blob: 5460b8dc612bc76d6a778c44c560f2f45e0dcb3b [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000018#include "X86MachineFunctionInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000019#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
Dan Gohmanc24a3f82009-01-05 17:59:02 +000021#include "llvm/DerivedTypes.h"
Owen Anderson1636de92007-09-07 04:06:50 +000022#include "llvm/ADT/STLExtras.h"
Dan Gohman37eb6c82008-12-03 05:21:24 +000023#include "llvm/CodeGen/MachineConstantPool.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000024#include "llvm/CodeGen/MachineFrameInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000025#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000026#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000027#include "llvm/CodeGen/LiveVariables.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000028#include "llvm/Support/CommandLine.h"
Evan Cheng950aac02007-09-25 01:57:46 +000029#include "llvm/Target/TargetOptions.h"
Nicolas Geoffraycb162a02008-04-16 20:10:13 +000030#include "llvm/Target/TargetAsmInfo.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000031
Dan Gohmanf17a25c2007-07-18 16:29:46 +000032using namespace llvm;
33
Owen Anderson9a184ef2008-01-07 01:35:02 +000034namespace {
35 cl::opt<bool>
36 NoFusing("disable-spill-fusing",
37 cl::desc("Disable fusing of spill code into instructions"));
38 cl::opt<bool>
39 PrintFailedFusing("print-failed-fuse-candidates",
40 cl::desc("Print instructions that the allocator wants to"
41 " fuse, but the X86 backend currently can't"),
42 cl::Hidden);
Evan Chengc87df652008-04-01 23:26:12 +000043 cl::opt<bool>
44 ReMatPICStubLoad("remat-pic-stub-load",
45 cl::desc("Re-materialize load from stub in PIC mode"),
46 cl::init(false), cl::Hidden);
Owen Anderson9a184ef2008-01-07 01:35:02 +000047}
48
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Chris Lattnerd2fd6db2008-01-01 01:03:04 +000050 : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000051 TM(tm), RI(tm, *this) {
Owen Anderson9a184ef2008-01-07 01:35:02 +000052 SmallVector<unsigned,16> AmbEntries;
53 static const unsigned OpTbl2Addr[][2] = {
54 { X86::ADC32ri, X86::ADC32mi },
55 { X86::ADC32ri8, X86::ADC32mi8 },
56 { X86::ADC32rr, X86::ADC32mr },
57 { X86::ADC64ri32, X86::ADC64mi32 },
58 { X86::ADC64ri8, X86::ADC64mi8 },
59 { X86::ADC64rr, X86::ADC64mr },
60 { X86::ADD16ri, X86::ADD16mi },
61 { X86::ADD16ri8, X86::ADD16mi8 },
62 { X86::ADD16rr, X86::ADD16mr },
63 { X86::ADD32ri, X86::ADD32mi },
64 { X86::ADD32ri8, X86::ADD32mi8 },
65 { X86::ADD32rr, X86::ADD32mr },
66 { X86::ADD64ri32, X86::ADD64mi32 },
67 { X86::ADD64ri8, X86::ADD64mi8 },
68 { X86::ADD64rr, X86::ADD64mr },
69 { X86::ADD8ri, X86::ADD8mi },
70 { X86::ADD8rr, X86::ADD8mr },
71 { X86::AND16ri, X86::AND16mi },
72 { X86::AND16ri8, X86::AND16mi8 },
73 { X86::AND16rr, X86::AND16mr },
74 { X86::AND32ri, X86::AND32mi },
75 { X86::AND32ri8, X86::AND32mi8 },
76 { X86::AND32rr, X86::AND32mr },
77 { X86::AND64ri32, X86::AND64mi32 },
78 { X86::AND64ri8, X86::AND64mi8 },
79 { X86::AND64rr, X86::AND64mr },
80 { X86::AND8ri, X86::AND8mi },
81 { X86::AND8rr, X86::AND8mr },
82 { X86::DEC16r, X86::DEC16m },
83 { X86::DEC32r, X86::DEC32m },
84 { X86::DEC64_16r, X86::DEC64_16m },
85 { X86::DEC64_32r, X86::DEC64_32m },
86 { X86::DEC64r, X86::DEC64m },
87 { X86::DEC8r, X86::DEC8m },
88 { X86::INC16r, X86::INC16m },
89 { X86::INC32r, X86::INC32m },
90 { X86::INC64_16r, X86::INC64_16m },
91 { X86::INC64_32r, X86::INC64_32m },
92 { X86::INC64r, X86::INC64m },
93 { X86::INC8r, X86::INC8m },
94 { X86::NEG16r, X86::NEG16m },
95 { X86::NEG32r, X86::NEG32m },
96 { X86::NEG64r, X86::NEG64m },
97 { X86::NEG8r, X86::NEG8m },
98 { X86::NOT16r, X86::NOT16m },
99 { X86::NOT32r, X86::NOT32m },
100 { X86::NOT64r, X86::NOT64m },
101 { X86::NOT8r, X86::NOT8m },
102 { X86::OR16ri, X86::OR16mi },
103 { X86::OR16ri8, X86::OR16mi8 },
104 { X86::OR16rr, X86::OR16mr },
105 { X86::OR32ri, X86::OR32mi },
106 { X86::OR32ri8, X86::OR32mi8 },
107 { X86::OR32rr, X86::OR32mr },
108 { X86::OR64ri32, X86::OR64mi32 },
109 { X86::OR64ri8, X86::OR64mi8 },
110 { X86::OR64rr, X86::OR64mr },
111 { X86::OR8ri, X86::OR8mi },
112 { X86::OR8rr, X86::OR8mr },
113 { X86::ROL16r1, X86::ROL16m1 },
114 { X86::ROL16rCL, X86::ROL16mCL },
115 { X86::ROL16ri, X86::ROL16mi },
116 { X86::ROL32r1, X86::ROL32m1 },
117 { X86::ROL32rCL, X86::ROL32mCL },
118 { X86::ROL32ri, X86::ROL32mi },
119 { X86::ROL64r1, X86::ROL64m1 },
120 { X86::ROL64rCL, X86::ROL64mCL },
121 { X86::ROL64ri, X86::ROL64mi },
122 { X86::ROL8r1, X86::ROL8m1 },
123 { X86::ROL8rCL, X86::ROL8mCL },
124 { X86::ROL8ri, X86::ROL8mi },
125 { X86::ROR16r1, X86::ROR16m1 },
126 { X86::ROR16rCL, X86::ROR16mCL },
127 { X86::ROR16ri, X86::ROR16mi },
128 { X86::ROR32r1, X86::ROR32m1 },
129 { X86::ROR32rCL, X86::ROR32mCL },
130 { X86::ROR32ri, X86::ROR32mi },
131 { X86::ROR64r1, X86::ROR64m1 },
132 { X86::ROR64rCL, X86::ROR64mCL },
133 { X86::ROR64ri, X86::ROR64mi },
134 { X86::ROR8r1, X86::ROR8m1 },
135 { X86::ROR8rCL, X86::ROR8mCL },
136 { X86::ROR8ri, X86::ROR8mi },
137 { X86::SAR16r1, X86::SAR16m1 },
138 { X86::SAR16rCL, X86::SAR16mCL },
139 { X86::SAR16ri, X86::SAR16mi },
140 { X86::SAR32r1, X86::SAR32m1 },
141 { X86::SAR32rCL, X86::SAR32mCL },
142 { X86::SAR32ri, X86::SAR32mi },
143 { X86::SAR64r1, X86::SAR64m1 },
144 { X86::SAR64rCL, X86::SAR64mCL },
145 { X86::SAR64ri, X86::SAR64mi },
146 { X86::SAR8r1, X86::SAR8m1 },
147 { X86::SAR8rCL, X86::SAR8mCL },
148 { X86::SAR8ri, X86::SAR8mi },
149 { X86::SBB32ri, X86::SBB32mi },
150 { X86::SBB32ri8, X86::SBB32mi8 },
151 { X86::SBB32rr, X86::SBB32mr },
152 { X86::SBB64ri32, X86::SBB64mi32 },
153 { X86::SBB64ri8, X86::SBB64mi8 },
154 { X86::SBB64rr, X86::SBB64mr },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000155 { X86::SHL16rCL, X86::SHL16mCL },
156 { X86::SHL16ri, X86::SHL16mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000157 { X86::SHL32rCL, X86::SHL32mCL },
158 { X86::SHL32ri, X86::SHL32mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000159 { X86::SHL64rCL, X86::SHL64mCL },
160 { X86::SHL64ri, X86::SHL64mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000161 { X86::SHL8rCL, X86::SHL8mCL },
162 { X86::SHL8ri, X86::SHL8mi },
163 { X86::SHLD16rrCL, X86::SHLD16mrCL },
164 { X86::SHLD16rri8, X86::SHLD16mri8 },
165 { X86::SHLD32rrCL, X86::SHLD32mrCL },
166 { X86::SHLD32rri8, X86::SHLD32mri8 },
167 { X86::SHLD64rrCL, X86::SHLD64mrCL },
168 { X86::SHLD64rri8, X86::SHLD64mri8 },
169 { X86::SHR16r1, X86::SHR16m1 },
170 { X86::SHR16rCL, X86::SHR16mCL },
171 { X86::SHR16ri, X86::SHR16mi },
172 { X86::SHR32r1, X86::SHR32m1 },
173 { X86::SHR32rCL, X86::SHR32mCL },
174 { X86::SHR32ri, X86::SHR32mi },
175 { X86::SHR64r1, X86::SHR64m1 },
176 { X86::SHR64rCL, X86::SHR64mCL },
177 { X86::SHR64ri, X86::SHR64mi },
178 { X86::SHR8r1, X86::SHR8m1 },
179 { X86::SHR8rCL, X86::SHR8mCL },
180 { X86::SHR8ri, X86::SHR8mi },
181 { X86::SHRD16rrCL, X86::SHRD16mrCL },
182 { X86::SHRD16rri8, X86::SHRD16mri8 },
183 { X86::SHRD32rrCL, X86::SHRD32mrCL },
184 { X86::SHRD32rri8, X86::SHRD32mri8 },
185 { X86::SHRD64rrCL, X86::SHRD64mrCL },
186 { X86::SHRD64rri8, X86::SHRD64mri8 },
187 { X86::SUB16ri, X86::SUB16mi },
188 { X86::SUB16ri8, X86::SUB16mi8 },
189 { X86::SUB16rr, X86::SUB16mr },
190 { X86::SUB32ri, X86::SUB32mi },
191 { X86::SUB32ri8, X86::SUB32mi8 },
192 { X86::SUB32rr, X86::SUB32mr },
193 { X86::SUB64ri32, X86::SUB64mi32 },
194 { X86::SUB64ri8, X86::SUB64mi8 },
195 { X86::SUB64rr, X86::SUB64mr },
196 { X86::SUB8ri, X86::SUB8mi },
197 { X86::SUB8rr, X86::SUB8mr },
198 { X86::XOR16ri, X86::XOR16mi },
199 { X86::XOR16ri8, X86::XOR16mi8 },
200 { X86::XOR16rr, X86::XOR16mr },
201 { X86::XOR32ri, X86::XOR32mi },
202 { X86::XOR32ri8, X86::XOR32mi8 },
203 { X86::XOR32rr, X86::XOR32mr },
204 { X86::XOR64ri32, X86::XOR64mi32 },
205 { X86::XOR64ri8, X86::XOR64mi8 },
206 { X86::XOR64rr, X86::XOR64mr },
207 { X86::XOR8ri, X86::XOR8mi },
208 { X86::XOR8rr, X86::XOR8mr }
209 };
210
211 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
212 unsigned RegOp = OpTbl2Addr[i][0];
213 unsigned MemOp = OpTbl2Addr[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000214 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
215 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000216 assert(false && "Duplicated entries?");
217 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
218 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000219 std::make_pair(RegOp,
220 AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000221 AmbEntries.push_back(MemOp);
222 }
223
224 // If the third value is 1, then it's folding either a load or a store.
225 static const unsigned OpTbl0[][3] = {
Dan Gohman27a4bc02009-01-15 17:57:09 +0000226 { X86::BT16ri8, X86::BT16mi8, 1 },
227 { X86::BT32ri8, X86::BT32mi8, 1 },
228 { X86::BT64ri8, X86::BT64mi8, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000229 { X86::CALL32r, X86::CALL32m, 1 },
230 { X86::CALL64r, X86::CALL64m, 1 },
231 { X86::CMP16ri, X86::CMP16mi, 1 },
232 { X86::CMP16ri8, X86::CMP16mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000233 { X86::CMP16rr, X86::CMP16mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000234 { X86::CMP32ri, X86::CMP32mi, 1 },
235 { X86::CMP32ri8, X86::CMP32mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000236 { X86::CMP32rr, X86::CMP32mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000237 { X86::CMP64ri32, X86::CMP64mi32, 1 },
238 { X86::CMP64ri8, X86::CMP64mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000239 { X86::CMP64rr, X86::CMP64mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000240 { X86::CMP8ri, X86::CMP8mi, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000241 { X86::CMP8rr, X86::CMP8mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000242 { X86::DIV16r, X86::DIV16m, 1 },
243 { X86::DIV32r, X86::DIV32m, 1 },
244 { X86::DIV64r, X86::DIV64m, 1 },
245 { X86::DIV8r, X86::DIV8m, 1 },
Dan Gohmana41862a2008-08-08 18:30:21 +0000246 { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000247 { X86::FsMOVAPDrr, X86::MOVSDmr, 0 },
248 { X86::FsMOVAPSrr, X86::MOVSSmr, 0 },
249 { X86::IDIV16r, X86::IDIV16m, 1 },
250 { X86::IDIV32r, X86::IDIV32m, 1 },
251 { X86::IDIV64r, X86::IDIV64m, 1 },
252 { X86::IDIV8r, X86::IDIV8m, 1 },
253 { X86::IMUL16r, X86::IMUL16m, 1 },
254 { X86::IMUL32r, X86::IMUL32m, 1 },
255 { X86::IMUL64r, X86::IMUL64m, 1 },
256 { X86::IMUL8r, X86::IMUL8m, 1 },
257 { X86::JMP32r, X86::JMP32m, 1 },
258 { X86::JMP64r, X86::JMP64m, 1 },
259 { X86::MOV16ri, X86::MOV16mi, 0 },
260 { X86::MOV16rr, X86::MOV16mr, 0 },
261 { X86::MOV16to16_, X86::MOV16_mr, 0 },
262 { X86::MOV32ri, X86::MOV32mi, 0 },
263 { X86::MOV32rr, X86::MOV32mr, 0 },
264 { X86::MOV32to32_, X86::MOV32_mr, 0 },
265 { X86::MOV64ri32, X86::MOV64mi32, 0 },
266 { X86::MOV64rr, X86::MOV64mr, 0 },
267 { X86::MOV8ri, X86::MOV8mi, 0 },
268 { X86::MOV8rr, X86::MOV8mr, 0 },
269 { X86::MOVAPDrr, X86::MOVAPDmr, 0 },
270 { X86::MOVAPSrr, X86::MOVAPSmr, 0 },
Dan Gohmana645d1a2009-01-09 02:40:34 +0000271 { X86::MOVDQArr, X86::MOVDQAmr, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000272 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
273 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
274 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0 },
275 { X86::MOVSDrr, X86::MOVSDmr, 0 },
276 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
277 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0 },
278 { X86::MOVSSrr, X86::MOVSSmr, 0 },
279 { X86::MOVUPDrr, X86::MOVUPDmr, 0 },
280 { X86::MOVUPSrr, X86::MOVUPSmr, 0 },
281 { X86::MUL16r, X86::MUL16m, 1 },
282 { X86::MUL32r, X86::MUL32m, 1 },
283 { X86::MUL64r, X86::MUL64m, 1 },
284 { X86::MUL8r, X86::MUL8m, 1 },
285 { X86::SETAEr, X86::SETAEm, 0 },
286 { X86::SETAr, X86::SETAm, 0 },
287 { X86::SETBEr, X86::SETBEm, 0 },
288 { X86::SETBr, X86::SETBm, 0 },
289 { X86::SETEr, X86::SETEm, 0 },
290 { X86::SETGEr, X86::SETGEm, 0 },
291 { X86::SETGr, X86::SETGm, 0 },
292 { X86::SETLEr, X86::SETLEm, 0 },
293 { X86::SETLr, X86::SETLm, 0 },
294 { X86::SETNEr, X86::SETNEm, 0 },
Bill Wendling0c52d0a2008-12-02 00:07:05 +0000295 { X86::SETNOr, X86::SETNOm, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000296 { X86::SETNPr, X86::SETNPm, 0 },
297 { X86::SETNSr, X86::SETNSm, 0 },
Bill Wendling0c52d0a2008-12-02 00:07:05 +0000298 { X86::SETOr, X86::SETOm, 0 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000299 { X86::SETPr, X86::SETPm, 0 },
300 { X86::SETSr, X86::SETSm, 0 },
301 { X86::TAILJMPr, X86::TAILJMPm, 1 },
302 { X86::TEST16ri, X86::TEST16mi, 1 },
303 { X86::TEST32ri, X86::TEST32mi, 1 },
304 { X86::TEST64ri32, X86::TEST64mi32, 1 },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000305 { X86::TEST8ri, X86::TEST8mi, 1 }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000306 };
307
308 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
309 unsigned RegOp = OpTbl0[i][0];
310 unsigned MemOp = OpTbl0[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000311 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
312 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000313 assert(false && "Duplicated entries?");
314 unsigned FoldedLoad = OpTbl0[i][2];
315 // Index 0, folded load or store.
