blob: bdf0c99a074712342ad588d7be9633862e518154 [file] [log] [blame]
Chris Lattner4fd56002002-05-08 22:19:27 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner4fd56002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattner90461932010-01-01 00:04:26 +000011// to promote better constant propagation, GCSE, LICM, PRE, etc.
Chris Lattner4fd56002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattner4fd56002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Chris Lattner08b43922005-05-07 04:08:02 +000023#define DEBUG_TYPE "reassociate"
Chris Lattner4fd56002002-05-08 22:19:27 +000024#include "llvm/Transforms/Scalar.h"
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +000025#include "llvm/Transforms/Utils/Local.h"
Chris Lattner0975ed52005-05-07 04:24:13 +000026#include "llvm/Constants.h"
Chris Lattnerae74f552006-04-28 04:14:49 +000027#include "llvm/DerivedTypes.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000028#include "llvm/Function.h"
Misha Brukmand8e1eea2004-07-29 17:05:13 +000029#include "llvm/Instructions.h"
Dale Johannesen03afd022009-03-06 01:41:59 +000030#include "llvm/IntrinsicInst.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000031#include "llvm/Pass.h"
Chris Lattnerc9fd0972005-05-08 20:09:57 +000032#include "llvm/Assembly/Writer.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000033#include "llvm/Support/CFG.h"
Chandler Carruth464bda32012-04-26 05:30:30 +000034#include "llvm/Support/IRBuilder.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000035#include "llvm/Support/Debug.h"
Chris Lattnerd3c7b732009-03-31 22:13:29 +000036#include "llvm/Support/ValueHandle.h"
Chris Lattnerbdff5482009-08-23 04:37:46 +000037#include "llvm/Support/raw_ostream.h"
Duncan Sands0fd120b2012-05-25 12:03:02 +000038#include "llvm/ADT/DenseMap.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000039#include "llvm/ADT/PostOrderIterator.h"
Duncan Sandsb9335862012-06-06 14:53:10 +000040#include "llvm/ADT/SetVector.h"
Duncan Sands0fd120b2012-05-25 12:03:02 +000041#include "llvm/ADT/SmallMap.h"
Chandler Carruth464bda32012-04-26 05:30:30 +000042#include "llvm/ADT/STLExtras.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000043#include "llvm/ADT/Statistic.h"
Chris Lattnerc0649ac2005-05-07 21:59:39 +000044#include <algorithm>
Chris Lattnerd7456022004-01-09 06:02:20 +000045using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000046
Chris Lattner0e5f4992006-12-19 21:40:18 +000047STATISTIC(NumChanged, "Number of insts reassociated");
48STATISTIC(NumAnnihil, "Number of expr tree annihilated");
49STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnera92f6962002-10-01 22:38:41 +000050
Chris Lattner0e5f4992006-12-19 21:40:18 +000051namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +000052 struct ValueEntry {
Chris Lattnerc0649ac2005-05-07 21:59:39 +000053 unsigned Rank;
54 Value *Op;
55 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
56 };
57 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
58 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
59 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000060}
Chris Lattnerc0649ac2005-05-07 21:59:39 +000061
Devang Patel50cacb22008-11-21 21:00:20 +000062#ifndef NDEBUG
Chris Lattnere5022fe2006-03-04 09:31:13 +000063/// PrintOps - Print out the expression identified in the Ops list.
64///
Chris Lattner9f7b7082009-12-31 18:40:32 +000065static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere5022fe2006-03-04 09:31:13 +000066 Module *M = I->getParent()->getParent()->getParent();
David Greenea1fa76c2010-01-05 01:27:24 +000067 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattner1befe642009-12-31 07:17:37 +000068 << *Ops[0].Op->getType() << '\t';
Chris Lattner7de3b5d2008-08-19 04:45:19 +000069 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
David Greenea1fa76c2010-01-05 01:27:24 +000070 dbgs() << "[ ";
71 WriteAsOperand(dbgs(), Ops[i].Op, false, M);
72 dbgs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner7de3b5d2008-08-19 04:45:19 +000073 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000074}
Devang Patel59500c82008-11-21 20:00:59 +000075#endif
Bill Wendlinge8cd3f22012-05-02 23:43:23 +000076
Dan Gohman844731a2008-05-13 00:00:25 +000077namespace {
Chandler Carruth464bda32012-04-26 05:30:30 +000078 /// \brief Utility class representing a base and exponent pair which form one
79 /// factor of some product.
80 struct Factor {
81 Value *Base;
82 unsigned Power;
83
84 Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
85
86 /// \brief Sort factors by their Base.
87 struct BaseSorter {
88 bool operator()(const Factor &LHS, const Factor &RHS) {
89 return LHS.Base < RHS.Base;
90 }
91 };
92
93 /// \brief Compare factors for equal bases.
94 struct BaseEqual {
95 bool operator()(const Factor &LHS, const Factor &RHS) {
96 return LHS.Base == RHS.Base;
97 }
98 };
99
100 /// \brief Sort factors in descending order by their power.
101 struct PowerDescendingSorter {
102 bool operator()(const Factor &LHS, const Factor &RHS) {
103 return LHS.Power > RHS.Power;
104 }
105 };
106
107 /// \brief Compare factors for equal powers.
108 struct PowerEqual {
109 bool operator()(const Factor &LHS, const Factor &RHS) {
110 return LHS.Power == RHS.Power;
111 }
112 };
113 };
114}
115
116namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +0000117 class Reassociate : public FunctionPass {
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000118 DenseMap<BasicBlock*, unsigned> RankMap;
Craig Topperf1d0f772012-03-26 06:58:25 +0000119 DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
Duncan Sandsb9335862012-06-06 14:53:10 +0000120 SetVector<AssertingVH<Instruction> > RedoInsts;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000121 bool MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +0000122 public:
Nick Lewyckyecd94c82007-05-06 13:37:16 +0000123 static char ID; // Pass identification, replacement for typeid
Owen Anderson081c34b2010-10-19 17:21:58 +0000124 Reassociate() : FunctionPass(ID) {
125 initializeReassociatePass(*PassRegistry::getPassRegistry());
126 }
Devang Patel794fd752007-05-01 21:15:47 +0000127
Chris Lattner7e708292002-06-25 16:13:24 +0000128 bool runOnFunction(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +0000129
130 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattnercb2610e2002-10-21 20:00:28 +0000131 AU.setPreservesCFG();
Chris Lattner4fd56002002-05-08 22:19:27 +0000132 }
133 private:
Chris Lattner7e708292002-06-25 16:13:24 +0000134 void BuildRankMap(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +0000135 unsigned getRank(Value *V);
Chris Lattner69e98e22009-12-31 19:24:52 +0000136 Value *ReassociateExpression(BinaryOperator *I);
Duncan Sands0fd120b2012-05-25 12:03:02 +0000137 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattner9f7b7082009-12-31 18:40:32 +0000138 Value *OptimizeExpression(BinaryOperator *I,
139 SmallVectorImpl<ValueEntry> &Ops);
140 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
Chandler Carruth464bda32012-04-26 05:30:30 +0000141 bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
142 SmallVectorImpl<Factor> &Factors);
143 Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
144 SmallVectorImpl<Factor> &Factors);
145 Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattner9f7b7082009-12-31 18:40:32 +0000146 void LinearizeExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000147 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
Duncan Sandsb9335862012-06-06 14:53:10 +0000148 void OptimizeInst(Instruction *I);
Chris Lattner4fd56002002-05-08 22:19:27 +0000149 };
150}
151
Dan Gohman844731a2008-05-13 00:00:25 +0000152char Reassociate::ID = 0;
Owen Andersond13db2c2010-07-21 22:09:45 +0000153INITIALIZE_PASS(Reassociate, "reassociate",
Owen Andersonce665bd2010-10-07 22:25:06 +0000154 "Reassociate expressions", false, false)
Dan Gohman844731a2008-05-13 00:00:25 +0000155
Brian Gaeked0fde302003-11-11 22:41:34 +0000156// Public interface to the Reassociate pass
Chris Lattnerd7456022004-01-09 06:02:20 +0000157FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
Chris Lattner4fd56002002-05-08 22:19:27 +0000158
Duncan Sands0fd120b2012-05-25 12:03:02 +0000159/// isReassociableOp - Return true if V is an instruction of the specified
160/// opcode and if it only has one use.
