blob: 09afb4cb6e49f8b0317d724c9a49119158cf0836 [file] [log] [blame]
Misha Brukmana85d6bc2002-11-22 22:42:50 +00001//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
Misha Brukman0e0a7a452005-04-21 23:38:14 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman0e0a7a452005-04-21 23:38:14 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3501fea2003-01-14 22:00:31 +000010// This file contains the X86 implementation of the TargetInstrInfo class.
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
Chris Lattner055c9652002-10-29 21:05:24 +000014#include "X86InstrInfo.h"
Chris Lattner4ce42a72002-12-03 05:42:53 +000015#include "X86.h"
Evan Chengaa3c1412006-05-30 21:45:53 +000016#include "X86InstrBuilder.h"
Owen Andersond94b6a12008-01-04 23:57:37 +000017#include "X86MachineFunctionInfo.h"
Evan Chengaa3c1412006-05-30 21:45:53 +000018#include "X86Subtarget.h"
19#include "X86TargetMachine.h"
Dan Gohmand68a0762009-01-05 17:59:02 +000020#include "llvm/DerivedTypes.h"
Owen Anderson0a5372e2009-07-13 04:09:18 +000021#include "llvm/LLVMContext.h"
Owen Anderson718cb662007-09-07 04:06:50 +000022#include "llvm/ADT/STLExtras.h"
Dan Gohman62c939d2008-12-03 05:21:24 +000023#include "llvm/CodeGen/MachineConstantPool.h"
Owen Andersond94b6a12008-01-04 23:57:37 +000024#include "llvm/CodeGen/MachineFrameInfo.h"
Evan Chengaa3c1412006-05-30 21:45:53 +000025#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner84bc5422007-12-31 04:13:23 +000026#include "llvm/CodeGen/MachineRegisterInfo.h"
Evan Cheng258ff672006-12-01 21:52:41 +000027#include "llvm/CodeGen/LiveVariables.h"
David Greeneb87bc952009-11-12 20:55:29 +000028#include "llvm/CodeGen/PseudoSourceValue.h"
Chris Lattneree9eb412010-04-26 23:37:21 +000029#include "llvm/MC/MCInst.h"
Owen Anderson43dbe052008-01-07 01:35:02 +000030#include "llvm/Support/CommandLine.h"
David Greene5b901322010-01-05 01:29:29 +000031#include "llvm/Support/Debug.h"
Torok Edwinab7c09b2009-07-08 18:01:40 +000032#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/raw_ostream.h"
Evan Cheng0488db92007-09-25 01:57:46 +000034#include "llvm/Target/TargetOptions.h"
Chris Lattneraf76e592009-08-22 20:48:53 +000035#include "llvm/MC/MCAsmInfo.h"
David Greeneb87bc952009-11-12 20:55:29 +000036#include <limits>
37
Evan Cheng4db3cff2011-07-01 17:57:27 +000038#define GET_INSTRINFO_CTOR
Evan Cheng22fee2d2011-06-28 20:07:07 +000039#include "X86GenInstrInfo.inc"
40
Brian Gaeked0fde302003-11-11 22:41:34 +000041using namespace llvm;
42
Chris Lattner705e07f2009-08-23 03:41:05 +000043static cl::opt<bool>
44NoFusing("disable-spill-fusing",
45 cl::desc("Disable fusing of spill code into instructions"));
46static cl::opt<bool>
47PrintFailedFusing("print-failed-fuse-candidates",
48 cl::desc("Print instructions that the allocator wants to"
49 " fuse, but the X86 backend currently can't"),
50 cl::Hidden);
51static cl::opt<bool>
52ReMatPICStubLoad("remat-pic-stub-load",
53 cl::desc("Re-materialize load from stub in PIC mode"),
54 cl::init(false), cl::Hidden);
Owen Anderson43dbe052008-01-07 01:35:02 +000055
Evan Chengaa3c1412006-05-30 21:45:53 +000056X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Evan Cheng4db3cff2011-07-01 17:57:27 +000057 : X86GenInstrInfo((tm.getSubtarget<X86Subtarget>().is64Bit()
58 ? X86::ADJCALLSTACKDOWN64
59 : X86::ADJCALLSTACKDOWN32),
60 (tm.getSubtarget<X86Subtarget>().is64Bit()
61 ? X86::ADJCALLSTACKUP64
62 : X86::ADJCALLSTACKUP32)),
Evan Cheng25ab6902006-09-08 06:48:29 +000063 TM(tm), RI(tm, *this) {
Chris Lattner99ae6652010-10-08 03:54:52 +000064 enum {
65 TB_NOT_REVERSABLE = 1U << 31,
66 TB_FLAGS = TB_NOT_REVERSABLE
67 };
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +000068
Owen Anderson43dbe052008-01-07 01:35:02 +000069 static const unsigned OpTbl2Addr[][2] = {
70 { X86::ADC32ri, X86::ADC32mi },
71 { X86::ADC32ri8, X86::ADC32mi8 },
72 { X86::ADC32rr, X86::ADC32mr },
73 { X86::ADC64ri32, X86::ADC64mi32 },
74 { X86::ADC64ri8, X86::ADC64mi8 },
75 { X86::ADC64rr, X86::ADC64mr },
76 { X86::ADD16ri, X86::ADD16mi },
77 { X86::ADD16ri8, X86::ADD16mi8 },
Chris Lattner15df55d2010-10-08 03:57:25 +000078 { X86::ADD16ri_DB, X86::ADD16mi | TB_NOT_REVERSABLE },
79 { X86::ADD16ri8_DB, X86::ADD16mi8 | TB_NOT_REVERSABLE },
Owen Anderson43dbe052008-01-07 01:35:02 +000080 { X86::ADD16rr, X86::ADD16mr },
Chris Lattner99ae6652010-10-08 03:54:52 +000081 { X86::ADD16rr_DB, X86::ADD16mr | TB_NOT_REVERSABLE },
Owen Anderson43dbe052008-01-07 01:35:02 +000082 { X86::ADD32ri, X86::ADD32mi },
83 { X86::ADD32ri8, X86::ADD32mi8 },
Chris Lattner15df55d2010-10-08 03:57:25 +000084 { X86::ADD32ri_DB, X86::ADD32mi | TB_NOT_REVERSABLE },
85 { X86::ADD32ri8_DB, X86::ADD32mi8 | TB_NOT_REVERSABLE },
Owen Anderson43dbe052008-01-07 01:35:02 +000086 { X86::ADD32rr, X86::ADD32mr },
Chris Lattner99ae6652010-10-08 03:54:52 +000087 { X86::ADD32rr_DB, X86::ADD32mr | TB_NOT_REVERSABLE },
Owen Anderson43dbe052008-01-07 01:35:02 +000088 { X86::ADD64ri32, X86::ADD64mi32 },
89 { X86::ADD64ri8, X86::ADD64mi8 },
Chris Lattner15df55d2010-10-08 03:57:25 +000090 { X86::ADD64ri32_DB,X86::ADD64mi32 | TB_NOT_REVERSABLE },
91 { X86::ADD64ri8_DB, X86::ADD64mi8 | TB_NOT_REVERSABLE },
Owen Anderson43dbe052008-01-07 01:35:02 +000092 { X86::ADD64rr, X86::ADD64mr },
Chris Lattner99ae6652010-10-08 03:54:52 +000093 { X86::ADD64rr_DB, X86::ADD64mr | TB_NOT_REVERSABLE },
Owen Anderson43dbe052008-01-07 01:35:02 +000094 { X86::ADD8ri, X86::ADD8mi },
95 { X86::ADD8rr, X86::ADD8mr },
96 { X86::AND16ri, X86::AND16mi },
97 { X86::AND16ri8, X86::AND16mi8 },
98 { X86::AND16rr, X86::AND16mr },
99 { X86::AND32ri, X86::AND32mi },
100 { X86::AND32ri8, X86::AND32mi8 },
101 { X86::AND32rr, X86::AND32mr },
102 { X86::AND64ri32, X86::AND64mi32 },
103 { X86::AND64ri8, X86::AND64mi8 },
104 { X86::AND64rr, X86::AND64mr },
105 { X86::AND8ri, X86::AND8mi },
106 { X86::AND8rr, X86::AND8mr },
107 { X86::DEC16r, X86::DEC16m },
108 { X86::DEC32r, X86::DEC32m },
109 { X86::DEC64_16r, X86::DEC64_16m },
110 { X86::DEC64_32r, X86::DEC64_32m },
111 { X86::DEC64r, X86::DEC64m },
112 { X86::DEC8r, X86::DEC8m },
113 { X86::INC16r, X86::INC16m },
114 { X86::INC32r, X86::INC32m },
115 { X86::INC64_16r, X86::INC64_16m },
116 { X86::INC64_32r, X86::INC64_32m },
117 { X86::INC64r, X86::INC64m },
118 { X86::INC8r, X86::INC8m },
119 { X86::NEG16r, X86::NEG16m },
120 { X86::NEG32r, X86::NEG32m },
121 { X86::NEG64r, X86::NEG64m },
122 { X86::NEG8r, X86::NEG8m },
123 { X86::NOT16r, X86::NOT16m },
124 { X86::NOT32r, X86::NOT32m },
125 { X86::NOT64r, X86::NOT64m },
126 { X86::NOT8r, X86::NOT8m },
127 { X86::OR16ri, X86::OR16mi },
128 { X86::OR16ri8, X86::OR16mi8 },
129 { X86::OR16rr, X86::OR16mr },
130 { X86::OR32ri, X86::OR32mi },
131 { X86::OR32ri8, X86::OR32mi8 },
132 { X86::OR32rr, X86::OR32mr },
133 { X86::OR64ri32, X86::OR64mi32 },
134 { X86::OR64ri8, X86::OR64mi8 },
135 { X86::OR64rr, X86::OR64mr },
136 { X86::OR8ri, X86::OR8mi },
137 { X86::OR8rr, X86::OR8mr },
138 { X86::ROL16r1, X86::ROL16m1 },
139 { X86::ROL16rCL, X86::ROL16mCL },
140 { X86::ROL16ri, X86::ROL16mi },
141 { X86::ROL32r1, X86::ROL32m1 },
142 { X86::ROL32rCL, X86::ROL32mCL },
143 { X86::ROL32ri, X86::ROL32mi },
144 { X86::ROL64r1, X86::ROL64m1 },
145 { X86::ROL64rCL, X86::ROL64mCL },
146 { X86::ROL64ri, X86::ROL64mi },
147 { X86::ROL8r1, X86::ROL8m1 },
148 { X86::ROL8rCL, X86::ROL8mCL },
149 { X86::ROL8ri, X86::ROL8mi },
150 { X86::ROR16r1, X86::ROR16m1 },
151 { X86::ROR16rCL, X86::ROR16mCL },
152 { X86::ROR16ri, X86::ROR16mi },
153 { X86::ROR32r1, X86::ROR32m1 },
154 { X86::ROR32rCL, X86::ROR32mCL },
155 { X86::ROR32ri, X86::ROR32mi },
156 { X86::ROR64r1, X86::ROR64m1 },
157 { X86::ROR64rCL, X86::ROR64mCL },
158 { X86::ROR64ri, X86::ROR64mi },
159 { X86::ROR8r1, X86::ROR8m1 },
160 { X86::ROR8rCL, X86::ROR8mCL },
161 { X86::ROR8ri, X86::ROR8mi },
162 { X86::SAR16r1, X86::SAR16m1 },
163 { X86::SAR16rCL, X86::SAR16mCL },
164 { X86::SAR16ri, X86::SAR16mi },
165 { X86::SAR32r1, X86::SAR32m1 },
166 { X86::SAR32rCL, X86::SAR32mCL },
167 { X86::SAR32ri, X86::SAR32mi },
168 { X86::SAR64r1, X86::SAR64m1 },
169 { X86::SAR64rCL, X86::SAR64mCL },
170 { X86::SAR64ri, X86::SAR64mi },
171 { X86::SAR8r1, X86::SAR8m1 },
172 { X86::SAR8rCL, X86::SAR8mCL },
173 { X86::SAR8ri, X86::SAR8mi },
174 { X86::SBB32ri, X86::SBB32mi },
175 { X86::SBB32ri8, X86::SBB32mi8 },
176 { X86::SBB32rr, X86::SBB32mr },
177 { X86::SBB64ri32, X86::SBB64mi32 },
178 { X86::SBB64ri8, X86::SBB64mi8 },
179 { X86::SBB64rr, X86::SBB64mr },
Owen Anderson43dbe052008-01-07 01:35:02 +0000180 { X86::SHL16rCL, X86::SHL16mCL },
181 { X86::SHL16ri, X86::SHL16mi },
Owen Anderson43dbe052008-01-07 01:35:02 +0000182 { X86::SHL32rCL, X86::SHL32mCL },
183 { X86::SHL32ri, X86::SHL32mi },
Owen Anderson43dbe052008-01-07 01:35:02 +0000184 { X86::SHL64rCL, X86::SHL64mCL },
185 { X86::SHL64ri, X86::SHL64mi },
Owen Anderson43dbe052008-01-07 01:35:02 +0000186 { X86::SHL8rCL, X86::SHL8mCL },
187 { X86::SHL8ri, X86::SHL8mi },
188 { X86::SHLD16rrCL, X86::SHLD16mrCL },
189 { X86::SHLD16rri8, X86::SHLD16mri8 },
190 { X86::SHLD32rrCL, X86::SHLD32mrCL },
191 { X86::SHLD32rri8, X86::SHLD32mri8 },
192 { X86::SHLD64rrCL, X86::SHLD64mrCL },
193 { X86::SHLD64rri8, X86::SHLD64mri8 },
194 { X86::SHR16r1, X86::SHR16m1 },
195 { X86::SHR16rCL, X86::SHR16mCL },
196 { X86::SHR16ri, X86::SHR16mi },
197 { X86::SHR32r1, X86::SHR32m1 },
198 { X86::SHR32rCL, X86::SHR32mCL },
199 { X86::SHR32ri, X86::SHR32mi },
200 { X86::SHR64r1, X86::SHR64m1 },
201 { X86::SHR64rCL, X86::SHR64mCL },
202 { X86::SHR64ri, X86::SHR64mi },
203 { X86::SHR8r1, X86::SHR8m1 },
204 { X86::SHR8rCL, X86::SHR8mCL },
205 { X86::SHR8ri, X86::SHR8mi },
206 { X86::SHRD16rrCL, X86::SHRD16mrCL },
207 { X86::SHRD16rri8, X86::SHRD16mri8 },
208 { X86::SHRD32rrCL, X86::SHRD32mrCL },
209 { X86::SHRD32rri8, X86::SHRD32mri8 },
210 { X86::SHRD64rrCL, X86::SHRD64mrCL },
211 { X86::SHRD64rri8, X86::SHRD64mri8 },
212 { X86::SUB16ri, X86::SUB16mi },
213 { X86::SUB16ri8, X86::SUB16mi8 },
214 { X86::SUB16rr, X86::SUB16mr },
215 { X86::SUB32ri, X86::SUB32mi },
216 { X86::SUB32ri8, X86::SUB32mi8 },
217 { X86::SUB32rr, X86::SUB32mr },
218 { X86::SUB64ri32, X86::SUB64mi32 },
219 { X86::SUB64ri8, X86::SUB64mi8 },
220 { X86::SUB64rr, X86::SUB64mr },
221 { X86::SUB8ri, X86::SUB8mi },
222 { X86::SUB8rr, X86::SUB8mr },
223 { X86::XOR16ri, X86::XOR16mi },
224 { X86::XOR16ri8, X86::XOR16mi8 },
225 { X86::XOR16rr, X86::XOR16mr },
226 { X86::XOR32ri, X86::XOR32mi },
227 { X86::XOR32ri8, X86::XOR32mi8 },
228 { X86::XOR32rr, X86::XOR32mr },
229 { X86::XOR64ri32, X86::XOR64mi32 },
230 { X86::XOR64ri8, X86::XOR64mi8 },
231 { X86::XOR64rr, X86::XOR64mr },
232 { X86::XOR8ri, X86::XOR8mi },
233 { X86::XOR8rr, X86::XOR8mr }
234 };
235
236 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
237 unsigned RegOp = OpTbl2Addr[i][0];
Chris Lattner99ae6652010-10-08 03:54:52 +0000238 unsigned MemOp = OpTbl2Addr[i][1] & ~TB_FLAGS;
239 assert(!RegOp2MemOpTable2Addr.count(RegOp) && "Duplicated entries?");
240 RegOp2MemOpTable2Addr[RegOp] = std::make_pair(MemOp, 0U);
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +0000241
Chris Lattner7a2bdde2011-04-15 05:18:47 +0000242 // If this is not a reversible operation (because there is a many->one)
Chris Lattner99ae6652010-10-08 03:54:52 +0000243 // mapping, don't insert the reverse of the operation into MemOp2RegOpTable.
244 if (OpTbl2Addr[i][1] & TB_NOT_REVERSABLE)
245 continue;
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +0000246
Evan Chengf9b36f02009-07-15 06:10:07 +0000247 // Index 0, folded load and store, no alignment requirement.
248 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5);
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +0000249
250 assert(!MemOp2RegOpTable.count(MemOp) &&
Chris Lattner99ae6652010-10-08 03:54:52 +0000251 "Duplicated entries in unfolding maps?");
252 MemOp2RegOpTable[MemOp] = std::make_pair(RegOp, AuxInfo);
Owen Anderson43dbe052008-01-07 01:35:02 +0000253 }
254
255 // If the third value is 1, then it's folding either a load or a store.
Evan Chengf9b36f02009-07-15 06:10:07 +0000256 static const unsigned OpTbl0[][4] = {
257 { X86::BT16ri8, X86::BT16mi8, 1, 0 },
258 { X86::BT32ri8, X86::BT32mi8, 1, 0 },
259 { X86::BT64ri8, X86::BT64mi8, 1, 0 },
260 { X86::CALL32r, X86::CALL32m, 1, 0 },
261 { X86::CALL64r, X86::CALL64m, 1, 0 },
Anton Korobeynikove9df15e2010-08-17 21:06:01 +0000262 { X86::WINCALL64r, X86::WINCALL64m, 1, 0 },
Evan Chengf9b36f02009-07-15 06:10:07 +0000263 { X86::CMP16ri, X86::CMP16mi, 1, 0 },
264 { X86::CMP16ri8, X86::CMP16mi8, 1, 0 },
265 { X86::CMP16rr, X86::CMP16mr, 1, 0 },
266 { X86::CMP32ri, X86::CMP32mi, 1, 0 },
267 { X86::CMP32ri8, X86::CMP32mi8, 1, 0 },
268 { X86::CMP32rr, X86::CMP32mr, 1, 0 },
269 { X86::CMP64ri32, X86::CMP64mi32, 1, 0 },
270 { X86::CMP64ri8, X86::CMP64mi8, 1, 0 },
271 { X86::CMP64rr, X86::CMP64mr, 1, 0 },
272 { X86::CMP8ri, X86::CMP8mi, 1, 0 },
273 { X86::CMP8rr, X86::CMP8mr, 1, 0 },
274 { X86::DIV16r, X86::DIV16m, 1, 0 },
275 { X86::DIV32r, X86::DIV32m, 1, 0 },
276 { X86::DIV64r, X86::DIV64m, 1, 0 },
277 { X86::DIV8r, X86::DIV8m, 1, 0 },
278 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0, 16 },
Chris Lattner15df55d2010-10-08 03:57:25 +0000279 { X86::FsMOVAPDrr, X86::MOVSDmr | TB_NOT_REVERSABLE , 0, 0 },
280 { X86::FsMOVAPSrr, X86::MOVSSmr | TB_NOT_REVERSABLE , 0, 0 },
Evan Chengf9b36f02009-07-15 06:10:07 +0000281 { X86::IDIV16r, X86::IDIV16m, 1, 0 },
282 { X86::IDIV32r, X86::IDIV32m, 1, 0 },
283 { X86::IDIV64r, X86::IDIV64m, 1, 0 },
284 { X86::IDIV8r, X86::IDIV8m, 1, 0 },
285 { X86::IMUL16r, X86::IMUL16m, 1, 0 },
286 { X86::IMUL32r, X86::IMUL32m, 1, 0 },
287 { X86::IMUL64r, X86::IMUL64m, 1, 0 },
288 { X86::IMUL8r, X86::IMUL8m, 1, 0 },
289 { X86::JMP32r, X86::JMP32m, 1, 0 },
290 { X86::JMP64r, X86::JMP64m, 1, 0 },
291 { X86::MOV16ri, X86::MOV16mi, 0, 0 },
292 { X86::MOV16rr, X86::MOV16mr, 0, 0 },
293 { X86::MOV32ri, X86::MOV32mi, 0, 0 },
294 { X86::MOV32rr, X86::MOV32mr, 0, 0 },
295 { X86::MOV64ri32, X86::MOV64mi32, 0, 0 },
296 { X86::MOV64rr, X86::MOV64mr, 0, 0 },
297 { X86::MOV8ri, X86::MOV8mi, 0, 0 },
298 { X86::MOV8rr, X86::MOV8mr, 0, 0 },
299 { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, 0, 0 },
300 { X86::MOVAPDrr, X86::MOVAPDmr, 0, 16 },
301 { X86::MOVAPSrr, X86::MOVAPSmr, 0, 16 },
302 { X86::MOVDQArr, X86::MOVDQAmr, 0, 16 },
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +0000303 { X86::VMOVAPDYrr, X86::VMOVAPDYmr, 0, 32 },
304 { X86::VMOVAPSYrr, X86::VMOVAPSYmr, 0, 32 },
305 { X86::VMOVDQAYrr, X86::VMOVDQAYmr, 0, 32 },
Evan Chengf9b36f02009-07-15 06:10:07 +0000306 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0, 0 },
307 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0, 0 },
Evan Chengf9b36f02009-07-15 06:10:07 +0000308 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0, 0 },
309 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0, 0 },
Evan Chengf9b36f02009-07-15 06:10:07 +0000310 { X86::MOVUPDrr, X86::MOVUPDmr, 0, 0 },
311 { X86::MOVUPSrr, X86::MOVUPSmr, 0, 0 },
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +0000312 { X86::VMOVUPDYrr, X86::VMOVUPDYmr, 0, 0 },
313 { X86::VMOVUPSYrr, X86::VMOVUPSYmr, 0, 0 },
Evan Chengf9b36f02009-07-15 06:10:07 +0000314 { X86::MUL16r, X86::MUL16m, 1, 0 },
315 { X86::MUL32r, X86::MUL32m, 1, 0 },
316 { X86::MUL64r, X86::MUL64m, 1, 0 },
317 { X86::MUL8r, X86::MUL8m, 1, 0 },
318 { X86::SETAEr, X86::SETAEm, 0, 0 },
319 { X86::SETAr, X86::SETAm, 0, 0 },
320 { X86::SETBEr, X86::SETBEm, 0, 0 },
321 { X86::SETBr, X86::SETBm, 0, 0 },
322 { X86::SETEr, X86::SETEm, 0, 0 },
323 { X86::SETGEr, X86::SETGEm, 0, 0 },
324 { X86::SETGr, X86::SETGm, 0, 0 },
325 { X86::SETLEr, X86::SETLEm, 0, 0 },
326 { X86::SETLr, X86::SETLm, 0, 0 },
327 { X86::SETNEr, X86::SETNEm, 0, 0 },
328 { X86::SETNOr, X86::SETNOm, 0, 0 },
329 { X86::SETNPr, X86::SETNPm, 0, 0 },
330 { X86::SETNSr, X86::SETNSm, 0, 0 },
331 { X86::SETOr, X86::SETOm, 0, 0 },
332 { X86::SETPr, X86::SETPm, 0, 0 },
333 { X86::SETSr, X86::SETSm, 0, 0 },
334 { X86::TAILJMPr, X86::TAILJMPm, 1, 0 },
Evan Chengf48ef032010-03-14 03:48:46 +0000335 { X86::TAILJMPr64, X86::TAILJMPm64, 1, 0 },
Evan Chengf9b36f02009-07-15 06:10:07 +0000336 { X86::TEST16ri, X86::TEST16mi, 1, 0 },
337 { X86::TEST32ri, X86::TEST32mi, 1, 0 },
338 { X86::TEST64ri32, X86::TEST64mi32, 1, 0 },
339 { X86::TEST8ri, X86::TEST8mi, 1, 0 }
Owen Anderson43dbe052008-01-07 01:35:02 +0000340 };
341
342 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
Chris Lattner15df55d2010-10-08 03:57:25 +0000343 unsigned RegOp = OpTbl0[i][0];
344 unsigned MemOp = OpTbl0[i][1] & ~TB_FLAGS;
Daniel Dunbarb38109f2010-10-08 02:07:29 +0000345 unsigned FoldedLoad = OpTbl0[i][2];
Chris Lattner15df55d2010-10-08 03:57:25 +0000346 unsigned Align = OpTbl0[i][3];
347 assert(!RegOp2MemOpTable0.count(RegOp) && "Duplicated entries?");
348 RegOp2MemOpTable0[RegOp] = std::make_pair(MemOp, Align);
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +0000349
Chris Lattner7a2bdde2011-04-15 05:18:47 +0000350 // If this is not a reversible operation (because there is a many->one)
Chris Lattner15df55d2010-10-08 03:57:25 +0000351 // mapping, don't insert the reverse of the operation into MemOp2RegOpTable.
