blob: 979e0bfd2c1bc869cc33c46f2937c37bbc9b617c [file] [log] [blame]
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001.. _advanced:
2
3Advanced topics
4###############
5
Wenzel Jakob93296692015-10-13 23:21:54 +02006For brevity, the rest of this chapter assumes that the following two lines are
7present:
8
9.. code-block:: cpp
10
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020011 #include <pybind11/pybind11.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020012
Wenzel Jakob10e62e12015-10-15 22:46:07 +020013 namespace py = pybind11;
Wenzel Jakob93296692015-10-13 23:21:54 +020014
Wenzel Jakobde3ad072016-02-02 11:38:21 +010015Exporting constants and mutable objects
16=======================================
17
18To expose a C++ constant, use the ``attr`` function to register it in a module
19as shown below. The ``int_`` class is one of many small wrapper objects defined
20in ``pybind11/pytypes.h``. General objects (including integers) can also be
21converted using the function ``cast``.
22
23.. code-block:: cpp
24
25 PYBIND11_PLUGIN(example) {
26 py::module m("example", "pybind11 example plugin");
27 m.attr("MY_CONSTANT") = py::int_(123);
28 m.attr("MY_CONSTANT_2") = py::cast(new MyObject());
29 }
30
Wenzel Jakob28f98aa2015-10-13 02:57:16 +020031Operator overloading
32====================
33
Wenzel Jakob93296692015-10-13 23:21:54 +020034Suppose that we're given the following ``Vector2`` class with a vector addition
35and scalar multiplication operation, all implemented using overloaded operators
36in C++.
37
38.. code-block:: cpp
39
40 class Vector2 {
41 public:
42 Vector2(float x, float y) : x(x), y(y) { }
43
Wenzel Jakob93296692015-10-13 23:21:54 +020044 Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
45 Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
46 Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
47 Vector2& operator*=(float v) { x *= v; y *= v; return *this; }
48
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020049 friend Vector2 operator*(float f, const Vector2 &v) {
50 return Vector2(f * v.x, f * v.y);
51 }
Wenzel Jakob93296692015-10-13 23:21:54 +020052
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020053 std::string toString() const {
54 return "[" + std::to_string(x) + ", " + std::to_string(y) + "]";
55 }
Wenzel Jakob93296692015-10-13 23:21:54 +020056 private:
57 float x, y;
58 };
59
60The following snippet shows how the above operators can be conveniently exposed
61to Python.
62
63.. code-block:: cpp
64
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020065 #include <pybind11/operators.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020066
Wenzel Jakobb1b71402015-10-18 16:48:30 +020067 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020068 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +020069
70 py::class_<Vector2>(m, "Vector2")
71 .def(py::init<float, float>())
72 .def(py::self + py::self)
73 .def(py::self += py::self)
74 .def(py::self *= float())
75 .def(float() * py::self)
76 .def("__repr__", &Vector2::toString);
77
78 return m.ptr();
79 }
80
81Note that a line like
82
83.. code-block:: cpp
84
85 .def(py::self * float())
86
87is really just short hand notation for
88
89.. code-block:: cpp
90
91 .def("__mul__", [](const Vector2 &a, float b) {
92 return a * b;
93 })
94
95This can be useful for exposing additional operators that don't exist on the
96C++ side, or to perform other types of customization.
97
98.. note::
99
100 To use the more convenient ``py::self`` notation, the additional
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200101 header file :file:`pybind11/operators.h` must be included.
Wenzel Jakob93296692015-10-13 23:21:54 +0200102
103.. seealso::
104
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200105 The file :file:`tests/test_operator_overloading.cpp` contains a
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400106 complete example that demonstrates how to work with overloaded operators in
107 more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +0200108
109Callbacks and passing anonymous functions
110=========================================
111
112The C++11 standard brought lambda functions and the generic polymorphic
113function wrapper ``std::function<>`` to the C++ programming language, which
114enable powerful new ways of working with functions. Lambda functions come in
115two flavors: stateless lambda function resemble classic function pointers that
116link to an anonymous piece of code, while stateful lambda functions
117additionally depend on captured variables that are stored in an anonymous
118*lambda closure object*.
119
120Here is a simple example of a C++ function that takes an arbitrary function
121(stateful or stateless) with signature ``int -> int`` as an argument and runs
122it with the value 10.
123
124.. code-block:: cpp
125
126 int func_arg(const std::function<int(int)> &f) {
127 return f(10);
128 }
129
130The example below is more involved: it takes a function of signature ``int -> int``
131and returns another function of the same kind. The return value is a stateful
132lambda function, which stores the value ``f`` in the capture object and adds 1 to
133its return value upon execution.
134
135.. code-block:: cpp
136
137 std::function<int(int)> func_ret(const std::function<int(int)> &f) {
138 return [f](int i) {
139 return f(i) + 1;
140 };
141 }
142
Brad Harmon835fc062016-06-16 13:19:15 -0500143This example demonstrates using python named parameters in C++ callbacks which
144requires using ``py::cpp_function`` as a wrapper. Usage is similar to defining
145methods of classes:
146
147.. code-block:: cpp
148
149 py::cpp_function func_cpp() {
150 return py::cpp_function([](int i) { return i+1; },
151 py::arg("number"));
152 }
153
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200154After including the extra header file :file:`pybind11/functional.h`, it is almost
Brad Harmon835fc062016-06-16 13:19:15 -0500155trivial to generate binding code for all of these functions.
Wenzel Jakob93296692015-10-13 23:21:54 +0200156
157.. code-block:: cpp
158
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200159 #include <pybind11/functional.h>
Wenzel Jakob93296692015-10-13 23:21:54 +0200160
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200161 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200162 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200163
164 m.def("func_arg", &func_arg);
165 m.def("func_ret", &func_ret);
Brad Harmon835fc062016-06-16 13:19:15 -0500166 m.def("func_cpp", &func_cpp);
Wenzel Jakob93296692015-10-13 23:21:54 +0200167
168 return m.ptr();
169 }
170
171The following interactive session shows how to call them from Python.
172
Wenzel Jakob99279f72016-06-03 11:19:29 +0200173.. code-block:: pycon
Wenzel Jakob93296692015-10-13 23:21:54 +0200174
175 $ python
176 >>> import example
177 >>> def square(i):
178 ... return i * i
179 ...
180 >>> example.func_arg(square)
181 100L
182 >>> square_plus_1 = example.func_ret(square)
183 >>> square_plus_1(4)
184 17L
Brad Harmon835fc062016-06-16 13:19:15 -0500185 >>> plus_1 = func_cpp()
186 >>> plus_1(number=43)
187 44L
Wenzel Jakob93296692015-10-13 23:21:54 +0200188
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100189.. warning::
190
191 Keep in mind that passing a function from C++ to Python (or vice versa)
192 will instantiate a piece of wrapper code that translates function
Wenzel Jakob954b7932016-07-10 10:13:18 +0200193 invocations between the two languages. Naturally, this translation
194 increases the computational cost of each function call somewhat. A
195 problematic situation can arise when a function is copied back and forth
196 between Python and C++ many times in a row, in which case the underlying
197 wrappers will accumulate correspondingly. The resulting long sequence of
198 C++ -> Python -> C++ -> ... roundtrips can significantly decrease
199 performance.
200
201 There is one exception: pybind11 detects case where a stateless function
202 (i.e. a function pointer or a lambda function without captured variables)
203 is passed as an argument to another C++ function exposed in Python. In this
204 case, there is no overhead. Pybind11 will extract the underlying C++
205 function pointer from the wrapped function to sidestep a potential C++ ->
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200206 Python -> C++ roundtrip. This is demonstrated in :file:`tests/test_callbacks.cpp`.
Wenzel Jakob954b7932016-07-10 10:13:18 +0200207
208.. note::
209
210 This functionality is very useful when generating bindings for callbacks in
211 C++ libraries (e.g. GUI libraries, asynchronous networking libraries, etc.).
212
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200213 The file :file:`tests/test_callbacks.cpp` contains a complete example
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400214 that demonstrates how to work with callbacks and anonymous functions in
215 more detail.
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100216
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200217Overriding virtual functions in Python
218======================================
219
Wenzel Jakob93296692015-10-13 23:21:54 +0200220Suppose that a C++ class or interface has a virtual function that we'd like to
221to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is
222given as a specific example of how one would do this with traditional C++
223code).
224
225.. code-block:: cpp
226
227 class Animal {
228 public:
229 virtual ~Animal() { }
230 virtual std::string go(int n_times) = 0;
231 };
232
233 class Dog : public Animal {
234 public:
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400235 std::string go(int n_times) override {
Wenzel Jakob93296692015-10-13 23:21:54 +0200236 std::string result;
237 for (int i=0; i<n_times; ++i)
238 result += "woof! ";
239 return result;
240 }
241 };
242
243Let's also suppose that we are given a plain function which calls the
244function ``go()`` on an arbitrary ``Animal`` instance.
245
246.. code-block:: cpp
247
248 std::string call_go(Animal *animal) {
249 return animal->go(3);
250 }
251
252Normally, the binding code for these classes would look as follows:
253
254.. code-block:: cpp
255
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200256 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200257 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200258
259 py::class_<Animal> animal(m, "Animal");
260 animal
261 .def("go", &Animal::go);
262
263 py::class_<Dog>(m, "Dog", animal)
264 .def(py::init<>());
265
266 m.def("call_go", &call_go);
267
268 return m.ptr();
269 }
270
271However, these bindings are impossible to extend: ``Animal`` is not
272constructible, and we clearly require some kind of "trampoline" that
273redirects virtual calls back to Python.
