blob: 1158f053e8fda2ced2f66faa856934541376b69c [file] [log] [blame]
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001.. _advanced:
2
3Advanced topics
4###############
5
Wenzel Jakob93296692015-10-13 23:21:54 +02006For brevity, the rest of this chapter assumes that the following two lines are
7present:
8
9.. code-block:: cpp
10
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020011 #include <pybind11/pybind11.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020012
Wenzel Jakob10e62e12015-10-15 22:46:07 +020013 namespace py = pybind11;
Wenzel Jakob93296692015-10-13 23:21:54 +020014
Wenzel Jakobde3ad072016-02-02 11:38:21 +010015Exporting constants and mutable objects
16=======================================
17
18To expose a C++ constant, use the ``attr`` function to register it in a module
19as shown below. The ``int_`` class is one of many small wrapper objects defined
20in ``pybind11/pytypes.h``. General objects (including integers) can also be
21converted using the function ``cast``.
22
23.. code-block:: cpp
24
25 PYBIND11_PLUGIN(example) {
26 py::module m("example", "pybind11 example plugin");
27 m.attr("MY_CONSTANT") = py::int_(123);
28 m.attr("MY_CONSTANT_2") = py::cast(new MyObject());
29 }
30
Wenzel Jakob28f98aa2015-10-13 02:57:16 +020031Operator overloading
32====================
33
Wenzel Jakob93296692015-10-13 23:21:54 +020034Suppose that we're given the following ``Vector2`` class with a vector addition
35and scalar multiplication operation, all implemented using overloaded operators
36in C++.
37
38.. code-block:: cpp
39
40 class Vector2 {
41 public:
42 Vector2(float x, float y) : x(x), y(y) { }
43
Wenzel Jakob93296692015-10-13 23:21:54 +020044 Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
45 Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
46 Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
47 Vector2& operator*=(float v) { x *= v; y *= v; return *this; }
48
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020049 friend Vector2 operator*(float f, const Vector2 &v) {
50 return Vector2(f * v.x, f * v.y);
51 }
Wenzel Jakob93296692015-10-13 23:21:54 +020052
Wenzel Jakobf64feaf2016-04-28 14:33:45 +020053 std::string toString() const {
54 return "[" + std::to_string(x) + ", " + std::to_string(y) + "]";
55 }
Wenzel Jakob93296692015-10-13 23:21:54 +020056 private:
57 float x, y;
58 };
59
60The following snippet shows how the above operators can be conveniently exposed
61to Python.
62
63.. code-block:: cpp
64
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020065 #include <pybind11/operators.h>
Wenzel Jakob93296692015-10-13 23:21:54 +020066
Wenzel Jakobb1b71402015-10-18 16:48:30 +020067 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +020068 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +020069
70 py::class_<Vector2>(m, "Vector2")
71 .def(py::init<float, float>())
72 .def(py::self + py::self)
73 .def(py::self += py::self)
74 .def(py::self *= float())
75 .def(float() * py::self)
76 .def("__repr__", &Vector2::toString);
77
78 return m.ptr();
79 }
80
81Note that a line like
82
83.. code-block:: cpp
84
85 .def(py::self * float())
86
87is really just short hand notation for
88
89.. code-block:: cpp
90
91 .def("__mul__", [](const Vector2 &a, float b) {
92 return a * b;
Wenzel Jakob382484a2016-09-10 15:28:37 +090093 }, py::is_operator())
Wenzel Jakob93296692015-10-13 23:21:54 +020094
95This can be useful for exposing additional operators that don't exist on the
Wenzel Jakob382484a2016-09-10 15:28:37 +090096C++ side, or to perform other types of customization. The ``py::is_operator``
97flag marker is needed to inform pybind11 that this is an operator, which
98returns ``NotImplemented`` when invoked with incompatible arguments rather than
99throwing a type error.
Wenzel Jakob93296692015-10-13 23:21:54 +0200100
101.. note::
102
103 To use the more convenient ``py::self`` notation, the additional
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200104 header file :file:`pybind11/operators.h` must be included.
Wenzel Jakob93296692015-10-13 23:21:54 +0200105
106.. seealso::
107
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200108 The file :file:`tests/test_operator_overloading.cpp` contains a
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400109 complete example that demonstrates how to work with overloaded operators in
110 more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +0200111
112Callbacks and passing anonymous functions
113=========================================
114
115The C++11 standard brought lambda functions and the generic polymorphic
116function wrapper ``std::function<>`` to the C++ programming language, which
117enable powerful new ways of working with functions. Lambda functions come in
118two flavors: stateless lambda function resemble classic function pointers that
119link to an anonymous piece of code, while stateful lambda functions
120additionally depend on captured variables that are stored in an anonymous
121*lambda closure object*.
122
123Here is a simple example of a C++ function that takes an arbitrary function
124(stateful or stateless) with signature ``int -> int`` as an argument and runs
125it with the value 10.
126
127.. code-block:: cpp
128
129 int func_arg(const std::function<int(int)> &f) {
130 return f(10);
131 }
132
133The example below is more involved: it takes a function of signature ``int -> int``
134and returns another function of the same kind. The return value is a stateful
135lambda function, which stores the value ``f`` in the capture object and adds 1 to
136its return value upon execution.
137
138.. code-block:: cpp
139
140 std::function<int(int)> func_ret(const std::function<int(int)> &f) {
141 return [f](int i) {
142 return f(i) + 1;
143 };
144 }
145
Brad Harmon835fc062016-06-16 13:19:15 -0500146This example demonstrates using python named parameters in C++ callbacks which
147requires using ``py::cpp_function`` as a wrapper. Usage is similar to defining
148methods of classes:
149
150.. code-block:: cpp
151
152 py::cpp_function func_cpp() {
153 return py::cpp_function([](int i) { return i+1; },
154 py::arg("number"));
155 }
156
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200157After including the extra header file :file:`pybind11/functional.h`, it is almost
Brad Harmon835fc062016-06-16 13:19:15 -0500158trivial to generate binding code for all of these functions.
Wenzel Jakob93296692015-10-13 23:21:54 +0200159
160.. code-block:: cpp
161
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200162 #include <pybind11/functional.h>
Wenzel Jakob93296692015-10-13 23:21:54 +0200163
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200164 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200165 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200166
167 m.def("func_arg", &func_arg);
168 m.def("func_ret", &func_ret);
Brad Harmon835fc062016-06-16 13:19:15 -0500169 m.def("func_cpp", &func_cpp);
Wenzel Jakob93296692015-10-13 23:21:54 +0200170
171 return m.ptr();
172 }
173
174The following interactive session shows how to call them from Python.
175
Wenzel Jakob99279f72016-06-03 11:19:29 +0200176.. code-block:: pycon
Wenzel Jakob93296692015-10-13 23:21:54 +0200177
178 $ python
179 >>> import example
180 >>> def square(i):
181 ... return i * i
182 ...
183 >>> example.func_arg(square)
184 100L
185 >>> square_plus_1 = example.func_ret(square)
186 >>> square_plus_1(4)
187 17L
Brad Harmon835fc062016-06-16 13:19:15 -0500188 >>> plus_1 = func_cpp()
189 >>> plus_1(number=43)
190 44L
Wenzel Jakob93296692015-10-13 23:21:54 +0200191
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100192.. warning::
193
194 Keep in mind that passing a function from C++ to Python (or vice versa)
195 will instantiate a piece of wrapper code that translates function
Wenzel Jakob954b7932016-07-10 10:13:18 +0200196 invocations between the two languages. Naturally, this translation
197 increases the computational cost of each function call somewhat. A
198 problematic situation can arise when a function is copied back and forth
199 between Python and C++ many times in a row, in which case the underlying
200 wrappers will accumulate correspondingly. The resulting long sequence of
201 C++ -> Python -> C++ -> ... roundtrips can significantly decrease
202 performance.
203
204 There is one exception: pybind11 detects case where a stateless function
205 (i.e. a function pointer or a lambda function without captured variables)
206 is passed as an argument to another C++ function exposed in Python. In this
207 case, there is no overhead. Pybind11 will extract the underlying C++
208 function pointer from the wrapped function to sidestep a potential C++ ->
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200209 Python -> C++ roundtrip. This is demonstrated in :file:`tests/test_callbacks.cpp`.
Wenzel Jakob954b7932016-07-10 10:13:18 +0200210
211.. note::
212
213 This functionality is very useful when generating bindings for callbacks in
214 C++ libraries (e.g. GUI libraries, asynchronous networking libraries, etc.).
215
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200216 The file :file:`tests/test_callbacks.cpp` contains a complete example
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400217 that demonstrates how to work with callbacks and anonymous functions in
218 more detail.
Wenzel Jakoba4175d62015-11-17 08:30:34 +0100219
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200220Overriding virtual functions in Python
221======================================
222
Wenzel Jakob93296692015-10-13 23:21:54 +0200223Suppose that a C++ class or interface has a virtual function that we'd like to
224to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is
225given as a specific example of how one would do this with traditional C++
226code).
227
228.. code-block:: cpp
229
230 class Animal {
231 public:
232 virtual ~Animal() { }
233 virtual std::string go(int n_times) = 0;
234 };
235
236 class Dog : public Animal {
237 public:
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400238 std::string go(int n_times) override {
Wenzel Jakob93296692015-10-13 23:21:54 +0200239 std::string result;
240 for (int i=0; i<n_times; ++i)
241 result += "woof! ";
242 return result;
243 }
244 };
245
246Let's also suppose that we are given a plain function which calls the
247function ``go()`` on an arbitrary ``Animal`` instance.
248
249.. code-block:: cpp
250
251 std::string call_go(Animal *animal) {
252 return animal->go(3);
253 }
254
255Normally, the binding code for these classes would look as follows:
256
257.. code-block:: cpp
258
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200259 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200260 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200261
262 py::class_<Animal> animal(m, "Animal");
263 animal
264 .def("go", &Animal::go);
265
266 py::class_<Dog>(m, "Dog", animal)
267 .def(py::init<>());
268
269 m.def("call_go", &call_go);
270
271 return m.ptr();
272 }
273
274However, these bindings are impossible to extend: ``Animal`` is not
275constructible, and we clearly require some kind of "trampoline" that
276redirects virtual calls back to Python.
277
278Defining a new type of ``Animal`` from within Python is possible but requires a
279helper class that is defined as follows:
280
281.. code-block:: cpp
282
283 class PyAnimal : public Animal {
284 public:
285 /* Inherit the constructors */
286 using Animal::Animal;
287
288 /* Trampoline (need one for each virtual function) */
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400289 std::string go(int n_times) override {
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200290 PYBIND11_OVERLOAD_PURE(
Wenzel Jakob93296692015-10-13 23:21:54 +0200291 std::string, /* Return type */
292 Animal, /* Parent class */
293 go, /* Name of function */
294 n_times /* Argument(s) */
295 );
296 }
297 };
298
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200299The macro :func:`PYBIND11_OVERLOAD_PURE` should be used for pure virtual
300functions, and :func:`PYBIND11_OVERLOAD` should be used for functions which have
Jason Rhinelander7dfb9322016-09-08 14:49:43 -0400301a default implementation. There are also two alternate macros
302:func:`PYBIND11_OVERLOAD_PURE_NAME` and :func:`PYBIND11_OVERLOAD_NAME` which
303take a string-valued name argument between the *Parent class* and *Name of the
304function* slots. This is useful when the C++ and Python versions of the
305function have different names, e.g. ``operator()`` vs ``__call__``.
