blob: 649c6e0d57520abb0cfc52e2e719908416befb9d [file] [log] [blame]
Nick Lewycky97756402014-09-01 05:17:15 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
Misha Brukman01808ca2005-04-21 21:13:18 +00002//
Chris Lattnerd934c702004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman01808ca2005-04-21 21:13:18 +00007//
Chris Lattnerd934c702004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanef2ae2c2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattnerd934c702004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman01808ca2005-04-21 21:13:18 +000030//
Chris Lattnerd934c702004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattnerd934c702004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chandler Carruthed0881b2012-12-03 16:50:05 +000061#include "llvm/Analysis/ScalarEvolution.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000062#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000063#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
Chandler Carruth66b31302015-01-04 12:03:27 +000066#include "llvm/Analysis/AssumptionCache.h"
John Criswellfe5f33b2005-10-27 15:54:34 +000067#include "llvm/Analysis/ConstantFolding.h"
Duncan Sandsd06f50e2010-11-17 04:18:45 +000068#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnerd934c702004-04-02 20:23:17 +000069#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000070#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chandler Carruth62d42152015-01-15 02:16:27 +000071#include "llvm/Analysis/TargetLibraryInfo.h"
Dan Gohman1ee696d2009-06-16 19:52:01 +000072#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000073#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000074#include "llvm/IR/Constants.h"
75#include "llvm/IR/DataLayout.h"
76#include "llvm/IR/DerivedTypes.h"
Chandler Carruth5ad5f152014-01-13 09:26:24 +000077#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000078#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000079#include "llvm/IR/GlobalAlias.h"
80#include "llvm/IR/GlobalVariable.h"
Chandler Carruth83948572014-03-04 10:30:26 +000081#include "llvm/IR/InstIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000082#include "llvm/IR/Instructions.h"
83#include "llvm/IR/LLVMContext.h"
Sanjoy Das1f05c512014-10-10 21:22:34 +000084#include "llvm/IR/Metadata.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000085#include "llvm/IR/Operator.h"
Chris Lattner996795b2006-06-28 23:17:24 +000086#include "llvm/Support/CommandLine.h"
David Greene2330f782009-12-23 22:58:38 +000087#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000088#include "llvm/Support/ErrorHandling.h"
Chris Lattner0a1e9932006-12-19 01:16:02 +000089#include "llvm/Support/MathExtras.h"
Dan Gohmane20f8242009-04-21 00:47:46 +000090#include "llvm/Support/raw_ostream.h"
Alkis Evlogimenosa5c04ee2004-09-03 18:19:51 +000091#include <algorithm>
Chris Lattnerd934c702004-04-02 20:23:17 +000092using namespace llvm;
93
Chandler Carruthf1221bd2014-04-22 02:48:03 +000094#define DEBUG_TYPE "scalar-evolution"
95
Chris Lattner57ef9422006-12-19 22:30:33 +000096STATISTIC(NumArrayLenItCounts,
97 "Number of trip counts computed with array length");
98STATISTIC(NumTripCountsComputed,
99 "Number of loops with predictable loop counts");
100STATISTIC(NumTripCountsNotComputed,
101 "Number of loops without predictable loop counts");
102STATISTIC(NumBruteForceTripCountsComputed,
103 "Number of loops with trip counts computed by force");
104
Dan Gohmand78c4002008-05-13 00:00:25 +0000105static cl::opt<unsigned>
Chris Lattner57ef9422006-12-19 22:30:33 +0000106MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
107 cl::desc("Maximum number of iterations SCEV will "
Dan Gohmance973df2009-06-24 04:48:43 +0000108 "symbolically execute a constant "
109 "derived loop"),
Chris Lattner57ef9422006-12-19 22:30:33 +0000110 cl::init(100));
111
Benjamin Kramer214935e2012-10-26 17:31:32 +0000112// FIXME: Enable this with XDEBUG when the test suite is clean.
113static cl::opt<bool>
114VerifySCEV("verify-scev",
115 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
116
Owen Anderson8ac477f2010-10-12 19:48:12 +0000117INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
118 "Scalar Evolution Analysis", false, true)
Chandler Carruth66b31302015-01-04 12:03:27 +0000119INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
Chandler Carruth4f8f3072015-01-17 14:16:18 +0000120INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
Chandler Carruth73523022014-01-13 13:07:17 +0000121INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Chandler Carruthb98f63d2015-01-15 10:41:28 +0000122INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
Owen Anderson8ac477f2010-10-12 19:48:12 +0000123INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersondf7a4f22010-10-07 22:25:06 +0000124 "Scalar Evolution Analysis", false, true)
Devang Patel8c78a0b2007-05-03 01:11:54 +0000125char ScalarEvolution::ID = 0;
Chris Lattnerd934c702004-04-02 20:23:17 +0000126
127//===----------------------------------------------------------------------===//
128// SCEV class definitions
129//===----------------------------------------------------------------------===//
130
131//===----------------------------------------------------------------------===//
132// Implementation of the SCEV class.
133//
Dan Gohman3423e722009-06-30 20:13:32 +0000134
Manman Ren49d684e2012-09-12 05:06:18 +0000135#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chris Lattnerd934c702004-04-02 20:23:17 +0000136void SCEV::dump() const {
David Greenedf1c4972009-12-23 22:18:14 +0000137 print(dbgs());
138 dbgs() << '\n';
Dan Gohmane20f8242009-04-21 00:47:46 +0000139}
Manman Renc3366cc2012-09-06 19:55:56 +0000140#endif
Dan Gohmane20f8242009-04-21 00:47:46 +0000141
Dan Gohman534749b2010-11-17 22:27:42 +0000142void SCEV::print(raw_ostream &OS) const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000143 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000144 case scConstant:
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000145 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000146 return;
147 case scTruncate: {
148 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
149 const SCEV *Op = Trunc->getOperand();
150 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
151 << *Trunc->getType() << ")";
152 return;
153 }
154 case scZeroExtend: {
155 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
156 const SCEV *Op = ZExt->getOperand();
157 OS << "(zext " << *Op->getType() << " " << *Op << " to "
158 << *ZExt->getType() << ")";
159 return;
160 }
161 case scSignExtend: {
162 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
163 const SCEV *Op = SExt->getOperand();
164 OS << "(sext " << *Op->getType() << " " << *Op << " to "
165 << *SExt->getType() << ")";
166 return;
167 }
168 case scAddRecExpr: {
169 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
170 OS << "{" << *AR->getOperand(0);
171 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
172 OS << ",+," << *AR->getOperand(i);
173 OS << "}<";
Andrew Trick8b55b732011-03-14 16:50:06 +0000174 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000175 OS << "nuw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000176 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000177 OS << "nsw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000178 if (AR->getNoWrapFlags(FlagNW) &&
179 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
180 OS << "nw><";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000181 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohman534749b2010-11-17 22:27:42 +0000182 OS << ">";
183 return;
184 }
185 case scAddExpr:
186 case scMulExpr:
187 case scUMaxExpr:
188 case scSMaxExpr: {
189 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Craig Topper9f008862014-04-15 04:59:12 +0000190 const char *OpStr = nullptr;
Dan Gohman534749b2010-11-17 22:27:42 +0000191 switch (NAry->getSCEVType()) {
192 case scAddExpr: OpStr = " + "; break;
193 case scMulExpr: OpStr = " * "; break;
194 case scUMaxExpr: OpStr = " umax "; break;
195 case scSMaxExpr: OpStr = " smax "; break;
196 }
197 OS << "(";
198 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
199 I != E; ++I) {
200 OS << **I;
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000201 if (std::next(I) != E)
Dan Gohman534749b2010-11-17 22:27:42 +0000202 OS << OpStr;
203 }
204 OS << ")";
Andrew Trickd912a5b2011-11-29 02:06:35 +0000205 switch (NAry->getSCEVType()) {
206 case scAddExpr:
207 case scMulExpr:
208 if (NAry->getNoWrapFlags(FlagNUW))
209 OS << "<nuw>";
210 if (NAry->getNoWrapFlags(FlagNSW))
211 OS << "<nsw>";
212 }
Dan Gohman534749b2010-11-17 22:27:42 +0000213 return;
214 }
215 case scUDivExpr: {
216 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
217 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
218 return;
219 }
220 case scUnknown: {
221 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattner229907c2011-07-18 04:54:35 +0000222 Type *AllocTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000223 if (U->isSizeOf(AllocTy)) {
224 OS << "sizeof(" << *AllocTy << ")";
225 return;
226 }
227 if (U->isAlignOf(AllocTy)) {
228 OS << "alignof(" << *AllocTy << ")";
229 return;
230 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000231
Chris Lattner229907c2011-07-18 04:54:35 +0000232 Type *CTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000233 Constant *FieldNo;
234 if (U->isOffsetOf(CTy, FieldNo)) {
235 OS << "offsetof(" << *CTy << ", ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000236 FieldNo->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000237 OS << ")";
238 return;
239 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000240
Dan Gohman534749b2010-11-17 22:27:42 +0000241 // Otherwise just print it normally.
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000242 U->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000243 return;
244 }
245 case scCouldNotCompute:
246 OS << "***COULDNOTCOMPUTE***";
247 return;
Dan Gohman534749b2010-11-17 22:27:42 +0000248 }
249 llvm_unreachable("Unknown SCEV kind!");
250}
251
Chris Lattner229907c2011-07-18 04:54:35 +0000252Type *SCEV::getType() const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000253 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000254 case scConstant:
255 return cast<SCEVConstant>(this)->getType();
256 case scTruncate:
257 case scZeroExtend:
258 case scSignExtend:
259 return cast<SCEVCastExpr>(this)->getType();
260 case scAddRecExpr:
261 case scMulExpr:
262 case scUMaxExpr:
263 case scSMaxExpr:
264 return cast<SCEVNAryExpr>(this)->getType();
265 case scAddExpr:
266 return cast<SCEVAddExpr>(this)->getType();
267 case scUDivExpr:
268 return cast<SCEVUDivExpr>(this)->getType();
269 case scUnknown:
270 return cast<SCEVUnknown>(this)->getType();
271 case scCouldNotCompute:
272 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman534749b2010-11-17 22:27:42 +0000273 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000274 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman534749b2010-11-17 22:27:42 +0000275}
276
Dan Gohmanbe928e32008-06-18 16:23:07 +0000277bool SCEV::isZero() const {
278 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
279 return SC->getValue()->isZero();
280 return false;
281}
282
Dan Gohmanba7f6d82009-05-18 15:22:39 +0000283bool SCEV::isOne() const {
284 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
285 return SC->getValue()->isOne();
286 return false;
287}
Chris Lattnerd934c702004-04-02 20:23:17 +0000288
Dan Gohman18a96bb2009-06-24 00:30:26 +0000289bool SCEV::isAllOnesValue() const {
290 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
291 return SC->getValue()->isAllOnesValue();
292 return false;
293}
294
Andrew Trick881a7762012-01-07 00:27:31 +0000295/// isNonConstantNegative - Return true if the specified scev is negated, but
296/// not a constant.
297bool SCEV::isNonConstantNegative() const {
298 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
299 if (!Mul) return false;
300
301 // If there is a constant factor, it will be first.
302 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
303 if (!SC) return false;
304
305 // Return true if the value is negative, this matches things like (-42 * V).
306 return SC->getValue()->getValue().isNegative();
307}
308
Owen Anderson04052ec2009-06-22 21:57:23 +0000309SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman24ceda82010-06-18 19:54:20 +0000310 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000311
Chris Lattnerd934c702004-04-02 20:23:17 +0000312bool SCEVCouldNotCompute::classof(const SCEV *S) {
313 return S->getSCEVType() == scCouldNotCompute;
314}
315
Dan Gohmanaf752342009-07-07 17:06:11 +0000316const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000317 FoldingSetNodeID ID;
318 ID.AddInteger(scConstant);
319 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +0000320 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000321 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman24ceda82010-06-18 19:54:20 +0000322 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000323 UniqueSCEVs.InsertNode(S, IP);
324 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000325}
Chris Lattnerd934c702004-04-02 20:23:17 +0000326
Nick Lewycky31eaca52014-01-27 10:04:03 +0000327const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
Owen Andersonedb4a702009-07-24 23:12:02 +0000328 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman0a76e7f2007-07-09 15:25:17 +0000329}
330
Dan Gohmanaf752342009-07-07 17:06:11 +0000331const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +0000332ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
333 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana029cbe2010-04-21 16:04:04 +0000334 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000335}
336
Dan Gohman24ceda82010-06-18 19:54:20 +0000337SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000338 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000339 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000340
Dan Gohman24ceda82010-06-18 19:54:20 +0000341SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000342 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000343 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000344 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
345 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000346 "Cannot truncate non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000347}
Chris Lattnerd934c702004-04-02 20:23:17 +0000348
Dan Gohman24ceda82010-06-18 19:54:20 +0000349SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000350 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000351 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000352 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
353 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000354 "Cannot zero extend non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000355}
356
Dan Gohman24ceda82010-06-18 19:54:20 +0000357SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000358 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000359 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000360 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
361 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000362 "Cannot sign extend non-integer value!");
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000363}
364
Dan Gohman7cac9572010-08-02 23:49:30 +0000365void SCEVUnknown::deleted() {
Dan Gohman761065e2010-11-17 02:44:44 +0000366 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000367 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000368
369 // Remove this SCEVUnknown from the uniquing map.
370 SE->UniqueSCEVs.RemoveNode(this);
371
372 // Release the value.
Craig Topper9f008862014-04-15 04:59:12 +0000373 setValPtr(nullptr);
Dan Gohman7cac9572010-08-02 23:49:30 +0000374}
375
376void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman761065e2010-11-17 02:44:44 +0000377 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000378 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000379
380 // Remove this SCEVUnknown from the uniquing map.
381 SE->UniqueSCEVs.RemoveNode(this);
382
383 // Update this SCEVUnknown to point to the new value. This is needed
384 // because there may still be outstanding SCEVs which still point to
385 // this SCEVUnknown.
386 setValPtr(New);
387}
388
Chris Lattner229907c2011-07-18 04:54:35 +0000389bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000390 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000391 if (VCE->getOpcode() == Instruction::PtrToInt)
392 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000393 if (CE->getOpcode() == Instruction::GetElementPtr &&
394 CE->getOperand(0)->isNullValue() &&
395 CE->getNumOperands() == 2)
396 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
397 if (CI->isOne()) {
398 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
399 ->getElementType();
400 return true;
401 }
Dan Gohmancf913832010-01-28 02:15:55 +0000402
403 return false;
404}
405
Chris Lattner229907c2011-07-18 04:54:35 +0000406bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000407 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000408 if (VCE->getOpcode() == Instruction::PtrToInt)
409 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000410 if (CE->getOpcode() == Instruction::GetElementPtr &&
411 CE->getOperand(0)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000412 Type *Ty =
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000413 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattner229907c2011-07-18 04:54:35 +0000414 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000415 if (!STy->isPacked() &&
416 CE->getNumOperands() == 3 &&
417 CE->getOperand(1)->isNullValue()) {
418 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
419 if (CI->isOne() &&
420 STy->getNumElements() == 2 &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000421 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000422 AllocTy = STy->getElementType(1);
423 return true;
424 }
425 }
426 }
Dan Gohmancf913832010-01-28 02:15:55 +0000427
428 return false;
429}
430
Chris Lattner229907c2011-07-18 04:54:35 +0000431bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000432 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000433 if (VCE->getOpcode() == Instruction::PtrToInt)
434 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
435 if (CE->getOpcode() == Instruction::GetElementPtr &&
436 CE->getNumOperands() == 3 &&
437 CE->getOperand(0)->isNullValue() &&
438 CE->getOperand(1)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000439 Type *Ty =
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000440 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
441 // Ignore vector types here so that ScalarEvolutionExpander doesn't
442 // emit getelementptrs that index into vectors.
Duncan Sands19d0b472010-02-16 11:11:14 +0000443 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000444 CTy = Ty;
445 FieldNo = CE->getOperand(2);
446 return true;
447 }
448 }
449
450 return false;
451}
452
Chris Lattnereb3e8402004-06-20 06:23:15 +0000453//===----------------------------------------------------------------------===//
454// SCEV Utilities
455//===----------------------------------------------------------------------===//
456
457namespace {
458 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
459 /// than the complexity of the RHS. This comparator is used to canonicalize
460 /// expressions.
Nick Lewycky02d5f772009-10-25 06:33:48 +0000461 class SCEVComplexityCompare {
Dan Gohman3324b9e2010-08-13 20:17:27 +0000462 const LoopInfo *const LI;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000463 public:
Dan Gohman992db002010-07-23 21:18:55 +0000464 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman9ba542c2009-05-07 14:39:04 +0000465
Dan Gohman27065672010-08-27 15:26:01 +0000466 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohman5e6ce7b2008-04-14 18:23:56 +0000467 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman27065672010-08-27 15:26:01 +0000468 return compare(LHS, RHS) < 0;
469 }
470
471 // Return negative, zero, or positive, if LHS is less than, equal to, or
472 // greater than RHS, respectively. A three-way result allows recursive
473 // comparisons to be more efficient.
474 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000475 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
476 if (LHS == RHS)
Dan Gohman27065672010-08-27 15:26:01 +0000477 return 0;
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000478
Dan Gohman9ba542c2009-05-07 14:39:04 +0000479 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman5ae31022010-07-23 21:20:52 +0000480 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
481 if (LType != RType)
Dan Gohman27065672010-08-27 15:26:01 +0000482 return (int)LType - (int)RType;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000483
Dan Gohman24ceda82010-06-18 19:54:20 +0000484 // Aside from the getSCEVType() ordering, the particular ordering
485 // isn't very important except that it's beneficial to be consistent,
486 // so that (a + b) and (b + a) don't end up as different expressions.
Benjamin Kramer987b8502014-02-11 19:02:55 +0000487 switch (static_cast<SCEVTypes>(LType)) {
Dan Gohman27065672010-08-27 15:26:01 +0000488 case scUnknown: {
489 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000490 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000491
492 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
493 // not as complete as it could be.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000494 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman24ceda82010-06-18 19:54:20 +0000495
496 // Order pointer values after integer values. This helps SCEVExpander
497 // form GEPs.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000498 bool LIsPointer = LV->getType()->isPointerTy(),
499 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman5ae31022010-07-23 21:20:52 +0000500 if (LIsPointer != RIsPointer)
Dan Gohman27065672010-08-27 15:26:01 +0000501 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman24ceda82010-06-18 19:54:20 +0000502
503 // Compare getValueID values.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000504 unsigned LID = LV->getValueID(),
505 RID = RV->getValueID();
Dan Gohman5ae31022010-07-23 21:20:52 +0000506 if (LID != RID)
Dan Gohman27065672010-08-27 15:26:01 +0000507 return (int)LID - (int)RID;
Dan Gohman24ceda82010-06-18 19:54:20 +0000508
509 // Sort arguments by their position.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000510 if (const Argument *LA = dyn_cast<Argument>(LV)) {
511 const Argument *RA = cast<Argument>(RV);
Dan Gohman27065672010-08-27 15:26:01 +0000512 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
513 return (int)LArgNo - (int)RArgNo;
Dan Gohman24ceda82010-06-18 19:54:20 +0000514 }
515
Dan Gohman27065672010-08-27 15:26:01 +0000516 // For instructions, compare their loop depth, and their operand
517 // count. This is pretty loose.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000518 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
519 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman24ceda82010-06-18 19:54:20 +0000520
521 // Compare loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000522 const BasicBlock *LParent = LInst->getParent(),
523 *RParent = RInst->getParent();
524 if (LParent != RParent) {
525 unsigned LDepth = LI->getLoopDepth(LParent),
526 RDepth = LI->getLoopDepth(RParent);
527 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000528 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000529 }
Dan Gohman24ceda82010-06-18 19:54:20 +0000530
531 // Compare the number of operands.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000532 unsigned LNumOps = LInst->getNumOperands(),
533 RNumOps = RInst->getNumOperands();
Dan Gohman27065672010-08-27 15:26:01 +0000534 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000535 }
536
Dan Gohman27065672010-08-27 15:26:01 +0000537 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000538 }
539
Dan Gohman27065672010-08-27 15:26:01 +0000540 case scConstant: {
541 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000542 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000543
544 // Compare constant values.
Dan Gohmanf2961822010-08-16 16:25:35 +0000545 const APInt &LA = LC->getValue()->getValue();
546 const APInt &RA = RC->getValue()->getValue();
547 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman5ae31022010-07-23 21:20:52 +0000548 if (LBitWidth != RBitWidth)
Dan Gohman27065672010-08-27 15:26:01 +0000549 return (int)LBitWidth - (int)RBitWidth;
550 return LA.ult(RA) ? -1 : 1;
Dan Gohman24ceda82010-06-18 19:54:20 +0000551 }
552
Dan Gohman27065672010-08-27 15:26:01 +0000553 case scAddRecExpr: {
554 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000555 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000556
557 // Compare addrec loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000558 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
559 if (LLoop != RLoop) {
560 unsigned LDepth = LLoop->getLoopDepth(),
561 RDepth = RLoop->getLoopDepth();
562 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000563 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000564 }
Dan Gohman27065672010-08-27 15:26:01 +0000565
566 // Addrec complexity grows with operand count.
567 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
568 if (LNumOps != RNumOps)
569 return (int)LNumOps - (int)RNumOps;
570
571 // Lexicographically compare.
572 for (unsigned i = 0; i != LNumOps; ++i) {
573 long X = compare(LA->getOperand(i), RA->getOperand(i));
574 if (X != 0)
575 return X;
576 }
577
578 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000579 }
580
Dan Gohman27065672010-08-27 15:26:01 +0000581 case scAddExpr:
582 case scMulExpr:
583 case scSMaxExpr:
584 case scUMaxExpr: {
585 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000586 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000587
588 // Lexicographically compare n-ary expressions.
Dan Gohman5ae31022010-07-23 21:20:52 +0000589 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
Andrew Trickc3bc8b82013-07-31 02:43:40 +0000590 if (LNumOps != RNumOps)
591 return (int)LNumOps - (int)RNumOps;
592
Dan Gohman5ae31022010-07-23 21:20:52 +0000593 for (unsigned i = 0; i != LNumOps; ++i) {
594 if (i >= RNumOps)
Dan Gohman27065672010-08-27 15:26:01 +0000595 return 1;
596 long X = compare(LC->getOperand(i), RC->getOperand(i));
597 if (X != 0)
598 return X;
Dan Gohman24ceda82010-06-18 19:54:20 +0000599 }
Dan Gohman27065672010-08-27 15:26:01 +0000600 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000601 }
602
Dan Gohman27065672010-08-27 15:26:01 +0000603 case scUDivExpr: {
604 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000605 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000606
607 // Lexicographically compare udiv expressions.
608 long X = compare(LC->getLHS(), RC->getLHS());
609 if (X != 0)
610 return X;
611 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman24ceda82010-06-18 19:54:20 +0000612 }
613
Dan Gohman27065672010-08-27 15:26:01 +0000614 case scTruncate:
615 case scZeroExtend:
616 case scSignExtend: {
617 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000618 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000619
620 // Compare cast expressions by operand.
621 return compare(LC->getOperand(), RC->getOperand());
622 }
623
Benjamin Kramer987b8502014-02-11 19:02:55 +0000624 case scCouldNotCompute:
625 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman24ceda82010-06-18 19:54:20 +0000626 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000627 llvm_unreachable("Unknown SCEV kind!");
Chris Lattnereb3e8402004-06-20 06:23:15 +0000628 }
629 };
630}
631
632/// GroupByComplexity - Given a list of SCEV objects, order them by their
633/// complexity, and group objects of the same complexity together by value.
634/// When this routine is finished, we know that any duplicates in the vector are
635/// consecutive and that complexity is monotonically increasing.
636///
Dan Gohman8b0a4192010-03-01 17:49:51 +0000637/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattnereb3e8402004-06-20 06:23:15 +0000638/// results from this routine. In other words, we don't want the results of
639/// this to depend on where the addresses of various SCEV objects happened to
640/// land in memory.
641///
Dan Gohmanaf752342009-07-07 17:06:11 +0000642static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman9ba542c2009-05-07 14:39:04 +0000643 LoopInfo *LI) {
Chris Lattnereb3e8402004-06-20 06:23:15 +0000644 if (Ops.size() < 2) return; // Noop
645 if (Ops.size() == 2) {
646 // This is the common case, which also happens to be trivially simple.
647 // Special case it.
Dan Gohman7712d292010-08-29 15:07:13 +0000648 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
649 if (SCEVComplexityCompare(LI)(RHS, LHS))
650 std::swap(LHS, RHS);
Chris Lattnereb3e8402004-06-20 06:23:15 +0000651 return;
652 }
653
Dan Gohman24ceda82010-06-18 19:54:20 +0000654 // Do the rough sort by complexity.
655 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
656
657 // Now that we are sorted by complexity, group elements of the same
658 // complexity. Note that this is, at worst, N^2, but the vector is likely to
659 // be extremely short in practice. Note that we take this approach because we
660 // do not want to depend on the addresses of the objects we are grouping.
661 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
662 const SCEV *S = Ops[i];
663 unsigned Complexity = S->getSCEVType();
664
665 // If there are any objects of the same complexity and same value as this
666 // one, group them.
667 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
668 if (Ops[j] == S) { // Found a duplicate.
669 // Move it to immediately after i'th element.
670 std::swap(Ops[i+1], Ops[j]);
671 ++i; // no need to rescan it.
672 if (i == e-2) return; // Done!
673 }
674 }
675 }
Chris Lattnereb3e8402004-06-20 06:23:15 +0000676}
677
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000678namespace {
679struct FindSCEVSize {
680 int Size;
681 FindSCEVSize() : Size(0) {}
682
683 bool follow(const SCEV *S) {
684 ++Size;
685 // Keep looking at all operands of S.
686 return true;
687 }
688 bool isDone() const {
689 return false;
690 }
691};
692}
693
694// Returns the size of the SCEV S.
695static inline int sizeOfSCEV(const SCEV *S) {
696 FindSCEVSize F;
697 SCEVTraversal<FindSCEVSize> ST(F);
698 ST.visitAll(S);
699 return F.Size;
700}
701
702namespace {
703
David Majnemer4e879362014-12-14 09:12:33 +0000704struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000705public:
706 // Computes the Quotient and Remainder of the division of Numerator by
707 // Denominator.
708 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
709 const SCEV *Denominator, const SCEV **Quotient,
710 const SCEV **Remainder) {
711 assert(Numerator && Denominator && "Uninitialized SCEV");
712
David Majnemer4e879362014-12-14 09:12:33 +0000713 SCEVDivision D(SE, Numerator, Denominator);
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000714
715 // Check for the trivial case here to avoid having to check for it in the
716 // rest of the code.
717 if (Numerator == Denominator) {
718 *Quotient = D.One;
719 *Remainder = D.Zero;
720 return;
721 }
722
723 if (Numerator->isZero()) {
724 *Quotient = D.Zero;
725 *Remainder = D.Zero;
726 return;
727 }
728
729 // Split the Denominator when it is a product.
730 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
731 const SCEV *Q, *R;
732 *Quotient = Numerator;
733 for (const SCEV *Op : T->operands()) {
734 divide(SE, *Quotient, Op, &Q, &R);
735 *Quotient = Q;
736
737 // Bail out when the Numerator is not divisible by one of the terms of
738 // the Denominator.
739 if (!R->isZero()) {
740 *Quotient = D.Zero;
741 *Remainder = Numerator;
742 return;
743 }
744 }
745 *Remainder = D.Zero;
746 return;
747 }
748
749 D.visit(Numerator);
750 *Quotient = D.Quotient;
751 *Remainder = D.Remainder;
752 }
753
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000754 // Except in the trivial case described above, we do not know how to divide
755 // Expr by Denominator for the following functions with empty implementation.
756 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
757 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
758 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
759 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
760 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
761 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
762 void visitUnknown(const SCEVUnknown *Numerator) {}
763 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
764
David Majnemer4e879362014-12-14 09:12:33 +0000765 void visitConstant(const SCEVConstant *Numerator) {
766 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
767 APInt NumeratorVal = Numerator->getValue()->getValue();
768 APInt DenominatorVal = D->getValue()->getValue();
769 uint32_t NumeratorBW = NumeratorVal.getBitWidth();
770 uint32_t DenominatorBW = DenominatorVal.getBitWidth();
771
772 if (NumeratorBW > DenominatorBW)
773 DenominatorVal = DenominatorVal.sext(NumeratorBW);
774 else if (NumeratorBW < DenominatorBW)
775 NumeratorVal = NumeratorVal.sext(DenominatorBW);
776
777 APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
778 APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
779 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
780 Quotient = SE.getConstant(QuotientVal);
781 Remainder = SE.getConstant(RemainderVal);
782 return;
783 }
784 }
785
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000786 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
787 const SCEV *StartQ, *StartR, *StepQ, *StepR;
788 assert(Numerator->isAffine() && "Numerator should be affine");
789 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
790 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
791 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
792 Numerator->getNoWrapFlags());
793 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
794 Numerator->getNoWrapFlags());
795 }
796
797 void visitAddExpr(const SCEVAddExpr *Numerator) {
798 SmallVector<const SCEV *, 2> Qs, Rs;
799 Type *Ty = Denominator->getType();
800
801 for (const SCEV *Op : Numerator->operands()) {
802 const SCEV *Q, *R;
803 divide(SE, Op, Denominator, &Q, &R);
804
805 // Bail out if types do not match.
806 if (Ty != Q->getType() || Ty != R->getType()) {
807 Quotient = Zero;
808 Remainder = Numerator;
809 return;
810 }
811
812 Qs.push_back(Q);
813 Rs.push_back(R);
814 }
815
816 if (Qs.size() == 1) {
817 Quotient = Qs[0];
818 Remainder = Rs[0];
819 return;
820 }
821
822 Quotient = SE.getAddExpr(Qs);
823 Remainder = SE.getAddExpr(Rs);
824 }
825
826 void visitMulExpr(const SCEVMulExpr *Numerator) {
827 SmallVector<const SCEV *, 2> Qs;
828 Type *Ty = Denominator->getType();
829
830 bool FoundDenominatorTerm = false;
831 for (const SCEV *Op : Numerator->operands()) {
832 // Bail out if types do not match.
833 if (Ty != Op->getType()) {
834 Quotient = Zero;
835 Remainder = Numerator;
836 return;
837 }
838
839 if (FoundDenominatorTerm) {
840 Qs.push_back(Op);
841 continue;
842 }
843
844 // Check whether Denominator divides one of the product operands.
845 const SCEV *Q, *R;
846 divide(SE, Op, Denominator, &Q, &R);
847 if (!R->isZero()) {
848 Qs.push_back(Op);
849 continue;
850 }
851
852 // Bail out if types do not match.
853 if (Ty != Q->getType()) {
854 Quotient = Zero;
855 Remainder = Numerator;
856 return;
857 }
858
859 FoundDenominatorTerm = true;
860 Qs.push_back(Q);
861 }
862
863 if (FoundDenominatorTerm) {
864 Remainder = Zero;
865 if (Qs.size() == 1)
866 Quotient = Qs[0];
867 else
868 Quotient = SE.getMulExpr(Qs);
869 return;
870 }
871
872 if (!isa<SCEVUnknown>(Denominator)) {
873 Quotient = Zero;
874 Remainder = Numerator;
875 return;
876 }
877
878 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
879 ValueToValueMap RewriteMap;
880 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
881 cast<SCEVConstant>(Zero)->getValue();
882 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
883
884 if (Remainder->isZero()) {
885 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
886 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
887 cast<SCEVConstant>(One)->getValue();
888 Quotient =
889 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
890 return;
891 }
892
893 // Quotient is (Numerator - Remainder) divided by Denominator.
894 const SCEV *Q, *R;
895 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
896 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) {
897 // This SCEV does not seem to simplify: fail the division here.
898 Quotient = Zero;
899 Remainder = Numerator;
900 return;
901 }
902 divide(SE, Diff, Denominator, &Q, &R);
903 assert(R == Zero &&
904 "(Numerator - Remainder) should evenly divide Denominator");
905 Quotient = Q;
906 }
907
908private:
David Majnemer5d2670c2014-11-17 11:27:45 +0000909 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
910 const SCEV *Denominator)
911 : SE(S), Denominator(Denominator) {
912 Zero = SE.getConstant(Denominator->getType(), 0);
913 One = SE.getConstant(Denominator->getType(), 1);
914
915 // By default, we don't know how to divide Expr by Denominator.
916 // Providing the default here simplifies the rest of the code.
917 Quotient = Zero;
918 Remainder = Numerator;
919 }
920
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000921 ScalarEvolution &SE;
922 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
David Majnemer32b8ccf2014-11-16 20:35:19 +0000923};
924
Mark Heffernan2beab5f2014-10-10 17:39:11 +0000925}
926
Chris Lattnerd934c702004-04-02 20:23:17 +0000927//===----------------------------------------------------------------------===//
928// Simple SCEV method implementations
929//===----------------------------------------------------------------------===//
930
Eli Friedman61f67622008-08-04 23:49:06 +0000931/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman4d5435d2009-05-24 23:45:28 +0000932/// Assume, K > 0.
Dan Gohmanaf752342009-07-07 17:06:11 +0000933static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohman32291b12009-07-21 00:38:55 +0000934 ScalarEvolution &SE,
Nick Lewycky702cf1e2011-09-06 06:39:54 +0000935 Type *ResultTy) {
Eli Friedman61f67622008-08-04 23:49:06 +0000936 // Handle the simplest case efficiently.
937 if (K == 1)
938 return SE.getTruncateOrZeroExtend(It, ResultTy);
939
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000940 // We are using the following formula for BC(It, K):
941 //
942 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
943 //
Eli Friedman61f67622008-08-04 23:49:06 +0000944 // Suppose, W is the bitwidth of the return value. We must be prepared for
945 // overflow. Hence, we must assure that the result of our computation is
946 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
947 // safe in modular arithmetic.
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000948 //
Eli Friedman61f67622008-08-04 23:49:06 +0000949 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohmance973df2009-06-24 04:48:43 +0000950 // is something like the following, where T is the number of factors of 2 in
Eli Friedman61f67622008-08-04 23:49:06 +0000951 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
952 // exponentiation:
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000953 //
Eli Friedman61f67622008-08-04 23:49:06 +0000954 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000955 //
Eli Friedman61f67622008-08-04 23:49:06 +0000956 // This formula is trivially equivalent to the previous formula. However,
957 // this formula can be implemented much more efficiently. The trick is that
958 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
959 // arithmetic. To do exact division in modular arithmetic, all we have
960 // to do is multiply by the inverse. Therefore, this step can be done at
961 // width W.
Dan Gohmance973df2009-06-24 04:48:43 +0000962 //
Eli Friedman61f67622008-08-04 23:49:06 +0000963 // The next issue is how to safely do the division by 2^T. The way this
964 // is done is by doing the multiplication step at a width of at least W + T
965 // bits. This way, the bottom W+T bits of the product are accurate. Then,
966 // when we perform the division by 2^T (which is equivalent to a right shift
967 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
968 // truncated out after the division by 2^T.
969 //
970 // In comparison to just directly using the first formula, this technique
971 // is much more efficient; using the first formula requires W * K bits,
972 // but this formula less than W + K bits. Also, the first formula requires
973 // a division step, whereas this formula only requires multiplies and shifts.
974 //
975 // It doesn't matter whether the subtraction step is done in the calculation
976 // width or the input iteration count's width; if the subtraction overflows,
977 // the result must be zero anyway. We prefer here to do it in the width of
978 // the induction variable because it helps a lot for certain cases; CodeGen
979 // isn't smart enough to ignore the overflow, which leads to much less
980 // efficient code if the width of the subtraction is wider than the native
981 // register width.
982 //
983 // (It's possible to not widen at all by pulling out factors of 2 before
984 // the multiplication; for example, K=2 can be calculated as
985 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
986 // extra arithmetic, so it's not an obvious win, and it gets
987 // much more complicated for K > 3.)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000988
Eli Friedman61f67622008-08-04 23:49:06 +0000989 // Protection from insane SCEVs; this bound is conservative,
990 // but it probably doesn't matter.
991 if (K > 1000)
Dan Gohman31efa302009-04-18 17:58:19 +0000992 return SE.getCouldNotCompute();
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000993
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000994 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000995
Eli Friedman61f67622008-08-04 23:49:06 +0000996 // Calculate K! / 2^T and T; we divide out the factors of two before
997 // multiplying for calculating K! / 2^T to avoid overflow.
998 // Other overflow doesn't matter because we only care about the bottom
999 // W bits of the result.
1000 APInt OddFactorial(W, 1);
1001 unsigned T = 1;
1002 for (unsigned i = 3; i <= K; ++i) {
1003 APInt Mult(W, i);
1004 unsigned TwoFactors = Mult.countTrailingZeros();
1005 T += TwoFactors;
1006 Mult = Mult.lshr(TwoFactors);
1007 OddFactorial *= Mult;
Chris Lattnerd934c702004-04-02 20:23:17 +00001008 }
Nick Lewyckyed169d52008-06-13 04:38:55 +00001009
Eli Friedman61f67622008-08-04 23:49:06 +00001010 // We need at least W + T bits for the multiplication step
Nick Lewycky21add8f2009-01-25 08:16:27 +00001011 unsigned CalculationBits = W + T;
Eli Friedman61f67622008-08-04 23:49:06 +00001012
Dan Gohman8b0a4192010-03-01 17:49:51 +00001013 // Calculate 2^T, at width T+W.
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00001014 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
Eli Friedman61f67622008-08-04 23:49:06 +00001015
1016 // Calculate the multiplicative inverse of K! / 2^T;
1017 // this multiplication factor will perform the exact division by
1018 // K! / 2^T.
1019 APInt Mod = APInt::getSignedMinValue(W+1);
1020 APInt MultiplyFactor = OddFactorial.zext(W+1);
1021 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1022 MultiplyFactor = MultiplyFactor.trunc(W);
1023
1024 // Calculate the product, at width T+W
Chris Lattner229907c2011-07-18 04:54:35 +00001025 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson55f1c092009-08-13 21:58:54 +00001026 CalculationBits);
Dan Gohmanaf752342009-07-07 17:06:11 +00001027 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman61f67622008-08-04 23:49:06 +00001028 for (unsigned i = 1; i != K; ++i) {
Dan Gohman1d2ded72010-05-03 22:09:21 +00001029 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedman61f67622008-08-04 23:49:06 +00001030 Dividend = SE.getMulExpr(Dividend,
1031 SE.getTruncateOrZeroExtend(S, CalculationTy));
1032 }
1033
1034 // Divide by 2^T
Dan Gohmanaf752342009-07-07 17:06:11 +00001035 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman61f67622008-08-04 23:49:06 +00001036
1037 // Truncate the result, and divide by K! / 2^T.
1038
1039 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1040 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattnerd934c702004-04-02 20:23:17 +00001041}
1042
Chris Lattnerd934c702004-04-02 20:23:17 +00001043/// evaluateAtIteration - Return the value of this chain of recurrences at
1044/// the specified iteration number. We can evaluate this recurrence by
1045/// multiplying each element in the chain by the binomial coefficient
1046/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
1047///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001048/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattnerd934c702004-04-02 20:23:17 +00001049///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001050/// where BC(It, k) stands for binomial coefficient.
Chris Lattnerd934c702004-04-02 20:23:17 +00001051///
Dan Gohmanaf752342009-07-07 17:06:11 +00001052const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohman32291b12009-07-21 00:38:55 +00001053 ScalarEvolution &SE) const {
Dan Gohmanaf752342009-07-07 17:06:11 +00001054 const SCEV *Result = getStart();
Chris Lattnerd934c702004-04-02 20:23:17 +00001055 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +00001056 // The computation is correct in the face of overflow provided that the
1057 // multiplication is performed _after_ the evaluation of the binomial
1058 // coefficient.
Dan Gohmanaf752342009-07-07 17:06:11 +00001059 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewycky707663e2008-10-13 03:58:02 +00001060 if (isa<SCEVCouldNotCompute>(Coeff))
1061 return Coeff;
1062
1063 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattnerd934c702004-04-02 20:23:17 +00001064 }
1065 return Result;
1066}
1067
Chris Lattnerd934c702004-04-02 20:23:17 +00001068//===----------------------------------------------------------------------===//
1069// SCEV Expression folder implementations
1070//===----------------------------------------------------------------------===//
1071
Dan Gohmanaf752342009-07-07 17:06:11 +00001072const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001073 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001074 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001075 "This is not a truncating conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001076 assert(isSCEVable(Ty) &&
1077 "This is not a conversion to a SCEVable type!");
1078 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001079
Dan Gohman3a302cb2009-07-13 20:50:19 +00001080 FoldingSetNodeID ID;
1081 ID.AddInteger(scTruncate);
1082 ID.AddPointer(Op);
1083 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001084 void *IP = nullptr;
Dan Gohman3a302cb2009-07-13 20:50:19 +00001085 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1086
Dan Gohman3423e722009-06-30 20:13:32 +00001087 // Fold if the operand is constant.
Dan Gohmana30370b2009-05-04 22:02:23 +00001088 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman8d7576e2009-06-24 00:38:39 +00001089 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001090 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001091
Dan Gohman79af8542009-04-22 16:20:48 +00001092 // trunc(trunc(x)) --> trunc(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001093 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001094 return getTruncateExpr(ST->getOperand(), Ty);
1095
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001096 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001097 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001098 return getTruncateOrSignExtend(SS->getOperand(), Ty);
1099
1100 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +00001101 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +00001102 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1103
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001104 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
1105 // eliminate all the truncates.
