = d >= 0 ? d : -d; |
| 1609 | t = two63 + ((uint64_t)d >> 63); |
| 1610 | anc = t - 1 - t%ad; // absolute value of nc |
| 1611 | p = 63; // initialize p |
| 1612 | q1 = two63/anc; // initialize q1 = 2p/abs(nc) |
| 1613 | r1 = two63 - q1*anc; // initialize r1 = rem(2p,abs(nc)) |
| 1614 | q2 = two63/ad; // initialize q2 = 2p/abs(d) |
| 1615 | r2 = two63 - q2*ad; // initialize r2 = rem(2p,abs(d)) |
| 1616 | do { |
| 1617 | p = p + 1; |
| 1618 | q1 = 2*q1; // update q1 = 2p/abs(nc) |
| 1619 | r1 = 2*r1; // update r1 = rem(2p/abs(nc)) |
| 1620 | if (r1 >= anc) { // must be unsigned comparison |
| 1621 | q1 = q1 + 1; |
| 1622 | r1 = r1 - anc; |
| 1623 | } |
| 1624 | q2 = 2*q2; // update q2 = 2p/abs(d) |
| 1625 | r2 = 2*r2; // update r2 = rem(2p/abs(d)) |
| 1626 | if (r2 >= ad) { // must be unsigned comparison |
| 1627 | q2 = q2 + 1; |
| 1628 | r2 = r2 - ad; |
| 1629 | } |
| 1630 | delta = ad - r2; |
| 1631 | } while (q1 < delta || (q1 == delta && r1 == 0)); |
| 1632 | |
| 1633 | mag.m = q2 + 1; |
| 1634 | if (d < 0) mag.m = -mag.m; // resulting magic number |
| 1635 | mag.s = p - 64; // resulting shift |
| 1636 | return mag; |
| 1637 | } |
| 1638 | |
| 1639 | /// magicu - calculate the magic numbers required to codegen an integer udiv as |
| 1640 | /// a sequence of multiply, add and shifts. Requires that the divisor not be 0. |
| 1641 | static mu magicu64(uint64_t d) |
| 1642 | { |
| 1643 | int64_t p; |
| 1644 | uint64_t nc, delta, q1, r1, q2, r2; |
| 1645 | struct mu magu; |
| 1646 | magu.a = 0; // initialize "add" indicator |
| 1647 | nc = - 1 - (-d)%d; |
| 1648 | p = 63; // initialize p |
| 1649 | q1 = 0x8000000000000000ull/nc; // initialize q1 = 2p/nc |
| 1650 | r1 = 0x8000000000000000ull - q1*nc; // initialize r1 = rem(2p,nc) |
| 1651 | q2 = 0x7FFFFFFFFFFFFFFFull/d; // initialize q2 = (2p-1)/d |
| 1652 | r2 = 0x7FFFFFFFFFFFFFFFull - q2*d; // initialize r2 = rem((2p-1),d) |
| 1653 | do { |
| 1654 | p = p + 1; |
| 1655 | if (r1 >= nc - r1 ) { |
| 1656 | q1 = 2*q1 + 1; // update q1 |
| 1657 | r1 = 2*r1 - nc; // update r1 |
| 1658 | } |
| 1659 | else { |
| 1660 | q1 = 2*q1; // update q1 |
| 1661 | r1 = 2*r1; // update r1 |
| 1662 | } |
| 1663 | if (r2 + 1 >= d - r2) { |
| 1664 | if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1; |
| 1665 | q2 = 2*q2 + 1; // update q2 |
| 1666 | r2 = 2*r2 + 1 - d; // update r2 |
| 1667 | } |
| 1668 | else { |
| 1669 | if (q2 >= 0x8000000000000000ull) magu.a = 1; |
| 1670 | q2 = 2*q2; // update q2 |
| 1671 | r2 = 2*r2 + 1; // update r2 |
| 1672 | } |
| 1673 | delta = d - 1 - r2; |
Andrew Lenharth | 3e34849 | 2006-05-16 17:45:23 +0000 | [diff] [blame] | 1674 | } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0))); |
Andrew Lenharth | dae9cbe | 2006-05-16 17:42:15 +0000 | [diff] [blame] | 1675 | magu.m = q2 + 1; // resulting magic number |
| 1676 | magu.s = p - 64; // resulting shift |
| 1677 | return magu; |
| 1678 | } |
| 1679 | |
| 1680 | /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant, |
| 1681 | /// return a DAG expression to select that will generate the same value by |
| 1682 | /// multiplying by a magic number. See: |
| 1683 | /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> |
| 1684 | SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, |
Andrew Lenharth | 232c910 | 2006-06-12 16:07:18 +0000 | [diff] [blame] | 1685 | std::vector<SDNode*>* Created) const { |
Andrew Lenharth | dae9cbe | 2006-05-16 17:42:15 +0000 | [diff] [blame] | 1686 | MVT::ValueType VT = N->getValueType(0); |
| 1687 | |
| 1688 | // Check to see if we can do this. |
| 1689 | if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64)) |
| 1690 | return SDOperand(); // BuildSDIV only operates on i32 or i64 |
| 1691 | if (!isOperationLegal(ISD::MULHS, VT)) |
| 1692 | return SDOperand(); // Make sure the target supports MULHS. |
| 1693 | |
| 1694 | int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended(); |
| 1695 | ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d); |
| 1696 | |
| 1697 | // Multiply the numerator (operand 0) by the magic value |
| 1698 | SDOperand Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0), |
