blob: 1918d0b728cc89355bbfc85136cc11fa7d5c18a6 [file] [log] [blame]
Tim Northover3b0846e2014-05-24 12:50:23 +00001//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AArch64TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
Tim Northover3c55cca2014-11-27 21:02:42 +000014#include "AArch64CallingConvention.h"
Benjamin Kramer1f8930e2014-07-25 11:42:14 +000015#include "AArch64MachineFunctionInfo.h"
Eugene Zelenko049b0172017-01-06 00:30:53 +000016#include "AArch64ISelLowering.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000017#include "AArch64PerfectShuffle.h"
Eugene Zelenko049b0172017-01-06 00:30:53 +000018#include "AArch64RegisterInfo.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000019#include "AArch64Subtarget.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000020#include "MCTargetDesc/AArch64AddressingModes.h"
Eugene Zelenko049b0172017-01-06 00:30:53 +000021#include "Utils/AArch64BaseInfo.h"
22#include "llvm/ADT/APFloat.h"
23#include "llvm/ADT/APInt.h"
24#include "llvm/ADT/ArrayRef.h"
25#include "llvm/ADT/SmallVector.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000026#include "llvm/ADT/Statistic.h"
Eugene Zelenko049b0172017-01-06 00:30:53 +000027#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/StringRef.h"
29#include "llvm/ADT/StringSwitch.h"
30#include "llvm/ADT/Triple.h"
31#include "llvm/ADT/Twine.h"
Matthew Simpsonba5cf9d2017-02-01 17:45:46 +000032#include "llvm/Analysis/VectorUtils.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000033#include "llvm/CodeGen/CallingConvLower.h"
Eugene Zelenko049b0172017-01-06 00:30:53 +000034#include "llvm/CodeGen/MachineBasicBlock.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000035#include "llvm/CodeGen/MachineFrameInfo.h"
Eugene Zelenko049b0172017-01-06 00:30:53 +000036#include "llvm/CodeGen/MachineFunction.h"
37#include "llvm/CodeGen/MachineInstr.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000038#include "llvm/CodeGen/MachineInstrBuilder.h"
Eugene Zelenko049b0172017-01-06 00:30:53 +000039#include "llvm/CodeGen/MachineMemOperand.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000040#include "llvm/CodeGen/MachineRegisterInfo.h"
Eugene Zelenko049b0172017-01-06 00:30:53 +000041#include "llvm/CodeGen/MachineValueType.h"
42#include "llvm/CodeGen/RuntimeLibcalls.h"
43#include "llvm/CodeGen/SelectionDAG.h"
44#include "llvm/CodeGen/SelectionDAGNodes.h"
45#include "llvm/CodeGen/ValueTypes.h"
46#include "llvm/IR/Attributes.h"
47#include "llvm/IR/Constants.h"
48#include "llvm/IR/DataLayout.h"
49#include "llvm/IR/DebugLoc.h"
50#include "llvm/IR/DerivedTypes.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000051#include "llvm/IR/Function.h"
David Blaikie457343d2015-05-21 21:12:43 +000052#include "llvm/IR/GetElementPtrTypeIterator.h"
Eugene Zelenko049b0172017-01-06 00:30:53 +000053#include "llvm/IR/GlobalValue.h"
54#include "llvm/IR/Instruction.h"
55#include "llvm/IR/Instructions.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000056#include "llvm/IR/Intrinsics.h"
Eugene Zelenko049b0172017-01-06 00:30:53 +000057#include "llvm/IR/IRBuilder.h"
58#include "llvm/IR/Module.h"
59#include "llvm/IR/OperandTraits.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000060#include "llvm/IR/Type.h"
Eugene Zelenko049b0172017-01-06 00:30:53 +000061#include "llvm/IR/Use.h"
62#include "llvm/IR/Value.h"
63#include "llvm/MC/MCRegisterInfo.h"
64#include "llvm/Support/Casting.h"
65#include "llvm/Support/CodeGen.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000066#include "llvm/Support/CommandLine.h"
Eugene Zelenko049b0172017-01-06 00:30:53 +000067#include "llvm/Support/Compiler.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000068#include "llvm/Support/Debug.h"
69#include "llvm/Support/ErrorHandling.h"
Eugene Zelenko049b0172017-01-06 00:30:53 +000070#include "llvm/Support/MathExtras.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000071#include "llvm/Support/raw_ostream.h"
Eugene Zelenko049b0172017-01-06 00:30:53 +000072#include "llvm/Target/TargetCallingConv.h"
73#include "llvm/Target/TargetInstrInfo.h"
74#include "llvm/Target/TargetMachine.h"
Tim Northover3b0846e2014-05-24 12:50:23 +000075#include "llvm/Target/TargetOptions.h"
Eugene Zelenko049b0172017-01-06 00:30:53 +000076#include <algorithm>
77#include <bitset>
78#include <cassert>
79#include <cctype>
80#include <cstdint>
81#include <cstdlib>
82#include <iterator>
83#include <limits>
84#include <tuple>
85#include <utility>
86#include <vector>
87
Tim Northover3b0846e2014-05-24 12:50:23 +000088using namespace llvm;
89
90#define DEBUG_TYPE "aarch64-lower"
91
92STATISTIC(NumTailCalls, "Number of tail calls");
93STATISTIC(NumShiftInserts, "Number of vector shift inserts");
94
Tim Northover3b0846e2014-05-24 12:50:23 +000095static cl::opt<bool>
96EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
Kristof Beylsaea84612015-03-04 09:12:08 +000097 cl::desc("Allow AArch64 SLI/SRI formation"),
98 cl::init(false));
99
100// FIXME: The necessary dtprel relocations don't seem to be supported
101// well in the GNU bfd and gold linkers at the moment. Therefore, by
102// default, for now, fall back to GeneralDynamic code generation.
103cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration(
104 "aarch64-elf-ldtls-generation", cl::Hidden,
105 cl::desc("Allow AArch64 Local Dynamic TLS code generation"),
106 cl::init(false));
Tim Northover3b0846e2014-05-24 12:50:23 +0000107
Matthias Braunaf7d7702015-07-16 20:02:37 +0000108/// Value type used for condition codes.
109static const MVT MVT_CC = MVT::i32;
110
Eric Christopher905f12d2015-01-29 00:19:42 +0000111AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM,
112 const AArch64Subtarget &STI)
113 : TargetLowering(TM), Subtarget(&STI) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000114 // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
115 // we have to make something up. Arbitrarily, choose ZeroOrOne.
116 setBooleanContents(ZeroOrOneBooleanContent);
117 // When comparing vectors the result sets the different elements in the
118 // vector to all-one or all-zero.
119 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
120
121 // Set up the register classes.
122 addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
123 addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
124
125 if (Subtarget->hasFPARMv8()) {
126 addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
127 addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
128 addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
129 addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
130 }
131
132 if (Subtarget->hasNEON()) {
133 addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
134 addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
135 // Someone set us up the NEON.
136 addDRTypeForNEON(MVT::v2f32);
137 addDRTypeForNEON(MVT::v8i8);
138 addDRTypeForNEON(MVT::v4i16);
139 addDRTypeForNEON(MVT::v2i32);
140 addDRTypeForNEON(MVT::v1i64);
141 addDRTypeForNEON(MVT::v1f64);
Oliver Stannard89d15422014-08-27 16:16:04 +0000142 addDRTypeForNEON(MVT::v4f16);
Tim Northover3b0846e2014-05-24 12:50:23 +0000143
144 addQRTypeForNEON(MVT::v4f32);
145 addQRTypeForNEON(MVT::v2f64);
146 addQRTypeForNEON(MVT::v16i8);
147 addQRTypeForNEON(MVT::v8i16);
148 addQRTypeForNEON(MVT::v4i32);
149 addQRTypeForNEON(MVT::v2i64);
Oliver Stannard89d15422014-08-27 16:16:04 +0000150 addQRTypeForNEON(MVT::v8f16);
Tim Northover3b0846e2014-05-24 12:50:23 +0000151 }
152
153 // Compute derived properties from the register classes
Eric Christopher23a3a7c2015-02-26 00:00:24 +0000154 computeRegisterProperties(Subtarget->getRegisterInfo());
Tim Northover3b0846e2014-05-24 12:50:23 +0000155
156 // Provide all sorts of operation actions
157 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
158 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
159 setOperationAction(ISD::SETCC, MVT::i32, Custom);
160 setOperationAction(ISD::SETCC, MVT::i64, Custom);
161 setOperationAction(ISD::SETCC, MVT::f32, Custom);
162 setOperationAction(ISD::SETCC, MVT::f64, Custom);
Chad Rosier3daffbf2017-01-10 17:20:33 +0000163 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
164 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
Tim Northover3b0846e2014-05-24 12:50:23 +0000165 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
166 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
167 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
168 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
169 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
170 setOperationAction(ISD::SELECT, MVT::i32, Custom);
171 setOperationAction(ISD::SELECT, MVT::i64, Custom);
172 setOperationAction(ISD::SELECT, MVT::f32, Custom);
173 setOperationAction(ISD::SELECT, MVT::f64, Custom);
174 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
175 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
176 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
177 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
178 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
179 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
180
181 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
182 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
183 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
184
185 setOperationAction(ISD::FREM, MVT::f32, Expand);
186 setOperationAction(ISD::FREM, MVT::f64, Expand);
187 setOperationAction(ISD::FREM, MVT::f80, Expand);
188
189 // Custom lowering hooks are needed for XOR
190 // to fold it into CSINC/CSINV.
