blob: ff85a4fc2faa1cbed1fcb13a0b15833e6ba77652 [file] [log] [blame]
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001.. _advanced:
2
3Advanced topics
4###############
5
Wenzel Jakob93296692015-10-13 23:21:54 +02006For brevity, the rest of this chapter assumes that the following two lines are
7present:
8
9.. code-block:: cpp
10
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020011 #include <pybind11/pybind11.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020012
Wenzel Jakob10e62e12015-10-15 22:46:07 +020013 namespace py = pybind11;
Wenzel Jakob93296692015-10-13 23:21:54 +020014
Wenzel Jakobde3ad072016-02-02 11:38:21 +010015Exporting constants and mutable objects
16=======================================
17
18To expose a C++ constant, use the ``attr`` function to register it in a module
19as shown below. The ``int_`` class is one of many small wrapper objects defined
20in ``pybind11/pytypes.h``. General objects (including integers) can also be
21converted using the function ``cast``.
22
23.. code-block:: cpp
24
25 PYBIND11_PLUGIN(example) {
26 py::module m("example", "pybind11 example plugin");
27 m.attr("MY_CONSTANT") = py::int_(123);
28 m.attr("MY_CONSTANT_2") = py::cast(new MyObject());
29 }
30
Wenzel Jakob28f98aa2015-10-13 02:57:16 +020031Operator overloading
32====================
33
Wenzel Jakob93296692015-10-13 23:21:54 +020034Suppose that we're given the following ``Vector2`` class with a vector addition
35and scalar multiplication operation, all implemented using overloaded operators
36in C++.
37
38.. code-block:: cpp
39
40 class Vector2 {
41 public:
42 Vector2(float x, float y) : x(x), y(y) { }
43
Wenzel Jakob93296692015-10-13 23:21:54 +020044 Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
45 Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
46 Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
47 Vector2& operator*=(float v) { x *= v; y *= v; return *this; }
48
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020049 friend Vector2 operator*(float f, const Vector2 &v) {
50 return Vector2(f * v.x, f * v.y);
51 }
Wenzel Jakob93296692015-10-13 23:21:54 +020052
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020053 std::string toString() const {
54 return "[" + std::to_string(x) + ", " + std::to_string(y) + "]";
55 }
Wenzel Jakob93296692015-10-13 23:21:54 +020056 private:
57 float x, y;
58 };
59
60The following snippet shows how the above operators can be conveniently exposed
61to Python.
62
63.. code-block:: cpp
64
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020065 #include <pybind11/operators.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020066
Wenzel Jakobb1b71402015-10-18 16:48:30 +020067 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020068 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +020069
70 py::class_<Vector2>(m, "Vector2")
71 .def(py::init<float, float>())
72 .def(py::self + py::self)
73 .def(py::self += py::self)
74 .def(py::self *= float())
75 .def(float() * py::self)
76 .def("__repr__", &Vector2::toString);
77
78 return m.ptr();
79 }
80
81Note that a line like
82
83.. code-block:: cpp
84
85 .def(py::self * float())
86
87is really just short hand notation for
88
89.. code-block:: cpp
90
91 .def("__mul__", [](const Vector2 &a, float b) {
92 return a * b;
Wenzel Jakob382484a2016-09-10 15:28:37 +090093 }, py::is_operator())
Wenzel Jakob93296692015-10-13 23:21:54 +020094
95This can be useful for exposing additional operators that don't exist on the
Wenzel Jakob382484a2016-09-10 15:28:37 +090096C++ side, or to perform other types of customization. The ``py::is_operator``
97flag marker is needed to inform pybind11 that this is an operator, which
98returns ``NotImplemented`` when invoked with incompatible arguments rather than
99throwing a type error.
Wenzel Jakob93296692015-10-13 23:21:54 +0200100
101.. note::
102
103 To use the more convenient ``py::self`` notation, the additional
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200104 header file :file:`pybind11/operators.h` must be included.
Wenzel Jakob93296692015-10-13 23:21:54 +0200105
106.. seealso::
107
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200108 The file :file:`tests/test_operator_overloading.cpp` contains a
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400109 complete example that demonstrates how to work with overloaded operators in
110 more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +0200111
112Callbacks and passing anonymous functions
113=========================================
114
115The C++11 standard brought lambda functions and the generic polymorphic
116function wrapper ``std::function<>`` to the C++ programming language, which
117enable powerful new ways of working with functions. Lambda functions come in
118two flavors: stateless lambda function resemble classic function pointers that
119link to an anonymous piece of code, while stateful lambda functions
120additionally depend on captured variables that are stored in an anonymous
121*lambda closure object*.
122
123Here is a simple example of a C++ function that takes an arbitrary function
124(stateful or stateless) with signature ``int -> int`` as an argument and runs
125it with the value 10.
126
127.. code-block:: cpp
128
129 int func_arg(const std::function<int(int)> &f) {
130 return f(10);
131 }
132
133The example below is more involved: it takes a function of signature ``int -> int``
134and returns another function of the same kind. The return value is a stateful
135lambda function, which stores the value ``f`` in the capture object and adds 1 to
136its return value upon execution.
137
138.. code-block:: cpp
139
140 std::function<int(int)> func_ret(const std::function<int(int)> &f) {
141 return [f](int i) {
142 return f(i) + 1;
143 };
144 }
145
Brad Harmon835fc062016-06-16 13:19:15 -0500146This example demonstrates using python named parameters in C++ callbacks which
147requires using ``py::cpp_function`` as a wrapper. Usage is similar to defining
148methods of classes:
149
150.. code-block:: cpp
151
152 py::cpp_function func_cpp() {
153 return py::cpp_function([](int i) { return i+1; },
154 py::arg("number"));
155 }
156
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200157After including the extra header file :file:`pybind11/functional.h`, it is almost
Brad Harmon835fc062016-06-16 13:19:15 -0500158trivial to generate binding code for all of these functions.
Wenzel Jakob93296692015-10-13 23:21:54 +0200159
160.. code-block:: cpp
161
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200162 #include <pybind11/functional.h>
Wenzel Jakob93296692015-10-13 23:21:54 +0200163
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200164 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200165 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200166
167 m.def("func_arg", &func_arg);
168 m.def("func_ret", &func_ret);
Brad Harmon835fc062016-06-16 13:19:15 -0500169 m.def("func_cpp", &func_cpp);
Wenzel Jakob93296692015-10-13 23:21:54 +0200170
171 return m.ptr();
172 }
173
174The following interactive session shows how to call them from Python.
175
Wenzel Jakob99279f72016-06-03 11:19:29 +0200176.. code-block:: pycon
Wenzel Jakob93296692015-10-13 23:21:54 +0200177
178 $ python
179 >>> import example
180 >>> def square(i):
181 ... return i * i
182 ...
183 >>> example.func_arg(square)
184 100L
185 >>> square_plus_1 = example.func_ret(square)
186 >>> square_plus_1(4)
187 17L
Brad Harmon835fc062016-06-16 13:19:15 -0500188 >>> plus_1 = func_cpp()
189 >>> plus_1(number=43)
190 44L
Wenzel Jakob93296692015-10-13 23:21:54 +0200191
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100192.. warning::
193
194 Keep in mind that passing a function from C++ to Python (or vice versa)
195 will instantiate a piece of wrapper code that translates function
Wenzel Jakob954b7932016-07-10 10:13:18 +0200196 invocations between the two languages. Naturally, this translation
197 increases the computational cost of each function call somewhat. A
198 problematic situation can arise when a function is copied back and forth
199 between Python and C++ many times in a row, in which case the underlying
200 wrappers will accumulate correspondingly. The resulting long sequence of
201 C++ -> Python -> C++ -> ... roundtrips can significantly decrease
202 performance.
203
204 There is one exception: pybind11 detects case where a stateless function
205 (i.e. a function pointer or a lambda function without captured variables)
206 is passed as an argument to another C++ function exposed in Python. In this
207 case, there is no overhead. Pybind11 will extract the underlying C++
208 function pointer from the wrapped function to sidestep a potential C++ ->
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200209 Python -> C++ roundtrip. This is demonstrated in :file:`tests/test_callbacks.cpp`.
Wenzel Jakob954b7932016-07-10 10:13:18 +0200210
211.. note::
212
213 This functionality is very useful when generating bindings for callbacks in
214 C++ libraries (e.g. GUI libraries, asynchronous networking libraries, etc.).
215
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200216 The file :file:`tests/test_callbacks.cpp` contains a complete example
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400217 that demonstrates how to work with callbacks and anonymous functions in
218 more detail.
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100219
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200220Overriding virtual functions in Python
221======================================
222
Wenzel Jakob93296692015-10-13 23:21:54 +0200223Suppose that a C++ class or interface has a virtual function that we'd like to
224to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is
225given as a specific example of how one would do this with traditional C++
226code).
227
228.. code-block:: cpp
229
230 class Animal {
231 public:
232 virtual ~Animal() { }
233 virtual std::string go(int n_times) = 0;
234 };
235
236 class Dog : public Animal {
237 public:
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400238 std::string go(int n_times) override {
Wenzel Jakob93296692015-10-13 23:21:54 +0200239 std::string result;
240 for (int i=0; i<n_times; ++i)
241 result += "woof! ";
242 return result;
243 }
244 };
245
246Let's also suppose that we are given a plain function which calls the
247function ``go()`` on an arbitrary ``Animal`` instance.
248
249.. code-block:: cpp
250
251 std::string call_go(Animal *animal) {
252 return animal->go(3);
253 }
254
255Normally, the binding code for these classes would look as follows:
256
257.. code-block:: cpp
258
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200259 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200260 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200261
262 py::class_<Animal> animal(m, "Animal");
263 animal
264 .def("go", &Animal::go);
265
266 py::class_<Dog>(m, "Dog", animal)
267 .def(py::init<>());
268
269 m.def("call_go", &call_go);
270
271 return m.ptr();
272 }
273
274However, these bindings are impossible to extend: ``Animal`` is not
275constructible, and we clearly require some kind of "trampoline" that
276redirects virtual calls back to Python.
277
278Defining a new type of ``Animal`` from within Python is possible but requires a
279helper class that is defined as follows:
280
281.. code-block:: cpp
282
283 class PyAnimal : public Animal {
284 public:
285 /* Inherit the constructors */
286 using Animal::Animal;
287
288 /* Trampoline (need one for each virtual function) */
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400289 std::string go(int n_times) override {
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200290 PYBIND11_OVERLOAD_PURE(
Wenzel Jakob93296692015-10-13 23:21:54 +0200291 std::string, /* Return type */
292 Animal, /* Parent class */
293 go, /* Name of function */
294 n_times /* Argument(s) */
295 );
296 }
297 };
298
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200299The macro :func:`PYBIND11_OVERLOAD_PURE` should be used for pure virtual
300functions, and :func:`PYBIND11_OVERLOAD` should be used for functions which have
Wenzel Jakob0d3fc352016-07-08 10:52:10 +0200301a default implementation.
