blob: 7a9a41c950a49b775e282c3b56ea7d68a0bd55fa [file] [log] [blame]
Chris Lattner4fd56002002-05-08 22:19:27 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner4fd56002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattner90461932010-01-01 00:04:26 +000011// to promote better constant propagation, GCSE, LICM, PRE, etc.
Chris Lattner4fd56002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattner4fd56002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Chris Lattner08b43922005-05-07 04:08:02 +000023#define DEBUG_TYPE "reassociate"
Chris Lattner4fd56002002-05-08 22:19:27 +000024#include "llvm/Transforms/Scalar.h"
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +000025#include "llvm/Transforms/Utils/Local.h"
Chris Lattner0975ed52005-05-07 04:24:13 +000026#include "llvm/Constants.h"
Chris Lattnerae74f552006-04-28 04:14:49 +000027#include "llvm/DerivedTypes.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000028#include "llvm/Function.h"
Misha Brukmand8e1eea2004-07-29 17:05:13 +000029#include "llvm/Instructions.h"
Dale Johannesen03afd022009-03-06 01:41:59 +000030#include "llvm/IntrinsicInst.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000031#include "llvm/Pass.h"
Chris Lattnerc9fd0972005-05-08 20:09:57 +000032#include "llvm/Assembly/Writer.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000033#include "llvm/Support/CFG.h"
Chandler Carruth464bda32012-04-26 05:30:30 +000034#include "llvm/Support/IRBuilder.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000035#include "llvm/Support/Debug.h"
Chris Lattnerd3c7b732009-03-31 22:13:29 +000036#include "llvm/Support/ValueHandle.h"
Chris Lattnerbdff5482009-08-23 04:37:46 +000037#include "llvm/Support/raw_ostream.h"
Duncan Sands0fd120b2012-05-25 12:03:02 +000038#include "llvm/ADT/DenseMap.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000039#include "llvm/ADT/PostOrderIterator.h"
Duncan Sands0fd120b2012-05-25 12:03:02 +000040#include "llvm/ADT/SmallMap.h"
Chandler Carruth464bda32012-04-26 05:30:30 +000041#include "llvm/ADT/STLExtras.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000042#include "llvm/ADT/Statistic.h"
Chris Lattnerc0649ac2005-05-07 21:59:39 +000043#include <algorithm>
Chris Lattnerd7456022004-01-09 06:02:20 +000044using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000045
Chris Lattner0e5f4992006-12-19 21:40:18 +000046STATISTIC(NumChanged, "Number of insts reassociated");
47STATISTIC(NumAnnihil, "Number of expr tree annihilated");
48STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnera92f6962002-10-01 22:38:41 +000049
Chris Lattner0e5f4992006-12-19 21:40:18 +000050namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +000051 struct ValueEntry {
Chris Lattnerc0649ac2005-05-07 21:59:39 +000052 unsigned Rank;
53 Value *Op;
54 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
55 };
56 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
57 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
58 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000059}
Chris Lattnerc0649ac2005-05-07 21:59:39 +000060
Devang Patel50cacb22008-11-21 21:00:20 +000061#ifndef NDEBUG
Chris Lattnere5022fe2006-03-04 09:31:13 +000062/// PrintOps - Print out the expression identified in the Ops list.
63///
Chris Lattner9f7b7082009-12-31 18:40:32 +000064static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere5022fe2006-03-04 09:31:13 +000065 Module *M = I->getParent()->getParent()->getParent();
David Greenea1fa76c2010-01-05 01:27:24 +000066 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattner1befe642009-12-31 07:17:37 +000067 << *Ops[0].Op->getType() << '\t';
Chris Lattner7de3b5d2008-08-19 04:45:19 +000068 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
David Greenea1fa76c2010-01-05 01:27:24 +000069 dbgs() << "[ ";
70 WriteAsOperand(dbgs(), Ops[i].Op, false, M);
71 dbgs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner7de3b5d2008-08-19 04:45:19 +000072 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000073}
Devang Patel59500c82008-11-21 20:00:59 +000074#endif
Bill Wendlinge8cd3f22012-05-02 23:43:23 +000075
Dan Gohman844731a2008-05-13 00:00:25 +000076namespace {
Chandler Carruth464bda32012-04-26 05:30:30 +000077 /// \brief Utility class representing a base and exponent pair which form one
78 /// factor of some product.
79 struct Factor {
80 Value *Base;
81 unsigned Power;
82
83 Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
84
85 /// \brief Sort factors by their Base.
86 struct BaseSorter {
87 bool operator()(const Factor &LHS, const Factor &RHS) {
88 return LHS.Base < RHS.Base;
89 }
90 };
91
92 /// \brief Compare factors for equal bases.
93 struct BaseEqual {
94 bool operator()(const Factor &LHS, const Factor &RHS) {
95 return LHS.Base == RHS.Base;
96 }
97 };
98
99 /// \brief Sort factors in descending order by their power.
100 struct PowerDescendingSorter {
101 bool operator()(const Factor &LHS, const Factor &RHS) {
102 return LHS.Power > RHS.Power;
103 }
104 };
105
106 /// \brief Compare factors for equal powers.
107 struct PowerEqual {
108 bool operator()(const Factor &LHS, const Factor &RHS) {
109 return LHS.Power == RHS.Power;
110 }
111 };
112 };
113}
114
115namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +0000116 class Reassociate : public FunctionPass {
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000117 DenseMap<BasicBlock*, unsigned> RankMap;
Craig Topperf1d0f772012-03-26 06:58:25 +0000118 DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
Dan Gohmandac5dba2011-04-12 00:11:56 +0000119 SmallVector<WeakVH, 8> RedoInsts;
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +0000120 SmallVector<WeakVH, 8> DeadInsts;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000121 bool MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +0000122 public:
Nick Lewyckyecd94c82007-05-06 13:37:16 +0000123 static char ID; // Pass identification, replacement for typeid
Owen Anderson081c34b2010-10-19 17:21:58 +0000124 Reassociate() : FunctionPass(ID) {
125 initializeReassociatePass(*PassRegistry::getPassRegistry());
126 }
Devang Patel794fd752007-05-01 21:15:47 +0000127
Chris Lattner7e708292002-06-25 16:13:24 +0000128 bool runOnFunction(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +0000129
130 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattnercb2610e2002-10-21 20:00:28 +0000131 AU.setPreservesCFG();
Chris Lattner4fd56002002-05-08 22:19:27 +0000132 }
133 private:
Chris Lattner7e708292002-06-25 16:13:24 +0000134 void BuildRankMap(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +0000135 unsigned getRank(Value *V);
Chris Lattner69e98e22009-12-31 19:24:52 +0000136 Value *ReassociateExpression(BinaryOperator *I);
Duncan Sands0fd120b2012-05-25 12:03:02 +0000137 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattner9f7b7082009-12-31 18:40:32 +0000138 Value *OptimizeExpression(BinaryOperator *I,
139 SmallVectorImpl<ValueEntry> &Ops);
140 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
Chandler Carruth464bda32012-04-26 05:30:30 +0000141 bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
142 SmallVectorImpl<Factor> &Factors);
143 Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
144 SmallVectorImpl<Factor> &Factors);
145 Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattner9f7b7082009-12-31 18:40:32 +0000146 void LinearizeExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000147 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
Dan Gohmandac5dba2011-04-12 00:11:56 +0000148 void ReassociateInst(BasicBlock::iterator &BBI);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000149
Chris Lattnere5022fe2006-03-04 09:31:13 +0000150 void RemoveDeadBinaryOp(Value *V);
Chris Lattner4fd56002002-05-08 22:19:27 +0000151 };
152}
153
Dan Gohman844731a2008-05-13 00:00:25 +0000154char Reassociate::ID = 0;
Owen Andersond13db2c2010-07-21 22:09:45 +0000155INITIALIZE_PASS(Reassociate, "reassociate",
Owen Andersonce665bd2010-10-07 22:25:06 +0000156 "Reassociate expressions", false, false)
Dan Gohman844731a2008-05-13 00:00:25 +0000157
Brian Gaeked0fde302003-11-11 22:41:34 +0000158// Public interface to the Reassociate pass
Chris Lattnerd7456022004-01-09 06:02:20 +0000159FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
Chris Lattner4fd56002002-05-08 22:19:27 +0000160
Duncan Sands0fd120b2012-05-25 12:03:02 +0000161/// isReassociableOp - Return true if V is an instruction of the specified
162/// opcode and if it only has one use.