352 if (OpTbl0[i][1] & TB_NOT_REVERSABLE)
353 continue;
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +0000354
Owen Anderson43dbe052008-01-07 01:35:02 +0000355 // Index 0, folded load or store.
356 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
Chris Lattner15df55d2010-10-08 03:57:25 +0000357 assert(!MemOp2RegOpTable.count(MemOp) && "Duplicated entries?");
358 MemOp2RegOpTable[MemOp] = std::make_pair(RegOp, AuxInfo);
Owen Anderson43dbe052008-01-07 01:35:02 +0000359 }
360
Evan Chengf9b36f02009-07-15 06:10:07 +0000361 static const unsigned OpTbl1[][3] = {
362 { X86::CMP16rr, X86::CMP16rm, 0 },
363 { X86::CMP32rr, X86::CMP32rm, 0 },
364 { X86::CMP64rr, X86::CMP64rm, 0 },
365 { X86::CMP8rr, X86::CMP8rm, 0 },
366 { X86::CVTSD2SSrr, X86::CVTSD2SSrm, 0 },
367 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm, 0 },
368 { X86::CVTSI2SDrr, X86::CVTSI2SDrm, 0 },
369 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm, 0 },
370 { X86::CVTSI2SSrr, X86::CVTSI2SSrm, 0 },
371 { X86::CVTSS2SDrr, X86::CVTSS2SDrm, 0 },
372 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm, 0 },
373 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, 0 },
374 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm, 0 },
375 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, 0 },
Chris Lattner15df55d2010-10-08 03:57:25 +0000376 { X86::FsMOVAPDrr, X86::MOVSDrm | TB_NOT_REVERSABLE , 0 },
377 { X86::FsMOVAPSrr, X86::MOVSSrm | TB_NOT_REVERSABLE , 0 },
Evan Chengf9b36f02009-07-15 06:10:07 +0000378 { X86::IMUL16rri, X86::IMUL16rmi, 0 },
379 { X86::IMUL16rri8, X86::IMUL16rmi8, 0 },
380 { X86::IMUL32rri, X86::IMUL32rmi, 0 },
381 { X86::IMUL32rri8, X86::IMUL32rmi8, 0 },
382 { X86::IMUL64rri32, X86::IMUL64rmi32, 0 },
383 { X86::IMUL64rri8, X86::IMUL64rmi8, 0 },
Evan Chengf9b36f02009-07-15 06:10:07 +0000384 { X86::Int_COMISDrr, X86::Int_COMISDrm, 0 },
385 { X86::Int_COMISSrr, X86::Int_COMISSrm, 0 },
386 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm, 16 },
387 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm, 16 },
388 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm, 16 },
389 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm, 16 },
390 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm, 16 },
391 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm, 0 },
Chris Lattner0c04e4f2010-09-29 02:24:57 +0000392 { X86::CVTSD2SI64rr, X86::CVTSD2SI64rm, 0 },
393 { X86::CVTSD2SIrr, X86::CVTSD2SIrm, 0 },
Evan Chengf9b36f02009-07-15 06:10:07 +0000394 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, 0 },
395 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
396 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, 0 },
397 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
398 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 },
399 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, 0 },
Chris Lattnerbf6018a2010-09-29 02:36:32 +0000400 { X86::CVTTPD2DQrr, X86::CVTTPD2DQrm, 16 },
401 { X86::CVTTPS2DQrr, X86::CVTTPS2DQrm, 16 },
Evan Chengf9b36f02009-07-15 06:10:07 +0000402 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
403 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 },
404 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 },
405 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 },
406 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, 0 },
407 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, 0 },
Bruno Cardoso Lopesdad38632011-07-22 20:53:20 +0000408 { X86::Int_VUCOMISDrr, X86::Int_VUCOMISDrm, 0 },
409 { X86::Int_VUCOMISSrr, X86::Int_VUCOMISSrm, 0 },
Evan Chengf9b36f02009-07-15 06:10:07 +0000410 { X86::MOV16rr, X86::MOV16rm, 0 },
411 { X86::MOV32rr, X86::MOV32rm, 0 },
412 { X86::MOV64rr, X86::MOV64rm, 0 },
413 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm, 0 },
414 { X86::MOV64toSDrr, X86::MOV64toSDrm, 0 },
415 { X86::MOV8rr, X86::MOV8rm, 0 },
416 { X86::MOVAPDrr, X86::MOVAPDrm, 16 },
417 { X86::MOVAPSrr, X86::MOVAPSrm, 16 },
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +0000418 { X86::VMOVAPDYrr, X86::VMOVAPDYrm, 32 },
419 { X86::VMOVAPSYrr, X86::VMOVAPSYrm, 32 },
Evan Chengf9b36f02009-07-15 06:10:07 +0000420 { X86::MOVDDUPrr, X86::MOVDDUPrm, 0 },
421 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, 0 },
422 { X86::MOVDI2SSrr, X86::MOVDI2SSrm, 0 },
423 { X86::MOVDQArr, X86::MOVDQArm, 16 },
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +0000424 { X86::VMOVDQAYrr, X86::VMOVDQAYrm, 16 },
Evan Chengf9b36f02009-07-15 06:10:07 +0000425 { X86::MOVSHDUPrr, X86::MOVSHDUPrm, 16 },
426 { X86::MOVSLDUPrr, X86::MOVSLDUPrm, 16 },
Evan Chengf9b36f02009-07-15 06:10:07 +0000427 { X86::MOVSX16rr8, X86::MOVSX16rm8, 0 },
428 { X86::MOVSX32rr16, X86::MOVSX32rm16, 0 },
429 { X86::MOVSX32rr8, X86::MOVSX32rm8, 0 },
430 { X86::MOVSX64rr16, X86::MOVSX64rm16, 0 },
431 { X86::MOVSX64rr32, X86::MOVSX64rm32, 0 },
432 { X86::MOVSX64rr8, X86::MOVSX64rm8, 0 },
433 { X86::MOVUPDrr, X86::MOVUPDrm, 16 },
Evan Cheng94da7212010-01-21 00:55:14 +0000434 { X86::MOVUPSrr, X86::MOVUPSrm, 0 },
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +0000435 { X86::VMOVUPDYrr, X86::VMOVUPDYrm, 0 },
436 { X86::VMOVUPSYrr, X86::VMOVUPSYrm, 0 },
Evan Chengf9b36f02009-07-15 06:10:07 +0000437 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm, 0 },
438 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm, 0 },
439 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, 16 },
440 { X86::MOVZX16rr8, X86::MOVZX16rm8, 0 },
441 { X86::MOVZX32rr16, X86::MOVZX32rm16, 0 },
442 { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
443 { X86::MOVZX32rr8, X86::MOVZX32rm8, 0 },
444 { X86::MOVZX64rr16, X86::MOVZX64rm16, 0 },
445 { X86::MOVZX64rr32, X86::MOVZX64rm32, 0 },
446 { X86::MOVZX64rr8, X86::MOVZX64rm8, 0 },
447 { X86::PSHUFDri, X86::PSHUFDmi, 16 },
448 { X86::PSHUFHWri, X86::PSHUFHWmi, 16 },
449 { X86::PSHUFLWri, X86::PSHUFLWmi, 16 },
450 { X86::RCPPSr, X86::RCPPSm, 16 },
451 { X86::RCPPSr_Int, X86::RCPPSm_Int, 16 },
452 { X86::RSQRTPSr, X86::RSQRTPSm, 16 },
453 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int, 16 },
454 { X86::RSQRTSSr, X86::RSQRTSSm, 0 },
455 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, 0 },
456 { X86::SQRTPDr, X86::SQRTPDm, 16 },
457 { X86::SQRTPDr_Int, X86::SQRTPDm_Int, 16 },
458 { X86::SQRTPSr, X86::SQRTPSm, 16 },
459 { X86::SQRTPSr_Int, X86::SQRTPSm_Int, 16 },
460 { X86::SQRTSDr, X86::SQRTSDm, 0 },
461 { X86::SQRTSDr_Int, X86::SQRTSDm_Int, 0 },
462 { X86::SQRTSSr, X86::SQRTSSm, 0 },
463 { X86::SQRTSSr_Int, X86::SQRTSSm_Int, 0 },
464 { X86::TEST16rr, X86::TEST16rm, 0 },
465 { X86::TEST32rr, X86::TEST32rm, 0 },
466 { X86::TEST64rr, X86::TEST64rm, 0 },
467 { X86::TEST8rr, X86::TEST8rm, 0 },
Owen Anderson43dbe052008-01-07 01:35:02 +0000468 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
Evan Chengf9b36f02009-07-15 06:10:07 +0000469 { X86::UCOMISDrr, X86::UCOMISDrm, 0 },
Bruno Cardoso Lopesdad38632011-07-22 20:53:20 +0000470 { X86::UCOMISSrr, X86::UCOMISSrm, 0 },
471 { X86::VUCOMISDrr, X86::VUCOMISDrm, 0 },
472 { X86::VUCOMISSrr, X86::VUCOMISSrm, 0 }
Owen Anderson43dbe052008-01-07 01:35:02 +0000473 };
474
475 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
476 unsigned RegOp = OpTbl1[i][0];
Chris Lattner15df55d2010-10-08 03:57:25 +0000477 unsigned MemOp = OpTbl1[i][1] & ~TB_FLAGS;
Evan Chengf9b36f02009-07-15 06:10:07 +0000478 unsigned Align = OpTbl1[i][2];
Chris Lattnera2283762010-10-07 23:57:02 +0000479 assert(!RegOp2MemOpTable1.count(RegOp) && "Duplicate entries");
Chris Lattner15df55d2010-10-08 03:57:25 +0000480 RegOp2MemOpTable1[RegOp] = std::make_pair(MemOp, Align);
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +0000481
Chris Lattner7a2bdde2011-04-15 05:18:47 +0000482 // If this is not a reversible operation (because there is a many->one)
Chris Lattner15df55d2010-10-08 03:57:25 +0000483 // mapping, don't insert the reverse of the operation into MemOp2RegOpTable.
484 if (OpTbl1[i][1] & TB_NOT_REVERSABLE)
485 continue;
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +0000486
Evan Chengf9b36f02009-07-15 06:10:07 +0000487 // Index 1, folded load
488 unsigned AuxInfo = 1 | (1 << 4);
Chris Lattner15df55d2010-10-08 03:57:25 +0000489 assert(!MemOp2RegOpTable.count(MemOp) && "Duplicate entries");
490 MemOp2RegOpTable[MemOp] = std::make_pair(RegOp, AuxInfo);
Owen Anderson43dbe052008-01-07 01:35:02 +0000491 }
492
Evan Chengf9b36f02009-07-15 06:10:07 +0000493 static const unsigned OpTbl2[][3] = {
494 { X86::ADC32rr, X86::ADC32rm, 0 },
495 { X86::ADC64rr, X86::ADC64rm, 0 },
496 { X86::ADD16rr, X86::ADD16rm, 0 },
Chris Lattner99ae6652010-10-08 03:54:52 +0000497 { X86::ADD16rr_DB, X86::ADD16rm | TB_NOT_REVERSABLE, 0 },
Evan Chengf9b36f02009-07-15 06:10:07 +0000498 { X86::ADD32rr, X86::ADD32rm, 0 },
Chris Lattner99ae6652010-10-08 03:54:52 +0000499 { X86::ADD32rr_DB, X86::ADD32rm | TB_NOT_REVERSABLE, 0 },
Evan Chengf9b36f02009-07-15 06:10:07 +0000500 { X86::ADD64rr, X86::ADD64rm, 0 },
Chris Lattner99ae6652010-10-08 03:54:52 +0000501 { X86::ADD64rr_DB, X86::ADD64rm | TB_NOT_REVERSABLE, 0 },
Evan Chengf9b36f02009-07-15 06:10:07 +0000502 { X86::ADD8rr, X86::ADD8rm, 0 },
503 { X86::ADDPDrr, X86::ADDPDrm, 16 },
504 { X86::ADDPSrr, X86::ADDPSrm, 16 },
505 { X86::ADDSDrr, X86::ADDSDrm, 0 },
506 { X86::ADDSSrr, X86::ADDSSrm, 0 },
507 { X86::ADDSUBPDrr, X86::ADDSUBPDrm, 16 },
508 { X86::ADDSUBPSrr, X86::ADDSUBPSrm, 16 },
509 { X86::AND16rr, X86::AND16rm, 0 },
510 { X86::AND32rr, X86::AND32rm, 0 },
511 { X86::AND64rr, X86::AND64rm, 0 },
512 { X86::AND8rr, X86::AND8rm, 0 },
513 { X86::ANDNPDrr, X86::ANDNPDrm, 16 },
514 { X86::ANDNPSrr, X86::ANDNPSrm, 16 },
515 { X86::ANDPDrr, X86::ANDPDrm, 16 },
516 { X86::ANDPSrr, X86::ANDPSrm, 16 },
517 { X86::CMOVA16rr, X86::CMOVA16rm, 0 },
518 { X86::CMOVA32rr, X86::CMOVA32rm, 0 },
519 { X86::CMOVA64rr, X86::CMOVA64rm, 0 },
520 { X86::CMOVAE16rr, X86::CMOVAE16rm, 0 },
521 { X86::CMOVAE32rr, X86::CMOVAE32rm, 0 },
522 { X86::CMOVAE64rr, X86::CMOVAE64rm, 0 },
523 { X86::CMOVB16rr, X86::CMOVB16rm, 0 },
524 { X86::CMOVB32rr, X86::CMOVB32rm, 0 },
525 { X86::CMOVB64rr, X86::CMOVB64rm, 0 },
Chris Lattner25cbf502010-10-05 23:00:14 +0000526 { X86::CMOVBE16rr, X86::CMOVBE16rm, 0 },
527 { X86::CMOVBE32rr, X86::CMOVBE32rm, 0 },
528 { X86::CMOVBE64rr, X86::CMOVBE64rm, 0 },
Evan Chengf9b36f02009-07-15 06:10:07 +0000529 { X86::CMOVE16rr, X86::CMOVE16rm, 0 },
530 { X86::CMOVE32rr, X86::CMOVE32rm, 0 },
531 { X86::CMOVE64rr, X86::CMOVE64rm, 0 },
532 { X86::CMOVG16rr, X86::CMOVG16rm, 0 },
533 { X86::CMOVG32rr, X86::CMOVG32rm, 0 },
534 { X86::CMOVG64rr, X86::CMOVG64rm, 0 },
535 { X86::CMOVGE16rr, X86::CMOVGE16rm, 0 },
536 { X86::CMOVGE32rr, X86::CMOVGE32rm, 0 },
537 { X86::CMOVGE64rr, X86::CMOVGE64rm, 0 },
538 { X86::CMOVL16rr, X86::CMOVL16rm, 0 },
539 { X86::CMOVL32rr, X86::CMOVL32rm, 0 },
540 { X86::CMOVL64rr, X86::CMOVL64rm, 0 },
541 { X86::CMOVLE16rr, X86::CMOVLE16rm, 0 },
542 { X86::CMOVLE32rr, X86::CMOVLE32rm, 0 },
543 { X86::CMOVLE64rr, X86::CMOVLE64rm, 0 },
544 { X86::CMOVNE16rr, X86::CMOVNE16rm, 0 },
545 { X86::CMOVNE32rr, X86::CMOVNE32rm, 0 },
546 { X86::CMOVNE64rr, X86::CMOVNE64rm, 0 },
547 { X86::CMOVNO16rr, X86::CMOVNO16rm, 0 },
548 { X86::CMOVNO32rr, X86::CMOVNO32rm, 0 },
549 { X86::CMOVNO64rr, X86::CMOVNO64rm, 0 },
550 { X86::CMOVNP16rr, X86::CMOVNP16rm, 0 },
551 { X86::CMOVNP32rr, X86::CMOVNP32rm, 0 },
552 { X86::CMOVNP64rr, X86::CMOVNP64rm, 0 },
553 { X86::CMOVNS16rr, X86::CMOVNS16rm, 0 },
554 { X86::CMOVNS32rr, X86::CMOVNS32rm, 0 },
555 { X86::CMOVNS64rr, X86::CMOVNS64rm, 0 },
556 { X86::CMOVO16rr, X86::CMOVO16rm, 0 },
557 { X86::CMOVO32rr, X86::CMOVO32rm, 0 },
558 { X86::CMOVO64rr, X86::CMOVO64rm, 0 },
559 { X86::CMOVP16rr, X86::CMOVP16rm, 0 },
560 { X86::CMOVP32rr, X86::CMOVP32rm, 0 },
561 { X86::CMOVP64rr, X86::CMOVP64rm, 0 },
562 { X86::CMOVS16rr, X86::CMOVS16rm, 0 },
563 { X86::CMOVS32rr, X86::CMOVS32rm, 0 },
564 { X86::CMOVS64rr, X86::CMOVS64rm, 0 },
565 { X86::CMPPDrri, X86::CMPPDrmi, 16 },
566 { X86::CMPPSrri, X86::CMPPSrmi, 16 },
567 { X86::CMPSDrr, X86::CMPSDrm, 0 },
568 { X86::CMPSSrr, X86::CMPSSrm, 0 },
569 { X86::DIVPDrr, X86::DIVPDrm, 16 },
570 { X86::DIVPSrr, X86::DIVPSrm, 16 },
571 { X86::DIVSDrr, X86::DIVSDrm, 0 },
572 { X86::DIVSSrr, X86::DIVSSrm, 0 },
573 { X86::FsANDNPDrr, X86::FsANDNPDrm, 16 },
574 { X86::FsANDNPSrr, X86::FsANDNPSrm, 16 },
575 { X86::FsANDPDrr, X86::FsANDPDrm, 16 },
576 { X86::FsANDPSrr, X86::FsANDPSrm, 16 },
577 { X86::FsORPDrr, X86::FsORPDrm, 16 },
578 { X86::FsORPSrr, X86::FsORPSrm, 16 },
579 { X86::FsXORPDrr, X86::FsXORPDrm, 16 },
580 { X86::FsXORPSrr, X86::FsXORPSrm, 16 },
581 { X86::HADDPDrr, X86::HADDPDrm, 16 },
582 { X86::HADDPSrr, X86::HADDPSrm, 16 },
583 { X86::HSUBPDrr, X86::HSUBPDrm, 16 },
584 { X86::HSUBPSrr, X86::HSUBPSrm, 16 },
585 { X86::IMUL16rr, X86::IMUL16rm, 0 },
586 { X86::IMUL32rr, X86::IMUL32rm, 0 },
587 { X86::IMUL64rr, X86::IMUL64rm, 0 },
Evan Cheng7558e2e2011-02-24 02:36:52 +0000588 { X86::Int_CMPSDrr, X86::Int_CMPSDrm, 0 },
589 { X86::Int_CMPSSrr, X86::Int_CMPSSrm, 0 },
Evan Chengf9b36f02009-07-15 06:10:07 +0000590 { X86::MAXPDrr, X86::MAXPDrm, 16 },
591 { X86::MAXPDrr_Int, X86::MAXPDrm_Int, 16 },
592 { X86::MAXPSrr, X86::MAXPSrm, 16 },
593 { X86::MAXPSrr_Int, X86::MAXPSrm_Int, 16 },
594 { X86::MAXSDrr, X86::MAXSDrm, 0 },
595 { X86::MAXSDrr_Int, X86::MAXSDrm_Int, 0 },
596 { X86::MAXSSrr, X86::MAXSSrm, 0 },
597 { X86::MAXSSrr_Int, X86::MAXSSrm_Int, 0 },
598 { X86::MINPDrr, X86::MINPDrm, 16 },
599 { X86::MINPDrr_Int, X86::MINPDrm_Int, 16 },
600 { X86::MINPSrr, X86::MINPSrm, 16 },
601 { X86::MINPSrr_Int, X86::MINPSrm_Int, 16 },
602 { X86::MINSDrr, X86::MINSDrm, 0 },
603 { X86::MINSDrr_Int, X86::MINSDrm_Int, 0 },
604 { X86::MINSSrr, X86::MINSSrm, 0 },
605 { X86::MINSSrr_Int, X86::MINSSrm_Int, 0 },
606 { X86::MULPDrr, X86::MULPDrm, 16 },
607 { X86::MULPSrr, X86::MULPSrm, 16 },
608 { X86::MULSDrr, X86::MULSDrm, 0 },
609 { X86::MULSSrr, X86::MULSSrm, 0 },
610 { X86::OR16rr, X86::OR16rm, 0 },
611 { X86::OR32rr, X86::OR32rm, 0 },
612 { X86::OR64rr, X86::OR64rm, 0 },
613 { X86::OR8rr, X86::OR8rm, 0 },
614 { X86::ORPDrr, X86::ORPDrm, 16 },
615 { X86::ORPSrr, X86::ORPSrm, 16 },
616 { X86::PACKSSDWrr, X86::PACKSSDWrm, 16 },
617 { X86::PACKSSWBrr, X86::PACKSSWBrm, 16 },
618 { X86::PACKUSWBrr, X86::PACKUSWBrm, 16 },
619 { X86::PADDBrr, X86::PADDBrm, 16 },
620 { X86::PADDDrr, X86::PADDDrm, 16 },
621 { X86::PADDQrr, X86::PADDQrm, 16 },
622 { X86::PADDSBrr, X86::PADDSBrm, 16 },
623 { X86::PADDSWrr, X86::PADDSWrm, 16 },
624 { X86::PADDWrr, X86::PADDWrm, 16 },
625 { X86::PANDNrr, X86::PANDNrm, 16 },
626 { X86::PANDrr, X86::PANDrm, 16 },
627 { X86::PAVGBrr, X86::PAVGBrm, 16 },
628 { X86::PAVGWrr, X86::PAVGWrm, 16 },
629 { X86::PCMPEQBrr, X86::PCMPEQBrm, 16 },
630 { X86::PCMPEQDrr, X86::PCMPEQDrm, 16 },
631 { X86::PCMPEQWrr, X86::PCMPEQWrm, 16 },
632 { X86::PCMPGTBrr, X86::PCMPGTBrm, 16 },
633 { X86::PCMPGTDrr, X86::PCMPGTDrm, 16 },
634 { X86::PCMPGTWrr, X86::PCMPGTWrm, 16 },
635 { X86::PINSRWrri, X86::PINSRWrmi, 16 },
636 { X86::PMADDWDrr, X86::PMADDWDrm, 16 },
637 { X86::PMAXSWrr, X86::PMAXSWrm, 16 },
638 { X86::PMAXUBrr, X86::PMAXUBrm, 16 },
639 { X86::PMINSWrr, X86::PMINSWrm, 16 },
640 { X86::PMINUBrr, X86::PMINUBrm, 16 },
641 { X86::PMULDQrr, X86::PMULDQrm, 16 },
642 { X86::PMULHUWrr, X86::PMULHUWrm, 16 },
643 { X86::PMULHWrr, X86::PMULHWrm, 16 },
644 { X86::PMULLDrr, X86::PMULLDrm, 16 },
Evan Chengf9b36f02009-07-15 06:10:07 +0000645 { X86::PMULLWrr, X86::PMULLWrm, 16 },
646 { X86::PMULUDQrr, X86::PMULUDQrm, 16 },
647 { X86::PORrr, X86::PORrm, 16 },
648 { X86::PSADBWrr, X86::PSADBWrm, 16 },
649 { X86::PSLLDrr, X86::PSLLDrm, 16 },
650 { X86::PSLLQrr, X86::PSLLQrm, 16 },
651 { X86::PSLLWrr, X86::PSLLWrm, 16 },
652 { X86::PSRADrr, X86::PSRADrm, 16 },
653 { X86::PSRAWrr, X86::PSRAWrm, 16 },
654 { X86::PSRLDrr, X86::PSRLDrm, 16 },
655 { X86::PSRLQrr, X86::PSRLQrm, 16 },
656 { X86::PSRLWrr, X86::PSRLWrm, 16 },
657 { X86::PSUBBrr, X86::PSUBBrm, 16 },
658 { X86::PSUBDrr, X86::PSUBDrm, 16 },
659 { X86::PSUBSBrr, X86::PSUBSBrm, 16 },
660 { X86::PSUBSWrr, X86::PSUBSWrm, 16 },
661 { X86::PSUBWrr, X86::PSUBWrm, 16 },
662 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, 16 },
663 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, 16 },
664 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, 16 },
665 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, 16 },
666 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, 16 },
667 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, 16 },
668 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, 16 },
669 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, 16 },
670 { X86::PXORrr, X86::PXORrm, 16 },
671 { X86::SBB32rr, X86::SBB32rm, 0 },
672 { X86::SBB64rr, X86::SBB64rm, 0 },
673 { X86::SHUFPDrri, X86::SHUFPDrmi, 16 },
674 { X86::SHUFPSrri, X86::SHUFPSrmi, 16 },
675 { X86::SUB16rr, X86::SUB16rm, 0 },
676 { X86::SUB32rr, X86::SUB32rm, 0 },
677 { X86::SUB64rr, X86::SUB64rm, 0 },
678 { X86::SUB8rr, X86::SUB8rm, 0 },
679 { X86::SUBPDrr, X86::SUBPDrm, 16 },
680 { X86::SUBPSrr, X86::SUBPSrm, 16 },
681 { X86::SUBSDrr, X86::SUBSDrm, 0 },
682 { X86::SUBSSrr, X86::SUBSSrm, 0 },
Owen Anderson43dbe052008-01-07 01:35:02 +0000683 // FIXME: TEST*rr -> swapped operand of TEST*mr.