191 setOperationAction(ISD::XOR, MVT::i32, Custom);
192 setOperationAction(ISD::XOR, MVT::i64, Custom);
193
194 // Virtually no operation on f128 is legal, but LLVM can't expand them when
195 // there's a valid register class, so we need custom operations in most cases.
196 setOperationAction(ISD::FABS, MVT::f128, Expand);
197 setOperationAction(ISD::FADD, MVT::f128, Custom);
198 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
199 setOperationAction(ISD::FCOS, MVT::f128, Expand);
200 setOperationAction(ISD::FDIV, MVT::f128, Custom);
201 setOperationAction(ISD::FMA, MVT::f128, Expand);
202 setOperationAction(ISD::FMUL, MVT::f128, Custom);
203 setOperationAction(ISD::FNEG, MVT::f128, Expand);
204 setOperationAction(ISD::FPOW, MVT::f128, Expand);
205 setOperationAction(ISD::FREM, MVT::f128, Expand);
206 setOperationAction(ISD::FRINT, MVT::f128, Expand);
207 setOperationAction(ISD::FSIN, MVT::f128, Expand);
208 setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
209 setOperationAction(ISD::FSQRT, MVT::f128, Expand);
210 setOperationAction(ISD::FSUB, MVT::f128, Custom);
211 setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
212 setOperationAction(ISD::SETCC, MVT::f128, Custom);
213 setOperationAction(ISD::BR_CC, MVT::f128, Custom);
214 setOperationAction(ISD::SELECT, MVT::f128, Custom);
215 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
216 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
217
218 // Lowering for many of the conversions is actually specified by the non-f128
219 // type. The LowerXXX function will be trivial when f128 isn't involved.
220 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
221 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
222 setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
223 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
224 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
225 setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
226 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
227 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
228 setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
229 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
230 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
231 setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
232 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
233 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
234
235 // Variable arguments.
236 setOperationAction(ISD::VASTART, MVT::Other, Custom);
237 setOperationAction(ISD::VAARG, MVT::Other, Custom);
238 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
239 setOperationAction(ISD::VAEND, MVT::Other, Expand);
240
241 // Variable-sized objects.
242 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
243 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
244 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
245
Tim Northover3b0846e2014-05-24 12:50:23 +0000246 // Constant pool entries
247 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
248
249 // BlockAddress
250 setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
251
252 // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
253 setOperationAction(ISD::ADDC, MVT::i32, Custom);
254 setOperationAction(ISD::ADDE, MVT::i32, Custom);
255 setOperationAction(ISD::SUBC, MVT::i32, Custom);
256 setOperationAction(ISD::SUBE, MVT::i32, Custom);
257 setOperationAction(ISD::ADDC, MVT::i64, Custom);
258 setOperationAction(ISD::ADDE, MVT::i64, Custom);
259 setOperationAction(ISD::SUBC, MVT::i64, Custom);
260 setOperationAction(ISD::SUBE, MVT::i64, Custom);
261
262 // AArch64 lacks both left-rotate and popcount instructions.
263 setOperationAction(ISD::ROTL, MVT::i32, Expand);
264 setOperationAction(ISD::ROTL, MVT::i64, Expand);
Charlie Turner458e79b2015-10-27 10:25:20 +0000265 for (MVT VT : MVT::vector_valuetypes()) {
266 setOperationAction(ISD::ROTL, VT, Expand);
267 setOperationAction(ISD::ROTR, VT, Expand);
268 }
Tim Northover3b0846e2014-05-24 12:50:23 +0000269
270 // AArch64 doesn't have {U|S}MUL_LOHI.
271 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
272 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
273
Tim Northover3b0846e2014-05-24 12:50:23 +0000274 setOperationAction(ISD::CTPOP, MVT::i32, Custom);
275 setOperationAction(ISD::CTPOP, MVT::i64, Custom);
276
277 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
278 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
Chad Rosierf3491492015-12-04 21:38:44 +0000279 for (MVT VT : MVT::vector_valuetypes()) {
280 setOperationAction(ISD::SDIVREM, VT, Expand);
281 setOperationAction(ISD::UDIVREM, VT, Expand);
282 }
Tim Northover3b0846e2014-05-24 12:50:23 +0000283 setOperationAction(ISD::SREM, MVT::i32, Expand);
284 setOperationAction(ISD::SREM, MVT::i64, Expand);
285 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
286 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
287 setOperationAction(ISD::UREM, MVT::i32, Expand);
288 setOperationAction(ISD::UREM, MVT::i64, Expand);
289
290 // Custom lower Add/Sub/Mul with overflow.
291 setOperationAction(ISD::SADDO, MVT::i32, Custom);
292 setOperationAction(ISD::SADDO, MVT::i64, Custom);
293 setOperationAction(ISD::UADDO, MVT::i32, Custom);
294 setOperationAction(ISD::UADDO, MVT::i64, Custom);
295 setOperationAction(ISD::SSUBO, MVT::i32, Custom);
296 setOperationAction(ISD::SSUBO, MVT::i64, Custom);
297 setOperationAction(ISD::USUBO, MVT::i32, Custom);
298 setOperationAction(ISD::USUBO, MVT::i64, Custom);
299 setOperationAction(ISD::SMULO, MVT::i32, Custom);
300 setOperationAction(ISD::SMULO, MVT::i64, Custom);
301 setOperationAction(ISD::UMULO, MVT::i32, Custom);
302 setOperationAction(ISD::UMULO, MVT::i64, Custom);
303
304 setOperationAction(ISD::FSIN, MVT::f32, Expand);
305 setOperationAction(ISD::FSIN, MVT::f64, Expand);
306 setOperationAction(ISD::FCOS, MVT::f32, Expand);
307 setOperationAction(ISD::FCOS, MVT::f64, Expand);
308 setOperationAction(ISD::FPOW, MVT::f32, Expand);
309 setOperationAction(ISD::FPOW, MVT::f64, Expand);
310 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
311 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
312
Ahmed Bougacha1ffe7c72015-04-10 00:08:48 +0000313 // f16 is a storage-only type, always promote it to f32.
314 setOperationAction(ISD::SETCC, MVT::f16, Promote);
315 setOperationAction(ISD::BR_CC, MVT::f16, Promote);
316 setOperationAction(ISD::SELECT_CC, MVT::f16, Promote);
317 setOperationAction(ISD::SELECT, MVT::f16, Promote);
318 setOperationAction(ISD::FADD, MVT::f16, Promote);
319 setOperationAction(ISD::FSUB, MVT::f16, Promote);
320 setOperationAction(ISD::FMUL, MVT::f16, Promote);
321 setOperationAction(ISD::FDIV, MVT::f16, Promote);
322 setOperationAction(ISD::FREM, MVT::f16, Promote);
323 setOperationAction(ISD::FMA, MVT::f16, Promote);
324 setOperationAction(ISD::FNEG, MVT::f16, Promote);
325 setOperationAction(ISD::FABS, MVT::f16, Promote);
326 setOperationAction(ISD::FCEIL, MVT::f16, Promote);
327 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);
328 setOperationAction(ISD::FCOS, MVT::f16, Promote);
329 setOperationAction(ISD::FFLOOR, MVT::f16, Promote);
330 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
331 setOperationAction(ISD::FPOW, MVT::f16, Promote);
332 setOperationAction(ISD::FPOWI, MVT::f16, Promote);
333 setOperationAction(ISD::FRINT, MVT::f16, Promote);
334 setOperationAction(ISD::FSIN, MVT::f16, Promote);
335 setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
336 setOperationAction(ISD::FSQRT, MVT::f16, Promote);
337 setOperationAction(ISD::FEXP, MVT::f16, Promote);
338 setOperationAction(ISD::FEXP2, MVT::f16, Promote);
339 setOperationAction(ISD::FLOG, MVT::f16, Promote);
340 setOperationAction(ISD::FLOG2, MVT::f16, Promote);
341 setOperationAction(ISD::FLOG10, MVT::f16, Promote);
342 setOperationAction(ISD::FROUND, MVT::f16, Promote);
343 setOperationAction(ISD::FTRUNC, MVT::f16, Promote);
344 setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
345 setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
James Molloy63be1982015-08-14 09:08:50 +0000346 setOperationAction(ISD::FMINNAN, MVT::f16, Promote);
347 setOperationAction(ISD::FMAXNAN, MVT::f16, Promote);
Oliver Stannardf5469be2014-08-18 14:22:39 +0000348
Oliver Stannard89d15422014-08-27 16:16:04 +0000349 // v4f16 is also a storage-only type, so promote it to v4f32 when that is
350 // known to be safe.