274
275Defining a new type of ``Animal`` from within Python is possible but requires a
276helper class that is defined as follows:
277
278.. code-block:: cpp
279
280 class PyAnimal : public Animal {
281 public:
282 /* Inherit the constructors */
283 using Animal::Animal;
284
285 /* Trampoline (need one for each virtual function) */
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400286 std::string go(int n_times) override {
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200287 PYBIND11_OVERLOAD_PURE(
Wenzel Jakob93296692015-10-13 23:21:54 +0200288 std::string, /* Return type */
289 Animal, /* Parent class */
290 go, /* Name of function */
291 n_times /* Argument(s) */
292 );
293 }
294 };
295
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200296The macro :func:`PYBIND11_OVERLOAD_PURE` should be used for pure virtual
297functions, and :func:`PYBIND11_OVERLOAD` should be used for functions which have
Wenzel Jakob0d3fc352016-07-08 10:52:10 +0200298a default implementation.
Wenzel Jakob1e3be732016-05-24 23:42:05 +0200299
300There are also two alternate macros :func:`PYBIND11_OVERLOAD_PURE_NAME` and
Jason Rhinelander64830e32016-08-29 16:58:59 -0400301:func:`PYBIND11_OVERLOAD_NAME` which take a string-valued name argument between
302the *Parent class* and *Name of the function* slots. This is useful when the
303C++ and Python versions of the function have different names, e.g.
304``operator()`` vs ``__call__``.
Wenzel Jakob1e3be732016-05-24 23:42:05 +0200305
306The binding code also needs a few minor adaptations (highlighted):
Wenzel Jakob93296692015-10-13 23:21:54 +0200307
308.. code-block:: cpp
309 :emphasize-lines: 4,6,7
310
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200311 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200312 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200313
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200314 py::class_<Animal, std::unique_ptr<Animal>, PyAnimal /* <--- trampoline*/> animal(m, "Animal");
Wenzel Jakob93296692015-10-13 23:21:54 +0200315 animal
Wenzel Jakob93296692015-10-13 23:21:54 +0200316 .def(py::init<>())
317 .def("go", &Animal::go);
318
319 py::class_<Dog>(m, "Dog", animal)
320 .def(py::init<>());
321
322 m.def("call_go", &call_go);
323
324 return m.ptr();
325 }
326
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200327Importantly, pybind11 is made aware of the trampoline trampoline helper class
328by specifying it as the *third* template argument to :class:`class_`. The
329second argument with the unique pointer is simply the default holder type used
330by pybind11. Following this, we are able to define a constructor as usual.
Wenzel Jakob93296692015-10-13 23:21:54 +0200331
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400332Note, however, that the above is sufficient for allowing python classes to
333extend ``Animal``, but not ``Dog``: see ref:`virtual_and_inheritance` for the
334necessary steps required to providing proper overload support for inherited
335classes.
336
Wenzel Jakob93296692015-10-13 23:21:54 +0200337The Python session below shows how to override ``Animal::go`` and invoke it via
338a virtual method call.
339
Wenzel Jakob99279f72016-06-03 11:19:29 +0200340.. code-block:: pycon
Wenzel Jakob93296692015-10-13 23:21:54 +0200341
342 >>> from example import *
343 >>> d = Dog()
344 >>> call_go(d)
345 u'woof! woof! woof! '
346 >>> class Cat(Animal):
347 ... def go(self, n_times):
348 ... return "meow! " * n_times
349 ...
350 >>> c = Cat()
351 >>> call_go(c)
352 u'meow! meow! meow! '
353
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200354Please take a look at the :ref:`macro_notes` before using this feature.
Wenzel Jakobbd986fe2016-05-21 10:48:30 +0200355
Wenzel Jakob93296692015-10-13 23:21:54 +0200356.. seealso::
357
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200358 The file :file:`tests/test_virtual_functions.cpp` contains a complete
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400359 example that demonstrates how to override virtual functions using pybind11
360 in more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +0200361
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400362.. _virtual_and_inheritance:
363
364Combining virtual functions and inheritance
365===========================================
366
367When combining virtual methods with inheritance, you need to be sure to provide
368an override for each method for which you want to allow overrides from derived
369python classes. For example, suppose we extend the above ``Animal``/``Dog``
370example as follows:
371
372.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200373
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400374 class Animal {
375 public:
376 virtual std::string go(int n_times) = 0;
377 virtual std::string name() { return "unknown"; }
378 };
379 class Dog : public class Animal {
380 public:
381 std::string go(int n_times) override {
382 std::string result;
383 for (int i=0; i<n_times; ++i)
384 result += bark() + " ";
385 return result;
386 }
387 virtual std::string bark() { return "woof!"; }
388 };
389
390then the trampoline class for ``Animal`` must, as described in the previous
391section, override ``go()`` and ``name()``, but in order to allow python code to
392inherit properly from ``Dog``, we also need a trampoline class for ``Dog`` that
393overrides both the added ``bark()`` method *and* the ``go()`` and ``name()``
394methods inherited from ``Animal`` (even though ``Dog`` doesn't directly
395override the ``name()`` method):
396
397.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200398
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400399 class PyAnimal : public Animal {
400 public:
401 using Animal::Animal; // Inherit constructors
402 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Animal, go, n_times); }
403 std::string name() override { PYBIND11_OVERLOAD(std::string, Animal, name, ); }
404 };
405 class PyDog : public Dog {
406 public:
407 using Dog::Dog; // Inherit constructors
408 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Dog, go, n_times); }
409 std::string name() override { PYBIND11_OVERLOAD(std::string, Dog, name, ); }
410 std::string bark() override { PYBIND11_OVERLOAD(std::string, Dog, bark, ); }
411 };
412
413A registered class derived from a pybind11-registered class with virtual
414methods requires a similar trampoline class, *even if* it doesn't explicitly
415declare or override any virtual methods itself:
416
417.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200418
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400419 class Husky : public Dog {};
420 class PyHusky : public Husky {
421 using Dog::Dog; // Inherit constructors
422 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Husky, go, n_times); }
423 std::string name() override { PYBIND11_OVERLOAD(std::string, Husky, name, ); }
424 std::string bark() override { PYBIND11_OVERLOAD(std::string, Husky, bark, ); }
425 };
426
427There is, however, a technique that can be used to avoid this duplication
428(which can be especially helpful for a base class with several virtual
429methods). The technique involves using template trampoline classes, as
430follows:
431
432.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200433
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400434 template <class AnimalBase = Animal> class PyAnimal : public AnimalBase {
435 using AnimalBase::AnimalBase; // Inherit constructors
436 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, AnimalBase, go, n_times); }
437 std::string name() override { PYBIND11_OVERLOAD(std::string, AnimalBase, name, ); }
438 };
439 template <class DogBase = Dog> class PyDog : public PyAnimal<DogBase> {
440 using PyAnimal<DogBase>::PyAnimal; // Inherit constructors
441 // Override PyAnimal's pure virtual go() with a non-pure one:
442 std::string go(int n_times) override { PYBIND11_OVERLOAD(std::string, DogBase, go, n_times); }
443 std::string bark() override { PYBIND11_OVERLOAD(std::string, DogBase, bark, ); }
444 };
445
446This technique has the advantage of requiring just one trampoline method to be
447declared per virtual method and pure virtual method override. It does,
448however, require the compiler to generate at least as many methods (and
449possibly more, if both pure virtual and overridden pure virtual methods are
450exposed, as above).
451
452The classes are then registered with pybind11 using:
453
454.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200455
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400456 py::class_<Animal, std::unique_ptr<Animal>, PyAnimal<>> animal(m, "Animal");
457 py::class_<Dog, std::unique_ptr<Dog>, PyDog<>> dog(m, "Dog");
458 py::class_<Husky, std::unique_ptr<Husky>, PyDog<Husky>> husky(m, "Husky");
459 // ... add animal, dog, husky definitions
460
461Note that ``Husky`` did not require a dedicated trampoline template class at
462all, since it neither declares any new virtual methods nor provides any pure
463virtual method implementations.
464
465With either the repeated-virtuals or templated trampoline methods in place, you
466can now create a python class that inherits from ``Dog``:
467
468.. code-block:: python
469
470 class ShihTzu(Dog):
471 def bark(self):
472 return "yip!"
473
474.. seealso::
475
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200476 See the file :file:`tests/test_virtual_functions.cpp` for complete examples
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400477 using both the duplication and templated trampoline approaches.
478
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200479.. _macro_notes:
480
481General notes regarding convenience macros
482==========================================
483
484pybind11 provides a few convenience macros such as
485:func:`PYBIND11_MAKE_OPAQUE` and :func:`PYBIND11_DECLARE_HOLDER_TYPE`, and
486``PYBIND11_OVERLOAD_*``. Since these are "just" macros that are evaluated
487in the preprocessor (which has no concept of types), they *will* get confused
488by commas in a template argument such as ``PYBIND11_OVERLOAD(MyReturnValue<T1,
489T2>, myFunc)``. In this case, the preprocessor assumes that the comma indicates
490the beginnning of the next parameter. Use a ``typedef`` to bind the template to
491another name and use it in the macro to avoid this problem.
492
493
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100494Global Interpreter Lock (GIL)
495=============================
496
497The classes :class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be
498used to acquire and release the global interpreter lock in the body of a C++
499function call. In this way, long-running C++ code can be parallelized using
500multiple Python threads. Taking the previous section as an example, this could
501be realized as follows (important changes highlighted):
502
503.. code-block:: cpp
504 :emphasize-lines: 8,9,33,34
505
506 class PyAnimal : public Animal {
507 public:
508 /* Inherit the constructors */
509 using Animal::Animal;
510
511 /* Trampoline (need one for each virtual function) */
512 std::string go(int n_times) {
513 /* Acquire GIL before calling Python code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100514 py::gil_scoped_acquire acquire;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100515
516 PYBIND11_OVERLOAD_PURE(
517 std::string, /* Return type */
518 Animal, /* Parent class */
519 go, /* Name of function */
520 n_times /* Argument(s) */
521 );
522 }
523 };
524
525 PYBIND11_PLUGIN(example) {
526 py::module m("example", "pybind11 example plugin");
527
Wenzel Jakob86d825f2016-05-26 13:19:27 +0200528 py::class_<Animal, std::unique_ptr<Animal>, PyAnimal> animal(m, "Animal");
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100529 animal
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100530 .def(py::init<>())
531 .def("go", &Animal::go);
532
533 py::class_<Dog>(m, "Dog", animal)
534 .def(py::init<>());
535
536 m.def("call_go", [](Animal *animal) -> std::string {
537 /* Release GIL before calling into (potentially long-running) C++ code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100538 py::gil_scoped_release release;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100539 return call_go(animal);
540 });
541
542 return m.ptr();
543 }
544
Wenzel Jakob93296692015-10-13 23:21:54 +0200545Passing STL data structures
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200546===========================
547
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200548When including the additional header file :file:`pybind11/stl.h`, conversions
Wenzel Jakob978e3762016-04-07 18:00:41 +0200549between ``std::vector<>``, ``std::list<>``, ``std::set<>``, and ``std::map<>``
550and the Python ``list``, ``set`` and ``dict`` data structures are automatically
551enabled. The types ``std::pair<>`` and ``std::tuple<>`` are already supported
552out of the box with just the core :file:`pybind11/pybind11.h` header.