Wenzel Jakob1e3be732016-05-24 23:42:05 +0200306
307The binding code also needs a few minor adaptations (highlighted):
Wenzel Jakob93296692015-10-13 23:21:54 +0200308
309.. code-block:: cpp
310 :emphasize-lines: 4,6,7
311
Wenzel Jakobb1b71402015-10-18 16:48:30 +0200312 PYBIND11_PLUGIN(example) {
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200313 py::module m("example", "pybind11 example plugin");
Wenzel Jakob93296692015-10-13 23:21:54 +0200314
Jason Rhinelander5fffe202016-09-06 12:17:06 -0400315 py::class_<Animal, PyAnimal /* <--- trampoline*/> animal(m, "Animal");
Wenzel Jakob93296692015-10-13 23:21:54 +0200316 animal
Wenzel Jakob93296692015-10-13 23:21:54 +0200317 .def(py::init<>())
318 .def("go", &Animal::go);
319
320 py::class_<Dog>(m, "Dog", animal)
321 .def(py::init<>());
322
323 m.def("call_go", &call_go);
324
325 return m.ptr();
326 }
327
Jason Rhinelander6eca0832016-09-08 13:25:45 -0400328Importantly, pybind11 is made aware of the trampoline helper class by
329specifying it as an extra template argument to :class:`class_`. (This can also
330be combined with other template arguments such as a custom holder type; the
331order of template types does not matter). Following this, we are able to
Jason Rhinelander5fffe202016-09-06 12:17:06 -0400332define a constructor as usual.
Wenzel Jakob93296692015-10-13 23:21:54 +0200333
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400334Note, however, that the above is sufficient for allowing python classes to
335extend ``Animal``, but not ``Dog``: see ref:`virtual_and_inheritance` for the
336necessary steps required to providing proper overload support for inherited
337classes.
338
Wenzel Jakob93296692015-10-13 23:21:54 +0200339The Python session below shows how to override ``Animal::go`` and invoke it via
340a virtual method call.
341
Wenzel Jakob99279f72016-06-03 11:19:29 +0200342.. code-block:: pycon
Wenzel Jakob93296692015-10-13 23:21:54 +0200343
344 >>> from example import *
345 >>> d = Dog()
346 >>> call_go(d)
347 u'woof! woof! woof! '
348 >>> class Cat(Animal):
349 ... def go(self, n_times):
350 ... return "meow! " * n_times
351 ...
352 >>> c = Cat()
353 >>> call_go(c)
354 u'meow! meow! meow! '
355
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200356Please take a look at the :ref:`macro_notes` before using this feature.
Wenzel Jakobbd986fe2016-05-21 10:48:30 +0200357
Jason Rhinelander7dfb9322016-09-08 14:49:43 -0400358.. note::
359
360 When the overridden type returns a reference or pointer to a type that
361 pybind11 converts from Python (for example, numeric values, std::string,
362 and other built-in value-converting types), there are some limitations to
363 be aware of:
364
365 - because in these cases there is no C++ variable to reference (the value
366 is stored in the referenced Python variable), pybind11 provides one in
367 the PYBIND11_OVERLOAD macros (when needed) with static storage duration.
368 Note that this means that invoking the overloaded method on *any*
369 instance will change the referenced value stored in *all* instances of
370 that type.
371
372 - Attempts to modify a non-const reference will not have the desired
373 effect: it will change only the static cache variable, but this change
374 will not propagate to underlying Python instance, and the change will be
375 replaced the next time the overload is invoked.
376
Wenzel Jakob93296692015-10-13 23:21:54 +0200377.. seealso::
378
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200379 The file :file:`tests/test_virtual_functions.cpp` contains a complete
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400380 example that demonstrates how to override virtual functions using pybind11
381 in more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +0200382
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400383.. _virtual_and_inheritance:
384
385Combining virtual functions and inheritance
386===========================================
387
388When combining virtual methods with inheritance, you need to be sure to provide
389an override for each method for which you want to allow overrides from derived
390python classes. For example, suppose we extend the above ``Animal``/``Dog``
391example as follows:
392
393.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200394
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400395 class Animal {
396 public:
397 virtual std::string go(int n_times) = 0;
398 virtual std::string name() { return "unknown"; }
399 };
400 class Dog : public class Animal {
401 public:
402 std::string go(int n_times) override {
403 std::string result;
404 for (int i=0; i<n_times; ++i)
405 result += bark() + " ";
406 return result;
407 }
408 virtual std::string bark() { return "woof!"; }
409 };
410
411then the trampoline class for ``Animal`` must, as described in the previous
412section, override ``go()`` and ``name()``, but in order to allow python code to
413inherit properly from ``Dog``, we also need a trampoline class for ``Dog`` that
414overrides both the added ``bark()`` method *and* the ``go()`` and ``name()``
415methods inherited from ``Animal`` (even though ``Dog`` doesn't directly
416override the ``name()`` method):
417
418.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200419
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400420 class PyAnimal : public Animal {
421 public:
422 using Animal::Animal; // Inherit constructors
423 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Animal, go, n_times); }
424 std::string name() override { PYBIND11_OVERLOAD(std::string, Animal, name, ); }
425 };
426 class PyDog : public Dog {
427 public:
428 using Dog::Dog; // Inherit constructors
429 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Dog, go, n_times); }
430 std::string name() override { PYBIND11_OVERLOAD(std::string, Dog, name, ); }
431 std::string bark() override { PYBIND11_OVERLOAD(std::string, Dog, bark, ); }
432 };
433
434A registered class derived from a pybind11-registered class with virtual
435methods requires a similar trampoline class, *even if* it doesn't explicitly
436declare or override any virtual methods itself:
437
438.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200439
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400440 class Husky : public Dog {};
441 class PyHusky : public Husky {
442 using Dog::Dog; // Inherit constructors
443 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Husky, go, n_times); }
444 std::string name() override { PYBIND11_OVERLOAD(std::string, Husky, name, ); }
445 std::string bark() override { PYBIND11_OVERLOAD(std::string, Husky, bark, ); }
446 };
447
448There is, however, a technique that can be used to avoid this duplication
449(which can be especially helpful for a base class with several virtual
450methods). The technique involves using template trampoline classes, as
451follows:
452
453.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200454
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400455 template <class AnimalBase = Animal> class PyAnimal : public AnimalBase {
456 using AnimalBase::AnimalBase; // Inherit constructors
457 std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, AnimalBase, go, n_times); }
458 std::string name() override { PYBIND11_OVERLOAD(std::string, AnimalBase, name, ); }
459 };
460 template <class DogBase = Dog> class PyDog : public PyAnimal<DogBase> {
461 using PyAnimal<DogBase>::PyAnimal; // Inherit constructors
462 // Override PyAnimal's pure virtual go() with a non-pure one:
463 std::string go(int n_times) override { PYBIND11_OVERLOAD(std::string, DogBase, go, n_times); }
464 std::string bark() override { PYBIND11_OVERLOAD(std::string, DogBase, bark, ); }
465 };
466
467This technique has the advantage of requiring just one trampoline method to be
468declared per virtual method and pure virtual method override. It does,
469however, require the compiler to generate at least as many methods (and
470possibly more, if both pure virtual and overridden pure virtual methods are
471exposed, as above).
472
473The classes are then registered with pybind11 using:
474
475.. code-block:: cpp
Dean Moldovanaebca122016-08-16 01:26:02 +0200476
Jason Rhinelander5fffe202016-09-06 12:17:06 -0400477 py::class_<Animal, PyAnimal<>> animal(m, "Animal");
478 py::class_<Dog, PyDog<>> dog(m, "Dog");
479 py::class_<Husky, PyDog<Husky>> husky(m, "Husky");
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400480 // ... add animal, dog, husky definitions
481
482Note that ``Husky`` did not require a dedicated trampoline template class at
483all, since it neither declares any new virtual methods nor provides any pure
484virtual method implementations.
485
486With either the repeated-virtuals or templated trampoline methods in place, you
487can now create a python class that inherits from ``Dog``:
488
489.. code-block:: python
490
491 class ShihTzu(Dog):
492 def bark(self):
493 return "yip!"
494
495.. seealso::
496
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200497 See the file :file:`tests/test_virtual_functions.cpp` for complete examples
Jason Rhinelander0ca96e22016-08-05 17:02:33 -0400498 using both the duplication and templated trampoline approaches.
499
Jason Rhinelanderec62d972016-09-09 02:42:51 -0400500Extended trampoline class functionality
501=======================================
502
503The trampoline classes described in the previous sections are, by default, only
504initialized when needed. More specifically, they are initialized when a python
505class actually inherits from a registered type (instead of merely creating an
506instance of the registered type), or when a registered constructor is only
507valid for the trampoline class but not the registered class. This is primarily
508for performance reasons: when the trampoline class is not needed for anything
509except virtual method dispatching, not initializing the trampoline class
510improves performance by avoiding needing to do a run-time check to see if the
511inheriting python instance has an overloaded method.
512
513Sometimes, however, it is useful to always initialize a trampoline class as an
514intermediate class that does more than just handle virtual method dispatching.
515For example, such a class might perform extra class initialization, extra
516destruction operations, and might define new members and methods to enable a
517more python-like interface to a class.
518
519In order to tell pybind11 that it should *always* initialize the trampoline
520class when creating new instances of a type, the class constructors should be
521declared using ``py::init_alias<Args, ...>()`` instead of the usual
522``py::init<Args, ...>()``. This forces construction via the trampoline class,
523ensuring member initialization and (eventual) destruction.
524
525.. seealso::
526
527 See the file :file:`tests/test_alias_initialization.cpp` for complete examples
528 showing both normal and forced trampoline instantiation.
529
Wenzel Jakob9bb97c12016-06-03 11:19:41 +0200530.. _macro_notes:
531
532General notes regarding convenience macros
533==========================================
534
535pybind11 provides a few convenience macros such as
536:func:`PYBIND11_MAKE_OPAQUE` and :func:`PYBIND11_DECLARE_HOLDER_TYPE`, and
537``PYBIND11_OVERLOAD_*``. Since these are "just" macros that are evaluated
538in the preprocessor (which has no concept of types), they *will* get confused
539by commas in a template argument such as ``PYBIND11_OVERLOAD(MyReturnValue<T1,
540T2>, myFunc)``. In this case, the preprocessor assumes that the comma indicates
541the beginnning of the next parameter. Use a ``typedef`` to bind the template to
542another name and use it in the macro to avoid this problem.
543
544
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100545Global Interpreter Lock (GIL)
546=============================
547
548The classes :class:`gil_scoped_release` and :class:`gil_scoped_acquire` can be
549used to acquire and release the global interpreter lock in the body of a C++
550function call. In this way, long-running C++ code can be parallelized using
551multiple Python threads. Taking the previous section as an example, this could
552be realized as follows (important changes highlighted):
553
554.. code-block:: cpp
555 :emphasize-lines: 8,9,33,34
556
557 class PyAnimal : public Animal {
558 public:
559 /* Inherit the constructors */
560 using Animal::Animal;
561
562 /* Trampoline (need one for each virtual function) */
563 std::string go(int n_times) {
564 /* Acquire GIL before calling Python code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100565 py::gil_scoped_acquire acquire;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100566
567 PYBIND11_OVERLOAD_PURE(
568 std::string, /* Return type */
569 Animal, /* Parent class */
570 go, /* Name of function */
571 n_times /* Argument(s) */
572 );
573 }
574 };
575
576 PYBIND11_PLUGIN(example) {
577 py::module m("example", "pybind11 example plugin");
578
Jason Rhinelander5fffe202016-09-06 12:17:06 -0400579 py::class_<Animal, PyAnimal> animal(m, "Animal");
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100580 animal
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100581 .def(py::init<>())
582 .def("go", &Animal::go);
583
584 py::class_<Dog>(m, "Dog", animal)
585 .def(py::init<>());
586
587 m.def("call_go", [](Animal *animal) -> std::string {
588 /* Release GIL before calling into (potentially long-running) C++ code */
Wenzel Jakoba4caa852015-12-14 12:39:02 +0100589 py::gil_scoped_release release;
Wenzel Jakobecdd8682015-12-07 18:17:58 +0100590 return call_go(animal);
591 });
592
593 return m.ptr();
594 }
595
Wenzel Jakob93296692015-10-13 23:21:54 +0200596Passing STL data structures
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200597===========================
598
Wenzel Jakob8f4eb002015-10-15 18:13:33 +0200599When including the additional header file :file:`pybind11/stl.h`, conversions
Wenzel Jakob978e3762016-04-07 18:00:41 +0200600between ``std::vector<>``, ``std::list<>``, ``std::set<>``, and ``std::map<>``
601and the Python ``list``, ``set`` and ``dict`` data structures are automatically
602enabled. The types ``std::pair<>`` and ``std::tuple<>`` are already supported
603out of the box with just the core :file:`pybind11/pybind11.h` header.