351 setOperationAction(ISD::FADD, MVT::v4f16, Promote);
352 setOperationAction(ISD::FSUB, MVT::v4f16, Promote);
353 setOperationAction(ISD::FMUL, MVT::v4f16, Promote);
354 setOperationAction(ISD::FDIV, MVT::v4f16, Promote);
355 setOperationAction(ISD::FP_EXTEND, MVT::v4f16, Promote);
356 setOperationAction(ISD::FP_ROUND, MVT::v4f16, Promote);
357 AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32);
358 AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32);
359 AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32);
360 AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32);
361 AddPromotedToType(ISD::FP_EXTEND, MVT::v4f16, MVT::v4f32);
362 AddPromotedToType(ISD::FP_ROUND, MVT::v4f16, MVT::v4f32);
363
364 // Expand all other v4f16 operations.
365 // FIXME: We could generate better code by promoting some operations to
366 // a pair of v4f32s
367 setOperationAction(ISD::FABS, MVT::v4f16, Expand);
368 setOperationAction(ISD::FCEIL, MVT::v4f16, Expand);
369 setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand);
370 setOperationAction(ISD::FCOS, MVT::v4f16, Expand);
371 setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand);
372 setOperationAction(ISD::FMA, MVT::v4f16, Expand);
373 setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand);
374 setOperationAction(ISD::FNEG, MVT::v4f16, Expand);
375 setOperationAction(ISD::FPOW, MVT::v4f16, Expand);
376 setOperationAction(ISD::FPOWI, MVT::v4f16, Expand);
377 setOperationAction(ISD::FREM, MVT::v4f16, Expand);
378 setOperationAction(ISD::FROUND, MVT::v4f16, Expand);
379 setOperationAction(ISD::FRINT, MVT::v4f16, Expand);
380 setOperationAction(ISD::FSIN, MVT::v4f16, Expand);
381 setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand);
382 setOperationAction(ISD::FSQRT, MVT::v4f16, Expand);
383 setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand);
384 setOperationAction(ISD::SETCC, MVT::v4f16, Expand);
385 setOperationAction(ISD::BR_CC, MVT::v4f16, Expand);
386 setOperationAction(ISD::SELECT, MVT::v4f16, Expand);
387 setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand);
388 setOperationAction(ISD::FEXP, MVT::v4f16, Expand);
389 setOperationAction(ISD::FEXP2, MVT::v4f16, Expand);
390 setOperationAction(ISD::FLOG, MVT::v4f16, Expand);
391 setOperationAction(ISD::FLOG2, MVT::v4f16, Expand);
392 setOperationAction(ISD::FLOG10, MVT::v4f16, Expand);
393
394
395 // v8f16 is also a storage-only type, so expand it.
396 setOperationAction(ISD::FABS, MVT::v8f16, Expand);
397 setOperationAction(ISD::FADD, MVT::v8f16, Expand);
398 setOperationAction(ISD::FCEIL, MVT::v8f16, Expand);
399 setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand);
400 setOperationAction(ISD::FCOS, MVT::v8f16, Expand);
401 setOperationAction(ISD::FDIV, MVT::v8f16, Expand);
402 setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand);
403 setOperationAction(ISD::FMA, MVT::v8f16, Expand);
404 setOperationAction(ISD::FMUL, MVT::v8f16, Expand);
405 setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand);
406 setOperationAction(ISD::FNEG, MVT::v8f16, Expand);
407 setOperationAction(ISD::FPOW, MVT::v8f16, Expand);
408 setOperationAction(ISD::FPOWI, MVT::v8f16, Expand);
409 setOperationAction(ISD::FREM, MVT::v8f16, Expand);
410 setOperationAction(ISD::FROUND, MVT::v8f16, Expand);
411 setOperationAction(ISD::FRINT, MVT::v8f16, Expand);
412 setOperationAction(ISD::FSIN, MVT::v8f16, Expand);
413 setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand);
414 setOperationAction(ISD::FSQRT, MVT::v8f16, Expand);
415 setOperationAction(ISD::FSUB, MVT::v8f16, Expand);
416 setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand);
417 setOperationAction(ISD::SETCC, MVT::v8f16, Expand);
418 setOperationAction(ISD::BR_CC, MVT::v8f16, Expand);
419 setOperationAction(ISD::SELECT, MVT::v8f16, Expand);
420 setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand);
421 setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand);
422 setOperationAction(ISD::FEXP, MVT::v8f16, Expand);
423 setOperationAction(ISD::FEXP2, MVT::v8f16, Expand);
424 setOperationAction(ISD::FLOG, MVT::v8f16, Expand);
425 setOperationAction(ISD::FLOG2, MVT::v8f16, Expand);
426 setOperationAction(ISD::FLOG10, MVT::v8f16, Expand);
427
Tim Northover3b0846e2014-05-24 12:50:23 +0000428 // AArch64 has implementations of a lot of rounding-like FP operations.
Benjamin Kramer57a3d082015-03-08 16:07:39 +0000429 for (MVT Ty : {MVT::f32, MVT::f64}) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000430 setOperationAction(ISD::FFLOOR, Ty, Legal);
431 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
432 setOperationAction(ISD::FCEIL, Ty, Legal);
433 setOperationAction(ISD::FRINT, Ty, Legal);
434 setOperationAction(ISD::FTRUNC, Ty, Legal);
435 setOperationAction(ISD::FROUND, Ty, Legal);
James Molloyb7b2a1e2015-08-11 12:06:37 +0000436 setOperationAction(ISD::FMINNUM, Ty, Legal);
437 setOperationAction(ISD::FMAXNUM, Ty, Legal);
James Molloy88edc822015-08-17 07:13:20 +0000438 setOperationAction(ISD::FMINNAN, Ty, Legal);
439 setOperationAction(ISD::FMAXNAN, Ty, Legal);
Tim Northover3b0846e2014-05-24 12:50:23 +0000440 }
441
442 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
443
Tim Northovercdf15292016-04-14 17:03:29 +0000444 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
445
Ahmed Bougachab0ff6432015-09-01 16:23:45 +0000446 // Lower READCYCLECOUNTER using an mrs from PMCCNTR_EL0.
447 // This requires the Performance Monitors extension.
448 if (Subtarget->hasPerfMon())
449 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
450
Tim Northover3b0846e2014-05-24 12:50:23 +0000451 if (Subtarget->isTargetMachO()) {
452 // For iOS, we don't want to the normal expansion of a libcall to
453 // sincos. We want to issue a libcall to __sincos_stret to avoid memory
454 // traffic.
455 setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
456 setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
457 } else {
458 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
459 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
460 }
461
Juergen Ributzka23266502014-12-10 19:43:32 +0000462 // Make floating-point constants legal for the large code model, so they don't
463 // become loads from the constant pool.
464 if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
465 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
466 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
467 }
468
Tim Northover3b0846e2014-05-24 12:50:23 +0000469 // AArch64 does not have floating-point extending loads, i1 sign-extending
470 // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000471 for (MVT VT : MVT::fp_valuetypes()) {
472 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
473 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
474 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
475 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
476 }
477 for (MVT VT : MVT::integer_valuetypes())
478 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);
479
Tim Northover3b0846e2014-05-24 12:50:23 +0000480 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
481 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
482 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
483 setTruncStoreAction(MVT::f128, MVT::f80, Expand);
484 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
485 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
486 setTruncStoreAction(MVT::f128, MVT::f16, Expand);
Tim Northoverf8bfe212014-07-18 13:07:05 +0000487
488 setOperationAction(ISD::BITCAST, MVT::i16, Custom);
489 setOperationAction(ISD::BITCAST, MVT::f16, Custom);
490
Tim Northover3b0846e2014-05-24 12:50:23 +0000491 // Indexed loads and stores are supported.
492 for (unsigned im = (unsigned)ISD::PRE_INC;
493 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
494 setIndexedLoadAction(im, MVT::i8, Legal);
495 setIndexedLoadAction(im, MVT::i16, Legal);
496 setIndexedLoadAction(im, MVT::i32, Legal);
497 setIndexedLoadAction(im, MVT::i64, Legal);
498 setIndexedLoadAction(im, MVT::f64, Legal);
499 setIndexedLoadAction(im, MVT::f32, Legal);
Ahmed Bougachae0e12db2015-08-04 01:29:38 +0000500 setIndexedLoadAction(im, MVT::f16, Legal);
Tim Northover3b0846e2014-05-24 12:50:23 +0000501 setIndexedStoreAction(im, MVT::i8, Legal);
502 setIndexedStoreAction(im, MVT::i16, Legal);
503 setIndexedStoreAction(im, MVT::i32, Legal);
504 setIndexedStoreAction(im, MVT::i64, Legal);
505 setIndexedStoreAction(im, MVT::f64, Legal);
506 setIndexedStoreAction(im, MVT::f32, Legal);
Ahmed Bougachae0e12db2015-08-04 01:29:38 +0000507 setIndexedStoreAction(im, MVT::f16, Legal);
Tim Northover3b0846e2014-05-24 12:50:23 +0000508 }
509
510 // Trap.
