blob: 96e9022331f2bba0d55feeb6799cdf359f9a5842 [file] [log] [blame]
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001//===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file is a part of MemorySanitizer, a detector of uninitialized
11/// reads.
12///
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000013/// The algorithm of the tool is similar to Memcheck
14/// (http://goo.gl/QKbem). We associate a few shadow bits with every
15/// byte of the application memory, poison the shadow of the malloc-ed
16/// or alloca-ed memory, load the shadow bits on every memory read,
17/// propagate the shadow bits through some of the arithmetic
18/// instruction (including MOV), store the shadow bits on every memory
19/// write, report a bug on some other instructions (e.g. JMP) if the
20/// associated shadow is poisoned.
21///
22/// But there are differences too. The first and the major one:
23/// compiler instrumentation instead of binary instrumentation. This
24/// gives us much better register allocation, possible compiler
25/// optimizations and a fast start-up. But this brings the major issue
26/// as well: msan needs to see all program events, including system
27/// calls and reads/writes in system libraries, so we either need to
28/// compile *everything* with msan or use a binary translation
29/// component (e.g. DynamoRIO) to instrument pre-built libraries.
30/// Another difference from Memcheck is that we use 8 shadow bits per
31/// byte of application memory and use a direct shadow mapping. This
32/// greatly simplifies the instrumentation code and avoids races on
33/// shadow updates (Memcheck is single-threaded so races are not a
34/// concern there. Memcheck uses 2 shadow bits per byte with a slow
35/// path storage that uses 8 bits per byte).
36///
37/// The default value of shadow is 0, which means "clean" (not poisoned).
38///
39/// Every module initializer should call __msan_init to ensure that the
40/// shadow memory is ready. On error, __msan_warning is called. Since
41/// parameters and return values may be passed via registers, we have a
42/// specialized thread-local shadow for return values
43/// (__msan_retval_tls) and parameters (__msan_param_tls).
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +000044///
45/// Origin tracking.
46///
47/// MemorySanitizer can track origins (allocation points) of all uninitialized
48/// values. This behavior is controlled with a flag (msan-track-origins) and is
49/// disabled by default.
50///
51/// Origins are 4-byte values created and interpreted by the runtime library.
52/// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
53/// of application memory. Propagation of origins is basically a bunch of
54/// "select" instructions that pick the origin of a dirty argument, if an
55/// instruction has one.
56///
57/// Every 4 aligned, consecutive bytes of application memory have one origin
58/// value associated with them. If these bytes contain uninitialized data
59/// coming from 2 different allocations, the last store wins. Because of this,
60/// MemorySanitizer reports can show unrelated origins, but this is unlikely in
Alexey Samsonov3efc87e2012-12-28 09:30:44 +000061/// practice.
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +000062///
63/// Origins are meaningless for fully initialized values, so MemorySanitizer
64/// avoids storing origin to memory when a fully initialized value is stored.
65/// This way it avoids needless overwritting origin of the 4-byte region on
66/// a short (i.e. 1 byte) clean store, and it is also good for performance.
Evgeniy Stepanov5522a702013-09-24 11:20:27 +000067///
68/// Atomic handling.
69///
70/// Ideally, every atomic store of application value should update the
71/// corresponding shadow location in an atomic way. Unfortunately, atomic store
72/// of two disjoint locations can not be done without severe slowdown.
73///
74/// Therefore, we implement an approximation that may err on the safe side.
75/// In this implementation, every atomically accessed location in the program
76/// may only change from (partially) uninitialized to fully initialized, but
77/// not the other way around. We load the shadow _after_ the application load,
78/// and we store the shadow _before_ the app store. Also, we always store clean
79/// shadow (if the application store is atomic). This way, if the store-load
80/// pair constitutes a happens-before arc, shadow store and load are correctly
81/// ordered such that the load will get either the value that was stored, or
82/// some later value (which is always clean).
83///
84/// This does not work very well with Compare-And-Swap (CAS) and
85/// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
86/// must store the new shadow before the app operation, and load the shadow
87/// after the app operation. Computers don't work this way. Current
88/// implementation ignores the load aspect of CAS/RMW, always returning a clean
89/// value. It implements the store part as a simple atomic store by storing a
90/// clean shadow.
91
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000092//===----------------------------------------------------------------------===//
93
Chandler Carruthed0881b2012-12-03 16:50:05 +000094#include "llvm/Transforms/Instrumentation.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000095#include "llvm/ADT/DepthFirstIterator.h"
96#include "llvm/ADT/SmallString.h"
97#include "llvm/ADT/SmallVector.h"
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +000098#include "llvm/ADT/StringExtras.h"
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +000099#include "llvm/ADT/Triple.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +0000100#include "llvm/IR/DataLayout.h"
101#include "llvm/IR/Function.h"
102#include "llvm/IR/IRBuilder.h"
103#include "llvm/IR/InlineAsm.h"
Chandler Carruth7da14f12014-03-06 03:23:41 +0000104#include "llvm/IR/InstVisitor.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +0000105#include "llvm/IR/IntrinsicInst.h"
106#include "llvm/IR/LLVMContext.h"
107#include "llvm/IR/MDBuilder.h"
108#include "llvm/IR/Module.h"
109#include "llvm/IR/Type.h"
Chandler Carrutha4ea2692014-03-04 11:26:31 +0000110#include "llvm/IR/ValueMap.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000111#include "llvm/Support/CommandLine.h"
112#include "llvm/Support/Compiler.h"
113#include "llvm/Support/Debug.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000114#include "llvm/Support/raw_ostream.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000115#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Evgeniy Stepanov4fbc0d082012-12-21 11:18:49 +0000116#include "llvm/Transforms/Utils/Local.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000117#include "llvm/Transforms/Utils/ModuleUtils.h"
118
119using namespace llvm;
120
Chandler Carruth964daaa2014-04-22 02:55:47 +0000121#define DEBUG_TYPE "msan"
122
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000123static const uint64_t kShadowMask32 = 1ULL << 31;
124static const uint64_t kShadowMask64 = 1ULL << 46;
125static const uint64_t kOriginOffset32 = 1ULL << 30;
126static const uint64_t kOriginOffset64 = 1ULL << 45;
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +0000127static const unsigned kMinOriginAlignment = 4;
128static const unsigned kShadowTLSAlignment = 8;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000129
Evgeniy Stepanov35eb2652014-10-22 00:12:40 +0000130// These constants must be kept in sync with the ones in msan.h.
131static const unsigned kParamTLSSize = 800;
132static const unsigned kRetvalTLSSize = 800;
133
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000134// Accesses sizes are powers of two: 1, 2, 4, 8.
135static const size_t kNumberOfAccessSizes = 4;
136
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +0000137/// \brief Track origins of uninitialized values.
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000138///
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +0000139/// Adds a section to MemorySanitizer report that points to the allocation
140/// (stack or heap) the uninitialized bits came from originally.
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000141static cl::opt<int> ClTrackOrigins("msan-track-origins",
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000142 cl::desc("Track origins (allocation sites) of poisoned memory"),
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000143 cl::Hidden, cl::init(0));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000144static cl::opt<bool> ClKeepGoing("msan-keep-going",
145 cl::desc("keep going after reporting a UMR"),
146 cl::Hidden, cl::init(false));
147static cl::opt<bool> ClPoisonStack("msan-poison-stack",
148 cl::desc("poison uninitialized stack variables"),
149 cl::Hidden, cl::init(true));
150static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
151 cl::desc("poison uninitialized stack variables with a call"),
152 cl::Hidden, cl::init(false));
153static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
154 cl::desc("poison uninitialized stack variables with the given patter"),
155 cl::Hidden, cl::init(0xff));
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000156static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
157 cl::desc("poison undef temps"),
158 cl::Hidden, cl::init(true));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000159
160static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
161 cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
162 cl::Hidden, cl::init(true));
163
Evgeniy Stepanovfac84032013-01-25 15:31:10 +0000164static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
165 cl::desc("exact handling of relational integer ICmp"),
Evgeniy Stepanov6f85ef32013-01-28 11:42:28 +0000166 cl::Hidden, cl::init(false));
Evgeniy Stepanovfac84032013-01-25 15:31:10 +0000167
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000168// This flag controls whether we check the shadow of the address
169// operand of load or store. Such bugs are very rare, since load from
170// a garbage address typically results in SEGV, but still happen
171// (e.g. only lower bits of address are garbage, or the access happens
172// early at program startup where malloc-ed memory is more likely to
173// be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
174static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
175 cl::desc("report accesses through a pointer which has poisoned shadow"),
176 cl::Hidden, cl::init(true));
177
178static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
179 cl::desc("print out instructions with default strict semantics"),
180 cl::Hidden, cl::init(false));
181
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000182static cl::opt<int> ClInstrumentationWithCallThreshold(
183 "msan-instrumentation-with-call-threshold",
184 cl::desc(
185 "If the function being instrumented requires more than "
186 "this number of checks and origin stores, use callbacks instead of "
187 "inline checks (-1 means never use callbacks)."),
Evgeniy Stepanov3939f542014-04-21 15:04:05 +0000188 cl::Hidden, cl::init(3500));
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000189
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000190// Experimental. Wraps all indirect calls in the instrumented code with
191// a call to the given function. This is needed to assist the dynamic
192// helper tool (MSanDR) to regain control on transition between instrumented and
193// non-instrumented code.
194static cl::opt<std::string> ClWrapIndirectCalls("msan-wrap-indirect-calls",
195 cl::desc("Wrap indirect calls with a given function"),
196 cl::Hidden);
197
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000198static cl::opt<bool> ClWrapIndirectCallsFast("msan-wrap-indirect-calls-fast",
199 cl::desc("Do not wrap indirect calls with target in the same module"),
200 cl::Hidden, cl::init(true));
201
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000202namespace {
203
204/// \brief An instrumentation pass implementing detection of uninitialized
205/// reads.
206///
207/// MemorySanitizer: instrument the code in module to find
208/// uninitialized reads.
209class MemorySanitizer : public FunctionPass {
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000210 public:
Alexey Samsonov6d8bab82014-06-02 18:08:27 +0000211 MemorySanitizer(int TrackOrigins = 0)
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000212 : FunctionPass(ID),
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000213 TrackOrigins(std::max(TrackOrigins, (int)ClTrackOrigins)),
Craig Topperf40110f2014-04-25 05:29:35 +0000214 DL(nullptr),
215 WarningFn(nullptr),
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000216 WrapIndirectCalls(!ClWrapIndirectCalls.empty()) {}
Craig Topper3e4c6972014-03-05 09:10:37 +0000217 const char *getPassName() const override { return "MemorySanitizer"; }
218 bool runOnFunction(Function &F) override;
219 bool doInitialization(Module &M) override;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000220 static char ID; // Pass identification, replacement for typeid.
221
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000222 private:
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000223 void initializeCallbacks(Module &M);
224
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000225 /// \brief Track origins (allocation points) of uninitialized values.
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000226 int TrackOrigins;
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000227
Rafael Espindolaaeff8a92014-02-24 23:12:18 +0000228 const DataLayout *DL;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000229 LLVMContext *C;
230 Type *IntptrTy;
231 Type *OriginTy;
232 /// \brief Thread-local shadow storage for function parameters.
233 GlobalVariable *ParamTLS;
234 /// \brief Thread-local origin storage for function parameters.
235 GlobalVariable *ParamOriginTLS;
236 /// \brief Thread-local shadow storage for function return value.
237 GlobalVariable *RetvalTLS;
238 /// \brief Thread-local origin storage for function return value.
239 GlobalVariable *RetvalOriginTLS;
240 /// \brief Thread-local shadow storage for in-register va_arg function
241 /// parameters (x86_64-specific).
242 GlobalVariable *VAArgTLS;
243 /// \brief Thread-local shadow storage for va_arg overflow area
244 /// (x86_64-specific).
245 GlobalVariable *VAArgOverflowSizeTLS;
246 /// \brief Thread-local space used to pass origin value to the UMR reporting
247 /// function.
248 GlobalVariable *OriginTLS;
249
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000250 GlobalVariable *MsandrModuleStart;
251 GlobalVariable *MsandrModuleEnd;
252
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000253 /// \brief The run-time callback to print a warning.
254 Value *WarningFn;
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000255 // These arrays are indexed by log2(AccessSize).
256 Value *MaybeWarningFn[kNumberOfAccessSizes];
257 Value *MaybeStoreOriginFn[kNumberOfAccessSizes];
258
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000259 /// \brief Run-time helper that generates a new origin value for a stack
260 /// allocation.
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +0000261 Value *MsanSetAllocaOrigin4Fn;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000262 /// \brief Run-time helper that poisons stack on function entry.
263 Value *MsanPoisonStackFn;
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000264 /// \brief Run-time helper that records a store (or any event) of an
265 /// uninitialized value and returns an updated origin id encoding this info.
266 Value *MsanChainOriginFn;
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +0000267 /// \brief MSan runtime replacements for memmove, memcpy and memset.
268 Value *MemmoveFn, *MemcpyFn, *MemsetFn;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000269
270 /// \brief Address mask used in application-to-shadow address calculation.
271 /// ShadowAddr is computed as ApplicationAddr & ~ShadowMask.
272 uint64_t ShadowMask;
273 /// \brief Offset of the origin shadow from the "normal" shadow.
274 /// OriginAddr is computed as (ShadowAddr + OriginOffset) & ~3ULL
275 uint64_t OriginOffset;
276 /// \brief Branch weights for error reporting.
277 MDNode *ColdCallWeights;
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000278 /// \brief Branch weights for origin store.
279 MDNode *OriginStoreWeights;
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000280 /// \brief An empty volatile inline asm that prevents callback merge.
281 InlineAsm *EmptyAsm;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000282
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000283 bool WrapIndirectCalls;
284 /// \brief Run-time wrapper for indirect calls.
285 Value *IndirectCallWrapperFn;
286 // Argument and return type of IndirectCallWrapperFn: void (*f)(void).
287 Type *AnyFunctionPtrTy;
288
Evgeniy Stepanovda0072b2012-11-29 13:12:03 +0000289 friend struct MemorySanitizerVisitor;
290 friend struct VarArgAMD64Helper;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000291};
292} // namespace
293
294char MemorySanitizer::ID = 0;
295INITIALIZE_PASS(MemorySanitizer, "msan",
296 "MemorySanitizer: detects uninitialized reads.",
297 false, false)
298
Alexey Samsonov6d8bab82014-06-02 18:08:27 +0000299FunctionPass *llvm::createMemorySanitizerPass(int TrackOrigins) {
300 return new MemorySanitizer(TrackOrigins);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000301}
302
303/// \brief Create a non-const global initialized with the given string.
304///
305/// Creates a writable global for Str so that we can pass it to the
306/// run-time lib. Runtime uses first 4 bytes of the string to store the
307/// frame ID, so the string needs to be mutable.
308static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
309 StringRef Str) {
310 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
311 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
312 GlobalValue::PrivateLinkage, StrConst, "");
313}
314
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000315
316/// \brief Insert extern declaration of runtime-provided functions and globals.
317void MemorySanitizer::initializeCallbacks(Module &M) {
318 // Only do this once.
319 if (WarningFn)
320 return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000321
322 IRBuilder<> IRB(*C);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000323 // Create the callback.
324 // FIXME: this function should have "Cold" calling conv,
325 // which is not yet implemented.
