blob: d905b30d0b59035ca712b63ae22303bda8619c0c [file] [log] [blame]
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001.. _advanced:
2
3Advanced topics
4###############
5
Wenzel Jakob93296692015-10-13 23:21:54 +02006For brevity, the rest of this chapter assumes that the following two lines are
7present:
8
9.. code-block:: cpp
10
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020011 #include <pybind11/pybind11.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020012
Wenzel Jakob10e62e12015-10-15 22:46:07 +020013 namespace py = pybind11;
Wenzel Jakob93296692015-10-13 23:21:54 +020014
Wenzel Jakobde3ad072016-02-02 11:38:21 +010015Exporting constants and mutable objects
16=======================================
17
18To expose a C++ constant, use the ``attr`` function to register it in a module
19as shown below. The ``int_`` class is one of many small wrapper objects defined
20in ``pybind11/pytypes.h``. General objects (including integers) can also be
21converted using the function ``cast``.
22
23.. code-block:: cpp
24
25 PYBIND11_PLUGIN(example) {
26 py::module m("example", "pybind11 example plugin");
27 m.attr("MY_CONSTANT") = py::int_(123);
28 m.attr("MY_CONSTANT_2") = py::cast(new MyObject());
29 }
30
Wenzel Jakob28f98aa2015-10-13 02:57:16 +020031Operator overloading
32====================
33
Wenzel Jakob93296692015-10-13 23:21:54 +020034Suppose that we're given the following ``Vector2`` class with a vector addition
35and scalar multiplication operation, all implemented using overloaded operators
36in C++.
37
38.. code-block:: cpp
39
40 class Vector2 {
41 public:
42 Vector2(float x, float y) : x(x), y(y) { }
43
Wenzel Jakob93296692015-10-13 23:21:54 +020044 Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
45 Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
46 Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
47 Vector2& operator*=(float v) { x *= v; y *= v; return *this; }
48
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020049 friend Vector2 operator*(float f, const Vector2 &v) {
50 return Vector2(f * v.x, f * v.y);
51 }
Wenzel Jakob93296692015-10-13 23:21:54 +020052
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020053 std::string toString() const {
54 return "[" + std::to_string(x) + ", " + std::to_string(y) + "]";
55 }
Wenzel Jakob93296692015-10-13 23:21:54 +020056 private:
57 float x, y;
58 };
59
60The following snippet shows how the above operators can be conveniently exposed
61to Python.
62
63.. code-block:: cpp
64
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020065 #include <pybind11/operators.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020066
Wenzel Jakobb1b71402015-10-18 16:48:30 +020067 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020068 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +020069
70 py::class_<Vector2>(m, "Vector2")
71 .def(py::init<float, float>())
72 .def(py::self + py::self)
73 .def(py::self += py::self)
74 .def(py::self *= float())
75 .def(float() * py::self)
76 .def("__repr__", &Vector2::toString);
77
78 return m.ptr();
79 }
80
81Note that a line like
82
83.. code-block:: cpp
84
85 .def(py::self * float())
86
87is really just short hand notation for
88
89.. code-block:: cpp
90
91 .def("__mul__", [](const Vector2 &a, float b) {
92 return a * b;
Wenzel Jakob382484a2016-09-10 15:28:37 +090093 }, py::is_operator())
Wenzel Jakob93296692015-10-13 23:21:54 +020094
95This can be useful for exposing additional operators that don't exist on the
Wenzel Jakob382484a2016-09-10 15:28:37 +090096C++ side, or to perform other types of customization. The ``py::is_operator``
97flag marker is needed to inform pybind11 that this is an operator, which
98returns ``NotImplemented`` when invoked with incompatible arguments rather than
99throwing a type error.
Wenzel Jakob93296692015-10-13 23:21:54 +0200100
101.. note::
102
103 To use the more convenient ``py::self`` notation, the additional
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200104 header file :file:`pybind11/operators.h` must be included.
Wenzel Jakob93296692015-10-13 23:21:54 +0200105
106.. seealso::
107
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200108 The file :file:`tests/test_operator_overloading.cpp` contains a
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400109 complete example that demonstrates how to work with overloaded operators in
110 more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +0200111
112Callbacks and passing anonymous functions
113=========================================
114
115The C++11 standard brought lambda functions and the generic polymorphic
116function wrapper ``std::function<>`` to the C++ programming language, which
117enable powerful new ways of working with functions. Lambda functions come in
118two flavors: stateless lambda function resemble classic function pointers that
119link to an anonymous piece of code, while stateful lambda functions
120additionally depend on captured variables that are stored in an anonymous
121*lambda closure object*.
122
123Here is a simple example of a C++ function that takes an arbitrary function
124(stateful or stateless) with signature ``int -> int`` as an argument and runs
125it with the value 10.
126
127.. code-block:: cpp
128
129 int func_arg(const std::function<int(int)> &f) {
130 return f(10);
131 }
132
133The example below is more involved: it takes a function of signature ``int -> int``
134and returns another function of the same kind. The return value is a stateful
135lambda function, which stores the value ``f`` in the capture object and adds 1 to
136its return value upon execution.
137
138.. code-block:: cpp
139
140 std::function<int(int)> func_ret(const std::function<int(int)> &f) {
141 return [f](int i) {
142 return f(i) + 1;
143 };
144 }
145
Brad Harmon835fc062016-06-16 13:19:15 -0500146This example demonstrates using python named parameters in C++ callbacks which
147requires using ``py::cpp_function`` as a wrapper. Usage is similar to defining
148methods of classes:
149
150.. code-block:: cpp
151
152 py::cpp_function func_cpp() {
153 return py::cpp_function([](int i) { return i+1; },
154 py::arg("number"));
155 }
156
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200157After including the extra header file :file:`pybind11/functional.h`, it is almost
Brad Harmon835fc062016-06-16 13:19:15 -0500158trivial to generate binding code for all of these functions.
Wenzel Jakob93296692015-10-13 23:21:54 +0200159
160.. code-block:: cpp
161
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200162 #include <pybind11/functional.h>
Wenzel Jakob93296692015-10-13 23:21:54 +0200163
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200164 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200165 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200166
167 m.def("func_arg", &func_arg);
168 m.def("func_ret", &func_ret);
Brad Harmon835fc062016-06-16 13:19:15 -0500169 m.def("func_cpp", &func_cpp);
Wenzel Jakob93296692015-10-13 23:21:54 +0200170
171 return m.ptr();
172 }
173
174The following interactive session shows how to call them from Python.
175
Wenzel Jakob99279f72016-06-03 11:19:29 +0200176.. code-block:: pycon
Wenzel Jakob93296692015-10-13 23:21:54 +0200177
178 $ python
179 >>> import example
180 >>> def square(i):
181 ... return i * i
182 ...
183 >>> example.func_arg(square)
184 100L
185 >>> square_plus_1 = example.func_ret(square)
186 >>> square_plus_1(4)
187 17L
Brad Harmon835fc062016-06-16 13:19:15 -0500188 >>> plus_1 = func_cpp()
189 >>> plus_1(number=43)
190 44L
Wenzel Jakob93296692015-10-13 23:21:54 +0200191
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100192.. warning::
193
194 Keep in mind that passing a function from C++ to Python (or vice versa)
195 will instantiate a piece of wrapper code that translates function
Wenzel Jakob954b7932016-07-10 10:13:18 +0200196 invocations between the two languages. Naturally, this translation
197 increases the computational cost of each function call somewhat. A
198 problematic situation can arise when a function is copied back and forth
199 between Python and C++ many times in a row, in which case the underlying
200 wrappers will accumulate correspondingly. The resulting long sequence of
201 C++ -> Python -> C++ -> ... roundtrips can significantly decrease
202 performance.
203
204 There is one exception: pybind11 detects case where a stateless function
205 (i.e. a function pointer or a lambda function without captured variables)
206 is passed as an argument to another C++ function exposed in Python. In this
207 case, there is no overhead. Pybind11 will extract the underlying C++
208 function pointer from the wrapped function to sidestep a potential C++ ->
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200209 Python -> C++ roundtrip. This is demonstrated in :file:`tests/test_callbacks.cpp`.
Wenzel Jakob954b7932016-07-10 10:13:18 +0200210
211.. note::
212
213 This functionality is very useful when generating bindings for callbacks in
214 C++ libraries (e.g. GUI libraries, asynchronous networking libraries, etc.).
215
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200216 The file :file:`tests/test_callbacks.cpp` contains a complete example
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400217 that demonstrates how to work with callbacks and anonymous functions in
218 more detail.
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100219
Wenzel Jakob8e5dceb2016-09-11 20:00:40 +0900220.. _overriding_virtuals:
221
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200222Overriding virtual functions in Python
223======================================
224
Wenzel Jakob93296692015-10-13 23:21:54 +0200225Suppose that a C++ class or interface has a virtual function that we'd like to
226to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is
227given as a specific example of how one would do this with traditional C++
228code).
229
230.. code-block:: cpp
231
232 class Animal {
233 public:
234 virtual ~Animal() { }
235 virtual std::string go(int n_times) = 0;
236 };
237
238 class Dog : public Animal {
239 public:
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400240 std::string go(int n_times) override {
Wenzel Jakob93296692015-10-13 23:21:54 +0200241 std::string result;
242 for (int i=0; i<n_times; ++i)
243 result += "woof! ";
244 return result;
245 }
246 };
247
248Let's also suppose that we are given a plain function which calls the
249function ``go()`` on an arbitrary ``Animal`` instance.
250
251.. code-block:: cpp
252
253 std::string call_go(Animal *animal) {
254 return animal->go(3);
255 }
256
257Normally, the binding code for these classes would look as follows:
258
259.. code-block:: cpp
260
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200261 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200262 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200263
264 py::class_<Animal> animal(m, "Animal");
265 animal
266 .def("go", &Animal::go);
267
268 py::class_<Dog>(m, "Dog", animal)
269 .def(py::init<>());
270
271 m.def("call_go", &call_go);
272
273 return m.ptr();
274 }
275
276However, these bindings are impossible to extend: ``Animal`` is not
277constructible, and we clearly require some kind of "trampoline" that
278redirects virtual calls back to Python.
279
280Defining a new type of ``Animal`` from within Python is possible but requires a
281helper class that is defined as follows:
282
283.. code-block:: cpp
284
285 class PyAnimal : public Animal {
286 public:
287 /* Inherit the constructors */
288 using Animal::Animal;
289
290 /* Trampoline (need one for each virtual function) */
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400291 std::string go(int n_times) override {
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200292 PYBIND11_OVERLOAD_PURE(
Wenzel Jakob93296692015-10-13 23:21:54 +0200293 std::string, /* Return type */
294 Animal, /* Parent class */
295 go, /* Name of function */
296 n_times /* Argument(s) */
297 );
298 }
299 };
300
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200301The macro :func:`PYBIND11_OVERLOAD_PURE` should be used for pure virtual
302functions, and :func:`PYBIND11_OVERLOAD` should be used for functions which have
Jason Rhinelander7dfb9322016-09-08 14:49:43 -0400303a default implementation. There are also two alternate macros
304:func:`PYBIND11_OVERLOAD_PURE_NAME` and :func:`PYBIND11_OVERLOAD_NAME` which
305take a string-valued name argument between the *Parent class* and *Name of the
306function* slots. This is useful when the C++ and Python versions of the
307function have different names, e.g. ``operator()`` vs ``__call__``.