511 setOperationAction(ISD::TRAP, MVT::Other, Legal);
512
513 // We combine OR nodes for bitfield operations.
514 setTargetDAGCombine(ISD::OR);
515
516 // Vector add and sub nodes may conceal a high-half opportunity.
517 // Also, try to fold ADD into CSINC/CSINV..
518 setTargetDAGCombine(ISD::ADD);
519 setTargetDAGCombine(ISD::SUB);
Chad Rosier14aa2ad2016-05-26 19:41:33 +0000520 setTargetDAGCombine(ISD::SRL);
Tim Northover3b0846e2014-05-24 12:50:23 +0000521 setTargetDAGCombine(ISD::XOR);
522 setTargetDAGCombine(ISD::SINT_TO_FP);
523 setTargetDAGCombine(ISD::UINT_TO_FP);
524
Chad Rosierfa30c9b2015-10-07 17:39:18 +0000525 setTargetDAGCombine(ISD::FP_TO_SINT);
526 setTargetDAGCombine(ISD::FP_TO_UINT);
Chad Rosier7c6ac2b2015-10-07 17:51:37 +0000527 setTargetDAGCombine(ISD::FDIV);
Chad Rosierfa30c9b2015-10-07 17:39:18 +0000528
Tim Northover3b0846e2014-05-24 12:50:23 +0000529 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
530
531 setTargetDAGCombine(ISD::ANY_EXTEND);
532 setTargetDAGCombine(ISD::ZERO_EXTEND);
533 setTargetDAGCombine(ISD::SIGN_EXTEND);
534 setTargetDAGCombine(ISD::BITCAST);
535 setTargetDAGCombine(ISD::CONCAT_VECTORS);
536 setTargetDAGCombine(ISD::STORE);
Tim Northover339c83e2015-11-10 00:44:23 +0000537 if (Subtarget->supportsAddressTopByteIgnored())
538 setTargetDAGCombine(ISD::LOAD);
Tim Northover3b0846e2014-05-24 12:50:23 +0000539
540 setTargetDAGCombine(ISD::MUL);
541
542 setTargetDAGCombine(ISD::SELECT);
543 setTargetDAGCombine(ISD::VSELECT);
544
545 setTargetDAGCombine(ISD::INTRINSIC_VOID);
546 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
547 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
Chad Rosier6c36eff2015-09-03 18:13:57 +0000548 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
Tim Northover3b0846e2014-05-24 12:50:23 +0000549
550 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 8;
551 MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 4;
552 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 4;
553
554 setStackPointerRegisterToSaveRestore(AArch64::SP);
555
556 setSchedulingPreference(Sched::Hybrid);
557
Quentin Colombet6843ac42015-03-31 20:52:32 +0000558 EnableExtLdPromotion = true;
Tim Northover3b0846e2014-05-24 12:50:23 +0000559
Evandro Menezesa3a0a602016-06-10 16:00:18 +0000560 // Set required alignment.
Tim Northover3b0846e2014-05-24 12:50:23 +0000561 setMinFunctionAlignment(2);
Evandro Menezesa3a0a602016-06-10 16:00:18 +0000562 // Set preferred alignments.
563 setPrefFunctionAlignment(STI.getPrefFunctionAlignment());
564 setPrefLoopAlignment(STI.getPrefLoopAlignment());
Tim Northover3b0846e2014-05-24 12:50:23 +0000565
Evandro Menezese45de8a2016-09-26 15:32:33 +0000566 // Only change the limit for entries in a jump table if specified by
567 // the subtarget, but not at the command line.
568 unsigned MaxJT = STI.getMaximumJumpTableSize();
569 if (MaxJT && getMaximumJumpTableSize() == 0)
570 setMaximumJumpTableSize(MaxJT);
571
Tim Northover3b0846e2014-05-24 12:50:23 +0000572 setHasExtractBitsInsn(true);
573
Adhemerval Zanella7bc33192015-07-28 13:03:31 +0000574 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
575
Tim Northover3b0846e2014-05-24 12:50:23 +0000576 if (Subtarget->hasNEON()) {
577 // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
578 // silliness like this:
579 setOperationAction(ISD::FABS, MVT::v1f64, Expand);
580 setOperationAction(ISD::FADD, MVT::v1f64, Expand);
581 setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
582 setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
583 setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
584 setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
585 setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
586 setOperationAction(ISD::FMA, MVT::v1f64, Expand);
587 setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
588 setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
589 setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
590 setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
591 setOperationAction(ISD::FREM, MVT::v1f64, Expand);
592 setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
593 setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
594 setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
595 setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
596 setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
597 setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
598 setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
599 setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
600 setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
601 setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
602 setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
603 setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
604
605 setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
606 setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
607 setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
608 setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
609 setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
610
611 setOperationAction(ISD::MUL, MVT::v1i64, Expand);
612
613 // AArch64 doesn't have a direct vector ->f32 conversion instructions for
614 // elements smaller than i32, so promote the input to i32 first.
615 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Promote);
616 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Promote);
617 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Promote);
618 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Promote);
Pirama Arumuga Nainarb1881532015-04-23 17:16:27 +0000619 // i8 and i16 vector elements also need promotion to i32 for v8i8 or v8i16
620 // -> v8f16 conversions.
621 setOperationAction(ISD::SINT_TO_FP, MVT::v8i8, Promote);
622 setOperationAction(ISD::UINT_TO_FP, MVT::v8i8, Promote);
623 setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Promote);
624 setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Promote);
Tim Northover3b0846e2014-05-24 12:50:23 +0000625 // Similarly, there is no direct i32 -> f64 vector conversion instruction.
626 setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
627 setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
628 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
629 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
Pirama Arumuga Nainarb1881532015-04-23 17:16:27 +0000630 // Or, direct i32 -> f16 vector conversion. Set it so custom, so the
631 // conversion happens in two steps: v4i32 -> v4f32 -> v4f16
632 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Custom);
633 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom);
Tim Northover3b0846e2014-05-24 12:50:23 +0000634
Craig Topperc5551bf2016-04-26 05:26:51 +0000635 setOperationAction(ISD::CTLZ, MVT::v1i64, Expand);
636 setOperationAction(ISD::CTLZ, MVT::v2i64, Expand);
637
Craig Topper3b4842b2016-04-28 01:58:21 +0000638 setOperationAction(ISD::CTTZ, MVT::v2i8, Expand);
639 setOperationAction(ISD::CTTZ, MVT::v4i16, Expand);
640 setOperationAction(ISD::CTTZ, MVT::v2i32, Expand);
641 setOperationAction(ISD::CTTZ, MVT::v1i64, Expand);
642 setOperationAction(ISD::CTTZ, MVT::v16i8, Expand);
643 setOperationAction(ISD::CTTZ, MVT::v8i16, Expand);
644 setOperationAction(ISD::CTTZ, MVT::v4i32, Expand);
645 setOperationAction(ISD::CTTZ, MVT::v2i64, Expand);
646
Tim Northover3b0846e2014-05-24 12:50:23 +0000647 // AArch64 doesn't have MUL.2d:
648 setOperationAction(ISD::MUL, MVT::v2i64, Expand);
Chad Rosierd9d0f862014-10-08 02:31:24 +0000649 // Custom handling for some quad-vector types to detect MULL.
650 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
651 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
652 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
653
Tim Northover3b0846e2014-05-24 12:50:23 +0000654 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
655 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
656 // Likewise, narrowing and extending vector loads/stores aren't handled
657 // directly.
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000658 for (MVT VT : MVT::vector_valuetypes()) {
659 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000660
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000661 setOperationAction(ISD::MULHS, VT, Expand);
662 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
663 setOperationAction(ISD::MULHU, VT, Expand);
664 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000665
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000666 setOperationAction(ISD::BSWAP, VT, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000667
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000668 for (MVT InnerVT : MVT::vector_valuetypes()) {
Ahmed Bougacha67dd2d22015-01-07 21:27:10 +0000669 setTruncStoreAction(VT, InnerVT, Expand);
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000670 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
671 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
672 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
673 }
Tim Northover3b0846e2014-05-24 12:50:23 +0000674 }
675
676 // AArch64 has implementations of a lot of rounding-like FP operations.