Wenzel Jakob93296692015-10-13 23:21:54 +0200553
Sergey Lyskov75204182016-08-29 22:50:38 -0400554Alternatively it might be desirable to bind STL containers as native C++ classes,
555eliminating the need of converting back and forth between C++ representation
556and Python one. The downside of this approach in this case users will have to
557deal with C++ containers directly instead of using already familiar Python lists
558or dicts.
559
560Pybind11 provide set of binder functions to bind various STL containers like vectors,
561maps etc. All binder functions are designed to return instances of pybind11::class_
562objects so developers can bind extra functions if needed. For complete set of
563available functions please see :file:`pybind11/stl_bind.h`. For an example on using
564this feature, please see :file:`tests/test_stl_binders.cpp`.
565
Wenzel Jakob93296692015-10-13 23:21:54 +0200566.. note::
567
Wenzel Jakob44db04f2015-12-14 12:40:45 +0100568 Arbitrary nesting of any of these types is supported.
Wenzel Jakob93296692015-10-13 23:21:54 +0200569
570.. seealso::
571
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200572 The file :file:`tests/test_python_types.cpp` contains a complete
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400573 example that demonstrates how to pass STL data types in more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +0200574
Wenzel Jakobb2825952016-04-13 23:33:00 +0200575Binding sequence data types, iterators, the slicing protocol, etc.
576==================================================================
Wenzel Jakob93296692015-10-13 23:21:54 +0200577
578Please refer to the supplemental example for details.
579
580.. seealso::
581
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200582 The file :file:`tests/test_sequences_and_iterators.cpp` contains a
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400583 complete example that shows how to bind a sequence data type, including
584 length queries (``__len__``), iterators (``__iter__``), the slicing
585 protocol and other kinds of useful operations.
Wenzel Jakob93296692015-10-13 23:21:54 +0200586
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200587Return value policies
588=====================
589
Wenzel Jakob93296692015-10-13 23:21:54 +0200590Python and C++ use wildly different ways of managing the memory and lifetime of
591objects managed by them. This can lead to issues when creating bindings for
592functions that return a non-trivial type. Just by looking at the type
593information, it is not clear whether Python should take charge of the returned
594value and eventually free its resources, or if this is handled on the C++ side.
595For this reason, pybind11 provides a several `return value policy` annotations
596that can be passed to the :func:`module::def` and :func:`class_::def`
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100597functions. The default policy is :enum:`return_value_policy::automatic`.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200598
Wenzel Jakobbf099582016-08-22 12:52:02 +0200599Return value policies can also be applied to properties, in which case the
600arguments must be passed through the :class:`cpp_function` constructor:
601
602.. code-block:: cpp
603
604 class_<MyClass>(m, "MyClass")
605 def_property("data"
606 py::cpp_function(&MyClass::getData, py::return_value_policy::copy),
607 py::cpp_function(&MyClass::setData)
608 );
609
610The following table provides an overview of the available return value policies:
611
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200612.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
613
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200614+--------------------------------------------------+----------------------------------------------------------------------------+
615| Return value policy | Description |
616+==================================================+============================================================================+
617| :enum:`return_value_policy::automatic` | This is the default return value policy, which falls back to the policy |
618| | :enum:`return_value_policy::take_ownership` when the return value is a |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200619| | pointer. Otherwise, it uses :enum:`return_value::move` or |
620| | :enum:`return_value::copy` for rvalue and lvalue references, respectively. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200621| | See below for a description of what all of these different policies do. |
622+--------------------------------------------------+----------------------------------------------------------------------------+
623| :enum:`return_value_policy::automatic_reference` | As above, but use policy :enum:`return_value_policy::reference` when the |
Wenzel Jakob37e1f612016-06-22 14:29:13 +0200624| | return value is a pointer. This is the default conversion policy for |
625| | function arguments when calling Python functions manually from C++ code |
626| | (i.e. via handle::operator()). You probably won't need to use this. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200627+--------------------------------------------------+----------------------------------------------------------------------------+
628| :enum:`return_value_policy::take_ownership` | Reference an existing object (i.e. do not create a new copy) and take |
629| | ownership. Python will call the destructor and delete operator when the |
630| | object's reference count reaches zero. Undefined behavior ensues when the |
Wenzel Jakobf53e3002016-06-30 14:59:23 +0200631| | C++ side does the same. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200632+--------------------------------------------------+----------------------------------------------------------------------------+
633| :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python. |
634| | This policy is comparably safe because the lifetimes of the two instances |
635| | are decoupled. |
636+--------------------------------------------------+----------------------------------------------------------------------------+
637| :enum:`return_value_policy::move` | Use ``std::move`` to move the return value contents into a new instance |
638| | that will be owned by Python. This policy is comparably safe because the |
639| | lifetimes of the two instances (move source and destination) are decoupled.|
640+--------------------------------------------------+----------------------------------------------------------------------------+
641| :enum:`return_value_policy::reference` | Reference an existing object, but do not take ownership. The C++ side is |
642| | responsible for managing the object's lifetime and deallocating it when |
643| | it is no longer used. Warning: undefined behavior will ensue when the C++ |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200644| | side deletes an object that is still referenced and used by Python. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200645+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakobbf099582016-08-22 12:52:02 +0200646| :enum:`return_value_policy::reference_internal` | Indicates that the lifetime of the return value is tied to the lifetime |
647| | of a parent object, namely the implicit ``this``, or ``self`` argument of |
648| | the called method or property. Internally, this policy works just like |
649| | :enum:`return_value_policy::reference` but additionally applies a |
650| | ``keep_alive<0, 1>`` *call policy* (described in the next section) that |
651| | prevents the parent object from being garbage collected as long as the |
652| | return value is referenced by Python. This is the default policy for |
653| | property getters created via ``def_property``, ``def_readwrite``, etc.) |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200654+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200655
Wenzel Jakobfb6aed22016-07-18 20:29:53 +0200656.. warning::
657
Jason Rhinelanderefc2aa72016-08-10 11:38:33 -0400658 Code with invalid return value policies might access unitialized memory or
659 free data structures multiple times, which can lead to hard-to-debug
Wenzel Jakobfb6aed22016-07-18 20:29:53 +0200660 non-determinism and segmentation faults, hence it is worth spending the
661 time to understand all the different options in the table above.
662
Jason Rhinelanderefc2aa72016-08-10 11:38:33 -0400663One important aspect of the above policies is that they only apply to instances
664which pybind11 has *not* seen before, in which case the policy clarifies
665essential questions about the return value's lifetime and ownership. When
666pybind11 knows the instance already (as identified by its type and address in
Wenzel Jakobfb6aed22016-07-18 20:29:53 +0200667memory), it will return the existing Python object wrapper rather than creating
Wenzel Jakobbf099582016-08-22 12:52:02 +0200668a new copy.
nafur717df752016-06-28 18:07:11 +0200669
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200670.. note::
671
672 The next section on :ref:`call_policies` discusses *call policies* that can be
673 specified *in addition* to a return value policy from the list above. Call
674 policies indicate reference relationships that can involve both return values
675 and parameters of functions.
676
677.. note::
678
679 As an alternative to elaborate call policies and lifetime management logic,
680 consider using smart pointers (see the section on :ref:`smart_pointers` for
681 details). Smart pointers can tell whether an object is still referenced from
682 C++ or Python, which generally eliminates the kinds of inconsistencies that
683 can lead to crashes or undefined behavior. For functions returning smart
684 pointers, it is not necessary to specify a return value policy.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100685
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200686.. _call_policies:
687
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100688Additional call policies
689========================
690
691In addition to the above return value policies, further `call policies` can be
692specified to indicate dependencies between parameters. There is currently just
693one policy named ``keep_alive<Nurse, Patient>``, which indicates that the
694argument with index ``Patient`` should be kept alive at least until the
Wenzel Jakob0b632312016-08-18 10:58:21 +0200695argument with index ``Nurse`` is freed by the garbage collector. Argument
696indices start at one, while zero refers to the return value. For methods, index
697``1`` refers to the implicit ``this`` pointer, while regular arguments begin at
698index ``2``. Arbitrarily many call policies can be specified. When a ``Nurse``
699with value ``None`` is detected at runtime, the call policy does nothing.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100700
Wenzel Jakob0b632312016-08-18 10:58:21 +0200701This feature internally relies on the ability to create a *weak reference* to
702the nurse object, which is permitted by all classes exposed via pybind11. When
703the nurse object does not support weak references, an exception will be thrown.
704
705Consider the following example: here, the binding code for a list append
706operation ties the lifetime of the newly added element to the underlying
707container:
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100708
709.. code-block:: cpp
710
711 py::class_<List>(m, "List")
712 .def("append", &List::append, py::keep_alive<1, 2>());
713
714.. note::
715
716 ``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse,
717 Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient ==
718 0) policies from Boost.Python.