Wenzel Jakob93296692015-10-13 23:21:54 +0200604
Wenzel Jakobfe342412016-09-06 13:02:29 +0900605The major downside of these implicit conversions is that containers must be
606converted (i.e. copied) on every Python->C++ and C++->Python transition, which
607can have implications on the program semantics and performance. Please read the
608next sections for more details and alternative approaches that avoid this.
Sergey Lyskov75204182016-08-29 22:50:38 -0400609
Wenzel Jakob93296692015-10-13 23:21:54 +0200610.. note::
611
Wenzel Jakobfe342412016-09-06 13:02:29 +0900612 Arbitrary nesting of any of these types is possible.
Wenzel Jakob93296692015-10-13 23:21:54 +0200613
614.. seealso::
615
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200616 The file :file:`tests/test_python_types.cpp` contains a complete
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400617 example that demonstrates how to pass STL data types in more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +0200618
Wenzel Jakobfe342412016-09-06 13:02:29 +0900619.. _opaque:
620
621Treating STL data structures as opaque objects
622==============================================
623
624pybind11 heavily relies on a template matching mechanism to convert parameters
625and return values that are constructed from STL data types such as vectors,
626linked lists, hash tables, etc. This even works in a recursive manner, for
627instance to deal with lists of hash maps of pairs of elementary and custom
628types, etc.
629
630However, a fundamental limitation of this approach is that internal conversions
631between Python and C++ types involve a copy operation that prevents
632pass-by-reference semantics. What does this mean?
633
634Suppose we bind the following function
635
636.. code-block:: cpp
637
638 void append_1(std::vector<int> &v) {
639 v.push_back(1);
640 }
641
642and call it from Python, the following happens:
643
644.. code-block:: pycon
645
646 >>> v = [5, 6]
647 >>> append_1(v)
648 >>> print(v)
649 [5, 6]
650
651As you can see, when passing STL data structures by reference, modifications
652are not propagated back the Python side. A similar situation arises when
653exposing STL data structures using the ``def_readwrite`` or ``def_readonly``
654functions:
655
656.. code-block:: cpp
657
658 /* ... definition ... */
659
660 class MyClass {
661 std::vector<int> contents;
662 };
663
664 /* ... binding code ... */
665
666 py::class_<MyClass>(m, "MyClass")
667 .def(py::init<>)
668 .def_readwrite("contents", &MyClass::contents);
669
670In this case, properties can be read and written in their entirety. However, an
671``append`` operaton involving such a list type has no effect:
672
673.. code-block:: pycon
674
675 >>> m = MyClass()
676 >>> m.contents = [5, 6]
677 >>> print(m.contents)
678 [5, 6]
679 >>> m.contents.append(7)
680 >>> print(m.contents)
681 [5, 6]
682
683Finally, the involved copy operations can be costly when dealing with very
684large lists. To deal with all of the above situations, pybind11 provides a
685macro named ``PYBIND11_MAKE_OPAQUE(T)`` that disables the template-based
686conversion machinery of types, thus rendering them *opaque*. The contents of
687opaque objects are never inspected or extracted, hence they *can* be passed by
688reference. For instance, to turn ``std::vector<int>`` into an opaque type, add
689the declaration
690
691.. code-block:: cpp
692
693 PYBIND11_MAKE_OPAQUE(std::vector<int>);
694
695before any binding code (e.g. invocations to ``class_::def()``, etc.). This
696macro must be specified at the top level (and outside of any namespaces), since
697it instantiates a partial template overload. If your binding code consists of
698multiple compilation units, it must be present in every file preceding any
699usage of ``std::vector<int>``. Opaque types must also have a corresponding
700``class_`` declaration to associate them with a name in Python, and to define a
701set of available operations, e.g.:
702
703.. code-block:: cpp
704
705 py::class_<std::vector<int>>(m, "IntVector")
706 .def(py::init<>())
707 .def("clear", &std::vector<int>::clear)
708 .def("pop_back", &std::vector<int>::pop_back)
709 .def("__len__", [](const std::vector<int> &v) { return v.size(); })
710 .def("__iter__", [](std::vector<int> &v) {
711 return py::make_iterator(v.begin(), v.end());
712 }, py::keep_alive<0, 1>()) /* Keep vector alive while iterator is used */
713 // ....
714
715The ability to expose STL containers as native Python objects is a fairly
716common request, hence pybind11 also provides an optional header file named
717:file:`pybind11/stl_bind.h` that does exactly this. The mapped containers try
718to match the behavior of their native Python counterparts as much as possible.
719
720The following example showcases usage of :file:`pybind11/stl_bind.h`:
721
722.. code-block:: cpp
723
724 // Don't forget this
725 #include <pybind11/stl_bind.h>
726
727 PYBIND11_MAKE_OPAQUE(std::vector<int>);
728 PYBIND11_MAKE_OPAQUE(std::map<std::string, double>);
729
730 // ...
731
732 // later in binding code:
733 py::bind_vector<std::vector<int>>(m, "VectorInt");
734 py::bind_map<std::map<std::string, double>>(m, "MapStringDouble");
735
736Please take a look at the :ref:`macro_notes` before using the
737``PYBIND11_MAKE_OPAQUE`` macro.
738
739.. seealso::
740
741 The file :file:`tests/test_opaque_types.cpp` contains a complete
742 example that demonstrates how to create and expose opaque types using
743 pybind11 in more detail.
744
745 The file :file:`tests/test_stl_binders.cpp` shows how to use the
746 convenience STL container wrappers.
747
748
Wenzel Jakobb2825952016-04-13 23:33:00 +0200749Binding sequence data types, iterators, the slicing protocol, etc.
750==================================================================
Wenzel Jakob93296692015-10-13 23:21:54 +0200751
752Please refer to the supplemental example for details.
753
754.. seealso::
755
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200756 The file :file:`tests/test_sequences_and_iterators.cpp` contains a
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400757 complete example that shows how to bind a sequence data type, including
758 length queries (``__len__``), iterators (``__iter__``), the slicing
759 protocol and other kinds of useful operations.
Wenzel Jakob93296692015-10-13 23:21:54 +0200760
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200761Return value policies
762=====================
763
Wenzel Jakob93296692015-10-13 23:21:54 +0200764Python and C++ use wildly different ways of managing the memory and lifetime of
765objects managed by them. This can lead to issues when creating bindings for
766functions that return a non-trivial type. Just by looking at the type
767information, it is not clear whether Python should take charge of the returned
768value and eventually free its resources, or if this is handled on the C++ side.
769For this reason, pybind11 provides a several `return value policy` annotations
770that can be passed to the :func:`module::def` and :func:`class_::def`
Wenzel Jakob61d67f02015-12-14 12:53:06 +0100771functions. The default policy is :enum:`return_value_policy::automatic`.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +0200772
Wenzel Jakobbf099582016-08-22 12:52:02 +0200773Return value policies can also be applied to properties, in which case the
774arguments must be passed through the :class:`cpp_function` constructor:
775
776.. code-block:: cpp
777
778 class_<MyClass>(m, "MyClass")
779 def_property("data"
780 py::cpp_function(&MyClass::getData, py::return_value_policy::copy),
781 py::cpp_function(&MyClass::setData)
782 );
783
784The following table provides an overview of the available return value policies:
785
Wenzel Jakobf64feaf2016-04-28 14:33:45 +0200786.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
787
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200788+--------------------------------------------------+----------------------------------------------------------------------------+
789| Return value policy | Description |
790+==================================================+============================================================================+
791| :enum:`return_value_policy::automatic` | This is the default return value policy, which falls back to the policy |
792| | :enum:`return_value_policy::take_ownership` when the return value is a |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200793| | pointer. Otherwise, it uses :enum:`return_value::move` or |
794| | :enum:`return_value::copy` for rvalue and lvalue references, respectively. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200795| | See below for a description of what all of these different policies do. |
796+--------------------------------------------------+----------------------------------------------------------------------------+
797| :enum:`return_value_policy::automatic_reference` | As above, but use policy :enum:`return_value_policy::reference` when the |
Wenzel Jakob37e1f612016-06-22 14:29:13 +0200798| | return value is a pointer. This is the default conversion policy for |
799| | function arguments when calling Python functions manually from C++ code |
800| | (i.e. via handle::operator()). You probably won't need to use this. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200801+--------------------------------------------------+----------------------------------------------------------------------------+
802| :enum:`return_value_policy::take_ownership` | Reference an existing object (i.e. do not create a new copy) and take |
803| | ownership. Python will call the destructor and delete operator when the |
804| | object's reference count reaches zero. Undefined behavior ensues when the |
Wenzel Jakobf53e3002016-06-30 14:59:23 +0200805| | C++ side does the same. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200806+--------------------------------------------------+----------------------------------------------------------------------------+
807| :enum:`return_value_policy::copy` | Create a new copy of the returned object, which will be owned by Python. |
808| | This policy is comparably safe because the lifetimes of the two instances |
809| | are decoupled. |
810+--------------------------------------------------+----------------------------------------------------------------------------+
811| :enum:`return_value_policy::move` | Use ``std::move`` to move the return value contents into a new instance |
812| | that will be owned by Python. This policy is comparably safe because the |
813| | lifetimes of the two instances (move source and destination) are decoupled.|
814+--------------------------------------------------+----------------------------------------------------------------------------+
815| :enum:`return_value_policy::reference` | Reference an existing object, but do not take ownership. The C++ side is |
816| | responsible for managing the object's lifetime and deallocating it when |
817| | it is no longer used. Warning: undefined behavior will ensue when the C++ |
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200818| | side deletes an object that is still referenced and used by Python. |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200819+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakobbf099582016-08-22 12:52:02 +0200820| :enum:`return_value_policy::reference_internal` | Indicates that the lifetime of the return value is tied to the lifetime |
821| | of a parent object, namely the implicit ``this``, or ``self`` argument of |
822| | the called method or property. Internally, this policy works just like |
823| | :enum:`return_value_policy::reference` but additionally applies a |
824| | ``keep_alive<0, 1>`` *call policy* (described in the next section) that |
825| | prevents the parent object from being garbage collected as long as the |
826| | return value is referenced by Python. This is the default policy for |
827| | property getters created via ``def_property``, ``def_readwrite``, etc.) |
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200828+--------------------------------------------------+----------------------------------------------------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +0200829
Wenzel Jakobfb6aed22016-07-18 20:29:53 +0200830.. warning::
831
Jason Rhinelanderefc2aa72016-08-10 11:38:33 -0400832 Code with invalid return value policies might access unitialized memory or
833 free data structures multiple times, which can lead to hard-to-debug
Wenzel Jakobfb6aed22016-07-18 20:29:53 +0200834 non-determinism and segmentation faults, hence it is worth spending the
835 time to understand all the different options in the table above.