161static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
162 if (V->hasOneUse() && isa<Instruction>(V) &&
163 cast<Instruction>(V)->getOpcode() == Opcode)
164 return cast<BinaryOperator>(V);
165 return 0;
166}
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000167
Chris Lattner9c723192005-05-08 20:57:04 +0000168static bool isUnmovableInstruction(Instruction *I) {
169 if (I->getOpcode() == Instruction::PHI ||
Bill Wendling98bda3d2012-05-04 04:22:32 +0000170 I->getOpcode() == Instruction::LandingPad ||
Chris Lattner9c723192005-05-08 20:57:04 +0000171 I->getOpcode() == Instruction::Alloca ||
172 I->getOpcode() == Instruction::Load ||
Chris Lattner9c723192005-05-08 20:57:04 +0000173 I->getOpcode() == Instruction::Invoke ||
Dale Johannesen03afd022009-03-06 01:41:59 +0000174 (I->getOpcode() == Instruction::Call &&
175 !isa<DbgInfoIntrinsic>(I)) ||
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000176 I->getOpcode() == Instruction::UDiv ||
Reid Spencer1628cec2006-10-26 06:15:43 +0000177 I->getOpcode() == Instruction::SDiv ||
178 I->getOpcode() == Instruction::FDiv ||
Reid Spencer0a783f72006-11-02 01:53:59 +0000179 I->getOpcode() == Instruction::URem ||
180 I->getOpcode() == Instruction::SRem ||
181 I->getOpcode() == Instruction::FRem)
Chris Lattner9c723192005-05-08 20:57:04 +0000182 return true;
183 return false;
184}
185
Chris Lattner7e708292002-06-25 16:13:24 +0000186void Reassociate::BuildRankMap(Function &F) {
Chris Lattner6007cb62003-08-12 20:14:27 +0000187 unsigned i = 2;
Chris Lattnerfb5be092003-08-13 16:16:26 +0000188
189 // Assign distinct ranks to function arguments
Chris Lattnere4d5c442005-03-15 04:54:21 +0000190 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
Chris Lattnerd3c7b732009-03-31 22:13:29 +0000191 ValueRankMap[&*I] = ++i;
Chris Lattnerfb5be092003-08-13 16:16:26 +0000192
Chris Lattner7e708292002-06-25 16:13:24 +0000193 ReversePostOrderTraversal<Function*> RPOT(&F);
Chris Lattner4fd56002002-05-08 22:19:27 +0000194 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9c723192005-05-08 20:57:04 +0000195 E = RPOT.end(); I != E; ++I) {
196 BasicBlock *BB = *I;
197 unsigned BBRank = RankMap[BB] = ++i << 16;
198
199 // Walk the basic block, adding precomputed ranks for any instructions that
200 // we cannot move. This ensures that the ranks for these instructions are
201 // all different in the block.
202 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
203 if (isUnmovableInstruction(I))
Chris Lattnerd3c7b732009-03-31 22:13:29 +0000204 ValueRankMap[&*I] = ++BBRank;
Chris Lattner9c723192005-05-08 20:57:04 +0000205 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000206}
207
208unsigned Reassociate::getRank(Value *V) {
Chris Lattner08b43922005-05-07 04:08:02 +0000209 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000210 if (I == 0) {
211 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
212 return 0; // Otherwise it's a global or constant, rank 0.
213 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000214
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000215 if (unsigned Rank = ValueRankMap[I])
216 return Rank; // Rank already known?
Jeff Cohen00b168892005-07-27 06:12:32 +0000217
Chris Lattner08b43922005-05-07 04:08:02 +0000218 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
219 // we can reassociate expressions for code motion! Since we do not recurse
220 // for PHI nodes, we cannot have infinite recursion here, because there
221 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattner08b43922005-05-07 04:08:02 +0000222 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
223 for (unsigned i = 0, e = I->getNumOperands();
224 i != e && Rank != MaxRank; ++i)
225 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen00b168892005-07-27 06:12:32 +0000226
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000227 // If this is a not or neg instruction, do not count it for rank. This
228 // assures us that X and ~X will have the same rank.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000229 if (!I->getType()->isIntegerTy() ||
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000230 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000231 ++Rank;
232
David Greenea1fa76c2010-01-05 01:27:24 +0000233 //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
Chris Lattnerbdff5482009-08-23 04:37:46 +0000234 // << Rank << "\n");
Jeff Cohen00b168892005-07-27 06:12:32 +0000235
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000236 return ValueRankMap[I] = Rank;
Chris Lattner4fd56002002-05-08 22:19:27 +0000237}
238
Chris Lattnerf33151a2005-05-08 21:28:52 +0000239/// LowerNegateToMultiply - Replace 0-X with X*-1.
240///
Duncan Sandsb9335862012-06-06 14:53:10 +0000241static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
Owen Andersona7235ea2009-07-31 20:28:14 +0000242 Constant *Cst = Constant::getAllOnesValue(Neg->getType());
Chris Lattnerf33151a2005-05-08 21:28:52 +0000243
Duncan Sands0fd120b2012-05-25 12:03:02 +0000244 BinaryOperator *Res =
245 BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
Chris Lattner6934a042007-02-11 01:23:03 +0000246 Res->takeName(Neg);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000247 Neg->replaceAllUsesWith(Res);
Devang Patel5367b232011-04-28 22:48:14 +0000248 Res->setDebugLoc(Neg->getDebugLoc());
Chris Lattnerf33151a2005-05-08 21:28:52 +0000249 return Res;
250}
251
Duncan Sands0fd120b2012-05-25 12:03:02 +0000252/// LinearizeExprTree - Given an associative binary expression, return the leaf
253/// nodes in Ops. The original expression is the same as Ops[0] op ... Ops[N].
254/// Note that a node may occur multiple times in Ops, but if so all occurrences
255/// are consecutive in the vector.
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000256///
Duncan Sands0fd120b2012-05-25 12:03:02 +0000257/// A leaf node is either not a binary operation of the same kind as the root
258/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
259/// opcode), or is the same kind of binary operator but has a use which either
260/// does not belong to the expression, or does belong to the expression but is
261/// a leaf node. Every leaf node has at least one use that is a non-leaf node
262/// of the expression, while for non-leaf nodes (except for the root 'I') every
263/// use is a non-leaf node of the expression.
264///
265/// For example:
266/// expression graph node names
267///
268/// + | I
269/// / \ |
270/// + + | A, B
271/// / \ / \ |
272/// * + * | C, D, E
273/// / \ / \ / \ |
274/// + * | F, G
275///
276/// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
277/// that order) C, E, F, F, G, G.
278///
279/// The expression is maximal: if some instruction is a binary operator of the
280/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
281/// then the instruction also belongs to the expression, is not a leaf node of
282/// it, and its operands also belong to the expression (but may be leaf nodes).
283///
284/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
285/// order to ensure that every non-root node in the expression has *exactly one*
286/// use by a non-leaf node of the expression. This destruction means that the
Duncan Sandseacc31a2012-05-26 16:42:52 +0000287/// caller MUST either replace 'I' with a new expression or use something like
288/// RewriteExprTree to put the values back in.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000289///
Duncan Sands0fd120b2012-05-25 12:03:02 +0000290/// In the above example either the right operand of A or the left operand of B
291/// will be replaced by undef. If it is B's operand then this gives:
292///
293/// + | I
294/// / \ |
295/// + + | A, B - operand of B replaced with undef
296/// / \ \ |
297/// * + * | C, D, E
298/// / \ / \ / \ |
299/// + * | F, G
300///
Duncan Sandseacc31a2012-05-26 16:42:52 +0000301/// Note that such undef operands can only be reached by passing through 'I'.
302/// For example, if you visit operands recursively starting from a leaf node
303/// then you will never see such an undef operand unless you get back to 'I',
Duncan Sands0fd120b2012-05-25 12:03:02 +0000304/// which requires passing through a phi node.
305///
306/// Note that this routine may also mutate binary operators of the wrong type
307/// that have all uses inside the expression (i.e. only used by non-leaf nodes
308/// of the expression) if it can turn them into binary operators of the right
309/// type and thus make the expression bigger.
310
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000311void Reassociate::LinearizeExprTree(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +0000312 SmallVectorImpl<ValueEntry> &Ops) {
Duncan Sands0fd120b2012-05-25 12:03:02 +0000313 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
314
315 // Visit all operands of the expression, keeping track of their weight (the
316 // number of paths from the expression root to the operand, or if you like
317 // the number of times that operand occurs in the linearized expression).
318 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
319 // while A has weight two.
320
321 // Worklist of non-leaf nodes (their operands are in the expression too) along
322 // with their weights, representing a certain number of paths to the operator.
323 // If an operator occurs in the worklist multiple times then we found multiple
324 // ways to get to it.
325 SmallVector<std::pair<BinaryOperator*, unsigned>, 8> Worklist; // (Op, Weight)
326 Worklist.push_back(std::make_pair(I, 1));
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000327 unsigned Opcode = I->getOpcode();
328
Duncan Sands0fd120b2012-05-25 12:03:02 +0000329 // Leaves of the expression are values that either aren't the right kind of
330 // operation (eg: a constant, or a multiply in an add tree), or are, but have
331 // some uses that are not inside the expression. For example, in I = X + X,
332 // X = A + B, the value X has two uses (by I) that are in the expression. If
333 // X has any other uses, for example in a return instruction, then we consider
334 // X to be a leaf, and won't analyze it further. When we first visit a value,
335 // if it has more than one use then at first we conservatively consider it to
336 // be a leaf. Later, as the expression is explored, we may discover some more
337 // uses of the value from inside the expression. If all uses turn out to be
338 // from within the expression (and the value is a binary operator of the right
339 // kind) then the value is no longer considered to be a leaf, and its operands
340 // are explored.
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000341
Duncan Sands0fd120b2012-05-25 12:03:02 +0000342 // Leaves - Keeps track of the set of putative leaves as well as the number of
343 // paths to each leaf seen so far.
344 typedef SmallMap<Value*, unsigned, 8> LeafMap;
345 LeafMap Leaves; // Leaf -> Total weight so far.
346 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
347
348#ifndef NDEBUG
349 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
350#endif
351 while (!Worklist.empty()) {
352 std::pair<BinaryOperator*, unsigned> P = Worklist.pop_back_val();
353 I = P.first; // We examine the operands of this binary operator.
354 assert(P.second >= 1 && "No paths to here, so how did we get here?!");
355
356 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
357 Value *Op = I->getOperand(OpIdx);
358 unsigned Weight = P.second; // Number of paths to this operand.
359 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
360 assert(!Op->use_empty() && "No uses, so how did we get to it?!");
361
362 // If this is a binary operation of the right kind with only one use then
363 // add its operands to the expression.
364 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
365 assert(Visited.insert(Op) && "Not first visit!");
366 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
367 Worklist.push_back(std::make_pair(BO, Weight));
368 continue;
369 }
370
371 // Appears to be a leaf. Is the operand already in the set of leaves?