719
Wenzel Jakob61587162016-01-18 22:38:52 +0100720.. seealso::
721
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200722 The file :file:`tests/test_keep_alive.cpp` contains a complete example
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400723 that demonstrates using :class:`keep_alive` in more detail.
Wenzel Jakob61587162016-01-18 22:38:52 +0100724
Wenzel Jakob93296692015-10-13 23:21:54 +0200725Implicit type conversions
726=========================
727
728Suppose that instances of two types ``A`` and ``B`` are used in a project, and
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200729that an ``A`` can easily be converted into an instance of type ``B`` (examples of this
Wenzel Jakob93296692015-10-13 23:21:54 +0200730could be a fixed and an arbitrary precision number type).
731
732.. code-block:: cpp
733
734 py::class_<A>(m, "A")
735 /// ... members ...
736
737 py::class_<B>(m, "B")
738 .def(py::init<A>())
739 /// ... members ...
740
741 m.def("func",
742 [](const B &) { /* .... */ }
743 );
744
745To invoke the function ``func`` using a variable ``a`` containing an ``A``
746instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++
747will automatically apply an implicit type conversion, which makes it possible
748to directly write ``func(a)``.
749
750In this situation (i.e. where ``B`` has a constructor that converts from
751``A``), the following statement enables similar implicit conversions on the
752Python side:
753
754.. code-block:: cpp
755
756 py::implicitly_convertible<A, B>();
757
Wenzel Jakob3eeea6f2016-06-30 18:10:28 +0200758.. note::
759
760 Implicit conversions from ``A`` to ``B`` only work when ``B`` is a custom
761 data type that is exposed to Python via pybind11.
762
Wenzel Jakobf88af0c2016-06-22 13:52:31 +0200763.. _static_properties:
764
765Static properties
766=================
767
768The section on :ref:`properties` discussed the creation of instance properties
769that are implemented in terms of C++ getters and setters.
770
771Static properties can also be created in a similar way to expose getters and
772setters of static class attributes. It is important to note that the implicit
773``self`` argument also exists in this case and is used to pass the Python
774``type`` subclass instance. This parameter will often not be needed by the C++
775side, and the following example illustrates how to instantiate a lambda getter
776function that ignores it:
777
778.. code-block:: cpp
779
780 py::class_<Foo>(m, "Foo")
781 .def_property_readonly_static("foo", [](py::object /* self */) { return Foo(); });
782
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200783Unique pointers
784===============
785
786Given a class ``Example`` with Python bindings, it's possible to return
787instances wrapped in C++11 unique pointers, like so
788
789.. code-block:: cpp
790
791 std::unique_ptr<Example> create_example() { return std::unique_ptr<Example>(new Example()); }
792
793.. code-block:: cpp
794
795 m.def("create_example", &create_example);
796
797In other words, there is nothing special that needs to be done. While returning
798unique pointers in this way is allowed, it is *illegal* to use them as function
799arguments. For instance, the following function signature cannot be processed
800by pybind11.
801
802.. code-block:: cpp
803
804 void do_something_with_example(std::unique_ptr<Example> ex) { ... }
805
806The above signature would imply that Python needs to give up ownership of an
807object that is passed to this function, which is generally not possible (for
808instance, the object might be referenced elsewhere).
809
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200810.. _smart_pointers:
811
Wenzel Jakob93296692015-10-13 23:21:54 +0200812Smart pointers
813==============
814
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200815This section explains how to pass values that are wrapped in "smart" pointer
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200816types with internal reference counting. For the simpler C++11 unique pointers,
817refer to the previous section.
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200818
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200819The binding generator for classes, :class:`class_`, takes an optional second
Wenzel Jakob93296692015-10-13 23:21:54 +0200820template type, which denotes a special *holder* type that is used to manage
821references to the object. When wrapping a type named ``Type``, the default
822value of this template parameter is ``std::unique_ptr<Type>``, which means that
823the object is deallocated when Python's reference count goes to zero.
824
Wenzel Jakob1853b652015-10-18 15:38:50 +0200825It is possible to switch to other types of reference counting wrappers or smart
826pointers, which is useful in codebases that rely on them. For instance, the
827following snippet causes ``std::shared_ptr`` to be used instead.
Wenzel Jakob93296692015-10-13 23:21:54 +0200828
829.. code-block:: cpp
830
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100831 py::class_<Example, std::shared_ptr<Example> /* <- holder type */> obj(m, "Example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100832
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100833Note that any particular class can only be associated with a single holder type.
Wenzel Jakob93296692015-10-13 23:21:54 +0200834
Wenzel Jakob1853b652015-10-18 15:38:50 +0200835To enable transparent conversions for functions that take shared pointers as an
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100836argument or that return them, a macro invocation similar to the following must
Wenzel Jakob1853b652015-10-18 15:38:50 +0200837be declared at the top level before any binding code:
838
839.. code-block:: cpp
840
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200841 PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>);
Wenzel Jakob1853b652015-10-18 15:38:50 +0200842
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100843.. note::
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100844
845 The first argument of :func:`PYBIND11_DECLARE_HOLDER_TYPE` should be a
846 placeholder name that is used as a template parameter of the second
847 argument. Thus, feel free to use any identifier, but use it consistently on
848 both sides; also, don't use the name of a type that already exists in your
849 codebase.
850
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100851One potential stumbling block when using holder types is that they need to be
852applied consistently. Can you guess what's broken about the following binding
853code?
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100854
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100855.. code-block:: cpp
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100856
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100857 class Child { };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100858
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100859 class Parent {
860 public:
861 Parent() : child(std::make_shared<Child>()) { }
862 Child *get_child() { return child.get(); } /* Hint: ** DON'T DO THIS ** */
863 private:
864 std::shared_ptr<Child> child;
865 };
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100866
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100867 PYBIND11_PLUGIN(example) {
868 py::module m("example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100869
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100870 py::class_<Child, std::shared_ptr<Child>>(m, "Child");
871
872 py::class_<Parent, std::shared_ptr<Parent>>(m, "Parent")
873 .def(py::init<>())
874 .def("get_child", &Parent::get_child);
875
876 return m.ptr();
877 }
878
879The following Python code will cause undefined behavior (and likely a
880segmentation fault).
881
882.. code-block:: python
883
884 from example import Parent
885 print(Parent().get_child())
886
887The problem is that ``Parent::get_child()`` returns a pointer to an instance of
888``Child``, but the fact that this instance is already managed by
889``std::shared_ptr<...>`` is lost when passing raw pointers. In this case,
890pybind11 will create a second independent ``std::shared_ptr<...>`` that also
891claims ownership of the pointer. In the end, the object will be freed **twice**
892since these shared pointers have no way of knowing about each other.
893
894There are two ways to resolve this issue:
895
8961. For types that are managed by a smart pointer class, never use raw pointers
897 in function arguments or return values. In other words: always consistently
898 wrap pointers into their designated holder types (such as
899 ``std::shared_ptr<...>``). In this case, the signature of ``get_child()``
900 should be modified as follows:
901
902.. code-block:: cpp
903
904 std::shared_ptr<Child> get_child() { return child; }
905
9062. Adjust the definition of ``Child`` by specifying
907 ``std::enable_shared_from_this<T>`` (see cppreference_ for details) as a
908 base class. This adds a small bit of information to ``Child`` that allows
909 pybind11 to realize that there is already an existing
910 ``std::shared_ptr<...>`` and communicate with it. In this case, the
911 declaration of ``Child`` should look as follows:
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100912
Wenzel Jakob6e213c92015-11-24 23:05:58 +0100913.. _cppreference: http://en.cppreference.com/w/cpp/memory/enable_shared_from_this
914
Wenzel Jakobb2c2c792016-01-17 22:36:40 +0100915.. code-block:: cpp
916
917 class Child : public std::enable_shared_from_this<Child> { };
918
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200919
920Please take a look at the :ref:`macro_notes` before using this feature.
921
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100922.. seealso::
923
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200924 The file :file:`tests/test_smart_ptr.cpp` contains a complete example
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400925 that demonstrates how to work with custom reference-counting holder types
926 in more detail.
Wenzel Jakob5ef12192015-12-15 17:07:35 +0100927
Wenzel Jakob93296692015-10-13 23:21:54 +0200928.. _custom_constructors:
929
930Custom constructors
931===================
932
933The syntax for binding constructors was previously introduced, but it only
934works when a constructor with the given parameters actually exists on the C++
935side. To extend this to more general cases, let's take a look at what actually
936happens under the hood: the following statement
937
938.. code-block:: cpp
939
940 py::class_<Example>(m, "Example")
941 .def(py::init<int>());
942
943is short hand notation for
944
945.. code-block:: cpp
946
947 py::class_<Example>(m, "Example")
948 .def("__init__",
949 [](Example &instance, int arg) {
950 new (&instance) Example(arg);
951 }
952 );
953
954In other words, :func:`init` creates an anonymous function that invokes an
955in-place constructor. Memory allocation etc. is already take care of beforehand
956within pybind11.
957
Nickolai Belakovski63338252016-08-27 11:57:55 -0700958.. _classes_with_non_public_destructors:
959
960Classes with non-public destructors
961===================================
962
Wenzel Jakob5e4e4772016-08-28 02:03:15 +0200963If a class has a private or protected destructor (as might e.g. be the case in
964a singleton pattern), a compile error will occur when creating bindings via
965pybind11. The underlying issue is that the ``std::unique_ptr`` holder type that
966is responsible for managing the lifetime of instances will reference the
967destructor even if no deallocations ever take place. In order to expose classes
968with private or protected destructors, it is possible to override the holder
969type via the second argument to ``class_``. Pybind11 provides a helper class
970``py::nodelete`` that disables any destructor invocations. In this case, it is
971crucial that instances are deallocated on the C++ side to avoid memory leaks.
