blob: 577a143e9a01353a2076d2feb10db71836fc5531 [file] [log] [blame]
Chris Lattner4fd56002002-05-08 22:19:27 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner4fd56002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattner90461932010-01-01 00:04:26 +000011// to promote better constant propagation, GCSE, LICM, PRE, etc.
Chris Lattner4fd56002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattner4fd56002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Chris Lattner08b43922005-05-07 04:08:02 +000023#define DEBUG_TYPE "reassociate"
Chris Lattner4fd56002002-05-08 22:19:27 +000024#include "llvm/Transforms/Scalar.h"
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +000025#include "llvm/Transforms/Utils/Local.h"
Chris Lattner0975ed52005-05-07 04:24:13 +000026#include "llvm/Constants.h"
Chris Lattnerae74f552006-04-28 04:14:49 +000027#include "llvm/DerivedTypes.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000028#include "llvm/Function.h"
Misha Brukmand8e1eea2004-07-29 17:05:13 +000029#include "llvm/Instructions.h"
Dale Johannesen03afd022009-03-06 01:41:59 +000030#include "llvm/IntrinsicInst.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000031#include "llvm/Pass.h"
Chris Lattnerc9fd0972005-05-08 20:09:57 +000032#include "llvm/Assembly/Writer.h"
Chris Lattner4fd56002002-05-08 22:19:27 +000033#include "llvm/Support/CFG.h"
Chandler Carruth464bda32012-04-26 05:30:30 +000034#include "llvm/Support/IRBuilder.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000035#include "llvm/Support/Debug.h"
Chris Lattnerd3c7b732009-03-31 22:13:29 +000036#include "llvm/Support/ValueHandle.h"
Chris Lattnerbdff5482009-08-23 04:37:46 +000037#include "llvm/Support/raw_ostream.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000038#include "llvm/ADT/PostOrderIterator.h"
Chandler Carruth464bda32012-04-26 05:30:30 +000039#include "llvm/ADT/STLExtras.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000040#include "llvm/ADT/Statistic.h"
Chris Lattnerec531232009-12-31 07:33:14 +000041#include "llvm/ADT/DenseMap.h"
Chris Lattnerc0649ac2005-05-07 21:59:39 +000042#include <algorithm>
Chris Lattnerd7456022004-01-09 06:02:20 +000043using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000044
Chris Lattner0e5f4992006-12-19 21:40:18 +000045STATISTIC(NumLinear , "Number of insts linearized");
46STATISTIC(NumChanged, "Number of insts reassociated");
47STATISTIC(NumAnnihil, "Number of expr tree annihilated");
48STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnera92f6962002-10-01 22:38:41 +000049
Chris Lattner0e5f4992006-12-19 21:40:18 +000050namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +000051 struct ValueEntry {
Chris Lattnerc0649ac2005-05-07 21:59:39 +000052 unsigned Rank;
53 Value *Op;
54 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
55 };
56 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
57 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
58 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000059}
Chris Lattnerc0649ac2005-05-07 21:59:39 +000060
Devang Patel50cacb22008-11-21 21:00:20 +000061#ifndef NDEBUG
Chris Lattnere5022fe2006-03-04 09:31:13 +000062/// PrintOps - Print out the expression identified in the Ops list.
63///
Chris Lattner9f7b7082009-12-31 18:40:32 +000064static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere5022fe2006-03-04 09:31:13 +000065 Module *M = I->getParent()->getParent()->getParent();
David Greenea1fa76c2010-01-05 01:27:24 +000066 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattner1befe642009-12-31 07:17:37 +000067 << *Ops[0].Op->getType() << '\t';
Chris Lattner7de3b5d2008-08-19 04:45:19 +000068 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
David Greenea1fa76c2010-01-05 01:27:24 +000069 dbgs() << "[ ";
70 WriteAsOperand(dbgs(), Ops[i].Op, false, M);
71 dbgs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner7de3b5d2008-08-19 04:45:19 +000072 }
Chris Lattnere5022fe2006-03-04 09:31:13 +000073}
Devang Patel59500c82008-11-21 20:00:59 +000074#endif
Bill Wendlinge8cd3f22012-05-02 23:43:23 +000075
Dan Gohman844731a2008-05-13 00:00:25 +000076namespace {
Chandler Carruth464bda32012-04-26 05:30:30 +000077 /// \brief Utility class representing a base and exponent pair which form one
78 /// factor of some product.
79 struct Factor {
80 Value *Base;
81 unsigned Power;
82
83 Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
84
85 /// \brief Sort factors by their Base.
86 struct BaseSorter {
87 bool operator()(const Factor &LHS, const Factor &RHS) {
88 return LHS.Base < RHS.Base;
89 }
90 };
91
92 /// \brief Compare factors for equal bases.
93 struct BaseEqual {
94 bool operator()(const Factor &LHS, const Factor &RHS) {
95 return LHS.Base == RHS.Base;
96 }
97 };
98
99 /// \brief Sort factors in descending order by their power.
100 struct PowerDescendingSorter {
101 bool operator()(const Factor &LHS, const Factor &RHS) {
102 return LHS.Power > RHS.Power;
103 }
104 };
105
106 /// \brief Compare factors for equal powers.
107 struct PowerEqual {
108 bool operator()(const Factor &LHS, const Factor &RHS) {
109 return LHS.Power == RHS.Power;
110 }
111 };
112 };
113}
114
115namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +0000116 class Reassociate : public FunctionPass {
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000117 DenseMap<BasicBlock*, unsigned> RankMap;
Craig Topperf1d0f772012-03-26 06:58:25 +0000118 DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
Dan Gohmandac5dba2011-04-12 00:11:56 +0000119 SmallVector<WeakVH, 8> RedoInsts;
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +0000120 SmallVector<WeakVH, 8> DeadInsts;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000121 bool MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +0000122 public:
Nick Lewyckyecd94c82007-05-06 13:37:16 +0000123 static char ID; // Pass identification, replacement for typeid
Owen Anderson081c34b2010-10-19 17:21:58 +0000124 Reassociate() : FunctionPass(ID) {
125 initializeReassociatePass(*PassRegistry::getPassRegistry());
126 }
Devang Patel794fd752007-05-01 21:15:47 +0000127
Chris Lattner7e708292002-06-25 16:13:24 +0000128 bool runOnFunction(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +0000129
130 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattnercb2610e2002-10-21 20:00:28 +0000131 AU.setPreservesCFG();
Chris Lattner4fd56002002-05-08 22:19:27 +0000132 }
133 private:
Chris Lattner7e708292002-06-25 16:13:24 +0000134 void BuildRankMap(Function &F);
Chris Lattner4fd56002002-05-08 22:19:27 +0000135 unsigned getRank(Value *V);
Chris Lattner69e98e22009-12-31 19:24:52 +0000136 Value *ReassociateExpression(BinaryOperator *I);
Chris Lattner9f7b7082009-12-31 18:40:32 +0000137 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops,
Chris Lattnere9efecb2006-03-14 16:04:29 +0000138 unsigned Idx = 0);
Chris Lattner9f7b7082009-12-31 18:40:32 +0000139 Value *OptimizeExpression(BinaryOperator *I,
140 SmallVectorImpl<ValueEntry> &Ops);
141 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
Chandler Carruth464bda32012-04-26 05:30:30 +0000142 bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
143 SmallVectorImpl<Factor> &Factors);
144 Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
145 SmallVectorImpl<Factor> &Factors);
146 Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattner9f7b7082009-12-31 18:40:32 +0000147 void LinearizeExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000148 void LinearizeExpr(BinaryOperator *I);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000149 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
Dan Gohmandac5dba2011-04-12 00:11:56 +0000150 void ReassociateInst(BasicBlock::iterator &BBI);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000151
Chris Lattnere5022fe2006-03-04 09:31:13 +0000152 void RemoveDeadBinaryOp(Value *V);
Chris Lattner4fd56002002-05-08 22:19:27 +0000153 };
154}
155
Dan Gohman844731a2008-05-13 00:00:25 +0000156char Reassociate::ID = 0;
Owen Andersond13db2c2010-07-21 22:09:45 +0000157INITIALIZE_PASS(Reassociate, "reassociate",
Owen Andersonce665bd2010-10-07 22:25:06 +0000158 "Reassociate expressions", false, false)
Dan Gohman844731a2008-05-13 00:00:25 +0000159
Brian Gaeked0fde302003-11-11 22:41:34 +0000160// Public interface to the Reassociate pass
Chris Lattnerd7456022004-01-09 06:02:20 +0000161FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
Chris Lattner4fd56002002-05-08 22:19:27 +0000162
Chris Lattnere5022fe2006-03-04 09:31:13 +0000163void Reassociate::RemoveDeadBinaryOp(Value *V) {
Reid Spencere4d87aa2006-12-23 06:05:41 +0000164 Instruction *Op = dyn_cast<Instruction>(V);
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +0000165 if (!Op || !isa<BinaryOperator>(Op))
Reid Spencere4d87aa2006-12-23 06:05:41 +0000166 return;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000167