836
Jason Rhinelanderefc2aa72016-08-10 11:38:33 -0400837One important aspect of the above policies is that they only apply to instances
838which pybind11 has *not* seen before, in which case the policy clarifies
839essential questions about the return value's lifetime and ownership. When
840pybind11 knows the instance already (as identified by its type and address in
Wenzel Jakobfb6aed22016-07-18 20:29:53 +0200841memory), it will return the existing Python object wrapper rather than creating
Wenzel Jakobbf099582016-08-22 12:52:02 +0200842a new copy.
nafur717df752016-06-28 18:07:11 +0200843
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200844.. note::
845
846 The next section on :ref:`call_policies` discusses *call policies* that can be
847 specified *in addition* to a return value policy from the list above. Call
848 policies indicate reference relationships that can involve both return values
849 and parameters of functions.
850
851.. note::
852
853 As an alternative to elaborate call policies and lifetime management logic,
854 consider using smart pointers (see the section on :ref:`smart_pointers` for
855 details). Smart pointers can tell whether an object is still referenced from
856 C++ or Python, which generally eliminates the kinds of inconsistencies that
857 can lead to crashes or undefined behavior. For functions returning smart
858 pointers, it is not necessary to specify a return value policy.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100859
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200860.. _call_policies:
861
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100862Additional call policies
863========================
864
865In addition to the above return value policies, further `call policies` can be
866specified to indicate dependencies between parameters. There is currently just
867one policy named ``keep_alive<Nurse, Patient>``, which indicates that the
868argument with index ``Patient`` should be kept alive at least until the
Wenzel Jakob0b632312016-08-18 10:58:21 +0200869argument with index ``Nurse`` is freed by the garbage collector. Argument
870indices start at one, while zero refers to the return value. For methods, index
871``1`` refers to the implicit ``this`` pointer, while regular arguments begin at
872index ``2``. Arbitrarily many call policies can be specified. When a ``Nurse``
873with value ``None`` is detected at runtime, the call policy does nothing.
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100874
Wenzel Jakob0b632312016-08-18 10:58:21 +0200875This feature internally relies on the ability to create a *weak reference* to
876the nurse object, which is permitted by all classes exposed via pybind11. When
877the nurse object does not support weak references, an exception will be thrown.
878
879Consider the following example: here, the binding code for a list append
880operation ties the lifetime of the newly added element to the underlying
881container:
Wenzel Jakob5f218b32016-01-17 22:36:39 +0100882
883.. code-block:: cpp
884
885 py::class_<List>(m, "List")
886 .def("append", &List::append, py::keep_alive<1, 2>());
887
888.. note::
889
890 ``keep_alive`` is analogous to the ``with_custodian_and_ward`` (if Nurse,
891 Patient != 0) and ``with_custodian_and_ward_postcall`` (if Nurse/Patient ==
892 0) policies from Boost.Python.
893
Wenzel Jakob61587162016-01-18 22:38:52 +0100894.. seealso::
895
Dean Moldovanec0d38e2016-08-13 03:09:52 +0200896 The file :file:`tests/test_keep_alive.cpp` contains a complete example
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -0400897 that demonstrates using :class:`keep_alive` in more detail.
Wenzel Jakob61587162016-01-18 22:38:52 +0100898
Wenzel Jakob93296692015-10-13 23:21:54 +0200899Implicit type conversions
900=========================
901
902Suppose that instances of two types ``A`` and ``B`` are used in a project, and
Wenzel Jakob8e93df82016-05-01 02:36:58 +0200903that an ``A`` can easily be converted into an instance of type ``B`` (examples of this
Wenzel Jakob93296692015-10-13 23:21:54 +0200904could be a fixed and an arbitrary precision number type).
905
906.. code-block:: cpp
907
908 py::class_<A>(m, "A")
909 /// ... members ...
910
911 py::class_<B>(m, "B")
912 .def(py::init<A>())
913 /// ... members ...
914
915 m.def("func",
916 [](const B &) { /* .... */ }
917 );
918
919To invoke the function ``func`` using a variable ``a`` containing an ``A``
920instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++
921will automatically apply an implicit type conversion, which makes it possible
922to directly write ``func(a)``.
923
924In this situation (i.e. where ``B`` has a constructor that converts from
925``A``), the following statement enables similar implicit conversions on the
926Python side:
927
928.. code-block:: cpp
929
930 py::implicitly_convertible<A, B>();
931
Wenzel Jakob3eeea6f2016-06-30 18:10:28 +0200932.. note::
933
934 Implicit conversions from ``A`` to ``B`` only work when ``B`` is a custom
935 data type that is exposed to Python via pybind11.
936
Wenzel Jakobf88af0c2016-06-22 13:52:31 +0200937.. _static_properties:
938
939Static properties
940=================
941
942The section on :ref:`properties` discussed the creation of instance properties
943that are implemented in terms of C++ getters and setters.
944
945Static properties can also be created in a similar way to expose getters and
946setters of static class attributes. It is important to note that the implicit
947``self`` argument also exists in this case and is used to pass the Python
948``type`` subclass instance. This parameter will often not be needed by the C++
949side, and the following example illustrates how to instantiate a lambda getter
950function that ignores it:
951
952.. code-block:: cpp
953
954 py::class_<Foo>(m, "Foo")
955 .def_property_readonly_static("foo", [](py::object /* self */) { return Foo(); });
956
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200957Unique pointers
958===============
959
960Given a class ``Example`` with Python bindings, it's possible to return
961instances wrapped in C++11 unique pointers, like so
962
963.. code-block:: cpp
964
965 std::unique_ptr<Example> create_example() { return std::unique_ptr<Example>(new Example()); }
966
967.. code-block:: cpp
968
969 m.def("create_example", &create_example);
970
971In other words, there is nothing special that needs to be done. While returning
972unique pointers in this way is allowed, it is *illegal* to use them as function
973arguments. For instance, the following function signature cannot be processed
974by pybind11.
975
976.. code-block:: cpp
977
978 void do_something_with_example(std::unique_ptr<Example> ex) { ... }
979
980The above signature would imply that Python needs to give up ownership of an
981object that is passed to this function, which is generally not possible (for
982instance, the object might be referenced elsewhere).
983
Wenzel Jakobf7b58742016-04-25 23:04:27 +0200984.. _smart_pointers:
985
Wenzel Jakob93296692015-10-13 23:21:54 +0200986Smart pointers
987==============
988
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200989This section explains how to pass values that are wrapped in "smart" pointer
Wenzel Jakobe84f5572016-04-26 23:19:19 +0200990types with internal reference counting. For the simpler C++11 unique pointers,
991refer to the previous section.
Wenzel Jakob9f0dfce2016-04-06 17:38:18 +0200992
Jason Rhinelander5fffe202016-09-06 12:17:06 -0400993The binding generator for classes, :class:`class_`, can be passed a template
994type that denotes a special *holder* type that is used to manage references to
995the object. If no such holder type template argument is given, the default for
996a type named ``Type`` is ``std::unique_ptr<Type>``, which means that the object
997is deallocated when Python's reference count goes to zero.
Wenzel Jakob93296692015-10-13 23:21:54 +0200998
Wenzel Jakob1853b652015-10-18 15:38:50 +0200999It is possible to switch to other types of reference counting wrappers or smart
1000pointers, which is useful in codebases that rely on them. For instance, the
1001following snippet causes ``std::shared_ptr`` to be used instead.
Wenzel Jakob93296692015-10-13 23:21:54 +02001002
1003.. code-block:: cpp
1004
Wenzel Jakobb2c2c792016-01-17 22:36:40 +01001005 py::class_<Example, std::shared_ptr<Example> /* <- holder type */> obj(m, "Example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +01001006
Wenzel Jakobb2c2c792016-01-17 22:36:40 +01001007Note that any particular class can only be associated with a single holder type.
Wenzel Jakob93296692015-10-13 23:21:54 +02001008
Wenzel Jakob1853b652015-10-18 15:38:50 +02001009To enable transparent conversions for functions that take shared pointers as an
Wenzel Jakob5ef12192015-12-15 17:07:35 +01001010argument or that return them, a macro invocation similar to the following must
Wenzel Jakob1853b652015-10-18 15:38:50 +02001011be declared at the top level before any binding code:
1012
1013.. code-block:: cpp
1014
Wenzel Jakobb1b71402015-10-18 16:48:30 +02001015 PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>);
Wenzel Jakob1853b652015-10-18 15:38:50 +02001016
Wenzel Jakobb2c2c792016-01-17 22:36:40 +01001017.. note::
Wenzel Jakob61d67f02015-12-14 12:53:06 +01001018
1019 The first argument of :func:`PYBIND11_DECLARE_HOLDER_TYPE` should be a
1020 placeholder name that is used as a template parameter of the second
1021 argument. Thus, feel free to use any identifier, but use it consistently on
1022 both sides; also, don't use the name of a type that already exists in your
1023 codebase.
1024
Wenzel Jakobb2c2c792016-01-17 22:36:40 +01001025One potential stumbling block when using holder types is that they need to be
1026applied consistently. Can you guess what's broken about the following binding
1027code?
Wenzel Jakob6e213c92015-11-24 23:05:58 +01001028
Wenzel Jakobb2c2c792016-01-17 22:36:40 +01001029.. code-block:: cpp
Wenzel Jakob6e213c92015-11-24 23:05:58 +01001030
Jason Rhinelander5fffe202016-09-06 12:17:06 -04001031 PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>);
1032
Wenzel Jakobb2c2c792016-01-17 22:36:40 +01001033 class Child { };
Wenzel Jakob5ef12192015-12-15 17:07:35 +01001034
Wenzel Jakobb2c2c792016-01-17 22:36:40 +01001035 class Parent {
1036 public:
1037 Parent() : child(std::make_shared<Child>()) { }
1038 Child *get_child() { return child.get(); } /* Hint: ** DON'T DO THIS ** */
1039 private:
1040 std::shared_ptr<Child> child;
1041 };
Wenzel Jakob5ef12192015-12-15 17:07:35 +01001042
Wenzel Jakobb2c2c792016-01-17 22:36:40 +01001043 PYBIND11_PLUGIN(example) {
1044 py::module m("example");
Wenzel Jakob5ef12192015-12-15 17:07:35 +01001045
Wenzel Jakobb2c2c792016-01-17 22:36:40 +01001046 py::class_<Child, std::shared_ptr<Child>>(m, "Child");
1047
1048 py::class_<Parent, std::shared_ptr<Parent>>(m, "Parent")
1049 .def(py::init<>())
1050 .def("get_child", &Parent::get_child);
1051
1052 return m.ptr();
1053 }
1054
1055The following Python code will cause undefined behavior (and likely a
1056segmentation fault).
1057
1058.. code-block:: python
1059
1060 from example import Parent
1061 print(Parent().get_child())
1062
1063The problem is that ``Parent::get_child()`` returns a pointer to an instance of
1064``Child``, but the fact that this instance is already managed by
1065``std::shared_ptr<...>`` is lost when passing raw pointers. In this case,
1066pybind11 will create a second independent ``std::shared_ptr<...>`` that also
1067claims ownership of the pointer. In the end, the object will be freed **twice**
1068since these shared pointers have no way of knowing about each other.