326 StringRef WarningFnName = ClKeepGoing ? "__msan_warning"
327 : "__msan_warning_noreturn";
328 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), NULL);
329
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000330 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
331 AccessSizeIndex++) {
332 unsigned AccessSize = 1 << AccessSizeIndex;
333 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize);
334 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction(
335 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
336 IRB.getInt32Ty(), NULL);
337
338 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize);
339 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction(
340 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
341 IRB.getInt8PtrTy(), IRB.getInt32Ty(), NULL);
342 }
343
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +0000344 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction(
345 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
346 IRB.getInt8PtrTy(), IntptrTy, NULL);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000347 MsanPoisonStackFn = M.getOrInsertFunction(
348 "__msan_poison_stack", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, NULL);
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000349 MsanChainOriginFn = M.getOrInsertFunction(
350 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty(), NULL);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000351 MemmoveFn = M.getOrInsertFunction(
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000352 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
353 IRB.getInt8PtrTy(), IntptrTy, NULL);
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +0000354 MemcpyFn = M.getOrInsertFunction(
355 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
356 IntptrTy, NULL);
357 MemsetFn = M.getOrInsertFunction(
358 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000359 IntptrTy, NULL);
360
361 // Create globals.
362 RetvalTLS = new GlobalVariable(
Evgeniy Stepanov35eb2652014-10-22 00:12:40 +0000363 M, ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), false,
Craig Topperf40110f2014-04-25 05:29:35 +0000364 GlobalVariable::ExternalLinkage, nullptr, "__msan_retval_tls", nullptr,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000365 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000366 RetvalOriginTLS = new GlobalVariable(
Craig Topperf40110f2014-04-25 05:29:35 +0000367 M, OriginTy, false, GlobalVariable::ExternalLinkage, nullptr,
368 "__msan_retval_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000369
370 ParamTLS = new GlobalVariable(
Evgeniy Stepanov35eb2652014-10-22 00:12:40 +0000371 M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false,
Craig Topperf40110f2014-04-25 05:29:35 +0000372 GlobalVariable::ExternalLinkage, nullptr, "__msan_param_tls", nullptr,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000373 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000374 ParamOriginTLS = new GlobalVariable(
Evgeniy Stepanov35eb2652014-10-22 00:12:40 +0000375 M, ArrayType::get(OriginTy, kParamTLSSize / 4), false,
376 GlobalVariable::ExternalLinkage, nullptr, "__msan_param_origin_tls",
377 nullptr, GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000378
379 VAArgTLS = new GlobalVariable(
Evgeniy Stepanov35eb2652014-10-22 00:12:40 +0000380 M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false,
Craig Topperf40110f2014-04-25 05:29:35 +0000381 GlobalVariable::ExternalLinkage, nullptr, "__msan_va_arg_tls", nullptr,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000382 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000383 VAArgOverflowSizeTLS = new GlobalVariable(
Craig Topperf40110f2014-04-25 05:29:35 +0000384 M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, nullptr,
385 "__msan_va_arg_overflow_size_tls", nullptr,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000386 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000387 OriginTLS = new GlobalVariable(
Craig Topperf40110f2014-04-25 05:29:35 +0000388 M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, nullptr,
389 "__msan_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000390
391 // We insert an empty inline asm after __msan_report* to avoid callback merge.
392 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
393 StringRef(""), StringRef(""),
394 /*hasSideEffects=*/true);
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000395
396 if (WrapIndirectCalls) {
397 AnyFunctionPtrTy =
398 PointerType::getUnqual(FunctionType::get(IRB.getVoidTy(), false));
399 IndirectCallWrapperFn = M.getOrInsertFunction(
400 ClWrapIndirectCalls, AnyFunctionPtrTy, AnyFunctionPtrTy, NULL);
401 }
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000402
Evgeniy Stepanovc14fc422014-05-07 14:10:51 +0000403 if (WrapIndirectCalls && ClWrapIndirectCallsFast) {
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000404 MsandrModuleStart = new GlobalVariable(
405 M, IRB.getInt32Ty(), false, GlobalValue::ExternalLinkage,
Craig Topperf40110f2014-04-25 05:29:35 +0000406 nullptr, "__executable_start");
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000407 MsandrModuleStart->setVisibility(GlobalVariable::HiddenVisibility);
408 MsandrModuleEnd = new GlobalVariable(
409 M, IRB.getInt32Ty(), false, GlobalValue::ExternalLinkage,
Craig Topperf40110f2014-04-25 05:29:35 +0000410 nullptr, "_end");
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000411 MsandrModuleEnd->setVisibility(GlobalVariable::HiddenVisibility);
412 }
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000413}
414
415/// \brief Module-level initialization.
416///
417/// inserts a call to __msan_init to the module's constructor list.
418bool MemorySanitizer::doInitialization(Module &M) {
Rafael Espindola93512512014-02-25 17:30:31 +0000419 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
420 if (!DLP)
Evgeniy Stepanov119cb2e2014-04-23 12:51:32 +0000421 report_fatal_error("data layout missing");
Rafael Espindola93512512014-02-25 17:30:31 +0000422 DL = &DLP->getDataLayout();
423
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000424 C = &(M.getContext());
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000425 unsigned PtrSize = DL->getPointerSizeInBits(/* AddressSpace */0);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000426 switch (PtrSize) {
427 case 64:
428 ShadowMask = kShadowMask64;
429 OriginOffset = kOriginOffset64;
430 break;
431 case 32:
432 ShadowMask = kShadowMask32;
433 OriginOffset = kOriginOffset32;
434 break;
435 default:
436 report_fatal_error("unsupported pointer size");
437 break;
438 }
439
440 IRBuilder<> IRB(*C);
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000441 IntptrTy = IRB.getIntPtrTy(DL);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000442 OriginTy = IRB.getInt32Ty();
443
444 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000445 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000446
447 // Insert a call to __msan_init/__msan_track_origins into the module's CTORs.
448 appendToGlobalCtors(M, cast<Function>(M.getOrInsertFunction(
449 "__msan_init", IRB.getVoidTy(), NULL)), 0);
450
Evgeniy Stepanov888385e2013-05-31 12:04:29 +0000451 if (TrackOrigins)
452 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
453 IRB.getInt32(TrackOrigins), "__msan_track_origins");
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000454
Evgeniy Stepanov888385e2013-05-31 12:04:29 +0000455 if (ClKeepGoing)
456 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
457 IRB.getInt32(ClKeepGoing), "__msan_keep_going");
Evgeniy Stepanovdcf6bcb2013-01-22 13:26:53 +0000458
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000459 return true;
460}
461
462namespace {
463
464/// \brief A helper class that handles instrumentation of VarArg
465/// functions on a particular platform.
466///
467/// Implementations are expected to insert the instrumentation
468/// necessary to propagate argument shadow through VarArg function
469/// calls. Visit* methods are called during an InstVisitor pass over
470/// the function, and should avoid creating new basic blocks. A new
471/// instance of this class is created for each instrumented function.
472struct VarArgHelper {
473 /// \brief Visit a CallSite.
474 virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
475
476 /// \brief Visit a va_start call.
477 virtual void visitVAStartInst(VAStartInst &I) = 0;
478
479 /// \brief Visit a va_copy call.
480 virtual void visitVACopyInst(VACopyInst &I) = 0;
481
482 /// \brief Finalize function instrumentation.
483 ///
484 /// This method is called after visiting all interesting (see above)
485 /// instructions in a function.
486 virtual void finalizeInstrumentation() = 0;
Evgeniy Stepanovda0072b2012-11-29 13:12:03 +0000487
488 virtual ~VarArgHelper() {}
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000489};
490
491struct MemorySanitizerVisitor;
492
493VarArgHelper*
494CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
495 MemorySanitizerVisitor &Visitor);
496
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000497unsigned TypeSizeToSizeIndex(unsigned TypeSize) {
498 if (TypeSize <= 8) return 0;
499 return Log2_32_Ceil(TypeSize / 8);
500}
501
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000502/// This class does all the work for a given function. Store and Load
503/// instructions store and load corresponding shadow and origin
504/// values. Most instructions propagate shadow from arguments to their
505/// return values. Certain instructions (most importantly, BranchInst)
506/// test their argument shadow and print reports (with a runtime call) if it's
507/// non-zero.
508struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
509 Function &F;
510 MemorySanitizer &MS;
511 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
512 ValueMap<Value*, Value*> ShadowMap, OriginMap;
Ahmed Charles56440fd2014-03-06 05:51:42 +0000513 std::unique_ptr<VarArgHelper> VAHelper;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000514
515 // The following flags disable parts of MSan instrumentation based on
516 // blacklist contents and command-line options.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000517 bool InsertChecks;
Evgeniy Stepanov174242c2014-07-03 11:56:30 +0000518 bool PropagateShadow;
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +0000519 bool PoisonStack;
520 bool PoisonUndef;
Evgeniy Stepanov604293f2013-09-16 13:24:32 +0000521 bool CheckReturnValue;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000522
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000523 struct ShadowOriginAndInsertPoint {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000524 Value *Shadow;
525 Value *Origin;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000526 Instruction *OrigIns;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000527 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000528 : Shadow(S), Origin(O), OrigIns(I) { }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000529 };
530 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000531 SmallVector<Instruction*, 16> StoreList;
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000532 SmallVector<CallSite, 16> IndirectCallList;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000533
534 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS)
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000535 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) {
Alexey Samsonov6d8bab82014-06-02 18:08:27 +0000536 bool SanitizeFunction = F.getAttributes().hasAttribute(
537 AttributeSet::FunctionIndex, Attribute::SanitizeMemory);
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +0000538 InsertChecks = SanitizeFunction;
Evgeniy Stepanov174242c2014-07-03 11:56:30 +0000539 PropagateShadow = SanitizeFunction;
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +0000540 PoisonStack = SanitizeFunction && ClPoisonStack;
541 PoisonUndef = SanitizeFunction && ClPoisonUndef;
Evgeniy Stepanov604293f2013-09-16 13:24:32 +0000542 // FIXME: Consider using SpecialCaseList to specify a list of functions that
543 // must always return fully initialized values. For now, we hardcode "main".
544 CheckReturnValue = SanitizeFunction && (F.getName() == "main");
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000545
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000546 DEBUG(if (!InsertChecks)
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000547 dbgs() << "MemorySanitizer is not inserting checks into '"
548 << F.getName() << "'\n");
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000549 }
550
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000551 Value *updateOrigin(Value *V, IRBuilder<> &IRB) {
552 if (MS.TrackOrigins <= 1) return V;
553 return IRB.CreateCall(MS.MsanChainOriginFn, V);
554 }
555
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000556 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin,
557 unsigned Alignment, bool AsCall) {
558 if (isa<StructType>(Shadow->getType())) {
559 IRB.CreateAlignedStore(updateOrigin(Origin, IRB), getOriginPtr(Addr, IRB),
560 Alignment);
561 } else {
562 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
563 // TODO(eugenis): handle non-zero constant shadow by inserting an
564 // unconditional check (can not simply fail compilation as this could
565 // be in the dead code).
566 if (isa<Constant>(ConvertedShadow)) return;
567 unsigned TypeSizeInBits =
568 MS.DL->getTypeSizeInBits(ConvertedShadow->getType());
569 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
570 if (AsCall && SizeIndex < kNumberOfAccessSizes) {
571 Value *Fn = MS.MaybeStoreOriginFn[SizeIndex];
572 Value *ConvertedShadow2 = IRB.CreateZExt(
573 ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
574 IRB.CreateCall3(Fn, ConvertedShadow2,
575 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
Evgeniy Stepanovb163f022014-06-25 14:41:57 +0000576 Origin);
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000577 } else {
578 Value *Cmp = IRB.CreateICmpNE(
579 ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp");
580 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
581 Cmp, IRB.GetInsertPoint(), false, MS.OriginStoreWeights);
582 IRBuilder<> IRBNew(CheckTerm);
583 IRBNew.CreateAlignedStore(updateOrigin(Origin, IRBNew),
584 getOriginPtr(Addr, IRBNew), Alignment);
585 }
586 }
587 }
588
589 void materializeStores(bool InstrumentWithCalls) {
Alexey Samsonova02e6642014-05-29 18:40:48 +0000590 for (auto Inst : StoreList) {
591 StoreInst &SI = *dyn_cast<StoreInst>(Inst);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000592
Alexey Samsonova02e6642014-05-29 18:40:48 +0000593 IRBuilder<> IRB(&SI);
594 Value *Val = SI.getValueOperand();
595 Value *Addr = SI.getPointerOperand();
596 Value *Shadow = SI.isAtomic() ? getCleanShadow(Val) : getShadow(Val);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000597 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
598
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000599 StoreInst *NewSI =
Alexey Samsonova02e6642014-05-29 18:40:48 +0000600 IRB.CreateAlignedStore(Shadow, ShadowPtr, SI.getAlignment());
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000601 DEBUG(dbgs() << " STORE: " << *NewSI << "\n");
NAKAMURA Takumie0b1b462012-12-06 13:38:00 +0000602 (void)NewSI;
Evgeniy Stepanovc4415592013-01-22 12:30:52 +0000603
Alexey Samsonova02e6642014-05-29 18:40:48 +0000604 if (ClCheckAccessAddress) insertShadowCheck(Addr, &SI);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000605
Alexey Samsonova02e6642014-05-29 18:40:48 +0000606 if (SI.isAtomic()) SI.setOrdering(addReleaseOrdering(SI.getOrdering()));
Evgeniy Stepanov5522a702013-09-24 11:20:27 +0000607
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000608 if (MS.TrackOrigins) {
Alexey Samsonova02e6642014-05-29 18:40:48 +0000609 unsigned Alignment = std::max(kMinOriginAlignment, SI.getAlignment());
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000610 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), Alignment,
611 InstrumentWithCalls);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000612 }
613 }
614 }
615
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000616 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin,
617 bool AsCall) {
618 IRBuilder<> IRB(OrigIns);
619 DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n");
620 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
621 DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n");
622 // See the comment in materializeStores().
623 if (isa<Constant>(ConvertedShadow)) return;
624 unsigned TypeSizeInBits =
625 MS.DL->getTypeSizeInBits(ConvertedShadow->getType());
626 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
627 if (AsCall && SizeIndex < kNumberOfAccessSizes) {
628 Value *Fn = MS.MaybeWarningFn[SizeIndex];
629 Value *ConvertedShadow2 =
630 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
631 IRB.CreateCall2(Fn, ConvertedShadow2, MS.TrackOrigins && Origin
632 ? Origin
633 : (Value *)IRB.getInt32(0));
634 } else {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000635 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
636 getCleanShadow(ConvertedShadow), "_mscmp");
Evgeniy Stepanova9164e92013-12-19 13:29:56 +0000637 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
638 Cmp, OrigIns,
639 /* Unreachable */ !ClKeepGoing, MS.ColdCallWeights);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000640
641 IRB.SetInsertPoint(CheckTerm);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000642 if (MS.TrackOrigins) {
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000643 IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0),
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000644 MS.OriginTLS);
645 }
Evgeniy Stepanov2275a012014-03-19 12:56:38 +0000646 IRB.CreateCall(MS.WarningFn);
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000647 IRB.CreateCall(MS.EmptyAsm);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000648 DEBUG(dbgs() << " CHECK: " << *Cmp << "\n");
649 }
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000650 }
651
652 void materializeChecks(bool InstrumentWithCalls) {
Alexey Samsonova02e6642014-05-29 18:40:48 +0000653 for (const auto &ShadowData : InstrumentationList) {
654 Instruction *OrigIns = ShadowData.OrigIns;
655 Value *Shadow = ShadowData.Shadow;
656 Value *Origin = ShadowData.Origin;
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000657 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls);
658 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000659 DEBUG(dbgs() << "DONE:\n" << F);
660 }
661
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000662 void materializeIndirectCalls() {
Alexey Samsonova02e6642014-05-29 18:40:48 +0000663 for (auto &CS : IndirectCallList) {
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000664 Instruction *I = CS.getInstruction();
665 BasicBlock *B = I->getParent();
666 IRBuilder<> IRB(I);
667 Value *Fn0 = CS.getCalledValue();
668 Value *Fn = IRB.CreateBitCast(Fn0, MS.AnyFunctionPtrTy);
669
670 if (ClWrapIndirectCallsFast) {
671 // Check that call target is inside this module limits.