Reid Spencere4d87aa2006-12-23 06:05:41 +0000168 Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000169
Chris Lattner69e98e22009-12-31 19:24:52 +0000170 ValueRankMap.erase(Op);
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +0000171 DeadInsts.push_back(Op);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000172 RemoveDeadBinaryOp(LHS);
173 RemoveDeadBinaryOp(RHS);
174}
175
Chris Lattner9c723192005-05-08 20:57:04 +0000176static bool isUnmovableInstruction(Instruction *I) {
177 if (I->getOpcode() == Instruction::PHI ||
178 I->getOpcode() == Instruction::Alloca ||
179 I->getOpcode() == Instruction::Load ||
Chris Lattner9c723192005-05-08 20:57:04 +0000180 I->getOpcode() == Instruction::Invoke ||
Dale Johannesen03afd022009-03-06 01:41:59 +0000181 (I->getOpcode() == Instruction::Call &&
182 !isa<DbgInfoIntrinsic>(I)) ||
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000183 I->getOpcode() == Instruction::UDiv ||
Reid Spencer1628cec2006-10-26 06:15:43 +0000184 I->getOpcode() == Instruction::SDiv ||
185 I->getOpcode() == Instruction::FDiv ||
Reid Spencer0a783f72006-11-02 01:53:59 +0000186 I->getOpcode() == Instruction::URem ||
187 I->getOpcode() == Instruction::SRem ||
188 I->getOpcode() == Instruction::FRem)
Chris Lattner9c723192005-05-08 20:57:04 +0000189 return true;
190 return false;
191}
192
Chris Lattner7e708292002-06-25 16:13:24 +0000193void Reassociate::BuildRankMap(Function &F) {
Chris Lattner6007cb62003-08-12 20:14:27 +0000194 unsigned i = 2;
Chris Lattnerfb5be092003-08-13 16:16:26 +0000195
196 // Assign distinct ranks to function arguments
Chris Lattnere4d5c442005-03-15 04:54:21 +0000197 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
Chris Lattnerd3c7b732009-03-31 22:13:29 +0000198 ValueRankMap[&*I] = ++i;
Chris Lattnerfb5be092003-08-13 16:16:26 +0000199
Chris Lattner7e708292002-06-25 16:13:24 +0000200 ReversePostOrderTraversal<Function*> RPOT(&F);
Chris Lattner4fd56002002-05-08 22:19:27 +0000201 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9c723192005-05-08 20:57:04 +0000202 E = RPOT.end(); I != E; ++I) {
203 BasicBlock *BB = *I;
204 unsigned BBRank = RankMap[BB] = ++i << 16;
205
206 // Walk the basic block, adding precomputed ranks for any instructions that
207 // we cannot move. This ensures that the ranks for these instructions are
208 // all different in the block.
209 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
210 if (isUnmovableInstruction(I))
Chris Lattnerd3c7b732009-03-31 22:13:29 +0000211 ValueRankMap[&*I] = ++BBRank;
Chris Lattner9c723192005-05-08 20:57:04 +0000212 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000213}
214
215unsigned Reassociate::getRank(Value *V) {
Chris Lattner08b43922005-05-07 04:08:02 +0000216 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000217 if (I == 0) {
218 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
219 return 0; // Otherwise it's a global or constant, rank 0.
220 }
Chris Lattner4fd56002002-05-08 22:19:27 +0000221
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000222 if (unsigned Rank = ValueRankMap[I])
223 return Rank; // Rank already known?
Jeff Cohen00b168892005-07-27 06:12:32 +0000224
Chris Lattner08b43922005-05-07 04:08:02 +0000225 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
226 // we can reassociate expressions for code motion! Since we do not recurse
227 // for PHI nodes, we cannot have infinite recursion here, because there
228 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattner08b43922005-05-07 04:08:02 +0000229 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
230 for (unsigned i = 0, e = I->getNumOperands();
231 i != e && Rank != MaxRank; ++i)
232 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen00b168892005-07-27 06:12:32 +0000233
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000234 // If this is a not or neg instruction, do not count it for rank. This
235 // assures us that X and ~X will have the same rank.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000236 if (!I->getType()->isIntegerTy() ||
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000237 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
Chris Lattnercc8a2b92005-05-08 00:08:33 +0000238 ++Rank;
239
David Greenea1fa76c2010-01-05 01:27:24 +0000240 //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
Chris Lattnerbdff5482009-08-23 04:37:46 +0000241 // << Rank << "\n");
Jeff Cohen00b168892005-07-27 06:12:32 +0000242
Chris Lattnerf55e7f52010-01-01 00:01:34 +0000243 return ValueRankMap[I] = Rank;
Chris Lattner4fd56002002-05-08 22:19:27 +0000244}
245
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000246/// isReassociableOp - Return true if V is an instruction of the specified
247/// opcode and if it only has one use.
248static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
Chris Lattnere9efecb2006-03-14 16:04:29 +0000249 if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000250 cast<Instruction>(V)->getOpcode() == Opcode)
251 return cast<BinaryOperator>(V);
252 return 0;
253}
Chris Lattner4fd56002002-05-08 22:19:27 +0000254
Chris Lattnerf33151a2005-05-08 21:28:52 +0000255/// LowerNegateToMultiply - Replace 0-X with X*-1.
256///
Dale Johannesenf4978e22009-03-19 17:22:53 +0000257static Instruction *LowerNegateToMultiply(Instruction *Neg,
Craig Topperf1d0f772012-03-26 06:58:25 +0000258 DenseMap<AssertingVH<Value>, unsigned> &ValueRankMap) {
Owen Andersona7235ea2009-07-31 20:28:14 +0000259 Constant *Cst = Constant::getAllOnesValue(Neg->getType());
Chris Lattnerf33151a2005-05-08 21:28:52 +0000260
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000261 Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
Dale Johannesenf4978e22009-03-19 17:22:53 +0000262 ValueRankMap.erase(Neg);
Chris Lattner6934a042007-02-11 01:23:03 +0000263 Res->takeName(Neg);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000264 Neg->replaceAllUsesWith(Res);
Devang Patel5367b232011-04-28 22:48:14 +0000265 Res->setDebugLoc(Neg->getDebugLoc());
Chris Lattnerf33151a2005-05-08 21:28:52 +0000266 Neg->eraseFromParent();
267 return Res;
268}
269
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000270// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
271// Note that if D is also part of the expression tree that we recurse to
272// linearize it as well. Besides that case, this does not recurse into A,B, or
273// C.
274void Reassociate::LinearizeExpr(BinaryOperator *I) {
275 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
276 BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
Jeff Cohen00b168892005-07-27 06:12:32 +0000277 assert(isReassociableOp(LHS, I->getOpcode()) &&
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000278 isReassociableOp(RHS, I->getOpcode()) &&
279 "Not an expression that needs linearization?");
Misha Brukmanfd939082005-04-21 23:48:37 +0000280
David Greenea1fa76c2010-01-05 01:27:24 +0000281 DEBUG(dbgs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
Chris Lattner4fd56002002-05-08 22:19:27 +0000282
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000283 // Move the RHS instruction to live immediately before I, avoiding breaking
284 // dominator properties.
Chris Lattner4bc5f802005-08-08 19:11:57 +0000285 RHS->moveBefore(I);
Chris Lattnere4b73042002-10-31 17:12:59 +0000286
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000287 // Move operands around to do the linearization.
288 I->setOperand(1, RHS->getOperand(0));
289 RHS->setOperand(0, LHS);
290 I->setOperand(0, RHS);
Jeff Cohen00b168892005-07-27 06:12:32 +0000291
Dan Gohman46985a12011-02-02 02:02:34 +0000292 // Conservatively clear all the optional flags, which may not hold
293 // after the reassociation.
294 I->clearSubclassOptionalData();
295 LHS->clearSubclassOptionalData();
296 RHS->clearSubclassOptionalData();
297
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000298 ++NumLinear;
299 MadeChange = true;
David Greenea1fa76c2010-01-05 01:27:24 +0000300 DEBUG(dbgs() << "Linearized: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000301
302 // If D is part of this expression tree, tail recurse.
303 if (isReassociableOp(I->getOperand(1), I->getOpcode()))
304 LinearizeExpr(I);
305}
306
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000307/// LinearizeExprTree - Given an associative binary expression tree, traverse
308/// all of the uses putting it into canonical form. This forces a left-linear
Dan Gohmanf451cb82010-02-10 16:03:48 +0000309/// form of the expression (((a+b)+c)+d), and collects information about the
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000310/// rank of the non-tree operands.
311///
Chris Lattnere9efecb2006-03-14 16:04:29 +0000312/// NOTE: These intentionally destroys the expression tree operands (turning
313/// them into undef values) to reduce #uses of the values. This means that the
314/// caller MUST use something like RewriteExprTree to put the values back in.