Benjamin Kramer57a3d082015-03-08 16:07:39 +0000677 for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64}) {
Tim Northover3b0846e2014-05-24 12:50:23 +0000678 setOperationAction(ISD::FFLOOR, Ty, Legal);
679 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
680 setOperationAction(ISD::FCEIL, Ty, Legal);
681 setOperationAction(ISD::FRINT, Ty, Legal);
682 setOperationAction(ISD::FTRUNC, Ty, Legal);
683 setOperationAction(ISD::FROUND, Ty, Legal);
684 }
685 }
James Molloyf089ab72014-08-06 10:42:18 +0000686
Matthias Braun651cff42016-06-02 18:03:53 +0000687 PredictableSelectIsExpensive = Subtarget->predictableSelectIsExpensive();
Tim Northover3b0846e2014-05-24 12:50:23 +0000688}
689
Craig Topper18e69f42016-04-15 06:20:21 +0000690void AArch64TargetLowering::addTypeForNEON(MVT VT, MVT PromotedBitwiseVT) {
Jiangning Liu08f4cda2014-08-29 01:31:42 +0000691 if (VT == MVT::v2f32 || VT == MVT::v4f16) {
Craig Topper18e69f42016-04-15 06:20:21 +0000692 setOperationAction(ISD::LOAD, VT, Promote);
693 AddPromotedToType(ISD::LOAD, VT, MVT::v2i32);
Tim Northover3b0846e2014-05-24 12:50:23 +0000694
Craig Topper18e69f42016-04-15 06:20:21 +0000695 setOperationAction(ISD::STORE, VT, Promote);
696 AddPromotedToType(ISD::STORE, VT, MVT::v2i32);
Jiangning Liu08f4cda2014-08-29 01:31:42 +0000697 } else if (VT == MVT::v2f64 || VT == MVT::v4f32 || VT == MVT::v8f16) {
Craig Topper18e69f42016-04-15 06:20:21 +0000698 setOperationAction(ISD::LOAD, VT, Promote);
699 AddPromotedToType(ISD::LOAD, VT, MVT::v2i64);
Tim Northover3b0846e2014-05-24 12:50:23 +0000700
Craig Topper18e69f42016-04-15 06:20:21 +0000701 setOperationAction(ISD::STORE, VT, Promote);
702 AddPromotedToType(ISD::STORE, VT, MVT::v2i64);
Tim Northover3b0846e2014-05-24 12:50:23 +0000703 }
704
705 // Mark vector float intrinsics as expand.
706 if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
Craig Topper18e69f42016-04-15 06:20:21 +0000707 setOperationAction(ISD::FSIN, VT, Expand);
708 setOperationAction(ISD::FCOS, VT, Expand);
709 setOperationAction(ISD::FPOWI, VT, Expand);
710 setOperationAction(ISD::FPOW, VT, Expand);
711 setOperationAction(ISD::FLOG, VT, Expand);
712 setOperationAction(ISD::FLOG2, VT, Expand);
713 setOperationAction(ISD::FLOG10, VT, Expand);
714 setOperationAction(ISD::FEXP, VT, Expand);
715 setOperationAction(ISD::FEXP2, VT, Expand);
Ahmed Bougachab0ae36f2015-08-04 00:42:34 +0000716
717 // But we do support custom-lowering for FCOPYSIGN.
Craig Topper18e69f42016-04-15 06:20:21 +0000718 setOperationAction(ISD::FCOPYSIGN, VT, Custom);
Tim Northover3b0846e2014-05-24 12:50:23 +0000719 }
720
Craig Topper18e69f42016-04-15 06:20:21 +0000721 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
722 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
723 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
724 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
725 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
726 setOperationAction(ISD::SRA, VT, Custom);
727 setOperationAction(ISD::SRL, VT, Custom);
728 setOperationAction(ISD::SHL, VT, Custom);
729 setOperationAction(ISD::AND, VT, Custom);
730 setOperationAction(ISD::OR, VT, Custom);
731 setOperationAction(ISD::SETCC, VT, Custom);
732 setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
Tim Northover3b0846e2014-05-24 12:50:23 +0000733
Craig Topper18e69f42016-04-15 06:20:21 +0000734 setOperationAction(ISD::SELECT, VT, Expand);
735 setOperationAction(ISD::SELECT_CC, VT, Expand);
736 setOperationAction(ISD::VSELECT, VT, Expand);
Ahmed Bougacha2b6917b2015-01-08 00:51:32 +0000737 for (MVT InnerVT : MVT::all_valuetypes())
Craig Topper18e69f42016-04-15 06:20:21 +0000738 setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000739
740 // CNT supports only B element sizes.
741 if (VT != MVT::v8i8 && VT != MVT::v16i8)
Craig Topper18e69f42016-04-15 06:20:21 +0000742 setOperationAction(ISD::CTPOP, VT, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000743
Craig Topper18e69f42016-04-15 06:20:21 +0000744 setOperationAction(ISD::UDIV, VT, Expand);
745 setOperationAction(ISD::SDIV, VT, Expand);
746 setOperationAction(ISD::UREM, VT, Expand);
747 setOperationAction(ISD::SREM, VT, Expand);
748 setOperationAction(ISD::FREM, VT, Expand);
Tim Northover3b0846e2014-05-24 12:50:23 +0000749
Craig Topper18e69f42016-04-15 06:20:21 +0000750 setOperationAction(ISD::FP_TO_SINT, VT, Custom);
751 setOperationAction(ISD::FP_TO_UINT, VT, Custom);
Tim Northover3b0846e2014-05-24 12:50:23 +0000752
Hal Finkelcd8664c2015-12-11 23:11:52 +0000753 // [SU][MIN|MAX] are available for all NEON types apart from i64.
Craig Topper18e69f42016-04-15 06:20:21 +0000754 if (!VT.isFloatingPoint() && VT != MVT::v2i64 && VT != MVT::v1i64)
Hal Finkelcd8664c2015-12-11 23:11:52 +0000755 for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
Craig Topper18e69f42016-04-15 06:20:21 +0000756 setOperationAction(Opcode, VT, Legal);
James Molloycfb04432015-05-15 16:15:57 +0000757
James Molloy63be1982015-08-14 09:08:50 +0000758 // F[MIN|MAX][NUM|NAN] are available for all FP NEON types (not f16 though!).
759 if (VT.isFloatingPoint() && VT.getVectorElementType() != MVT::f16)
James Molloyb7b2a1e2015-08-11 12:06:37 +0000760 for (unsigned Opcode : {ISD::FMINNAN, ISD::FMAXNAN,
761 ISD::FMINNUM, ISD::FMAXNUM})
Craig Topper18e69f42016-04-15 06:20:21 +0000762 setOperationAction(Opcode, VT, Legal);
James Molloyedf38f02015-08-11 12:06:33 +0000763
Tim Northover3b0846e2014-05-24 12:50:23 +0000764 if (Subtarget->isLittleEndian()) {
765 for (unsigned im = (unsigned)ISD::PRE_INC;
766 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
Craig Topper18e69f42016-04-15 06:20:21 +0000767 setIndexedLoadAction(im, VT, Legal);
768 setIndexedStoreAction(im, VT, Legal);
Tim Northover3b0846e2014-05-24 12:50:23 +0000769 }
770 }
771}
772
773void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
774 addRegisterClass(VT, &AArch64::FPR64RegClass);
775 addTypeForNEON(VT, MVT::v2i32);
776}
777
778void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
779 addRegisterClass(VT, &AArch64::FPR128RegClass);
780 addTypeForNEON(VT, MVT::v4i32);
781}
782
Mehdi Amini44ede332015-07-09 02:09:04 +0000783EVT AArch64TargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
784 EVT VT) const {
Tim Northover3b0846e2014-05-24 12:50:23 +0000785 if (!VT.isVector())
786 return MVT::i32;
787 return VT.changeVectorElementTypeToInteger();
788}
789
790/// computeKnownBitsForTargetNode - Determine which of the bits specified in
791/// Mask are known to be either zero or one and return them in the
792/// KnownZero/KnownOne bitsets.
793void AArch64TargetLowering::computeKnownBitsForTargetNode(
794 const SDValue Op, APInt &KnownZero, APInt &KnownOne,
Simon Pilgrim37b536e2017-03-31 11:24:16 +0000795 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
Tim Northover3b0846e2014-05-24 12:50:23 +0000796 switch (Op.getOpcode()) {
797 default:
798 break;
799 case AArch64ISD::CSEL: {
800 APInt KnownZero2, KnownOne2;
801 DAG.computeKnownBits(Op->getOperand(0), KnownZero, KnownOne, Depth + 1);
802 DAG.computeKnownBits(Op->getOperand(1), KnownZero2, KnownOne2, Depth + 1);
803 KnownZero &= KnownZero2;
804 KnownOne &= KnownOne2;
805 break;
806 }
807 case ISD::INTRINSIC_W_CHAIN: {
Jun Bum Lim4d3c5982015-09-08 16:11:22 +0000808 ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
Tim Northover3b0846e2014-05-24 12:50:23 +0000809 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
810 switch (IntID) {
811 default: return;
812 case Intrinsic::aarch64_ldaxr:
813 case Intrinsic::aarch64_ldxr: {
814 unsigned BitWidth = KnownOne.getBitWidth();
815 EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
Sanjay Patelbd6fca12016-09-14 15:21:00 +0000816 unsigned MemBits = VT.getScalarSizeInBits();
Tim Northover3b0846e2014-05-24 12:50:23 +0000817 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
818 return;
819 }
820 }
821 break;
822 }
823 case ISD::INTRINSIC_WO_CHAIN:
824 case ISD::INTRINSIC_VOID: {
825 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
826 switch (IntNo) {
827 default:
828 break;
829 case Intrinsic::aarch64_neon_umaxv:
830 case Intrinsic::aarch64_neon_uminv: {
831 // Figure out the datatype of the vector operand. The UMINV instruction
832 // will zero extend the result, so we can mark as known zero all the
833 // bits larger than the element datatype. 32-bit or larget doesn't need
834 // this as those are legal types and will be handled by isel directly.