Evan Chengf9b36f02009-07-15 06:10:07 +0000684 { X86::UNPCKHPDrr, X86::UNPCKHPDrm, 16 },
685 { X86::UNPCKHPSrr, X86::UNPCKHPSrm, 16 },
686 { X86::UNPCKLPDrr, X86::UNPCKLPDrm, 16 },
687 { X86::UNPCKLPSrr, X86::UNPCKLPSrm, 16 },
688 { X86::XOR16rr, X86::XOR16rm, 0 },
689 { X86::XOR32rr, X86::XOR32rm, 0 },
690 { X86::XOR64rr, X86::XOR64rm, 0 },
691 { X86::XOR8rr, X86::XOR8rm, 0 },
692 { X86::XORPDrr, X86::XORPDrm, 16 },
693 { X86::XORPSrr, X86::XORPSrm, 16 }
Owen Anderson43dbe052008-01-07 01:35:02 +0000694 };
695
696 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
697 unsigned RegOp = OpTbl2[i][0];
Chris Lattner99ae6652010-10-08 03:54:52 +0000698 unsigned MemOp = OpTbl2[i][1] & ~TB_FLAGS;
Evan Chengf9b36f02009-07-15 06:10:07 +0000699 unsigned Align = OpTbl2[i][2];
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +0000700
Chris Lattner99ae6652010-10-08 03:54:52 +0000701 assert(!RegOp2MemOpTable2.count(RegOp) && "Duplicate entry!");
702 RegOp2MemOpTable2[RegOp] = std::make_pair(MemOp, Align);
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +0000703
Chris Lattner7a2bdde2011-04-15 05:18:47 +0000704 // If this is not a reversible operation (because there is a many->one)
Chris Lattner99ae6652010-10-08 03:54:52 +0000705 // mapping, don't insert the reverse of the operation into MemOp2RegOpTable.
706 if (OpTbl2[i][1] & TB_NOT_REVERSABLE)
707 continue;
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +0000708
Evan Chengf9b36f02009-07-15 06:10:07 +0000709 // Index 2, folded load
710 unsigned AuxInfo = 2 | (1 << 4);
Chris Lattner99ae6652010-10-08 03:54:52 +0000711 assert(!MemOp2RegOpTable.count(MemOp) &&
712 "Duplicated entries in unfolding maps?");
713 MemOp2RegOpTable[MemOp] = std::make_pair(RegOp, AuxInfo);
Owen Anderson43dbe052008-01-07 01:35:02 +0000714 }
Chris Lattner72614082002-10-25 22:55:53 +0000715}
716
Evan Chenga5a81d72010-01-12 00:09:37 +0000717bool
Evan Cheng7da9ecf2010-01-13 00:30:23 +0000718X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
719 unsigned &SrcReg, unsigned &DstReg,
720 unsigned &SubIdx) const {
Evan Chenga5a81d72010-01-12 00:09:37 +0000721 switch (MI.getOpcode()) {
722 default: break;
723 case X86::MOVSX16rr8:
724 case X86::MOVZX16rr8:
725 case X86::MOVSX32rr8:
726 case X86::MOVZX32rr8:
727 case X86::MOVSX64rr8:
728 case X86::MOVZX64rr8:
Evan Cheng57d1d932010-01-13 08:01:32 +0000729 if (!TM.getSubtarget<X86Subtarget>().is64Bit())
730 // It's not always legal to reference the low 8-bit of the larger
731 // register in 32-bit mode.
732 return false;
Evan Chenga5a81d72010-01-12 00:09:37 +0000733 case X86::MOVSX32rr16:
734 case X86::MOVZX32rr16:
735 case X86::MOVSX64rr16:
736 case X86::MOVZX64rr16:
737 case X86::MOVSX64rr32:
738 case X86::MOVZX64rr32: {
739 if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
740 // Be conservative.
741 return false;
Evan Chenga5a81d72010-01-12 00:09:37 +0000742 SrcReg = MI.getOperand(1).getReg();
743 DstReg = MI.getOperand(0).getReg();
Evan Chenga5a81d72010-01-12 00:09:37 +0000744 switch (MI.getOpcode()) {
745 default:
746 llvm_unreachable(0);
747 break;
748 case X86::MOVSX16rr8:
749 case X86::MOVZX16rr8:
750 case X86::MOVSX32rr8:
751 case X86::MOVZX32rr8:
752 case X86::MOVSX64rr8:
753 case X86::MOVZX64rr8:
Jakob Stoklund Olesen22c0e972010-05-25 17:04:16 +0000754 SubIdx = X86::sub_8bit;
Evan Chenga5a81d72010-01-12 00:09:37 +0000755 break;
756 case X86::MOVSX32rr16:
757 case X86::MOVZX32rr16:
758 case X86::MOVSX64rr16:
759 case X86::MOVZX64rr16:
Jakob Stoklund Olesen22c0e972010-05-25 17:04:16 +0000760 SubIdx = X86::sub_16bit;
Evan Chenga5a81d72010-01-12 00:09:37 +0000761 break;
762 case X86::MOVSX64rr32:
763 case X86::MOVZX64rr32:
Jakob Stoklund Olesen22c0e972010-05-25 17:04:16 +0000764 SubIdx = X86::sub_32bit;
Evan Chenga5a81d72010-01-12 00:09:37 +0000765 break;
766 }
Evan Cheng7da9ecf2010-01-13 00:30:23 +0000767 return true;
Evan Chenga5a81d72010-01-12 00:09:37 +0000768 }
769 }
Evan Cheng7da9ecf2010-01-13 00:30:23 +0000770 return false;
Evan Chenga5a81d72010-01-12 00:09:37 +0000771}
772
David Greeneb87bc952009-11-12 20:55:29 +0000773/// isFrameOperand - Return true and the FrameIndex if the specified
774/// operand and follow operands form a reference to the stack frame.
775bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
776 int &FrameIndex) const {
777 if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() &&
778 MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() &&
779 MI->getOperand(Op+1).getImm() == 1 &&
780 MI->getOperand(Op+2).getReg() == 0 &&
781 MI->getOperand(Op+3).getImm() == 0) {
782 FrameIndex = MI->getOperand(Op).getIndex();
783 return true;
784 }
785 return false;
786}
787
David Greenedda39782009-11-13 00:29:53 +0000788static bool isFrameLoadOpcode(int Opcode) {
789 switch (Opcode) {
Chris Lattner40839602006-02-02 20:12:32 +0000790 default: break;
791 case X86::MOV8rm:
792 case X86::MOV16rm:
793 case X86::MOV32rm:
Evan Cheng25ab6902006-09-08 06:48:29 +0000794 case X86::MOV64rm:
Dale Johannesene377d4d2007-07-04 21:07:47 +0000795 case X86::LD_Fp64m:
Chris Lattner40839602006-02-02 20:12:32 +0000796 case X86::MOVSSrm:
797 case X86::MOVSDrm:
Chris Lattner993c8972006-04-18 16:44:51 +0000798 case X86::MOVAPSrm:
799 case X86::MOVAPDrm:
Dan Gohman54462742009-01-09 02:40:34 +0000800 case X86::MOVDQArm:
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +0000801 case X86::VMOVAPSYrm:
802 case X86::VMOVAPDYrm:
803 case X86::VMOVDQAYrm:
Bill Wendling823efee2007-04-03 06:00:37 +0000804 case X86::MMX_MOVD64rm:
805 case X86::MMX_MOVQ64rm:
David Greenedda39782009-11-13 00:29:53 +0000806 return true;
807 break;
808 }
809 return false;
810}
811
812static bool isFrameStoreOpcode(int Opcode) {
813 switch (Opcode) {
814 default: break;
815 case X86::MOV8mr:
816 case X86::MOV16mr:
817 case X86::MOV32mr:
818 case X86::MOV64mr:
819 case X86::ST_FpP64m:
820 case X86::MOVSSmr:
821 case X86::MOVSDmr:
822 case X86::MOVAPSmr:
823 case X86::MOVAPDmr:
824 case X86::MOVDQAmr:
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +0000825 case X86::VMOVAPSYmr:
826 case X86::VMOVAPDYmr:
827 case X86::VMOVDQAYmr:
David Greenedda39782009-11-13 00:29:53 +0000828 case X86::MMX_MOVD64mr:
829 case X86::MMX_MOVQ64mr:
830 case X86::MMX_MOVNTQmr:
831 return true;
832 }
833 return false;
834}
835
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +0000836unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
David Greenedda39782009-11-13 00:29:53 +0000837 int &FrameIndex) const {
838 if (isFrameLoadOpcode(MI->getOpcode()))
Jakob Stoklund Olesen81c7b192010-07-27 04:17:01 +0000839 if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
Chris Lattner40839602006-02-02 20:12:32 +0000840 return MI->getOperand(0).getReg();
David Greenedda39782009-11-13 00:29:53 +0000841 return 0;
842}
843
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +0000844unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
David Greenedda39782009-11-13 00:29:53 +0000845 int &FrameIndex) const {
846 if (isFrameLoadOpcode(MI->getOpcode())) {
847 unsigned Reg;
848 if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
849 return Reg;
David Greeneb87bc952009-11-12 20:55:29 +0000850 // Check for post-frame index elimination operations
David Greene29dbf502009-12-04 22:38:46 +0000851 const MachineMemOperand *Dummy;
852 return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
Chris Lattner40839602006-02-02 20:12:32 +0000853 }
854 return 0;
855}
856
Dan Gohmancbad42c2008-11-18 19:49:32 +0000857unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
Chris Lattner40839602006-02-02 20:12:32 +0000858 int &FrameIndex) const {
David Greenedda39782009-11-13 00:29:53 +0000859 if (isFrameStoreOpcode(MI->getOpcode()))
Jakob Stoklund Olesen81c7b192010-07-27 04:17:01 +0000860 if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
861 isFrameOperand(MI, 0, FrameIndex))
Chris Lattnerac0ed5d2010-07-08 22:41:28 +0000862 return MI->getOperand(X86::AddrNumOperands).getReg();
David Greenedda39782009-11-13 00:29:53 +0000863 return 0;
864}
865
866unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
867 int &FrameIndex) const {
868 if (isFrameStoreOpcode(MI->getOpcode())) {
869 unsigned Reg;
870 if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
871 return Reg;
David Greeneb87bc952009-11-12 20:55:29 +0000872 // Check for post-frame index elimination operations
David Greene29dbf502009-12-04 22:38:46 +0000873 const MachineMemOperand *Dummy;
874 return hasStoreToStackSlot(MI, Dummy, FrameIndex);
Chris Lattner40839602006-02-02 20:12:32 +0000875 }
876 return 0;
877}
878
Evan Chenge3d8dbf2008-03-27 01:45:11 +0000879/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
880/// X86::MOVPC32r.
Dan Gohman8e5f2c62008-07-07 23:14:23 +0000881static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
Evan Chenge3d8dbf2008-03-27 01:45:11 +0000882 bool isPICBase = false;
883 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
884 E = MRI.def_end(); I != E; ++I) {
885 MachineInstr *DefMI = I.getOperand().getParent();
886 if (DefMI->getOpcode() != X86::MOVPC32r)
887 return false;
888 assert(!isPICBase && "More than one PIC base?");
889 isPICBase = true;
890 }
891 return isPICBase;
892}
Evan Cheng9d15abe2008-03-31 07:54:19 +0000893
Bill Wendling9f8fea32008-05-12 20:54:26 +0000894bool
Dan Gohman3731bc02009-10-10 00:34:18 +0000895X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
896 AliasAnalysis *AA) const {
Dan Gohmanc101e952007-06-14 20:50:44 +0000897 switch (MI->getOpcode()) {
898 default: break;
Evan Chenge771ebd2008-03-27 01:41:09 +0000899 case X86::MOV8rm:
900 case X86::MOV16rm:
Evan Chenge771ebd2008-03-27 01:41:09 +0000901 case X86::MOV32rm:
Evan Chenge771ebd2008-03-27 01:41:09 +0000902 case X86::MOV64rm:
903 case X86::LD_Fp64m:
904 case X86::MOVSSrm:
905 case X86::MOVSDrm:
906 case X86::MOVAPSrm:
Evan Cheng600c0432009-11-16 21:56:03 +0000907 case X86::MOVUPSrm:
Evan Chenge771ebd2008-03-27 01:41:09 +0000908 case X86::MOVAPDrm:
Dan Gohman54462742009-01-09 02:40:34 +0000909 case X86::MOVDQArm:
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +0000910 case X86::VMOVAPSYrm:
911 case X86::VMOVUPSYrm:
912 case X86::VMOVAPDYrm:
913 case X86::VMOVDQAYrm:
Evan Chenge771ebd2008-03-27 01:41:09 +0000914 case X86::MMX_MOVD64rm:
Evan Chengd15ac2f2009-11-17 09:51:18 +0000915 case X86::MMX_MOVQ64rm:
916 case X86::FsMOVAPSrm:
917 case X86::FsMOVAPDrm: {
Evan Chenge771ebd2008-03-27 01:41:09 +0000918 // Loads from constant pools are trivially rematerializable.
Dan Gohmand735b802008-10-03 15:45:36 +0000919 if (MI->getOperand(1).isReg() &&
920 MI->getOperand(2).isImm() &&
921 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
Dan Gohman3731bc02009-10-10 00:34:18 +0000922 MI->isInvariantLoad(AA)) {
Evan Chenge771ebd2008-03-27 01:41:09 +0000923 unsigned BaseReg = MI->getOperand(1).getReg();
Chris Lattner18c59872009-06-27 04:16:01 +0000924 if (BaseReg == 0 || BaseReg == X86::RIP)
Evan Chenge771ebd2008-03-27 01:41:09 +0000925 return true;
926 // Allow re-materialization of PIC load.
Dan Gohmand735b802008-10-03 15:45:36 +0000927 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
Evan Chengffe2eb02008-04-01 23:26:12 +0000928 return false;
Dan Gohman8e5f2c62008-07-07 23:14:23 +0000929 const MachineFunction &MF = *MI->getParent()->getParent();
930 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Chenge771ebd2008-03-27 01:41:09 +0000931 bool isPICBase = false;
932 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
933 E = MRI.def_end(); I != E; ++I) {
934 MachineInstr *DefMI = I.getOperand().getParent();
935 if (DefMI->getOpcode() != X86::MOVPC32r)
936 return false;
937 assert(!isPICBase && "More than one PIC base?");
938 isPICBase = true;
939 }
940 return isPICBase;
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +0000941 }
Evan Chenge771ebd2008-03-27 01:41:09 +0000942 return false;
Evan Chengd8850a52008-02-22 09:25:47 +0000943 }
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +0000944
Evan Chenge771ebd2008-03-27 01:41:09 +0000945 case X86::LEA32r:
946 case X86::LEA64r: {
Dan Gohmand735b802008-10-03 15:45:36 +0000947 if (MI->getOperand(2).isImm() &&
948 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
949 !MI->getOperand(4).isReg()) {
Evan Chenge771ebd2008-03-27 01:41:09 +0000950 // lea fi#, lea GV, etc. are all rematerializable.
Dan Gohmand735b802008-10-03 15:45:36 +0000951 if (!MI->getOperand(1).isReg())
Dan Gohman83ccd142008-09-26 21:30:20 +0000952 return true;
Evan Chenge771ebd2008-03-27 01:41:09 +0000953 unsigned BaseReg = MI->getOperand(1).getReg();
954 if (BaseReg == 0)
955 return true;
956 // Allow re-materialization of lea PICBase + x.
Dan Gohman8e5f2c62008-07-07 23:14:23 +0000957 const MachineFunction &MF = *MI->getParent()->getParent();
958 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Chenge3d8dbf2008-03-27 01:45:11 +0000959 return regIsPICBase(BaseReg, MRI);
Evan Chenge771ebd2008-03-27 01:41:09 +0000960 }
961 return false;
962 }
Dan Gohmanc101e952007-06-14 20:50:44 +0000963 }
Evan Chenge771ebd2008-03-27 01:41:09 +0000964
Dan Gohmand45eddd2007-06-26 00:48:07 +0000965 // All other instructions marked M_REMATERIALIZABLE are always trivially
966 // rematerializable.
967 return true;
Dan Gohmanc101e952007-06-14 20:50:44 +0000968}
969
Evan Cheng9ef4ca22008-06-24 07:10:51 +0000970/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
971/// would clobber the EFLAGS condition register. Note the result may be
972/// conservative. If it cannot definitely determine the safety after visiting
Dan Gohman1b1764b2009-10-14 00:08:59 +0000973/// a few instructions in each direction it assumes it's not safe.
Evan Cheng9ef4ca22008-06-24 07:10:51 +0000974static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
975 MachineBasicBlock::iterator I) {
Evan Cheng8d1f0dd2010-03-23 20:35:45 +0000976 MachineBasicBlock::iterator E = MBB.end();
977
Dan Gohman3afda6e2008-10-21 03:24:31 +0000978 // It's always safe to clobber EFLAGS at the end of a block.
Evan Cheng8d1f0dd2010-03-23 20:35:45 +0000979 if (I == E)
Dan Gohman3afda6e2008-10-21 03:24:31 +0000980 return true;
981
Evan Cheng9ef4ca22008-06-24 07:10:51 +0000982 // For compile time consideration, if we are not able to determine the
Dan Gohman1b1764b2009-10-14 00:08:59 +0000983 // safety after visiting 4 instructions in each direction, we will assume
984 // it's not safe.
985 MachineBasicBlock::iterator Iter = I;
986 for (unsigned i = 0; i < 4; ++i) {
Evan Cheng9ef4ca22008-06-24 07:10:51 +0000987 bool SeenDef = false;
Dan Gohman1b1764b2009-10-14 00:08:59 +0000988 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
989 MachineOperand &MO = Iter->getOperand(j);
Dan Gohmand735b802008-10-03 15:45:36 +0000990 if (!MO.isReg())
Evan Cheng9ef4ca22008-06-24 07:10:51 +0000991 continue;
992 if (MO.getReg() == X86::EFLAGS) {
993 if (MO.isUse())
994 return false;
995 SeenDef = true;
996 }
997 }
998
999 if (SeenDef)
1000 // This instruction defines EFLAGS, no need to look any further.
1001 return true;
Dan Gohman1b1764b2009-10-14 00:08:59 +00001002 ++Iter;
Evan Cheng8d1f0dd2010-03-23 20:35:45 +00001003 // Skip over DBG_VALUE.
1004 while (Iter != E && Iter->isDebugValue())
1005 ++Iter;
Dan Gohman3afda6e2008-10-21 03:24:31 +00001006
1007 // If we make it to the end of the block, it's safe to clobber EFLAGS.
Evan Cheng8d1f0dd2010-03-23 20:35:45 +00001008 if (Iter == E)
Dan Gohman1b1764b2009-10-14 00:08:59 +00001009 return true;
1010 }
1011
Evan Cheng8d1f0dd2010-03-23 20:35:45 +00001012 MachineBasicBlock::iterator B = MBB.begin();
Dan Gohman1b1764b2009-10-14 00:08:59 +00001013 Iter = I;
1014 for (unsigned i = 0; i < 4; ++i) {
1015 // If we make it to the beginning of the block, it's safe to clobber
1016 // EFLAGS iff EFLAGS is not live-in.
Evan Cheng8d1f0dd2010-03-23 20:35:45 +00001017 if (Iter == B)
Dan Gohman1b1764b2009-10-14 00:08:59 +00001018 return !MBB.isLiveIn(X86::EFLAGS);
1019
1020 --Iter;
Evan Cheng8d1f0dd2010-03-23 20:35:45 +00001021 // Skip over DBG_VALUE.
1022 while (Iter != B && Iter->isDebugValue())
1023 --Iter;
1024
Dan Gohman1b1764b2009-10-14 00:08:59 +00001025 bool SawKill = false;
1026 for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
1027 MachineOperand &MO = Iter->getOperand(j);
1028 if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
1029 if (MO.isDef()) return MO.isDead();
1030 if (MO.isKill()) SawKill = true;
1031 }
1032 }
1033
1034 if (SawKill)
1035 // This instruction kills EFLAGS and doesn't redefine it, so
1036 // there's no need to look further.
Dan Gohman3afda6e2008-10-21 03:24:31 +00001037 return true;
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001038 }
1039
1040 // Conservative answer.
1041 return false;
1042}
1043
Evan Chengca1267c2008-03-31 20:40:39 +00001044void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
1045 MachineBasicBlock::iterator I,
Evan Cheng37844532009-07-16 09:20:10 +00001046 unsigned DestReg, unsigned SubIdx,
Evan Chengd57cdd52009-11-14 02:55:43 +00001047 const MachineInstr *Orig,
Jakob Stoklund Olesen9edf7de2010-06-02 22:47:25 +00001048 const TargetRegisterInfo &TRI) const {
Dan Gohman0d881042010-05-07 01:28:10 +00001049 DebugLoc DL = Orig->getDebugLoc();
Bill Wendlingfbef3102009-02-11 21:51:19 +00001050
Evan Chengca1267c2008-03-31 20:40:39 +00001051 // MOV32r0 etc. are implemented with xor which clobbers condition code.
1052 // Re-materialize them as movri instructions to avoid side effects.
Evan Cheng37844532009-07-16 09:20:10 +00001053 bool Clone = true;
1054 unsigned Opc = Orig->getOpcode();
1055 switch (Opc) {
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001056 default: break;
Evan Chengca1267c2008-03-31 20:40:39 +00001057 case X86::MOV8r0:
Dan Gohmanf1b4d262010-01-12 04:42:54 +00001058 case X86::MOV16r0:
1059 case X86::MOV32r0:
1060 case X86::MOV64r0: {
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001061 if (!isSafeToClobberEFLAGS(MBB, I)) {
Evan Cheng37844532009-07-16 09:20:10 +00001062 switch (Opc) {
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001063 default: break;
1064 case X86::MOV8r0: Opc = X86::MOV8ri; break;
Dan Gohmanf1b4d262010-01-12 04:42:54 +00001065 case X86::MOV16r0: Opc = X86::MOV16ri; break;
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001066 case X86::MOV32r0: Opc = X86::MOV32ri; break;
Dan Gohman6fe0df22010-02-26 16:49:27 +00001067 case X86::MOV64r0: Opc = X86::MOV64ri64i32; break;
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001068 }
Evan Cheng37844532009-07-16 09:20:10 +00001069 Clone = false;
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001070 }
Evan Chengca1267c2008-03-31 20:40:39 +00001071 break;
Evan Cheng9ef4ca22008-06-24 07:10:51 +00001072 }
1073 }
1074
Evan Cheng37844532009-07-16 09:20:10 +00001075 if (Clone) {
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001076 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
Evan Chengca1267c2008-03-31 20:40:39 +00001077 MBB.insert(I, MI);
Evan Cheng37844532009-07-16 09:20:10 +00001078 } else {
Jakob Stoklund Olesen9edf7de2010-06-02 22:47:25 +00001079 BuildMI(MBB, I, DL, get(Opc)).addOperand(Orig->getOperand(0)).addImm(0);
Evan Chengca1267c2008-03-31 20:40:39 +00001080 }
Evan Cheng03eb3882008-04-16 23:44:44 +00001081
Evan Cheng37844532009-07-16 09:20:10 +00001082 MachineInstr *NewMI = prior(I);
Jakob Stoklund Olesen9edf7de2010-06-02 22:47:25 +00001083 NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
Evan Chengca1267c2008-03-31 20:40:39 +00001084}
1085
Evan Cheng3f411c72007-10-05 08:04:01 +00001086/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
1087/// is not marked dead.