372 LeafMap::iterator It = Leaves.find(Op);
373 if (It == Leaves.end()) {
374 // Not in the leaf map. Must be the first time we saw this operand.
375 assert(Visited.insert(Op) && "Not first visit!");
376 if (!Op->hasOneUse()) {
377 // This value has uses not accounted for by the expression, so it is
378 // not safe to modify. Mark it as being a leaf.
379 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
380 LeafOrder.push_back(Op);
381 Leaves[Op] = Weight;
382 continue;
383 }
384 // No uses outside the expression, try morphing it.
385 } else if (It != Leaves.end()) {
386 // Already in the leaf map.
387 assert(Visited.count(Op) && "In leaf map but not visited!");
388
389 // Update the number of paths to the leaf.
390 It->second += Weight;
391
392 // The leaf already has one use from inside the expression. As we want
393 // exactly one such use, drop this new use of the leaf.
394 assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
395 I->setOperand(OpIdx, UndefValue::get(I->getType()));
396 MadeChange = true;
397
398 // If the leaf is a binary operation of the right kind and we now see
399 // that its multiple original uses were in fact all by nodes belonging
400 // to the expression, then no longer consider it to be a leaf and add
401 // its operands to the expression.
402 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
403 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
404 Worklist.push_back(std::make_pair(BO, It->second));
405 Leaves.erase(It);
406 continue;
407 }
408
409 // If we still have uses that are not accounted for by the expression
410 // then it is not safe to modify the value.
411 if (!Op->hasOneUse())
412 continue;
413
414 // No uses outside the expression, try morphing it.
415 Weight = It->second;
416 Leaves.erase(It); // Since the value may be morphed below.
417 }
418
419 // At this point we have a value which, first of all, is not a binary
420 // expression of the right kind, and secondly, is only used inside the
421 // expression. This means that it can safely be modified. See if we
422 // can usefully morph it into an expression of the right kind.
423 assert((!isa<Instruction>(Op) ||
424 cast<Instruction>(Op)->getOpcode() != Opcode) &&
425 "Should have been handled above!");
426 assert(Op->hasOneUse() && "Has uses outside the expression tree!");
427
428 // If this is a multiply expression, turn any internal negations into
429 // multiplies by -1 so they can be reassociated.
430 BinaryOperator *BO = dyn_cast<BinaryOperator>(Op);
431 if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) {
432 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
Duncan Sandsb9335862012-06-06 14:53:10 +0000433 BO = LowerNegateToMultiply(BO);
Duncan Sands0fd120b2012-05-25 12:03:02 +0000434 DEBUG(dbgs() << *BO << 'n');
435 Worklist.push_back(std::make_pair(BO, Weight));
436 MadeChange = true;
437 continue;
438 }
439
440 // Failed to morph into an expression of the right type. This really is
441 // a leaf.
442 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
443 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
444 LeafOrder.push_back(Op);
445 Leaves[Op] = Weight;
Chris Lattnerf33151a2005-05-08 21:28:52 +0000446 }
447 }
448
Duncan Sands0fd120b2012-05-25 12:03:02 +0000449 // The leaves, repeated according to their weights, represent the linearized
450 // form of the expression.
451 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
452 Value *V = LeafOrder[i];
453 LeafMap::iterator It = Leaves.find(V);
454 if (It == Leaves.end())
455 // Leaf already output, or node initially thought to be a leaf wasn't.
456 continue;
457 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
458 unsigned Weight = It->second;
459 assert(Weight > 0 && "No paths to this value!");
460 // FIXME: Rather than repeating values Weight times, use a vector of
461 // (ValueEntry, multiplicity) pairs.
462 Ops.append(Weight, ValueEntry(getRank(V), V));
463 // Ensure the leaf is only output once.
464 Leaves.erase(It);
Chris Lattner4fd56002002-05-08 22:19:27 +0000465 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000466}
467
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000468// RewriteExprTree - Now that the operands for this expression tree are
Duncan Sands0fd120b2012-05-25 12:03:02 +0000469// linearized and optimized, emit them in-order.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000470void Reassociate::RewriteExprTree(BinaryOperator *I,
Duncan Sands0fd120b2012-05-25 12:03:02 +0000471 SmallVectorImpl<ValueEntry> &Ops) {
472 assert(Ops.size() > 1 && "Single values should be used directly!");
Dan Gohman46985a12011-02-02 02:02:34 +0000473
Duncan Sands0fd120b2012-05-25 12:03:02 +0000474 // Since our optimizations never increase the number of operations, the new
475 // expression can always be written by reusing the existing binary operators
476 // from the original expression tree, without creating any new instructions,
477 // though the rewritten expression may have a completely different topology.
478 // We take care to not change anything if the new expression will be the same
479 // as the original. If more than trivial changes (like commuting operands)
480 // were made then we are obliged to clear out any optional subclass data like
481 // nsw flags.
Dan Gohman46985a12011-02-02 02:02:34 +0000482
Duncan Sands0fd120b2012-05-25 12:03:02 +0000483 /// NodesToRewrite - Nodes from the original expression available for writing
484 /// the new expression into.
485 SmallVector<BinaryOperator*, 8> NodesToRewrite;
486 unsigned Opcode = I->getOpcode();
487 NodesToRewrite.push_back(I);
488
Duncan Sandseacc31a2012-05-26 16:42:52 +0000489 // ExpressionChanged - Non-null if the rewritten expression differs from the
490 // original in some non-trivial way, requiring the clearing of optional flags.
491 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
492 BinaryOperator *ExpressionChanged = 0;
Duncan Sands0fd120b2012-05-25 12:03:02 +0000493 BinaryOperator *Previous;
494 BinaryOperator *Op = 0;
495 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
496 assert(!NodesToRewrite.empty() &&
497 "Optimized expressions has more nodes than original!");
498 Previous = Op; Op = NodesToRewrite.pop_back_val();
Duncan Sandseacc31a2012-05-26 16:42:52 +0000499 if (ExpressionChanged)
500 // Compactify the tree instructions together with each other to guarantee
501 // that the expression tree is dominated by all of Ops.
Duncan Sands0fd120b2012-05-25 12:03:02 +0000502 Op->moveBefore(Previous);
503
504 // The last operation (which comes earliest in the IR) is special as both
505 // operands will come from Ops, rather than just one with the other being
506 // a subexpression.
507 if (i+2 == Ops.size()) {
508 Value *NewLHS = Ops[i].Op;
509 Value *NewRHS = Ops[i+1].Op;
510 Value *OldLHS = Op->getOperand(0);
511 Value *OldRHS = Op->getOperand(1);
512
513 if (NewLHS == OldLHS && NewRHS == OldRHS)
514 // Nothing changed, leave it alone.
515 break;
516
517 if (NewLHS == OldRHS && NewRHS == OldLHS) {
518 // The order of the operands was reversed. Swap them.
519 DEBUG(dbgs() << "RA: " << *Op << '\n');
520 Op->swapOperands();
521 DEBUG(dbgs() << "TO: " << *Op << '\n');
522 MadeChange = true;
523 ++NumChanged;
524 break;
525 }
526
527 // The new operation differs non-trivially from the original. Overwrite
528 // the old operands with the new ones.
529 DEBUG(dbgs() << "RA: " << *Op << '\n');
530 if (NewLHS != OldLHS) {
531 if (BinaryOperator *BO = isReassociableOp(OldLHS, Opcode))
532 NodesToRewrite.push_back(BO);
533 Op->setOperand(0, NewLHS);
534 }
535 if (NewRHS != OldRHS) {
536 if (BinaryOperator *BO = isReassociableOp(OldRHS, Opcode))
537 NodesToRewrite.push_back(BO);
538 Op->setOperand(1, NewRHS);
539 }
540 DEBUG(dbgs() << "TO: " << *Op << '\n');
541
Duncan Sandseacc31a2012-05-26 16:42:52 +0000542 ExpressionChanged = Op;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000543 MadeChange = true;
544 ++NumChanged;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000545
Duncan Sands0fd120b2012-05-25 12:03:02 +0000546 break;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000547 }
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000548
Duncan Sands0fd120b2012-05-25 12:03:02 +0000549 // Not the last operation. The left-hand side will be a sub-expression
550 // while the right-hand side will be the current element of Ops.
551 Value *NewRHS = Ops[i].Op;
552 if (NewRHS != Op->getOperand(1)) {
553 DEBUG(dbgs() << "RA: " << *Op << '\n');
554 if (NewRHS == Op->getOperand(0)) {
555 // The new right-hand side was already present as the left operand. If
556 // we are lucky then swapping the operands will sort out both of them.
557 Op->swapOperands();
558 } else {
559 // Overwrite with the new right-hand side.
560 if (BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode))
561 NodesToRewrite.push_back(BO);
562 Op->setOperand(1, NewRHS);
Duncan Sandseacc31a2012-05-26 16:42:52 +0000563 ExpressionChanged = Op;
Duncan Sands0fd120b2012-05-25 12:03:02 +0000564 }
565 DEBUG(dbgs() << "TO: " << *Op << '\n');
566 MadeChange = true;
567 ++NumChanged;
568 }
Dan Gohman46985a12011-02-02 02:02:34 +0000569
Duncan Sands0fd120b2012-05-25 12:03:02 +0000570 // Now deal with the left-hand side. If this is already an operation node
571 // from the original expression then just rewrite the rest of the expression
572 // into it.
573 if (BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode)) {
574 NodesToRewrite.push_back(BO);
575 continue;
576 }
Dan Gohman46985a12011-02-02 02:02:34 +0000577
Duncan Sands0fd120b2012-05-25 12:03:02 +0000578 // Otherwise, grab a spare node from the original expression and use that as
579 // the left-hand side.