672 Value *Start =
673 IRB.CreateBitCast(MS.MsandrModuleStart, MS.AnyFunctionPtrTy);
674 Value *End = IRB.CreateBitCast(MS.MsandrModuleEnd, MS.AnyFunctionPtrTy);
675
676 Value *NotInThisModule = IRB.CreateOr(IRB.CreateICmpULT(Fn, Start),
677 IRB.CreateICmpUGE(Fn, End));
678
679 PHINode *NewFnPhi =
680 IRB.CreatePHI(Fn0->getType(), 2, "msandr.indirect_target");
681
682 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
Evgeniy Stepanova9164e92013-12-19 13:29:56 +0000683 NotInThisModule, NewFnPhi,
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000684 /* Unreachable */ false, MS.ColdCallWeights);
685
686 IRB.SetInsertPoint(CheckTerm);
687 // Slow path: call wrapper function to possibly transform the call
688 // target.
689 Value *NewFn = IRB.CreateBitCast(
690 IRB.CreateCall(MS.IndirectCallWrapperFn, Fn), Fn0->getType());
691
692 NewFnPhi->addIncoming(Fn0, B);
693 NewFnPhi->addIncoming(NewFn, dyn_cast<Instruction>(NewFn)->getParent());
694 CS.setCalledFunction(NewFnPhi);
695 } else {
696 Value *NewFn = IRB.CreateBitCast(
697 IRB.CreateCall(MS.IndirectCallWrapperFn, Fn), Fn0->getType());
698 CS.setCalledFunction(NewFn);
699 }
700 }
701 }
702
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000703 /// \brief Add MemorySanitizer instrumentation to a function.
704 bool runOnFunction() {
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000705 MS.initializeCallbacks(*F.getParent());
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000706 if (!MS.DL) return false;
Evgeniy Stepanov4fbc0d082012-12-21 11:18:49 +0000707
708 // In the presence of unreachable blocks, we may see Phi nodes with
709 // incoming nodes from such blocks. Since InstVisitor skips unreachable
710 // blocks, such nodes will not have any shadow value associated with them.
711 // It's easier to remove unreachable blocks than deal with missing shadow.
712 removeUnreachableBlocks(F);
713
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000714 // Iterate all BBs in depth-first order and create shadow instructions
715 // for all instructions (where applicable).
716 // For PHI nodes we create dummy shadow PHIs which will be finalized later.
David Blaikieceec2bd2014-04-11 01:50:01 +0000717 for (BasicBlock *BB : depth_first(&F.getEntryBlock()))
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000718 visit(*BB);
David Blaikieceec2bd2014-04-11 01:50:01 +0000719
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000720
721 // Finalize PHI nodes.
Alexey Samsonova02e6642014-05-29 18:40:48 +0000722 for (PHINode *PN : ShadowPHINodes) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000723 PHINode *PNS = cast<PHINode>(getShadow(PN));
Craig Topperf40110f2014-04-25 05:29:35 +0000724 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000725 size_t NumValues = PN->getNumIncomingValues();
726 for (size_t v = 0; v < NumValues; v++) {
727 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
Evgeniy Stepanov174242c2014-07-03 11:56:30 +0000728 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000729 }
730 }
731
732 VAHelper->finalizeInstrumentation();
733
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000734 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 &&
735 InstrumentationList.size() + StoreList.size() >
736 (unsigned)ClInstrumentationWithCallThreshold;
737
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000738 // Delayed instrumentation of StoreInst.
Evgeniy Stepanov47ac9ba2012-12-06 11:58:59 +0000739 // This may add new checks to be inserted later.
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000740 materializeStores(InstrumentWithCalls);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000741
742 // Insert shadow value checks.
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000743 materializeChecks(InstrumentWithCalls);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000744
Evgeniy Stepanov585813e2013-11-14 12:29:04 +0000745 // Wrap indirect calls.
746 materializeIndirectCalls();
747
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000748 return true;
749 }
750
751 /// \brief Compute the shadow type that corresponds to a given Value.
752 Type *getShadowTy(Value *V) {
753 return getShadowTy(V->getType());
754 }
755
756 /// \brief Compute the shadow type that corresponds to a given Type.
757 Type *getShadowTy(Type *OrigTy) {
758 if (!OrigTy->isSized()) {
Craig Topperf40110f2014-04-25 05:29:35 +0000759 return nullptr;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000760 }
761 // For integer type, shadow is the same as the original type.
762 // This may return weird-sized types like i1.
763 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
764 return IT;
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +0000765 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000766 uint32_t EltSize = MS.DL->getTypeSizeInBits(VT->getElementType());
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +0000767 return VectorType::get(IntegerType::get(*MS.C, EltSize),
768 VT->getNumElements());
769 }
Evgeniy Stepanov5997feb2014-07-31 11:02:27 +0000770 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) {
771 return ArrayType::get(getShadowTy(AT->getElementType()),
772 AT->getNumElements());
773 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000774 if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
775 SmallVector<Type*, 4> Elements;
776 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
777 Elements.push_back(getShadowTy(ST->getElementType(i)));
778 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
779 DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
780 return Res;
781 }
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000782 uint32_t TypeSize = MS.DL->getTypeSizeInBits(OrigTy);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000783 return IntegerType::get(*MS.C, TypeSize);
784 }
785
786 /// \brief Flatten a vector type.
787 Type *getShadowTyNoVec(Type *ty) {
788 if (VectorType *vt = dyn_cast<VectorType>(ty))
789 return IntegerType::get(*MS.C, vt->getBitWidth());
790 return ty;
791 }
792
793 /// \brief Convert a shadow value to it's flattened variant.
794 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
795 Type *Ty = V->getType();
796 Type *NoVecTy = getShadowTyNoVec(Ty);
797 if (Ty == NoVecTy) return V;
798 return IRB.CreateBitCast(V, NoVecTy);
799 }
800
801 /// \brief Compute the shadow address that corresponds to a given application
802 /// address.
803 ///
804 /// Shadow = Addr & ~ShadowMask.
805 Value *getShadowPtr(Value *Addr, Type *ShadowTy,
806 IRBuilder<> &IRB) {
807 Value *ShadowLong =
808 IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
809 ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
810 return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
811 }
812
813 /// \brief Compute the origin address that corresponds to a given application
814 /// address.
815 ///
816 /// OriginAddr = (ShadowAddr + OriginOffset) & ~3ULL
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000817 Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB) {
818 Value *ShadowLong =
819 IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
Evgeniy Stepanov62ba6112012-11-29 13:43:05 +0000820 ConstantInt::get(MS.IntptrTy, ~MS.ShadowMask));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000821 Value *Add =
822 IRB.CreateAdd(ShadowLong,
823 ConstantInt::get(MS.IntptrTy, MS.OriginOffset));
Evgeniy Stepanov62ba6112012-11-29 13:43:05 +0000824 Value *SecondAnd =
825 IRB.CreateAnd(Add, ConstantInt::get(MS.IntptrTy, ~3ULL));
826 return IRB.CreateIntToPtr(SecondAnd, PointerType::get(IRB.getInt32Ty(), 0));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000827 }
828
829 /// \brief Compute the shadow address for a given function argument.
830 ///
831 /// Shadow = ParamTLS+ArgOffset.
832 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
833 int ArgOffset) {
834 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
835 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
836 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
837 "_msarg");
838 }
839
840 /// \brief Compute the origin address for a given function argument.
841 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
842 int ArgOffset) {
Craig Topperf40110f2014-04-25 05:29:35 +0000843 if (!MS.TrackOrigins) return nullptr;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000844 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
845 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
846 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
847 "_msarg_o");
848 }
849
850 /// \brief Compute the shadow address for a retval.
851 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
852 Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy);
853 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
854 "_msret");
855 }
856
857 /// \brief Compute the origin address for a retval.
858 Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
859 // We keep a single origin for the entire retval. Might be too optimistic.
860 return MS.RetvalOriginTLS;
861 }
862
863 /// \brief Set SV to be the shadow value for V.
864 void setShadow(Value *V, Value *SV) {
865 assert(!ShadowMap.count(V) && "Values may only have one shadow");
Evgeniy Stepanov174242c2014-07-03 11:56:30 +0000866 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000867 }
868
869 /// \brief Set Origin to be the origin value for V.
870 void setOrigin(Value *V, Value *Origin) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000871 if (!MS.TrackOrigins) return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000872 assert(!OriginMap.count(V) && "Values may only have one origin");
873 DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n");
874 OriginMap[V] = Origin;
875 }
876
877 /// \brief Create a clean shadow value for a given value.
878 ///
879 /// Clean shadow (all zeroes) means all bits of the value are defined
880 /// (initialized).
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000881 Constant *getCleanShadow(Value *V) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000882 Type *ShadowTy = getShadowTy(V);
883 if (!ShadowTy)
Craig Topperf40110f2014-04-25 05:29:35 +0000884 return nullptr;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000885 return Constant::getNullValue(ShadowTy);
886 }
887
888 /// \brief Create a dirty shadow of a given shadow type.
889 Constant *getPoisonedShadow(Type *ShadowTy) {
890 assert(ShadowTy);
891 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
892 return Constant::getAllOnesValue(ShadowTy);
Evgeniy Stepanov5997feb2014-07-31 11:02:27 +0000893 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) {
894 SmallVector<Constant *, 4> Vals(AT->getNumElements(),
895 getPoisonedShadow(AT->getElementType()));
896 return ConstantArray::get(AT, Vals);
897 }
898 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) {
899 SmallVector<Constant *, 4> Vals;
900 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
901 Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
902 return ConstantStruct::get(ST, Vals);
903 }
904 llvm_unreachable("Unexpected shadow type");
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000905 }
906
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000907 /// \brief Create a dirty shadow for a given value.
908 Constant *getPoisonedShadow(Value *V) {
909 Type *ShadowTy = getShadowTy(V);
910 if (!ShadowTy)
Craig Topperf40110f2014-04-25 05:29:35 +0000911 return nullptr;
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000912 return getPoisonedShadow(ShadowTy);
913 }
914
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000915 /// \brief Create a clean (zero) origin.
916 Value *getCleanOrigin() {
917 return Constant::getNullValue(MS.OriginTy);
918 }
919
920 /// \brief Get the shadow value for a given Value.
921 ///
922 /// This function either returns the value set earlier with setShadow,
923 /// or extracts if from ParamTLS (for function arguments).
924 Value *getShadow(Value *V) {
Evgeniy Stepanov174242c2014-07-03 11:56:30 +0000925 if (!PropagateShadow) return getCleanShadow(V);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000926 if (Instruction *I = dyn_cast<Instruction>(V)) {
927 // For instructions the shadow is already stored in the map.
928 Value *Shadow = ShadowMap[V];
929 if (!Shadow) {
930 DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000931 (void)I;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000932 assert(Shadow && "No shadow for a value");
933 }
934 return Shadow;
935 }
936 if (UndefValue *U = dyn_cast<UndefValue>(V)) {
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +0000937 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000938 DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000939 (void)U;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000940 return AllOnes;
941 }
942 if (Argument *A = dyn_cast<Argument>(V)) {
943 // For arguments we compute the shadow on demand and store it in the map.
944 Value **ShadowPtr = &ShadowMap[V];
945 if (*ShadowPtr)
946 return *ShadowPtr;
947 Function *F = A->getParent();
948 IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI());
949 unsigned ArgOffset = 0;
Alexey Samsonova02e6642014-05-29 18:40:48 +0000950 for (auto &FArg : F->args()) {
951 if (!FArg.getType()->isSized()) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000952 DEBUG(dbgs() << "Arg is not sized\n");
953 continue;
954 }
Alexey Samsonova02e6642014-05-29 18:40:48 +0000955 unsigned Size = FArg.hasByValAttr()
956 ? MS.DL->getTypeAllocSize(FArg.getType()->getPointerElementType())
957 : MS.DL->getTypeAllocSize(FArg.getType());
958 if (A == &FArg) {
Evgeniy Stepanov35eb2652014-10-22 00:12:40 +0000959 bool Overflow = ArgOffset + Size > kParamTLSSize;
Alexey Samsonova02e6642014-05-29 18:40:48 +0000960 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset);
961 if (FArg.hasByValAttr()) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000962 // ByVal pointer itself has clean shadow. We copy the actual
963 // argument shadow to the underlying memory.
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000964 // Figure out maximal valid memcpy alignment.
Alexey Samsonova02e6642014-05-29 18:40:48 +0000965 unsigned ArgAlign = FArg.getParamAlignment();
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000966 if (ArgAlign == 0) {
967 Type *EltType = A->getType()->getPointerElementType();
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000968 ArgAlign = MS.DL->getABITypeAlignment(EltType);
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000969 }
Evgeniy Stepanov35eb2652014-10-22 00:12:40 +0000970 if (Overflow) {
971 // ParamTLS overflow.
972 EntryIRB.CreateMemSet(
973 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB),
974 Constant::getNullValue(EntryIRB.getInt8Ty()), Size, ArgAlign);
975 } else {
976 unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
977 Value *Cpy = EntryIRB.CreateMemCpy(
978 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), Base, Size,
979 CopyAlign);
980 DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n");
981 (void)Cpy;
982 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000983 *ShadowPtr = getCleanShadow(V);
984 } else {
Evgeniy Stepanov35eb2652014-10-22 00:12:40 +0000985 if (Overflow) {
986 // ParamTLS overflow.
987 *ShadowPtr = getCleanShadow(V);
988 } else {
989 *ShadowPtr =
990 EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment);
991 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000992 }
Alexey Samsonova02e6642014-05-29 18:40:48 +0000993 DEBUG(dbgs() << " ARG: " << FArg << " ==> " <<
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000994 **ShadowPtr << "\n");
Evgeniy Stepanov35eb2652014-10-22 00:12:40 +0000995 if (MS.TrackOrigins && !Overflow) {
Alexey Samsonova02e6642014-05-29 18:40:48 +0000996 Value *OriginPtr =
997 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000998 setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
999 }
1000 }
David Majnemerf3cadce2014-10-20 06:13:33 +00001001 ArgOffset += RoundUpToAlignment(Size, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001002 }
1003 assert(*ShadowPtr && "Could not find shadow for an argument");
1004 return *ShadowPtr;
1005 }
1006 // For everything else the shadow is zero.
1007 return getCleanShadow(V);
1008 }
1009
1010 /// \brief Get the shadow for i-th argument of the instruction I.
1011 Value *getShadow(Instruction *I, int i) {
1012 return getShadow(I->getOperand(i));
1013 }
1014
1015 /// \brief Get the origin for a value.
1016 Value *getOrigin(Value *V) {
Craig Topperf40110f2014-04-25 05:29:35 +00001017 if (!MS.TrackOrigins) return nullptr;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001018 if (isa<Instruction>(V) || isa<Argument>(V)) {
1019 Value *Origin = OriginMap[V];
1020 if (!Origin) {
1021 DEBUG(dbgs() << "NO ORIGIN: " << *V << "\n");
1022 Origin = getCleanOrigin();
1023 }
1024 return Origin;
1025 }
1026 return getCleanOrigin();
1027 }
1028
1029 /// \brief Get the origin for i-th argument of the instruction I.
1030 Value *getOrigin(Instruction *I, int i) {
1031 return getOrigin(I->getOperand(i));
1032 }
1033
1034 /// \brief Remember the place where a shadow check should be inserted.
1035 ///
1036 /// This location will be later instrumented with a check that will print a
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001037 /// UMR warning in runtime if the shadow value is not 0.