1088static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Cheng3f411c72007-10-05 08:04:01 +00001089 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1090 MachineOperand &MO = MI->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00001091 if (MO.isReg() && MO.isDef() &&
Evan Cheng3f411c72007-10-05 08:04:01 +00001092 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
1093 return true;
1094 }
1095 }
1096 return false;
1097}
1098
Evan Chengdd99f3a2009-12-12 20:03:14 +00001099/// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
Evan Cheng656e5142009-12-11 06:01:48 +00001100/// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
1101/// to a 32-bit superregister and then truncating back down to a 16-bit
1102/// subregister.
1103MachineInstr *
1104X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
1105 MachineFunction::iterator &MFI,
1106 MachineBasicBlock::iterator &MBBI,
1107 LiveVariables *LV) const {
1108 MachineInstr *MI = MBBI;
1109 unsigned Dest = MI->getOperand(0).getReg();
1110 unsigned Src = MI->getOperand(1).getReg();
1111 bool isDead = MI->getOperand(0).isDead();
1112 bool isKill = MI->getOperand(1).isKill();
1113
1114 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1115 ? X86::LEA64_32r : X86::LEA32r;
1116 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Jakob Stoklund Olesen635127a2010-10-07 00:07:26 +00001117 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
Evan Cheng656e5142009-12-11 06:01:48 +00001118 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001119
Evan Cheng656e5142009-12-11 06:01:48 +00001120 // Build and insert into an implicit UNDEF value. This is OK because
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001121 // well be shifting and then extracting the lower 16-bits.
Evan Chengdd99f3a2009-12-12 20:03:14 +00001122 // This has the potential to cause partial register stall. e.g.
Evan Cheng04ab19c2009-12-12 18:55:26 +00001123 // movw (%rbp,%rcx,2), %dx
1124 // leal -65(%rdx), %esi
Evan Chengdd99f3a2009-12-12 20:03:14 +00001125 // But testing has shown this *does* help performance in 64-bit mode (at
1126 // least on modern x86 machines).
Evan Cheng656e5142009-12-11 06:01:48 +00001127 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1128 MachineInstr *InsMI =
Jakob Stoklund Olesen5c00e072010-07-08 16:40:15 +00001129 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
1130 .addReg(leaInReg, RegState::Define, X86::sub_16bit)
1131 .addReg(Src, getKillRegState(isKill));
Evan Cheng656e5142009-12-11 06:01:48 +00001132
1133 MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
1134 get(Opc), leaOutReg);
1135 switch (MIOpc) {
1136 default:
1137 llvm_unreachable(0);
1138 break;
1139 case X86::SHL16ri: {
1140 unsigned ShAmt = MI->getOperand(2).getImm();
1141 MIB.addReg(0).addImm(1 << ShAmt)
Chris Lattner599b5312010-07-08 23:46:44 +00001142 .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
Evan Cheng656e5142009-12-11 06:01:48 +00001143 break;
1144 }
1145 case X86::INC16r:
1146 case X86::INC64_16r:
Chris Lattner599b5312010-07-08 23:46:44 +00001147 addRegOffset(MIB, leaInReg, true, 1);
Evan Cheng656e5142009-12-11 06:01:48 +00001148 break;
1149 case X86::DEC16r:
1150 case X86::DEC64_16r:
Chris Lattner599b5312010-07-08 23:46:44 +00001151 addRegOffset(MIB, leaInReg, true, -1);
Evan Cheng656e5142009-12-11 06:01:48 +00001152 break;
1153 case X86::ADD16ri:
1154 case X86::ADD16ri8:
Chris Lattner15df55d2010-10-08 03:57:25 +00001155 case X86::ADD16ri_DB:
1156 case X86::ADD16ri8_DB:
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001157 addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
Evan Cheng656e5142009-12-11 06:01:48 +00001158 break;
Chris Lattner99ae6652010-10-08 03:54:52 +00001159 case X86::ADD16rr:
1160 case X86::ADD16rr_DB: {
Evan Cheng656e5142009-12-11 06:01:48 +00001161 unsigned Src2 = MI->getOperand(2).getReg();
1162 bool isKill2 = MI->getOperand(2).isKill();
1163 unsigned leaInReg2 = 0;
1164 MachineInstr *InsMI2 = 0;
1165 if (Src == Src2) {
1166 // ADD16rr %reg1028<kill>, %reg1028
1167 // just a single insert_subreg.
1168 addRegReg(MIB, leaInReg, true, leaInReg, false);
1169 } else {
Jakob Stoklund Olesen635127a2010-10-07 00:07:26 +00001170 leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
Evan Cheng656e5142009-12-11 06:01:48 +00001171 // Build and insert into an implicit UNDEF value. This is OK because
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001172 // well be shifting and then extracting the lower 16-bits.
Evan Cheng656e5142009-12-11 06:01:48 +00001173 BuildMI(*MFI, MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2);
1174 InsMI2 =
Jakob Stoklund Olesen5c00e072010-07-08 16:40:15 +00001175 BuildMI(*MFI, MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
1176 .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
1177 .addReg(Src2, getKillRegState(isKill2));
Evan Cheng656e5142009-12-11 06:01:48 +00001178 addRegReg(MIB, leaInReg, true, leaInReg2, true);
1179 }
1180 if (LV && isKill2 && InsMI2)
1181 LV->replaceKillInstruction(Src2, MI, InsMI2);
1182 break;
1183 }
1184 }
1185
1186 MachineInstr *NewMI = MIB;
1187 MachineInstr *ExtMI =
Jakob Stoklund Olesen0bc25f42010-07-08 16:40:22 +00001188 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
Evan Cheng656e5142009-12-11 06:01:48 +00001189 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
Jakob Stoklund Olesen0bc25f42010-07-08 16:40:22 +00001190 .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
Evan Cheng656e5142009-12-11 06:01:48 +00001191
1192 if (LV) {
1193 // Update live variables
1194 LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1195 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1196 if (isKill)
1197 LV->replaceKillInstruction(Src, MI, InsMI);
1198 if (isDead)
1199 LV->replaceKillInstruction(Dest, MI, ExtMI);
1200 }
1201
1202 return ExtMI;
1203}
1204
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001205/// convertToThreeAddress - This method must be implemented by targets that
1206/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
1207/// may be able to convert a two-address instruction into a true
1208/// three-address instruction on demand. This allows the X86 target (for
1209/// example) to convert ADD and SHL instructions into LEA instructions if they
1210/// would require register copies due to two-addressness.
1211///
1212/// This method returns a null pointer if the transformation cannot be
1213/// performed, otherwise it returns the new instruction.
1214///
Evan Cheng258ff672006-12-01 21:52:41 +00001215MachineInstr *
1216X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1217 MachineBasicBlock::iterator &MBBI,
Owen Andersonf660c172008-07-02 23:41:07 +00001218 LiveVariables *LV) const {
Evan Cheng258ff672006-12-01 21:52:41 +00001219 MachineInstr *MI = MBBI;
Dan Gohman8e5f2c62008-07-07 23:14:23 +00001220 MachineFunction &MF = *MI->getParent()->getParent();
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001221 // All instructions input are two-addr instructions. Get the known operands.
1222 unsigned Dest = MI->getOperand(0).getReg();
1223 unsigned Src = MI->getOperand(1).getReg();
Evan Cheng9f1c8312008-07-03 09:09:37 +00001224 bool isDead = MI->getOperand(0).isDead();
1225 bool isKill = MI->getOperand(1).isKill();
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001226
Evan Cheng6ce7dc22006-11-15 20:58:11 +00001227 MachineInstr *NewMI = NULL;
Evan Cheng258ff672006-12-01 21:52:41 +00001228 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001229 // we have better subtarget support, enable the 16-bit LEA generation here.
Evan Chengdd99f3a2009-12-12 20:03:14 +00001230 // 16-bit LEA is also slow on Core2.
Evan Cheng258ff672006-12-01 21:52:41 +00001231 bool DisableLEA16 = true;
Evan Chengdd99f3a2009-12-12 20:03:14 +00001232 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng258ff672006-12-01 21:52:41 +00001233
Evan Cheng559dc462007-10-05 20:34:26 +00001234 unsigned MIOpc = MI->getOpcode();
1235 switch (MIOpc) {
Evan Chengccba76b2006-05-30 20:26:50 +00001236 case X86::SHUFPSrri: {
1237 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001238 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001239
Evan Chengaa3c1412006-05-30 21:45:53 +00001240 unsigned B = MI->getOperand(1).getReg();
1241 unsigned C = MI->getOperand(2).getReg();
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001242 if (B != C) return 0;
Evan Cheng9f1c8312008-07-03 09:09:37 +00001243 unsigned A = MI->getOperand(0).getReg();
1244 unsigned M = MI->getOperand(3).getImm();
Bill Wendlingfbef3102009-02-11 21:51:19 +00001245 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
Bill Wendling587daed2009-05-13 21:33:08 +00001246 .addReg(A, RegState::Define | getDeadRegState(isDead))
1247 .addReg(B, getKillRegState(isKill)).addImm(M);
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001248 break;
1249 }
Chris Lattner995f5502007-03-28 18:12:31 +00001250 case X86::SHL64ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +00001251 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Chris Lattner995f5502007-03-28 18:12:31 +00001252 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1253 // the flags produced by a shift yet, so this is safe.
Chris Lattner995f5502007-03-28 18:12:31 +00001254 unsigned ShAmt = MI->getOperand(2).getImm();
1255 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Cheng9f1c8312008-07-03 09:09:37 +00001256
Jakob Stoklund Olesen635127a2010-10-07 00:07:26 +00001257 // LEA can't handle RSP.
1258 if (TargetRegisterInfo::isVirtualRegister(Src) &&
1259 !MF.getRegInfo().constrainRegClass(Src, &X86::GR64_NOSPRegClass))
1260 return 0;
1261
Bill Wendlingfbef3102009-02-11 21:51:19 +00001262 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
Bill Wendling587daed2009-05-13 21:33:08 +00001263 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1264 .addReg(0).addImm(1 << ShAmt)
1265 .addReg(Src, getKillRegState(isKill))
Chris Lattner599b5312010-07-08 23:46:44 +00001266 .addImm(0).addReg(0);
Chris Lattner995f5502007-03-28 18:12:31 +00001267 break;
1268 }
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001269 case X86::SHL32ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +00001270 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001271 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1272 // the flags produced by a shift yet, so this is safe.
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001273 unsigned ShAmt = MI->getOperand(2).getImm();
1274 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Cheng9f1c8312008-07-03 09:09:37 +00001275
Jakob Stoklund Olesen635127a2010-10-07 00:07:26 +00001276 // LEA can't handle ESP.
1277 if (TargetRegisterInfo::isVirtualRegister(Src) &&
1278 !MF.getRegInfo().constrainRegClass(Src, &X86::GR32_NOSPRegClass))
1279 return 0;
1280
Evan Chengdd99f3a2009-12-12 20:03:14 +00001281 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
Bill Wendlingfbef3102009-02-11 21:51:19 +00001282 NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling587daed2009-05-13 21:33:08 +00001283 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
Evan Cheng9f1c8312008-07-03 09:09:37 +00001284 .addReg(0).addImm(1 << ShAmt)
Chris Lattner599b5312010-07-08 23:46:44 +00001285 .addReg(Src, getKillRegState(isKill)).addImm(0).addReg(0);
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001286 break;
1287 }
1288 case X86::SHL16ri: {
Evan Cheng24f2ea32007-09-14 21:48:26 +00001289 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng61d9c862007-09-06 00:14:41 +00001290 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1291 // the flags produced by a shift yet, so this is safe.
Evan Cheng61d9c862007-09-06 00:14:41 +00001292 unsigned ShAmt = MI->getOperand(2).getImm();
1293 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Cheng9f1c8312008-07-03 09:09:37 +00001294
Evan Cheng656e5142009-12-11 06:01:48 +00001295 if (DisableLEA16)
Evan Chengdd99f3a2009-12-12 20:03:14 +00001296 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
Evan Cheng656e5142009-12-11 06:01:48 +00001297 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1298 .addReg(Dest, RegState::Define | getDeadRegState(isDead))
1299 .addReg(0).addImm(1 << ShAmt)
1300 .addReg(Src, getKillRegState(isKill))
Chris Lattner599b5312010-07-08 23:46:44 +00001301 .addImm(0).addReg(0);
Chris Lattnera16b7cb2007-03-20 06:08:29 +00001302 break;
Evan Chengccba76b2006-05-30 20:26:50 +00001303 }
Evan Cheng559dc462007-10-05 20:34:26 +00001304 default: {
1305 // The following opcodes also sets the condition code register(s). Only
1306 // convert them to equivalent lea if the condition code register def's
1307 // are dead!
1308 if (hasLiveCondCodeDef(MI))
1309 return 0;
Evan Chengccba76b2006-05-30 20:26:50 +00001310
Evan Cheng559dc462007-10-05 20:34:26 +00001311 switch (MIOpc) {
1312 default: return 0;
1313 case X86::INC64r:
Dan Gohmancca29832009-01-06 23:34:46 +00001314 case X86::INC32r:
1315 case X86::INC64_32r: {
Evan Cheng559dc462007-10-05 20:34:26 +00001316 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +00001317 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1318 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Jakob Stoklund Olesen635127a2010-10-07 00:07:26 +00001319
1320 // LEA can't handle RSP.
1321 if (TargetRegisterInfo::isVirtualRegister(Src) &&
1322 !MF.getRegInfo().constrainRegClass(Src,
1323 MIOpc == X86::INC64r ? X86::GR64_NOSPRegisterClass :
1324 X86::GR32_NOSPRegisterClass))
1325 return 0;
1326
Chris Lattner599b5312010-07-08 23:46:44 +00001327 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling587daed2009-05-13 21:33:08 +00001328 .addReg(Dest, RegState::Define |
1329 getDeadRegState(isDead)),
Rafael Espindola094fad32009-04-08 21:14:34 +00001330 Src, isKill, 1);
Evan Cheng559dc462007-10-05 20:34:26 +00001331 break;
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001332 }
Evan Cheng559dc462007-10-05 20:34:26 +00001333 case X86::INC16r:
1334 case X86::INC64_16r:
Evan Cheng656e5142009-12-11 06:01:48 +00001335 if (DisableLEA16)
Evan Chengdd99f3a2009-12-12 20:03:14 +00001336 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
Evan Cheng559dc462007-10-05 20:34:26 +00001337 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Bill Wendlingfbef3102009-02-11 21:51:19 +00001338 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Bill Wendling587daed2009-05-13 21:33:08 +00001339 .addReg(Dest, RegState::Define |
1340 getDeadRegState(isDead)),
Evan Cheng9f1c8312008-07-03 09:09:37 +00001341 Src, isKill, 1);
Evan Cheng559dc462007-10-05 20:34:26 +00001342 break;
1343 case X86::DEC64r:
Dan Gohmancca29832009-01-06 23:34:46 +00001344 case X86::DEC32r:
1345 case X86::DEC64_32r: {
Evan Cheng559dc462007-10-05 20:34:26 +00001346 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chengb76143c2007-10-09 07:14:53 +00001347 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1348 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Jakob Stoklund Olesen635127a2010-10-07 00:07:26 +00001349 // LEA can't handle RSP.
1350 if (TargetRegisterInfo::isVirtualRegister(Src) &&
1351 !MF.getRegInfo().constrainRegClass(Src,
1352 MIOpc == X86::DEC64r ? X86::GR64_NOSPRegisterClass :
1353 X86::GR32_NOSPRegisterClass))
1354 return 0;
1355
Chris Lattner599b5312010-07-08 23:46:44 +00001356 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling587daed2009-05-13 21:33:08 +00001357 .addReg(Dest, RegState::Define |
1358 getDeadRegState(isDead)),
Rafael Espindola094fad32009-04-08 21:14:34 +00001359 Src, isKill, -1);
Evan Cheng559dc462007-10-05 20:34:26 +00001360 break;
1361 }
1362 case X86::DEC16r:
1363 case X86::DEC64_16r:
Evan Cheng656e5142009-12-11 06:01:48 +00001364 if (DisableLEA16)
Evan Chengdd99f3a2009-12-12 20:03:14 +00001365 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
Evan Cheng559dc462007-10-05 20:34:26 +00001366 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Bill Wendlingfbef3102009-02-11 21:51:19 +00001367 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Bill Wendling587daed2009-05-13 21:33:08 +00001368 .addReg(Dest, RegState::Define |
1369 getDeadRegState(isDead)),
Evan Cheng9f1c8312008-07-03 09:09:37 +00001370 Src, isKill, -1);
Evan Cheng559dc462007-10-05 20:34:26 +00001371 break;
1372 case X86::ADD64rr:
Chris Lattner99ae6652010-10-08 03:54:52 +00001373 case X86::ADD64rr_DB:
1374 case X86::ADD32rr:
1375 case X86::ADD32rr_DB: {
Evan Cheng559dc462007-10-05 20:34:26 +00001376 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Chris Lattner99ae6652010-10-08 03:54:52 +00001377 unsigned Opc;
1378 TargetRegisterClass *RC;
1379 if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) {
1380 Opc = X86::LEA64r;
1381 RC = X86::GR64_NOSPRegisterClass;
1382 } else {
1383 Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1384 RC = X86::GR32_NOSPRegisterClass;
1385 }
1386
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001387
Evan Cheng9f1c8312008-07-03 09:09:37 +00001388 unsigned Src2 = MI->getOperand(2).getReg();
1389 bool isKill2 = MI->getOperand(2).isKill();
Jakob Stoklund Olesen635127a2010-10-07 00:07:26 +00001390
1391 // LEA can't handle RSP.
1392 if (TargetRegisterInfo::isVirtualRegister(Src2) &&
Chris Lattner99ae6652010-10-08 03:54:52 +00001393 !MF.getRegInfo().constrainRegClass(Src2, RC))
Jakob Stoklund Olesen635127a2010-10-07 00:07:26 +00001394 return 0;
1395
Bill Wendlingfbef3102009-02-11 21:51:19 +00001396 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Bill Wendling587daed2009-05-13 21:33:08 +00001397 .addReg(Dest, RegState::Define |
1398 getDeadRegState(isDead)),
Evan Cheng9f1c8312008-07-03 09:09:37 +00001399 Src, isKill, Src2, isKill2);
1400 if (LV && isKill2)
1401 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng559dc462007-10-05 20:34:26 +00001402 break;
1403 }
Chris Lattner99ae6652010-10-08 03:54:52 +00001404 case X86::ADD16rr:
1405 case X86::ADD16rr_DB: {
Evan Cheng656e5142009-12-11 06:01:48 +00001406 if (DisableLEA16)
Evan Chengdd99f3a2009-12-12 20:03:14 +00001407 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
Evan Cheng559dc462007-10-05 20:34:26 +00001408 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Cheng9f1c8312008-07-03 09:09:37 +00001409 unsigned Src2 = MI->getOperand(2).getReg();
1410 bool isKill2 = MI->getOperand(2).isKill();
Bill Wendlingfbef3102009-02-11 21:51:19 +00001411 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Bill Wendling587daed2009-05-13 21:33:08 +00001412 .addReg(Dest, RegState::Define |
1413 getDeadRegState(isDead)),
Evan Cheng9f1c8312008-07-03 09:09:37 +00001414 Src, isKill, Src2, isKill2);
1415 if (LV && isKill2)
1416 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng559dc462007-10-05 20:34:26 +00001417 break;
Evan Cheng9f1c8312008-07-03 09:09:37 +00001418 }
Evan Cheng559dc462007-10-05 20:34:26 +00001419 case X86::ADD64ri32:
1420 case X86::ADD64ri8:
Chris Lattner15df55d2010-10-08 03:57:25 +00001421 case X86::ADD64ri32_DB:
1422 case X86::ADD64ri8_DB:
Evan Cheng559dc462007-10-05 20:34:26 +00001423 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Chris Lattner599b5312010-07-08 23:46:44 +00001424 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
Evan Cheng656e5142009-12-11 06:01:48 +00001425 .addReg(Dest, RegState::Define |
1426 getDeadRegState(isDead)),
1427 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng559dc462007-10-05 20:34:26 +00001428 break;
1429 case X86::ADD32ri:
Chris Lattner15df55d2010-10-08 03:57:25 +00001430 case X86::ADD32ri8:
1431 case X86::ADD32ri_DB:
1432 case X86::ADD32ri8_DB: {
Evan Cheng559dc462007-10-05 20:34:26 +00001433 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Cheng656e5142009-12-11 06:01:48 +00001434 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner599b5312010-07-08 23:46:44 +00001435 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Evan Cheng656e5142009-12-11 06:01:48 +00001436 .addReg(Dest, RegState::Define |
1437 getDeadRegState(isDead)),
Rafael Espindola094fad32009-04-08 21:14:34 +00001438 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng559dc462007-10-05 20:34:26 +00001439 break;
1440 }
Evan Cheng656e5142009-12-11 06:01:48 +00001441 case X86::ADD16ri:
1442 case X86::ADD16ri8:
Chris Lattner15df55d2010-10-08 03:57:25 +00001443 case X86::ADD16ri_DB:
1444 case X86::ADD16ri8_DB:
Evan Cheng656e5142009-12-11 06:01:48 +00001445 if (DisableLEA16)
Evan Chengdd99f3a2009-12-12 20:03:14 +00001446 return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
Evan Cheng656e5142009-12-11 06:01:48 +00001447 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Chris Lattner599b5312010-07-08 23:46:44 +00001448 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Evan Cheng656e5142009-12-11 06:01:48 +00001449 .addReg(Dest, RegState::Define |
1450 getDeadRegState(isDead)),
1451 Src, isKill, MI->getOperand(2).getImm());
1452 break;
Evan Cheng559dc462007-10-05 20:34:26 +00001453 }
1454 }
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001455 }
1456
Evan Cheng15246732008-02-07 08:29:53 +00001457 if (!NewMI) return 0;
1458
Evan Cheng9f1c8312008-07-03 09:09:37 +00001459 if (LV) { // Update live variables
1460 if (isKill)
1461 LV->replaceKillInstruction(Src, MI, NewMI);
1462 if (isDead)
1463 LV->replaceKillInstruction(Dest, MI, NewMI);
1464 }
1465
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001466 MFI->insert(MBBI, NewMI); // Insert the new inst
Evan Cheng6ce7dc22006-11-15 20:58:11 +00001467 return NewMI;
Chris Lattnerbcea4d62005-01-02 02:37:07 +00001468}
1469
Chris Lattner41e431b2005-01-19 07:11:01 +00001470/// commuteInstruction - We have a few instructions that must be hacked on to
1471/// commute them.