1106 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1107 SmallVector<const SCEV *, 4> Operands;
1108 bool hasTrunc = false;
1109 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1110 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
1111 hasTrunc = isa<SCEVTruncateExpr>(S);
1112 Operands.push_back(S);
1113 }
1114 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001115 return getAddExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001116 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5143f0f2011-01-19 16:59:46 +00001117 }
1118
Nick Lewycky5c901f32011-01-19 18:56:00 +00001119 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
1120 // eliminate all the truncates.
1121 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1122 SmallVector<const SCEV *, 4> Operands;
1123 bool hasTrunc = false;
1124 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1125 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
1126 hasTrunc = isa<SCEVTruncateExpr>(S);
1127 Operands.push_back(S);
1128 }
1129 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +00001130 return getMulExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +00001131 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c901f32011-01-19 18:56:00 +00001132 }
1133
Dan Gohman5a728c92009-06-18 16:24:47 +00001134 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmana30370b2009-05-04 22:02:23 +00001135 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001136 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00001137 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman2e55cc52009-05-08 21:03:19 +00001138 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick8b55b732011-03-14 16:50:06 +00001139 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00001140 }
1141
Dan Gohman89dd42a2010-06-25 18:47:08 +00001142 // The cast wasn't folded; create an explicit cast node. We can reuse
1143 // the existing insert position since if we get here, we won't have
1144 // made any changes which would invalidate it.
Dan Gohman01c65a22010-03-18 18:49:47 +00001145 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1146 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001147 UniqueSCEVs.InsertNode(S, IP);
1148 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001149}
1150
Dan Gohmanaf752342009-07-07 17:06:11 +00001151const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001152 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001153 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001154 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001155 assert(isSCEVable(Ty) &&
1156 "This is not a conversion to a SCEVable type!");
1157 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanc1c2ba72009-04-16 19:25:55 +00001158
Dan Gohman3423e722009-06-30 20:13:32 +00001159 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001160 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1161 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001162 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001163
Dan Gohman79af8542009-04-22 16:20:48 +00001164 // zext(zext(x)) --> zext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001165 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001166 return getZeroExtendExpr(SZ->getOperand(), Ty);
1167
Dan Gohman74a0ba12009-07-13 20:55:53 +00001168 // Before doing any expensive analysis, check to see if we've already
1169 // computed a SCEV for this Op and Ty.
1170 FoldingSetNodeID ID;
1171 ID.AddInteger(scZeroExtend);
1172 ID.AddPointer(Op);
1173 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001174 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001175 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1176
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001177 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1178 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1179 // It's possible the bits taken off by the truncate were all zero bits. If
1180 // so, we should be able to simplify this further.
1181 const SCEV *X = ST->getOperand();
1182 ConstantRange CR = getUnsignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001183 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1184 unsigned NewBits = getTypeSizeInBits(Ty);
1185 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001186 CR.zextOrTrunc(NewBits)))
1187 return getTruncateOrZeroExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001188 }
1189
Dan Gohman76466372009-04-27 20:16:15 +00001190 // If the input value is a chrec scev, and we can prove that the value
Chris Lattnerd934c702004-04-02 20:23:17 +00001191 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001192 // operands (often constants). This allows analysis of something like
Chris Lattnerd934c702004-04-02 20:23:17 +00001193 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001194 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001195 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001196 const SCEV *Start = AR->getStart();
1197 const SCEV *Step = AR->getStepRecurrence(*this);
1198 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1199 const Loop *L = AR->getLoop();
1200
Dan Gohman62ef6a72009-07-25 01:22:26 +00001201 // If we have special knowledge that this addrec won't overflow,
1202 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001203 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman62ef6a72009-07-25 01:22:26 +00001204 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1205 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001206 L, AR->getNoWrapFlags());
Dan Gohman62ef6a72009-07-25 01:22:26 +00001207
Dan Gohman76466372009-04-27 20:16:15 +00001208 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1209 // Note that this serves two purposes: It filters out loops that are
1210 // simply not analyzable, and it covers the case where this code is
1211 // being called from within backedge-taken count analysis, such that
1212 // attempting to ask for the backedge-taken count would likely result
1213 // in infinite recursion. In the later case, the analysis code will
1214 // cope with a conservative value, and it will take care to purge
1215 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001216 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001217 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001218 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001219 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001220
1221 // Check whether the backedge-taken count can be losslessly casted to
1222 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001223 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001224 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001225 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001226 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1227 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001228 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001229 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001230 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001231 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1232 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1233 const SCEV *WideMaxBECount =
1234 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001235 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001236 getAddExpr(WideStart,
1237 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001238 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001239 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001240 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1241 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman494dac32009-04-29 22:28:28 +00001242 // Return the expression with the addrec on the outside.
1243 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1244 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001245 L, AR->getNoWrapFlags());
1246 }
Dan Gohman76466372009-04-27 20:16:15 +00001247 // Similar to above, only this time treat the step value as signed.
1248 // This covers loops that count down.
Dan Gohman4fc36682009-05-18 15:58:39 +00001249 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001250 getAddExpr(WideStart,
1251 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001252 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001253 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001254 // Cache knowledge of AR NW, which is propagated to this AddRec.
1255 // Negative step causes unsigned wrap, but it still can't self-wrap.
1256 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohman494dac32009-04-29 22:28:28 +00001257 // Return the expression with the addrec on the outside.
1258 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1259 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001260 L, AR->getNoWrapFlags());
1261 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001262 }
1263
1264 // If the backedge is guarded by a comparison with the pre-inc value
1265 // the addrec is safe. Also, if the entry is guarded by a comparison
1266 // with the start value and the backedge is guarded by a comparison
1267 // with the post-inc value, the addrec is safe.
1268 if (isKnownPositive(Step)) {
1269 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1270 getUnsignedRange(Step).getUnsignedMax());
1271 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohmanb50349a2010-04-11 19:27:13 +00001272 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001273 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001274 AR->getPostIncExpr(*this), N))) {
1275 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1276 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmane65c9172009-07-13 21:35:55 +00001277 // Return the expression with the addrec on the outside.
1278 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1279 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001280 L, AR->getNoWrapFlags());
1281 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001282 } else if (isKnownNegative(Step)) {
1283 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1284 getSignedRange(Step).getSignedMin());
Dan Gohman5f18c542010-05-04 01:11:15 +00001285 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1286 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001287 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001288 AR->getPostIncExpr(*this), N))) {
1289 // Cache knowledge of AR NW, which is propagated to this AddRec.
1290 // Negative step causes unsigned wrap, but it still can't self-wrap.
1291 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1292 // Return the expression with the addrec on the outside.
Dan Gohmane65c9172009-07-13 21:35:55 +00001293 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1294 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001295 L, AR->getNoWrapFlags());
1296 }
Dan Gohman76466372009-04-27 20:16:15 +00001297 }
1298 }
1299 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001300
Dan Gohman74a0ba12009-07-13 20:55:53 +00001301 // The cast wasn't folded; create an explicit cast node.
1302 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001303 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001304 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1305 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001306 UniqueSCEVs.InsertNode(S, IP);
1307 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001308}
1309
Andrew Trick812276e2011-05-31 21:17:47 +00001310// Get the limit of a recurrence such that incrementing by Step cannot cause
1311// signed overflow as long as the value of the recurrence within the loop does
1312// not exceed this limit before incrementing.
1313static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1314 ICmpInst::Predicate *Pred,
1315 ScalarEvolution *SE) {
1316 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1317 if (SE->isKnownPositive(Step)) {
1318 *Pred = ICmpInst::ICMP_SLT;
1319 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1320 SE->getSignedRange(Step).getSignedMax());
1321 }
1322 if (SE->isKnownNegative(Step)) {
1323 *Pred = ICmpInst::ICMP_SGT;
1324 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1325 SE->getSignedRange(Step).getSignedMin());
1326 }
Craig Topper9f008862014-04-15 04:59:12 +00001327 return nullptr;
Andrew Trick812276e2011-05-31 21:17:47 +00001328}
1329
1330// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1331// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1332// or postincrement sibling. This allows normalizing a sign extended AddRec as
1333// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1334// result, the expression "Step + sext(PreIncAR)" is congruent with
1335// "sext(PostIncAR)"
1336static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
Chris Lattner229907c2011-07-18 04:54:35 +00001337 Type *Ty,
Andrew Trick812276e2011-05-31 21:17:47 +00001338 ScalarEvolution *SE) {
1339 const Loop *L = AR->getLoop();
1340 const SCEV *Start = AR->getStart();
1341 const SCEV *Step = AR->getStepRecurrence(*SE);
1342
1343 // Check for a simple looking step prior to loop entry.
1344 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001345 if (!SA)
Craig Topper9f008862014-04-15 04:59:12 +00001346 return nullptr;
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001347
1348 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1349 // subtraction is expensive. For this purpose, perform a quick and dirty
1350 // difference, by checking for Step in the operand list.
1351 SmallVector<const SCEV *, 4> DiffOps;
Tobias Grosser924221c2014-05-07 06:07:47 +00001352 for (const SCEV *Op : SA->operands())
1353 if (Op != Step)
1354 DiffOps.push_back(Op);
1355
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001356 if (DiffOps.size() == SA->getNumOperands())
Craig Topper9f008862014-04-15 04:59:12 +00001357 return nullptr;
Andrew Trick812276e2011-05-31 21:17:47 +00001358
1359 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1360 // same three conditions that getSignExtendedExpr checks.
1361
1362 // 1. NSW flags on the step increment.
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001363 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
Andrew Trick812276e2011-05-31 21:17:47 +00001364 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1365 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1366
Sanjoy Dasf2e931c2015-02-08 22:52:17 +00001367 // WARNING: FIXME: the optimization below assumes that a sign-overflowing nsw
1368 // operation is undefined behavior. This is strictly more aggressive than the
1369 // interpretation of nsw in other parts of LLVM (for instance, they may
1370 // unconditionally hoist nsw arithmetic through control flow). This logic
1371 // needs to be revisited once we have a consistent semantics for poison
1372 // values.
1373 //
1374 // "{S,+,X} is <nsw>" and "{S,+,X} is evaluated at least once" implies "S+X
1375 // does not sign-overflow" (we'd have undefined behavior if it did). If
1376 // `L->getExitingBlock() == L->getLoopLatch()` then `PreAR` (= {S,+,X}<nsw>)
1377 // is evaluated every-time `AR` (= {S+X,+,X}) is evaluated, and hence within
1378 // `AR` we are safe to assume that "S+X" will not sign-overflow.
1379 //
1380
1381 BasicBlock *ExitingBlock = L->getExitingBlock();
1382 BasicBlock *LatchBlock = L->getLoopLatch();
1383 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW) &&
1384 ExitingBlock != nullptr && ExitingBlock == LatchBlock)
Andrew Trick812276e2011-05-31 21:17:47 +00001385 return PreStart;
Andrew Trick812276e2011-05-31 21:17:47 +00001386
1387 // 2. Direct overflow check on the step operation's expression.
1388 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
Chris Lattner229907c2011-07-18 04:54:35 +00001389 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
Andrew Trick812276e2011-05-31 21:17:47 +00001390 const SCEV *OperandExtendedStart =
1391 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1392 SE->getSignExtendExpr(Step, WideTy));
1393 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1394 // Cache knowledge of PreAR NSW.
1395 if (PreAR)
1396 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1397 // FIXME: this optimization needs a unit test
1398 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1399 return PreStart;
1400 }
1401
1402 // 3. Loop precondition.
1403 ICmpInst::Predicate Pred;
1404 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1405
Andrew Trick8ef3ad02011-06-01 19:14:56 +00001406 if (OverflowLimit &&
1407 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
Andrew Trick812276e2011-05-31 21:17:47 +00001408 return PreStart;
1409 }
Craig Topper9f008862014-04-15 04:59:12 +00001410 return nullptr;
Andrew Trick812276e2011-05-31 21:17:47 +00001411}
1412
1413// Get the normalized sign-extended expression for this AddRec's Start.
1414static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
Chris Lattner229907c2011-07-18 04:54:35 +00001415 Type *Ty,
Andrew Trick812276e2011-05-31 21:17:47 +00001416 ScalarEvolution *SE) {
1417 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1418 if (!PreStart)
1419 return SE->getSignExtendExpr(AR->getStart(), Ty);
1420
1421 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1422 SE->getSignExtendExpr(PreStart, Ty));
1423}
1424
Dan Gohmanaf752342009-07-07 17:06:11 +00001425const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001426 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001427 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001428 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001429 assert(isSCEVable(Ty) &&
1430 "This is not a conversion to a SCEVable type!");
1431 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001432
Dan Gohman3423e722009-06-30 20:13:32 +00001433 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001434 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1435 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001436 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001437
Dan Gohman79af8542009-04-22 16:20:48 +00001438 // sext(sext(x)) --> sext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001439 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001440 return getSignExtendExpr(SS->getOperand(), Ty);
1441
Nick Lewyckye9ea75e2011-01-19 15:56:12 +00001442 // sext(zext(x)) --> zext(x)
1443 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1444 return getZeroExtendExpr(SZ->getOperand(), Ty);
1445
Dan Gohman74a0ba12009-07-13 20:55:53 +00001446 // Before doing any expensive analysis, check to see if we've already
1447 // computed a SCEV for this Op and Ty.
1448 FoldingSetNodeID ID;
1449 ID.AddInteger(scSignExtend);
1450 ID.AddPointer(Op);
1451 ID.AddPointer(Ty);
Craig Topper9f008862014-04-15 04:59:12 +00001452 void *IP = nullptr;
Dan Gohman74a0ba12009-07-13 20:55:53 +00001453 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1454
Nick Lewyckyb32c8942011-01-22 22:06:21 +00001455 // If the input value is provably positive, build a zext instead.
1456 if (isKnownNonNegative(Op))
1457 return getZeroExtendExpr(Op, Ty);
1458
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001459 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1460 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1461 // It's possible the bits taken off by the truncate were all sign bits. If
1462 // so, we should be able to simplify this further.
1463 const SCEV *X = ST->getOperand();
1464 ConstantRange CR = getSignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001465 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1466 unsigned NewBits = getTypeSizeInBits(Ty);
1467 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001468 CR.sextOrTrunc(NewBits)))
1469 return getTruncateOrSignExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001470 }
1471
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001472 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1473 if (auto SA = dyn_cast<SCEVAddExpr>(Op)) {
1474 if (SA->getNumOperands() == 2) {
1475 auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1476 auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1477 if (SMul && SC1) {
1478 if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001479 const APInt &C1 = SC1->getValue()->getValue();
1480 const APInt &C2 = SC2->getValue()->getValue();
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001481 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001482 C2.ugt(C1) && C2.isPowerOf2())
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001483 return getAddExpr(getSignExtendExpr(SC1, Ty),
1484 getSignExtendExpr(SMul, Ty));
1485 }
1486 }
1487 }
1488 }
Dan Gohman76466372009-04-27 20:16:15 +00001489 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001490 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001491 // operands (often constants). This allows analysis of something like
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001492 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001493 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001494 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001495 const SCEV *Start = AR->getStart();
1496 const SCEV *Step = AR->getStepRecurrence(*this);
1497 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1498 const Loop *L = AR->getLoop();
1499
Dan Gohman62ef6a72009-07-25 01:22:26 +00001500 // If we have special knowledge that this addrec won't overflow,
1501 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001502 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trick812276e2011-05-31 21:17:47 +00001503 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman62ef6a72009-07-25 01:22:26 +00001504 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001505 L, SCEV::FlagNSW);
Dan Gohman62ef6a72009-07-25 01:22:26 +00001506
Dan Gohman76466372009-04-27 20:16:15 +00001507 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1508 // Note that this serves two purposes: It filters out loops that are
1509 // simply not analyzable, and it covers the case where this code is
1510 // being called from within backedge-taken count analysis, such that
1511 // attempting to ask for the backedge-taken count would likely result
1512 // in infinite recursion. In the later case, the analysis code will
1513 // cope with a conservative value, and it will take care to purge
1514 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001515 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001516 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001517 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001518 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001519
1520 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman494dac32009-04-29 22:28:28 +00001521 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001522 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001523 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001524 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001525 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1526 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001527 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001528 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001529 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001530 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1531 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1532 const SCEV *WideMaxBECount =
1533 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001534 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001535 getAddExpr(WideStart,
1536 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001537 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001538 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001539 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1540 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman494dac32009-04-29 22:28:28 +00001541 // Return the expression with the addrec on the outside.
Andrew Trick812276e2011-05-31 21:17:47 +00001542 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman494dac32009-04-29 22:28:28 +00001543 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001544 L, AR->getNoWrapFlags());
1545 }
Dan Gohman8c129d72009-07-16 17:34:36 +00001546 // Similar to above, only this time treat the step value as unsigned.
1547 // This covers loops that count up with an unsigned step.
Dan Gohman8c129d72009-07-16 17:34:36 +00001548 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001549 getAddExpr(WideStart,
1550 getMulExpr(WideMaxBECount,
Dan Gohman8c129d72009-07-16 17:34:36 +00001551 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001552 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001553 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1554 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman8c129d72009-07-16 17:34:36 +00001555 // Return the expression with the addrec on the outside.
Andrew Trick812276e2011-05-31 21:17:47 +00001556 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman8c129d72009-07-16 17:34:36 +00001557 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001558 L, AR->getNoWrapFlags());
1559 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001560 }
1561
1562 // If the backedge is guarded by a comparison with the pre-inc value
1563 // the addrec is safe. Also, if the entry is guarded by a comparison
1564 // with the start value and the backedge is guarded by a comparison
1565 // with the post-inc value, the addrec is safe.
Andrew Trick812276e2011-05-31 21:17:47 +00001566 ICmpInst::Predicate Pred;
1567 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1568 if (OverflowLimit &&
1569 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1570 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1571 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1572 OverflowLimit)))) {
1573 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1574 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1575 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1576 getSignExtendExpr(Step, Ty),
1577 L, AR->getNoWrapFlags());
Dan Gohman76466372009-04-27 20:16:15 +00001578 }
1579 }
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001580 // If Start and Step are constants, check if we can apply this
1581 // transformation:
1582 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1583 auto SC1 = dyn_cast<SCEVConstant>(Start);
1584 auto SC2 = dyn_cast<SCEVConstant>(Step);
1585 if (SC1 && SC2) {
Michael Zolotukhin265dfa42014-05-26 14:49:46 +00001586 const APInt &C1 = SC1->getValue()->getValue();
1587 const APInt &C2 = SC2->getValue()->getValue();
1588 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1589 C2.isPowerOf2()) {
Michael Zolotukhind4c72462014-05-24 08:09:57 +00001590 Start = getSignExtendExpr(Start, Ty);
1591 const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step,
1592 L, AR->getNoWrapFlags());
1593 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1594 }
1595 }
Dan Gohman76466372009-04-27 20:16:15 +00001596 }
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001597
Dan Gohman74a0ba12009-07-13 20:55:53 +00001598 // The cast wasn't folded; create an explicit cast node.
1599 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001600 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001601 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1602 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001603 UniqueSCEVs.InsertNode(S, IP);
1604 return S;
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001605}
1606
Dan Gohman8db2edc2009-06-13 15:56:47 +00001607/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1608/// unspecified bits out to the given type.
1609///
Dan Gohmanaf752342009-07-07 17:06:11 +00001610const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001611 Type *Ty) {
Dan Gohman8db2edc2009-06-13 15:56:47 +00001612 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1613 "This is not an extending conversion!");
1614 assert(isSCEVable(Ty) &&
1615 "This is not a conversion to a SCEVable type!");
1616 Ty = getEffectiveSCEVType(Ty);
1617
1618 // Sign-extend negative constants.
1619 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1620 if (SC->getValue()->getValue().isNegative())
1621 return getSignExtendExpr(Op, Ty);
1622
1623 // Peel off a truncate cast.
1624 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001625 const SCEV *NewOp = T->getOperand();
Dan Gohman8db2edc2009-06-13 15:56:47 +00001626 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1627 return getAnyExtendExpr(NewOp, Ty);
1628 return getTruncateOrNoop(NewOp, Ty);
1629 }
1630
1631 // Next try a zext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001632 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001633 if (!isa<SCEVZeroExtendExpr>(ZExt))
1634 return ZExt;
1635
1636 // Next try a sext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001637 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001638 if (!isa<SCEVSignExtendExpr>(SExt))
1639 return SExt;
1640
Dan Gohman51ad99d2010-01-21 02:09:26 +00001641 // Force the cast to be folded into the operands of an addrec.
1642 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1643 SmallVector<const SCEV *, 4> Ops;
Tobias Grosser924221c2014-05-07 06:07:47 +00001644 for (const SCEV *Op : AR->operands())
1645 Ops.push_back(getAnyExtendExpr(Op, Ty));
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001646 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001647 }
1648
Dan Gohman8db2edc2009-06-13 15:56:47 +00001649 // If the expression is obviously signed, use the sext cast value.
1650 if (isa<SCEVSMaxExpr>(Op))
1651 return SExt;
1652
1653 // Absent any other information, use the zext cast value.
1654 return ZExt;
1655}
1656
Dan Gohman038d02e2009-06-14 22:58:51 +00001657/// CollectAddOperandsWithScales - Process the given Ops list, which is
1658/// a list of operands to be added under the given scale, update the given
1659/// map. This is a helper function for getAddRecExpr. As an example of
1660/// what it does, given a sequence of operands that would form an add
1661/// expression like this:
1662///
Tobias Grosserba49e422014-03-05 10:37:17 +00001663/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
Dan Gohman038d02e2009-06-14 22:58:51 +00001664///
1665/// where A and B are constants, update the map with these values:
1666///
1667/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1668///
1669/// and add 13 + A*B*29 to AccumulatedConstant.
1670/// This will allow getAddRecExpr to produce this:
1671///
1672/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1673///
1674/// This form often exposes folding opportunities that are hidden in
1675/// the original operand list.
1676///
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001677/// Return true iff it appears that any interesting folding opportunities
Dan Gohman038d02e2009-06-14 22:58:51 +00001678/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1679/// the common case where no interesting opportunities are present, and
1680/// is also used as a check to avoid infinite recursion.
1681///
1682static bool
Dan Gohmanaf752342009-07-07 17:06:11 +00001683CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
Craig Topper2cd5ff82013-07-11 16:22:38 +00001684 SmallVectorImpl<const SCEV *> &NewOps,
Dan Gohman038d02e2009-06-14 22:58:51 +00001685 APInt &AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001686 const SCEV *const *Ops, size_t NumOperands,
Dan Gohman038d02e2009-06-14 22:58:51 +00001687 const APInt &Scale,
1688 ScalarEvolution &SE) {
1689 bool Interesting = false;
1690
Dan Gohman45073042010-06-18 19:12:32 +00001691 // Iterate over the add operands. They are sorted, with constants first.
1692 unsigned i = 0;
1693 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1694 ++i;
1695 // Pull a buried constant out to the outside.
1696 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1697 Interesting = true;
1698 AccumulatedConstant += Scale * C->getValue()->getValue();
1699 }
1700
1701 // Next comes everything else. We're especially interested in multiplies
1702 // here, but they're in the middle, so just visit the rest with one loop.
1703 for (; i != NumOperands; ++i) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001704 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1705 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1706 APInt NewScale =
1707 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1708 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1709 // A multiplication of a constant with another add; recurse.
Dan Gohman00524492010-03-18 01:17:13 +00001710 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohman038d02e2009-06-14 22:58:51 +00001711 Interesting |=
1712 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001713 Add->op_begin(), Add->getNumOperands(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001714 NewScale, SE);
1715 } else {
1716 // A multiplication of a constant with some other value. Update
1717 // the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001718 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1719 const SCEV *Key = SE.getMulExpr(MulOps);
1720 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001721 M.insert(std::make_pair(Key, NewScale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001722 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001723 NewOps.push_back(Pair.first->first);
1724 } else {
1725 Pair.first->second += NewScale;
1726 // The map already had an entry for this value, which may indicate
1727 // a folding opportunity.
1728 Interesting = true;
1729 }
1730 }
Dan Gohman038d02e2009-06-14 22:58:51 +00001731 } else {
1732 // An ordinary operand. Update the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001733 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001734 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001735 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001736 NewOps.push_back(Pair.first->first);
1737 } else {
1738 Pair.first->second += Scale;
1739 // The map already had an entry for this value, which may indicate
1740 // a folding opportunity.
1741 Interesting = true;
1742 }
1743 }
1744 }
1745
1746 return Interesting;
1747}
1748
1749namespace {
1750 struct APIntCompare {
1751 bool operator()(const APInt &LHS, const APInt &RHS) const {
1752 return LHS.ult(RHS);
1753 }
1754 };
1755}
1756
Sanjoy Das81401d42015-01-10 23:41:24 +00001757// We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1758// `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
1759// can't-overflow flags for the operation if possible.
1760static SCEV::NoWrapFlags
1761StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1762 const SmallVectorImpl<const SCEV *> &Ops,
1763 SCEV::NoWrapFlags OldFlags) {
1764 using namespace std::placeholders;
1765
1766 bool CanAnalyze =
1767 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1768 (void)CanAnalyze;
1769 assert(CanAnalyze && "don't call from other places!");
1770
1771 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1772 SCEV::NoWrapFlags SignOrUnsignWrap =
1773 ScalarEvolution::maskFlags(OldFlags, SignOrUnsignMask);
1774
1775 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1776 auto IsKnownNonNegative =
1777 std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1);
1778
1779 if (SignOrUnsignWrap == SCEV::FlagNSW &&
1780 std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative))
1781 return ScalarEvolution::setFlags(OldFlags,
1782 (SCEV::NoWrapFlags)SignOrUnsignMask);
1783
1784 return OldFlags;
1785}
1786
Dan Gohman4d5435d2009-05-24 23:45:28 +00001787/// getAddExpr - Get a canonical add expression, or something simpler if
1788/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00001789const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00001790 SCEV::NoWrapFlags Flags) {
1791 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1792 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00001793 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner74498e12004-04-07 16:16:11 +00001794 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00001795#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00001796 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00001797 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohman9136d9f2010-06-18 19:09:27 +00001798 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00001799 "SCEVAddExpr operand types don't match!");
1800#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00001801
Sanjoy Das81401d42015-01-10 23:41:24 +00001802 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001803
Chris Lattnerd934c702004-04-02 20:23:17 +00001804 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00001805 GroupByComplexity(Ops, LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00001806
1807 // If there are any constants, fold them together.
1808 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00001809 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001810 ++Idx;
Chris Lattner74498e12004-04-07 16:16:11 +00001811 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00001812 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001813 // We found two constants, fold them together!
Dan Gohman0652fd52009-06-14 22:47:23 +00001814 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1815 RHSC->getValue()->getValue());
Dan Gohman011cf682009-06-14 22:53:57 +00001816 if (Ops.size() == 2) return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001817 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001818 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001819 }
1820
1821 // If we are left with a constant zero being added, strip it off.
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001822 if (LHSC->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001823 Ops.erase(Ops.begin());
1824 --Idx;
1825 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001826
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001827 if (Ops.size() == 1) return Ops[0];
1828 }
Misha Brukman01808ca2005-04-21 21:13:18 +00001829
Dan Gohman15871f22010-08-27 21:39:59 +00001830 // Okay, check to see if the same value occurs in the operand list more than
1831 // once. If so, merge them together into an multiply expression. Since we
1832 // sorted the list, these values are required to be adjacent.
Chris Lattner229907c2011-07-18 04:54:35 +00001833 Type *Ty = Ops[0]->getType();
Dan Gohmane67b2872010-08-12 14:46:54 +00001834 bool FoundMatch = false;
Dan Gohman15871f22010-08-27 21:39:59 +00001835 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattnerd934c702004-04-02 20:23:17 +00001836 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman15871f22010-08-27 21:39:59 +00001837 // Scan ahead to count how many equal operands there are.
1838 unsigned Count = 2;
1839 while (i+Count != e && Ops[i+Count] == Ops[i])
1840 ++Count;
1841 // Merge the values into a multiply.
1842 const SCEV *Scale = getConstant(Ty, Count);
1843 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1844 if (Ops.size() == Count)
Chris Lattnerd934c702004-04-02 20:23:17 +00001845 return Mul;
Dan Gohmane67b2872010-08-12 14:46:54 +00001846 Ops[i] = Mul;
Dan Gohman15871f22010-08-27 21:39:59 +00001847 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohmanfe22f1d2010-08-28 00:39:27 +00001848 --i; e -= Count - 1;
Dan Gohmane67b2872010-08-12 14:46:54 +00001849 FoundMatch = true;
Chris Lattnerd934c702004-04-02 20:23:17 +00001850 }
Dan Gohmane67b2872010-08-12 14:46:54 +00001851 if (FoundMatch)
Andrew Trick8b55b732011-03-14 16:50:06 +00001852 return getAddExpr(Ops, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00001853
Dan Gohman2e55cc52009-05-08 21:03:19 +00001854 // Check for truncates. If all the operands are truncated from the same
1855 // type, see if factoring out the truncate would permit the result to be
1856 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1857 // if the contents of the resulting outer trunc fold to something simple.
1858 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1859 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattner229907c2011-07-18 04:54:35 +00001860 Type *DstType = Trunc->getType();
1861 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00001862 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00001863 bool Ok = true;
1864 // Check all the operands to see if they can be represented in the
1865 // source type of the truncate.
1866 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1867 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1868 if (T->getOperand()->getType() != SrcType) {
1869 Ok = false;
1870 break;
1871 }
1872 LargeOps.push_back(T->getOperand());
1873 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00001874 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00001875 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001876 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00001877 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1878 if (const SCEVTruncateExpr *T =
1879 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1880 if (T->getOperand()->getType() != SrcType) {
1881 Ok = false;
1882 break;
1883 }
1884 LargeMulOps.push_back(T->getOperand());
1885 } else if (const SCEVConstant *C =
1886 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00001887 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00001888 } else {
1889 Ok = false;
1890 break;
1891 }
1892 }
1893 if (Ok)
1894 LargeOps.push_back(getMulExpr(LargeMulOps));
1895 } else {
1896 Ok = false;
1897 break;
1898 }
1899 }
1900 if (Ok) {
1901 // Evaluate the expression in the larger type.
Andrew Trick8b55b732011-03-14 16:50:06 +00001902 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman2e55cc52009-05-08 21:03:19 +00001903 // If it folds to something simple, use it. Otherwise, don't.
1904 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1905 return getTruncateExpr(Fold, DstType);
1906 }
1907 }
1908
1909 // Skip past any other cast SCEVs.
Dan Gohmaneed125f2007-06-18 19:30:09 +00001910 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1911 ++Idx;
1912
1913 // If there are add operands they would be next.
Chris Lattnerd934c702004-04-02 20:23:17 +00001914 if (Idx < Ops.size()) {
1915 bool DeletedAdd = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00001916 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001917 // If we have an add, expand the add operands onto the end of the operands
1918 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00001919 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00001920 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00001921 DeletedAdd = true;
1922 }
1923
1924 // If we deleted at least one add, we added operands to the end of the list,
1925 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00001926 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00001927 if (DeletedAdd)
Dan Gohmana37eaf22007-10-22 18:31:58 +00001928 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001929 }
1930
1931 // Skip over the add expression until we get to a multiply.
1932 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1933 ++Idx;
1934
Dan Gohman038d02e2009-06-14 22:58:51 +00001935 // Check to see if there are any folding opportunities present with
1936 // operands multiplied by constant values.
1937 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1938 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohmanaf752342009-07-07 17:06:11 +00001939 DenseMap<const SCEV *, APInt> M;
1940 SmallVector<const SCEV *, 8> NewOps;
Dan Gohman038d02e2009-06-14 22:58:51 +00001941 APInt AccumulatedConstant(BitWidth, 0);
1942 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001943 Ops.data(), Ops.size(),
1944 APInt(BitWidth, 1), *this)) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001945 // Some interesting folding opportunity is present, so its worthwhile to
1946 // re-generate the operands list. Group the operands by constant scale,
1947 // to avoid multiplying by the same constant scale multiple times.
Dan Gohmanaf752342009-07-07 17:06:11 +00001948 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Craig Topper31ee5862013-07-03 15:07:05 +00001949 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001950 E = NewOps.end(); I != E; ++I)
1951 MulOpLists[M.find(*I)->second].push_back(*I);
1952 // Re-generate the operands list.
1953 Ops.clear();
1954 if (AccumulatedConstant != 0)
1955 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohmance973df2009-06-24 04:48:43 +00001956 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1957 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohman038d02e2009-06-14 22:58:51 +00001958 if (I->first != 0)
Dan Gohmance973df2009-06-24 04:48:43 +00001959 Ops.push_back(getMulExpr(getConstant(I->first),
1960 getAddExpr(I->second)));
Dan Gohman038d02e2009-06-14 22:58:51 +00001961 if (Ops.empty())
Dan Gohman1d2ded72010-05-03 22:09:21 +00001962 return getConstant(Ty, 0);
Dan Gohman038d02e2009-06-14 22:58:51 +00001963 if (Ops.size() == 1)
1964 return Ops[0];
1965 return getAddExpr(Ops);
1966 }
1967 }
1968
Chris Lattnerd934c702004-04-02 20:23:17 +00001969 // If we are adding something to a multiply expression, make sure the
1970 // something is not already an operand of the multiply. If so, merge it into
1971 // the multiply.
1972 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman48f82222009-05-04 22:30:44 +00001973 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001974 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman48f82222009-05-04 22:30:44 +00001975 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman157847f2010-08-12 14:52:55 +00001976 if (isa<SCEVConstant>(MulOpSCEV))
1977 continue;
Chris Lattnerd934c702004-04-02 20:23:17 +00001978 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman157847f2010-08-12 14:52:55 +00001979 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001980 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohmanaf752342009-07-07 17:06:11 +00001981 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00001982 if (Mul->getNumOperands() != 2) {
1983 // If the multiply has more than two operands, we must get the
1984 // Y*Z term.
Dan Gohman797a1db2010-08-16 16:57:24 +00001985 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1986 Mul->op_begin()+MulOp);
1987 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00001988 InnerMul = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00001989 }
Dan Gohman1d2ded72010-05-03 22:09:21 +00001990 const SCEV *One = getConstant(Ty, 1);
Dan Gohmancf32f2b2010-08-13 20:17:14 +00001991 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman157847f2010-08-12 14:52:55 +00001992 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattnerd934c702004-04-02 20:23:17 +00001993 if (Ops.size() == 2) return OuterMul;
1994 if (AddOp < Idx) {
1995 Ops.erase(Ops.begin()+AddOp);
1996 Ops.erase(Ops.begin()+Idx-1);
1997 } else {
1998 Ops.erase(Ops.begin()+Idx);
1999 Ops.erase(Ops.begin()+AddOp-1);
2000 }
2001 Ops.push_back(OuterMul);
Dan Gohmana37eaf22007-10-22 18:31:58 +00002002 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002003 }
Misha Brukman01808ca2005-04-21 21:13:18 +00002004
Chris Lattnerd934c702004-04-02 20:23:17 +00002005 // Check this multiply against other multiplies being added together.
2006 for (unsigned OtherMulIdx = Idx+1;
2007 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2008 ++OtherMulIdx) {
Dan Gohman48f82222009-05-04 22:30:44 +00002009 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002010 // If MulOp occurs in OtherMul, we can fold the two multiplies
2011 // together.
2012 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2013 OMulOp != e; ++OMulOp)
2014 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2015 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohmanaf752342009-07-07 17:06:11 +00002016 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002017 if (Mul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002018 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002019 Mul->op_begin()+MulOp);
2020 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002021 InnerMul1 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002022 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002023 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00002024 if (OtherMul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00002025 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00002026 OtherMul->op_begin()+OMulOp);
2027 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002028 InnerMul2 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002029 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002030 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2031 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattnerd934c702004-04-02 20:23:17 +00002032 if (Ops.size() == 2) return OuterMul;
Dan Gohmanaabfc522010-08-31 22:50:31 +00002033 Ops.erase(Ops.begin()+Idx);
2034 Ops.erase(Ops.begin()+OtherMulIdx-1);
2035 Ops.push_back(OuterMul);
2036 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002037 }
2038 }
2039 }
2040 }
2041
2042 // If there are any add recurrences in the operands list, see if any other
2043 // added values are loop invariant. If so, we can fold them into the
2044 // recurrence.
2045 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2046 ++Idx;
2047
2048 // Scan over all recurrences, trying to fold loop invariants into them.
2049 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2050 // Scan all of the other operands to this add and add them to the vector if
2051 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002052 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002053 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanebbd05f2010-04-12 23:08:18 +00002054 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002055 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002056 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002057 LIOps.push_back(Ops[i]);
2058 Ops.erase(Ops.begin()+i);
2059 --i; --e;
2060 }
2061
2062 // If we found some loop invariants, fold them into the recurrence.
2063 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002064 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattnerd934c702004-04-02 20:23:17 +00002065 LIOps.push_back(AddRec->getStart());
2066
Dan Gohmanaf752342009-07-07 17:06:11 +00002067 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman7a2dab82009-12-18 03:57:04 +00002068 AddRec->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00002069 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00002070
Dan Gohman16206132010-06-30 07:16:37 +00002071 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher23bf3ba2011-01-11 09:02:09 +00002072 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002073 // Always propagate NW.
2074 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick8b55b732011-03-14 16:50:06 +00002075 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman51f13052009-12-18 18:45:31 +00002076
Chris Lattnerd934c702004-04-02 20:23:17 +00002077 // If all of the other operands were loop invariant, we are done.
2078 if (Ops.size() == 1) return NewRec;
2079
Nick Lewyckydb66b822011-09-06 05:08:09 +00002080 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002081 for (unsigned i = 0;; ++i)
2082 if (Ops[i] == AddRec) {
2083 Ops[i] = NewRec;
2084 break;
2085 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002086 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002087 }
2088
2089 // Okay, if there weren't any loop invariants to be folded, check to see if
2090 // there are multiple AddRec's with the same loop induction variable being
2091 // added together. If so, we can fold them.
2092 for (unsigned OtherIdx = Idx+1;
Dan Gohmanc866bf42010-08-27 20:45:56 +00002093 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2094 ++OtherIdx)
2095 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2096 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2097 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2098 AddRec->op_end());
2099 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2100 ++OtherIdx)
Dan Gohman028c1812010-08-29 14:53:34 +00002101 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohmanc866bf42010-08-27 20:45:56 +00002102 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman028c1812010-08-29 14:53:34 +00002103 if (OtherAddRec->getLoop() == AddRecLoop) {
2104 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2105 i != e; ++i) {
Dan Gohmanc866bf42010-08-27 20:45:56 +00002106 if (i >= AddRecOps.size()) {
Dan Gohman028c1812010-08-29 14:53:34 +00002107 AddRecOps.append(OtherAddRec->op_begin()+i,
2108 OtherAddRec->op_end());
Dan Gohmanc866bf42010-08-27 20:45:56 +00002109 break;
2110 }
Dan Gohman028c1812010-08-29 14:53:34 +00002111 AddRecOps[i] = getAddExpr(AddRecOps[i],
2112 OtherAddRec->getOperand(i));
Dan Gohmanc866bf42010-08-27 20:45:56 +00002113 }
2114 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattnerd934c702004-04-02 20:23:17 +00002115 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002116 // Step size has changed, so we cannot guarantee no self-wraparound.
2117 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohmanc866bf42010-08-27 20:45:56 +00002118 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002119 }
2120
2121 // Otherwise couldn't fold anything into this recurrence. Move onto the
2122 // next one.
2123 }
2124
2125 // Okay, it looks like we really DO need an add expr. Check to see if we
2126 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002127 FoldingSetNodeID ID;
2128 ID.AddInteger(scAddExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002129 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2130 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002131 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002132 SCEVAddExpr *S =
2133 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2134 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002135 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2136 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002137 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2138 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002139 UniqueSCEVs.InsertNode(S, IP);
2140 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002141 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002142 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002143}
2144
Nick Lewycky287682e2011-10-04 06:51:26 +00002145static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2146 uint64_t k = i*j;
2147 if (j > 1 && k / j != i) Overflow = true;
2148 return k;
2149}
2150
2151/// Compute the result of "n choose k", the binomial coefficient. If an
2152/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerbde91762012-06-02 10:20:22 +00002153/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewycky287682e2011-10-04 06:51:26 +00002154static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2155 // We use the multiplicative formula:
2156 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2157 // At each iteration, we take the n-th term of the numeral and divide by the
2158 // (k-n)th term of the denominator. This division will always produce an
2159 // integral result, and helps reduce the chance of overflow in the
2160 // intermediate computations. However, we can still overflow even when the
2161 // final result would fit.
2162
2163 if (n == 0 || n == k) return 1;
2164 if (k > n) return 0;
2165
2166 if (k > n/2)
2167 k = n-k;
2168
2169 uint64_t r = 1;
2170 for (uint64_t i = 1; i <= k; ++i) {
2171 r = umul_ov(r, n-(i-1), Overflow);
2172 r /= i;
2173 }
2174 return r;
2175}
2176
Nick Lewycky05044c22014-12-06 00:45:50 +00002177/// Determine if any of the operands in this SCEV are a constant or if
2178/// any of the add or multiply expressions in this SCEV contain a constant.
2179static bool containsConstantSomewhere(const SCEV *StartExpr) {
2180 SmallVector<const SCEV *, 4> Ops;
2181 Ops.push_back(StartExpr);
2182 while (!Ops.empty()) {
2183 const SCEV *CurrentExpr = Ops.pop_back_val();
2184 if (isa<SCEVConstant>(*CurrentExpr))
2185 return true;
2186
2187 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2188 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
2189 for (const SCEV *Operand : CurrentNAry->operands())
2190 Ops.push_back(Operand);
2191 }
2192 }
2193 return false;
2194}
2195
Dan Gohman4d5435d2009-05-24 23:45:28 +00002196/// getMulExpr - Get a canonical multiply expression, or something simpler if
2197/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00002198const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00002199 SCEV::NoWrapFlags Flags) {
2200 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2201 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00002202 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohman51ad99d2010-01-21 02:09:26 +00002203 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002204#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002205 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002206 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002207 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002208 "SCEVMulExpr operand types don't match!");
2209#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002210
Sanjoy Das81401d42015-01-10 23:41:24 +00002211 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002212
Chris Lattnerd934c702004-04-02 20:23:17 +00002213 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002214 GroupByComplexity(Ops, LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00002215
2216 // If there are any constants, fold them together.