1038 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
1039 assert(Shadow);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001040 if (!InsertChecks) return;
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +00001041#ifndef NDEBUG
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001042 Type *ShadowTy = Shadow->getType();
1043 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
1044 "Can only insert checks for integer and vector shadow types");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +00001045#endif
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001046 InstrumentationList.push_back(
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001047 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
1048 }
1049
1050 /// \brief Remember the place where a shadow check should be inserted.
1051 ///
1052 /// This location will be later instrumented with a check that will print a
1053 /// UMR warning in runtime if the value is not fully defined.
1054 void insertShadowCheck(Value *Val, Instruction *OrigIns) {
1055 assert(Val);
1056 Instruction *Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
1057 if (!Shadow) return;
1058 Instruction *Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
1059 insertShadowCheck(Shadow, Origin, OrigIns);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001060 }
1061
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001062 AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
1063 switch (a) {
1064 case NotAtomic:
1065 return NotAtomic;
1066 case Unordered:
1067 case Monotonic:
1068 case Release:
1069 return Release;
1070 case Acquire:
1071 case AcquireRelease:
1072 return AcquireRelease;
1073 case SequentiallyConsistent:
1074 return SequentiallyConsistent;
1075 }
Evgeniy Stepanov32be0342013-09-25 08:56:00 +00001076 llvm_unreachable("Unknown ordering");
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001077 }
1078
1079 AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
1080 switch (a) {
1081 case NotAtomic:
1082 return NotAtomic;
1083 case Unordered:
1084 case Monotonic:
1085 case Acquire:
1086 return Acquire;
1087 case Release:
1088 case AcquireRelease:
1089 return AcquireRelease;
1090 case SequentiallyConsistent:
1091 return SequentiallyConsistent;
1092 }
Evgeniy Stepanov32be0342013-09-25 08:56:00 +00001093 llvm_unreachable("Unknown ordering");
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001094 }
1095
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00001096 // ------------------- Visitors.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001097
1098 /// \brief Instrument LoadInst
1099 ///
1100 /// Loads the corresponding shadow and (optionally) origin.
1101 /// Optionally, checks that the load address is fully defined.
1102 void visitLoadInst(LoadInst &I) {
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +00001103 assert(I.getType()->isSized() && "Load type must have size");
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001104 IRBuilder<> IRB(I.getNextNode());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001105 Type *ShadowTy = getShadowTy(&I);
1106 Value *Addr = I.getPointerOperand();
Evgeniy Stepanov174242c2014-07-03 11:56:30 +00001107 if (PropagateShadow) {
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001108 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1109 setShadow(&I,
1110 IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld"));
1111 } else {
1112 setShadow(&I, getCleanShadow(&I));
1113 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001114
1115 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001116 insertShadowCheck(I.getPointerOperand(), &I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001117
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001118 if (I.isAtomic())
1119 I.setOrdering(addAcquireOrdering(I.getOrdering()));
1120
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +00001121 if (MS.TrackOrigins) {
Evgeniy Stepanov174242c2014-07-03 11:56:30 +00001122 if (PropagateShadow) {
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001123 unsigned Alignment = std::max(kMinOriginAlignment, I.getAlignment());
1124 setOrigin(&I,
1125 IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB), Alignment));
1126 } else {
1127 setOrigin(&I, getCleanOrigin());
1128 }
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +00001129 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001130 }
1131
1132 /// \brief Instrument StoreInst
1133 ///
1134 /// Stores the corresponding shadow and (optionally) origin.
1135 /// Optionally, checks that the store address is fully defined.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001136 void visitStoreInst(StoreInst &I) {
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +00001137 StoreList.push_back(&I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001138 }
1139
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001140 void handleCASOrRMW(Instruction &I) {
1141 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
1142
1143 IRBuilder<> IRB(&I);
1144 Value *Addr = I.getOperand(0);
1145 Value *ShadowPtr = getShadowPtr(Addr, I.getType(), IRB);
1146
1147 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001148 insertShadowCheck(Addr, &I);
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001149
1150 // Only test the conditional argument of cmpxchg instruction.
1151 // The other argument can potentially be uninitialized, but we can not
1152 // detect this situation reliably without possible false positives.
1153 if (isa<AtomicCmpXchgInst>(I))
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001154 insertShadowCheck(I.getOperand(1), &I);
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001155
1156 IRB.CreateStore(getCleanShadow(&I), ShadowPtr);
1157
1158 setShadow(&I, getCleanShadow(&I));
1159 }
1160
1161 void visitAtomicRMWInst(AtomicRMWInst &I) {
1162 handleCASOrRMW(I);
1163 I.setOrdering(addReleaseOrdering(I.getOrdering()));
1164 }
1165
1166 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
1167 handleCASOrRMW(I);
Tim Northovere94a5182014-03-11 10:48:52 +00001168 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001169 }
1170
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001171 // Vector manipulation.
1172 void visitExtractElementInst(ExtractElementInst &I) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001173 insertShadowCheck(I.getOperand(1), &I);
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001174 IRBuilder<> IRB(&I);
1175 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
1176 "_msprop"));
1177 setOrigin(&I, getOrigin(&I, 0));
1178 }
1179
1180 void visitInsertElementInst(InsertElementInst &I) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001181 insertShadowCheck(I.getOperand(2), &I);
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001182 IRBuilder<> IRB(&I);
1183 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
1184 I.getOperand(2), "_msprop"));
1185 setOriginForNaryOp(I);
1186 }
1187
1188 void visitShuffleVectorInst(ShuffleVectorInst &I) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001189 insertShadowCheck(I.getOperand(2), &I);
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001190 IRBuilder<> IRB(&I);
1191 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
1192 I.getOperand(2), "_msprop"));
1193 setOriginForNaryOp(I);
1194 }
1195
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001196 // Casts.
1197 void visitSExtInst(SExtInst &I) {
1198 IRBuilder<> IRB(&I);
1199 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
1200 setOrigin(&I, getOrigin(&I, 0));
1201 }
1202
1203 void visitZExtInst(ZExtInst &I) {
1204 IRBuilder<> IRB(&I);
1205 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
1206 setOrigin(&I, getOrigin(&I, 0));
1207 }
1208
1209 void visitTruncInst(TruncInst &I) {
1210 IRBuilder<> IRB(&I);
1211 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
1212 setOrigin(&I, getOrigin(&I, 0));
1213 }
1214
1215 void visitBitCastInst(BitCastInst &I) {
1216 IRBuilder<> IRB(&I);
1217 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
1218 setOrigin(&I, getOrigin(&I, 0));
1219 }
1220
1221 void visitPtrToIntInst(PtrToIntInst &I) {
1222 IRBuilder<> IRB(&I);
1223 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1224 "_msprop_ptrtoint"));
1225 setOrigin(&I, getOrigin(&I, 0));
1226 }
1227
1228 void visitIntToPtrInst(IntToPtrInst &I) {
1229 IRBuilder<> IRB(&I);
1230 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1231 "_msprop_inttoptr"));
1232 setOrigin(&I, getOrigin(&I, 0));
1233 }
1234
1235 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
1236 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
1237 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
1238 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
1239 void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
1240 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
1241
1242 /// \brief Propagate shadow for bitwise AND.
1243 ///
1244 /// This code is exact, i.e. if, for example, a bit in the left argument
1245 /// is defined and 0, then neither the value not definedness of the
1246 /// corresponding bit in B don't affect the resulting shadow.
1247 void visitAnd(BinaryOperator &I) {
1248 IRBuilder<> IRB(&I);
1249 // "And" of 0 and a poisoned value results in unpoisoned value.
1250 // 1&1 => 1; 0&1 => 0; p&1 => p;
1251 // 1&0 => 0; 0&0 => 0; p&0 => 0;
1252 // 1&p => p; 0&p => 0; p&p => p;
1253 // S = (S1 & S2) | (V1 & S2) | (S1 & V2)
1254 Value *S1 = getShadow(&I, 0);
1255 Value *S2 = getShadow(&I, 1);
1256 Value *V1 = I.getOperand(0);
1257 Value *V2 = I.getOperand(1);
1258 if (V1->getType() != S1->getType()) {
1259 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1260 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1261 }
1262 Value *S1S2 = IRB.CreateAnd(S1, S2);
1263 Value *V1S2 = IRB.CreateAnd(V1, S2);
1264 Value *S1V2 = IRB.CreateAnd(S1, V2);
1265 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1266 setOriginForNaryOp(I);
1267 }
1268
1269 void visitOr(BinaryOperator &I) {
1270 IRBuilder<> IRB(&I);
1271 // "Or" of 1 and a poisoned value results in unpoisoned value.
1272 // 1|1 => 1; 0|1 => 1; p|1 => 1;
1273 // 1|0 => 1; 0|0 => 0; p|0 => p;
1274 // 1|p => 1; 0|p => p; p|p => p;
1275 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
1276 Value *S1 = getShadow(&I, 0);
1277 Value *S2 = getShadow(&I, 1);
1278 Value *V1 = IRB.CreateNot(I.getOperand(0));
1279 Value *V2 = IRB.CreateNot(I.getOperand(1));
1280 if (V1->getType() != S1->getType()) {
1281 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1282 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1283 }
1284 Value *S1S2 = IRB.CreateAnd(S1, S2);
1285 Value *V1S2 = IRB.CreateAnd(V1, S2);
1286 Value *S1V2 = IRB.CreateAnd(S1, V2);
1287 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1288 setOriginForNaryOp(I);
1289 }
1290
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001291 /// \brief Default propagation of shadow and/or origin.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001292 ///
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001293 /// This class implements the general case of shadow propagation, used in all
1294 /// cases where we don't know and/or don't care about what the operation
1295 /// actually does. It converts all input shadow values to a common type
1296 /// (extending or truncating as necessary), and bitwise OR's them.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001297 ///
1298 /// This is much cheaper than inserting checks (i.e. requiring inputs to be
1299 /// fully initialized), and less prone to false positives.
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001300 ///
1301 /// This class also implements the general case of origin propagation. For a
1302 /// Nary operation, result origin is set to the origin of an argument that is
1303 /// not entirely initialized. If there is more than one such arguments, the
1304 /// rightmost of them is picked. It does not matter which one is picked if all
1305 /// arguments are initialized.
1306 template <bool CombineShadow>
1307 class Combiner {
1308 Value *Shadow;
1309 Value *Origin;
1310 IRBuilder<> &IRB;
1311 MemorySanitizerVisitor *MSV;
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00001312
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001313 public:
1314 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) :
Craig Topperf40110f2014-04-25 05:29:35 +00001315 Shadow(nullptr), Origin(nullptr), IRB(IRB), MSV(MSV) {}
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001316
1317 /// \brief Add a pair of shadow and origin values to the mix.
1318 Combiner &Add(Value *OpShadow, Value *OpOrigin) {
1319 if (CombineShadow) {
1320 assert(OpShadow);
1321 if (!Shadow)
1322 Shadow = OpShadow;
1323 else {
1324 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
1325 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
1326 }
1327 }
1328
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001329 if (MSV->MS.TrackOrigins) {
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001330 assert(OpOrigin);
1331 if (!Origin) {
1332 Origin = OpOrigin;
1333 } else {
Evgeniy Stepanov70d1b0a2014-06-09 14:29:34 +00001334 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin);
1335 // No point in adding something that might result in 0 origin value.
1336 if (!ConstOrigin || !ConstOrigin->isNullValue()) {
1337 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
1338 Value *Cond =
1339 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow));
1340 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
1341 }
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001342 }
1343 }
1344 return *this;
1345 }
1346
1347 /// \brief Add an application value to the mix.
1348 Combiner &Add(Value *V) {
1349 Value *OpShadow = MSV->getShadow(V);
Craig Topperf40110f2014-04-25 05:29:35 +00001350 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr;
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001351 return Add(OpShadow, OpOrigin);
1352 }
1353
1354 /// \brief Set the current combined values as the given instruction's shadow
1355 /// and origin.
1356 void Done(Instruction *I) {
1357 if (CombineShadow) {
1358 assert(Shadow);
1359 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
1360 MSV->setShadow(I, Shadow);
1361 }
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001362 if (MSV->MS.TrackOrigins) {
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001363 assert(Origin);
1364 MSV->setOrigin(I, Origin);
1365 }
1366 }
1367 };
1368
1369 typedef Combiner<true> ShadowAndOriginCombiner;
1370 typedef Combiner<false> OriginCombiner;
1371
1372 /// \brief Propagate origin for arbitrary operation.
1373 void setOriginForNaryOp(Instruction &I) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001374 if (!MS.TrackOrigins) return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001375 IRBuilder<> IRB(&I);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001376 OriginCombiner OC(this, IRB);
1377 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1378 OC.Add(OI->get());
1379 OC.Done(&I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001380 }
1381
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001382 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +00001383 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
1384 "Vector of pointers is not a valid shadow type");
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001385 return Ty->isVectorTy() ?
1386 Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
1387 Ty->getPrimitiveSizeInBits();
1388 }
1389
1390 /// \brief Cast between two shadow types, extending or truncating as
1391 /// necessary.
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001392 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
1393 bool Signed = false) {
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001394 Type *srcTy = V->getType();
1395 if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001396 return IRB.CreateIntCast(V, dstTy, Signed);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001397 if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
1398 dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001399 return IRB.CreateIntCast(V, dstTy, Signed);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001400 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
1401 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
1402 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
1403 Value *V2 =
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001404 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001405 return IRB.CreateBitCast(V2, dstTy);
1406 // TODO: handle struct types.
1407 }
1408
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00001409 /// \brief Cast an application value to the type of its own shadow.
1410 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) {
1411 Type *ShadowTy = getShadowTy(V);
1412 if (V->getType() == ShadowTy)
1413 return V;
1414 if (V->getType()->isPtrOrPtrVectorTy())
1415 return IRB.CreatePtrToInt(V, ShadowTy);
1416 else
1417 return IRB.CreateBitCast(V, ShadowTy);
1418 }
1419
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001420 /// \brief Propagate shadow for arbitrary operation.
1421 void handleShadowOr(Instruction &I) {
1422 IRBuilder<> IRB(&I);
1423 ShadowAndOriginCombiner SC(this, IRB);
1424 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1425 SC.Add(OI->get());
1426 SC.Done(&I);
1427 }
1428
Evgeniy Stepanovdf187fe2014-06-17 09:23:12 +00001429 // \brief Handle multiplication by constant.
1430 //
1431 // Handle a special case of multiplication by constant that may have one or
1432 // more zeros in the lower bits. This makes corresponding number of lower bits
1433 // of the result zero as well. We model it by shifting the other operand
1434 // shadow left by the required number of bits. Effectively, we transform
1435 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B).
1436 // We use multiplication by 2**N instead of shift to cover the case of
1437 // multiplication by 0, which may occur in some elements of a vector operand.