1472///
Evan Cheng58dcb0e2008-06-16 07:33:11 +00001473MachineInstr *
1474X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
Chris Lattner41e431b2005-01-19 07:11:01 +00001475 switch (MI->getOpcode()) {
Chris Lattner0df53d22005-01-19 07:31:24 +00001476 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1477 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
Chris Lattner41e431b2005-01-19 07:11:01 +00001478 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohmane47f1f92007-09-14 23:17:45 +00001479 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1480 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1481 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Chris Lattner0df53d22005-01-19 07:31:24 +00001482 unsigned Opc;
1483 unsigned Size;
1484 switch (MI->getOpcode()) {
Torok Edwinc23197a2009-07-14 16:55:14 +00001485 default: llvm_unreachable("Unreachable!");
Chris Lattner0df53d22005-01-19 07:31:24 +00001486 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1487 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1488 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1489 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohmane47f1f92007-09-14 23:17:45 +00001490 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1491 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Chris Lattner0df53d22005-01-19 07:31:24 +00001492 }
Chris Lattner9a1ceae2007-12-30 20:49:49 +00001493 unsigned Amt = MI->getOperand(3).getImm();
Dan Gohman74feef22008-10-17 01:23:35 +00001494 if (NewMI) {
1495 MachineFunction &MF = *MI->getParent()->getParent();
1496 MI = MF.CloneMachineInstr(MI);
1497 NewMI = false;
Evan Chenga4d16a12008-02-13 02:46:49 +00001498 }
Dan Gohman74feef22008-10-17 01:23:35 +00001499 MI->setDesc(get(Opc));
1500 MI->getOperand(3).setImm(Size-Amt);
1501 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Chris Lattner41e431b2005-01-19 07:11:01 +00001502 }
Evan Cheng7ad42d92007-10-05 23:13:21 +00001503 case X86::CMOVB16rr:
1504 case X86::CMOVB32rr:
1505 case X86::CMOVB64rr:
1506 case X86::CMOVAE16rr:
1507 case X86::CMOVAE32rr:
1508 case X86::CMOVAE64rr:
1509 case X86::CMOVE16rr:
1510 case X86::CMOVE32rr:
1511 case X86::CMOVE64rr:
1512 case X86::CMOVNE16rr:
1513 case X86::CMOVNE32rr:
1514 case X86::CMOVNE64rr:
Chris Lattner25cbf502010-10-05 23:00:14 +00001515 case X86::CMOVBE16rr:
1516 case X86::CMOVBE32rr:
1517 case X86::CMOVBE64rr:
Evan Cheng7ad42d92007-10-05 23:13:21 +00001518 case X86::CMOVA16rr:
1519 case X86::CMOVA32rr:
1520 case X86::CMOVA64rr:
1521 case X86::CMOVL16rr:
1522 case X86::CMOVL32rr:
1523 case X86::CMOVL64rr:
1524 case X86::CMOVGE16rr:
1525 case X86::CMOVGE32rr:
1526 case X86::CMOVGE64rr:
1527 case X86::CMOVLE16rr:
1528 case X86::CMOVLE32rr:
1529 case X86::CMOVLE64rr:
1530 case X86::CMOVG16rr:
1531 case X86::CMOVG32rr:
1532 case X86::CMOVG64rr:
1533 case X86::CMOVS16rr:
1534 case X86::CMOVS32rr:
1535 case X86::CMOVS64rr:
1536 case X86::CMOVNS16rr:
1537 case X86::CMOVNS32rr:
1538 case X86::CMOVNS64rr:
1539 case X86::CMOVP16rr:
1540 case X86::CMOVP32rr:
1541 case X86::CMOVP64rr:
1542 case X86::CMOVNP16rr:
1543 case X86::CMOVNP32rr:
Dan Gohman305fceb2009-01-07 00:35:10 +00001544 case X86::CMOVNP64rr:
1545 case X86::CMOVO16rr:
1546 case X86::CMOVO32rr:
1547 case X86::CMOVO64rr:
1548 case X86::CMOVNO16rr:
1549 case X86::CMOVNO32rr:
1550 case X86::CMOVNO64rr: {
Evan Cheng7ad42d92007-10-05 23:13:21 +00001551 unsigned Opc = 0;
1552 switch (MI->getOpcode()) {
1553 default: break;
1554 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1555 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1556 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1557 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1558 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1559 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1560 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1561 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1562 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1563 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1564 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1565 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
Chris Lattner25cbf502010-10-05 23:00:14 +00001566 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1567 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1568 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1569 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1570 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1571 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
Evan Cheng7ad42d92007-10-05 23:13:21 +00001572 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1573 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1574 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1575 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1576 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1577 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1578 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1579 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1580 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1581 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1582 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1583 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1584 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1585 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
Mon P Wang0bd07fc2009-04-18 05:16:01 +00001586 case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break;
Evan Cheng7ad42d92007-10-05 23:13:21 +00001587 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1588 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1589 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1590 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1591 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
Mon P Wang0bd07fc2009-04-18 05:16:01 +00001592 case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break;
Evan Cheng7ad42d92007-10-05 23:13:21 +00001593 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1594 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1595 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
Dan Gohman305fceb2009-01-07 00:35:10 +00001596 case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break;
1597 case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break;
Mon P Wang0bd07fc2009-04-18 05:16:01 +00001598 case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break;
Dan Gohman305fceb2009-01-07 00:35:10 +00001599 case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
1600 case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
1601 case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
Evan Cheng7ad42d92007-10-05 23:13:21 +00001602 }
Dan Gohman74feef22008-10-17 01:23:35 +00001603 if (NewMI) {
1604 MachineFunction &MF = *MI->getParent()->getParent();
1605 MI = MF.CloneMachineInstr(MI);
1606 NewMI = false;
1607 }
Chris Lattner5080f4d2008-01-11 18:10:50 +00001608 MI->setDesc(get(Opc));
Evan Cheng7ad42d92007-10-05 23:13:21 +00001609 // Fallthrough intended.
1610 }
Chris Lattner41e431b2005-01-19 07:11:01 +00001611 default:
Evan Cheng58dcb0e2008-06-16 07:33:11 +00001612 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Chris Lattner41e431b2005-01-19 07:11:01 +00001613 }
1614}
1615
Chris Lattner7fbe9722006-10-20 17:42:20 +00001616static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1617 switch (BrOpc) {
1618 default: return X86::COND_INVALID;
Chris Lattnerbd13fb62010-02-11 19:25:55 +00001619 case X86::JE_4: return X86::COND_E;
1620 case X86::JNE_4: return X86::COND_NE;
1621 case X86::JL_4: return X86::COND_L;
1622 case X86::JLE_4: return X86::COND_LE;
1623 case X86::JG_4: return X86::COND_G;
1624 case X86::JGE_4: return X86::COND_GE;
1625 case X86::JB_4: return X86::COND_B;
1626 case X86::JBE_4: return X86::COND_BE;
1627 case X86::JA_4: return X86::COND_A;
1628 case X86::JAE_4: return X86::COND_AE;
1629 case X86::JS_4: return X86::COND_S;
1630 case X86::JNS_4: return X86::COND_NS;
1631 case X86::JP_4: return X86::COND_P;
1632 case X86::JNP_4: return X86::COND_NP;
1633 case X86::JO_4: return X86::COND_O;
1634 case X86::JNO_4: return X86::COND_NO;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001635 }
1636}
1637
1638unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1639 switch (CC) {
Torok Edwinc23197a2009-07-14 16:55:14 +00001640 default: llvm_unreachable("Illegal condition code!");
Chris Lattnerbd13fb62010-02-11 19:25:55 +00001641 case X86::COND_E: return X86::JE_4;
1642 case X86::COND_NE: return X86::JNE_4;
1643 case X86::COND_L: return X86::JL_4;
1644 case X86::COND_LE: return X86::JLE_4;
1645 case X86::COND_G: return X86::JG_4;
1646 case X86::COND_GE: return X86::JGE_4;
1647 case X86::COND_B: return X86::JB_4;
1648 case X86::COND_BE: return X86::JBE_4;
1649 case X86::COND_A: return X86::JA_4;
1650 case X86::COND_AE: return X86::JAE_4;
1651 case X86::COND_S: return X86::JS_4;
1652 case X86::COND_NS: return X86::JNS_4;
1653 case X86::COND_P: return X86::JP_4;
1654 case X86::COND_NP: return X86::JNP_4;
1655 case X86::COND_O: return X86::JO_4;
1656 case X86::COND_NO: return X86::JNO_4;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001657 }
1658}
1659
Chris Lattner9cd68752006-10-21 05:52:40 +00001660/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1661/// e.g. turning COND_E to COND_NE.
1662X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1663 switch (CC) {
Torok Edwinc23197a2009-07-14 16:55:14 +00001664 default: llvm_unreachable("Illegal condition code!");
Chris Lattner9cd68752006-10-21 05:52:40 +00001665 case X86::COND_E: return X86::COND_NE;
1666 case X86::COND_NE: return X86::COND_E;
1667 case X86::COND_L: return X86::COND_GE;
1668 case X86::COND_LE: return X86::COND_G;
1669 case X86::COND_G: return X86::COND_LE;
1670 case X86::COND_GE: return X86::COND_L;
1671 case X86::COND_B: return X86::COND_AE;
1672 case X86::COND_BE: return X86::COND_A;
1673 case X86::COND_A: return X86::COND_BE;
1674 case X86::COND_AE: return X86::COND_B;
1675 case X86::COND_S: return X86::COND_NS;
1676 case X86::COND_NS: return X86::COND_S;
1677 case X86::COND_P: return X86::COND_NP;
1678 case X86::COND_NP: return X86::COND_P;
1679 case X86::COND_O: return X86::COND_NO;
1680 case X86::COND_NO: return X86::COND_O;
1681 }
1682}
1683
Dale Johannesen318093b2007-06-14 22:03:45 +00001684bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Evan Chenge837dea2011-06-28 19:10:37 +00001685 const MCInstrDesc &MCID = MI->getDesc();
1686 if (!MCID.isTerminator()) return false;
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001687
Chris Lattner69244302008-01-07 01:56:04 +00001688 // Conditional branch is a special case.
Evan Chenge837dea2011-06-28 19:10:37 +00001689 if (MCID.isBranch() && !MCID.isBarrier())
Chris Lattner69244302008-01-07 01:56:04 +00001690 return true;
Evan Chenge837dea2011-06-28 19:10:37 +00001691 if (!MCID.isPredicable())
Chris Lattner69244302008-01-07 01:56:04 +00001692 return true;
1693 return !isPredicated(MI);
Dale Johannesen318093b2007-06-14 22:03:45 +00001694}
Chris Lattner9cd68752006-10-21 05:52:40 +00001695
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001696bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
Chris Lattner7fbe9722006-10-20 17:42:20 +00001697 MachineBasicBlock *&TBB,
1698 MachineBasicBlock *&FBB,
Evan Chengdc54d312009-02-09 07:14:22 +00001699 SmallVectorImpl<MachineOperand> &Cond,
1700 bool AllowModify) const {
Dan Gohman279c22e2008-10-21 03:29:32 +00001701 // Start from the bottom of the block and work up, examining the
1702 // terminator instructions.
Chris Lattner7fbe9722006-10-20 17:42:20 +00001703 MachineBasicBlock::iterator I = MBB.end();
Evan Chengfc5a03e2010-04-13 18:50:27 +00001704 MachineBasicBlock::iterator UnCondBrIter = MBB.end();
Dan Gohman279c22e2008-10-21 03:29:32 +00001705 while (I != MBB.begin()) {
1706 --I;
Dale Johannesen93d6a7e2010-04-02 01:38:09 +00001707 if (I->isDebugValue())
1708 continue;
Bill Wendling85de1e52009-12-14 06:51:19 +00001709
1710 // Working from the bottom, when we see a non-terminator instruction, we're
1711 // done.
Jakob Stoklund Olesen468a2a42010-07-16 17:41:44 +00001712 if (!isUnpredicatedTerminator(I))
Dan Gohman279c22e2008-10-21 03:29:32 +00001713 break;
Bill Wendling85de1e52009-12-14 06:51:19 +00001714
1715 // A terminator that isn't a branch can't easily be handled by this
1716 // analysis.
Dan Gohman279c22e2008-10-21 03:29:32 +00001717 if (!I->getDesc().isBranch())
Chris Lattner7fbe9722006-10-20 17:42:20 +00001718 return true;
Bill Wendling85de1e52009-12-14 06:51:19 +00001719
Dan Gohman279c22e2008-10-21 03:29:32 +00001720 // Handle unconditional branches.
Chris Lattnerbd13fb62010-02-11 19:25:55 +00001721 if (I->getOpcode() == X86::JMP_4) {
Evan Chengfc5a03e2010-04-13 18:50:27 +00001722 UnCondBrIter = I;
1723
Evan Chengdc54d312009-02-09 07:14:22 +00001724 if (!AllowModify) {
1725 TBB = I->getOperand(0).getMBB();
Evan Cheng45e00102009-05-08 06:34:09 +00001726 continue;
Evan Chengdc54d312009-02-09 07:14:22 +00001727 }
1728
Dan Gohman279c22e2008-10-21 03:29:32 +00001729 // If the block has any instructions after a JMP, delete them.
Chris Lattner7896c9f2009-12-03 00:50:42 +00001730 while (llvm::next(I) != MBB.end())
1731 llvm::next(I)->eraseFromParent();
Bill Wendling85de1e52009-12-14 06:51:19 +00001732
Dan Gohman279c22e2008-10-21 03:29:32 +00001733 Cond.clear();
1734 FBB = 0;
Bill Wendling85de1e52009-12-14 06:51:19 +00001735
Dan Gohman279c22e2008-10-21 03:29:32 +00001736 // Delete the JMP if it's equivalent to a fall-through.
1737 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1738 TBB = 0;
1739 I->eraseFromParent();
1740 I = MBB.end();
Evan Chengfc5a03e2010-04-13 18:50:27 +00001741 UnCondBrIter = MBB.end();
Dan Gohman279c22e2008-10-21 03:29:32 +00001742 continue;
1743 }
Bill Wendling85de1e52009-12-14 06:51:19 +00001744
Evan Chengfc5a03e2010-04-13 18:50:27 +00001745 // TBB is used to indicate the unconditional destination.
Dan Gohman279c22e2008-10-21 03:29:32 +00001746 TBB = I->getOperand(0).getMBB();
1747 continue;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001748 }
Bill Wendling85de1e52009-12-14 06:51:19 +00001749
Dan Gohman279c22e2008-10-21 03:29:32 +00001750 // Handle conditional branches.
1751 X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
Chris Lattner7fbe9722006-10-20 17:42:20 +00001752 if (BranchCode == X86::COND_INVALID)
1753 return true; // Can't handle indirect branch.
Bill Wendling85de1e52009-12-14 06:51:19 +00001754
Dan Gohman279c22e2008-10-21 03:29:32 +00001755 // Working from the bottom, handle the first conditional branch.
1756 if (Cond.empty()) {
Evan Chengfc5a03e2010-04-13 18:50:27 +00001757 MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
1758 if (AllowModify && UnCondBrIter != MBB.end() &&
1759 MBB.isLayoutSuccessor(TargetBB)) {
1760 // If we can modify the code and it ends in something like:
1761 //
1762 // jCC L1
1763 // jmp L2
1764 // L1:
1765 // ...
1766 // L2:
1767 //
1768 // Then we can change this to:
1769 //
1770 // jnCC L2
1771 // L1:
1772 // ...
1773 // L2:
1774 //
1775 // Which is a bit more efficient.
1776 // We conditionally jump to the fall-through block.
1777 BranchCode = GetOppositeBranchCondition(BranchCode);
1778 unsigned JNCC = GetCondBranchFromCond(BranchCode);
1779 MachineBasicBlock::iterator OldInst = I;
1780
1781 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
1782 .addMBB(UnCondBrIter->getOperand(0).getMBB());
1783 BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4))
1784 .addMBB(TargetBB);
Evan Chengfc5a03e2010-04-13 18:50:27 +00001785
1786 OldInst->eraseFromParent();
1787 UnCondBrIter->eraseFromParent();
1788
1789 // Restart the analysis.
1790 UnCondBrIter = MBB.end();
1791 I = MBB.end();
1792 continue;
1793 }
1794
Dan Gohman279c22e2008-10-21 03:29:32 +00001795 FBB = TBB;
1796 TBB = I->getOperand(0).getMBB();
1797 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1798 continue;
1799 }
Bill Wendling85de1e52009-12-14 06:51:19 +00001800
1801 // Handle subsequent conditional branches. Only handle the case where all
1802 // conditional branches branch to the same destination and their condition
1803 // opcodes fit one of the special multi-branch idioms.
Dan Gohman279c22e2008-10-21 03:29:32 +00001804 assert(Cond.size() == 1);
1805 assert(TBB);
Bill Wendling85de1e52009-12-14 06:51:19 +00001806
1807 // Only handle the case where all conditional branches branch to the same
1808 // destination.
Dan Gohman279c22e2008-10-21 03:29:32 +00001809 if (TBB != I->getOperand(0).getMBB())
1810 return true;
Bill Wendling85de1e52009-12-14 06:51:19 +00001811
Dan Gohman279c22e2008-10-21 03:29:32 +00001812 // If the conditions are the same, we can leave them alone.
Bill Wendling85de1e52009-12-14 06:51:19 +00001813 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
Dan Gohman279c22e2008-10-21 03:29:32 +00001814 if (OldBranchCode == BranchCode)
1815 continue;
Bill Wendling85de1e52009-12-14 06:51:19 +00001816
1817 // If they differ, see if they fit one of the known patterns. Theoretically,
1818 // we could handle more patterns here, but we shouldn't expect to see them
1819 // if instruction selection has done a reasonable job.
Dan Gohman279c22e2008-10-21 03:29:32 +00001820 if ((OldBranchCode == X86::COND_NP &&
1821 BranchCode == X86::COND_E) ||
1822 (OldBranchCode == X86::COND_E &&
1823 BranchCode == X86::COND_NP))
1824 BranchCode = X86::COND_NP_OR_E;
1825 else if ((OldBranchCode == X86::COND_P &&
1826 BranchCode == X86::COND_NE) ||
1827 (OldBranchCode == X86::COND_NE &&
1828 BranchCode == X86::COND_P))
1829 BranchCode = X86::COND_NE_OR_P;
1830 else
1831 return true;
Bill Wendling85de1e52009-12-14 06:51:19 +00001832
Dan Gohman279c22e2008-10-21 03:29:32 +00001833 // Update the MachineOperand.
1834 Cond[0].setImm(BranchCode);
Chris Lattner6ce64432006-10-30 22:27:23 +00001835 }
Chris Lattner7fbe9722006-10-20 17:42:20 +00001836
Dan Gohman279c22e2008-10-21 03:29:32 +00001837 return false;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001838}
1839
Evan Cheng6ae36262007-05-18 00:18:17 +00001840unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
Chris Lattner7fbe9722006-10-20 17:42:20 +00001841 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman279c22e2008-10-21 03:29:32 +00001842 unsigned Count = 0;
1843
1844 while (I != MBB.begin()) {
1845 --I;
Dale Johannesen93d6a7e2010-04-02 01:38:09 +00001846 if (I->isDebugValue())
1847 continue;
Chris Lattnerbd13fb62010-02-11 19:25:55 +00001848 if (I->getOpcode() != X86::JMP_4 &&
Dan Gohman279c22e2008-10-21 03:29:32 +00001849 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1850 break;
1851 // Remove the branch.
1852 I->eraseFromParent();
1853 I = MBB.end();
1854 ++Count;
1855 }
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00001856
Dan Gohman279c22e2008-10-21 03:29:32 +00001857 return Count;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001858}
1859
Evan Cheng6ae36262007-05-18 00:18:17 +00001860unsigned
1861X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1862 MachineBasicBlock *FBB,
Stuart Hastings3bf91252010-06-17 22:43:56 +00001863 const SmallVectorImpl<MachineOperand> &Cond,
1864 DebugLoc DL) const {
Chris Lattner7fbe9722006-10-20 17:42:20 +00001865 // Shouldn't be a fall through.
1866 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
Chris Lattner34a84ac2006-10-21 05:34:23 +00001867 assert((Cond.size() == 1 || Cond.size() == 0) &&
1868 "X86 branch conditions have one component!");
1869
Dan Gohman279c22e2008-10-21 03:29:32 +00001870 if (Cond.empty()) {
1871 // Unconditional branch?
1872 assert(!FBB && "Unconditional branch with multiple successors!");
Stuart Hastings3bf91252010-06-17 22:43:56 +00001873 BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB);
Evan Cheng6ae36262007-05-18 00:18:17 +00001874 return 1;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001875 }
Dan Gohman279c22e2008-10-21 03:29:32 +00001876
1877 // Conditional branch.
1878 unsigned Count = 0;
1879 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1880 switch (CC) {
1881 case X86::COND_NP_OR_E:
1882 // Synthesize NP_OR_E with two branches.
Stuart Hastings3bf91252010-06-17 22:43:56 +00001883 BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB);
Bill Wendling18ce64e2010-03-05 00:33:59 +00001884 ++Count;
Stuart Hastings3bf91252010-06-17 22:43:56 +00001885 BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB);
Bill Wendling18ce64e2010-03-05 00:33:59 +00001886 ++Count;
Dan Gohman279c22e2008-10-21 03:29:32 +00001887 break;
1888 case X86::COND_NE_OR_P:
1889 // Synthesize NE_OR_P with two branches.
Stuart Hastings3bf91252010-06-17 22:43:56 +00001890 BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB);
Bill Wendling18ce64e2010-03-05 00:33:59 +00001891 ++Count;
Stuart Hastings3bf91252010-06-17 22:43:56 +00001892 BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB);
Bill Wendling18ce64e2010-03-05 00:33:59 +00001893 ++Count;
Dan Gohman279c22e2008-10-21 03:29:32 +00001894 break;
Bill Wendling18ce64e2010-03-05 00:33:59 +00001895 default: {
1896 unsigned Opc = GetCondBranchFromCond(CC);
Stuart Hastings3bf91252010-06-17 22:43:56 +00001897 BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
Bill Wendling18ce64e2010-03-05 00:33:59 +00001898 ++Count;
Dan Gohman279c22e2008-10-21 03:29:32 +00001899 }
Bill Wendling18ce64e2010-03-05 00:33:59 +00001900 }
Dan Gohman279c22e2008-10-21 03:29:32 +00001901 if (FBB) {
1902 // Two-way Conditional branch. Insert the second branch.
Stuart Hastings3bf91252010-06-17 22:43:56 +00001903 BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB);
Dan Gohman279c22e2008-10-21 03:29:32 +00001904 ++Count;
1905 }
1906 return Count;
Chris Lattner7fbe9722006-10-20 17:42:20 +00001907}
1908
Dan Gohman6d9305c2009-04-15 00:04:23 +00001909/// isHReg - Test if the given register is a physical h register.
1910static bool isHReg(unsigned Reg) {
Dan Gohman4af325d2009-04-27 16:41:36 +00001911 return X86::GR8_ABCD_HRegClass.contains(Reg);
Dan Gohman6d9305c2009-04-15 00:04:23 +00001912}
1913
Anton Korobeynikovc52bedb2010-08-27 14:43:06 +00001914// Try and copy between VR128/VR64 and GR64 registers.
1915static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg) {
1916 // SrcReg(VR128) -> DestReg(GR64)
1917 // SrcReg(VR64) -> DestReg(GR64)
1918 // SrcReg(GR64) -> DestReg(VR128)
1919 // SrcReg(GR64) -> DestReg(VR64)
1920
1921 if (X86::GR64RegClass.contains(DestReg)) {
1922 if (X86::VR128RegClass.contains(SrcReg)) {
1923 // Copy from a VR128 register to a GR64 register.
1924 return X86::MOVPQIto64rr;
1925 } else if (X86::VR64RegClass.contains(SrcReg)) {
1926 // Copy from a VR64 register to a GR64 register.
1927 return X86::MOVSDto64rr;
1928 }
1929 } else if (X86::GR64RegClass.contains(SrcReg)) {
1930 // Copy from a GR64 register to a VR128 register.
1931 if (X86::VR128RegClass.contains(DestReg))
1932 return X86::MOV64toPQIrr;
1933 // Copy from a GR64 register to a VR64 register.
1934 else if (X86::VR64RegClass.contains(DestReg))
1935 return X86::MOV64toSDrr;
1936 }
1937
1938 return 0;
1939}
1940
Jakob Stoklund Olesen320bdcb2010-07-08 19:46:25 +00001941void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
1942 MachineBasicBlock::iterator MI, DebugLoc DL,
1943 unsigned DestReg, unsigned SrcReg,
1944 bool KillSrc) const {
1945 // First deal with the normal symmetric copies.
1946 unsigned Opc = 0;
1947 if (X86::GR64RegClass.contains(DestReg, SrcReg))
1948 Opc = X86::MOV64rr;
1949 else if (X86::GR32RegClass.contains(DestReg, SrcReg))
1950 Opc = X86::MOV32rr;
1951 else if (X86::GR16RegClass.contains(DestReg, SrcReg))
1952 Opc = X86::MOV16rr;
1953 else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
1954 // Copying to or from a physical H register on x86-64 requires a NOREX
1955 // move. Otherwise use a normal move.
1956 if ((isHReg(DestReg) || isHReg(SrcReg)) &&
1957 TM.getSubtarget<X86Subtarget>().is64Bit())
1958 Opc = X86::MOV8rr_NOREX;
1959 else
1960 Opc = X86::MOV8rr;
1961 } else if (X86::VR128RegClass.contains(DestReg, SrcReg))
Bruno Cardoso Lopes5affa512011-08-31 03:04:09 +00001962 Opc = TM.getSubtarget<X86Subtarget>().hasAVX() ?