315///
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000316void Reassociate::LinearizeExprTree(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +0000317 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000318 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
319 unsigned Opcode = I->getOpcode();
320
321 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
322 BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
323 BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
324
Chris Lattnerf33151a2005-05-08 21:28:52 +0000325 // If this is a multiply expression tree and it contains internal negations,
326 // transform them into multiplies by -1 so they can be reassociated.
327 if (I->getOpcode() == Instruction::Mul) {
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000328 if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000329 LHS = LowerNegateToMultiply(cast<Instruction>(LHS), ValueRankMap);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000330 LHSBO = isReassociableOp(LHS, Opcode);
331 }
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000332 if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000333 RHS = LowerNegateToMultiply(cast<Instruction>(RHS), ValueRankMap);
Chris Lattnerf33151a2005-05-08 21:28:52 +0000334 RHSBO = isReassociableOp(RHS, Opcode);
335 }
336 }
337
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000338 if (!LHSBO) {
339 if (!RHSBO) {
340 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
341 // such, just remember these operands and their rank.
342 Ops.push_back(ValueEntry(getRank(LHS), LHS));
343 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000344
Chris Lattnere9efecb2006-03-14 16:04:29 +0000345 // Clear the leaves out.
Owen Anderson9e9a0d52009-07-30 23:03:37 +0000346 I->setOperand(0, UndefValue::get(I->getType()));
347 I->setOperand(1, UndefValue::get(I->getType()));
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000348 return;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000349 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000350
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000351 // Turn X+(Y+Z) -> (Y+Z)+X
352 std::swap(LHSBO, RHSBO);
353 std::swap(LHS, RHS);
354 bool Success = !I->swapOperands();
355 assert(Success && "swapOperands failed");
Duncan Sands1f6a3292011-08-12 14:54:45 +0000356 (void)Success;
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000357 MadeChange = true;
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000358 } else if (RHSBO) {
Dan Gohmanf451cb82010-02-10 16:03:48 +0000359 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the RHS is not
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000360 // part of the expression tree.
361 LinearizeExpr(I);
362 LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
363 RHS = I->getOperand(1);
364 RHSBO = 0;
Chris Lattner4fd56002002-05-08 22:19:27 +0000365 }
Misha Brukmanfd939082005-04-21 23:48:37 +0000366
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000367 // Okay, now we know that the LHS is a nested expression and that the RHS is
368 // not. Perform reassociation.
369 assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
Chris Lattner4fd56002002-05-08 22:19:27 +0000370
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000371 // Move LHS right before I to make sure that the tree expression dominates all
372 // values.
Chris Lattner4bc5f802005-08-08 19:11:57 +0000373 LHSBO->moveBefore(I);
Chris Lattnere9608e32003-08-12 21:45:24 +0000374
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000375 // Linearize the expression tree on the LHS.
376 LinearizeExprTree(LHSBO, Ops);
Chris Lattnere4b73042002-10-31 17:12:59 +0000377
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000378 // Remember the RHS operand and its rank.
379 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000380
Chris Lattnere9efecb2006-03-14 16:04:29 +0000381 // Clear the RHS leaf out.
Owen Anderson9e9a0d52009-07-30 23:03:37 +0000382 I->setOperand(1, UndefValue::get(I->getType()));
Chris Lattner4fd56002002-05-08 22:19:27 +0000383}
384
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000385// RewriteExprTree - Now that the operands for this expression tree are
386// linearized and optimized, emit them in-order. This function is written to be
387// tail recursive.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000388void Reassociate::RewriteExprTree(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +0000389 SmallVectorImpl<ValueEntry> &Ops,
Chris Lattnere9efecb2006-03-14 16:04:29 +0000390 unsigned i) {
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000391 if (i+2 == Ops.size()) {
392 if (I->getOperand(0) != Ops[i].Op ||
393 I->getOperand(1) != Ops[i+1].Op) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000394 Value *OldLHS = I->getOperand(0);
David Greenea1fa76c2010-01-05 01:27:24 +0000395 DEBUG(dbgs() << "RA: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000396 I->setOperand(0, Ops[i].Op);
397 I->setOperand(1, Ops[i+1].Op);
Dan Gohman46985a12011-02-02 02:02:34 +0000398
Chris Lattnerde1d8a52011-02-17 01:29:24 +0000399 // Clear all the optional flags, which may not hold after the
400 // reassociation if the expression involved more than just this operation.
401 if (Ops.size() != 2)
402 I->clearSubclassOptionalData();
Dan Gohman46985a12011-02-02 02:02:34 +0000403
David Greenea1fa76c2010-01-05 01:27:24 +0000404 DEBUG(dbgs() << "TO: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000405 MadeChange = true;
406 ++NumChanged;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000407
Chris Lattnere5022fe2006-03-04 09:31:13 +0000408 // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
409 // delete the extra, now dead, nodes.
410 RemoveDeadBinaryOp(OldLHS);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000411 }
412 return;
413 }
414 assert(i+2 < Ops.size() && "Ops index out of range!");
415
416 if (I->getOperand(1) != Ops[i].Op) {
David Greenea1fa76c2010-01-05 01:27:24 +0000417 DEBUG(dbgs() << "RA: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000418 I->setOperand(1, Ops[i].Op);
Dan Gohman46985a12011-02-02 02:02:34 +0000419
420 // Conservatively clear all the optional flags, which may not hold
421 // after the reassociation.
422 I->clearSubclassOptionalData();
423
David Greenea1fa76c2010-01-05 01:27:24 +0000424 DEBUG(dbgs() << "TO: " << *I << '\n');
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000425 MadeChange = true;
426 ++NumChanged;
427 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000428
Chris Lattnere5022fe2006-03-04 09:31:13 +0000429 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
430 assert(LHS->getOpcode() == I->getOpcode() &&
431 "Improper expression tree!");
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000432
Chris Lattnere5022fe2006-03-04 09:31:13 +0000433 // Compactify the tree instructions together with each other to guarantee
434 // that the expression tree is dominated by all of Ops.
435 LHS->moveBefore(I);
Chris Lattnere9efecb2006-03-14 16:04:29 +0000436 RewriteExprTree(LHS, Ops, i+1);
Chris Lattnerc0649ac2005-05-07 21:59:39 +0000437}
438
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000439/// NegateValue - Insert instructions before the instruction pointed to by BI,
440/// that computes the negative version of the value specified. The negative
441/// version of the value is returned, and BI is left pointing at the instruction
442/// that should be processed next by the reassociation pass.
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000443static Value *NegateValue(Value *V, Instruction *BI) {
Chris Lattner35239932009-12-31 20:34:32 +0000444 if (Constant *C = dyn_cast<Constant>(V))
445 return ConstantExpr::getNeg(C);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000446
Chris Lattnera36e6c82002-05-16 04:37:07 +0000447 // We are trying to expose opportunity for reassociation. One of the things
448 // that we want to do to achieve this is to push a negation as deep into an
449 // expression chain as possible, to expose the add instructions. In practice,
450 // this means that we turn this:
451 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
452 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
453 // the constants. We assume that instcombine will clean up the mess later if
Chris Lattner90461932010-01-01 00:04:26 +0000454 // we introduce tons of unnecessary negation instructions.
Chris Lattnera36e6c82002-05-16 04:37:07 +0000455 //
456 if (Instruction *I = dyn_cast<Instruction>(V))
Chris Lattnerfd059242003-10-15 16:48:29 +0000457 if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
Chris Lattner2cd85da2005-09-02 06:38:04 +0000458 // Push the negates through the add.
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000459 I->setOperand(0, NegateValue(I->getOperand(0), BI));
460 I->setOperand(1, NegateValue(I->getOperand(1), BI));
Chris Lattnera36e6c82002-05-16 04:37:07 +0000461
Chris Lattner2cd85da2005-09-02 06:38:04 +0000462 // We must move the add instruction here, because the neg instructions do
463 // not dominate the old add instruction in general. By moving it, we are
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000464 // assured that the neg instructions we just inserted dominate the
Chris Lattner2cd85da2005-09-02 06:38:04 +0000465 // instruction we are about to insert after them.
Chris Lattnera36e6c82002-05-16 04:37:07 +0000466 //
Chris Lattner2cd85da2005-09-02 06:38:04 +0000467 I->moveBefore(BI);
468 I->setName(I->getName()+".neg");
469 return I;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000470 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000471
Chris Lattner35239932009-12-31 20:34:32 +0000472 // Okay, we need to materialize a negated version of V with an instruction.
473 // Scan the use lists of V to see if we have one already.
474 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
Gabor Greif110b75a2010-07-12 12:03:02 +0000475 User *U = *UI;
476 if (!BinaryOperator::isNeg(U)) continue;
Chris Lattner35239932009-12-31 20:34:32 +0000477
478 // We found one! Now we have to make sure that the definition dominates
479 // this use. We do this by moving it to the entry block (if it is a
480 // non-instruction value) or right after the definition. These negates will
481 // be zapped by reassociate later, so we don't need much finesse here.