316 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
317 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
318 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000319 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000320 AmbEntries.push_back(MemOp);
321 }
322
323 static const unsigned OpTbl1[][2] = {
324 { X86::CMP16rr, X86::CMP16rm },
325 { X86::CMP32rr, X86::CMP32rm },
326 { X86::CMP64rr, X86::CMP64rm },
327 { X86::CMP8rr, X86::CMP8rm },
328 { X86::CVTSD2SSrr, X86::CVTSD2SSrm },
329 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm },
330 { X86::CVTSI2SDrr, X86::CVTSI2SDrm },
331 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm },
332 { X86::CVTSI2SSrr, X86::CVTSI2SSrm },
333 { X86::CVTSS2SDrr, X86::CVTSS2SDrm },
334 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm },
335 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm },
336 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm },
337 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm },
338 { X86::FsMOVAPDrr, X86::MOVSDrm },
339 { X86::FsMOVAPSrr, X86::MOVSSrm },
340 { X86::IMUL16rri, X86::IMUL16rmi },
341 { X86::IMUL16rri8, X86::IMUL16rmi8 },
342 { X86::IMUL32rri, X86::IMUL32rmi },
343 { X86::IMUL32rri8, X86::IMUL32rmi8 },
344 { X86::IMUL64rri32, X86::IMUL64rmi32 },
345 { X86::IMUL64rri8, X86::IMUL64rmi8 },
346 { X86::Int_CMPSDrr, X86::Int_CMPSDrm },
347 { X86::Int_CMPSSrr, X86::Int_CMPSSrm },
348 { X86::Int_COMISDrr, X86::Int_COMISDrm },
349 { X86::Int_COMISSrr, X86::Int_COMISSrm },
350 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm },
351 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm },
352 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm },
353 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm },
354 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm },
355 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm },
356 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
357 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm },
358 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm },
359 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
360 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm },
361 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
362 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm },
363 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm },
364 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
365 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm },
366 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
367 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
368 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
369 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
370 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
371 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
372 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm },
373 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm },
374 { X86::MOV16rr, X86::MOV16rm },
375 { X86::MOV16to16_, X86::MOV16_rm },
376 { X86::MOV32rr, X86::MOV32rm },
377 { X86::MOV32to32_, X86::MOV32_rm },
378 { X86::MOV64rr, X86::MOV64rm },
379 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm },
380 { X86::MOV64toSDrr, X86::MOV64toSDrm },
381 { X86::MOV8rr, X86::MOV8rm },
382 { X86::MOVAPDrr, X86::MOVAPDrm },
383 { X86::MOVAPSrr, X86::MOVAPSrm },
384 { X86::MOVDDUPrr, X86::MOVDDUPrm },
385 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm },
386 { X86::MOVDI2SSrr, X86::MOVDI2SSrm },
Dan Gohmana645d1a2009-01-09 02:40:34 +0000387 { X86::MOVDQArr, X86::MOVDQArm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000388 { X86::MOVSD2PDrr, X86::MOVSD2PDrm },
389 { X86::MOVSDrr, X86::MOVSDrm },
390 { X86::MOVSHDUPrr, X86::MOVSHDUPrm },
391 { X86::MOVSLDUPrr, X86::MOVSLDUPrm },
392 { X86::MOVSS2PSrr, X86::MOVSS2PSrm },
393 { X86::MOVSSrr, X86::MOVSSrm },
394 { X86::MOVSX16rr8, X86::MOVSX16rm8 },
395 { X86::MOVSX32rr16, X86::MOVSX32rm16 },
396 { X86::MOVSX32rr8, X86::MOVSX32rm8 },
397 { X86::MOVSX64rr16, X86::MOVSX64rm16 },
398 { X86::MOVSX64rr32, X86::MOVSX64rm32 },
399 { X86::MOVSX64rr8, X86::MOVSX64rm8 },
400 { X86::MOVUPDrr, X86::MOVUPDrm },
401 { X86::MOVUPSrr, X86::MOVUPSrm },
402 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm },
403 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm },
404 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
405 { X86::MOVZX16rr8, X86::MOVZX16rm8 },
406 { X86::MOVZX32rr16, X86::MOVZX32rm16 },
407 { X86::MOVZX32rr8, X86::MOVZX32rm8 },
408 { X86::MOVZX64rr16, X86::MOVZX64rm16 },
Dan Gohman47a419d2008-08-07 02:54:50 +0000409 { X86::MOVZX64rr32, X86::MOVZX64rm32 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000410 { X86::MOVZX64rr8, X86::MOVZX64rm8 },
411 { X86::PSHUFDri, X86::PSHUFDmi },
412 { X86::PSHUFHWri, X86::PSHUFHWmi },
413 { X86::PSHUFLWri, X86::PSHUFLWmi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000414 { X86::RCPPSr, X86::RCPPSm },
415 { X86::RCPPSr_Int, X86::RCPPSm_Int },
416 { X86::RSQRTPSr, X86::RSQRTPSm },
417 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int },
418 { X86::RSQRTSSr, X86::RSQRTSSm },
419 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int },
420 { X86::SQRTPDr, X86::SQRTPDm },
421 { X86::SQRTPDr_Int, X86::SQRTPDm_Int },
422 { X86::SQRTPSr, X86::SQRTPSm },
423 { X86::SQRTPSr_Int, X86::SQRTPSm_Int },
424 { X86::SQRTSDr, X86::SQRTSDm },
425 { X86::SQRTSDr_Int, X86::SQRTSDm_Int },
426 { X86::SQRTSSr, X86::SQRTSSm },
427 { X86::SQRTSSr_Int, X86::SQRTSSm_Int },
428 { X86::TEST16rr, X86::TEST16rm },
429 { X86::TEST32rr, X86::TEST32rm },
430 { X86::TEST64rr, X86::TEST64rm },
431 { X86::TEST8rr, X86::TEST8rm },
432 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
433 { X86::UCOMISDrr, X86::UCOMISDrm },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000434 { X86::UCOMISSrr, X86::UCOMISSrm }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000435 };
436
437 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
438 unsigned RegOp = OpTbl1[i][0];
439 unsigned MemOp = OpTbl1[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000440 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
441 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000442 assert(false && "Duplicated entries?");
443 unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
444 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
445 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000446 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000447 AmbEntries.push_back(MemOp);
448 }
449
450 static const unsigned OpTbl2[][2] = {
451 { X86::ADC32rr, X86::ADC32rm },
452 { X86::ADC64rr, X86::ADC64rm },
453 { X86::ADD16rr, X86::ADD16rm },
454 { X86::ADD32rr, X86::ADD32rm },
455 { X86::ADD64rr, X86::ADD64rm },
456 { X86::ADD8rr, X86::ADD8rm },
457 { X86::ADDPDrr, X86::ADDPDrm },
458 { X86::ADDPSrr, X86::ADDPSrm },
459 { X86::ADDSDrr, X86::ADDSDrm },
460 { X86::ADDSSrr, X86::ADDSSrm },
461 { X86::ADDSUBPDrr, X86::ADDSUBPDrm },
462 { X86::ADDSUBPSrr, X86::ADDSUBPSrm },
463 { X86::AND16rr, X86::AND16rm },
464 { X86::AND32rr, X86::AND32rm },
465 { X86::AND64rr, X86::AND64rm },
466 { X86::AND8rr, X86::AND8rm },
467 { X86::ANDNPDrr, X86::ANDNPDrm },
468 { X86::ANDNPSrr, X86::ANDNPSrm },
469 { X86::ANDPDrr, X86::ANDPDrm },
470 { X86::ANDPSrr, X86::ANDPSrm },
471 { X86::CMOVA16rr, X86::CMOVA16rm },
472 { X86::CMOVA32rr, X86::CMOVA32rm },
473 { X86::CMOVA64rr, X86::CMOVA64rm },
474 { X86::CMOVAE16rr, X86::CMOVAE16rm },
475 { X86::CMOVAE32rr, X86::CMOVAE32rm },
476 { X86::CMOVAE64rr, X86::CMOVAE64rm },
477 { X86::CMOVB16rr, X86::CMOVB16rm },
478 { X86::CMOVB32rr, X86::CMOVB32rm },
479 { X86::CMOVB64rr, X86::CMOVB64rm },
480 { X86::CMOVBE16rr, X86::CMOVBE16rm },
481 { X86::CMOVBE32rr, X86::CMOVBE32rm },
482 { X86::CMOVBE64rr, X86::CMOVBE64rm },
483 { X86::CMOVE16rr, X86::CMOVE16rm },
484 { X86::CMOVE32rr, X86::CMOVE32rm },
485 { X86::CMOVE64rr, X86::CMOVE64rm },
486 { X86::CMOVG16rr, X86::CMOVG16rm },
487 { X86::CMOVG32rr, X86::CMOVG32rm },
488 { X86::CMOVG64rr, X86::CMOVG64rm },
489 { X86::CMOVGE16rr, X86::CMOVGE16rm },
490 { X86::CMOVGE32rr, X86::CMOVGE32rm },
491 { X86::CMOVGE64rr, X86::CMOVGE64rm },
492 { X86::CMOVL16rr, X86::CMOVL16rm },
493 { X86::CMOVL32rr, X86::CMOVL32rm },
494 { X86::CMOVL64rr, X86::CMOVL64rm },
495 { X86::CMOVLE16rr, X86::CMOVLE16rm },
496 { X86::CMOVLE32rr, X86::CMOVLE32rm },
497 { X86::CMOVLE64rr, X86::CMOVLE64rm },
498 { X86::CMOVNE16rr, X86::CMOVNE16rm },
499 { X86::CMOVNE32rr, X86::CMOVNE32rm },
500 { X86::CMOVNE64rr, X86::CMOVNE64rm },
Dan Gohmanac441ab2009-01-07 00:44:53 +0000501 { X86::CMOVNO16rr, X86::CMOVNO16rm },
502 { X86::CMOVNO32rr, X86::CMOVNO32rm },
503 { X86::CMOVNO64rr, X86::CMOVNO64rm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000504 { X86::CMOVNP16rr, X86::CMOVNP16rm },
505 { X86::CMOVNP32rr, X86::CMOVNP32rm },
506 { X86::CMOVNP64rr, X86::CMOVNP64rm },
507 { X86::CMOVNS16rr, X86::CMOVNS16rm },
508 { X86::CMOVNS32rr, X86::CMOVNS32rm },
509 { X86::CMOVNS64rr, X86::CMOVNS64rm },
Dan Gohman12fd4d72009-01-07 00:35:10 +0000510 { X86::CMOVO16rr, X86::CMOVO16rm },
511 { X86::CMOVO32rr, X86::CMOVO32rm },
512 { X86::CMOVO64rr, X86::CMOVO64rm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000513 { X86::CMOVP16rr, X86::CMOVP16rm },
514 { X86::CMOVP32rr, X86::CMOVP32rm },
515 { X86::CMOVP64rr, X86::CMOVP64rm },
516 { X86::CMOVS16rr, X86::CMOVS16rm },
517 { X86::CMOVS32rr, X86::CMOVS32rm },
518 { X86::CMOVS64rr, X86::CMOVS64rm },
519 { X86::CMPPDrri, X86::CMPPDrmi },
520 { X86::CMPPSrri, X86::CMPPSrmi },
521 { X86::CMPSDrr, X86::CMPSDrm },
522 { X86::CMPSSrr, X86::CMPSSrm },
523 { X86::DIVPDrr, X86::DIVPDrm },
524 { X86::DIVPSrr, X86::DIVPSrm },
525 { X86::DIVSDrr, X86::DIVSDrm },
526 { X86::DIVSSrr, X86::DIVSSrm },
Evan Chengc392b122008-05-02 17:01:01 +0000527 { X86::FsANDNPDrr, X86::FsANDNPDrm },
528 { X86::FsANDNPSrr, X86::FsANDNPSrm },
529 { X86::FsANDPDrr, X86::FsANDPDrm },
530 { X86::FsANDPSrr, X86::FsANDPSrm },
531 { X86::FsORPDrr, X86::FsORPDrm },
532 { X86::FsORPSrr, X86::FsORPSrm },
533 { X86::FsXORPDrr, X86::FsXORPDrm },
534 { X86::FsXORPSrr, X86::FsXORPSrm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000535 { X86::HADDPDrr, X86::HADDPDrm },
536 { X86::HADDPSrr, X86::HADDPSrm },
537 { X86::HSUBPDrr, X86::HSUBPDrm },
538 { X86::HSUBPSrr, X86::HSUBPSrm },
539 { X86::IMUL16rr, X86::IMUL16rm },
540 { X86::IMUL32rr, X86::IMUL32rm },
541 { X86::IMUL64rr, X86::IMUL64rm },
542 { X86::MAXPDrr, X86::MAXPDrm },
543 { X86::MAXPDrr_Int, X86::MAXPDrm_Int },
544 { X86::MAXPSrr, X86::MAXPSrm },
545 { X86::MAXPSrr_Int, X86::MAXPSrm_Int },
546 { X86::MAXSDrr, X86::MAXSDrm },
547 { X86::MAXSDrr_Int, X86::MAXSDrm_Int },
548 { X86::MAXSSrr, X86::MAXSSrm },
549 { X86::MAXSSrr_Int, X86::MAXSSrm_Int },
550 { X86::MINPDrr, X86::MINPDrm },
551 { X86::MINPDrr_Int, X86::MINPDrm_Int },
552 { X86::MINPSrr, X86::MINPSrm },
553 { X86::MINPSrr_Int, X86::MINPSrm_Int },
554 { X86::MINSDrr, X86::MINSDrm },
555 { X86::MINSDrr_Int, X86::MINSDrm_Int },
556 { X86::MINSSrr, X86::MINSSrm },
557 { X86::MINSSrr_Int, X86::MINSSrm_Int },
558 { X86::MULPDrr, X86::MULPDrm },
559 { X86::MULPSrr, X86::MULPSrm },
560 { X86::MULSDrr, X86::MULSDrm },
561 { X86::MULSSrr, X86::MULSSrm },
562 { X86::OR16rr, X86::OR16rm },
563 { X86::OR32rr, X86::OR32rm },
564 { X86::OR64rr, X86::OR64rm },
565 { X86::OR8rr, X86::OR8rm },
566 { X86::ORPDrr, X86::ORPDrm },
567 { X86::ORPSrr, X86::ORPSrm },
568 { X86::PACKSSDWrr, X86::PACKSSDWrm },
569 { X86::PACKSSWBrr, X86::PACKSSWBrm },
570 { X86::PACKUSWBrr, X86::PACKUSWBrm },
571 { X86::PADDBrr, X86::PADDBrm },
572 { X86::PADDDrr, X86::PADDDrm },
573 { X86::PADDQrr, X86::PADDQrm },
574 { X86::PADDSBrr, X86::PADDSBrm },
575 { X86::PADDSWrr, X86::PADDSWrm },
576 { X86::PADDWrr, X86::PADDWrm },
577 { X86::PANDNrr, X86::PANDNrm },
578 { X86::PANDrr, X86::PANDrm },
579 { X86::PAVGBrr, X86::PAVGBrm },
580 { X86::PAVGWrr, X86::PAVGWrm },
581 { X86::PCMPEQBrr, X86::PCMPEQBrm },
582 { X86::PCMPEQDrr, X86::PCMPEQDrm },
583 { X86::PCMPEQWrr, X86::PCMPEQWrm },
584 { X86::PCMPGTBrr, X86::PCMPGTBrm },
585 { X86::PCMPGTDrr, X86::PCMPGTDrm },
586 { X86::PCMPGTWrr, X86::PCMPGTWrm },
587 { X86::PINSRWrri, X86::PINSRWrmi },
588 { X86::PMADDWDrr, X86::PMADDWDrm },
589 { X86::PMAXSWrr, X86::PMAXSWrm },
590 { X86::PMAXUBrr, X86::PMAXUBrm },
591 { X86::PMINSWrr, X86::PMINSWrm },
592 { X86::PMINUBrr, X86::PMINUBrm },
Dan Gohmane3731f52008-05-23 17:49:40 +0000593 { X86::PMULDQrr, X86::PMULDQrm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000594 { X86::PMULHUWrr, X86::PMULHUWrm },
595 { X86::PMULHWrr, X86::PMULHWrm },
Dan Gohmane3731f52008-05-23 17:49:40 +0000596 { X86::PMULLDrr, X86::PMULLDrm },
597 { X86::PMULLDrr_int, X86::PMULLDrm_int },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000598 { X86::PMULLWrr, X86::PMULLWrm },
599 { X86::PMULUDQrr, X86::PMULUDQrm },
600 { X86::PORrr, X86::PORrm },
601 { X86::PSADBWrr, X86::PSADBWrm },
602 { X86::PSLLDrr, X86::PSLLDrm },
603 { X86::PSLLQrr, X86::PSLLQrm },
604 { X86::PSLLWrr, X86::PSLLWrm },
605 { X86::PSRADrr, X86::PSRADrm },
606 { X86::PSRAWrr, X86::PSRAWrm },
607 { X86::PSRLDrr, X86::PSRLDrm },
608 { X86::PSRLQrr, X86::PSRLQrm },
609 { X86::PSRLWrr, X86::PSRLWrm },
610 { X86::PSUBBrr, X86::PSUBBrm },
611 { X86::PSUBDrr, X86::PSUBDrm },
612 { X86::PSUBSBrr, X86::PSUBSBrm },
613 { X86::PSUBSWrr, X86::PSUBSWrm },
614 { X86::PSUBWrr, X86::PSUBWrm },
615 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm },
616 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm },
617 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm },
618 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm },
619 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm },
620 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm },
621 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm },
622 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm },
623 { X86::PXORrr, X86::PXORrm },
624 { X86::SBB32rr, X86::SBB32rm },
625 { X86::SBB64rr, X86::SBB64rm },
626 { X86::SHUFPDrri, X86::SHUFPDrmi },
627 { X86::SHUFPSrri, X86::SHUFPSrmi },
628 { X86::SUB16rr, X86::SUB16rm },
629 { X86::SUB32rr, X86::SUB32rm },
630 { X86::SUB64rr, X86::SUB64rm },
631 { X86::SUB8rr, X86::SUB8rm },
632 { X86::SUBPDrr, X86::SUBPDrm },
633 { X86::SUBPSrr, X86::SUBPSrm },
634 { X86::SUBSDrr, X86::SUBSDrm },
635 { X86::SUBSSrr, X86::SUBSSrm },
636 // FIXME: TEST*rr -> swapped operand of TEST*mr.