Wenzel Jakob1e3be732016-05-24 23:42:05 +0200308
309The binding code also needs a few minor adaptations (highlighted):
Wenzel Jakob93296692015-10-13 23:21:54 +0200310
311.. code-block:: cpp
312 :emphasize-lines: 4,6,7
313
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200314 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200315 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200316
Jason Rhinelander5fffe202016-09-06 12:17:06 -0400317 py::class_<Animal, PyAnimal /* <--- trampoline*/> animal(m, "Animal");
Wenzel Jakob93296692015-10-13 23:21:54 +0200318 animal
Wenzel Jakob93296692015-10-13 23:21:54 +0200319 .def(py::init<>())
320 .def("go", &Animal::go);
321
322 py::class_<Dog>(m, "Dog", animal)
323 .def(py::init<>());
324
325 m.def("call_go", &call_go);
326
327 return m.ptr();
328 }
329
Jason Rhinelander6eca0832016-09-08 13:25:45 -0400330Importantly, pybind11 is made aware of the trampoline helper class by
331specifying it as an extra template argument to :class:`class_`. (This can also
332be combined with other template arguments such as a custom holder type; the
333order of template types does not matter). Following this, we are able to
Jason Rhinelander5fffe202016-09-06 12:17:06 -0400334define a constructor as usual.
Wenzel Jakob93296692015-10-13 23:21:54 +0200335
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400336Note, however, that the above is sufficient for allowing python classes to
337extend ``Animal``, but not ``Dog``: see ref:`virtual_and_inheritance` for the
338necessary steps required to providing proper overload support for inherited
339classes.
340
Wenzel Jakob93296692015-10-13 23:21:54 +0200341The Python session below shows how to override ``Animal::go`` and invoke it via
342a virtual method call.
343
Wenzel Jakob99279f72016-06-03 11:19:29 +0200344.. code-block:: pycon
Wenzel Jakob93296692015-10-13 23:21:54 +0200345
346 >>> from example import *
347 >>> d = Dog()
348 >>> call_go(d)
349 u'woof! woof! woof! '
350 >>> class Cat(Animal):
351 ... def go(self, n_times):
352 ... return "meow! " * n_times
353 ...
354 >>> c = Cat()
355 >>> call_go(c)
356 u'meow! meow! meow! '
357
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200358Please take a look at the :ref:`macro_notes` before using this feature.
Wenzel Jakobbd986fe2016-05-21 10:48:30 +0200359
Jason Rhinelander7dfb9322016-09-08 14:49:43 -0400360.. note::
361
362 When the overridden type returns a reference or pointer to a type that
363 pybind11 converts from Python (for example, numeric values, std::string,
364 and other built-in value-converting types), there are some limitations to
365 be aware of:
366
367 - because in these cases there is no C++ variable to reference (the value
368 is stored in the referenced Python variable), pybind11 provides one in
369 the PYBIND11_OVERLOAD macros (when needed) with static storage duration.
370 Note that this means that invoking the overloaded method on *any*
371 instance will change the referenced value stored in *all* instances of
372 that type.
373
374 - Attempts to modify a non-const reference will not have the desired
375 effect: it will change only the static cache variable, but this change
376 will not propagate to underlying Python instance, and the change will be
377 replaced the next time the overload is invoked.
378
Wenzel Jakob93296692015-10-13 23:21:54 +0200379.. seealso::
380
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200381 The file :file:`tests/test_virtual_functions.cpp` contains a complete
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400382 example that demonstrates how to override virtual functions using pybind11
383 in more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +0200384
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400385.. _virtual_and_inheritance:
386
387Combining virtual functions and inheritance
388===========================================
389
390When combining virtual methods with inheritance, you need to be sure to provide
391an override for each method for which you want to allow overrides from derived
392python classes. For example, suppose we extend the above ``Animal``/``Dog``
393example as follows:
394
395.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200396
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400397 class Animal {
398 public:
399 virtual std::string go(int n_times) = 0;
400 virtual std::string name() { return "unknown"; }
401 };
402 class Dog : public class Animal {
403 public:
404 std::string go(int n_times) override {
405 std::string result;
406 for (int i=0; i<n_times; ++i)
407 result += bark() + " ";
408 return result;
409 }
410 virtual std::string bark() { return "woof!"; }
411 };
412
413then the trampoline class for ``Animal`` must, as described in the previous
414section, override ``go()`` and ``name()``, but in order to allow python code to
415inherit properly from ``Dog``, we also need a trampoline class for ``Dog`` that
416overrides both the added ``bark()`` method *and* the ``go()`` and ``name()``
417methods inherited from ``Animal`` (even though ``Dog`` doesn't directly
418override the ``name()`` method):
419
420.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200421
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400422 class PyAnimal : public Animal {
423 public:
424 using Animal::Animal; // Inherit constructors
425 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Animal, go, n_times); }
426 std::string name() override { PYBIND11_OVERLOAD(std::string, Animal, name, ); }
427 };
428 class PyDog : public Dog {
429 public:
430 using Dog::Dog; // Inherit constructors
431 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Dog, go, n_times); }
432 std::string name() override { PYBIND11_OVERLOAD(std::string, Dog, name, ); }
433 std::string bark() override { PYBIND11_OVERLOAD(std::string, Dog, bark, ); }
434 };
435
436A registered class derived from a pybind11-registered class with virtual
437methods requires a similar trampoline class, *even if* it doesn't explicitly
438declare or override any virtual methods itself:
439
440.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200441
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400442 class Husky : public Dog {};
443 class PyHusky : public Husky {
444 using Dog::Dog; // Inherit constructors
445 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Husky, go, n_times); }
446 std::string name() override { PYBIND11_OVERLOAD(std::string, Husky, name, ); }
447 std::string bark() override { PYBIND11_OVERLOAD(std::string, Husky, bark, ); }
448 };
449
450There is, however, a technique that can be used to avoid this duplication
451(which can be especially helpful for a base class with several virtual
452methods). The technique involves using template trampoline classes, as
453follows:
454
455.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200456
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400457 template <class AnimalBase = Animal> class PyAnimal : public AnimalBase {
458 using AnimalBase::AnimalBase; // Inherit constructors
459 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, AnimalBase, go, n_times); }
460 std::string name() override { PYBIND11_OVERLOAD(std::string, AnimalBase, name, ); }
461 };
462 template <class DogBase = Dog> class PyDog : public PyAnimal<DogBase> {
463 using PyAnimal<DogBase>::PyAnimal; // Inherit constructors
464 // Override PyAnimal's pure virtual go() with a non-pure one:
465 std::string go(int n_times) override { PYBIND11_OVERLOAD(std::string, DogBase, go, n_times); }
466 std::string bark() override { PYBIND11_OVERLOAD(std::string, DogBase, bark, ); }
467 };
468
469This technique has the advantage of requiring just one trampoline method to be
470declared per virtual method and pure virtual method override. It does,
471however, require the compiler to generate at least as many methods (and
472possibly more, if both pure virtual and overridden pure virtual methods are
473exposed, as above).
474
475The classes are then registered with pybind11 using:
476
477.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200478
Jason Rhinelander5fffe202016-09-06 12:17:06 -0400479 py::class_<Animal, PyAnimal<>> animal(m, "Animal");
480 py::class_<Dog, PyDog<>> dog(m, "Dog");
481 py::class_<Husky, PyDog<Husky>> husky(m, "Husky");
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400482 // ... add animal, dog, husky definitions
483
484Note that ``Husky`` did not require a dedicated trampoline template class at
485all, since it neither declares any new virtual methods nor provides any pure
486virtual method implementations.
487
488With either the repeated-virtuals or templated trampoline methods in place, you
489can now create a python class that inherits from ``Dog``:
490
491.. code-block:: python
492
493 class ShihTzu(Dog):
494 def bark(self):
495 return "yip!"
496
497.. seealso::
498
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200499 See the file :file:`tests/test_virtual_functions.cpp` for complete examples
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400500 using both the duplication and templated trampoline approaches.
501
Jason Rhinelanderec62d972016-09-09 02:42:51 -0400502Extended trampoline class functionality
503=======================================
504
505The trampoline classes described in the previous sections are, by default, only
506initialized when needed. More specifically, they are initialized when a python
507class actually inherits from a registered type (instead of merely creating an
508instance of the registered type), or when a registered constructor is only
509valid for the trampoline class but not the registered class. This is primarily
510for performance reasons: when the trampoline class is not needed for anything
511except virtual method dispatching, not initializing the trampoline class
512improves performance by avoiding needing to do a run-time check to see if the
513inheriting python instance has an overloaded method.
514
515Sometimes, however, it is useful to always initialize a trampoline class as an
516intermediate class that does more than just handle virtual method dispatching.
517For example, such a class might perform extra class initialization, extra
518destruction operations, and might define new members and methods to enable a
519more python-like interface to a class.
520
521In order to tell pybind11 that it should *always* initialize the trampoline
522class when creating new instances of a type, the class constructors should be
523declared using ``py::init_alias<Args, ...>()`` instead of the usual
524``py::init<Args, ...>()``. This forces construction via the trampoline class,
525ensuring member initialization and (eventual) destruction.
526
527.. seealso::
528
529 See the file :file:`tests/test_alias_initialization.cpp` for complete examples
530 showing both normal and forced trampoline instantiation.
531
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200532.. _macro_notes:
533
534General notes regarding convenience macros
535==========================================
536
537pybind11 provides a few convenience macros such as
538:func:`PYBIND11_MAKE_OPAQUE` and :func:`PYBIND11_DECLARE_HOLDER_TYPE`, and
539``PYBIND11_OVERLOAD_*``. Since these are "just" macros that are evaluated
540in the preprocessor (which has no concept of types), they *will* get confused
541by commas in a template argument such as ``PYBIND11_OVERLOAD(MyReturnValue<T1,
542T2>, myFunc)``. In this case, the preprocessor assumes that the comma indicates
543the beginnning of the next parameter. Use a ``typedef`` to bind the template to
544another name and use it in the macro to avoid this problem.
545
546
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100547Global Interpreter Lock (GIL)
548=============================
549
550The classes :class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be
551used to acquire and release the global interpreter lock in the body of a C++
552function call. In this way, long-running C++ code can be parallelized using
553multiple Python threads. Taking the previous section as an example, this could
554be realized as follows (important changes highlighted):
555
556.. code-block:: cpp
557 :emphasize-lines: 8,9,33,34
558
559 class PyAnimal : public Animal {
560 public:
561 /* Inherit the constructors */
562 using Animal::Animal;
563
564 /* Trampoline (need one for each virtual function) */
565 std::string go(int n_times) {
566 /* Acquire GIL before calling Python code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100567 py::gil_scoped_acquire acquire;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100568
569 PYBIND11_OVERLOAD_PURE(
570 std::string, /* Return type */
571 Animal, /* Parent class */
572 go, /* Name of function */
573 n_times /* Argument(s) */
574 );
575 }
576 };
577
578 PYBIND11_PLUGIN(example) {
579 py::module m("example", "pybind11 example plugin");
580
Jason Rhinelander5fffe202016-09-06 12:17:06 -0400581 py::class_<Animal, PyAnimal> animal(m, "Animal");
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100582 animal
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100583 .def(py::init<>())
584 .def("go", &Animal::go);
585
586 py::class_<Dog>(m, "Dog", animal)
587 .def(py::init<>());
588
589 m.def("call_go", [](Animal *animal) -> std::string {
590 /* Release GIL before calling into (potentially long-running) C++ code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100591 py::gil_scoped_release release;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100592 return call_go(animal);
593 });
594
595 return m.ptr();
596 }
597
Wenzel Jakob93296692015-10-13 23:21:54 +0200598Passing STL data structures
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200599===========================
600
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200601When including the additional header file :file:`pybind11/stl.h`, conversions
Wenzel Jakob978e3762016-04-07 18:00:41 +0200602between ``std::vector<>``, ``std::list<>``, ``std::set<>``, and ``std::map<>``
603and the Python ``list``, ``set`` and ``dict`` data structures are automatically
604enabled. The types ``std::pair<>`` and ``std::tuple<>`` are already supported
605out of the box with just the core :file:`pybind11/pybind11.h` header.