Gabor Greif110b75a2010-07-12 12:03:02 +0000482 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
Chris Lattner1c91fae2010-01-02 21:46:33 +0000483
484 // Verify that the negate is in this function, V might be a constant expr.
485 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
486 continue;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000487
Chris Lattner35239932009-12-31 20:34:32 +0000488 BasicBlock::iterator InsertPt;
489 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
490 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
491 InsertPt = II->getNormalDest()->begin();
492 } else {
493 InsertPt = InstInput;
494 ++InsertPt;
495 }
496 while (isa<PHINode>(InsertPt)) ++InsertPt;
497 } else {
498 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
499 }
500 TheNeg->moveBefore(InsertPt);
501 return TheNeg;
502 }
Chris Lattnera36e6c82002-05-16 04:37:07 +0000503
504 // Insert a 'neg' instruction that subtracts the value from zero to get the
505 // negation.
Dan Gohman4ae51262009-08-12 16:23:25 +0000506 return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
Chris Lattner08b43922005-05-07 04:08:02 +0000507}
508
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000509/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
510/// X-Y into (X + -Y).
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000511static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000512 // If this is a negation, we can't split it up!
Owen Andersonfa82b6e2009-07-13 22:18:28 +0000513 if (BinaryOperator::isNeg(Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000514 return false;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000515
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000516 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattner0b0803a2008-02-17 20:51:26 +0000517 // subtract or if this is only used by one.
518 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
519 isReassociableOp(Sub->getOperand(0), Instruction::Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000520 return true;
Chris Lattner0b0803a2008-02-17 20:51:26 +0000521 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
Chris Lattner5329bb22008-02-17 20:54:40 +0000522 isReassociableOp(Sub->getOperand(1), Instruction::Sub))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000523 return true;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000524 if (Sub->hasOneUse() &&
Chris Lattner0b0803a2008-02-17 20:51:26 +0000525 (isReassociableOp(Sub->use_back(), Instruction::Add) ||
526 isReassociableOp(Sub->use_back(), Instruction::Sub)))
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000527 return true;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000528
Chris Lattner9bc5ed72008-02-17 20:44:51 +0000529 return false;
530}
531
Chris Lattner08b43922005-05-07 04:08:02 +0000532/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
533/// only used by an add, transform this into (X+(0-Y)) to promote better
534/// reassociation.
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000535static Instruction *BreakUpSubtract(Instruction *Sub,
Craig Topperf1d0f772012-03-26 06:58:25 +0000536 DenseMap<AssertingVH<Value>, unsigned> &ValueRankMap) {
Chris Lattner90461932010-01-01 00:04:26 +0000537 // Convert a subtract into an add and a neg instruction. This allows sub
538 // instructions to be commuted with other add instructions.
Chris Lattner08b43922005-05-07 04:08:02 +0000539 //
Chris Lattner90461932010-01-01 00:04:26 +0000540 // Calculate the negative value of Operand 1 of the sub instruction,
541 // and set it as the RHS of the add instruction we just made.
Chris Lattner08b43922005-05-07 04:08:02 +0000542 //
Nick Lewyckye79fdde2009-11-14 07:25:54 +0000543 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000544 Instruction *New =
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000545 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
Chris Lattner6934a042007-02-11 01:23:03 +0000546 New->takeName(Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000547
548 // Everyone now refers to the add instruction.
Dale Johannesenf4978e22009-03-19 17:22:53 +0000549 ValueRankMap.erase(Sub);
Chris Lattner08b43922005-05-07 04:08:02 +0000550 Sub->replaceAllUsesWith(New);
Devang Patel5367b232011-04-28 22:48:14 +0000551 New->setDebugLoc(Sub->getDebugLoc());
Chris Lattner08b43922005-05-07 04:08:02 +0000552 Sub->eraseFromParent();
Jeff Cohen00b168892005-07-27 06:12:32 +0000553
David Greenea1fa76c2010-01-05 01:27:24 +0000554 DEBUG(dbgs() << "Negated: " << *New << '\n');
Chris Lattner08b43922005-05-07 04:08:02 +0000555 return New;
Chris Lattnera36e6c82002-05-16 04:37:07 +0000556}
557
Chris Lattner0975ed52005-05-07 04:24:13 +0000558/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
559/// by one, change this into a multiply by a constant to assist with further
560/// reassociation.
Craig Topperf1d0f772012-03-26 06:58:25 +0000561static Instruction *ConvertShiftToMul(Instruction *Shl,
562 DenseMap<AssertingVH<Value>, unsigned> &ValueRankMap) {
Chris Lattner22a66c42006-03-14 06:55:18 +0000563 // If an operand of this shift is a reassociable multiply, or if the shift
564 // is used by a reassociable multiply or add, turn into a multiply.
565 if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000566 (Shl->hasOneUse() &&
Chris Lattner22a66c42006-03-14 06:55:18 +0000567 (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
568 isReassociableOp(Shl->use_back(), Instruction::Add)))) {
Owen Andersoneed707b2009-07-24 23:12:02 +0000569 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000570 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000571
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000572 Instruction *Mul =
573 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
Dale Johannesenf4978e22009-03-19 17:22:53 +0000574 ValueRankMap.erase(Shl);
Chris Lattner6934a042007-02-11 01:23:03 +0000575 Mul->takeName(Shl);
Chris Lattner22a66c42006-03-14 06:55:18 +0000576 Shl->replaceAllUsesWith(Mul);
Devang Patel5367b232011-04-28 22:48:14 +0000577 Mul->setDebugLoc(Shl->getDebugLoc());
Chris Lattner22a66c42006-03-14 06:55:18 +0000578 Shl->eraseFromParent();
579 return Mul;
580 }
581 return 0;
Chris Lattner0975ed52005-05-07 04:24:13 +0000582}
583
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000584/// FindInOperandList - Scan backwards and forwards among values with the same
585/// rank as element i to see if X exists. If X does not exist, return i. This
586/// is useful when scanning for 'x' when we see '-x' because they both get the
587/// same rank.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000588static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
Chris Lattner109d34d2005-05-08 18:59:37 +0000589 Value *X) {
590 unsigned XRank = Ops[i].Rank;
591 unsigned e = Ops.size();
592 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
593 if (Ops[j].Op == X)
594 return j;
Chris Lattner9506c932010-01-01 01:13:15 +0000595 // Scan backwards.
Chris Lattner109d34d2005-05-08 18:59:37 +0000596 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
597 if (Ops[j].Op == X)
598 return j;
599 return i;
600}
601
Chris Lattnere5022fe2006-03-04 09:31:13 +0000602/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
603/// and returning the result. Insert the tree before I.
Bill Wendling55e70982012-05-02 09:59:45 +0000604static Value *EmitAddTreeOfValues(Instruction *I,
605 SmallVectorImpl<WeakVH> &Ops){
Chris Lattnere5022fe2006-03-04 09:31:13 +0000606 if (Ops.size() == 1) return Ops.back();
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000607
Chris Lattnere5022fe2006-03-04 09:31:13 +0000608 Value *V1 = Ops.back();
609 Ops.pop_back();
610 Value *V2 = EmitAddTreeOfValues(I, Ops);
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000611 return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
Chris Lattnere5022fe2006-03-04 09:31:13 +0000612}
613
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000614/// RemoveFactorFromExpression - If V is an expression tree that is a
Chris Lattnere5022fe2006-03-04 09:31:13 +0000615/// multiplication sequence, and if this sequence contains a multiply by Factor,
616/// remove Factor from the tree and return the new tree.
617Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
618 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
619 if (!BO) return 0;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000620
Chris Lattner9f7b7082009-12-31 18:40:32 +0000621 SmallVector<ValueEntry, 8> Factors;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000622 LinearizeExprTree(BO, Factors);
623
624 bool FoundFactor = false;
Chris Lattner9506c932010-01-01 01:13:15 +0000625 bool NeedsNegate = false;
626 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Chris Lattnere5022fe2006-03-04 09:31:13 +0000627 if (Factors[i].Op == Factor) {
628 FoundFactor = true;
629 Factors.erase(Factors.begin()+i);
630 break;
631 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000632
Chris Lattner9506c932010-01-01 01:13:15 +0000633 // If this is a negative version of this factor, remove it.
634 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
635 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
636 if (FC1->getValue() == -FC2->getValue()) {
637 FoundFactor = NeedsNegate = true;
638 Factors.erase(Factors.begin()+i);
639 break;
640 }
641 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000642
Chris Lattnere9efecb2006-03-14 16:04:29 +0000643 if (!FoundFactor) {
644 // Make sure to restore the operands to the expression tree.