Wenzel Jakob1e3be732016-05-24 23:42:05 +0200302
303There are also two alternate macros :func:`PYBIND11_OVERLOAD_PURE_NAME` and
Jason Rhinelander64830e32016-08-29 16:58:59 -0400304:func:`PYBIND11_OVERLOAD_NAME` which take a string-valued name argument between
305the *Parent class* and *Name of the function* slots. This is useful when the
306C++ and Python versions of the function have different names, e.g.
307``operator()`` vs ``__call__``.
Wenzel Jakob1e3be732016-05-24 23:42:05 +0200308
309The binding code also needs a few minor adaptations (highlighted):
Wenzel Jakob93296692015-10-13 23:21:54 +0200310
311.. code-block:: cpp
312 :emphasize-lines: 4,6,7
313
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200314 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200315 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200316
Jason Rhinelander5fffe202016-09-06 12:17:06 -0400317 py::class_<Animal, PyAnimal /* <--- trampoline*/> animal(m, "Animal");
Wenzel Jakob93296692015-10-13 23:21:54 +0200318 animal
Wenzel Jakob93296692015-10-13 23:21:54 +0200319 .def(py::init<>())
320 .def("go", &Animal::go);
321
322 py::class_<Dog>(m, "Dog", animal)
323 .def(py::init<>());
324
325 m.def("call_go", &call_go);
326
327 return m.ptr();
328 }
329
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200330Importantly, pybind11 is made aware of the trampoline trampoline helper class
Jason Rhinelander5fffe202016-09-06 12:17:06 -0400331by specifying it as an extra template argument to :class:`class_`. (This can
332also be combined with other template arguments such as a custom holder type;
333the order of template types does not matter). Following this, we are able to
334define a constructor as usual.
Wenzel Jakob93296692015-10-13 23:21:54 +0200335
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400336Note, however, that the above is sufficient for allowing python classes to
337extend ``Animal``, but not ``Dog``: see ref:`virtual_and_inheritance` for the
338necessary steps required to providing proper overload support for inherited
339classes.
340
Wenzel Jakob93296692015-10-13 23:21:54 +0200341The Python session below shows how to override ``Animal::go`` and invoke it via
342a virtual method call.
343
Wenzel Jakob99279f72016-06-03 11:19:29 +0200344.. code-block:: pycon
Wenzel Jakob93296692015-10-13 23:21:54 +0200345
346 >>> from example import *
347 >>> d = Dog()
348 >>> call_go(d)
349 u'woof! woof! woof! '
350 >>> class Cat(Animal):
351 ... def go(self, n_times):
352 ... return "meow! " * n_times
353 ...
354 >>> c = Cat()
355 >>> call_go(c)
356 u'meow! meow! meow! '
357
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200358Please take a look at the :ref:`macro_notes` before using this feature.
Wenzel Jakobbd986fe2016-05-21 10:48:30 +0200359
Wenzel Jakob93296692015-10-13 23:21:54 +0200360.. seealso::
361
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200362 The file :file:`tests/test_virtual_functions.cpp` contains a complete
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400363 example that demonstrates how to override virtual functions using pybind11
364 in more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +0200365
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400366.. _virtual_and_inheritance:
367
368Combining virtual functions and inheritance
369===========================================
370
371When combining virtual methods with inheritance, you need to be sure to provide
372an override for each method for which you want to allow overrides from derived
373python classes. For example, suppose we extend the above ``Animal``/``Dog``
374example as follows:
375
376.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200377
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400378 class Animal {
379 public:
380 virtual std::string go(int n_times) = 0;
381 virtual std::string name() { return "unknown"; }
382 };
383 class Dog : public class Animal {
384 public:
385 std::string go(int n_times) override {
386 std::string result;
387 for (int i=0; i<n_times; ++i)
388 result += bark() + " ";
389 return result;
390 }
391 virtual std::string bark() { return "woof!"; }
392 };
393
394then the trampoline class for ``Animal`` must, as described in the previous
395section, override ``go()`` and ``name()``, but in order to allow python code to
396inherit properly from ``Dog``, we also need a trampoline class for ``Dog`` that
397overrides both the added ``bark()`` method *and* the ``go()`` and ``name()``
398methods inherited from ``Animal`` (even though ``Dog`` doesn't directly
399override the ``name()`` method):
400
401.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200402
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400403 class PyAnimal : public Animal {
404 public:
405 using Animal::Animal; // Inherit constructors
406 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Animal, go, n_times); }
407 std::string name() override { PYBIND11_OVERLOAD(std::string, Animal, name, ); }
408 };
409 class PyDog : public Dog {
410 public:
411 using Dog::Dog; // Inherit constructors
412 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Dog, go, n_times); }
413 std::string name() override { PYBIND11_OVERLOAD(std::string, Dog, name, ); }
414 std::string bark() override { PYBIND11_OVERLOAD(std::string, Dog, bark, ); }
415 };
416
417A registered class derived from a pybind11-registered class with virtual
418methods requires a similar trampoline class, *even if* it doesn't explicitly
419declare or override any virtual methods itself:
420
421.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200422
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400423 class Husky : public Dog {};
424 class PyHusky : public Husky {
425 using Dog::Dog; // Inherit constructors
426 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Husky, go, n_times); }
427 std::string name() override { PYBIND11_OVERLOAD(std::string, Husky, name, ); }
428 std::string bark() override { PYBIND11_OVERLOAD(std::string, Husky, bark, ); }
429 };
430
431There is, however, a technique that can be used to avoid this duplication
432(which can be especially helpful for a base class with several virtual
433methods). The technique involves using template trampoline classes, as
434follows:
435
436.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200437
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400438 template <class AnimalBase = Animal> class PyAnimal : public AnimalBase {
439 using AnimalBase::AnimalBase; // Inherit constructors
440 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, AnimalBase, go, n_times); }
441 std::string name() override { PYBIND11_OVERLOAD(std::string, AnimalBase, name, ); }
442 };
443 template <class DogBase = Dog> class PyDog : public PyAnimal<DogBase> {
444 using PyAnimal<DogBase>::PyAnimal; // Inherit constructors
445 // Override PyAnimal's pure virtual go() with a non-pure one:
446 std::string go(int n_times) override { PYBIND11_OVERLOAD(std::string, DogBase, go, n_times); }
447 std::string bark() override { PYBIND11_OVERLOAD(std::string, DogBase, bark, ); }
448 };
449
450This technique has the advantage of requiring just one trampoline method to be
451declared per virtual method and pure virtual method override. It does,
452however, require the compiler to generate at least as many methods (and
453possibly more, if both pure virtual and overridden pure virtual methods are
454exposed, as above).
455
456The classes are then registered with pybind11 using:
457
458.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200459
Jason Rhinelander5fffe202016-09-06 12:17:06 -0400460 py::class_<Animal, PyAnimal<>> animal(m, "Animal");
461 py::class_<Dog, PyDog<>> dog(m, "Dog");
462 py::class_<Husky, PyDog<Husky>> husky(m, "Husky");
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400463 // ... add animal, dog, husky definitions
464
465Note that ``Husky`` did not require a dedicated trampoline template class at
466all, since it neither declares any new virtual methods nor provides any pure
467virtual method implementations.
468
469With either the repeated-virtuals or templated trampoline methods in place, you
470can now create a python class that inherits from ``Dog``:
471
472.. code-block:: python
473
474 class ShihTzu(Dog):
475 def bark(self):
476 return "yip!"
477
478.. seealso::
479
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200480 See the file :file:`tests/test_virtual_functions.cpp` for complete examples
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400481 using both the duplication and templated trampoline approaches.
482
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200483.. _macro_notes:
484
485General notes regarding convenience macros
486==========================================
487
488pybind11 provides a few convenience macros such as
489:func:`PYBIND11_MAKE_OPAQUE` and :func:`PYBIND11_DECLARE_HOLDER_TYPE`, and
490``PYBIND11_OVERLOAD_*``. Since these are "just" macros that are evaluated
491in the preprocessor (which has no concept of types), they *will* get confused
492by commas in a template argument such as ``PYBIND11_OVERLOAD(MyReturnValue<T1,
493T2>, myFunc)``. In this case, the preprocessor assumes that the comma indicates
494the beginnning of the next parameter. Use a ``typedef`` to bind the template to
495another name and use it in the macro to avoid this problem.
496
497
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100498Global Interpreter Lock (GIL)
499=============================
500
501The classes :class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be
502used to acquire and release the global interpreter lock in the body of a C++
503function call. In this way, long-running C++ code can be parallelized using
504multiple Python threads. Taking the previous section as an example, this could
505be realized as follows (important changes highlighted):
506
507.. code-block:: cpp
508 :emphasize-lines: 8,9,33,34
509
510 class PyAnimal : public Animal {
511 public:
512 /* Inherit the constructors */
513 using Animal::Animal;
514
515 /* Trampoline (need one for each virtual function) */
516 std::string go(int n_times) {
517 /* Acquire GIL before calling Python code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100518 py::gil_scoped_acquire acquire;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100519
520 PYBIND11_OVERLOAD_PURE(
521 std::string, /* Return type */
522 Animal, /* Parent class */
523 go, /* Name of function */
524 n_times /* Argument(s) */
525 );
526 }
527 };
528
529 PYBIND11_PLUGIN(example) {
530 py::module m("example", "pybind11 example plugin");
531
Jason Rhinelander5fffe202016-09-06 12:17:06 -0400532 py::class_<Animal, PyAnimal> animal(m, "Animal");
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100533 animal
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100534 .def(py::init<>())
535 .def("go", &Animal::go);
536
537 py::class_<Dog>(m, "Dog", animal)
538 .def(py::init<>());
539
540 m.def("call_go", [](Animal *animal) -> std::string {
541 /* Release GIL before calling into (potentially long-running) C++ code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100542 py::gil_scoped_release release;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100543 return call_go(animal);
544 });
545
546 return m.ptr();
547 }
548
Wenzel Jakob93296692015-10-13 23:21:54 +0200549Passing STL data structures
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200550===========================
551
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200552When including the additional header file :file:`pybind11/stl.h`, conversions
Wenzel Jakob978e3762016-04-07 18:00:41 +0200553between ``std::vector<>``, ``std::list<>``, ``std::set<>``, and ``std::map<>``
554and the Python ``list``, ``set`` and ``dict`` data structures are automatically
555enabled. The types ``std::pair<>`` and ``std::tuple<>`` are already supported
556out of the box with just the core :file:`pybind11/pybind11.h` header.