1963 X86::VMOVAPSrr : X86::MOVAPSrr;
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +00001964 else if (X86::VR256RegClass.contains(DestReg, SrcReg))
1965 Opc = X86::VMOVAPSYrr;
Jakob Stoklund Olesen61c8ecc2010-07-08 22:30:35 +00001966 else if (X86::VR64RegClass.contains(DestReg, SrcReg))
1967 Opc = X86::MMX_MOVQ64rr;
Anton Korobeynikovc52bedb2010-08-27 14:43:06 +00001968 else
1969 Opc = CopyToFromAsymmetricReg(DestReg, SrcReg);
Jakob Stoklund Olesen320bdcb2010-07-08 19:46:25 +00001970
1971 if (Opc) {
1972 BuildMI(MBB, MI, DL, get(Opc), DestReg)
1973 .addReg(SrcReg, getKillRegState(KillSrc));
1974 return;
1975 }
1976
1977 // Moving EFLAGS to / from another register requires a push and a pop.
1978 if (SrcReg == X86::EFLAGS) {
1979 if (X86::GR64RegClass.contains(DestReg)) {
1980 BuildMI(MBB, MI, DL, get(X86::PUSHF64));
1981 BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
1982 return;
1983 } else if (X86::GR32RegClass.contains(DestReg)) {
1984 BuildMI(MBB, MI, DL, get(X86::PUSHF32));
1985 BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
1986 return;
1987 }
1988 }
1989 if (DestReg == X86::EFLAGS) {
1990 if (X86::GR64RegClass.contains(SrcReg)) {
1991 BuildMI(MBB, MI, DL, get(X86::PUSH64r))
1992 .addReg(SrcReg, getKillRegState(KillSrc));
1993 BuildMI(MBB, MI, DL, get(X86::POPF64));
1994 return;
1995 } else if (X86::GR32RegClass.contains(SrcReg)) {
1996 BuildMI(MBB, MI, DL, get(X86::PUSH32r))
1997 .addReg(SrcReg, getKillRegState(KillSrc));
1998 BuildMI(MBB, MI, DL, get(X86::POPF32));
1999 return;
2000 }
2001 }
2002
2003 DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
2004 << " to " << RI.getName(DestReg) << '\n');
2005 llvm_unreachable("Cannot emit physreg copy instruction");
2006}
2007
Rafael Espindola21d238f2010-06-12 20:13:29 +00002008static unsigned getLoadStoreRegOpcode(unsigned Reg,
2009 const TargetRegisterClass *RC,
2010 bool isStackAligned,
2011 const TargetMachine &TM,
2012 bool load) {
Jakob Stoklund Olesen1f9a09c2011-06-01 15:32:10 +00002013 switch (RC->getSize()) {
Rafael Espindola5a717a32010-07-12 03:43:04 +00002014 default:
Jakob Stoklund Olesen1f9a09c2011-06-01 15:32:10 +00002015 llvm_unreachable("Unknown spill size");
2016 case 1:
2017 assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
Rafael Espindola21d238f2010-06-12 20:13:29 +00002018 if (TM.getSubtarget<X86Subtarget>().is64Bit())
Jakob Stoklund Olesen1f9a09c2011-06-01 15:32:10 +00002019 // Copying to or from a physical H register on x86-64 requires a NOREX
2020 // move. Otherwise use a normal move.
2021 if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
2022 return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
2023 return load ? X86::MOV8rm : X86::MOV8mr;
2024 case 2:
2025 assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
2026 return load ? X86::MOV16rm : X86::MOV16mr;
2027 case 4:
2028 if (X86::GR32RegClass.hasSubClassEq(RC))
2029 return load ? X86::MOV32rm : X86::MOV32mr;
2030 if (X86::FR32RegClass.hasSubClassEq(RC))
2031 return load ? X86::MOVSSrm : X86::MOVSSmr;
2032 if (X86::RFP32RegClass.hasSubClassEq(RC))
2033 return load ? X86::LD_Fp32m : X86::ST_Fp32m;
2034 llvm_unreachable("Unknown 4-byte regclass");
2035 case 8:
2036 if (X86::GR64RegClass.hasSubClassEq(RC))
2037 return load ? X86::MOV64rm : X86::MOV64mr;
2038 if (X86::FR64RegClass.hasSubClassEq(RC))
2039 return load ? X86::MOVSDrm : X86::MOVSDmr;
2040 if (X86::VR64RegClass.hasSubClassEq(RC))
2041 return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
2042 if (X86::RFP64RegClass.hasSubClassEq(RC))
2043 return load ? X86::LD_Fp64m : X86::ST_Fp64m;
2044 llvm_unreachable("Unknown 8-byte regclass");
2045 case 10:
2046 assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
Rafael Espindola21d238f2010-06-12 20:13:29 +00002047 return load ? X86::LD_Fp80m : X86::ST_FpP80m;
Bruno Cardoso Lopes5affa512011-08-31 03:04:09 +00002048 case 16: {
Jakob Stoklund Olesen1f9a09c2011-06-01 15:32:10 +00002049 assert(X86::VR128RegClass.hasSubClassEq(RC) && "Unknown 16-byte regclass");
Bruno Cardoso Lopes5affa512011-08-31 03:04:09 +00002050 bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
Rafael Espindola21d238f2010-06-12 20:13:29 +00002051 // If stack is realigned we can use aligned stores.
2052 if (isStackAligned)
Bruno Cardoso Lopes5affa512011-08-31 03:04:09 +00002053 return load ?
2054 (HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) :
2055 (HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr);
Rafael Espindola21d238f2010-06-12 20:13:29 +00002056 else
Bruno Cardoso Lopes5affa512011-08-31 03:04:09 +00002057 return load ?
2058 (HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) :
2059 (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr);
2060 }
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +00002061 case 32:
2062 assert(X86::VR256RegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
2063 // If stack is realigned we can use aligned stores.
2064 if (isStackAligned)
2065 return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr;
2066 else
2067 return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr;
Rafael Espindola21d238f2010-06-12 20:13:29 +00002068 }
2069}
2070
Dan Gohman4af325d2009-04-27 16:41:36 +00002071static unsigned getStoreRegOpcode(unsigned SrcReg,
2072 const TargetRegisterClass *RC,
2073 bool isStackAligned,
2074 TargetMachine &TM) {
Rafael Espindola21d238f2010-06-12 20:13:29 +00002075 return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, TM, false);
2076}
Owen Andersonf6372aa2008-01-01 21:11:32 +00002077
Rafael Espindola21d238f2010-06-12 20:13:29 +00002078
2079static unsigned getLoadRegOpcode(unsigned DestReg,
2080 const TargetRegisterClass *RC,
2081 bool isStackAligned,
2082 const TargetMachine &TM) {
2083 return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, TM, true);
Owen Andersonf6372aa2008-01-01 21:11:32 +00002084}
2085
2086void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
2087 MachineBasicBlock::iterator MI,
2088 unsigned SrcReg, bool isKill, int FrameIdx,
Evan Cheng746ad692010-05-06 19:06:44 +00002089 const TargetRegisterClass *RC,
2090 const TargetRegisterInfo *TRI) const {
Anton Korobeynikov88bbf692008-07-19 06:30:51 +00002091 const MachineFunction &MF = *MBB.getParent();
Jakob Stoklund Olesen516cd452010-07-27 04:16:58 +00002092 assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
2093 "Stack slot too small for store");
Evan Cheng2fa82bc2011-06-23 01:53:43 +00002094 bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= 16) ||
2095 RI.canRealignStack(MF);
Dan Gohman4af325d2009-04-27 16:41:36 +00002096 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
Dale Johannesen6ec25f52010-01-26 00:03:12 +00002097 DebugLoc DL = MBB.findDebugLoc(MI);
Bill Wendlingfbef3102009-02-11 21:51:19 +00002098 addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
Bill Wendling587daed2009-05-13 21:33:08 +00002099 .addReg(SrcReg, getKillRegState(isKill));
Owen Andersonf6372aa2008-01-01 21:11:32 +00002100}
2101
2102void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
2103 bool isKill,
2104 SmallVectorImpl<MachineOperand> &Addr,
2105 const TargetRegisterClass *RC,
Dan Gohman91e69c32009-10-09 18:10:05 +00002106 MachineInstr::mmo_iterator MMOBegin,
2107 MachineInstr::mmo_iterator MMOEnd,
Owen Andersonf6372aa2008-01-01 21:11:32 +00002108 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Dan Gohmaned42f1e2010-07-12 18:12:35 +00002109 bool isAligned = MMOBegin != MMOEnd && (*MMOBegin)->getAlignment() >= 16;
Dan Gohman4af325d2009-04-27 16:41:36 +00002110 unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
Chris Lattnerc7f3ace2010-04-02 20:16:16 +00002111 DebugLoc DL;
Dale Johannesen21b55412009-02-12 23:08:38 +00002112 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
Owen Andersonf6372aa2008-01-01 21:11:32 +00002113 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
Dan Gohman97357612009-02-18 05:45:50 +00002114 MIB.addOperand(Addr[i]);
Bill Wendling587daed2009-05-13 21:33:08 +00002115 MIB.addReg(SrcReg, getKillRegState(isKill));
Dan Gohman91e69c32009-10-09 18:10:05 +00002116 (*MIB).setMemRefs(MMOBegin, MMOEnd);
Owen Andersonf6372aa2008-01-01 21:11:32 +00002117 NewMIs.push_back(MIB);
2118}
2119
Owen Andersonf6372aa2008-01-01 21:11:32 +00002120
2121void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
Anton Korobeynikov88bbf692008-07-19 06:30:51 +00002122 MachineBasicBlock::iterator MI,
2123 unsigned DestReg, int FrameIdx,
Evan Cheng746ad692010-05-06 19:06:44 +00002124 const TargetRegisterClass *RC,
2125 const TargetRegisterInfo *TRI) const {
Anton Korobeynikov88bbf692008-07-19 06:30:51 +00002126 const MachineFunction &MF = *MBB.getParent();
Evan Cheng2fa82bc2011-06-23 01:53:43 +00002127 bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= 16) ||
2128 RI.canRealignStack(MF);
Dan Gohman4af325d2009-04-27 16:41:36 +00002129 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
Dale Johannesen6ec25f52010-01-26 00:03:12 +00002130 DebugLoc DL = MBB.findDebugLoc(MI);
Bill Wendlingfbef3102009-02-11 21:51:19 +00002131 addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
Owen Andersonf6372aa2008-01-01 21:11:32 +00002132}
2133
2134void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
Evan Cheng9f1c8312008-07-03 09:09:37 +00002135 SmallVectorImpl<MachineOperand> &Addr,
2136 const TargetRegisterClass *RC,
Dan Gohman91e69c32009-10-09 18:10:05 +00002137 MachineInstr::mmo_iterator MMOBegin,
2138 MachineInstr::mmo_iterator MMOEnd,
Owen Andersonf6372aa2008-01-01 21:11:32 +00002139 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Dan Gohmaned42f1e2010-07-12 18:12:35 +00002140 bool isAligned = MMOBegin != MMOEnd && (*MMOBegin)->getAlignment() >= 16;
Dan Gohman4af325d2009-04-27 16:41:36 +00002141 unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
Chris Lattnerc7f3ace2010-04-02 20:16:16 +00002142 DebugLoc DL;
Dale Johannesen21b55412009-02-12 23:08:38 +00002143 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
Owen Andersonf6372aa2008-01-01 21:11:32 +00002144 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
Dan Gohman97357612009-02-18 05:45:50 +00002145 MIB.addOperand(Addr[i]);
Dan Gohman91e69c32009-10-09 18:10:05 +00002146 (*MIB).setMemRefs(MMOBegin, MMOEnd);
Owen Andersonf6372aa2008-01-01 21:11:32 +00002147 NewMIs.push_back(MIB);
2148}
2149
Evan Cheng962021b2010-04-26 07:38:55 +00002150MachineInstr*
2151X86InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
Evan Cheng8601a3d2010-04-29 01:13:30 +00002152 int FrameIx, uint64_t Offset,
Evan Cheng962021b2010-04-26 07:38:55 +00002153 const MDNode *MDPtr,
2154 DebugLoc DL) const {
Evan Cheng962021b2010-04-26 07:38:55 +00002155 X86AddressMode AM;
2156 AM.BaseType = X86AddressMode::FrameIndexBase;
2157 AM.Base.FrameIndex = FrameIx;
2158 MachineInstrBuilder MIB = BuildMI(MF, DL, get(X86::DBG_VALUE));
2159 addFullAddress(MIB, AM).addImm(Offset).addMetadata(MDPtr);
2160 return &*MIB;
2161}
2162
Dan Gohman8e5f2c62008-07-07 23:14:23 +00002163static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
Dan Gohmand68a0762009-01-05 17:59:02 +00002164 const SmallVectorImpl<MachineOperand> &MOs,
Bill Wendling9bc96a52009-02-03 00:55:04 +00002165 MachineInstr *MI,
2166 const TargetInstrInfo &TII) {
Owen Anderson43dbe052008-01-07 01:35:02 +00002167 // Create the base instruction with the memory operand as the first part.
Bill Wendling9bc96a52009-02-03 00:55:04 +00002168 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2169 MI->getDebugLoc(), true);
Owen Anderson43dbe052008-01-07 01:35:02 +00002170 MachineInstrBuilder MIB(NewMI);
2171 unsigned NumAddrOps = MOs.size();
2172 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohman97357612009-02-18 05:45:50 +00002173 MIB.addOperand(MOs[i]);
Owen Anderson43dbe052008-01-07 01:35:02 +00002174 if (NumAddrOps < 4) // FrameIndex only
Rafael Espindola094fad32009-04-08 21:14:34 +00002175 addOffset(MIB, 0);
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002176
Owen Anderson43dbe052008-01-07 01:35:02 +00002177 // Loop over the rest of the ri operands, converting them over.
Chris Lattner749c6f62008-01-07 07:27:27 +00002178 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson43dbe052008-01-07 01:35:02 +00002179 for (unsigned i = 0; i != NumOps; ++i) {
2180 MachineOperand &MO = MI->getOperand(i+2);
Dan Gohman97357612009-02-18 05:45:50 +00002181 MIB.addOperand(MO);
Owen Anderson43dbe052008-01-07 01:35:02 +00002182 }
2183 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
2184 MachineOperand &MO = MI->getOperand(i);
Dan Gohman97357612009-02-18 05:45:50 +00002185 MIB.addOperand(MO);
Owen Anderson43dbe052008-01-07 01:35:02 +00002186 }
2187 return MIB;
2188}
2189
Dan Gohman8e5f2c62008-07-07 23:14:23 +00002190static MachineInstr *FuseInst(MachineFunction &MF,
2191 unsigned Opcode, unsigned OpNo,
Dan Gohmand68a0762009-01-05 17:59:02 +00002192 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson43dbe052008-01-07 01:35:02 +00002193 MachineInstr *MI, const TargetInstrInfo &TII) {
Bill Wendling9bc96a52009-02-03 00:55:04 +00002194 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2195 MI->getDebugLoc(), true);
Owen Anderson43dbe052008-01-07 01:35:02 +00002196 MachineInstrBuilder MIB(NewMI);
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002197
Owen Anderson43dbe052008-01-07 01:35:02 +00002198 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2199 MachineOperand &MO = MI->getOperand(i);
2200 if (i == OpNo) {
Dan Gohmand735b802008-10-03 15:45:36 +00002201 assert(MO.isReg() && "Expected to fold into reg operand!");
Owen Anderson43dbe052008-01-07 01:35:02 +00002202 unsigned NumAddrOps = MOs.size();
2203 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohman97357612009-02-18 05:45:50 +00002204 MIB.addOperand(MOs[i]);
Owen Anderson43dbe052008-01-07 01:35:02 +00002205 if (NumAddrOps < 4) // FrameIndex only
Rafael Espindola094fad32009-04-08 21:14:34 +00002206 addOffset(MIB, 0);
Owen Anderson43dbe052008-01-07 01:35:02 +00002207 } else {
Dan Gohman97357612009-02-18 05:45:50 +00002208 MIB.addOperand(MO);
Owen Anderson43dbe052008-01-07 01:35:02 +00002209 }
2210 }
2211 return MIB;
2212}
2213
2214static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
Dan Gohmand68a0762009-01-05 17:59:02 +00002215 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson43dbe052008-01-07 01:35:02 +00002216 MachineInstr *MI) {
Dan Gohman8e5f2c62008-07-07 23:14:23 +00002217 MachineFunction &MF = *MI->getParent()->getParent();
Bill Wendlingfbef3102009-02-11 21:51:19 +00002218 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
Owen Anderson43dbe052008-01-07 01:35:02 +00002219
2220 unsigned NumAddrOps = MOs.size();
2221 for (unsigned i = 0; i != NumAddrOps; ++i)
Dan Gohman97357612009-02-18 05:45:50 +00002222 MIB.addOperand(MOs[i]);
Owen Anderson43dbe052008-01-07 01:35:02 +00002223 if (NumAddrOps < 4) // FrameIndex only
Rafael Espindola094fad32009-04-08 21:14:34 +00002224 addOffset(MIB, 0);
Owen Anderson43dbe052008-01-07 01:35:02 +00002225 return MIB.addImm(0);
2226}
2227
2228MachineInstr*
Dan Gohmanc54baa22008-12-03 18:43:12 +00002229X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2230 MachineInstr *MI, unsigned i,
Evan Chengf9b36f02009-07-15 06:10:07 +00002231 const SmallVectorImpl<MachineOperand> &MOs,
Evan Cheng9cef48e2009-09-11 00:39:26 +00002232 unsigned Size, unsigned Align) const {
Chris Lattner45a1cb22010-10-07 23:08:41 +00002233 const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
Owen Anderson43dbe052008-01-07 01:35:02 +00002234 bool isTwoAddrFold = false;
Chris Lattner749c6f62008-01-07 07:27:27 +00002235 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson43dbe052008-01-07 01:35:02 +00002236 bool isTwoAddr = NumOps > 1 &&
Evan Chenge837dea2011-06-28 19:10:37 +00002237 MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
Owen Anderson43dbe052008-01-07 01:35:02 +00002238
Jakob Stoklund Olesen60045c22011-04-30 23:00:05 +00002239 // FIXME: AsmPrinter doesn't know how to handle
2240 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
2241 if (MI->getOpcode() == X86::ADD32ri &&
2242 MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
2243 return NULL;
2244
Owen Anderson43dbe052008-01-07 01:35:02 +00002245 MachineInstr *NewMI = NULL;
2246 // Folding a memory location into the two-address part of a two-address
2247 // instruction is different than folding it other places. It requires
2248 // replacing the *two* registers with the memory location.
2249 if (isTwoAddr && NumOps >= 2 && i < 2 &&
Dan Gohmand735b802008-10-03 15:45:36 +00002250 MI->getOperand(0).isReg() &&
2251 MI->getOperand(1).isReg() &&
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002252 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
Owen Anderson43dbe052008-01-07 01:35:02 +00002253 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2254 isTwoAddrFold = true;
2255 } else if (i == 0) { // If operand 0
Dan Gohmanf1b4d262010-01-12 04:42:54 +00002256 if (MI->getOpcode() == X86::MOV64r0)
2257 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
2258 else if (MI->getOpcode() == X86::MOV32r0)
Owen Anderson43dbe052008-01-07 01:35:02 +00002259 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
Dan Gohmanf1b4d262010-01-12 04:42:54 +00002260 else if (MI->getOpcode() == X86::MOV16r0)
2261 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
Owen Anderson43dbe052008-01-07 01:35:02 +00002262 else if (MI->getOpcode() == X86::MOV8r0)
2263 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
Evan Cheng9f1c8312008-07-03 09:09:37 +00002264 if (NewMI)
Owen Anderson43dbe052008-01-07 01:35:02 +00002265 return NewMI;
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002266
Owen Anderson43dbe052008-01-07 01:35:02 +00002267 OpcodeTablePtr = &RegOp2MemOpTable0;
2268 } else if (i == 1) {
2269 OpcodeTablePtr = &RegOp2MemOpTable1;
2270 } else if (i == 2) {
2271 OpcodeTablePtr = &RegOp2MemOpTable2;
2272 }
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002273
Owen Anderson43dbe052008-01-07 01:35:02 +00002274 // If table selected...
2275 if (OpcodeTablePtr) {
2276 // Find the Opcode to fuse
Chris Lattner45a1cb22010-10-07 23:08:41 +00002277 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
2278 OpcodeTablePtr->find(MI->getOpcode());
Owen Anderson43dbe052008-01-07 01:35:02 +00002279 if (I != OpcodeTablePtr->end()) {
Evan Cheng9cef48e2009-09-11 00:39:26 +00002280 unsigned Opcode = I->second.first;
Evan Chengf9b36f02009-07-15 06:10:07 +00002281 unsigned MinAlign = I->second.second;
2282 if (Align < MinAlign)
2283 return NULL;
Evan Cheng879caea2009-09-11 01:01:31 +00002284 bool NarrowToMOV32rm = false;
Evan Cheng9cef48e2009-09-11 00:39:26 +00002285 if (Size) {
Evan Cheng15993f82011-06-27 21:26:13 +00002286 unsigned RCSize = getRegClass(MI->getDesc(), i, &RI)->getSize();
Evan Cheng9cef48e2009-09-11 00:39:26 +00002287 if (Size < RCSize) {
2288 // Check if it's safe to fold the load. If the size of the object is
2289 // narrower than the load width, then it's not.
2290 if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
2291 return NULL;
2292 // If this is a 64-bit load, but the spill slot is 32, then we can do
2293 // a 32-bit load which is implicitly zero-extended. This likely is due
2294 // to liveintervalanalysis remat'ing a load from stack slot.
Evan Cheng879caea2009-09-11 01:01:31 +00002295 if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
2296 return NULL;
Evan Cheng9cef48e2009-09-11 00:39:26 +00002297 Opcode = X86::MOV32rm;
Evan Cheng879caea2009-09-11 01:01:31 +00002298 NarrowToMOV32rm = true;
Evan Cheng9cef48e2009-09-11 00:39:26 +00002299 }
2300 }
2301
Owen Anderson43dbe052008-01-07 01:35:02 +00002302 if (isTwoAddrFold)
Evan Cheng9cef48e2009-09-11 00:39:26 +00002303 NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
Owen Anderson43dbe052008-01-07 01:35:02 +00002304 else
Evan Cheng9cef48e2009-09-11 00:39:26 +00002305 NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
Evan Cheng879caea2009-09-11 01:01:31 +00002306
2307 if (NarrowToMOV32rm) {
2308 // If this is the special case where we use a MOV32rm to load a 32-bit
2309 // value and zero-extend the top bits. Change the destination register
2310 // to a 32-bit one.