1069
1070There are two ways to resolve this issue:
1071
10721. For types that are managed by a smart pointer class, never use raw pointers
1073 in function arguments or return values. In other words: always consistently
1074 wrap pointers into their designated holder types (such as
1075 ``std::shared_ptr<...>``). In this case, the signature of ``get_child()``
1076 should be modified as follows:
1077
1078.. code-block:: cpp
1079
1080 std::shared_ptr<Child> get_child() { return child; }
1081
10822. Adjust the definition of ``Child`` by specifying
1083 ``std::enable_shared_from_this<T>`` (see cppreference_ for details) as a
1084 base class. This adds a small bit of information to ``Child`` that allows
1085 pybind11 to realize that there is already an existing
1086 ``std::shared_ptr<...>`` and communicate with it. In this case, the
1087 declaration of ``Child`` should look as follows:
Wenzel Jakob5ef12192015-12-15 17:07:35 +01001088
Wenzel Jakob6e213c92015-11-24 23:05:58 +01001089.. _cppreference: http://en.cppreference.com/w/cpp/memory/enable_shared_from_this
1090
Wenzel Jakobb2c2c792016-01-17 22:36:40 +01001091.. code-block:: cpp
1092
1093 class Child : public std::enable_shared_from_this<Child> { };
1094
Wenzel Jakob9bb97c12016-06-03 11:19:41 +02001095
1096Please take a look at the :ref:`macro_notes` before using this feature.
1097
Wenzel Jakob5ef12192015-12-15 17:07:35 +01001098.. seealso::
1099
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001100 The file :file:`tests/test_smart_ptr.cpp` contains a complete example
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001101 that demonstrates how to work with custom reference-counting holder types
1102 in more detail.
Wenzel Jakob5ef12192015-12-15 17:07:35 +01001103
Wenzel Jakob93296692015-10-13 23:21:54 +02001104.. _custom_constructors:
1105
1106Custom constructors
1107===================
1108
1109The syntax for binding constructors was previously introduced, but it only
1110works when a constructor with the given parameters actually exists on the C++
1111side. To extend this to more general cases, let's take a look at what actually
1112happens under the hood: the following statement
1113
1114.. code-block:: cpp
1115
1116 py::class_<Example>(m, "Example")
1117 .def(py::init<int>());
1118
1119is short hand notation for
1120
1121.. code-block:: cpp
1122
1123 py::class_<Example>(m, "Example")
1124 .def("__init__",
1125 [](Example &instance, int arg) {
1126 new (&instance) Example(arg);
1127 }
1128 );
1129
1130In other words, :func:`init` creates an anonymous function that invokes an
1131in-place constructor. Memory allocation etc. is already take care of beforehand
1132within pybind11.
1133
Nickolai Belakovski63338252016-08-27 11:57:55 -07001134.. _classes_with_non_public_destructors:
1135
1136Classes with non-public destructors
1137===================================
1138
Wenzel Jakob5e4e4772016-08-28 02:03:15 +02001139If a class has a private or protected destructor (as might e.g. be the case in
1140a singleton pattern), a compile error will occur when creating bindings via
1141pybind11. The underlying issue is that the ``std::unique_ptr`` holder type that
1142is responsible for managing the lifetime of instances will reference the
1143destructor even if no deallocations ever take place. In order to expose classes
1144with private or protected destructors, it is possible to override the holder
Jason Rhinelander5fffe202016-09-06 12:17:06 -04001145type via a holder type argument to ``class_``. Pybind11 provides a helper class
Wenzel Jakob5e4e4772016-08-28 02:03:15 +02001146``py::nodelete`` that disables any destructor invocations. In this case, it is
1147crucial that instances are deallocated on the C++ side to avoid memory leaks.
Nickolai Belakovski63338252016-08-27 11:57:55 -07001148
1149.. code-block:: cpp
1150
1151 /* ... definition ... */
1152
1153 class MyClass {
Wenzel Jakob5e4e4772016-08-28 02:03:15 +02001154 private:
1155 ~MyClass() { }
Nickolai Belakovski63338252016-08-27 11:57:55 -07001156 };
1157
1158 /* ... binding code ... */
1159
Wenzel Jakob5e4e4772016-08-28 02:03:15 +02001160 py::class_<MyClass, std::unique_ptr<MyClass, py::nodelete>>(m, "MyClass")
Nickolai Belakovski63338252016-08-27 11:57:55 -07001161 .def(py::init<>)
1162
Pim Schellart5a7d17f2016-06-17 17:35:59 -04001163.. _catching_and_throwing_exceptions:
1164
Wenzel Jakob93296692015-10-13 23:21:54 +02001165Catching and throwing exceptions
1166================================
1167
1168When C++ code invoked from Python throws an ``std::exception``, it is
1169automatically converted into a Python ``Exception``. pybind11 defines multiple
1170special exception classes that will map to different types of Python
1171exceptions:
1172
Wenzel Jakobf64feaf2016-04-28 14:33:45 +02001173.. tabularcolumns:: |p{0.5\textwidth}|p{0.45\textwidth}|
1174
Wenzel Jakob978e3762016-04-07 18:00:41 +02001175+--------------------------------------+------------------------------+
1176| C++ exception type | Python exception type |
1177+======================================+==============================+
1178| :class:`std::exception` | ``RuntimeError`` |
1179+--------------------------------------+------------------------------+
1180| :class:`std::bad_alloc` | ``MemoryError`` |
1181+--------------------------------------+------------------------------+
1182| :class:`std::domain_error` | ``ValueError`` |
1183+--------------------------------------+------------------------------+
1184| :class:`std::invalid_argument` | ``ValueError`` |
1185+--------------------------------------+------------------------------+
1186| :class:`std::length_error` | ``ValueError`` |
1187+--------------------------------------+------------------------------+
1188| :class:`std::out_of_range` | ``ValueError`` |
1189+--------------------------------------+------------------------------+
1190| :class:`std::range_error` | ``ValueError`` |
1191+--------------------------------------+------------------------------+
1192| :class:`pybind11::stop_iteration` | ``StopIteration`` (used to |
1193| | implement custom iterators) |
1194+--------------------------------------+------------------------------+
1195| :class:`pybind11::index_error` | ``IndexError`` (used to |
1196| | indicate out of bounds |
1197| | accesses in ``__getitem__``, |
1198| | ``__setitem__``, etc.) |
1199+--------------------------------------+------------------------------+
Sergey Lyskova95bde12016-05-08 19:31:55 -04001200| :class:`pybind11::value_error` | ``ValueError`` (used to |
1201| | indicate wrong value passed |
1202| | in ``container.remove(...)`` |
1203+--------------------------------------+------------------------------+
Jason Rhinelander5aa85be2016-08-11 21:22:05 -04001204| :class:`pybind11::key_error` | ``KeyError`` (used to |
1205| | indicate out of bounds |
1206| | accesses in ``__getitem__``, |
1207| | ``__setitem__`` in dict-like |
1208| | objects, etc.) |
1209+--------------------------------------+------------------------------+
Wenzel Jakob978e3762016-04-07 18:00:41 +02001210| :class:`pybind11::error_already_set` | Indicates that the Python |
1211| | exception flag has already |
1212| | been initialized |
1213+--------------------------------------+------------------------------+
Wenzel Jakob93296692015-10-13 23:21:54 +02001214
1215When a Python function invoked from C++ throws an exception, it is converted
1216into a C++ exception of type :class:`error_already_set` whose string payload
1217contains a textual summary.
1218
1219There is also a special exception :class:`cast_error` that is thrown by
1220:func:`handle::call` when the input arguments cannot be converted to Python
1221objects.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001222
Pim Schellart5a7d17f2016-06-17 17:35:59 -04001223Registering custom exception translators
1224========================================
1225
1226If the default exception conversion policy described
1227:ref:`above <catching_and_throwing_exceptions>`
1228is insufficient, pybind11 also provides support for registering custom
1229exception translators.
1230
1231The function ``register_exception_translator(translator)`` takes a stateless
1232callable (e.g. a function pointer or a lambda function without captured
1233variables) with the following call signature: ``void(std::exception_ptr)``.
1234
1235When a C++ exception is thrown, registered exception translators are tried
1236in reverse order of registration (i.e. the last registered translator gets
1237a first shot at handling the exception).
1238
1239Inside the translator, ``std::rethrow_exception`` should be used within
1240a try block to re-throw the exception. A catch clause can then use
1241``PyErr_SetString`` to set a Python exception as demonstrated
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001242in :file:`tests/test_exceptions.cpp`.
Pim Schellart5a7d17f2016-06-17 17:35:59 -04001243
1244This example also demonstrates how to create custom exception types
1245with ``py::exception``.
1246
1247The following example demonstrates this for a hypothetical exception class
1248``MyCustomException``:
1249
1250.. code-block:: cpp
1251
1252 py::register_exception_translator([](std::exception_ptr p) {
1253 try {
1254 if (p) std::rethrow_exception(p);
1255 } catch (const MyCustomException &e) {
1256 PyErr_SetString(PyExc_RuntimeError, e.what());
1257 }
1258 });
1259
1260Multiple exceptions can be handled by a single translator. If the exception is
1261not caught by the current translator, the previously registered one gets a
1262chance.
1263
1264If none of the registered exception translators is able to handle the
1265exception, it is handled by the default converter as described in the previous
1266section.
1267
1268.. note::
1269
1270 You must either call ``PyErr_SetString`` for every exception caught in a
1271 custom exception translator. Failure to do so will cause Python to crash
1272 with ``SystemError: error return without exception set``.
1273
1274 Exceptions that you do not plan to handle should simply not be caught.
1275
1276 You may also choose to explicity (re-)throw the exception to delegate it to
1277 the other existing exception translators.
1278
1279 The ``py::exception`` wrapper for creating custom exceptions cannot (yet)
Jason Rhinelander6b52c832016-09-06 12:27:00 -04001280 be used as a base type.
Pim Schellart5a7d17f2016-06-17 17:35:59 -04001281
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001282.. _eigen:
1283
1284Transparent conversion of dense and sparse Eigen data types
1285===========================================================
1286
1287Eigen [#f1]_ is C++ header-based library for dense and sparse linear algebra. Due to
1288its popularity and widespread adoption, pybind11 provides transparent
1289conversion support between Eigen and Scientific Python linear algebra data types.
1290
1291Specifically, when including the optional header file :file:`pybind11/eigen.h`,
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001292pybind11 will automatically and transparently convert
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001293
12941. Static and dynamic Eigen dense vectors and matrices to instances of
1295 ``numpy.ndarray`` (and vice versa).
1296
Jason Rhinelanderb68d8fc2016-08-04 16:39:30 -040012972. Returned matrix expressions such as blocks (including columns or rows) and
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001298 diagonals will be converted to ``numpy.ndarray`` of the expression
1299 values.
1300
Jason Rhinelanderb68d8fc2016-08-04 16:39:30 -040013013. Returned matrix-like objects such as Eigen::DiagonalMatrix or
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001302 Eigen::SelfAdjointView will be converted to ``numpy.ndarray`` containing the
1303 expressed value.
1304
Jason Rhinelanderb68d8fc2016-08-04 16:39:30 -040013054. Eigen sparse vectors and matrices to instances of
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001306 ``scipy.sparse.csr_matrix``/``scipy.sparse.csc_matrix`` (and vice versa).
1307
1308This makes it possible to bind most kinds of functions that rely on these types.
1309One major caveat are functions that take Eigen matrices *by reference* and modify
1310them somehow, in which case the information won't be propagated to the caller.