Wenzel Jakob93296692015-10-13 23:21:54 +0200557
Wenzel Jakobfe342412016-09-06 13:02:29 +0900558The major downside of these implicit conversions is that containers must be
559converted (i.e. copied) on every Python->C++ and C++->Python transition, which
560can have implications on the program semantics and performance. Please read the
561next sections for more details and alternative approaches that avoid this.
Sergey Lyskov75204182016-08-29 22:50:38 -0400562
Wenzel Jakob93296692015-10-13 23:21:54 +0200563.. note::
564
Wenzel Jakobfe342412016-09-06 13:02:29 +0900565 Arbitrary nesting of any of these types is possible.
Wenzel Jakob93296692015-10-13 23:21:54 +0200566
567.. seealso::
568
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200569 The file :file:`tests/test_python_types.cpp` contains a complete
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400570 example that demonstrates how to pass STL data types in more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +0200571
Wenzel Jakobfe342412016-09-06 13:02:29 +0900572.. _opaque:
573
574Treating STL data structures as opaque objects
575==============================================
576
577pybind11 heavily relies on a template matching mechanism to convert parameters
578and return values that are constructed from STL data types such as vectors,
579linked lists, hash tables, etc. This even works in a recursive manner, for
580instance to deal with lists of hash maps of pairs of elementary and custom
581types, etc.
582
583However, a fundamental limitation of this approach is that internal conversions
584between Python and C++ types involve a copy operation that prevents
585pass-by-reference semantics. What does this mean?
586
587Suppose we bind the following function
588
589.. code-block:: cpp
590
591 void append_1(std::vector<int> &v) {
592 v.push_back(1);
593 }
594
595and call it from Python, the following happens:
596
597.. code-block:: pycon
598
599 >>> v = [5, 6]
600 >>> append_1(v)
601 >>> print(v)
602 [5, 6]
603
604As you can see, when passing STL data structures by reference, modifications
605are not propagated back the Python side. A similar situation arises when
606exposing STL data structures using the ``def_readwrite`` or ``def_readonly``
607functions:
608
609.. code-block:: cpp
610
611 /* ... definition ... */
612
613 class MyClass {
614 std::vector<int> contents;
615 };
616
617 /* ... binding code ... */
618
619 py::class_<MyClass>(m, "MyClass")
620 .def(py::init<>)
621 .def_readwrite("contents", &MyClass::contents);
622
623In this case, properties can be read and written in their entirety. However, an
624``append`` operaton involving such a list type has no effect:
625
626.. code-block:: pycon
627
628 >>> m = MyClass()
629 >>> m.contents = [5, 6]
630 >>> print(m.contents)
631 [5, 6]
632 >>> m.contents.append(7)
633 >>> print(m.contents)
634 [5, 6]
635
636Finally, the involved copy operations can be costly when dealing with very
637large lists. To deal with all of the above situations, pybind11 provides a
638macro named ``PYBIND11_MAKE_OPAQUE(T)`` that disables the template-based
639conversion machinery of types, thus rendering them *opaque*. The contents of
640opaque objects are never inspected or extracted, hence they *can* be passed by
641reference. For instance, to turn ``std::vector<int>`` into an opaque type, add
642the declaration
643
644.. code-block:: cpp
645
646 PYBIND11_MAKE_OPAQUE(std::vector<int>);
647
648before any binding code (e.g. invocations to ``class_::def()``, etc.). This
649macro must be specified at the top level (and outside of any namespaces), since
650it instantiates a partial template overload. If your binding code consists of
651multiple compilation units, it must be present in every file preceding any
652usage of ``std::vector<int>``. Opaque types must also have a corresponding
653``class_`` declaration to associate them with a name in Python, and to define a
654set of available operations, e.g.:
655
656.. code-block:: cpp
657
658 py::class_<std::vector<int>>(m, "IntVector")
659 .def(py::init<>())
660 .def("clear", &std::vector<int>::clear)
661 .def("pop_back", &std::vector<int>::pop_back)
662 .def("__len__", [](const std::vector<int> &v) { return v.size(); })
663 .def("__iter__", [](std::vector<int> &v) {
664 return py::make_iterator(v.begin(), v.end());
665 }, py::keep_alive<0, 1>()) /* Keep vector alive while iterator is used */
666 // ....
667
668The ability to expose STL containers as native Python objects is a fairly
669common request, hence pybind11 also provides an optional header file named
670:file:`pybind11/stl_bind.h` that does exactly this. The mapped containers try
671to match the behavior of their native Python counterparts as much as possible.
672
673The following example showcases usage of :file:`pybind11/stl_bind.h`:
674
675.. code-block:: cpp
676
677 // Don't forget this
678 #include <pybind11/stl_bind.h>
679
680 PYBIND11_MAKE_OPAQUE(std::vector<int>);
681 PYBIND11_MAKE_OPAQUE(std::map<std::string, double>);
682
683 // ...
684
685 // later in binding code:
686 py::bind_vector<std::vector<int>>(m, "VectorInt");
687 py::bind_map<std::map<std::string, double>>(m, "MapStringDouble");
688
689Please take a look at the :ref:`macro_notes` before using the
690``PYBIND11_MAKE_OPAQUE`` macro.
691
692.. seealso::
693
694 The file :file:`tests/test_opaque_types.cpp` contains a complete
695 example that demonstrates how to create and expose opaque types using
696 pybind11 in more detail.
697
698 The file :file:`tests/test_stl_binders.cpp` shows how to use the
699 convenience STL container wrappers.
700
701
Wenzel Jakobb2825952016-04-13 23:33:00 +0200702Binding sequence data types, iterators, the slicing protocol, etc.
703==================================================================
Wenzel Jakob93296692015-10-13 23:21:54 +0200704
705Please refer to the supplemental example for details.
706
707.. seealso::
708
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200709 The file :file:`tests/test_sequences_and_iterators.cpp` contains a
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400710 complete example that shows how to bind a sequence data type, including
711 length queries (``__len__``), iterators (``__iter__``), the slicing
712 protocol and other kinds of useful operations.
Wenzel Jakob93296692015-10-13 23:21:54 +0200713
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200714Return value policies
715=====================
716
Wenzel Jakob93296692015-10-13 23:21:54 +0200717Python and C++ use wildly different ways of managing the memory and lifetime of
718objects managed by them. This can lead to issues when creating bindings for
719functions that return a non-trivial type. Just by looking at the type
720information, it is not clear whether Python should take charge of the returned
721value and eventually free its resources, or if this is handled on the C++ side.
722For this reason, pybind11 provides a several `return value policy` annotations
723that can be passed to the :func:`module::def` and :func:`class_::def`
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100724functions. The default policy is :enum:`return_value_policy::automatic`.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200725
Wenzel Jakobbf099582016-08-22 12:52:02 +0200726Return value policies can also be applied to properties, in which case the
727arguments must be passed through the :class:`cpp_function` constructor:
728
729.. code-block:: cpp
730
731 class_<MyClass>(m, "MyClass")
732 def_property("data"
733 py::cpp_function(&MyClass::getData, py::return_value_policy::copy),
734 py::cpp_function(&MyClass::setData)
735 );
736
737The following table provides an overview of the available return value policies:
738
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200739.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
740
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200741+--------------------------------------------------+----------------------------------------------------------------------------+
742| Return value policy | Description |
743+==================================================+============================================================================+
744| :enum:`return_value_policy::automatic` | This is the default return value policy, which falls back to the policy |
745| | :enum:`return_value_policy::take_ownership` when the return value is a |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200746| | pointer. Otherwise, it uses :enum:`return_value::move` or |
747| | :enum:`return_value::copy` for rvalue and lvalue references, respectively. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200748| | See below for a description of what all of these different policies do. |
749+--------------------------------------------------+----------------------------------------------------------------------------+
750| :enum:`return_value_policy::automatic_reference` | As above, but use policy :enum:`return_value_policy::reference` when the |
Wenzel Jakob37e1f612016-06-22 14:29:13 +0200751| | return value is a pointer. This is the default conversion policy for |
752| | function arguments when calling Python functions manually from C++ code |
753| | (i.e. via handle::operator()). You probably won't need to use this. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200754+--------------------------------------------------+----------------------------------------------------------------------------+
755| :enum:`return_value_policy::take_ownership` | Reference an existing object (i.e. do not create a new copy) and take |
756| | ownership. Python will call the destructor and delete operator when the |
757| | object's reference count reaches zero. Undefined behavior ensues when the |
Wenzel Jakobf53e3002016-06-30 14:59:23 +0200758| | C++ side does the same. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200759+--------------------------------------------------+----------------------------------------------------------------------------+
760| :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python. |
761| | This policy is comparably safe because the lifetimes of the two instances |
762| | are decoupled. |
763+--------------------------------------------------+----------------------------------------------------------------------------+
764| :enum:`return_value_policy::move` | Use ``std::move`` to move the return value contents into a new instance |
765| | that will be owned by Python. This policy is comparably safe because the |
766| | lifetimes of the two instances (move source and destination) are decoupled.|
767+--------------------------------------------------+----------------------------------------------------------------------------+
768| :enum:`return_value_policy::reference` | Reference an existing object, but do not take ownership. The C++ side is |
769| | responsible for managing the object's lifetime and deallocating it when |
770| | it is no longer used. Warning: undefined behavior will ensue when the C++ |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200771| | side deletes an object that is still referenced and used by Python. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200772+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakobbf099582016-08-22 12:52:02 +0200773| :enum:`return_value_policy::reference_internal` | Indicates that the lifetime of the return value is tied to the lifetime |
774| | of a parent object, namely the implicit ``this``, or ``self`` argument of |
775| | the called method or property. Internally, this policy works just like |
776| | :enum:`return_value_policy::reference` but additionally applies a |
777| | ``keep_alive<0, 1>`` *call policy* (described in the next section) that |
778| | prevents the parent object from being garbage collected as long as the |
779| | return value is referenced by Python. This is the default policy for |
780| | property getters created via ``def_property``, ``def_readwrite``, etc.) |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200781+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200782
Wenzel Jakobfb6aed22016-07-18 20:29:53 +0200783.. warning::
784
Jason Rhinelanderefc2aa72016-08-10 11:38:33 -0400785 Code with invalid return value policies might access unitialized memory or
786 free data structures multiple times, which can lead to hard-to-debug
Wenzel Jakobfb6aed22016-07-18 20:29:53 +0200787 non-determinism and segmentation faults, hence it is worth spending the
788 time to understand all the different options in the table above.
789
Jason Rhinelanderefc2aa72016-08-10 11:38:33 -0400790One important aspect of the above policies is that they only apply to instances
791which pybind11 has *not* seen before, in which case the policy clarifies
792essential questions about the return value's lifetime and ownership. When
793pybind11 knows the instance already (as identified by its type and address in
Wenzel Jakobfb6aed22016-07-18 20:29:53 +0200794memory), it will return the existing Python object wrapper rather than creating
Wenzel Jakobbf099582016-08-22 12:52:02 +0200795a new copy.
nafur717df752016-06-28 18:07:11 +0200796
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200797.. note::
798
799 The next section on :ref:`call_policies` discusses *call policies* that can be
800 specified *in addition* to a return value policy from the list above. Call
801 policies indicate reference relationships that can involve both return values
802 and parameters of functions.