2311 unsigned DstReg = NewMI->getOperand(0).getReg();
2312 if (TargetRegisterInfo::isPhysicalRegister(DstReg))
2313 NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
Jakob Stoklund Olesen3458e9e2010-05-24 14:48:17 +00002314 X86::sub_32bit));
Evan Cheng879caea2009-09-11 01:01:31 +00002315 else
Jakob Stoklund Olesen3458e9e2010-05-24 14:48:17 +00002316 NewMI->getOperand(0).setSubReg(X86::sub_32bit);
Evan Cheng879caea2009-09-11 01:01:31 +00002317 }
Owen Anderson43dbe052008-01-07 01:35:02 +00002318 return NewMI;
2319 }
2320 }
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002321
2322 // No fusion
Jakob Stoklund Olesen9c50e8b2010-07-09 20:43:09 +00002323 if (PrintFailedFusing && !MI->isCopy())
David Greene5b901322010-01-05 01:29:29 +00002324 dbgs() << "We failed to fuse operand " << i << " in " << *MI;
Owen Anderson43dbe052008-01-07 01:35:02 +00002325 return NULL;
2326}
2327
2328
Dan Gohmanc54baa22008-12-03 18:43:12 +00002329MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2330 MachineInstr *MI,
Evan Chengf9b36f02009-07-15 06:10:07 +00002331 const SmallVectorImpl<unsigned> &Ops,
Dan Gohmanc54baa22008-12-03 18:43:12 +00002332 int FrameIndex) const {
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002333 // Check switch flag
Owen Anderson43dbe052008-01-07 01:35:02 +00002334 if (NoFusing) return NULL;
2335
Evan Chengb1f49812009-12-22 17:47:23 +00002336 if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
Evan Cheng400073d2009-12-18 07:40:29 +00002337 switch (MI->getOpcode()) {
2338 case X86::CVTSD2SSrr:
2339 case X86::Int_CVTSD2SSrr:
2340 case X86::CVTSS2SDrr:
2341 case X86::Int_CVTSS2SDrr:
2342 case X86::RCPSSr:
2343 case X86::RCPSSr_Int:
Chris Lattnerb2ef4c12010-09-29 02:57:56 +00002344 case X86::ROUNDSDr:
2345 case X86::ROUNDSSr:
Evan Cheng400073d2009-12-18 07:40:29 +00002346 case X86::RSQRTSSr:
2347 case X86::RSQRTSSr_Int:
2348 case X86::SQRTSSr:
2349 case X86::SQRTSSr_Int:
2350 return 0;
2351 }
2352
Evan Cheng5fd79d02008-02-08 21:20:40 +00002353 const MachineFrameInfo *MFI = MF.getFrameInfo();
Evan Cheng9cef48e2009-09-11 00:39:26 +00002354 unsigned Size = MFI->getObjectSize(FrameIndex);
Evan Cheng5fd79d02008-02-08 21:20:40 +00002355 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
Owen Anderson43dbe052008-01-07 01:35:02 +00002356 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2357 unsigned NewOpc = 0;
Evan Cheng9cef48e2009-09-11 00:39:26 +00002358 unsigned RCSize = 0;
Owen Anderson43dbe052008-01-07 01:35:02 +00002359 switch (MI->getOpcode()) {
2360 default: return NULL;
Evan Cheng9cef48e2009-09-11 00:39:26 +00002361 case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break;
Dan Gohmane5efbaf2010-05-18 21:42:03 +00002362 case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
2363 case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
2364 case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
Owen Anderson43dbe052008-01-07 01:35:02 +00002365 }
Evan Cheng9cef48e2009-09-11 00:39:26 +00002366 // Check if it's safe to fold the load. If the size of the object is
2367 // narrower than the load width, then it's not.
2368 if (Size < RCSize)
2369 return NULL;
Owen Anderson43dbe052008-01-07 01:35:02 +00002370 // Change to CMPXXri r, 0 first.
Chris Lattner5080f4d2008-01-11 18:10:50 +00002371 MI->setDesc(get(NewOpc));
Owen Anderson43dbe052008-01-07 01:35:02 +00002372 MI->getOperand(1).ChangeToImmediate(0);
2373 } else if (Ops.size() != 1)
2374 return NULL;
2375
2376 SmallVector<MachineOperand,4> MOs;
2377 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
Evan Cheng9cef48e2009-09-11 00:39:26 +00002378 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
Owen Anderson43dbe052008-01-07 01:35:02 +00002379}
2380
Dan Gohmanc54baa22008-12-03 18:43:12 +00002381MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2382 MachineInstr *MI,
Evan Chengf9b36f02009-07-15 06:10:07 +00002383 const SmallVectorImpl<unsigned> &Ops,
Dan Gohmanc54baa22008-12-03 18:43:12 +00002384 MachineInstr *LoadMI) const {
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002385 // Check switch flag
Owen Anderson43dbe052008-01-07 01:35:02 +00002386 if (NoFusing) return NULL;
2387
Evan Chengb1f49812009-12-22 17:47:23 +00002388 if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
Evan Cheng400073d2009-12-18 07:40:29 +00002389 switch (MI->getOpcode()) {
2390 case X86::CVTSD2SSrr:
2391 case X86::Int_CVTSD2SSrr:
2392 case X86::CVTSS2SDrr:
2393 case X86::Int_CVTSS2SDrr:
2394 case X86::RCPSSr:
2395 case X86::RCPSSr_Int:
Chris Lattnerb2ef4c12010-09-29 02:57:56 +00002396 case X86::ROUNDSDr:
2397 case X86::ROUNDSSr:
Evan Cheng400073d2009-12-18 07:40:29 +00002398 case X86::RSQRTSSr:
2399 case X86::RSQRTSSr_Int:
2400 case X86::SQRTSSr:
2401 case X86::SQRTSSr_Int:
2402 return 0;
2403 }
2404
Dan Gohmancddc11e2008-07-12 00:10:52 +00002405 // Determine the alignment of the load.
Evan Cheng5fd79d02008-02-08 21:20:40 +00002406 unsigned Alignment = 0;
Dan Gohmancddc11e2008-07-12 00:10:52 +00002407 if (LoadMI->hasOneMemOperand())
Dan Gohmanc76909a2009-09-25 20:36:54 +00002408 Alignment = (*LoadMI->memoperands_begin())->getAlignment();
Dan Gohman4a0b3e12009-09-21 18:30:38 +00002409 else
2410 switch (LoadMI->getOpcode()) {
Bruno Cardoso Lopes642eb022010-08-12 20:20:53 +00002411 case X86::AVX_SET0PSY:
2412 case X86::AVX_SET0PDY:
2413 Alignment = 32;
2414 break;
Jakob Stoklund Olesend363b4e2010-03-31 00:40:13 +00002415 case X86::V_SET0PS:
2416 case X86::V_SET0PD:
2417 case X86::V_SET0PI:
Dan Gohman4a0b3e12009-09-21 18:30:38 +00002418 case X86::V_SETALLONES:
Bruno Cardoso Lopes642eb022010-08-12 20:20:53 +00002419 case X86::AVX_SET0PS:
2420 case X86::AVX_SET0PD:
2421 case X86::AVX_SET0PI:
Bruno Cardoso Lopes863bd9d2011-07-25 23:05:32 +00002422 case X86::AVX_SETALLONES:
Dan Gohman4a0b3e12009-09-21 18:30:38 +00002423 Alignment = 16;
2424 break;
2425 case X86::FsFLD0SD:
Nate Begeman3c497062010-12-09 21:43:51 +00002426 case X86::VFsFLD0SD:
Dan Gohman4a0b3e12009-09-21 18:30:38 +00002427 Alignment = 8;
2428 break;
2429 case X86::FsFLD0SS:
Nate Begeman3c497062010-12-09 21:43:51 +00002430 case X86::VFsFLD0SS:
Dan Gohman4a0b3e12009-09-21 18:30:38 +00002431 Alignment = 4;
2432 break;
2433 default:
Eli Friedmanbe5cbaa2011-06-10 01:13:01 +00002434 return 0;
Dan Gohman4a0b3e12009-09-21 18:30:38 +00002435 }
Owen Anderson43dbe052008-01-07 01:35:02 +00002436 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2437 unsigned NewOpc = 0;
2438 switch (MI->getOpcode()) {
2439 default: return NULL;
2440 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
Dan Gohmanf8c1ef02010-05-18 21:54:15 +00002441 case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
2442 case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
2443 case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
Owen Anderson43dbe052008-01-07 01:35:02 +00002444 }
2445 // Change to CMPXXri r, 0 first.
Chris Lattner5080f4d2008-01-11 18:10:50 +00002446 MI->setDesc(get(NewOpc));
Owen Anderson43dbe052008-01-07 01:35:02 +00002447 MI->getOperand(1).ChangeToImmediate(0);
2448 } else if (Ops.size() != 1)
2449 return NULL;
2450
Jakob Stoklund Olesend29583b2010-08-11 23:08:22 +00002451 // Make sure the subregisters match.
2452 // Otherwise we risk changing the size of the load.
2453 if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg())
2454 return NULL;
2455
Chris Lattnerac0ed5d2010-07-08 22:41:28 +00002456 SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
Dan Gohman4a0b3e12009-09-21 18:30:38 +00002457 switch (LoadMI->getOpcode()) {
Jakob Stoklund Olesend363b4e2010-03-31 00:40:13 +00002458 case X86::V_SET0PS:
2459 case X86::V_SET0PD:
2460 case X86::V_SET0PI:
Dan Gohman4a0b3e12009-09-21 18:30:38 +00002461 case X86::V_SETALLONES:
Bruno Cardoso Lopes642eb022010-08-12 20:20:53 +00002462 case X86::AVX_SET0PS:
2463 case X86::AVX_SET0PD:
2464 case X86::AVX_SET0PI:
2465 case X86::AVX_SET0PSY:
2466 case X86::AVX_SET0PDY:
Bruno Cardoso Lopes863bd9d2011-07-25 23:05:32 +00002467 case X86::AVX_SETALLONES:
Dan Gohman4a0b3e12009-09-21 18:30:38 +00002468 case X86::FsFLD0SD:
Bruno Cardoso Lopesdad38632011-07-22 20:53:20 +00002469 case X86::FsFLD0SS:
2470 case X86::VFsFLD0SD:
2471 case X86::VFsFLD0SS: {
Jakob Stoklund Olesend363b4e2010-03-31 00:40:13 +00002472 // Folding a V_SET0P? or V_SETALLONES as a load, to ease register pressure.
Dan Gohman62c939d2008-12-03 05:21:24 +00002473 // Create a constant-pool entry and operands to load from it.
2474
Dan Gohman81d0c362010-03-09 03:01:40 +00002475 // Medium and large mode can't fold loads this way.
2476 if (TM.getCodeModel() != CodeModel::Small &&
2477 TM.getCodeModel() != CodeModel::Kernel)
2478 return NULL;
2479
Dan Gohman62c939d2008-12-03 05:21:24 +00002480 // x86-32 PIC requires a PIC base register for constant pools.
2481 unsigned PICBase = 0;
Jakob Stoklund Olesen93e55de2009-07-16 21:24:13 +00002482 if (TM.getRelocationModel() == Reloc::PIC_) {
Evan Cheng2b48ab92009-07-16 18:44:05 +00002483 if (TM.getSubtarget<X86Subtarget>().is64Bit())
2484 PICBase = X86::RIP;
Jakob Stoklund Olesen93e55de2009-07-16 21:24:13 +00002485 else
Dan Gohman84023e02010-07-10 09:00:22 +00002486 // FIXME: PICBase = getGlobalBaseReg(&MF);
Evan Cheng2b48ab92009-07-16 18:44:05 +00002487 // This doesn't work for several reasons.
2488 // 1. GlobalBaseReg may have been spilled.
2489 // 2. It may not be live at MI.
Dan Gohman4a0b3e12009-09-21 18:30:38 +00002490 return NULL;
Jakob Stoklund Olesen93e55de2009-07-16 21:24:13 +00002491 }
Dan Gohman62c939d2008-12-03 05:21:24 +00002492
Dan Gohman4a0b3e12009-09-21 18:30:38 +00002493 // Create a constant-pool entry.
Dan Gohman62c939d2008-12-03 05:21:24 +00002494 MachineConstantPool &MCP = *MF.getConstantPool();
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002495 Type *Ty;
Bruno Cardoso Lopes642eb022010-08-12 20:20:53 +00002496 unsigned Opc = LoadMI->getOpcode();
Nate Begeman3c497062010-12-09 21:43:51 +00002497 if (Opc == X86::FsFLD0SS || Opc == X86::VFsFLD0SS)
Dan Gohman4a0b3e12009-09-21 18:30:38 +00002498 Ty = Type::getFloatTy(MF.getFunction()->getContext());
Nate Begeman3c497062010-12-09 21:43:51 +00002499 else if (Opc == X86::FsFLD0SD || Opc == X86::VFsFLD0SD)
Dan Gohman4a0b3e12009-09-21 18:30:38 +00002500 Ty = Type::getDoubleTy(MF.getFunction()->getContext());
Bruno Cardoso Lopes642eb022010-08-12 20:20:53 +00002501 else if (Opc == X86::AVX_SET0PSY || Opc == X86::AVX_SET0PDY)
2502 Ty = VectorType::get(Type::getFloatTy(MF.getFunction()->getContext()), 8);
Dan Gohman4a0b3e12009-09-21 18:30:38 +00002503 else
2504 Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
Bruno Cardoso Lopes863bd9d2011-07-25 23:05:32 +00002505
2506 bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX_SETALLONES);
2507 const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
2508 Constant::getNullValue(Ty);
Dan Gohman4a0b3e12009-09-21 18:30:38 +00002509 unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
Dan Gohman62c939d2008-12-03 05:21:24 +00002510
2511 // Create operands to load from the constant pool entry.
2512 MOs.push_back(MachineOperand::CreateReg(PICBase, false));
2513 MOs.push_back(MachineOperand::CreateImm(1));
2514 MOs.push_back(MachineOperand::CreateReg(0, false));
2515 MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
Rafael Espindola094fad32009-04-08 21:14:34 +00002516 MOs.push_back(MachineOperand::CreateReg(0, false));
Dan Gohman4a0b3e12009-09-21 18:30:38 +00002517 break;
2518 }
2519 default: {
Dan Gohman62c939d2008-12-03 05:21:24 +00002520 // Folding a normal load. Just copy the load's address operands.
2521 unsigned NumOps = LoadMI->getDesc().getNumOperands();
Chris Lattnerac0ed5d2010-07-08 22:41:28 +00002522 for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
Dan Gohman62c939d2008-12-03 05:21:24 +00002523 MOs.push_back(LoadMI->getOperand(i));
Dan Gohman4a0b3e12009-09-21 18:30:38 +00002524 break;
2525 }
Dan Gohman62c939d2008-12-03 05:21:24 +00002526 }
Evan Cheng9cef48e2009-09-11 00:39:26 +00002527 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
Owen Anderson43dbe052008-01-07 01:35:02 +00002528}
2529
2530
Dan Gohman8e8b8a22008-10-16 01:49:15 +00002531bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2532 const SmallVectorImpl<unsigned> &Ops) const {
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002533 // Check switch flag
Owen Anderson43dbe052008-01-07 01:35:02 +00002534 if (NoFusing) return 0;
2535
2536 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2537 switch (MI->getOpcode()) {
2538 default: return false;
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002539 case X86::TEST8rr:
Owen Anderson43dbe052008-01-07 01:35:02 +00002540 case X86::TEST16rr:
2541 case X86::TEST32rr:
2542 case X86::TEST64rr:
2543 return true;
Jakob Stoklund Olesen60045c22011-04-30 23:00:05 +00002544 case X86::ADD32ri:
2545 // FIXME: AsmPrinter doesn't know how to handle
2546 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
2547 if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
2548 return false;
2549 break;
Owen Anderson43dbe052008-01-07 01:35:02 +00002550 }
2551 }
2552
2553 if (Ops.size() != 1)
2554 return false;
2555
2556 unsigned OpNum = Ops[0];
2557 unsigned Opc = MI->getOpcode();
Chris Lattner749c6f62008-01-07 07:27:27 +00002558 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson43dbe052008-01-07 01:35:02 +00002559 bool isTwoAddr = NumOps > 1 &&
Evan Chenge837dea2011-06-28 19:10:37 +00002560 MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
Owen Anderson43dbe052008-01-07 01:35:02 +00002561
2562 // Folding a memory location into the two-address part of a two-address
2563 // instruction is different than folding it other places. It requires
2564 // replacing the *two* registers with the memory location.
Chris Lattner45a1cb22010-10-07 23:08:41 +00002565 const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002566 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
Owen Anderson43dbe052008-01-07 01:35:02 +00002567 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2568 } else if (OpNum == 0) { // If operand 0
2569 switch (Opc) {
Chris Lattner9ac75422009-07-14 20:19:57 +00002570 case X86::MOV8r0:
Dan Gohmanf1b4d262010-01-12 04:42:54 +00002571 case X86::MOV16r0:
Owen Anderson43dbe052008-01-07 01:35:02 +00002572 case X86::MOV32r0:
Chris Lattner45a1cb22010-10-07 23:08:41 +00002573 case X86::MOV64r0: return true;
Owen Anderson43dbe052008-01-07 01:35:02 +00002574 default: break;
2575 }
2576 OpcodeTablePtr = &RegOp2MemOpTable0;
2577 } else if (OpNum == 1) {
2578 OpcodeTablePtr = &RegOp2MemOpTable1;
2579 } else if (OpNum == 2) {
2580 OpcodeTablePtr = &RegOp2MemOpTable2;
2581 }
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002582
Chris Lattner99ae6652010-10-08 03:54:52 +00002583 if (OpcodeTablePtr && OpcodeTablePtr->count(Opc))
2584 return true;
Jakob Stoklund Olesen1f323402010-07-09 20:43:13 +00002585 return TargetInstrInfoImpl::canFoldMemoryOperand(MI, Ops);
Owen Anderson43dbe052008-01-07 01:35:02 +00002586}
2587
2588bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2589 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
Bill Wendlingfbef3102009-02-11 21:51:19 +00002590 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Chris Lattner45a1cb22010-10-07 23:08:41 +00002591 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
2592 MemOp2RegOpTable.find(MI->getOpcode());
Owen Anderson43dbe052008-01-07 01:35:02 +00002593 if (I == MemOp2RegOpTable.end())
2594 return false;
2595 unsigned Opc = I->second.first;
2596 unsigned Index = I->second.second & 0xf;
2597 bool FoldedLoad = I->second.second & (1 << 4);
2598 bool FoldedStore = I->second.second & (1 << 5);
2599 if (UnfoldLoad && !FoldedLoad)
2600 return false;
2601 UnfoldLoad &= FoldedLoad;
2602 if (UnfoldStore && !FoldedStore)
2603 return false;
2604 UnfoldStore &= FoldedStore;
2605
Evan Chenge837dea2011-06-28 19:10:37 +00002606 const MCInstrDesc &MCID = get(Opc);
2607 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI);
Evan Cheng98ec91e2010-07-02 20:36:18 +00002608 if (!MI->hasOneMemOperand() &&
2609 RC == &X86::VR128RegClass &&
2610 !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
2611 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
2612 // conservatively assume the address is unaligned. That's bad for
2613 // performance.
2614 return false;
Chris Lattnerac0ed5d2010-07-08 22:41:28 +00002615 SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
Owen Anderson43dbe052008-01-07 01:35:02 +00002616 SmallVector<MachineOperand,2> BeforeOps;
2617 SmallVector<MachineOperand,2> AfterOps;
2618 SmallVector<MachineOperand,4> ImpOps;
2619 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2620 MachineOperand &Op = MI->getOperand(i);
Chris Lattnerac0ed5d2010-07-08 22:41:28 +00002621 if (i >= Index && i < Index + X86::AddrNumOperands)
Owen Anderson43dbe052008-01-07 01:35:02 +00002622 AddrOps.push_back(Op);
Dan Gohmand735b802008-10-03 15:45:36 +00002623 else if (Op.isReg() && Op.isImplicit())
Owen Anderson43dbe052008-01-07 01:35:02 +00002624 ImpOps.push_back(Op);
2625 else if (i < Index)
2626 BeforeOps.push_back(Op);
2627 else if (i > Index)
2628 AfterOps.push_back(Op);
2629 }
2630
2631 // Emit the load instruction.
2632 if (UnfoldLoad) {
Dan Gohman91e69c32009-10-09 18:10:05 +00002633 std::pair<MachineInstr::mmo_iterator,
2634 MachineInstr::mmo_iterator> MMOs =
2635 MF.extractLoadMemRefs(MI->memoperands_begin(),
2636 MI->memoperands_end());
2637 loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
Owen Anderson43dbe052008-01-07 01:35:02 +00002638 if (UnfoldStore) {
2639 // Address operands cannot be marked isKill.
Chris Lattnerac0ed5d2010-07-08 22:41:28 +00002640 for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
Owen Anderson43dbe052008-01-07 01:35:02 +00002641 MachineOperand &MO = NewMIs[0]->getOperand(i);
Dan Gohmand735b802008-10-03 15:45:36 +00002642 if (MO.isReg())
Owen Anderson43dbe052008-01-07 01:35:02 +00002643 MO.setIsKill(false);
2644 }
2645 }
2646 }
2647
2648 // Emit the data processing instruction.
Evan Chenge837dea2011-06-28 19:10:37 +00002649 MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true);
Owen Anderson43dbe052008-01-07 01:35:02 +00002650 MachineInstrBuilder MIB(DataMI);
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00002651
Owen Anderson43dbe052008-01-07 01:35:02 +00002652 if (FoldedStore)
Bill Wendling587daed2009-05-13 21:33:08 +00002653 MIB.addReg(Reg, RegState::Define);
Owen Anderson43dbe052008-01-07 01:35:02 +00002654 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
Dan Gohman97357612009-02-18 05:45:50 +00002655 MIB.addOperand(BeforeOps[i]);
Owen Anderson43dbe052008-01-07 01:35:02 +00002656 if (FoldedLoad)
2657 MIB.addReg(Reg);
2658 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
Dan Gohman97357612009-02-18 05:45:50 +00002659 MIB.addOperand(AfterOps[i]);
Owen Anderson43dbe052008-01-07 01:35:02 +00002660 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2661 MachineOperand &MO = ImpOps[i];
Bill Wendling587daed2009-05-13 21:33:08 +00002662 MIB.addReg(MO.getReg(),
2663 getDefRegState(MO.isDef()) |
2664 RegState::Implicit |
2665 getKillRegState(MO.isKill()) |
Evan Cheng4784f1f2009-06-30 08:49:04 +00002666 getDeadRegState(MO.isDead()) |
2667 getUndefRegState(MO.isUndef()));
Owen Anderson43dbe052008-01-07 01:35:02 +00002668 }
2669 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2670 unsigned NewOpc = 0;
2671 switch (DataMI->getOpcode()) {
2672 default: break;
2673 case X86::CMP64ri32:
Dan Gohmanf8c1ef02010-05-18 21:54:15 +00002674 case X86::CMP64ri8:
Owen Anderson43dbe052008-01-07 01:35:02 +00002675 case X86::CMP32ri:
Dan Gohmanf8c1ef02010-05-18 21:54:15 +00002676 case X86::CMP32ri8:
Owen Anderson43dbe052008-01-07 01:35:02 +00002677 case X86::CMP16ri:
Dan Gohmanf8c1ef02010-05-18 21:54:15 +00002678 case X86::CMP16ri8:
Owen Anderson43dbe052008-01-07 01:35:02 +00002679 case X86::CMP8ri: {
2680 MachineOperand &MO0 = DataMI->getOperand(0);
2681 MachineOperand &MO1 = DataMI->getOperand(1);
2682 if (MO1.getImm() == 0) {
2683 switch (DataMI->getOpcode()) {
2684 default: break;
Dan Gohmanf8c1ef02010-05-18 21:54:15 +00002685 case X86::CMP64ri8:
Owen Anderson43dbe052008-01-07 01:35:02 +00002686 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
Dan Gohmanf8c1ef02010-05-18 21:54:15 +00002687 case X86::CMP32ri8:
Owen Anderson43dbe052008-01-07 01:35:02 +00002688 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
Dan Gohmanf8c1ef02010-05-18 21:54:15 +00002689 case X86::CMP16ri8:
Owen Anderson43dbe052008-01-07 01:35:02 +00002690 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
2691 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
2692 }
Chris Lattner5080f4d2008-01-11 18:10:50 +00002693 DataMI->setDesc(get(NewOpc));
Owen Anderson43dbe052008-01-07 01:35:02 +00002694 MO1.ChangeToRegister(MO0.getReg(), false);
2695 }
2696 }
2697 }
2698 NewMIs.push_back(DataMI);
2699
2700 // Emit the store instruction.