580 assert(!NodesToRewrite.empty() &&
581 "Optimized expressions has more nodes than original!");
582 DEBUG(dbgs() << "RA: " << *Op << '\n');
583 Op->setOperand(0, NodesToRewrite.back());
584 DEBUG(dbgs() << "TO: " << *Op << '\n');
Duncan Sandseacc31a2012-05-26 16:42:52 +0000585 ExpressionChanged = Op;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000586 MadeChange = true;
587 ++NumChanged;
588 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000589
Duncan Sandseacc31a2012-05-26 16:42:52 +0000590 // If the expression changed non-trivially then clear out all subclass data
591 // starting from the operator specified in ExpressionChanged.
Duncan Sands0fd120b2012-05-25 12:03:02 +0000592 if (ExpressionChanged) {
593 do {
Duncan Sandseacc31a2012-05-26 16:42:52 +0000594 ExpressionChanged->clearSubclassOptionalData();
595 if (ExpressionChanged == I)
Duncan Sands0fd120b2012-05-25 12:03:02 +0000596 break;
Duncan Sandseacc31a2012-05-26 16:42:52 +0000597 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->use_begin());
Duncan Sands0fd120b2012-05-25 12:03:02 +0000598 } while (1);
599 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000600
Duncan Sands0fd120b2012-05-25 12:03:02 +0000601 // Throw away any left over nodes from the original expression.
602 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
Duncan Sandsb9335862012-06-06 14:53:10 +0000603 RedoInsts.insert(NodesToRewrite[i]);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000604}
605
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000606/// NegateValue - Insert instructions before the instruction pointed to by BI,
607/// that computes the negative version of the value specified. The negative
608/// version of the value is returned, and BI is left pointing at the instruction
609/// that should be processed next by the reassociation pass.
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000610static Value *NegateValue(Value *V, Instruction *BI) {
Chris Lattner35239932009-12-31 20:34:32 +0000611 if (Constant *C = dyn_cast<Constant>(V))
612 return ConstantExpr::getNeg(C);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000613
Chris Lattnera36e6c82002-05-16 04:37:07 +0000614 // We are trying to expose opportunity for reassociation. One of the things
615 // that we want to do to achieve this is to push a negation as deep into an
616 // expression chain as possible, to expose the add instructions. In practice,
617 // this means that we turn this:
618 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
619 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
620 // the constants. We assume that instcombine will clean up the mess later if
Chris Lattner90461932010-01-01 00:04:26 +0000621 // we introduce tons of unnecessary negation instructions.
Chris Lattnera36e6c82002-05-16 04:37:07 +0000622 //
Duncan Sands0fd120b2012-05-25 12:03:02 +0000623 if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) {
624 // Push the negates through the add.
625 I->setOperand(0, NegateValue(I->getOperand(0), BI));
626 I->setOperand(1, NegateValue(I->getOperand(1), BI));
Chris Lattnera36e6c82002-05-16 04:37:07 +0000627
Duncan Sands0fd120b2012-05-25 12:03:02 +0000628 // We must move the add instruction here, because the neg instructions do
629 // not dominate the old add instruction in general. By moving it, we are
630 // assured that the neg instructions we just inserted dominate the
631 // instruction we are about to insert after them.
632 //
633 I->moveBefore(BI);
634 I->setName(I->getName()+".neg");
635 return I;
636 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000637
Chris Lattner35239932009-12-31 20:34:32 +0000638 // Okay, we need to materialize a negated version of V with an instruction.
639 // Scan the use lists of V to see if we have one already.
640 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
Gabor Greif110b75a2010-07-12 12:03:02 +0000641 User *U = *UI;
642 if (!BinaryOperator::isNeg(U)) continue;
Chris Lattner35239932009-12-31 20:34:32 +0000643
644 // We found one! Now we have to make sure that the definition dominates
645 // this use. We do this by moving it to the entry block (if it is a
646 // non-instruction value) or right after the definition. These negates will
647 // be zapped by reassociate later, so we don't need much finesse here.
Gabor Greif110b75a2010-07-12 12:03:02 +0000648 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
Chris Lattner1c91fae2010-01-02 21:46:33 +0000649
650 // Verify that the negate is in this function, V might be a constant expr.
651 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
652 continue;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000653
Chris Lattner35239932009-12-31 20:34:32 +0000654 BasicBlock::iterator InsertPt;
655 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
656 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
657 InsertPt = II->getNormalDest()->begin();
658 } else {
659 InsertPt = InstInput;
660 ++InsertPt;
661 }
662 while (isa<PHINode>(InsertPt)) ++InsertPt;
663 } else {
664 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
665 }
666 TheNeg->moveBefore(InsertPt);
667 return TheNeg;
668 }
Chris Lattnera36e6c82002-05-16 04:37:07 +0000669
670 // Insert a 'neg' instruction that subtracts the value from zero to get the
671 // negation.
Dan Gohman4ae51262009-08-12 16:23:25 +0000672 return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
Chris Lattner08b43922005-05-07 04:08:02 +0000673}
674
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000675/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
676/// X-Y into (X + -Y).
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000677static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000678 // If this is a negation, we can't split it up!
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000679 if (BinaryOperator::isNeg(Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000680 return false;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000681
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000682 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattner0b0803a2008-02-17 20:51:26 +0000683 // subtract or if this is only used by one.
684 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
685 isReassociableOp(Sub->getOperand(0), Instruction::Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000686 return true;
Chris Lattner0b0803a2008-02-17 20:51:26 +0000687 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
Chris Lattner5329bb22008-02-17 20:54:40 +0000688 isReassociableOp(Sub->getOperand(1), Instruction::Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000689 return true;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000690 if (Sub->hasOneUse() &&
Chris Lattner0b0803a2008-02-17 20:51:26 +0000691 (isReassociableOp(Sub->use_back(), Instruction::Add) ||
692 isReassociableOp(Sub->use_back(), Instruction::Sub)))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000693 return true;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000694
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000695 return false;
696}
697
Chris Lattner08b43922005-05-07 04:08:02 +0000698/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
699/// only used by an add, transform this into (X+(0-Y)) to promote better
700/// reassociation.
Duncan Sandsb9335862012-06-06 14:53:10 +0000701static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
Chris Lattner90461932010-01-01 00:04:26 +0000702 // Convert a subtract into an add and a neg instruction. This allows sub
703 // instructions to be commuted with other add instructions.
Chris Lattner08b43922005-05-07 04:08:02 +0000704 //
Chris Lattner90461932010-01-01 00:04:26 +0000705 // Calculate the negative value of Operand 1 of the sub instruction,
706 // and set it as the RHS of the add instruction we just made.
Chris Lattner08b43922005-05-07 04:08:02 +0000707 //
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000708 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
Duncan Sandsb9335862012-06-06 14:53:10 +0000709 BinaryOperator *New =
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000710 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
Chris Lattner6934a042007-02-11 01:23:03 +0000711 New->takeName(Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000712
713 // Everyone now refers to the add instruction.
714 Sub->replaceAllUsesWith(New);
Devang Patel5367b232011-04-28 22:48:14 +0000715 New->setDebugLoc(Sub->getDebugLoc());
Jeff Cohen00b168892005-07-27 06:12:32 +0000716
David Greenea1fa76c2010-01-05 01:27:24 +0000717 DEBUG(dbgs() << "Negated: " << *New << '\n');
Chris Lattner08b43922005-05-07 04:08:02 +0000718 return New;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000719}
720
Chris Lattner0975ed52005-05-07 04:24:13 +0000721/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
722/// by one, change this into a multiply by a constant to assist with further
723/// reassociation.
Duncan Sandsb9335862012-06-06 14:53:10 +0000724static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
725 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
726 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000727
Duncan Sandsb9335862012-06-06 14:53:10 +0000728 BinaryOperator *Mul =
729 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
730 Mul->takeName(Shl);
731 Shl->replaceAllUsesWith(Mul);
732 Mul->setDebugLoc(Shl->getDebugLoc());
733 return Mul;
Chris Lattner0975ed52005-05-07 04:24:13 +0000734}
735
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000736/// FindInOperandList - Scan backwards and forwards among values with the same
737/// rank as element i to see if X exists. If X does not exist, return i. This
738/// is useful when scanning for 'x' when we see '-x' because they both get the
739/// same rank.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000740static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
Chris Lattner109d34d2005-05-08 18:59:37 +0000741 Value *X) {
742 unsigned XRank = Ops[i].Rank;
743 unsigned e = Ops.size();
744 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
745 if (Ops[j].Op == X)
746 return j;
Chris Lattner9506c932010-01-01 01:13:15 +0000747 // Scan backwards.
Chris Lattner109d34d2005-05-08 18:59:37 +0000748 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
749 if (Ops[j].Op == X)
750 return j;
751 return i;
752}
753
Chris Lattnere5022fe2006-03-04 09:31:13 +0000754/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
755/// and returning the result. Insert the tree before I.
Bill Wendling55e70982012-05-02 09:59:45 +0000756static Value *EmitAddTreeOfValues(Instruction *I,
757 SmallVectorImpl<WeakVH> &Ops){
Chris Lattnere5022fe2006-03-04 09:31:13 +0000758 if (Ops.size() == 1) return Ops.back();
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000759
Chris Lattnere5022fe2006-03-04 09:31:13 +0000760 Value *V1 = Ops.back();
761 Ops.pop_back();
762 Value *V2 = EmitAddTreeOfValues(I, Ops);
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000763 return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000764}
765
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000766/// RemoveFactorFromExpression - If V is an expression tree that is a
Chris Lattnere5022fe2006-03-04 09:31:13 +0000767/// multiplication sequence, and if this sequence contains a multiply by Factor,
768/// remove Factor from the tree and return the new tree.
769Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
770 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
771 if (!BO) return 0;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000772
Chris Lattner9f7b7082009-12-31 18:40:32 +0000773 SmallVector<ValueEntry, 8> Factors;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000774 LinearizeExprTree(BO, Factors);
775
776 bool FoundFactor = false;
Chris Lattner9506c932010-01-01 01:13:15 +0000777 bool NeedsNegate = false;
778 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000779 if (Factors[i].Op == Factor) {
780 FoundFactor = true;
781 Factors.erase(Factors.begin()+i);
782 break;
783 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000784
Chris Lattner9506c932010-01-01 01:13:15 +0000785 // If this is a negative version of this factor, remove it.
786 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
787 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
788 if (FC1->getValue() == -FC2->getValue()) {
789 FoundFactor = NeedsNegate = true;
790 Factors.erase(Factors.begin()+i);
791 break;
792 }
793 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000794
Chris Lattnere9efecb2006-03-14 16:04:29 +0000795 if (!FoundFactor) {
796 // Make sure to restore the operands to the expression tree.
797 RewriteExprTree(BO, Factors);
798 return 0;
799 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000800
Chris Lattner9506c932010-01-01 01:13:15 +0000801 BasicBlock::iterator InsertPt = BO; ++InsertPt;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000802
Chris Lattner1e7558b2009-12-31 19:34:45 +0000803 // If this was just a single multiply, remove the multiply and return the only
804 // remaining operand.
805 if (Factors.size() == 1) {
Duncan Sandsb9335862012-06-06 14:53:10 +0000806 RedoInsts.insert(BO);
Chris Lattner9506c932010-01-01 01:13:15 +0000807 V = Factors[0].Op;
808 } else {
809 RewriteExprTree(BO, Factors);
810 V = BO;
Chris Lattner1e7558b2009-12-31 19:34:45 +0000811 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000812
Chris Lattner9506c932010-01-01 01:13:15 +0000813 if (NeedsNegate)
814 V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000815
Chris Lattner9506c932010-01-01 01:13:15 +0000816 return V;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000817}
818
Chris Lattnere9efecb2006-03-14 16:04:29 +0000819/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
820/// add its operands as factors, otherwise add V to the list of factors.
Chris Lattner893075f2010-03-05 07:18:54 +0000821///
822/// Ops is the top-level list of add operands we're trying to factor.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000823static void FindSingleUseMultiplyFactors(Value *V,
Chris Lattner893075f2010-03-05 07:18:54 +0000824 SmallVectorImpl<Value*> &Factors,
Duncan Sands0fd120b2012-05-25 12:03:02 +0000825 const SmallVectorImpl<ValueEntry> &Ops) {
826 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
827 if (!BO) {
Chris Lattnere9efecb2006-03-14 16:04:29 +0000828 Factors.push_back(V);
829 return;
830 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000831
Chris Lattnere9efecb2006-03-14 16:04:29 +0000832 // Otherwise, add the LHS and RHS to the list of factors.
Duncan Sands0fd120b2012-05-25 12:03:02 +0000833 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
834 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
Chris Lattnere9efecb2006-03-14 16:04:29 +0000835}
836
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000837/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
838/// instruction. This optimizes based on identities. If it can be reduced to
839/// a single Value, it is returned, otherwise the Ops list is mutated as
840/// necessary.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000841static Value *OptimizeAndOrXor(unsigned Opcode,
842 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000843 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
844 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
845 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
846 // First, check for X and ~X in the operand list.
847 assert(i < Ops.size());
848 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
849 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
850 unsigned FoundX = FindInOperandList(Ops, i, X);
851 if (FoundX != i) {
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000852 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000853 return Constant::getNullValue(X->getType());
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000854
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000855 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000856 return Constant::getAllOnesValue(X->getType());
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000857 }
858 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000859
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000860 // Next, check for duplicate pairs of values, which we assume are next to
861 // each other, due to our sorting criteria.
862 assert(i < Ops.size());
863 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
864 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000865 // Drop duplicate values for And and Or.
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000866 Ops.erase(Ops.begin()+i);
867 --i; --e;
868 ++NumAnnihil;
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000869 continue;
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000870 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000871
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000872 // Drop pairs of values for Xor.
873 assert(Opcode == Instruction::Xor);
874 if (e == 2)
875 return Constant::getNullValue(Ops[0].Op->getType());
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000876
Chris Lattner90461932010-01-01 00:04:26 +0000877 // Y ^ X^X -> Y
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000878 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
879 i -= 1; e -= 2;
880 ++NumAnnihil;
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000881 }
882 }
883 return 0;
884}
Chris Lattnere9efecb2006-03-14 16:04:29 +0000885
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000886/// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
887/// optimizes based on identities. If it can be reduced to a single Value, it
888/// is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000889Value *Reassociate::OptimizeAdd(Instruction *I,
890 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000891 // Scan the operand lists looking for X and -X pairs. If we find any, we
Chris Lattner69e98e22009-12-31 19:24:52 +0000892 // can simplify the expression. X+-X == 0. While we're at it, scan for any
893 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Chris Lattner9506c932010-01-01 01:13:15 +0000894 //
895 // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
896 //
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000897 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner69e98e22009-12-31 19:24:52 +0000898 Value *TheOp = Ops[i].Op;
899 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000900 // instances of the operand together. Due to our sorting criteria, we know
901 // that these need to be next to each other in the vector.
902 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
903 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner69e98e22009-12-31 19:24:52 +0000904 unsigned NumFound = 0;
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000905 do {
906 Ops.erase(Ops.begin()+i);
Chris Lattner69e98e22009-12-31 19:24:52 +0000907 ++NumFound;
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000908 } while (i != Ops.size() && Ops[i].Op == TheOp);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000909
Chris Lattnerf8a447d2009-12-31 19:25:19 +0000910 DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
Chris Lattner69e98e22009-12-31 19:24:52 +0000911 ++NumFactor;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000912
Chris Lattner69e98e22009-12-31 19:24:52 +0000913 // Insert a new multiply.
914 Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
915 Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000916
Chris Lattner69e98e22009-12-31 19:24:52 +0000917 // Now that we have inserted a multiply, optimize it. This allows us to
918 // handle cases that require multiple factoring steps, such as this:
919 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
Duncan Sandsb9335862012-06-06 14:53:10 +0000920 RedoInsts.insert(cast<Instruction>(Mul));
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000921
Chris Lattner69e98e22009-12-31 19:24:52 +0000922 // If every add operand was a duplicate, return the multiply.
923 if (Ops.empty())
924 return Mul;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000925
Chris Lattner69e98e22009-12-31 19:24:52 +0000926 // Otherwise, we had some input that didn't have the dupe, such as
927 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
928 // things being added by this operation.
929 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000930
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000931 --i;
932 e = Ops.size();
933 continue;
Chris Lattner69e98e22009-12-31 19:24:52 +0000934 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000935
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000936 // Check for X and -X in the operand list.
Chris Lattner69e98e22009-12-31 19:24:52 +0000937 if (!BinaryOperator::isNeg(TheOp))
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000938 continue;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000939
Chris Lattner69e98e22009-12-31 19:24:52 +0000940 Value *X = BinaryOperator::getNegArgument(TheOp);
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000941 unsigned FoundX = FindInOperandList(Ops, i, X);
942 if (FoundX == i)
943 continue;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000944
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000945 // Remove X and -X from the operand list.
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000946 if (Ops.size() == 2)
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000947 return Constant::getNullValue(X->getType());
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000948
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000949 Ops.erase(Ops.begin()+i);
950 if (i < FoundX)
951 --FoundX;
952 else
953 --i; // Need to back up an extra one.
954 Ops.erase(Ops.begin()+FoundX);
955 ++NumAnnihil;
956 --i; // Revisit element.
957 e -= 2; // Removed two elements.
958 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000959
Chris Lattner94285e62009-12-31 18:17:13 +0000960 // Scan the operand list, checking to see if there are any common factors
961 // between operands. Consider something like A*A+A*B*C+D. We would like to
962 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
963 // To efficiently find this, we count the number of times a factor occurs
964 // for any ADD operands that are MULs.
965 DenseMap<Value*, unsigned> FactorOccurrences;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000966
Chris Lattner94285e62009-12-31 18:17:13 +0000967 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
968 // where they are actually the same multiply.
Chris Lattner94285e62009-12-31 18:17:13 +0000969 unsigned MaxOcc = 0;
970 Value *MaxOccVal = 0;
971 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Duncan Sands0fd120b2012-05-25 12:03:02 +0000972 BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
973 if (!BOp)
Chris Lattner94285e62009-12-31 18:17:13 +0000974 continue;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000975
Chris Lattner94285e62009-12-31 18:17:13 +0000976 // Compute all of the factors of this added value.
977 SmallVector<Value*, 8> Factors;
Duncan Sands0fd120b2012-05-25 12:03:02 +0000978 FindSingleUseMultiplyFactors(BOp, Factors, Ops);
Chris Lattner94285e62009-12-31 18:17:13 +0000979 assert(Factors.size() > 1 && "Bad linearize!");
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000980
Chris Lattner94285e62009-12-31 18:17:13 +0000981 // Add one to FactorOccurrences for each unique factor in this op.
Chris Lattner9506c932010-01-01 01:13:15 +0000982 SmallPtrSet<Value*, 8> Duplicates;
983 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
984 Value *Factor = Factors[i];
985 if (!Duplicates.insert(Factor)) continue;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000986
Chris Lattner9506c932010-01-01 01:13:15 +0000987 unsigned Occ = ++FactorOccurrences[Factor];
988 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000989
Chris Lattner9506c932010-01-01 01:13:15 +0000990 // If Factor is a negative constant, add the negated value as a factor
991 // because we can percolate the negate out. Watch for minint, which
992 // cannot be positivified.