1311
1312.. code-block:: cpp
1313
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001314 /* The Python bindings of these functions won't replicate
1315 the intended effect of modifying the function arguments */
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001316 void scale_by_2(Eigen::Vector3f &v) {
Jason Rhinelander9ffb3dd2016-08-04 15:24:41 -04001317 v *= 2;
1318 }
1319 void scale_by_2(Eigen::Ref<Eigen::MatrixXd> &v) {
1320 v *= 2;
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001321 }
1322
1323To see why this is, refer to the section on :ref:`opaque` (although that
1324section specifically covers STL data types, the underlying issue is the same).
1325The next two sections discuss an efficient alternative for exposing the
1326underlying native Eigen types as opaque objects in a way that still integrates
1327with NumPy and SciPy.
1328
1329.. [#f1] http://eigen.tuxfamily.org
1330
1331.. seealso::
1332
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001333 The file :file:`tests/test_eigen.cpp` contains a complete example that
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001334 shows how to pass Eigen sparse and dense data types in more detail.
1335
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001336Buffer protocol
1337===============
1338
1339Python supports an extremely general and convenient approach for exchanging
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001340data between plugin libraries. Types can expose a buffer view [#f2]_, which
1341provides fast direct access to the raw internal data representation. Suppose we
1342want to bind the following simplistic Matrix class:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001343
1344.. code-block:: cpp
1345
1346 class Matrix {
1347 public:
1348 Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
1349 m_data = new float[rows*cols];
1350 }
1351 float *data() { return m_data; }
1352 size_t rows() const { return m_rows; }
1353 size_t cols() const { return m_cols; }
1354 private:
1355 size_t m_rows, m_cols;
1356 float *m_data;
1357 };
1358
1359The following binding code exposes the ``Matrix`` contents as a buffer object,
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001360making it possible to cast Matrices into NumPy arrays. It is even possible to
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001361completely avoid copy operations with Python expressions like
1362``np.array(matrix_instance, copy = False)``.
1363
1364.. code-block:: cpp
1365
1366 py::class_<Matrix>(m, "Matrix")
1367 .def_buffer([](Matrix &m) -> py::buffer_info {
1368 return py::buffer_info(
Ivan Smirnov5e71e172016-06-26 12:42:34 +01001369 m.data(), /* Pointer to buffer */
1370 sizeof(float), /* Size of one scalar */
1371 py::format_descriptor<float>::format(), /* Python struct-style format descriptor */
1372 2, /* Number of dimensions */
1373 { m.rows(), m.cols() }, /* Buffer dimensions */
1374 { sizeof(float) * m.rows(), /* Strides (in bytes) for each index */
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001375 sizeof(float) }
1376 );
1377 });
1378
1379The snippet above binds a lambda function, which can create ``py::buffer_info``
1380description records on demand describing a given matrix. The contents of
1381``py::buffer_info`` mirror the Python buffer protocol specification.
1382
1383.. code-block:: cpp
1384
1385 struct buffer_info {
1386 void *ptr;
1387 size_t itemsize;
1388 std::string format;
1389 int ndim;
1390 std::vector<size_t> shape;
1391 std::vector<size_t> strides;
1392 };
1393
1394To create a C++ function that can take a Python buffer object as an argument,
1395simply use the type ``py::buffer`` as one of its arguments. Buffers can exist
1396in a great variety of configurations, hence some safety checks are usually
1397necessary in the function body. Below, you can see an basic example on how to
1398define a custom constructor for the Eigen double precision matrix
1399(``Eigen::MatrixXd``) type, which supports initialization from compatible
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001400buffer objects (e.g. a NumPy matrix).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001401
1402.. code-block:: cpp
1403
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001404 /* Bind MatrixXd (or some other Eigen type) to Python */
1405 typedef Eigen::MatrixXd Matrix;
1406
1407 typedef Matrix::Scalar Scalar;
1408 constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit;
1409
1410 py::class_<Matrix>(m, "Matrix")
1411 .def("__init__", [](Matrix &m, py::buffer b) {
Wenzel Jakobe7628532016-05-05 10:04:44 +02001412 typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides;
Wenzel Jakobe7628532016-05-05 10:04:44 +02001413
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001414 /* Request a buffer descriptor from Python */
1415 py::buffer_info info = b.request();
1416
1417 /* Some sanity checks ... */
Ivan Smirnov5e71e172016-06-26 12:42:34 +01001418 if (info.format != py::format_descriptor<Scalar>::format())
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001419 throw std::runtime_error("Incompatible format: expected a double array!");
1420
1421 if (info.ndim != 2)
1422 throw std::runtime_error("Incompatible buffer dimension!");
1423
Wenzel Jakobe7628532016-05-05 10:04:44 +02001424 auto strides = Strides(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001425 info.strides[rowMajor ? 0 : 1] / sizeof(Scalar),
1426 info.strides[rowMajor ? 1 : 0] / sizeof(Scalar));
Wenzel Jakobe7628532016-05-05 10:04:44 +02001427
1428 auto map = Eigen::Map<Matrix, 0, Strides>(
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001429 static_cat<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides);
Wenzel Jakobe7628532016-05-05 10:04:44 +02001430
1431 new (&m) Matrix(map);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001432 });
1433
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001434For reference, the ``def_buffer()`` call for this Eigen data type should look
1435as follows:
1436
1437.. code-block:: cpp
1438
1439 .def_buffer([](Matrix &m) -> py::buffer_info {
1440 return py::buffer_info(
1441 m.data(), /* Pointer to buffer */
1442 sizeof(Scalar), /* Size of one scalar */
1443 /* Python struct-style format descriptor */
Ivan Smirnov5e71e172016-06-26 12:42:34 +01001444 py::format_descriptor<Scalar>::format(),
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001445 /* Number of dimensions */
1446 2,
1447 /* Buffer dimensions */
1448 { (size_t) m.rows(),
1449 (size_t) m.cols() },
1450 /* Strides (in bytes) for each index */
1451 { sizeof(Scalar) * (rowMajor ? m.cols() : 1),
1452 sizeof(Scalar) * (rowMajor ? 1 : m.rows()) }
1453 );
1454 })
1455
1456For a much easier approach of binding Eigen types (although with some
1457limitations), refer to the section on :ref:`eigen`.
1458
Wenzel Jakob93296692015-10-13 23:21:54 +02001459.. seealso::
1460
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001461 The file :file:`tests/test_buffers.cpp` contains a complete example
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001462 that demonstrates using the buffer protocol with pybind11 in more detail.
Wenzel Jakob93296692015-10-13 23:21:54 +02001463
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001464.. [#f2] http://docs.python.org/3/c-api/buffer.html
Wenzel Jakob978e3762016-04-07 18:00:41 +02001465
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001466NumPy support
1467=============
1468
1469By exchanging ``py::buffer`` with ``py::array`` in the above snippet, we can
1470restrict the function so that it only accepts NumPy arrays (rather than any
Wenzel Jakob978e3762016-04-07 18:00:41 +02001471type of Python object satisfying the buffer protocol).
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001472
1473In many situations, we want to define a function which only accepts a NumPy
Wenzel Jakob93296692015-10-13 23:21:54 +02001474array of a certain data type. This is possible via the ``py::array_t<T>``
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001475template. For instance, the following function requires the argument to be a
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001476NumPy array containing double precision values.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001477
1478.. code-block:: cpp
1479
Wenzel Jakob93296692015-10-13 23:21:54 +02001480 void f(py::array_t<double> array);
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001481
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001482When it is invoked with a different type (e.g. an integer or a list of
1483integers), the binding code will attempt to cast the input into a NumPy array
1484of the requested type. Note that this feature requires the
1485:file:``pybind11/numpy.h`` header to be included.
1486
1487Data in NumPy arrays is not guaranteed to packed in a dense manner;
1488furthermore, entries can be separated by arbitrary column and row strides.
1489Sometimes, it can be useful to require a function to only accept dense arrays
1490using either the C (row-major) or Fortran (column-major) ordering. This can be
1491accomplished via a second template argument with values ``py::array::c_style``
1492or ``py::array::f_style``.
1493
1494.. code-block:: cpp
1495
Wenzel Jakobb47a9de2016-05-19 16:02:09 +02001496 void f(py::array_t<double, py::array::c_style | py::array::forcecast> array);
Wenzel Jakobf1032df2016-05-05 10:00:00 +02001497
Wenzel Jakobb47a9de2016-05-19 16:02:09 +02001498The ``py::array::forcecast`` argument is the default value of the second
1499template paramenter, and it ensures that non-conforming arguments are converted
1500into an array satisfying the specified requirements instead of trying the next
1501function overload.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001502
Ivan Smirnov223afe32016-07-02 15:33:04 +01001503NumPy structured types
1504======================
1505
1506In order for ``py::array_t`` to work with structured (record) types, we first need
Ivan Smirnov5412a052016-07-02 16:18:42 +01001507to register the memory layout of the type. This can be done via ``PYBIND11_NUMPY_DTYPE``
Ivan Smirnov223afe32016-07-02 15:33:04 +01001508macro which expects the type followed by field names:
1509
1510.. code-block:: cpp
1511
1512 struct A {
1513 int x;
1514 double y;
1515 };
1516
1517 struct B {
1518 int z;
1519 A a;
1520 };
1521
Ivan Smirnov5412a052016-07-02 16:18:42 +01001522 PYBIND11_NUMPY_DTYPE(A, x, y);
1523 PYBIND11_NUMPY_DTYPE(B, z, a);
Ivan Smirnov223afe32016-07-02 15:33:04 +01001524
1525 /* now both A and B can be used as template arguments to py::array_t */
1526
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001527Vectorizing functions
1528=====================
1529
1530Suppose we want to bind a function with the following signature to Python so
1531that it can process arbitrary NumPy array arguments (vectors, matrices, general
1532N-D arrays) in addition to its normal arguments:
1533
1534.. code-block:: cpp
1535
1536 double my_func(int x, float y, double z);
1537
Wenzel Jakob8f4eb002015-10-15 18:13:33 +02001538After including the ``pybind11/numpy.h`` header, this is extremely simple:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001539
1540.. code-block:: cpp
1541
1542 m.def("vectorized_func", py::vectorize(my_func));
1543
1544Invoking the function like below causes 4 calls to be made to ``my_func`` with
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001545each of the array elements. The significant advantage of this compared to
Wenzel Jakob978e3762016-04-07 18:00:41 +02001546solutions like ``numpy.vectorize()`` is that the loop over the elements runs
1547entirely on the C++ side and can be crunched down into a tight, optimized loop
1548by the compiler. The result is returned as a NumPy array of type
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001549``numpy.dtype.float64``.
1550
Wenzel Jakob99279f72016-06-03 11:19:29 +02001551.. code-block:: pycon
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001552
1553 >>> x = np.array([[1, 3],[5, 7]])
1554 >>> y = np.array([[2, 4],[6, 8]])
1555 >>> z = 3
1556 >>> result = vectorized_func(x, y, z)
1557
1558The scalar argument ``z`` is transparently replicated 4 times. The input
1559arrays ``x`` and ``y`` are automatically converted into the right types (they
1560are of type ``numpy.dtype.int64`` but need to be ``numpy.dtype.int32`` and
1561``numpy.dtype.float32``, respectively)
1562
Wenzel Jakob8e93df82016-05-01 02:36:58 +02001563Sometimes we might want to explicitly exclude an argument from the vectorization
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001564because it makes little sense to wrap it in a NumPy array. For instance,
1565suppose the function signature was
1566
1567.. code-block:: cpp
1568
1569 double my_func(int x, float y, my_custom_type *z);
1570
1571This can be done with a stateful Lambda closure:
1572
1573.. code-block:: cpp
1574
1575 // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
1576 m.def("vectorized_func",
Wenzel Jakob93296692015-10-13 23:21:54 +02001577 [](py::array_t<int> x, py::array_t<float> y, my_custom_type *z) {
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001578 auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); };
1579 return py::vectorize(stateful_closure)(x, y);
1580 }
1581 );
1582
Wenzel Jakob61587162016-01-18 22:38:52 +01001583In cases where the computation is too complicated to be reduced to
1584``vectorize``, it will be necessary to create and access the buffer contents
1585manually. The following snippet contains a complete example that shows how this
1586works (the code is somewhat contrived, since it could have been done more
1587simply using ``vectorize``).