163static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
164 if (V->hasOneUse() && isa<Instruction>(V) &&
165 cast<Instruction>(V)->getOpcode() == Opcode)
166 return cast<BinaryOperator>(V);
167 return 0;
168}
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000169
Duncan Sands0fd120b2012-05-25 12:03:02 +0000170void Reassociate::RemoveDeadBinaryOp(Value *V) {
171 BinaryOperator *Op = dyn_cast<BinaryOperator>(V);
172 if (!Op)
173 return;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000174
Chris Lattner69e98e22009-12-31 19:24:52 +0000175 ValueRankMap.erase(Op);
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +0000176 DeadInsts.push_back(Op);
Duncan Sands0fd120b2012-05-25 12:03:02 +0000177
178 BinaryOperator *LHS = isReassociableOp(Op->getOperand(0), Op->getOpcode());
179 BinaryOperator *RHS = isReassociableOp(Op->getOperand(1), Op->getOpcode());
180 Op->setOperand(0, UndefValue::get(Op->getType()));
181 Op->setOperand(1, UndefValue::get(Op->getType()));
182
183 if (LHS)
184 RemoveDeadBinaryOp(LHS);
185 if (RHS)
186 RemoveDeadBinaryOp(RHS);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000187}
188
Chris Lattner9c723192005-05-08 20:57:04 +0000189static bool isUnmovableInstruction(Instruction *I) {
190 if (I->getOpcode() == Instruction::PHI ||
Bill Wendling98bda3d2012-05-04 04:22:32 +0000191 I->getOpcode() == Instruction::LandingPad ||
Chris Lattner9c723192005-05-08 20:57:04 +0000192 I->getOpcode() == Instruction::Alloca ||
193 I->getOpcode() == Instruction::Load ||
Chris Lattner9c723192005-05-08 20:57:04 +0000194 I->getOpcode() == Instruction::Invoke ||
Dale Johannesen03afd022009-03-06 01:41:59 +0000195 (I->getOpcode() == Instruction::Call &&
196 !isa<DbgInfoIntrinsic>(I)) ||
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000197 I->getOpcode() == Instruction::UDiv ||
Reid Spencer1628cec2006-10-26 06:15:43 +0000198 I->getOpcode() == Instruction::SDiv ||
199 I->getOpcode() == Instruction::FDiv ||
Reid Spencer0a783f72006-11-02 01:53:59 +0000200 I->getOpcode() == Instruction::URem ||
201 I->getOpcode() == Instruction::SRem ||
202 I->getOpcode() == Instruction::FRem)
Chris Lattner9c723192005-05-08 20:57:04 +0000203 return true;
204 return false;
205}
206
Chris Lattner7e708292002-06-25 16:13:24 +0000207void Reassociate::BuildRankMap(Function &F) {
Chris Lattner6007cb62003-08-12 20:14:27 +0000208 unsigned i = 2;
Chris Lattnerfb5be092003-08-13 16:16:26 +0000209
210 // Assign distinct ranks to function arguments
Chris Lattnere4d5c442005-03-15 04:54:21 +0000211 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
Chris Lattnerd3c7b732009-03-31 22:13:29 +0000212 ValueRankMap[&*I] = ++i;
Chris Lattnerfb5be092003-08-13 16:16:26 +0000213
Chris Lattner7e708292002-06-25 16:13:24 +0000214 ReversePostOrderTraversal<Function*> RPOT(&F);
Chris Lattner4fd56002002-05-08 22:19:27 +0000215 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9c723192005-05-08 20:57:04 +0000216 E = RPOT.end(); I != E; ++I) {
217 BasicBlock *BB = *I;
218 unsigned BBRank = RankMap[BB] = ++i << 16;
219
220 // Walk the basic block, adding precomputed ranks for any instructions that
221 // we cannot move. This ensures that the ranks for these instructions are
222 // all different in the block.
223 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
224 if (isUnmovableInstruction(I))
Chris Lattnerd3c7b732009-03-31 22:13:29 +0000225 ValueRankMap[&*I] = ++BBRank;
Chris Lattner9c723192005-05-08 20:57:04 +0000226 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000227}
228
229unsigned Reassociate::getRank(Value *V) {
Chris Lattner08b43922005-05-07 04:08:02 +0000230 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000231 if (I == 0) {
232 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
233 return 0; // Otherwise it's a global or constant, rank 0.
234 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000235
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000236 if (unsigned Rank = ValueRankMap[I])
237 return Rank; // Rank already known?
Jeff Cohen00b168892005-07-27 06:12:32 +0000238
Chris Lattner08b43922005-05-07 04:08:02 +0000239 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
240 // we can reassociate expressions for code motion! Since we do not recurse
241 // for PHI nodes, we cannot have infinite recursion here, because there
242 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattner08b43922005-05-07 04:08:02 +0000243 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
244 for (unsigned i = 0, e = I->getNumOperands();
245 i != e && Rank != MaxRank; ++i)
246 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen00b168892005-07-27 06:12:32 +0000247
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000248 // If this is a not or neg instruction, do not count it for rank. This
249 // assures us that X and ~X will have the same rank.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000250 if (!I->getType()->isIntegerTy() ||
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000251 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000252 ++Rank;
253
David Greenea1fa76c2010-01-05 01:27:24 +0000254 //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
Chris Lattnerbdff5482009-08-23 04:37:46 +0000255 // << Rank << "\n");
Jeff Cohen00b168892005-07-27 06:12:32 +0000256
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000257 return ValueRankMap[I] = Rank;
Chris Lattner4fd56002002-05-08 22:19:27 +0000258}
259
Chris Lattnerf33151a2005-05-08 21:28:52 +0000260/// LowerNegateToMultiply - Replace 0-X with X*-1.
261///
Duncan Sands0fd120b2012-05-25 12:03:02 +0000262static BinaryOperator *LowerNegateToMultiply(Instruction *Neg,
Craig Topperf1d0f772012-03-26 06:58:25 +0000263 DenseMap<AssertingVH<Value>, unsigned> &ValueRankMap) {
Owen Andersona7235ea2009-07-31 20:28:14 +0000264 Constant *Cst = Constant::getAllOnesValue(Neg->getType());
Chris Lattnerf33151a2005-05-08 21:28:52 +0000265
Duncan Sands0fd120b2012-05-25 12:03:02 +0000266 BinaryOperator *Res =
267 BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
Dale Johannesenf4978e22009-03-19 17:22:53 +0000268 ValueRankMap.erase(Neg);
Chris Lattner6934a042007-02-11 01:23:03 +0000269 Res->takeName(Neg);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000270 Neg->replaceAllUsesWith(Res);
Devang Patel5367b232011-04-28 22:48:14 +0000271 Res->setDebugLoc(Neg->getDebugLoc());
Chris Lattnerf33151a2005-05-08 21:28:52 +0000272 Neg->eraseFromParent();
273 return Res;
274}
275
Duncan Sands0fd120b2012-05-25 12:03:02 +0000276/// LinearizeExprTree - Given an associative binary expression, return the leaf
277/// nodes in Ops. The original expression is the same as Ops[0] op ... Ops[N].
278/// Note that a node may occur multiple times in Ops, but if so all occurrences
279/// are consecutive in the vector.
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000280///
Duncan Sands0fd120b2012-05-25 12:03:02 +0000281/// A leaf node is either not a binary operation of the same kind as the root
282/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
283/// opcode), or is the same kind of binary operator but has a use which either
284/// does not belong to the expression, or does belong to the expression but is
285/// a leaf node. Every leaf node has at least one use that is a non-leaf node
286/// of the expression, while for non-leaf nodes (except for the root 'I') every
287/// use is a non-leaf node of the expression.
288///
289/// For example:
290/// expression graph node names
291///
292/// + | I
293/// / \ |
294/// + + | A, B
295/// / \ / \ |
296/// * + * | C, D, E
297/// / \ / \ / \ |
298/// + * | F, G
299///
300/// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
301/// that order) C, E, F, F, G, G.
302///
303/// The expression is maximal: if some instruction is a binary operator of the
304/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
305/// then the instruction also belongs to the expression, is not a leaf node of
306/// it, and its operands also belong to the expression (but may be leaf nodes).
307///
308/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
309/// order to ensure that every non-root node in the expression has *exactly one*
310/// use by a non-leaf node of the expression. This destruction means that the
Chris Lattnere9efecb2006-03-14 16:04:29 +0000311/// caller MUST use something like RewriteExprTree to put the values back in.
312///
Duncan Sands0fd120b2012-05-25 12:03:02 +0000313/// In the above example either the right operand of A or the left operand of B
314/// will be replaced by undef. If it is B's operand then this gives:
315///
316/// + | I
317/// / \ |
318/// + + | A, B - operand of B replaced with undef
319/// / \ \ |
320/// * + * | C, D, E
321/// / \ / \ / \ |
322/// + * | F, G
323///
324/// Note that if you visit operands recursively starting from a leaf node then
325/// you will never encounter such an undef operand unless you get back to 'I',
326/// which requires passing through a phi node.
327///
328/// Note that this routine may also mutate binary operators of the wrong type
329/// that have all uses inside the expression (i.e. only used by non-leaf nodes
330/// of the expression) if it can turn them into binary operators of the right
331/// type and thus make the expression bigger.
332
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000333void Reassociate::LinearizeExprTree(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +0000334 SmallVectorImpl<ValueEntry> &Ops) {
Duncan Sands0fd120b2012-05-25 12:03:02 +0000335 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
336
337 // Visit all operands of the expression, keeping track of their weight (the
338 // number of paths from the expression root to the operand, or if you like
339 // the number of times that operand occurs in the linearized expression).
340 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
341 // while A has weight two.
342
343 // Worklist of non-leaf nodes (their operands are in the expression too) along
344 // with their weights, representing a certain number of paths to the operator.
345 // If an operator occurs in the worklist multiple times then we found multiple
346 // ways to get to it.
347 SmallVector<std::pair<BinaryOperator*, unsigned>, 8> Worklist; // (Op, Weight)
348 Worklist.push_back(std::make_pair(I, 1));
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000349 unsigned Opcode = I->getOpcode();
350
Duncan Sands0fd120b2012-05-25 12:03:02 +0000351 // Leaves of the expression are values that either aren't the right kind of
352 // operation (eg: a constant, or a multiply in an add tree), or are, but have
353 // some uses that are not inside the expression. For example, in I = X + X,
354 // X = A + B, the value X has two uses (by I) that are in the expression. If
355 // X has any other uses, for example in a return instruction, then we consider
356 // X to be a leaf, and won't analyze it further. When we first visit a value,
357 // if it has more than one use then at first we conservatively consider it to
358 // be a leaf. Later, as the expression is explored, we may discover some more
359 // uses of the value from inside the expression. If all uses turn out to be
360 // from within the expression (and the value is a binary operator of the right
361 // kind) then the value is no longer considered to be a leaf, and its operands
362 // are explored.