1438 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg,
1439 Value *OtherArg) {
1440 Constant *ShadowMul;
1441 Type *Ty = ConstArg->getType();
1442 if (Ty->isVectorTy()) {
1443 unsigned NumElements = Ty->getVectorNumElements();
1444 Type *EltTy = Ty->getSequentialElementType();
1445 SmallVector<Constant *, 16> Elements;
1446 for (unsigned Idx = 0; Idx < NumElements; ++Idx) {
1447 ConstantInt *Elt =
1448 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx));
1449 APInt V = Elt->getValue();
1450 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
1451 Elements.push_back(ConstantInt::get(EltTy, V2));
1452 }
1453 ShadowMul = ConstantVector::get(Elements);
1454 } else {
1455 ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg);
1456 APInt V = Elt->getValue();
1457 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
1458 ShadowMul = ConstantInt::get(Elt->getType(), V2);
1459 }
1460
1461 IRBuilder<> IRB(&I);
1462 setShadow(&I,
1463 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst"));
1464 setOrigin(&I, getOrigin(OtherArg));
1465 }
1466
1467 void visitMul(BinaryOperator &I) {
1468 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
1469 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
1470 if (constOp0 && !constOp1)
1471 handleMulByConstant(I, constOp0, I.getOperand(1));
1472 else if (constOp1 && !constOp0)
1473 handleMulByConstant(I, constOp1, I.getOperand(0));
1474 else
1475 handleShadowOr(I);
1476 }
1477
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001478 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
1479 void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
1480 void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
1481 void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
1482 void visitSub(BinaryOperator &I) { handleShadowOr(I); }
1483 void visitXor(BinaryOperator &I) { handleShadowOr(I); }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001484
1485 void handleDiv(Instruction &I) {
1486 IRBuilder<> IRB(&I);
1487 // Strict on the second argument.
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001488 insertShadowCheck(I.getOperand(1), &I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001489 setShadow(&I, getShadow(&I, 0));
1490 setOrigin(&I, getOrigin(&I, 0));
1491 }
1492
1493 void visitUDiv(BinaryOperator &I) { handleDiv(I); }
1494 void visitSDiv(BinaryOperator &I) { handleDiv(I); }
1495 void visitFDiv(BinaryOperator &I) { handleDiv(I); }
1496 void visitURem(BinaryOperator &I) { handleDiv(I); }
1497 void visitSRem(BinaryOperator &I) { handleDiv(I); }
1498 void visitFRem(BinaryOperator &I) { handleDiv(I); }
1499
1500 /// \brief Instrument == and != comparisons.
1501 ///
1502 /// Sometimes the comparison result is known even if some of the bits of the
1503 /// arguments are not.
1504 void handleEqualityComparison(ICmpInst &I) {
1505 IRBuilder<> IRB(&I);
1506 Value *A = I.getOperand(0);
1507 Value *B = I.getOperand(1);
1508 Value *Sa = getShadow(A);
1509 Value *Sb = getShadow(B);
Evgeniy Stepanovd14e47b2013-01-15 16:44:52 +00001510
1511 // Get rid of pointers and vectors of pointers.
1512 // For ints (and vectors of ints), types of A and Sa match,
1513 // and this is a no-op.
1514 A = IRB.CreatePointerCast(A, Sa->getType());
1515 B = IRB.CreatePointerCast(B, Sb->getType());
1516
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001517 // A == B <==> (C = A^B) == 0
1518 // A != B <==> (C = A^B) != 0
1519 // Sc = Sa | Sb
1520 Value *C = IRB.CreateXor(A, B);
1521 Value *Sc = IRB.CreateOr(Sa, Sb);
1522 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
1523 // Result is defined if one of the following is true
1524 // * there is a defined 1 bit in C
1525 // * C is fully defined
1526 // Si = !(C & ~Sc) && Sc
1527 Value *Zero = Constant::getNullValue(Sc->getType());
1528 Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
1529 Value *Si =
1530 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
1531 IRB.CreateICmpEQ(
1532 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
1533 Si->setName("_msprop_icmp");
1534 setShadow(&I, Si);
1535 setOriginForNaryOp(I);
1536 }
1537
Evgeniy Stepanovfac84032013-01-25 15:31:10 +00001538 /// \brief Build the lowest possible value of V, taking into account V's
1539 /// uninitialized bits.
1540 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1541 bool isSigned) {
1542 if (isSigned) {
1543 // Split shadow into sign bit and other bits.
1544 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1545 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1546 // Maximise the undefined shadow bit, minimize other undefined bits.
1547 return
1548 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
1549 } else {
1550 // Minimize undefined bits.
1551 return IRB.CreateAnd(A, IRB.CreateNot(Sa));
1552 }
1553 }
1554
1555 /// \brief Build the highest possible value of V, taking into account V's
1556 /// uninitialized bits.
1557 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1558 bool isSigned) {
1559 if (isSigned) {
1560 // Split shadow into sign bit and other bits.
1561 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1562 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1563 // Minimise the undefined shadow bit, maximise other undefined bits.
1564 return
1565 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
1566 } else {
1567 // Maximize undefined bits.
1568 return IRB.CreateOr(A, Sa);
1569 }
1570 }
1571
1572 /// \brief Instrument relational comparisons.
1573 ///
1574 /// This function does exact shadow propagation for all relational
1575 /// comparisons of integers, pointers and vectors of those.
1576 /// FIXME: output seems suboptimal when one of the operands is a constant
1577 void handleRelationalComparisonExact(ICmpInst &I) {
1578 IRBuilder<> IRB(&I);
1579 Value *A = I.getOperand(0);
1580 Value *B = I.getOperand(1);
1581 Value *Sa = getShadow(A);
1582 Value *Sb = getShadow(B);
1583
1584 // Get rid of pointers and vectors of pointers.
1585 // For ints (and vectors of ints), types of A and Sa match,
1586 // and this is a no-op.
1587 A = IRB.CreatePointerCast(A, Sa->getType());
1588 B = IRB.CreatePointerCast(B, Sb->getType());
1589
Evgeniy Stepanov2cb0fa12013-01-25 15:35:29 +00001590 // Let [a0, a1] be the interval of possible values of A, taking into account
1591 // its undefined bits. Let [b0, b1] be the interval of possible values of B.
1592 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
Evgeniy Stepanovfac84032013-01-25 15:31:10 +00001593 bool IsSigned = I.isSigned();
1594 Value *S1 = IRB.CreateICmp(I.getPredicate(),
1595 getLowestPossibleValue(IRB, A, Sa, IsSigned),
1596 getHighestPossibleValue(IRB, B, Sb, IsSigned));
1597 Value *S2 = IRB.CreateICmp(I.getPredicate(),
1598 getHighestPossibleValue(IRB, A, Sa, IsSigned),
1599 getLowestPossibleValue(IRB, B, Sb, IsSigned));
1600 Value *Si = IRB.CreateXor(S1, S2);
1601 setShadow(&I, Si);
1602 setOriginForNaryOp(I);
1603 }
1604
Evgeniy Stepanov857d9d22012-11-29 14:25:47 +00001605 /// \brief Instrument signed relational comparisons.
1606 ///
1607 /// Handle (x<0) and (x>=0) comparisons (essentially, sign bit tests) by
1608 /// propagating the highest bit of the shadow. Everything else is delegated
1609 /// to handleShadowOr().
1610 void handleSignedRelationalComparison(ICmpInst &I) {
1611 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
1612 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
Craig Topperf40110f2014-04-25 05:29:35 +00001613 Value* op = nullptr;
Evgeniy Stepanov857d9d22012-11-29 14:25:47 +00001614 CmpInst::Predicate pre = I.getPredicate();
1615 if (constOp0 && constOp0->isNullValue() &&
1616 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE)) {
1617 op = I.getOperand(1);
1618 } else if (constOp1 && constOp1->isNullValue() &&
1619 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) {
1620 op = I.getOperand(0);
1621 }
1622 if (op) {
1623 IRBuilder<> IRB(&I);
1624 Value* Shadow =
1625 IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), "_msprop_icmpslt");
1626 setShadow(&I, Shadow);
1627 setOrigin(&I, getOrigin(op));
1628 } else {
1629 handleShadowOr(I);
1630 }
1631 }
1632
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001633 void visitICmpInst(ICmpInst &I) {
Evgeniy Stepanov6f85ef32013-01-28 11:42:28 +00001634 if (!ClHandleICmp) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001635 handleShadowOr(I);
Evgeniy Stepanov6f85ef32013-01-28 11:42:28 +00001636 return;
1637 }
1638 if (I.isEquality()) {
1639 handleEqualityComparison(I);
1640 return;
1641 }
1642
1643 assert(I.isRelational());
1644 if (ClHandleICmpExact) {
1645 handleRelationalComparisonExact(I);
1646 return;
1647 }
1648 if (I.isSigned()) {
1649 handleSignedRelationalComparison(I);
1650 return;
1651 }
1652
1653 assert(I.isUnsigned());
1654 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
1655 handleRelationalComparisonExact(I);
1656 return;
1657 }
1658
1659 handleShadowOr(I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001660 }
1661
1662 void visitFCmpInst(FCmpInst &I) {
1663 handleShadowOr(I);
1664 }
1665
1666 void handleShift(BinaryOperator &I) {
1667 IRBuilder<> IRB(&I);
1668 // If any of the S2 bits are poisoned, the whole thing is poisoned.
1669 // Otherwise perform the same shift on S1.
1670 Value *S1 = getShadow(&I, 0);
1671 Value *S2 = getShadow(&I, 1);
1672 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
1673 S2->getType());
1674 Value *V2 = I.getOperand(1);
1675 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
1676 setShadow(&I, IRB.CreateOr(Shift, S2Conv));
1677 setOriginForNaryOp(I);
1678 }
1679
1680 void visitShl(BinaryOperator &I) { handleShift(I); }
1681 void visitAShr(BinaryOperator &I) { handleShift(I); }
1682 void visitLShr(BinaryOperator &I) { handleShift(I); }
1683
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001684 /// \brief Instrument llvm.memmove
1685 ///
1686 /// At this point we don't know if llvm.memmove will be inlined or not.
1687 /// If we don't instrument it and it gets inlined,
1688 /// our interceptor will not kick in and we will lose the memmove.
1689 /// If we instrument the call here, but it does not get inlined,
1690 /// we will memove the shadow twice: which is bad in case
1691 /// of overlapping regions. So, we simply lower the intrinsic to a call.
1692 ///
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +00001693 /// Similar situation exists for memcpy and memset.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001694 void visitMemMoveInst(MemMoveInst &I) {
1695 IRBuilder<> IRB(&I);
1696 IRB.CreateCall3(
1697 MS.MemmoveFn,
1698 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1699 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1700 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1701 I.eraseFromParent();
1702 }
1703
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +00001704 // Similar to memmove: avoid copying shadow twice.
1705 // This is somewhat unfortunate as it may slowdown small constant memcpys.
1706 // FIXME: consider doing manual inline for small constant sizes and proper
1707 // alignment.
1708 void visitMemCpyInst(MemCpyInst &I) {
1709 IRBuilder<> IRB(&I);
1710 IRB.CreateCall3(
1711 MS.MemcpyFn,
1712 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1713 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1714 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1715 I.eraseFromParent();
1716 }
1717
1718 // Same as memcpy.
1719 void visitMemSetInst(MemSetInst &I) {
1720 IRBuilder<> IRB(&I);
1721 IRB.CreateCall3(
1722 MS.MemsetFn,
1723 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1724 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
1725 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1726 I.eraseFromParent();
1727 }
1728
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001729 void visitVAStartInst(VAStartInst &I) {
1730 VAHelper->visitVAStartInst(I);
1731 }
1732
1733 void visitVACopyInst(VACopyInst &I) {
1734 VAHelper->visitVACopyInst(I);
1735 }
1736
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001737 enum IntrinsicKind {
1738 IK_DoesNotAccessMemory,
1739 IK_OnlyReadsMemory,
1740 IK_WritesMemory
1741 };
1742
1743 static IntrinsicKind getIntrinsicKind(Intrinsic::ID iid) {
1744 const int DoesNotAccessMemory = IK_DoesNotAccessMemory;
1745 const int OnlyReadsArgumentPointees = IK_OnlyReadsMemory;
1746 const int OnlyReadsMemory = IK_OnlyReadsMemory;
1747 const int OnlyAccessesArgumentPointees = IK_WritesMemory;
1748 const int UnknownModRefBehavior = IK_WritesMemory;
1749#define GET_INTRINSIC_MODREF_BEHAVIOR
1750#define ModRefBehavior IntrinsicKind
Chandler Carruthdb25c6c2013-01-02 12:09:16 +00001751#include "llvm/IR/Intrinsics.gen"
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001752#undef ModRefBehavior
1753#undef GET_INTRINSIC_MODREF_BEHAVIOR
1754 }
1755
1756 /// \brief Handle vector store-like intrinsics.
1757 ///
1758 /// Instrument intrinsics that look like a simple SIMD store: writes memory,
1759 /// has 1 pointer argument and 1 vector argument, returns void.
1760 bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
1761 IRBuilder<> IRB(&I);
1762 Value* Addr = I.getArgOperand(0);
1763 Value *Shadow = getShadow(&I, 1);
1764 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
1765
1766 // We don't know the pointer alignment (could be unaligned SSE store!).
1767 // Have to assume to worst case.
1768 IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
1769
1770 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001771 insertShadowCheck(Addr, &I);
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001772
1773 // FIXME: use ClStoreCleanOrigin
1774 // FIXME: factor out common code from materializeStores
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001775 if (MS.TrackOrigins)
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001776 IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB));
1777 return true;
1778 }
1779
1780 /// \brief Handle vector load-like intrinsics.
1781 ///
1782 /// Instrument intrinsics that look like a simple SIMD load: reads memory,
1783 /// has 1 pointer argument, returns a vector.
1784 bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
1785 IRBuilder<> IRB(&I);
1786 Value *Addr = I.getArgOperand(0);
1787
1788 Type *ShadowTy = getShadowTy(&I);
Evgeniy Stepanov174242c2014-07-03 11:56:30 +00001789 if (PropagateShadow) {
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001790 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1791 // We don't know the pointer alignment (could be unaligned SSE load!).
1792 // Have to assume to worst case.
1793 setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld"));
1794 } else {
1795 setShadow(&I, getCleanShadow(&I));
1796 }
1797
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001798 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001799 insertShadowCheck(Addr, &I);
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001800
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001801 if (MS.TrackOrigins) {
Evgeniy Stepanov174242c2014-07-03 11:56:30 +00001802 if (PropagateShadow)
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001803 setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB)));
1804 else
1805 setOrigin(&I, getCleanOrigin());
1806 }
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001807 return true;
1808 }
1809
1810 /// \brief Handle (SIMD arithmetic)-like intrinsics.
1811 ///
1812 /// Instrument intrinsics with any number of arguments of the same type,
1813 /// equal to the return type. The type should be simple (no aggregates or
1814 /// pointers; vectors are fine).
1815 /// Caller guarantees that this intrinsic does not access memory.
1816 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
1817 Type *RetTy = I.getType();
1818 if (!(RetTy->isIntOrIntVectorTy() ||
1819 RetTy->isFPOrFPVectorTy() ||
1820 RetTy->isX86_MMXTy()))
1821 return false;
1822
1823 unsigned NumArgOperands = I.getNumArgOperands();
1824
1825 for (unsigned i = 0; i < NumArgOperands; ++i) {
1826 Type *Ty = I.getArgOperand(i)->getType();
1827 if (Ty != RetTy)
1828 return false;
1829 }
1830
1831 IRBuilder<> IRB(&I);
1832 ShadowAndOriginCombiner SC(this, IRB);
1833 for (unsigned i = 0; i < NumArgOperands; ++i)
1834 SC.Add(I.getArgOperand(i));
1835 SC.Done(&I);
1836
1837 return true;
1838 }
1839
1840 /// \brief Heuristically instrument unknown intrinsics.
1841 ///
1842 /// The main purpose of this code is to do something reasonable with all
1843 /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
1844 /// We recognize several classes of intrinsics by their argument types and
1845 /// ModRefBehaviour and apply special intrumentation when we are reasonably
1846 /// sure that we know what the intrinsic does.
1847 ///
1848 /// We special-case intrinsics where this approach fails. See llvm.bswap
1849 /// handling as an example of that.