645 RewriteExprTree(BO, Factors);
646 return 0;
647 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000648
Chris Lattner9506c932010-01-01 01:13:15 +0000649 BasicBlock::iterator InsertPt = BO; ++InsertPt;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000650
Chris Lattner1e7558b2009-12-31 19:34:45 +0000651 // If this was just a single multiply, remove the multiply and return the only
652 // remaining operand.
653 if (Factors.size() == 1) {
654 ValueRankMap.erase(BO);
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +0000655 DeadInsts.push_back(BO);
Chris Lattner9506c932010-01-01 01:13:15 +0000656 V = Factors[0].Op;
657 } else {
658 RewriteExprTree(BO, Factors);
659 V = BO;
Chris Lattner1e7558b2009-12-31 19:34:45 +0000660 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000661
Chris Lattner9506c932010-01-01 01:13:15 +0000662 if (NeedsNegate)
663 V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000664
Chris Lattner9506c932010-01-01 01:13:15 +0000665 return V;
Chris Lattnere5022fe2006-03-04 09:31:13 +0000666}
667
Chris Lattnere9efecb2006-03-14 16:04:29 +0000668/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
669/// add its operands as factors, otherwise add V to the list of factors.
Chris Lattner893075f2010-03-05 07:18:54 +0000670///
671/// Ops is the top-level list of add operands we're trying to factor.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000672static void FindSingleUseMultiplyFactors(Value *V,
Chris Lattner893075f2010-03-05 07:18:54 +0000673 SmallVectorImpl<Value*> &Factors,
674 const SmallVectorImpl<ValueEntry> &Ops,
675 bool IsRoot) {
Chris Lattnere9efecb2006-03-14 16:04:29 +0000676 BinaryOperator *BO;
Chris Lattner893075f2010-03-05 07:18:54 +0000677 if (!(V->hasOneUse() || V->use_empty()) || // More than one use.
Chris Lattnere9efecb2006-03-14 16:04:29 +0000678 !(BO = dyn_cast<BinaryOperator>(V)) ||
679 BO->getOpcode() != Instruction::Mul) {
680 Factors.push_back(V);
681 return;
682 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000683
Chris Lattner893075f2010-03-05 07:18:54 +0000684 // If this value has a single use because it is another input to the add
685 // tree we're reassociating and we dropped its use, it actually has two
686 // uses and we can't factor it.
687 if (!IsRoot) {
688 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
689 if (Ops[i].Op == V) {
690 Factors.push_back(V);
691 return;
692 }
693 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000694
695
Chris Lattnere9efecb2006-03-14 16:04:29 +0000696 // Otherwise, add the LHS and RHS to the list of factors.
Chris Lattner893075f2010-03-05 07:18:54 +0000697 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops, false);
698 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops, false);
Chris Lattnere9efecb2006-03-14 16:04:29 +0000699}
700
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000701/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
702/// instruction. This optimizes based on identities. If it can be reduced to
703/// a single Value, it is returned, otherwise the Ops list is mutated as
704/// necessary.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000705static Value *OptimizeAndOrXor(unsigned Opcode,
706 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000707 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
708 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
709 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
710 // First, check for X and ~X in the operand list.
711 assert(i < Ops.size());
712 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
713 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
714 unsigned FoundX = FindInOperandList(Ops, i, X);
715 if (FoundX != i) {
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000716 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000717 return Constant::getNullValue(X->getType());
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000718
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000719 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000720 return Constant::getAllOnesValue(X->getType());
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000721 }
722 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000723
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000724 // Next, check for duplicate pairs of values, which we assume are next to
725 // each other, due to our sorting criteria.
726 assert(i < Ops.size());
727 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
728 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000729 // Drop duplicate values for And and Or.
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000730 Ops.erase(Ops.begin()+i);
731 --i; --e;
732 ++NumAnnihil;
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000733 continue;
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000734 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000735
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000736 // Drop pairs of values for Xor.
737 assert(Opcode == Instruction::Xor);
738 if (e == 2)
739 return Constant::getNullValue(Ops[0].Op->getType());
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000740
Chris Lattner90461932010-01-01 00:04:26 +0000741 // Y ^ X^X -> Y
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000742 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
743 i -= 1; e -= 2;
744 ++NumAnnihil;
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000745 }
746 }
747 return 0;
748}
Chris Lattnere9efecb2006-03-14 16:04:29 +0000749
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000750/// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
751/// optimizes based on identities. If it can be reduced to a single Value, it
752/// is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner9f7b7082009-12-31 18:40:32 +0000753Value *Reassociate::OptimizeAdd(Instruction *I,
754 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000755 // Scan the operand lists looking for X and -X pairs. If we find any, we
Chris Lattner69e98e22009-12-31 19:24:52 +0000756 // can simplify the expression. X+-X == 0. While we're at it, scan for any
757 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Chris Lattner9506c932010-01-01 01:13:15 +0000758 //
759 // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
760 //
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000761 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner69e98e22009-12-31 19:24:52 +0000762 Value *TheOp = Ops[i].Op;
763 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000764 // instances of the operand together. Due to our sorting criteria, we know
765 // that these need to be next to each other in the vector.
766 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
767 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner69e98e22009-12-31 19:24:52 +0000768 unsigned NumFound = 0;
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000769 do {
770 Ops.erase(Ops.begin()+i);
Chris Lattner69e98e22009-12-31 19:24:52 +0000771 ++NumFound;
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000772 } while (i != Ops.size() && Ops[i].Op == TheOp);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000773
Chris Lattnerf8a447d2009-12-31 19:25:19 +0000774 DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
Chris Lattner69e98e22009-12-31 19:24:52 +0000775 ++NumFactor;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000776
Chris Lattner69e98e22009-12-31 19:24:52 +0000777 // Insert a new multiply.
778 Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
779 Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000780
Chris Lattner69e98e22009-12-31 19:24:52 +0000781 // Now that we have inserted a multiply, optimize it. This allows us to
782 // handle cases that require multiple factoring steps, such as this:
783 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
Dan Gohmandac5dba2011-04-12 00:11:56 +0000784 RedoInsts.push_back(Mul);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000785
Chris Lattner69e98e22009-12-31 19:24:52 +0000786 // If every add operand was a duplicate, return the multiply.
787 if (Ops.empty())
788 return Mul;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000789
Chris Lattner69e98e22009-12-31 19:24:52 +0000790 // Otherwise, we had some input that didn't have the dupe, such as
791 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
792 // things being added by this operation.
793 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000794
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000795 --i;
796 e = Ops.size();
797 continue;
Chris Lattner69e98e22009-12-31 19:24:52 +0000798 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000799
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000800 // Check for X and -X in the operand list.
Chris Lattner69e98e22009-12-31 19:24:52 +0000801 if (!BinaryOperator::isNeg(TheOp))
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000802 continue;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000803
Chris Lattner69e98e22009-12-31 19:24:52 +0000804 Value *X = BinaryOperator::getNegArgument(TheOp);
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000805 unsigned FoundX = FindInOperandList(Ops, i, X);
806 if (FoundX == i)
807 continue;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000808
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000809 // Remove X and -X from the operand list.
Chris Lattner9fdaefa2009-12-31 17:51:05 +0000810 if (Ops.size() == 2)
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000811 return Constant::getNullValue(X->getType());
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000812
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000813 Ops.erase(Ops.begin()+i);
814 if (i < FoundX)
815 --FoundX;
816 else
817 --i; // Need to back up an extra one.
818 Ops.erase(Ops.begin()+FoundX);
819 ++NumAnnihil;
820 --i; // Revisit element.
821 e -= 2; // Removed two elements.
822 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000823
Chris Lattner94285e62009-12-31 18:17:13 +0000824 // Scan the operand list, checking to see if there are any common factors
825 // between operands. Consider something like A*A+A*B*C+D. We would like to
826 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
827 // To efficiently find this, we count the number of times a factor occurs
828 // for any ADD operands that are MULs.
829 DenseMap<Value*, unsigned> FactorOccurrences;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000830
Chris Lattner94285e62009-12-31 18:17:13 +0000831 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
832 // where they are actually the same multiply.
Chris Lattner94285e62009-12-31 18:17:13 +0000833 unsigned MaxOcc = 0;
834 Value *MaxOccVal = 0;
835 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
836 BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
837 if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
838 continue;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000839
Chris Lattner94285e62009-12-31 18:17:13 +0000840 // Compute all of the factors of this added value.
841 SmallVector<Value*, 8> Factors;
Chris Lattner893075f2010-03-05 07:18:54 +0000842 FindSingleUseMultiplyFactors(BOp, Factors, Ops, true);
Chris Lattner94285e62009-12-31 18:17:13 +0000843 assert(Factors.size() > 1 && "Bad linearize!");
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000844
Chris Lattner94285e62009-12-31 18:17:13 +0000845 // Add one to FactorOccurrences for each unique factor in this op.