993 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
Chris Lattnerc73b24d2011-07-15 06:08:15 +0000994 if (CI->isNegative() && !CI->isMinValue(true)) {
Chris Lattner9506c932010-01-01 01:13:15 +0000995 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
996 assert(!Duplicates.count(Factor) &&
997 "Shouldn't have two constant factors, missed a canonicalize");
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000998
Chris Lattner9506c932010-01-01 01:13:15 +0000999 unsigned Occ = ++FactorOccurrences[Factor];
1000 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
1001 }
Chris Lattner94285e62009-12-31 18:17:13 +00001002 }
1003 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001004
Chris Lattner94285e62009-12-31 18:17:13 +00001005 // If any factor occurred more than one time, we can pull it out.
1006 if (MaxOcc > 1) {
Chris Lattner69e98e22009-12-31 19:24:52 +00001007 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
Chris Lattner94285e62009-12-31 18:17:13 +00001008 ++NumFactor;
1009
1010 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1011 // this, we could otherwise run into situations where removing a factor
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001012 // from an expression will drop a use of maxocc, and this can cause
Chris Lattner94285e62009-12-31 18:17:13 +00001013 // RemoveFactorFromExpression on successive values to behave differently.
1014 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
Bill Wendling55e70982012-05-02 09:59:45 +00001015 SmallVector<WeakVH, 4> NewMulOps;
Duncan Sands37f87c72011-01-26 10:08:38 +00001016 for (unsigned i = 0; i != Ops.size(); ++i) {
Chris Lattnerc2d1b692010-01-09 06:01:36 +00001017 // Only try to remove factors from expressions we're allowed to.
Duncan Sands0fd120b2012-05-25 12:03:02 +00001018 BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1019 if (!BOp)
Chris Lattnerc2d1b692010-01-09 06:01:36 +00001020 continue;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001021
Chris Lattner94285e62009-12-31 18:17:13 +00001022 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
Duncan Sands37f87c72011-01-26 10:08:38 +00001023 // The factorized operand may occur several times. Convert them all in
1024 // one fell swoop.
1025 for (unsigned j = Ops.size(); j != i;) {
1026 --j;
1027 if (Ops[j].Op == Ops[i].Op) {
1028 NewMulOps.push_back(V);
1029 Ops.erase(Ops.begin()+j);
1030 }
1031 }
1032 --i;
Chris Lattner94285e62009-12-31 18:17:13 +00001033 }
1034 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001035
Chris Lattner94285e62009-12-31 18:17:13 +00001036 // No need for extra uses anymore.
1037 delete DummyInst;
Duncan Sands54a57042010-01-08 17:51:48 +00001038
Chris Lattner94285e62009-12-31 18:17:13 +00001039 unsigned NumAddedValues = NewMulOps.size();
1040 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Duncan Sands54a57042010-01-08 17:51:48 +00001041
Chris Lattner69e98e22009-12-31 19:24:52 +00001042 // Now that we have inserted the add tree, optimize it. This allows us to
1043 // handle cases that require multiple factoring steps, such as this:
Chris Lattner94285e62009-12-31 18:17:13 +00001044 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattner9cd1bc42009-12-31 18:18:46 +00001045 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Duncan Sands54a57042010-01-08 17:51:48 +00001046 (void)NumAddedValues;
Duncan Sandsb9335862012-06-06 14:53:10 +00001047 if (Instruction *VI = dyn_cast<Instruction>(V))
1048 RedoInsts.insert(VI);
Chris Lattner69e98e22009-12-31 19:24:52 +00001049
1050 // Create the multiply.
Duncan Sandsb9335862012-06-06 14:53:10 +00001051 Instruction *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
Chris Lattner69e98e22009-12-31 19:24:52 +00001052
Chris Lattnerf31e2e92009-12-31 19:49:01 +00001053 // Rerun associate on the multiply in case the inner expression turned into
1054 // a multiply. We want to make sure that we keep things in canonical form.
Duncan Sandsb9335862012-06-06 14:53:10 +00001055 RedoInsts.insert(V2);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001056
Chris Lattner94285e62009-12-31 18:17:13 +00001057 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1058 // entire result expression is just the multiply "A*(B+C)".
1059 if (Ops.empty())
1060 return V2;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001061
Chris Lattner9cd1bc42009-12-31 18:18:46 +00001062 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner94285e62009-12-31 18:17:13 +00001063 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattner9cd1bc42009-12-31 18:18:46 +00001064 // things being added by this operation.
Chris Lattner94285e62009-12-31 18:17:13 +00001065 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1066 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001067
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001068 return 0;
1069}
Chris Lattnere5022fe2006-03-04 09:31:13 +00001070
Chandler Carruth464bda32012-04-26 05:30:30 +00001071namespace {
1072 /// \brief Predicate tests whether a ValueEntry's op is in a map.
1073 struct IsValueInMap {
1074 const DenseMap<Value *, unsigned> &Map;
1075
1076 IsValueInMap(const DenseMap<Value *, unsigned> &Map) : Map(Map) {}
1077
1078 bool operator()(const ValueEntry &Entry) {
1079 return Map.find(Entry.Op) != Map.end();
1080 }
1081 };
1082}
1083
1084/// \brief Build up a vector of value/power pairs factoring a product.
1085///
1086/// Given a series of multiplication operands, build a vector of factors and
1087/// the powers each is raised to when forming the final product. Sort them in
1088/// the order of descending power.
1089///
1090/// (x*x) -> [(x, 2)]
1091/// ((x*x)*x) -> [(x, 3)]
1092/// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1093///
1094/// \returns Whether any factors have a power greater than one.
1095bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1096 SmallVectorImpl<Factor> &Factors) {
Duncan Sands0fd120b2012-05-25 12:03:02 +00001097 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1098 // Compute the sum of powers of simplifiable factors.
Chandler Carruth464bda32012-04-26 05:30:30 +00001099 unsigned FactorPowerSum = 0;
Duncan Sands0fd120b2012-05-25 12:03:02 +00001100 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1101 Value *Op = Ops[Idx-1].Op;
1102
1103 // Count the number of occurrences of this value.
1104 unsigned Count = 1;
1105 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1106 ++Count;
Chandler Carruth464bda32012-04-26 05:30:30 +00001107 // Track for simplification all factors which occur 2 or more times.
Duncan Sands0fd120b2012-05-25 12:03:02 +00001108 if (Count > 1)
1109 FactorPowerSum += Count;
Chandler Carruth464bda32012-04-26 05:30:30 +00001110 }
Duncan Sands0fd120b2012-05-25 12:03:02 +00001111
Chandler Carruth464bda32012-04-26 05:30:30 +00001112 // We can only simplify factors if the sum of the powers of our simplifiable
1113 // factors is 4 or higher. When that is the case, we will *always* have
1114 // a simplification. This is an important invariant to prevent cyclicly
1115 // trying to simplify already minimal formations.
1116 if (FactorPowerSum < 4)
1117 return false;
1118
Duncan Sands0fd120b2012-05-25 12:03:02 +00001119 // Now gather the simplifiable factors, removing them from Ops.
1120 FactorPowerSum = 0;
1121 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1122 Value *Op = Ops[Idx-1].Op;
Chandler Carruth464bda32012-04-26 05:30:30 +00001123
Duncan Sands0fd120b2012-05-25 12:03:02 +00001124 // Count the number of occurrences of this value.
1125 unsigned Count = 1;
1126 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1127 ++Count;
1128 if (Count == 1)
1129 continue;
Benjamin Kramerd9b0b022012-06-02 10:20:22 +00001130 // Move an even number of occurrences to Factors.
Duncan Sands0fd120b2012-05-25 12:03:02 +00001131 Count &= ~1U;
1132 Idx -= Count;
1133 FactorPowerSum += Count;
1134 Factors.push_back(Factor(Op, Count));
1135 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
Chandler Carruth464bda32012-04-26 05:30:30 +00001136 }
Duncan Sands0fd120b2012-05-25 12:03:02 +00001137
Chandler Carruth464bda32012-04-26 05:30:30 +00001138 // None of the adjustments above should have reduced the sum of factor powers
1139 // below our mininum of '4'.
1140 assert(FactorPowerSum >= 4);
1141
Chandler Carruth464bda32012-04-26 05:30:30 +00001142 std::sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
1143 return true;
1144}
1145
1146/// \brief Build a tree of multiplies, computing the product of Ops.
1147static Value *buildMultiplyTree(IRBuilder<> &Builder,
1148 SmallVectorImpl<Value*> &Ops) {
1149 if (Ops.size() == 1)
1150 return Ops.back();
1151
1152 Value *LHS = Ops.pop_back_val();
1153 do {
1154 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1155 } while (!Ops.empty());
1156
1157 return LHS;
1158}
1159
1160/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1161///
1162/// Given a vector of values raised to various powers, where no two values are
1163/// equal and the powers are sorted in decreasing order, compute the minimal
1164/// DAG of multiplies to compute the final product, and return that product
1165/// value.
1166Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1167 SmallVectorImpl<Factor> &Factors) {
1168 assert(Factors[0].Power);
1169 SmallVector<Value *, 4> OuterProduct;
1170 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1171 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1172 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1173 LastIdx = Idx;
1174 continue;
1175 }
1176
1177 // We want to multiply across all the factors with the same power so that
1178 // we can raise them to that power as a single entity. Build a mini tree
1179 // for that.
1180 SmallVector<Value *, 4> InnerProduct;
1181 InnerProduct.push_back(Factors[LastIdx].Base);
1182 do {
1183 InnerProduct.push_back(Factors[Idx].Base);
1184 ++Idx;
1185 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1186
1187 // Reset the base value of the first factor to the new expression tree.