Nickolai Belakovski63338252016-08-27 11:57:55 -0700972
973.. code-block:: cpp
974
975 /* ... definition ... */
976
977 class MyClass {
Wenzel Jakob5e4e4772016-08-28 02:03:15 +0200978 private:
979 ~MyClass() { }
Nickolai Belakovski63338252016-08-27 11:57:55 -0700980 };
981
982 /* ... binding code ... */
983
Wenzel Jakob5e4e4772016-08-28 02:03:15 +0200984 py::class_<MyClass, std::unique_ptr<MyClass, py::nodelete>>(m, "MyClass")
Nickolai Belakovski63338252016-08-27 11:57:55 -0700985 .def(py::init<>)
986
Pim Schellart5a7d17f2016-06-17 17:35:59 -0400987.. _catching_and_throwing_exceptions:
988
Wenzel Jakob93296692015-10-13 23:21:54 +0200989Catching and throwing exceptions
990================================
991
992When C++ code invoked from Python throws an ``std::exception``, it is
993automatically converted into a Python ``Exception``. pybind11 defines multiple
994special exception classes that will map to different types of Python
995exceptions:
996
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200997.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
998
Wenzel Jakob978e3762016-04-07 18:00:41 +0200999+--------------------------------------+------------------------------+
1000| C++ exception type | Python exception type |
1001+======================================+==============================+
1002| :class:`std::exception` | ``RuntimeError`` |
1003+--------------------------------------+------------------------------+
1004| :class:`std::bad_alloc` | ``MemoryError`` |
1005+--------------------------------------+------------------------------+
1006| :class:`std::domain_error` | ``ValueError`` |
1007+--------------------------------------+------------------------------+
1008| :class:`std::invalid_argument` | ``ValueError`` |
1009+--------------------------------------+------------------------------+
1010| :class:`std::length_error` | ``ValueError`` |
1011+--------------------------------------+------------------------------+
1012| :class:`std::out_of_range` | ``ValueError`` |
1013+--------------------------------------+------------------------------+
1014| :class:`std::range_error` | ``ValueError`` |
1015+--------------------------------------+------------------------------+
1016| :class:`pybind11::stop_iteration` | ``StopIteration`` (used to |
1017| | implement custom iterators) |
1018+--------------------------------------+------------------------------+
1019| :class:`pybind11::index_error` | ``IndexError`` (used to |
1020| | indicate out of bounds |
1021| | accesses in ``__getitem__``, |
1022| | ``__setitem__``, etc.) |
1023+--------------------------------------+------------------------------+
Sergey Lyskova95bde12016-05-08 19:31:55 -04001024| :class:`pybind11::value_error` | ``ValueError`` (used to |
1025| | indicate wrong value passed |
1026| | in ``container.remove(...)`` |
1027+--------------------------------------+------------------------------+
Jason Rhinelander5aa85be2016-08-11 21:22:05 -04001028| :class:`pybind11::key_error` | ``KeyError`` (used to |
1029| | indicate out of bounds |
1030| | accesses in ``__getitem__``, |
1031| | ``__setitem__`` in dict-like |
1032| | objects, etc.) |
1033+--------------------------------------+------------------------------+
Wenzel Jakob978e3762016-04-07 18:00:41 +02001034| :class:`pybind11::error_already_set` | Indicates that the Python |
1035| | exception flag has already |
1036| | been initialized |
1037+--------------------------------------+------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +02001038
1039When a Python function invoked from C++ throws an exception, it is converted
1040into a C++ exception of type :class:`error_already_set` whose string payload
1041contains a textual summary.
1042
1043There is also a special exception :class:`cast_error` that is thrown by
1044:func:`handle::call` when the input arguments cannot be converted to Python
1045objects.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001046
Pim Schellart5a7d17f2016-06-17 17:35:59 -04001047Registering custom exception translators
1048========================================
1049
1050If the default exception conversion policy described
1051:ref:`above <catching_and_throwing_exceptions>`
1052is insufficient, pybind11 also provides support for registering custom
1053exception translators.
1054
1055The function ``register_exception_translator(translator)`` takes a stateless
1056callable (e.g. a function pointer or a lambda function without captured
1057variables) with the following call signature: ``void(std::exception_ptr)``.
1058
1059When a C++ exception is thrown, registered exception translators are tried
1060in reverse order of registration (i.e. the last registered translator gets
1061a first shot at handling the exception).
1062
1063Inside the translator, ``std::rethrow_exception`` should be used within
1064a try block to re-throw the exception. A catch clause can then use
1065``PyErr_SetString`` to set a Python exception as demonstrated
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001066in :file:`tests/test_exceptions.cpp`.
Pim Schellart5a7d17f2016-06-17 17:35:59 -04001067
1068This example also demonstrates how to create custom exception types
1069with ``py::exception``.
1070
1071The following example demonstrates this for a hypothetical exception class
1072``MyCustomException``:
1073
1074.. code-block:: cpp
1075
1076 py::register_exception_translator([](std::exception_ptr p) {
1077 try {
1078 if (p) std::rethrow_exception(p);
1079 } catch (const MyCustomException &e) {
1080 PyErr_SetString(PyExc_RuntimeError, e.what());
1081 }
1082 });
1083
1084Multiple exceptions can be handled by a single translator. If the exception is
1085not caught by the current translator, the previously registered one gets a
1086chance.
1087
1088If none of the registered exception translators is able to handle the
1089exception, it is handled by the default converter as described in the previous
1090section.
1091
1092.. note::
1093
1094 You must either call ``PyErr_SetString`` for every exception caught in a
1095 custom exception translator. Failure to do so will cause Python to crash
1096 with ``SystemError: error return without exception set``.
1097
1098 Exceptions that you do not plan to handle should simply not be caught.
1099
1100 You may also choose to explicity (re-)throw the exception to delegate it to
1101 the other existing exception translators.
1102
1103 The ``py::exception`` wrapper for creating custom exceptions cannot (yet)
1104 be used as a ``py::base``.
1105
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001106.. _opaque:
1107
1108Treating STL data structures as opaque objects
1109==============================================
1110
1111pybind11 heavily relies on a template matching mechanism to convert parameters
1112and return values that are constructed from STL data types such as vectors,
1113linked lists, hash tables, etc. This even works in a recursive manner, for
1114instance to deal with lists of hash maps of pairs of elementary and custom
1115types, etc.
1116
1117However, a fundamental limitation of this approach is that internal conversions
1118between Python and C++ types involve a copy operation that prevents
1119pass-by-reference semantics. What does this mean?
1120
1121Suppose we bind the following function
1122
1123.. code-block:: cpp
1124
1125 void append_1(std::vector<int> &v) {
1126 v.push_back(1);
1127 }
1128
1129and call it from Python, the following happens:
1130
Wenzel Jakob99279f72016-06-03 11:19:29 +02001131.. code-block:: pycon
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001132
1133 >>> v = [5, 6]
1134 >>> append_1(v)
1135 >>> print(v)
1136 [5, 6]
1137
1138As you can see, when passing STL data structures by reference, modifications
1139are not propagated back the Python side. A similar situation arises when
1140exposing STL data structures using the ``def_readwrite`` or ``def_readonly``
1141functions:
1142
1143.. code-block:: cpp
1144
1145 /* ... definition ... */
1146
1147 class MyClass {
1148 std::vector<int> contents;
1149 };
1150
1151 /* ... binding code ... */
1152
1153 py::class_<MyClass>(m, "MyClass")
1154 .def(py::init<>)
1155 .def_readwrite("contents", &MyClass::contents);
1156
1157In this case, properties can be read and written in their entirety. However, an
1158``append`` operaton involving such a list type has no effect:
1159
Wenzel Jakob99279f72016-06-03 11:19:29 +02001160.. code-block:: pycon
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001161
1162 >>> m = MyClass()
1163 >>> m.contents = [5, 6]
1164 >>> print(m.contents)
1165 [5, 6]
1166 >>> m.contents.append(7)
1167 >>> print(m.contents)
1168 [5, 6]
1169
1170To deal with both of the above situations, pybind11 provides a macro named
1171``PYBIND11_MAKE_OPAQUE(T)`` that disables the template-based conversion
1172machinery of types, thus rendering them *opaque*. The contents of opaque
1173objects are never inspected or extracted, hence they can be passed by
1174reference. For instance, to turn ``std::vector<int>`` into an opaque type, add
1175the declaration
1176
1177.. code-block:: cpp
1178
1179 PYBIND11_MAKE_OPAQUE(std::vector<int>);
1180
1181before any binding code (e.g. invocations to ``class_::def()``, etc.). This
1182macro must be specified at the top level, since instantiates a partial template
1183overload. If your binding code consists of multiple compilation units, it must
1184be present in every file preceding any usage of ``std::vector<int>``. Opaque
1185types must also have a corresponding ``class_`` declaration to associate them
1186with a name in Python, and to define a set of available operations:
1187
1188.. code-block:: cpp
1189
1190 py::class_<std::vector<int>>(m, "IntVector")
1191 .def(py::init<>())
1192 .def("clear", &std::vector<int>::clear)
1193 .def("pop_back", &std::vector<int>::pop_back)
1194 .def("__len__", [](const std::vector<int> &v) { return v.size(); })
1195 .def("__iter__", [](std::vector<int> &v) {
1196 return py::make_iterator(v.begin(), v.end());
1197 }, py::keep_alive<0, 1>()) /* Keep vector alive while iterator is used */
1198 // ....
1199
Wenzel Jakob9bb97c12016-06-03 11:19:41 +02001200Please take a look at the :ref:`macro_notes` before using this feature.
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001201
1202.. seealso::
1203
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001204 The file :file:`tests/test_opaque_types.cpp` contains a complete
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001205 example that demonstrates how to create and expose opaque types using
1206 pybind11 in more detail.
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001207
1208.. _eigen:
1209
1210Transparent conversion of dense and sparse Eigen data types
1211===========================================================
1212
1213Eigen [#f1]_ is C++ header-based library for dense and sparse linear algebra. Due to
1214its popularity and widespread adoption, pybind11 provides transparent
1215conversion support between Eigen and Scientific Python linear algebra data types.