Chris Lattner9506c932010-01-01 01:13:15 +0000846 SmallPtrSet<Value*, 8> Duplicates;
847 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
848 Value *Factor = Factors[i];
849 if (!Duplicates.insert(Factor)) continue;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000850
Chris Lattner9506c932010-01-01 01:13:15 +0000851 unsigned Occ = ++FactorOccurrences[Factor];
852 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000853
Chris Lattner9506c932010-01-01 01:13:15 +0000854 // If Factor is a negative constant, add the negated value as a factor
855 // because we can percolate the negate out. Watch for minint, which
856 // cannot be positivified.
857 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
Chris Lattnerc73b24d2011-07-15 06:08:15 +0000858 if (CI->isNegative() && !CI->isMinValue(true)) {
Chris Lattner9506c932010-01-01 01:13:15 +0000859 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
860 assert(!Duplicates.count(Factor) &&
861 "Shouldn't have two constant factors, missed a canonicalize");
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000862
Chris Lattner9506c932010-01-01 01:13:15 +0000863 unsigned Occ = ++FactorOccurrences[Factor];
864 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
865 }
Chris Lattner94285e62009-12-31 18:17:13 +0000866 }
867 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000868
Chris Lattner94285e62009-12-31 18:17:13 +0000869 // If any factor occurred more than one time, we can pull it out.
870 if (MaxOcc > 1) {
Chris Lattner69e98e22009-12-31 19:24:52 +0000871 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
Chris Lattner94285e62009-12-31 18:17:13 +0000872 ++NumFactor;
873
874 // Create a new instruction that uses the MaxOccVal twice. If we don't do
875 // this, we could otherwise run into situations where removing a factor
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000876 // from an expression will drop a use of maxocc, and this can cause
Chris Lattner94285e62009-12-31 18:17:13 +0000877 // RemoveFactorFromExpression on successive values to behave differently.
878 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
Bill Wendling55e70982012-05-02 09:59:45 +0000879 SmallVector<WeakVH, 4> NewMulOps;
Duncan Sands37f87c72011-01-26 10:08:38 +0000880 for (unsigned i = 0; i != Ops.size(); ++i) {
Chris Lattnerc2d1b692010-01-09 06:01:36 +0000881 // Only try to remove factors from expressions we're allowed to.
882 BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
883 if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
884 continue;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000885
Chris Lattner94285e62009-12-31 18:17:13 +0000886 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
Duncan Sands37f87c72011-01-26 10:08:38 +0000887 // The factorized operand may occur several times. Convert them all in
888 // one fell swoop.
889 for (unsigned j = Ops.size(); j != i;) {
890 --j;
891 if (Ops[j].Op == Ops[i].Op) {
892 NewMulOps.push_back(V);
893 Ops.erase(Ops.begin()+j);
894 }
895 }
896 --i;
Chris Lattner94285e62009-12-31 18:17:13 +0000897 }
898 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000899
Chris Lattner94285e62009-12-31 18:17:13 +0000900 // No need for extra uses anymore.
901 delete DummyInst;
Duncan Sands54a57042010-01-08 17:51:48 +0000902
Chris Lattner94285e62009-12-31 18:17:13 +0000903 unsigned NumAddedValues = NewMulOps.size();
904 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Duncan Sands54a57042010-01-08 17:51:48 +0000905
Chris Lattner69e98e22009-12-31 19:24:52 +0000906 // Now that we have inserted the add tree, optimize it. This allows us to
907 // handle cases that require multiple factoring steps, such as this:
Chris Lattner94285e62009-12-31 18:17:13 +0000908 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattner9cd1bc42009-12-31 18:18:46 +0000909 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Duncan Sands54a57042010-01-08 17:51:48 +0000910 (void)NumAddedValues;
Chris Lattner69e98e22009-12-31 19:24:52 +0000911 V = ReassociateExpression(cast<BinaryOperator>(V));
912
913 // Create the multiply.
914 Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
915
Chris Lattnerf31e2e92009-12-31 19:49:01 +0000916 // Rerun associate on the multiply in case the inner expression turned into
917 // a multiply. We want to make sure that we keep things in canonical form.
918 V2 = ReassociateExpression(cast<BinaryOperator>(V2));
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000919
Chris Lattner94285e62009-12-31 18:17:13 +0000920 // If every add operand included the factor (e.g. "A*B + A*C"), then the
921 // entire result expression is just the multiply "A*(B+C)".
922 if (Ops.empty())
923 return V2;
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000924
Chris Lattner9cd1bc42009-12-31 18:18:46 +0000925 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner94285e62009-12-31 18:17:13 +0000926 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattner9cd1bc42009-12-31 18:18:46 +0000927 // things being added by this operation.
Chris Lattner94285e62009-12-31 18:17:13 +0000928 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
929 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +0000930
Chris Lattnerf3f55a92009-12-31 07:59:34 +0000931 return 0;
932}
Chris Lattnere5022fe2006-03-04 09:31:13 +0000933
Chandler Carruth464bda32012-04-26 05:30:30 +0000934namespace {
935 /// \brief Predicate tests whether a ValueEntry's op is in a map.
936 struct IsValueInMap {
937 const DenseMap<Value *, unsigned> &Map;
938
939 IsValueInMap(const DenseMap<Value *, unsigned> &Map) : Map(Map) {}
940
941 bool operator()(const ValueEntry &Entry) {
942 return Map.find(Entry.Op) != Map.end();
943 }
944 };
945}
946
947/// \brief Build up a vector of value/power pairs factoring a product.
948///
949/// Given a series of multiplication operands, build a vector of factors and
950/// the powers each is raised to when forming the final product. Sort them in
951/// the order of descending power.
952///
953/// (x*x) -> [(x, 2)]
954/// ((x*x)*x) -> [(x, 3)]
955/// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
956///
957/// \returns Whether any factors have a power greater than one.
958bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
959 SmallVectorImpl<Factor> &Factors) {
960 unsigned FactorPowerSum = 0;
961 DenseMap<Value *, unsigned> FactorCounts;
962 for (unsigned LastIdx = 0, Idx = 0, Size = Ops.size(); Idx < Size; ++Idx) {
963 // Note that 'use_empty' uses means the only use is in the linearized tree
964 // represented by Ops -- we remove the values from the actual operations to
965 // reduce their use count.
966 if (!Ops[Idx].Op->use_empty()) {
967 if (LastIdx == Idx)
968 ++LastIdx;
969 continue;
970 }
971 if (LastIdx == Idx || Ops[LastIdx].Op != Ops[Idx].Op) {
972 LastIdx = Idx;
973 continue;
974 }
975 // Track for simplification all factors which occur 2 or more times.
976 DenseMap<Value *, unsigned>::iterator CountIt;
977 bool Inserted;
978 llvm::tie(CountIt, Inserted)
979 = FactorCounts.insert(std::make_pair(Ops[Idx].Op, 2));
980 if (Inserted) {
981 FactorPowerSum += 2;
982 Factors.push_back(Factor(Ops[Idx].Op, 2));
983 } else {
984 ++CountIt->second;
985 ++FactorPowerSum;
986 }
987 }
988 // We can only simplify factors if the sum of the powers of our simplifiable
989 // factors is 4 or higher. When that is the case, we will *always* have
990 // a simplification. This is an important invariant to prevent cyclicly
991 // trying to simplify already minimal formations.
992 if (FactorPowerSum < 4)
993 return false;
994
995 // Remove all the operands which are in the map.
996 Ops.erase(std::remove_if(Ops.begin(), Ops.end(), IsValueInMap(FactorCounts)),
997 Ops.end());
998
999 // Record the adjusted power for the simplification factors. We add back into
1000 // the Ops list any values with an odd power, and make the power even. This
1001 // allows the outer-most multiplication tree to remain in tact during
1002 // simplification.
1003 unsigned OldOpsSize = Ops.size();
1004 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1005 Factors[Idx].Power = FactorCounts[Factors[Idx].Base];
1006 if (Factors[Idx].Power & 1) {
1007 Ops.push_back(ValueEntry(getRank(Factors[Idx].Base), Factors[Idx].Base));
1008 --Factors[Idx].Power;
1009 --FactorPowerSum;
1010 }
1011 }
1012 // None of the adjustments above should have reduced the sum of factor powers
1013 // below our mininum of '4'.
1014 assert(FactorPowerSum >= 4);
1015
1016 // Patch up the sort of the ops vector by sorting the factors we added back
1017 // onto the back, and merging the two sequences.
1018 if (OldOpsSize != Ops.size()) {
1019 SmallVectorImpl<ValueEntry>::iterator MiddleIt = Ops.begin() + OldOpsSize;
1020 std::sort(MiddleIt, Ops.end());
1021 std::inplace_merge(Ops.begin(), MiddleIt, Ops.end());
1022 }
1023
1024 std::sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
1025 return true;
1026}
1027
1028/// \brief Build a tree of multiplies, computing the product of Ops.