637 { X86::UNPCKHPDrr, X86::UNPCKHPDrm },
638 { X86::UNPCKHPSrr, X86::UNPCKHPSrm },
639 { X86::UNPCKLPDrr, X86::UNPCKLPDrm },
640 { X86::UNPCKLPSrr, X86::UNPCKLPSrm },
641 { X86::XOR16rr, X86::XOR16rm },
642 { X86::XOR32rr, X86::XOR32rm },
643 { X86::XOR64rr, X86::XOR64rm },
644 { X86::XOR8rr, X86::XOR8rm },
645 { X86::XORPDrr, X86::XORPDrm },
646 { X86::XORPSrr, X86::XORPSrm }
647 };
648
649 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
650 unsigned RegOp = OpTbl2[i][0];
651 unsigned MemOp = OpTbl2[i][1];
Dan Gohman55d19662008-07-07 17:46:23 +0000652 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
653 MemOp)).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000654 assert(false && "Duplicated entries?");
655 unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
656 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
Dan Gohman55d19662008-07-07 17:46:23 +0000657 std::make_pair(RegOp, AuxInfo))).second)
Owen Anderson9a184ef2008-01-07 01:35:02 +0000658 AmbEntries.push_back(MemOp);
659 }
660
661 // Remove ambiguous entries.
662 assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000663}
664
665bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
Evan Chengf97496a2009-01-20 19:12:24 +0000666 unsigned &SrcReg, unsigned &DstReg,
667 unsigned &SrcSubIdx, unsigned &DstSubIdx) const {
Chris Lattnerff195282008-03-11 19:28:17 +0000668 switch (MI.getOpcode()) {
669 default:
670 return false;
671 case X86::MOV8rr:
672 case X86::MOV16rr:
673 case X86::MOV32rr:
674 case X86::MOV64rr:
675 case X86::MOV16to16_:
676 case X86::MOV32to32_:
Chris Lattnerff195282008-03-11 19:28:17 +0000677 case X86::MOVSSrr:
678 case X86::MOVSDrr:
Chris Lattnerc81df282008-03-11 19:30:09 +0000679
680 // FP Stack register class copies
681 case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
682 case X86::MOV_Fp3264: case X86::MOV_Fp3280:
683 case X86::MOV_Fp6432: case X86::MOV_Fp8032:
684
Chris Lattnerff195282008-03-11 19:28:17 +0000685 case X86::FsMOVAPSrr:
686 case X86::FsMOVAPDrr:
687 case X86::MOVAPSrr:
688 case X86::MOVAPDrr:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000689 case X86::MOVDQArr:
Chris Lattnerff195282008-03-11 19:28:17 +0000690 case X86::MOVSS2PSrr:
691 case X86::MOVSD2PDrr:
692 case X86::MOVPS2SSrr:
693 case X86::MOVPD2SDrr:
694 case X86::MMX_MOVD64rr:
695 case X86::MMX_MOVQ64rr:
696 assert(MI.getNumOperands() >= 2 &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000697 MI.getOperand(0).isReg() &&
698 MI.getOperand(1).isReg() &&
Chris Lattnerff195282008-03-11 19:28:17 +0000699 "invalid register-register move instruction");
Evan Chengf97496a2009-01-20 19:12:24 +0000700 SrcReg = MI.getOperand(1).getReg();
701 DstReg = MI.getOperand(0).getReg();
702 SrcSubIdx = MI.getOperand(1).getSubReg();
703 DstSubIdx = MI.getOperand(0).getSubReg();
Chris Lattnerff195282008-03-11 19:28:17 +0000704 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000705 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000706}
707
Dan Gohman90feee22008-11-18 19:49:32 +0000708unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000709 int &FrameIndex) const {
710 switch (MI->getOpcode()) {
711 default: break;
712 case X86::MOV8rm:
713 case X86::MOV16rm:
714 case X86::MOV16_rm:
715 case X86::MOV32rm:
716 case X86::MOV32_rm:
717 case X86::MOV64rm:
718 case X86::LD_Fp64m:
719 case X86::MOVSSrm:
720 case X86::MOVSDrm:
721 case X86::MOVAPSrm:
722 case X86::MOVAPDrm:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000723 case X86::MOVDQArm:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000724 case X86::MMX_MOVD64rm:
725 case X86::MMX_MOVQ64rm:
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000726 if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
727 MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000728 MI->getOperand(2).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000729 MI->getOperand(3).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000730 MI->getOperand(4).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000731 FrameIndex = MI->getOperand(1).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000732 return MI->getOperand(0).getReg();
733 }
734 break;
735 }
736 return 0;
737}
738
Dan Gohman90feee22008-11-18 19:49:32 +0000739unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000740 int &FrameIndex) const {
741 switch (MI->getOpcode()) {
742 default: break;
743 case X86::MOV8mr:
744 case X86::MOV16mr:
745 case X86::MOV16_mr:
746 case X86::MOV32mr:
747 case X86::MOV32_mr:
748 case X86::MOV64mr:
749 case X86::ST_FpP64m:
750 case X86::MOVSSmr:
751 case X86::MOVSDmr:
752 case X86::MOVAPSmr:
753 case X86::MOVAPDmr:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000754 case X86::MOVDQAmr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000755 case X86::MMX_MOVD64mr:
756 case X86::MMX_MOVQ64mr:
757 case X86::MMX_MOVNTQmr:
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000758 if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
759 MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000760 MI->getOperand(1).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000761 MI->getOperand(2).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000762 MI->getOperand(3).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000763 FrameIndex = MI->getOperand(0).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000764 return MI->getOperand(4).getReg();
765 }
766 break;
767 }
768 return 0;
769}
770
771
Evan Chengb819a512008-03-27 01:45:11 +0000772/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
773/// X86::MOVPC32r.
Dan Gohman221a4372008-07-07 23:14:23 +0000774static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
Evan Chengb819a512008-03-27 01:45:11 +0000775 bool isPICBase = false;
776 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
777 E = MRI.def_end(); I != E; ++I) {
778 MachineInstr *DefMI = I.getOperand().getParent();
779 if (DefMI->getOpcode() != X86::MOVPC32r)
780 return false;
781 assert(!isPICBase && "More than one PIC base?");
782 isPICBase = true;
783 }
784 return isPICBase;
785}
Evan Chenge9caab52008-03-31 07:54:19 +0000786
787/// isGVStub - Return true if the GV requires an extra load to get the
788/// real address.
789static inline bool isGVStub(GlobalValue *GV, X86TargetMachine &TM) {
790 return TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(GV, TM, false);
791}
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000792
Bill Wendlingb1cc1302008-05-12 20:54:26 +0000793bool
794X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000795 switch (MI->getOpcode()) {
796 default: break;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000797 case X86::MOV8rm:
798 case X86::MOV16rm:
799 case X86::MOV16_rm:
800 case X86::MOV32rm:
801 case X86::MOV32_rm:
802 case X86::MOV64rm:
803 case X86::LD_Fp64m:
804 case X86::MOVSSrm:
805 case X86::MOVSDrm:
806 case X86::MOVAPSrm:
807 case X86::MOVAPDrm:
Dan Gohmana645d1a2009-01-09 02:40:34 +0000808 case X86::MOVDQArm:
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000809 case X86::MMX_MOVD64rm:
810 case X86::MMX_MOVQ64rm: {
811 // Loads from constant pools are trivially rematerializable.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000812 if (MI->getOperand(1).isReg() &&
813 MI->getOperand(2).isImm() &&
814 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
815 (MI->getOperand(4).isCPI() ||
816 (MI->getOperand(4).isGlobal() &&
Evan Chenge9caab52008-03-31 07:54:19 +0000817 isGVStub(MI->getOperand(4).getGlobal(), TM)))) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000818 unsigned BaseReg = MI->getOperand(1).getReg();
819 if (BaseReg == 0)
820 return true;
821 // Allow re-materialization of PIC load.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000822 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
Evan Chengc87df652008-04-01 23:26:12 +0000823 return false;
Dan Gohman221a4372008-07-07 23:14:23 +0000824 const MachineFunction &MF = *MI->getParent()->getParent();
825 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000826 bool isPICBase = false;
827 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
828 E = MRI.def_end(); I != E; ++I) {
829 MachineInstr *DefMI = I.getOperand().getParent();
830 if (DefMI->getOpcode() != X86::MOVPC32r)
831 return false;
832 assert(!isPICBase && "More than one PIC base?");
833 isPICBase = true;
834 }
835 return isPICBase;
836 }
837 return false;
Evan Cheng60490e62008-02-22 09:25:47 +0000838 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000839
840 case X86::LEA32r:
841 case X86::LEA64r: {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000842 if (MI->getOperand(2).isImm() &&
843 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
844 !MI->getOperand(4).isReg()) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000845 // lea fi#, lea GV, etc. are all rematerializable.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000846 if (!MI->getOperand(1).isReg())
Dan Gohmanbee19a42008-09-26 21:30:20 +0000847 return true;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000848 unsigned BaseReg = MI->getOperand(1).getReg();
849 if (BaseReg == 0)
850 return true;
851 // Allow re-materialization of lea PICBase + x.
Dan Gohman221a4372008-07-07 23:14:23 +0000852 const MachineFunction &MF = *MI->getParent()->getParent();
853 const MachineRegisterInfo &MRI = MF.getRegInfo();
Evan Chengb819a512008-03-27 01:45:11 +0000854 return regIsPICBase(BaseReg, MRI);
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000855 }
856 return false;
857 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000858 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000859
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000860 // All other instructions marked M_REMATERIALIZABLE are always trivially
861 // rematerializable.
862 return true;
863}
864
Evan Chengc564ded2008-06-24 07:10:51 +0000865/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
866/// would clobber the EFLAGS condition register. Note the result may be
867/// conservative. If it cannot definitely determine the safety after visiting
868/// two instructions it assumes it's not safe.
869static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
870 MachineBasicBlock::iterator I) {
Dan Gohman3588f9d2008-10-21 03:24:31 +0000871 // It's always safe to clobber EFLAGS at the end of a block.
872 if (I == MBB.end())
873 return true;
874
Evan Chengc564ded2008-06-24 07:10:51 +0000875 // For compile time consideration, if we are not able to determine the
876 // safety after visiting 2 instructions, we will assume it's not safe.
877 for (unsigned i = 0; i < 2; ++i) {
Evan Chengc564ded2008-06-24 07:10:51 +0000878 bool SeenDef = false;
879 for (unsigned j = 0, e = I->getNumOperands(); j != e; ++j) {
880 MachineOperand &MO = I->getOperand(j);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000881 if (!MO.isReg())
Evan Chengc564ded2008-06-24 07:10:51 +0000882 continue;
883 if (MO.getReg() == X86::EFLAGS) {
884 if (MO.isUse())
885 return false;
886 SeenDef = true;
887 }
888 }
889
890 if (SeenDef)
891 // This instruction defines EFLAGS, no need to look any further.
892 return true;
893 ++I;
Dan Gohman3588f9d2008-10-21 03:24:31 +0000894
895 // If we make it to the end of the block, it's safe to clobber EFLAGS.
896 if (I == MBB.end())
897 return true;
Evan Chengc564ded2008-06-24 07:10:51 +0000898 }
899
900 // Conservative answer.
901 return false;
902}
903
Evan Cheng7d73efc2008-03-31 20:40:39 +0000904void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
905 MachineBasicBlock::iterator I,
906 unsigned DestReg,
907 const MachineInstr *Orig) const {
Bill Wendling13ee2e42009-02-11 21:51:19 +0000908 DebugLoc DL = DebugLoc::getUnknownLoc();
909 if (I != MBB.end()) DL = I->getDebugLoc();
910
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000911 unsigned SubIdx = Orig->getOperand(0).isReg()
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000912 ? Orig->getOperand(0).getSubReg() : 0;
913 bool ChangeSubIdx = SubIdx != 0;
914 if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
915 DestReg = RI.getSubReg(DestReg, SubIdx);
916 SubIdx = 0;
917 }
918
Evan Cheng7d73efc2008-03-31 20:40:39 +0000919 // MOV32r0 etc. are implemented with xor which clobbers condition code.
920 // Re-materialize them as movri instructions to avoid side effects.
Evan Chengc564ded2008-06-24 07:10:51 +0000921 bool Emitted = false;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000922 switch (Orig->getOpcode()) {
Evan Chengc564ded2008-06-24 07:10:51 +0000923 default: break;
Evan Cheng7d73efc2008-03-31 20:40:39 +0000924 case X86::MOV8r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000925 case X86::MOV16r0:
Evan Cheng7d73efc2008-03-31 20:40:39 +0000926 case X86::MOV32r0:
Evan Chengc564ded2008-06-24 07:10:51 +0000927 case X86::MOV64r0: {
928 if (!isSafeToClobberEFLAGS(MBB, I)) {
929 unsigned Opc = 0;
930 switch (Orig->getOpcode()) {
931 default: break;
932 case X86::MOV8r0: Opc = X86::MOV8ri; break;
933 case X86::MOV16r0: Opc = X86::MOV16ri; break;
934 case X86::MOV32r0: Opc = X86::MOV32ri; break;
935 case X86::MOV64r0: Opc = X86::MOV64ri32; break;
936 }
Bill Wendling13ee2e42009-02-11 21:51:19 +0000937 BuildMI(MBB, I, DL, get(Opc), DestReg).addImm(0);
Evan Chengc564ded2008-06-24 07:10:51 +0000938 Emitted = true;
939 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000940 break;
Evan Chengc564ded2008-06-24 07:10:51 +0000941 }
942 }
943
944 if (!Emitted) {
Dan Gohman221a4372008-07-07 23:14:23 +0000945 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000946 MI->getOperand(0).setReg(DestReg);
947 MBB.insert(I, MI);
Evan Cheng7d73efc2008-03-31 20:40:39 +0000948 }
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000949
950 if (ChangeSubIdx) {
951 MachineInstr *NewMI = prior(I);
952 NewMI->getOperand(0).setSubReg(SubIdx);
953 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000954}
955
Chris Lattnerea3a1812008-01-10 23:08:24 +0000956/// isInvariantLoad - Return true if the specified instruction (which is marked
957/// mayLoad) is loading from a location whose value is invariant across the
958/// function. For example, loading a value from the constant pool or from
959/// from the argument area of a function if it does not change. This should
960/// only return true of *all* loads the instruction does are invariant (if it
961/// does multiple loads).
Dan Gohman90feee22008-11-18 19:49:32 +0000962bool X86InstrInfo::isInvariantLoad(const MachineInstr *MI) const {
Chris Lattner0875b572008-01-12 00:35:08 +0000963 // This code cares about loads from three cases: constant pool entries,
964 // invariant argument slots, and global stubs. In order to handle these cases
965 // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
Chris Lattner828fe302008-01-12 00:53:16 +0000966 // operand and base our analysis on it. This is safe because the address of
Chris Lattner0875b572008-01-12 00:35:08 +0000967 // none of these three cases is ever used as anything other than a load base
968 // and X86 doesn't have any instructions that load from multiple places.
969
970 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
971 const MachineOperand &MO = MI->getOperand(i);
Chris Lattnerea3a1812008-01-10 23:08:24 +0000972 // Loads from constant pools are trivially invariant.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000973 if (MO.isCPI())
Chris Lattner00e46fa2008-01-05 05:28:30 +0000974 return true;
Evan Chenge9caab52008-03-31 07:54:19 +0000975
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000976 if (MO.isGlobal())
Evan Chenge9caab52008-03-31 07:54:19 +0000977 return isGVStub(MO.getGlobal(), TM);
Chris Lattner0875b572008-01-12 00:35:08 +0000978
979 // If this is a load from an invariant stack slot, the load is a constant.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000980 if (MO.isFI()) {
Chris Lattner0875b572008-01-12 00:35:08 +0000981 const MachineFrameInfo &MFI =
982 *MI->getParent()->getParent()->getFrameInfo();
983 int Idx = MO.getIndex();
Chris Lattner41aed732008-01-10 04:16:31 +0000984 return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
985 }
Bill Wendling57e31d62007-12-17 23:07:56 +0000986 }
Chris Lattner0875b572008-01-12 00:35:08 +0000987
Chris Lattnerea3a1812008-01-10 23:08:24 +0000988 // All other instances of these instructions are presumed to have other
989 // issues.
Chris Lattnereb0f16f2008-01-05 05:26:26 +0000990 return false;
Bill Wendling57e31d62007-12-17 23:07:56 +0000991}
992
Evan Chengfa1a4952007-10-05 08:04:01 +0000993/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
994/// is not marked dead.
995static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Chengfa1a4952007-10-05 08:04:01 +0000996 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
997 MachineOperand &MO = MI->getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +0000998 if (MO.isReg() && MO.isDef() &&
Evan Chengfa1a4952007-10-05 08:04:01 +0000999 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
1000 return true;
1001 }
1002 }
1003 return false;
1004}
1005
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001006/// convertToThreeAddress - This method must be implemented by targets that
1007/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
1008/// may be able to convert a two-address instruction into a true
1009/// three-address instruction on demand. This allows the X86 target (for
1010/// example) to convert ADD and SHL instructions into LEA instructions if they
1011/// would require register copies due to two-addressness.
1012///
1013/// This method returns a null pointer if the transformation cannot be
1014/// performed, otherwise it returns the new instruction.
1015///
1016MachineInstr *
1017X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
1018 MachineBasicBlock::iterator &MBBI,
Owen Andersonc6959722008-07-02 23:41:07 +00001019 LiveVariables *LV) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001020 MachineInstr *MI = MBBI;
Dan Gohman221a4372008-07-07 23:14:23 +00001021 MachineFunction &MF = *MI->getParent()->getParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001022 // All instructions input are two-addr instructions. Get the known operands.