1216
1217Specifically, when including the optional header file :file:`pybind11/eigen.h`,
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001218pybind11 will automatically and transparently convert
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001219
12201. Static and dynamic Eigen dense vectors and matrices to instances of
1221 ``numpy.ndarray`` (and vice versa).
1222
Jason Rhinelanderb68d8fc2016-08-04 16:39:30 -040012232. Returned matrix expressions such as blocks (including columns or rows) and
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001224 diagonals will be converted to ``numpy.ndarray`` of the expression
1225 values.
1226
Jason Rhinelanderb68d8fc2016-08-04 16:39:30 -040012273. Returned matrix-like objects such as Eigen::DiagonalMatrix or
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001228 Eigen::SelfAdjointView will be converted to ``numpy.ndarray`` containing the
1229 expressed value.
1230
Jason Rhinelanderb68d8fc2016-08-04 16:39:30 -040012314. Eigen sparse vectors and matrices to instances of
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001232 ``scipy.sparse.csr_matrix``/``scipy.sparse.csc_matrix`` (and vice versa).
1233
1234This makes it possible to bind most kinds of functions that rely on these types.
1235One major caveat are functions that take Eigen matrices *by reference* and modify
1236them somehow, in which case the information won't be propagated to the caller.
1237
1238.. code-block:: cpp
1239
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001240 /* The Python bindings of these functions won't replicate
1241 the intended effect of modifying the function arguments */
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001242 void scale_by_2(Eigen::Vector3f &v) {
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001243 v *= 2;
1244 }
1245 void scale_by_2(Eigen::Ref<Eigen::MatrixXd> &v) {
1246 v *= 2;
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001247 }
1248
1249To see why this is, refer to the section on :ref:`opaque` (although that
1250section specifically covers STL data types, the underlying issue is the same).
1251The next two sections discuss an efficient alternative for exposing the
1252underlying native Eigen types as opaque objects in a way that still integrates
1253with NumPy and SciPy.
1254
1255.. [#f1] http://eigen.tuxfamily.org
1256
1257.. seealso::
1258
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001259 The file :file:`tests/test_eigen.cpp` contains a complete example that
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001260 shows how to pass Eigen sparse and dense data types in more detail.
1261
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001262Buffer protocol
1263===============
1264
1265Python supports an extremely general and convenient approach for exchanging
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001266data between plugin libraries. Types can expose a buffer view [#f2]_, which
1267provides fast direct access to the raw internal data representation. Suppose we
1268want to bind the following simplistic Matrix class:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001269
1270.. code-block:: cpp
1271
1272 class Matrix {
1273 public:
1274 Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
1275 m_data = new float[rows*cols];
1276 }
1277 float *data() { return m_data; }
1278 size_t rows() const { return m_rows; }
1279 size_t cols() const { return m_cols; }
1280 private:
1281 size_t m_rows, m_cols;
1282 float *m_data;
1283 };
1284
1285The following binding code exposes the ``Matrix`` contents as a buffer object,
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001286making it possible to cast Matrices into NumPy arrays. It is even possible to
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001287completely avoid copy operations with Python expressions like
1288``np.array(matrix_instance, copy = False)``.
1289
1290.. code-block:: cpp
1291
1292 py::class_<Matrix>(m, "Matrix")
1293 .def_buffer([](Matrix &m) -> py::buffer_info {
1294 return py::buffer_info(
Ivan Smirnov5e71e172016-06-26 12:42:34 +01001295 m.data(), /* Pointer to buffer */
1296 sizeof(float), /* Size of one scalar */
1297 py::format_descriptor<float>::format(), /* Python struct-style format descriptor */
1298 2, /* Number of dimensions */
1299 { m.rows(), m.cols() }, /* Buffer dimensions */
1300 { sizeof(float) * m.rows(), /* Strides (in bytes) for each index */
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001301 sizeof(float) }
1302 );
1303 });
1304
1305The snippet above binds a lambda function, which can create ``py::buffer_info``
1306description records on demand describing a given matrix. The contents of
1307``py::buffer_info`` mirror the Python buffer protocol specification.
1308
1309.. code-block:: cpp
1310
1311 struct buffer_info {
1312 void *ptr;
1313 size_t itemsize;
1314 std::string format;
1315 int ndim;
1316 std::vector<size_t> shape;
1317 std::vector<size_t> strides;
1318 };
1319
1320To create a C++ function that can take a Python buffer object as an argument,
1321simply use the type ``py::buffer`` as one of its arguments. Buffers can exist
1322in a great variety of configurations, hence some safety checks are usually
1323necessary in the function body. Below, you can see an basic example on how to
1324define a custom constructor for the Eigen double precision matrix
1325(``Eigen::MatrixXd``) type, which supports initialization from compatible
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001326buffer objects (e.g. a NumPy matrix).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001327
1328.. code-block:: cpp
1329
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001330 /* Bind MatrixXd (or some other Eigen type) to Python */
1331 typedef Eigen::MatrixXd Matrix;
1332
1333 typedef Matrix::Scalar Scalar;
1334 constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit;
1335
1336 py::class_<Matrix>(m, "Matrix")
1337 .def("__init__", [](Matrix &m, py::buffer b) {
Wenzel Jakobe7628532016-05-05 10:04:44 +02001338 typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides;
Wenzel Jakobe7628532016-05-05 10:04:44 +02001339
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001340 /* Request a buffer descriptor from Python */
1341 py::buffer_info info = b.request();
1342
1343 /* Some sanity checks ... */
Ivan Smirnov5e71e172016-06-26 12:42:34 +01001344 if (info.format != py::format_descriptor<Scalar>::format())
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001345 throw std::runtime_error("Incompatible format: expected a double array!");
1346
1347 if (info.ndim != 2)
1348 throw std::runtime_error("Incompatible buffer dimension!");
1349
Wenzel Jakobe7628532016-05-05 10:04:44 +02001350 auto strides = Strides(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001351 info.strides[rowMajor ? 0 : 1] / sizeof(Scalar),
1352 info.strides[rowMajor ? 1 : 0] / sizeof(Scalar));
Wenzel Jakobe7628532016-05-05 10:04:44 +02001353
1354 auto map = Eigen::Map<Matrix, 0, Strides>(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001355 static_cat<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides);
Wenzel Jakobe7628532016-05-05 10:04:44 +02001356
1357 new (&m) Matrix(map);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001358 });
1359
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001360For reference, the ``def_buffer()`` call for this Eigen data type should look
1361as follows:
1362
1363.. code-block:: cpp
1364
1365 .def_buffer([](Matrix &m) -> py::buffer_info {
1366 return py::buffer_info(
1367 m.data(), /* Pointer to buffer */
1368 sizeof(Scalar), /* Size of one scalar */
1369 /* Python struct-style format descriptor */
Ivan Smirnov5e71e172016-06-26 12:42:34 +01001370 py::format_descriptor<Scalar>::format(),
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001371 /* Number of dimensions */
1372 2,
1373 /* Buffer dimensions */
1374 { (size_t) m.rows(),
1375 (size_t) m.cols() },
1376 /* Strides (in bytes) for each index */
1377 { sizeof(Scalar) * (rowMajor ? m.cols() : 1),
1378 sizeof(Scalar) * (rowMajor ? 1 : m.rows()) }
1379 );
1380 })
1381
1382For a much easier approach of binding Eigen types (although with some
1383limitations), refer to the section on :ref:`eigen`.
1384
Wenzel Jakob93296692015-10-13 23:21:54 +02001385.. seealso::
1386
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001387 The file :file:`tests/test_buffers.cpp` contains a complete example
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001388 that demonstrates using the buffer protocol with pybind11 in more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +02001389
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001390.. [#f2] http://docs.python.org/3/c-api/buffer.html
Wenzel Jakob978e3762016-04-07 18:00:41 +02001391
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001392NumPy support
1393=============
1394
1395By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can
1396restrict the function so that it only accepts NumPy arrays (rather than any
Wenzel Jakob978e3762016-04-07 18:00:41 +02001397type of Python object satisfying the buffer protocol).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001398
1399In many situations, we want to define a function which only accepts a NumPy
Wenzel Jakob93296692015-10-13 23:21:54 +02001400array of a certain data type. This is possible via the ``py::array_t<T>``
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001401template. For instance, the following function requires the argument to be a
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001402NumPy array containing double precision values.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001403
1404.. code-block:: cpp
1405
Wenzel Jakob93296692015-10-13 23:21:54 +02001406 void f(py::array_t<double> array);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001407
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001408When it is invoked with a different type (e.g. an integer or a list of
1409integers), the binding code will attempt to cast the input into a NumPy array
1410of the requested type. Note that this feature requires the
1411:file:``pybind11/numpy.h`` header to be included.
1412
1413Data in NumPy arrays is not guaranteed to packed in a dense manner;
1414furthermore, entries can be separated by arbitrary column and row strides.
1415Sometimes, it can be useful to require a function to only accept dense arrays
1416using either the C (row-major) or Fortran (column-major) ordering. This can be
1417accomplished via a second template argument with values ``py::array::c_style``
1418or ``py::array::f_style``.