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000363
Duncan Sands0fd120b2012-05-25 12:03:02 +0000364 // Leaves - Keeps track of the set of putative leaves as well as the number of
365 // paths to each leaf seen so far.
366 typedef SmallMap<Value*, unsigned, 8> LeafMap;
367 LeafMap Leaves; // Leaf -> Total weight so far.
368 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
369
370#ifndef NDEBUG
371 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
372#endif
373 while (!Worklist.empty()) {
374 std::pair<BinaryOperator*, unsigned> P = Worklist.pop_back_val();
375 I = P.first; // We examine the operands of this binary operator.
376 assert(P.second >= 1 && "No paths to here, so how did we get here?!");
377
378 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
379 Value *Op = I->getOperand(OpIdx);
380 unsigned Weight = P.second; // Number of paths to this operand.
381 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
382 assert(!Op->use_empty() && "No uses, so how did we get to it?!");
383
384 // If this is a binary operation of the right kind with only one use then
385 // add its operands to the expression.
386 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
387 assert(Visited.insert(Op) && "Not first visit!");
388 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
389 Worklist.push_back(std::make_pair(BO, Weight));
390 continue;
391 }
392
393 // Appears to be a leaf. Is the operand already in the set of leaves?
394 LeafMap::iterator It = Leaves.find(Op);
395 if (It == Leaves.end()) {
396 // Not in the leaf map. Must be the first time we saw this operand.
397 assert(Visited.insert(Op) && "Not first visit!");
398 if (!Op->hasOneUse()) {
399 // This value has uses not accounted for by the expression, so it is
400 // not safe to modify. Mark it as being a leaf.
401 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
402 LeafOrder.push_back(Op);
403 Leaves[Op] = Weight;
404 continue;
405 }
406 // No uses outside the expression, try morphing it.
407 } else if (It != Leaves.end()) {
408 // Already in the leaf map.
409 assert(Visited.count(Op) && "In leaf map but not visited!");
410
411 // Update the number of paths to the leaf.
412 It->second += Weight;
413
414 // The leaf already has one use from inside the expression. As we want
415 // exactly one such use, drop this new use of the leaf.
416 assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
417 I->setOperand(OpIdx, UndefValue::get(I->getType()));
418 MadeChange = true;
419
420 // If the leaf is a binary operation of the right kind and we now see
421 // that its multiple original uses were in fact all by nodes belonging
422 // to the expression, then no longer consider it to be a leaf and add
423 // its operands to the expression.
424 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
425 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
426 Worklist.push_back(std::make_pair(BO, It->second));
427 Leaves.erase(It);
428 continue;
429 }
430
431 // If we still have uses that are not accounted for by the expression
432 // then it is not safe to modify the value.
433 if (!Op->hasOneUse())
434 continue;
435
436 // No uses outside the expression, try morphing it.
437 Weight = It->second;
438 Leaves.erase(It); // Since the value may be morphed below.
439 }
440
441 // At this point we have a value which, first of all, is not a binary
442 // expression of the right kind, and secondly, is only used inside the
443 // expression. This means that it can safely be modified. See if we
444 // can usefully morph it into an expression of the right kind.
445 assert((!isa<Instruction>(Op) ||
446 cast<Instruction>(Op)->getOpcode() != Opcode) &&
447 "Should have been handled above!");
448 assert(Op->hasOneUse() && "Has uses outside the expression tree!");
449
450 // If this is a multiply expression, turn any internal negations into
451 // multiplies by -1 so they can be reassociated.
452 BinaryOperator *BO = dyn_cast<BinaryOperator>(Op);
453 if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) {
454 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
455 BO = LowerNegateToMultiply(BO, ValueRankMap);
456 DEBUG(dbgs() << *BO << 'n');
457 Worklist.push_back(std::make_pair(BO, Weight));
458 MadeChange = true;
459 continue;
460 }
461
462 // Failed to morph into an expression of the right type. This really is
463 // a leaf.
464 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
465 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
466 LeafOrder.push_back(Op);
467 Leaves[Op] = Weight;
Chris Lattnerf33151a2005-05-08 21:28:52 +0000468 }
469 }
470
Duncan Sands0fd120b2012-05-25 12:03:02 +0000471 // The leaves, repeated according to their weights, represent the linearized
472 // form of the expression.
473 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
474 Value *V = LeafOrder[i];
475 LeafMap::iterator It = Leaves.find(V);
476 if (It == Leaves.end())
477 // Leaf already output, or node initially thought to be a leaf wasn't.
478 continue;
479 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
480 unsigned Weight = It->second;
481 assert(Weight > 0 && "No paths to this value!");
482 // FIXME: Rather than repeating values Weight times, use a vector of
483 // (ValueEntry, multiplicity) pairs.
484 Ops.append(Weight, ValueEntry(getRank(V), V));
485 // Ensure the leaf is only output once.
486 Leaves.erase(It);
Chris Lattner4fd56002002-05-08 22:19:27 +0000487 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000488}
489
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000490// RewriteExprTree - Now that the operands for this expression tree are
Duncan Sands0fd120b2012-05-25 12:03:02 +0000491// linearized and optimized, emit them in-order.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000492void Reassociate::RewriteExprTree(BinaryOperator *I,
Duncan Sands0fd120b2012-05-25 12:03:02 +0000493 SmallVectorImpl<ValueEntry> &Ops) {
494 assert(Ops.size() > 1 && "Single values should be used directly!");
Dan Gohman46985a12011-02-02 02:02:34 +0000495
Duncan Sands0fd120b2012-05-25 12:03:02 +0000496 // Since our optimizations never increase the number of operations, the new
497 // expression can always be written by reusing the existing binary operators
498 // from the original expression tree, without creating any new instructions,
499 // though the rewritten expression may have a completely different topology.
500 // We take care to not change anything if the new expression will be the same
501 // as the original. If more than trivial changes (like commuting operands)
502 // were made then we are obliged to clear out any optional subclass data like
503 // nsw flags.
Dan Gohman46985a12011-02-02 02:02:34 +0000504
Duncan Sands0fd120b2012-05-25 12:03:02 +0000505 /// NodesToRewrite - Nodes from the original expression available for writing
506 /// the new expression into.
507 SmallVector<BinaryOperator*, 8> NodesToRewrite;
508 unsigned Opcode = I->getOpcode();
509 NodesToRewrite.push_back(I);
510
511 // ExpressionChanged - Whether the rewritten expression differs non-trivially
512 // from the original, requiring the clearing of all optional flags.
513 bool ExpressionChanged = false;
514 BinaryOperator *Previous;
515 BinaryOperator *Op = 0;
516 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
517 assert(!NodesToRewrite.empty() &&
518 "Optimized expressions has more nodes than original!");
519 Previous = Op; Op = NodesToRewrite.pop_back_val();
520 // Compactify the tree instructions together with each other to guarantee
521 // that the expression tree is dominated by all of Ops.
522 if (Previous)
523 Op->moveBefore(Previous);
524
525 // The last operation (which comes earliest in the IR) is special as both
526 // operands will come from Ops, rather than just one with the other being
527 // a subexpression.
528 if (i+2 == Ops.size()) {
529 Value *NewLHS = Ops[i].Op;
530 Value *NewRHS = Ops[i+1].Op;
531 Value *OldLHS = Op->getOperand(0);
532 Value *OldRHS = Op->getOperand(1);
533
534 if (NewLHS == OldLHS && NewRHS == OldRHS)
535 // Nothing changed, leave it alone.
536 break;
537
538 if (NewLHS == OldRHS && NewRHS == OldLHS) {
539 // The order of the operands was reversed. Swap them.
540 DEBUG(dbgs() << "RA: " << *Op << '\n');
541 Op->swapOperands();
542 DEBUG(dbgs() << "TO: " << *Op << '\n');
543 MadeChange = true;
544 ++NumChanged;
545 break;
546 }
547
548 // The new operation differs non-trivially from the original. Overwrite
549 // the old operands with the new ones.
550 DEBUG(dbgs() << "RA: " << *Op << '\n');
551 if (NewLHS != OldLHS) {
552 if (BinaryOperator *BO = isReassociableOp(OldLHS, Opcode))
553 NodesToRewrite.push_back(BO);
554 Op->setOperand(0, NewLHS);
555 }
556 if (NewRHS != OldRHS) {
557 if (BinaryOperator *BO = isReassociableOp(OldRHS, Opcode))
558 NodesToRewrite.push_back(BO);
559 Op->setOperand(1, NewRHS);
560 }
561 DEBUG(dbgs() << "TO: " << *Op << '\n');
562
563 ExpressionChanged = true;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000564 MadeChange = true;
565 ++NumChanged;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000566
Duncan Sands0fd120b2012-05-25 12:03:02 +0000567 break;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000568 }
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000569
Duncan Sands0fd120b2012-05-25 12:03:02 +0000570 // Not the last operation. The left-hand side will be a sub-expression
571 // while the right-hand side will be the current element of Ops.
572 Value *NewRHS = Ops[i].Op;
573 if (NewRHS != Op->getOperand(1)) {
574 DEBUG(dbgs() << "RA: " << *Op << '\n');
575 if (NewRHS == Op->getOperand(0)) {
576 // The new right-hand side was already present as the left operand. If
577 // we are lucky then swapping the operands will sort out both of them.