1023 unsigned Dest = MI->getOperand(0).getReg();
1024 unsigned Src = MI->getOperand(1).getReg();
Evan Chenge52c1912008-07-03 09:09:37 +00001025 bool isDead = MI->getOperand(0).isDead();
1026 bool isKill = MI->getOperand(1).isKill();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001027
1028 MachineInstr *NewMI = NULL;
1029 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
1030 // we have better subtarget support, enable the 16-bit LEA generation here.
1031 bool DisableLEA16 = true;
1032
Evan Cheng6b96ed32007-10-05 20:34:26 +00001033 unsigned MIOpc = MI->getOpcode();
1034 switch (MIOpc) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001035 case X86::SHUFPSrri: {
1036 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
1037 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
1038
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001039 unsigned B = MI->getOperand(1).getReg();
1040 unsigned C = MI->getOperand(2).getReg();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001041 if (B != C) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001042 unsigned A = MI->getOperand(0).getReg();
1043 unsigned M = MI->getOperand(3).getImm();
Bill Wendling13ee2e42009-02-11 21:51:19 +00001044 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
1045 .addReg(A, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001046 .addReg(B, false, false, isKill).addImm(M);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001047 break;
1048 }
1049 case X86::SHL64ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001050 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001051 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1052 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001053 unsigned ShAmt = MI->getOperand(2).getImm();
1054 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001055
Bill Wendling13ee2e42009-02-11 21:51:19 +00001056 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
1057 .addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001058 .addReg(0).addImm(1 << ShAmt).addReg(Src, false, false, isKill).addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001059 break;
1060 }
1061 case X86::SHL32ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001062 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001063 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1064 // the flags produced by a shift yet, so this is safe.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001065 unsigned ShAmt = MI->getOperand(2).getImm();
1066 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001067
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001068 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
1069 X86::LEA64_32r : X86::LEA32r;
Bill Wendling13ee2e42009-02-11 21:51:19 +00001070 NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
1071 .addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001072 .addReg(0).addImm(1 << ShAmt)
1073 .addReg(Src, false, false, isKill).addImm(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001074 break;
1075 }
1076 case X86::SHL16ri: {
Evan Cheng55687072007-09-14 21:48:26 +00001077 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng0b1e8712007-09-06 00:14:41 +00001078 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
1079 // the flags produced by a shift yet, so this is safe.
Evan Cheng0b1e8712007-09-06 00:14:41 +00001080 unsigned ShAmt = MI->getOperand(2).getImm();
1081 if (ShAmt == 0 || ShAmt >= 4) return 0;
Evan Chenge52c1912008-07-03 09:09:37 +00001082
Christopher Lamb380c6272007-08-10 21:18:25 +00001083 if (DisableLEA16) {
1084 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
Chris Lattner1b989192007-12-31 04:13:23 +00001085 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Evan Cheng0b1e8712007-09-06 00:14:41 +00001086 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
1087 ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner1b989192007-12-31 04:13:23 +00001088 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
1089 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Evan Chengbd97af02008-03-10 19:31:26 +00001090
Christopher Lamb8d226a22008-03-11 10:27:36 +00001091 // Build and insert into an implicit UNDEF value. This is OK because
1092 // well be shifting and then extracting the lower 16-bits.
Bill Wendling13ee2e42009-02-11 21:51:19 +00001093 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
1094 MachineInstr *InsMI =
1095 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::INSERT_SUBREG),leaInReg)
Evan Chenge52c1912008-07-03 09:09:37 +00001096 .addReg(leaInReg).addReg(Src, false, false, isKill)
1097 .addImm(X86::SUBREG_16BIT);
Christopher Lamb76d72da2008-03-16 03:12:01 +00001098
Bill Wendling13ee2e42009-02-11 21:51:19 +00001099 NewMI = BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(Opc), leaOutReg)
1100 .addReg(0).addImm(1 << ShAmt)
Evan Chenge52c1912008-07-03 09:09:37 +00001101 .addReg(leaInReg, false, false, true).addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001102
Bill Wendling13ee2e42009-02-11 21:51:19 +00001103 MachineInstr *ExtMI =
1104 BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::EXTRACT_SUBREG))
Evan Chenge52c1912008-07-03 09:09:37 +00001105 .addReg(Dest, true, false, false, isDead)
1106 .addReg(leaOutReg, false, false, true).addImm(X86::SUBREG_16BIT);
Bill Wendling13ee2e42009-02-11 21:51:19 +00001107
Owen Andersonc6959722008-07-02 23:41:07 +00001108 if (LV) {
Evan Chenge52c1912008-07-03 09:09:37 +00001109 // Update live variables
1110 LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
1111 LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
1112 if (isKill)
1113 LV->replaceKillInstruction(Src, MI, InsMI);
1114 if (isDead)
1115 LV->replaceKillInstruction(Dest, MI, ExtMI);
Owen Andersonc6959722008-07-02 23:41:07 +00001116 }
Evan Chenge52c1912008-07-03 09:09:37 +00001117 return ExtMI;
Christopher Lamb380c6272007-08-10 21:18:25 +00001118 } else {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001119 NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
1120 .addReg(Dest, true, false, false, isDead)
Evan Chenge52c1912008-07-03 09:09:37 +00001121 .addReg(0).addImm(1 << ShAmt)
1122 .addReg(Src, false, false, isKill).addImm(0);
Christopher Lamb380c6272007-08-10 21:18:25 +00001123 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001124 break;
1125 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001126 default: {
1127 // The following opcodes also sets the condition code register(s). Only
1128 // convert them to equivalent lea if the condition code register def's
1129 // are dead!
1130 if (hasLiveCondCodeDef(MI))
1131 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001132
Evan Chenga28a9562007-10-09 07:14:53 +00001133 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001134 switch (MIOpc) {
1135 default: return 0;
1136 case X86::INC64r:
Dan Gohman69782502009-01-06 23:34:46 +00001137 case X86::INC32r:
1138 case X86::INC64_32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001139 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001140 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1141 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Bill Wendling13ee2e42009-02-11 21:51:19 +00001142 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001143 .addReg(Dest, true, false, false, isDead),
1144 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001145 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001146 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001147 case X86::INC16r:
1148 case X86::INC64_16r:
1149 if (DisableLEA16) return 0;
1150 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Bill Wendling13ee2e42009-02-11 21:51:19 +00001151 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001152 .addReg(Dest, true, false, false, isDead),
1153 Src, isKill, 1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001154 break;
1155 case X86::DEC64r:
Dan Gohman69782502009-01-06 23:34:46 +00001156 case X86::DEC32r:
1157 case X86::DEC64_32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001158 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001159 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1160 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Bill Wendling13ee2e42009-02-11 21:51:19 +00001161 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001162 .addReg(Dest, true, false, false, isDead),
1163 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001164 break;
1165 }
1166 case X86::DEC16r:
1167 case X86::DEC64_16r:
1168 if (DisableLEA16) return 0;
1169 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Bill Wendling13ee2e42009-02-11 21:51:19 +00001170 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001171 .addReg(Dest, true, false, false, isDead),
1172 Src, isKill, -1);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001173 break;
1174 case X86::ADD64rr:
1175 case X86::ADD32rr: {
1176 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001177 unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1178 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Chenge52c1912008-07-03 09:09:37 +00001179 unsigned Src2 = MI->getOperand(2).getReg();
1180 bool isKill2 = MI->getOperand(2).isKill();
Bill Wendling13ee2e42009-02-11 21:51:19 +00001181 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001182 .addReg(Dest, true, false, false, isDead),
1183 Src, isKill, Src2, isKill2);
1184 if (LV && isKill2)
1185 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001186 break;
1187 }
Evan Chenge52c1912008-07-03 09:09:37 +00001188 case X86::ADD16rr: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001189 if (DisableLEA16) return 0;
1190 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenge52c1912008-07-03 09:09:37 +00001191 unsigned Src2 = MI->getOperand(2).getReg();
1192 bool isKill2 = MI->getOperand(2).isKill();
Bill Wendling13ee2e42009-02-11 21:51:19 +00001193 NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001194 .addReg(Dest, true, false, false, isDead),
1195 Src, isKill, Src2, isKill2);
1196 if (LV && isKill2)
1197 LV->replaceKillInstruction(Src2, MI, NewMI);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001198 break;
Evan Chenge52c1912008-07-03 09:09:37 +00001199 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001200 case X86::ADD64ri32:
1201 case X86::ADD64ri8:
1202 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001203 if (MI->getOperand(2).isImm())
Bill Wendling13ee2e42009-02-11 21:51:19 +00001204 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
Evan Chenge52c1912008-07-03 09:09:37 +00001205 .addReg(Dest, true, false, false, isDead),
1206 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001207 break;
1208 case X86::ADD32ri:
1209 case X86::ADD32ri8:
1210 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001211 if (MI->getOperand(2).isImm()) {
Evan Chenga28a9562007-10-09 07:14:53 +00001212 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
Bill Wendling13ee2e42009-02-11 21:51:19 +00001213 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001214 .addReg(Dest, true, false, false, isDead),
1215 Src, isKill, MI->getOperand(2).getImm());
Evan Chenga28a9562007-10-09 07:14:53 +00001216 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001217 break;
1218 case X86::ADD16ri:
1219 case X86::ADD16ri8:
1220 if (DisableLEA16) return 0;
1221 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001222 if (MI->getOperand(2).isImm())
Bill Wendling13ee2e42009-02-11 21:51:19 +00001223 NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
Evan Chenge52c1912008-07-03 09:09:37 +00001224 .addReg(Dest, true, false, false, isDead),
1225 Src, isKill, MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001226 break;
1227 case X86::SHL16ri:
1228 if (DisableLEA16) return 0;
1229 case X86::SHL32ri:
1230 case X86::SHL64ri: {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001231 assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImm() &&
Evan Cheng6b96ed32007-10-05 20:34:26 +00001232 "Unknown shl instruction!");
Chris Lattnera96056a2007-12-30 20:49:49 +00001233 unsigned ShAmt = MI->getOperand(2).getImm();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001234 if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1235 X86AddressMode AM;
1236 AM.Scale = 1 << ShAmt;
1237 AM.IndexReg = Src;
1238 unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
Evan Chenga28a9562007-10-09 07:14:53 +00001239 : (MIOpc == X86::SHL32ri
1240 ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
Bill Wendling13ee2e42009-02-11 21:51:19 +00001241 NewMI = addFullAddress(BuildMI(MF, MI->getDebugLoc(), get(Opc))
Evan Chenge52c1912008-07-03 09:09:37 +00001242 .addReg(Dest, true, false, false, isDead), AM);
1243 if (isKill)
1244 NewMI->getOperand(3).setIsKill(true);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001245 }
1246 break;
1247 }
1248 }
1249 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001250 }
1251
Evan Chengc3cb24d2008-02-07 08:29:53 +00001252 if (!NewMI) return 0;
1253
Evan Chenge52c1912008-07-03 09:09:37 +00001254 if (LV) { // Update live variables
1255 if (isKill)
1256 LV->replaceKillInstruction(Src, MI, NewMI);
1257 if (isDead)
1258 LV->replaceKillInstruction(Dest, MI, NewMI);
1259 }
1260
Evan Cheng6b96ed32007-10-05 20:34:26 +00001261 MFI->insert(MBBI, NewMI); // Insert the new inst
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001262 return NewMI;
1263}
1264
1265/// commuteInstruction - We have a few instructions that must be hacked on to
1266/// commute them.
1267///
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001268MachineInstr *
1269X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001270 switch (MI->getOpcode()) {
1271 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1272 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1273 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001274 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1275 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1276 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001277 unsigned Opc;
1278 unsigned Size;
1279 switch (MI->getOpcode()) {
1280 default: assert(0 && "Unreachable!");
1281 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1282 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1283 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1284 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001285 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1286 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001287 }
Chris Lattnera96056a2007-12-30 20:49:49 +00001288 unsigned Amt = MI->getOperand(3).getImm();
Dan Gohman921581d2008-10-17 01:23:35 +00001289 if (NewMI) {
1290 MachineFunction &MF = *MI->getParent()->getParent();
1291 MI = MF.CloneMachineInstr(MI);
1292 NewMI = false;
Evan Chengb554e532008-02-13 02:46:49 +00001293 }
Dan Gohman921581d2008-10-17 01:23:35 +00001294 MI->setDesc(get(Opc));
1295 MI->getOperand(3).setImm(Size-Amt);
1296 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001297 }
Evan Cheng926658c2007-10-05 23:13:21 +00001298 case X86::CMOVB16rr:
1299 case X86::CMOVB32rr:
1300 case X86::CMOVB64rr:
1301 case X86::CMOVAE16rr:
1302 case X86::CMOVAE32rr:
1303 case X86::CMOVAE64rr:
1304 case X86::CMOVE16rr:
1305 case X86::CMOVE32rr:
1306 case X86::CMOVE64rr:
1307 case X86::CMOVNE16rr:
1308 case X86::CMOVNE32rr:
1309 case X86::CMOVNE64rr:
1310 case X86::CMOVBE16rr:
1311 case X86::CMOVBE32rr:
1312 case X86::CMOVBE64rr:
1313 case X86::CMOVA16rr:
1314 case X86::CMOVA32rr:
1315 case X86::CMOVA64rr:
1316 case X86::CMOVL16rr:
1317 case X86::CMOVL32rr:
1318 case X86::CMOVL64rr:
1319 case X86::CMOVGE16rr:
1320 case X86::CMOVGE32rr:
1321 case X86::CMOVGE64rr:
1322 case X86::CMOVLE16rr:
1323 case X86::CMOVLE32rr:
1324 case X86::CMOVLE64rr:
1325 case X86::CMOVG16rr:
1326 case X86::CMOVG32rr:
1327 case X86::CMOVG64rr:
1328 case X86::CMOVS16rr:
1329 case X86::CMOVS32rr:
1330 case X86::CMOVS64rr:
1331 case X86::CMOVNS16rr:
1332 case X86::CMOVNS32rr:
1333 case X86::CMOVNS64rr:
1334 case X86::CMOVP16rr:
1335 case X86::CMOVP32rr:
1336 case X86::CMOVP64rr:
1337 case X86::CMOVNP16rr:
1338 case X86::CMOVNP32rr:
Dan Gohman12fd4d72009-01-07 00:35:10 +00001339 case X86::CMOVNP64rr:
1340 case X86::CMOVO16rr:
1341 case X86::CMOVO32rr:
1342 case X86::CMOVO64rr:
1343 case X86::CMOVNO16rr:
1344 case X86::CMOVNO32rr:
1345 case X86::CMOVNO64rr: {
Evan Cheng926658c2007-10-05 23:13:21 +00001346 unsigned Opc = 0;
1347 switch (MI->getOpcode()) {
1348 default: break;
1349 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1350 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1351 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1352 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1353 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1354 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1355 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1356 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1357 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1358 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1359 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1360 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1361 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1362 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1363 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1364 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1365 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1366 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1367 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1368 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1369 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1370 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1371 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1372 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1373 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1374 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1375 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1376 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1377 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1378 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1379 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1380 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
1381 case X86::CMOVS64rr: Opc = X86::CMOVNS32rr; break;
1382 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1383 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1384 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1385 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1386 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
1387 case X86::CMOVP64rr: Opc = X86::CMOVNP32rr; break;
1388 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1389 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1390 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
Dan Gohman12fd4d72009-01-07 00:35:10 +00001391 case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break;
1392 case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break;
1393 case X86::CMOVO64rr: Opc = X86::CMOVNO32rr; break;
1394 case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
1395 case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
1396 case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
Evan Cheng926658c2007-10-05 23:13:21 +00001397 }
Dan Gohman921581d2008-10-17 01:23:35 +00001398 if (NewMI) {
1399 MachineFunction &MF = *MI->getParent()->getParent();
1400 MI = MF.CloneMachineInstr(MI);
1401 NewMI = false;
1402 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00001403 MI->setDesc(get(Opc));
Evan Cheng926658c2007-10-05 23:13:21 +00001404 // Fallthrough intended.
1405 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001406 default:
Evan Cheng5de1aaf2008-06-16 07:33:11 +00001407 return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001408 }
1409}
1410
1411static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1412 switch (BrOpc) {
1413 default: return X86::COND_INVALID;
1414 case X86::JE: return X86::COND_E;
1415 case X86::JNE: return X86::COND_NE;
1416 case X86::JL: return X86::COND_L;
1417 case X86::JLE: return X86::COND_LE;
1418 case X86::JG: return X86::COND_G;
1419 case X86::JGE: return X86::COND_GE;
1420 case X86::JB: return X86::COND_B;
1421 case X86::JBE: return X86::COND_BE;
1422 case X86::JA: return X86::COND_A;
1423 case X86::JAE: return X86::COND_AE;
1424 case X86::JS: return X86::COND_S;
1425 case X86::JNS: return X86::COND_NS;
1426 case X86::JP: return X86::COND_P;
1427 case X86::JNP: return X86::COND_NP;
1428 case X86::JO: return X86::COND_O;
1429 case X86::JNO: return X86::COND_NO;
1430 }
1431}
1432
1433unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1434 switch (CC) {
1435 default: assert(0 && "Illegal condition code!");
Evan Cheng621216e2007-09-29 00:00:36 +00001436 case X86::COND_E: return X86::JE;
1437 case X86::COND_NE: return X86::JNE;
1438 case X86::COND_L: return X86::JL;
1439 case X86::COND_LE: return X86::JLE;
1440 case X86::COND_G: return X86::JG;
1441 case X86::COND_GE: return X86::JGE;
1442 case X86::COND_B: return X86::JB;
1443 case X86::COND_BE: return X86::JBE;
1444 case X86::COND_A: return X86::JA;
1445 case X86::COND_AE: return X86::JAE;
1446 case X86::COND_S: return X86::JS;
1447 case X86::COND_NS: return X86::JNS;
1448 case X86::COND_P: return X86::JP;
1449 case X86::COND_NP: return X86::JNP;
1450 case X86::COND_O: return X86::JO;
1451 case X86::COND_NO: return X86::JNO;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001452 }
1453}
1454
1455/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1456/// e.g. turning COND_E to COND_NE.