803
804.. note::
805
806 As an alternative to elaborate call policies and lifetime management logic,
807 consider using smart pointers (see the section on :ref:`smart_pointers` for
808 details). Smart pointers can tell whether an object is still referenced from
809 C++ or Python, which generally eliminates the kinds of inconsistencies that
810 can lead to crashes or undefined behavior. For functions returning smart
811 pointers, it is not necessary to specify a return value policy.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100812
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200813.. _call_policies:
814
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100815Additional call policies
816========================
817
818In addition to the above return value policies, further `call policies` can be
819specified to indicate dependencies between parameters. There is currently just
820one policy named ``keep_alive<Nurse, Patient>``, which indicates that the
821argument with index ``Patient`` should be kept alive at least until the
Wenzel Jakob0b632312016-08-18 10:58:21 +0200822argument with index ``Nurse`` is freed by the garbage collector. Argument
823indices start at one, while zero refers to the return value. For methods, index
824``1`` refers to the implicit ``this`` pointer, while regular arguments begin at
825index ``2``. Arbitrarily many call policies can be specified. When a ``Nurse``
826with value ``None`` is detected at runtime, the call policy does nothing.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100827
Wenzel Jakob0b632312016-08-18 10:58:21 +0200828This feature internally relies on the ability to create a *weak reference* to
829the nurse object, which is permitted by all classes exposed via pybind11. When
830the nurse object does not support weak references, an exception will be thrown.
831
832Consider the following example: here, the binding code for a list append
833operation ties the lifetime of the newly added element to the underlying
834container:
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100835
836.. code-block:: cpp
837
838 py::class_<List>(m, "List")
839 .def("append", &List::append, py::keep_alive<1, 2>());
840
841.. note::
842
843 ``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse,
844 Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient ==
845 0) policies from Boost.Python.
846
Wenzel Jakob61587162016-01-18 22:38:52 +0100847.. seealso::
848
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200849 The file :file:`tests/test_keep_alive.cpp` contains a complete example
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400850 that demonstrates using :class:`keep_alive` in more detail.
Wenzel Jakob61587162016-01-18 22:38:52 +0100851
Wenzel Jakob93296692015-10-13 23:21:54 +0200852Implicit type conversions
853=========================
854
855Suppose that instances of two types ``A`` and ``B`` are used in a project, and
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200856that an ``A`` can easily be converted into an instance of type ``B`` (examples of this
Wenzel Jakob93296692015-10-13 23:21:54 +0200857could be a fixed and an arbitrary precision number type).
858
859.. code-block:: cpp
860
861 py::class_<A>(m, "A")
862 /// ... members ...
863
864 py::class_<B>(m, "B")
865 .def(py::init<A>())
866 /// ... members ...
867
868 m.def("func",
869 [](const B &) { /* .... */ }
870 );
871
872To invoke the function ``func`` using a variable ``a`` containing an ``A``
873instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++
874will automatically apply an implicit type conversion, which makes it possible
875to directly write ``func(a)``.
876
877In this situation (i.e. where ``B`` has a constructor that converts from
878``A``), the following statement enables similar implicit conversions on the
879Python side:
880
881.. code-block:: cpp
882
883 py::implicitly_convertible<A, B>();
884
Wenzel Jakob3eeea6f2016-06-30 18:10:28 +0200885.. note::
886
887 Implicit conversions from ``A`` to ``B`` only work when ``B`` is a custom
888 data type that is exposed to Python via pybind11.
889
Wenzel Jakobf88af0c2016-06-22 13:52:31 +0200890.. _static_properties:
891
892Static properties
893=================
894
895The section on :ref:`properties` discussed the creation of instance properties
896that are implemented in terms of C++ getters and setters.
897
898Static properties can also be created in a similar way to expose getters and
899setters of static class attributes. It is important to note that the implicit
900``self`` argument also exists in this case and is used to pass the Python
901``type`` subclass instance. This parameter will often not be needed by the C++
902side, and the following example illustrates how to instantiate a lambda getter
903function that ignores it:
904
905.. code-block:: cpp
906
907 py::class_<Foo>(m, "Foo")
908 .def_property_readonly_static("foo", [](py::object /* self */) { return Foo(); });
909
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200910Unique pointers
911===============
912
913Given a class ``Example`` with Python bindings, it's possible to return
914instances wrapped in C++11 unique pointers, like so
915
916.. code-block:: cpp
917
918 std::unique_ptr<Example> create_example() { return std::unique_ptr<Example>(new Example()); }
919
920.. code-block:: cpp
921
922 m.def("create_example", &create_example);
923
924In other words, there is nothing special that needs to be done. While returning
925unique pointers in this way is allowed, it is *illegal* to use them as function
926arguments. For instance, the following function signature cannot be processed
927by pybind11.
928
929.. code-block:: cpp
930
931 void do_something_with_example(std::unique_ptr<Example> ex) { ... }
932
933The above signature would imply that Python needs to give up ownership of an
934object that is passed to this function, which is generally not possible (for
935instance, the object might be referenced elsewhere).
936
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200937.. _smart_pointers:
938
Wenzel Jakob93296692015-10-13 23:21:54 +0200939Smart pointers
940==============
941
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200942This section explains how to pass values that are wrapped in "smart" pointer
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200943types with internal reference counting. For the simpler C++11 unique pointers,
944refer to the previous section.
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200945
Jason Rhinelander5fffe202016-09-06 12:17:06 -0400946The binding generator for classes, :class:`class_`, can be passed a template
947type that denotes a special *holder* type that is used to manage references to
948the object. If no such holder type template argument is given, the default for
949a type named ``Type`` is ``std::unique_ptr<Type>``, which means that the object
950is deallocated when Python's reference count goes to zero.
Wenzel Jakob93296692015-10-13 23:21:54 +0200951
Wenzel Jakob1853b652015-10-18 15:38:50 +0200952It is possible to switch to other types of reference counting wrappers or smart
953pointers, which is useful in codebases that rely on them. For instance, the
954following snippet causes ``std::shared_ptr`` to be used instead.
Wenzel Jakob93296692015-10-13 23:21:54 +0200955
956.. code-block:: cpp
957
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100958 py::class_<Example, std::shared_ptr<Example> /* <- holder type */> obj(m, "Example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100959
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100960Note that any particular class can only be associated with a single holder type.
Wenzel Jakob93296692015-10-13 23:21:54 +0200961
Wenzel Jakob1853b652015-10-18 15:38:50 +0200962To enable transparent conversions for functions that take shared pointers as an
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100963argument or that return them, a macro invocation similar to the following must
Wenzel Jakob1853b652015-10-18 15:38:50 +0200964be declared at the top level before any binding code:
965
966.. code-block:: cpp
967
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200968 PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>);
Wenzel Jakob1853b652015-10-18 15:38:50 +0200969
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100970.. note::
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100971
972 The first argument of :func:`PYBIND11_DECLARE_HOLDER_TYPE` should be a
973 placeholder name that is used as a template parameter of the second
974 argument. Thus, feel free to use any identifier, but use it consistently on
975 both sides; also, don't use the name of a type that already exists in your
976 codebase.
977
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100978One potential stumbling block when using holder types is that they need to be
979applied consistently. Can you guess what's broken about the following binding
980code?
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100981
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100982.. code-block:: cpp
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100983
Jason Rhinelander5fffe202016-09-06 12:17:06 -0400984 PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>);
985
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100986 class Child { };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100987
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100988 class Parent {
989 public:
990 Parent() : child(std::make_shared<Child>()) { }
991 Child *get_child() { return child.get(); } /* Hint: ** DON'T DO THIS ** */
992 private:
993 std::shared_ptr<Child> child;
994 };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100995
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100996 PYBIND11_PLUGIN(example) {
997 py::module m("example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100998
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100999 py::class_<Child, std::shared_ptr<Child>>(m, "Child");
1000
1001 py::class_<Parent, std::shared_ptr<Parent>>(m, "Parent")
1002 .def(py::init<>())
1003 .def("get_child", &Parent::get_child);
1004
1005 return m.ptr();
1006 }
1007
1008The following Python code will cause undefined behavior (and likely a
1009segmentation fault).
1010
1011.. code-block:: python
1012
1013 from example import Parent
1014 print(Parent().get_child())
1015
1016The problem is that ``Parent::get_child()`` returns a pointer to an instance of
1017``Child``, but the fact that this instance is already managed by
1018``std::shared_ptr<...>`` is lost when passing raw pointers. In this case,
1019pybind11 will create a second independent ``std::shared_ptr<...>`` that also
1020claims ownership of the pointer. In the end, the object will be freed **twice**
1021since these shared pointers have no way of knowing about each other.
1022
1023There are two ways to resolve this issue:
1024
10251. For types that are managed by a smart pointer class, never use raw pointers
1026 in function arguments or return values. In other words: always consistently
1027 wrap pointers into their designated holder types (such as
1028 ``std::shared_ptr<...>``). In this case, the signature of ``get_child()``
1029 should be modified as follows:
1030
1031.. code-block:: cpp
1032
1033 std::shared_ptr<Child> get_child() { return child; }
1034
10352. Adjust the definition of ``Child`` by specifying
1036 ``std::enable_shared_from_this<T>`` (see cppreference_ for details) as a
1037 base class. This adds a small bit of information to ``Child`` that allows
1038 pybind11 to realize that there is already an existing
1039 ``std::shared_ptr<...>`` and communicate with it. In this case, the
1040 declaration of ``Child`` should look as follows:
Wenzel Jakob5ef12192015-12-15 17:07:35 +01001041
Wenzel Jakob6e213c92015-11-24 23:05:58 +01001042.. _cppreference: http://en.cppreference.com/w/cpp/memory/enable_shared_from_this
1043
Wenzel Jakobb2c2c792016-01-17 22:36:40 +01001044.. code-block:: cpp
1045
1046 class Child : public std::enable_shared_from_this<Child> { };
1047
Wenzel Jakob9bb97c12016-06-03 11:19:41 +02001048
1049Please take a look at the :ref:`macro_notes` before using this feature.
1050
Wenzel Jakob5ef12192015-12-15 17:07:35 +01001051.. seealso::
1052
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001053 The file :file:`tests/test_smart_ptr.cpp` contains a complete example
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001054 that demonstrates how to work with custom reference-counting holder types
1055 in more detail.