578 Op->swapOperands();
579 } else {
580 // Overwrite with the new right-hand side.
581 if (BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode))
582 NodesToRewrite.push_back(BO);
583 Op->setOperand(1, NewRHS);
584 ExpressionChanged = true;
585 }
586 DEBUG(dbgs() << "TO: " << *Op << '\n');
587 MadeChange = true;
588 ++NumChanged;
589 }
Dan Gohman46985a12011-02-02 02:02:34 +0000590
Duncan Sands0fd120b2012-05-25 12:03:02 +0000591 // Now deal with the left-hand side. If this is already an operation node
592 // from the original expression then just rewrite the rest of the expression
593 // into it.
594 if (BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode)) {
595 NodesToRewrite.push_back(BO);
596 continue;
597 }
Dan Gohman46985a12011-02-02 02:02:34 +0000598
Duncan Sands0fd120b2012-05-25 12:03:02 +0000599 // Otherwise, grab a spare node from the original expression and use that as
600 // the left-hand side.
601 assert(!NodesToRewrite.empty() &&
602 "Optimized expressions has more nodes than original!");
603 DEBUG(dbgs() << "RA: " << *Op << '\n');
604 Op->setOperand(0, NodesToRewrite.back());
605 DEBUG(dbgs() << "TO: " << *Op << '\n');
606 ExpressionChanged = true;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000607 MadeChange = true;
608 ++NumChanged;
609 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000610
Duncan Sands0fd120b2012-05-25 12:03:02 +0000611 // If the expression changed non-trivially then clear out all subclass data in
612 // the entire rewritten expression.
613 if (ExpressionChanged) {
614 do {
615 Op->clearSubclassOptionalData();
616 if (Op == I)
617 break;
618 Op = cast<BinaryOperator>(*Op->use_begin());
619 } while (1);
620 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000621
Duncan Sands0fd120b2012-05-25 12:03:02 +0000622 // Throw away any left over nodes from the original expression.
623 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
624 RemoveDeadBinaryOp(NodesToRewrite[i]);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000625}
626
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000627/// NegateValue - Insert instructions before the instruction pointed to by BI,
628/// that computes the negative version of the value specified. The negative
629/// version of the value is returned, and BI is left pointing at the instruction
630/// that should be processed next by the reassociation pass.
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000631static Value *NegateValue(Value *V, Instruction *BI) {
Chris Lattner35239932009-12-31 20:34:32 +0000632 if (Constant *C = dyn_cast<Constant>(V))
633 return ConstantExpr::getNeg(C);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000634
Chris Lattnera36e6c82002-05-16 04:37:07 +0000635 // We are trying to expose opportunity for reassociation. One of the things
636 // that we want to do to achieve this is to push a negation as deep into an
637 // expression chain as possible, to expose the add instructions. In practice,
638 // this means that we turn this:
639 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
640 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
641 // the constants. We assume that instcombine will clean up the mess later if
Chris Lattner90461932010-01-01 00:04:26 +0000642 // we introduce tons of unnecessary negation instructions.
Chris Lattnera36e6c82002-05-16 04:37:07 +0000643 //
Duncan Sands0fd120b2012-05-25 12:03:02 +0000644 if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) {
645 // Push the negates through the add.
646 I->setOperand(0, NegateValue(I->getOperand(0), BI));
647 I->setOperand(1, NegateValue(I->getOperand(1), BI));
Chris Lattnera36e6c82002-05-16 04:37:07 +0000648
Duncan Sands0fd120b2012-05-25 12:03:02 +0000649 // We must move the add instruction here, because the neg instructions do
650 // not dominate the old add instruction in general. By moving it, we are
651 // assured that the neg instructions we just inserted dominate the
652 // instruction we are about to insert after them.
653 //
654 I->moveBefore(BI);
655 I->setName(I->getName()+".neg");
656 return I;
657 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000658
Chris Lattner35239932009-12-31 20:34:32 +0000659 // Okay, we need to materialize a negated version of V with an instruction.
660 // Scan the use lists of V to see if we have one already.
661 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
Gabor Greif110b75a2010-07-12 12:03:02 +0000662 User *U = *UI;
663 if (!BinaryOperator::isNeg(U)) continue;
Chris Lattner35239932009-12-31 20:34:32 +0000664
665 // We found one! Now we have to make sure that the definition dominates
666 // this use. We do this by moving it to the entry block (if it is a
667 // non-instruction value) or right after the definition. These negates will
668 // be zapped by reassociate later, so we don't need much finesse here.
Gabor Greif110b75a2010-07-12 12:03:02 +0000669 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
Chris Lattner1c91fae2010-01-02 21:46:33 +0000670
671 // Verify that the negate is in this function, V might be a constant expr.
672 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
673 continue;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000674
Chris Lattner35239932009-12-31 20:34:32 +0000675 BasicBlock::iterator InsertPt;
676 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
677 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
678 InsertPt = II->getNormalDest()->begin();
679 } else {
680 InsertPt = InstInput;
681 ++InsertPt;
682 }
683 while (isa<PHINode>(InsertPt)) ++InsertPt;
684 } else {
685 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
686 }
687 TheNeg->moveBefore(InsertPt);
688 return TheNeg;
689 }
Chris Lattnera36e6c82002-05-16 04:37:07 +0000690
691 // Insert a 'neg' instruction that subtracts the value from zero to get the
692 // negation.
Dan Gohman4ae51262009-08-12 16:23:25 +0000693 return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
Chris Lattner08b43922005-05-07 04:08:02 +0000694}
695
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000696/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
697/// X-Y into (X + -Y).
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000698static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000699 // If this is a negation, we can't split it up!
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000700 if (BinaryOperator::isNeg(Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000701 return false;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000702
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000703 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattner0b0803a2008-02-17 20:51:26 +0000704 // subtract or if this is only used by one.
705 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
706 isReassociableOp(Sub->getOperand(0), Instruction::Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000707 return true;
Chris Lattner0b0803a2008-02-17 20:51:26 +0000708 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
Chris Lattner5329bb22008-02-17 20:54:40 +0000709 isReassociableOp(Sub->getOperand(1), Instruction::Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000710 return true;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000711 if (Sub->hasOneUse() &&
Chris Lattner0b0803a2008-02-17 20:51:26 +0000712 (isReassociableOp(Sub->use_back(), Instruction::Add) ||
713 isReassociableOp(Sub->use_back(), Instruction::Sub)))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000714 return true;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000715
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000716 return false;
717}
718
Chris Lattner08b43922005-05-07 04:08:02 +0000719/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
720/// only used by an add, transform this into (X+(0-Y)) to promote better
721/// reassociation.
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000722static Instruction *BreakUpSubtract(Instruction *Sub,
Craig Topperf1d0f772012-03-26 06:58:25 +0000723 DenseMap<AssertingVH<Value>, unsigned> &ValueRankMap) {
Chris Lattner90461932010-01-01 00:04:26 +0000724 // Convert a subtract into an add and a neg instruction. This allows sub
725 // instructions to be commuted with other add instructions.
Chris Lattner08b43922005-05-07 04:08:02 +0000726 //
Chris Lattner90461932010-01-01 00:04:26 +0000727 // Calculate the negative value of Operand 1 of the sub instruction,
728 // and set it as the RHS of the add instruction we just made.
Chris Lattner08b43922005-05-07 04:08:02 +0000729 //
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000730 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000731 Instruction *New =
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000732 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
Chris Lattner6934a042007-02-11 01:23:03 +0000733 New->takeName(Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000734
735 // Everyone now refers to the add instruction.
Dale Johannesenf4978e22009-03-19 17:22:53 +0000736 ValueRankMap.erase(Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000737 Sub->replaceAllUsesWith(New);
Devang Patel5367b232011-04-28 22:48:14 +0000738 New->setDebugLoc(Sub->getDebugLoc());
Chris Lattner08b43922005-05-07 04:08:02 +0000739 Sub->eraseFromParent();
Jeff Cohen00b168892005-07-27 06:12:32 +0000740
David Greenea1fa76c2010-01-05 01:27:24 +0000741 DEBUG(dbgs() << "Negated: " << *New << '\n');
Chris Lattner08b43922005-05-07 04:08:02 +0000742 return New;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000743}
744
Chris Lattner0975ed52005-05-07 04:24:13 +0000745/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
746/// by one, change this into a multiply by a constant to assist with further
747/// reassociation.
Craig Topperf1d0f772012-03-26 06:58:25 +0000748static Instruction *ConvertShiftToMul(Instruction *Shl,
749 DenseMap<AssertingVH<Value>, unsigned> &ValueRankMap) {
Chris Lattner22a66c42006-03-14 06:55:18 +0000750 // If an operand of this shift is a reassociable multiply, or if the shift
751 // is used by a reassociable multiply or add, turn into a multiply.