| 1699 | DAG.getConstant(magics.m, VT)); |
| 1700 | // If d > 0 and m < 0, add the numerator |
| 1701 | if (d > 0 && magics.m < 0) { |
| 1702 | Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0)); |
| 1703 | if (Created) |
| 1704 | Created->push_back(Q.Val); |
| 1705 | } |
| 1706 | // If d < 0 and m > 0, subtract the numerator. |
| 1707 | if (d < 0 && magics.m > 0) { |
| 1708 | Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0)); |
| 1709 | if (Created) |
| 1710 | Created->push_back(Q.Val); |
| 1711 | } |
| 1712 | // Shift right algebraic if shift value is nonzero |
| 1713 | if (magics.s > 0) { |
| 1714 | Q = DAG.getNode(ISD::SRA, VT, Q, |
| 1715 | DAG.getConstant(magics.s, getShiftAmountTy())); |
| 1716 | if (Created) |
| 1717 | Created->push_back(Q.Val); |
| 1718 | } |
| 1719 | // Extract the sign bit and add it to the quotient |
| 1720 | SDOperand T = |
| 1721 | DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1, |
| 1722 | getShiftAmountTy())); |
| 1723 | if (Created) |
| 1724 | Created->push_back(T.Val); |
| 1725 | return DAG.getNode(ISD::ADD, VT, Q, T); |
| 1726 | } |
| 1727 | |
| 1728 | /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant, |
| 1729 | /// return a DAG expression to select that will generate the same value by |
| 1730 | /// multiplying by a magic number. See: |
| 1731 | /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> |
| 1732 | SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, |
Andrew Lenharth | 232c910 | 2006-06-12 16:07:18 +0000 | [diff] [blame] | 1733 | std::vector<SDNode*>* Created) const { |
Andrew Lenharth | dae9cbe | 2006-05-16 17:42:15 +0000 | [diff] [blame] | 1734 | MVT::ValueType VT = N->getValueType(0); |
| 1735 | |
| 1736 | // Check to see if we can do this. |
| 1737 | if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64)) |
| 1738 | return SDOperand(); // BuildUDIV only operates on i32 or i64 |
| 1739 | if (!isOperationLegal(ISD::MULHU, VT)) |
| 1740 | return SDOperand(); // Make sure the target supports MULHU. |
| 1741 | |
| 1742 | uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue(); |
| 1743 | mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d); |
| 1744 | |
| 1745 | // Multiply the numerator (operand 0) by the magic value |
| 1746 | SDOperand Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0), |
| 1747 | DAG.getConstant(magics.m, VT)); |
| 1748 | if (Created) |
| 1749 | Created->push_back(Q.Val); |
| 1750 | |
| 1751 | if (magics.a == 0) { |
| 1752 | return DAG.getNode(ISD::SRL, VT, Q, |
| 1753 | DAG.getConstant(magics.s, getShiftAmountTy())); |
| 1754 | } else { |
| 1755 | SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q); |
| 1756 | if (Created) |
| 1757 | Created->push_back(NPQ.Val); |
| 1758 | NPQ = DAG.getNode(ISD::SRL, VT, NPQ, |
| 1759 | DAG.getConstant(1, getShiftAmountTy())); |
| 1760 | if (Created) |
| 1761 | Created->push_back(NPQ.Val); |
| 1762 | NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q); |
| 1763 | if (Created) |
| 1764 | Created->push_back(NPQ.Val); |
| 1765 | return DAG.getNode(ISD::SRL, VT, NPQ, |
| 1766 | DAG.getConstant(magics.s-1, getShiftAmountTy())); |
| 1767 | } |
| 1768 | } |
Reid Spencer | 02114aa | 2007-01-12 23:30:31 +0000 | [diff] [blame] | 1769 | |
| 1770 | MVT::ValueType TargetLowering::getValueType(const Type *Ty) const { |
| 1771 | switch (Ty->getTypeID()) { |
| 1772 | default: assert(0 && "Unknown type!"); |
| 1773 | case Type::VoidTyID: return MVT::isVoid; |
| 1774 | case Type::IntegerTyID: |
| 1775 | switch (cast<IntegerType>(Ty)->getBitWidth()) { |
| 1776 | default: assert(0 && "Invalid width for value type"); |
| 1777 | case 1: return MVT::i1; |
| 1778 | case 8: return MVT::i8; |
| 1779 | case 16: return MVT::i16; |
| 1780 | case 32: return MVT::i32; |
| 1781 | case 64: return MVT::i64; |
| 1782 | } |
| 1783 | break; |
| 1784 | case Type::FloatTyID: return MVT::f32; |
| 1785 | case Type::DoubleTyID: return MVT::f64; |
| 1786 | case Type::PointerTyID: return PointerTy; |
| 1787 | case Type::PackedTyID: return MVT::Vector; |
| 1788 | } |
| 1789 | } |