Wenzel Jakob5ef12192015-12-15 17:07:35 +01001056
Wenzel Jakob93296692015-10-13 23:21:54 +02001057.. _custom_constructors:
1058
1059Custom constructors
1060===================
1061
1062The syntax for binding constructors was previously introduced, but it only
1063works when a constructor with the given parameters actually exists on the C++
1064side. To extend this to more general cases, let's take a look at what actually
1065happens under the hood: the following statement
1066
1067.. code-block:: cpp
1068
1069 py::class_<Example>(m, "Example")
1070 .def(py::init<int>());
1071
1072is short hand notation for
1073
1074.. code-block:: cpp
1075
1076 py::class_<Example>(m, "Example")
1077 .def("__init__",
1078 [](Example &instance, int arg) {
1079 new (&instance) Example(arg);
1080 }
1081 );
1082
1083In other words, :func:`init` creates an anonymous function that invokes an
1084in-place constructor. Memory allocation etc. is already take care of beforehand
1085within pybind11.
1086
Nickolai Belakovski63338252016-08-27 11:57:55 -07001087.. _classes_with_non_public_destructors:
1088
1089Classes with non-public destructors
1090===================================
1091
Wenzel Jakob5e4e4772016-08-28 02:03:15 +02001092If a class has a private or protected destructor (as might e.g. be the case in
1093a singleton pattern), a compile error will occur when creating bindings via
1094pybind11. The underlying issue is that the ``std::unique_ptr`` holder type that
1095is responsible for managing the lifetime of instances will reference the
1096destructor even if no deallocations ever take place. In order to expose classes
1097with private or protected destructors, it is possible to override the holder
Jason Rhinelander5fffe202016-09-06 12:17:06 -04001098type via a holder type argument to ``class_``. Pybind11 provides a helper class
Wenzel Jakob5e4e4772016-08-28 02:03:15 +02001099``py::nodelete`` that disables any destructor invocations. In this case, it is
1100crucial that instances are deallocated on the C++ side to avoid memory leaks.
Nickolai Belakovski63338252016-08-27 11:57:55 -07001101
1102.. code-block:: cpp
1103
1104 /* ... definition ... */
1105
1106 class MyClass {
Wenzel Jakob5e4e4772016-08-28 02:03:15 +02001107 private:
1108 ~MyClass() { }
Nickolai Belakovski63338252016-08-27 11:57:55 -07001109 };
1110
1111 /* ... binding code ... */
1112
Wenzel Jakob5e4e4772016-08-28 02:03:15 +02001113 py::class_<MyClass, std::unique_ptr<MyClass, py::nodelete>>(m, "MyClass")
Nickolai Belakovski63338252016-08-27 11:57:55 -07001114 .def(py::init<>)
1115
Pim Schellart5a7d17f2016-06-17 17:35:59 -04001116.. _catching_and_throwing_exceptions:
1117
Wenzel Jakob93296692015-10-13 23:21:54 +02001118Catching and throwing exceptions
1119================================
1120
1121When C++ code invoked from Python throws an ``std::exception``, it is
1122automatically converted into a Python ``Exception``. pybind11 defines multiple
1123special exception classes that will map to different types of Python
1124exceptions:
1125
Wenzel Jakobf64feaf2016-04-28 14:33:45 +02001126.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
1127
Wenzel Jakob978e3762016-04-07 18:00:41 +02001128+--------------------------------------+------------------------------+
1129| C++ exception type | Python exception type |
1130+======================================+==============================+
1131| :class:`std::exception` | ``RuntimeError`` |
1132+--------------------------------------+------------------------------+
1133| :class:`std::bad_alloc` | ``MemoryError`` |
1134+--------------------------------------+------------------------------+
1135| :class:`std::domain_error` | ``ValueError`` |
1136+--------------------------------------+------------------------------+
1137| :class:`std::invalid_argument` | ``ValueError`` |
1138+--------------------------------------+------------------------------+
1139| :class:`std::length_error` | ``ValueError`` |
1140+--------------------------------------+------------------------------+
1141| :class:`std::out_of_range` | ``ValueError`` |
1142+--------------------------------------+------------------------------+
1143| :class:`std::range_error` | ``ValueError`` |
1144+--------------------------------------+------------------------------+
1145| :class:`pybind11::stop_iteration` | ``StopIteration`` (used to |
1146| | implement custom iterators) |
1147+--------------------------------------+------------------------------+
1148| :class:`pybind11::index_error` | ``IndexError`` (used to |
1149| | indicate out of bounds |
1150| | accesses in ``__getitem__``, |
1151| | ``__setitem__``, etc.) |
1152+--------------------------------------+------------------------------+
Sergey Lyskova95bde12016-05-08 19:31:55 -04001153| :class:`pybind11::value_error` | ``ValueError`` (used to |
1154| | indicate wrong value passed |
1155| | in ``container.remove(...)`` |
1156+--------------------------------------+------------------------------+
Jason Rhinelander5aa85be2016-08-11 21:22:05 -04001157| :class:`pybind11::key_error` | ``KeyError`` (used to |
1158| | indicate out of bounds |
1159| | accesses in ``__getitem__``, |
1160| | ``__setitem__`` in dict-like |
1161| | objects, etc.) |
1162+--------------------------------------+------------------------------+
Wenzel Jakob978e3762016-04-07 18:00:41 +02001163| :class:`pybind11::error_already_set` | Indicates that the Python |
1164| | exception flag has already |
1165| | been initialized |
1166+--------------------------------------+------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +02001167
1168When a Python function invoked from C++ throws an exception, it is converted
1169into a C++ exception of type :class:`error_already_set` whose string payload
1170contains a textual summary.
1171
1172There is also a special exception :class:`cast_error` that is thrown by
1173:func:`handle::call` when the input arguments cannot be converted to Python
1174objects.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001175
Pim Schellart5a7d17f2016-06-17 17:35:59 -04001176Registering custom exception translators
1177========================================
1178
1179If the default exception conversion policy described
1180:ref:`above <catching_and_throwing_exceptions>`
1181is insufficient, pybind11 also provides support for registering custom
1182exception translators.
1183
1184The function ``register_exception_translator(translator)`` takes a stateless
1185callable (e.g. a function pointer or a lambda function without captured
1186variables) with the following call signature: ``void(std::exception_ptr)``.
1187
1188When a C++ exception is thrown, registered exception translators are tried
1189in reverse order of registration (i.e. the last registered translator gets
1190a first shot at handling the exception).
1191
1192Inside the translator, ``std::rethrow_exception`` should be used within
1193a try block to re-throw the exception. A catch clause can then use
1194``PyErr_SetString`` to set a Python exception as demonstrated
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001195in :file:`tests/test_exceptions.cpp`.
Pim Schellart5a7d17f2016-06-17 17:35:59 -04001196
1197This example also demonstrates how to create custom exception types
1198with ``py::exception``.
1199
1200The following example demonstrates this for a hypothetical exception class
1201``MyCustomException``:
1202
1203.. code-block:: cpp
1204
1205 py::register_exception_translator([](std::exception_ptr p) {
1206 try {
1207 if (p) std::rethrow_exception(p);
1208 } catch (const MyCustomException &e) {
1209 PyErr_SetString(PyExc_RuntimeError, e.what());
1210 }
1211 });
1212
1213Multiple exceptions can be handled by a single translator. If the exception is
1214not caught by the current translator, the previously registered one gets a
1215chance.
1216
1217If none of the registered exception translators is able to handle the
1218exception, it is handled by the default converter as described in the previous
1219section.
1220
1221.. note::
1222
1223 You must either call ``PyErr_SetString`` for every exception caught in a
1224 custom exception translator. Failure to do so will cause Python to crash
1225 with ``SystemError: error return without exception set``.
1226
1227 Exceptions that you do not plan to handle should simply not be caught.
1228
1229 You may also choose to explicity (re-)throw the exception to delegate it to
1230 the other existing exception translators.
1231
1232 The ``py::exception`` wrapper for creating custom exceptions cannot (yet)
Jason Rhinelander6b52c832016-09-06 12:27:00 -04001233 be used as a base type.
Pim Schellart5a7d17f2016-06-17 17:35:59 -04001234
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001235.. _eigen:
1236
1237Transparent conversion of dense and sparse Eigen data types
1238===========================================================
1239
1240Eigen [#f1]_ is C++ header-based library for dense and sparse linear algebra. Due to
1241its popularity and widespread adoption, pybind11 provides transparent
1242conversion support between Eigen and Scientific Python linear algebra data types.
1243
1244Specifically, when including the optional header file :file:`pybind11/eigen.h`,
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001245pybind11 will automatically and transparently convert
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001246
12471. Static and dynamic Eigen dense vectors and matrices to instances of
1248 ``numpy.ndarray`` (and vice versa).
1249
Jason Rhinelanderb68d8fc2016-08-04 16:39:30 -040012502. Returned matrix expressions such as blocks (including columns or rows) and
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001251 diagonals will be converted to ``numpy.ndarray`` of the expression
1252 values.
1253
Jason Rhinelanderb68d8fc2016-08-04 16:39:30 -040012543. Returned matrix-like objects such as Eigen::DiagonalMatrix or
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001255 Eigen::SelfAdjointView will be converted to ``numpy.ndarray`` containing the
1256 expressed value.
1257
Jason Rhinelanderb68d8fc2016-08-04 16:39:30 -040012584. Eigen sparse vectors and matrices to instances of
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001259 ``scipy.sparse.csr_matrix``/``scipy.sparse.csc_matrix`` (and vice versa).
1260
1261This makes it possible to bind most kinds of functions that rely on these types.
1262One major caveat are functions that take Eigen matrices *by reference* and modify
1263them somehow, in which case the information won't be propagated to the caller.
1264
1265.. code-block:: cpp
1266
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001267 /* The Python bindings of these functions won't replicate
1268 the intended effect of modifying the function arguments */
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001269 void scale_by_2(Eigen::Vector3f &v) {
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001270 v *= 2;
1271 }
1272 void scale_by_2(Eigen::Ref<Eigen::MatrixXd> &v) {
1273 v *= 2;
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001274 }
1275
1276To see why this is, refer to the section on :ref:`opaque` (although that
1277section specifically covers STL data types, the underlying issue is the same).
1278The next two sections discuss an efficient alternative for exposing the
1279underlying native Eigen types as opaque objects in a way that still integrates
1280with NumPy and SciPy.
1281
1282.. [#f1] http://eigen.tuxfamily.org
1283
1284.. seealso::
1285
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001286 The file :file:`tests/test_eigen.cpp` contains a complete example that
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001287 shows how to pass Eigen sparse and dense data types in more detail.