752 if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000753 (Shl->hasOneUse() &&
Chris Lattner22a66c42006-03-14 06:55:18 +0000754 (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
755 isReassociableOp(Shl->use_back(), Instruction::Add)))) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000756 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000757 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000758
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000759 Instruction *Mul =
760 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
Dale Johannesenf4978e22009-03-19 17:22:53 +0000761 ValueRankMap.erase(Shl);
Chris Lattner6934a042007-02-11 01:23:03 +0000762 Mul->takeName(Shl);
Chris Lattner22a66c42006-03-14 06:55:18 +0000763 Shl->replaceAllUsesWith(Mul);
Devang Patel5367b232011-04-28 22:48:14 +0000764 Mul->setDebugLoc(Shl->getDebugLoc());
Chris Lattner22a66c42006-03-14 06:55:18 +0000765 Shl->eraseFromParent();
766 return Mul;
767 }
768 return 0;
Chris Lattner0975ed52005-05-07 04:24:13 +0000769}
770
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000771/// FindInOperandList - Scan backwards and forwards among values with the same
772/// rank as element i to see if X exists. If X does not exist, return i. This
773/// is useful when scanning for 'x' when we see '-x' because they both get the
774/// same rank.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000775static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
Chris Lattner109d34d2005-05-08 18:59:37 +0000776 Value *X) {
777 unsigned XRank = Ops[i].Rank;
778 unsigned e = Ops.size();
779 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
780 if (Ops[j].Op == X)
781 return j;
Chris Lattner9506c932010-01-01 01:13:15 +0000782 // Scan backwards.
Chris Lattner109d34d2005-05-08 18:59:37 +0000783 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
784 if (Ops[j].Op == X)
785 return j;
786 return i;
787}
788
Chris Lattnere5022fe2006-03-04 09:31:13 +0000789/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
790/// and returning the result. Insert the tree before I.
Bill Wendling55e70982012-05-02 09:59:45 +0000791static Value *EmitAddTreeOfValues(Instruction *I,
792 SmallVectorImpl<WeakVH> &Ops){
Chris Lattnere5022fe2006-03-04 09:31:13 +0000793 if (Ops.size() == 1) return Ops.back();
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000794
Chris Lattnere5022fe2006-03-04 09:31:13 +0000795 Value *V1 = Ops.back();
796 Ops.pop_back();
797 Value *V2 = EmitAddTreeOfValues(I, Ops);
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000798 return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000799}
800
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000801/// RemoveFactorFromExpression - If V is an expression tree that is a
Chris Lattnere5022fe2006-03-04 09:31:13 +0000802/// multiplication sequence, and if this sequence contains a multiply by Factor,
803/// remove Factor from the tree and return the new tree.
804Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
805 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
806 if (!BO) return 0;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000807
Chris Lattner9f7b7082009-12-31 18:40:32 +0000808 SmallVector<ValueEntry, 8> Factors;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000809 LinearizeExprTree(BO, Factors);
810
811 bool FoundFactor = false;
Chris Lattner9506c932010-01-01 01:13:15 +0000812 bool NeedsNegate = false;
813 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000814 if (Factors[i].Op == Factor) {
815 FoundFactor = true;
816 Factors.erase(Factors.begin()+i);
817 break;
818 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000819
Chris Lattner9506c932010-01-01 01:13:15 +0000820 // If this is a negative version of this factor, remove it.
821 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
822 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
823 if (FC1->getValue() == -FC2->getValue()) {
824 FoundFactor = NeedsNegate = true;
825 Factors.erase(Factors.begin()+i);
826 break;
827 }
828 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000829
Chris Lattnere9efecb2006-03-14 16:04:29 +0000830 if (!FoundFactor) {
831 // Make sure to restore the operands to the expression tree.
832 RewriteExprTree(BO, Factors);
833 return 0;
834 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000835
Chris Lattner9506c932010-01-01 01:13:15 +0000836 BasicBlock::iterator InsertPt = BO; ++InsertPt;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000837
Chris Lattner1e7558b2009-12-31 19:34:45 +0000838 // If this was just a single multiply, remove the multiply and return the only
839 // remaining operand.
840 if (Factors.size() == 1) {
Duncan Sands0fd120b2012-05-25 12:03:02 +0000841 RemoveDeadBinaryOp(BO);
Chris Lattner9506c932010-01-01 01:13:15 +0000842 V = Factors[0].Op;
843 } else {
844 RewriteExprTree(BO, Factors);
845 V = BO;
Chris Lattner1e7558b2009-12-31 19:34:45 +0000846 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000847
Chris Lattner9506c932010-01-01 01:13:15 +0000848 if (NeedsNegate)
849 V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000850
Chris Lattner9506c932010-01-01 01:13:15 +0000851 return V;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000852}
853
Chris Lattnere9efecb2006-03-14 16:04:29 +0000854/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
855/// add its operands as factors, otherwise add V to the list of factors.
Chris Lattner893075f2010-03-05 07:18:54 +0000856///
857/// Ops is the top-level list of add operands we're trying to factor.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000858static void FindSingleUseMultiplyFactors(Value *V,
Chris Lattner893075f2010-03-05 07:18:54 +0000859 SmallVectorImpl<Value*> &Factors,
Duncan Sands0fd120b2012-05-25 12:03:02 +0000860 const SmallVectorImpl<ValueEntry> &Ops) {
861 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
862 if (!BO) {
Chris Lattnere9efecb2006-03-14 16:04:29 +0000863 Factors.push_back(V);
864 return;
865 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000866
Chris Lattnere9efecb2006-03-14 16:04:29 +0000867 // Otherwise, add the LHS and RHS to the list of factors.
Duncan Sands0fd120b2012-05-25 12:03:02 +0000868 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
869 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
Chris Lattnere9efecb2006-03-14 16:04:29 +0000870}
871
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000872/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
873/// instruction. This optimizes based on identities. If it can be reduced to
874/// a single Value, it is returned, otherwise the Ops list is mutated as
875/// necessary.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000876static Value *OptimizeAndOrXor(unsigned Opcode,
877 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000878 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
879 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
880 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
881 // First, check for X and ~X in the operand list.
882 assert(i < Ops.size());
883 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
884 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
885 unsigned FoundX = FindInOperandList(Ops, i, X);
886 if (FoundX != i) {
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000887 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000888 return Constant::getNullValue(X->getType());
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000889
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000890 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000891 return Constant::getAllOnesValue(X->getType());
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000892 }
893 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000894
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000895 // Next, check for duplicate pairs of values, which we assume are next to
896 // each other, due to our sorting criteria.
897 assert(i < Ops.size());
898 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
899 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000900 // Drop duplicate values for And and Or.
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000901 Ops.erase(Ops.begin()+i);
902 --i; --e;
903 ++NumAnnihil;
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000904 continue;
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000905 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000906
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000907 // Drop pairs of values for Xor.
908 assert(Opcode == Instruction::Xor);
909 if (e == 2)
910 return Constant::getNullValue(Ops[0].Op->getType());
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000911
Chris Lattner90461932010-01-01 00:04:26 +0000912 // Y ^ X^X -> Y
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000913 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
914 i -= 1; e -= 2;
915 ++NumAnnihil;
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000916 }
917 }
918 return 0;
919}
Chris Lattnere9efecb2006-03-14 16:04:29 +0000920
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000921/// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
922/// optimizes based on identities. If it can be reduced to a single Value, it
923/// is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000924Value *Reassociate::OptimizeAdd(Instruction *I,
925 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000926 // Scan the operand lists looking for X and -X pairs. If we find any, we
Chris Lattner69e98e22009-12-31 19:24:52 +0000927 // can simplify the expression. X+-X == 0. While we're at it, scan for any
928 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Chris Lattner9506c932010-01-01 01:13:15 +0000929 //
930 // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
931 //
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000932 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner69e98e22009-12-31 19:24:52 +0000933 Value *TheOp = Ops[i].Op;
934 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000935 // instances of the operand together. Due to our sorting criteria, we know
936 // that these need to be next to each other in the vector.
937 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
938 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner69e98e22009-12-31 19:24:52 +0000939 unsigned NumFound = 0;
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000940 do {
941 Ops.erase(Ops.begin()+i);
Chris Lattner69e98e22009-12-31 19:24:52 +0000942 ++NumFound;
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000943 } while (i != Ops.size() && Ops[i].Op == TheOp);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000944
Chris Lattnerf8a447d2009-12-31 19:25:19 +0000945 DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
Chris Lattner69e98e22009-12-31 19:24:52 +0000946 ++NumFactor;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000947
Chris Lattner69e98e22009-12-31 19:24:52 +0000948 // Insert a new multiply.
949 Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
950 Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000951
Chris Lattner69e98e22009-12-31 19:24:52 +0000952 // Now that we have inserted a multiply, optimize it. This allows us to
953 // handle cases that require multiple factoring steps, such as this:
954 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
Dan Gohmandac5dba2011-04-12 00:11:56 +0000955 RedoInsts.push_back(Mul);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000956
Chris Lattner69e98e22009-12-31 19:24:52 +0000957 // If every add operand was a duplicate, return the multiply.
958 if (Ops.empty())
959 return Mul;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000960
Chris Lattner69e98e22009-12-31 19:24:52 +0000961 // Otherwise, we had some input that didn't have the dupe, such as
962 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
963 // things being added by this operation.
964 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000965
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000966 --i;
967 e = Ops.size();
968 continue;
Chris Lattner69e98e22009-12-31 19:24:52 +0000969 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000970
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000971 // Check for X and -X in the operand list.
Chris Lattner69e98e22009-12-31 19:24:52 +0000972 if (!BinaryOperator::isNeg(TheOp))
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000973 continue;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000974
Chris Lattner69e98e22009-12-31 19:24:52 +0000975 Value *X = BinaryOperator::getNegArgument(TheOp);
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000976 unsigned FoundX = FindInOperandList(Ops, i, X);
977 if (FoundX == i)
978 continue;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000979
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000980 // Remove X and -X from the operand list.