1029static Value *buildMultiplyTree(IRBuilder<> &Builder,
1030 SmallVectorImpl<Value*> &Ops) {
1031 if (Ops.size() == 1)
1032 return Ops.back();
1033
1034 Value *LHS = Ops.pop_back_val();
1035 do {
1036 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1037 } while (!Ops.empty());
1038
1039 return LHS;
1040}
1041
1042/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1043///
1044/// Given a vector of values raised to various powers, where no two values are
1045/// equal and the powers are sorted in decreasing order, compute the minimal
1046/// DAG of multiplies to compute the final product, and return that product
1047/// value.
1048Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1049 SmallVectorImpl<Factor> &Factors) {
1050 assert(Factors[0].Power);
1051 SmallVector<Value *, 4> OuterProduct;
1052 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1053 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1054 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1055 LastIdx = Idx;
1056 continue;
1057 }
1058
1059 // We want to multiply across all the factors with the same power so that
1060 // we can raise them to that power as a single entity. Build a mini tree
1061 // for that.
1062 SmallVector<Value *, 4> InnerProduct;
1063 InnerProduct.push_back(Factors[LastIdx].Base);
1064 do {
1065 InnerProduct.push_back(Factors[Idx].Base);
1066 ++Idx;
1067 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1068
1069 // Reset the base value of the first factor to the new expression tree.
1070 // We'll remove all the factors with the same power in a second pass.
1071 Factors[LastIdx].Base
1072 = ReassociateExpression(
1073 cast<BinaryOperator>(buildMultiplyTree(Builder, InnerProduct)));
1074
1075 LastIdx = Idx;
1076 }
1077 // Unique factors with equal powers -- we've folded them into the first one's
1078 // base.
1079 Factors.erase(std::unique(Factors.begin(), Factors.end(),
1080 Factor::PowerEqual()),
1081 Factors.end());
1082
1083 // Iteratively collect the base of each factor with an add power into the
1084 // outer product, and halve each power in preparation for squaring the
1085 // expression.
1086 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1087 if (Factors[Idx].Power & 1)
1088 OuterProduct.push_back(Factors[Idx].Base);
1089 Factors[Idx].Power >>= 1;
1090 }
1091 if (Factors[0].Power) {
1092 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1093 OuterProduct.push_back(SquareRoot);
1094 OuterProduct.push_back(SquareRoot);
1095 }
1096 if (OuterProduct.size() == 1)
1097 return OuterProduct.front();
1098
1099 return ReassociateExpression(
1100 cast<BinaryOperator>(buildMultiplyTree(Builder, OuterProduct)));
1101}
1102
1103Value *Reassociate::OptimizeMul(BinaryOperator *I,
1104 SmallVectorImpl<ValueEntry> &Ops) {
1105 // We can only optimize the multiplies when there is a chain of more than
1106 // three, such that a balanced tree might require fewer total multiplies.
1107 if (Ops.size() < 4)
1108 return 0;
1109
1110 // Try to turn linear trees of multiplies without other uses of the
1111 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1112 // re-use.
1113 SmallVector<Factor, 4> Factors;
1114 if (!collectMultiplyFactors(Ops, Factors))
1115 return 0; // All distinct factors, so nothing left for us to do.
1116
1117 IRBuilder<> Builder(I);
1118 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1119 if (Ops.empty())
1120 return V;
1121
1122 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1123 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1124 return 0;
1125}
1126
Chris Lattnere5022fe2006-03-04 09:31:13 +00001127Value *Reassociate::OptimizeExpression(BinaryOperator *I,
Chris Lattner9f7b7082009-12-31 18:40:32 +00001128 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner46900102005-05-08 00:19:31 +00001129 // Now that we have the linearized expression tree, try to optimize it.
1130 // Start by folding any constants that we found.
Chris Lattner109d34d2005-05-08 18:59:37 +00001131 bool IterateOptimization = false;
Chris Lattnere5022fe2006-03-04 09:31:13 +00001132 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +00001133
Chris Lattnere5022fe2006-03-04 09:31:13 +00001134 unsigned Opcode = I->getOpcode();
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001135
Chris Lattner46900102005-05-08 00:19:31 +00001136 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
1137 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
1138 Ops.pop_back();
Owen Andersonbaf3c402009-07-29 18:55:55 +00001139 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
Chris Lattnere5022fe2006-03-04 09:31:13 +00001140 return OptimizeExpression(I, Ops);
Chris Lattner46900102005-05-08 00:19:31 +00001141 }
1142
1143 // Check for destructive annihilation due to a constant being used.
Zhou Sheng6b6b6ef2007-01-11 12:24:14 +00001144 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
Chris Lattner46900102005-05-08 00:19:31 +00001145 switch (Opcode) {
1146 default: break;
1147 case Instruction::And:
Chris Lattner90461932010-01-01 00:04:26 +00001148 if (CstVal->isZero()) // X & 0 -> 0
Chris Lattnere5022fe2006-03-04 09:31:13 +00001149 return CstVal;
Chris Lattner90461932010-01-01 00:04:26 +00001150 if (CstVal->isAllOnesValue()) // X & -1 -> X
Chris Lattner8d93b252009-12-31 07:48:51 +00001151 Ops.pop_back();
Chris Lattner46900102005-05-08 00:19:31 +00001152 break;
1153 case Instruction::Mul:
Chris Lattner90461932010-01-01 00:04:26 +00001154 if (CstVal->isZero()) { // X * 0 -> 0
Chris Lattner109d34d2005-05-08 18:59:37 +00001155 ++NumAnnihil;
Chris Lattnere5022fe2006-03-04 09:31:13 +00001156 return CstVal;
Chris Lattner46900102005-05-08 00:19:31 +00001157 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001158
Chris Lattner8d93b252009-12-31 07:48:51 +00001159 if (cast<ConstantInt>(CstVal)->isOne())
Chris Lattner90461932010-01-01 00:04:26 +00001160 Ops.pop_back(); // X * 1 -> X
Chris Lattner46900102005-05-08 00:19:31 +00001161 break;
1162 case Instruction::Or:
Chris Lattner90461932010-01-01 00:04:26 +00001163 if (CstVal->isAllOnesValue()) // X | -1 -> -1
Chris Lattnere5022fe2006-03-04 09:31:13 +00001164 return CstVal;
Chris Lattner46900102005-05-08 00:19:31 +00001165 // FALLTHROUGH!
1166 case Instruction::Add:
1167 case Instruction::Xor:
Chris Lattner90461932010-01-01 00:04:26 +00001168 if (CstVal->isZero()) // X [|^+] 0 -> X
Chris Lattner46900102005-05-08 00:19:31 +00001169 Ops.pop_back();
1170 break;
1171 }
Chris Lattnere5022fe2006-03-04 09:31:13 +00001172 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattner46900102005-05-08 00:19:31 +00001173
Chris Lattnerec531232009-12-31 07:33:14 +00001174 // Handle destructive annihilation due to identities between elements in the
Chris Lattner46900102005-05-08 00:19:31 +00001175 // argument list here.
Chandler Carruth464bda32012-04-26 05:30:30 +00001176 unsigned NumOps = Ops.size();
Chris Lattner109d34d2005-05-08 18:59:37 +00001177 switch (Opcode) {
1178 default: break;
1179 case Instruction::And:
1180 case Instruction::Or:
Chandler Carruth464bda32012-04-26 05:30:30 +00001181 case Instruction::Xor:
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001182 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1183 return Result;
Chris Lattner109d34d2005-05-08 18:59:37 +00001184 break;
1185
Chandler Carruth464bda32012-04-26 05:30:30 +00001186 case Instruction::Add:
Chris Lattner94285e62009-12-31 18:17:13 +00001187 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattnerf3f55a92009-12-31 07:59:34 +00001188 return Result;
Chris Lattner109d34d2005-05-08 18:59:37 +00001189 break;
Chandler Carruth464bda32012-04-26 05:30:30 +00001190
1191 case Instruction::Mul:
1192 if (Value *Result = OptimizeMul(I, Ops))
1193 return Result;
1194 break;
Chris Lattner109d34d2005-05-08 18:59:37 +00001195 }
1196
Chandler Carruth464bda32012-04-26 05:30:30 +00001197 if (IterateOptimization || Ops.size() != NumOps)
Chris Lattnere5022fe2006-03-04 09:31:13 +00001198 return OptimizeExpression(I, Ops);
1199 return 0;
Chris Lattner46900102005-05-08 00:19:31 +00001200}
1201
Dan Gohmandac5dba2011-04-12 00:11:56 +00001202/// ReassociateInst - Inspect and reassociate the instruction at the
1203/// given position, post-incrementing the position.