Wenzel Jakob93296692015-10-13 23:21:54 +0200606
Wenzel Jakobfe342412016-09-06 13:02:29 +0900607The major downside of these implicit conversions is that containers must be
608converted (i.e. copied) on every Python->C++ and C++->Python transition, which
609can have implications on the program semantics and performance. Please read the
610next sections for more details and alternative approaches that avoid this.
Sergey Lyskov75204182016-08-29 22:50:38 -0400611
Wenzel Jakob93296692015-10-13 23:21:54 +0200612.. note::
613
Wenzel Jakobfe342412016-09-06 13:02:29 +0900614 Arbitrary nesting of any of these types is possible.
Wenzel Jakob93296692015-10-13 23:21:54 +0200615
616.. seealso::
617
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200618 The file :file:`tests/test_python_types.cpp` contains a complete
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400619 example that demonstrates how to pass STL data types in more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +0200620
Wenzel Jakobfe342412016-09-06 13:02:29 +0900621.. _opaque:
622
623Treating STL data structures as opaque objects
624==============================================
625
626pybind11 heavily relies on a template matching mechanism to convert parameters
627and return values that are constructed from STL data types such as vectors,
628linked lists, hash tables, etc. This even works in a recursive manner, for
629instance to deal with lists of hash maps of pairs of elementary and custom
630types, etc.
631
632However, a fundamental limitation of this approach is that internal conversions
633between Python and C++ types involve a copy operation that prevents
634pass-by-reference semantics. What does this mean?
635
636Suppose we bind the following function
637
638.. code-block:: cpp
639
640 void append_1(std::vector<int> &v) {
641 v.push_back(1);
642 }
643
644and call it from Python, the following happens:
645
646.. code-block:: pycon
647
648 >>> v = [5, 6]
649 >>> append_1(v)
650 >>> print(v)
651 [5, 6]
652
653As you can see, when passing STL data structures by reference, modifications
654are not propagated back the Python side. A similar situation arises when
655exposing STL data structures using the ``def_readwrite`` or ``def_readonly``
656functions:
657
658.. code-block:: cpp
659
660 /* ... definition ... */
661
662 class MyClass {
663 std::vector<int> contents;
664 };
665
666 /* ... binding code ... */
667
668 py::class_<MyClass>(m, "MyClass")
669 .def(py::init<>)
670 .def_readwrite("contents", &MyClass::contents);
671
672In this case, properties can be read and written in their entirety. However, an
673``append`` operaton involving such a list type has no effect:
674
675.. code-block:: pycon
676
677 >>> m = MyClass()
678 >>> m.contents = [5, 6]
679 >>> print(m.contents)
680 [5, 6]
681 >>> m.contents.append(7)
682 >>> print(m.contents)
683 [5, 6]
684
685Finally, the involved copy operations can be costly when dealing with very
686large lists. To deal with all of the above situations, pybind11 provides a
687macro named ``PYBIND11_MAKE_OPAQUE(T)`` that disables the template-based
688conversion machinery of types, thus rendering them *opaque*. The contents of
689opaque objects are never inspected or extracted, hence they *can* be passed by
690reference. For instance, to turn ``std::vector<int>`` into an opaque type, add
691the declaration
692
693.. code-block:: cpp
694
695 PYBIND11_MAKE_OPAQUE(std::vector<int>);
696
697before any binding code (e.g. invocations to ``class_::def()``, etc.). This
698macro must be specified at the top level (and outside of any namespaces), since
699it instantiates a partial template overload. If your binding code consists of
700multiple compilation units, it must be present in every file preceding any
701usage of ``std::vector<int>``. Opaque types must also have a corresponding
702``class_`` declaration to associate them with a name in Python, and to define a
703set of available operations, e.g.:
704
705.. code-block:: cpp
706
707 py::class_<std::vector<int>>(m, "IntVector")
708 .def(py::init<>())
709 .def("clear", &std::vector<int>::clear)
710 .def("pop_back", &std::vector<int>::pop_back)
711 .def("__len__", [](const std::vector<int> &v) { return v.size(); })
712 .def("__iter__", [](std::vector<int> &v) {
713 return py::make_iterator(v.begin(), v.end());
714 }, py::keep_alive<0, 1>()) /* Keep vector alive while iterator is used */
715 // ....
716
717The ability to expose STL containers as native Python objects is a fairly
718common request, hence pybind11 also provides an optional header file named
719:file:`pybind11/stl_bind.h` that does exactly this. The mapped containers try
720to match the behavior of their native Python counterparts as much as possible.
721
722The following example showcases usage of :file:`pybind11/stl_bind.h`:
723
724.. code-block:: cpp
725
726 // Don't forget this
727 #include <pybind11/stl_bind.h>
728
729 PYBIND11_MAKE_OPAQUE(std::vector<int>);
730 PYBIND11_MAKE_OPAQUE(std::map<std::string, double>);
731
732 // ...
733
734 // later in binding code:
735 py::bind_vector<std::vector<int>>(m, "VectorInt");
736 py::bind_map<std::map<std::string, double>>(m, "MapStringDouble");
737
738Please take a look at the :ref:`macro_notes` before using the
739``PYBIND11_MAKE_OPAQUE`` macro.
740
741.. seealso::
742
743 The file :file:`tests/test_opaque_types.cpp` contains a complete
744 example that demonstrates how to create and expose opaque types using
745 pybind11 in more detail.
746
747 The file :file:`tests/test_stl_binders.cpp` shows how to use the
748 convenience STL container wrappers.
749
750
Wenzel Jakobb2825952016-04-13 23:33:00 +0200751Binding sequence data types, iterators, the slicing protocol, etc.
752==================================================================
Wenzel Jakob93296692015-10-13 23:21:54 +0200753
754Please refer to the supplemental example for details.
755
756.. seealso::
757
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200758 The file :file:`tests/test_sequences_and_iterators.cpp` contains a
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400759 complete example that shows how to bind a sequence data type, including
760 length queries (``__len__``), iterators (``__iter__``), the slicing
761 protocol and other kinds of useful operations.
Wenzel Jakob93296692015-10-13 23:21:54 +0200762
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200763Return value policies
764=====================
765
Wenzel Jakob93296692015-10-13 23:21:54 +0200766Python and C++ use wildly different ways of managing the memory and lifetime of
767objects managed by them. This can lead to issues when creating bindings for
768functions that return a non-trivial type. Just by looking at the type
769information, it is not clear whether Python should take charge of the returned
770value and eventually free its resources, or if this is handled on the C++ side.
771For this reason, pybind11 provides a several `return value policy` annotations
772that can be passed to the :func:`module::def` and :func:`class_::def`
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100773functions. The default policy is :enum:`return_value_policy::automatic`.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200774
Wenzel Jakobbf099582016-08-22 12:52:02 +0200775Return value policies can also be applied to properties, in which case the
776arguments must be passed through the :class:`cpp_function` constructor:
777
778.. code-block:: cpp
779
780 class_<MyClass>(m, "MyClass")
781 def_property("data"
782 py::cpp_function(&MyClass::getData, py::return_value_policy::copy),
783 py::cpp_function(&MyClass::setData)
784 );
785
786The following table provides an overview of the available return value policies:
787
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200788.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
789
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200790+--------------------------------------------------+----------------------------------------------------------------------------+
791| Return value policy | Description |
792+==================================================+============================================================================+
793| :enum:`return_value_policy::automatic` | This is the default return value policy, which falls back to the policy |
794| | :enum:`return_value_policy::take_ownership` when the return value is a |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200795| | pointer. Otherwise, it uses :enum:`return_value::move` or |
796| | :enum:`return_value::copy` for rvalue and lvalue references, respectively. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200797| | See below for a description of what all of these different policies do. |
798+--------------------------------------------------+----------------------------------------------------------------------------+
799| :enum:`return_value_policy::automatic_reference` | As above, but use policy :enum:`return_value_policy::reference` when the |
Wenzel Jakob37e1f612016-06-22 14:29:13 +0200800| | return value is a pointer. This is the default conversion policy for |
801| | function arguments when calling Python functions manually from C++ code |
802| | (i.e. via handle::operator()). You probably won't need to use this. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200803+--------------------------------------------------+----------------------------------------------------------------------------+
804| :enum:`return_value_policy::take_ownership` | Reference an existing object (i.e. do not create a new copy) and take |
805| | ownership. Python will call the destructor and delete operator when the |
806| | object's reference count reaches zero. Undefined behavior ensues when the |
Wenzel Jakobf53e3002016-06-30 14:59:23 +0200807| | C++ side does the same. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200808+--------------------------------------------------+----------------------------------------------------------------------------+
809| :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python. |
810| | This policy is comparably safe because the lifetimes of the two instances |
811| | are decoupled. |
812+--------------------------------------------------+----------------------------------------------------------------------------+
813| :enum:`return_value_policy::move` | Use ``std::move`` to move the return value contents into a new instance |
814| | that will be owned by Python. This policy is comparably safe because the |
815| | lifetimes of the two instances (move source and destination) are decoupled.|
816+--------------------------------------------------+----------------------------------------------------------------------------+
817| :enum:`return_value_policy::reference` | Reference an existing object, but do not take ownership. The C++ side is |
818| | responsible for managing the object's lifetime and deallocating it when |
819| | it is no longer used. Warning: undefined behavior will ensue when the C++ |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200820| | side deletes an object that is still referenced and used by Python. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200821+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakobbf099582016-08-22 12:52:02 +0200822| :enum:`return_value_policy::reference_internal` | Indicates that the lifetime of the return value is tied to the lifetime |
823| | of a parent object, namely the implicit ``this``, or ``self`` argument of |
824| | the called method or property. Internally, this policy works just like |
825| | :enum:`return_value_policy::reference` but additionally applies a |
826| | ``keep_alive<0, 1>`` *call policy* (described in the next section) that |
827| | prevents the parent object from being garbage collected as long as the |
828| | return value is referenced by Python. This is the default policy for |
829| | property getters created via ``def_property``, ``def_readwrite``, etc.) |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200830+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200831
Wenzel Jakobfb6aed22016-07-18 20:29:53 +0200832.. warning::
833
Jason Rhinelanderefc2aa72016-08-10 11:38:33 -0400834 Code with invalid return value policies might access unitialized memory or
835 free data structures multiple times, which can lead to hard-to-debug
Wenzel Jakobfb6aed22016-07-18 20:29:53 +0200836 non-determinism and segmentation faults, hence it is worth spending the
837 time to understand all the different options in the table above.
838
Jason Rhinelanderefc2aa72016-08-10 11:38:33 -0400839One important aspect of the above policies is that they only apply to instances
840which pybind11 has *not* seen before, in which case the policy clarifies
841essential questions about the return value's lifetime and ownership. When
842pybind11 knows the instance already (as identified by its type and address in
Wenzel Jakobfb6aed22016-07-18 20:29:53 +0200843memory), it will return the existing Python object wrapper rather than creating
Wenzel Jakobbf099582016-08-22 12:52:02 +0200844a new copy.
nafur717df752016-06-28 18:07:11 +0200845
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200846.. note::
847
848 The next section on :ref:`call_policies` discusses *call policies* that can be
849 specified *in addition* to a return value policy from the list above. Call
850 policies indicate reference relationships that can involve both return values
851 and parameters of functions.