835 MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
836 unsigned BitWidth = KnownZero.getBitWidth();
837 if (VT == MVT::v8i8 || VT == MVT::v16i8) {
838 assert(BitWidth >= 8 && "Unexpected width!");
839 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
840 KnownZero |= Mask;
841 } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
842 assert(BitWidth >= 16 && "Unexpected width!");
843 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
844 KnownZero |= Mask;
845 }
846 break;
847 } break;
848 }
849 }
850 }
851}
852
Mehdi Aminieaabc512015-07-09 15:12:23 +0000853MVT AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
854 EVT) const {
Tim Northover3b0846e2014-05-24 12:50:23 +0000855 return MVT::i64;
856}
857
Akira Hatanakaf53b0402015-07-29 14:17:26 +0000858bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
859 unsigned AddrSpace,
860 unsigned Align,
861 bool *Fast) const {
862 if (Subtarget->requiresStrictAlign())
863 return false;
Sanjay Patelbbbf9a12015-09-25 21:49:48 +0000864
Sanjay Patelbbbf9a12015-09-25 21:49:48 +0000865 if (Fast) {
Matthias Braun651cff42016-06-02 18:03:53 +0000866 // Some CPUs are fine with unaligned stores except for 128-bit ones.
867 *Fast = !Subtarget->isMisaligned128StoreSlow() || VT.getStoreSize() != 16 ||
Sanjay Patelbbbf9a12015-09-25 21:49:48 +0000868 // See comments in performSTORECombine() for more details about
869 // these conditions.
870
871 // Code that uses clang vector extensions can mark that it
872 // wants unaligned accesses to be treated as fast by
873 // underspecifying alignment to be 1 or 2.
874 Align <= 2 ||
875
876 // Disregard v2i64. Memcpy lowering produces those and splitting
877 // them regresses performance on micro-benchmarks and olden/bh.
878 VT == MVT::v2i64;
879 }
Akira Hatanakaf53b0402015-07-29 14:17:26 +0000880 return true;
881}
882
Tim Northover3b0846e2014-05-24 12:50:23 +0000883FastISel *
884AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
885 const TargetLibraryInfo *libInfo) const {
886 return AArch64::createFastISel(funcInfo, libInfo);
887}
888
889const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
Matthias Braund04893f2015-05-07 21:33:59 +0000890 switch ((AArch64ISD::NodeType)Opcode) {
891 case AArch64ISD::FIRST_NUMBER: break;
Tim Northover3b0846e2014-05-24 12:50:23 +0000892 case AArch64ISD::CALL: return "AArch64ISD::CALL";
893 case AArch64ISD::ADRP: return "AArch64ISD::ADRP";
894 case AArch64ISD::ADDlow: return "AArch64ISD::ADDlow";
895 case AArch64ISD::LOADgot: return "AArch64ISD::LOADgot";
896 case AArch64ISD::RET_FLAG: return "AArch64ISD::RET_FLAG";
897 case AArch64ISD::BRCOND: return "AArch64ISD::BRCOND";
898 case AArch64ISD::CSEL: return "AArch64ISD::CSEL";
899 case AArch64ISD::FCSEL: return "AArch64ISD::FCSEL";
900 case AArch64ISD::CSINV: return "AArch64ISD::CSINV";
901 case AArch64ISD::CSNEG: return "AArch64ISD::CSNEG";
902 case AArch64ISD::CSINC: return "AArch64ISD::CSINC";
903 case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
Kristof Beylsaea84612015-03-04 09:12:08 +0000904 case AArch64ISD::TLSDESC_CALLSEQ: return "AArch64ISD::TLSDESC_CALLSEQ";
Tim Northover3b0846e2014-05-24 12:50:23 +0000905 case AArch64ISD::ADC: return "AArch64ISD::ADC";
906 case AArch64ISD::SBC: return "AArch64ISD::SBC";
907 case AArch64ISD::ADDS: return "AArch64ISD::ADDS";
908 case AArch64ISD::SUBS: return "AArch64ISD::SUBS";
909 case AArch64ISD::ADCS: return "AArch64ISD::ADCS";
910 case AArch64ISD::SBCS: return "AArch64ISD::SBCS";
911 case AArch64ISD::ANDS: return "AArch64ISD::ANDS";
Matthias Braunaf7d7702015-07-16 20:02:37 +0000912 case AArch64ISD::CCMP: return "AArch64ISD::CCMP";
913 case AArch64ISD::CCMN: return "AArch64ISD::CCMN";
914 case AArch64ISD::FCCMP: return "AArch64ISD::FCCMP";
Tim Northover3b0846e2014-05-24 12:50:23 +0000915 case AArch64ISD::FCMP: return "AArch64ISD::FCMP";
Tim Northover3b0846e2014-05-24 12:50:23 +0000916 case AArch64ISD::DUP: return "AArch64ISD::DUP";
917 case AArch64ISD::DUPLANE8: return "AArch64ISD::DUPLANE8";
918 case AArch64ISD::DUPLANE16: return "AArch64ISD::DUPLANE16";
919 case AArch64ISD::DUPLANE32: return "AArch64ISD::DUPLANE32";
920 case AArch64ISD::DUPLANE64: return "AArch64ISD::DUPLANE64";
921 case AArch64ISD::MOVI: return "AArch64ISD::MOVI";
922 case AArch64ISD::MOVIshift: return "AArch64ISD::MOVIshift";
923 case AArch64ISD::MOVIedit: return "AArch64ISD::MOVIedit";
924 case AArch64ISD::MOVImsl: return "AArch64ISD::MOVImsl";
925 case AArch64ISD::FMOV: return "AArch64ISD::FMOV";
926 case AArch64ISD::MVNIshift: return "AArch64ISD::MVNIshift";
927 case AArch64ISD::MVNImsl: return "AArch64ISD::MVNImsl";
928 case AArch64ISD::BICi: return "AArch64ISD::BICi";
929 case AArch64ISD::ORRi: return "AArch64ISD::ORRi";
930 case AArch64ISD::BSL: return "AArch64ISD::BSL";
931 case AArch64ISD::NEG: return "AArch64ISD::NEG";
932 case AArch64ISD::EXTR: return "AArch64ISD::EXTR";
933 case AArch64ISD::ZIP1: return "AArch64ISD::ZIP1";
934 case AArch64ISD::ZIP2: return "AArch64ISD::ZIP2";
935 case AArch64ISD::UZP1: return "AArch64ISD::UZP1";
936 case AArch64ISD::UZP2: return "AArch64ISD::UZP2";
937 case AArch64ISD::TRN1: return "AArch64ISD::TRN1";
938 case AArch64ISD::TRN2: return "AArch64ISD::TRN2";
939 case AArch64ISD::REV16: return "AArch64ISD::REV16";
940 case AArch64ISD::REV32: return "AArch64ISD::REV32";
941 case AArch64ISD::REV64: return "AArch64ISD::REV64";
942 case AArch64ISD::EXT: return "AArch64ISD::EXT";
943 case AArch64ISD::VSHL: return "AArch64ISD::VSHL";
944 case AArch64ISD::VLSHR: return "AArch64ISD::VLSHR";
945 case AArch64ISD::VASHR: return "AArch64ISD::VASHR";
946 case AArch64ISD::CMEQ: return "AArch64ISD::CMEQ";
947 case AArch64ISD::CMGE: return "AArch64ISD::CMGE";
948 case AArch64ISD::CMGT: return "AArch64ISD::CMGT";
949 case AArch64ISD::CMHI: return "AArch64ISD::CMHI";
950 case AArch64ISD::CMHS: return "AArch64ISD::CMHS";
951 case AArch64ISD::FCMEQ: return "AArch64ISD::FCMEQ";
952 case AArch64ISD::FCMGE: return "AArch64ISD::FCMGE";
953 case AArch64ISD::FCMGT: return "AArch64ISD::FCMGT";
954 case AArch64ISD::CMEQz: return "AArch64ISD::CMEQz";
955 case AArch64ISD::CMGEz: return "AArch64ISD::CMGEz";
956 case AArch64ISD::CMGTz: return "AArch64ISD::CMGTz";