1457X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1458 switch (CC) {
1459 default: assert(0 && "Illegal condition code!");
1460 case X86::COND_E: return X86::COND_NE;
1461 case X86::COND_NE: return X86::COND_E;
1462 case X86::COND_L: return X86::COND_GE;
1463 case X86::COND_LE: return X86::COND_G;
1464 case X86::COND_G: return X86::COND_LE;
1465 case X86::COND_GE: return X86::COND_L;
1466 case X86::COND_B: return X86::COND_AE;
1467 case X86::COND_BE: return X86::COND_A;
1468 case X86::COND_A: return X86::COND_BE;
1469 case X86::COND_AE: return X86::COND_B;
1470 case X86::COND_S: return X86::COND_NS;
1471 case X86::COND_NS: return X86::COND_S;
1472 case X86::COND_P: return X86::COND_NP;
1473 case X86::COND_NP: return X86::COND_P;
1474 case X86::COND_O: return X86::COND_NO;
1475 case X86::COND_NO: return X86::COND_O;
1476 }
1477}
1478
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001479bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Chris Lattner5b930372008-01-07 07:27:27 +00001480 const TargetInstrDesc &TID = MI->getDesc();
1481 if (!TID.isTerminator()) return false;
Chris Lattner62327602008-01-07 01:56:04 +00001482
1483 // Conditional branch is a special case.
Chris Lattner5b930372008-01-07 07:27:27 +00001484 if (TID.isBranch() && !TID.isBarrier())
Chris Lattner62327602008-01-07 01:56:04 +00001485 return true;
Chris Lattner5b930372008-01-07 07:27:27 +00001486 if (!TID.isPredicable())
Chris Lattner62327602008-01-07 01:56:04 +00001487 return true;
1488 return !isPredicated(MI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001489}
1490
Evan Cheng12515792007-07-26 17:32:14 +00001491// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1492static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1493 const X86InstrInfo &TII) {
1494 if (MI->getOpcode() == X86::FP_REG_KILL)
1495 return false;
1496 return TII.isUnpredicatedTerminator(MI);
1497}
1498
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001499bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1500 MachineBasicBlock *&TBB,
1501 MachineBasicBlock *&FBB,
Evan Chengeac31642009-02-09 07:14:22 +00001502 SmallVectorImpl<MachineOperand> &Cond,
1503 bool AllowModify) const {
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001504 // Start from the bottom of the block and work up, examining the
1505 // terminator instructions.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001506 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001507 while (I != MBB.begin()) {
1508 --I;
1509 // Working from the bottom, when we see a non-terminator
1510 // instruction, we're done.
1511 if (!isBrAnalysisUnpredicatedTerminator(I, *this))
1512 break;
1513 // A terminator that isn't a branch can't easily be handled
1514 // by this analysis.
1515 if (!I->getDesc().isBranch())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001516 return true;
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001517 // Handle unconditional branches.
1518 if (I->getOpcode() == X86::JMP) {
Evan Chengeac31642009-02-09 07:14:22 +00001519 if (!AllowModify) {
1520 TBB = I->getOperand(0).getMBB();
1521 return false;
1522 }
1523
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001524 // If the block has any instructions after a JMP, delete them.
1525 while (next(I) != MBB.end())
1526 next(I)->eraseFromParent();
1527 Cond.clear();
1528 FBB = 0;
1529 // Delete the JMP if it's equivalent to a fall-through.
1530 if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1531 TBB = 0;
1532 I->eraseFromParent();
1533 I = MBB.end();
1534 continue;
1535 }
1536 // TBB is used to indicate the unconditinal destination.
1537 TBB = I->getOperand(0).getMBB();
1538 continue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001539 }
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001540 // Handle conditional branches.
1541 X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001542 if (BranchCode == X86::COND_INVALID)
1543 return true; // Can't handle indirect branch.
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001544 // Working from the bottom, handle the first conditional branch.
1545 if (Cond.empty()) {
1546 FBB = TBB;
1547 TBB = I->getOperand(0).getMBB();
1548 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1549 continue;
1550 }
1551 // Handle subsequent conditional branches. Only handle the case
1552 // where all conditional branches branch to the same destination
1553 // and their condition opcodes fit one of the special
1554 // multi-branch idioms.
1555 assert(Cond.size() == 1);
1556 assert(TBB);
1557 // Only handle the case where all conditional branches branch to
1558 // the same destination.
1559 if (TBB != I->getOperand(0).getMBB())
1560 return true;
1561 X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
1562 // If the conditions are the same, we can leave them alone.
1563 if (OldBranchCode == BranchCode)
1564 continue;
1565 // If they differ, see if they fit one of the known patterns.
1566 // Theoretically we could handle more patterns here, but
1567 // we shouldn't expect to see them if instruction selection
1568 // has done a reasonable job.
1569 if ((OldBranchCode == X86::COND_NP &&
1570 BranchCode == X86::COND_E) ||
1571 (OldBranchCode == X86::COND_E &&
1572 BranchCode == X86::COND_NP))
1573 BranchCode = X86::COND_NP_OR_E;
1574 else if ((OldBranchCode == X86::COND_P &&
1575 BranchCode == X86::COND_NE) ||
1576 (OldBranchCode == X86::COND_NE &&
1577 BranchCode == X86::COND_P))
1578 BranchCode = X86::COND_NE_OR_P;
1579 else
1580 return true;
1581 // Update the MachineOperand.
1582 Cond[0].setImm(BranchCode);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001583 }
1584
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001585 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001586}
1587
1588unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1589 MachineBasicBlock::iterator I = MBB.end();
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001590 unsigned Count = 0;
1591
1592 while (I != MBB.begin()) {
1593 --I;
1594 if (I->getOpcode() != X86::JMP &&
1595 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1596 break;
1597 // Remove the branch.
1598 I->eraseFromParent();
1599 I = MBB.end();
1600 ++Count;
1601 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001602
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001603 return Count;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001604}
1605
Owen Anderson81875432008-01-01 21:11:32 +00001606static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
Dan Gohman46b948e2008-10-16 01:49:15 +00001607 const MachineOperand &MO) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001608 if (MO.isReg())
Owen Anderson81875432008-01-01 21:11:32 +00001609 MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit(),
Evan Chenge52c1912008-07-03 09:09:37 +00001610 MO.isKill(), MO.isDead(), MO.getSubReg());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001611 else if (MO.isImm())
Owen Anderson81875432008-01-01 21:11:32 +00001612 MIB = MIB.addImm(MO.getImm());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001613 else if (MO.isFI())
Owen Anderson81875432008-01-01 21:11:32 +00001614 MIB = MIB.addFrameIndex(MO.getIndex());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001615 else if (MO.isGlobal())
Owen Anderson81875432008-01-01 21:11:32 +00001616 MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001617 else if (MO.isCPI())
Owen Anderson81875432008-01-01 21:11:32 +00001618 MIB = MIB.addConstantPoolIndex(MO.getIndex(), MO.getOffset());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001619 else if (MO.isJTI())
Owen Anderson81875432008-01-01 21:11:32 +00001620 MIB = MIB.addJumpTableIndex(MO.getIndex());
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00001621 else if (MO.isSymbol())
Owen Anderson81875432008-01-01 21:11:32 +00001622 MIB = MIB.addExternalSymbol(MO.getSymbolName());
1623 else
1624 assert(0 && "Unknown operand for X86InstrAddOperand!");
1625
1626 return MIB;
1627}
1628
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001629unsigned
1630X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1631 MachineBasicBlock *FBB,
Owen Andersond131b5b2008-08-14 22:49:33 +00001632 const SmallVectorImpl<MachineOperand> &Cond) const {
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001633 // FIXME this should probably have a DebugLoc operand
1634 DebugLoc dl = DebugLoc::getUnknownLoc();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001635 // Shouldn't be a fall through.
1636 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1637 assert((Cond.size() == 1 || Cond.size() == 0) &&
1638 "X86 branch conditions have one component!");
1639
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001640 if (Cond.empty()) {
1641 // Unconditional branch?
1642 assert(!FBB && "Unconditional branch with multiple successors!");
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001643 BuildMI(&MBB, dl, get(X86::JMP)).addMBB(TBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001644 return 1;
1645 }
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001646
1647 // Conditional branch.
1648 unsigned Count = 0;
1649 X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
1650 switch (CC) {
1651 case X86::COND_NP_OR_E:
1652 // Synthesize NP_OR_E with two branches.
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001653 BuildMI(&MBB, dl, get(X86::JNP)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001654 ++Count;
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001655 BuildMI(&MBB, dl, get(X86::JE)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001656 ++Count;
1657 break;
1658 case X86::COND_NE_OR_P:
1659 // Synthesize NE_OR_P with two branches.
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001660 BuildMI(&MBB, dl, get(X86::JNE)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001661 ++Count;
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001662 BuildMI(&MBB, dl, get(X86::JP)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001663 ++Count;
1664 break;
1665 default: {
1666 unsigned Opc = GetCondBranchFromCond(CC);
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001667 BuildMI(&MBB, dl, get(Opc)).addMBB(TBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001668 ++Count;
1669 }
1670 }
1671 if (FBB) {
1672 // Two-way Conditional branch. Insert the second branch.
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001673 BuildMI(&MBB, dl, get(X86::JMP)).addMBB(FBB);
Dan Gohman6a00fcb2008-10-21 03:29:32 +00001674 ++Count;
1675 }
1676 return Count;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001677}
1678
Owen Anderson9fa72d92008-08-26 18:03:31 +00001679bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
Chris Lattner8869eeb2008-03-09 08:46:19 +00001680 MachineBasicBlock::iterator MI,
1681 unsigned DestReg, unsigned SrcReg,
1682 const TargetRegisterClass *DestRC,
1683 const TargetRegisterClass *SrcRC) const {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001684 DebugLoc DL = DebugLoc::getUnknownLoc();
1685 if (MI != MBB.end()) DL = MI->getDebugLoc();
1686
Chris Lattner59707122008-03-09 07:58:04 +00001687 if (DestRC == SrcRC) {
1688 unsigned Opc;
1689 if (DestRC == &X86::GR64RegClass) {
1690 Opc = X86::MOV64rr;
1691 } else if (DestRC == &X86::GR32RegClass) {
1692 Opc = X86::MOV32rr;
1693 } else if (DestRC == &X86::GR16RegClass) {
1694 Opc = X86::MOV16rr;
1695 } else if (DestRC == &X86::GR8RegClass) {
1696 Opc = X86::MOV8rr;
1697 } else if (DestRC == &X86::GR32_RegClass) {
1698 Opc = X86::MOV32_rr;
1699 } else if (DestRC == &X86::GR16_RegClass) {
1700 Opc = X86::MOV16_rr;
1701 } else if (DestRC == &X86::RFP32RegClass) {
1702 Opc = X86::MOV_Fp3232;
1703 } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
1704 Opc = X86::MOV_Fp6464;
1705 } else if (DestRC == &X86::RFP80RegClass) {
1706 Opc = X86::MOV_Fp8080;
1707 } else if (DestRC == &X86::FR32RegClass) {
1708 Opc = X86::FsMOVAPSrr;
1709 } else if (DestRC == &X86::FR64RegClass) {
1710 Opc = X86::FsMOVAPDrr;
1711 } else if (DestRC == &X86::VR128RegClass) {
1712 Opc = X86::MOVAPSrr;
1713 } else if (DestRC == &X86::VR64RegClass) {
1714 Opc = X86::MMX_MOVQ64rr;
1715 } else {
Owen Anderson9fa72d92008-08-26 18:03:31 +00001716 return false;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001717 }
Bill Wendling13ee2e42009-02-11 21:51:19 +00001718 BuildMI(MBB, MI, DL, get(Opc), DestReg).addReg(SrcReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001719 return true;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001720 }
Chris Lattner59707122008-03-09 07:58:04 +00001721
1722 // Moving EFLAGS to / from another register requires a push and a pop.
1723 if (SrcRC == &X86::CCRRegClass) {
Owen Andersonabe5c892008-08-26 18:50:40 +00001724 if (SrcReg != X86::EFLAGS)
1725 return false;
Chris Lattner59707122008-03-09 07:58:04 +00001726 if (DestRC == &X86::GR64RegClass) {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001727 BuildMI(MBB, MI, DL, get(X86::PUSHFQ));
1728 BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001729 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001730 } else if (DestRC == &X86::GR32RegClass) {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001731 BuildMI(MBB, MI, DL, get(X86::PUSHFD));
1732 BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001733 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001734 }
1735 } else if (DestRC == &X86::CCRRegClass) {
Owen Andersonabe5c892008-08-26 18:50:40 +00001736 if (DestReg != X86::EFLAGS)
1737 return false;
Chris Lattner59707122008-03-09 07:58:04 +00001738 if (SrcRC == &X86::GR64RegClass) {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001739 BuildMI(MBB, MI, DL, get(X86::PUSH64r)).addReg(SrcReg);
1740 BuildMI(MBB, MI, DL, get(X86::POPFQ));
Owen Anderson9fa72d92008-08-26 18:03:31 +00001741 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001742 } else if (SrcRC == &X86::GR32RegClass) {
Bill Wendling13ee2e42009-02-11 21:51:19 +00001743 BuildMI(MBB, MI, DL, get(X86::PUSH32r)).addReg(SrcReg);
1744 BuildMI(MBB, MI, DL, get(X86::POPFD));
Owen Anderson9fa72d92008-08-26 18:03:31 +00001745 return true;
Chris Lattner59707122008-03-09 07:58:04 +00001746 }
Owen Anderson8f2c8932007-12-31 06:32:00 +00001747 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001748
Chris Lattner0d128722008-03-09 09:15:31 +00001749 // Moving from ST(0) turns into FpGET_ST0_32 etc.
Chris Lattner8869eeb2008-03-09 08:46:19 +00001750 if (SrcRC == &X86::RSTRegClass) {
Chris Lattner60d14d82008-03-21 06:38:26 +00001751 // Copying from ST(0)/ST(1).
Owen Anderson9fa72d92008-08-26 18:03:31 +00001752 if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
1753 // Can only copy from ST(0)/ST(1) right now
1754 return false;
Chris Lattner60d14d82008-03-21 06:38:26 +00001755 bool isST0 = SrcReg == X86::ST0;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001756 unsigned Opc;
1757 if (DestRC == &X86::RFP32RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001758 Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001759 else if (DestRC == &X86::RFP64RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001760 Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001761 else {
Owen Andersonabe5c892008-08-26 18:50:40 +00001762 if (DestRC != &X86::RFP80RegClass)
1763 return false;
Chris Lattner60d14d82008-03-21 06:38:26 +00001764 Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001765 }
Bill Wendling13ee2e42009-02-11 21:51:19 +00001766 BuildMI(MBB, MI, DL, get(Opc), DestReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001767 return true;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001768 }
Chris Lattner0d128722008-03-09 09:15:31 +00001769
1770 // Moving to ST(0) turns into FpSET_ST0_32 etc.
1771 if (DestRC == &X86::RSTRegClass) {
Evan Cheng307a72e2009-02-09 23:32:07 +00001772 // Copying to ST(0) / ST(1).
1773 if (DestReg != X86::ST0 && DestReg != X86::ST1)
Owen Anderson9fa72d92008-08-26 18:03:31 +00001774 // Can only copy to TOS right now
1775 return false;
Evan Cheng307a72e2009-02-09 23:32:07 +00001776 bool isST0 = DestReg == X86::ST0;
Chris Lattner0d128722008-03-09 09:15:31 +00001777 unsigned Opc;
1778 if (SrcRC == &X86::RFP32RegClass)
Evan Cheng307a72e2009-02-09 23:32:07 +00001779 Opc = isST0 ? X86::FpSET_ST0_32 : X86::FpSET_ST1_32;
Chris Lattner0d128722008-03-09 09:15:31 +00001780 else if (SrcRC == &X86::RFP64RegClass)
Evan Cheng307a72e2009-02-09 23:32:07 +00001781 Opc = isST0 ? X86::FpSET_ST0_64 : X86::FpSET_ST1_64;
Chris Lattner0d128722008-03-09 09:15:31 +00001782 else {
Owen Andersonabe5c892008-08-26 18:50:40 +00001783 if (SrcRC != &X86::RFP80RegClass)
1784 return false;
Evan Cheng307a72e2009-02-09 23:32:07 +00001785 Opc = isST0 ? X86::FpSET_ST0_80 : X86::FpSET_ST1_80;
Chris Lattner0d128722008-03-09 09:15:31 +00001786 }
Bill Wendling13ee2e42009-02-11 21:51:19 +00001787 BuildMI(MBB, MI, DL, get(Opc)).addReg(SrcReg);
Owen Anderson9fa72d92008-08-26 18:03:31 +00001788 return true;
Chris Lattner0d128722008-03-09 09:15:31 +00001789 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001790
Owen Anderson9fa72d92008-08-26 18:03:31 +00001791 // Not yet supported!
1792 return false;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001793}
1794
Owen Anderson81875432008-01-01 21:11:32 +00001795static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001796 bool isStackAligned) {
Owen Anderson81875432008-01-01 21:11:32 +00001797 unsigned Opc = 0;
1798 if (RC == &X86::GR64RegClass) {
1799 Opc = X86::MOV64mr;
1800 } else if (RC == &X86::GR32RegClass) {
1801 Opc = X86::MOV32mr;
1802 } else if (RC == &X86::GR16RegClass) {
1803 Opc = X86::MOV16mr;
1804 } else if (RC == &X86::GR8RegClass) {
1805 Opc = X86::MOV8mr;
1806 } else if (RC == &X86::GR32_RegClass) {
1807 Opc = X86::MOV32_mr;
1808 } else if (RC == &X86::GR16_RegClass) {
1809 Opc = X86::MOV16_mr;
1810 } else if (RC == &X86::RFP80RegClass) {
1811 Opc = X86::ST_FpP80m; // pops
1812 } else if (RC == &X86::RFP64RegClass) {
1813 Opc = X86::ST_Fp64m;
1814 } else if (RC == &X86::RFP32RegClass) {
1815 Opc = X86::ST_Fp32m;
1816 } else if (RC == &X86::FR32RegClass) {
1817 Opc = X86::MOVSSmr;
1818 } else if (RC == &X86::FR64RegClass) {
1819 Opc = X86::MOVSDmr;
1820 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001821 // If stack is realigned we can use aligned stores.