2217 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002218 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002219
2220 // C1*(C2+V) -> C1*C2 + C1*V
2221 if (Ops.size() == 2)
Nick Lewycky05044c22014-12-06 00:45:50 +00002222 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2223 // If any of Add's ops are Adds or Muls with a constant,
2224 // apply this transformation as well.
2225 if (Add->getNumOperands() == 2)
2226 if (containsConstantSomewhere(Add))
2227 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2228 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002229
Chris Lattnerd934c702004-04-02 20:23:17 +00002230 ++Idx;
Dan Gohmana30370b2009-05-04 22:02:23 +00002231 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002232 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002233 ConstantInt *Fold = ConstantInt::get(getContext(),
2234 LHSC->getValue()->getValue() *
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002235 RHSC->getValue()->getValue());
2236 Ops[0] = getConstant(Fold);
2237 Ops.erase(Ops.begin()+1); // Erase the folded element
2238 if (Ops.size() == 1) return Ops[0];
2239 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00002240 }
2241
2242 // If we are left with a constant one being multiplied, strip it off.
2243 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2244 Ops.erase(Ops.begin());
2245 --Idx;
Reid Spencer2e54a152007-03-02 00:28:52 +00002246 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002247 // If we have a multiply of zero, it will always be zero.
2248 return Ops[0];
Dan Gohman51ad99d2010-01-21 02:09:26 +00002249 } else if (Ops[0]->isAllOnesValue()) {
2250 // If we have a mul by -1 of an add, try distributing the -1 among the
2251 // add operands.
Andrew Trick8b55b732011-03-14 16:50:06 +00002252 if (Ops.size() == 2) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002253 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2254 SmallVector<const SCEV *, 4> NewOps;
2255 bool AnyFolded = false;
Andrew Trick8b55b732011-03-14 16:50:06 +00002256 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
2257 E = Add->op_end(); I != E; ++I) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002258 const SCEV *Mul = getMulExpr(Ops[0], *I);
2259 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2260 NewOps.push_back(Mul);
2261 }
2262 if (AnyFolded)
2263 return getAddExpr(NewOps);
2264 }
Andrew Tricke92dcce2011-03-14 17:38:54 +00002265 else if (const SCEVAddRecExpr *
2266 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2267 // Negation preserves a recurrence's no self-wrap property.
2268 SmallVector<const SCEV *, 4> Operands;
2269 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
2270 E = AddRec->op_end(); I != E; ++I) {
2271 Operands.push_back(getMulExpr(Ops[0], *I));
2272 }
2273 return getAddRecExpr(Operands, AddRec->getLoop(),
2274 AddRec->getNoWrapFlags(SCEV::FlagNW));
2275 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002276 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002277 }
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002278
2279 if (Ops.size() == 1)
2280 return Ops[0];
Chris Lattnerd934c702004-04-02 20:23:17 +00002281 }
2282
2283 // Skip over the add expression until we get to a multiply.
2284 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2285 ++Idx;
2286
Chris Lattnerd934c702004-04-02 20:23:17 +00002287 // If there are mul operands inline them all into this expression.
2288 if (Idx < Ops.size()) {
2289 bool DeletedMul = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002290 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002291 // If we have an mul, expand the mul operands onto the end of the operands
2292 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00002293 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002294 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00002295 DeletedMul = true;
2296 }
2297
2298 // If we deleted at least one mul, we added operands to the end of the list,
2299 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00002300 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00002301 if (DeletedMul)
Dan Gohmana37eaf22007-10-22 18:31:58 +00002302 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002303 }
2304
2305 // If there are any add recurrences in the operands list, see if any other
2306 // added values are loop invariant. If so, we can fold them into the
2307 // recurrence.
2308 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2309 ++Idx;
2310
2311 // Scan over all recurrences, trying to fold loop invariants into them.
2312 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2313 // Scan all of the other operands to this mul and add them to the vector if
2314 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00002315 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00002316 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f2de012010-08-29 14:55:19 +00002317 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00002318 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002319 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002320 LIOps.push_back(Ops[i]);
2321 Ops.erase(Ops.begin()+i);
2322 --i; --e;
2323 }
2324
2325 // If we found some loop invariants, fold them into the recurrence.
2326 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002327 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanaf752342009-07-07 17:06:11 +00002328 SmallVector<const SCEV *, 4> NewOps;
Chris Lattnerd934c702004-04-02 20:23:17 +00002329 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman8f5954f2010-06-17 23:34:09 +00002330 const SCEV *Scale = getMulExpr(LIOps);
2331 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2332 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002333
Dan Gohman16206132010-06-30 07:16:37 +00002334 // Build the new addrec. Propagate the NUW and NSW flags if both the
2335 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick8b55b732011-03-14 16:50:06 +00002336 //
2337 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002338 // will be inferred if either NUW or NSW is true.
Andrew Trick8b55b732011-03-14 16:50:06 +00002339 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2340 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002341
2342 // If all of the other operands were loop invariant, we are done.
2343 if (Ops.size() == 1) return NewRec;
2344
Nick Lewyckydb66b822011-09-06 05:08:09 +00002345 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002346 for (unsigned i = 0;; ++i)
2347 if (Ops[i] == AddRec) {
2348 Ops[i] = NewRec;
2349 break;
2350 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002351 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002352 }
2353
2354 // Okay, if there weren't any loop invariants to be folded, check to see if
2355 // there are multiple AddRec's with the same loop induction variable being
2356 // multiplied together. If so, we can fold them.
Nick Lewycky97756402014-09-01 05:17:15 +00002357
2358 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2359 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2360 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2361 // ]]],+,...up to x=2n}.
2362 // Note that the arguments to choose() are always integers with values
2363 // known at compile time, never SCEV objects.
2364 //
2365 // The implementation avoids pointless extra computations when the two
2366 // addrec's are of different length (mathematically, it's equivalent to
2367 // an infinite stream of zeros on the right).
2368 bool OpsModified = false;
Chris Lattnerd934c702004-04-02 20:23:17 +00002369 for (unsigned OtherIdx = Idx+1;
Nick Lewycky97756402014-09-01 05:17:15 +00002370 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002371 ++OtherIdx) {
Nick Lewycky97756402014-09-01 05:17:15 +00002372 const SCEVAddRecExpr *OtherAddRec =
2373 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2374 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
Andrew Trick946f76b2012-05-30 03:35:17 +00002375 continue;
2376
Nick Lewycky97756402014-09-01 05:17:15 +00002377 bool Overflow = false;
2378 Type *Ty = AddRec->getType();
2379 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2380 SmallVector<const SCEV*, 7> AddRecOps;
2381 for (int x = 0, xe = AddRec->getNumOperands() +
2382 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2383 const SCEV *Term = getConstant(Ty, 0);
2384 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2385 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2386 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2387 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2388 z < ze && !Overflow; ++z) {
2389 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2390 uint64_t Coeff;
2391 if (LargerThan64Bits)
2392 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2393 else
2394 Coeff = Coeff1*Coeff2;
2395 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2396 const SCEV *Term1 = AddRec->getOperand(y-z);
2397 const SCEV *Term2 = OtherAddRec->getOperand(z);
2398 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Andrew Trick946f76b2012-05-30 03:35:17 +00002399 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002400 }
Nick Lewycky97756402014-09-01 05:17:15 +00002401 AddRecOps.push_back(Term);
Chris Lattnerd934c702004-04-02 20:23:17 +00002402 }
Nick Lewycky97756402014-09-01 05:17:15 +00002403 if (!Overflow) {
2404 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2405 SCEV::FlagAnyWrap);
2406 if (Ops.size() == 2) return NewAddRec;
2407 Ops[Idx] = NewAddRec;
2408 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2409 OpsModified = true;
2410 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2411 if (!AddRec)
2412 break;
2413 }
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002414 }
Nick Lewycky97756402014-09-01 05:17:15 +00002415 if (OpsModified)
2416 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002417
2418 // Otherwise couldn't fold anything into this recurrence. Move onto the
2419 // next one.
2420 }
2421
2422 // Okay, it looks like we really DO need an mul expr. Check to see if we
2423 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002424 FoldingSetNodeID ID;
2425 ID.AddInteger(scMulExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002426 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2427 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002428 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002429 SCEVMulExpr *S =
2430 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2431 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002432 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2433 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002434 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2435 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002436 UniqueSCEVs.InsertNode(S, IP);
2437 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002438 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002439 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002440}
2441
Andreas Bolka7a5c8db2009-08-07 22:55:26 +00002442/// getUDivExpr - Get a canonical unsigned division expression, or something
2443/// simpler if possible.
Dan Gohmanabd17092009-06-24 14:49:00 +00002444const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2445 const SCEV *RHS) {
Dan Gohmand33f36e2009-05-18 15:44:58 +00002446 assert(getEffectiveSCEVType(LHS->getType()) ==
2447 getEffectiveSCEVType(RHS->getType()) &&
2448 "SCEVUDivExpr operand types don't match!");
2449
Dan Gohmana30370b2009-05-04 22:02:23 +00002450 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002451 if (RHSC->getValue()->equalsInt(1))
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00002452 return LHS; // X udiv 1 --> x
Dan Gohmanacd700a2010-04-22 01:35:11 +00002453 // If the denominator is zero, the result of the udiv is undefined. Don't
2454 // try to analyze it, because the resolution chosen here may differ from
2455 // the resolution chosen in other parts of the compiler.
2456 if (!RHSC->getValue()->isZero()) {
2457 // Determine if the division can be folded into the operands of
2458 // its operands.
2459 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattner229907c2011-07-18 04:54:35 +00002460 Type *Ty = LHS->getType();
Dan Gohmanacd700a2010-04-22 01:35:11 +00002461 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmandb764c62010-08-04 19:52:50 +00002462 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanacd700a2010-04-22 01:35:11 +00002463 // For non-power-of-two values, effectively round the value up to the
2464 // nearest power of two.
2465 if (!RHSC->getValue()->getValue().isPowerOf2())
2466 ++MaxShiftAmt;
Chris Lattner229907c2011-07-18 04:54:35 +00002467 IntegerType *ExtTy =
Dan Gohmanacd700a2010-04-22 01:35:11 +00002468 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanacd700a2010-04-22 01:35:11 +00002469 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2470 if (const SCEVConstant *Step =
Andrew Trick6d45a012011-08-06 07:00:37 +00002471 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2472 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2473 const APInt &StepInt = Step->getValue()->getValue();
2474 const APInt &DivInt = RHSC->getValue()->getValue();
2475 if (!StepInt.urem(DivInt) &&
Dan Gohmanacd700a2010-04-22 01:35:11 +00002476 getZeroExtendExpr(AR, ExtTy) ==
2477 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2478 getZeroExtendExpr(Step, ExtTy),
Andrew Trick8b55b732011-03-14 16:50:06 +00002479 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002480 SmallVector<const SCEV *, 4> Operands;
2481 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2482 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick8b55b732011-03-14 16:50:06 +00002483 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002484 SCEV::FlagNW);
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002485 }
Andrew Trick6d45a012011-08-06 07:00:37 +00002486 /// Get a canonical UDivExpr for a recurrence.
2487 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2488 // We can currently only fold X%N if X is constant.
2489 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2490 if (StartC && !DivInt.urem(StepInt) &&
2491 getZeroExtendExpr(AR, ExtTy) ==
2492 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2493 getZeroExtendExpr(Step, ExtTy),
2494 AR->getLoop(), SCEV::FlagAnyWrap)) {
2495 const APInt &StartInt = StartC->getValue()->getValue();
2496 const APInt &StartRem = StartInt.urem(StepInt);
2497 if (StartRem != 0)
2498 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2499 AR->getLoop(), SCEV::FlagNW);
2500 }
2501 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002502 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2503 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2504 SmallVector<const SCEV *, 4> Operands;
2505 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2506 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2507 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2508 // Find an operand that's safely divisible.
2509 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2510 const SCEV *Op = M->getOperand(i);
2511 const SCEV *Div = getUDivExpr(Op, RHSC);
2512 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2513 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2514 M->op_end());
2515 Operands[i] = Div;
2516 return getMulExpr(Operands);
2517 }
2518 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002519 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002520 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Trick7d1eea82011-04-27 18:17:36 +00002521 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002522 SmallVector<const SCEV *, 4> Operands;
2523 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2524 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2525 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2526 Operands.clear();
2527 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2528 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2529 if (isa<SCEVUDivExpr>(Op) ||
2530 getMulExpr(Op, RHS) != A->getOperand(i))
2531 break;
2532 Operands.push_back(Op);
2533 }
2534 if (Operands.size() == A->getNumOperands())
2535 return getAddExpr(Operands);
2536 }
2537 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002538
Dan Gohmanacd700a2010-04-22 01:35:11 +00002539 // Fold if both operands are constant.
2540 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2541 Constant *LHSCV = LHSC->getValue();
2542 Constant *RHSCV = RHSC->getValue();
2543 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2544 RHSCV)));
2545 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002546 }
2547 }
2548
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002549 FoldingSetNodeID ID;
2550 ID.AddInteger(scUDivExpr);
2551 ID.AddPointer(LHS);
2552 ID.AddPointer(RHS);
Craig Topper9f008862014-04-15 04:59:12 +00002553 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002554 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00002555 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2556 LHS, RHS);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002557 UniqueSCEVs.InsertNode(S, IP);
2558 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002559}
2560
Nick Lewycky31eaca52014-01-27 10:04:03 +00002561static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2562 APInt A = C1->getValue()->getValue().abs();
2563 APInt B = C2->getValue()->getValue().abs();
2564 uint32_t ABW = A.getBitWidth();
2565 uint32_t BBW = B.getBitWidth();
2566
2567 if (ABW > BBW)
2568 B = B.zext(ABW);
2569 else if (ABW < BBW)
2570 A = A.zext(BBW);
2571
2572 return APIntOps::GreatestCommonDivisor(A, B);
2573}
2574
2575/// getUDivExactExpr - Get a canonical unsigned division expression, or
2576/// something simpler if possible. There is no representation for an exact udiv
2577/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2578/// We can't do this when it's not exact because the udiv may be clearing bits.
2579const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2580 const SCEV *RHS) {
2581 // TODO: we could try to find factors in all sorts of things, but for now we
2582 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2583 // end of this file for inspiration.
2584
2585 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2586 if (!Mul)
2587 return getUDivExpr(LHS, RHS);
2588
2589 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2590 // If the mulexpr multiplies by a constant, then that constant must be the
2591 // first element of the mulexpr.
2592 if (const SCEVConstant *LHSCst =
2593 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2594 if (LHSCst == RHSCst) {
2595 SmallVector<const SCEV *, 2> Operands;
2596 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2597 return getMulExpr(Operands);
2598 }
2599
2600 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2601 // that there's a factor provided by one of the other terms. We need to
2602 // check.
2603 APInt Factor = gcd(LHSCst, RHSCst);
2604 if (!Factor.isIntN(1)) {
2605 LHSCst = cast<SCEVConstant>(
2606 getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
2607 RHSCst = cast<SCEVConstant>(
2608 getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
2609 SmallVector<const SCEV *, 2> Operands;
2610 Operands.push_back(LHSCst);
2611 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2612 LHS = getMulExpr(Operands);
2613 RHS = RHSCst;
Nick Lewycky629199c2014-01-27 10:47:44 +00002614 Mul = dyn_cast<SCEVMulExpr>(LHS);
2615 if (!Mul)
2616 return getUDivExactExpr(LHS, RHS);
Nick Lewycky31eaca52014-01-27 10:04:03 +00002617 }
2618 }
2619 }
2620
2621 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2622 if (Mul->getOperand(i) == RHS) {
2623 SmallVector<const SCEV *, 2> Operands;
2624 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2625 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2626 return getMulExpr(Operands);
2627 }
2628 }
2629
2630 return getUDivExpr(LHS, RHS);
2631}
Chris Lattnerd934c702004-04-02 20:23:17 +00002632
Dan Gohman4d5435d2009-05-24 23:45:28 +00002633/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2634/// Simplify the expression as much as possible.
Andrew Trick8b55b732011-03-14 16:50:06 +00002635const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2636 const Loop *L,
2637 SCEV::NoWrapFlags Flags) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002638 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00002639 Operands.push_back(Start);
Dan Gohmana30370b2009-05-04 22:02:23 +00002640 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattnerd934c702004-04-02 20:23:17 +00002641 if (StepChrec->getLoop() == L) {
Dan Gohmandd41bba2010-06-21 19:47:52 +00002642 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002643 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattnerd934c702004-04-02 20:23:17 +00002644 }
2645
2646 Operands.push_back(Step);
Andrew Trick8b55b732011-03-14 16:50:06 +00002647 return getAddRecExpr(Operands, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002648}
2649
Dan Gohman4d5435d2009-05-24 23:45:28 +00002650/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2651/// Simplify the expression as much as possible.
Dan Gohmance973df2009-06-24 04:48:43 +00002652const SCEV *
Dan Gohmanaf752342009-07-07 17:06:11 +00002653ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick8b55b732011-03-14 16:50:06 +00002654 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002655 if (Operands.size() == 1) return Operands[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002656#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002657 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002658 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002659 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002660 "SCEVAddRecExpr operand types don't match!");
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002661 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002662 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002663 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmand33f36e2009-05-18 15:44:58 +00002664#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002665
Dan Gohmanbe928e32008-06-18 16:23:07 +00002666 if (Operands.back()->isZero()) {
2667 Operands.pop_back();
Andrew Trick8b55b732011-03-14 16:50:06 +00002668 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmanbe928e32008-06-18 16:23:07 +00002669 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002670
Dan Gohmancf9c64e2010-02-19 18:49:22 +00002671 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2672 // use that information to infer NUW and NSW flags. However, computing a
2673 // BE count requires calling getAddRecExpr, so we may not yet have a
2674 // meaningful BE count at this point (and if we don't, we'd be stuck
2675 // with a SCEVCouldNotCompute as the cached BE count).
2676
Sanjoy Das81401d42015-01-10 23:41:24 +00002677 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002678
Dan Gohman223a5d22008-08-08 18:33:12 +00002679 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmana30370b2009-05-04 22:02:23 +00002680 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00002681 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman63c020a2010-08-13 20:23:25 +00002682 if (L->contains(NestedLoop) ?
Dan Gohman51ad99d2010-01-21 02:09:26 +00002683 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman63c020a2010-08-13 20:23:25 +00002684 (!NestedLoop->contains(L) &&
Dan Gohman51ad99d2010-01-21 02:09:26 +00002685 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002686 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohmancb0efec2009-12-18 01:14:11 +00002687 NestedAR->op_end());
Dan Gohman223a5d22008-08-08 18:33:12 +00002688 Operands[0] = NestedAR->getStart();
Dan Gohmancc030b72009-06-26 22:36:20 +00002689 // AddRecs require their operands be loop-invariant with respect to their
2690 // loops. Don't perform this transformation if it would break this
2691 // requirement.
2692 bool AllInvariant = true;
2693 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002694 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002695 AllInvariant = false;
2696 break;
2697 }
2698 if (AllInvariant) {
Andrew Trick8b55b732011-03-14 16:50:06 +00002699 // Create a recurrence for the outer loop with the same step size.
2700 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002701 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2702 // inner recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002703 SCEV::NoWrapFlags OuterFlags =
2704 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick8b55b732011-03-14 16:50:06 +00002705
2706 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohmancc030b72009-06-26 22:36:20 +00002707 AllInvariant = true;
2708 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002709 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002710 AllInvariant = false;
2711 break;
2712 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002713 if (AllInvariant) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002714 // Ok, both add recurrences are valid after the transformation.
Andrew Trick8b55b732011-03-14 16:50:06 +00002715 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002716 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2717 // the outer recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002718 SCEV::NoWrapFlags InnerFlags =
2719 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick8b55b732011-03-14 16:50:06 +00002720 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2721 }
Dan Gohmancc030b72009-06-26 22:36:20 +00002722 }
2723 // Reset Operands to its original state.
2724 Operands[0] = NestedAR;
Dan Gohman223a5d22008-08-08 18:33:12 +00002725 }
2726 }
2727
Dan Gohman8d67d2f2010-01-19 22:27:22 +00002728 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2729 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002730 FoldingSetNodeID ID;
2731 ID.AddInteger(scAddRecExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002732 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2733 ID.AddPointer(Operands[i]);
2734 ID.AddPointer(L);
Craig Topper9f008862014-04-15 04:59:12 +00002735 void *IP = nullptr;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002736 SCEVAddRecExpr *S =
2737 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2738 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002739 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2740 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002741 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2742 O, Operands.size(), L);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002743 UniqueSCEVs.InsertNode(S, IP);
2744 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002745 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002746 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002747}
2748
Dan Gohmanabd17092009-06-24 14:49:00 +00002749const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2750 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002751 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002752 Ops.push_back(LHS);
2753 Ops.push_back(RHS);
2754 return getSMaxExpr(Ops);
2755}
2756
Dan Gohmanaf752342009-07-07 17:06:11 +00002757const SCEV *
2758ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002759 assert(!Ops.empty() && "Cannot get empty smax!");
2760 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002761#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002762 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002763 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002764 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002765 "SCEVSMaxExpr operand types don't match!");
2766#endif
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002767
2768 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002769 GroupByComplexity(Ops, LI);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002770
2771 // If there are any constants, fold them together.
2772 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002773 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002774 ++Idx;
2775 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002776 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002777 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002778 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002779 APIntOps::smax(LHSC->getValue()->getValue(),
2780 RHSC->getValue()->getValue()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002781 Ops[0] = getConstant(Fold);
2782 Ops.erase(Ops.begin()+1); // Erase the folded element
2783 if (Ops.size() == 1) return Ops[0];
2784 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002785 }
2786
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002787 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002788 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2789 Ops.erase(Ops.begin());
2790 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002791 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2792 // If we have an smax with a constant maximum-int, it will always be
2793 // maximum-int.
2794 return Ops[0];
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002795 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002796
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002797 if (Ops.size() == 1) return Ops[0];
2798 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002799
2800 // Find the first SMax
2801 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2802 ++Idx;
2803
2804 // Check to see if one of the operands is an SMax. If so, expand its operands
2805 // onto our operand list, and recurse to simplify.
2806 if (Idx < Ops.size()) {
2807 bool DeletedSMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002808 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002809 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002810 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002811 DeletedSMax = true;
2812 }
2813
2814 if (DeletedSMax)
2815 return getSMaxExpr(Ops);
2816 }
2817
2818 // Okay, check to see if the same value occurs in the operand list twice. If
2819 // so, delete one. Since we sorted the list, these values are required to
2820 // be adjacent.
2821 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00002822 // X smax Y smax Y --> X smax Y
2823 // X smax Y --> X, if X is always greater than Y
2824 if (Ops[i] == Ops[i+1] ||
2825 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2826 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2827 --i; --e;
2828 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002829 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2830 --i; --e;
2831 }
2832
2833 if (Ops.size() == 1) return Ops[0];
2834
2835 assert(!Ops.empty() && "Reduced smax down to nothing!");
2836
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002837 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002838 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002839 FoldingSetNodeID ID;
2840 ID.AddInteger(scSMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002841 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2842 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002843 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002844 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00002845 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2846 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002847 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2848 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002849 UniqueSCEVs.InsertNode(S, IP);
2850 return S;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002851}
2852
Dan Gohmanabd17092009-06-24 14:49:00 +00002853const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2854 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002855 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002856 Ops.push_back(LHS);
2857 Ops.push_back(RHS);
2858 return getUMaxExpr(Ops);
2859}
2860
Dan Gohmanaf752342009-07-07 17:06:11 +00002861const SCEV *
2862ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002863 assert(!Ops.empty() && "Cannot get empty umax!");
2864 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002865#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002866 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002867 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002868 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002869 "SCEVUMaxExpr operand types don't match!");
2870#endif
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002871
2872 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002873 GroupByComplexity(Ops, LI);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002874
2875 // If there are any constants, fold them together.
2876 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002877 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002878 ++Idx;
2879 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002880 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002881 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002882 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002883 APIntOps::umax(LHSC->getValue()->getValue(),
2884 RHSC->getValue()->getValue()));
2885 Ops[0] = getConstant(Fold);
2886 Ops.erase(Ops.begin()+1); // Erase the folded element
2887 if (Ops.size() == 1) return Ops[0];
2888 LHSC = cast<SCEVConstant>(Ops[0]);
2889 }
2890
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002891 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002892 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2893 Ops.erase(Ops.begin());
2894 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002895 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2896 // If we have an umax with a constant maximum-int, it will always be
2897 // maximum-int.
2898 return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002899 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002900
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002901 if (Ops.size() == 1) return Ops[0];
2902 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002903
2904 // Find the first UMax
2905 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2906 ++Idx;
2907
2908 // Check to see if one of the operands is a UMax. If so, expand its operands
2909 // onto our operand list, and recurse to simplify.
2910 if (Idx < Ops.size()) {
2911 bool DeletedUMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002912 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002913 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002914 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002915 DeletedUMax = true;
2916 }
2917
2918 if (DeletedUMax)
2919 return getUMaxExpr(Ops);
2920 }
2921
2922 // Okay, check to see if the same value occurs in the operand list twice. If
2923 // so, delete one. Since we sorted the list, these values are required to
2924 // be adjacent.
2925 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00002926 // X umax Y umax Y --> X umax Y
2927 // X umax Y --> X, if X is always greater than Y
2928 if (Ops[i] == Ops[i+1] ||
2929 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2930 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2931 --i; --e;
2932 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002933 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2934 --i; --e;
2935 }
2936
2937 if (Ops.size() == 1) return Ops[0];
2938
2939 assert(!Ops.empty() && "Reduced umax down to nothing!");
2940
2941 // Okay, it looks like we really DO need a umax expr. Check to see if we
2942 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002943 FoldingSetNodeID ID;
2944 ID.AddInteger(scUMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002945 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2946 ID.AddPointer(Ops[i]);
Craig Topper9f008862014-04-15 04:59:12 +00002947 void *IP = nullptr;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002948 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00002949 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2950 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002951 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2952 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002953 UniqueSCEVs.InsertNode(S, IP);
2954 return S;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002955}
2956
Dan Gohmanabd17092009-06-24 14:49:00 +00002957const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2958 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00002959 // ~smax(~x, ~y) == smin(x, y).
2960 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2961}
2962
Dan Gohmanabd17092009-06-24 14:49:00 +00002963const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2964 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00002965 // ~umax(~x, ~y) == umin(x, y)
2966 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2967}
2968
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002969const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002970 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00002971 // constant expression and then folding it back into a ConstantInt.
2972 // This is just a compile-time optimization.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002973 if (DL)
2974 return getConstant(IntTy, DL->getTypeAllocSize(AllocTy));
Dan Gohman11862a62010-04-12 23:03:26 +00002975
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00002976 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2977 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002978 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
Dan Gohmana3b6c4b2010-05-28 16:12:08 +00002979 C = Folded;
Chris Lattner229907c2011-07-18 04:54:35 +00002980 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002981 assert(Ty == IntTy && "Effective SCEV type doesn't match");
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00002982 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2983}
2984
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002985const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
2986 StructType *STy,
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00002987 unsigned FieldNo) {
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002988 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00002989 // constant expression and then folding it back into a ConstantInt.
2990 // This is just a compile-time optimization.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002991 if (DL) {
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002992 return getConstant(IntTy,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002993 DL->getStructLayout(STy)->getElementOffset(FieldNo));
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002994 }
Dan Gohman11862a62010-04-12 23:03:26 +00002995
Dan Gohmancf913832010-01-28 02:15:55 +00002996 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2997 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002998 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
Dan Gohmana3b6c4b2010-05-28 16:12:08 +00002999 C = Folded;
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003000
Matt Arsenault4ed49b52013-10-21 18:08:09 +00003001 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohmancf913832010-01-28 02:15:55 +00003002 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003003}
3004
Dan Gohmanaf752342009-07-07 17:06:11 +00003005const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf436bac2009-06-24 00:54:57 +00003006 // Don't attempt to do anything other than create a SCEVUnknown object
3007 // here. createSCEV only calls getUnknown after checking for all other
3008 // interesting possibilities, and any other code that calls getUnknown
3009 // is doing so in order to hide a value from SCEV canonicalization.
3010
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003011 FoldingSetNodeID ID;
3012 ID.AddInteger(scUnknown);
3013 ID.AddPointer(V);
Craig Topper9f008862014-04-15 04:59:12 +00003014 void *IP = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00003015 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3016 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3017 "Stale SCEVUnknown in uniquing map!");
3018 return S;
3019 }
3020 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3021 FirstUnknown);
3022 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003023 UniqueSCEVs.InsertNode(S, IP);
3024 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +00003025}
3026
Chris Lattnerd934c702004-04-02 20:23:17 +00003027//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00003028// Basic SCEV Analysis and PHI Idiom Recognition Code
3029//
3030
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003031/// isSCEVable - Test if values of the given type are analyzable within
3032/// the SCEV framework. This primarily includes integer types, and it
3033/// can optionally include pointer types if the ScalarEvolution class
3034/// has access to target-specific information.
Chris Lattner229907c2011-07-18 04:54:35 +00003035bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003036 // Integers and pointers are always SCEVable.
Duncan Sands19d0b472010-02-16 11:11:14 +00003037 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003038}
3039
3040/// getTypeSizeInBits - Return the size in bits of the specified type,
3041/// for which isSCEVable must return true.
Chris Lattner229907c2011-07-18 04:54:35 +00003042uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003043 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3044
Micah Villmowcdfe20b2012-10-08 16:38:25 +00003045 // If we have a DataLayout, use it!
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003046 if (DL)
3047 return DL->getTypeSizeInBits(Ty);
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003048
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003049 // Integer types have fixed sizes.
Duncan Sands9dff9be2010-02-15 16:12:20 +00003050 if (Ty->isIntegerTy())
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003051 return Ty->getPrimitiveSizeInBits();
3052
Micah Villmowcdfe20b2012-10-08 16:38:25 +00003053 // The only other support type is pointer. Without DataLayout, conservatively
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003054 // assume pointers are 64-bit.
Duncan Sands19d0b472010-02-16 11:11:14 +00003055 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003056 return 64;
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003057}
3058
3059/// getEffectiveSCEVType - Return a type with the same bitwidth as
3060/// the given type and which represents how SCEV will treat the given
3061/// type, for which isSCEVable must return true. For pointer types,
3062/// this is the pointer-sized integer type.
Chris Lattner229907c2011-07-18 04:54:35 +00003063Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003064 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3065
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003066 if (Ty->isIntegerTy()) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003067 return Ty;
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003068 }
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003069
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003070 // The only other support type is pointer.
Duncan Sands19d0b472010-02-16 11:11:14 +00003071 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003072
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003073 if (DL)
3074 return DL->getIntPtrType(Ty);
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003075
Micah Villmowcdfe20b2012-10-08 16:38:25 +00003076 // Without DataLayout, conservatively assume pointers are 64-bit.
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00003077 return Type::getInt64Ty(getContext());
Dan Gohman0a40ad92009-04-16 03:18:22 +00003078}
Chris Lattnerd934c702004-04-02 20:23:17 +00003079
Dan Gohmanaf752342009-07-07 17:06:11 +00003080const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00003081 return &CouldNotCompute;
Dan Gohman31efa302009-04-18 17:58:19 +00003082}
3083
Shuxin Yangefc4c012013-07-08 17:33:13 +00003084namespace {
3085 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3086 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3087 // is set iff if find such SCEVUnknown.
3088 //
3089 struct FindInvalidSCEVUnknown {
3090 bool FindOne;
3091 FindInvalidSCEVUnknown() { FindOne = false; }
3092 bool follow(const SCEV *S) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00003093 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Shuxin Yangefc4c012013-07-08 17:33:13 +00003094 case scConstant:
3095 return false;
3096 case scUnknown:
Shuxin Yang23773b32013-07-12 07:25:38 +00003097 if (!cast<SCEVUnknown>(S)->getValue())
Shuxin Yangefc4c012013-07-08 17:33:13 +00003098 FindOne = true;
3099 return false;
3100 default:
3101 return true;
3102 }
3103 }
3104 bool isDone() const { return FindOne; }
3105 };
3106}
3107
3108bool ScalarEvolution::checkValidity(const SCEV *S) const {
3109 FindInvalidSCEVUnknown F;
3110 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3111 ST.visitAll(S);
3112
3113 return !F.FindOne;
3114}
3115
Chris Lattnerd934c702004-04-02 20:23:17 +00003116/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3117/// expression and create a new one.
Dan Gohmanaf752342009-07-07 17:06:11 +00003118const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003119 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattnerd934c702004-04-02 20:23:17 +00003120
Shuxin Yangefc4c012013-07-08 17:33:13 +00003121 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3122 if (I != ValueExprMap.end()) {
3123 const SCEV *S = I->second;
Shuxin Yang23773b32013-07-12 07:25:38 +00003124 if (checkValidity(S))
Shuxin Yangefc4c012013-07-08 17:33:13 +00003125 return S;
3126 else
3127 ValueExprMap.erase(I);
3128 }
Dan Gohmanaf752342009-07-07 17:06:11 +00003129 const SCEV *S = createSCEV(V);
Dan Gohmanc29eeae2010-08-16 16:31:39 +00003130
3131 // The process of creating a SCEV for V may have caused other SCEVs
3132 // to have been created, so it's necessary to insert the new entry
3133 // from scratch, rather than trying to remember the insert position
3134 // above.
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003135 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattnerd934c702004-04-02 20:23:17 +00003136 return S;
3137}
3138
Dan Gohman0a40ad92009-04-16 03:18:22 +00003139/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3140///
Dan Gohmanaf752342009-07-07 17:06:11 +00003141const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003142 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson53a52212009-07-13 04:09:18 +00003143 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003144 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003145
Chris Lattner229907c2011-07-18 04:54:35 +00003146 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003147 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003148 return getMulExpr(V,
Owen Anderson5a1acd92009-07-31 20:28:14 +00003149 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003150}
3151
3152/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanaf752342009-07-07 17:06:11 +00003153const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003154 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson542619e2009-07-13 20:58:05 +00003155 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00003156 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003157
Chris Lattner229907c2011-07-18 04:54:35 +00003158 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00003159 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00003160 const SCEV *AllOnes =
Owen Anderson5a1acd92009-07-31 20:28:14 +00003161 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003162 return getMinusSCEV(AllOnes, V);
3163}
3164
Andrew Trick8b55b732011-03-14 16:50:06 +00003165/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattnerfc877522011-01-09 22:26:35 +00003166const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00003167 SCEV::NoWrapFlags Flags) {
Andrew Tricka34f1b12011-03-15 01:16:14 +00003168 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
3169
Dan Gohman46f00a22010-07-20 16:53:00 +00003170 // Fast path: X - X --> 0.
3171 if (LHS == RHS)
3172 return getConstant(LHS->getType(), 0);
3173
Sanjoy Dascb473662015-01-22 00:48:47 +00003174 // X - Y --> X + -Y.
3175 // X -(nsw || nuw) Y --> X + -Y.
3176 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003177}
3178
3179/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3180/// input value to the specified type. If the type must be extended, it is zero
3181/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003182const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003183ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3184 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003185 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3186 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003187 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003188 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003189 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003190 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003191 return getTruncateExpr(V, Ty);
3192 return getZeroExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003193}
3194
3195/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3196/// input value to the specified type. If the type must be extended, it is sign
3197/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00003198const SCEV *
3199ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattner229907c2011-07-18 04:54:35 +00003200 Type *Ty) {
3201 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003202 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3203 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00003204 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003205 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00003206 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003207 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003208 return getTruncateExpr(V, Ty);
3209 return getSignExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003210}
3211
Dan Gohmane712a2f2009-05-13 03:46:30 +00003212/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3213/// input value to the specified type. If the type must be extended, it is zero
3214/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003215const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003216ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3217 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003218 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3219 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003220 "Cannot noop or zero extend with non-integer arguments!");
3221 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3222 "getNoopOrZeroExtend cannot truncate!");
3223 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3224 return V; // No conversion
3225 return getZeroExtendExpr(V, Ty);
3226}
3227
3228/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3229/// input value to the specified type. If the type must be extended, it is sign
3230/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003231const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003232ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3233 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003234 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3235 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003236 "Cannot noop or sign extend with non-integer arguments!");
3237 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3238 "getNoopOrSignExtend cannot truncate!");
3239 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3240 return V; // No conversion
3241 return getSignExtendExpr(V, Ty);
3242}
3243
Dan Gohman8db2edc2009-06-13 15:56:47 +00003244/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3245/// the input value to the specified type. If the type must be extended,
3246/// it is extended with unspecified bits. The conversion must not be
3247/// narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00003248const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003249ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3250 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003251 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3252 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman8db2edc2009-06-13 15:56:47 +00003253 "Cannot noop or any extend with non-integer arguments!");
3254 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3255 "getNoopOrAnyExtend cannot truncate!");
3256 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3257 return V; // No conversion
3258 return getAnyExtendExpr(V, Ty);
3259}
3260
Dan Gohmane712a2f2009-05-13 03:46:30 +00003261/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3262/// input value to the specified type. The conversion must not be widening.
Dan Gohmanaf752342009-07-07 17:06:11 +00003263const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00003264ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3265 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00003266 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3267 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00003268 "Cannot truncate or noop with non-integer arguments!");
3269 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3270 "getTruncateOrNoop cannot extend!");
3271 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3272 return V; // No conversion
3273 return getTruncateExpr(V, Ty);
3274}
3275
Dan Gohman96212b62009-06-22 00:31:57 +00003276/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3277/// the types using zero-extension, and then perform a umax operation
3278/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003279const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3280 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003281 const SCEV *PromotedLHS = LHS;
3282 const SCEV *PromotedRHS = RHS;
Dan Gohman96212b62009-06-22 00:31:57 +00003283
3284 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3285 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3286 else
3287 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3288
3289 return getUMaxExpr(PromotedLHS, PromotedRHS);
3290}
3291
Dan Gohman2bc22302009-06-22 15:03:27 +00003292/// getUMinFromMismatchedTypes - Promote the operands to the wider of
3293/// the types using zero-extension, and then perform a umin operation
3294/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00003295const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3296 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003297 const SCEV *PromotedLHS = LHS;
3298 const SCEV *PromotedRHS = RHS;
Dan Gohman2bc22302009-06-22 15:03:27 +00003299
3300 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3301 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3302 else
3303 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3304
3305 return getUMinExpr(PromotedLHS, PromotedRHS);
3306}
3307
Andrew Trick87716c92011-03-17 23:51:11 +00003308/// getPointerBase - Transitively follow the chain of pointer-type operands
3309/// until reaching a SCEV that does not have a single pointer operand. This
3310/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3311/// but corner cases do exist.
3312const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3313 // A pointer operand may evaluate to a nonpointer expression, such as null.
3314 if (!V->getType()->isPointerTy())
3315 return V;
3316
3317 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3318 return getPointerBase(Cast->getOperand());
3319 }
3320 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
Craig Topper9f008862014-04-15 04:59:12 +00003321 const SCEV *PtrOp = nullptr;
Andrew Trick87716c92011-03-17 23:51:11 +00003322 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
3323 I != E; ++I) {
3324 if ((*I)->getType()->isPointerTy()) {
3325 // Cannot find the base of an expression with multiple pointer operands.
3326 if (PtrOp)
3327 return V;
3328 PtrOp = *I;
3329 }
3330 }
3331 if (!PtrOp)
3332 return V;
3333 return getPointerBase(PtrOp);
3334 }
3335 return V;
3336}
3337
Dan Gohman0b89dff2009-07-25 01:13:03 +00003338/// PushDefUseChildren - Push users of the given Instruction
3339/// onto the given Worklist.
3340static void
3341PushDefUseChildren(Instruction *I,
3342 SmallVectorImpl<Instruction *> &Worklist) {
3343 // Push the def-use children onto the Worklist stack.
Chandler Carruthcdf47882014-03-09 03:16:01 +00003344 for (User *U : I->users())
3345 Worklist.push_back(cast<Instruction>(U));
Dan Gohman0b89dff2009-07-25 01:13:03 +00003346}
3347
3348/// ForgetSymbolicValue - This looks up computed SCEV values for all
3349/// instructions that depend on the given instruction and removes them from
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003350/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003351/// resolution.
Dan Gohmance973df2009-06-24 04:48:43 +00003352void
Dan Gohmana9c205c2010-02-25 06:57:05 +00003353ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohman0b89dff2009-07-25 01:13:03 +00003354 SmallVector<Instruction *, 16> Worklist;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003355 PushDefUseChildren(PN, Worklist);
Chris Lattnerd934c702004-04-02 20:23:17 +00003356
Dan Gohman0b89dff2009-07-25 01:13:03 +00003357 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003358 Visited.insert(PN);
Dan Gohman0b89dff2009-07-25 01:13:03 +00003359 while (!Worklist.empty()) {
Dan Gohmana9c205c2010-02-25 06:57:05 +00003360 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00003361 if (!Visited.insert(I).second)
3362 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003363
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003364 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003365 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003366 if (It != ValueExprMap.end()) {
Dan Gohman761065e2010-11-17 02:44:44 +00003367 const SCEV *Old = It->second;
3368
Dan Gohman0b89dff2009-07-25 01:13:03 +00003369 // Short-circuit the def-use traversal if the symbolic name
3370 // ceases to appear in expressions.