957 case AArch64ISD::CMLEz: return "AArch64ISD::CMLEz";
958 case AArch64ISD::CMLTz: return "AArch64ISD::CMLTz";
959 case AArch64ISD::FCMEQz: return "AArch64ISD::FCMEQz";
960 case AArch64ISD::FCMGEz: return "AArch64ISD::FCMGEz";
961 case AArch64ISD::FCMGTz: return "AArch64ISD::FCMGTz";
962 case AArch64ISD::FCMLEz: return "AArch64ISD::FCMLEz";
963 case AArch64ISD::FCMLTz: return "AArch64ISD::FCMLTz";
Ahmed Bougachafab58922015-03-10 20:45:38 +0000964 case AArch64ISD::SADDV: return "AArch64ISD::SADDV";
965 case AArch64ISD::UADDV: return "AArch64ISD::UADDV";
966 case AArch64ISD::SMINV: return "AArch64ISD::SMINV";
967 case AArch64ISD::UMINV: return "AArch64ISD::UMINV";
968 case AArch64ISD::SMAXV: return "AArch64ISD::SMAXV";
969 case AArch64ISD::UMAXV: return "AArch64ISD::UMAXV";
Tim Northover3b0846e2014-05-24 12:50:23 +0000970 case AArch64ISD::NOT: return "AArch64ISD::NOT";
971 case AArch64ISD::BIT: return "AArch64ISD::BIT";
972 case AArch64ISD::CBZ: return "AArch64ISD::CBZ";
973 case AArch64ISD::CBNZ: return "AArch64ISD::CBNZ";
974 case AArch64ISD::TBZ: return "AArch64ISD::TBZ";
975 case AArch64ISD::TBNZ: return "AArch64ISD::TBNZ";
976 case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN";
Matthias Braund04893f2015-05-07 21:33:59 +0000977 case AArch64ISD::PREFETCH: return "AArch64ISD::PREFETCH";
Tim Northover3b0846e2014-05-24 12:50:23 +0000978 case AArch64ISD::SITOF: return "AArch64ISD::SITOF";
979 case AArch64ISD::UITOF: return "AArch64ISD::UITOF";
Asiri Rathnayake530b3ed2014-10-01 09:59:45 +0000980 case AArch64ISD::NVCAST: return "AArch64ISD::NVCAST";
Tim Northover3b0846e2014-05-24 12:50:23 +0000981 case AArch64ISD::SQSHL_I: return "AArch64ISD::SQSHL_I";
982 case AArch64ISD::UQSHL_I: return "AArch64ISD::UQSHL_I";
983 case AArch64ISD::SRSHR_I: return "AArch64ISD::SRSHR_I";
984 case AArch64ISD::URSHR_I: return "AArch64ISD::URSHR_I";
985 case AArch64ISD::SQSHLU_I: return "AArch64ISD::SQSHLU_I";
986 case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge";
987 case AArch64ISD::LD2post: return "AArch64ISD::LD2post";
988 case AArch64ISD::LD3post: return "AArch64ISD::LD3post";
989 case AArch64ISD::LD4post: return "AArch64ISD::LD4post";
990 case AArch64ISD::ST2post: return "AArch64ISD::ST2post";
991 case AArch64ISD::ST3post: return "AArch64ISD::ST3post";
992 case AArch64ISD::ST4post: return "AArch64ISD::ST4post";
993 case AArch64ISD::LD1x2post: return "AArch64ISD::LD1x2post";
994 case AArch64ISD::LD1x3post: return "AArch64ISD::LD1x3post";
995 case AArch64ISD::LD1x4post: return "AArch64ISD::LD1x4post";
996 case AArch64ISD::ST1x2post: return "AArch64ISD::ST1x2post";
997 case AArch64ISD::ST1x3post: return "AArch64ISD::ST1x3post";
998 case AArch64ISD::ST1x4post: return "AArch64ISD::ST1x4post";
999 case AArch64ISD::LD1DUPpost: return "AArch64ISD::LD1DUPpost";
1000 case AArch64ISD::LD2DUPpost: return "AArch64ISD::LD2DUPpost";
1001 case AArch64ISD::LD3DUPpost: return "AArch64ISD::LD3DUPpost";
1002 case AArch64ISD::LD4DUPpost: return "AArch64ISD::LD4DUPpost";
1003 case AArch64ISD::LD1LANEpost: return "AArch64ISD::LD1LANEpost";
1004 case AArch64ISD::LD2LANEpost: return "AArch64ISD::LD2LANEpost";
1005 case AArch64ISD::LD3LANEpost: return "AArch64ISD::LD3LANEpost";
1006 case AArch64ISD::LD4LANEpost: return "AArch64ISD::LD4LANEpost";
1007 case AArch64ISD::ST2LANEpost: return "AArch64ISD::ST2LANEpost";
1008 case AArch64ISD::ST3LANEpost: return "AArch64ISD::ST3LANEpost";
1009 case AArch64ISD::ST4LANEpost: return "AArch64ISD::ST4LANEpost";
Chad Rosierd9d0f862014-10-08 02:31:24 +00001010 case AArch64ISD::SMULL: return "AArch64ISD::SMULL";
1011 case AArch64ISD::UMULL: return "AArch64ISD::UMULL";
Evandro Menezeseff2bd92016-10-24 16:14:58 +00001012 case AArch64ISD::FRECPE: return "AArch64ISD::FRECPE";
Evandro Menezes9fc54822016-11-14 23:29:01 +00001013 case AArch64ISD::FRECPS: return "AArch64ISD::FRECPS";
1014 case AArch64ISD::FRSQRTE: return "AArch64ISD::FRSQRTE";
1015 case AArch64ISD::FRSQRTS: return "AArch64ISD::FRSQRTS";
Tim Northover3b0846e2014-05-24 12:50:23 +00001016 }
Matthias Braund04893f2015-05-07 21:33:59 +00001017 return nullptr;
Tim Northover3b0846e2014-05-24 12:50:23 +00001018}
1019
1020MachineBasicBlock *
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00001021AArch64TargetLowering::EmitF128CSEL(MachineInstr &MI,
Tim Northover3b0846e2014-05-24 12:50:23 +00001022 MachineBasicBlock *MBB) const {
1023 // We materialise the F128CSEL pseudo-instruction as some control flow and a
1024 // phi node:
1025
1026 // OrigBB:
1027 // [... previous instrs leading to comparison ...]
1028 // b.ne TrueBB
1029 // b EndBB
1030 // TrueBB:
1031 // ; Fallthrough
1032 // EndBB:
1033 // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
1034
Tim Northover3b0846e2014-05-24 12:50:23 +00001035 MachineFunction *MF = MBB->getParent();
Eric Christopher905f12d2015-01-29 00:19:42 +00001036 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +00001037 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00001038 DebugLoc DL = MI.getDebugLoc();
Duncan P. N. Exon Smithd3b9df02015-10-13 20:02:15 +00001039 MachineFunction::iterator It = ++MBB->getIterator();
Tim Northover3b0846e2014-05-24 12:50:23 +00001040
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00001041 unsigned DestReg = MI.getOperand(0).getReg();
1042 unsigned IfTrueReg = MI.getOperand(1).getReg();
1043 unsigned IfFalseReg = MI.getOperand(2).getReg();
1044 unsigned CondCode = MI.getOperand(3).getImm();
1045 bool NZCVKilled = MI.getOperand(4).isKill();
Tim Northover3b0846e2014-05-24 12:50:23 +00001046
1047 MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
1048 MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
1049 MF->insert(It, TrueBB);
1050 MF->insert(It, EndBB);
1051
1052 // Transfer rest of current basic-block to EndBB
1053 EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
1054 MBB->end());
1055 EndBB->transferSuccessorsAndUpdatePHIs(MBB);
1056
1057 BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
1058 BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
1059 MBB->addSuccessor(TrueBB);
1060 MBB->addSuccessor(EndBB);
1061
1062 // TrueBB falls through to the end.