1850 bool handleUnknownIntrinsic(IntrinsicInst &I) {
1851 unsigned NumArgOperands = I.getNumArgOperands();
1852 if (NumArgOperands == 0)
1853 return false;
1854
1855 Intrinsic::ID iid = I.getIntrinsicID();
1856 IntrinsicKind IK = getIntrinsicKind(iid);
1857 bool OnlyReadsMemory = IK == IK_OnlyReadsMemory;
1858 bool WritesMemory = IK == IK_WritesMemory;
1859 assert(!(OnlyReadsMemory && WritesMemory));
1860
1861 if (NumArgOperands == 2 &&
1862 I.getArgOperand(0)->getType()->isPointerTy() &&
1863 I.getArgOperand(1)->getType()->isVectorTy() &&
1864 I.getType()->isVoidTy() &&
1865 WritesMemory) {
1866 // This looks like a vector store.
1867 return handleVectorStoreIntrinsic(I);
1868 }
1869
1870 if (NumArgOperands == 1 &&
1871 I.getArgOperand(0)->getType()->isPointerTy() &&
1872 I.getType()->isVectorTy() &&
1873 OnlyReadsMemory) {
1874 // This looks like a vector load.
1875 return handleVectorLoadIntrinsic(I);
1876 }
1877
1878 if (!OnlyReadsMemory && !WritesMemory)
1879 if (maybeHandleSimpleNomemIntrinsic(I))
1880 return true;
1881
1882 // FIXME: detect and handle SSE maskstore/maskload
1883 return false;
1884 }
1885
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001886 void handleBswap(IntrinsicInst &I) {
1887 IRBuilder<> IRB(&I);
1888 Value *Op = I.getArgOperand(0);
1889 Type *OpType = Op->getType();
1890 Function *BswapFunc = Intrinsic::getDeclaration(
Craig Toppere1d12942014-08-27 05:25:25 +00001891 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1));
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001892 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
1893 setOrigin(&I, getOrigin(Op));
1894 }
1895
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001896 // \brief Instrument vector convert instrinsic.
1897 //
1898 // This function instruments intrinsics like cvtsi2ss:
1899 // %Out = int_xxx_cvtyyy(%ConvertOp)
1900 // or
1901 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
1902 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
1903 // number \p Out elements, and (if has 2 arguments) copies the rest of the
1904 // elements from \p CopyOp.
1905 // In most cases conversion involves floating-point value which may trigger a
1906 // hardware exception when not fully initialized. For this reason we require
1907 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
1908 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p
1909 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
1910 // return a fully initialized value.
1911 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) {
1912 IRBuilder<> IRB(&I);
1913 Value *CopyOp, *ConvertOp;
1914
1915 switch (I.getNumArgOperands()) {
1916 case 2:
1917 CopyOp = I.getArgOperand(0);
1918 ConvertOp = I.getArgOperand(1);
1919 break;
1920 case 1:
1921 ConvertOp = I.getArgOperand(0);
Craig Topperf40110f2014-04-25 05:29:35 +00001922 CopyOp = nullptr;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001923 break;
1924 default:
1925 llvm_unreachable("Cvt intrinsic with unsupported number of arguments.");
1926 }
1927
1928 // The first *NumUsedElements* elements of ConvertOp are converted to the
1929 // same number of output elements. The rest of the output is copied from
1930 // CopyOp, or (if not available) filled with zeroes.
1931 // Combine shadow for elements of ConvertOp that are used in this operation,
1932 // and insert a check.
1933 // FIXME: consider propagating shadow of ConvertOp, at least in the case of
1934 // int->any conversion.
1935 Value *ConvertShadow = getShadow(ConvertOp);
Craig Topperf40110f2014-04-25 05:29:35 +00001936 Value *AggShadow = nullptr;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001937 if (ConvertOp->getType()->isVectorTy()) {
1938 AggShadow = IRB.CreateExtractElement(
1939 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
1940 for (int i = 1; i < NumUsedElements; ++i) {
1941 Value *MoreShadow = IRB.CreateExtractElement(
1942 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
1943 AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
1944 }
1945 } else {
1946 AggShadow = ConvertShadow;
1947 }
1948 assert(AggShadow->getType()->isIntegerTy());
1949 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
1950
1951 // Build result shadow by zero-filling parts of CopyOp shadow that come from
1952 // ConvertOp.
1953 if (CopyOp) {
1954 assert(CopyOp->getType() == I.getType());
1955 assert(CopyOp->getType()->isVectorTy());
1956 Value *ResultShadow = getShadow(CopyOp);
1957 Type *EltTy = ResultShadow->getType()->getVectorElementType();
1958 for (int i = 0; i < NumUsedElements; ++i) {
1959 ResultShadow = IRB.CreateInsertElement(
1960 ResultShadow, ConstantInt::getNullValue(EltTy),
1961 ConstantInt::get(IRB.getInt32Ty(), i));
1962 }
1963 setShadow(&I, ResultShadow);
1964 setOrigin(&I, getOrigin(CopyOp));
1965 } else {
1966 setShadow(&I, getCleanShadow(&I));
1967 }
1968 }
1969
Evgeniy Stepanov77be5322014-03-03 13:47:42 +00001970 // Given a scalar or vector, extract lower 64 bits (or less), and return all
1971 // zeroes if it is zero, and all ones otherwise.
1972 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
1973 if (S->getType()->isVectorTy())
1974 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true);
1975 assert(S->getType()->getPrimitiveSizeInBits() <= 64);
1976 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
1977 return CreateShadowCast(IRB, S2, T, /* Signed */ true);
1978 }
1979
1980 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) {
1981 Type *T = S->getType();
1982 assert(T->isVectorTy());
1983 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
1984 return IRB.CreateSExt(S2, T);
1985 }
1986
1987 // \brief Instrument vector shift instrinsic.
1988 //
1989 // This function instruments intrinsics like int_x86_avx2_psll_w.
1990 // Intrinsic shifts %In by %ShiftSize bits.
1991 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift
1992 // size, and the rest is ignored. Behavior is defined even if shift size is
1993 // greater than register (or field) width.
1994 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) {
1995 assert(I.getNumArgOperands() == 2);
1996 IRBuilder<> IRB(&I);
1997 // If any of the S2 bits are poisoned, the whole thing is poisoned.
1998 // Otherwise perform the same shift on S1.
1999 Value *S1 = getShadow(&I, 0);
2000 Value *S2 = getShadow(&I, 1);
2001 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2)
2002 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I));
2003 Value *V1 = I.getOperand(0);
2004 Value *V2 = I.getOperand(1);
2005 Value *Shift = IRB.CreateCall2(I.getCalledValue(),
2006 IRB.CreateBitCast(S1, V1->getType()), V2);
2007 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I));
2008 setShadow(&I, IRB.CreateOr(Shift, S2Conv));
2009 setOriginForNaryOp(I);
2010 }
2011
Evgeniy Stepanovf7c29a92014-06-09 08:40:16 +00002012 // \brief Get an X86_MMX-sized vector type.
2013 Type *getMMXVectorTy(unsigned EltSizeInBits) {
2014 const unsigned X86_MMXSizeInBits = 64;
2015 return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits),
2016 X86_MMXSizeInBits / EltSizeInBits);
2017 }
2018
2019 // \brief Returns a signed counterpart for an (un)signed-saturate-and-pack
2020 // intrinsic.
2021 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) {
2022 switch (id) {
2023 case llvm::Intrinsic::x86_sse2_packsswb_128:
2024 case llvm::Intrinsic::x86_sse2_packuswb_128:
2025 return llvm::Intrinsic::x86_sse2_packsswb_128;
2026
2027 case llvm::Intrinsic::x86_sse2_packssdw_128:
2028 case llvm::Intrinsic::x86_sse41_packusdw:
2029 return llvm::Intrinsic::x86_sse2_packssdw_128;
2030
2031 case llvm::Intrinsic::x86_avx2_packsswb:
2032 case llvm::Intrinsic::x86_avx2_packuswb:
2033 return llvm::Intrinsic::x86_avx2_packsswb;
2034
2035 case llvm::Intrinsic::x86_avx2_packssdw:
2036 case llvm::Intrinsic::x86_avx2_packusdw:
2037 return llvm::Intrinsic::x86_avx2_packssdw;
2038
2039 case llvm::Intrinsic::x86_mmx_packsswb:
2040 case llvm::Intrinsic::x86_mmx_packuswb:
2041 return llvm::Intrinsic::x86_mmx_packsswb;
2042
2043 case llvm::Intrinsic::x86_mmx_packssdw:
2044 return llvm::Intrinsic::x86_mmx_packssdw;
2045 default:
2046 llvm_unreachable("unexpected intrinsic id");
2047 }
2048 }
2049
Evgeniy Stepanov5d972932014-06-17 11:26:00 +00002050 // \brief Instrument vector pack instrinsic.
Evgeniy Stepanovd425a2b2014-06-02 12:31:44 +00002051 //
2052 // This function instruments intrinsics like x86_mmx_packsswb, that
Evgeniy Stepanov5d972932014-06-17 11:26:00 +00002053 // packs elements of 2 input vectors into half as many bits with saturation.
Evgeniy Stepanovf7c29a92014-06-09 08:40:16 +00002054 // Shadow is propagated with the signed variant of the same intrinsic applied
2055 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer).
2056 // EltSizeInBits is used only for x86mmx arguments.
2057 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) {
Evgeniy Stepanovd425a2b2014-06-02 12:31:44 +00002058 assert(I.getNumArgOperands() == 2);
Evgeniy Stepanovf7c29a92014-06-09 08:40:16 +00002059 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
Evgeniy Stepanovd425a2b2014-06-02 12:31:44 +00002060 IRBuilder<> IRB(&I);
2061 Value *S1 = getShadow(&I, 0);
2062 Value *S2 = getShadow(&I, 1);
Evgeniy Stepanovf7c29a92014-06-09 08:40:16 +00002063 assert(isX86_MMX || S1->getType()->isVectorTy());
2064
2065 // SExt and ICmpNE below must apply to individual elements of input vectors.
2066 // In case of x86mmx arguments, cast them to appropriate vector types and
2067 // back.
2068 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType();
2069 if (isX86_MMX) {
2070 S1 = IRB.CreateBitCast(S1, T);
2071 S2 = IRB.CreateBitCast(S2, T);
2072 }
Evgeniy Stepanovd425a2b2014-06-02 12:31:44 +00002073 Value *S1_ext = IRB.CreateSExt(
2074 IRB.CreateICmpNE(S1, llvm::Constant::getNullValue(T)), T);
2075 Value *S2_ext = IRB.CreateSExt(
2076 IRB.CreateICmpNE(S2, llvm::Constant::getNullValue(T)), T);
Evgeniy Stepanovf7c29a92014-06-09 08:40:16 +00002077 if (isX86_MMX) {
2078 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C);
2079 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy);
2080 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy);
2081 }
2082
2083 Function *ShadowFn = Intrinsic::getDeclaration(
2084 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID()));
2085
2086 Value *S = IRB.CreateCall2(ShadowFn, S1_ext, S2_ext, "_msprop_vector_pack");
2087 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I));
Evgeniy Stepanovd425a2b2014-06-02 12:31:44 +00002088 setShadow(&I, S);
2089 setOriginForNaryOp(I);
2090 }
2091
Evgeniy Stepanov4ea16472014-06-18 12:02:29 +00002092 // \brief Instrument sum-of-absolute-differencies intrinsic.
2093 void handleVectorSadIntrinsic(IntrinsicInst &I) {
2094 const unsigned SignificantBitsPerResultElement = 16;
2095 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2096 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType();
2097 unsigned ZeroBitsPerResultElement =
2098 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement;
2099
2100 IRBuilder<> IRB(&I);
2101 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2102 S = IRB.CreateBitCast(S, ResTy);
2103 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
2104 ResTy);
2105 S = IRB.CreateLShr(S, ZeroBitsPerResultElement);
2106 S = IRB.CreateBitCast(S, getShadowTy(&I));
2107 setShadow(&I, S);
2108 setOriginForNaryOp(I);
2109 }
2110
2111 // \brief Instrument multiply-add intrinsic.