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000981 if (Ops.size() == 2)
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000982 return Constant::getNullValue(X->getType());
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000983
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000984 Ops.erase(Ops.begin()+i);
985 if (i < FoundX)
986 --FoundX;
987 else
988 --i; // Need to back up an extra one.
989 Ops.erase(Ops.begin()+FoundX);
990 ++NumAnnihil;
991 --i; // Revisit element.
992 e -= 2; // Removed two elements.
993 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000994
Chris Lattner94285e62009-12-31 18:17:13 +0000995 // Scan the operand list, checking to see if there are any common factors
996 // between operands. Consider something like A*A+A*B*C+D. We would like to
997 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
998 // To efficiently find this, we count the number of times a factor occurs
999 // for any ADD operands that are MULs.
1000 DenseMap<Value*, unsigned> FactorOccurrences;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001001
Chris Lattner94285e62009-12-31 18:17:13 +00001002 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1003 // where they are actually the same multiply.
Chris Lattner94285e62009-12-31 18:17:13 +00001004 unsigned MaxOcc = 0;
1005 Value *MaxOccVal = 0;
1006 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Duncan Sands0fd120b2012-05-25 12:03:02 +00001007 BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1008 if (!BOp)
Chris Lattner94285e62009-12-31 18:17:13 +00001009 continue;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001010
Chris Lattner94285e62009-12-31 18:17:13 +00001011 // Compute all of the factors of this added value.
1012 SmallVector<Value*, 8> Factors;
Duncan Sands0fd120b2012-05-25 12:03:02 +00001013 FindSingleUseMultiplyFactors(BOp, Factors, Ops);
Chris Lattner94285e62009-12-31 18:17:13 +00001014 assert(Factors.size() > 1 && "Bad linearize!");
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001015
Chris Lattner94285e62009-12-31 18:17:13 +00001016 // Add one to FactorOccurrences for each unique factor in this op.
Chris Lattner9506c932010-01-01 01:13:15 +00001017 SmallPtrSet<Value*, 8> Duplicates;
1018 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1019 Value *Factor = Factors[i];
1020 if (!Duplicates.insert(Factor)) continue;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001021
Chris Lattner9506c932010-01-01 01:13:15 +00001022 unsigned Occ = ++FactorOccurrences[Factor];
1023 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001024
Chris Lattner9506c932010-01-01 01:13:15 +00001025 // If Factor is a negative constant, add the negated value as a factor
1026 // because we can percolate the negate out. Watch for minint, which
1027 // cannot be positivified.
1028 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
Chris Lattnerc73b24d2011-07-15 06:08:15 +00001029 if (CI->isNegative() && !CI->isMinValue(true)) {
Chris Lattner9506c932010-01-01 01:13:15 +00001030 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1031 assert(!Duplicates.count(Factor) &&
1032 "Shouldn't have two constant factors, missed a canonicalize");
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001033
Chris Lattner9506c932010-01-01 01:13:15 +00001034 unsigned Occ = ++FactorOccurrences[Factor];
1035 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
1036 }
Chris Lattner94285e62009-12-31 18:17:13 +00001037 }
1038 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001039
Chris Lattner94285e62009-12-31 18:17:13 +00001040 // If any factor occurred more than one time, we can pull it out.
1041 if (MaxOcc > 1) {
Chris Lattner69e98e22009-12-31 19:24:52 +00001042 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
Chris Lattner94285e62009-12-31 18:17:13 +00001043 ++NumFactor;
1044
1045 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1046 // this, we could otherwise run into situations where removing a factor
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001047 // from an expression will drop a use of maxocc, and this can cause
Chris Lattner94285e62009-12-31 18:17:13 +00001048 // RemoveFactorFromExpression on successive values to behave differently.
1049 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
Bill Wendling55e70982012-05-02 09:59:45 +00001050 SmallVector<WeakVH, 4> NewMulOps;
Duncan Sands37f87c72011-01-26 10:08:38 +00001051 for (unsigned i = 0; i != Ops.size(); ++i) {
Chris Lattnerc2d1b692010-01-09 06:01:36 +00001052 // Only try to remove factors from expressions we're allowed to.
Duncan Sands0fd120b2012-05-25 12:03:02 +00001053 BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1054 if (!BOp)
Chris Lattnerc2d1b692010-01-09 06:01:36 +00001055 continue;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001056
Chris Lattner94285e62009-12-31 18:17:13 +00001057 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
Duncan Sands37f87c72011-01-26 10:08:38 +00001058 // The factorized operand may occur several times. Convert them all in
1059 // one fell swoop.
1060 for (unsigned j = Ops.size(); j != i;) {
1061 --j;
1062 if (Ops[j].Op == Ops[i].Op) {
1063 NewMulOps.push_back(V);
1064 Ops.erase(Ops.begin()+j);
1065 }
1066 }
1067 --i;
Chris Lattner94285e62009-12-31 18:17:13 +00001068 }
1069 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001070
Chris Lattner94285e62009-12-31 18:17:13 +00001071 // No need for extra uses anymore.
1072 delete DummyInst;
Duncan Sands54a57042010-01-08 17:51:48 +00001073
Chris Lattner94285e62009-12-31 18:17:13 +00001074 unsigned NumAddedValues = NewMulOps.size();
1075 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Duncan Sands54a57042010-01-08 17:51:48 +00001076
Chris Lattner69e98e22009-12-31 19:24:52 +00001077 // Now that we have inserted the add tree, optimize it. This allows us to
1078 // handle cases that require multiple factoring steps, such as this:
Chris Lattner94285e62009-12-31 18:17:13 +00001079 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattner9cd1bc42009-12-31 18:18:46 +00001080 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Duncan Sands54a57042010-01-08 17:51:48 +00001081 (void)NumAddedValues;
Duncan Sandsa3370102012-05-08 12:16:05 +00001082 RedoInsts.push_back(V);
Chris Lattner69e98e22009-12-31 19:24:52 +00001083
1084 // Create the multiply.
1085 Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
1086
Chris Lattnerf31e2e92009-12-31 19:49:01 +00001087 // Rerun associate on the multiply in case the inner expression turned into
1088 // a multiply. We want to make sure that we keep things in canonical form.
Duncan Sandsa3370102012-05-08 12:16:05 +00001089 RedoInsts.push_back(V2);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001090
Chris Lattner94285e62009-12-31 18:17:13 +00001091 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1092 // entire result expression is just the multiply "A*(B+C)".
1093 if (Ops.empty())
1094 return V2;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001095
Chris Lattner9cd1bc42009-12-31 18:18:46 +00001096 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner94285e62009-12-31 18:17:13 +00001097 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattner9cd1bc42009-12-31 18:18:46 +00001098 // things being added by this operation.
Chris Lattner94285e62009-12-31 18:17:13 +00001099 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1100 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001101
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001102 return 0;
1103}
Chris Lattnere5022fe2006-03-04 09:31:13 +00001104
Chandler Carruth464bda32012-04-26 05:30:30 +00001105namespace {
1106 /// \brief Predicate tests whether a ValueEntry's op is in a map.
1107 struct IsValueInMap {
1108 const DenseMap<Value *, unsigned> &Map;
1109
1110 IsValueInMap(const DenseMap<Value *, unsigned> &Map) : Map(Map) {}
1111
1112 bool operator()(const ValueEntry &Entry) {
1113 return Map.find(Entry.Op) != Map.end();
1114 }
1115 };
1116}
1117
1118/// \brief Build up a vector of value/power pairs factoring a product.
1119///
1120/// Given a series of multiplication operands, build a vector of factors and
1121/// the powers each is raised to when forming the final product. Sort them in
1122/// the order of descending power.
1123///
1124/// (x*x) -> [(x, 2)]
1125/// ((x*x)*x) -> [(x, 3)]
1126/// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1127///
1128/// \returns Whether any factors have a power greater than one.
1129bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1130 SmallVectorImpl<Factor> &Factors) {
Duncan Sands0fd120b2012-05-25 12:03:02 +00001131 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1132 // Compute the sum of powers of simplifiable factors.
Chandler Carruth464bda32012-04-26 05:30:30 +00001133 unsigned FactorPowerSum = 0;
Duncan Sands0fd120b2012-05-25 12:03:02 +00001134 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1135 Value *Op = Ops[Idx-1].Op;
1136
1137 // Count the number of occurrences of this value.
1138 unsigned Count = 1;
1139 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1140 ++Count;
Chandler Carruth464bda32012-04-26 05:30:30 +00001141 // Track for simplification all factors which occur 2 or more times.
Duncan Sands0fd120b2012-05-25 12:03:02 +00001142 if (Count > 1)
1143 FactorPowerSum += Count;
Chandler Carruth464bda32012-04-26 05:30:30 +00001144 }
Duncan Sands0fd120b2012-05-25 12:03:02 +00001145
Chandler Carruth464bda32012-04-26 05:30:30 +00001146 // We can only simplify factors if the sum of the powers of our simplifiable
1147 // factors is 4 or higher. When that is the case, we will *always* have
1148 // a simplification. This is an important invariant to prevent cyclicly
1149 // trying to simplify already minimal formations.
1150 if (FactorPowerSum < 4)
1151 return false;
1152
Duncan Sands0fd120b2012-05-25 12:03:02 +00001153 // Now gather the simplifiable factors, removing them from Ops.
1154 FactorPowerSum = 0;
1155 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1156 Value *Op = Ops[Idx-1].Op;
Chandler Carruth464bda32012-04-26 05:30:30 +00001157
Duncan Sands0fd120b2012-05-25 12:03:02 +00001158 // Count the number of occurrences of this value.