Dan Gohman534749b2010-11-17 22:27:42 +00003371 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohman0b89dff2009-07-25 01:13:03 +00003372 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003373
Dan Gohman0b89dff2009-07-25 01:13:03 +00003374 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohmana9c205c2010-02-25 06:57:05 +00003375 // structure, it's a PHI that's in the progress of being computed
3376 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3377 // additional loop trip count information isn't going to change anything.
3378 // In the second case, createNodeForPHI will perform the necessary
3379 // updates on its own when it gets to that point. In the third, we do
3380 // want to forget the SCEVUnknown.
3381 if (!isa<PHINode>(I) ||
Dan Gohman761065e2010-11-17 02:44:44 +00003382 !isa<SCEVUnknown>(Old) ||
3383 (I != PN && Old == SymName)) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00003384 forgetMemoizedResults(Old);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003385 ValueExprMap.erase(It);
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00003386 }
Dan Gohman0b89dff2009-07-25 01:13:03 +00003387 }
3388
3389 PushDefUseChildren(I, Worklist);
3390 }
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003391}
Chris Lattnerd934c702004-04-02 20:23:17 +00003392
3393/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
3394/// a loop header, making it a potential recurrence, or it doesn't.
3395///
Dan Gohmanaf752342009-07-07 17:06:11 +00003396const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003397 if (const Loop *L = LI->getLoopFor(PN->getParent()))
3398 if (L->getHeader() == PN->getParent()) {
3399 // The loop may have multiple entrances or multiple exits; we can analyze
3400 // this phi as an addrec if it has a unique entry value and a unique
3401 // backedge value.
Craig Topper9f008862014-04-15 04:59:12 +00003402 Value *BEValueV = nullptr, *StartValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003403 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3404 Value *V = PN->getIncomingValue(i);
3405 if (L->contains(PN->getIncomingBlock(i))) {
3406 if (!BEValueV) {
3407 BEValueV = V;
3408 } else if (BEValueV != V) {
Craig Topper9f008862014-04-15 04:59:12 +00003409 BEValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003410 break;
3411 }
3412 } else if (!StartValueV) {
3413 StartValueV = V;
3414 } else if (StartValueV != V) {
Craig Topper9f008862014-04-15 04:59:12 +00003415 StartValueV = nullptr;
Dan Gohman6635bb22010-04-12 07:49:36 +00003416 break;
3417 }
3418 }
3419 if (BEValueV && StartValueV) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003420 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohmanaf752342009-07-07 17:06:11 +00003421 const SCEV *SymbolicName = getUnknown(PN);
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003422 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
Chris Lattnerd934c702004-04-02 20:23:17 +00003423 "PHI node already processed?");
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003424 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattnerd934c702004-04-02 20:23:17 +00003425
3426 // Using this symbolic name for the PHI, analyze the value coming around
3427 // the back-edge.
Dan Gohman0b89dff2009-07-25 01:13:03 +00003428 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattnerd934c702004-04-02 20:23:17 +00003429
3430 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3431 // has a special value for the first iteration of the loop.
3432
3433 // If the value coming around the backedge is an add with the symbolic
3434 // value we just inserted, then we found a simple induction variable!
Dan Gohmana30370b2009-05-04 22:02:23 +00003435 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003436 // If there is a single occurrence of the symbolic value, replace it
3437 // with a recurrence.
3438 unsigned FoundIndex = Add->getNumOperands();
3439 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3440 if (Add->getOperand(i) == SymbolicName)
3441 if (FoundIndex == e) {
3442 FoundIndex = i;
3443 break;
3444 }
3445
3446 if (FoundIndex != Add->getNumOperands()) {
3447 // Create an add with everything but the specified operand.
Dan Gohmanaf752342009-07-07 17:06:11 +00003448 SmallVector<const SCEV *, 8> Ops;
Chris Lattnerd934c702004-04-02 20:23:17 +00003449 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3450 if (i != FoundIndex)
3451 Ops.push_back(Add->getOperand(i));
Dan Gohmanaf752342009-07-07 17:06:11 +00003452 const SCEV *Accum = getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00003453
3454 // This is not a valid addrec if the step amount is varying each
3455 // loop iteration, but is not itself an addrec in this loop.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003456 if (isLoopInvariant(Accum, L) ||
Chris Lattnerd934c702004-04-02 20:23:17 +00003457 (isa<SCEVAddRecExpr>(Accum) &&
3458 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003459 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohman51ad99d2010-01-21 02:09:26 +00003460
3461 // If the increment doesn't overflow, then neither the addrec nor
3462 // the post-increment will overflow.
3463 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3464 if (OBO->hasNoUnsignedWrap())
Andrew Trick8b55b732011-03-14 16:50:06 +00003465 Flags = setFlags(Flags, SCEV::FlagNUW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00003466 if (OBO->hasNoSignedWrap())
Andrew Trick8b55b732011-03-14 16:50:06 +00003467 Flags = setFlags(Flags, SCEV::FlagNSW);
Benjamin Kramer6094f302013-10-28 07:30:06 +00003468 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003469 // If the increment is an inbounds GEP, then we know the address
3470 // space cannot be wrapped around. We cannot make any guarantee
3471 // about signed or unsigned overflow because pointers are
3472 // unsigned but we may have a negative index from the base
Benjamin Kramer6094f302013-10-28 07:30:06 +00003473 // pointer. We can guarantee that no unsigned wrap occurs if the
3474 // indices form a positive value.
3475 if (GEP->isInBounds()) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00003476 Flags = setFlags(Flags, SCEV::FlagNW);
Benjamin Kramer6094f302013-10-28 07:30:06 +00003477
3478 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3479 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3480 Flags = setFlags(Flags, SCEV::FlagNUW);
3481 }
Sanjoy Dascb473662015-01-22 00:48:47 +00003482
3483 // We cannot transfer nuw and nsw flags from subtraction
3484 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
3485 // for instance.
Dan Gohman51ad99d2010-01-21 02:09:26 +00003486 }
3487
Dan Gohman6635bb22010-04-12 07:49:36 +00003488 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick8b55b732011-03-14 16:50:06 +00003489 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohman62ef6a72009-07-25 01:22:26 +00003490
Dan Gohman51ad99d2010-01-21 02:09:26 +00003491 // Since the no-wrap flags are on the increment, they apply to the
3492 // post-incremented value as well.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003493 if (isLoopInvariant(Accum, L))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003494 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick8b55b732011-03-14 16:50:06 +00003495 Accum, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00003496
3497 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003498 // to be symbolic. We now need to go back and purge all of the
3499 // entries for the scalars that use the symbolic expression.
3500 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003501 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnerd934c702004-04-02 20:23:17 +00003502 return PHISCEV;
3503 }
3504 }
Dan Gohmana30370b2009-05-04 22:02:23 +00003505 } else if (const SCEVAddRecExpr *AddRec =
3506 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003507 // Otherwise, this could be a loop like this:
3508 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3509 // In this case, j = {1,+,1} and BEValue is j.
3510 // Because the other in-value of i (0) fits the evolution of BEValue
3511 // i really is an addrec evolution.
3512 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003513 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003514
3515 // If StartVal = j.start - j.stride, we can use StartVal as the
3516 // initial step of the addrec evolution.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003517 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman068b7932010-04-11 23:44:58 +00003518 AddRec->getOperand(1))) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003519 // FIXME: For constant StartVal, we should be able to infer
3520 // no-wrap flags.
Dan Gohmanaf752342009-07-07 17:06:11 +00003521 const SCEV *PHISCEV =
Andrew Trick8b55b732011-03-14 16:50:06 +00003522 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3523 SCEV::FlagAnyWrap);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003524
3525 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003526 // to be symbolic. We now need to go back and purge all of the
3527 // entries for the scalars that use the symbolic expression.
3528 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003529 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003530 return PHISCEV;
3531 }
3532 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003533 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003534 }
Dan Gohman6635bb22010-04-12 07:49:36 +00003535 }
Misha Brukman01808ca2005-04-21 21:13:18 +00003536
Dan Gohmana9c205c2010-02-25 06:57:05 +00003537 // If the PHI has a single incoming value, follow that value, unless the
3538 // PHI's incoming blocks are in a different loop, in which case doing so
3539 // risks breaking LCSSA form. Instcombine would normally zap these, but
3540 // it doesn't have DominatorTree information, so it may miss cases.
Chandler Carruth66b31302015-01-04 12:03:27 +00003541 if (Value *V = SimplifyInstruction(PN, DL, TLI, DT, AC))
Duncan Sandsaef146b2010-11-18 19:59:41 +00003542 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohmana9c205c2010-02-25 06:57:05 +00003543 return getSCEV(V);
Duncan Sands39d771312010-11-17 20:49:12 +00003544
Chris Lattnerd934c702004-04-02 20:23:17 +00003545 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003546 return getUnknown(PN);
Chris Lattnerd934c702004-04-02 20:23:17 +00003547}
3548
Dan Gohmanee750d12009-05-08 20:26:55 +00003549/// createNodeForGEP - Expand GEP instructions into add and multiply
3550/// operations. This allows them to be analyzed by regular SCEV code.
3551///
Dan Gohmanb256ccf2009-12-18 02:09:29 +00003552const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Chris Lattner229907c2011-07-18 04:54:35 +00003553 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohman2173bd32009-05-08 20:36:47 +00003554 Value *Base = GEP->getOperand(0);
Dan Gohman30f24fe2009-05-09 00:14:52 +00003555 // Don't attempt to analyze GEPs over unsized objects.
Matt Arsenault404c60a2013-10-21 19:43:56 +00003556 if (!Base->getType()->getPointerElementType()->isSized())
Dan Gohman30f24fe2009-05-09 00:14:52 +00003557 return getUnknown(GEP);
Matt Arsenault4c265902013-09-27 22:38:23 +00003558
3559 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3560 // Add expression, because the Instruction may be guarded by control flow
3561 // and the no-overflow bits may not be valid for the expression in any
3562 // context.
3563 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3564
Dan Gohman1d2ded72010-05-03 22:09:21 +00003565 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohman2173bd32009-05-08 20:36:47 +00003566 gep_type_iterator GTI = gep_type_begin(GEP);
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +00003567 for (GetElementPtrInst::op_iterator I = std::next(GEP->op_begin()),
Dan Gohman2173bd32009-05-08 20:36:47 +00003568 E = GEP->op_end();
Dan Gohmanee750d12009-05-08 20:26:55 +00003569 I != E; ++I) {
3570 Value *Index = *I;
3571 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattner229907c2011-07-18 04:54:35 +00003572 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohmanee750d12009-05-08 20:26:55 +00003573 // For a struct, add the member offset.
Dan Gohmanee750d12009-05-08 20:26:55 +00003574 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003575 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
Dan Gohman16206132010-06-30 07:16:37 +00003576
Dan Gohman16206132010-06-30 07:16:37 +00003577 // Add the field offset to the running total offset.
Dan Gohmanc0cca7f2010-06-30 17:27:11 +00003578 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohmanee750d12009-05-08 20:26:55 +00003579 } else {
3580 // For an array, add the element offset, explicitly scaled.
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003581 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI);
Dan Gohman16206132010-06-30 07:16:37 +00003582 const SCEV *IndexS = getSCEV(Index);
Dan Gohman8b0a4192010-03-01 17:49:51 +00003583 // Getelementptr indices are signed.
Dan Gohman16206132010-06-30 07:16:37 +00003584 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3585
Dan Gohman16206132010-06-30 07:16:37 +00003586 // Multiply the index by the element size to compute the element offset.
Matt Arsenault4c265902013-09-27 22:38:23 +00003587 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap);
Dan Gohman16206132010-06-30 07:16:37 +00003588
3589 // Add the element offset to the running total offset.
Dan Gohmanc0cca7f2010-06-30 17:27:11 +00003590 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohmanee750d12009-05-08 20:26:55 +00003591 }
3592 }
Dan Gohman16206132010-06-30 07:16:37 +00003593
3594 // Get the SCEV for the GEP base.
3595 const SCEV *BaseS = getSCEV(Base);
3596
Dan Gohman16206132010-06-30 07:16:37 +00003597 // Add the total offset from all the GEP indices to the base.
Matt Arsenault4c265902013-09-27 22:38:23 +00003598 return getAddExpr(BaseS, TotalOffset, Wrap);
Dan Gohmanee750d12009-05-08 20:26:55 +00003599}
3600
Nick Lewycky3783b462007-11-22 07:59:40 +00003601/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3602/// guaranteed to end in (at every loop iteration). It is, at the same time,
3603/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3604/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003605uint32_t
Dan Gohmanaf752342009-07-07 17:06:11 +00003606ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003607 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner69ec1ec2007-11-23 22:36:49 +00003608 return C->getValue()->getValue().countTrailingZeros();
Chris Lattner49b090e2006-12-12 02:26:09 +00003609
Dan Gohmana30370b2009-05-04 22:02:23 +00003610 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanc702fc02009-06-19 23:29:04 +00003611 return std::min(GetMinTrailingZeros(T->getOperand()),
3612 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky3783b462007-11-22 07:59:40 +00003613
Dan Gohmana30370b2009-05-04 22:02:23 +00003614 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003615 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3616 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3617 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003618 }
3619
Dan Gohmana30370b2009-05-04 22:02:23 +00003620 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003621 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3622 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3623 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003624 }
3625
Dan Gohmana30370b2009-05-04 22:02:23 +00003626 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003627 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003628 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003629 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003630 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003631 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003632 }
3633
Dan Gohmana30370b2009-05-04 22:02:23 +00003634 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003635 // The result is the sum of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003636 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3637 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky3783b462007-11-22 07:59:40 +00003638 for (unsigned i = 1, e = M->getNumOperands();
3639 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003640 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky3783b462007-11-22 07:59:40 +00003641 BitWidth);
3642 return SumOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003643 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003644
Dan Gohmana30370b2009-05-04 22:02:23 +00003645 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003646 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003647 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003648 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003649 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003650 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003651 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003652
Dan Gohmana30370b2009-05-04 22:02:23 +00003653 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003654 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003655 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003656 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003657 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003658 return MinOpRes;
3659 }
3660
Dan Gohmana30370b2009-05-04 22:02:23 +00003661 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003662 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003663 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003664 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003665 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003666 return MinOpRes;
3667 }
3668
Dan Gohmanc702fc02009-06-19 23:29:04 +00003669 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3670 // For a SCEVUnknown, ask ValueTracking.
3671 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohmanc702fc02009-06-19 23:29:04 +00003672 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Chandler Carruth66b31302015-01-04 12:03:27 +00003673 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AC, nullptr, DT);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003674 return Zeros.countTrailingOnes();
3675 }
3676
3677 // SCEVUDivExpr
Nick Lewycky3783b462007-11-22 07:59:40 +00003678 return 0;
Chris Lattner49b090e2006-12-12 02:26:09 +00003679}
Chris Lattnerd934c702004-04-02 20:23:17 +00003680
Sanjoy Das1f05c512014-10-10 21:22:34 +00003681/// GetRangeFromMetadata - Helper method to assign a range to V from
3682/// metadata present in the IR.
3683static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
3684 if (Instruction *I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00003685 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00003686 ConstantRange TotalRange(
3687 cast<IntegerType>(I->getType())->getBitWidth(), false);
3688
3689 unsigned NumRanges = MD->getNumOperands() / 2;
3690 assert(NumRanges >= 1);
3691
3692 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00003693 ConstantInt *Lower =
3694 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 0));
3695 ConstantInt *Upper =
3696 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 1));
Sanjoy Das1f05c512014-10-10 21:22:34 +00003697 ConstantRange Range(Lower->getValue(), Upper->getValue());
3698 TotalRange = TotalRange.unionWith(Range);
3699 }
3700
3701 return TotalRange;
3702 }
3703 }
3704
3705 return None;
3706}
3707
Dan Gohmane65c9172009-07-13 21:35:55 +00003708/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3709///
3710ConstantRange
3711ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman761065e2010-11-17 02:44:44 +00003712 // See if we've computed this range already.
3713 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3714 if (I != UnsignedRanges.end())
3715 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00003716
3717 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohmaned756312010-11-17 20:23:08 +00003718 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003719
Dan Gohman85be4332010-01-26 19:19:05 +00003720 unsigned BitWidth = getTypeSizeInBits(S->getType());
3721 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3722
3723 // If the value has known zeros, the maximum unsigned value will have those
3724 // known zeros as well.
3725 uint32_t TZ = GetMinTrailingZeros(S);
3726 if (TZ != 0)
3727 ConservativeResult =
3728 ConstantRange(APInt::getMinValue(BitWidth),
3729 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3730
Dan Gohmane65c9172009-07-13 21:35:55 +00003731 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3732 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3733 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3734 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003735 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003736 }
3737
3738 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3739 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3740 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3741 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003742 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003743 }
3744
3745 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3746 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3747 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3748 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003749 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003750 }
3751
3752 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3753 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3754 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3755 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003756 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003757 }
3758
3759 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3760 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3761 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohmaned756312010-11-17 20:23:08 +00003762 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003763 }
3764
3765 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3766 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003767 return setUnsignedRange(ZExt,
3768 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003769 }
3770
3771 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3772 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003773 return setUnsignedRange(SExt,
3774 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003775 }
3776
3777 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3778 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003779 return setUnsignedRange(Trunc,
3780 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003781 }
3782
Dan Gohmane65c9172009-07-13 21:35:55 +00003783 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003784 // If there's no unsigned wrap, the value will never be less than its
3785 // initial value.
Andrew Trick8b55b732011-03-14 16:50:06 +00003786 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003787 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanebbd05f2010-04-12 23:08:18 +00003788 if (!C->getValue()->isZero())
Dan Gohmanae4a4142010-04-11 22:12:18 +00003789 ConservativeResult =
Dan Gohman9396b422010-06-30 06:58:35 +00003790 ConservativeResult.intersectWith(
3791 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003792
3793 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00003794 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00003795 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00003796 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00003797 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3798 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohmane65c9172009-07-13 21:35:55 +00003799 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3800
3801 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00003802 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmane65c9172009-07-13 21:35:55 +00003803
3804 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003805 ConstantRange StepRange = getSignedRange(Step);
3806 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3807 ConstantRange EndRange =
3808 StartRange.add(MaxBECountRange.multiply(StepRange));
3809
3810 // Check for overflow. This must be done with ConstantRange arithmetic
3811 // because we could be called from within the ScalarEvolution overflow
3812 // checking code.
3813 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3814 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3815 ConstantRange ExtMaxBECountRange =
3816 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3817 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3818 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3819 ExtEndRange)
Dan Gohmaned756312010-11-17 20:23:08 +00003820 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003821
Dan Gohmane65c9172009-07-13 21:35:55 +00003822 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3823 EndRange.getUnsignedMin());
3824 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3825 EndRange.getUnsignedMax());
3826 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohmaned756312010-11-17 20:23:08 +00003827 return setUnsignedRange(AddRec, ConservativeResult);
3828 return setUnsignedRange(AddRec,
3829 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003830 }
3831 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003832
Dan Gohmaned756312010-11-17 20:23:08 +00003833 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003834 }
3835
3836 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00003837 // Check if the IR explicitly contains !range metadata.
3838 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
3839 if (MDRange.hasValue())
3840 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
3841
Dan Gohmanc702fc02009-06-19 23:29:04 +00003842 // For a SCEVUnknown, ask ValueTracking.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003843 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Chandler Carruth66b31302015-01-04 12:03:27 +00003844 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, AC, nullptr, DT);
Dan Gohman1a7ab942009-07-20 22:34:18 +00003845 if (Ones == ~Zeros + 1)
Dan Gohmaned756312010-11-17 20:23:08 +00003846 return setUnsignedRange(U, ConservativeResult);
3847 return setUnsignedRange(U,
3848 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003849 }
3850
Dan Gohmaned756312010-11-17 20:23:08 +00003851 return setUnsignedRange(S, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003852}
3853
Dan Gohmane65c9172009-07-13 21:35:55 +00003854/// getSignedRange - Determine the signed range for a particular SCEV.
3855///
3856ConstantRange
3857ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman3ac8cd62011-01-24 17:54:18 +00003858 // See if we've computed this range already.
Dan Gohman761065e2010-11-17 02:44:44 +00003859 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3860 if (I != SignedRanges.end())
3861 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00003862
Dan Gohmane65c9172009-07-13 21:35:55 +00003863 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohmaned756312010-11-17 20:23:08 +00003864 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohmane65c9172009-07-13 21:35:55 +00003865
Dan Gohman51aaf022010-01-26 04:40:18 +00003866 unsigned BitWidth = getTypeSizeInBits(S->getType());
3867 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3868
3869 // If the value has known zeros, the maximum signed value will have those
3870 // known zeros as well.
3871 uint32_t TZ = GetMinTrailingZeros(S);
3872 if (TZ != 0)
3873 ConservativeResult =
3874 ConstantRange(APInt::getSignedMinValue(BitWidth),
3875 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3876
Dan Gohmane65c9172009-07-13 21:35:55 +00003877 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3878 ConstantRange X = getSignedRange(Add->getOperand(0));
3879 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3880 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003881 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003882 }
3883
Dan Gohmane65c9172009-07-13 21:35:55 +00003884 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3885 ConstantRange X = getSignedRange(Mul->getOperand(0));
3886 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3887 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003888 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003889 }
3890
Dan Gohmane65c9172009-07-13 21:35:55 +00003891 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3892 ConstantRange X = getSignedRange(SMax->getOperand(0));
3893 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3894 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003895 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003896 }
Dan Gohmand261d272009-06-24 01:05:09 +00003897
Dan Gohmane65c9172009-07-13 21:35:55 +00003898 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3899 ConstantRange X = getSignedRange(UMax->getOperand(0));
3900 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3901 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003902 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003903 }
Dan Gohmand261d272009-06-24 01:05:09 +00003904
Dan Gohmane65c9172009-07-13 21:35:55 +00003905 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3906 ConstantRange X = getSignedRange(UDiv->getLHS());
3907 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohmaned756312010-11-17 20:23:08 +00003908 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003909 }
Dan Gohmand261d272009-06-24 01:05:09 +00003910
Dan Gohmane65c9172009-07-13 21:35:55 +00003911 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3912 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003913 return setSignedRange(ZExt,
3914 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003915 }
3916
3917 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3918 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003919 return setSignedRange(SExt,
3920 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003921 }
3922
3923 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3924 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003925 return setSignedRange(Trunc,
3926 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003927 }
3928
Dan Gohmane65c9172009-07-13 21:35:55 +00003929 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003930 // If there's no signed wrap, and all the operands have the same sign or
3931 // zero, the value won't ever change sign.
Andrew Trick8b55b732011-03-14 16:50:06 +00003932 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003933 bool AllNonNeg = true;
3934 bool AllNonPos = true;
3935 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3936 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3937 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3938 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003939 if (AllNonNeg)
Dan Gohman51aaf022010-01-26 04:40:18 +00003940 ConservativeResult = ConservativeResult.intersectWith(
3941 ConstantRange(APInt(BitWidth, 0),
3942 APInt::getSignedMinValue(BitWidth)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00003943 else if (AllNonPos)
Dan Gohman51aaf022010-01-26 04:40:18 +00003944 ConservativeResult = ConservativeResult.intersectWith(
3945 ConstantRange(APInt::getSignedMinValue(BitWidth),
3946 APInt(BitWidth, 1)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00003947 }
Dan Gohmane65c9172009-07-13 21:35:55 +00003948
3949 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00003950 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00003951 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00003952 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00003953 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3954 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohmane65c9172009-07-13 21:35:55 +00003955 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3956
3957 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00003958 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmane65c9172009-07-13 21:35:55 +00003959
3960 ConstantRange StartRange = getSignedRange(Start);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003961 ConstantRange StepRange = getSignedRange(Step);
3962 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3963 ConstantRange EndRange =
3964 StartRange.add(MaxBECountRange.multiply(StepRange));
3965
3966 // Check for overflow. This must be done with ConstantRange arithmetic
3967 // because we could be called from within the ScalarEvolution overflow
3968 // checking code.
3969 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3970 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3971 ConstantRange ExtMaxBECountRange =
3972 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3973 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3974 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3975 ExtEndRange)
Dan Gohmaned756312010-11-17 20:23:08 +00003976 return setSignedRange(AddRec, ConservativeResult);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003977
Dan Gohmane65c9172009-07-13 21:35:55 +00003978 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3979 EndRange.getSignedMin());
3980 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3981 EndRange.getSignedMax());
3982 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmaned756312010-11-17 20:23:08 +00003983 return setSignedRange(AddRec, ConservativeResult);
3984 return setSignedRange(AddRec,
3985 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohmand261d272009-06-24 01:05:09 +00003986 }
Dan Gohmand261d272009-06-24 01:05:09 +00003987 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003988
Dan Gohmaned756312010-11-17 20:23:08 +00003989 return setSignedRange(AddRec, ConservativeResult);
Dan Gohmand261d272009-06-24 01:05:09 +00003990 }
3991
Dan Gohmanc702fc02009-06-19 23:29:04 +00003992 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
Sanjoy Das1f05c512014-10-10 21:22:34 +00003993 // Check if the IR explicitly contains !range metadata.
3994 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
3995 if (MDRange.hasValue())
3996 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
3997
Dan Gohmanc702fc02009-06-19 23:29:04 +00003998 // For a SCEVUnknown, ask ValueTracking.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003999 if (!U->getValue()->getType()->isIntegerTy() && !DL)
Dan Gohmaned756312010-11-17 20:23:08 +00004000 return setSignedRange(U, ConservativeResult);
Chandler Carruth66b31302015-01-04 12:03:27 +00004001 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, AC, nullptr, DT);
Hal Finkelff666bd2013-07-09 18:16:16 +00004002 if (NS <= 1)
Dan Gohmaned756312010-11-17 20:23:08 +00004003 return setSignedRange(U, ConservativeResult);
4004 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohmane65c9172009-07-13 21:35:55 +00004005 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohmaned756312010-11-17 20:23:08 +00004006 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohmanc702fc02009-06-19 23:29:04 +00004007 }
4008
Dan Gohmaned756312010-11-17 20:23:08 +00004009 return setSignedRange(S, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00004010}
4011
Chris Lattnerd934c702004-04-02 20:23:17 +00004012/// createSCEV - We know that there is no SCEV for the specified value.
4013/// Analyze the expression.
4014///
Dan Gohmanaf752342009-07-07 17:06:11 +00004015const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004016 if (!isSCEVable(V->getType()))
Dan Gohmanc8e23622009-04-21 23:15:49 +00004017 return getUnknown(V);
Dan Gohman0a40ad92009-04-16 03:18:22 +00004018
Dan Gohman05e89732008-06-22 19:56:46 +00004019 unsigned Opcode = Instruction::UserOp1;
Dan Gohman69451a02010-03-09 23:46:50 +00004020 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman05e89732008-06-22 19:56:46 +00004021 Opcode = I->getOpcode();
Dan Gohman69451a02010-03-09 23:46:50 +00004022
4023 // Don't attempt to analyze instructions in blocks that aren't
4024 // reachable. Such instructions don't matter, and they aren't required
4025 // to obey basic rules for definitions dominating uses which this
4026 // analysis depends on.
4027 if (!DT->isReachableFromEntry(I->getParent()))
4028 return getUnknown(V);
4029 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman05e89732008-06-22 19:56:46 +00004030 Opcode = CE->getOpcode();
Dan Gohmanf436bac2009-06-24 00:54:57 +00004031 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4032 return getConstant(CI);
4033 else if (isa<ConstantPointerNull>(V))
Dan Gohman1d2ded72010-05-03 22:09:21 +00004034 return getConstant(V->getType(), 0);
Dan Gohmanf161e06e2009-08-25 17:49:57 +00004035 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4036 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman05e89732008-06-22 19:56:46 +00004037 else
Dan Gohmanc8e23622009-04-21 23:15:49 +00004038 return getUnknown(V);
Chris Lattnera3e0bb42007-04-02 05:41:38 +00004039
Dan Gohman80ca01c2009-07-17 20:47:02 +00004040 Operator *U = cast<Operator>(V);
Dan Gohman05e89732008-06-22 19:56:46 +00004041 switch (Opcode) {
Dan Gohmane5fb1032010-08-16 16:03:49 +00004042 case Instruction::Add: {
4043 // The simple thing to do would be to just call getSCEV on both operands
4044 // and call getAddExpr with the result. However if we're looking at a
4045 // bunch of things all added together, this can be quite inefficient,
4046 // because it leads to N-1 getAddExpr calls for N ultimate operands.
4047 // Instead, gather up all the operands and make a single getAddExpr call.
4048 // LLVM IR canonical form means we need only traverse the left operands.
Andrew Trickd25089f2011-11-29 02:16:38 +00004049 //
4050 // Don't apply this instruction's NSW or NUW flags to the new
4051 // expression. The instruction may be guarded by control flow that the
4052 // no-wrap behavior depends on. Non-control-equivalent instructions can be
4053 // mapped to the same SCEV expression, and it would be incorrect to transfer
4054 // NSW/NUW semantics to those operations.
Dan Gohmane5fb1032010-08-16 16:03:49 +00004055 SmallVector<const SCEV *, 4> AddOps;
4056 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman47308d52010-08-31 22:53:17 +00004057 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
4058 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
4059 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
4060 break;
Dan Gohmane5fb1032010-08-16 16:03:49 +00004061 U = cast<Operator>(Op);
Dan Gohman47308d52010-08-31 22:53:17 +00004062 const SCEV *Op1 = getSCEV(U->getOperand(1));
4063 if (Opcode == Instruction::Sub)
4064 AddOps.push_back(getNegativeSCEV(Op1));
4065 else
4066 AddOps.push_back(Op1);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004067 }
4068 AddOps.push_back(getSCEV(U->getOperand(0)));
Andrew Trickd25089f2011-11-29 02:16:38 +00004069 return getAddExpr(AddOps);
Dan Gohmane5fb1032010-08-16 16:03:49 +00004070 }
4071 case Instruction::Mul: {
Andrew Trickd25089f2011-11-29 02:16:38 +00004072 // Don't transfer NSW/NUW for the same reason as AddExpr.
Dan Gohmane5fb1032010-08-16 16:03:49 +00004073 SmallVector<const SCEV *, 4> MulOps;
4074 MulOps.push_back(getSCEV(U->getOperand(1)));
4075 for (Value *Op = U->getOperand(0);
Andrew Trick2a3b7162011-03-09 17:23:39 +00004076 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmane5fb1032010-08-16 16:03:49 +00004077 Op = U->getOperand(0)) {
4078 U = cast<Operator>(Op);
4079 MulOps.push_back(getSCEV(U->getOperand(1)));
4080 }
4081 MulOps.push_back(getSCEV(U->getOperand(0)));
4082 return getMulExpr(MulOps);
4083 }
Dan Gohman05e89732008-06-22 19:56:46 +00004084 case Instruction::UDiv:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004085 return getUDivExpr(getSCEV(U->getOperand(0)),
4086 getSCEV(U->getOperand(1)));
Dan Gohman05e89732008-06-22 19:56:46 +00004087 case Instruction::Sub:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004088 return getMinusSCEV(getSCEV(U->getOperand(0)),
4089 getSCEV(U->getOperand(1)));
Dan Gohman0ec05372009-04-21 02:26:00 +00004090 case Instruction::And:
4091 // For an expression like x&255 that merely masks off the high bits,
4092 // use zext(trunc(x)) as the SCEV expression.
4093 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmandf199482009-04-25 17:05:40 +00004094 if (CI->isNullValue())
4095 return getSCEV(U->getOperand(1));
Dan Gohman05c1d372009-04-27 01:41:10 +00004096 if (CI->isAllOnesValue())
4097 return getSCEV(U->getOperand(0));
Dan Gohman0ec05372009-04-21 02:26:00 +00004098 const APInt &A = CI->getValue();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004099
4100 // Instcombine's ShrinkDemandedConstant may strip bits out of
4101 // constants, obscuring what would otherwise be a low-bits mask.
Jay Foada0653a32014-05-14 21:14:37 +00004102 // Use computeKnownBits to compute what ShrinkDemandedConstant
Dan Gohman1ee696d2009-06-16 19:52:01 +00004103 // knew about to reconstruct a low-bits mask value.
4104 unsigned LZ = A.countLeadingZeros();
Nick Lewycky31eaca52014-01-27 10:04:03 +00004105 unsigned TZ = A.countTrailingZeros();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004106 unsigned BitWidth = A.getBitWidth();
Dan Gohman1ee696d2009-06-16 19:52:01 +00004107 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Chandler Carruth66b31302015-01-04 12:03:27 +00004108 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL, 0, AC,
4109 nullptr, DT);
Dan Gohman1ee696d2009-06-16 19:52:01 +00004110
Nick Lewycky31eaca52014-01-27 10:04:03 +00004111 APInt EffectiveMask =
4112 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4113 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4114 const SCEV *MulCount = getConstant(
4115 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4116 return getMulExpr(
4117 getZeroExtendExpr(
4118 getTruncateExpr(
4119 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
4120 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4121 U->getType()),
4122 MulCount);
4123 }
Dan Gohman0ec05372009-04-21 02:26:00 +00004124 }
4125 break;
Dan Gohman1ee696d2009-06-16 19:52:01 +00004126
Dan Gohman05e89732008-06-22 19:56:46 +00004127 case Instruction::Or:
4128 // If the RHS of the Or is a constant, we may have something like:
4129 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
4130 // optimizations will transparently handle this case.
4131 //
4132 // In order for this transformation to be safe, the LHS must be of the
4133 // form X*(2^n) and the Or constant must be less than 2^n.
4134 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00004135 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman05e89732008-06-22 19:56:46 +00004136 const APInt &CIVal = CI->getValue();
Dan Gohmanc702fc02009-06-19 23:29:04 +00004137 if (GetMinTrailingZeros(LHS) >=
Dan Gohman36bad002009-09-17 18:05:20 +00004138 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4139 // Build a plain add SCEV.
4140 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
4141 // If the LHS of the add was an addrec and it has no-wrap flags,
4142 // transfer the no-wrap flags, since an or won't introduce a wrap.
4143 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
4144 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick8b55b732011-03-14 16:50:06 +00004145 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
4146 OldAR->getNoWrapFlags());
Dan Gohman36bad002009-09-17 18:05:20 +00004147 }
4148 return S;
4149 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004150 }
Dan Gohman05e89732008-06-22 19:56:46 +00004151 break;
4152 case Instruction::Xor:
Dan Gohman05e89732008-06-22 19:56:46 +00004153 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004154 // If the RHS of the xor is a signbit, then this is just an add.
4155 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman05e89732008-06-22 19:56:46 +00004156 if (CI->getValue().isSignBit())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004157 return getAddExpr(getSCEV(U->getOperand(0)),
4158 getSCEV(U->getOperand(1)));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004159
4160 // If the RHS of xor is -1, then this is a not operation.
Dan Gohmand277a1e2009-05-18 16:17:44 +00004161 if (CI->isAllOnesValue())
Dan Gohmanc8e23622009-04-21 23:15:49 +00004162 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman6350296e2009-05-18 16:29:04 +00004163
4164 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
4165 // This is a variant of the check for xor with -1, and it handles
4166 // the case where instcombine has trimmed non-demanded bits out
4167 // of an xor with -1.
4168 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
4169 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
4170 if (BO->getOpcode() == Instruction::And &&
4171 LCI->getValue() == CI->getValue())
4172 if (const SCEVZeroExtendExpr *Z =
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004173 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattner229907c2011-07-18 04:54:35 +00004174 Type *UTy = U->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00004175 const SCEV *Z0 = Z->getOperand();
Chris Lattner229907c2011-07-18 04:54:35 +00004176 Type *Z0Ty = Z0->getType();
Dan Gohmaneddf7712009-06-18 00:00:20 +00004177 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
4178
Dan Gohman8b0a4192010-03-01 17:49:51 +00004179 // If C is a low-bits mask, the zero extend is serving to
Dan Gohmaneddf7712009-06-18 00:00:20 +00004180 // mask off the high bits. Complement the operand and
4181 // re-apply the zext.
4182 if (APIntOps::isMask(Z0TySize, CI->getValue()))
4183 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
4184
4185 // If C is a single bit, it may be in the sign-bit position
4186 // before the zero-extend. In this case, represent the xor
4187 // using an add, which is equivalent, and re-apply the zext.
Jay Foad583abbc2010-12-07 08:25:19 +00004188 APInt Trunc = CI->getValue().trunc(Z0TySize);
4189 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohmaneddf7712009-06-18 00:00:20 +00004190 Trunc.isSignBit())
4191 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
4192 UTy);
Dan Gohmanb50f5a42009-06-17 01:22:39 +00004193 }
Dan Gohman05e89732008-06-22 19:56:46 +00004194 }
4195 break;
4196
4197 case Instruction::Shl:
4198 // Turn shift left of a constant amount into a multiply.
4199 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004200 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004201
4202 // If the shift count is not less than the bitwidth, the result of
4203 // the shift is undefined. Don't try to analyze it, because the
4204 // resolution chosen here may differ from the resolution chosen in
4205 // other parts of the compiler.
4206 if (SA->getValue().uge(BitWidth))
4207 break;
4208
Owen Andersonedb4a702009-07-24 23:12:02 +00004209 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004210 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00004211 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman05e89732008-06-22 19:56:46 +00004212 }
4213 break;
4214
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004215 case Instruction::LShr:
Nick Lewycky52348302009-01-13 09:18:58 +00004216 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004217 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004218 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00004219
4220 // If the shift count is not less than the bitwidth, the result of
4221 // the shift is undefined. Don't try to analyze it, because the
4222 // resolution chosen here may differ from the resolution chosen in
4223 // other parts of the compiler.
4224 if (SA->getValue().uge(BitWidth))
4225 break;
4226
Owen Andersonedb4a702009-07-24 23:12:02 +00004227 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00004228 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00004229 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00004230 }
4231 break;
4232
Dan Gohman0ec05372009-04-21 02:26:00 +00004233 case Instruction::AShr:
4234 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
4235 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanacd700a2010-04-22 01:35:11 +00004236 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman0ec05372009-04-21 02:26:00 +00004237 if (L->getOpcode() == Instruction::Shl &&
4238 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00004239 uint64_t BitWidth = getTypeSizeInBits(U->getType());
4240
4241 // If the shift count is not less than the bitwidth, the result of
4242 // the shift is undefined. Don't try to analyze it, because the
4243 // resolution chosen here may differ from the resolution chosen in
4244 // other parts of the compiler.
4245 if (CI->getValue().uge(BitWidth))
4246 break;
4247
Dan Gohmandf199482009-04-25 17:05:40 +00004248 uint64_t Amt = BitWidth - CI->getZExtValue();
4249 if (Amt == BitWidth)
4250 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman0ec05372009-04-21 02:26:00 +00004251 return
Dan Gohmanc8e23622009-04-21 23:15:49 +00004252 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanacd700a2010-04-22 01:35:11 +00004253 IntegerType::get(getContext(),
4254 Amt)),
4255 U->getType());
Dan Gohman0ec05372009-04-21 02:26:00 +00004256 }
4257 break;
4258
Dan Gohman05e89732008-06-22 19:56:46 +00004259 case Instruction::Trunc:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004260 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004261
4262 case Instruction::ZExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004263 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004264
4265 case Instruction::SExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00004266 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00004267
4268 case Instruction::BitCast:
4269 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00004270 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman05e89732008-06-22 19:56:46 +00004271 return getSCEV(U->getOperand(0));
4272 break;
4273
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00004274 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
4275 // lead to pointer expressions which cannot safely be expanded to GEPs,
4276 // because ScalarEvolution doesn't respect the GEP aliasing rules when
4277 // simplifying integer expressions.
Dan Gohman0a40ad92009-04-16 03:18:22 +00004278
Dan Gohmanee750d12009-05-08 20:26:55 +00004279 case Instruction::GetElementPtr:
Dan Gohmanb256ccf2009-12-18 02:09:29 +00004280 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman0a40ad92009-04-16 03:18:22 +00004281
Dan Gohman05e89732008-06-22 19:56:46 +00004282 case Instruction::PHI:
4283 return createNodeForPHI(cast<PHINode>(U));
4284
4285 case Instruction::Select:
4286 // This could be a smax or umax that was lowered earlier.
4287 // Try to recover it.