852
853.. note::
854
855 As an alternative to elaborate call policies and lifetime management logic,
856 consider using smart pointers (see the section on :ref:`smart_pointers` for
857 details). Smart pointers can tell whether an object is still referenced from
858 C++ or Python, which generally eliminates the kinds of inconsistencies that
859 can lead to crashes or undefined behavior. For functions returning smart
860 pointers, it is not necessary to specify a return value policy.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100861
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200862.. _call_policies:
863
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100864Additional call policies
865========================
866
867In addition to the above return value policies, further `call policies` can be
868specified to indicate dependencies between parameters. There is currently just
869one policy named ``keep_alive<Nurse, Patient>``, which indicates that the
870argument with index ``Patient`` should be kept alive at least until the
Wenzel Jakob0b632312016-08-18 10:58:21 +0200871argument with index ``Nurse`` is freed by the garbage collector. Argument
872indices start at one, while zero refers to the return value. For methods, index
873``1`` refers to the implicit ``this`` pointer, while regular arguments begin at
874index ``2``. Arbitrarily many call policies can be specified. When a ``Nurse``
875with value ``None`` is detected at runtime, the call policy does nothing.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100876
Wenzel Jakob0b632312016-08-18 10:58:21 +0200877This feature internally relies on the ability to create a *weak reference* to
878the nurse object, which is permitted by all classes exposed via pybind11. When
879the nurse object does not support weak references, an exception will be thrown.
880
881Consider the following example: here, the binding code for a list append
882operation ties the lifetime of the newly added element to the underlying
883container:
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100884
885.. code-block:: cpp
886
887 py::class_<List>(m, "List")
888 .def("append", &List::append, py::keep_alive<1, 2>());
889
890.. note::
891
892 ``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse,
893 Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient ==
894 0) policies from Boost.Python.
895
Wenzel Jakob61587162016-01-18 22:38:52 +0100896.. seealso::
897
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200898 The file :file:`tests/test_keep_alive.cpp` contains a complete example
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400899 that demonstrates using :class:`keep_alive` in more detail.
Wenzel Jakob61587162016-01-18 22:38:52 +0100900
Wenzel Jakob93296692015-10-13 23:21:54 +0200901Implicit type conversions
902=========================
903
904Suppose that instances of two types ``A`` and ``B`` are used in a project, and
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200905that an ``A`` can easily be converted into an instance of type ``B`` (examples of this
Wenzel Jakob93296692015-10-13 23:21:54 +0200906could be a fixed and an arbitrary precision number type).
907
908.. code-block:: cpp
909
910 py::class_<A>(m, "A")
911 /// ... members ...
912
913 py::class_<B>(m, "B")
914 .def(py::init<A>())
915 /// ... members ...
916
917 m.def("func",
918 [](const B &) { /* .... */ }
919 );
920
921To invoke the function ``func`` using a variable ``a`` containing an ``A``
922instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++
923will automatically apply an implicit type conversion, which makes it possible
924to directly write ``func(a)``.
925
926In this situation (i.e. where ``B`` has a constructor that converts from
927``A``), the following statement enables similar implicit conversions on the
928Python side:
929
930.. code-block:: cpp
931
932 py::implicitly_convertible<A, B>();
933
Wenzel Jakob3eeea6f2016-06-30 18:10:28 +0200934.. note::
935
936 Implicit conversions from ``A`` to ``B`` only work when ``B`` is a custom
937 data type that is exposed to Python via pybind11.
938
Wenzel Jakobf88af0c2016-06-22 13:52:31 +0200939.. _static_properties:
940
941Static properties
942=================
943
944The section on :ref:`properties` discussed the creation of instance properties
945that are implemented in terms of C++ getters and setters.
946
947Static properties can also be created in a similar way to expose getters and
948setters of static class attributes. It is important to note that the implicit
949``self`` argument also exists in this case and is used to pass the Python
950``type`` subclass instance. This parameter will often not be needed by the C++
951side, and the following example illustrates how to instantiate a lambda getter
952function that ignores it:
953
954.. code-block:: cpp
955
956 py::class_<Foo>(m, "Foo")
957 .def_property_readonly_static("foo", [](py::object /* self */) { return Foo(); });
958
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200959Unique pointers
960===============
961
962Given a class ``Example`` with Python bindings, it's possible to return
963instances wrapped in C++11 unique pointers, like so
964
965.. code-block:: cpp
966
967 std::unique_ptr<Example> create_example() { return std::unique_ptr<Example>(new Example()); }
968
969.. code-block:: cpp
970
971 m.def("create_example", &create_example);
972
973In other words, there is nothing special that needs to be done. While returning
974unique pointers in this way is allowed, it is *illegal* to use them as function
975arguments. For instance, the following function signature cannot be processed
976by pybind11.
977
978.. code-block:: cpp
979
980 void do_something_with_example(std::unique_ptr<Example> ex) { ... }
981
982The above signature would imply that Python needs to give up ownership of an
983object that is passed to this function, which is generally not possible (for
984instance, the object might be referenced elsewhere).
985
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200986.. _smart_pointers:
987
Wenzel Jakob93296692015-10-13 23:21:54 +0200988Smart pointers
989==============
990
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200991This section explains how to pass values that are wrapped in "smart" pointer
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200992types with internal reference counting. For the simpler C++11 unique pointers,
993refer to the previous section.
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200994
Jason Rhinelander5fffe202016-09-06 12:17:06 -0400995The binding generator for classes, :class:`class_`, can be passed a template
996type that denotes a special *holder* type that is used to manage references to
997the object. If no such holder type template argument is given, the default for
998a type named ``Type`` is ``std::unique_ptr<Type>``, which means that the object
999is deallocated when Python's reference count goes to zero.
Wenzel Jakob93296692015-10-13 23:21:54 +02001000
Wenzel Jakob1853b652015-10-18 15:38:50 +02001001It is possible to switch to other types of reference counting wrappers or smart
1002pointers, which is useful in codebases that rely on them. For instance, the
1003following snippet causes ``std::shared_ptr`` to be used instead.
Wenzel Jakob93296692015-10-13 23:21:54 +02001004
1005.. code-block:: cpp
1006
Wenzel Jakobb2c2c792016-01-17 22:36:40 +01001007 py::class_<Example, std::shared_ptr<Example> /* <- holder type */> obj(m, "Example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +01001008
Wenzel Jakobb2c2c792016-01-17 22:36:40 +01001009Note that any particular class can only be associated with a single holder type.
Wenzel Jakob93296692015-10-13 23:21:54 +02001010
Wenzel Jakob1853b652015-10-18 15:38:50 +02001011To enable transparent conversions for functions that take shared pointers as an
Wenzel Jakob5ef12192015-12-15 17:07:35 +01001012argument or that return them, a macro invocation similar to the following must
Wenzel Jakob1853b652015-10-18 15:38:50 +02001013be declared at the top level before any binding code:
1014
1015.. code-block:: cpp
1016
Wenzel Jakobb1b71402015-10-18 16:48:30 +02001017 PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>);
Wenzel Jakob1853b652015-10-18 15:38:50 +02001018
Wenzel Jakobb2c2c792016-01-17 22:36:40 +01001019.. note::
Wenzel Jakob61d67f02015-12-14 12:53:06 +01001020
1021 The first argument of :func:`PYBIND11_DECLARE_HOLDER_TYPE` should be a
1022 placeholder name that is used as a template parameter of the second
1023 argument. Thus, feel free to use any identifier, but use it consistently on
1024 both sides; also, don't use the name of a type that already exists in your
1025 codebase.
1026
Wenzel Jakobb2c2c792016-01-17 22:36:40 +01001027One potential stumbling block when using holder types is that they need to be
1028applied consistently. Can you guess what's broken about the following binding
1029code?
Wenzel Jakob6e213c92015-11-24 23:05:58 +01001030
Wenzel Jakobb2c2c792016-01-17 22:36:40 +01001031.. code-block:: cpp
Wenzel Jakob6e213c92015-11-24 23:05:58 +01001032
Jason Rhinelander5fffe202016-09-06 12:17:06 -04001033 PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>);
1034
Wenzel Jakobb2c2c792016-01-17 22:36:40 +01001035 class Child { };
Wenzel Jakob5ef12192015-12-15 17:07:35 +01001036
Wenzel Jakobb2c2c792016-01-17 22:36:40 +01001037 class Parent {
1038 public:
1039 Parent() : child(std::make_shared<Child>()) { }
1040 Child *get_child() { return child.get(); } /* Hint: ** DON'T DO THIS ** */
1041 private:
1042 std::shared_ptr<Child> child;
1043 };
Wenzel Jakob5ef12192015-12-15 17:07:35 +01001044
Wenzel Jakobb2c2c792016-01-17 22:36:40 +01001045 PYBIND11_PLUGIN(example) {
1046 py::module m("example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +01001047
Wenzel Jakobb2c2c792016-01-17 22:36:40 +01001048 py::class_<Child, std::shared_ptr<Child>>(m, "Child");
1049
1050 py::class_<Parent, std::shared_ptr<Parent>>(m, "Parent")
1051 .def(py::init<>())
1052 .def("get_child", &Parent::get_child);
1053
1054 return m.ptr();
1055 }
1056
1057The following Python code will cause undefined behavior (and likely a
1058segmentation fault).
1059
1060.. code-block:: python
1061
1062 from example import Parent
1063 print(Parent().get_child())
1064
1065The problem is that ``Parent::get_child()`` returns a pointer to an instance of
1066``Child``, but the fact that this instance is already managed by
1067``std::shared_ptr<...>`` is lost when passing raw pointers. In this case,
1068pybind11 will create a second independent ``std::shared_ptr<...>`` that also
1069claims ownership of the pointer. In the end, the object will be freed **twice**
1070since these shared pointers have no way of knowing about each other.
1071
1072There are two ways to resolve this issue:
1073
10741. For types that are managed by a smart pointer class, never use raw pointers
1075 in function arguments or return values. In other words: always consistently
1076 wrap pointers into their designated holder types (such as
1077 ``std::shared_ptr<...>``). In this case, the signature of ``get_child()``
1078 should be modified as follows:
1079
1080.. code-block:: cpp
1081
1082 std::shared_ptr<Child> get_child() { return child; }
1083
10842. Adjust the definition of ``Child`` by specifying
1085 ``std::enable_shared_from_this<T>`` (see cppreference_ for details) as a
1086 base class. This adds a small bit of information to ``Child`` that allows
1087 pybind11 to realize that there is already an existing
1088 ``std::shared_ptr<...>`` and communicate with it. In this case, the
1089 declaration of ``Child`` should look as follows:
Wenzel Jakob5ef12192015-12-15 17:07:35 +01001090
Wenzel Jakob6e213c92015-11-24 23:05:58 +01001091.. _cppreference: http://en.cppreference.com/w/cpp/memory/enable_shared_from_this
1092
Wenzel Jakobb2c2c792016-01-17 22:36:40 +01001093.. code-block:: cpp
1094
1095 class Child : public std::enable_shared_from_this<Child> { };
1096
Wenzel Jakob9bb97c12016-06-03 11:19:41 +02001097
1098Please take a look at the :ref:`macro_notes` before using this feature.
1099
Wenzel Jakob5ef12192015-12-15 17:07:35 +01001100.. seealso::
1101
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001102 The file :file:`tests/test_smart_ptr.cpp` contains a complete example
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001103 that demonstrates how to work with custom reference-counting holder types
1104 in more detail.