1159 unsigned Count = 1;
1160 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1161 ++Count;
1162 if (Count == 1)
1163 continue;
1164 // Move an even number of occurences to Factors.
1165 Count &= ~1U;
1166 Idx -= Count;
1167 FactorPowerSum += Count;
1168 Factors.push_back(Factor(Op, Count));
1169 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
Chandler Carruth464bda32012-04-26 05:30:30 +00001170 }
Duncan Sands0fd120b2012-05-25 12:03:02 +00001171
Chandler Carruth464bda32012-04-26 05:30:30 +00001172 // None of the adjustments above should have reduced the sum of factor powers
1173 // below our mininum of '4'.
1174 assert(FactorPowerSum >= 4);
1175
Chandler Carruth464bda32012-04-26 05:30:30 +00001176 std::sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
1177 return true;
1178}
1179
1180/// \brief Build a tree of multiplies, computing the product of Ops.
1181static Value *buildMultiplyTree(IRBuilder<> &Builder,
1182 SmallVectorImpl<Value*> &Ops) {
1183 if (Ops.size() == 1)
1184 return Ops.back();
1185
1186 Value *LHS = Ops.pop_back_val();
1187 do {
1188 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1189 } while (!Ops.empty());
1190
1191 return LHS;
1192}
1193
1194/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1195///
1196/// Given a vector of values raised to various powers, where no two values are
1197/// equal and the powers are sorted in decreasing order, compute the minimal
1198/// DAG of multiplies to compute the final product, and return that product
1199/// value.
1200Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1201 SmallVectorImpl<Factor> &Factors) {
1202 assert(Factors[0].Power);
1203 SmallVector<Value *, 4> OuterProduct;
1204 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1205 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1206 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1207 LastIdx = Idx;
1208 continue;
1209 }
1210
1211 // We want to multiply across all the factors with the same power so that
1212 // we can raise them to that power as a single entity. Build a mini tree
1213 // for that.
1214 SmallVector<Value *, 4> InnerProduct;
1215 InnerProduct.push_back(Factors[LastIdx].Base);
1216 do {
1217 InnerProduct.push_back(Factors[Idx].Base);
1218 ++Idx;
1219 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1220
1221 // Reset the base value of the first factor to the new expression tree.
1222 // We'll remove all the factors with the same power in a second pass.
Duncan Sandsa3370102012-05-08 12:16:05 +00001223 Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1224 RedoInsts.push_back(Factors[LastIdx].Base);
Chandler Carruth464bda32012-04-26 05:30:30 +00001225
1226 LastIdx = Idx;
1227 }
1228 // Unique factors with equal powers -- we've folded them into the first one's
1229 // base.
1230 Factors.erase(std::unique(Factors.begin(), Factors.end(),
1231 Factor::PowerEqual()),
1232 Factors.end());
1233
1234 // Iteratively collect the base of each factor with an add power into the
1235 // outer product, and halve each power in preparation for squaring the
1236 // expression.
1237 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1238 if (Factors[Idx].Power & 1)
1239 OuterProduct.push_back(Factors[Idx].Base);
1240 Factors[Idx].Power >>= 1;
1241 }
1242 if (Factors[0].Power) {
1243 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1244 OuterProduct.push_back(SquareRoot);
1245 OuterProduct.push_back(SquareRoot);
1246 }
1247 if (OuterProduct.size() == 1)
1248 return OuterProduct.front();
1249
Duncan Sandsa3370102012-05-08 12:16:05 +00001250 Value *V = buildMultiplyTree(Builder, OuterProduct);
Duncan Sandsa3370102012-05-08 12:16:05 +00001251 return V;
Chandler Carruth464bda32012-04-26 05:30:30 +00001252}
1253
1254Value *Reassociate::OptimizeMul(BinaryOperator *I,
1255 SmallVectorImpl<ValueEntry> &Ops) {
1256 // We can only optimize the multiplies when there is a chain of more than
1257 // three, such that a balanced tree might require fewer total multiplies.
1258 if (Ops.size() < 4)
1259 return 0;
1260
1261 // Try to turn linear trees of multiplies without other uses of the
1262 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1263 // re-use.
1264 SmallVector<Factor, 4> Factors;
1265 if (!collectMultiplyFactors(Ops, Factors))
1266 return 0; // All distinct factors, so nothing left for us to do.
1267
1268 IRBuilder<> Builder(I);
1269 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1270 if (Ops.empty())
1271 return V;
1272
1273 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1274 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1275 return 0;
1276}
1277
Chris Lattnere5022fe2006-03-04 09:31:13 +00001278Value *Reassociate::OptimizeExpression(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +00001279 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner46900102005-05-08 00:19:31 +00001280 // Now that we have the linearized expression tree, try to optimize it.
1281 // Start by folding any constants that we found.
Chris Lattner109d34d2005-05-08 18:59:37 +00001282 bool IterateOptimization = false;
Chris Lattnere5022fe2006-03-04 09:31:13 +00001283 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +00001284
Chris Lattnere5022fe2006-03-04 09:31:13 +00001285 unsigned Opcode = I->getOpcode();
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001286
Chris Lattner46900102005-05-08 00:19:31 +00001287 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
1288 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
1289 Ops.pop_back();
Owen Andersonbaf3c402009-07-29 18:55:55 +00001290 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
Chris Lattnere5022fe2006-03-04 09:31:13 +00001291 return OptimizeExpression(I, Ops);
Chris Lattner46900102005-05-08 00:19:31 +00001292 }
1293
1294 // Check for destructive annihilation due to a constant being used.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00001295 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
Chris Lattner46900102005-05-08 00:19:31 +00001296 switch (Opcode) {
1297 default: break;
1298 case Instruction::And:
Chris Lattner90461932010-01-01 00:04:26 +00001299 if (CstVal->isZero()) // X & 0 -> 0
Chris Lattnere5022fe2006-03-04 09:31:13 +00001300 return CstVal;
Chris Lattner90461932010-01-01 00:04:26 +00001301 if (CstVal->isAllOnesValue()) // X & -1 -> X
Chris Lattner8d93b252009-12-31 07:48:51 +00001302 Ops.pop_back();
Chris Lattner46900102005-05-08 00:19:31 +00001303 break;
1304 case Instruction::Mul:
Chris Lattner90461932010-01-01 00:04:26 +00001305 if (CstVal->isZero()) { // X * 0 -> 0
Chris Lattner109d34d2005-05-08 18:59:37 +00001306 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +00001307 return CstVal;
Chris Lattner46900102005-05-08 00:19:31 +00001308 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001309
Chris Lattner8d93b252009-12-31 07:48:51 +00001310 if (cast<ConstantInt>(CstVal)->isOne())
Chris Lattner90461932010-01-01 00:04:26 +00001311 Ops.pop_back(); // X * 1 -> X
Chris Lattner46900102005-05-08 00:19:31 +00001312 break;
1313 case Instruction::Or:
Chris Lattner90461932010-01-01 00:04:26 +00001314 if (CstVal->isAllOnesValue()) // X | -1 -> -1
Chris Lattnere5022fe2006-03-04 09:31:13 +00001315 return CstVal;
Chris Lattner46900102005-05-08 00:19:31 +00001316 // FALLTHROUGH!
1317 case Instruction::Add:
1318 case Instruction::Xor:
Chris Lattner90461932010-01-01 00:04:26 +00001319 if (CstVal->isZero()) // X [|^+] 0 -> X
Chris Lattner46900102005-05-08 00:19:31 +00001320 Ops.pop_back();
1321 break;
1322 }
Chris Lattnere5022fe2006-03-04 09:31:13 +00001323 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +00001324
Chris Lattnerec531232009-12-31 07:33:14 +00001325 // Handle destructive annihilation due to identities between elements in the
Chris Lattner46900102005-05-08 00:19:31 +00001326 // argument list here.
Chandler Carruth464bda32012-04-26 05:30:30 +00001327 unsigned NumOps = Ops.size();
Chris Lattner109d34d2005-05-08 18:59:37 +00001328 switch (Opcode) {
1329 default: break;
1330 case Instruction::And:
1331 case Instruction::Or:
Chandler Carruth464bda32012-04-26 05:30:30 +00001332 case Instruction::Xor:
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001333 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1334 return Result;
Chris Lattner109d34d2005-05-08 18:59:37 +00001335 break;
1336
Chandler Carruth464bda32012-04-26 05:30:30 +00001337 case Instruction::Add:
Chris Lattner94285e62009-12-31 18:17:13 +00001338 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001339 return Result;
Chris Lattner109d34d2005-05-08 18:59:37 +00001340 break;
Chandler Carruth464bda32012-04-26 05:30:30 +00001341
1342 case Instruction::Mul:
1343 if (Value *Result = OptimizeMul(I, Ops))
1344 return Result;
1345 break;
Chris Lattner109d34d2005-05-08 18:59:37 +00001346 }
1347
Chandler Carruth464bda32012-04-26 05:30:30 +00001348 if (IterateOptimization || Ops.size() != NumOps)
Chris Lattnere5022fe2006-03-04 09:31:13 +00001349 return OptimizeExpression(I, Ops);
1350 return 0;
Chris Lattner46900102005-05-08 00:19:31 +00001351}
1352
Dan Gohmandac5dba2011-04-12 00:11:56 +00001353/// ReassociateInst - Inspect and reassociate the instruction at the
1354/// given position, post-incrementing the position.