4288 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
4289 Value *LHS = ICI->getOperand(0);
4290 Value *RHS = ICI->getOperand(1);
4291 switch (ICI->getPredicate()) {
4292 case ICmpInst::ICMP_SLT:
4293 case ICmpInst::ICMP_SLE:
4294 std::swap(LHS, RHS);
4295 // fall through
4296 case ICmpInst::ICMP_SGT:
4297 case ICmpInst::ICMP_SGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004298 // a >s b ? a+x : b+x -> smax(a, b)+x
4299 // a >s b ? b+x : a+x -> smin(a, b)+x
Johannes Doerfert2683e562015-02-09 12:34:23 +00004300 if (getTypeSizeInBits(LHS->getType()) <=
4301 getTypeSizeInBits(U->getType())) {
4302 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), U->getType());
4303 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), U->getType());
Dan Gohmanf33bac32010-04-24 03:09:42 +00004304 const SCEV *LA = getSCEV(U->getOperand(1));
4305 const SCEV *RA = getSCEV(U->getOperand(2));
4306 const SCEV *LDiff = getMinusSCEV(LA, LS);
4307 const SCEV *RDiff = getMinusSCEV(RA, RS);
4308 if (LDiff == RDiff)
4309 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4310 LDiff = getMinusSCEV(LA, RS);
4311 RDiff = getMinusSCEV(RA, LS);
4312 if (LDiff == RDiff)
4313 return getAddExpr(getSMinExpr(LS, RS), LDiff);
4314 }
Dan Gohman05e89732008-06-22 19:56:46 +00004315 break;
4316 case ICmpInst::ICMP_ULT:
4317 case ICmpInst::ICMP_ULE:
4318 std::swap(LHS, RHS);
4319 // fall through
4320 case ICmpInst::ICMP_UGT:
4321 case ICmpInst::ICMP_UGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004322 // a >u b ? a+x : b+x -> umax(a, b)+x
4323 // a >u b ? b+x : a+x -> umin(a, b)+x
Johannes Doerfert2683e562015-02-09 12:34:23 +00004324 if (getTypeSizeInBits(LHS->getType()) <=
4325 getTypeSizeInBits(U->getType())) {
4326 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
4327 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), U->getType());
Dan Gohmanf33bac32010-04-24 03:09:42 +00004328 const SCEV *LA = getSCEV(U->getOperand(1));
4329 const SCEV *RA = getSCEV(U->getOperand(2));
4330 const SCEV *LDiff = getMinusSCEV(LA, LS);
4331 const SCEV *RDiff = getMinusSCEV(RA, RS);
4332 if (LDiff == RDiff)
4333 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4334 LDiff = getMinusSCEV(LA, RS);
4335 RDiff = getMinusSCEV(RA, LS);
4336 if (LDiff == RDiff)
4337 return getAddExpr(getUMinExpr(LS, RS), LDiff);
4338 }
Dan Gohman05e89732008-06-22 19:56:46 +00004339 break;
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004340 case ICmpInst::ICMP_NE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004341 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
Johannes Doerfert2683e562015-02-09 12:34:23 +00004342 if (getTypeSizeInBits(LHS->getType()) <=
4343 getTypeSizeInBits(U->getType()) &&
4344 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4345 const SCEV *One = getConstant(U->getType(), 1);
4346 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
Dan Gohmanf33bac32010-04-24 03:09:42 +00004347 const SCEV *LA = getSCEV(U->getOperand(1));
4348 const SCEV *RA = getSCEV(U->getOperand(2));
4349 const SCEV *LDiff = getMinusSCEV(LA, LS);
4350 const SCEV *RDiff = getMinusSCEV(RA, One);
4351 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004352 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004353 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004354 break;
4355 case ICmpInst::ICMP_EQ:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004356 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
Johannes Doerfert2683e562015-02-09 12:34:23 +00004357 if (getTypeSizeInBits(LHS->getType()) <=
4358 getTypeSizeInBits(U->getType()) &&
4359 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4360 const SCEV *One = getConstant(U->getType(), 1);
4361 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType());
Dan Gohmanf33bac32010-04-24 03:09:42 +00004362 const SCEV *LA = getSCEV(U->getOperand(1));
4363 const SCEV *RA = getSCEV(U->getOperand(2));
4364 const SCEV *LDiff = getMinusSCEV(LA, One);
4365 const SCEV *RDiff = getMinusSCEV(RA, LS);
4366 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004367 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004368 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004369 break;
Dan Gohman05e89732008-06-22 19:56:46 +00004370 default:
4371 break;
4372 }
4373 }
4374
4375 default: // We cannot analyze this expression.
4376 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00004377 }
4378
Dan Gohmanc8e23622009-04-21 23:15:49 +00004379 return getUnknown(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00004380}
4381
4382
4383
4384//===----------------------------------------------------------------------===//
4385// Iteration Count Computation Code
4386//
4387
Chandler Carruth6666c272014-10-11 00:12:11 +00004388unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
4389 if (BasicBlock *ExitingBB = L->getExitingBlock())
4390 return getSmallConstantTripCount(L, ExitingBB);
4391
4392 // No trip count information for multiple exits.
4393 return 0;
4394}
4395
Andrew Trick2b6860f2011-08-11 23:36:16 +00004396/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Tricke81211f2012-01-11 06:52:55 +00004397/// normal unsigned value. Returns 0 if the trip count is unknown or not
4398/// constant. Will also return 0 if the maximum trip count is very large (>=
4399/// 2^32).
4400///
4401/// This "trip count" assumes that control exits via ExitingBlock. More
4402/// precisely, it is the number of times that control may reach ExitingBlock
4403/// before taking the branch. For loops with multiple exits, it may not be the
4404/// number times that the loop header executes because the loop may exit
4405/// prematurely via another branch.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004406unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
4407 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004408 assert(ExitingBlock && "Must pass a non-null exiting block!");
4409 assert(L->isLoopExiting(ExitingBlock) &&
4410 "Exiting block must actually branch out of the loop!");
Andrew Trick2b6860f2011-08-11 23:36:16 +00004411 const SCEVConstant *ExitCount =
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004412 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004413 if (!ExitCount)
4414 return 0;
4415
4416 ConstantInt *ExitConst = ExitCount->getValue();
4417
4418 // Guard against huge trip counts.
4419 if (ExitConst->getValue().getActiveBits() > 32)
4420 return 0;
4421
4422 // In case of integer overflow, this returns 0, which is correct.
4423 return ((unsigned)ExitConst->getZExtValue()) + 1;
4424}
4425
Chandler Carruth6666c272014-10-11 00:12:11 +00004426unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
4427 if (BasicBlock *ExitingBB = L->getExitingBlock())
4428 return getSmallConstantTripMultiple(L, ExitingBB);
4429
4430 // No trip multiple information for multiple exits.
4431 return 0;
4432}
4433
Andrew Trick2b6860f2011-08-11 23:36:16 +00004434/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4435/// trip count of this loop as a normal unsigned value, if possible. This
4436/// means that the actual trip count is always a multiple of the returned
4437/// value (don't forget the trip count could very well be zero as well!).
4438///
4439/// Returns 1 if the trip count is unknown or not guaranteed to be the
4440/// multiple of a constant (which is also the case if the trip count is simply
4441/// constant, use getSmallConstantTripCount for that case), Will also return 1
4442/// if the trip count is very large (>= 2^32).
Andrew Tricke81211f2012-01-11 06:52:55 +00004443///
4444/// As explained in the comments for getSmallConstantTripCount, this assumes
4445/// that control exits the loop via ExitingBlock.
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004446unsigned
4447ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
4448 BasicBlock *ExitingBlock) {
Chandler Carruth6666c272014-10-11 00:12:11 +00004449 assert(ExitingBlock && "Must pass a non-null exiting block!");
4450 assert(L->isLoopExiting(ExitingBlock) &&
4451 "Exiting block must actually branch out of the loop!");
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004452 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
Andrew Trick2b6860f2011-08-11 23:36:16 +00004453 if (ExitCount == getCouldNotCompute())
4454 return 1;
4455
4456 // Get the trip count from the BE count by adding 1.
4457 const SCEV *TCMul = getAddExpr(ExitCount,
4458 getConstant(ExitCount->getType(), 1));
4459 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4460 // to factor simple cases.
4461 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4462 TCMul = Mul->getOperand(0);
4463
4464 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4465 if (!MulC)
4466 return 1;
4467
4468 ConstantInt *Result = MulC->getValue();
4469
Hal Finkel30bd9342012-10-24 19:46:44 +00004470 // Guard against huge trip counts (this requires checking
4471 // for zero to handle the case where the trip count == -1 and the
4472 // addition wraps).
4473 if (!Result || Result->getValue().getActiveBits() > 32 ||
4474 Result->getValue().getActiveBits() == 0)
Andrew Trick2b6860f2011-08-11 23:36:16 +00004475 return 1;
4476
4477 return (unsigned)Result->getZExtValue();
4478}
4479
Andrew Trick3ca3f982011-07-26 17:19:55 +00004480// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickee9143a2013-05-31 23:34:46 +00004481// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
Andrew Trick3ca3f982011-07-26 17:19:55 +00004482// SCEVCouldNotCompute.
Andrew Trick77c55422011-08-02 04:23:35 +00004483const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4484 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004485}
4486
Dan Gohman0bddac12009-02-24 18:55:53 +00004487/// getBackedgeTakenCount - If the specified loop has a predictable
4488/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4489/// object. The backedge-taken count is the number of times the loop header
4490/// will be branched to from within the loop. This is one less than the
4491/// trip count of the loop, since it doesn't count the first iteration,
4492/// when the header is branched to from outside the loop.
4493///
4494/// Note that it is not valid to call this method on a loop without a
4495/// loop-invariant backedge-taken count (see
4496/// hasLoopInvariantBackedgeTakenCount).
4497///
Dan Gohmanaf752342009-07-07 17:06:11 +00004498const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004499 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004500}
4501
4502/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4503/// return the least SCEV value that is known never to be less than the
4504/// actual backedge taken count.
Dan Gohmanaf752342009-07-07 17:06:11 +00004505const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004506 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004507}
4508
Dan Gohmandc191042009-07-08 19:23:34 +00004509/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4510/// onto the given Worklist.
4511static void
4512PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4513 BasicBlock *Header = L->getHeader();
4514
4515 // Push all Loop-header PHIs onto the Worklist stack.
4516 for (BasicBlock::iterator I = Header->begin();
4517 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4518 Worklist.push_back(PN);
4519}
4520
Dan Gohman2b8da352009-04-30 20:47:05 +00004521const ScalarEvolution::BackedgeTakenInfo &
4522ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004523 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman8b0a4192010-03-01 17:49:51 +00004524 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman76466372009-04-27 20:16:15 +00004525 // update the value. The temporary CouldNotCompute value tells SCEV
4526 // code elsewhere that it shouldn't attempt to request a new
4527 // backedge-taken count, which could result in infinite recursion.
Dan Gohman0daf6872011-05-09 18:44:09 +00004528 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick3ca3f982011-07-26 17:19:55 +00004529 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004530 if (!Pair.second)
4531 return Pair.first->second;
Dan Gohman76466372009-04-27 20:16:15 +00004532
Andrew Trick3ca3f982011-07-26 17:19:55 +00004533 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4534 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4535 // must be cleared in this scope.
4536 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4537
4538 if (Result.getExact(this) != getCouldNotCompute()) {
4539 assert(isLoopInvariant(Result.getExact(this), L) &&
4540 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnera337f5e2011-01-09 02:16:18 +00004541 "Computed backedge-taken count isn't loop invariant for loop!");
4542 ++NumTripCountsComputed;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004543 }
4544 else if (Result.getMax(this) == getCouldNotCompute() &&
4545 isa<PHINode>(L->getHeader()->begin())) {
4546 // Only count loops that have phi nodes as not being computable.
4547 ++NumTripCountsNotComputed;
Chris Lattnera337f5e2011-01-09 02:16:18 +00004548 }
Dan Gohman2b8da352009-04-30 20:47:05 +00004549
Chris Lattnera337f5e2011-01-09 02:16:18 +00004550 // Now that we know more about the trip count for this loop, forget any
4551 // existing SCEV values for PHI nodes in this loop since they are only
4552 // conservative estimates made without the benefit of trip count
4553 // information. This is similar to the code in forgetLoop, except that
4554 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004555 if (Result.hasAnyInfo()) {
Chris Lattnera337f5e2011-01-09 02:16:18 +00004556 SmallVector<Instruction *, 16> Worklist;
4557 PushLoopPHIs(L, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004558
Chris Lattnera337f5e2011-01-09 02:16:18 +00004559 SmallPtrSet<Instruction *, 8> Visited;
4560 while (!Worklist.empty()) {
4561 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004562 if (!Visited.insert(I).second)
4563 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004564
Chris Lattnera337f5e2011-01-09 02:16:18 +00004565 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004566 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004567 if (It != ValueExprMap.end()) {
4568 const SCEV *Old = It->second;
Dan Gohman761065e2010-11-17 02:44:44 +00004569
Chris Lattnera337f5e2011-01-09 02:16:18 +00004570 // SCEVUnknown for a PHI either means that it has an unrecognized
4571 // structure, or it's a PHI that's in the progress of being computed
4572 // by createNodeForPHI. In the former case, additional loop trip
4573 // count information isn't going to change anything. In the later
4574 // case, createNodeForPHI will perform the necessary updates on its
4575 // own when it gets to that point.
4576 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4577 forgetMemoizedResults(Old);
4578 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004579 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004580 if (PHINode *PN = dyn_cast<PHINode>(I))
4581 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmandc191042009-07-08 19:23:34 +00004582 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004583
4584 PushDefUseChildren(I, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004585 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004586 }
Dan Gohman6acd95b2011-04-25 22:48:29 +00004587
4588 // Re-lookup the insert position, since the call to
4589 // ComputeBackedgeTakenCount above could result in a
4590 // recusive call to getBackedgeTakenInfo (on a different
4591 // loop), which would invalidate the iterator computed
4592 // earlier.
4593 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattnerd934c702004-04-02 20:23:17 +00004594}
4595
Dan Gohman880c92a2009-10-31 15:04:55 +00004596/// forgetLoop - This method should be called by the client when it has
4597/// changed a loop in a way that may effect ScalarEvolution's ability to
4598/// compute a trip count, or if the loop is deleted.
4599void ScalarEvolution::forgetLoop(const Loop *L) {
4600 // Drop any stored trip count value.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004601 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4602 BackedgeTakenCounts.find(L);
4603 if (BTCPos != BackedgeTakenCounts.end()) {
4604 BTCPos->second.clear();
4605 BackedgeTakenCounts.erase(BTCPos);
4606 }
Dan Gohmanf1505722009-05-02 17:43:35 +00004607
Dan Gohman880c92a2009-10-31 15:04:55 +00004608 // Drop information about expressions based on loop-header PHIs.
Dan Gohman48f82222009-05-04 22:30:44 +00004609 SmallVector<Instruction *, 16> Worklist;
Dan Gohmandc191042009-07-08 19:23:34 +00004610 PushLoopPHIs(L, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004611
Dan Gohmandc191042009-07-08 19:23:34 +00004612 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00004613 while (!Worklist.empty()) {
4614 Instruction *I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004615 if (!Visited.insert(I).second)
4616 continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004617
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004618 ValueExprMapType::iterator It =
4619 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004620 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004621 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004622 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004623 if (PHINode *PN = dyn_cast<PHINode>(I))
4624 ConstantEvolutionLoopExitValue.erase(PN);
4625 }
4626
4627 PushDefUseChildren(I, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004628 }
Dan Gohmandcb354b2010-10-29 20:16:10 +00004629
4630 // Forget all contained loops too, to avoid dangling entries in the
4631 // ValuesAtScopes map.
4632 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4633 forgetLoop(*I);
Dan Gohman43300342009-02-17 20:49:49 +00004634}
4635
Eric Christopheref6d5932010-07-29 01:25:38 +00004636/// forgetValue - This method should be called by the client when it has
4637/// changed a value in a way that may effect its value, or which may
4638/// disconnect it from a def-use chain linking it to a loop.
4639void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004640 Instruction *I = dyn_cast<Instruction>(V);
4641 if (!I) return;
4642
4643 // Drop information about expressions based on loop-header PHIs.
4644 SmallVector<Instruction *, 16> Worklist;
4645 Worklist.push_back(I);
4646
4647 SmallPtrSet<Instruction *, 8> Visited;
4648 while (!Worklist.empty()) {
4649 I = Worklist.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +00004650 if (!Visited.insert(I).second)
4651 continue;
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004652
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004653 ValueExprMapType::iterator It =
4654 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004655 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004656 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004657 ValueExprMap.erase(It);
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004658 if (PHINode *PN = dyn_cast<PHINode>(I))
4659 ConstantEvolutionLoopExitValue.erase(PN);
4660 }
4661
4662 PushDefUseChildren(I, Worklist);
4663 }
4664}
4665
Andrew Trick3ca3f982011-07-26 17:19:55 +00004666/// getExact - Get the exact loop backedge taken count considering all loop
Andrew Trick90c7a102011-11-16 00:52:40 +00004667/// exits. A computable result can only be return for loops with a single exit.
4668/// Returning the minimum taken count among all exits is incorrect because one
4669/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4670/// the limit of each loop test is never skipped. This is a valid assumption as
4671/// long as the loop exits via that test. For precise results, it is the
4672/// caller's responsibility to specify the relevant loop exit using
4673/// getExact(ExitingBlock, SE).
Andrew Trick3ca3f982011-07-26 17:19:55 +00004674const SCEV *
4675ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4676 // If any exits were not computable, the loop is not computable.
4677 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4678
Andrew Trick90c7a102011-11-16 00:52:40 +00004679 // We need exactly one computable exit.
Andrew Trick77c55422011-08-02 04:23:35 +00004680 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004681 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4682
Craig Topper9f008862014-04-15 04:59:12 +00004683 const SCEV *BECount = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004684 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004685 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004686
4687 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4688
4689 if (!BECount)
4690 BECount = ENT->ExactNotTaken;
Andrew Trick90c7a102011-11-16 00:52:40 +00004691 else if (BECount != ENT->ExactNotTaken)
4692 return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004693 }
Andrew Trickbbb226a2011-09-02 21:20:46 +00004694 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004695 return BECount;
4696}
4697
4698/// getExact - Get the exact not taken count for this loop exit.
4699const SCEV *
Andrew Trick77c55422011-08-02 04:23:35 +00004700ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick3ca3f982011-07-26 17:19:55 +00004701 ScalarEvolution *SE) const {
4702 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004703 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004704
Andrew Trick77c55422011-08-02 04:23:35 +00004705 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick3ca3f982011-07-26 17:19:55 +00004706 return ENT->ExactNotTaken;
4707 }
4708 return SE->getCouldNotCompute();
4709}
4710
4711/// getMax - Get the max backedge taken count for the loop.
4712const SCEV *
4713ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4714 return Max ? Max : SE->getCouldNotCompute();
4715}
4716
Andrew Trick9093e152013-03-26 03:14:53 +00004717bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
4718 ScalarEvolution *SE) const {
4719 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
4720 return true;
4721
4722 if (!ExitNotTaken.ExitingBlock)
4723 return false;
4724
4725 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
Craig Topper9f008862014-04-15 04:59:12 +00004726 ENT != nullptr; ENT = ENT->getNextExit()) {
Andrew Trick9093e152013-03-26 03:14:53 +00004727
4728 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
4729 && SE->hasOperand(ENT->ExactNotTaken, S)) {
4730 return true;
4731 }
4732 }
4733 return false;
4734}
4735
Andrew Trick3ca3f982011-07-26 17:19:55 +00004736/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4737/// computable exit into a persistent ExitNotTakenInfo array.
4738ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4739 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4740 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4741
4742 if (!Complete)
4743 ExitNotTaken.setIncomplete();
4744
4745 unsigned NumExits = ExitCounts.size();
4746 if (NumExits == 0) return;
4747
Andrew Trick77c55422011-08-02 04:23:35 +00004748 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004749 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4750 if (NumExits == 1) return;
4751
4752 // Handle the rare case of multiple computable exits.
4753 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4754
4755 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4756 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4757 PrevENT->setNextExit(ENT);
Andrew Trick77c55422011-08-02 04:23:35 +00004758 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004759 ENT->ExactNotTaken = ExitCounts[i].second;
4760 }
4761}
4762
4763/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4764void ScalarEvolution::BackedgeTakenInfo::clear() {
Craig Topper9f008862014-04-15 04:59:12 +00004765 ExitNotTaken.ExitingBlock = nullptr;
4766 ExitNotTaken.ExactNotTaken = nullptr;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004767 delete[] ExitNotTaken.getNextExit();
4768}
4769
Dan Gohman0bddac12009-02-24 18:55:53 +00004770/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4771/// of the specified loop will execute.
Dan Gohman2b8da352009-04-30 20:47:05 +00004772ScalarEvolution::BackedgeTakenInfo
4773ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00004774 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohman96212b62009-06-22 00:31:57 +00004775 L->getExitingBlocks(ExitingBlocks);
Chris Lattnerd934c702004-04-02 20:23:17 +00004776
Andrew Trick839e30b2014-05-23 19:47:13 +00004777 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004778 bool CouldComputeBECount = true;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004779 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
Andrew Trick839e30b2014-05-23 19:47:13 +00004780 const SCEV *MustExitMaxBECount = nullptr;
4781 const SCEV *MayExitMaxBECount = nullptr;
4782
4783 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
4784 // and compute maxBECount.
Dan Gohman96212b62009-06-22 00:31:57 +00004785 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick839e30b2014-05-23 19:47:13 +00004786 BasicBlock *ExitBB = ExitingBlocks[i];
4787 ExitLimit EL = ComputeExitLimit(L, ExitBB);
4788
4789 // 1. For each exit that can be computed, add an entry to ExitCounts.
4790 // CouldComputeBECount is true only if all exits can be computed.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004791 if (EL.Exact == getCouldNotCompute())
Dan Gohman96212b62009-06-22 00:31:57 +00004792 // We couldn't compute an exact value for this exit, so
Dan Gohman8885b372009-06-22 21:10:22 +00004793 // we won't be able to compute an exact value for the loop.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004794 CouldComputeBECount = false;
4795 else
Andrew Trick839e30b2014-05-23 19:47:13 +00004796 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact));
Andrew Trick3ca3f982011-07-26 17:19:55 +00004797
Andrew Trick839e30b2014-05-23 19:47:13 +00004798 // 2. Derive the loop's MaxBECount from each exit's max number of
4799 // non-exiting iterations. Partition the loop exits into two kinds:
4800 // LoopMustExits and LoopMayExits.
4801 //
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004802 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
4803 // is a LoopMayExit. If any computable LoopMustExit is found, then
4804 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
4805 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
4806 // considered greater than any computable EL.Max.
4807 if (EL.Max != getCouldNotCompute() && Latch &&
Andrew Trick839e30b2014-05-23 19:47:13 +00004808 DT->dominates(ExitBB, Latch)) {
4809 if (!MustExitMaxBECount)
4810 MustExitMaxBECount = EL.Max;
4811 else {
4812 MustExitMaxBECount =
4813 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
Andrew Tricke2553592014-05-22 00:37:03 +00004814 }
Andrew Trick839e30b2014-05-23 19:47:13 +00004815 } else if (MayExitMaxBECount != getCouldNotCompute()) {
4816 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
4817 MayExitMaxBECount = EL.Max;
4818 else {
4819 MayExitMaxBECount =
4820 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
4821 }
Andrew Trick90c7a102011-11-16 00:52:40 +00004822 }
Dan Gohman96212b62009-06-22 00:31:57 +00004823 }
Andrew Trick839e30b2014-05-23 19:47:13 +00004824 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
4825 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
Andrew Trick3ca3f982011-07-26 17:19:55 +00004826 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00004827}
4828
Andrew Trick3ca3f982011-07-26 17:19:55 +00004829/// ComputeExitLimit - Compute the number of times the backedge of the specified
4830/// loop will execute if it exits via the specified block.
4831ScalarEvolution::ExitLimit
4832ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohman96212b62009-06-22 00:31:57 +00004833
4834 // Okay, we've chosen an exiting block. See what condition causes us to
Benjamin Kramer5a188542014-02-11 15:44:32 +00004835 // exit at this block and remember the exit block and whether all other targets
4836 // lead to the loop header.
4837 bool MustExecuteLoopHeader = true;
Craig Topper9f008862014-04-15 04:59:12 +00004838 BasicBlock *Exit = nullptr;
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00004839 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
4840 SI != SE; ++SI)
4841 if (!L->contains(*SI)) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00004842 if (Exit) // Multiple exit successors.
4843 return getCouldNotCompute();
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +00004844 Exit = *SI;
4845 } else if (*SI != L->getHeader()) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00004846 MustExecuteLoopHeader = false;
4847 }
Dan Gohmance973df2009-06-24 04:48:43 +00004848
Chris Lattner18954852007-01-07 02:24:26 +00004849 // At this point, we know we have a conditional branch that determines whether
4850 // the loop is exited. However, we don't know if the branch is executed each
4851 // time through the loop. If not, then the execution count of the branch will
4852 // not be equal to the trip count of the loop.
4853 //
4854 // Currently we check for this by checking to see if the Exit branch goes to
4855 // the loop header. If so, we know it will always execute the same number of
Chris Lattner5a554762007-01-14 01:24:47 +00004856 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman96212b62009-06-22 00:31:57 +00004857 // loop header. This is common for un-rotated loops.
4858 //
4859 // If both of those tests fail, walk up the unique predecessor chain to the
4860 // header, stopping if there is an edge that doesn't exit the loop. If the
4861 // header is reached, the execution count of the branch will be equal to the
4862 // trip count of the loop.
4863 //
4864 // More extensive analysis could be done to handle more cases here.
4865 //
Benjamin Kramer5a188542014-02-11 15:44:32 +00004866 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
Dan Gohman96212b62009-06-22 00:31:57 +00004867 // The simple checks failed, try climbing the unique predecessor chain
4868 // up to the header.
4869 bool Ok = false;
Benjamin Kramer5a188542014-02-11 15:44:32 +00004870 for (BasicBlock *BB = ExitingBlock; BB; ) {
Dan Gohman96212b62009-06-22 00:31:57 +00004871 BasicBlock *Pred = BB->getUniquePredecessor();
4872 if (!Pred)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004873 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004874 TerminatorInst *PredTerm = Pred->getTerminator();
4875 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4876 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4877 if (PredSucc == BB)
4878 continue;
4879 // If the predecessor has a successor that isn't BB and isn't
4880 // outside the loop, assume the worst.
4881 if (L->contains(PredSucc))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004882 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004883 }
4884 if (Pred == L->getHeader()) {
4885 Ok = true;
4886 break;
4887 }
4888 BB = Pred;
4889 }
4890 if (!Ok)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004891 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004892 }
4893
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004894 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
Benjamin Kramer5a188542014-02-11 15:44:32 +00004895 TerminatorInst *Term = ExitingBlock->getTerminator();
4896 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
4897 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
4898 // Proceed to the next level to examine the exit condition expression.
4899 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
4900 BI->getSuccessor(1),
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004901 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00004902 }
4903
4904 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
4905 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004906 /*ControlsExit=*/IsOnlyExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00004907
4908 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004909}
4910
Andrew Trick3ca3f982011-07-26 17:19:55 +00004911/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00004912/// backedge of the specified loop will execute if its exit condition
4913/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5b245a12013-05-31 06:43:25 +00004914///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004915/// @param ControlsExit is true if ExitCond directly controls the exit
4916/// branch. In this case, we can assume that the loop exits only if the
4917/// condition is true and can infer that failing to meet the condition prior to
4918/// integer wraparound results in undefined behavior.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004919ScalarEvolution::ExitLimit
4920ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4921 Value *ExitCond,
4922 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00004923 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004924 bool ControlsExit) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00004925 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman96212b62009-06-22 00:31:57 +00004926 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4927 if (BO->getOpcode() == Instruction::And) {
4928 // Recurse on the operands of the and.
Andrew Trick5b245a12013-05-31 06:43:25 +00004929 bool EitherMayExit = L->contains(TBB);
4930 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004931 ControlsExit && !EitherMayExit);
Andrew Trick5b245a12013-05-31 06:43:25 +00004932 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004933 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00004934 const SCEV *BECount = getCouldNotCompute();
4935 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00004936 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00004937 // Both conditions must be true for the loop to continue executing.
4938 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004939 if (EL0.Exact == getCouldNotCompute() ||
4940 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004941 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00004942 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004943 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4944 if (EL0.Max == getCouldNotCompute())
4945 MaxBECount = EL1.Max;
4946 else if (EL1.Max == getCouldNotCompute())
4947 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00004948 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004949 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00004950 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00004951 // Both conditions must be true at the same time for the loop to exit.
4952 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00004953 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004954 if (EL0.Max == EL1.Max)
4955 MaxBECount = EL0.Max;
4956 if (EL0.Exact == EL1.Exact)
4957 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00004958 }
4959
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004960 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00004961 }
4962 if (BO->getOpcode() == Instruction::Or) {
4963 // Recurse on the operands of the or.
Andrew Trick5b245a12013-05-31 06:43:25 +00004964 bool EitherMayExit = L->contains(FBB);
4965 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004966 ControlsExit && !EitherMayExit);
Andrew Trick5b245a12013-05-31 06:43:25 +00004967 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004968 ControlsExit && !EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00004969 const SCEV *BECount = getCouldNotCompute();
4970 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick5b245a12013-05-31 06:43:25 +00004971 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00004972 // Both conditions must be false for the loop to continue executing.
4973 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004974 if (EL0.Exact == getCouldNotCompute() ||
4975 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004976 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00004977 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004978 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4979 if (EL0.Max == getCouldNotCompute())
4980 MaxBECount = EL1.Max;
4981 else if (EL1.Max == getCouldNotCompute())
4982 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00004983 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004984 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Dan Gohman96212b62009-06-22 00:31:57 +00004985 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00004986 // Both conditions must be false at the same time for the loop to exit.
4987 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00004988 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004989 if (EL0.Max == EL1.Max)
4990 MaxBECount = EL0.Max;
4991 if (EL0.Exact == EL1.Exact)
4992 BECount = EL0.Exact;
Dan Gohman96212b62009-06-22 00:31:57 +00004993 }
4994
Mark Heffernan2beab5f2014-10-10 17:39:11 +00004995 return ExitLimit(BECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00004996 }
4997 }
4998
4999 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman8b0a4192010-03-01 17:49:51 +00005000 // Proceed to the next level to examine the icmp.
Dan Gohman96212b62009-06-22 00:31:57 +00005001 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005002 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
Reid Spencer266e42b2006-12-23 06:05:41 +00005003
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005004 // Check for a constant condition. These are normally stripped out by
5005 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5006 // preserve the CFG and is temporarily leaving constant conditions
5007 // in place.
5008 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5009 if (L->contains(FBB) == !CI->getZExtValue())
5010 // The backedge is always taken.
5011 return getCouldNotCompute();
5012 else
5013 // The backedge is never taken.
Dan Gohman1d2ded72010-05-03 22:09:21 +00005014 return getConstant(CI->getType(), 0);
Dan Gohman6b1e2a82010-02-19 18:12:07 +00005015 }
5016
Eli Friedmanebf98b02009-05-09 12:32:42 +00005017 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005018 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohman96212b62009-06-22 00:31:57 +00005019}
5020
Andrew Trick3ca3f982011-07-26 17:19:55 +00005021/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00005022/// backedge of the specified loop will execute if its exit condition
5023/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005024ScalarEvolution::ExitLimit
5025ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
5026 ICmpInst *ExitCond,
5027 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00005028 BasicBlock *FBB,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005029 bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005030
Reid Spencer266e42b2006-12-23 06:05:41 +00005031 // If the condition was exit on true, convert the condition to exit on false
5032 ICmpInst::Predicate Cond;
Dan Gohman96212b62009-06-22 00:31:57 +00005033 if (!L->contains(FBB))
Reid Spencer266e42b2006-12-23 06:05:41 +00005034 Cond = ExitCond->getPredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005035 else
Reid Spencer266e42b2006-12-23 06:05:41 +00005036 Cond = ExitCond->getInversePredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005037
5038 // Handle common loops like: for (X = "string"; *X; ++X)
5039 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5040 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00005041 ExitLimit ItCnt =
5042 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanba820342010-02-24 17:31:30 +00005043 if (ItCnt.hasAnyInfo())
5044 return ItCnt;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005045 }
5046
Dan Gohmanaf752342009-07-07 17:06:11 +00005047 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5048 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattnerd934c702004-04-02 20:23:17 +00005049
5050 // Try to evaluate any dependencies out of the loop.
Dan Gohman8ca08852009-05-24 23:25:42 +00005051 LHS = getSCEVAtScope(LHS, L);
5052 RHS = getSCEVAtScope(RHS, L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005053
Dan Gohmance973df2009-06-24 04:48:43 +00005054 // At this point, we would like to compute how many iterations of the
Reid Spencer266e42b2006-12-23 06:05:41 +00005055 // loop the predicate will return true for these inputs.
Dan Gohmanafd6db92010-11-17 21:23:15 +00005056 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohmandc5f5cb2008-09-16 18:52:57 +00005057 // If there is a loop-invariant, force it into the RHS.
Chris Lattnerd934c702004-04-02 20:23:17 +00005058 std::swap(LHS, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00005059 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattnerd934c702004-04-02 20:23:17 +00005060 }
5061
Dan Gohman81585c12010-05-03 16:35:17 +00005062 // Simplify the operands before analyzing them.
5063 (void)SimplifyICmpOperands(Cond, LHS, RHS);
5064
Chris Lattnerd934c702004-04-02 20:23:17 +00005065 // If we have a comparison of a chrec against a constant, try to use value
5066 // ranges to answer this query.
Dan Gohmana30370b2009-05-04 22:02:23 +00005067 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5068 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattnerd934c702004-04-02 20:23:17 +00005069 if (AddRec->getLoop() == L) {
Eli Friedmanebf98b02009-05-09 12:32:42 +00005070 // Form the constant range.
5071 ConstantRange CompRange(
5072 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman01808ca2005-04-21 21:13:18 +00005073
Dan Gohmanaf752342009-07-07 17:06:11 +00005074 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedmanebf98b02009-05-09 12:32:42 +00005075 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattnerd934c702004-04-02 20:23:17 +00005076 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005077
Chris Lattnerd934c702004-04-02 20:23:17 +00005078 switch (Cond) {
Reid Spencer266e42b2006-12-23 06:05:41 +00005079 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattnerd934c702004-04-02 20:23:17 +00005080 // Convert to: while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005081 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005082 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005083 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005084 }
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00005085 case ICmpInst::ICMP_EQ: { // while (X == Y)
5086 // Convert to: while (X-Y == 0)
Andrew Trick3ca3f982011-07-26 17:19:55 +00005087 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5088 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00005089 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005090 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005091 case ICmpInst::ICMP_SLT:
5092 case ICmpInst::ICMP_ULT: { // while (X < Y)
5093 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005094 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005095 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005096 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005097 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00005098 case ICmpInst::ICMP_SGT:
5099 case ICmpInst::ICMP_UGT: { // while (X > Y)
5100 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005101 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
Andrew Trick3ca3f982011-07-26 17:19:55 +00005102 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00005103 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00005104 }
Chris Lattnerd934c702004-04-02 20:23:17 +00005105 default:
Chris Lattner09169212004-04-02 20:26:46 +00005106#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005107 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattnerd934c702004-04-02 20:23:17 +00005108 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greenedf1c4972009-12-23 22:18:14 +00005109 dbgs() << "[unsigned] ";
5110 dbgs() << *LHS << " "
Dan Gohmance973df2009-06-24 04:48:43 +00005111 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencer266e42b2006-12-23 06:05:41 +00005112 << " " << *RHS << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00005113#endif
Chris Lattner0defaa12004-04-03 00:43:03 +00005114 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00005115 }
Andrew Trick3ca3f982011-07-26 17:19:55 +00005116 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner4021d1a2004-04-17 18:36:24 +00005117}
5118
Benjamin Kramer5a188542014-02-11 15:44:32 +00005119ScalarEvolution::ExitLimit
5120ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
5121 SwitchInst *Switch,
5122 BasicBlock *ExitingBlock,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005123 bool ControlsExit) {
Benjamin Kramer5a188542014-02-11 15:44:32 +00005124 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5125
5126 // Give up if the exit is the default dest of a switch.
5127 if (Switch->getDefaultDest() == ExitingBlock)
5128 return getCouldNotCompute();
5129
5130 assert(L->contains(Switch->getDefaultDest()) &&
5131 "Default case must not exit the loop!");
5132 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5133 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5134
5135 // while (X != Y) --> while (X-Y != 0)
Mark Heffernan2beab5f2014-10-10 17:39:11 +00005136 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
Benjamin Kramer5a188542014-02-11 15:44:32 +00005137 if (EL.hasAnyInfo())
5138 return EL;
5139
5140 return getCouldNotCompute();
5141}
5142
Chris Lattnerec901cc2004-10-12 01:49:27 +00005143static ConstantInt *
Dan Gohmana37eaf22007-10-22 18:31:58 +00005144EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5145 ScalarEvolution &SE) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005146 const SCEV *InVal = SE.getConstant(C);
5147 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005148 assert(isa<SCEVConstant>(Val) &&
5149 "Evaluation of SCEV at constant didn't fold correctly?");
5150 return cast<SCEVConstant>(Val)->getValue();
5151}
5152
Andrew Trick3ca3f982011-07-26 17:19:55 +00005153/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman0bddac12009-02-24 18:55:53 +00005154/// 'icmp op load X, cst', try to see if we can compute the backedge
5155/// execution count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005156ScalarEvolution::ExitLimit
5157ScalarEvolution::ComputeLoadConstantCompareExitLimit(
5158 LoadInst *LI,
5159 Constant *RHS,
5160 const Loop *L,
5161 ICmpInst::Predicate predicate) {
5162
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005163 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005164
5165 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanba820342010-02-24 17:31:30 +00005166 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005167 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005168 if (!GEP) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005169
5170 // Make sure that it is really a constant global we are gepping, with an
5171 // initializer, and make sure the first IDX is really 0.
5172 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00005173 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005174 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
5175 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005176 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005177
5178 // Okay, we allow one non-constant index into the GEP instruction.
Craig Topper9f008862014-04-15 04:59:12 +00005179 Value *VarIdx = nullptr;
Chris Lattnere166a852012-01-24 05:49:24 +00005180 std::vector<Constant*> Indexes;
Chris Lattnerec901cc2004-10-12 01:49:27 +00005181 unsigned VarIdxNum = 0;
5182 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
5183 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5184 Indexes.push_back(CI);
5185 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005186 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattnerec901cc2004-10-12 01:49:27 +00005187 VarIdx = GEP->getOperand(i);
5188 VarIdxNum = i-2;
Craig Topper9f008862014-04-15 04:59:12 +00005189 Indexes.push_back(nullptr);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005190 }
5191
Andrew Trick7004e4b2012-03-26 22:33:59 +00005192 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
5193 if (!VarIdx)
5194 return getCouldNotCompute();
5195
Chris Lattnerec901cc2004-10-12 01:49:27 +00005196 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
5197 // Check to see if X is a loop variant variable value now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005198 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohman8ca08852009-05-24 23:25:42 +00005199 Idx = getSCEVAtScope(Idx, L);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005200
5201 // We can only recognize very limited forms of loop index expressions, in
5202 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman48f82222009-05-04 22:30:44 +00005203 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanafd6db92010-11-17 21:23:15 +00005204 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00005205 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
5206 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005207 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005208
5209 unsigned MaxSteps = MaxBruteForceIterations;
5210 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersonedb4a702009-07-24 23:12:02 +00005211 ConstantInt *ItCst = ConstantInt::get(
Owen Andersonb6b25302009-07-14 23:09:55 +00005212 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanc8e23622009-04-21 23:15:49 +00005213 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattnerec901cc2004-10-12 01:49:27 +00005214
5215 // Form the GEP offset.
5216 Indexes[VarIdxNum] = Val;
5217
Chris Lattnere166a852012-01-24 05:49:24 +00005218 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
5219 Indexes);
Craig Topper9f008862014-04-15 04:59:12 +00005220 if (!Result) break; // Cannot compute!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005221
5222 // Evaluate the condition for this iteration.
Reid Spencer266e42b2006-12-23 06:05:41 +00005223 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng75b871f2007-01-11 12:24:14 +00005224 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencer983e3b32007-03-01 07:25:48 +00005225 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattnerec901cc2004-10-12 01:49:27 +00005226#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005227 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmane20f8242009-04-21 00:47:46 +00005228 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
5229 << "***\n";
Chris Lattnerec901cc2004-10-12 01:49:27 +00005230#endif
5231 ++NumArrayLenItCounts;
Dan Gohmanc8e23622009-04-21 23:15:49 +00005232 return getConstant(ItCst); // Found terminating iteration!
Chris Lattnerec901cc2004-10-12 01:49:27 +00005233 }
5234 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005235 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00005236}
5237
5238
Chris Lattnerdd730472004-04-17 22:58:41 +00005239/// CanConstantFold - Return true if we can constant fold an instruction of the
5240/// specified type, assuming that all operands were constants.
5241static bool CanConstantFold(const Instruction *I) {
Reid Spencer2341c222007-02-02 02:16:23 +00005242 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewyckya6674c72011-10-22 19:58:20 +00005243 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
5244 isa<LoadInst>(I))
Chris Lattnerdd730472004-04-17 22:58:41 +00005245 return true;
Misha Brukman01808ca2005-04-21 21:13:18 +00005246
Chris Lattnerdd730472004-04-17 22:58:41 +00005247 if (const CallInst *CI = dyn_cast<CallInst>(I))
5248 if (const Function *F = CI->getCalledFunction())
Dan Gohmana65951f2008-01-31 01:05:10 +00005249 return canConstantFoldCallTo(F);
Chris Lattnerdd730472004-04-17 22:58:41 +00005250 return false;
Chris Lattner4021d1a2004-04-17 18:36:24 +00005251}
5252
Andrew Trick3a86ba72011-10-05 03:25:31 +00005253/// Determine whether this instruction can constant evolve within this loop
5254/// assuming its operands can all constant evolve.
5255static bool canConstantEvolve(Instruction *I, const Loop *L) {
5256 // An instruction outside of the loop can't be derived from a loop PHI.
5257 if (!L->contains(I)) return false;
5258
5259 if (isa<PHINode>(I)) {
5260 if (L->getHeader() == I->getParent())
5261 return true;
5262 else
5263 // We don't currently keep track of the control flow needed to evaluate
5264 // PHIs, so we cannot handle PHIs inside of loops.
5265 return false;
5266 }
5267
5268 // If we won't be able to constant fold this expression even if the operands
5269 // are constants, bail early.
5270 return CanConstantFold(I);
5271}
5272
5273/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
5274/// recursing through each instruction operand until reaching a loop header phi.
5275static PHINode *
5276getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Tricke9162f12011-10-05 05:58:49 +00005277 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005278
5279 // Otherwise, we can evaluate this instruction if all of its operands are
5280 // constant or derived from a PHI node themselves.