1588
1589.. code-block:: cpp
1590
1591 #include <pybind11/pybind11.h>
1592 #include <pybind11/numpy.h>
1593
1594 namespace py = pybind11;
1595
1596 py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
1597 auto buf1 = input1.request(), buf2 = input2.request();
1598
1599 if (buf1.ndim != 1 || buf2.ndim != 1)
1600 throw std::runtime_error("Number of dimensions must be one");
1601
Ivan Smirnovb6518592016-08-13 13:28:56 +01001602 if (buf1.size != buf2.size)
Wenzel Jakob61587162016-01-18 22:38:52 +01001603 throw std::runtime_error("Input shapes must match");
1604
Ivan Smirnovb6518592016-08-13 13:28:56 +01001605 /* No pointer is passed, so NumPy will allocate the buffer */
1606 auto result = py::array_t<double>(buf1.size);
Wenzel Jakob61587162016-01-18 22:38:52 +01001607
1608 auto buf3 = result.request();
1609
1610 double *ptr1 = (double *) buf1.ptr,
1611 *ptr2 = (double *) buf2.ptr,
1612 *ptr3 = (double *) buf3.ptr;
1613
1614 for (size_t idx = 0; idx < buf1.shape[0]; idx++)
1615 ptr3[idx] = ptr1[idx] + ptr2[idx];
1616
1617 return result;
1618 }
1619
1620 PYBIND11_PLUGIN(test) {
1621 py::module m("test");
1622 m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
1623 return m.ptr();
1624 }
1625
Wenzel Jakob93296692015-10-13 23:21:54 +02001626.. seealso::
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001627
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001628 The file :file:`tests/test_numpy_vectorize.cpp` contains a complete
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001629 example that demonstrates using :func:`vectorize` in more detail.
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001630
Wenzel Jakob93296692015-10-13 23:21:54 +02001631Functions taking Python objects as arguments
1632============================================
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001633
Wenzel Jakob93296692015-10-13 23:21:54 +02001634pybind11 exposes all major Python types using thin C++ wrapper classes. These
1635wrapper classes can also be used as parameters of functions in bindings, which
1636makes it possible to directly work with native Python types on the C++ side.
1637For instance, the following statement iterates over a Python ``dict``:
Wenzel Jakob28f98aa2015-10-13 02:57:16 +02001638
Wenzel Jakob93296692015-10-13 23:21:54 +02001639.. code-block:: cpp
1640
1641 void print_dict(py::dict dict) {
1642 /* Easily interact with Python types */
1643 for (auto item : dict)
1644 std::cout << "key=" << item.first << ", "
1645 << "value=" << item.second << std::endl;
1646 }
1647
1648Available types include :class:`handle`, :class:`object`, :class:`bool_`,
Wenzel Jakob27e8e102016-01-17 22:36:37 +01001649:class:`int_`, :class:`float_`, :class:`str`, :class:`bytes`, :class:`tuple`,
Wenzel Jakobf64feaf2016-04-28 14:33:45 +02001650:class:`list`, :class:`dict`, :class:`slice`, :class:`none`, :class:`capsule`,
1651:class:`iterable`, :class:`iterator`, :class:`function`, :class:`buffer`,
1652:class:`array`, and :class:`array_t`.
Wenzel Jakob93296692015-10-13 23:21:54 +02001653
Wenzel Jakob436b7312015-10-20 01:04:30 +02001654In this kind of mixed code, it is often necessary to convert arbitrary C++
1655types to Python, which can be done using :func:`cast`:
1656
1657.. code-block:: cpp
1658
1659 MyClass *cls = ..;
1660 py::object obj = py::cast(cls);
1661
1662The reverse direction uses the following syntax:
1663
1664.. code-block:: cpp
1665
1666 py::object obj = ...;
1667 MyClass *cls = obj.cast<MyClass *>();
1668
1669When conversion fails, both directions throw the exception :class:`cast_error`.
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001670It is also possible to call python functions via ``operator()``.
1671
1672.. code-block:: cpp
1673
1674 py::function f = <...>;
1675 py::object result_py = f(1234, "hello", some_instance);
1676 MyClass &result = result_py.cast<MyClass>();
1677
Dean Moldovan625bd482016-09-02 16:40:49 +02001678Keyword arguments are also supported. In Python, there is the usual call syntax:
1679
1680.. code-block:: python
1681
1682 def f(number, say, to):
1683 ... # function code
1684
1685 f(1234, say="hello", to=some_instance) # keyword call in Python
1686
1687In C++, the same call can be made using:
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001688
1689.. code-block:: cpp
1690
Dean Moldovan625bd482016-09-02 16:40:49 +02001691 using pybind11::literals; // to bring in the `_a` literal
1692 f(1234, "say"_a="hello", "to"_a=some_instance); // keyword call in C++
1693
1694Unpacking of ``*args`` and ``**kwargs`` is also possible and can be mixed with
1695other arguments:
1696
1697.. code-block:: cpp
1698
1699 // * unpacking
1700 py::tuple args = py::make_tuple(1234, "hello", some_instance);
1701 f(*args);
1702
1703 // ** unpacking
1704 py::dict kwargs = py::dict("number"_a=1234, "say"_a="hello", "to"_a=some_instance);
1705 f(**kwargs);
1706
1707 // mixed keywords, * and ** unpacking
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001708 py::tuple args = py::make_tuple(1234);
Dean Moldovan625bd482016-09-02 16:40:49 +02001709 py::dict kwargs = py::dict("to"_a=some_instance);
1710 f(*args, "say"_a="hello", **kwargs);
1711
1712Generalized unpacking according to PEP448_ is also supported:
1713
1714.. code-block:: cpp
1715
1716 py::dict kwargs1 = py::dict("number"_a=1234);
1717 py::dict kwargs2 = py::dict("to"_a=some_instance);
1718 f(**kwargs1, "say"_a="hello", **kwargs2);
Wenzel Jakob436b7312015-10-20 01:04:30 +02001719
Wenzel Jakob93296692015-10-13 23:21:54 +02001720.. seealso::
1721
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001722 The file :file:`tests/test_python_types.cpp` contains a complete
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001723 example that demonstrates passing native Python types in more detail. The
Dean Moldovan625bd482016-09-02 16:40:49 +02001724 file :file:`tests/test_callbacks.cpp` presents a few examples of calling
1725 Python functions from C++, including keywords arguments and unpacking.
1726
1727.. _PEP448: https://www.python.org/dev/peps/pep-0448/
1728
1729Using Python's print function in C++
1730====================================
1731
1732The usual way to write output in C++ is using ``std::cout`` while in Python one
1733would use ``print``. Since these methods use different buffers, mixing them can
1734lead to output order issues. To resolve this, pybind11 modules can use the
1735:func:`py::print` function which writes to Python's ``sys.stdout`` for consistency.
1736
1737Python's ``print`` function is replicated in the C++ API including optional
1738keyword arguments ``sep``, ``end``, ``file``, ``flush``. Everything works as
1739expected in Python:
1740
1741.. code-block:: cpp
1742
1743 py::print(1, 2.0, "three"); // 1 2.0 three
1744 py::print(1, 2.0, "three", "sep"_a="-"); // 1-2.0-three
1745
1746 auto args = py::make_tuple("unpacked", true);
1747 py::print("->", *args, "end"_a="<-"); // -> unpacked True <-
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001748
1749Default arguments revisited
1750===========================
1751
1752The section on :ref:`default_args` previously discussed basic usage of default
1753arguments using pybind11. One noteworthy aspect of their implementation is that
1754default arguments are converted to Python objects right at declaration time.
1755Consider the following example:
1756
1757.. code-block:: cpp
1758
1759 py::class_<MyClass>("MyClass")
1760 .def("myFunction", py::arg("arg") = SomeType(123));
1761
1762In this case, pybind11 must already be set up to deal with values of the type
1763``SomeType`` (via a prior instantiation of ``py::class_<SomeType>``), or an
1764exception will be thrown.
1765
1766Another aspect worth highlighting is that the "preview" of the default argument
1767in the function signature is generated using the object's ``__repr__`` method.
1768If not available, the signature may not be very helpful, e.g.:
1769
Wenzel Jakob99279f72016-06-03 11:19:29 +02001770.. code-block:: pycon
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001771
1772 FUNCTIONS
1773 ...
1774 | myFunction(...)
Wenzel Jakob48548ea2016-01-17 22:36:44 +01001775 | Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType
Wenzel Jakob2ac50442016-01-17 22:36:35 +01001776 ...
1777
1778The first way of addressing this is by defining ``SomeType.__repr__``.
1779Alternatively, it is possible to specify the human-readable preview of the
1780default argument manually using the ``arg_t`` notation:
1781
1782.. code-block:: cpp
1783
1784 py::class_<MyClass>("MyClass")
1785 .def("myFunction", py::arg_t<SomeType>("arg", SomeType(123), "SomeType(123)"));
1786
Wenzel Jakobc769fce2016-03-03 12:03:30 +01001787Sometimes it may be necessary to pass a null pointer value as a default
1788argument. In this case, remember to cast it to the underlying type in question,
1789like so:
1790
1791.. code-block:: cpp
1792
1793 py::class_<MyClass>("MyClass")
1794 .def("myFunction", py::arg("arg") = (SomeType *) nullptr);
1795
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001796Binding functions that accept arbitrary numbers of arguments and keywords arguments
1797===================================================================================
1798
1799Python provides a useful mechanism to define functions that accept arbitrary
1800numbers of arguments and keyword arguments:
1801
1802.. code-block:: cpp
1803
1804 def generic(*args, **kwargs):
1805 # .. do something with args and kwargs
1806
1807Such functions can also be created using pybind11:
1808
1809.. code-block:: cpp
1810
1811 void generic(py::args args, py::kwargs kwargs) {
1812 /// .. do something with args
1813 if (kwargs)
1814 /// .. do something with kwargs
1815 }
1816
1817 /// Binding code
1818 m.def("generic", &generic);
1819
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001820(See ``tests/test_kwargs_and_defaults.cpp``). The class ``py::args``
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001821derives from ``py::list`` and ``py::kwargs`` derives from ``py::dict`` Note
1822that the ``kwargs`` argument is invalid if no keyword arguments were actually
1823provided. Please refer to the other examples for details on how to iterate
1824over these, and on how to cast their entries into C++ objects.
Wenzel Jakob178c8a82016-05-10 15:59:01 +01001825
Wenzel Jakob3764e282016-08-01 23:34:48 +02001826.. warning::
1827
1828 Unlike Python, pybind11 does not allow combining normal parameters with the
1829 ``args`` / ``kwargs`` special parameters.
1830
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001831Partitioning code over multiple extension modules
1832=================================================
1833
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001834It's straightforward to split binding code over multiple extension modules,
1835while referencing types that are declared elsewhere. Everything "just" works
1836without any special precautions. One exception to this rule occurs when
1837extending a type declared in another extension module. Recall the basic example
1838from Section :ref:`inheritance`.