Wenzel Jakob5ef12192015-12-15 17:07:35 +01001105
Wenzel Jakob93296692015-10-13 23:21:54 +02001106.. _custom_constructors:
1107
1108Custom constructors
1109===================
1110
1111The syntax for binding constructors was previously introduced, but it only
1112works when a constructor with the given parameters actually exists on the C++
1113side. To extend this to more general cases, let's take a look at what actually
1114happens under the hood: the following statement
1115
1116.. code-block:: cpp
1117
1118 py::class_<Example>(m, "Example")
1119 .def(py::init<int>());
1120
1121is short hand notation for
1122
1123.. code-block:: cpp
1124
1125 py::class_<Example>(m, "Example")
1126 .def("__init__",
1127 [](Example &instance, int arg) {
1128 new (&instance) Example(arg);
1129 }
1130 );
1131
1132In other words, :func:`init` creates an anonymous function that invokes an
1133in-place constructor. Memory allocation etc. is already take care of beforehand
1134within pybind11.
1135
Nickolai Belakovski63338252016-08-27 11:57:55 -07001136.. _classes_with_non_public_destructors:
1137
1138Classes with non-public destructors
1139===================================
1140
Wenzel Jakob5e4e4772016-08-28 02:03:15 +02001141If a class has a private or protected destructor (as might e.g. be the case in
1142a singleton pattern), a compile error will occur when creating bindings via
1143pybind11. The underlying issue is that the ``std::unique_ptr`` holder type that
1144is responsible for managing the lifetime of instances will reference the
1145destructor even if no deallocations ever take place. In order to expose classes
1146with private or protected destructors, it is possible to override the holder
Jason Rhinelander5fffe202016-09-06 12:17:06 -04001147type via a holder type argument to ``class_``. Pybind11 provides a helper class
Wenzel Jakob5e4e4772016-08-28 02:03:15 +02001148``py::nodelete`` that disables any destructor invocations. In this case, it is
1149crucial that instances are deallocated on the C++ side to avoid memory leaks.
Nickolai Belakovski63338252016-08-27 11:57:55 -07001150
1151.. code-block:: cpp
1152
1153 /* ... definition ... */
1154
1155 class MyClass {
Wenzel Jakob5e4e4772016-08-28 02:03:15 +02001156 private:
1157 ~MyClass() { }
Nickolai Belakovski63338252016-08-27 11:57:55 -07001158 };
1159
1160 /* ... binding code ... */
1161
Wenzel Jakob5e4e4772016-08-28 02:03:15 +02001162 py::class_<MyClass, std::unique_ptr<MyClass, py::nodelete>>(m, "MyClass")
Nickolai Belakovski63338252016-08-27 11:57:55 -07001163 .def(py::init<>)
1164
Pim Schellart5a7d17f2016-06-17 17:35:59 -04001165.. _catching_and_throwing_exceptions:
1166
Wenzel Jakob93296692015-10-13 23:21:54 +02001167Catching and throwing exceptions
1168================================
1169
1170When C++ code invoked from Python throws an ``std::exception``, it is
1171automatically converted into a Python ``Exception``. pybind11 defines multiple
1172special exception classes that will map to different types of Python
1173exceptions:
1174
Wenzel Jakobf64feaf2016-04-28 14:33:45 +02001175.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
1176
Wenzel Jakob978e3762016-04-07 18:00:41 +02001177+--------------------------------------+------------------------------+
1178| C++ exception type | Python exception type |
1179+======================================+==============================+
1180| :class:`std::exception` | ``RuntimeError`` |
1181+--------------------------------------+------------------------------+
1182| :class:`std::bad_alloc` | ``MemoryError`` |
1183+--------------------------------------+------------------------------+
1184| :class:`std::domain_error` | ``ValueError`` |
1185+--------------------------------------+------------------------------+
1186| :class:`std::invalid_argument` | ``ValueError`` |
1187+--------------------------------------+------------------------------+
1188| :class:`std::length_error` | ``ValueError`` |
1189+--------------------------------------+------------------------------+
1190| :class:`std::out_of_range` | ``ValueError`` |
1191+--------------------------------------+------------------------------+
1192| :class:`std::range_error` | ``ValueError`` |
1193+--------------------------------------+------------------------------+
1194| :class:`pybind11::stop_iteration` | ``StopIteration`` (used to |
1195| | implement custom iterators) |
1196+--------------------------------------+------------------------------+
1197| :class:`pybind11::index_error` | ``IndexError`` (used to |
1198| | indicate out of bounds |
1199| | accesses in ``__getitem__``, |
1200| | ``__setitem__``, etc.) |
1201+--------------------------------------+------------------------------+
Sergey Lyskova95bde12016-05-08 19:31:55 -04001202| :class:`pybind11::value_error` | ``ValueError`` (used to |
1203| | indicate wrong value passed |
1204| | in ``container.remove(...)`` |
1205+--------------------------------------+------------------------------+
Jason Rhinelander5aa85be2016-08-11 21:22:05 -04001206| :class:`pybind11::key_error` | ``KeyError`` (used to |
1207| | indicate out of bounds |
1208| | accesses in ``__getitem__``, |
1209| | ``__setitem__`` in dict-like |
1210| | objects, etc.) |
1211+--------------------------------------+------------------------------+
Wenzel Jakob978e3762016-04-07 18:00:41 +02001212| :class:`pybind11::error_already_set` | Indicates that the Python |
1213| | exception flag has already |
1214| | been initialized |
1215+--------------------------------------+------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +02001216
1217When a Python function invoked from C++ throws an exception, it is converted
1218into a C++ exception of type :class:`error_already_set` whose string payload
1219contains a textual summary.
1220
1221There is also a special exception :class:`cast_error` that is thrown by
1222:func:`handle::call` when the input arguments cannot be converted to Python
1223objects.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001224
Pim Schellart5a7d17f2016-06-17 17:35:59 -04001225Registering custom exception translators
1226========================================
1227
1228If the default exception conversion policy described
1229:ref:`above <catching_and_throwing_exceptions>`
1230is insufficient, pybind11 also provides support for registering custom
1231exception translators.
1232
Jason Rhinelanderb3794f12016-09-16 02:04:15 -04001233To register a simple exception conversion that translates a C++ exception into
1234a new Python exception using the C++ exception's ``what()`` method, a helper
1235function is available:
Pim Schellart5a7d17f2016-06-17 17:35:59 -04001236
1237.. code-block:: cpp
1238
Jason Rhinelanderb3794f12016-09-16 02:04:15 -04001239 py::register_exception<CppExp>(module, "PyExp");
1240
1241This call creates a Python exception class with the name ``PyExp`` in the given
1242module and automatically converts any encountered exceptions of type ``CppExp``
1243into Python exceptions of type ``PyExp``.
1244
1245When more advanced exception translation is needed, the function
1246``py::register_exception_translator(translator)`` can be used to register
1247functions that can translate arbitrary exception types (and which may include
1248additional logic to do so). The function takes a stateless callable (e.g. a
1249function pointer or a lambda function without captured variables) with the call
1250signature ``void(std::exception_ptr)``.
1251
1252When a C++ exception is thrown, the registered exception translators are tried
1253in reverse order of registration (i.e. the last registered translator gets the
1254first shot at handling the exception).
1255
1256Inside the translator, ``std::rethrow_exception`` should be used within
1257a try block to re-throw the exception. One or more catch clauses to catch
1258the appropriate exceptions should then be used with each clause using
1259``PyErr_SetString`` to set a Python exception or ``ex(string)`` to set
1260the python exception to a custom exception type (see below).
1261
1262To declare a custom Python exception type, declare a ``py::exception`` variable
1263and use this in the associated exception translator (note: it is often useful
1264to make this a static declaration when using it inside a lambda expression
1265without requiring capturing).
1266
1267
1268The following example demonstrates this for a hypothetical exception classes
1269``MyCustomException`` and ``OtherException``: the first is translated to a
1270custom python exception ``MyCustomError``, while the second is translated to a
1271standard python RuntimeError:
1272
1273.. code-block:: cpp
1274
1275 static py::exception<MyCustomException> exc(m, "MyCustomError");
Pim Schellart5a7d17f2016-06-17 17:35:59 -04001276 py::register_exception_translator([](std::exception_ptr p) {
1277 try {
1278 if (p) std::rethrow_exception(p);
1279 } catch (const MyCustomException &e) {
Jason Rhinelanderb3794f12016-09-16 02:04:15 -04001280 exc(e.what());
1281 } catch (const OtherException &e) {
Pim Schellart5a7d17f2016-06-17 17:35:59 -04001282 PyErr_SetString(PyExc_RuntimeError, e.what());
1283 }
1284 });
1285
Jason Rhinelanderb3794f12016-09-16 02:04:15 -04001286Multiple exceptions can be handled by a single translator, as shown in the
1287example above. If the exception is not caught by the current translator, the
1288previously registered one gets a chance.
Pim Schellart5a7d17f2016-06-17 17:35:59 -04001289
1290If none of the registered exception translators is able to handle the
1291exception, it is handled by the default converter as described in the previous
1292section.
1293
Jason Rhinelanderb3794f12016-09-16 02:04:15 -04001294.. seealso::
1295
1296 The file :file:`tests/test_exceptions.cpp` contains examples
1297 of various custom exception translators and custom exception types.
1298
Pim Schellart5a7d17f2016-06-17 17:35:59 -04001299.. note::
1300
Jason Rhinelanderb3794f12016-09-16 02:04:15 -04001301 You must call either ``PyErr_SetString`` or a custom exception's call
1302 operator (``exc(string)``) for every exception caught in a custom exception
1303 translator. Failure to do so will cause Python to crash with ``SystemError:
1304 error return without exception set``.
Pim Schellart5a7d17f2016-06-17 17:35:59 -04001305
Jason Rhinelanderb3794f12016-09-16 02:04:15 -04001306 Exceptions that you do not plan to handle should simply not be caught, or
1307 may be explicity (re-)thrown to delegate it to the other,
1308 previously-declared existing exception translators.
Pim Schellart5a7d17f2016-06-17 17:35:59 -04001309
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001310.. _eigen:
1311
1312Transparent conversion of dense and sparse Eigen data types
1313===========================================================
1314
1315Eigen [#f1]_ is C++ header-based library for dense and sparse linear algebra. Due to
1316its popularity and widespread adoption, pybind11 provides transparent
1317conversion support between Eigen and Scientific Python linear algebra data types.
1318
1319Specifically, when including the optional header file :file:`pybind11/eigen.h`,
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001320pybind11 will automatically and transparently convert
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001321
13221. Static and dynamic Eigen dense vectors and matrices to instances of
1323 ``numpy.ndarray`` (and vice versa).
1324
Jason Rhinelanderb68d8fc2016-08-04 16:39:30 -040013252. Returned matrix expressions such as blocks (including columns or rows) and
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001326 diagonals will be converted to ``numpy.ndarray`` of the expression
1327 values.
1328
Jason Rhinelanderb68d8fc2016-08-04 16:39:30 -040013293. Returned matrix-like objects such as Eigen::DiagonalMatrix or
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001330 Eigen::SelfAdjointView will be converted to ``numpy.ndarray`` containing the
1331 expressed value.
1332
Jason Rhinelanderb68d8fc2016-08-04 16:39:30 -040013334. Eigen sparse vectors and matrices to instances of
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001334 ``scipy.sparse.csr_matrix``/``scipy.sparse.csc_matrix`` (and vice versa).
1335
1336This makes it possible to bind most kinds of functions that rely on these types.
1337One major caveat are functions that take Eigen matrices *by reference* and modify
1338them somehow, in which case the information won't be propagated to the caller.
1339
1340.. code-block:: cpp
1341
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001342 /* The Python bindings of these functions won't replicate
1343 the intended effect of modifying the function arguments */
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001344 void scale_by_2(Eigen::Vector3f &v) {
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001345 v *= 2;
1346 }
1347 void scale_by_2(Eigen::Ref<Eigen::MatrixXd> &v) {
1348 v *= 2;
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001349 }
1350
1351To see why this is, refer to the section on :ref:`opaque` (although that
1352section specifically covers STL data types, the underlying issue is the same).