1188 // We'll remove all the factors with the same power in a second pass.
Duncan Sandsb9335862012-06-06 14:53:10 +00001189 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1190 if (Instruction *MI = dyn_cast<Instruction>(M))
1191 RedoInsts.insert(MI);
Chandler Carruth464bda32012-04-26 05:30:30 +00001192
1193 LastIdx = Idx;
1194 }
1195 // Unique factors with equal powers -- we've folded them into the first one's
1196 // base.
1197 Factors.erase(std::unique(Factors.begin(), Factors.end(),
1198 Factor::PowerEqual()),
1199 Factors.end());
1200
1201 // Iteratively collect the base of each factor with an add power into the
1202 // outer product, and halve each power in preparation for squaring the
1203 // expression.
1204 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1205 if (Factors[Idx].Power & 1)
1206 OuterProduct.push_back(Factors[Idx].Base);
1207 Factors[Idx].Power >>= 1;
1208 }
1209 if (Factors[0].Power) {
1210 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1211 OuterProduct.push_back(SquareRoot);
1212 OuterProduct.push_back(SquareRoot);
1213 }
1214 if (OuterProduct.size() == 1)
1215 return OuterProduct.front();
1216
Duncan Sandsa3370102012-05-08 12:16:05 +00001217 Value *V = buildMultiplyTree(Builder, OuterProduct);
Duncan Sandsa3370102012-05-08 12:16:05 +00001218 return V;
Chandler Carruth464bda32012-04-26 05:30:30 +00001219}
1220
1221Value *Reassociate::OptimizeMul(BinaryOperator *I,
1222 SmallVectorImpl<ValueEntry> &Ops) {
1223 // We can only optimize the multiplies when there is a chain of more than
1224 // three, such that a balanced tree might require fewer total multiplies.
1225 if (Ops.size() < 4)
1226 return 0;
1227
1228 // Try to turn linear trees of multiplies without other uses of the
1229 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1230 // re-use.
1231 SmallVector<Factor, 4> Factors;
1232 if (!collectMultiplyFactors(Ops, Factors))
1233 return 0; // All distinct factors, so nothing left for us to do.
1234
1235 IRBuilder<> Builder(I);
1236 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1237 if (Ops.empty())
1238 return V;
1239
1240 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1241 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1242 return 0;
1243}
1244
Chris Lattnere5022fe2006-03-04 09:31:13 +00001245Value *Reassociate::OptimizeExpression(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +00001246 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner46900102005-05-08 00:19:31 +00001247 // Now that we have the linearized expression tree, try to optimize it.
1248 // Start by folding any constants that we found.
Chris Lattnere5022fe2006-03-04 09:31:13 +00001249 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +00001250
Chris Lattnere5022fe2006-03-04 09:31:13 +00001251 unsigned Opcode = I->getOpcode();
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001252
Chris Lattner46900102005-05-08 00:19:31 +00001253 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
1254 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
1255 Ops.pop_back();
Owen Andersonbaf3c402009-07-29 18:55:55 +00001256 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
Chris Lattnere5022fe2006-03-04 09:31:13 +00001257 return OptimizeExpression(I, Ops);
Chris Lattner46900102005-05-08 00:19:31 +00001258 }
1259
1260 // Check for destructive annihilation due to a constant being used.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00001261 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
Chris Lattner46900102005-05-08 00:19:31 +00001262 switch (Opcode) {
1263 default: break;
1264 case Instruction::And:
Chris Lattner90461932010-01-01 00:04:26 +00001265 if (CstVal->isZero()) // X & 0 -> 0
Chris Lattnere5022fe2006-03-04 09:31:13 +00001266 return CstVal;
Chris Lattner90461932010-01-01 00:04:26 +00001267 if (CstVal->isAllOnesValue()) // X & -1 -> X
Chris Lattner8d93b252009-12-31 07:48:51 +00001268 Ops.pop_back();
Chris Lattner46900102005-05-08 00:19:31 +00001269 break;
1270 case Instruction::Mul:
Chris Lattner90461932010-01-01 00:04:26 +00001271 if (CstVal->isZero()) { // X * 0 -> 0
Chris Lattner109d34d2005-05-08 18:59:37 +00001272 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +00001273 return CstVal;
Chris Lattner46900102005-05-08 00:19:31 +00001274 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001275
Chris Lattner8d93b252009-12-31 07:48:51 +00001276 if (cast<ConstantInt>(CstVal)->isOne())
Chris Lattner90461932010-01-01 00:04:26 +00001277 Ops.pop_back(); // X * 1 -> X
Chris Lattner46900102005-05-08 00:19:31 +00001278 break;
1279 case Instruction::Or:
Chris Lattner90461932010-01-01 00:04:26 +00001280 if (CstVal->isAllOnesValue()) // X | -1 -> -1
Chris Lattnere5022fe2006-03-04 09:31:13 +00001281 return CstVal;
Chris Lattner46900102005-05-08 00:19:31 +00001282 // FALLTHROUGH!
1283 case Instruction::Add:
1284 case Instruction::Xor:
Chris Lattner90461932010-01-01 00:04:26 +00001285 if (CstVal->isZero()) // X [|^+] 0 -> X
Chris Lattner46900102005-05-08 00:19:31 +00001286 Ops.pop_back();
1287 break;
1288 }
Chris Lattnere5022fe2006-03-04 09:31:13 +00001289 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +00001290
Chris Lattnerec531232009-12-31 07:33:14 +00001291 // Handle destructive annihilation due to identities between elements in the
Chris Lattner46900102005-05-08 00:19:31 +00001292 // argument list here.
Chandler Carruth464bda32012-04-26 05:30:30 +00001293 unsigned NumOps = Ops.size();
Chris Lattner109d34d2005-05-08 18:59:37 +00001294 switch (Opcode) {
1295 default: break;
1296 case Instruction::And:
1297 case Instruction::Or:
Chandler Carruth464bda32012-04-26 05:30:30 +00001298 case Instruction::Xor:
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001299 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1300 return Result;
Chris Lattner109d34d2005-05-08 18:59:37 +00001301 break;
1302
Chandler Carruth464bda32012-04-26 05:30:30 +00001303 case Instruction::Add:
Chris Lattner94285e62009-12-31 18:17:13 +00001304 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001305 return Result;
Chris Lattner109d34d2005-05-08 18:59:37 +00001306 break;
Chandler Carruth464bda32012-04-26 05:30:30 +00001307
1308 case Instruction::Mul:
1309 if (Value *Result = OptimizeMul(I, Ops))
1310 return Result;
1311 break;
Chris Lattner109d34d2005-05-08 18:59:37 +00001312 }
1313
Duncan Sandsb9335862012-06-06 14:53:10 +00001314 if (Ops.size() != NumOps)
Chris Lattnere5022fe2006-03-04 09:31:13 +00001315 return OptimizeExpression(I, Ops);
1316 return 0;
Chris Lattner46900102005-05-08 00:19:31 +00001317}
1318
Duncan Sandsb9335862012-06-06 14:53:10 +00001319/// OptimizeInst - Inspect and optimize the given instruction, possibly erasing
1320/// it.
1321void Reassociate::OptimizeInst(Instruction *I) {
1322 // Reassociation can expose instructions as dead. Erasing them, removing uses,
1323 // can free up their operands for reassociation.
1324 if (isInstructionTriviallyDead(I)) {
1325 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1326 // Erase the dead instruction.
1327 ValueRankMap.erase(I);
1328 I->eraseFromParent();
1329 // Optimize its operands.
1330 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1331 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1332 // If this is a node in an expression tree, climb to the expression root
1333 // and add that since that's where optimization actually happens.
1334 unsigned Opcode = Op->getOpcode();
1335 while (Op->hasOneUse() && Op->use_back()->getOpcode() == Opcode)
1336 Op = Op->use_back();
1337 RedoInsts.insert(Op);
1338 }
1339 return;
1340 }
1341
1342 // Only consider operations that we understand.
1343 if (!isa<BinaryOperator>(I))
1344 return;
1345
1346 if (I->getOpcode() == Instruction::Shl &&
1347 isa<ConstantInt>(I->getOperand(1)))
1348 // If an operand of this shift is a reassociable multiply, or if the shift
1349 // is used by a reassociable multiply or add, turn into a multiply.
1350 if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
1351 (I->hasOneUse() &&
1352 (isReassociableOp(I->use_back(), Instruction::Mul) ||
1353 isReassociableOp(I->use_back(), Instruction::Add)))) {
1354 Instruction *NI = ConvertShiftToMul(I);
1355 ValueRankMap.erase(I);
1356 I->eraseFromParent();
Dan Gohmandac5dba2011-04-12 00:11:56 +00001357 MadeChange = true;
Duncan Sandsb9335862012-06-06 14:53:10 +00001358 I = NI;
Chris Lattnerf33151a2005-05-08 21:28:52 +00001359 }
Chris Lattnere4b73042002-10-31 17:12:59 +00001360
Owen Anderson423f19f2012-05-07 20:47:23 +00001361 // Floating point binary operators are not associative, but we can still
1362 // commute (some) of them, to canonicalize the order of their operands.
1363 // This can potentially expose more CSE opportunities, and makes writing
1364 // other transformations simpler.
Duncan Sandsb9335862012-06-06 14:53:10 +00001365 if ((I->getType()->isFloatingPointTy() || I->getType()->isVectorTy())) {
Owen Anderson423f19f2012-05-07 20:47:23 +00001366 // FAdd and FMul can be commuted.