Wenzel Jakob2dfbade2016-01-17 22:36:37 +01001839
1840.. code-block:: cpp
1841
1842 py::class_<Pet> pet(m, "Pet");
1843 pet.def(py::init<const std::string &>())
1844 .def_readwrite("name", &Pet::name);
1845
1846 py::class_<Dog>(m, "Dog", pet /* <- specify parent */)
1847 .def(py::init<const std::string &>())
1848 .def("bark", &Dog::bark);
1849
1850Suppose now that ``Pet`` bindings are defined in a module named ``basic``,
1851whereas the ``Dog`` bindings are defined somewhere else. The challenge is of
1852course that the variable ``pet`` is not available anymore though it is needed
1853to indicate the inheritance relationship to the constructor of ``class_<Dog>``.
1854However, it can be acquired as follows:
1855
1856.. code-block:: cpp
1857
1858 py::object pet = (py::object) py::module::import("basic").attr("Pet");
1859
1860 py::class_<Dog>(m, "Dog", pet)
1861 .def(py::init<const std::string &>())
1862 .def("bark", &Dog::bark);
1863
Jason Rhinelander6b52c832016-09-06 12:27:00 -04001864Alternatively, you can specify the base class as a template parameter option to
1865``class_``, which performs an automated lookup of the corresponding Python
1866type. Like the above code, however, this also requires invoking the ``import``
1867function once to ensure that the pybind11 binding code of the module ``basic``
1868has been executed:
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001869
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001870.. code-block:: cpp
1871
1872 py::module::import("basic");
1873
Jason Rhinelander6b52c832016-09-06 12:27:00 -04001874 py::class_<Dog, Pet>(m, "Dog")
Wenzel Jakob8d862b32016-03-06 13:37:22 +01001875 .def(py::init<const std::string &>())
1876 .def("bark", &Dog::bark);
Wenzel Jakobeda978e2016-03-15 15:05:40 +01001877
Wenzel Jakob978e3762016-04-07 18:00:41 +02001878Naturally, both methods will fail when there are cyclic dependencies.
1879
Wenzel Jakob90d2f5e2016-04-11 14:30:11 +02001880Note that compiling code which has its default symbol visibility set to
1881*hidden* (e.g. via the command line flag ``-fvisibility=hidden`` on GCC/Clang) can interfere with the
1882ability to access types defined in another extension module. Workarounds
1883include changing the global symbol visibility (not recommended, because it will
1884lead unnecessarily large binaries) or manually exporting types that are
1885accessed by multiple extension modules:
1886
1887.. code-block:: cpp
1888
1889 #ifdef _WIN32
1890 # define EXPORT_TYPE __declspec(dllexport)
1891 #else
1892 # define EXPORT_TYPE __attribute__ ((visibility("default")))
1893 #endif
1894
1895 class EXPORT_TYPE Dog : public Animal {
1896 ...
1897 };
1898
1899
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001900Pickling support
1901================
1902
1903Python's ``pickle`` module provides a powerful facility to serialize and
1904de-serialize a Python object graph into a binary data stream. To pickle and
Wenzel Jakob3d0e6ff2016-04-13 11:48:10 +02001905unpickle C++ classes using pybind11, two additional functions must be provided.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001906Suppose the class in question has the following signature:
1907
1908.. code-block:: cpp
1909
1910 class Pickleable {
1911 public:
1912 Pickleable(const std::string &value) : m_value(value) { }
1913 const std::string &value() const { return m_value; }
1914
1915 void setExtra(int extra) { m_extra = extra; }
1916 int extra() const { return m_extra; }
1917 private:
1918 std::string m_value;
1919 int m_extra = 0;
1920 };
1921
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001922The binding code including the requisite ``__setstate__`` and ``__getstate__`` methods [#f3]_
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001923looks as follows:
1924
1925.. code-block:: cpp
1926
1927 py::class_<Pickleable>(m, "Pickleable")
1928 .def(py::init<std::string>())
1929 .def("value", &Pickleable::value)
1930 .def("extra", &Pickleable::extra)
1931 .def("setExtra", &Pickleable::setExtra)
1932 .def("__getstate__", [](const Pickleable &p) {
1933 /* Return a tuple that fully encodes the state of the object */
1934 return py::make_tuple(p.value(), p.extra());
1935 })
1936 .def("__setstate__", [](Pickleable &p, py::tuple t) {
1937 if (t.size() != 2)
1938 throw std::runtime_error("Invalid state!");
1939
Wenzel Jakobd40885a2016-04-13 13:30:05 +02001940 /* Invoke the in-place constructor. Note that this is needed even
1941 when the object just has a trivial default constructor */
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001942 new (&p) Pickleable(t[0].cast<std::string>());
1943
1944 /* Assign any additional state */
1945 p.setExtra(t[1].cast<int>());
1946 });
1947
1948An instance can now be pickled as follows:
1949
1950.. code-block:: python
1951
1952 try:
1953 import cPickle as pickle # Use cPickle on Python 2.7
1954 except ImportError:
1955 import pickle
1956
1957 p = Pickleable("test_value")
1958 p.setExtra(15)
Wenzel Jakob81e09752016-04-30 23:13:03 +02001959 data = pickle.dumps(p, 2)
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001960
Wenzel Jakob81e09752016-04-30 23:13:03 +02001961Note that only the cPickle module is supported on Python 2.7. The second
1962argument to ``dumps`` is also crucial: it selects the pickle protocol version
19632, since the older version 1 is not supported. Newer versions are also fine—for
1964instance, specify ``-1`` to always use the latest available version. Beware:
1965failure to follow these instructions will cause important pybind11 memory
1966allocation routines to be skipped during unpickling, which will likely lead to
1967memory corruption and/or segmentation faults.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001968
1969.. seealso::
1970
Dean Moldovanec0d38e2016-08-13 03:09:52 +02001971 The file :file:`tests/test_pickling.cpp` contains a complete example
Jason Rhinelander3e2e44f2016-07-18 17:03:37 -04001972 that demonstrates how to pickle and unpickle types using pybind11 in more
1973 detail.
Wenzel Jakob1c329aa2016-04-13 02:37:36 +02001974
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001975.. [#f3] http://docs.python.org/3/library/pickle.html#pickling-class-instances
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001976
1977Generating documentation using Sphinx
1978=====================================
1979
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02001980Sphinx [#f4]_ has the ability to inspect the signatures and documentation
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001981strings in pybind11-based extension modules to automatically generate beautiful
Wenzel Jakobca8dc082016-06-03 14:24:17 +02001982documentation in a variety formats. The python_example repository [#f5]_ contains a
Wenzel Jakobef7a9b92016-04-13 18:41:59 +02001983simple example repository which uses this approach.
1984
1985There are two potential gotchas when using this approach: first, make sure that
1986the resulting strings do not contain any :kbd:`TAB` characters, which break the
1987docstring parsing routines. You may want to use C++11 raw string literals,
1988which are convenient for multi-line comments. Conveniently, any excess
1989indentation will be automatically be removed by Sphinx. However, for this to
1990work, it is important that all lines are indented consistently, i.e.:
1991
1992.. code-block:: cpp
1993
1994 // ok
1995 m.def("foo", &foo, R"mydelimiter(
1996 The foo function
1997
1998 Parameters
1999 ----------
2000 )mydelimiter");
2001
2002 // *not ok*
2003 m.def("foo", &foo, R"mydelimiter(The foo function
2004
2005 Parameters
2006 ----------
2007 )mydelimiter");
2008
Wenzel Jakob9e0a0562016-05-05 20:33:54 +02002009.. [#f4] http://www.sphinx-doc.org
Wenzel Jakobca8dc082016-06-03 14:24:17 +02002010.. [#f5] http://github.com/pybind/python_example
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02002011
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02002012Evaluating Python expressions from strings and files
2013====================================================
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02002014
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02002015pybind11 provides the :func:`eval` and :func:`eval_file` functions to evaluate
2016Python expressions and statements. The following example illustrates how they
2017can be used.
2018
2019Both functions accept a template parameter that describes how the argument
2020should be interpreted. Possible choices include ``eval_expr`` (isolated
2021expression), ``eval_single_statement`` (a single statement, return value is
2022always ``none``), and ``eval_statements`` (sequence of statements, return value
2023is always ``none``).
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02002024
2025.. code-block:: cpp
2026
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02002027 // At beginning of file
2028 #include <pybind11/eval.h>
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02002029
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02002030 ...
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02002031
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02002032 // Evaluate in scope of main module
2033 py::object scope = py::module::import("__main__").attr("__dict__");
Klemens Morgensternc6ad2c42016-06-09 16:10:26 +02002034
Wenzel Jakob0d3fc352016-07-08 10:52:10 +02002035 // Evaluate an isolated expression
2036 int result = py::eval("my_variable + 10", scope).cast<int>();
2037
2038 // Evaluate a sequence of statements
2039 py::eval<py::eval_statements>(
2040 "print('Hello')\n"
2041 "print('world!');",
2042 scope);
2043
2044 // Evaluate the statements in an separate Python file on disk
2045 py::eval_file("script.py", scope);
Wenzel Jakob48ce0722016-09-06 14:13:22 +09002046
2047Development of custom type casters
2048==================================
2049
2050In very rare cases, applications may require custom type casters that cannot be
2051expressed using the abstractions provided by pybind11, thus requiring raw
2052Python C API calls. This is fairly advanced usage and should only be pursued by
2053experts who are familiar with the intricacies of Python reference counting.
2054
2055The following snippets demonstrate how this works for a very simple ``inty``
2056type that that should be convertible from Python types that provide a
2057``__int__(self)`` method.
2058
2059.. code-block:: cpp
2060
2061 struct inty { long long_value; };
2062
2063 void print(inty s) {
2064 std::cout << s.long_value << std::endl;
2065 }
2066
2067The following Python snippet demonstrates the intended usage from the Python side:
2068
2069.. code-block:: python
2070
2071 class A:
2072 def __int__(self):
2073 return 123
2074
2075 from example import print
2076 print(A())
2077
2078To register the necessary conversion routines, it is necessary to add
2079a partial overload to the ``pybind11::detail::type_caster<T>`` template.
2080Although this is an implementation detail, adding partial overloads to this
2081type is explicitly allowed.
2082
2083.. code-block:: cpp
2084
2085 namespace pybind11 {
2086 namespace detail {
2087 template <> struct type_caster<inty> {
2088 public:
2089 /**
2090 * This macro establishes the name 'inty' in
2091 * function signatures and declares a local variable
2092 * 'value' of type inty
2093 */
2094 PYBIND11_TYPE_CASTER(inty, _("inty"));
2095
2096 /**
2097 * Conversion part 1 (Python->C++): convert a PyObject into a inty
2098 * instance or return false upon failure. The second argument
2099 * indicates whether implicit conversions should be applied.
2100 */
2101 bool load(handle src, bool) {
2102 /* Extract PyObject from handle */
2103 PyObject *source = src.ptr();
2104 /* Try converting into a Python integer value */
2105 PyObject *tmp = PyNumber_Long(source);
2106 if (!tmp)
2107 return false;
2108 /* Now try to convert into a C++ int */
2109 value.long_value = PyLong_AsLong(tmp);
2110 Py_DECREF(tmp);
2111 /* Ensure return code was OK (to avoid out-of-range errors etc) */
2112 return !(value.long_value == -1 && !PyErr_Occurred());
2113 }
2114
2115 /**
2116 * Conversion part 2 (C++ -> Python): convert an inty instance into
2117 * a Python object. The second and third arguments are used to
2118 * indicate the return value policy and parent object (for
2119 * ``return_value_policy::reference_internal``) and are generally
2120 * ignored by implicit casters.
2121 */
2122 static handle cast(inty src, return_value_policy /* policy */, handle /* parent */) {
2123 return PyLong_FromLong(src.long_value);
2124 }
2125 };
2126 }
2127 };