2112 void handleVectorPmaddIntrinsic(IntrinsicInst &I,
2113 unsigned EltSizeInBits = 0) {
2114 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2115 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType();
2116 IRBuilder<> IRB(&I);
2117 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2118 S = IRB.CreateBitCast(S, ResTy);
2119 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
2120 ResTy);
2121 S = IRB.CreateBitCast(S, getShadowTy(&I));
2122 setShadow(&I, S);
2123 setOriginForNaryOp(I);
2124 }
2125
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00002126 void visitIntrinsicInst(IntrinsicInst &I) {
2127 switch (I.getIntrinsicID()) {
2128 case llvm::Intrinsic::bswap:
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00002129 handleBswap(I);
2130 break;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00002131 case llvm::Intrinsic::x86_avx512_cvtsd2usi64:
2132 case llvm::Intrinsic::x86_avx512_cvtsd2usi:
2133 case llvm::Intrinsic::x86_avx512_cvtss2usi64:
2134 case llvm::Intrinsic::x86_avx512_cvtss2usi:
2135 case llvm::Intrinsic::x86_avx512_cvttss2usi64:
2136 case llvm::Intrinsic::x86_avx512_cvttss2usi:
2137 case llvm::Intrinsic::x86_avx512_cvttsd2usi64:
2138 case llvm::Intrinsic::x86_avx512_cvttsd2usi:
2139 case llvm::Intrinsic::x86_avx512_cvtusi2sd:
2140 case llvm::Intrinsic::x86_avx512_cvtusi2ss:
2141 case llvm::Intrinsic::x86_avx512_cvtusi642sd:
2142 case llvm::Intrinsic::x86_avx512_cvtusi642ss:
2143 case llvm::Intrinsic::x86_sse2_cvtsd2si64:
2144 case llvm::Intrinsic::x86_sse2_cvtsd2si:
2145 case llvm::Intrinsic::x86_sse2_cvtsd2ss:
2146 case llvm::Intrinsic::x86_sse2_cvtsi2sd:
2147 case llvm::Intrinsic::x86_sse2_cvtsi642sd:
2148 case llvm::Intrinsic::x86_sse2_cvtss2sd:
2149 case llvm::Intrinsic::x86_sse2_cvttsd2si64:
2150 case llvm::Intrinsic::x86_sse2_cvttsd2si:
2151 case llvm::Intrinsic::x86_sse_cvtsi2ss:
2152 case llvm::Intrinsic::x86_sse_cvtsi642ss:
2153 case llvm::Intrinsic::x86_sse_cvtss2si64:
2154 case llvm::Intrinsic::x86_sse_cvtss2si:
2155 case llvm::Intrinsic::x86_sse_cvttss2si64:
2156 case llvm::Intrinsic::x86_sse_cvttss2si:
2157 handleVectorConvertIntrinsic(I, 1);
2158 break;
2159 case llvm::Intrinsic::x86_sse2_cvtdq2pd:
2160 case llvm::Intrinsic::x86_sse2_cvtps2pd:
2161 case llvm::Intrinsic::x86_sse_cvtps2pi:
2162 case llvm::Intrinsic::x86_sse_cvttps2pi:
2163 handleVectorConvertIntrinsic(I, 2);
2164 break;
Evgeniy Stepanov77be5322014-03-03 13:47:42 +00002165 case llvm::Intrinsic::x86_avx512_psll_dq:
2166 case llvm::Intrinsic::x86_avx512_psrl_dq:
2167 case llvm::Intrinsic::x86_avx2_psll_w:
2168 case llvm::Intrinsic::x86_avx2_psll_d:
2169 case llvm::Intrinsic::x86_avx2_psll_q:
2170 case llvm::Intrinsic::x86_avx2_pslli_w:
2171 case llvm::Intrinsic::x86_avx2_pslli_d:
2172 case llvm::Intrinsic::x86_avx2_pslli_q:
2173 case llvm::Intrinsic::x86_avx2_psll_dq:
2174 case llvm::Intrinsic::x86_avx2_psrl_w:
2175 case llvm::Intrinsic::x86_avx2_psrl_d:
2176 case llvm::Intrinsic::x86_avx2_psrl_q:
2177 case llvm::Intrinsic::x86_avx2_psra_w:
2178 case llvm::Intrinsic::x86_avx2_psra_d:
2179 case llvm::Intrinsic::x86_avx2_psrli_w:
2180 case llvm::Intrinsic::x86_avx2_psrli_d:
2181 case llvm::Intrinsic::x86_avx2_psrli_q:
2182 case llvm::Intrinsic::x86_avx2_psrai_w:
2183 case llvm::Intrinsic::x86_avx2_psrai_d:
2184 case llvm::Intrinsic::x86_avx2_psrl_dq:
2185 case llvm::Intrinsic::x86_sse2_psll_w:
2186 case llvm::Intrinsic::x86_sse2_psll_d:
2187 case llvm::Intrinsic::x86_sse2_psll_q:
2188 case llvm::Intrinsic::x86_sse2_pslli_w:
2189 case llvm::Intrinsic::x86_sse2_pslli_d:
2190 case llvm::Intrinsic::x86_sse2_pslli_q:
2191 case llvm::Intrinsic::x86_sse2_psll_dq:
2192 case llvm::Intrinsic::x86_sse2_psrl_w:
2193 case llvm::Intrinsic::x86_sse2_psrl_d:
2194 case llvm::Intrinsic::x86_sse2_psrl_q:
2195 case llvm::Intrinsic::x86_sse2_psra_w:
2196 case llvm::Intrinsic::x86_sse2_psra_d:
2197 case llvm::Intrinsic::x86_sse2_psrli_w:
2198 case llvm::Intrinsic::x86_sse2_psrli_d:
2199 case llvm::Intrinsic::x86_sse2_psrli_q:
2200 case llvm::Intrinsic::x86_sse2_psrai_w:
2201 case llvm::Intrinsic::x86_sse2_psrai_d:
2202 case llvm::Intrinsic::x86_sse2_psrl_dq:
2203 case llvm::Intrinsic::x86_mmx_psll_w:
2204 case llvm::Intrinsic::x86_mmx_psll_d:
2205 case llvm::Intrinsic::x86_mmx_psll_q:
2206 case llvm::Intrinsic::x86_mmx_pslli_w:
2207 case llvm::Intrinsic::x86_mmx_pslli_d:
2208 case llvm::Intrinsic::x86_mmx_pslli_q:
2209 case llvm::Intrinsic::x86_mmx_psrl_w:
2210 case llvm::Intrinsic::x86_mmx_psrl_d:
2211 case llvm::Intrinsic::x86_mmx_psrl_q:
2212 case llvm::Intrinsic::x86_mmx_psra_w:
2213 case llvm::Intrinsic::x86_mmx_psra_d:
2214 case llvm::Intrinsic::x86_mmx_psrli_w:
2215 case llvm::Intrinsic::x86_mmx_psrli_d:
2216 case llvm::Intrinsic::x86_mmx_psrli_q:
2217 case llvm::Intrinsic::x86_mmx_psrai_w:
2218 case llvm::Intrinsic::x86_mmx_psrai_d:
2219 handleVectorShiftIntrinsic(I, /* Variable */ false);
2220 break;
2221 case llvm::Intrinsic::x86_avx2_psllv_d:
2222 case llvm::Intrinsic::x86_avx2_psllv_d_256:
2223 case llvm::Intrinsic::x86_avx2_psllv_q:
2224 case llvm::Intrinsic::x86_avx2_psllv_q_256:
2225 case llvm::Intrinsic::x86_avx2_psrlv_d:
2226 case llvm::Intrinsic::x86_avx2_psrlv_d_256:
2227 case llvm::Intrinsic::x86_avx2_psrlv_q:
2228 case llvm::Intrinsic::x86_avx2_psrlv_q_256:
2229 case llvm::Intrinsic::x86_avx2_psrav_d:
2230 case llvm::Intrinsic::x86_avx2_psrav_d_256:
2231 handleVectorShiftIntrinsic(I, /* Variable */ true);
2232 break;
2233
2234 // Byte shifts are not implemented.
2235 // case llvm::Intrinsic::x86_avx512_psll_dq_bs:
2236 // case llvm::Intrinsic::x86_avx512_psrl_dq_bs:
2237 // case llvm::Intrinsic::x86_avx2_psll_dq_bs:
2238 // case llvm::Intrinsic::x86_avx2_psrl_dq_bs:
2239 // case llvm::Intrinsic::x86_sse2_psll_dq_bs:
2240 // case llvm::Intrinsic::x86_sse2_psrl_dq_bs:
2241
Evgeniy Stepanovd425a2b2014-06-02 12:31:44 +00002242 case llvm::Intrinsic::x86_sse2_packsswb_128:
2243 case llvm::Intrinsic::x86_sse2_packssdw_128:
2244 case llvm::Intrinsic::x86_sse2_packuswb_128:
2245 case llvm::Intrinsic::x86_sse41_packusdw:
2246 case llvm::Intrinsic::x86_avx2_packsswb:
2247 case llvm::Intrinsic::x86_avx2_packssdw:
2248 case llvm::Intrinsic::x86_avx2_packuswb:
2249 case llvm::Intrinsic::x86_avx2_packusdw:
Evgeniy Stepanovd425a2b2014-06-02 12:31:44 +00002250 handleVectorPackIntrinsic(I);
2251 break;
2252
Evgeniy Stepanovf7c29a92014-06-09 08:40:16 +00002253 case llvm::Intrinsic::x86_mmx_packsswb:
2254 case llvm::Intrinsic::x86_mmx_packuswb:
2255 handleVectorPackIntrinsic(I, 16);
2256 break;
2257
2258 case llvm::Intrinsic::x86_mmx_packssdw:
2259 handleVectorPackIntrinsic(I, 32);
2260 break;
2261
Evgeniy Stepanov4ea16472014-06-18 12:02:29 +00002262 case llvm::Intrinsic::x86_mmx_psad_bw:
2263 case llvm::Intrinsic::x86_sse2_psad_bw:
2264 case llvm::Intrinsic::x86_avx2_psad_bw:
2265 handleVectorSadIntrinsic(I);
2266 break;
2267
2268 case llvm::Intrinsic::x86_sse2_pmadd_wd:
2269 case llvm::Intrinsic::x86_avx2_pmadd_wd:
2270 case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw_128:
2271 case llvm::Intrinsic::x86_avx2_pmadd_ub_sw:
2272 handleVectorPmaddIntrinsic(I);
2273 break;
2274
2275 case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw:
2276 handleVectorPmaddIntrinsic(I, 8);
2277 break;
2278
2279 case llvm::Intrinsic::x86_mmx_pmadd_wd:
2280 handleVectorPmaddIntrinsic(I, 16);
2281 break;
2282
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00002283 default:
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00002284 if (!handleUnknownIntrinsic(I))
2285 visitInstruction(I);
Evgeniy Stepanov88b8dce2012-12-17 16:30:05 +00002286 break;
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00002287 }
2288 }
2289
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002290 void visitCallSite(CallSite CS) {
2291 Instruction &I = *CS.getInstruction();
2292 assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite");
2293 if (CS.isCall()) {
Evgeniy Stepanov7ad7e832012-11-29 14:32:03 +00002294 CallInst *Call = cast<CallInst>(&I);
2295
2296 // For inline asm, do the usual thing: check argument shadow and mark all
2297 // outputs as clean. Note that any side effects of the inline asm that are
2298 // not immediately visible in its constraints are not handled.
2299 if (Call->isInlineAsm()) {
2300 visitInstruction(I);
2301 return;
2302 }
2303
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00002304 assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
Evgeniy Stepanov383b61e2012-12-07 09:08:32 +00002305
2306 // We are going to insert code that relies on the fact that the callee
2307 // will become a non-readonly function after it is instrumented by us. To
2308 // prevent this code from being optimized out, mark that function
2309 // non-readonly in advance.
2310 if (Function *Func = Call->getCalledFunction()) {
2311 // Clear out readonly/readnone attributes.
2312 AttrBuilder B;
Bill Wendling3d7b0b82012-12-19 07:18:57 +00002313 B.addAttribute(Attribute::ReadOnly)
2314 .addAttribute(Attribute::ReadNone);
Bill Wendling430fa9b2013-01-23 00:45:55 +00002315 Func->removeAttributes(AttributeSet::FunctionIndex,
2316 AttributeSet::get(Func->getContext(),
2317 AttributeSet::FunctionIndex,
2318 B));
Evgeniy Stepanov383b61e2012-12-07 09:08:32 +00002319 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002320 }
2321 IRBuilder<> IRB(&I);
Evgeniy Stepanov37b86452013-09-19 15:22:35 +00002322
2323 if (MS.WrapIndirectCalls && !CS.getCalledFunction())
Evgeniy Stepanov585813e2013-11-14 12:29:04 +00002324 IndirectCallList.push_back(CS);
Evgeniy Stepanov37b86452013-09-19 15:22:35 +00002325
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002326 unsigned ArgOffset = 0;
2327 DEBUG(dbgs() << " CallSite: " << I << "\n");
2328 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
2329 ArgIt != End; ++ArgIt) {
2330 Value *A = *ArgIt;
2331 unsigned i = ArgIt - CS.arg_begin();
2332 if (!A->getType()->isSized()) {
2333 DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
2334 continue;
2335 }
2336 unsigned Size = 0;
Craig Topperf40110f2014-04-25 05:29:35 +00002337 Value *Store = nullptr;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002338 // Compute the Shadow for arg even if it is ByVal, because
2339 // in that case getShadow() will copy the actual arg shadow to
2340 // __msan_param_tls.
2341 Value *ArgShadow = getShadow(A);
2342 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
2343 DEBUG(dbgs() << " Arg#" << i << ": " << *A <<
2344 " Shadow: " << *ArgShadow << "\n");
Evgeniy Stepanovc8227aa2014-07-17 09:10:37 +00002345 bool ArgIsInitialized = false;
Bill Wendling3d7b0b82012-12-19 07:18:57 +00002346 if (CS.paramHasAttr(i + 1, Attribute::ByVal)) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002347 assert(A->getType()->isPointerTy() &&
2348 "ByVal argument is not a pointer!");
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002349 Size = MS.DL->getTypeAllocSize(A->getType()->getPointerElementType());
Evgeniy Stepanov35eb2652014-10-22 00:12:40 +00002350 if (ArgOffset + Size > kParamTLSSize) break;
Evgeniy Stepanove08633e2014-10-17 23:29:44 +00002351 unsigned ParamAlignment = CS.getParamAlignment(i + 1);
2352 unsigned Alignment = std::min(ParamAlignment, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002353 Store = IRB.CreateMemCpy(ArgShadowBase,
2354 getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
2355 Size, Alignment);
2356 } else {
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002357 Size = MS.DL->getTypeAllocSize(A->getType());
Evgeniy Stepanov35eb2652014-10-22 00:12:40 +00002358 if (ArgOffset + Size > kParamTLSSize) break;
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002359 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
2360 kShadowTLSAlignment);
Evgeniy Stepanovc8227aa2014-07-17 09:10:37 +00002361 Constant *Cst = dyn_cast<Constant>(ArgShadow);
2362 if (Cst && Cst->isNullValue()) ArgIsInitialized = true;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002363 }
Evgeniy Stepanovc8227aa2014-07-17 09:10:37 +00002364 if (MS.TrackOrigins && !ArgIsInitialized)
Evgeniy Stepanov49175b22012-12-14 13:43:11 +00002365 IRB.CreateStore(getOrigin(A),
2366 getOriginPtrForArgument(A, IRB, ArgOffset));
Edwin Vane82f80d42013-01-29 17:42:24 +00002367 (void)Store;
Craig Toppere73658d2014-04-28 04:05:08 +00002368 assert(Size != 0 && Store != nullptr);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002369 DEBUG(dbgs() << " Param:" << *Store << "\n");
David Majnemerf3cadce2014-10-20 06:13:33 +00002370 ArgOffset += RoundUpToAlignment(Size, 8);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002371 }
2372 DEBUG(dbgs() << " done with call args\n");
2373
2374 FunctionType *FT =
Evgeniy Stepanov37b86452013-09-19 15:22:35 +00002375 cast<FunctionType>(CS.getCalledValue()->getType()->getContainedType(0));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002376 if (FT->isVarArg()) {
2377 VAHelper->visitCallSite(CS, IRB);
2378 }
2379
2380 // Now, get the shadow for the RetVal.
2381 if (!I.getType()->isSized()) return;
2382 IRBuilder<> IRBBefore(&I);
Alp Tokercb402912014-01-24 17:20:08 +00002383 // Until we have full dynamic coverage, make sure the retval shadow is 0.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002384 Value *Base = getShadowPtrForRetval(&I, IRBBefore);
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002385 IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
Craig Topperf40110f2014-04-25 05:29:35 +00002386 Instruction *NextInsn = nullptr;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002387 if (CS.isCall()) {
2388 NextInsn = I.getNextNode();
2389 } else {
2390 BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
2391 if (!NormalDest->getSinglePredecessor()) {
2392 // FIXME: this case is tricky, so we are just conservative here.
2393 // Perhaps we need to split the edge between this BB and NormalDest,
2394 // but a naive attempt to use SplitEdge leads to a crash.
2395 setShadow(&I, getCleanShadow(&I));
2396 setOrigin(&I, getCleanOrigin());
2397 return;
2398 }
2399 NextInsn = NormalDest->getFirstInsertionPt();
2400 assert(NextInsn &&
2401 "Could not find insertion point for retval shadow load");
2402 }
2403 IRBuilder<> IRBAfter(NextInsn);
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002404 Value *RetvalShadow =
2405 IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter),
2406 kShadowTLSAlignment, "_msret");
2407 setShadow(&I, RetvalShadow);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00002408 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002409 setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter)));
2410 }
2411
2412 void visitReturnInst(ReturnInst &I) {
2413 IRBuilder<> IRB(&I);
Evgeniy Stepanov604293f2013-09-16 13:24:32 +00002414 Value *RetVal = I.getReturnValue();
2415 if (!RetVal) return;
2416 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
2417 if (CheckReturnValue) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00002418 insertShadowCheck(RetVal, &I);
Evgeniy Stepanov604293f2013-09-16 13:24:32 +00002419 Value *Shadow = getCleanShadow(RetVal);
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002420 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
Evgeniy Stepanov604293f2013-09-16 13:24:32 +00002421 } else {
2422 Value *Shadow = getShadow(RetVal);
2423 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
2424 // FIXME: make it conditional if ClStoreCleanOrigin==0
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00002425 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002426 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
2427 }
2428 }
2429
2430 void visitPHINode(PHINode &I) {
2431 IRBuilder<> IRB(&I);
Evgeniy Stepanovd948a5f2014-07-07 13:28:31 +00002432 if (!PropagateShadow) {
2433 setShadow(&I, getCleanShadow(&I));
2434 return;
2435 }
2436
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002437 ShadowPHINodes.push_back(&I);
2438 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
2439 "_msphi_s"));
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00002440 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002441 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
2442 "_msphi_o"));
2443 }
2444
2445 void visitAllocaInst(AllocaInst &I) {
2446 setShadow(&I, getCleanShadow(&I));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002447 IRBuilder<> IRB(I.getNextNode());
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002448 uint64_t Size = MS.DL->getTypeAllocSize(I.getAllocatedType());
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +00002449 if (PoisonStack && ClPoisonStackWithCall) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002450 IRB.CreateCall2(MS.MsanPoisonStackFn,
2451 IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
2452 ConstantInt::get(MS.IntptrTy, Size));
2453 } else {
2454 Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB);
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +00002455 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
2456 IRB.CreateMemSet(ShadowBase, PoisonValue, Size, I.getAlignment());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002457 }
2458
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +00002459 if (PoisonStack && MS.TrackOrigins) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002460 setOrigin(&I, getCleanOrigin());
Alp Tokere69170a2014-06-26 22:52:05 +00002461 SmallString<2048> StackDescriptionStorage;
2462 raw_svector_ostream StackDescription(StackDescriptionStorage);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002463 // We create a string with a description of the stack allocation and
2464 // pass it into __msan_set_alloca_origin.