Duncan Sandsb9335862012-06-06 14:53:10 +00001367 if (I->getOpcode() != Instruction::FMul &&
1368 I->getOpcode() != Instruction::FAdd)
Owen Anderson423f19f2012-05-07 20:47:23 +00001369 return;
1370
Duncan Sandsb9335862012-06-06 14:53:10 +00001371 Value *LHS = I->getOperand(0);
1372 Value *RHS = I->getOperand(1);
Owen Anderson423f19f2012-05-07 20:47:23 +00001373 unsigned LHSRank = getRank(LHS);
1374 unsigned RHSRank = getRank(RHS);
1375
1376 // Sort the operands by rank.
1377 if (RHSRank < LHSRank) {
Duncan Sandsb9335862012-06-06 14:53:10 +00001378 I->setOperand(0, RHS);
1379 I->setOperand(1, LHS);
Owen Anderson423f19f2012-05-07 20:47:23 +00001380 }
1381
1382 return;
1383 }
1384
Dan Gohmandac5dba2011-04-12 00:11:56 +00001385 // Do not reassociate boolean (i1) expressions. We want to preserve the
1386 // original order of evaluation for short-circuited comparisons that
1387 // SimplifyCFG has folded to AND/OR expressions. If the expression
1388 // is not further optimized, it is likely to be transformed back to a
1389 // short-circuited form for code gen, and the source order may have been
1390 // optimized for the most likely conditions.
Duncan Sandsb9335862012-06-06 14:53:10 +00001391 if (I->getType()->isIntegerTy(1))
Dan Gohmandac5dba2011-04-12 00:11:56 +00001392 return;
Chris Lattnera36e6c82002-05-16 04:37:07 +00001393
Dan Gohmandac5dba2011-04-12 00:11:56 +00001394 // If this is a subtract instruction which is not already in negate form,
1395 // see if we can convert it to X+-Y.
Duncan Sandsb9335862012-06-06 14:53:10 +00001396 if (I->getOpcode() == Instruction::Sub) {
1397 if (ShouldBreakUpSubtract(I)) {
1398 Instruction *NI = BreakUpSubtract(I);
1399 ValueRankMap.erase(I);
1400 I->eraseFromParent();
Dan Gohmandac5dba2011-04-12 00:11:56 +00001401 MadeChange = true;
Duncan Sandsb9335862012-06-06 14:53:10 +00001402 I = NI;
1403 } else if (BinaryOperator::isNeg(I)) {
Dan Gohmandac5dba2011-04-12 00:11:56 +00001404 // Otherwise, this is a negation. See if the operand is a multiply tree
1405 // and if this is not an inner node of a multiply tree.
Duncan Sandsb9335862012-06-06 14:53:10 +00001406 if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
1407 (!I->hasOneUse() ||
1408 !isReassociableOp(I->use_back(), Instruction::Mul))) {
1409 Instruction *NI = LowerNegateToMultiply(I);
1410 ValueRankMap.erase(I);
1411 I->eraseFromParent();
Dan Gohmandac5dba2011-04-12 00:11:56 +00001412 MadeChange = true;
Duncan Sandsb9335862012-06-06 14:53:10 +00001413 I = NI;
Dan Gohmandac5dba2011-04-12 00:11:56 +00001414 }
1415 }
Chris Lattner895b3922006-03-14 07:11:11 +00001416 }
Dan Gohmandac5dba2011-04-12 00:11:56 +00001417
Duncan Sandsb9335862012-06-06 14:53:10 +00001418 // If this instruction is an associative binary operator, process it.
1419 if (!I->isAssociative()) return;
1420 BinaryOperator *BO = cast<BinaryOperator>(I);
Dan Gohmandac5dba2011-04-12 00:11:56 +00001421
1422 // If this is an interior node of a reassociable tree, ignore it until we
1423 // get to the root of the tree, to avoid N^2 analysis.
Duncan Sandsb9335862012-06-06 14:53:10 +00001424 if (BO->hasOneUse() && BO->use_back()->getOpcode() == BO->getOpcode())
Dan Gohmandac5dba2011-04-12 00:11:56 +00001425 return;
1426
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001427 // If this is an add tree that is used by a sub instruction, ignore it
Dan Gohmandac5dba2011-04-12 00:11:56 +00001428 // until we process the subtract.
Duncan Sandsb9335862012-06-06 14:53:10 +00001429 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
1430 cast<Instruction>(BO->use_back())->getOpcode() == Instruction::Sub)
Dan Gohmandac5dba2011-04-12 00:11:56 +00001431 return;
1432
Duncan Sandsb9335862012-06-06 14:53:10 +00001433 ReassociateExpression(BO);
Chris Lattner895b3922006-03-14 07:11:11 +00001434}
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001435
Chris Lattner69e98e22009-12-31 19:24:52 +00001436Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001437
Chris Lattner69e98e22009-12-31 19:24:52 +00001438 // First, walk the expression tree, linearizing the tree, collecting the
1439 // operand information.
Chris Lattner9f7b7082009-12-31 18:40:32 +00001440 SmallVector<ValueEntry, 8> Ops;
Chris Lattner895b3922006-03-14 07:11:11 +00001441 LinearizeExprTree(I, Ops);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001442
Duncan Sands24dfa522012-05-26 07:47:48 +00001443 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
1444
Chris Lattner895b3922006-03-14 07:11:11 +00001445 // Now that we have linearized the tree to a list and have gathered all of
1446 // the operands and their ranks, sort the operands by their rank. Use a
1447 // stable_sort so that values with equal ranks will have their relative
1448 // positions maintained (and so the compiler is deterministic). Note that
1449 // this sorts so that the highest ranking values end up at the beginning of
1450 // the vector.
1451 std::stable_sort(Ops.begin(), Ops.end());
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001452
Chris Lattner895b3922006-03-14 07:11:11 +00001453 // OptimizeExpression - Now that we have the expression tree in a convenient
1454 // sorted form, optimize it globally if possible.
1455 if (Value *V = OptimizeExpression(I, Ops)) {
1456 // This expression tree simplified to something that isn't a tree,
1457 // eliminate it.
David Greenea1fa76c2010-01-05 01:27:24 +00001458 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner895b3922006-03-14 07:11:11 +00001459 I->replaceAllUsesWith(V);
Devang Patel5367b232011-04-28 22:48:14 +00001460 if (Instruction *VI = dyn_cast<Instruction>(V))
1461 VI->setDebugLoc(I->getDebugLoc());
Duncan Sandsb9335862012-06-06 14:53:10 +00001462 RedoInsts.insert(I);
Chris Lattner9fdaefa2009-12-31 17:51:05 +00001463 ++NumAnnihil;
Chris Lattner69e98e22009-12-31 19:24:52 +00001464 return V;
Chris Lattner895b3922006-03-14 07:11:11 +00001465 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001466
Chris Lattner895b3922006-03-14 07:11:11 +00001467 // We want to sink immediates as deeply as possible except in the case where
1468 // this is a multiply tree used only by an add, and the immediate is a -1.
1469 // In this case we reassociate to put the negation on the outside so that we
1470 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1471 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1472 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1473 isa<ConstantInt>(Ops.back().Op) &&
1474 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
Chris Lattner9f7b7082009-12-31 18:40:32 +00001475 ValueEntry Tmp = Ops.pop_back_val();
1476 Ops.insert(Ops.begin(), Tmp);
Chris Lattner895b3922006-03-14 07:11:11 +00001477 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001478
David Greenea1fa76c2010-01-05 01:27:24 +00001479 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001480
Chris Lattner895b3922006-03-14 07:11:11 +00001481 if (Ops.size() == 1) {
1482 // This expression tree simplified to something that isn't a tree,
1483 // eliminate it.
1484 I->replaceAllUsesWith(Ops[0].Op);
Devang Patel5367b232011-04-28 22:48:14 +00001485 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
1486 OI->setDebugLoc(I->getDebugLoc());
Duncan Sandsb9335862012-06-06 14:53:10 +00001487 RedoInsts.insert(I);
Chris Lattner69e98e22009-12-31 19:24:52 +00001488 return Ops[0].Op;
Chris Lattner4fd56002002-05-08 22:19:27 +00001489 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001490
Chris Lattner69e98e22009-12-31 19:24:52 +00001491 // Now that we ordered and optimized the expressions, splat them back into
1492 // the expression tree, removing any unneeded nodes.
1493 RewriteExprTree(I, Ops);
1494 return I;
Chris Lattner4fd56002002-05-08 22:19:27 +00001495}
1496
Chris Lattner7e708292002-06-25 16:13:24 +00001497bool Reassociate::runOnFunction(Function &F) {
Duncan Sandsb9335862012-06-06 14:53:10 +00001498 // Calculate the rank map for F
Chris Lattner4fd56002002-05-08 22:19:27 +00001499 BuildRankMap(F);
1500
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001501 MadeChange = false;
Duncan Sandsb9335862012-06-06 14:53:10 +00001502 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI)
1503 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; ) {
1504 // Optimize the current instruction, possibly erasing it. If this creates
1505 // new instructions that need optimizing then optimize all such too before
1506 // moving on to the next instruction.
1507 RedoInsts.insert(AssertingVH<Instruction>(II));
1508 while (!RedoInsts.empty()) {
1509 Instruction *I = RedoInsts.pop_back_val();
1510 if ((Instruction*)II == I)
1511 ++II;
1512 OptimizeInst(I);
1513 }
Dan Gohmandac5dba2011-04-12 00:11:56 +00001514 }
Chris Lattner4fd56002002-05-08 22:19:27 +00001515
Duncan Sands0fd120b2012-05-25 12:03:02 +00001516 // We are done with the rank map.
1517 RankMap.clear();
1518 ValueRankMap.clear();
1519
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001520 return MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +00001521}