1822 Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
Owen Anderson81875432008-01-01 21:11:32 +00001823 } else if (RC == &X86::VR64RegClass) {
1824 Opc = X86::MMX_MOVQ64mr;
1825 } else {
1826 assert(0 && "Unknown regclass");
1827 abort();
1828 }
1829
1830 return Opc;
1831}
1832
1833void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1834 MachineBasicBlock::iterator MI,
1835 unsigned SrcReg, bool isKill, int FrameIdx,
1836 const TargetRegisterClass *RC) const {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001837 const MachineFunction &MF = *MBB.getParent();
Evan Cheng47906a22008-07-21 06:34:17 +00001838 bool isAligned = (RI.getStackAlignment() >= 16) ||
1839 RI.needsStackRealignment(MF);
1840 unsigned Opc = getStoreRegOpcode(RC, isAligned);
Bill Wendling13ee2e42009-02-11 21:51:19 +00001841 DebugLoc DL = DebugLoc::getUnknownLoc();
1842 if (MI != MBB.end()) DL = MI->getDebugLoc();
1843 addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
1844 .addReg(SrcReg, false, false, isKill);
Owen Anderson81875432008-01-01 21:11:32 +00001845}
1846
1847void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1848 bool isKill,
1849 SmallVectorImpl<MachineOperand> &Addr,
1850 const TargetRegisterClass *RC,
1851 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng47906a22008-07-21 06:34:17 +00001852 bool isAligned = (RI.getStackAlignment() >= 16) ||
1853 RI.needsStackRealignment(MF);
1854 unsigned Opc = getStoreRegOpcode(RC, isAligned);
Dale Johannesen77cce4d2009-02-12 23:08:38 +00001855 DebugLoc DL = DebugLoc::getUnknownLoc();
1856 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
Owen Anderson81875432008-01-01 21:11:32 +00001857 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1858 MIB = X86InstrAddOperand(MIB, Addr[i]);
1859 MIB.addReg(SrcReg, false, false, isKill);
1860 NewMIs.push_back(MIB);
1861}
1862
1863static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001864 bool isStackAligned) {
Owen Anderson81875432008-01-01 21:11:32 +00001865 unsigned Opc = 0;
1866 if (RC == &X86::GR64RegClass) {
1867 Opc = X86::MOV64rm;
1868 } else if (RC == &X86::GR32RegClass) {
1869 Opc = X86::MOV32rm;
1870 } else if (RC == &X86::GR16RegClass) {
1871 Opc = X86::MOV16rm;
1872 } else if (RC == &X86::GR8RegClass) {
1873 Opc = X86::MOV8rm;
1874 } else if (RC == &X86::GR32_RegClass) {
1875 Opc = X86::MOV32_rm;
1876 } else if (RC == &X86::GR16_RegClass) {
1877 Opc = X86::MOV16_rm;
1878 } else if (RC == &X86::RFP80RegClass) {
1879 Opc = X86::LD_Fp80m;
1880 } else if (RC == &X86::RFP64RegClass) {
1881 Opc = X86::LD_Fp64m;
1882 } else if (RC == &X86::RFP32RegClass) {
1883 Opc = X86::LD_Fp32m;
1884 } else if (RC == &X86::FR32RegClass) {
1885 Opc = X86::MOVSSrm;
1886 } else if (RC == &X86::FR64RegClass) {
1887 Opc = X86::MOVSDrm;
1888 } else if (RC == &X86::VR128RegClass) {
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001889 // If stack is realigned we can use aligned loads.
1890 Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
Owen Anderson81875432008-01-01 21:11:32 +00001891 } else if (RC == &X86::VR64RegClass) {
1892 Opc = X86::MMX_MOVQ64rm;
1893 } else {
1894 assert(0 && "Unknown regclass");
1895 abort();
1896 }
1897
1898 return Opc;
1899}
1900
1901void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00001902 MachineBasicBlock::iterator MI,
1903 unsigned DestReg, int FrameIdx,
1904 const TargetRegisterClass *RC) const{
1905 const MachineFunction &MF = *MBB.getParent();
Evan Cheng47906a22008-07-21 06:34:17 +00001906 bool isAligned = (RI.getStackAlignment() >= 16) ||
1907 RI.needsStackRealignment(MF);
1908 unsigned Opc = getLoadRegOpcode(RC, isAligned);
Bill Wendling13ee2e42009-02-11 21:51:19 +00001909 DebugLoc DL = DebugLoc::getUnknownLoc();
1910 if (MI != MBB.end()) DL = MI->getDebugLoc();
1911 addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
Owen Anderson81875432008-01-01 21:11:32 +00001912}
1913
1914void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
Evan Chenge52c1912008-07-03 09:09:37 +00001915 SmallVectorImpl<MachineOperand> &Addr,
1916 const TargetRegisterClass *RC,
Owen Anderson81875432008-01-01 21:11:32 +00001917 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Evan Cheng47906a22008-07-21 06:34:17 +00001918 bool isAligned = (RI.getStackAlignment() >= 16) ||
1919 RI.needsStackRealignment(MF);
1920 unsigned Opc = getLoadRegOpcode(RC, isAligned);
Dale Johannesen77cce4d2009-02-12 23:08:38 +00001921 DebugLoc DL = DebugLoc::getUnknownLoc();
1922 MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
Owen Anderson81875432008-01-01 21:11:32 +00001923 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1924 MIB = X86InstrAddOperand(MIB, Addr[i]);
1925 NewMIs.push_back(MIB);
1926}
1927
Owen Anderson6690c7f2008-01-04 23:57:37 +00001928bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
Bill Wendling13ee2e42009-02-11 21:51:19 +00001929 MachineBasicBlock::iterator MI,
Owen Anderson6690c7f2008-01-04 23:57:37 +00001930 const std::vector<CalleeSavedInfo> &CSI) const {
1931 if (CSI.empty())
1932 return false;
1933
Bill Wendling13ee2e42009-02-11 21:51:19 +00001934 DebugLoc DL = DebugLoc::getUnknownLoc();
1935 if (MI != MBB.end()) DL = MI->getDebugLoc();
1936
Evan Chengc275cf62008-09-26 19:14:21 +00001937 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Anton Korobeynikov1deb2dd2008-10-04 11:09:36 +00001938 unsigned SlotSize = is64Bit ? 8 : 4;
1939
1940 MachineFunction &MF = *MBB.getParent();
1941 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1942 X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
1943
Owen Anderson6690c7f2008-01-04 23:57:37 +00001944 unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
1945 for (unsigned i = CSI.size(); i != 0; --i) {
1946 unsigned Reg = CSI[i-1].getReg();
1947 // Add the callee-saved register as live-in. It's killed at the spill.
1948 MBB.addLiveIn(Reg);
Dale Johannesen960bfbd2009-02-13 02:33:27 +00001949 BuildMI(MBB, MI, DL, get(Opc))
Dan Gohman4df0e362008-11-26 06:39:12 +00001950 .addReg(Reg, /*isDef=*/false, /*isImp=*/false, /*isKill=*/true);
Owen Anderson6690c7f2008-01-04 23:57:37 +00001951 }
1952 return true;
1953}
1954
1955bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
Bill Wendling13ee2e42009-02-11 21:51:19 +00001956 MachineBasicBlock::iterator MI,
Owen Anderson6690c7f2008-01-04 23:57:37 +00001957 const std::vector<CalleeSavedInfo> &CSI) const {
1958 if (CSI.empty())
1959 return false;
Bill Wendling13ee2e42009-02-11 21:51:19 +00001960
1961 DebugLoc DL = DebugLoc::getUnknownLoc();
1962 if (MI != MBB.end()) DL = MI->getDebugLoc();
1963
Owen Anderson6690c7f2008-01-04 23:57:37 +00001964 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1965
1966 unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
1967 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1968 unsigned Reg = CSI[i].getReg();
Bill Wendling13ee2e42009-02-11 21:51:19 +00001969 BuildMI(MBB, MI, DL, get(Opc), Reg);
Owen Anderson6690c7f2008-01-04 23:57:37 +00001970 }
1971 return true;
1972}
1973
Dan Gohman221a4372008-07-07 23:14:23 +00001974static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00001975 const SmallVectorImpl<MachineOperand> &MOs,
Bill Wendling5aa0ddb2009-02-03 00:55:04 +00001976 MachineInstr *MI,
1977 const TargetInstrInfo &TII) {
Owen Anderson9a184ef2008-01-07 01:35:02 +00001978 // Create the base instruction with the memory operand as the first part.
Bill Wendling5aa0ddb2009-02-03 00:55:04 +00001979 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
1980 MI->getDebugLoc(), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00001981 MachineInstrBuilder MIB(NewMI);
1982 unsigned NumAddrOps = MOs.size();
1983 for (unsigned i = 0; i != NumAddrOps; ++i)
1984 MIB = X86InstrAddOperand(MIB, MOs[i]);
1985 if (NumAddrOps < 4) // FrameIndex only
1986 MIB.addImm(1).addReg(0).addImm(0);
1987
1988 // Loop over the rest of the ri operands, converting them over.
Chris Lattner5b930372008-01-07 07:27:27 +00001989 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001990 for (unsigned i = 0; i != NumOps; ++i) {
1991 MachineOperand &MO = MI->getOperand(i+2);
1992 MIB = X86InstrAddOperand(MIB, MO);
1993 }
1994 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
1995 MachineOperand &MO = MI->getOperand(i);
1996 MIB = X86InstrAddOperand(MIB, MO);
1997 }
1998 return MIB;
1999}
2000
Dan Gohman221a4372008-07-07 23:14:23 +00002001static MachineInstr *FuseInst(MachineFunction &MF,
2002 unsigned Opcode, unsigned OpNo,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00002003 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00002004 MachineInstr *MI, const TargetInstrInfo &TII) {
Bill Wendling5aa0ddb2009-02-03 00:55:04 +00002005 MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
2006 MI->getDebugLoc(), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002007 MachineInstrBuilder MIB(NewMI);
2008
2009 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2010 MachineOperand &MO = MI->getOperand(i);
2011 if (i == OpNo) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002012 assert(MO.isReg() && "Expected to fold into reg operand!");
Owen Anderson9a184ef2008-01-07 01:35:02 +00002013 unsigned NumAddrOps = MOs.size();
2014 for (unsigned i = 0; i != NumAddrOps; ++i)
2015 MIB = X86InstrAddOperand(MIB, MOs[i]);
2016 if (NumAddrOps < 4) // FrameIndex only
2017 MIB.addImm(1).addReg(0).addImm(0);
2018 } else {
2019 MIB = X86InstrAddOperand(MIB, MO);
2020 }
2021 }
2022 return MIB;
2023}
2024
2025static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00002026 const SmallVectorImpl<MachineOperand> &MOs,
Owen Anderson9a184ef2008-01-07 01:35:02 +00002027 MachineInstr *MI) {
Dan Gohman221a4372008-07-07 23:14:23 +00002028 MachineFunction &MF = *MI->getParent()->getParent();
Bill Wendling13ee2e42009-02-11 21:51:19 +00002029 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002030
2031 unsigned NumAddrOps = MOs.size();
2032 for (unsigned i = 0; i != NumAddrOps; ++i)
2033 MIB = X86InstrAddOperand(MIB, MOs[i]);
2034 if (NumAddrOps < 4) // FrameIndex only
2035 MIB.addImm(1).addReg(0).addImm(0);
2036 return MIB.addImm(0);
2037}
2038
2039MachineInstr*
Dan Gohmanedc83d62008-12-03 18:43:12 +00002040X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2041 MachineInstr *MI, unsigned i,
Dan Gohmanc24a3f82009-01-05 17:59:02 +00002042 const SmallVectorImpl<MachineOperand> &MOs) const{
Owen Anderson9a184ef2008-01-07 01:35:02 +00002043 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2044 bool isTwoAddrFold = false;
Chris Lattner5b930372008-01-07 07:27:27 +00002045 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002046 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00002047 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002048
2049 MachineInstr *NewMI = NULL;
2050 // Folding a memory location into the two-address part of a two-address
2051 // instruction is different than folding it other places. It requires
2052 // replacing the *two* registers with the memory location.
2053 if (isTwoAddr && NumOps >= 2 && i < 2 &&
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002054 MI->getOperand(0).isReg() &&
2055 MI->getOperand(1).isReg() &&
Owen Anderson9a184ef2008-01-07 01:35:02 +00002056 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
2057 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2058 isTwoAddrFold = true;
2059 } else if (i == 0) { // If operand 0
2060 if (MI->getOpcode() == X86::MOV16r0)
2061 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
2062 else if (MI->getOpcode() == X86::MOV32r0)
2063 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
2064 else if (MI->getOpcode() == X86::MOV64r0)
2065 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
2066 else if (MI->getOpcode() == X86::MOV8r0)
2067 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
Evan Chenge52c1912008-07-03 09:09:37 +00002068 if (NewMI)
Owen Anderson9a184ef2008-01-07 01:35:02 +00002069 return NewMI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002070
2071 OpcodeTablePtr = &RegOp2MemOpTable0;
2072 } else if (i == 1) {
2073 OpcodeTablePtr = &RegOp2MemOpTable1;
2074 } else if (i == 2) {
2075 OpcodeTablePtr = &RegOp2MemOpTable2;
2076 }
2077
2078 // If table selected...
2079 if (OpcodeTablePtr) {
2080 // Find the Opcode to fuse
2081 DenseMap<unsigned*, unsigned>::iterator I =
2082 OpcodeTablePtr->find((unsigned*)MI->getOpcode());
2083 if (I != OpcodeTablePtr->end()) {
2084 if (isTwoAddrFold)
Dan Gohman221a4372008-07-07 23:14:23 +00002085 NewMI = FuseTwoAddrInst(MF, I->second, MOs, MI, *this);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002086 else
Dan Gohman221a4372008-07-07 23:14:23 +00002087 NewMI = FuseInst(MF, I->second, i, MOs, MI, *this);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002088 return NewMI;
2089 }
2090 }
2091
2092 // No fusion
2093 if (PrintFailedFusing)
Dan Gohman5f599f62008-12-23 00:19:20 +00002094 cerr << "We failed to fuse operand " << i << " in " << *MI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002095 return NULL;
2096}
2097
2098
Dan Gohmanedc83d62008-12-03 18:43:12 +00002099MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2100 MachineInstr *MI,
2101 const SmallVectorImpl<unsigned> &Ops,
2102 int FrameIndex) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002103 // Check switch flag
2104 if (NoFusing) return NULL;
2105
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002106 const MachineFrameInfo *MFI = MF.getFrameInfo();
2107 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
2108 // FIXME: Move alignment requirement into tables?
2109 if (Alignment < 16) {
2110 switch (MI->getOpcode()) {
2111 default: break;
2112 // Not always safe to fold movsd into these instructions since their load
2113 // folding variants expects the address to be 16 byte aligned.
2114 case X86::FsANDNPDrr:
2115 case X86::FsANDNPSrr:
2116 case X86::FsANDPDrr:
2117 case X86::FsANDPSrr:
2118 case X86::FsORPDrr:
2119 case X86::FsORPSrr:
2120 case X86::FsXORPDrr:
2121 case X86::FsXORPSrr:
2122 return NULL;
2123 }
2124 }
2125
Owen Anderson9a184ef2008-01-07 01:35:02 +00002126 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2127 unsigned NewOpc = 0;
2128 switch (MI->getOpcode()) {
2129 default: return NULL;
2130 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2131 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2132 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2133 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2134 }
2135 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002136 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002137 MI->getOperand(1).ChangeToImmediate(0);
2138 } else if (Ops.size() != 1)
2139 return NULL;
2140
2141 SmallVector<MachineOperand,4> MOs;
2142 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
Dan Gohmanedc83d62008-12-03 18:43:12 +00002143 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002144}
2145
Dan Gohmanedc83d62008-12-03 18:43:12 +00002146MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
2147 MachineInstr *MI,
2148 const SmallVectorImpl<unsigned> &Ops,
2149 MachineInstr *LoadMI) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002150 // Check switch flag
2151 if (NoFusing) return NULL;
2152
Dan Gohmand0e8c752008-07-12 00:10:52 +00002153 // Determine the alignment of the load.
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002154 unsigned Alignment = 0;
Dan Gohmand0e8c752008-07-12 00:10:52 +00002155 if (LoadMI->hasOneMemOperand())
2156 Alignment = LoadMI->memoperands_begin()->getAlignment();
Evan Cheng4f2f3f62008-02-08 21:20:40 +00002157
2158 // FIXME: Move alignment requirement into tables?
2159 if (Alignment < 16) {
2160 switch (MI->getOpcode()) {
2161 default: break;
2162 // Not always safe to fold movsd into these instructions since their load
2163 // folding variants expects the address to be 16 byte aligned.