2465 // It will be printed by the run-time if stack-originated UMR is found.
2466 // The first 4 bytes of the string are set to '----' and will be replaced
2467 // by __msan_va_arg_overflow_size_tls at the first call.
2468 StackDescription << "----" << I.getName() << "@" << F.getName();
2469 Value *Descr =
2470 createPrivateNonConstGlobalForString(*F.getParent(),
2471 StackDescription.str());
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +00002472
2473 IRB.CreateCall4(MS.MsanSetAllocaOrigin4Fn,
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002474 IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
2475 ConstantInt::get(MS.IntptrTy, Size),
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +00002476 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()),
2477 IRB.CreatePointerCast(&F, MS.IntptrTy));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002478 }
2479 }
2480
2481 void visitSelectInst(SelectInst& I) {
2482 IRBuilder<> IRB(&I);
Evgeniy Stepanov566f5912013-09-03 10:04:11 +00002483 // a = select b, c, d
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002484 Value *B = I.getCondition();
2485 Value *C = I.getTrueValue();
2486 Value *D = I.getFalseValue();
2487 Value *Sb = getShadow(B);
2488 Value *Sc = getShadow(C);
2489 Value *Sd = getShadow(D);
2490
2491 // Result shadow if condition shadow is 0.
2492 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd);
2493 Value *Sa1;
Evgeniy Stepanove95d37c2013-09-03 13:05:29 +00002494 if (I.getType()->isAggregateType()) {
2495 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
2496 // an extra "select". This results in much more compact IR.
2497 // Sa = select Sb, poisoned, (select b, Sc, Sd)
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002498 Sa1 = getPoisonedShadow(getShadowTy(I.getType()));
Evgeniy Stepanove95d37c2013-09-03 13:05:29 +00002499 } else {
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002500 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ]
2501 // If Sb (condition is poisoned), look for bits in c and d that are equal
2502 // and both unpoisoned.
2503 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd.
2504
2505 // Cast arguments to shadow-compatible type.
2506 C = CreateAppToShadowCast(IRB, C);
2507 D = CreateAppToShadowCast(IRB, D);
2508
2509 // Result shadow if condition shadow is 1.
2510 Sa1 = IRB.CreateOr(IRB.CreateXor(C, D), IRB.CreateOr(Sc, Sd));
Evgeniy Stepanove95d37c2013-09-03 13:05:29 +00002511 }
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002512 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select");
2513 setShadow(&I, Sa);
Evgeniy Stepanovec837122012-12-25 14:56:21 +00002514 if (MS.TrackOrigins) {
2515 // Origins are always i32, so any vector conditions must be flattened.
2516 // FIXME: consider tracking vector origins for app vectors?
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002517 if (B->getType()->isVectorTy()) {
2518 Type *FlatTy = getShadowTyNoVec(B->getType());
2519 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy),
Evgeniy Stepanovcb5bdff2013-11-21 12:00:24 +00002520 ConstantInt::getNullValue(FlatTy));
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002521 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy),
Evgeniy Stepanovcb5bdff2013-11-21 12:00:24 +00002522 ConstantInt::getNullValue(FlatTy));
Evgeniy Stepanovec837122012-12-25 14:56:21 +00002523 }
Evgeniy Stepanovcb5bdff2013-11-21 12:00:24 +00002524 // a = select b, c, d
2525 // Oa = Sb ? Ob : (b ? Oc : Od)
2526 setOrigin(&I, IRB.CreateSelect(
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002527 Sb, getOrigin(I.getCondition()),
2528 IRB.CreateSelect(B, getOrigin(C), getOrigin(D))));
Evgeniy Stepanovec837122012-12-25 14:56:21 +00002529 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002530 }
2531
2532 void visitLandingPadInst(LandingPadInst &I) {
2533 // Do nothing.
2534 // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1
2535 setShadow(&I, getCleanShadow(&I));
2536 setOrigin(&I, getCleanOrigin());
2537 }
2538
2539 void visitGetElementPtrInst(GetElementPtrInst &I) {
2540 handleShadowOr(I);
2541 }
2542
2543 void visitExtractValueInst(ExtractValueInst &I) {
2544 IRBuilder<> IRB(&I);
2545 Value *Agg = I.getAggregateOperand();
2546 DEBUG(dbgs() << "ExtractValue: " << I << "\n");
2547 Value *AggShadow = getShadow(Agg);
2548 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
2549 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
2550 DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n");
2551 setShadow(&I, ResShadow);
Evgeniy Stepanov560e08932013-11-11 13:37:10 +00002552 setOriginForNaryOp(I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002553 }
2554
2555 void visitInsertValueInst(InsertValueInst &I) {
2556 IRBuilder<> IRB(&I);
2557 DEBUG(dbgs() << "InsertValue: " << I << "\n");
2558 Value *AggShadow = getShadow(I.getAggregateOperand());
2559 Value *InsShadow = getShadow(I.getInsertedValueOperand());
2560 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
2561 DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n");
2562 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
2563 DEBUG(dbgs() << " Res: " << *Res << "\n");
2564 setShadow(&I, Res);
Evgeniy Stepanov560e08932013-11-11 13:37:10 +00002565 setOriginForNaryOp(I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002566 }
2567
2568 void dumpInst(Instruction &I) {
2569 if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2570 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
2571 } else {
2572 errs() << "ZZZ " << I.getOpcodeName() << "\n";
2573 }
2574 errs() << "QQQ " << I << "\n";
2575 }
2576
2577 void visitResumeInst(ResumeInst &I) {
2578 DEBUG(dbgs() << "Resume: " << I << "\n");
2579 // Nothing to do here.
2580 }
2581
2582 void visitInstruction(Instruction &I) {
2583 // Everything else: stop propagating and check for poisoned shadow.
2584 if (ClDumpStrictInstructions)
2585 dumpInst(I);
2586 DEBUG(dbgs() << "DEFAULT: " << I << "\n");
2587 for (size_t i = 0, n = I.getNumOperands(); i < n; i++)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00002588 insertShadowCheck(I.getOperand(i), &I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002589 setShadow(&I, getCleanShadow(&I));
2590 setOrigin(&I, getCleanOrigin());
2591 }
2592};
2593
2594/// \brief AMD64-specific implementation of VarArgHelper.
2595struct VarArgAMD64Helper : public VarArgHelper {
2596 // An unfortunate workaround for asymmetric lowering of va_arg stuff.
2597 // See a comment in visitCallSite for more details.
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00002598 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002599 static const unsigned AMD64FpEndOffset = 176;
2600
2601 Function &F;
2602 MemorySanitizer &MS;
2603 MemorySanitizerVisitor &MSV;
2604 Value *VAArgTLSCopy;
2605 Value *VAArgOverflowSize;
2606
2607 SmallVector<CallInst*, 16> VAStartInstrumentationList;
2608
2609 VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
2610 MemorySanitizerVisitor &MSV)
Craig Topperf40110f2014-04-25 05:29:35 +00002611 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr),
2612 VAArgOverflowSize(nullptr) {}
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002613
2614 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
2615
2616 ArgKind classifyArgument(Value* arg) {
2617 // A very rough approximation of X86_64 argument classification rules.
2618 Type *T = arg->getType();
2619 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
2620 return AK_FloatingPoint;
2621 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
2622 return AK_GeneralPurpose;
2623 if (T->isPointerTy())
2624 return AK_GeneralPurpose;
2625 return AK_Memory;
2626 }
2627
2628 // For VarArg functions, store the argument shadow in an ABI-specific format
2629 // that corresponds to va_list layout.
2630 // We do this because Clang lowers va_arg in the frontend, and this pass
2631 // only sees the low level code that deals with va_list internals.
2632 // A much easier alternative (provided that Clang emits va_arg instructions)
2633 // would have been to associate each live instance of va_list with a copy of
2634 // MSanParamTLS, and extract shadow on va_arg() call in the argument list
2635 // order.
Craig Topper3e4c6972014-03-05 09:10:37 +00002636 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002637 unsigned GpOffset = 0;
2638 unsigned FpOffset = AMD64GpEndOffset;
2639 unsigned OverflowOffset = AMD64FpEndOffset;
2640 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
2641 ArgIt != End; ++ArgIt) {
2642 Value *A = *ArgIt;
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002643 unsigned ArgNo = CS.getArgumentNo(ArgIt);
2644 bool IsByVal = CS.paramHasAttr(ArgNo + 1, Attribute::ByVal);
2645 if (IsByVal) {
2646 // ByVal arguments always go to the overflow area.
2647 assert(A->getType()->isPointerTy());
2648 Type *RealTy = A->getType()->getPointerElementType();
2649 uint64_t ArgSize = MS.DL->getTypeAllocSize(RealTy);
2650 Value *Base = getShadowPtrForVAArgument(RealTy, IRB, OverflowOffset);
David Majnemerf3cadce2014-10-20 06:13:33 +00002651 OverflowOffset += RoundUpToAlignment(ArgSize, 8);
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002652 IRB.CreateMemCpy(Base, MSV.getShadowPtr(A, IRB.getInt8Ty(), IRB),
2653 ArgSize, kShadowTLSAlignment);
2654 } else {
2655 ArgKind AK = classifyArgument(A);
2656 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
2657 AK = AK_Memory;
2658 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
2659 AK = AK_Memory;
2660 Value *Base;
2661 switch (AK) {
2662 case AK_GeneralPurpose:
2663 Base = getShadowPtrForVAArgument(A->getType(), IRB, GpOffset);
2664 GpOffset += 8;
2665 break;
2666 case AK_FloatingPoint:
2667 Base = getShadowPtrForVAArgument(A->getType(), IRB, FpOffset);
2668 FpOffset += 16;
2669 break;
2670 case AK_Memory:
2671 uint64_t ArgSize = MS.DL->getTypeAllocSize(A->getType());
2672 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset);
David Majnemerf3cadce2014-10-20 06:13:33 +00002673 OverflowOffset += RoundUpToAlignment(ArgSize, 8);
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002674 }
2675 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002676 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002677 }
2678 Constant *OverflowSize =
2679 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
2680 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
2681 }
2682
2683 /// \brief Compute the shadow address for a given va_arg.
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002684 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002685 int ArgOffset) {
2686 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
2687 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002688 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002689 "_msarg");
2690 }
2691
Craig Topper3e4c6972014-03-05 09:10:37 +00002692 void visitVAStartInst(VAStartInst &I) override {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002693 IRBuilder<> IRB(&I);
2694 VAStartInstrumentationList.push_back(&I);
2695 Value *VAListTag = I.getArgOperand(0);
2696 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2697
2698 // Unpoison the whole __va_list_tag.
2699 // FIXME: magic ABI constants.
2700 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
Peter Collingbournef7d65c42013-01-10 22:36:33 +00002701 /* size */24, /* alignment */8, false);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002702 }
2703
Craig Topper3e4c6972014-03-05 09:10:37 +00002704 void visitVACopyInst(VACopyInst &I) override {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002705 IRBuilder<> IRB(&I);
2706 Value *VAListTag = I.getArgOperand(0);
2707 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2708
2709 // Unpoison the whole __va_list_tag.
2710 // FIXME: magic ABI constants.
2711 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
Peter Collingbournef7d65c42013-01-10 22:36:33 +00002712 /* size */24, /* alignment */8, false);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002713 }
2714
Craig Topper3e4c6972014-03-05 09:10:37 +00002715 void finalizeInstrumentation() override {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002716 assert(!VAArgOverflowSize && !VAArgTLSCopy &&
2717 "finalizeInstrumentation called twice");
2718 if (!VAStartInstrumentationList.empty()) {
2719 // If there is a va_start in this function, make a backup copy of
2720 // va_arg_tls somewhere in the function entry block.
2721 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
2722 VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
2723 Value *CopySize =
2724 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
2725 VAArgOverflowSize);
2726 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
2727 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
2728 }
2729
2730 // Instrument va_start.
2731 // Copy va_list shadow from the backup copy of the TLS contents.
2732 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
2733 CallInst *OrigInst = VAStartInstrumentationList[i];
2734 IRBuilder<> IRB(OrigInst->getNextNode());
2735 Value *VAListTag = OrigInst->getArgOperand(0);
2736
2737 Value *RegSaveAreaPtrPtr =
2738 IRB.CreateIntToPtr(
2739 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
2740 ConstantInt::get(MS.IntptrTy, 16)),
2741 Type::getInt64PtrTy(*MS.C));
2742 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
2743 Value *RegSaveAreaShadowPtr =
2744 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
2745 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy,
2746 AMD64FpEndOffset, 16);
2747
2748 Value *OverflowArgAreaPtrPtr =
2749 IRB.CreateIntToPtr(
2750 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
2751 ConstantInt::get(MS.IntptrTy, 8)),
2752 Type::getInt64PtrTy(*MS.C));
2753 Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr);
2754 Value *OverflowArgAreaShadowPtr =
2755 MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB);
Evgeniy Stepanovd42863c2013-08-23 12:11:00 +00002756 Value *SrcPtr = IRB.CreateConstGEP1_32(VAArgTLSCopy, AMD64FpEndOffset);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002757 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16);
2758 }
2759 }
2760};
2761
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002762/// \brief A no-op implementation of VarArgHelper.
2763struct VarArgNoOpHelper : public VarArgHelper {
2764 VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
2765 MemorySanitizerVisitor &MSV) {}
2766
Craig Topper3e4c6972014-03-05 09:10:37 +00002767 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {}
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002768
Craig Topper3e4c6972014-03-05 09:10:37 +00002769 void visitVAStartInst(VAStartInst &I) override {}
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002770
Craig Topper3e4c6972014-03-05 09:10:37 +00002771 void visitVACopyInst(VACopyInst &I) override {}
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002772
Craig Topper3e4c6972014-03-05 09:10:37 +00002773 void finalizeInstrumentation() override {}
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002774};
2775
2776VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002777 MemorySanitizerVisitor &Visitor) {
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002778 // VarArg handling is only implemented on AMD64. False positives are possible
2779 // on other platforms.
2780 llvm::Triple TargetTriple(Func.getParent()->getTargetTriple());
2781 if (TargetTriple.getArch() == llvm::Triple::x86_64)
2782 return new VarArgAMD64Helper(Func, Msan, Visitor);
2783 else
2784 return new VarArgNoOpHelper(Func, Msan, Visitor);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002785}
2786
2787} // namespace
2788
2789bool MemorySanitizer::runOnFunction(Function &F) {
2790 MemorySanitizerVisitor Visitor(F, *this);
2791
2792 // Clear out readonly/readnone attributes.
2793 AttrBuilder B;
Bill Wendling3d7b0b82012-12-19 07:18:57 +00002794 B.addAttribute(Attribute::ReadOnly)
2795 .addAttribute(Attribute::ReadNone);
Bill Wendling430fa9b2013-01-23 00:45:55 +00002796 F.removeAttributes(AttributeSet::FunctionIndex,
2797 AttributeSet::get(F.getContext(),
2798 AttributeSet::FunctionIndex, B));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002799
2800 return Visitor.runOnFunction();
2801}