Craig Topper9f008862014-04-15 04:59:12 +00005281 PHINode *PHI = nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005282 for (Instruction::op_iterator OpI = UseInst->op_begin(),
5283 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
5284
5285 if (isa<Constant>(*OpI)) continue;
5286
5287 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
Craig Topper9f008862014-04-15 04:59:12 +00005288 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005289
5290 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trick3e8a5762011-10-05 22:06:53 +00005291 if (!P)
5292 // If this operand is already visited, reuse the prior result.
5293 // We may have P != PHI if this is the deepest point at which the
5294 // inconsistent paths meet.
5295 P = PHIMap.lookup(OpInst);
5296 if (!P) {
5297 // Recurse and memoize the results, whether a phi is found or not.
5298 // This recursive call invalidates pointers into PHIMap.
5299 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
5300 PHIMap[OpInst] = P;
Andrew Tricke9162f12011-10-05 05:58:49 +00005301 }
Craig Topper9f008862014-04-15 04:59:12 +00005302 if (!P)
5303 return nullptr; // Not evolving from PHI
5304 if (PHI && PHI != P)
5305 return nullptr; // Evolving from multiple different PHIs.
Andrew Tricke9162f12011-10-05 05:58:49 +00005306 PHI = P;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005307 }
5308 // This is a expression evolving from a constant PHI!
5309 return PHI;
5310}
5311
Chris Lattnerdd730472004-04-17 22:58:41 +00005312/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
5313/// in the loop that V is derived from. We allow arbitrary operations along the
5314/// way, but the operands of an operation must either be constants or a value
5315/// derived from a constant PHI. If this expression does not fit with these
5316/// constraints, return null.
5317static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005318 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005319 if (!I || !canConstantEvolve(I, L)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005320
Anton Korobeynikov579f0712008-02-20 11:08:44 +00005321 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00005322 return PN;
Anton Korobeynikov579f0712008-02-20 11:08:44 +00005323 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005324
Andrew Trick3a86ba72011-10-05 03:25:31 +00005325 // Record non-constant instructions contained by the loop.
Andrew Tricke9162f12011-10-05 05:58:49 +00005326 DenseMap<Instruction *, PHINode *> PHIMap;
5327 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattnerdd730472004-04-17 22:58:41 +00005328}
5329
5330/// EvaluateExpression - Given an expression that passes the
5331/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
5332/// in the loop has the value PHIVal. If we can't fold this expression for some
5333/// reason, return null.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005334static Constant *EvaluateExpression(Value *V, const Loop *L,
5335 DenseMap<Instruction *, Constant *> &Vals,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005336 const DataLayout *DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005337 const TargetLibraryInfo *TLI) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005338 // Convenient constant check, but redundant for recursive calls.
Reid Spencer30d69a52004-07-18 00:18:30 +00005339 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005340 Instruction *I = dyn_cast<Instruction>(V);
Craig Topper9f008862014-04-15 04:59:12 +00005341 if (!I) return nullptr;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005342
Andrew Trick3a86ba72011-10-05 03:25:31 +00005343 if (Constant *C = Vals.lookup(I)) return C;
5344
Nick Lewyckya6674c72011-10-22 19:58:20 +00005345 // An instruction inside the loop depends on a value outside the loop that we
5346 // weren't given a mapping for, or a value such as a call inside the loop.
Craig Topper9f008862014-04-15 04:59:12 +00005347 if (!canConstantEvolve(I, L)) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005348
5349 // An unmapped PHI can be due to a branch or another loop inside this loop,
5350 // or due to this not being the initial iteration through a loop where we
5351 // couldn't compute the evolution of this particular PHI last time.
Craig Topper9f008862014-04-15 04:59:12 +00005352 if (isa<PHINode>(I)) return nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005353
Dan Gohmanf820bd32010-06-22 13:15:46 +00005354 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattnerdd730472004-04-17 22:58:41 +00005355
5356 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Tricke9162f12011-10-05 05:58:49 +00005357 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
5358 if (!Operand) {
Nick Lewyckya447e0f32011-10-14 09:38:46 +00005359 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005360 if (!Operands[i]) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005361 continue;
5362 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005363 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
Andrew Tricke9162f12011-10-05 05:58:49 +00005364 Vals[Operand] = C;
Craig Topper9f008862014-04-15 04:59:12 +00005365 if (!C) return nullptr;
Andrew Tricke9162f12011-10-05 05:58:49 +00005366 Operands[i] = C;
Chris Lattnerdd730472004-04-17 22:58:41 +00005367 }
5368
Nick Lewyckya6674c72011-10-22 19:58:20 +00005369 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattnercdfb80d2009-11-09 23:06:58 +00005370 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005371 Operands[1], DL, TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005372 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
5373 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005374 return ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005375 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005376 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005377 TLI);
Chris Lattnerdd730472004-04-17 22:58:41 +00005378}
5379
5380/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5381/// in the header of its containing loop, we know the loop executes a
5382/// constant number of times, and the PHI node is just a recurrence
5383/// involving constants, fold it.
Dan Gohmance973df2009-06-24 04:48:43 +00005384Constant *
5385ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohmancb0efec2009-12-18 01:14:11 +00005386 const APInt &BEs,
Dan Gohmance973df2009-06-24 04:48:43 +00005387 const Loop *L) {
Dan Gohman0daf6872011-05-09 18:44:09 +00005388 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattnerdd730472004-04-17 22:58:41 +00005389 ConstantEvolutionLoopExitValue.find(PN);
5390 if (I != ConstantEvolutionLoopExitValue.end())
5391 return I->second;
5392
Dan Gohman4ce1fb12010-04-08 23:03:40 +00005393 if (BEs.ugt(MaxBruteForceIterations))
Craig Topper9f008862014-04-15 04:59:12 +00005394 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
Chris Lattnerdd730472004-04-17 22:58:41 +00005395
5396 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5397
Andrew Trick3a86ba72011-10-05 03:25:31 +00005398 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005399 BasicBlock *Header = L->getHeader();
5400 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick3a86ba72011-10-05 03:25:31 +00005401
Chris Lattnerdd730472004-04-17 22:58:41 +00005402 // Since the loop is canonicalized, the PHI node must have two entries. One
5403 // entry must be a constant (coming in from outside of the loop), and the
5404 // second must be derived from the same PHI.
5405 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005406 PHINode *PHI = nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005407 for (BasicBlock::iterator I = Header->begin();
5408 (PHI = dyn_cast<PHINode>(I)); ++I) {
5409 Constant *StartCST =
5410 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005411 if (!StartCST) continue;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005412 CurrentIterVals[PHI] = StartCST;
5413 }
5414 if (!CurrentIterVals.count(PN))
Craig Topper9f008862014-04-15 04:59:12 +00005415 return RetVal = nullptr;
Chris Lattnerdd730472004-04-17 22:58:41 +00005416
5417 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattnerdd730472004-04-17 22:58:41 +00005418
5419 // Execute the loop symbolically to determine the exit value.
Dan Gohman0bddac12009-02-24 18:55:53 +00005420 if (BEs.getActiveBits() >= 32)
Craig Topper9f008862014-04-15 04:59:12 +00005421 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
Chris Lattnerdd730472004-04-17 22:58:41 +00005422
Dan Gohman0bddac12009-02-24 18:55:53 +00005423 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencer983e3b32007-03-01 07:25:48 +00005424 unsigned IterationNum = 0;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005425 for (; ; ++IterationNum) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005426 if (IterationNum == NumIterations)
Andrew Trick3a86ba72011-10-05 03:25:31 +00005427 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattnerdd730472004-04-17 22:58:41 +00005428
Nick Lewyckya6674c72011-10-22 19:58:20 +00005429 // Compute the value of the PHIs for the next iteration.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005430 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005431 DenseMap<Instruction *, Constant *> NextIterVals;
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005432 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005433 TLI);
Craig Topper9f008862014-04-15 04:59:12 +00005434 if (!NextPHI)
5435 return nullptr; // Couldn't evaluate!
Andrew Trick3a86ba72011-10-05 03:25:31 +00005436 NextIterVals[PN] = NextPHI;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005437
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005438 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
5439
Nick Lewyckya6674c72011-10-22 19:58:20 +00005440 // Also evaluate the other PHI nodes. However, we don't get to stop if we
5441 // cease to be able to evaluate one of them or if they stop evolving,
5442 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005443 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005444 for (DenseMap<Instruction *, Constant *>::const_iterator
5445 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5446 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky8e904de2011-10-24 05:51:01 +00005447 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005448 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
5449 }
5450 // We use two distinct loops because EvaluateExpression may invalidate any
5451 // iterators into CurrentIterVals.
5452 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
5453 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
5454 PHINode *PHI = I->first;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005455 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005456 if (!NextPHI) { // Not already computed.
5457 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005458 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005459 }
5460 if (NextPHI != I->second)
5461 StoppedEvolving = false;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005462 }
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005463
5464 // If all entries in CurrentIterVals == NextIterVals then we can stop
5465 // iterating, the loop can't continue to change.
5466 if (StoppedEvolving)
5467 return RetVal = CurrentIterVals[PN];
5468
Andrew Trick3a86ba72011-10-05 03:25:31 +00005469 CurrentIterVals.swap(NextIterVals);
Chris Lattnerdd730472004-04-17 22:58:41 +00005470 }
5471}
5472
Andrew Trick3ca3f982011-07-26 17:19:55 +00005473/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner4021d1a2004-04-17 18:36:24 +00005474/// constant number of times (the condition evolves only from constants),
5475/// try to evaluate a few iterations of the loop until we get the exit
5476/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005477/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewyckya6674c72011-10-22 19:58:20 +00005478const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
5479 Value *Cond,
5480 bool ExitWhen) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005481 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Craig Topper9f008862014-04-15 04:59:12 +00005482 if (!PN) return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005483
Dan Gohman866971e2010-06-19 14:17:24 +00005484 // If the loop is canonicalized, the PHI will have exactly two entries.
5485 // That's the only form we support here.
5486 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
5487
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005488 DenseMap<Instruction *, Constant *> CurrentIterVals;
5489 BasicBlock *Header = L->getHeader();
5490 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5491
Dan Gohman866971e2010-06-19 14:17:24 +00005492 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner4021d1a2004-04-17 18:36:24 +00005493 // second must be derived from the same PHI.
5494 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Craig Topper9f008862014-04-15 04:59:12 +00005495 PHINode *PHI = nullptr;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005496 for (BasicBlock::iterator I = Header->begin();
5497 (PHI = dyn_cast<PHINode>(I)); ++I) {
5498 Constant *StartCST =
5499 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
Craig Topper9f008862014-04-15 04:59:12 +00005500 if (!StartCST) continue;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005501 CurrentIterVals[PHI] = StartCST;
5502 }
5503 if (!CurrentIterVals.count(PN))
5504 return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005505
5506 // Okay, we find a PHI node that defines the trip count of this loop. Execute
5507 // the loop symbolically to determine when the condition gets a value of
5508 // "ExitWhen".
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005509
Andrew Trick90c7a102011-11-16 00:52:40 +00005510 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005511 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Zhou Sheng75b871f2007-01-11 12:24:14 +00005512 ConstantInt *CondVal =
Chad Rosiere6de63d2011-12-01 21:29:16 +00005513 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005514 DL, TLI));
Chris Lattnerdd730472004-04-17 22:58:41 +00005515
Zhou Sheng75b871f2007-01-11 12:24:14 +00005516 // Couldn't symbolically evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005517 if (!CondVal) return getCouldNotCompute();
Zhou Sheng75b871f2007-01-11 12:24:14 +00005518
Reid Spencer983e3b32007-03-01 07:25:48 +00005519 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005520 ++NumBruteForceTripCountsComputed;
Owen Anderson55f1c092009-08-13 21:58:54 +00005521 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005522 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005523
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005524 // Update all the PHI nodes for the next iteration.
5525 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005526
5527 // Create a list of which PHIs we need to compute. We want to do this before
5528 // calling EvaluateExpression on them because that may invalidate iterators
5529 // into CurrentIterVals.
5530 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005531 for (DenseMap<Instruction *, Constant *>::const_iterator
5532 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5533 PHINode *PHI = dyn_cast<PHINode>(I->first);
5534 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005535 PHIsToCompute.push_back(PHI);
5536 }
5537 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
5538 E = PHIsToCompute.end(); I != E; ++I) {
5539 PHINode *PHI = *I;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005540 Constant *&NextPHI = NextIterVals[PHI];
5541 if (NextPHI) continue; // Already computed!
5542
5543 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005544 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005545 }
5546 CurrentIterVals.swap(NextIterVals);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005547 }
5548
5549 // Too many iterations were needed to evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005550 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005551}
5552
Dan Gohman237d9e52009-09-03 15:00:26 +00005553/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005554/// at the specified scope in the program. The L value specifies a loop
5555/// nest to evaluate the expression at, where null is the top-level or a
5556/// specified loop is immediately inside of the loop.
5557///
5558/// This method can be used to compute the exit value for a variable defined
5559/// in a loop by querying what the value will hold in the parent loop.
5560///
Dan Gohman8ca08852009-05-24 23:25:42 +00005561/// In the case that a relevant loop exit value cannot be computed, the
5562/// original value V is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005563const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005564 // Check to see if we've folded this expression at this loop before.
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005565 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
5566 for (unsigned u = 0; u < Values.size(); u++) {
5567 if (Values[u].first == L)
5568 return Values[u].second ? Values[u].second : V;
5569 }
Craig Topper9f008862014-04-15 04:59:12 +00005570 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr)));
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005571 // Otherwise compute it.
5572 const SCEV *C = computeSCEVAtScope(V, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005573 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
5574 for (unsigned u = Values2.size(); u > 0; u--) {
5575 if (Values2[u - 1].first == L) {
5576 Values2[u - 1].second = C;
5577 break;
5578 }
5579 }
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005580 return C;
5581}
5582
Nick Lewyckya6674c72011-10-22 19:58:20 +00005583/// This builds up a Constant using the ConstantExpr interface. That way, we
5584/// will return Constants for objects which aren't represented by a
5585/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5586/// Returns NULL if the SCEV isn't representable as a Constant.
5587static Constant *BuildConstantFromSCEV(const SCEV *V) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00005588 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
Nick Lewyckya6674c72011-10-22 19:58:20 +00005589 case scCouldNotCompute:
5590 case scAddRecExpr:
5591 break;
5592 case scConstant:
5593 return cast<SCEVConstant>(V)->getValue();
5594 case scUnknown:
5595 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5596 case scSignExtend: {
5597 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5598 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5599 return ConstantExpr::getSExt(CastOp, SS->getType());
5600 break;
5601 }
5602 case scZeroExtend: {
5603 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5604 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5605 return ConstantExpr::getZExt(CastOp, SZ->getType());
5606 break;
5607 }
5608 case scTruncate: {
5609 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5610 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5611 return ConstantExpr::getTrunc(CastOp, ST->getType());
5612 break;
5613 }
5614 case scAddExpr: {
5615 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5616 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005617 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5618 unsigned AS = PTy->getAddressSpace();
5619 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5620 C = ConstantExpr::getBitCast(C, DestPtrTy);
5621 }
Nick Lewyckya6674c72011-10-22 19:58:20 +00005622 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5623 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005624 if (!C2) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005625
5626 // First pointer!
5627 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005628 unsigned AS = C2->getType()->getPointerAddressSpace();
Nick Lewyckya6674c72011-10-22 19:58:20 +00005629 std::swap(C, C2);
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005630 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005631 // The offsets have been converted to bytes. We can add bytes to an
5632 // i8* by GEP with the byte count in the first index.
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005633 C = ConstantExpr::getBitCast(C, DestPtrTy);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005634 }
5635
5636 // Don't bother trying to sum two pointers. We probably can't
5637 // statically compute a load that results from it anyway.
5638 if (C2->getType()->isPointerTy())
Craig Topper9f008862014-04-15 04:59:12 +00005639 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005640
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005641 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5642 if (PTy->getElementType()->isStructTy())
Nick Lewyckya6674c72011-10-22 19:58:20 +00005643 C2 = ConstantExpr::getIntegerCast(
5644 C2, Type::getInt32Ty(C->getContext()), true);
5645 C = ConstantExpr::getGetElementPtr(C, C2);
5646 } else
5647 C = ConstantExpr::getAdd(C, C2);
5648 }
5649 return C;
5650 }
5651 break;
5652 }
5653 case scMulExpr: {
5654 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5655 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5656 // Don't bother with pointers at all.
Craig Topper9f008862014-04-15 04:59:12 +00005657 if (C->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005658 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5659 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
Craig Topper9f008862014-04-15 04:59:12 +00005660 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005661 C = ConstantExpr::getMul(C, C2);
5662 }
5663 return C;
5664 }
5665 break;
5666 }
5667 case scUDivExpr: {
5668 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5669 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5670 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5671 if (LHS->getType() == RHS->getType())
5672 return ConstantExpr::getUDiv(LHS, RHS);
5673 break;
5674 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00005675 case scSMaxExpr:
5676 case scUMaxExpr:
5677 break; // TODO: smax, umax.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005678 }
Craig Topper9f008862014-04-15 04:59:12 +00005679 return nullptr;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005680}
5681
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005682const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005683 if (isa<SCEVConstant>(V)) return V;
Misha Brukman01808ca2005-04-21 21:13:18 +00005684
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005685 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattnerdd730472004-04-17 22:58:41 +00005686 // exit value from the loop without using SCEVs.
Dan Gohmana30370b2009-05-04 22:02:23 +00005687 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005688 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00005689 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattnerdd730472004-04-17 22:58:41 +00005690 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5691 if (PHINode *PN = dyn_cast<PHINode>(I))
5692 if (PN->getParent() == LI->getHeader()) {
5693 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman0bddac12009-02-24 18:55:53 +00005694 // to see if the loop that contains it has a known backedge-taken
5695 // count. If so, we may be able to force computation of the exit
5696 // value.
Dan Gohmanaf752342009-07-07 17:06:11 +00005697 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmana30370b2009-05-04 22:02:23 +00005698 if (const SCEVConstant *BTCC =
Dan Gohman0bddac12009-02-24 18:55:53 +00005699 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005700 // Okay, we know how many times the containing loop executes. If
5701 // this is a constant evolving PHI node, get the final value at
5702 // the specified iteration number.
5703 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman0bddac12009-02-24 18:55:53 +00005704 BTCC->getValue()->getValue(),
Chris Lattnerdd730472004-04-17 22:58:41 +00005705 LI);
Dan Gohman9d203c62009-06-29 21:31:18 +00005706 if (RV) return getSCEV(RV);
Chris Lattnerdd730472004-04-17 22:58:41 +00005707 }
5708 }
5709
Reid Spencere6328ca2006-12-04 21:33:23 +00005710 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattnerdd730472004-04-17 22:58:41 +00005711 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencere6328ca2006-12-04 21:33:23 +00005712 // the arguments into constants, and if so, try to constant propagate the
Chris Lattnerdd730472004-04-17 22:58:41 +00005713 // result. This is particularly useful for computing loop exit values.
5714 if (CanConstantFold(I)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005715 SmallVector<Constant *, 4> Operands;
5716 bool MadeImprovement = false;
Chris Lattnerdd730472004-04-17 22:58:41 +00005717 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5718 Value *Op = I->getOperand(i);
5719 if (Constant *C = dyn_cast<Constant>(Op)) {
5720 Operands.push_back(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005721 continue;
Chris Lattnerdd730472004-04-17 22:58:41 +00005722 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005723
5724 // If any of the operands is non-constant and if they are
5725 // non-integer and non-pointer, don't even try to analyze them
5726 // with scev techniques.
5727 if (!isSCEVable(Op->getType()))
5728 return V;
5729
5730 const SCEV *OrigV = getSCEV(Op);
5731 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5732 MadeImprovement |= OrigV != OpV;
5733
Nick Lewyckya6674c72011-10-22 19:58:20 +00005734 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005735 if (!C) return V;
5736 if (C->getType() != Op->getType())
5737 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5738 Op->getType(),
5739 false),
5740 C, Op->getType());
5741 Operands.push_back(C);
Chris Lattnerdd730472004-04-17 22:58:41 +00005742 }
Dan Gohmance973df2009-06-24 04:48:43 +00005743
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005744 // Check to see if getSCEVAtScope actually made an improvement.
5745 if (MadeImprovement) {
Craig Topper9f008862014-04-15 04:59:12 +00005746 Constant *C = nullptr;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005747 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5748 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005749 Operands[0], Operands[1], DL,
Chad Rosier43a33062011-12-02 01:26:24 +00005750 TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005751 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5752 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005753 C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005754 } else
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005755 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005756 Operands, DL, TLI);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005757 if (!C) return V;
Dan Gohman4aad7502010-02-24 19:31:47 +00005758 return getSCEV(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005759 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005760 }
5761 }
5762
5763 // This is some other type of SCEVUnknown, just return it.
5764 return V;
5765 }
5766
Dan Gohmana30370b2009-05-04 22:02:23 +00005767 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005768 // Avoid performing the look-up in the common case where the specified
5769 // expression has no loop-variant portions.
5770 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005771 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005772 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005773 // Okay, at least one of these operands is loop variant but might be
5774 // foldable. Build a new instance of the folded commutative expression.
Dan Gohmance973df2009-06-24 04:48:43 +00005775 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5776 Comm->op_begin()+i);
Chris Lattnerd934c702004-04-02 20:23:17 +00005777 NewOps.push_back(OpAtScope);
5778
5779 for (++i; i != e; ++i) {
5780 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005781 NewOps.push_back(OpAtScope);
5782 }
5783 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005784 return getAddExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005785 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005786 return getMulExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005787 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005788 return getSMaxExpr(NewOps);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005789 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005790 return getUMaxExpr(NewOps);
Torok Edwinfbcc6632009-07-14 16:55:14 +00005791 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00005792 }
5793 }
5794 // If we got here, all operands are loop invariant.
5795 return Comm;
5796 }
5797
Dan Gohmana30370b2009-05-04 22:02:23 +00005798 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005799 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5800 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky52348302009-01-13 09:18:58 +00005801 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5802 return Div; // must be loop invariant
Dan Gohmanc8e23622009-04-21 23:15:49 +00005803 return getUDivExpr(LHS, RHS);
Chris Lattnerd934c702004-04-02 20:23:17 +00005804 }
5805
5806 // If this is a loop recurrence for a loop that does not contain L, then we
5807 // are dealing with the final value computed by the loop.
Dan Gohmana30370b2009-05-04 22:02:23 +00005808 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005809 // First, attempt to evaluate each operand.
5810 // Avoid performing the look-up in the common case where the specified
5811 // expression has no loop-variant portions.
5812 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5813 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5814 if (OpAtScope == AddRec->getOperand(i))
5815 continue;
5816
5817 // Okay, at least one of these operands is loop variant but might be
5818 // foldable. Build a new instance of the folded commutative expression.
5819 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5820 AddRec->op_begin()+i);
5821 NewOps.push_back(OpAtScope);
5822 for (++i; i != e; ++i)
5823 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5824
Andrew Trick759ba082011-04-27 01:21:25 +00005825 const SCEV *FoldedRec =
Andrew Trick8b55b732011-03-14 16:50:06 +00005826 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick759ba082011-04-27 01:21:25 +00005827 AddRec->getNoWrapFlags(SCEV::FlagNW));
5828 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick01eff822011-04-27 05:42:17 +00005829 // The addrec may be folded to a nonrecurrence, for example, if the
5830 // induction variable is multiplied by zero after constant folding. Go
5831 // ahead and return the folded value.
Andrew Trick759ba082011-04-27 01:21:25 +00005832 if (!AddRec)
5833 return FoldedRec;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005834 break;
5835 }
5836
5837 // If the scope is outside the addrec's loop, evaluate it by using the
5838 // loop exit value of the addrec.
5839 if (!AddRec->getLoop()->contains(L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005840 // To evaluate this recurrence, we need to know how many times the AddRec
5841 // loop iterates. Compute this now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005842 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005843 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman01808ca2005-04-21 21:13:18 +00005844
Eli Friedman61f67622008-08-04 23:49:06 +00005845 // Then, evaluate the AddRec.
Dan Gohmanc8e23622009-04-21 23:15:49 +00005846 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattnerd934c702004-04-02 20:23:17 +00005847 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005848
Dan Gohman8ca08852009-05-24 23:25:42 +00005849 return AddRec;
Chris Lattnerd934c702004-04-02 20:23:17 +00005850 }
5851
Dan Gohmana30370b2009-05-04 22:02:23 +00005852 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005853 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005854 if (Op == Cast->getOperand())
5855 return Cast; // must be loop invariant
5856 return getZeroExtendExpr(Op, Cast->getType());
5857 }
5858
Dan Gohmana30370b2009-05-04 22:02:23 +00005859 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005860 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005861 if (Op == Cast->getOperand())
5862 return Cast; // must be loop invariant
5863 return getSignExtendExpr(Op, Cast->getType());
5864 }
5865
Dan Gohmana30370b2009-05-04 22:02:23 +00005866 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005867 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005868 if (Op == Cast->getOperand())
5869 return Cast; // must be loop invariant
5870 return getTruncateExpr(Op, Cast->getType());
5871 }
5872
Torok Edwinfbcc6632009-07-14 16:55:14 +00005873 llvm_unreachable("Unknown SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00005874}
5875
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005876/// getSCEVAtScope - This is a convenience function which does
5877/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanaf752342009-07-07 17:06:11 +00005878const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00005879 return getSCEVAtScope(getSCEV(V), L);
5880}
5881
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005882/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5883/// following equation:
5884///
5885/// A * X = B (mod N)
5886///
5887/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5888/// A and B isn't important.
5889///
5890/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005891static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005892 ScalarEvolution &SE) {
5893 uint32_t BW = A.getBitWidth();
5894 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5895 assert(A != 0 && "A must be non-zero.");
5896
5897 // 1. D = gcd(A, N)
5898 //
5899 // The gcd of A and N may have only one prime factor: 2. The number of
5900 // trailing zeros in A is its multiplicity
5901 uint32_t Mult2 = A.countTrailingZeros();
5902 // D = 2^Mult2
5903
5904 // 2. Check if B is divisible by D.
5905 //
5906 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5907 // is not less than multiplicity of this prime factor for D.
5908 if (B.countTrailingZeros() < Mult2)
Dan Gohman31efa302009-04-18 17:58:19 +00005909 return SE.getCouldNotCompute();
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005910
5911 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5912 // modulo (N / D).
5913 //
5914 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5915 // bit width during computations.
5916 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5917 APInt Mod(BW + 1, 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00005918 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005919 APInt I = AD.multiplicativeInverse(Mod);
5920
5921 // 4. Compute the minimum unsigned root of the equation:
5922 // I * (B / D) mod (N / D)
5923 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5924
5925 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5926 // bits.
5927 return SE.getConstant(Result.trunc(BW));
5928}
Chris Lattnerd934c702004-04-02 20:23:17 +00005929
5930/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5931/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5932/// might be the same) or two SCEVCouldNotCompute objects.
5933///
Dan Gohmanaf752342009-07-07 17:06:11 +00005934static std::pair<const SCEV *,const SCEV *>
Dan Gohmana37eaf22007-10-22 18:31:58 +00005935SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005936 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman48f82222009-05-04 22:30:44 +00005937 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5938 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5939 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman01808ca2005-04-21 21:13:18 +00005940
Chris Lattnerd934c702004-04-02 20:23:17 +00005941 // We currently can only solve this if the coefficients are constants.
Reid Spencer983e3b32007-03-01 07:25:48 +00005942 if (!LC || !MC || !NC) {
Dan Gohman48f82222009-05-04 22:30:44 +00005943 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005944 return std::make_pair(CNC, CNC);
5945 }
5946
Reid Spencer983e3b32007-03-01 07:25:48 +00005947 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnercad61e82007-04-15 19:52:49 +00005948 const APInt &L = LC->getValue()->getValue();
5949 const APInt &M = MC->getValue()->getValue();
5950 const APInt &N = NC->getValue()->getValue();
Reid Spencer983e3b32007-03-01 07:25:48 +00005951 APInt Two(BitWidth, 2);
5952 APInt Four(BitWidth, 4);
Misha Brukman01808ca2005-04-21 21:13:18 +00005953
Dan Gohmance973df2009-06-24 04:48:43 +00005954 {
Reid Spencer983e3b32007-03-01 07:25:48 +00005955 using namespace APIntOps;
Zhou Sheng2852d992007-04-07 17:48:27 +00005956 const APInt& C = L;
Reid Spencer983e3b32007-03-01 07:25:48 +00005957 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5958 // The B coefficient is M-N/2
5959 APInt B(M);
5960 B -= sdiv(N,Two);
Misha Brukman01808ca2005-04-21 21:13:18 +00005961
Reid Spencer983e3b32007-03-01 07:25:48 +00005962 // The A coefficient is N/2
Zhou Sheng2852d992007-04-07 17:48:27 +00005963 APInt A(N.sdiv(Two));
Chris Lattnerd934c702004-04-02 20:23:17 +00005964
Reid Spencer983e3b32007-03-01 07:25:48 +00005965 // Compute the B^2-4ac term.
5966 APInt SqrtTerm(B);
5967 SqrtTerm *= B;
5968 SqrtTerm -= Four * (A * C);
Chris Lattnerd934c702004-04-02 20:23:17 +00005969
Nick Lewyckyfb780832012-08-01 09:14:36 +00005970 if (SqrtTerm.isNegative()) {
5971 // The loop is provably infinite.
5972 const SCEV *CNC = SE.getCouldNotCompute();
5973 return std::make_pair(CNC, CNC);
5974 }
5975
Reid Spencer983e3b32007-03-01 07:25:48 +00005976 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5977 // integer value or else APInt::sqrt() will assert.
5978 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman01808ca2005-04-21 21:13:18 +00005979
Dan Gohmance973df2009-06-24 04:48:43 +00005980 // Compute the two solutions for the quadratic formula.
Reid Spencer983e3b32007-03-01 07:25:48 +00005981 // The divisions must be performed as signed divisions.
5982 APInt NegB(-B);
Nick Lewycky31555522011-10-03 07:10:45 +00005983 APInt TwoA(A << 1);
Nick Lewycky7b14e202008-11-03 02:43:49 +00005984 if (TwoA.isMinValue()) {
Dan Gohman48f82222009-05-04 22:30:44 +00005985 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky7b14e202008-11-03 02:43:49 +00005986 return std::make_pair(CNC, CNC);
5987 }
5988
Owen Anderson47db9412009-07-22 00:24:57 +00005989 LLVMContext &Context = SE.getContext();
Owen Andersonf1f17432009-07-06 22:37:39 +00005990
5991 ConstantInt *Solution1 =
Owen Andersonedb4a702009-07-24 23:12:02 +00005992 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Andersonf1f17432009-07-06 22:37:39 +00005993 ConstantInt *Solution2 =
Owen Andersonedb4a702009-07-24 23:12:02 +00005994 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman01808ca2005-04-21 21:13:18 +00005995
Dan Gohmance973df2009-06-24 04:48:43 +00005996 return std::make_pair(SE.getConstant(Solution1),
Dan Gohmana37eaf22007-10-22 18:31:58 +00005997 SE.getConstant(Solution2));
Nick Lewycky31555522011-10-03 07:10:45 +00005998 } // end APIntOps namespace
Chris Lattnerd934c702004-04-02 20:23:17 +00005999}
6000
6001/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman4c720c02009-06-06 14:37:11 +00006002/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick8b55b732011-03-14 16:50:06 +00006003///
6004/// This is only used for loops with a "x != y" exit test. The exit condition is
6005/// now expressed as a single expression, V = x-y. So the exit test is
6006/// effectively V != 0. We know and take advantage of the fact that this
6007/// expression only being used in a comparison by zero context.
Andrew Trick3ca3f982011-07-26 17:19:55 +00006008ScalarEvolution::ExitLimit
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006009ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006010 // If the value is a constant
Dan Gohmana30370b2009-05-04 22:02:23 +00006011 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006012 // If the value is already zero, the branch will execute zero times.
Reid Spencer2e54a152007-03-02 00:28:52 +00006013 if (C->getValue()->isZero()) return C;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006014 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006015 }
6016
Dan Gohman48f82222009-05-04 22:30:44 +00006017 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00006018 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006019 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006020
Chris Lattnerdff679f2011-01-09 22:39:48 +00006021 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
6022 // the quadratic equation to solve it.
6023 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
6024 std::pair<const SCEV *,const SCEV *> Roots =
6025 SolveQuadraticEquation(AddRec, *this);
Dan Gohman48f82222009-05-04 22:30:44 +00006026 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6027 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerdff679f2011-01-09 22:39:48 +00006028 if (R1 && R2) {
Chris Lattner09169212004-04-02 20:26:46 +00006029#if 0
David Greenedf1c4972009-12-23 22:18:14 +00006030 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmane20f8242009-04-21 00:47:46 +00006031 << " sol#2: " << *R2 << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00006032#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00006033 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00006034 if (ConstantInt *CB =
Chris Lattner28f140a2011-01-09 22:58:47 +00006035 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
6036 R1->getValue(),
6037 R2->getValue()))) {
Reid Spencercddc9df2007-01-12 04:24:46 +00006038 if (CB->getZExtValue() == false)
Chris Lattnerd934c702004-04-02 20:23:17 +00006039 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick2a3b7162011-03-09 17:23:39 +00006040
Chris Lattnerd934c702004-04-02 20:23:17 +00006041 // We can only use this value if the chrec ends up with an exact zero
6042 // value at this index. When solving for "X*X != 5", for example, we
6043 // should not accept a root of 2.
Dan Gohmanaf752342009-07-07 17:06:11 +00006044 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmanbe928e32008-06-18 16:23:07 +00006045 if (Val->isZero())
6046 return R1; // We found a quadratic root!
Chris Lattnerd934c702004-04-02 20:23:17 +00006047 }
6048 }
Chris Lattnerdff679f2011-01-09 22:39:48 +00006049 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006050 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006051
Chris Lattnerdff679f2011-01-09 22:39:48 +00006052 // Otherwise we can only handle this if it is affine.
6053 if (!AddRec->isAffine())
6054 return getCouldNotCompute();
6055
6056 // If this is an affine expression, the execution count of this branch is
6057 // the minimum unsigned root of the following equation:
6058 //
6059 // Start + Step*N = 0 (mod 2^BW)
6060 //
6061 // equivalent to:
6062 //
6063 // Step*N = -Start (mod 2^BW)
6064 //
6065 // where BW is the common bit width of Start and Step.
6066
6067 // Get the initial value for the loop.
6068 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
6069 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
6070
6071 // For now we handle only constant steps.
Andrew Trick8b55b732011-03-14 16:50:06 +00006072 //
6073 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
6074 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
6075 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
6076 // We have not yet seen any such cases.
Chris Lattnerdff679f2011-01-09 22:39:48 +00006077 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Craig Topper9f008862014-04-15 04:59:12 +00006078 if (!StepC || StepC->getValue()->equalsInt(0))
Chris Lattnerdff679f2011-01-09 22:39:48 +00006079 return getCouldNotCompute();
6080
Andrew Trick8b55b732011-03-14 16:50:06 +00006081 // For positive steps (counting up until unsigned overflow):
6082 // N = -Start/Step (as unsigned)
6083 // For negative steps (counting down to zero):
6084 // N = Start/-Step
6085 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickf1781db2011-03-14 17:28:02 +00006086 bool CountDown = StepC->getValue()->getValue().isNegative();
6087 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick8b55b732011-03-14 16:50:06 +00006088
6089 // Handle unitary steps, which cannot wraparound.
Andrew Trickf1781db2011-03-14 17:28:02 +00006090 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
6091 // N = Distance (as unsigned)
Nick Lewycky31555522011-10-03 07:10:45 +00006092 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
6093 ConstantRange CR = getUnsignedRange(Start);
6094 const SCEV *MaxBECount;
6095 if (!CountDown && CR.getUnsignedMin().isMinValue())
6096 // When counting up, the worst starting value is 1, not 0.
6097 MaxBECount = CR.getUnsignedMax().isMinValue()
6098 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
6099 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
6100 else
6101 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
6102 : -CR.getUnsignedMin());
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006103 return ExitLimit(Distance, MaxBECount);
Nick Lewycky31555522011-10-03 07:10:45 +00006104 }
Andrew Trick2a3b7162011-03-09 17:23:39 +00006105
Mark Heffernanacbed5e2014-12-15 21:19:53 +00006106 // As a special case, handle the instance where Step is a positive power of
6107 // two. In this case, determining whether Step divides Distance evenly can be
6108 // done by counting and comparing the number of trailing zeros of Step and
6109 // Distance.
6110 if (!CountDown) {
6111 const APInt &StepV = StepC->getValue()->getValue();
6112 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It
6113 // also returns true if StepV is maximally negative (eg, INT_MIN), but that
6114 // case is not handled as this code is guarded by !CountDown.
6115 if (StepV.isPowerOf2() &&
6116 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros())
6117 return getUDivExactExpr(Distance, Step);
6118 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006119
Mark Heffernan2beab5f2014-10-10 17:39:11 +00006120 // If the condition controls loop exit (the loop exits only if the expression
6121 // is true) and the addition is no-wrap we can use unsigned divide to
6122 // compute the backedge count. In this case, the step may not divide the
6123 // distance, but we don't care because if the condition is "missed" the loop
6124 // will have undefined behavior due to wrapping.
6125 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
6126 const SCEV *Exact =
6127 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
6128 return ExitLimit(Exact, Exact);
6129 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00006130
Chris Lattnerdff679f2011-01-09 22:39:48 +00006131 // Then, try to solve the above equation provided that Start is constant.
6132 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
6133 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
6134 -StartC->getValue()->getValue(),
6135 *this);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006136 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006137}
6138
6139/// HowFarToNonZero - Return the number of times a backedge checking the
6140/// specified value for nonzero will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00006141/// CouldNotCompute
Andrew Trick3ca3f982011-07-26 17:19:55 +00006142ScalarEvolution::ExitLimit
Dan Gohmanba820342010-02-24 17:31:30 +00006143ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006144 // Loops that look like: while (X == 0) are very strange indeed. We don't
6145 // handle them yet except for the trivial case. This could be expanded in the
6146 // future as needed.
Misha Brukman01808ca2005-04-21 21:13:18 +00006147
Chris Lattnerd934c702004-04-02 20:23:17 +00006148 // If the value is a constant, check to see if it is known to be non-zero
6149 // already. If so, the backedge will execute zero times.
Dan Gohmana30370b2009-05-04 22:02:23 +00006150 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky5a3db142008-02-21 09:14:53 +00006151 if (!C->getValue()->isNullValue())
Dan Gohman1d2ded72010-05-03 22:09:21 +00006152 return getConstant(C->getType(), 0);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006153 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00006154 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006155
Chris Lattnerd934c702004-04-02 20:23:17 +00006156 // We could implement others, but I really doubt anyone writes loops like
6157 // this, and if they did, they would already be constant folded.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006158 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006159}
6160
Dan Gohmanf9081a22008-09-15 22:18:04 +00006161/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
6162/// (which may not be an immediate predecessor) which has exactly one
6163/// successor from which BB is reachable, or null if no such block is
6164/// found.
6165///
Dan Gohman4e3c1132010-04-15 16:19:08 +00006166std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanc8e23622009-04-21 23:15:49 +00006167ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohmanfa066ef2009-04-30 20:48:53 +00006168 // If the block has a unique predecessor, then there is no path from the
6169 // predecessor to the block that does not go through the direct edge
6170 // from the predecessor to the block.
Dan Gohmanf9081a22008-09-15 22:18:04 +00006171 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman4e3c1132010-04-15 16:19:08 +00006172 return std::make_pair(Pred, BB);
Dan Gohmanf9081a22008-09-15 22:18:04 +00006173
6174 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006175 // If the header has a unique predecessor outside the loop, it must be
6176 // a block that has exactly one successor that can reach the loop.
Dan Gohmanc8e23622009-04-21 23:15:49 +00006177 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006178 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanf9081a22008-09-15 22:18:04 +00006179
Dan Gohman4e3c1132010-04-15 16:19:08 +00006180 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanf9081a22008-09-15 22:18:04 +00006181}
6182
Dan Gohman450f4e02009-06-20 00:35:32 +00006183/// HasSameValue - SCEV structural equivalence is usually sufficient for
6184/// testing whether two expressions are equal, however for the purposes of
6185/// looking for a condition guarding a loop, it can be useful to be a little
6186/// more general, since a front-end may have replicated the controlling
6187/// expression.
6188///
Dan Gohmanaf752342009-07-07 17:06:11 +00006189static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman450f4e02009-06-20 00:35:32 +00006190 // Quick check to see if they are the same SCEV.
6191 if (A == B) return true;
6192
6193 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
6194 // two different instructions with the same value. Check for this case.
6195 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
6196 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
6197 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
6198 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman2d085562009-08-25 17:56:57 +00006199 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman450f4e02009-06-20 00:35:32 +00006200 return true;
6201
6202 // Otherwise assume they may have a different value.
6203 return false;
6204}
6205
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006206/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00006207/// predicate Pred. Return true iff any changes were made.
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006208///
6209bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006210 const SCEV *&LHS, const SCEV *&RHS,
6211 unsigned Depth) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006212 bool Changed = false;
6213
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006214 // If we hit the max recursion limit bail out.
6215 if (Depth >= 3)
6216 return false;
6217
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006218 // Canonicalize a constant to the right side.
6219 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
6220 // Check for both operands constant.
6221 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
6222 if (ConstantExpr::getICmp(Pred,
6223 LHSC->getValue(),
6224 RHSC->getValue())->isNullValue())
6225 goto trivially_false;
6226 else
6227 goto trivially_true;
6228 }
6229 // Otherwise swap the operands to put the constant on the right.
6230 std::swap(LHS, RHS);
6231 Pred = ICmpInst::getSwappedPredicate(Pred);
6232 Changed = true;
6233 }
6234
6235 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohmandf564ca2010-05-03 17:00:11 +00006236 // addrec's loop, put the addrec on the left. Also make a dominance check,
6237 // as both operands could be addrecs loop-invariant in each other's loop.