1288
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001289Buffer protocol
1290===============
1291
1292Python supports an extremely general and convenient approach for exchanging
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001293data between plugin libraries. Types can expose a buffer view [#f2]_, which
1294provides fast direct access to the raw internal data representation. Suppose we
1295want to bind the following simplistic Matrix class:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001296
1297.. code-block:: cpp
1298
1299 class Matrix {
1300 public:
1301 Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
1302 m_data = new float[rows*cols];
1303 }
1304 float *data() { return m_data; }
1305 size_t rows() const { return m_rows; }
1306 size_t cols() const { return m_cols; }
1307 private:
1308 size_t m_rows, m_cols;
1309 float *m_data;
1310 };
1311
1312The following binding code exposes the ``Matrix`` contents as a buffer object,
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001313making it possible to cast Matrices into NumPy arrays. It is even possible to
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001314completely avoid copy operations with Python expressions like
1315``np.array(matrix_instance, copy = False)``.
1316
1317.. code-block:: cpp
1318
1319 py::class_<Matrix>(m, "Matrix")
1320 .def_buffer([](Matrix &m) -> py::buffer_info {
1321 return py::buffer_info(
Ivan Smirnov5e71e172016-06-26 12:42:34 +01001322 m.data(), /* Pointer to buffer */
1323 sizeof(float), /* Size of one scalar */
1324 py::format_descriptor<float>::format(), /* Python struct-style format descriptor */
1325 2, /* Number of dimensions */
1326 { m.rows(), m.cols() }, /* Buffer dimensions */
1327 { sizeof(float) * m.rows(), /* Strides (in bytes) for each index */
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001328 sizeof(float) }
1329 );
1330 });
1331
1332The snippet above binds a lambda function, which can create ``py::buffer_info``
1333description records on demand describing a given matrix. The contents of
1334``py::buffer_info`` mirror the Python buffer protocol specification.
1335
1336.. code-block:: cpp
1337
1338 struct buffer_info {
1339 void *ptr;
1340 size_t itemsize;
1341 std::string format;
1342 int ndim;
1343 std::vector<size_t> shape;
1344 std::vector<size_t> strides;
1345 };
1346
1347To create a C++ function that can take a Python buffer object as an argument,
1348simply use the type ``py::buffer`` as one of its arguments. Buffers can exist
1349in a great variety of configurations, hence some safety checks are usually
1350necessary in the function body. Below, you can see an basic example on how to
1351define a custom constructor for the Eigen double precision matrix
1352(``Eigen::MatrixXd``) type, which supports initialization from compatible
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001353buffer objects (e.g. a NumPy matrix).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001354
1355.. code-block:: cpp
1356
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001357 /* Bind MatrixXd (or some other Eigen type) to Python */
1358 typedef Eigen::MatrixXd Matrix;
1359
1360 typedef Matrix::Scalar Scalar;
1361 constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit;
1362
1363 py::class_<Matrix>(m, "Matrix")
1364 .def("__init__", [](Matrix &m, py::buffer b) {
Wenzel Jakobe7628532016-05-05 10:04:44 +02001365 typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides;
Wenzel Jakobe7628532016-05-05 10:04:44 +02001366
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001367 /* Request a buffer descriptor from Python */
1368 py::buffer_info info = b.request();
1369
1370 /* Some sanity checks ... */
Ivan Smirnov5e71e172016-06-26 12:42:34 +01001371 if (info.format != py::format_descriptor<Scalar>::format())
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001372 throw std::runtime_error("Incompatible format: expected a double array!");
1373
1374 if (info.ndim != 2)
1375 throw std::runtime_error("Incompatible buffer dimension!");
1376
Wenzel Jakobe7628532016-05-05 10:04:44 +02001377 auto strides = Strides(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001378 info.strides[rowMajor ? 0 : 1] / sizeof(Scalar),
1379 info.strides[rowMajor ? 1 : 0] / sizeof(Scalar));
Wenzel Jakobe7628532016-05-05 10:04:44 +02001380
1381 auto map = Eigen::Map<Matrix, 0, Strides>(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001382 static_cat<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides);
Wenzel Jakobe7628532016-05-05 10:04:44 +02001383
1384 new (&m) Matrix(map);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001385 });
1386
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001387For reference, the ``def_buffer()`` call for this Eigen data type should look
1388as follows:
1389
1390.. code-block:: cpp
1391
1392 .def_buffer([](Matrix &m) -> py::buffer_info {
1393 return py::buffer_info(
1394 m.data(), /* Pointer to buffer */
1395 sizeof(Scalar), /* Size of one scalar */
1396 /* Python struct-style format descriptor */
Ivan Smirnov5e71e172016-06-26 12:42:34 +01001397 py::format_descriptor<Scalar>::format(),
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001398 /* Number of dimensions */
1399 2,
1400 /* Buffer dimensions */
1401 { (size_t) m.rows(),
1402 (size_t) m.cols() },
1403 /* Strides (in bytes) for each index */
1404 { sizeof(Scalar) * (rowMajor ? m.cols() : 1),
1405 sizeof(Scalar) * (rowMajor ? 1 : m.rows()) }
1406 );
1407 })
1408
1409For a much easier approach of binding Eigen types (although with some
1410limitations), refer to the section on :ref:`eigen`.
1411
Wenzel Jakob93296692015-10-13 23:21:54 +02001412.. seealso::
1413
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001414 The file :file:`tests/test_buffers.cpp` contains a complete example
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001415 that demonstrates using the buffer protocol with pybind11 in more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +02001416
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001417.. [#f2] http://docs.python.org/3/c-api/buffer.html
Wenzel Jakob978e3762016-04-07 18:00:41 +02001418
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001419NumPy support
1420=============
1421
1422By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can
1423restrict the function so that it only accepts NumPy arrays (rather than any
Wenzel Jakob978e3762016-04-07 18:00:41 +02001424type of Python object satisfying the buffer protocol).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001425
1426In many situations, we want to define a function which only accepts a NumPy
Wenzel Jakob93296692015-10-13 23:21:54 +02001427array of a certain data type. This is possible via the ``py::array_t<T>``
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001428template. For instance, the following function requires the argument to be a
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001429NumPy array containing double precision values.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001430
1431.. code-block:: cpp
1432
Wenzel Jakob93296692015-10-13 23:21:54 +02001433 void f(py::array_t<double> array);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001434
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001435When it is invoked with a different type (e.g. an integer or a list of
1436integers), the binding code will attempt to cast the input into a NumPy array
1437of the requested type. Note that this feature requires the
1438:file:``pybind11/numpy.h`` header to be included.
1439
1440Data in NumPy arrays is not guaranteed to packed in a dense manner;
1441furthermore, entries can be separated by arbitrary column and row strides.
1442Sometimes, it can be useful to require a function to only accept dense arrays
1443using either the C (row-major) or Fortran (column-major) ordering. This can be
1444accomplished via a second template argument with values ``py::array::c_style``
1445or ``py::array::f_style``.
1446
1447.. code-block:: cpp
1448
Wenzel Jakobb47a9de2016-05-19 16:02:09 +02001449 void f(py::array_t<double, py::array::c_style | py::array::forcecast> array);
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001450
Wenzel Jakobb47a9de2016-05-19 16:02:09 +02001451The ``py::array::forcecast`` argument is the default value of the second
1452template paramenter, and it ensures that non-conforming arguments are converted
1453into an array satisfying the specified requirements instead of trying the next
1454function overload.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001455
Ivan Smirnov223afe32016-07-02 15:33:04 +01001456NumPy structured types
1457======================
1458
1459In order for ``py::array_t`` to work with structured (record) types, we first need
Ivan Smirnov5412a052016-07-02 16:18:42 +01001460to register the memory layout of the type. This can be done via ``PYBIND11_NUMPY_DTYPE``
Ivan Smirnov223afe32016-07-02 15:33:04 +01001461macro which expects the type followed by field names:
1462
1463.. code-block:: cpp
1464
1465 struct A {
1466 int x;
1467 double y;
1468 };
1469
1470 struct B {
1471 int z;
1472 A a;
1473 };
1474
Ivan Smirnov5412a052016-07-02 16:18:42 +01001475 PYBIND11_NUMPY_DTYPE(A, x, y);
1476 PYBIND11_NUMPY_DTYPE(B, z, a);
Ivan Smirnov223afe32016-07-02 15:33:04 +01001477
1478 /* now both A and B can be used as template arguments to py::array_t */
1479
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001480Vectorizing functions
1481=====================
1482
1483Suppose we want to bind a function with the following signature to Python so
1484that it can process arbitrary NumPy array arguments (vectors, matrices, general
1485N-D arrays) in addition to its normal arguments:
1486
1487.. code-block:: cpp
1488
1489 double my_func(int x, float y, double z);
1490
Wenzel Jakob8f4eb002015-10-15 18:13:33 +02001491After including the ``pybind11/numpy.h`` header, this is extremely simple:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001492
1493.. code-block:: cpp
1494
1495 m.def("vectorized_func", py::vectorize(my_func));
1496
1497Invoking the function like below causes 4 calls to be made to ``my_func`` with
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001498each of the array elements. The significant advantage of this compared to
Wenzel Jakob978e3762016-04-07 18:00:41 +02001499solutions like ``numpy.vectorize()`` is that the loop over the elements runs
1500entirely on the C++ side and can be crunched down into a tight, optimized loop
1501by the compiler. The result is returned as a NumPy array of type
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001502``numpy.dtype.float64``.
1503
Wenzel Jakob99279f72016-06-03 11:19:29 +02001504.. code-block:: pycon
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001505
1506 >>> x = np.array([[1, 3],[5, 7]])
1507 >>> y = np.array([[2, 4],[6, 8]])
1508 >>> z = 3
1509 >>> result = vectorized_func(x, y, z)
1510
1511The scalar argument ``z`` is transparently replicated 4 times. The input
1512arrays ``x`` and ``y`` are automatically converted into the right types (they
1513are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and
1514``numpy.dtype.float32``, respectively)
1515
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001516Sometimes we might want to explicitly exclude an argument from the vectorization
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001517because it makes little sense to wrap it in a NumPy array. For instance,
1518suppose the function signature was
1519
1520.. code-block:: cpp
1521
1522 double my_func(int x, float y, my_custom_type *z);
1523
1524This can be done with a stateful Lambda closure:
1525
1526.. code-block:: cpp
1527
1528 // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
1529 m.def("vectorized_func",
Wenzel Jakob93296692015-10-13 23:21:54 +02001530 [](py::array_t<int> x, py::array_t<float> y, my_custom_type *z) {
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001531 auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); };
1532 return py::vectorize(stateful_closure)(x, y);
1533 }
1534 );
1535
Wenzel Jakob61587162016-01-18 22:38:52 +01001536In cases where the computation is too complicated to be reduced to
1537``vectorize``, it will be necessary to create and access the buffer contents
1538manually. The following snippet contains a complete example that shows how this
1539works (the code is somewhat contrived, since it could have been done more
1540simply using ``vectorize``).