1353The next two sections discuss an efficient alternative for exposing the
1354underlying native Eigen types as opaque objects in a way that still integrates
1355with NumPy and SciPy.
1356
1357.. [#f1] http://eigen.tuxfamily.org
1358
1359.. seealso::
1360
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001361 The file :file:`tests/test_eigen.cpp` contains a complete example that
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001362 shows how to pass Eigen sparse and dense data types in more detail.
1363
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001364Buffer protocol
1365===============
1366
1367Python supports an extremely general and convenient approach for exchanging
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001368data between plugin libraries. Types can expose a buffer view [#f2]_, which
1369provides fast direct access to the raw internal data representation. Suppose we
1370want to bind the following simplistic Matrix class:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001371
1372.. code-block:: cpp
1373
1374 class Matrix {
1375 public:
1376 Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
1377 m_data = new float[rows*cols];
1378 }
1379 float *data() { return m_data; }
1380 size_t rows() const { return m_rows; }
1381 size_t cols() const { return m_cols; }
1382 private:
1383 size_t m_rows, m_cols;
1384 float *m_data;
1385 };
1386
1387The following binding code exposes the ``Matrix`` contents as a buffer object,
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001388making it possible to cast Matrices into NumPy arrays. It is even possible to
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001389completely avoid copy operations with Python expressions like
1390``np.array(matrix_instance, copy = False)``.
1391
1392.. code-block:: cpp
1393
1394 py::class_<Matrix>(m, "Matrix")
1395 .def_buffer([](Matrix &m) -> py::buffer_info {
1396 return py::buffer_info(
Ivan Smirnov5e71e172016-06-26 12:42:34 +01001397 m.data(), /* Pointer to buffer */
1398 sizeof(float), /* Size of one scalar */
1399 py::format_descriptor<float>::format(), /* Python struct-style format descriptor */
1400 2, /* Number of dimensions */
1401 { m.rows(), m.cols() }, /* Buffer dimensions */
1402 { sizeof(float) * m.rows(), /* Strides (in bytes) for each index */
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001403 sizeof(float) }
1404 );
1405 });
1406
1407The snippet above binds a lambda function, which can create ``py::buffer_info``
1408description records on demand describing a given matrix. The contents of
1409``py::buffer_info`` mirror the Python buffer protocol specification.
1410
1411.. code-block:: cpp
1412
1413 struct buffer_info {
1414 void *ptr;
1415 size_t itemsize;
1416 std::string format;
1417 int ndim;
1418 std::vector<size_t> shape;
1419 std::vector<size_t> strides;
1420 };
1421
1422To create a C++ function that can take a Python buffer object as an argument,
1423simply use the type ``py::buffer`` as one of its arguments. Buffers can exist
1424in a great variety of configurations, hence some safety checks are usually
1425necessary in the function body. Below, you can see an basic example on how to
1426define a custom constructor for the Eigen double precision matrix
1427(``Eigen::MatrixXd``) type, which supports initialization from compatible
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001428buffer objects (e.g. a NumPy matrix).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001429
1430.. code-block:: cpp
1431
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001432 /* Bind MatrixXd (or some other Eigen type) to Python */
1433 typedef Eigen::MatrixXd Matrix;
1434
1435 typedef Matrix::Scalar Scalar;
1436 constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit;
1437
1438 py::class_<Matrix>(m, "Matrix")
1439 .def("__init__", [](Matrix &m, py::buffer b) {
Wenzel Jakobe7628532016-05-05 10:04:44 +02001440 typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides;
Wenzel Jakobe7628532016-05-05 10:04:44 +02001441
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001442 /* Request a buffer descriptor from Python */
1443 py::buffer_info info = b.request();
1444
1445 /* Some sanity checks ... */
Ivan Smirnov5e71e172016-06-26 12:42:34 +01001446 if (info.format != py::format_descriptor<Scalar>::format())
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001447 throw std::runtime_error("Incompatible format: expected a double array!");
1448
1449 if (info.ndim != 2)
1450 throw std::runtime_error("Incompatible buffer dimension!");
1451
Wenzel Jakobe7628532016-05-05 10:04:44 +02001452 auto strides = Strides(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001453 info.strides[rowMajor ? 0 : 1] / sizeof(Scalar),
1454 info.strides[rowMajor ? 1 : 0] / sizeof(Scalar));
Wenzel Jakobe7628532016-05-05 10:04:44 +02001455
1456 auto map = Eigen::Map<Matrix, 0, Strides>(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001457 static_cat<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides);
Wenzel Jakobe7628532016-05-05 10:04:44 +02001458
1459 new (&m) Matrix(map);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001460 });
1461
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001462For reference, the ``def_buffer()`` call for this Eigen data type should look
1463as follows:
1464
1465.. code-block:: cpp
1466
1467 .def_buffer([](Matrix &m) -> py::buffer_info {
1468 return py::buffer_info(
1469 m.data(), /* Pointer to buffer */
1470 sizeof(Scalar), /* Size of one scalar */
1471 /* Python struct-style format descriptor */
Ivan Smirnov5e71e172016-06-26 12:42:34 +01001472 py::format_descriptor<Scalar>::format(),
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001473 /* Number of dimensions */
1474 2,
1475 /* Buffer dimensions */
1476 { (size_t) m.rows(),
1477 (size_t) m.cols() },
1478 /* Strides (in bytes) for each index */
1479 { sizeof(Scalar) * (rowMajor ? m.cols() : 1),
1480 sizeof(Scalar) * (rowMajor ? 1 : m.rows()) }
1481 );
1482 })
1483
1484For a much easier approach of binding Eigen types (although with some
1485limitations), refer to the section on :ref:`eigen`.
1486
Wenzel Jakob93296692015-10-13 23:21:54 +02001487.. seealso::
1488
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001489 The file :file:`tests/test_buffers.cpp` contains a complete example
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001490 that demonstrates using the buffer protocol with pybind11 in more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +02001491
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001492.. [#f2] http://docs.python.org/3/c-api/buffer.html
Wenzel Jakob978e3762016-04-07 18:00:41 +02001493
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001494NumPy support
1495=============
1496
1497By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can
1498restrict the function so that it only accepts NumPy arrays (rather than any
Wenzel Jakob978e3762016-04-07 18:00:41 +02001499type of Python object satisfying the buffer protocol).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001500
1501In many situations, we want to define a function which only accepts a NumPy
Wenzel Jakob93296692015-10-13 23:21:54 +02001502array of a certain data type. This is possible via the ``py::array_t<T>``
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001503template. For instance, the following function requires the argument to be a
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001504NumPy array containing double precision values.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001505
1506.. code-block:: cpp
1507
Wenzel Jakob93296692015-10-13 23:21:54 +02001508 void f(py::array_t<double> array);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001509
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001510When it is invoked with a different type (e.g. an integer or a list of
1511integers), the binding code will attempt to cast the input into a NumPy array
1512of the requested type. Note that this feature requires the
1513:file:``pybind11/numpy.h`` header to be included.
1514
1515Data in NumPy arrays is not guaranteed to packed in a dense manner;
1516furthermore, entries can be separated by arbitrary column and row strides.
1517Sometimes, it can be useful to require a function to only accept dense arrays
1518using either the C (row-major) or Fortran (column-major) ordering. This can be
1519accomplished via a second template argument with values ``py::array::c_style``
1520or ``py::array::f_style``.
1521
1522.. code-block:: cpp
1523
Wenzel Jakobb47a9de2016-05-19 16:02:09 +02001524 void f(py::array_t<double, py::array::c_style | py::array::forcecast> array);
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001525
Wenzel Jakobb47a9de2016-05-19 16:02:09 +02001526The ``py::array::forcecast`` argument is the default value of the second
1527template paramenter, and it ensures that non-conforming arguments are converted
1528into an array satisfying the specified requirements instead of trying the next
1529function overload.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001530
Ivan Smirnov223afe32016-07-02 15:33:04 +01001531NumPy structured types
1532======================
1533
1534In order for ``py::array_t`` to work with structured (record) types, we first need
Ivan Smirnov5412a052016-07-02 16:18:42 +01001535to register the memory layout of the type. This can be done via ``PYBIND11_NUMPY_DTYPE``
Ivan Smirnov223afe32016-07-02 15:33:04 +01001536macro which expects the type followed by field names:
1537
1538.. code-block:: cpp
1539
1540 struct A {
1541 int x;
1542 double y;
1543 };
1544
1545 struct B {
1546 int z;
1547 A a;
1548 };
1549
Ivan Smirnov5412a052016-07-02 16:18:42 +01001550 PYBIND11_NUMPY_DTYPE(A, x, y);
1551 PYBIND11_NUMPY_DTYPE(B, z, a);
Ivan Smirnov223afe32016-07-02 15:33:04 +01001552
1553 /* now both A and B can be used as template arguments to py::array_t */
1554
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001555Vectorizing functions
1556=====================
1557
1558Suppose we want to bind a function with the following signature to Python so
1559that it can process arbitrary NumPy array arguments (vectors, matrices, general
1560N-D arrays) in addition to its normal arguments:
1561
1562.. code-block:: cpp
1563
1564 double my_func(int x, float y, double z);
1565
Wenzel Jakob8f4eb002015-10-15 18:13:33 +02001566After including the ``pybind11/numpy.h`` header, this is extremely simple:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001567
1568.. code-block:: cpp
1569
1570 m.def("vectorized_func", py::vectorize(my_func));
1571
1572Invoking the function like below causes 4 calls to be made to ``my_func`` with
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001573each of the array elements. The significant advantage of this compared to
Wenzel Jakob978e3762016-04-07 18:00:41 +02001574solutions like ``numpy.vectorize()`` is that the loop over the elements runs
1575entirely on the C++ side and can be crunched down into a tight, optimized loop
1576by the compiler. The result is returned as a NumPy array of type
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001577``numpy.dtype.float64``.
1578
Wenzel Jakob99279f72016-06-03 11:19:29 +02001579.. code-block:: pycon
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001580
1581 >>> x = np.array([[1, 3],[5, 7]])
1582 >>> y = np.array([[2, 4],[6, 8]])
1583 >>> z = 3
1584 >>> result = vectorized_func(x, y, z)
1585
1586The scalar argument ``z`` is transparently replicated 4 times. The input
1587arrays ``x`` and ``y`` are automatically converted into the right types (they
1588are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and
1589``numpy.dtype.float32``, respectively)
1590
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001591Sometimes we might want to explicitly exclude an argument from the vectorization
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001592because it makes little sense to wrap it in a NumPy array. For instance,
1593suppose the function signature was
1594
1595.. code-block:: cpp
1596
1597 double my_func(int x, float y, my_custom_type *z);
1598
1599This can be done with a stateful Lambda closure:
1600
1601.. code-block:: cpp
1602
1603 // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
1604 m.def("vectorized_func",
Wenzel Jakob93296692015-10-13 23:21:54 +02001605 [](py::array_t<int> x, py::array_t<float> y, my_custom_type *z) {
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001606 auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); };
1607 return py::vectorize(stateful_closure)(x, y);
1608 }
1609 );
1610
Wenzel Jakob61587162016-01-18 22:38:52 +01001611In cases where the computation is too complicated to be reduced to
1612``vectorize``, it will be necessary to create and access the buffer contents
1613manually. The following snippet contains a complete example that shows how this
1614works (the code is somewhat contrived, since it could have been done more
1615simply using ``vectorize``).