2701 if (UnfoldStore) {
Evan Chenge837dea2011-06-28 19:10:37 +00002702 const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI);
Dan Gohman91e69c32009-10-09 18:10:05 +00002703 std::pair<MachineInstr::mmo_iterator,
2704 MachineInstr::mmo_iterator> MMOs =
2705 MF.extractStoreMemRefs(MI->memoperands_begin(),
2706 MI->memoperands_end());
2707 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
Owen Anderson43dbe052008-01-07 01:35:02 +00002708 }
2709
2710 return true;
2711}
2712
2713bool
2714X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
Bill Wendlingfbef3102009-02-11 21:51:19 +00002715 SmallVectorImpl<SDNode*> &NewNodes) const {
Dan Gohmane8be6c62008-07-17 19:10:17 +00002716 if (!N->isMachineOpcode())
Owen Anderson43dbe052008-01-07 01:35:02 +00002717 return false;
2718
Chris Lattner45a1cb22010-10-07 23:08:41 +00002719 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
2720 MemOp2RegOpTable.find(N->getMachineOpcode());
Owen Anderson43dbe052008-01-07 01:35:02 +00002721 if (I == MemOp2RegOpTable.end())
2722 return false;
2723 unsigned Opc = I->second.first;
2724 unsigned Index = I->second.second & 0xf;
2725 bool FoldedLoad = I->second.second & (1 << 4);
2726 bool FoldedStore = I->second.second & (1 << 5);
Evan Chenge837dea2011-06-28 19:10:37 +00002727 const MCInstrDesc &MCID = get(Opc);
2728 const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI);
2729 unsigned NumDefs = MCID.NumDefs;
Dan Gohman475871a2008-07-27 21:46:04 +00002730 std::vector<SDValue> AddrOps;
2731 std::vector<SDValue> BeforeOps;
2732 std::vector<SDValue> AfterOps;
Dale Johannesened2eee62009-02-06 01:31:28 +00002733 DebugLoc dl = N->getDebugLoc();
Owen Anderson43dbe052008-01-07 01:35:02 +00002734 unsigned NumOps = N->getNumOperands();
Dan Gohmanc76909a2009-09-25 20:36:54 +00002735 for (unsigned i = 0; i != NumOps-1; ++i) {
Dan Gohman475871a2008-07-27 21:46:04 +00002736 SDValue Op = N->getOperand(i);
Chris Lattnerac0ed5d2010-07-08 22:41:28 +00002737 if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
Owen Anderson43dbe052008-01-07 01:35:02 +00002738 AddrOps.push_back(Op);
Dan Gohmanb37a8202009-03-04 19:23:38 +00002739 else if (i < Index-NumDefs)
Owen Anderson43dbe052008-01-07 01:35:02 +00002740 BeforeOps.push_back(Op);
Dan Gohmanb37a8202009-03-04 19:23:38 +00002741 else if (i > Index-NumDefs)
Owen Anderson43dbe052008-01-07 01:35:02 +00002742 AfterOps.push_back(Op);
2743 }
Dan Gohman475871a2008-07-27 21:46:04 +00002744 SDValue Chain = N->getOperand(NumOps-1);
Owen Anderson43dbe052008-01-07 01:35:02 +00002745 AddrOps.push_back(Chain);
2746
2747 // Emit the load instruction.
2748 SDNode *Load = 0;
Dan Gohman91e69c32009-10-09 18:10:05 +00002749 MachineFunction &MF = DAG.getMachineFunction();
Owen Anderson43dbe052008-01-07 01:35:02 +00002750 if (FoldedLoad) {
Owen Andersone50ed302009-08-10 22:56:29 +00002751 EVT VT = *RC->vt_begin();
Evan Cheng600c0432009-11-16 21:56:03 +00002752 std::pair<MachineInstr::mmo_iterator,
2753 MachineInstr::mmo_iterator> MMOs =
2754 MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
2755 cast<MachineSDNode>(N)->memoperands_end());
Evan Cheng98ec91e2010-07-02 20:36:18 +00002756 if (!(*MMOs.first) &&
2757 RC == &X86::VR128RegClass &&
2758 !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
2759 // Do not introduce a slow unaligned load.
2760 return false;
2761 bool isAligned = (*MMOs.first) && (*MMOs.first)->getAlignment() >= 16;
Dan Gohman602b0c82009-09-25 18:54:59 +00002762 Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
2763 VT, MVT::Other, &AddrOps[0], AddrOps.size());
Owen Anderson43dbe052008-01-07 01:35:02 +00002764 NewNodes.push_back(Load);
Dan Gohman91e69c32009-10-09 18:10:05 +00002765
2766 // Preserve memory reference information.
Dan Gohman91e69c32009-10-09 18:10:05 +00002767 cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
Owen Anderson43dbe052008-01-07 01:35:02 +00002768 }
2769
2770 // Emit the data processing instruction.
Owen Andersone50ed302009-08-10 22:56:29 +00002771 std::vector<EVT> VTs;
Owen Anderson43dbe052008-01-07 01:35:02 +00002772 const TargetRegisterClass *DstRC = 0;
Evan Chenge837dea2011-06-28 19:10:37 +00002773 if (MCID.getNumDefs() > 0) {
2774 DstRC = getRegClass(MCID, 0, &RI);
Owen Anderson43dbe052008-01-07 01:35:02 +00002775 VTs.push_back(*DstRC->vt_begin());
2776 }
2777 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
Owen Andersone50ed302009-08-10 22:56:29 +00002778 EVT VT = N->getValueType(i);
Evan Chenge837dea2011-06-28 19:10:37 +00002779 if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
Owen Anderson43dbe052008-01-07 01:35:02 +00002780 VTs.push_back(VT);
2781 }
2782 if (Load)
Dan Gohman475871a2008-07-27 21:46:04 +00002783 BeforeOps.push_back(SDValue(Load, 0));
Owen Anderson43dbe052008-01-07 01:35:02 +00002784 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
Dan Gohman602b0c82009-09-25 18:54:59 +00002785 SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0],
2786 BeforeOps.size());
Owen Anderson43dbe052008-01-07 01:35:02 +00002787 NewNodes.push_back(NewNode);
2788
2789 // Emit the store instruction.
2790 if (FoldedStore) {
2791 AddrOps.pop_back();
Dan Gohman475871a2008-07-27 21:46:04 +00002792 AddrOps.push_back(SDValue(NewNode, 0));
Owen Anderson43dbe052008-01-07 01:35:02 +00002793 AddrOps.push_back(Chain);
Evan Cheng600c0432009-11-16 21:56:03 +00002794 std::pair<MachineInstr::mmo_iterator,
2795 MachineInstr::mmo_iterator> MMOs =
2796 MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
2797 cast<MachineSDNode>(N)->memoperands_end());
Evan Cheng98ec91e2010-07-02 20:36:18 +00002798 if (!(*MMOs.first) &&
2799 RC == &X86::VR128RegClass &&
2800 !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
2801 // Do not introduce a slow unaligned store.
2802 return false;
2803 bool isAligned = (*MMOs.first) && (*MMOs.first)->getAlignment() >= 16;
Dan Gohman602b0c82009-09-25 18:54:59 +00002804 SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
2805 isAligned, TM),
2806 dl, MVT::Other,
2807 &AddrOps[0], AddrOps.size());
Owen Anderson43dbe052008-01-07 01:35:02 +00002808 NewNodes.push_back(Store);
Dan Gohman91e69c32009-10-09 18:10:05 +00002809
2810 // Preserve memory reference information.
Dan Gohman91e69c32009-10-09 18:10:05 +00002811 cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
Owen Anderson43dbe052008-01-07 01:35:02 +00002812 }
2813
2814 return true;
2815}
2816
2817unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
Dan Gohman0115e162009-10-30 22:18:41 +00002818 bool UnfoldLoad, bool UnfoldStore,
2819 unsigned *LoadRegIndex) const {
Chris Lattner45a1cb22010-10-07 23:08:41 +00002820 DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
2821 MemOp2RegOpTable.find(Opc);
Owen Anderson43dbe052008-01-07 01:35:02 +00002822 if (I == MemOp2RegOpTable.end())
2823 return 0;
2824 bool FoldedLoad = I->second.second & (1 << 4);
2825 bool FoldedStore = I->second.second & (1 << 5);
2826 if (UnfoldLoad && !FoldedLoad)
2827 return 0;
2828 if (UnfoldStore && !FoldedStore)
2829 return 0;
Dan Gohman0115e162009-10-30 22:18:41 +00002830 if (LoadRegIndex)
2831 *LoadRegIndex = I->second.second & 0xf;
Owen Anderson43dbe052008-01-07 01:35:02 +00002832 return I->second.first;
2833}
2834
Evan Cheng96dc1152010-01-22 03:34:51 +00002835bool
2836X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
2837 int64_t &Offset1, int64_t &Offset2) const {
2838 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
2839 return false;
2840 unsigned Opc1 = Load1->getMachineOpcode();
2841 unsigned Opc2 = Load2->getMachineOpcode();
2842 switch (Opc1) {
2843 default: return false;
2844 case X86::MOV8rm:
2845 case X86::MOV16rm:
2846 case X86::MOV32rm:
2847 case X86::MOV64rm:
2848 case X86::LD_Fp32m:
2849 case X86::LD_Fp64m:
2850 case X86::LD_Fp80m:
2851 case X86::MOVSSrm:
2852 case X86::MOVSDrm:
2853 case X86::MMX_MOVD64rm:
2854 case X86::MMX_MOVQ64rm:
2855 case X86::FsMOVAPSrm:
2856 case X86::FsMOVAPDrm:
2857 case X86::MOVAPSrm:
2858 case X86::MOVUPSrm:
Evan Cheng96dc1152010-01-22 03:34:51 +00002859 case X86::MOVAPDrm:
2860 case X86::MOVDQArm:
2861 case X86::MOVDQUrm:
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +00002862 case X86::VMOVAPSYrm:
2863 case X86::VMOVUPSYrm:
2864 case X86::VMOVAPDYrm:
2865 case X86::VMOVDQAYrm:
2866 case X86::VMOVDQUYrm:
Evan Cheng96dc1152010-01-22 03:34:51 +00002867 break;
2868 }
2869 switch (Opc2) {
2870 default: return false;
2871 case X86::MOV8rm:
2872 case X86::MOV16rm:
2873 case X86::MOV32rm:
2874 case X86::MOV64rm:
2875 case X86::LD_Fp32m:
2876 case X86::LD_Fp64m:
2877 case X86::LD_Fp80m:
2878 case X86::MOVSSrm:
2879 case X86::MOVSDrm:
2880 case X86::MMX_MOVD64rm:
2881 case X86::MMX_MOVQ64rm:
2882 case X86::FsMOVAPSrm:
2883 case X86::FsMOVAPDrm:
2884 case X86::MOVAPSrm:
2885 case X86::MOVUPSrm:
Evan Cheng96dc1152010-01-22 03:34:51 +00002886 case X86::MOVAPDrm:
2887 case X86::MOVDQArm:
2888 case X86::MOVDQUrm:
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +00002889 case X86::VMOVAPSYrm:
2890 case X86::VMOVUPSYrm:
2891 case X86::VMOVAPDYrm:
2892 case X86::VMOVDQAYrm:
2893 case X86::VMOVDQUYrm:
Evan Cheng96dc1152010-01-22 03:34:51 +00002894 break;
2895 }
2896
2897 // Check if chain operands and base addresses match.
2898 if (Load1->getOperand(0) != Load2->getOperand(0) ||
2899 Load1->getOperand(5) != Load2->getOperand(5))
2900 return false;
2901 // Segment operands should match as well.
2902 if (Load1->getOperand(4) != Load2->getOperand(4))
2903 return false;
2904 // Scale should be 1, Index should be Reg0.
2905 if (Load1->getOperand(1) == Load2->getOperand(1) &&
2906 Load1->getOperand(2) == Load2->getOperand(2)) {
2907 if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
2908 return false;
Evan Cheng96dc1152010-01-22 03:34:51 +00002909
2910 // Now let's examine the displacements.
2911 if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
2912 isa<ConstantSDNode>(Load2->getOperand(3))) {
2913 Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
2914 Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
2915 return true;
2916 }
2917 }
2918 return false;
2919}
2920
2921bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
2922 int64_t Offset1, int64_t Offset2,
2923 unsigned NumLoads) const {
2924 assert(Offset2 > Offset1);
2925 if ((Offset2 - Offset1) / 8 > 64)
2926 return false;
2927
2928 unsigned Opc1 = Load1->getMachineOpcode();
2929 unsigned Opc2 = Load2->getMachineOpcode();
2930 if (Opc1 != Opc2)
2931 return false; // FIXME: overly conservative?
2932
2933 switch (Opc1) {
2934 default: break;
2935 case X86::LD_Fp32m:
2936 case X86::LD_Fp64m:
2937 case X86::LD_Fp80m:
2938 case X86::MMX_MOVD64rm:
2939 case X86::MMX_MOVQ64rm:
2940 return false;
2941 }
2942
2943 EVT VT = Load1->getValueType(0);
2944 switch (VT.getSimpleVT().SimpleTy) {
Bill Wendling19d85972010-06-22 22:16:17 +00002945 default:
Evan Cheng96dc1152010-01-22 03:34:51 +00002946 // XMM registers. In 64-bit mode we can be a bit more aggressive since we
2947 // have 16 of them to play with.
2948 if (TM.getSubtargetImpl()->is64Bit()) {
2949 if (NumLoads >= 3)
2950 return false;
Bill Wendling19d85972010-06-22 22:16:17 +00002951 } else if (NumLoads) {
Evan Cheng96dc1152010-01-22 03:34:51 +00002952 return false;
Bill Wendling19d85972010-06-22 22:16:17 +00002953 }
Evan Cheng96dc1152010-01-22 03:34:51 +00002954 break;
Evan Cheng96dc1152010-01-22 03:34:51 +00002955 case MVT::i8:
2956 case MVT::i16:
2957 case MVT::i32:
2958 case MVT::i64:
Evan Chengafc36732010-01-22 23:49:11 +00002959 case MVT::f32:
2960 case MVT::f64:
Evan Cheng96dc1152010-01-22 03:34:51 +00002961 if (NumLoads)
2962 return false;
Bill Wendling19d85972010-06-22 22:16:17 +00002963 break;
Evan Cheng96dc1152010-01-22 03:34:51 +00002964 }
2965
2966 return true;
2967}
2968
2969
Chris Lattner7fbe9722006-10-20 17:42:20 +00002970bool X86InstrInfo::
Owen Anderson44eb65c2008-08-14 22:49:33 +00002971ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
Chris Lattner9cd68752006-10-21 05:52:40 +00002972 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
Evan Cheng97af60b2008-08-29 23:21:31 +00002973 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
Dan Gohman279c22e2008-10-21 03:29:32 +00002974 if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
2975 return true;
Evan Cheng97af60b2008-08-29 23:21:31 +00002976 Cond[0].setImm(GetOppositeBranchCondition(CC));
Chris Lattner9cd68752006-10-21 05:52:40 +00002977 return false;
Chris Lattner7fbe9722006-10-20 17:42:20 +00002978}
2979
Evan Cheng23066282008-10-27 07:14:50 +00002980bool X86InstrInfo::
Evan Cheng4350eb82009-02-06 17:17:30 +00002981isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
2982 // FIXME: Return false for x87 stack register classes for now. We can't
Evan Cheng23066282008-10-27 07:14:50 +00002983 // allow any loads of these registers before FpGet_ST0_80.
Evan Cheng4350eb82009-02-06 17:17:30 +00002984 return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
2985 RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
Evan Cheng23066282008-10-27 07:14:50 +00002986}
2987
Dan Gohman57c3dac2008-09-30 00:58:23 +00002988/// getGlobalBaseReg - Return a virtual register initialized with the
2989/// the global base register value. Output instructions required to
2990/// initialize the register in the function entry block, if necessary.
Dan Gohman8b746962008-09-23 18:22:58 +00002991///
Dan Gohman84023e02010-07-10 09:00:22 +00002992/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
2993///
Dan Gohman57c3dac2008-09-30 00:58:23 +00002994unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
2995 assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
2996 "X86-64 PIC uses RIP relative addressing");
2997
2998 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
2999 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3000 if (GlobalBaseReg != 0)
3001 return GlobalBaseReg;
3002
Dan Gohman84023e02010-07-10 09:00:22 +00003003 // Create the register. The code to initialize it is inserted
3004 // later, by the CGBR pass (below).
Dan Gohman8b746962008-09-23 18:22:58 +00003005 MachineRegisterInfo &RegInfo = MF->getRegInfo();
Dan Gohman84023e02010-07-10 09:00:22 +00003006 GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
Dan Gohman57c3dac2008-09-30 00:58:23 +00003007 X86FI->setGlobalBaseReg(GlobalBaseReg);
3008 return GlobalBaseReg;
Dan Gohman8b746962008-09-23 18:22:58 +00003009}
Jakob Stoklund Olesen352aa502010-03-25 17:25:00 +00003010
Jakob Stoklund Olesene4b94b42010-03-29 23:24:21 +00003011// These are the replaceable SSE instructions. Some of these have Int variants
3012// that we don't include here. We don't want to replace instructions selected
3013// by intrinsics.
3014static const unsigned ReplaceableInstrs[][3] = {
Bruno Cardoso Lopes4d043622010-08-12 02:08:52 +00003015 //PackedSingle PackedDouble PackedInt
Jakob Stoklund Olesen357be7f2010-03-30 22:46:53 +00003016 { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr },
3017 { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm },
3018 { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr },
3019 { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr },
3020 { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm },
3021 { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr },
3022 { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm },
3023 { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr },
3024 { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm },
3025 { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr },
3026 { X86::ORPSrm, X86::ORPDrm, X86::PORrm },
3027 { X86::ORPSrr, X86::ORPDrr, X86::PORrr },
Jakob Stoklund Olesend363b4e2010-03-31 00:40:13 +00003028 { X86::V_SET0PS, X86::V_SET0PD, X86::V_SET0PI },
Jakob Stoklund Olesen357be7f2010-03-30 22:46:53 +00003029 { X86::XORPSrm, X86::XORPDrm, X86::PXORrm },
3030 { X86::XORPSrr, X86::XORPDrr, X86::PXORrr },
Bruno Cardoso Lopes642eb022010-08-12 20:20:53 +00003031 // AVX 128-bit support
3032 { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr },
3033 { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm },
3034 { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr },
3035 { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr },
3036 { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm },
3037 { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
3038 { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm },
3039 { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr },
3040 { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm },
3041 { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr },
3042 { X86::VORPSrm, X86::VORPDrm, X86::VPORrm },
3043 { X86::VORPSrr, X86::VORPDrr, X86::VPORrr },
3044 { X86::AVX_SET0PS, X86::AVX_SET0PD, X86::AVX_SET0PI },
3045 { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm },
3046 { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr },
Bruno Cardoso Lopes62f67f82011-07-14 18:50:58 +00003047 // AVX 256-bit support
3048 { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr },
3049 { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm },
3050 { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr },
3051 { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr },
3052 { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm },
3053 { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr },
Jakob Stoklund Olesene4b94b42010-03-29 23:24:21 +00003054};
Jakob Stoklund Olesen352aa502010-03-25 17:25:00 +00003055
Jakob Stoklund Olesene4b94b42010-03-29 23:24:21 +00003056// FIXME: Some shuffle and unpack instructions have equivalents in different
3057// domains, but they require a bit more work than just switching opcodes.
Jakob Stoklund Olesen352aa502010-03-25 17:25:00 +00003058
Jakob Stoklund Olesene4b94b42010-03-29 23:24:21 +00003059static const unsigned *lookup(unsigned opcode, unsigned domain) {
Jakob Stoklund Olesen352aa502010-03-25 17:25:00 +00003060 for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
Jakob Stoklund Olesene4b94b42010-03-29 23:24:21 +00003061 if (ReplaceableInstrs[i][domain-1] == opcode)
3062 return ReplaceableInstrs[i];
3063 return 0;
3064}
3065
3066std::pair<uint16_t, uint16_t>
3067X86InstrInfo::GetSSEDomain(const MachineInstr *MI) const {
3068 uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
Jakob Stoklund Olesen357be7f2010-03-30 22:46:53 +00003069 return std::make_pair(domain,
3070 domain && lookup(MI->getOpcode(), domain) ? 0xe : 0);
Jakob Stoklund Olesene4b94b42010-03-29 23:24:21 +00003071}
3072
3073void X86InstrInfo::SetSSEDomain(MachineInstr *MI, unsigned Domain) const {
3074 assert(Domain>0 && Domain<4 && "Invalid execution domain");
3075 uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
3076 assert(dom && "Not an SSE instruction");
3077 const unsigned *table = lookup(MI->getOpcode(), dom);
3078 assert(table && "Cannot change domain");
3079 MI->setDesc(get(table[Domain-1]));
Jakob Stoklund Olesen352aa502010-03-25 17:25:00 +00003080}
Chris Lattneree9eb412010-04-26 23:37:21 +00003081
3082/// getNoopForMachoTarget - Return the noop instruction to use for a noop.
3083void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
3084 NopInst.setOpcode(X86::NOOP);
3085}
Dan Gohman84023e02010-07-10 09:00:22 +00003086
Andrew Tricke0ef5092011-03-05 08:00:22 +00003087bool X86InstrInfo::isHighLatencyDef(int opc) const {
3088 switch (opc) {
Evan Cheng23128422010-10-19 18:58:51 +00003089 default: return false;
3090 case X86::DIVSDrm:
3091 case X86::DIVSDrm_Int:
3092 case X86::DIVSDrr:
3093 case X86::DIVSDrr_Int:
3094 case X86::DIVSSrm:
3095 case X86::DIVSSrm_Int:
3096 case X86::DIVSSrr:
3097 case X86::DIVSSrr_Int:
3098 case X86::SQRTPDm:
3099 case X86::SQRTPDm_Int:
3100 case X86::SQRTPDr:
3101 case X86::SQRTPDr_Int:
3102 case X86::SQRTPSm:
3103 case X86::SQRTPSm_Int:
3104 case X86::SQRTPSr:
3105 case X86::SQRTPSr_Int:
3106 case X86::SQRTSDm:
3107 case X86::SQRTSDm_Int:
3108 case X86::SQRTSDr:
3109 case X86::SQRTSDr_Int:
3110 case X86::SQRTSSm:
3111 case X86::SQRTSSm_Int:
3112 case X86::SQRTSSr:
3113 case X86::SQRTSSr_Int:
3114 return true;
3115 }
3116}
3117
Andrew Tricke0ef5092011-03-05 08:00:22 +00003118bool X86InstrInfo::
3119hasHighOperandLatency(const InstrItineraryData *ItinData,
3120 const MachineRegisterInfo *MRI,
3121 const MachineInstr *DefMI, unsigned DefIdx,
3122 const MachineInstr *UseMI, unsigned UseIdx) const {
3123 return isHighLatencyDef(DefMI->getOpcode());
3124}
3125
Dan Gohman84023e02010-07-10 09:00:22 +00003126namespace {
3127 /// CGBR - Create Global Base Reg pass. This initializes the PIC
3128 /// global base register for x86-32.
3129 struct CGBR : public MachineFunctionPass {
3130 static char ID;
Owen Anderson90c579d2010-08-06 18:33:48 +00003131 CGBR() : MachineFunctionPass(ID) {}
Dan Gohman84023e02010-07-10 09:00:22 +00003132
3133 virtual bool runOnMachineFunction(MachineFunction &MF) {
3134 const X86TargetMachine *TM =
3135 static_cast<const X86TargetMachine *>(&MF.getTarget());
3136
3137 assert(!TM->getSubtarget<X86Subtarget>().is64Bit() &&
3138 "X86-64 PIC uses RIP relative addressing");
3139
3140 // Only emit a global base reg in PIC mode.
3141 if (TM->getRelocationModel() != Reloc::PIC_)
3142 return false;
3143
Dan Gohmand8c0a512010-09-17 20:24:24 +00003144 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
3145 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3146
3147 // If we didn't need a GlobalBaseReg, don't insert code.
3148 if (GlobalBaseReg == 0)
3149 return false;
3150
Dan Gohman84023e02010-07-10 09:00:22 +00003151 // Insert the set of GlobalBaseReg into the first MBB of the function
3152 MachineBasicBlock &FirstMBB = MF.front();
3153 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
3154 DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
3155 MachineRegisterInfo &RegInfo = MF.getRegInfo();
3156 const X86InstrInfo *TII = TM->getInstrInfo();
3157
3158 unsigned PC;
3159 if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT())
3160 PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3161 else
Dan Gohmand8c0a512010-09-17 20:24:24 +00003162 PC = GlobalBaseReg;
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00003163
Dan Gohman84023e02010-07-10 09:00:22 +00003164 // Operand of MovePCtoStack is completely ignored by asm printer. It's
3165 // only used in JIT code emission as displacement to pc.
3166 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
NAKAMURA Takumie5fffe92011-01-26 02:03:37 +00003167
Dan Gohman84023e02010-07-10 09:00:22 +00003168 // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3169 // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
3170 if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) {
Dan Gohman84023e02010-07-10 09:00:22 +00003171 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
3172 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
3173 .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
3174 X86II::MO_GOT_ABSOLUTE_ADDRESS);
3175 }
3176
3177 return true;
3178 }
3179
3180 virtual const char *getPassName() const {
3181 return "X86 PIC Global Base Reg Initialization";
3182 }
3183
3184 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
3185 AU.setPreservesCFG();
3186 MachineFunctionPass::getAnalysisUsage(AU);
3187 }
3188 };
3189}
3190
3191char CGBR::ID = 0;
3192FunctionPass*
3193llvm::createGlobalBaseRegPass() { return new CGBR(); }