1541
1542.. code-block:: cpp
1543
1544 #include <pybind11/pybind11.h>
1545 #include <pybind11/numpy.h>
1546
1547 namespace py = pybind11;
1548
1549 py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
1550 auto buf1 = input1.request(), buf2 = input2.request();
1551
1552 if (buf1.ndim != 1 || buf2.ndim != 1)
1553 throw std::runtime_error("Number of dimensions must be one");
1554
Ivan Smirnovb6518592016-08-13 13:28:56 +01001555 if (buf1.size != buf2.size)
Wenzel Jakob61587162016-01-18 22:38:52 +01001556 throw std::runtime_error("Input shapes must match");
1557
Ivan Smirnovb6518592016-08-13 13:28:56 +01001558 /* No pointer is passed, so NumPy will allocate the buffer */
1559 auto result = py::array_t<double>(buf1.size);
Wenzel Jakob61587162016-01-18 22:38:52 +01001560
1561 auto buf3 = result.request();
1562
1563 double *ptr1 = (double *) buf1.ptr,
1564 *ptr2 = (double *) buf2.ptr,
1565 *ptr3 = (double *) buf3.ptr;
1566
1567 for (size_t idx = 0; idx < buf1.shape[0]; idx++)
1568 ptr3[idx] = ptr1[idx] + ptr2[idx];
1569
1570 return result;
1571 }
1572
1573 PYBIND11_PLUGIN(test) {
1574 py::module m("test");
1575 m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
1576 return m.ptr();
1577 }
1578
Wenzel Jakob93296692015-10-13 23:21:54 +02001579.. seealso::
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001580
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001581 The file :file:`tests/test_numpy_vectorize.cpp` contains a complete
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001582 example that demonstrates using :func:`vectorize` in more detail.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001583
Wenzel Jakob93296692015-10-13 23:21:54 +02001584Functions taking Python objects as arguments
1585============================================
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001586
Wenzel Jakob93296692015-10-13 23:21:54 +02001587pybind11 exposes all major Python types using thin C++ wrapper classes. These
1588wrapper classes can also be used as parameters of functions in bindings, which
1589makes it possible to directly work with native Python types on the C++ side.
1590For instance, the following statement iterates over a Python ``dict``:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001591
Wenzel Jakob93296692015-10-13 23:21:54 +02001592.. code-block:: cpp
1593
1594 void print_dict(py::dict dict) {
1595 /* Easily interact with Python types */
1596 for (auto item : dict)
1597 std::cout << "key=" << item.first << ", "
1598 << "value=" << item.second << std::endl;
1599 }
1600
1601Available types include :class:`handle`, :class:`object`, :class:`bool_`,
Wenzel Jakob27e8e102016-01-17 22:36:37 +01001602:class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`,
Wenzel Jakobf64feaf2016-04-28 14:33:45 +02001603:class:`list`, :class:`dict`, :class:`slice`, :class:`none`, :class:`capsule`,
1604:class:`iterable`, :class:`iterator`, :class:`function`, :class:`buffer`,
1605:class:`array`, and :class:`array_t`.
Wenzel Jakob93296692015-10-13 23:21:54 +02001606
Wenzel Jakob436b7312015-10-20 01:04:30 +02001607In this kind of mixed code, it is often necessary to convert arbitrary C++
1608types to Python, which can be done using :func:`cast`:
1609
1610.. code-block:: cpp
1611
1612 MyClass *cls = ..;
1613 py::object obj = py::cast(cls);
1614
1615The reverse direction uses the following syntax:
1616
1617.. code-block:: cpp
1618
1619 py::object obj = ...;
1620 MyClass *cls = obj.cast<MyClass *>();
1621
1622When conversion fails, both directions throw the exception :class:`cast_error`.
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001623It is also possible to call python functions via ``operator()``.
1624
1625.. code-block:: cpp
1626
1627 py::function f = <...>;
1628 py::object result_py = f(1234, "hello", some_instance);
1629 MyClass &result = result_py.cast<MyClass>();
1630
Dean Moldovan625bd482016-09-02 16:40:49 +02001631Keyword arguments are also supported. In Python, there is the usual call syntax:
1632
1633.. code-block:: python
1634
1635 def f(number, say, to):
1636 ... # function code
1637
1638 f(1234, say="hello", to=some_instance) # keyword call in Python
1639
1640In C++, the same call can be made using:
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001641
1642.. code-block:: cpp
1643
Dean Moldovan625bd482016-09-02 16:40:49 +02001644 using pybind11::literals; // to bring in the `_a` literal
1645 f(1234, "say"_a="hello", "to"_a=some_instance); // keyword call in C++
1646
1647Unpacking of ``*args`` and ``**kwargs`` is also possible and can be mixed with
1648other arguments:
1649
1650.. code-block:: cpp
1651
1652 // * unpacking
1653 py::tuple args = py::make_tuple(1234, "hello", some_instance);
1654 f(*args);
1655
1656 // ** unpacking
1657 py::dict kwargs = py::dict("number"_a=1234, "say"_a="hello", "to"_a=some_instance);
1658 f(**kwargs);
1659
1660 // mixed keywords, * and ** unpacking
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001661 py::tuple args = py::make_tuple(1234);
Dean Moldovan625bd482016-09-02 16:40:49 +02001662 py::dict kwargs = py::dict("to"_a=some_instance);
1663 f(*args, "say"_a="hello", **kwargs);
1664
1665Generalized unpacking according to PEP448_ is also supported:
1666
1667.. code-block:: cpp
1668
1669 py::dict kwargs1 = py::dict("number"_a=1234);
1670 py::dict kwargs2 = py::dict("to"_a=some_instance);
1671 f(**kwargs1, "say"_a="hello", **kwargs2);
Wenzel Jakob436b7312015-10-20 01:04:30 +02001672
Wenzel Jakob93296692015-10-13 23:21:54 +02001673.. seealso::
1674
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001675 The file :file:`tests/test_python_types.cpp` contains a complete
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001676 example that demonstrates passing native Python types in more detail. The
Dean Moldovan625bd482016-09-02 16:40:49 +02001677 file :file:`tests/test_callbacks.cpp` presents a few examples of calling
1678 Python functions from C++, including keywords arguments and unpacking.
1679
1680.. _PEP448: https://www.python.org/dev/peps/pep-0448/
1681
1682Using Python's print function in C++
1683====================================
1684
1685The usual way to write output in C++ is using ``std::cout`` while in Python one
1686would use ``print``. Since these methods use different buffers, mixing them can
1687lead to output order issues. To resolve this, pybind11 modules can use the
1688:func:`py::print` function which writes to Python's ``sys.stdout`` for consistency.
1689
1690Python's ``print`` function is replicated in the C++ API including optional
1691keyword arguments ``sep``, ``end``, ``file``, ``flush``. Everything works as
1692expected in Python:
1693
1694.. code-block:: cpp
1695
1696 py::print(1, 2.0, "three"); // 1 2.0 three
1697 py::print(1, 2.0, "three", "sep"_a="-"); // 1-2.0-three
1698
1699 auto args = py::make_tuple("unpacked", true);
1700 py::print("->", *args, "end"_a="<-"); // -> unpacked True <-
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001701
1702Default arguments revisited
1703===========================
1704
1705The section on :ref:`default_args` previously discussed basic usage of default
1706arguments using pybind11. One noteworthy aspect of their implementation is that
1707default arguments are converted to Python objects right at declaration time.
1708Consider the following example:
1709
1710.. code-block:: cpp
1711
1712 py::class_<MyClass>("MyClass")
1713 .def("myFunction", py::arg("arg") = SomeType(123));
1714
1715In this case, pybind11 must already be set up to deal with values of the type
1716``SomeType`` (via a prior instantiation of ``py::class_<SomeType>``), or an
1717exception will be thrown.
1718
1719Another aspect worth highlighting is that the "preview" of the default argument
1720in the function signature is generated using the object's ``__repr__`` method.
1721If not available, the signature may not be very helpful, e.g.:
1722
Wenzel Jakob99279f72016-06-03 11:19:29 +02001723.. code-block:: pycon
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001724
1725 FUNCTIONS
1726 ...
1727 | myFunction(...)
Wenzel Jakob48548ea2016-01-17 22:36:44 +01001728 | Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001729 ...
1730
1731The first way of addressing this is by defining ``SomeType.__repr__``.
1732Alternatively, it is possible to specify the human-readable preview of the
1733default argument manually using the ``arg_t`` notation:
1734
1735.. code-block:: cpp
1736
1737 py::class_<MyClass>("MyClass")
1738 .def("myFunction", py::arg_t<SomeType>("arg", SomeType(123), "SomeType(123)"));
1739
Wenzel Jakobc769fce2016-03-03 12:03:30 +01001740Sometimes it may be necessary to pass a null pointer value as a default
1741argument. In this case, remember to cast it to the underlying type in question,
1742like so:
1743
1744.. code-block:: cpp
1745
1746 py::class_<MyClass>("MyClass")
1747 .def("myFunction", py::arg("arg") = (SomeType *) nullptr);
1748
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001749Binding functions that accept arbitrary numbers of arguments and keywords arguments
1750===================================================================================
1751
1752Python provides a useful mechanism to define functions that accept arbitrary
1753numbers of arguments and keyword arguments:
1754
1755.. code-block:: cpp
1756
1757 def generic(*args, **kwargs):
1758 # .. do something with args and kwargs
1759
1760Such functions can also be created using pybind11:
1761
1762.. code-block:: cpp
1763
1764 void generic(py::args args, py::kwargs kwargs) {
1765 /// .. do something with args
1766 if (kwargs)
1767 /// .. do something with kwargs
1768 }
1769
1770 /// Binding code
1771 m.def("generic", &generic);
1772
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001773(See ``tests/test_kwargs_and_defaults.cpp``). The class ``py::args``
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001774derives from ``py::list`` and ``py::kwargs`` derives from ``py::dict`` Note
1775that the ``kwargs`` argument is invalid if no keyword arguments were actually
1776provided. Please refer to the other examples for details on how to iterate
1777over these, and on how to cast their entries into C++ objects.
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001778
Wenzel Jakob3764e282016-08-01 23:34:48 +02001779.. warning::
1780
1781 Unlike Python, pybind11 does not allow combining normal parameters with the
1782 ``args`` / ``kwargs`` special parameters.
1783
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001784Partitioning code over multiple extension modules
1785=================================================
1786
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001787It's straightforward to split binding code over multiple extension modules,
1788while referencing types that are declared elsewhere. Everything "just" works
1789without any special precautions. One exception to this rule occurs when
1790extending a type declared in another extension module. Recall the basic example
1791from Section :ref:`inheritance`.