6238 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
6239 const Loop *L = AR->getLoop();
Dan Gohman20d9ce22010-11-17 21:41:58 +00006240 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006241 std::swap(LHS, RHS);
6242 Pred = ICmpInst::getSwappedPredicate(Pred);
6243 Changed = true;
6244 }
Dan Gohmandf564ca2010-05-03 17:00:11 +00006245 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006246
6247 // If there's a constant operand, canonicalize comparisons with boundary
6248 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
6249 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
6250 const APInt &RA = RC->getValue()->getValue();
6251 switch (Pred) {
6252 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6253 case ICmpInst::ICMP_EQ:
6254 case ICmpInst::ICMP_NE:
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006255 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
6256 if (!RA)
6257 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
6258 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer406a2db2012-05-30 18:42:43 +00006259 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
6260 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006261 RHS = AE->getOperand(1);
6262 LHS = ME->getOperand(1);
6263 Changed = true;
6264 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006265 break;
6266 case ICmpInst::ICMP_UGE:
6267 if ((RA - 1).isMinValue()) {
6268 Pred = ICmpInst::ICMP_NE;
6269 RHS = getConstant(RA - 1);
6270 Changed = true;
6271 break;
6272 }
6273 if (RA.isMaxValue()) {
6274 Pred = ICmpInst::ICMP_EQ;
6275 Changed = true;
6276 break;
6277 }
6278 if (RA.isMinValue()) goto trivially_true;
6279
6280 Pred = ICmpInst::ICMP_UGT;
6281 RHS = getConstant(RA - 1);
6282 Changed = true;
6283 break;
6284 case ICmpInst::ICMP_ULE:
6285 if ((RA + 1).isMaxValue()) {
6286 Pred = ICmpInst::ICMP_NE;
6287 RHS = getConstant(RA + 1);
6288 Changed = true;
6289 break;
6290 }
6291 if (RA.isMinValue()) {
6292 Pred = ICmpInst::ICMP_EQ;
6293 Changed = true;
6294 break;
6295 }
6296 if (RA.isMaxValue()) goto trivially_true;
6297
6298 Pred = ICmpInst::ICMP_ULT;
6299 RHS = getConstant(RA + 1);
6300 Changed = true;
6301 break;
6302 case ICmpInst::ICMP_SGE:
6303 if ((RA - 1).isMinSignedValue()) {
6304 Pred = ICmpInst::ICMP_NE;
6305 RHS = getConstant(RA - 1);
6306 Changed = true;
6307 break;
6308 }
6309 if (RA.isMaxSignedValue()) {
6310 Pred = ICmpInst::ICMP_EQ;
6311 Changed = true;
6312 break;
6313 }
6314 if (RA.isMinSignedValue()) goto trivially_true;
6315
6316 Pred = ICmpInst::ICMP_SGT;
6317 RHS = getConstant(RA - 1);
6318 Changed = true;
6319 break;
6320 case ICmpInst::ICMP_SLE:
6321 if ((RA + 1).isMaxSignedValue()) {
6322 Pred = ICmpInst::ICMP_NE;
6323 RHS = getConstant(RA + 1);
6324 Changed = true;
6325 break;
6326 }
6327 if (RA.isMinSignedValue()) {
6328 Pred = ICmpInst::ICMP_EQ;
6329 Changed = true;
6330 break;
6331 }
6332 if (RA.isMaxSignedValue()) goto trivially_true;
6333
6334 Pred = ICmpInst::ICMP_SLT;
6335 RHS = getConstant(RA + 1);
6336 Changed = true;
6337 break;
6338 case ICmpInst::ICMP_UGT:
6339 if (RA.isMinValue()) {
6340 Pred = ICmpInst::ICMP_NE;
6341 Changed = true;
6342 break;
6343 }
6344 if ((RA + 1).isMaxValue()) {
6345 Pred = ICmpInst::ICMP_EQ;
6346 RHS = getConstant(RA + 1);
6347 Changed = true;
6348 break;
6349 }
6350 if (RA.isMaxValue()) goto trivially_false;
6351 break;
6352 case ICmpInst::ICMP_ULT:
6353 if (RA.isMaxValue()) {
6354 Pred = ICmpInst::ICMP_NE;
6355 Changed = true;
6356 break;
6357 }
6358 if ((RA - 1).isMinValue()) {
6359 Pred = ICmpInst::ICMP_EQ;
6360 RHS = getConstant(RA - 1);
6361 Changed = true;
6362 break;
6363 }
6364 if (RA.isMinValue()) goto trivially_false;
6365 break;
6366 case ICmpInst::ICMP_SGT:
6367 if (RA.isMinSignedValue()) {
6368 Pred = ICmpInst::ICMP_NE;
6369 Changed = true;
6370 break;
6371 }
6372 if ((RA + 1).isMaxSignedValue()) {
6373 Pred = ICmpInst::ICMP_EQ;
6374 RHS = getConstant(RA + 1);
6375 Changed = true;
6376 break;
6377 }
6378 if (RA.isMaxSignedValue()) goto trivially_false;
6379 break;
6380 case ICmpInst::ICMP_SLT:
6381 if (RA.isMaxSignedValue()) {
6382 Pred = ICmpInst::ICMP_NE;
6383 Changed = true;
6384 break;
6385 }
6386 if ((RA - 1).isMinSignedValue()) {
6387 Pred = ICmpInst::ICMP_EQ;
6388 RHS = getConstant(RA - 1);
6389 Changed = true;
6390 break;
6391 }
6392 if (RA.isMinSignedValue()) goto trivially_false;
6393 break;
6394 }
6395 }
6396
6397 // Check for obvious equality.
6398 if (HasSameValue(LHS, RHS)) {
6399 if (ICmpInst::isTrueWhenEqual(Pred))
6400 goto trivially_true;
6401 if (ICmpInst::isFalseWhenEqual(Pred))
6402 goto trivially_false;
6403 }
6404
Dan Gohman81585c12010-05-03 16:35:17 +00006405 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
6406 // adding or subtracting 1 from one of the operands.
6407 switch (Pred) {
6408 case ICmpInst::ICMP_SLE:
6409 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
6410 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006411 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006412 Pred = ICmpInst::ICMP_SLT;
6413 Changed = true;
6414 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006415 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006416 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006417 Pred = ICmpInst::ICMP_SLT;
6418 Changed = true;
6419 }
6420 break;
6421 case ICmpInst::ICMP_SGE:
6422 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006423 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006424 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006425 Pred = ICmpInst::ICMP_SGT;
6426 Changed = true;
6427 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
6428 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006429 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006430 Pred = ICmpInst::ICMP_SGT;
6431 Changed = true;
6432 }
6433 break;
6434 case ICmpInst::ICMP_ULE:
6435 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006436 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006437 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006438 Pred = ICmpInst::ICMP_ULT;
6439 Changed = true;
6440 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006441 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006442 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006443 Pred = ICmpInst::ICMP_ULT;
6444 Changed = true;
6445 }
6446 break;
6447 case ICmpInst::ICMP_UGE:
6448 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006449 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006450 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006451 Pred = ICmpInst::ICMP_UGT;
6452 Changed = true;
6453 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006454 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006455 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006456 Pred = ICmpInst::ICMP_UGT;
6457 Changed = true;
6458 }
6459 break;
6460 default:
6461 break;
6462 }
6463
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006464 // TODO: More simplifications are possible here.
6465
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006466 // Recursively simplify until we either hit a recursion limit or nothing
6467 // changes.
6468 if (Changed)
6469 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
6470
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006471 return Changed;
6472
6473trivially_true:
6474 // Return 0 == 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006475 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006476 Pred = ICmpInst::ICMP_EQ;
6477 return true;
6478
6479trivially_false:
6480 // Return 0 != 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006481 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006482 Pred = ICmpInst::ICMP_NE;
6483 return true;
6484}
6485
Dan Gohmane65c9172009-07-13 21:35:55 +00006486bool ScalarEvolution::isKnownNegative(const SCEV *S) {
6487 return getSignedRange(S).getSignedMax().isNegative();
6488}
6489
6490bool ScalarEvolution::isKnownPositive(const SCEV *S) {
6491 return getSignedRange(S).getSignedMin().isStrictlyPositive();
6492}
6493
6494bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
6495 return !getSignedRange(S).getSignedMin().isNegative();
6496}
6497
6498bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
6499 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
6500}
6501
6502bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
6503 return isKnownNegative(S) || isKnownPositive(S);
6504}
6505
6506bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
6507 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman36cce7e2010-04-24 01:38:36 +00006508 // Canonicalize the inputs first.
6509 (void)SimplifyICmpOperands(Pred, LHS, RHS);
6510
Dan Gohman07591692010-04-11 22:16:48 +00006511 // If LHS or RHS is an addrec, check to see if the condition is true in
6512 // every iteration of the loop.
Justin Bognercbb84382014-05-23 00:06:56 +00006513 // If LHS and RHS are both addrec, both conditions must be true in
6514 // every iteration of the loop.
6515 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
6516 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
6517 bool LeftGuarded = false;
6518 bool RightGuarded = false;
6519 if (LAR) {
6520 const Loop *L = LAR->getLoop();
6521 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
6522 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
6523 if (!RAR) return true;
6524 LeftGuarded = true;
6525 }
6526 }
6527 if (RAR) {
6528 const Loop *L = RAR->getLoop();
6529 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
6530 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
6531 if (!LAR) return true;
6532 RightGuarded = true;
6533 }
6534 }
6535 if (LeftGuarded && RightGuarded)
6536 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006537
Dan Gohman07591692010-04-11 22:16:48 +00006538 // Otherwise see what can be done with known constant ranges.
6539 return isKnownPredicateWithRanges(Pred, LHS, RHS);
6540}
6541
6542bool
6543ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
6544 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006545 if (HasSameValue(LHS, RHS))
6546 return ICmpInst::isTrueWhenEqual(Pred);
6547
Dan Gohman07591692010-04-11 22:16:48 +00006548 // This code is split out from isKnownPredicate because it is called from
6549 // within isLoopEntryGuardedByCond.
Dan Gohmane65c9172009-07-13 21:35:55 +00006550 switch (Pred) {
6551 default:
Dan Gohman8c129d72009-07-16 17:34:36 +00006552 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohmane65c9172009-07-13 21:35:55 +00006553 case ICmpInst::ICMP_SGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006554 std::swap(LHS, RHS);
6555 case ICmpInst::ICMP_SLT: {
6556 ConstantRange LHSRange = getSignedRange(LHS);
6557 ConstantRange RHSRange = getSignedRange(RHS);
6558 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
6559 return true;
6560 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
6561 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006562 break;
6563 }
6564 case ICmpInst::ICMP_SGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006565 std::swap(LHS, RHS);
6566 case ICmpInst::ICMP_SLE: {
6567 ConstantRange LHSRange = getSignedRange(LHS);
6568 ConstantRange RHSRange = getSignedRange(RHS);
6569 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
6570 return true;
6571 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
6572 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006573 break;
6574 }
6575 case ICmpInst::ICMP_UGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006576 std::swap(LHS, RHS);
6577 case ICmpInst::ICMP_ULT: {
6578 ConstantRange LHSRange = getUnsignedRange(LHS);
6579 ConstantRange RHSRange = getUnsignedRange(RHS);
6580 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
6581 return true;
6582 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
6583 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006584 break;
6585 }
6586 case ICmpInst::ICMP_UGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006587 std::swap(LHS, RHS);
6588 case ICmpInst::ICMP_ULE: {
6589 ConstantRange LHSRange = getUnsignedRange(LHS);
6590 ConstantRange RHSRange = getUnsignedRange(RHS);
6591 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
6592 return true;
6593 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
6594 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006595 break;
6596 }
6597 case ICmpInst::ICMP_NE: {
6598 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
6599 return true;
6600 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
6601 return true;
6602
6603 const SCEV *Diff = getMinusSCEV(LHS, RHS);
6604 if (isKnownNonZero(Diff))
6605 return true;
6606 break;
6607 }
6608 case ICmpInst::ICMP_EQ:
Dan Gohman34392622009-07-20 23:54:43 +00006609 // The check at the top of the function catches the case where
6610 // the values are known to be equal.
Dan Gohmane65c9172009-07-13 21:35:55 +00006611 break;
6612 }
6613 return false;
6614}
6615
6616/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6617/// protected by a conditional between LHS and RHS. This is used to
6618/// to eliminate casts.
6619bool
6620ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6621 ICmpInst::Predicate Pred,
6622 const SCEV *LHS, const SCEV *RHS) {
6623 // Interpret a null as meaning no loop, where there is obviously no guard
6624 // (interprocedural conditions notwithstanding).
6625 if (!L) return true;
6626
Sanjoy Das1f05c512014-10-10 21:22:34 +00006627 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
6628
Dan Gohmane65c9172009-07-13 21:35:55 +00006629 BasicBlock *Latch = L->getLoopLatch();
6630 if (!Latch)
6631 return false;
6632
6633 BranchInst *LoopContinuePredicate =
6634 dyn_cast<BranchInst>(Latch->getTerminator());
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006635 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
6636 isImpliedCond(Pred, LHS, RHS,
6637 LoopContinuePredicate->getCondition(),
6638 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
6639 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006640
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006641 // Check conditions due to any @llvm.assume intrinsics.
Chandler Carruth66b31302015-01-04 12:03:27 +00006642 for (auto &AssumeVH : AC->assumptions()) {
6643 if (!AssumeVH)
6644 continue;
6645 auto *CI = cast<CallInst>(AssumeVH);
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006646 if (!DT->dominates(CI, Latch->getTerminator()))
6647 continue;
6648
6649 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
6650 return true;
6651 }
6652
6653 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006654}
6655
Dan Gohmanb50349a2010-04-11 19:27:13 +00006656/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohmane65c9172009-07-13 21:35:55 +00006657/// by a conditional between LHS and RHS. This is used to help avoid max
6658/// expressions in loop trip counts, and to eliminate casts.
6659bool
Dan Gohmanb50349a2010-04-11 19:27:13 +00006660ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6661 ICmpInst::Predicate Pred,
6662 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman9cf09f82009-05-18 16:03:58 +00006663 // Interpret a null as meaning no loop, where there is obviously no guard
6664 // (interprocedural conditions notwithstanding).
6665 if (!L) return false;
6666
Sanjoy Das1f05c512014-10-10 21:22:34 +00006667 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true;
6668
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006669 // Starting at the loop predecessor, climb up the predecessor chain, as long
6670 // as there are predecessors that can be found that have unique successors
Dan Gohmanf9081a22008-09-15 22:18:04 +00006671 // leading to the original header.
Dan Gohman4e3c1132010-04-15 16:19:08 +00006672 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006673 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman4e3c1132010-04-15 16:19:08 +00006674 Pair.first;
6675 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman2a62fd92008-08-12 20:17:31 +00006676
6677 BranchInst *LoopEntryPredicate =
Dan Gohman4e3c1132010-04-15 16:19:08 +00006678 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman2a62fd92008-08-12 20:17:31 +00006679 if (!LoopEntryPredicate ||
6680 LoopEntryPredicate->isUnconditional())
6681 continue;
6682
Dan Gohmane18c2d62010-08-10 23:46:30 +00006683 if (isImpliedCond(Pred, LHS, RHS,
6684 LoopEntryPredicate->getCondition(),
Dan Gohman4e3c1132010-04-15 16:19:08 +00006685 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman2a62fd92008-08-12 20:17:31 +00006686 return true;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00006687 }
6688
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006689 // Check conditions due to any @llvm.assume intrinsics.
Chandler Carruth66b31302015-01-04 12:03:27 +00006690 for (auto &AssumeVH : AC->assumptions()) {
6691 if (!AssumeVH)
6692 continue;
6693 auto *CI = cast<CallInst>(AssumeVH);
Hal Finkelcebf0cc2014-09-07 21:37:59 +00006694 if (!DT->dominates(CI, L->getHeader()))
6695 continue;
6696
6697 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
6698 return true;
6699 }
6700
Dan Gohman2a62fd92008-08-12 20:17:31 +00006701 return false;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00006702}
6703
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00006704/// RAII wrapper to prevent recursive application of isImpliedCond.
6705/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6706/// currently evaluating isImpliedCond.
6707struct MarkPendingLoopPredicate {
6708 Value *Cond;
6709 DenseSet<Value*> &LoopPreds;
6710 bool Pending;
6711
6712 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6713 : Cond(C), LoopPreds(LP) {
6714 Pending = !LoopPreds.insert(Cond).second;
6715 }
6716 ~MarkPendingLoopPredicate() {
6717 if (!Pending)
6718 LoopPreds.erase(Cond);
6719 }
6720};
6721
Dan Gohman430f0cc2009-07-21 23:03:19 +00006722/// isImpliedCond - Test whether the condition described by Pred, LHS,
6723/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmane18c2d62010-08-10 23:46:30 +00006724bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006725 const SCEV *LHS, const SCEV *RHS,
Dan Gohmane18c2d62010-08-10 23:46:30 +00006726 Value *FoundCondValue,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006727 bool Inverse) {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00006728 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6729 if (Mark.Pending)
6730 return false;
6731
Dan Gohman8b0a4192010-03-01 17:49:51 +00006732 // Recursively handle And and Or conditions.
Dan Gohmane18c2d62010-08-10 23:46:30 +00006733 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006734 if (BO->getOpcode() == Instruction::And) {
6735 if (!Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00006736 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6737 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006738 } else if (BO->getOpcode() == Instruction::Or) {
6739 if (Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00006740 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6741 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006742 }
6743 }
6744
Dan Gohmane18c2d62010-08-10 23:46:30 +00006745 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006746 if (!ICI) return false;
6747
Dan Gohmane65c9172009-07-13 21:35:55 +00006748 // Bail if the ICmp's operands' types are wider than the needed type
6749 // before attempting to call getSCEV on them. This avoids infinite
6750 // recursion, since the analysis of widening casts can require loop
6751 // exit condition information for overflow checking, which would
6752 // lead back here.
6753 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman430f0cc2009-07-21 23:03:19 +00006754 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohmane65c9172009-07-13 21:35:55 +00006755 return false;
6756
Andrew Trickfa594032012-11-29 18:35:13 +00006757 // Now that we found a conditional branch that dominates the loop or controls
6758 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman430f0cc2009-07-21 23:03:19 +00006759 ICmpInst::Predicate FoundPred;
6760 if (Inverse)
6761 FoundPred = ICI->getInversePredicate();
6762 else
6763 FoundPred = ICI->getPredicate();
6764
6765 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6766 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohmane65c9172009-07-13 21:35:55 +00006767
6768 // Balance the types. The case where FoundLHS' type is wider than
6769 // LHS' type is checked for above.
6770 if (getTypeSizeInBits(LHS->getType()) >
6771 getTypeSizeInBits(FoundLHS->getType())) {
Stepan Dyatkovskiy431993b2014-01-09 12:26:12 +00006772 if (CmpInst::isSigned(FoundPred)) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006773 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6774 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6775 } else {
6776 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6777 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6778 }
6779 }
6780
Dan Gohman430f0cc2009-07-21 23:03:19 +00006781 // Canonicalize the query to match the way instcombine will have
6782 // canonicalized the comparison.
Dan Gohman3673aa12010-04-24 01:34:53 +00006783 if (SimplifyICmpOperands(Pred, LHS, RHS))
6784 if (LHS == RHS)
Dan Gohmanb5025c72010-05-03 18:00:24 +00006785 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramerba11a982012-11-29 19:07:57 +00006786 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6787 if (FoundLHS == FoundRHS)
6788 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman430f0cc2009-07-21 23:03:19 +00006789
6790 // Check to see if we can make the LHS or RHS match.
6791 if (LHS == FoundRHS || RHS == FoundLHS) {
6792 if (isa<SCEVConstant>(RHS)) {
6793 std::swap(FoundLHS, FoundRHS);
6794 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6795 } else {
6796 std::swap(LHS, RHS);
6797 Pred = ICmpInst::getSwappedPredicate(Pred);
6798 }
6799 }
6800
6801 // Check whether the found predicate is the same as the desired predicate.
6802 if (FoundPred == Pred)
6803 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6804
6805 // Check whether swapping the found predicate makes it the same as the
6806 // desired predicate.
6807 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6808 if (isa<SCEVConstant>(RHS))
6809 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6810 else
6811 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6812 RHS, LHS, FoundLHS, FoundRHS);
6813 }
6814
Sanjoy Dasc5676df2014-11-13 00:00:58 +00006815 // Check if we can make progress by sharpening ranges.
6816 if (FoundPred == ICmpInst::ICMP_NE &&
6817 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
6818
6819 const SCEVConstant *C = nullptr;
6820 const SCEV *V = nullptr;
6821
6822 if (isa<SCEVConstant>(FoundLHS)) {
6823 C = cast<SCEVConstant>(FoundLHS);
6824 V = FoundRHS;
6825 } else {
6826 C = cast<SCEVConstant>(FoundRHS);
6827 V = FoundLHS;
6828 }
6829
6830 // The guarding predicate tells us that C != V. If the known range
6831 // of V is [C, t), we can sharpen the range to [C + 1, t). The
6832 // range we consider has to correspond to same signedness as the
6833 // predicate we're interested in folding.
6834
6835 APInt Min = ICmpInst::isSigned(Pred) ?
6836 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
6837
6838 if (Min == C->getValue()->getValue()) {
6839 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
6840 // This is true even if (Min + 1) wraps around -- in case of
6841 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
6842
6843 APInt SharperMin = Min + 1;
6844
6845 switch (Pred) {
6846 case ICmpInst::ICMP_SGE:
6847 case ICmpInst::ICMP_UGE:
6848 // We know V `Pred` SharperMin. If this implies LHS `Pred`
6849 // RHS, we're done.
6850 if (isImpliedCondOperands(Pred, LHS, RHS, V,
6851 getConstant(SharperMin)))
6852 return true;
6853
6854 case ICmpInst::ICMP_SGT:
6855 case ICmpInst::ICMP_UGT:
6856 // We know from the range information that (V `Pred` Min ||
6857 // V == Min). We know from the guarding condition that !(V
6858 // == Min). This gives us
6859 //
6860 // V `Pred` Min || V == Min && !(V == Min)
6861 // => V `Pred` Min
6862 //
6863 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
6864
6865 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
6866 return true;
6867
6868 default:
6869 // No change
6870 break;
6871 }
6872 }
6873 }
6874
Dan Gohman430f0cc2009-07-21 23:03:19 +00006875 // Check whether the actual condition is beyond sufficient.
6876 if (FoundPred == ICmpInst::ICMP_EQ)
6877 if (ICmpInst::isTrueWhenEqual(Pred))
6878 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6879 return true;
6880 if (Pred == ICmpInst::ICMP_NE)
6881 if (!ICmpInst::isTrueWhenEqual(FoundPred))
6882 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6883 return true;
6884
6885 // Otherwise assume the worst.
6886 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006887}
6888
Dan Gohman430f0cc2009-07-21 23:03:19 +00006889/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman8b0a4192010-03-01 17:49:51 +00006890/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006891/// and FoundRHS is true.
6892bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6893 const SCEV *LHS, const SCEV *RHS,
6894 const SCEV *FoundLHS,
6895 const SCEV *FoundRHS) {
6896 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6897 FoundLHS, FoundRHS) ||
6898 // ~x < ~y --> x > y
6899 isImpliedCondOperandsHelper(Pred, LHS, RHS,
6900 getNotSCEV(FoundRHS),
6901 getNotSCEV(FoundLHS));
6902}
6903
Sanjoy Das4555b6d2014-12-15 22:50:15 +00006904
6905/// If Expr computes ~A, return A else return nullptr
6906static const SCEV *MatchNotExpr(const SCEV *Expr) {
6907 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
6908 if (!Add || Add->getNumOperands() != 2) return nullptr;
6909
6910 const SCEVConstant *AddLHS = dyn_cast<SCEVConstant>(Add->getOperand(0));
6911 if (!(AddLHS && AddLHS->getValue()->getValue().isAllOnesValue()))
6912 return nullptr;
6913
6914 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
6915 if (!AddRHS || AddRHS->getNumOperands() != 2) return nullptr;
6916
6917 const SCEVConstant *MulLHS = dyn_cast<SCEVConstant>(AddRHS->getOperand(0));
6918 if (!(MulLHS && MulLHS->getValue()->getValue().isAllOnesValue()))
6919 return nullptr;
6920
6921 return AddRHS->getOperand(1);
6922}
6923
6924
6925/// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
6926template<typename MaxExprType>
6927static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
6928 const SCEV *Candidate) {
6929 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
6930 if (!MaxExpr) return false;
6931
6932 auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate);
6933 return It != MaxExpr->op_end();
6934}
6935
6936
6937/// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
6938template<typename MaxExprType>
6939static bool IsMinConsistingOf(ScalarEvolution &SE,
6940 const SCEV *MaybeMinExpr,
6941 const SCEV *Candidate) {
6942 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
6943 if (!MaybeMaxExpr)
6944 return false;
6945
6946 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
6947}
6948
6949
6950/// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
6951/// expression?
6952static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
6953 ICmpInst::Predicate Pred,
6954 const SCEV *LHS, const SCEV *RHS) {
6955 switch (Pred) {
6956 default:
6957 return false;
6958
6959 case ICmpInst::ICMP_SGE:
6960 std::swap(LHS, RHS);
6961 // fall through
6962 case ICmpInst::ICMP_SLE:
6963 return
6964 // min(A, ...) <= A
6965 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
6966 // A <= max(A, ...)
6967 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
6968
6969 case ICmpInst::ICMP_UGE:
6970 std::swap(LHS, RHS);
6971 // fall through
6972 case ICmpInst::ICMP_ULE:
6973 return
6974 // min(A, ...) <= A
6975 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
6976 // A <= max(A, ...)
6977 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
6978 }
6979
6980 llvm_unreachable("covered switch fell through?!");
6981}
6982
Dan Gohman430f0cc2009-07-21 23:03:19 +00006983/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman8b0a4192010-03-01 17:49:51 +00006984/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006985/// FoundLHS, and FoundRHS is true.
Dan Gohmane65c9172009-07-13 21:35:55 +00006986bool
Dan Gohman430f0cc2009-07-21 23:03:19 +00006987ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6988 const SCEV *LHS, const SCEV *RHS,
6989 const SCEV *FoundLHS,
6990 const SCEV *FoundRHS) {
Sanjoy Das4555b6d2014-12-15 22:50:15 +00006991 auto IsKnownPredicateFull =
6992 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
6993 return isKnownPredicateWithRanges(Pred, LHS, RHS) ||
6994 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS);
6995 };
6996
Dan Gohmane65c9172009-07-13 21:35:55 +00006997 switch (Pred) {
Dan Gohman8c129d72009-07-16 17:34:36 +00006998 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6999 case ICmpInst::ICMP_EQ:
7000 case ICmpInst::ICMP_NE:
7001 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
7002 return true;
7003 break;
Dan Gohmane65c9172009-07-13 21:35:55 +00007004 case ICmpInst::ICMP_SLT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007005 case ICmpInst::ICMP_SLE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007006 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
7007 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007008 return true;
7009 break;
7010 case ICmpInst::ICMP_SGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007011 case ICmpInst::ICMP_SGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007012 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
7013 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007014 return true;
7015 break;
7016 case ICmpInst::ICMP_ULT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007017 case ICmpInst::ICMP_ULE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007018 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
7019 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007020 return true;
7021 break;
7022 case ICmpInst::ICMP_UGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00007023 case ICmpInst::ICMP_UGE:
Sanjoy Das4555b6d2014-12-15 22:50:15 +00007024 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
7025 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00007026 return true;
7027 break;
7028 }
7029
7030 return false;
Dan Gohmanf19aeec2009-06-24 01:18:18 +00007031}
7032
Johannes Doerfert2683e562015-02-09 12:34:23 +00007033// Verify if an linear IV with positive stride can overflow when in a
7034// less-than comparison, knowing the invariant term of the comparison, the
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007035// stride and the knowledge of NSW/NUW flags on the recurrence.
7036bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
7037 bool IsSigned, bool NoWrap) {
7038 if (NoWrap) return false;
Dan Gohman51aaf022010-01-26 04:40:18 +00007039
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007040 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7041 const SCEV *One = getConstant(Stride->getType(), 1);
Andrew Trick2afa3252011-03-09 17:29:58 +00007042
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007043 if (IsSigned) {
7044 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
7045 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
7046 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7047 .getSignedMax();
Andrew Trick2afa3252011-03-09 17:29:58 +00007048
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007049 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
7050 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
Dan Gohman36bad002009-09-17 18:05:20 +00007051 }
Dan Gohman01048422009-06-21 23:46:38 +00007052
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007053 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
7054 APInt MaxValue = APInt::getMaxValue(BitWidth);
7055 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7056 .getUnsignedMax();
7057
7058 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
7059 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
7060}
7061
Johannes Doerfert2683e562015-02-09 12:34:23 +00007062// Verify if an linear IV with negative stride can overflow when in a
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007063// greater-than comparison, knowing the invariant term of the comparison,
7064// the stride and the knowledge of NSW/NUW flags on the recurrence.
7065bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
7066 bool IsSigned, bool NoWrap) {
7067 if (NoWrap) return false;
7068
7069 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7070 const SCEV *One = getConstant(Stride->getType(), 1);
7071
7072 if (IsSigned) {
7073 APInt MinRHS = getSignedRange(RHS).getSignedMin();
7074 APInt MinValue = APInt::getSignedMinValue(BitWidth);
7075 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
7076 .getSignedMax();
7077
7078 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
7079 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
7080 }
7081
7082 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
7083 APInt MinValue = APInt::getMinValue(BitWidth);
7084 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
7085 .getUnsignedMax();
7086
7087 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
7088 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
7089}
7090
7091// Compute the backedge taken count knowing the interval difference, the
7092// stride and presence of the equality in the comparison.
Johannes Doerfert2683e562015-02-09 12:34:23 +00007093const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007094 bool Equality) {
7095 const SCEV *One = getConstant(Step->getType(), 1);
7096 Delta = Equality ? getAddExpr(Delta, Step)
7097 : getAddExpr(Delta, getMinusSCEV(Step, One));
7098 return getUDivExpr(Delta, Step);
Dan Gohman01048422009-06-21 23:46:38 +00007099}
7100
Chris Lattner587a75b2005-08-15 23:33:51 +00007101/// HowManyLessThans - Return the number of times a backedge containing the
7102/// specified less-than comparison will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00007103/// CouldNotCompute.
Andrew Trick5b245a12013-05-31 06:43:25 +00007104///
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007105/// @param ControlsExit is true when the LHS < RHS condition directly controls
7106/// the branch (loops exits only if condition is true). In this case, we can use
7107/// NoWrapFlags to skip overflow checks.
Andrew Trick3ca3f982011-07-26 17:19:55 +00007108ScalarEvolution::ExitLimit
Dan Gohmance973df2009-06-24 04:48:43 +00007109ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007110 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007111 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007112 // We handle only IV < Invariant
7113 if (!isLoopInvariant(RHS, L))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007114 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00007115
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007116 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohman2b8da352009-04-30 20:47:05 +00007117
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007118 // Avoid weird loops
7119 if (!IV || IV->getLoop() != L || !IV->isAffine())
7120 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00007121
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007122 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007123 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00007124
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007125 const SCEV *Stride = IV->getStepRecurrence(*this);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00007126
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007127 // Avoid negative or zero stride values
7128 if (!isKnownPositive(Stride))
7129 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00007130
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007131 // Avoid proven overflow cases: this will ensure that the backedge taken count
7132 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00007133 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007134 // behaviors like the case of C language.
7135 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
7136 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00007137
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007138 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
7139 : ICmpInst::ICMP_ULT;
7140 const SCEV *Start = IV->getStart();
7141 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00007142 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
7143 const SCEV *Diff = getMinusSCEV(RHS, Start);
7144 // If we have NoWrap set, then we can assume that the increment won't
7145 // overflow, in which case if RHS - Start is a constant, we don't need to
7146 // do a max operation since we can just figure it out statically
7147 if (NoWrap && isa<SCEVConstant>(Diff)) {
7148 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
7149 if (D.isNegative())
7150 End = Start;
7151 } else
7152 End = IsSigned ? getSMaxExpr(RHS, Start)
7153 : getUMaxExpr(RHS, Start);
7154 }
Dan Gohman51aaf022010-01-26 04:40:18 +00007155
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007156 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
Dan Gohman2b8da352009-04-30 20:47:05 +00007157
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007158 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
7159 : getUnsignedRange(Start).getUnsignedMin();
Andrew Trick2afa3252011-03-09 17:29:58 +00007160
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007161 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
7162 : getUnsignedRange(Stride).getUnsignedMin();
Dan Gohman2b8da352009-04-30 20:47:05 +00007163
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007164 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
7165 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
7166 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
Chris Lattner587a75b2005-08-15 23:33:51 +00007167
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007168 // Although End can be a MAX expression we estimate MaxEnd considering only
7169 // the case End = RHS. This is safe because in the other case (End - Start)
7170 // is zero, leading to a zero maximum backedge taken count.
7171 APInt MaxEnd =
7172 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
7173 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
7174
Arnaud A. de Grandmaison75c9e6d2014-03-15 22:13:15 +00007175 const SCEV *MaxBECount;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007176 if (isa<SCEVConstant>(BECount))
7177 MaxBECount = BECount;
7178 else
7179 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
7180 getConstant(MinStride), false);
7181
7182 if (isa<SCEVCouldNotCompute>(MaxBECount))
7183 MaxBECount = BECount;
7184
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007185 return ExitLimit(BECount, MaxBECount);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007186}
7187
7188ScalarEvolution::ExitLimit
7189ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
7190 const Loop *L, bool IsSigned,
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007191 bool ControlsExit) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007192 // We handle only IV > Invariant
7193 if (!isLoopInvariant(RHS, L))
7194 return getCouldNotCompute();
7195
7196 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
7197
7198 // Avoid weird loops
7199 if (!IV || IV->getLoop() != L || !IV->isAffine())
7200 return getCouldNotCompute();
7201
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007202 bool NoWrap = ControlsExit &&
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007203 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
7204
7205 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
7206
7207 // Avoid negative or zero stride values
7208 if (!isKnownPositive(Stride))
7209 return getCouldNotCompute();
7210
7211 // Avoid proven overflow cases: this will ensure that the backedge taken count
7212 // will not generate any unsigned overflow. Relaxed no-overflow conditions
Johannes Doerfert2683e562015-02-09 12:34:23 +00007213 // exploit NoWrapFlags, allowing to optimize in presence of undefined
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007214 // behaviors like the case of C language.
7215 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
7216 return getCouldNotCompute();
7217
7218 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
7219 : ICmpInst::ICMP_UGT;
7220
7221 const SCEV *Start = IV->getStart();
7222 const SCEV *End = RHS;
Bradley Smith9992b162014-10-31 11:40:32 +00007223 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
7224 const SCEV *Diff = getMinusSCEV(RHS, Start);
7225 // If we have NoWrap set, then we can assume that the increment won't
7226 // overflow, in which case if RHS - Start is a constant, we don't need to
7227 // do a max operation since we can just figure it out statically
7228 if (NoWrap && isa<SCEVConstant>(Diff)) {
7229 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue();
7230 if (!D.isNegative())
7231 End = Start;
7232 } else
7233 End = IsSigned ? getSMinExpr(RHS, Start)
7234 : getUMinExpr(RHS, Start);
7235 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007236
7237 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
7238
7239 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
7240 : getUnsignedRange(Start).getUnsignedMax();
7241
7242 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
7243 : getUnsignedRange(Stride).getUnsignedMin();
7244
7245 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
7246 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
7247 : APInt::getMinValue(BitWidth) + (MinStride - 1);
7248
7249 // Although End can be a MIN expression we estimate MinEnd considering only
7250 // the case End = RHS. This is safe because in the other case (Start - End)
7251 // is zero, leading to a zero maximum backedge taken count.
7252 APInt MinEnd =
7253 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
7254 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
7255
7256
7257 const SCEV *MaxBECount = getCouldNotCompute();
7258 if (isa<SCEVConstant>(BECount))
7259 MaxBECount = BECount;
7260 else
Johannes Doerfert2683e562015-02-09 12:34:23 +00007261 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
Andrew Trick34e2f0c2013-11-06 02:08:26 +00007262 getConstant(MinStride), false);
7263
7264 if (isa<SCEVCouldNotCompute>(MaxBECount))
7265 MaxBECount = BECount;
7266
Mark Heffernan2beab5f2014-10-10 17:39:11 +00007267 return ExitLimit(BECount, MaxBECount);
Chris Lattner587a75b2005-08-15 23:33:51 +00007268}
7269
Chris Lattnerd934c702004-04-02 20:23:17 +00007270/// getNumIterationsInRange - Return the number of iterations of this loop that
7271/// produce values in the specified constant range. Another way of looking at
7272/// this is that it returns the first iteration number where the value is not in
7273/// the condition, thus computing the exit count. If the iteration count can't
7274/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00007275const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohmance973df2009-06-24 04:48:43 +00007276 ScalarEvolution &SE) const {
Chris Lattnerd934c702004-04-02 20:23:17 +00007277 if (Range.isFullSet()) // Infinite loop.
Dan Gohman31efa302009-04-18 17:58:19 +00007278 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007279
7280 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmana30370b2009-05-04 22:02:23 +00007281 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencer2e54a152007-03-02 00:28:52 +00007282 if (!SC->getValue()->isZero()) {
Dan Gohmanaf752342009-07-07 17:06:11 +00007283 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohman1d2ded72010-05-03 22:09:21 +00007284 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick8b55b732011-03-14 16:50:06 +00007285 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00007286 getNoWrapFlags(FlagNW));
Dan Gohmana30370b2009-05-04 22:02:23 +00007287 if (const SCEVAddRecExpr *ShiftedAddRec =
7288 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattnerd934c702004-04-02 20:23:17 +00007289 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohmana37eaf22007-10-22 18:31:58 +00007290 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattnerd934c702004-04-02 20:23:17 +00007291 // This is strange and shouldn't happen.
Dan Gohman31efa302009-04-18 17:58:19 +00007292 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007293 }
7294
7295 // The only time we can solve this is when we have all constant indices.
7296 // Otherwise, we cannot determine the overflow conditions.
7297 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
7298 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohman31efa302009-04-18 17:58:19 +00007299 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007300
7301
7302 // Okay at this point we know that all elements of the chrec are constants and
7303 // that the start element is zero.
7304
7305 // First check to see if the range contains zero. If not, the first
7306 // iteration exits.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00007307 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman0a40ad92009-04-16 03:18:22 +00007308 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman1d2ded72010-05-03 22:09:21 +00007309 return SE.getConstant(getType(), 0);
Misha Brukman01808ca2005-04-21 21:13:18 +00007310
Chris Lattnerd934c702004-04-02 20:23:17 +00007311 if (isAffine()) {
7312 // If this is an affine expression then we have this situation:
7313 // Solve {0,+,A} in Range === Ax in Range
7314
Nick Lewycky52460262007-07-16 02:08:00 +00007315 // We know that zero is in the range. If A is positive then we know that
7316 // the upper value of the range must be the first possible exit value.
7317 // If A is negative then the lower of the range is the last possible loop
7318 // value. Also note that we already checked for a full range.
Dan Gohman0a40ad92009-04-16 03:18:22 +00007319 APInt One(BitWidth,1);
Nick Lewycky52460262007-07-16 02:08:00 +00007320 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
7321 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattnerd934c702004-04-02 20:23:17 +00007322
Nick Lewycky52460262007-07-16 02:08:00 +00007323 // The exit value should be (End+A)/A.
Nick Lewycky39349612007-09-27 14:12:54 +00007324 APInt ExitVal = (End + A).udiv(A);
Owen Andersonedb4a702009-07-24 23:12:02 +00007325 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattnerd934c702004-04-02 20:23:17 +00007326
7327 // Evaluate at the exit value. If we really did fall out of the valid
7328 // range, then we computed our trip count, otherwise wrap around or other
7329 // things must have happened.
Dan Gohmana37eaf22007-10-22 18:31:58 +00007330 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007331 if (Range.contains(Val->getValue()))
Dan Gohman31efa302009-04-18 17:58:19 +00007332 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007333
7334 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer3a7e9d82007-02-28 19:57:34 +00007335 assert(Range.contains(
Dan Gohmance973df2009-06-24 04:48:43 +00007336 EvaluateConstantChrecAtConstant(this,
Owen Andersonedb4a702009-07-24 23:12:02 +00007337 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattnerd934c702004-04-02 20:23:17 +00007338 "Linear scev computation is off in a bad way!");
Dan Gohmana37eaf22007-10-22 18:31:58 +00007339 return SE.getConstant(ExitValue);
Chris Lattnerd934c702004-04-02 20:23:17 +00007340 } else if (isQuadratic()) {
7341 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
7342 // quadratic equation to solve it. To do this, we must frame our problem in
7343 // terms of figuring out when zero is crossed, instead of when
7344 // Range.getUpper() is crossed.
Dan Gohmanaf752342009-07-07 17:06:11 +00007345 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00007346 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick8b55b732011-03-14 16:50:06 +00007347 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
7348 // getNoWrapFlags(FlagNW)
7349 FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00007350
7351 // Next, solve the constructed addrec
Dan Gohmanaf752342009-07-07 17:06:11 +00007352 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohmana37eaf22007-10-22 18:31:58 +00007353 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman48f82222009-05-04 22:30:44 +00007354 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
7355 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerd934c702004-04-02 20:23:17 +00007356 if (R1) {
7357 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00007358 if (ConstantInt *CB =
Owen Anderson487375e2009-07-29 18:55:55 +00007359 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Andersonf1f17432009-07-06 22:37:39 +00007360 R1->getValue(), R2->getValue()))) {
Reid Spencercddc9df2007-01-12 04:24:46 +00007361 if (CB->getZExtValue() == false)
Chris Lattnerd934c702004-04-02 20:23:17 +00007362 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman01808ca2005-04-21 21:13:18 +00007363
Chris Lattnerd934c702004-04-02 20:23:17 +00007364 // Make sure the root is not off by one. The returned iteration should
7365 // not be in the range, but the previous one should be. When solving
7366 // for "X*X < 5", for example, we should not return a root of 2.