1204void Reassociate::ReassociateInst(BasicBlock::iterator &BBI) {
1205 Instruction *BI = BBI++;
1206 if (BI->getOpcode() == Instruction::Shl &&
1207 isa<ConstantInt>(BI->getOperand(1)))
1208 if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) {
1209 MadeChange = true;
1210 BI = NI;
Chris Lattnerf33151a2005-05-08 21:28:52 +00001211 }
Chris Lattnere4b73042002-10-31 17:12:59 +00001212
Dan Gohmandac5dba2011-04-12 00:11:56 +00001213 // Reject cases where it is pointless to do this.
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001214 if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPointTy() ||
Dan Gohmandac5dba2011-04-12 00:11:56 +00001215 BI->getType()->isVectorTy())
1216 return; // Floating point ops are not associative.
Jeff Cohen00b168892005-07-27 06:12:32 +00001217
Dan Gohmandac5dba2011-04-12 00:11:56 +00001218 // Do not reassociate boolean (i1) expressions. We want to preserve the
1219 // original order of evaluation for short-circuited comparisons that
1220 // SimplifyCFG has folded to AND/OR expressions. If the expression
1221 // is not further optimized, it is likely to be transformed back to a
1222 // short-circuited form for code gen, and the source order may have been
1223 // optimized for the most likely conditions.
1224 if (BI->getType()->isIntegerTy(1))
1225 return;
Chris Lattnera36e6c82002-05-16 04:37:07 +00001226
Dan Gohmandac5dba2011-04-12 00:11:56 +00001227 // If this is a subtract instruction which is not already in negate form,
1228 // see if we can convert it to X+-Y.
1229 if (BI->getOpcode() == Instruction::Sub) {
1230 if (ShouldBreakUpSubtract(BI)) {
1231 BI = BreakUpSubtract(BI, ValueRankMap);
1232 // Reset the BBI iterator in case BreakUpSubtract changed the
1233 // instruction it points to.
1234 BBI = BI;
1235 ++BBI;
1236 MadeChange = true;
1237 } else if (BinaryOperator::isNeg(BI)) {
1238 // Otherwise, this is a negation. See if the operand is a multiply tree
1239 // and if this is not an inner node of a multiply tree.
1240 if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
1241 (!BI->hasOneUse() ||
1242 !isReassociableOp(BI->use_back(), Instruction::Mul))) {
1243 BI = LowerNegateToMultiply(BI, ValueRankMap);
1244 MadeChange = true;
1245 }
1246 }
Chris Lattner895b3922006-03-14 07:11:11 +00001247 }
Dan Gohmandac5dba2011-04-12 00:11:56 +00001248
1249 // If this instruction is a commutative binary operator, process it.
1250 if (!BI->isAssociative()) return;
1251 BinaryOperator *I = cast<BinaryOperator>(BI);
1252
1253 // If this is an interior node of a reassociable tree, ignore it until we
1254 // get to the root of the tree, to avoid N^2 analysis.
1255 if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
1256 return;
1257
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001258 // If this is an add tree that is used by a sub instruction, ignore it
Dan Gohmandac5dba2011-04-12 00:11:56 +00001259 // until we process the subtract.
1260 if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
1261 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
1262 return;
1263
1264 ReassociateExpression(I);
Chris Lattner895b3922006-03-14 07:11:11 +00001265}
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001266
Chris Lattner69e98e22009-12-31 19:24:52 +00001267Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001268
Chris Lattner69e98e22009-12-31 19:24:52 +00001269 // First, walk the expression tree, linearizing the tree, collecting the
1270 // operand information.
Chris Lattner9f7b7082009-12-31 18:40:32 +00001271 SmallVector<ValueEntry, 8> Ops;
Chris Lattner895b3922006-03-14 07:11:11 +00001272 LinearizeExprTree(I, Ops);
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001273
David Greenea1fa76c2010-01-05 01:27:24 +00001274 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001275
Chris Lattner895b3922006-03-14 07:11:11 +00001276 // Now that we have linearized the tree to a list and have gathered all of
1277 // the operands and their ranks, sort the operands by their rank. Use a
1278 // stable_sort so that values with equal ranks will have their relative
1279 // positions maintained (and so the compiler is deterministic). Note that
1280 // this sorts so that the highest ranking values end up at the beginning of
1281 // the vector.
1282 std::stable_sort(Ops.begin(), Ops.end());
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001283
Chris Lattner895b3922006-03-14 07:11:11 +00001284 // OptimizeExpression - Now that we have the expression tree in a convenient
1285 // sorted form, optimize it globally if possible.
1286 if (Value *V = OptimizeExpression(I, Ops)) {
1287 // This expression tree simplified to something that isn't a tree,
1288 // eliminate it.
David Greenea1fa76c2010-01-05 01:27:24 +00001289 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner895b3922006-03-14 07:11:11 +00001290 I->replaceAllUsesWith(V);
Devang Patel5367b232011-04-28 22:48:14 +00001291 if (Instruction *VI = dyn_cast<Instruction>(V))
1292 VI->setDebugLoc(I->getDebugLoc());
Chris Lattner895b3922006-03-14 07:11:11 +00001293 RemoveDeadBinaryOp(I);
Chris Lattner9fdaefa2009-12-31 17:51:05 +00001294 ++NumAnnihil;
Chris Lattner69e98e22009-12-31 19:24:52 +00001295 return V;
Chris Lattner895b3922006-03-14 07:11:11 +00001296 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001297
Chris Lattner895b3922006-03-14 07:11:11 +00001298 // We want to sink immediates as deeply as possible except in the case where
1299 // this is a multiply tree used only by an add, and the immediate is a -1.
1300 // In this case we reassociate to put the negation on the outside so that we
1301 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1302 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1303 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1304 isa<ConstantInt>(Ops.back().Op) &&
1305 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
Chris Lattner9f7b7082009-12-31 18:40:32 +00001306 ValueEntry Tmp = Ops.pop_back_val();
1307 Ops.insert(Ops.begin(), Tmp);
Chris Lattner895b3922006-03-14 07:11:11 +00001308 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001309
David Greenea1fa76c2010-01-05 01:27:24 +00001310 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001311
Chris Lattner895b3922006-03-14 07:11:11 +00001312 if (Ops.size() == 1) {
1313 // This expression tree simplified to something that isn't a tree,
1314 // eliminate it.
1315 I->replaceAllUsesWith(Ops[0].Op);
Devang Patel5367b232011-04-28 22:48:14 +00001316 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
1317 OI->setDebugLoc(I->getDebugLoc());
Chris Lattner895b3922006-03-14 07:11:11 +00001318 RemoveDeadBinaryOp(I);
Chris Lattner69e98e22009-12-31 19:24:52 +00001319 return Ops[0].Op;
Chris Lattner4fd56002002-05-08 22:19:27 +00001320 }
Bill Wendlinge8cd3f22012-05-02 23:43:23 +00001321
Chris Lattner69e98e22009-12-31 19:24:52 +00001322 // Now that we ordered and optimized the expressions, splat them back into
1323 // the expression tree, removing any unneeded nodes.
1324 RewriteExprTree(I, Ops);
1325 return I;
Chris Lattner4fd56002002-05-08 22:19:27 +00001326}
1327
Chris Lattner7e708292002-06-25 16:13:24 +00001328bool Reassociate::runOnFunction(Function &F) {
Chris Lattner4fd56002002-05-08 22:19:27 +00001329 // Recalculate the rank map for F
1330 BuildRankMap(F);
1331
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001332 MadeChange = false;
Chris Lattner7e708292002-06-25 16:13:24 +00001333 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
Dan Gohmandac5dba2011-04-12 00:11:56 +00001334 for (BasicBlock::iterator BBI = FI->begin(); BBI != FI->end(); )
1335 ReassociateInst(BBI);
1336
1337 // Now that we're done, revisit any instructions which are likely to
1338 // have secondary reassociation opportunities.
1339 while (!RedoInsts.empty())
1340 if (Value *V = RedoInsts.pop_back_val()) {
1341 BasicBlock::iterator BBI = cast<Instruction>(V);
1342 ReassociateInst(BBI);
1343 }
Chris Lattner4fd56002002-05-08 22:19:27 +00001344
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +00001345 // Now that we're done, delete any instructions which are no longer used.
1346 while (!DeadInsts.empty())
Dan Gohmanc9f2f612011-03-10 20:57:44 +00001347 if (Value *V = DeadInsts.pop_back_val())
Owen Anderson9b7fdc72011-08-02 02:23:42 +00001348 RecursivelyDeleteTriviallyDeadInstructions(V);
Dan Gohmanfa0e6fa2011-03-10 19:51:54 +00001349
Chris Lattnerf55e7f52010-01-01 00:01:34 +00001350 // We are done with the rank map.
Chris Lattner4fd56002002-05-08 22:19:27 +00001351 RankMap.clear();
Chris Lattnerfb5be092003-08-13 16:16:26 +00001352 ValueRankMap.clear();
Chris Lattnerc0649ac2005-05-07 21:59:39 +00001353 return MadeChange;
Chris Lattner4fd56002002-05-08 22:19:27 +00001354}