1419
1420.. code-block:: cpp
1421
Wenzel Jakobb47a9de2016-05-19 16:02:09 +02001422 void f(py::array_t<double, py::array::c_style | py::array::forcecast> array);
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001423
Wenzel Jakobb47a9de2016-05-19 16:02:09 +02001424The ``py::array::forcecast`` argument is the default value of the second
1425template paramenter, and it ensures that non-conforming arguments are converted
1426into an array satisfying the specified requirements instead of trying the next
1427function overload.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001428
Ivan Smirnov223afe32016-07-02 15:33:04 +01001429NumPy structured types
1430======================
1431
1432In order for ``py::array_t`` to work with structured (record) types, we first need
Ivan Smirnov5412a052016-07-02 16:18:42 +01001433to register the memory layout of the type. This can be done via ``PYBIND11_NUMPY_DTYPE``
Ivan Smirnov223afe32016-07-02 15:33:04 +01001434macro which expects the type followed by field names:
1435
1436.. code-block:: cpp
1437
1438 struct A {
1439 int x;
1440 double y;
1441 };
1442
1443 struct B {
1444 int z;
1445 A a;
1446 };
1447
Ivan Smirnov5412a052016-07-02 16:18:42 +01001448 PYBIND11_NUMPY_DTYPE(A, x, y);
1449 PYBIND11_NUMPY_DTYPE(B, z, a);
Ivan Smirnov223afe32016-07-02 15:33:04 +01001450
1451 /* now both A and B can be used as template arguments to py::array_t */
1452
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001453Vectorizing functions
1454=====================
1455
1456Suppose we want to bind a function with the following signature to Python so
1457that it can process arbitrary NumPy array arguments (vectors, matrices, general
1458N-D arrays) in addition to its normal arguments:
1459
1460.. code-block:: cpp
1461
1462 double my_func(int x, float y, double z);
1463
Wenzel Jakob8f4eb002015-10-15 18:13:33 +02001464After including the ``pybind11/numpy.h`` header, this is extremely simple:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001465
1466.. code-block:: cpp
1467
1468 m.def("vectorized_func", py::vectorize(my_func));
1469
1470Invoking the function like below causes 4 calls to be made to ``my_func`` with
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001471each of the array elements. The significant advantage of this compared to
Wenzel Jakob978e3762016-04-07 18:00:41 +02001472solutions like ``numpy.vectorize()`` is that the loop over the elements runs
1473entirely on the C++ side and can be crunched down into a tight, optimized loop
1474by the compiler. The result is returned as a NumPy array of type
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001475``numpy.dtype.float64``.
1476
Wenzel Jakob99279f72016-06-03 11:19:29 +02001477.. code-block:: pycon
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001478
1479 >>> x = np.array([[1, 3],[5, 7]])
1480 >>> y = np.array([[2, 4],[6, 8]])
1481 >>> z = 3
1482 >>> result = vectorized_func(x, y, z)
1483
1484The scalar argument ``z`` is transparently replicated 4 times. The input
1485arrays ``x`` and ``y`` are automatically converted into the right types (they
1486are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and
1487``numpy.dtype.float32``, respectively)
1488
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001489Sometimes we might want to explicitly exclude an argument from the vectorization
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001490because it makes little sense to wrap it in a NumPy array. For instance,
1491suppose the function signature was
1492
1493.. code-block:: cpp
1494
1495 double my_func(int x, float y, my_custom_type *z);
1496
1497This can be done with a stateful Lambda closure:
1498
1499.. code-block:: cpp
1500
1501 // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
1502 m.def("vectorized_func",
Wenzel Jakob93296692015-10-13 23:21:54 +02001503 [](py::array_t<int> x, py::array_t<float> y, my_custom_type *z) {
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001504 auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); };
1505 return py::vectorize(stateful_closure)(x, y);
1506 }
1507 );
1508
Wenzel Jakob61587162016-01-18 22:38:52 +01001509In cases where the computation is too complicated to be reduced to
1510``vectorize``, it will be necessary to create and access the buffer contents
1511manually. The following snippet contains a complete example that shows how this
1512works (the code is somewhat contrived, since it could have been done more
1513simply using ``vectorize``).
1514
1515.. code-block:: cpp
1516
1517 #include <pybind11/pybind11.h>
1518 #include <pybind11/numpy.h>
1519
1520 namespace py = pybind11;
1521
1522 py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
1523 auto buf1 = input1.request(), buf2 = input2.request();
1524
1525 if (buf1.ndim != 1 || buf2.ndim != 1)
1526 throw std::runtime_error("Number of dimensions must be one");
1527
Ivan Smirnovb6518592016-08-13 13:28:56 +01001528 if (buf1.size != buf2.size)
Wenzel Jakob61587162016-01-18 22:38:52 +01001529 throw std::runtime_error("Input shapes must match");
1530
Ivan Smirnovb6518592016-08-13 13:28:56 +01001531 /* No pointer is passed, so NumPy will allocate the buffer */
1532 auto result = py::array_t<double>(buf1.size);
Wenzel Jakob61587162016-01-18 22:38:52 +01001533
1534 auto buf3 = result.request();
1535
1536 double *ptr1 = (double *) buf1.ptr,
1537 *ptr2 = (double *) buf2.ptr,
1538 *ptr3 = (double *) buf3.ptr;
1539
1540 for (size_t idx = 0; idx < buf1.shape[0]; idx++)
1541 ptr3[idx] = ptr1[idx] + ptr2[idx];
1542
1543 return result;
1544 }
1545
1546 PYBIND11_PLUGIN(test) {
1547 py::module m("test");
1548 m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
1549 return m.ptr();
1550 }
1551
Wenzel Jakob93296692015-10-13 23:21:54 +02001552.. seealso::
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001553
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001554 The file :file:`tests/test_numpy_vectorize.cpp` contains a complete
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001555 example that demonstrates using :func:`vectorize` in more detail.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001556
Wenzel Jakob93296692015-10-13 23:21:54 +02001557Functions taking Python objects as arguments
1558============================================
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001559
Wenzel Jakob93296692015-10-13 23:21:54 +02001560pybind11 exposes all major Python types using thin C++ wrapper classes. These
1561wrapper classes can also be used as parameters of functions in bindings, which
1562makes it possible to directly work with native Python types on the C++ side.
1563For instance, the following statement iterates over a Python ``dict``:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001564
Wenzel Jakob93296692015-10-13 23:21:54 +02001565.. code-block:: cpp
1566
1567 void print_dict(py::dict dict) {
1568 /* Easily interact with Python types */
1569 for (auto item : dict)
1570 std::cout << "key=" << item.first << ", "
1571 << "value=" << item.second << std::endl;
1572 }
1573
1574Available types include :class:`handle`, :class:`object`, :class:`bool_`,
Wenzel Jakob27e8e102016-01-17 22:36:37 +01001575:class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`,
Wenzel Jakobf64feaf2016-04-28 14:33:45 +02001576:class:`list`, :class:`dict`, :class:`slice`, :class:`none`, :class:`capsule`,
1577:class:`iterable`, :class:`iterator`, :class:`function`, :class:`buffer`,
1578:class:`array`, and :class:`array_t`.
Wenzel Jakob93296692015-10-13 23:21:54 +02001579
Wenzel Jakob436b7312015-10-20 01:04:30 +02001580In this kind of mixed code, it is often necessary to convert arbitrary C++
1581types to Python, which can be done using :func:`cast`:
1582
1583.. code-block:: cpp
1584
1585 MyClass *cls = ..;
1586 py::object obj = py::cast(cls);
1587
1588The reverse direction uses the following syntax:
1589
1590.. code-block:: cpp
1591
1592 py::object obj = ...;
1593 MyClass *cls = obj.cast<MyClass *>();
1594
1595When conversion fails, both directions throw the exception :class:`cast_error`.
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001596It is also possible to call python functions via ``operator()``.
1597
1598.. code-block:: cpp
1599
1600 py::function f = <...>;
1601 py::object result_py = f(1234, "hello", some_instance);
1602 MyClass &result = result_py.cast<MyClass>();
1603
1604The special ``f(*args)`` and ``f(*args, **kwargs)`` syntax is also supported to
1605supply arbitrary argument and keyword lists, although these cannot be mixed
1606with other parameters.
1607
1608.. code-block:: cpp
1609
1610 py::function f = <...>;
1611 py::tuple args = py::make_tuple(1234);
1612 py::dict kwargs;
1613 kwargs["y"] = py::cast(5678);
1614 py::object result = f(*args, **kwargs);
Wenzel Jakob436b7312015-10-20 01:04:30 +02001615
Wenzel Jakob93296692015-10-13 23:21:54 +02001616.. seealso::
1617
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001618 The file :file:`tests/test_python_types.cpp` contains a complete
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001619 example that demonstrates passing native Python types in more detail. The
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001620 file :file:`tests/test_kwargs_and_defaults.cpp` discusses usage
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001621 of ``args`` and ``kwargs``.
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001622
1623Default arguments revisited
1624===========================
1625
1626The section on :ref:`default_args` previously discussed basic usage of default
1627arguments using pybind11. One noteworthy aspect of their implementation is that
1628default arguments are converted to Python objects right at declaration time.
1629Consider the following example:
1630
1631.. code-block:: cpp
1632
1633 py::class_<MyClass>("MyClass")
1634 .def("myFunction", py::arg("arg") = SomeType(123));
1635
1636In this case, pybind11 must already be set up to deal with values of the type
1637``SomeType`` (via a prior instantiation of ``py::class_<SomeType>``), or an
1638exception will be thrown.
1639
1640Another aspect worth highlighting is that the "preview" of the default argument
1641in the function signature is generated using the object's ``__repr__`` method.
1642If not available, the signature may not be very helpful, e.g.:
1643
Wenzel Jakob99279f72016-06-03 11:19:29 +02001644.. code-block:: pycon
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001645
1646 FUNCTIONS
1647 ...
1648 | myFunction(...)
Wenzel Jakob48548ea2016-01-17 22:36:44 +01001649 | Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001650 ...
1651
1652The first way of addressing this is by defining ``SomeType.__repr__``.