1616
1617.. code-block:: cpp
1618
1619 #include <pybind11/pybind11.h>
1620 #include <pybind11/numpy.h>
1621
1622 namespace py = pybind11;
1623
1624 py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
1625 auto buf1 = input1.request(), buf2 = input2.request();
1626
1627 if (buf1.ndim != 1 || buf2.ndim != 1)
1628 throw std::runtime_error("Number of dimensions must be one");
1629
Ivan Smirnovb6518592016-08-13 13:28:56 +01001630 if (buf1.size != buf2.size)
Wenzel Jakob61587162016-01-18 22:38:52 +01001631 throw std::runtime_error("Input shapes must match");
1632
Ivan Smirnovb6518592016-08-13 13:28:56 +01001633 /* No pointer is passed, so NumPy will allocate the buffer */
1634 auto result = py::array_t<double>(buf1.size);
Wenzel Jakob61587162016-01-18 22:38:52 +01001635
1636 auto buf3 = result.request();
1637
1638 double *ptr1 = (double *) buf1.ptr,
1639 *ptr2 = (double *) buf2.ptr,
1640 *ptr3 = (double *) buf3.ptr;
1641
1642 for (size_t idx = 0; idx < buf1.shape[0]; idx++)
1643 ptr3[idx] = ptr1[idx] + ptr2[idx];
1644
1645 return result;
1646 }
1647
1648 PYBIND11_PLUGIN(test) {
1649 py::module m("test");
1650 m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
1651 return m.ptr();
1652 }
1653
Wenzel Jakob93296692015-10-13 23:21:54 +02001654.. seealso::
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001655
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001656 The file :file:`tests/test_numpy_vectorize.cpp` contains a complete
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001657 example that demonstrates using :func:`vectorize` in more detail.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001658
Wenzel Jakob93296692015-10-13 23:21:54 +02001659Functions taking Python objects as arguments
1660============================================
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001661
Wenzel Jakob93296692015-10-13 23:21:54 +02001662pybind11 exposes all major Python types using thin C++ wrapper classes. These
1663wrapper classes can also be used as parameters of functions in bindings, which
1664makes it possible to directly work with native Python types on the C++ side.
1665For instance, the following statement iterates over a Python ``dict``:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001666
Wenzel Jakob93296692015-10-13 23:21:54 +02001667.. code-block:: cpp
1668
1669 void print_dict(py::dict dict) {
1670 /* Easily interact with Python types */
1671 for (auto item : dict)
1672 std::cout << "key=" << item.first << ", "
1673 << "value=" << item.second << std::endl;
1674 }
1675
1676Available types include :class:`handle`, :class:`object`, :class:`bool_`,
Wenzel Jakob27e8e102016-01-17 22:36:37 +01001677:class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`,
Wenzel Jakobf64feaf2016-04-28 14:33:45 +02001678:class:`list`, :class:`dict`, :class:`slice`, :class:`none`, :class:`capsule`,
1679:class:`iterable`, :class:`iterator`, :class:`function`, :class:`buffer`,
1680:class:`array`, and :class:`array_t`.
Wenzel Jakob93296692015-10-13 23:21:54 +02001681
Wenzel Jakob436b7312015-10-20 01:04:30 +02001682In this kind of mixed code, it is often necessary to convert arbitrary C++
1683types to Python, which can be done using :func:`cast`:
1684
1685.. code-block:: cpp
1686
1687 MyClass *cls = ..;
1688 py::object obj = py::cast(cls);
1689
1690The reverse direction uses the following syntax:
1691
1692.. code-block:: cpp
1693
1694 py::object obj = ...;
1695 MyClass *cls = obj.cast<MyClass *>();
1696
1697When conversion fails, both directions throw the exception :class:`cast_error`.
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001698It is also possible to call python functions via ``operator()``.
1699
1700.. code-block:: cpp
1701
1702 py::function f = <...>;
1703 py::object result_py = f(1234, "hello", some_instance);
1704 MyClass &result = result_py.cast<MyClass>();
1705
Dean Moldovan625bd482016-09-02 16:40:49 +02001706Keyword arguments are also supported. In Python, there is the usual call syntax:
1707
1708.. code-block:: python
1709
1710 def f(number, say, to):
1711 ... # function code
1712
1713 f(1234, say="hello", to=some_instance) # keyword call in Python
1714
1715In C++, the same call can be made using:
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001716
1717.. code-block:: cpp
1718
Dean Moldovan625bd482016-09-02 16:40:49 +02001719 using pybind11::literals; // to bring in the `_a` literal
1720 f(1234, "say"_a="hello", "to"_a=some_instance); // keyword call in C++
1721
1722Unpacking of ``*args`` and ``**kwargs`` is also possible and can be mixed with
1723other arguments:
1724
1725.. code-block:: cpp
1726
1727 // * unpacking
1728 py::tuple args = py::make_tuple(1234, "hello", some_instance);
1729 f(*args);
1730
1731 // ** unpacking
1732 py::dict kwargs = py::dict("number"_a=1234, "say"_a="hello", "to"_a=some_instance);
1733 f(**kwargs);
1734
1735 // mixed keywords, * and ** unpacking
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001736 py::tuple args = py::make_tuple(1234);
Dean Moldovan625bd482016-09-02 16:40:49 +02001737 py::dict kwargs = py::dict("to"_a=some_instance);
1738 f(*args, "say"_a="hello", **kwargs);
1739
1740Generalized unpacking according to PEP448_ is also supported:
1741
1742.. code-block:: cpp
1743
1744 py::dict kwargs1 = py::dict("number"_a=1234);
1745 py::dict kwargs2 = py::dict("to"_a=some_instance);
1746 f(**kwargs1, "say"_a="hello", **kwargs2);
Wenzel Jakob436b7312015-10-20 01:04:30 +02001747
Wenzel Jakob93296692015-10-13 23:21:54 +02001748.. seealso::
1749
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001750 The file :file:`tests/test_python_types.cpp` contains a complete
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001751 example that demonstrates passing native Python types in more detail. The
Dean Moldovan625bd482016-09-02 16:40:49 +02001752 file :file:`tests/test_callbacks.cpp` presents a few examples of calling
1753 Python functions from C++, including keywords arguments and unpacking.
1754
1755.. _PEP448: https://www.python.org/dev/peps/pep-0448/
1756
1757Using Python's print function in C++
1758====================================
1759
1760The usual way to write output in C++ is using ``std::cout`` while in Python one
1761would use ``print``. Since these methods use different buffers, mixing them can
1762lead to output order issues. To resolve this, pybind11 modules can use the
1763:func:`py::print` function which writes to Python's ``sys.stdout`` for consistency.
1764
1765Python's ``print`` function is replicated in the C++ API including optional
1766keyword arguments ``sep``, ``end``, ``file``, ``flush``. Everything works as
1767expected in Python:
1768
1769.. code-block:: cpp
1770
1771 py::print(1, 2.0, "three"); // 1 2.0 three
1772 py::print(1, 2.0, "three", "sep"_a="-"); // 1-2.0-three
1773
1774 auto args = py::make_tuple("unpacked", true);
1775 py::print("->", *args, "end"_a="<-"); // -> unpacked True <-
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001776
1777Default arguments revisited
1778===========================
1779
1780The section on :ref:`default_args` previously discussed basic usage of default
1781arguments using pybind11. One noteworthy aspect of their implementation is that
1782default arguments are converted to Python objects right at declaration time.
1783Consider the following example:
1784
1785.. code-block:: cpp
1786
1787 py::class_<MyClass>("MyClass")
1788 .def("myFunction", py::arg("arg") = SomeType(123));
1789
1790In this case, pybind11 must already be set up to deal with values of the type
1791``SomeType`` (via a prior instantiation of ``py::class_<SomeType>``), or an
1792exception will be thrown.
1793
1794Another aspect worth highlighting is that the "preview" of the default argument
1795in the function signature is generated using the object's ``__repr__`` method.
1796If not available, the signature may not be very helpful, e.g.:
1797
Wenzel Jakob99279f72016-06-03 11:19:29 +02001798.. code-block:: pycon
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001799
1800 FUNCTIONS
1801 ...
1802 | myFunction(...)
Wenzel Jakob48548ea2016-01-17 22:36:44 +01001803 | Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001804 ...
1805
1806The first way of addressing this is by defining ``SomeType.__repr__``.
1807Alternatively, it is possible to specify the human-readable preview of the
1808default argument manually using the ``arg_t`` notation:
1809
1810.. code-block:: cpp
1811
1812 py::class_<MyClass>("MyClass")
1813 .def("myFunction", py::arg_t<SomeType>("arg", SomeType(123), "SomeType(123)"));
1814
Wenzel Jakobc769fce2016-03-03 12:03:30 +01001815Sometimes it may be necessary to pass a null pointer value as a default
1816argument. In this case, remember to cast it to the underlying type in question,
1817like so:
1818
1819.. code-block:: cpp
1820
1821 py::class_<MyClass>("MyClass")
1822 .def("myFunction", py::arg("arg") = (SomeType *) nullptr);
1823
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001824Binding functions that accept arbitrary numbers of arguments and keywords arguments
1825===================================================================================
1826
1827Python provides a useful mechanism to define functions that accept arbitrary
1828numbers of arguments and keyword arguments:
1829
1830.. code-block:: cpp
1831
1832 def generic(*args, **kwargs):
1833 # .. do something with args and kwargs
1834
1835Such functions can also be created using pybind11:
1836
1837.. code-block:: cpp
1838
1839 void generic(py::args args, py::kwargs kwargs) {
1840 /// .. do something with args
1841 if (kwargs)
1842 /// .. do something with kwargs
1843 }
1844
1845 /// Binding code
1846 m.def("generic", &generic);
1847
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001848(See ``tests/test_kwargs_and_defaults.cpp``). The class ``py::args``
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001849derives from ``py::list`` and ``py::kwargs`` derives from ``py::dict`` Note
1850that the ``kwargs`` argument is invalid if no keyword arguments were actually
1851provided. Please refer to the other examples for details on how to iterate
1852over these, and on how to cast their entries into C++ objects.
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001853
Wenzel Jakob3764e282016-08-01 23:34:48 +02001854.. warning::
1855
1856 Unlike Python, pybind11 does not allow combining normal parameters with the
1857 ``args`` / ``kwargs`` special parameters.
1858
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001859Partitioning code over multiple extension modules
1860=================================================
1861
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001862It's straightforward to split binding code over multiple extension modules,
1863while referencing types that are declared elsewhere. Everything "just" works
1864without any special precautions. One exception to this rule occurs when
1865extending a type declared in another extension module. Recall the basic example
1866from Section :ref:`inheritance`.
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001867
1868.. code-block:: cpp
1869
1870 py::class_<Pet> pet(m, "Pet");
1871 pet.def(py::init<const std::string &>())
1872 .def_readwrite("name", &Pet::name);
1873
1874 py::class_<Dog>(m, "Dog", pet /* <- specify parent */)
1875 .def(py::init<const std::string &>())
1876 .def("bark", &Dog::bark);
1877
1878Suppose now that ``Pet`` bindings are defined in a module named ``basic``,
1879whereas the ``Dog`` bindings are defined somewhere else. The challenge is of
1880course that the variable ``pet`` is not available anymore though it is needed
1881to indicate the inheritance relationship to the constructor of ``class_<Dog>``.
1882However, it can be acquired as follows:
1883
1884.. code-block:: cpp
1885
1886 py::object pet = (py::object) py::module::import("basic").attr("Pet");
1887
1888 py::class_<Dog>(m, "Dog", pet)
1889 .def(py::init<const std::string &>())
1890 .def("bark", &Dog::bark);
1891
Jason Rhinelander6b52c832016-09-06 12:27:00 -04001892Alternatively, you can specify the base class as a template parameter option to
1893``class_``, which performs an automated lookup of the corresponding Python
1894type. Like the above code, however, this also requires invoking the ``import``
1895function once to ensure that the pybind11 binding code of the module ``basic``
1896has been executed:
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001897
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001898.. code-block:: cpp
1899
1900 py::module::import("basic");
1901
Jason Rhinelander6b52c832016-09-06 12:27:00 -04001902 py::class_<Dog, Pet>(m, "Dog")
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001903 .def(py::init<const std::string &>())
1904 .def("bark", &Dog::bark);
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001905
Wenzel Jakob978e3762016-04-07 18:00:41 +02001906Naturally, both methods will fail when there are cyclic dependencies.