7367 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohmana37eaf22007-10-22 18:31:58 +00007368 R1->getValue(),
7369 SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007370 if (Range.contains(R1Val->getValue())) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007371 // The next iteration must be out of the range...
Owen Andersonf1f17432009-07-06 22:37:39 +00007372 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00007373 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman01808ca2005-04-21 21:13:18 +00007374
Dan Gohmana37eaf22007-10-22 18:31:58 +00007375 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007376 if (!Range.contains(R1Val->getValue()))
Dan Gohmana37eaf22007-10-22 18:31:58 +00007377 return SE.getConstant(NextVal);
Dan Gohman31efa302009-04-18 17:58:19 +00007378 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007379 }
Misha Brukman01808ca2005-04-21 21:13:18 +00007380
Chris Lattnerd934c702004-04-02 20:23:17 +00007381 // If R1 was not in the range, then it is a good return value. Make
7382 // sure that R1-1 WAS in the range though, just in case.
Owen Andersonf1f17432009-07-06 22:37:39 +00007383 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00007384 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohmana37eaf22007-10-22 18:31:58 +00007385 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00007386 if (Range.contains(R1Val->getValue()))
Chris Lattnerd934c702004-04-02 20:23:17 +00007387 return R1;
Dan Gohman31efa302009-04-18 17:58:19 +00007388 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00007389 }
7390 }
7391 }
7392
Dan Gohman31efa302009-04-18 17:58:19 +00007393 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00007394}
7395
Sebastian Pop448712b2014-05-07 18:01:20 +00007396namespace {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00007397struct FindUndefs {
7398 bool Found;
7399 FindUndefs() : Found(false) {}
7400
7401 bool follow(const SCEV *S) {
7402 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
7403 if (isa<UndefValue>(C->getValue()))
7404 Found = true;
7405 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
7406 if (isa<UndefValue>(C->getValue()))
7407 Found = true;
7408 }
7409
7410 // Keep looking if we haven't found it yet.
7411 return !Found;
7412 }
7413 bool isDone() const {
7414 // Stop recursion if we have found an undef.
7415 return Found;
7416 }
7417};
7418}
7419
7420// Return true when S contains at least an undef value.
7421static inline bool
7422containsUndefs(const SCEV *S) {
7423 FindUndefs F;
7424 SCEVTraversal<FindUndefs> ST(F);
7425 ST.visitAll(S);
7426
7427 return F.Found;
7428}
7429
7430namespace {
Sebastian Pop448712b2014-05-07 18:01:20 +00007431// Collect all steps of SCEV expressions.
7432struct SCEVCollectStrides {
7433 ScalarEvolution &SE;
7434 SmallVectorImpl<const SCEV *> &Strides;
7435
7436 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
7437 : SE(SE), Strides(S) {}
7438
7439 bool follow(const SCEV *S) {
7440 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
7441 Strides.push_back(AR->getStepRecurrence(SE));
7442 return true;
7443 }
7444 bool isDone() const { return false; }
7445};
7446
7447// Collect all SCEVUnknown and SCEVMulExpr expressions.
7448struct SCEVCollectTerms {
7449 SmallVectorImpl<const SCEV *> &Terms;
7450
7451 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
7452 : Terms(T) {}
7453
7454 bool follow(const SCEV *S) {
Sebastian Popa6e58602014-05-27 22:41:45 +00007455 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
Sebastian Popa7d3d6a2014-05-07 19:00:32 +00007456 if (!containsUndefs(S))
7457 Terms.push_back(S);
Sebastian Pop448712b2014-05-07 18:01:20 +00007458
7459 // Stop recursion: once we collected a term, do not walk its operands.
7460 return false;
7461 }
7462
7463 // Keep looking.
7464 return true;
7465 }
7466 bool isDone() const { return false; }
7467};
7468}
7469
7470/// Find parametric terms in this SCEVAddRecExpr.
7471void SCEVAddRecExpr::collectParametricTerms(
7472 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Terms) const {
7473 SmallVector<const SCEV *, 4> Strides;
7474 SCEVCollectStrides StrideCollector(SE, Strides);
7475 visitAll(this, StrideCollector);
7476
7477 DEBUG({
7478 dbgs() << "Strides:\n";
7479 for (const SCEV *S : Strides)
7480 dbgs() << *S << "\n";
7481 });
7482
7483 for (const SCEV *S : Strides) {
7484 SCEVCollectTerms TermCollector(Terms);
7485 visitAll(S, TermCollector);
7486 }
7487
7488 DEBUG({
7489 dbgs() << "Terms:\n";
7490 for (const SCEV *T : Terms)
7491 dbgs() << *T << "\n";
7492 });
7493}
7494
Sebastian Popb1a548f2014-05-12 19:01:53 +00007495static bool findArrayDimensionsRec(ScalarEvolution &SE,
Sebastian Pop448712b2014-05-07 18:01:20 +00007496 SmallVectorImpl<const SCEV *> &Terms,
Sebastian Pop47fe7de2014-05-09 22:45:07 +00007497 SmallVectorImpl<const SCEV *> &Sizes) {
Sebastian Pope30bd352014-05-27 22:41:56 +00007498 int Last = Terms.size() - 1;
7499 const SCEV *Step = Terms[Last];
Sebastian Popc62c6792013-11-12 22:47:20 +00007500
Sebastian Pop448712b2014-05-07 18:01:20 +00007501 // End of recursion.
Sebastian Pope30bd352014-05-27 22:41:56 +00007502 if (Last == 0) {
7503 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007504 SmallVector<const SCEV *, 2> Qs;
7505 for (const SCEV *Op : M->operands())
7506 if (!isa<SCEVConstant>(Op))
7507 Qs.push_back(Op);
Sebastian Popc62c6792013-11-12 22:47:20 +00007508
Sebastian Pope30bd352014-05-27 22:41:56 +00007509 Step = SE.getMulExpr(Qs);
Sebastian Popc62c6792013-11-12 22:47:20 +00007510 }
7511
Sebastian Pope30bd352014-05-27 22:41:56 +00007512 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007513 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00007514 }
7515
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00007516 for (const SCEV *&Term : Terms) {
Sebastian Pop448712b2014-05-07 18:01:20 +00007517 // Normalize the terms before the next call to findArrayDimensionsRec.
7518 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00007519 SCEVDivision::divide(SE, Term, Step, &Q, &R);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007520
7521 // Bail out when GCD does not evenly divide one of the terms.
7522 if (!R->isZero())
7523 return false;
7524
Benjamin Kramer8cff45a2014-05-10 17:47:18 +00007525 Term = Q;
Sebastian Popc62c6792013-11-12 22:47:20 +00007526 }
7527
Tobias Grosser3080cf12014-05-08 07:55:34 +00007528 // Remove all SCEVConstants.
Tobias Grosser1e9db7e2014-05-08 21:43:19 +00007529 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
7530 return isa<SCEVConstant>(E);
7531 }),
7532 Terms.end());
Sebastian Popc62c6792013-11-12 22:47:20 +00007533
Sebastian Pop448712b2014-05-07 18:01:20 +00007534 if (Terms.size() > 0)
Sebastian Popb1a548f2014-05-12 19:01:53 +00007535 if (!findArrayDimensionsRec(SE, Terms, Sizes))
7536 return false;
7537
Sebastian Pope30bd352014-05-27 22:41:56 +00007538 Sizes.push_back(Step);
Sebastian Popb1a548f2014-05-12 19:01:53 +00007539 return true;
Sebastian Pop448712b2014-05-07 18:01:20 +00007540}
Sebastian Popc62c6792013-11-12 22:47:20 +00007541
Sebastian Pop448712b2014-05-07 18:01:20 +00007542namespace {
7543struct FindParameter {
7544 bool FoundParameter;
7545 FindParameter() : FoundParameter(false) {}
Sebastian Popc62c6792013-11-12 22:47:20 +00007546
Sebastian Pop448712b2014-05-07 18:01:20 +00007547 bool follow(const SCEV *S) {
7548 if (isa<SCEVUnknown>(S)) {
7549 FoundParameter = true;
7550 // Stop recursion: we found a parameter.
7551 return false;
7552 }
7553 // Keep looking.
7554 return true;
Sebastian Popc62c6792013-11-12 22:47:20 +00007555 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007556 bool isDone() const {
7557 // Stop recursion if we have found a parameter.
7558 return FoundParameter;
Sebastian Popc62c6792013-11-12 22:47:20 +00007559 }
Sebastian Popc62c6792013-11-12 22:47:20 +00007560};
7561}
7562
Sebastian Pop448712b2014-05-07 18:01:20 +00007563// Returns true when S contains at least a SCEVUnknown parameter.
7564static inline bool
7565containsParameters(const SCEV *S) {
7566 FindParameter F;
7567 SCEVTraversal<FindParameter> ST(F);
7568 ST.visitAll(S);
7569
7570 return F.FoundParameter;
7571}
7572
7573// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
7574static inline bool
7575containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
7576 for (const SCEV *T : Terms)
7577 if (containsParameters(T))
7578 return true;
7579 return false;
7580}
7581
7582// Return the number of product terms in S.
7583static inline int numberOfTerms(const SCEV *S) {
7584 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
7585 return Expr->getNumOperands();
7586 return 1;
7587}
7588
Sebastian Popa6e58602014-05-27 22:41:45 +00007589static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
7590 if (isa<SCEVConstant>(T))
7591 return nullptr;
7592
7593 if (isa<SCEVUnknown>(T))
7594 return T;
7595
7596 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
7597 SmallVector<const SCEV *, 2> Factors;
7598 for (const SCEV *Op : M->operands())
7599 if (!isa<SCEVConstant>(Op))
7600 Factors.push_back(Op);
7601
7602 return SE.getMulExpr(Factors);
7603 }
7604
7605 return T;
7606}
7607
7608/// Return the size of an element read or written by Inst.
7609const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
7610 Type *Ty;
7611 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
7612 Ty = Store->getValueOperand()->getType();
7613 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
Tobias Grosser40ac1002014-06-08 19:21:20 +00007614 Ty = Load->getType();
Sebastian Popa6e58602014-05-27 22:41:45 +00007615 else
7616 return nullptr;
7617
7618 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
7619 return getSizeOfExpr(ETy, Ty);
7620}
7621
Sebastian Pop448712b2014-05-07 18:01:20 +00007622/// Second step of delinearization: compute the array dimensions Sizes from the
7623/// set of Terms extracted from the memory access function of this SCEVAddRec.
Sebastian Popa6e58602014-05-27 22:41:45 +00007624void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
7625 SmallVectorImpl<const SCEV *> &Sizes,
7626 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007627
Sebastian Pop53524082014-05-29 19:44:05 +00007628 if (Terms.size() < 1 || !ElementSize)
Sebastian Pop448712b2014-05-07 18:01:20 +00007629 return;
7630
7631 // Early return when Terms do not contain parameters: we do not delinearize
7632 // non parametric SCEVs.
7633 if (!containsParameters(Terms))
7634 return;
7635
7636 DEBUG({
7637 dbgs() << "Terms:\n";
7638 for (const SCEV *T : Terms)
7639 dbgs() << *T << "\n";
7640 });
7641
7642 // Remove duplicates.
7643 std::sort(Terms.begin(), Terms.end());
7644 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
7645
7646 // Put larger terms first.
7647 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
7648 return numberOfTerms(LHS) > numberOfTerms(RHS);
7649 });
7650
Sebastian Popa6e58602014-05-27 22:41:45 +00007651 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7652
7653 // Divide all terms by the element size.
7654 for (const SCEV *&Term : Terms) {
7655 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00007656 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
Sebastian Popa6e58602014-05-27 22:41:45 +00007657 Term = Q;
7658 }
7659
7660 SmallVector<const SCEV *, 4> NewTerms;
7661
7662 // Remove constant factors.
7663 for (const SCEV *T : Terms)
7664 if (const SCEV *NewT = removeConstantFactors(SE, T))
7665 NewTerms.push_back(NewT);
7666
Sebastian Pop448712b2014-05-07 18:01:20 +00007667 DEBUG({
7668 dbgs() << "Terms after sorting:\n";
Sebastian Popa6e58602014-05-27 22:41:45 +00007669 for (const SCEV *T : NewTerms)
Sebastian Pop448712b2014-05-07 18:01:20 +00007670 dbgs() << *T << "\n";
7671 });
7672
Sebastian Popa6e58602014-05-27 22:41:45 +00007673 if (NewTerms.empty() ||
7674 !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
Sebastian Popb1a548f2014-05-12 19:01:53 +00007675 Sizes.clear();
7676 return;
7677 }
Sebastian Pop448712b2014-05-07 18:01:20 +00007678
Sebastian Popa6e58602014-05-27 22:41:45 +00007679 // The last element to be pushed into Sizes is the size of an element.
7680 Sizes.push_back(ElementSize);
7681
Sebastian Pop448712b2014-05-07 18:01:20 +00007682 DEBUG({
7683 dbgs() << "Sizes:\n";
7684 for (const SCEV *S : Sizes)
7685 dbgs() << *S << "\n";
7686 });
7687}
7688
7689/// Third step of delinearization: compute the access functions for the
7690/// Subscripts based on the dimensions in Sizes.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007691void SCEVAddRecExpr::computeAccessFunctions(
Sebastian Pop448712b2014-05-07 18:01:20 +00007692 ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &Subscripts,
7693 SmallVectorImpl<const SCEV *> &Sizes) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007694
Sebastian Popb1a548f2014-05-12 19:01:53 +00007695 // Early exit in case this SCEV is not an affine multivariate function.
7696 if (Sizes.empty() || !this->isAffine())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007697 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007698
Sebastian Pop28e6b972014-05-27 22:41:51 +00007699 const SCEV *Res = this;
Sebastian Pop448712b2014-05-07 18:01:20 +00007700 int Last = Sizes.size() - 1;
7701 for (int i = Last; i >= 0; i--) {
7702 const SCEV *Q, *R;
David Majnemer4e879362014-12-14 09:12:33 +00007703 SCEVDivision::divide(SE, Res, Sizes[i], &Q, &R);
Sebastian Pop448712b2014-05-07 18:01:20 +00007704
7705 DEBUG({
7706 dbgs() << "Res: " << *Res << "\n";
7707 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
7708 dbgs() << "Res divided by Sizes[i]:\n";
7709 dbgs() << "Quotient: " << *Q << "\n";
7710 dbgs() << "Remainder: " << *R << "\n";
7711 });
7712
7713 Res = Q;
7714
Sebastian Popa6e58602014-05-27 22:41:45 +00007715 // Do not record the last subscript corresponding to the size of elements in
7716 // the array.
Sebastian Pop448712b2014-05-07 18:01:20 +00007717 if (i == Last) {
Sebastian Popa6e58602014-05-27 22:41:45 +00007718
7719 // Bail out if the remainder is too complex.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007720 if (isa<SCEVAddRecExpr>(R)) {
7721 Subscripts.clear();
7722 Sizes.clear();
7723 return;
7724 }
Sebastian Popa6e58602014-05-27 22:41:45 +00007725
Sebastian Pop448712b2014-05-07 18:01:20 +00007726 continue;
7727 }
7728
7729 // Record the access function for the current subscript.
7730 Subscripts.push_back(R);
7731 }
7732
7733 // Also push in last position the remainder of the last division: it will be
7734 // the access function of the innermost dimension.
7735 Subscripts.push_back(Res);
7736
7737 std::reverse(Subscripts.begin(), Subscripts.end());
7738
7739 DEBUG({
7740 dbgs() << "Subscripts:\n";
7741 for (const SCEV *S : Subscripts)
7742 dbgs() << *S << "\n";
7743 });
Sebastian Pop448712b2014-05-07 18:01:20 +00007744}
7745
Sebastian Popc62c6792013-11-12 22:47:20 +00007746/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
7747/// sizes of an array access. Returns the remainder of the delinearization that
Sebastian Pop7ee14722013-11-13 22:37:58 +00007748/// is the offset start of the array. The SCEV->delinearize algorithm computes
7749/// the multiples of SCEV coefficients: that is a pattern matching of sub
7750/// expressions in the stride and base of a SCEV corresponding to the
7751/// computation of a GCD (greatest common divisor) of base and stride. When
7752/// SCEV->delinearize fails, it returns the SCEV unchanged.
7753///
7754/// For example: when analyzing the memory access A[i][j][k] in this loop nest
7755///
7756/// void foo(long n, long m, long o, double A[n][m][o]) {
7757///
7758/// for (long i = 0; i < n; i++)
7759/// for (long j = 0; j < m; j++)
7760/// for (long k = 0; k < o; k++)
7761/// A[i][j][k] = 1.0;
7762/// }
7763///
7764/// the delinearization input is the following AddRec SCEV:
7765///
7766/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
7767///
7768/// From this SCEV, we are able to say that the base offset of the access is %A
7769/// because it appears as an offset that does not divide any of the strides in
7770/// the loops:
7771///
7772/// CHECK: Base offset: %A
7773///
7774/// and then SCEV->delinearize determines the size of some of the dimensions of
7775/// the array as these are the multiples by which the strides are happening:
7776///
7777/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
7778///
7779/// Note that the outermost dimension remains of UnknownSize because there are
7780/// no strides that would help identifying the size of the last dimension: when
7781/// the array has been statically allocated, one could compute the size of that
7782/// dimension by dividing the overall size of the array by the size of the known
7783/// dimensions: %m * %o * 8.
7784///
7785/// Finally delinearize provides the access functions for the array reference
7786/// that does correspond to A[i][j][k] of the above C testcase:
7787///
7788/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
7789///
7790/// The testcases are checking the output of a function pass:
7791/// DelinearizationPass that walks through all loads and stores of a function
7792/// asking for the SCEV of the memory access with respect to all enclosing
7793/// loops, calling SCEV->delinearize on that and printing the results.
7794
Sebastian Pop28e6b972014-05-27 22:41:51 +00007795void SCEVAddRecExpr::delinearize(ScalarEvolution &SE,
7796 SmallVectorImpl<const SCEV *> &Subscripts,
7797 SmallVectorImpl<const SCEV *> &Sizes,
7798 const SCEV *ElementSize) const {
Sebastian Pop448712b2014-05-07 18:01:20 +00007799 // First step: collect parametric terms.
7800 SmallVector<const SCEV *, 4> Terms;
7801 collectParametricTerms(SE, Terms);
Sebastian Popc62c6792013-11-12 22:47:20 +00007802
Sebastian Popb1a548f2014-05-12 19:01:53 +00007803 if (Terms.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007804 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007805
Sebastian Pop448712b2014-05-07 18:01:20 +00007806 // Second step: find subscript sizes.
Sebastian Popa6e58602014-05-27 22:41:45 +00007807 SE.findArrayDimensions(Terms, Sizes, ElementSize);
Sebastian Pop7ee14722013-11-13 22:37:58 +00007808
Sebastian Popb1a548f2014-05-12 19:01:53 +00007809 if (Sizes.empty())
Sebastian Pop28e6b972014-05-27 22:41:51 +00007810 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007811
Sebastian Pop448712b2014-05-07 18:01:20 +00007812 // Third step: compute the access functions for each subscript.
Sebastian Pop28e6b972014-05-27 22:41:51 +00007813 computeAccessFunctions(SE, Subscripts, Sizes);
Sebastian Popc62c6792013-11-12 22:47:20 +00007814
Sebastian Pop28e6b972014-05-27 22:41:51 +00007815 if (Subscripts.empty())
7816 return;
Sebastian Popb1a548f2014-05-12 19:01:53 +00007817
Sebastian Pop448712b2014-05-07 18:01:20 +00007818 DEBUG({
7819 dbgs() << "succeeded to delinearize " << *this << "\n";
7820 dbgs() << "ArrayDecl[UnknownSize]";
7821 for (const SCEV *S : Sizes)
7822 dbgs() << "[" << *S << "]";
Sebastian Popc62c6792013-11-12 22:47:20 +00007823
Sebastian Pop444621a2014-05-09 22:45:02 +00007824 dbgs() << "\nArrayRef";
7825 for (const SCEV *S : Subscripts)
Sebastian Pop448712b2014-05-07 18:01:20 +00007826 dbgs() << "[" << *S << "]";
7827 dbgs() << "\n";
7828 });
Sebastian Popc62c6792013-11-12 22:47:20 +00007829}
Chris Lattnerd934c702004-04-02 20:23:17 +00007830
7831//===----------------------------------------------------------------------===//
Dan Gohman48f82222009-05-04 22:30:44 +00007832// SCEVCallbackVH Class Implementation
7833//===----------------------------------------------------------------------===//
7834
Dan Gohmand33a0902009-05-19 19:22:47 +00007835void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmandd707af2009-07-13 22:20:53 +00007836 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman48f82222009-05-04 22:30:44 +00007837 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
7838 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007839 SE->ValueExprMap.erase(getValPtr());
Dan Gohman48f82222009-05-04 22:30:44 +00007840 // this now dangles!
7841}
7842
Dan Gohman7a066722010-07-28 01:09:07 +00007843void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmandd707af2009-07-13 22:20:53 +00007844 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christopheref6d5932010-07-29 01:25:38 +00007845
Dan Gohman48f82222009-05-04 22:30:44 +00007846 // Forget all the expressions associated with users of the old value,
7847 // so that future queries will recompute the expressions using the new
7848 // value.
Dan Gohman7cac9572010-08-02 23:49:30 +00007849 Value *Old = getValPtr();
Chandler Carruthcdf47882014-03-09 03:16:01 +00007850 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
Dan Gohmanf34f8632009-07-14 14:34:04 +00007851 SmallPtrSet<User *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00007852 while (!Worklist.empty()) {
7853 User *U = Worklist.pop_back_val();
7854 // Deleting the Old value will cause this to dangle. Postpone
7855 // that until everything else is done.
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007856 if (U == Old)
Dan Gohman48f82222009-05-04 22:30:44 +00007857 continue;
David Blaikie70573dc2014-11-19 07:49:26 +00007858 if (!Visited.insert(U).second)
Dan Gohmanf34f8632009-07-14 14:34:04 +00007859 continue;
Dan Gohman48f82222009-05-04 22:30:44 +00007860 if (PHINode *PN = dyn_cast<PHINode>(U))
7861 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007862 SE->ValueExprMap.erase(U);
Chandler Carruthcdf47882014-03-09 03:16:01 +00007863 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
Dan Gohman48f82222009-05-04 22:30:44 +00007864 }
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007865 // Delete the Old value.
7866 if (PHINode *PN = dyn_cast<PHINode>(Old))
7867 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007868 SE->ValueExprMap.erase(Old);
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007869 // this now dangles!
Dan Gohman48f82222009-05-04 22:30:44 +00007870}
7871
Dan Gohmand33a0902009-05-19 19:22:47 +00007872ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman48f82222009-05-04 22:30:44 +00007873 : CallbackVH(V), SE(se) {}
7874
7875//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00007876// ScalarEvolution Class Implementation
7877//===----------------------------------------------------------------------===//
7878
Dan Gohmanc8e23622009-04-21 23:15:49 +00007879ScalarEvolution::ScalarEvolution()
Craig Topper9f008862014-04-15 04:59:12 +00007880 : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64),
7881 BlockDispositions(64), FirstUnknown(nullptr) {
Owen Anderson6c18d1a2010-10-19 17:21:58 +00007882 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanc8e23622009-04-21 23:15:49 +00007883}
7884
Chris Lattnerd934c702004-04-02 20:23:17 +00007885bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00007886 this->F = &F;
Chandler Carruth66b31302015-01-04 12:03:27 +00007887 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
Chandler Carruth4f8f3072015-01-17 14:16:18 +00007888 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
Rafael Espindola93512512014-02-25 17:30:31 +00007889 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
Craig Topper9f008862014-04-15 04:59:12 +00007890 DL = DLP ? &DLP->getDataLayout() : nullptr;
Chandler Carruthb98f63d2015-01-15 10:41:28 +00007891 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
Chandler Carruth73523022014-01-13 13:07:17 +00007892 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Chris Lattnerd934c702004-04-02 20:23:17 +00007893 return false;
7894}
7895
7896void ScalarEvolution::releaseMemory() {
Dan Gohman7cac9572010-08-02 23:49:30 +00007897 // Iterate through all the SCEVUnknown instances and call their
7898 // destructors, so that they release their references to their values.
7899 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
7900 U->~SCEVUnknown();
Craig Topper9f008862014-04-15 04:59:12 +00007901 FirstUnknown = nullptr;
Dan Gohman7cac9572010-08-02 23:49:30 +00007902
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007903 ValueExprMap.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00007904
7905 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
7906 // that a loop had multiple computable exits.
7907 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7908 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
7909 I != E; ++I) {
7910 I->second.clear();
7911 }
7912
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007913 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
7914
Dan Gohmanc8e23622009-04-21 23:15:49 +00007915 BackedgeTakenCounts.clear();
7916 ConstantEvolutionLoopExitValue.clear();
Dan Gohman5122d612009-05-08 20:47:27 +00007917 ValuesAtScopes.clear();
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007918 LoopDispositions.clear();
Dan Gohman8ea83d82010-11-18 00:34:22 +00007919 BlockDispositions.clear();
Dan Gohman761065e2010-11-17 02:44:44 +00007920 UnsignedRanges.clear();
7921 SignedRanges.clear();
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007922 UniqueSCEVs.clear();
7923 SCEVAllocator.Reset();
Chris Lattnerd934c702004-04-02 20:23:17 +00007924}
7925
7926void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
7927 AU.setPreservesAll();
Chandler Carruth66b31302015-01-04 12:03:27 +00007928 AU.addRequired<AssumptionCacheTracker>();
Chandler Carruth4f8f3072015-01-17 14:16:18 +00007929 AU.addRequiredTransitive<LoopInfoWrapperPass>();
Chandler Carruth73523022014-01-13 13:07:17 +00007930 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
Chandler Carruthb98f63d2015-01-15 10:41:28 +00007931 AU.addRequired<TargetLibraryInfoWrapperPass>();
Dan Gohman0a40ad92009-04-16 03:18:22 +00007932}
7933
Dan Gohmanc8e23622009-04-21 23:15:49 +00007934bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman0bddac12009-02-24 18:55:53 +00007935 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattnerd934c702004-04-02 20:23:17 +00007936}
7937
Dan Gohmanc8e23622009-04-21 23:15:49 +00007938static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattnerd934c702004-04-02 20:23:17 +00007939 const Loop *L) {
7940 // Print all inner loops first
7941 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
7942 PrintLoopInfo(OS, SE, *I);
Misha Brukman01808ca2005-04-21 21:13:18 +00007943
Dan Gohmanbc694912010-01-09 18:17:45 +00007944 OS << "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007945 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007946 OS << ": ";
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00007947
Dan Gohmancb0efec2009-12-18 01:14:11 +00007948 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00007949 L->getExitBlocks(ExitBlocks);
7950 if (ExitBlocks.size() != 1)
Nick Lewyckyd1200b02008-01-02 02:49:20 +00007951 OS << "<multiple exits> ";
Chris Lattnerd934c702004-04-02 20:23:17 +00007952
Dan Gohman0bddac12009-02-24 18:55:53 +00007953 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
7954 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattnerd934c702004-04-02 20:23:17 +00007955 } else {
Dan Gohman0bddac12009-02-24 18:55:53 +00007956 OS << "Unpredictable backedge-taken count. ";
Chris Lattnerd934c702004-04-02 20:23:17 +00007957 }
7958
Dan Gohmanbc694912010-01-09 18:17:45 +00007959 OS << "\n"
7960 "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007961 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007962 OS << ": ";
Dan Gohman69942932009-06-24 00:33:16 +00007963
7964 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
7965 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
7966 } else {
7967 OS << "Unpredictable max backedge-taken count. ";
7968 }
7969
7970 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00007971}
7972
Dan Gohmancb0efec2009-12-18 01:14:11 +00007973void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman8b0a4192010-03-01 17:49:51 +00007974 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanc8e23622009-04-21 23:15:49 +00007975 // out SCEV values of all instructions that are interesting. Doing
7976 // this potentially causes it to create new SCEV objects though,
7977 // which technically conflicts with the const qualifier. This isn't
Dan Gohman028e6152009-07-10 20:25:29 +00007978 // observable from outside the class though, so casting away the
7979 // const isn't dangerous.
Dan Gohmancb0efec2009-12-18 01:14:11 +00007980 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattnerd934c702004-04-02 20:23:17 +00007981
Dan Gohmanbc694912010-01-09 18:17:45 +00007982 OS << "Classifying expressions for: ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007983 F->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007984 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00007985 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmand18dc2c2010-05-03 17:03:23 +00007986 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanfda3c4a2009-07-13 23:03:05 +00007987 OS << *I << '\n';
Dan Gohman81313fd2008-09-14 17:21:12 +00007988 OS << " --> ";
Dan Gohmanaf752342009-07-07 17:06:11 +00007989 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattnerd934c702004-04-02 20:23:17 +00007990 SV->print(OS);
Misha Brukman01808ca2005-04-21 21:13:18 +00007991
Dan Gohmanb9063a82009-06-19 17:49:54 +00007992 const Loop *L = LI->getLoopFor((*I).getParent());
7993
Dan Gohmanaf752342009-07-07 17:06:11 +00007994 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohmanb9063a82009-06-19 17:49:54 +00007995 if (AtUse != SV) {
7996 OS << " --> ";
7997 AtUse->print(OS);
7998 }
7999
8000 if (L) {
Dan Gohman94c468f2009-06-18 00:37:45 +00008001 OS << "\t\t" "Exits: ";
Dan Gohmanaf752342009-07-07 17:06:11 +00008002 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanafd6db92010-11-17 21:23:15 +00008003 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00008004 OS << "<<Unknown>>";
8005 } else {
8006 OS << *ExitValue;
8007 }
8008 }
8009
Chris Lattnerd934c702004-04-02 20:23:17 +00008010 OS << "\n";
8011 }
8012
Dan Gohmanbc694912010-01-09 18:17:45 +00008013 OS << "Determining loop execution counts for: ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00008014 F->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00008015 OS << "\n";
Dan Gohmanc8e23622009-04-21 23:15:49 +00008016 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
8017 PrintLoopInfo(OS, &SE, *I);
Chris Lattnerd934c702004-04-02 20:23:17 +00008018}
Dan Gohmane20f8242009-04-21 00:47:46 +00008019
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008020ScalarEvolution::LoopDisposition
8021ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008022 auto &Values = LoopDispositions[S];
8023 for (auto &V : Values) {
8024 if (V.getPointer() == L)
8025 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008026 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008027 Values.emplace_back(L, LoopVariant);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008028 LoopDisposition D = computeLoopDisposition(S, L);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008029 auto &Values2 = LoopDispositions[S];
8030 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
8031 if (V.getPointer() == L) {
8032 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008033 break;
8034 }
8035 }
8036 return D;
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008037}
8038
8039ScalarEvolution::LoopDisposition
8040ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00008041 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohmanafd6db92010-11-17 21:23:15 +00008042 case scConstant:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008043 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008044 case scTruncate:
8045 case scZeroExtend:
8046 case scSignExtend:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008047 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohmanafd6db92010-11-17 21:23:15 +00008048 case scAddRecExpr: {
8049 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
8050
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008051 // If L is the addrec's loop, it's computable.
8052 if (AR->getLoop() == L)
8053 return LoopComputable;
8054
Dan Gohmanafd6db92010-11-17 21:23:15 +00008055 // Add recurrences are never invariant in the function-body (null loop).
8056 if (!L)
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008057 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008058
8059 // This recurrence is variant w.r.t. L if L contains AR's loop.
8060 if (L->contains(AR->getLoop()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008061 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008062
8063 // This recurrence is invariant w.r.t. L if AR's loop contains L.
8064 if (AR->getLoop()->contains(L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008065 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008066
8067 // This recurrence is variant w.r.t. L if any of its operands
8068 // are variant.
8069 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
8070 I != E; ++I)
8071 if (!isLoopInvariant(*I, L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008072 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008073
8074 // Otherwise it's loop-invariant.
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008075 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008076 }
8077 case scAddExpr:
8078 case scMulExpr:
8079 case scUMaxExpr:
8080 case scSMaxExpr: {
8081 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohmanafd6db92010-11-17 21:23:15 +00008082 bool HasVarying = false;
8083 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
8084 I != E; ++I) {
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008085 LoopDisposition D = getLoopDisposition(*I, L);
8086 if (D == LoopVariant)
8087 return LoopVariant;
8088 if (D == LoopComputable)
8089 HasVarying = true;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008090 }
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008091 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008092 }
8093 case scUDivExpr: {
8094 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008095 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
8096 if (LD == LoopVariant)
8097 return LoopVariant;
8098 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
8099 if (RD == LoopVariant)
8100 return LoopVariant;
8101 return (LD == LoopInvariant && RD == LoopInvariant) ?
8102 LoopInvariant : LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008103 }
8104 case scUnknown:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008105 // All non-instruction values are loop invariant. All instructions are loop
8106 // invariant if they are not contained in the specified loop.
8107 // Instructions are never considered invariant in the function body
8108 // (null loop) because they are defined within the "loop".
8109 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
8110 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
8111 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008112 case scCouldNotCompute:
8113 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanafd6db92010-11-17 21:23:15 +00008114 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00008115 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00008116}
8117
8118bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
8119 return getLoopDisposition(S, L) == LoopInvariant;
8120}
8121
8122bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
8123 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00008124}
Dan Gohman20d9ce22010-11-17 21:41:58 +00008125
Dan Gohman8ea83d82010-11-18 00:34:22 +00008126ScalarEvolution::BlockDisposition
8127ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008128 auto &Values = BlockDispositions[S];
8129 for (auto &V : Values) {
8130 if (V.getPointer() == BB)
8131 return V.getInt();
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008132 }
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008133 Values.emplace_back(BB, DoesNotDominateBlock);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008134 BlockDisposition D = computeBlockDisposition(S, BB);
Benjamin Kramerd7e331e2015-02-07 16:41:12 +00008135 auto &Values2 = BlockDispositions[S];
8136 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
8137 if (V.getPointer() == BB) {
8138 V.setInt(D);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00008139 break;
8140 }
8141 }
8142 return D;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008143}
8144
Dan Gohman8ea83d82010-11-18 00:34:22 +00008145ScalarEvolution::BlockDisposition
8146ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00008147 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohman20d9ce22010-11-17 21:41:58 +00008148 case scConstant:
Dan Gohman8ea83d82010-11-18 00:34:22 +00008149 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008150 case scTruncate:
8151 case scZeroExtend:
8152 case scSignExtend:
Dan Gohman8ea83d82010-11-18 00:34:22 +00008153 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohman20d9ce22010-11-17 21:41:58 +00008154 case scAddRecExpr: {
8155 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman8ea83d82010-11-18 00:34:22 +00008156 // to test for proper dominance too, because the instruction which
8157 // produces the addrec's value is a PHI, and a PHI effectively properly
8158 // dominates its entire containing block.
Dan Gohman20d9ce22010-11-17 21:41:58 +00008159 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
8160 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00008161 return DoesNotDominateBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008162 }
8163 // FALL THROUGH into SCEVNAryExpr handling.
8164 case scAddExpr:
8165 case scMulExpr:
8166 case scUMaxExpr:
8167 case scSMaxExpr: {
8168 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008169 bool Proper = true;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008170 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman8ea83d82010-11-18 00:34:22 +00008171 I != E; ++I) {
8172 BlockDisposition D = getBlockDisposition(*I, BB);
8173 if (D == DoesNotDominateBlock)
8174 return DoesNotDominateBlock;
8175 if (D == DominatesBlock)
8176 Proper = false;
8177 }
8178 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008179 }
8180 case scUDivExpr: {
8181 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008182 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
8183 BlockDisposition LD = getBlockDisposition(LHS, BB);
8184 if (LD == DoesNotDominateBlock)
8185 return DoesNotDominateBlock;
8186 BlockDisposition RD = getBlockDisposition(RHS, BB);
8187 if (RD == DoesNotDominateBlock)
8188 return DoesNotDominateBlock;
8189 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
8190 ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008191 }
8192 case scUnknown:
8193 if (Instruction *I =
Dan Gohman8ea83d82010-11-18 00:34:22 +00008194 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
8195 if (I->getParent() == BB)
8196 return DominatesBlock;
8197 if (DT->properlyDominates(I->getParent(), BB))
8198 return ProperlyDominatesBlock;
8199 return DoesNotDominateBlock;
8200 }
8201 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008202 case scCouldNotCompute:
8203 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman20d9ce22010-11-17 21:41:58 +00008204 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00008205 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman8ea83d82010-11-18 00:34:22 +00008206}
8207
8208bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
8209 return getBlockDisposition(S, BB) >= DominatesBlock;
8210}
8211
8212bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
8213 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00008214}
Dan Gohman534749b2010-11-17 22:27:42 +00008215
Andrew Trick365e31c2012-07-13 23:33:03 +00008216namespace {
8217// Search for a SCEV expression node within an expression tree.
8218// Implements SCEVTraversal::Visitor.
8219struct SCEVSearch {
8220 const SCEV *Node;
8221 bool IsFound;
8222
8223 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
8224
8225 bool follow(const SCEV *S) {
8226 IsFound |= (S == Node);
8227 return !IsFound;
8228 }
8229 bool isDone() const { return IsFound; }
8230};
8231}
8232
Dan Gohman534749b2010-11-17 22:27:42 +00008233bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Andrew Trick365e31c2012-07-13 23:33:03 +00008234 SCEVSearch Search(Op);
8235 visitAll(S, Search);
8236 return Search.IsFound;
Dan Gohman534749b2010-11-17 22:27:42 +00008237}
Dan Gohman7e6b3932010-11-17 23:28:48 +00008238
8239void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
8240 ValuesAtScopes.erase(S);
8241 LoopDispositions.erase(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00008242 BlockDispositions.erase(S);
Dan Gohman7e6b3932010-11-17 23:28:48 +00008243 UnsignedRanges.erase(S);
8244 SignedRanges.erase(S);
Andrew Trick9093e152013-03-26 03:14:53 +00008245
8246 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
8247 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
8248 BackedgeTakenInfo &BEInfo = I->second;
8249 if (BEInfo.hasOperand(S, this)) {
8250 BEInfo.clear();
8251 BackedgeTakenCounts.erase(I++);
8252 }
8253 else
8254 ++I;
8255 }
Dan Gohman7e6b3932010-11-17 23:28:48 +00008256}
Benjamin Kramer214935e2012-10-26 17:31:32 +00008257
8258typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008259
Alp Tokercb402912014-01-24 17:20:08 +00008260/// replaceSubString - Replaces all occurrences of From in Str with To.
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008261static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
8262 size_t Pos = 0;
8263 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
8264 Str.replace(Pos, From.size(), To.data(), To.size());
8265 Pos += To.size();
8266 }
8267}
8268
Benjamin Kramer214935e2012-10-26 17:31:32 +00008269/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
8270static void
8271getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
8272 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
8273 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
8274
8275 std::string &S = Map[L];
8276 if (S.empty()) {
8277 raw_string_ostream OS(S);
8278 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramer24d270d2012-10-27 10:45:01 +00008279
8280 // false and 0 are semantically equivalent. This can happen in dead loops.
8281 replaceSubString(OS.str(), "false", "0");
8282 // Remove wrap flags, their use in SCEV is highly fragile.
8283 // FIXME: Remove this when SCEV gets smarter about them.
8284 replaceSubString(OS.str(), "<nw>", "");
8285 replaceSubString(OS.str(), "<nsw>", "");
8286 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramer214935e2012-10-26 17:31:32 +00008287 }
8288 }
8289}
8290
8291void ScalarEvolution::verifyAnalysis() const {
8292 if (!VerifySCEV)
8293 return;
8294
8295 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
8296
8297 // Gather stringified backedge taken counts for all loops using SCEV's caches.
8298 // FIXME: It would be much better to store actual values instead of strings,
8299 // but SCEV pointers will change if we drop the caches.
8300 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
8301 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8302 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
8303
8304 // Gather stringified backedge taken counts for all loops without using
8305 // SCEV's caches.
8306 SE.releaseMemory();
8307 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
8308 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
8309
8310 // Now compare whether they're the same with and without caches. This allows
8311 // verifying that no pass changed the cache.
8312 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
8313 "New loops suddenly appeared!");
8314
8315 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
8316 OldE = BackedgeDumpsOld.end(),
8317 NewI = BackedgeDumpsNew.begin();
8318 OldI != OldE; ++OldI, ++NewI) {
8319 assert(OldI->first == NewI->first && "Loop order changed!");
8320
8321 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
8322 // changes.
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008323 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramer214935e2012-10-26 17:31:32 +00008324 // means that a pass is buggy or SCEV has to learn a new pattern but is
8325 // usually not harmful.
8326 if (OldI->second != NewI->second &&
8327 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008328 NewI->second.find("undef") == std::string::npos &&
8329 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramer214935e2012-10-26 17:31:32 +00008330 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008331 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramer214935e2012-10-26 17:31:32 +00008332 << OldI->first->getHeader()->getName()
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00008333 << "' changed from '" << OldI->second
8334 << "' to '" << NewI->second << "'!\n";
Benjamin Kramer214935e2012-10-26 17:31:32 +00008335 std::abort();
8336 }
8337 }
8338
8339 // TODO: Verify more things.
8340}