1355void Reassociate::ReassociateInst(BasicBlock::iterator &BBI) {
1356 Instruction *BI = BBI++;
1357 if (BI->getOpcode() == Instruction::Shl &&
1358 isa<ConstantInt>(BI->getOperand(1)))
1359 if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) {
1360 MadeChange = true;
1361 BI = NI;
Chris Lattnerf33151a2005-05-08 21:28:52 +00001362 }
Chris Lattnere4b73042002-10-31 17:12:59 +00001363
Owen Anderson423f19f2012-05-07 20:47:23 +00001364 // Floating point binary operators are not associative, but we can still
1365 // commute (some) of them, to canonicalize the order of their operands.
1366 // This can potentially expose more CSE opportunities, and makes writing
1367 // other transformations simpler.
1368 if (isa<BinaryOperator>(BI) &&
1369 (BI->getType()->isFloatingPointTy() || BI->getType()->isVectorTy())) {
1370 // FAdd and FMul can be commuted.
1371 if (BI->getOpcode() != Instruction::FMul &&
1372 BI->getOpcode() != Instruction::FAdd)
1373 return;
1374
1375 Value *LHS = BI->getOperand(0);
1376 Value *RHS = BI->getOperand(1);
1377 unsigned LHSRank = getRank(LHS);
1378 unsigned RHSRank = getRank(RHS);
1379
1380 // Sort the operands by rank.
1381 if (RHSRank < LHSRank) {
1382 BI->setOperand(0, RHS);
1383 BI->setOperand(1, LHS);
1384 }
1385
1386 return;
1387 }
1388
1389 // Do not reassociate operations that we do not understand.
1390 if (!isa<BinaryOperator>(BI))
1391 return;
Jeff Cohen00b168892005-07-27 06:12:32 +00001392
Dan Gohmandac5dba2011-04-12 00:11:56 +00001393 // Do not reassociate boolean (i1) expressions. We want to preserve the
1394 // original order of evaluation for short-circuited comparisons that
1395 // SimplifyCFG has folded to AND/OR expressions. If the expression
1396 // is not further optimized, it is likely to be transformed back to a
1397 // short-circuited form for code gen, and the source order may have been
1398 // optimized for the most likely conditions.
1399 if (BI->getType()->isIntegerTy(1))
1400 return;
Chris Lattnera36e6c82002-05-16 04:37:07 +00001401
Dan Gohmandac5dba2011-04-12 00:11:56 +00001402 // If this is a subtract instruction which is not already in negate form,
1403 // see if we can convert it to X+-Y.
1404 if (BI->getOpcode() == Instruction::Sub) {
1405 if (ShouldBreakUpSubtract(BI)) {
1406 BI = BreakUpSubtract(BI, ValueRankMap);
1407 // Reset the BBI iterator in case BreakUpSubtract changed the
1408 // instruction it points to.
1409 BBI = BI;
1410 ++BBI;
1411 MadeChange = true;
1412 } else if (BinaryOperator::isNeg(BI)) {
1413 // Otherwise, this is a negation. See if the operand is a multiply tree
1414 // and if this is not an inner node of a multiply tree.
1415 if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
1416 (!BI->hasOneUse() ||
1417 !isReassociableOp(BI->use_back(), Instruction::Mul))) {
1418 BI = LowerNegateToMultiply(BI, ValueRankMap);
1419 MadeChange = true;
1420 }
1421 }
Chris Lattner895b3922006-03-14 07:11:11 +00001422 }
Dan Gohmandac5dba2011-04-12 00:11:56 +00001423
1424 // If this instruction is a commutative binary operator, process it.
1425 if (!BI->isAssociative()) return;
1426 BinaryOperator *I = cast<BinaryOperator>(BI);
1427
1428 // If this is an interior node of a reassociable tree, ignore it until we
1429 // get to the root of the tree, to avoid N^2 analysis.
1430 if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
1431 return;
1432
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001433 // If this is an add tree that is used by a sub instruction, ignore it
Dan Gohmandac5dba2011-04-12 00:11:56 +00001434 // until we process the subtract.
1435 if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
1436 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
1437 return;
1438
1439 ReassociateExpression(I);
Chris Lattner895b3922006-03-14 07:11:11 +00001440}
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001441
Chris Lattner69e98e22009-12-31 19:24:52 +00001442Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001443
Chris Lattner69e98e22009-12-31 19:24:52 +00001444 // First, walk the expression tree, linearizing the tree, collecting the
1445 // operand information.
Chris Lattner9f7b7082009-12-31 18:40:32 +00001446 SmallVector<ValueEntry, 8> Ops;
Chris Lattner895b3922006-03-14 07:11:11 +00001447 LinearizeExprTree(I, Ops);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001448
Duncan Sands24dfa522012-05-26 07:47:48 +00001449 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
1450
Chris Lattner895b3922006-03-14 07:11:11 +00001451 // Now that we have linearized the tree to a list and have gathered all of
1452 // the operands and their ranks, sort the operands by their rank. Use a
1453 // stable_sort so that values with equal ranks will have their relative
1454 // positions maintained (and so the compiler is deterministic). Note that
1455 // this sorts so that the highest ranking values end up at the beginning of
1456 // the vector.
1457 std::stable_sort(Ops.begin(), Ops.end());
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001458
Chris Lattner895b3922006-03-14 07:11:11 +00001459 // OptimizeExpression - Now that we have the expression tree in a convenient
1460 // sorted form, optimize it globally if possible.
1461 if (Value *V = OptimizeExpression(I, Ops)) {
1462 // This expression tree simplified to something that isn't a tree,
1463 // eliminate it.
David Greenea1fa76c2010-01-05 01:27:24 +00001464 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner895b3922006-03-14 07:11:11 +00001465 I->replaceAllUsesWith(V);
Devang Patel5367b232011-04-28 22:48:14 +00001466 if (Instruction *VI = dyn_cast<Instruction>(V))
1467 VI->setDebugLoc(I->getDebugLoc());
Chris Lattner895b3922006-03-14 07:11:11 +00001468 RemoveDeadBinaryOp(I);
Chris Lattner9fdaefa2009-12-31 17:51:05 +00001469 ++NumAnnihil;
Chris Lattner69e98e22009-12-31 19:24:52 +00001470 return V;
Chris Lattner895b3922006-03-14 07:11:11 +00001471 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001472
Chris Lattner895b3922006-03-14 07:11:11 +00001473 // We want to sink immediates as deeply as possible except in the case where
1474 // this is a multiply tree used only by an add, and the immediate is a -1.
1475 // In this case we reassociate to put the negation on the outside so that we
1476 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1477 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1478 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1479 isa<ConstantInt>(Ops.back().Op) &&
1480 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
Chris Lattner9f7b7082009-12-31 18:40:32 +00001481 ValueEntry Tmp = Ops.pop_back_val();
1482 Ops.insert(Ops.begin(), Tmp);
Chris Lattner895b3922006-03-14 07:11:11 +00001483 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001484
David Greenea1fa76c2010-01-05 01:27:24 +00001485 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001486
Chris Lattner895b3922006-03-14 07:11:11 +00001487 if (Ops.size() == 1) {
1488 // This expression tree simplified to something that isn't a tree,
1489 // eliminate it.
1490 I->replaceAllUsesWith(Ops[0].Op);
Devang Patel5367b232011-04-28 22:48:14 +00001491 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
1492 OI->setDebugLoc(I->getDebugLoc());
Chris Lattner895b3922006-03-14 07:11:11 +00001493 RemoveDeadBinaryOp(I);
Chris Lattner69e98e22009-12-31 19:24:52 +00001494 return Ops[0].Op;
Chris Lattner4fd56002002-05-08 22:19:27 +00001495 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001496
Chris Lattner69e98e22009-12-31 19:24:52 +00001497 // Now that we ordered and optimized the expressions, splat them back into
1498 // the expression tree, removing any unneeded nodes.
1499 RewriteExprTree(I, Ops);
1500 return I;
Chris Lattner4fd56002002-05-08 22:19:27 +00001501}
1502
Chris Lattner7e708292002-06-25 16:13:24 +00001503bool Reassociate::runOnFunction(Function &F) {
Chris Lattner4fd56002002-05-08 22:19:27 +00001504 // Recalculate the rank map for F
1505 BuildRankMap(F);
1506
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001507 MadeChange = false;
Chris Lattner7e708292002-06-25 16:13:24 +00001508 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
Dan Gohmandac5dba2011-04-12 00:11:56 +00001509 for (BasicBlock::iterator BBI = FI->begin(); BBI != FI->end(); )
1510 ReassociateInst(BBI);
1511
1512 // Now that we're done, revisit any instructions which are likely to
1513 // have secondary reassociation opportunities.
1514 while (!RedoInsts.empty())
1515 if (Value *V = RedoInsts.pop_back_val()) {
1516 BasicBlock::iterator BBI = cast<Instruction>(V);
1517 ReassociateInst(BBI);
1518 }
Chris Lattner4fd56002002-05-08 22:19:27 +00001519
Duncan Sands0fd120b2012-05-25 12:03:02 +00001520 // We are done with the rank map.
1521 RankMap.clear();
1522 ValueRankMap.clear();
1523
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +00001524 // Now that we're done, delete any instructions which are no longer used.
1525 while (!DeadInsts.empty())
Dan Gohmanc9f2f612011-03-10 20:57:44 +00001526 if (Value *V = DeadInsts.pop_back_val())
Owen Anderson9b7fdc72011-08-02 02:23:42 +00001527 RecursivelyDeleteTriviallyDeadInstructions(V);
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +00001528
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001529 return MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +00001530}