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001792
1793.. code-block:: cpp
1794
1795 py::class_<Pet> pet(m, "Pet");
1796 pet.def(py::init<const std::string &>())
1797 .def_readwrite("name", &Pet::name);
1798
1799 py::class_<Dog>(m, "Dog", pet /* <- specify parent */)
1800 .def(py::init<const std::string &>())
1801 .def("bark", &Dog::bark);
1802
1803Suppose now that ``Pet`` bindings are defined in a module named ``basic``,
1804whereas the ``Dog`` bindings are defined somewhere else. The challenge is of
1805course that the variable ``pet`` is not available anymore though it is needed
1806to indicate the inheritance relationship to the constructor of ``class_<Dog>``.
1807However, it can be acquired as follows:
1808
1809.. code-block:: cpp
1810
1811 py::object pet = (py::object) py::module::import("basic").attr("Pet");
1812
1813 py::class_<Dog>(m, "Dog", pet)
1814 .def(py::init<const std::string &>())
1815 .def("bark", &Dog::bark);
1816
Jason Rhinelander6b52c832016-09-06 12:27:00 -04001817Alternatively, you can specify the base class as a template parameter option to
1818``class_``, which performs an automated lookup of the corresponding Python
1819type. Like the above code, however, this also requires invoking the ``import``
1820function once to ensure that the pybind11 binding code of the module ``basic``
1821has been executed:
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001822
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001823.. code-block:: cpp
1824
1825 py::module::import("basic");
1826
Jason Rhinelander6b52c832016-09-06 12:27:00 -04001827 py::class_<Dog, Pet>(m, "Dog")
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001828 .def(py::init<const std::string &>())
1829 .def("bark", &Dog::bark);
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001830
Wenzel Jakob978e3762016-04-07 18:00:41 +02001831Naturally, both methods will fail when there are cyclic dependencies.
1832
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001833Note that compiling code which has its default symbol visibility set to
1834*hidden* (e.g. via the command line flag ``-fvisibility=hidden`` on GCC/Clang) can interfere with the
1835ability to access types defined in another extension module. Workarounds
1836include changing the global symbol visibility (not recommended, because it will
1837lead unnecessarily large binaries) or manually exporting types that are
1838accessed by multiple extension modules:
1839
1840.. code-block:: cpp
1841
1842 #ifdef _WIN32
1843 # define EXPORT_TYPE __declspec(dllexport)
1844 #else
1845 # define EXPORT_TYPE __attribute__ ((visibility("default")))
1846 #endif
1847
1848 class EXPORT_TYPE Dog : public Animal {
1849 ...
1850 };
1851
1852
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001853Pickling support
1854================
1855
1856Python's ``pickle`` module provides a powerful facility to serialize and
1857de-serialize a Python object graph into a binary data stream. To pickle and
Wenzel Jakob3d0e6ff2016-04-13 11:48:10 +02001858unpickle C++ classes using pybind11, two additional functions must be provided.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001859Suppose the class in question has the following signature:
1860
1861.. code-block:: cpp
1862
1863 class Pickleable {
1864 public:
1865 Pickleable(const std::string &value) : m_value(value) { }
1866 const std::string &value() const { return m_value; }
1867
1868 void setExtra(int extra) { m_extra = extra; }
1869 int extra() const { return m_extra; }
1870 private:
1871 std::string m_value;
1872 int m_extra = 0;
1873 };
1874
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001875The binding code including the requisite ``__setstate__`` and ``__getstate__`` methods [#f3]_
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001876looks as follows:
1877
1878.. code-block:: cpp
1879
1880 py::class_<Pickleable>(m, "Pickleable")
1881 .def(py::init<std::string>())
1882 .def("value", &Pickleable::value)
1883 .def("extra", &Pickleable::extra)
1884 .def("setExtra", &Pickleable::setExtra)
1885 .def("__getstate__", [](const Pickleable &p) {
1886 /* Return a tuple that fully encodes the state of the object */
1887 return py::make_tuple(p.value(), p.extra());
1888 })
1889 .def("__setstate__", [](Pickleable &p, py::tuple t) {
1890 if (t.size() != 2)
1891 throw std::runtime_error("Invalid state!");
1892
Wenzel Jakobd40885a2016-04-13 13:30:05 +02001893 /* Invoke the in-place constructor. Note that this is needed even
1894 when the object just has a trivial default constructor */
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001895 new (&p) Pickleable(t[0].cast<std::string>());
1896
1897 /* Assign any additional state */
1898 p.setExtra(t[1].cast<int>());
1899 });
1900
1901An instance can now be pickled as follows:
1902
1903.. code-block:: python
1904
1905 try:
1906 import cPickle as pickle # Use cPickle on Python 2.7
1907 except ImportError:
1908 import pickle
1909
1910 p = Pickleable("test_value")
1911 p.setExtra(15)
Wenzel Jakob81e09752016-04-30 23:13:03 +02001912 data = pickle.dumps(p, 2)
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001913
Wenzel Jakob81e09752016-04-30 23:13:03 +02001914Note that only the cPickle module is supported on Python 2.7. The second
1915argument to ``dumps`` is also crucial: it selects the pickle protocol version
19162, since the older version 1 is not supported. Newer versions are also fine—for
1917instance, specify ``-1`` to always use the latest available version. Beware:
1918failure to follow these instructions will cause important pybind11 memory
1919allocation routines to be skipped during unpickling, which will likely lead to
1920memory corruption and/or segmentation faults.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001921
1922.. seealso::
1923
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001924 The file :file:`tests/test_pickling.cpp` contains a complete example
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001925 that demonstrates how to pickle and unpickle types using pybind11 in more
1926 detail.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001927
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001928.. [#f3] http://docs.python.org/3/library/pickle.html#pickling-class-instances
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001929
1930Generating documentation using Sphinx
1931=====================================
1932
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001933Sphinx [#f4]_ has the ability to inspect the signatures and documentation
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001934strings in pybind11-based extension modules to automatically generate beautiful
Wenzel Jakobca8dc082016-06-03 14:24:17 +02001935documentation in a variety formats. The python_example repository [#f5]_ contains a
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001936simple example repository which uses this approach.
1937
1938There are two potential gotchas when using this approach: first, make sure that
1939the resulting strings do not contain any :kbd:`TAB` characters, which break the
1940docstring parsing routines. You may want to use C++11 raw string literals,
1941which are convenient for multi-line comments. Conveniently, any excess
1942indentation will be automatically be removed by Sphinx. However, for this to
1943work, it is important that all lines are indented consistently, i.e.:
1944
1945.. code-block:: cpp
1946
1947 // ok
1948 m.def("foo", &foo, R"mydelimiter(
1949 The foo function
1950
1951 Parameters
1952 ----------
1953 )mydelimiter");
1954
1955 // *not ok*
1956 m.def("foo", &foo, R"mydelimiter(The foo function
1957
1958 Parameters
1959 ----------
1960 )mydelimiter");
1961
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001962.. [#f4] http://www.sphinx-doc.org
Wenzel Jakobca8dc082016-06-03 14:24:17 +02001963.. [#f5] http://github.com/pybind/python_example
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001964
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001965Evaluating Python expressions from strings and files
1966====================================================
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001967
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001968pybind11 provides the :func:`eval` and :func:`eval_file` functions to evaluate
1969Python expressions and statements. The following example illustrates how they
1970can be used.
1971
1972Both functions accept a template parameter that describes how the argument
1973should be interpreted. Possible choices include ``eval_expr`` (isolated
1974expression), ``eval_single_statement`` (a single statement, return value is
1975always ``none``), and ``eval_statements`` (sequence of statements, return value
1976is always ``none``).
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001977
1978.. code-block:: cpp
1979
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001980 // At beginning of file
1981 #include <pybind11/eval.h>
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001982
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001983 ...
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001984
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001985 // Evaluate in scope of main module
1986 py::object scope = py::module::import("__main__").attr("__dict__");
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001987
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001988 // Evaluate an isolated expression
1989 int result = py::eval("my_variable + 10", scope).cast<int>();
1990
1991 // Evaluate a sequence of statements
1992 py::eval<py::eval_statements>(
1993 "print('Hello')\n"
1994 "print('world!');",
1995 scope);
1996
1997 // Evaluate the statements in an separate Python file on disk
1998 py::eval_file("script.py", scope);
Wenzel Jakob48ce0722016-09-06 14:13:22 +09001999
2000Development of custom type casters
2001==================================
2002
2003In very rare cases, applications may require custom type casters that cannot be
2004expressed using the abstractions provided by pybind11, thus requiring raw
2005Python C API calls. This is fairly advanced usage and should only be pursued by
2006experts who are familiar with the intricacies of Python reference counting.
2007
2008The following snippets demonstrate how this works for a very simple ``inty``
2009type that that should be convertible from Python types that provide a
2010``__int__(self)`` method.
2011
2012.. code-block:: cpp
2013
2014 struct inty { long long_value; };
2015
2016 void print(inty s) {
2017 std::cout << s.long_value << std::endl;
2018 }
2019
2020The following Python snippet demonstrates the intended usage from the Python side:
2021
2022.. code-block:: python
2023
2024 class A:
2025 def __int__(self):
2026 return 123
2027
2028 from example import print
2029 print(A())
2030
2031To register the necessary conversion routines, it is necessary to add
2032a partial overload to the ``pybind11::detail::type_caster<T>`` template.
2033Although this is an implementation detail, adding partial overloads to this
2034type is explicitly allowed.
2035
2036.. code-block:: cpp
2037
2038 namespace pybind11 {
2039 namespace detail {
2040 template <> struct type_caster<inty> {
2041 public:
2042 /**
2043 * This macro establishes the name 'inty' in
2044 * function signatures and declares a local variable
2045 * 'value' of type inty
2046 */
2047 PYBIND11_TYPE_CASTER(inty, _("inty"));
2048
2049 /**
2050 * Conversion part 1 (Python->C++): convert a PyObject into a inty
2051 * instance or return false upon failure. The second argument
2052 * indicates whether implicit conversions should be applied.
2053 */
2054 bool load(handle src, bool) {
2055 /* Extract PyObject from handle */
2056 PyObject *source = src.ptr();
2057 /* Try converting into a Python integer value */
2058 PyObject *tmp = PyNumber_Long(source);
2059 if (!tmp)
2060 return false;
2061 /* Now try to convert into a C++ int */
2062 value.long_value = PyLong_AsLong(tmp);
2063 Py_DECREF(tmp);
2064 /* Ensure return code was OK (to avoid out-of-range errors etc) */
2065 return !(value.long_value == -1 && !PyErr_Occurred());
2066 }
2067
2068 /**
2069 * Conversion part 2 (C++ -> Python): convert an inty instance into
2070 * a Python object. The second and third arguments are used to
2071 * indicate the return value policy and parent object (for
2072 * ``return_value_policy::reference_internal``) and are generally
2073 * ignored by implicit casters.
2074 */
2075 static handle cast(inty src, return_value_policy /* policy */, handle /* parent */) {
2076 return PyLong_FromLong(src.long_value);
2077 }
2078 };
2079 }
2080 };