2164 case X86::FsANDNPDrr:
2165 case X86::FsANDNPSrr:
2166 case X86::FsANDPDrr:
2167 case X86::FsANDPSrr:
2168 case X86::FsORPDrr:
2169 case X86::FsORPSrr:
2170 case X86::FsXORPDrr:
2171 case X86::FsXORPSrr:
2172 return NULL;
2173 }
2174 }
2175
Owen Anderson9a184ef2008-01-07 01:35:02 +00002176 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2177 unsigned NewOpc = 0;
2178 switch (MI->getOpcode()) {
2179 default: return NULL;
2180 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
2181 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
2182 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
2183 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
2184 }
2185 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00002186 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002187 MI->getOperand(1).ChangeToImmediate(0);
2188 } else if (Ops.size() != 1)
2189 return NULL;
2190
2191 SmallVector<MachineOperand,4> MOs;
Dan Gohman37eb6c82008-12-03 05:21:24 +00002192 if (LoadMI->getOpcode() == X86::V_SET0 ||
2193 LoadMI->getOpcode() == X86::V_SETALLONES) {
2194 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
2195 // Create a constant-pool entry and operands to load from it.
2196
2197 // x86-32 PIC requires a PIC base register for constant pools.
2198 unsigned PICBase = 0;
2199 if (TM.getRelocationModel() == Reloc::PIC_ &&
2200 !TM.getSubtarget<X86Subtarget>().is64Bit())
Evan Chengf95d0fc2008-12-05 17:23:48 +00002201 // FIXME: PICBase = TM.getInstrInfo()->getGlobalBaseReg(&MF);
2202 // This doesn't work for several reasons.
2203 // 1. GlobalBaseReg may have been spilled.
2204 // 2. It may not be live at MI.
Evan Chengf95d0fc2008-12-05 17:23:48 +00002205 return false;
Dan Gohman37eb6c82008-12-03 05:21:24 +00002206
2207 // Create a v4i32 constant-pool entry.
2208 MachineConstantPool &MCP = *MF.getConstantPool();
2209 const VectorType *Ty = VectorType::get(Type::Int32Ty, 4);
2210 Constant *C = LoadMI->getOpcode() == X86::V_SET0 ?
2211 ConstantVector::getNullValue(Ty) :
2212 ConstantVector::getAllOnesValue(Ty);
2213 unsigned CPI = MCP.getConstantPoolIndex(C, /*AlignmentLog2=*/4);
2214
2215 // Create operands to load from the constant pool entry.
2216 MOs.push_back(MachineOperand::CreateReg(PICBase, false));
2217 MOs.push_back(MachineOperand::CreateImm(1));
2218 MOs.push_back(MachineOperand::CreateReg(0, false));
2219 MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
2220 } else {
2221 // Folding a normal load. Just copy the load's address operands.
2222 unsigned NumOps = LoadMI->getDesc().getNumOperands();
2223 for (unsigned i = NumOps - 4; i != NumOps; ++i)
2224 MOs.push_back(LoadMI->getOperand(i));
2225 }
Dan Gohmanedc83d62008-12-03 18:43:12 +00002226 return foldMemoryOperandImpl(MF, MI, Ops[0], MOs);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002227}
2228
2229
Dan Gohman46b948e2008-10-16 01:49:15 +00002230bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
2231 const SmallVectorImpl<unsigned> &Ops) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002232 // Check switch flag
2233 if (NoFusing) return 0;
2234
2235 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
2236 switch (MI->getOpcode()) {
2237 default: return false;
2238 case X86::TEST8rr:
2239 case X86::TEST16rr:
2240 case X86::TEST32rr:
2241 case X86::TEST64rr:
2242 return true;
2243 }
2244 }
2245
2246 if (Ops.size() != 1)
2247 return false;
2248
2249 unsigned OpNum = Ops[0];
2250 unsigned Opc = MI->getOpcode();
Chris Lattner5b930372008-01-07 07:27:27 +00002251 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002252 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00002253 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002254
2255 // Folding a memory location into the two-address part of a two-address
2256 // instruction is different than folding it other places. It requires
2257 // replacing the *two* registers with the memory location.
2258 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2259 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2260 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2261 } else if (OpNum == 0) { // If operand 0
2262 switch (Opc) {
2263 case X86::MOV16r0:
2264 case X86::MOV32r0:
2265 case X86::MOV64r0:
2266 case X86::MOV8r0:
2267 return true;
2268 default: break;
2269 }
2270 OpcodeTablePtr = &RegOp2MemOpTable0;
2271 } else if (OpNum == 1) {
2272 OpcodeTablePtr = &RegOp2MemOpTable1;
2273 } else if (OpNum == 2) {
2274 OpcodeTablePtr = &RegOp2MemOpTable2;
2275 }
2276
2277 if (OpcodeTablePtr) {
2278 // Find the Opcode to fuse
2279 DenseMap<unsigned*, unsigned>::iterator I =
2280 OpcodeTablePtr->find((unsigned*)Opc);
2281 if (I != OpcodeTablePtr->end())
2282 return true;
2283 }
2284 return false;
2285}
2286
2287bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2288 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
Bill Wendling13ee2e42009-02-11 21:51:19 +00002289 SmallVectorImpl<MachineInstr*> &NewMIs) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002290 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2291 MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2292 if (I == MemOp2RegOpTable.end())
2293 return false;
Dale Johannesen77cce4d2009-02-12 23:08:38 +00002294 DebugLoc dl = MI->getDebugLoc();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002295 unsigned Opc = I->second.first;
2296 unsigned Index = I->second.second & 0xf;
2297 bool FoldedLoad = I->second.second & (1 << 4);
2298 bool FoldedStore = I->second.second & (1 << 5);
2299 if (UnfoldLoad && !FoldedLoad)
2300 return false;
2301 UnfoldLoad &= FoldedLoad;
2302 if (UnfoldStore && !FoldedStore)
2303 return false;
2304 UnfoldStore &= FoldedStore;
2305
Chris Lattner5b930372008-01-07 07:27:27 +00002306 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002307 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002308 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Evan Chengafca4632009-02-06 17:43:24 +00002309 ? RI.getPointerRegClass() : RI.getRegClass(TOI.RegClass);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002310 SmallVector<MachineOperand,4> AddrOps;
2311 SmallVector<MachineOperand,2> BeforeOps;
2312 SmallVector<MachineOperand,2> AfterOps;
2313 SmallVector<MachineOperand,4> ImpOps;
2314 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2315 MachineOperand &Op = MI->getOperand(i);
2316 if (i >= Index && i < Index+4)
2317 AddrOps.push_back(Op);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002318 else if (Op.isReg() && Op.isImplicit())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002319 ImpOps.push_back(Op);
2320 else if (i < Index)
2321 BeforeOps.push_back(Op);
2322 else if (i > Index)
2323 AfterOps.push_back(Op);
2324 }
2325
2326 // Emit the load instruction.
2327 if (UnfoldLoad) {
2328 loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
2329 if (UnfoldStore) {
2330 // Address operands cannot be marked isKill.
2331 for (unsigned i = 1; i != 5; ++i) {
2332 MachineOperand &MO = NewMIs[0]->getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002333 if (MO.isReg())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002334 MO.setIsKill(false);
2335 }
2336 }
2337 }
2338
2339 // Emit the data processing instruction.
Bill Wendling5aa0ddb2009-02-03 00:55:04 +00002340 MachineInstr *DataMI = MF.CreateMachineInstr(TID, MI->getDebugLoc(), true);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002341 MachineInstrBuilder MIB(DataMI);
2342
2343 if (FoldedStore)
2344 MIB.addReg(Reg, true);
2345 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2346 MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
2347 if (FoldedLoad)
2348 MIB.addReg(Reg);
2349 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2350 MIB = X86InstrAddOperand(MIB, AfterOps[i]);
2351 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2352 MachineOperand &MO = ImpOps[i];
2353 MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
2354 }
2355 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2356 unsigned NewOpc = 0;
2357 switch (DataMI->getOpcode()) {
2358 default: break;
2359 case X86::CMP64ri32:
2360 case X86::CMP32ri:
2361 case X86::CMP16ri:
2362 case X86::CMP8ri: {
2363 MachineOperand &MO0 = DataMI->getOperand(0);
2364 MachineOperand &MO1 = DataMI->getOperand(1);
2365 if (MO1.getImm() == 0) {
2366 switch (DataMI->getOpcode()) {
2367 default: break;
2368 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2369 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
2370 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
2371 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
2372 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00002373 DataMI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002374 MO1.ChangeToRegister(MO0.getReg(), false);
2375 }
2376 }
2377 }
2378 NewMIs.push_back(DataMI);
2379
2380 // Emit the store instruction.
2381 if (UnfoldStore) {
2382 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002383 const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
Evan Chengafca4632009-02-06 17:43:24 +00002384 ? RI.getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002385 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2386 }
2387
2388 return true;
2389}
2390
2391bool
2392X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
Bill Wendling13ee2e42009-02-11 21:51:19 +00002393 SmallVectorImpl<SDNode*> &NewNodes) const {
Dan Gohmanbd68c792008-07-17 19:10:17 +00002394 if (!N->isMachineOpcode())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002395 return false;
2396
2397 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
Dan Gohmanbd68c792008-07-17 19:10:17 +00002398 MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002399 if (I == MemOp2RegOpTable.end())
2400 return false;
2401 unsigned Opc = I->second.first;
2402 unsigned Index = I->second.second & 0xf;
2403 bool FoldedLoad = I->second.second & (1 << 4);
2404 bool FoldedStore = I->second.second & (1 << 5);
Chris Lattner5b930372008-01-07 07:27:27 +00002405 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002406 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002407 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Evan Chengafca4632009-02-06 17:43:24 +00002408 ? RI.getPointerRegClass() : RI.getRegClass(TOI.RegClass);
Dan Gohman8181bd12008-07-27 21:46:04 +00002409 std::vector<SDValue> AddrOps;
2410 std::vector<SDValue> BeforeOps;
2411 std::vector<SDValue> AfterOps;
Dale Johannesen913ba762009-02-06 01:31:28 +00002412 DebugLoc dl = N->getDebugLoc();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002413 unsigned NumOps = N->getNumOperands();
2414 for (unsigned i = 0; i != NumOps-1; ++i) {
Dan Gohman8181bd12008-07-27 21:46:04 +00002415 SDValue Op = N->getOperand(i);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002416 if (i >= Index && i < Index+4)
2417 AddrOps.push_back(Op);
2418 else if (i < Index)
2419 BeforeOps.push_back(Op);
2420 else if (i > Index)
2421 AfterOps.push_back(Op);
2422 }
Dan Gohman8181bd12008-07-27 21:46:04 +00002423 SDValue Chain = N->getOperand(NumOps-1);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002424 AddrOps.push_back(Chain);
2425
2426 // Emit the load instruction.
2427 SDNode *Load = 0;
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00002428 const MachineFunction &MF = DAG.getMachineFunction();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002429 if (FoldedLoad) {
Duncan Sands92c43912008-06-06 12:08:01 +00002430 MVT VT = *RC->vt_begin();
Evan Cheng47906a22008-07-21 06:34:17 +00002431 bool isAligned = (RI.getStackAlignment() >= 16) ||
2432 RI.needsStackRealignment(MF);
Dale Johannesen913ba762009-02-06 01:31:28 +00002433 Load = DAG.getTargetNode(getLoadRegOpcode(RC, isAligned), dl,
Anton Korobeynikov44cf57f2008-07-19 06:30:51 +00002434 VT, MVT::Other,
2435 &AddrOps[0], AddrOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002436 NewNodes.push_back(Load);
2437 }
2438
2439 // Emit the data processing instruction.
Duncan Sands92c43912008-06-06 12:08:01 +00002440 std::vector<MVT> VTs;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002441 const TargetRegisterClass *DstRC = 0;
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002442 if (TID.getNumDefs() > 0) {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002443 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002444 DstRC = DstTOI.isLookupPtrRegClass()
Evan Chengafca4632009-02-06 17:43:24 +00002445 ? RI.getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002446 VTs.push_back(*DstRC->vt_begin());
2447 }
2448 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
Duncan Sands92c43912008-06-06 12:08:01 +00002449 MVT VT = N->getValueType(i);
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002450 if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002451 VTs.push_back(VT);
2452 }
2453 if (Load)
Dan Gohman8181bd12008-07-27 21:46:04 +00002454 BeforeOps.push_back(SDValue(Load, 0));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002455 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
Dale Johannesen913ba762009-02-06 01:31:28 +00002456 SDNode *NewNode= DAG.getTargetNode(Opc, dl, VTs, &BeforeOps[0],
2457 BeforeOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002458 NewNodes.push_back(NewNode);
2459
2460 // Emit the store instruction.
2461 if (FoldedStore) {
2462 AddrOps.pop_back();
Dan Gohman8181bd12008-07-27 21:46:04 +00002463 AddrOps.push_back(SDValue(NewNode, 0));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002464 AddrOps.push_back(Chain);
Evan Cheng47906a22008-07-21 06:34:17 +00002465 bool isAligned = (RI.getStackAlignment() >= 16) ||
2466 RI.needsStackRealignment(MF);
Dale Johannesen913ba762009-02-06 01:31:28 +00002467 SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, isAligned), dl,
Evan Cheng47906a22008-07-21 06:34:17 +00002468 MVT::Other, &AddrOps[0], AddrOps.size());
Owen Anderson9a184ef2008-01-07 01:35:02 +00002469 NewNodes.push_back(Store);
2470 }
2471
2472 return true;
2473}
2474
2475unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2476 bool UnfoldLoad, bool UnfoldStore) const {
2477 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2478 MemOp2RegOpTable.find((unsigned*)Opc);
2479 if (I == MemOp2RegOpTable.end())
2480 return 0;
2481 bool FoldedLoad = I->second.second & (1 << 4);
2482 bool FoldedStore = I->second.second & (1 << 5);
2483 if (UnfoldLoad && !FoldedLoad)
2484 return 0;
2485 if (UnfoldStore && !FoldedStore)
2486 return 0;
2487 return I->second.first;
2488}
2489
Dan Gohman46b948e2008-10-16 01:49:15 +00002490bool X86InstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002491 if (MBB.empty()) return false;
2492
2493 switch (MBB.back().getOpcode()) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002494 case X86::TCRETURNri:
2495 case X86::TCRETURNdi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002496 case X86::RET: // Return.
2497 case X86::RETI:
2498 case X86::TAILJMPd:
2499 case X86::TAILJMPr:
2500 case X86::TAILJMPm:
2501 case X86::JMP: // Uncond branch.
2502 case X86::JMP32r: // Indirect branch.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002503 case X86::JMP64r: // Indirect branch (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002504 case X86::JMP32m: // Indirect branch through mem.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002505 case X86::JMP64m: // Indirect branch through mem (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002506 return true;
2507 default: return false;
2508 }
2509}
2510
2511bool X86InstrInfo::
Owen Andersond131b5b2008-08-14 22:49:33 +00002512ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002513 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
Evan Chenge3f1a412008-08-29 23:21:31 +00002514 X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
Dan Gohman6a00fcb2008-10-21 03:29:32 +00002515 if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
2516 return true;
Evan Chenge3f1a412008-08-29 23:21:31 +00002517 Cond[0].setImm(GetOppositeBranchCondition(CC));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002518 return false;
2519}
2520
Evan Cheng0e4a5a92008-10-27 07:14:50 +00002521bool X86InstrInfo::
Evan Chengf5a8a362009-02-06 17:17:30 +00002522isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
2523 // FIXME: Return false for x87 stack register classes for now. We can't
Evan Cheng0e4a5a92008-10-27 07:14:50 +00002524 // allow any loads of these registers before FpGet_ST0_80.
Evan Chengf5a8a362009-02-06 17:17:30 +00002525 return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
2526 RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
Evan Cheng0e4a5a92008-10-27 07:14:50 +00002527}
2528
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002529unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
2530 switch (Desc->TSFlags & X86II::ImmMask) {
2531 case X86II::Imm8: return 1;
2532 case X86II::Imm16: return 2;
2533 case X86II::Imm32: return 4;
2534 case X86II::Imm64: return 8;
2535 default: assert(0 && "Immediate size not set!");
2536 return 0;
2537 }
2538}
2539
2540/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2541/// e.g. r8, xmm8, etc.
2542bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002543 if (!MO.isReg()) return false;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002544 switch (MO.getReg()) {
2545 default: break;
2546 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
2547 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
2548 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
2549 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
2550 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
2551 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
2552 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
2553 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
2554 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
2555 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2556 return true;
2557 }
2558 return false;
2559}
2560
2561
2562/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2563/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2564/// size, and 3) use of X86-64 extended registers.
2565unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
2566 unsigned REX = 0;
2567 const TargetInstrDesc &Desc = MI.getDesc();
2568
2569 // Pseudo instructions do not need REX prefix byte.