1653Alternatively, it is possible to specify the human-readable preview of the
1654default argument manually using the ``arg_t`` notation:
1655
1656.. code-block:: cpp
1657
1658 py::class_<MyClass>("MyClass")
1659 .def("myFunction", py::arg_t<SomeType>("arg", SomeType(123), "SomeType(123)"));
1660
Wenzel Jakobc769fce2016-03-03 12:03:30 +01001661Sometimes it may be necessary to pass a null pointer value as a default
1662argument. In this case, remember to cast it to the underlying type in question,
1663like so:
1664
1665.. code-block:: cpp
1666
1667 py::class_<MyClass>("MyClass")
1668 .def("myFunction", py::arg("arg") = (SomeType *) nullptr);
1669
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001670Binding functions that accept arbitrary numbers of arguments and keywords arguments
1671===================================================================================
1672
1673Python provides a useful mechanism to define functions that accept arbitrary
1674numbers of arguments and keyword arguments:
1675
1676.. code-block:: cpp
1677
1678 def generic(*args, **kwargs):
1679 # .. do something with args and kwargs
1680
1681Such functions can also be created using pybind11:
1682
1683.. code-block:: cpp
1684
1685 void generic(py::args args, py::kwargs kwargs) {
1686 /// .. do something with args
1687 if (kwargs)
1688 /// .. do something with kwargs
1689 }
1690
1691 /// Binding code
1692 m.def("generic", &generic);
1693
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001694(See ``tests/test_kwargs_and_defaults.cpp``). The class ``py::args``
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001695derives from ``py::list`` and ``py::kwargs`` derives from ``py::dict`` Note
1696that the ``kwargs`` argument is invalid if no keyword arguments were actually
1697provided. Please refer to the other examples for details on how to iterate
1698over these, and on how to cast their entries into C++ objects.
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001699
Wenzel Jakob3764e282016-08-01 23:34:48 +02001700.. warning::
1701
1702 Unlike Python, pybind11 does not allow combining normal parameters with the
1703 ``args`` / ``kwargs`` special parameters.
1704
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001705Partitioning code over multiple extension modules
1706=================================================
1707
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001708It's straightforward to split binding code over multiple extension modules,
1709while referencing types that are declared elsewhere. Everything "just" works
1710without any special precautions. One exception to this rule occurs when
1711extending a type declared in another extension module. Recall the basic example
1712from Section :ref:`inheritance`.
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001713
1714.. code-block:: cpp
1715
1716 py::class_<Pet> pet(m, "Pet");
1717 pet.def(py::init<const std::string &>())
1718 .def_readwrite("name", &Pet::name);
1719
1720 py::class_<Dog>(m, "Dog", pet /* <- specify parent */)
1721 .def(py::init<const std::string &>())
1722 .def("bark", &Dog::bark);
1723
1724Suppose now that ``Pet`` bindings are defined in a module named ``basic``,
1725whereas the ``Dog`` bindings are defined somewhere else. The challenge is of
1726course that the variable ``pet`` is not available anymore though it is needed
1727to indicate the inheritance relationship to the constructor of ``class_<Dog>``.
1728However, it can be acquired as follows:
1729
1730.. code-block:: cpp
1731
1732 py::object pet = (py::object) py::module::import("basic").attr("Pet");
1733
1734 py::class_<Dog>(m, "Dog", pet)
1735 .def(py::init<const std::string &>())
1736 .def("bark", &Dog::bark);
1737
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001738Alternatively, we can rely on the ``base`` tag, which performs an automated
1739lookup of the corresponding Python type. However, this also requires invoking
1740the ``import`` function once to ensure that the pybind11 binding code of the
1741module ``basic`` has been executed.
1742
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001743.. code-block:: cpp
1744
1745 py::module::import("basic");
1746
1747 py::class_<Dog>(m, "Dog", py::base<Pet>())
1748 .def(py::init<const std::string &>())
1749 .def("bark", &Dog::bark);
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001750
Wenzel Jakob978e3762016-04-07 18:00:41 +02001751Naturally, both methods will fail when there are cyclic dependencies.
1752
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001753Note that compiling code which has its default symbol visibility set to
1754*hidden* (e.g. via the command line flag ``-fvisibility=hidden`` on GCC/Clang) can interfere with the
1755ability to access types defined in another extension module. Workarounds
1756include changing the global symbol visibility (not recommended, because it will
1757lead unnecessarily large binaries) or manually exporting types that are
1758accessed by multiple extension modules:
1759
1760.. code-block:: cpp
1761
1762 #ifdef _WIN32
1763 # define EXPORT_TYPE __declspec(dllexport)
1764 #else
1765 # define EXPORT_TYPE __attribute__ ((visibility("default")))
1766 #endif
1767
1768 class EXPORT_TYPE Dog : public Animal {
1769 ...
1770 };
1771
1772
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001773Pickling support
1774================
1775
1776Python's ``pickle`` module provides a powerful facility to serialize and
1777de-serialize a Python object graph into a binary data stream. To pickle and
Wenzel Jakob3d0e6ff2016-04-13 11:48:10 +02001778unpickle C++ classes using pybind11, two additional functions must be provided.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001779Suppose the class in question has the following signature:
1780
1781.. code-block:: cpp
1782
1783 class Pickleable {
1784 public:
1785 Pickleable(const std::string &value) : m_value(value) { }
1786 const std::string &value() const { return m_value; }
1787
1788 void setExtra(int extra) { m_extra = extra; }
1789 int extra() const { return m_extra; }
1790 private:
1791 std::string m_value;
1792 int m_extra = 0;
1793 };
1794
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001795The binding code including the requisite ``__setstate__`` and ``__getstate__`` methods [#f3]_
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001796looks as follows:
1797
1798.. code-block:: cpp
1799
1800 py::class_<Pickleable>(m, "Pickleable")
1801 .def(py::init<std::string>())
1802 .def("value", &Pickleable::value)
1803 .def("extra", &Pickleable::extra)
1804 .def("setExtra", &Pickleable::setExtra)
1805 .def("__getstate__", [](const Pickleable &p) {
1806 /* Return a tuple that fully encodes the state of the object */
1807 return py::make_tuple(p.value(), p.extra());
1808 })
1809 .def("__setstate__", [](Pickleable &p, py::tuple t) {
1810 if (t.size() != 2)
1811 throw std::runtime_error("Invalid state!");
1812
Wenzel Jakobd40885a2016-04-13 13:30:05 +02001813 /* Invoke the in-place constructor. Note that this is needed even
1814 when the object just has a trivial default constructor */
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001815 new (&p) Pickleable(t[0].cast<std::string>());
1816
1817 /* Assign any additional state */
1818 p.setExtra(t[1].cast<int>());
1819 });
1820
1821An instance can now be pickled as follows:
1822
1823.. code-block:: python
1824
1825 try:
1826 import cPickle as pickle # Use cPickle on Python 2.7
1827 except ImportError:
1828 import pickle
1829
1830 p = Pickleable("test_value")
1831 p.setExtra(15)
Wenzel Jakob81e09752016-04-30 23:13:03 +02001832 data = pickle.dumps(p, 2)
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001833
Wenzel Jakob81e09752016-04-30 23:13:03 +02001834Note that only the cPickle module is supported on Python 2.7. The second
1835argument to ``dumps`` is also crucial: it selects the pickle protocol version
18362, since the older version 1 is not supported. Newer versions are also fine—for
1837instance, specify ``-1`` to always use the latest available version. Beware:
1838failure to follow these instructions will cause important pybind11 memory
1839allocation routines to be skipped during unpickling, which will likely lead to
1840memory corruption and/or segmentation faults.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001841
1842.. seealso::
1843
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001844 The file :file:`tests/test_pickling.cpp` contains a complete example
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001845 that demonstrates how to pickle and unpickle types using pybind11 in more
1846 detail.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001847
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001848.. [#f3] http://docs.python.org/3/library/pickle.html#pickling-class-instances
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001849
1850Generating documentation using Sphinx
1851=====================================
1852
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001853Sphinx [#f4]_ has the ability to inspect the signatures and documentation
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001854strings in pybind11-based extension modules to automatically generate beautiful
Wenzel Jakobca8dc082016-06-03 14:24:17 +02001855documentation in a variety formats. The python_example repository [#f5]_ contains a
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001856simple example repository which uses this approach.
1857
1858There are two potential gotchas when using this approach: first, make sure that
1859the resulting strings do not contain any :kbd:`TAB` characters, which break the
1860docstring parsing routines. You may want to use C++11 raw string literals,
1861which are convenient for multi-line comments. Conveniently, any excess
1862indentation will be automatically be removed by Sphinx. However, for this to
1863work, it is important that all lines are indented consistently, i.e.:
1864
1865.. code-block:: cpp
1866
1867 // ok
1868 m.def("foo", &foo, R"mydelimiter(
1869 The foo function
1870
1871 Parameters
1872 ----------
1873 )mydelimiter");
1874
1875 // *not ok*
1876 m.def("foo", &foo, R"mydelimiter(The foo function
1877
1878 Parameters
1879 ----------
1880 )mydelimiter");
1881
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001882.. [#f4] http://www.sphinx-doc.org
Wenzel Jakobca8dc082016-06-03 14:24:17 +02001883.. [#f5] http://github.com/pybind/python_example
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001884
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001885Evaluating Python expressions from strings and files
1886====================================================
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001887
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001888pybind11 provides the :func:`eval` and :func:`eval_file` functions to evaluate
1889Python expressions and statements. The following example illustrates how they
1890can be used.
1891
1892Both functions accept a template parameter that describes how the argument
1893should be interpreted. Possible choices include ``eval_expr`` (isolated
1894expression), ``eval_single_statement`` (a single statement, return value is
1895always ``none``), and ``eval_statements`` (sequence of statements, return value
1896is always ``none``).
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001897
1898.. code-block:: cpp
1899
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001900 // At beginning of file
1901 #include <pybind11/eval.h>
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001902
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001903 ...
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001904
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001905 // Evaluate in scope of main module
1906 py::object scope = py::module::import("__main__").attr("__dict__");
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02001907
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02001908 // Evaluate an isolated expression
1909 int result = py::eval("my_variable + 10", scope).cast<int>();
1910
1911 // Evaluate a sequence of statements
1912 py::eval<py::eval_statements>(
1913 "print('Hello')\n"
1914 "print('world!');",
1915 scope);
1916
1917 // Evaluate the statements in an separate Python file on disk
1918 py::eval_file("script.py", scope);