1907
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001908Note that compiling code which has its default symbol visibility set to
1909*hidden* (e.g. via the command line flag ``-fvisibility=hidden`` on GCC/Clang) can interfere with the
1910ability to access types defined in another extension module. Workarounds
1911include changing the global symbol visibility (not recommended, because it will
1912lead unnecessarily large binaries) or manually exporting types that are
1913accessed by multiple extension modules:
1914
1915.. code-block:: cpp
1916
1917 #ifdef _WIN32
1918 # define EXPORT_TYPE __declspec(dllexport)
1919 #else
1920 # define EXPORT_TYPE __attribute__ ((visibility("default")))
1921 #endif
1922
1923 class EXPORT_TYPE Dog : public Animal {
1924 ...
1925 };
1926
1927
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001928Pickling support
1929================
1930
1931Python's ``pickle`` module provides a powerful facility to serialize and
1932de-serialize a Python object graph into a binary data stream. To pickle and
Wenzel Jakob3d0e6ff2016-04-13 11:48:10 +02001933unpickle C++ classes using pybind11, two additional functions must be provided.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001934Suppose the class in question has the following signature:
1935
1936.. code-block:: cpp
1937
1938 class Pickleable {
1939 public:
1940 Pickleable(const std::string &value) : m_value(value) { }
1941 const std::string &value() const { return m_value; }
1942
1943 void setExtra(int extra) { m_extra = extra; }
1944 int extra() const { return m_extra; }
1945 private:
1946 std::string m_value;
1947 int m_extra = 0;
1948 };
1949
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001950The binding code including the requisite ``__setstate__`` and ``__getstate__`` methods [#f3]_
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001951looks as follows:
1952
1953.. code-block:: cpp
1954
1955 py::class_<Pickleable>(m, "Pickleable")
1956 .def(py::init<std::string>())
1957 .def("value", &Pickleable::value)
1958 .def("extra", &Pickleable::extra)
1959 .def("setExtra", &Pickleable::setExtra)
1960 .def("__getstate__", [](const Pickleable &p) {
1961 /* Return a tuple that fully encodes the state of the object */
1962 return py::make_tuple(p.value(), p.extra());
1963 })
1964 .def("__setstate__", [](Pickleable &p, py::tuple t) {
1965 if (t.size() != 2)
1966 throw std::runtime_error("Invalid state!");
1967
Wenzel Jakobd40885a2016-04-13 13:30:05 +02001968 /* Invoke the in-place constructor. Note that this is needed even
1969 when the object just has a trivial default constructor */
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001970 new (&p) Pickleable(t[0].cast<std::string>());
1971
1972 /* Assign any additional state */
1973 p.setExtra(t[1].cast<int>());
1974 });
1975
1976An instance can now be pickled as follows:
1977
1978.. code-block:: python
1979
1980 try:
1981 import cPickle as pickle # Use cPickle on Python 2.7
1982 except ImportError:
1983 import pickle
1984
1985 p = Pickleable("test_value")
1986 p.setExtra(15)
Wenzel Jakob81e09752016-04-30 23:13:03 +02001987 data = pickle.dumps(p, 2)
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001988
Wenzel Jakob81e09752016-04-30 23:13:03 +02001989Note that only the cPickle module is supported on Python 2.7. The second
1990argument to ``dumps`` is also crucial: it selects the pickle protocol version
19912, since the older version 1 is not supported. Newer versions are also fine—for
1992instance, specify ``-1`` to always use the latest available version. Beware:
1993failure to follow these instructions will cause important pybind11 memory
1994allocation routines to be skipped during unpickling, which will likely lead to
1995memory corruption and/or segmentation faults.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001996
1997.. seealso::
1998
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001999 The file :file:`tests/test_pickling.cpp` contains a complete example
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04002000 that demonstrates how to pickle and unpickle types using pybind11 in more
2001 detail.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02002002
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02002003.. [#f3] http://docs.python.org/3/library/pickle.html#pickling-class-instances
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02002004
2005Generating documentation using Sphinx
2006=====================================
2007
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02002008Sphinx [#f4]_ has the ability to inspect the signatures and documentation
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02002009strings in pybind11-based extension modules to automatically generate beautiful
Wenzel Jakobca8dc082016-06-03 14:24:17 +02002010documentation in a variety formats. The python_example repository [#f5]_ contains a
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02002011simple example repository which uses this approach.
2012
2013There are two potential gotchas when using this approach: first, make sure that
2014the resulting strings do not contain any :kbd:`TAB` characters, which break the
2015docstring parsing routines. You may want to use C++11 raw string literals,
2016which are convenient for multi-line comments. Conveniently, any excess
2017indentation will be automatically be removed by Sphinx. However, for this to
2018work, it is important that all lines are indented consistently, i.e.:
2019
2020.. code-block:: cpp
2021
2022 // ok
2023 m.def("foo", &foo, R"mydelimiter(
2024 The foo function
2025
2026 Parameters
2027 ----------
2028 )mydelimiter");
2029
2030 // *not ok*
2031 m.def("foo", &foo, R"mydelimiter(The foo function
2032
2033 Parameters
2034 ----------
2035 )mydelimiter");
2036
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02002037.. [#f4] http://www.sphinx-doc.org
Wenzel Jakobca8dc082016-06-03 14:24:17 +02002038.. [#f5] http://github.com/pybind/python_example
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02002039
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02002040Evaluating Python expressions from strings and files
2041====================================================
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02002042
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02002043pybind11 provides the :func:`eval` and :func:`eval_file` functions to evaluate
2044Python expressions and statements. The following example illustrates how they
2045can be used.
2046
2047Both functions accept a template parameter that describes how the argument
2048should be interpreted. Possible choices include ``eval_expr`` (isolated
2049expression), ``eval_single_statement`` (a single statement, return value is
2050always ``none``), and ``eval_statements`` (sequence of statements, return value
2051is always ``none``).
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02002052
2053.. code-block:: cpp
2054
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02002055 // At beginning of file
2056 #include <pybind11/eval.h>
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02002057
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02002058 ...
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02002059
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02002060 // Evaluate in scope of main module
2061 py::object scope = py::module::import("__main__").attr("__dict__");
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02002062
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02002063 // Evaluate an isolated expression
2064 int result = py::eval("my_variable + 10", scope).cast<int>();
2065
2066 // Evaluate a sequence of statements
2067 py::eval<py::eval_statements>(
2068 "print('Hello')\n"
2069 "print('world!');",
2070 scope);
2071
2072 // Evaluate the statements in an separate Python file on disk
2073 py::eval_file("script.py", scope);
Wenzel Jakob48ce0722016-09-06 14:13:22 +09002074
2075Development of custom type casters
2076==================================
2077
2078In very rare cases, applications may require custom type casters that cannot be
2079expressed using the abstractions provided by pybind11, thus requiring raw
2080Python C API calls. This is fairly advanced usage and should only be pursued by
2081experts who are familiar with the intricacies of Python reference counting.
2082
2083The following snippets demonstrate how this works for a very simple ``inty``
2084type that that should be convertible from Python types that provide a
2085``__int__(self)`` method.
2086
2087.. code-block:: cpp
2088
2089 struct inty { long long_value; };
2090
2091 void print(inty s) {
2092 std::cout << s.long_value << std::endl;
2093 }
2094
2095The following Python snippet demonstrates the intended usage from the Python side:
2096
2097.. code-block:: python
2098
2099 class A:
2100 def __int__(self):
2101 return 123
2102
2103 from example import print
2104 print(A())
2105
2106To register the necessary conversion routines, it is necessary to add
2107a partial overload to the ``pybind11::detail::type_caster<T>`` template.
2108Although this is an implementation detail, adding partial overloads to this
2109type is explicitly allowed.
2110
2111.. code-block:: cpp
2112
2113 namespace pybind11 {
2114 namespace detail {
2115 template <> struct type_caster<inty> {
2116 public:
2117 /**
2118 * This macro establishes the name 'inty' in
2119 * function signatures and declares a local variable
2120 * 'value' of type inty
2121 */
2122 PYBIND11_TYPE_CASTER(inty, _("inty"));
2123
2124 /**
2125 * Conversion part 1 (Python->C++): convert a PyObject into a inty
2126 * instance or return false upon failure. The second argument
2127 * indicates whether implicit conversions should be applied.
2128 */
2129 bool load(handle src, bool) {
2130 /* Extract PyObject from handle */
2131 PyObject *source = src.ptr();
2132 /* Try converting into a Python integer value */
2133 PyObject *tmp = PyNumber_Long(source);
2134 if (!tmp)
2135 return false;
2136 /* Now try to convert into a C++ int */
2137 value.long_value = PyLong_AsLong(tmp);
2138 Py_DECREF(tmp);
2139 /* Ensure return code was OK (to avoid out-of-range errors etc) */
2140 return !(value.long_value == -1 && !PyErr_Occurred());
2141 }
2142
2143 /**
2144 * Conversion part 2 (C++ -> Python): convert an inty instance into
2145 * a Python object. The second and third arguments are used to
2146 * indicate the return value policy and parent object (for
2147 * ``return_value_policy::reference_internal``) and are generally
2148 * ignored by implicit casters.
2149 */
2150 static handle cast(inty src, return_value_policy /* policy */, handle /* parent */) {
2151 return PyLong_FromLong(src.long_value);
2152 }
2153 };
2154 }
2155 };
Wenzel Jakob8e5dceb2016-09-11 20:00:40 +09002156
2157Multiple Inheritance
2158====================
2159
2160pybind11 can create bindings for types that derive from multiple base types
2161(aka. *multiple inheritance*). To do so, specify all bases in the template
2162arguments of the ``class_`` declaration:
2163
2164.. code-block:: cpp
2165
2166 py::class_<MyType, BaseType1, BaseType2, BaseType3>(m, "MyType")
2167 ...
2168
2169The base types can be specified in arbitrary order, and they can even be
2170interspersed with alias types and holder types (discussed earlier in this
2171document)---pybind11 will automatically find out which is which. The only
2172requirement is that the first template argument is the type to be declared.
2173
2174There are two caveats regarding the implementation of this feature:
2175
21761. When only one base type is specified for a C++ type that actually has
2177 multiple bases, pybind11 will assume that it does not participate in
2178 multiple inheritance, which can lead to undefined behavior. In such cases,
2179 add the tag ``multiple_inheritance``:
2180
2181 .. code-block:: cpp
2182
2183 py::class_<MyType, BaseType2>(m, "MyType", py::multiple_inheritance());
2184
2185 The tag is redundant and does not need to be specified when multiple base
2186 types are listed.
2187
21882. As was previously discussed in the section on :ref:`overriding_virtuals`, it
2189 is easy to create Python types that derive from C++ classes. It is even
2190 possible to make use of multiple inheritance to declare a Python class which
2191 has e.g. a C++ and a Python class as bases. However, any attempt to create a
2192 type that has *two or more* C++ classes in its hierarchy of base types will
2193 fail with a fatal error message: ``TypeError: multiple bases have instance
2194 lay-out conflict``. Core Python types that are implemented in C (e.g.
2195 ``dict``, ``list``, ``Exception``, etc.) also fall under this combination
2196 and cannot be combined with C++ types bound using pybind11 via multiple
2197 inheritance.