2570 if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
2571 return 0;
2572 if (Desc.TSFlags & X86II::REX_W)
2573 REX |= 1 << 3;
2574
2575 unsigned NumOps = Desc.getNumOperands();
2576 if (NumOps) {
2577 bool isTwoAddr = NumOps > 1 &&
2578 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
2579
2580 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2581 unsigned i = isTwoAddr ? 1 : 0;
2582 for (unsigned e = NumOps; i != e; ++i) {
2583 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002584 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002585 unsigned Reg = MO.getReg();
2586 if (isX86_64NonExtLowByteReg(Reg))
2587 REX |= 0x40;
2588 }
2589 }
2590
2591 switch (Desc.TSFlags & X86II::FormMask) {
2592 case X86II::MRMInitReg:
2593 if (isX86_64ExtendedReg(MI.getOperand(0)))
2594 REX |= (1 << 0) | (1 << 2);
2595 break;
2596 case X86II::MRMSrcReg: {
2597 if (isX86_64ExtendedReg(MI.getOperand(0)))
2598 REX |= 1 << 2;
2599 i = isTwoAddr ? 2 : 1;
2600 for (unsigned e = NumOps; i != e; ++i) {
2601 const MachineOperand& MO = MI.getOperand(i);
2602 if (isX86_64ExtendedReg(MO))
2603 REX |= 1 << 0;
2604 }
2605 break;
2606 }
2607 case X86II::MRMSrcMem: {
2608 if (isX86_64ExtendedReg(MI.getOperand(0)))
2609 REX |= 1 << 2;
2610 unsigned Bit = 0;
2611 i = isTwoAddr ? 2 : 1;
2612 for (; i != NumOps; ++i) {
2613 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002614 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002615 if (isX86_64ExtendedReg(MO))
2616 REX |= 1 << Bit;
2617 Bit++;
2618 }
2619 }
2620 break;
2621 }
2622 case X86II::MRM0m: case X86II::MRM1m:
2623 case X86II::MRM2m: case X86II::MRM3m:
2624 case X86II::MRM4m: case X86II::MRM5m:
2625 case X86II::MRM6m: case X86II::MRM7m:
2626 case X86II::MRMDestMem: {
2627 unsigned e = isTwoAddr ? 5 : 4;
2628 i = isTwoAddr ? 1 : 0;
2629 if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
2630 REX |= 1 << 2;
2631 unsigned Bit = 0;
2632 for (; i != e; ++i) {
2633 const MachineOperand& MO = MI.getOperand(i);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002634 if (MO.isReg()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002635 if (isX86_64ExtendedReg(MO))
2636 REX |= 1 << Bit;
2637 Bit++;
2638 }
2639 }
2640 break;
2641 }
2642 default: {
2643 if (isX86_64ExtendedReg(MI.getOperand(0)))
2644 REX |= 1 << 0;
2645 i = isTwoAddr ? 2 : 1;
2646 for (unsigned e = NumOps; i != e; ++i) {
2647 const MachineOperand& MO = MI.getOperand(i);
2648 if (isX86_64ExtendedReg(MO))
2649 REX |= 1 << 2;
2650 }
2651 break;
2652 }
2653 }
2654 }
2655 return REX;
2656}
2657
2658/// sizePCRelativeBlockAddress - This method returns the size of a PC
2659/// relative block address instruction
2660///
2661static unsigned sizePCRelativeBlockAddress() {
2662 return 4;
2663}
2664
2665/// sizeGlobalAddress - Give the size of the emission of this global address
2666///
2667static unsigned sizeGlobalAddress(bool dword) {
2668 return dword ? 8 : 4;
2669}
2670
2671/// sizeConstPoolAddress - Give the size of the emission of this constant
2672/// pool address
2673///
2674static unsigned sizeConstPoolAddress(bool dword) {
2675 return dword ? 8 : 4;
2676}
2677
2678/// sizeExternalSymbolAddress - Give the size of the emission of this external
2679/// symbol
2680///
2681static unsigned sizeExternalSymbolAddress(bool dword) {
2682 return dword ? 8 : 4;
2683}
2684
2685/// sizeJumpTableAddress - Give the size of the emission of this jump
2686/// table address
2687///
2688static unsigned sizeJumpTableAddress(bool dword) {
2689 return dword ? 8 : 4;
2690}
2691
2692static unsigned sizeConstant(unsigned Size) {
2693 return Size;
2694}
2695
2696static unsigned sizeRegModRMByte(){
2697 return 1;
2698}
2699
2700static unsigned sizeSIBByte(){
2701 return 1;
2702}
2703
2704static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
2705 unsigned FinalSize = 0;
2706 // If this is a simple integer displacement that doesn't require a relocation.
2707 if (!RelocOp) {
2708 FinalSize += sizeConstant(4);
2709 return FinalSize;
2710 }
2711
2712 // Otherwise, this is something that requires a relocation.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002713 if (RelocOp->isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002714 FinalSize += sizeGlobalAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002715 } else if (RelocOp->isCPI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002716 FinalSize += sizeConstPoolAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002717 } else if (RelocOp->isJTI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002718 FinalSize += sizeJumpTableAddress(false);
2719 } else {
2720 assert(0 && "Unknown value to relocate!");
2721 }
2722 return FinalSize;
2723}
2724
2725static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
2726 bool IsPIC, bool Is64BitMode) {
2727 const MachineOperand &Op3 = MI.getOperand(Op+3);
2728 int DispVal = 0;
2729 const MachineOperand *DispForReloc = 0;
2730 unsigned FinalSize = 0;
2731
2732 // Figure out what sort of displacement we have to handle here.
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002733 if (Op3.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002734 DispForReloc = &Op3;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002735 } else if (Op3.isCPI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002736 if (Is64BitMode || IsPIC) {
2737 DispForReloc = &Op3;
2738 } else {
2739 DispVal = 1;
2740 }
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002741 } else if (Op3.isJTI()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002742 if (Is64BitMode || IsPIC) {
2743 DispForReloc = &Op3;
2744 } else {
2745 DispVal = 1;
2746 }
2747 } else {
2748 DispVal = 1;
2749 }
2750
2751 const MachineOperand &Base = MI.getOperand(Op);
2752 const MachineOperand &IndexReg = MI.getOperand(Op+2);
2753
2754 unsigned BaseReg = Base.getReg();
2755
2756 // Is a SIB byte needed?
2757 if (IndexReg.getReg() == 0 &&
2758 (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
2759 if (BaseReg == 0) { // Just a displacement?
2760 // Emit special case [disp32] encoding
2761 ++FinalSize;
2762 FinalSize += getDisplacementFieldSize(DispForReloc);
2763 } else {
2764 unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
2765 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
2766 // Emit simple indirect register encoding... [EAX] f.e.
2767 ++FinalSize;
2768 // Be pessimistic and assume it's a disp32, not a disp8
2769 } else {
2770 // Emit the most general non-SIB encoding: [REG+disp32]
2771 ++FinalSize;
2772 FinalSize += getDisplacementFieldSize(DispForReloc);
2773 }
2774 }
2775
2776 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
2777 assert(IndexReg.getReg() != X86::ESP &&
2778 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
2779
2780 bool ForceDisp32 = false;
2781 if (BaseReg == 0 || DispForReloc) {
2782 // Emit the normal disp32 encoding.
2783 ++FinalSize;
2784 ForceDisp32 = true;
2785 } else {
2786 ++FinalSize;
2787 }
2788
2789 FinalSize += sizeSIBByte();
2790
2791 // Do we need to output a displacement?
2792 if (DispVal != 0 || ForceDisp32) {
2793 FinalSize += getDisplacementFieldSize(DispForReloc);
2794 }
2795 }
2796 return FinalSize;
2797}
2798
2799
2800static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
2801 const TargetInstrDesc *Desc,
2802 bool IsPIC, bool Is64BitMode) {
2803
2804 unsigned Opcode = Desc->Opcode;
2805 unsigned FinalSize = 0;
2806
2807 // Emit the lock opcode prefix as needed.
2808 if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
2809
Anton Korobeynikov4b7be802008-10-12 10:30:11 +00002810 // Emit segment overrid opcode prefix as needed.
2811 switch (Desc->TSFlags & X86II::SegOvrMask) {
2812 case X86II::FS:
2813 case X86II::GS:
2814 ++FinalSize;
2815 break;
2816 default: assert(0 && "Invalid segment!");
2817 case 0: break; // No segment override!
2818 }
2819
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002820 // Emit the repeat opcode prefix as needed.
2821 if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
2822
2823 // Emit the operand size opcode prefix as needed.
2824 if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
2825
2826 // Emit the address size opcode prefix as needed.
2827 if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
2828
2829 bool Need0FPrefix = false;
2830 switch (Desc->TSFlags & X86II::Op0Mask) {
2831 case X86II::TB: // Two-byte opcode prefix
2832 case X86II::T8: // 0F 38
2833 case X86II::TA: // 0F 3A
2834 Need0FPrefix = true;
2835 break;
2836 case X86II::REP: break; // already handled.
2837 case X86II::XS: // F3 0F
2838 ++FinalSize;
2839 Need0FPrefix = true;
2840 break;
2841 case X86II::XD: // F2 0F
2842 ++FinalSize;
2843 Need0FPrefix = true;
2844 break;
2845 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
2846 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
2847 ++FinalSize;
2848 break; // Two-byte opcode prefix
2849 default: assert(0 && "Invalid prefix!");
2850 case 0: break; // No prefix!
2851 }
2852
2853 if (Is64BitMode) {
2854 // REX prefix
2855 unsigned REX = X86InstrInfo::determineREX(MI);
2856 if (REX)
2857 ++FinalSize;
2858 }
2859
2860 // 0x0F escape code must be emitted just before the opcode.
2861 if (Need0FPrefix)
2862 ++FinalSize;
2863
2864 switch (Desc->TSFlags & X86II::Op0Mask) {
2865 case X86II::T8: // 0F 38
2866 ++FinalSize;
2867 break;
2868 case X86II::TA: // 0F 3A
2869 ++FinalSize;
2870 break;
2871 }
2872
2873 // If this is a two-address instruction, skip one of the register operands.
2874 unsigned NumOps = Desc->getNumOperands();
2875 unsigned CurOp = 0;
2876 if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
2877 CurOp++;
2878
2879 switch (Desc->TSFlags & X86II::FormMask) {
2880 default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
2881 case X86II::Pseudo:
2882 // Remember the current PC offset, this is the PIC relocation
2883 // base address.
2884 switch (Opcode) {
2885 default:
2886 break;
2887 case TargetInstrInfo::INLINEASM: {
2888 const MachineFunction *MF = MI.getParent()->getParent();
2889 const char *AsmStr = MI.getOperand(0).getSymbolName();
2890 const TargetAsmInfo* AI = MF->getTarget().getTargetAsmInfo();
2891 FinalSize += AI->getInlineAsmLength(AsmStr);
2892 break;
2893 }
Dan Gohmanfa607c92008-07-01 00:05:16 +00002894 case TargetInstrInfo::DBG_LABEL:
2895 case TargetInstrInfo::EH_LABEL:
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002896 break;
2897 case TargetInstrInfo::IMPLICIT_DEF:
2898 case TargetInstrInfo::DECLARE:
2899 case X86::DWARF_LOC:
2900 case X86::FP_REG_KILL:
2901 break;
2902 case X86::MOVPC32r: {
2903 // This emits the "call" portion of this pseudo instruction.
2904 ++FinalSize;
2905 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2906 break;
2907 }
Nicolas Geoffray81580792008-10-25 15:22:06 +00002908 case X86::TLS_tp:
2909 case X86::TLS_gs_ri:
2910 FinalSize += 2;
2911 FinalSize += sizeGlobalAddress(false);
2912 break;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002913 }
2914 CurOp = NumOps;
2915 break;
2916 case X86II::RawFrm:
2917 ++FinalSize;
2918
2919 if (CurOp != NumOps) {
2920 const MachineOperand &MO = MI.getOperand(CurOp++);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002921 if (MO.isMBB()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002922 FinalSize += sizePCRelativeBlockAddress();
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002923 } else if (MO.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002924 FinalSize += sizeGlobalAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002925 } else if (MO.isSymbol()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002926 FinalSize += sizeExternalSymbolAddress(false);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002927 } else if (MO.isImm()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002928 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2929 } else {
2930 assert(0 && "Unknown RawFrm operand!");
2931 }
2932 }
2933 break;
2934
2935 case X86II::AddRegFrm:
2936 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002937 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002938
2939 if (CurOp != NumOps) {
2940 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2941 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002942 if (MO1.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002943 FinalSize += sizeConstant(Size);
2944 else {
2945 bool dword = false;
2946 if (Opcode == X86::MOV64ri)
2947 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002948 if (MO1.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002949 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002950 } else if (MO1.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002951 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002952 else if (MO1.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002953 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00002954 else if (MO1.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002955 FinalSize += sizeJumpTableAddress(dword);
2956 }
2957 }
2958 break;
2959
2960 case X86II::MRMDestReg: {
2961 ++FinalSize;
2962 FinalSize += sizeRegModRMByte();
2963 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002964 if (CurOp != NumOps) {
2965 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002966 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002967 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002968 break;
2969 }
2970 case X86II::MRMDestMem: {
2971 ++FinalSize;
2972 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2973 CurOp += 5;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002974 if (CurOp != NumOps) {
2975 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002976 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002977 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002978 break;
2979 }
2980
2981 case X86II::MRMSrcReg:
2982 ++FinalSize;
2983 FinalSize += sizeRegModRMByte();
2984 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002985 if (CurOp != NumOps) {
2986 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002987 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002988 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002989 break;
2990
2991 case X86II::MRMSrcMem: {
2992
2993 ++FinalSize;
2994 FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
2995 CurOp += 5;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002996 if (CurOp != NumOps) {
2997 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002998 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002999 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003000 break;
3001 }
3002
3003 case X86II::MRM0r: case X86II::MRM1r:
3004 case X86II::MRM2r: case X86II::MRM3r:
3005 case X86II::MRM4r: case X86II::MRM5r:
3006 case X86II::MRM6r: case X86II::MRM7r:
3007 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00003008 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003009 FinalSize += sizeRegModRMByte();
3010
3011 if (CurOp != NumOps) {
3012 const MachineOperand &MO1 = MI.getOperand(CurOp++);
3013 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003014 if (MO1.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003015 FinalSize += sizeConstant(Size);
3016 else {
3017 bool dword = false;
3018 if (Opcode == X86::MOV64ri32)
3019 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003020 if (MO1.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003021 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003022 } else if (MO1.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003023 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003024 else if (MO1.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003025 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003026 else if (MO1.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003027 FinalSize += sizeJumpTableAddress(dword);
3028 }
3029 }
3030 break;
3031
3032 case X86II::MRM0m: case X86II::MRM1m:
3033 case X86II::MRM2m: case X86II::MRM3m:
3034 case X86II::MRM4m: case X86II::MRM5m:
3035 case X86II::MRM6m: case X86II::MRM7m: {
3036
3037 ++FinalSize;
3038 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
3039 CurOp += 4;
3040
3041 if (CurOp != NumOps) {
3042 const MachineOperand &MO = MI.getOperand(CurOp++);
3043 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003044 if (MO.isImm())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003045 FinalSize += sizeConstant(Size);
3046 else {
3047 bool dword = false;
3048 if (Opcode == X86::MOV64mi32)
3049 dword = true;
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003050 if (MO.isGlobal()) {
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003051 FinalSize += sizeGlobalAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003052 } else if (MO.isSymbol())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003053 FinalSize += sizeExternalSymbolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003054 else if (MO.isCPI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003055 FinalSize += sizeConstPoolAddress(dword);
Dan Gohmanb9f4fa72008-10-03 15:45:36 +00003056 else if (MO.isJTI())
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003057 FinalSize += sizeJumpTableAddress(dword);
3058 }
3059 }
3060 break;
3061 }
3062
3063 case X86II::MRMInitReg:
3064 ++FinalSize;
3065 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
3066 FinalSize += sizeRegModRMByte();
3067 ++CurOp;
3068 break;
3069 }
3070
3071 if (!Desc->isVariadic() && CurOp != NumOps) {
3072 cerr << "Cannot determine size: ";
3073 MI.dump();
3074 cerr << '\n';
3075 abort();
3076 }
3077
3078
3079 return FinalSize;
3080}
3081
3082
3083unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
3084 const TargetInstrDesc &Desc = MI->getDesc();
3085 bool IsPIC = (TM.getRelocationModel() == Reloc::PIC_);
Dan Gohmanb41dfba2008-05-14 01:58:56 +00003086 bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00003087 unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
3088 if (Desc.getOpcode() == X86::MOVPC32r) {
3089 Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
3090 }
3091 return Size;
3092}
Dan Gohmanb60482f2008-09-23 18:22:58 +00003093
Dan Gohman882ab732008-09-30 00:58:23 +00003094/// getGlobalBaseReg - Return a virtual register initialized with the
3095/// the global base register value. Output instructions required to
3096/// initialize the register in the function entry block, if necessary.
Dan Gohmanb60482f2008-09-23 18:22:58 +00003097///
Dan Gohman882ab732008-09-30 00:58:23 +00003098unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
3099 assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
3100 "X86-64 PIC uses RIP relative addressing");
3101
3102 X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
3103 unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
3104 if (GlobalBaseReg != 0)
3105 return GlobalBaseReg;
3106
Dan Gohmanb60482f2008-09-23 18:22:58 +00003107 // Insert the set of GlobalBaseReg into the first MBB of the function
3108 MachineBasicBlock &FirstMBB = MF->front();
3109 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
Bill Wendling13ee2e42009-02-11 21:51:19 +00003110 DebugLoc DL = DebugLoc::getUnknownLoc();
3111 if (MBBI != FirstMBB.end()) DL = MBBI->getDebugLoc();
Dan Gohmanb60482f2008-09-23 18:22:58 +00003112 MachineRegisterInfo &RegInfo = MF->getRegInfo();
3113 unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
3114
3115 const TargetInstrInfo *TII = TM.getInstrInfo();
3116 // Operand of MovePCtoStack is completely ignored by asm printer. It's
3117 // only used in JIT code emission as displacement to pc.
Bill Wendling13ee2e42009-02-11 21:51:19 +00003118 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC)
3119 .addImm(0);
Dan Gohmanb60482f2008-09-23 18:22:58 +00003120
3121 // If we're using vanilla 'GOT' PIC style, we should use relative addressing
3122 // not to pc, but to _GLOBAL_ADDRESS_TABLE_ external
3123 if (TM.getRelocationModel() == Reloc::PIC_ &&
3124 TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
Dan Gohman882ab732008-09-30 00:58:23 +00003125 GlobalBaseReg =
Dan Gohmanb60482f2008-09-23 18:22:58 +00003126 RegInfo.createVirtualRegister(X86::GR32RegisterClass);
Bill Wendling13ee2e42009-02-11 21:51:19 +00003127 BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
Dan Gohmanb60482f2008-09-23 18:22:58 +00003128 .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_");
Dan Gohman882ab732008-09-30 00:58:23 +00003129 } else {
3130 GlobalBaseReg = PC;
Dan Gohmanb60482f2008-09-23 18:22:58 +00003131 }
3132
Dan Gohman882ab732008-09-30 00:58:23 +00003133 X86FI->setGlobalBaseReg(GlobalBaseReg);
3134 return GlobalBaseReg;
Dan Gohmanb60482f2008-09-23 18:22:58 +00003135}