1063 TrueBB->addSuccessor(EndBB);
1064
1065 if (!NZCVKilled) {
1066 TrueBB->addLiveIn(AArch64::NZCV);
1067 EndBB->addLiveIn(AArch64::NZCV);
1068 }
1069
1070 BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
1071 .addReg(IfTrueReg)
1072 .addMBB(TrueBB)
1073 .addReg(IfFalseReg)
1074 .addMBB(MBB);
1075
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00001076 MI.eraseFromParent();
Tim Northover3b0846e2014-05-24 12:50:23 +00001077 return EndBB;
1078}
1079
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00001080MachineBasicBlock *AArch64TargetLowering::EmitInstrWithCustomInserter(
1081 MachineInstr &MI, MachineBasicBlock *BB) const {
1082 switch (MI.getOpcode()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00001083 default:
1084#ifndef NDEBUG
Duncan P. N. Exon Smithe4f5e4f2016-06-30 22:52:52 +00001085 MI.dump();
Tim Northover3b0846e2014-05-24 12:50:23 +00001086#endif
Craig Topper35b2f752014-06-19 06:10:58 +00001087 llvm_unreachable("Unexpected instruction for custom inserter!");
Tim Northover3b0846e2014-05-24 12:50:23 +00001088
1089 case AArch64::F128CSEL:
1090 return EmitF128CSEL(MI, BB);
1091
1092 case TargetOpcode::STACKMAP:
1093 case TargetOpcode::PATCHPOINT:
1094 return emitPatchPoint(MI, BB);
1095 }
Tim Northover3b0846e2014-05-24 12:50:23 +00001096}
1097
1098//===----------------------------------------------------------------------===//
1099// AArch64 Lowering private implementation.
1100//===----------------------------------------------------------------------===//
1101
1102//===----------------------------------------------------------------------===//
1103// Lowering Code
1104//===----------------------------------------------------------------------===//
1105
1106/// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
1107/// CC
1108static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
1109 switch (CC) {
1110 default:
1111 llvm_unreachable("Unknown condition code!");
1112 case ISD::SETNE:
1113 return AArch64CC::NE;
1114 case ISD::SETEQ:
1115 return AArch64CC::EQ;
1116 case ISD::SETGT:
1117 return AArch64CC::GT;
1118 case ISD::SETGE:
1119 return AArch64CC::GE;
1120 case ISD::SETLT:
1121 return AArch64CC::LT;
1122 case ISD::SETLE:
1123 return AArch64CC::LE;
1124 case ISD::SETUGT:
1125 return AArch64CC::HI;
1126 case ISD::SETUGE:
1127 return AArch64CC::HS;
1128 case ISD::SETULT:
1129 return AArch64CC::LO;
1130 case ISD::SETULE:
1131 return AArch64CC::LS;
1132 }
1133}
1134
1135/// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
1136static void changeFPCCToAArch64CC(ISD::CondCode CC,
1137 AArch64CC::CondCode &CondCode,
1138 AArch64CC::CondCode &CondCode2) {
1139 CondCode2 = AArch64CC::AL;
1140 switch (CC) {
1141 default:
1142 llvm_unreachable("Unknown FP condition!");
1143 case ISD::SETEQ:
1144 case ISD::SETOEQ:
1145 CondCode = AArch64CC::EQ;
1146 break;
1147 case ISD::SETGT:
1148 case ISD::SETOGT:
1149 CondCode = AArch64CC::GT;
1150 break;
1151 case ISD::SETGE:
1152 case ISD::SETOGE:
1153 CondCode = AArch64CC::GE;
1154 break;
1155 case ISD::SETOLT:
1156 CondCode = AArch64CC::MI;
1157 break;
1158 case ISD::SETOLE:
1159 CondCode = AArch64CC::LS;
1160 break;
1161 case ISD::SETONE:
1162 CondCode = AArch64CC::MI;
1163 CondCode2 = AArch64CC::GT;
1164 break;
1165 case ISD::SETO:
1166 CondCode = AArch64CC::VC;
1167 break;
1168 case ISD::SETUO:
1169 CondCode = AArch64CC::VS;
1170 break;
1171 case ISD::SETUEQ:
1172 CondCode = AArch64CC::EQ;
1173 CondCode2 = AArch64CC::VS;
1174 break;
1175 case ISD::SETUGT:
1176 CondCode = AArch64CC::HI;
1177 break;
1178 case ISD::SETUGE:
1179 CondCode = AArch64CC::PL;
1180 break;
1181 case ISD::SETLT:
1182 case ISD::SETULT:
1183 CondCode = AArch64CC::LT;
1184 break;
1185 case ISD::SETLE:
1186 case ISD::SETULE:
1187 CondCode = AArch64CC::LE;
1188 break;
1189 case ISD::SETNE:
1190 case ISD::SETUNE:
1191 CondCode = AArch64CC::NE;
1192 break;
1193 }
1194}
1195
Ahmed Bougacha99209b92016-01-22 19:43:54 +00001196/// Convert a DAG fp condition code to an AArch64 CC.
1197/// This differs from changeFPCCToAArch64CC in that it returns cond codes that
1198/// should be AND'ed instead of OR'ed.
1199static void changeFPCCToANDAArch64CC(ISD::CondCode CC,
1200 AArch64CC::CondCode &CondCode,
1201 AArch64CC::CondCode &CondCode2) {
1202 CondCode2 = AArch64CC::AL;
1203 switch (CC) {
1204 default:
1205 changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1206 assert(CondCode2 == AArch64CC::AL);
1207 break;
1208 case ISD::SETONE:
1209 // (a one b)
1210 // == ((a olt b) || (a ogt b))
1211 // == ((a ord b) && (a une b))
1212 CondCode = AArch64CC::VC;
1213 CondCode2 = AArch64CC::NE;
1214 break;
1215 case ISD::SETUEQ:
1216 // (a ueq b)
1217 // == ((a uno b) || (a oeq b))
1218 // == ((a ule b) && (a uge b))
1219 CondCode = AArch64CC::PL;
1220 CondCode2 = AArch64CC::LE;
1221 break;
1222 }
1223}
1224
Tim Northover3b0846e2014-05-24 12:50:23 +00001225/// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
1226/// CC usable with the vector instructions. Fewer operations are available
1227/// without a real NZCV register, so we have to use less efficient combinations
1228/// to get the same effect.
1229static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
1230 AArch64CC::CondCode &CondCode,
1231 AArch64CC::CondCode &CondCode2,
1232 bool &Invert) {
1233 Invert = false;
1234 switch (CC) {
1235 default:
1236 // Mostly the scalar mappings work fine.
1237 changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1238 break;
1239 case ISD::SETUO:
Justin Bognerb03fd122016-08-17 05:10:15 +00001240 Invert = true;
1241 LLVM_FALLTHROUGH;
Tim Northover3b0846e2014-05-24 12:50:23 +00001242 case ISD::SETO:
1243 CondCode = AArch64CC::MI;
1244 CondCode2 = AArch64CC::GE;
1245 break;
1246 case ISD::SETUEQ:
1247 case ISD::SETULT:
1248 case ISD::SETULE:
1249 case ISD::SETUGT:
1250 case ISD::SETUGE:
1251 // All of the compare-mask comparisons are ordered, but we can switch
1252 // between the two by a double inversion. E.g. ULE == !OGT.
1253 Invert = true;
1254 changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2);
1255 break;
1256 }
1257}
1258
1259static bool isLegalArithImmed(uint64_t C) {
1260 // Matches AArch64DAGToDAGISel::SelectArithImmed().
1261 return (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
1262}
1263
1264static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
Benjamin Kramerbdc49562016-06-12 15:39:02 +00001265 const SDLoc &dl, SelectionDAG &DAG) {
Tim Northover3b0846e2014-05-24 12:50:23 +00001266 EVT VT = LHS.getValueType();
1267
Ahmed Bougacha171f7b92016-03-11 22:02:58 +00001268 if (VT.isFloatingPoint()) {
1269 assert(VT != MVT::f128);
1270 if (VT == MVT::f16) {
1271 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
1272 RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
Weiming Zhao095c2712016-05-11 01:26:32 +00001273 VT = MVT::f32;
Ahmed Bougacha171f7b92016-03-11 22:02:58 +00001274 }
Tim Northover3b0846e2014-05-24 12:50:23 +00001275 return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
Ahmed Bougacha171f7b92016-03-11 22:02:58 +00001276 }
Tim Northover3b0846e2014-05-24 12:50:23 +00001277
1278 // The CMP instruction is just an alias for SUBS, and representing it as
1279 // SUBS means that it's possible to get CSE with subtract operations.
1280 // A later phase can perform the optimization of setting the destination
1281 // register to WZR/XZR if it ends up being unused.
1282 unsigned Opcode = AArch64ISD::SUBS;
1283
Artyom Skrobov314ee042015-11-25 19:41:11 +00001284 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001285 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1286 // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on
1287 // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags
1288 // can be set differently by this operation. It comes down to whether
1289 // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
1290 // everything is fine. If not then the optimization is wrong. Thus general
1291 // comparisons are only valid if op2 != 0.
1292
1293 // So, finally, the only LLVM-native comparisons that don't mention C and V
1294 // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
1295 // the absence of information about op2.
1296 Opcode = AArch64ISD::ADDS;
1297 RHS = RHS.getOperand(1);
Artyom Skrobov314ee042015-11-25 19:41:11 +00001298 } else if (LHS.getOpcode() == ISD::AND && isNullConstant(RHS) &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001299 !isUnsignedIntSetCC(CC)) {
1300 // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
1301 // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
1302 // of the signed comparisons.
1303 Opcode = AArch64ISD::ANDS;
1304 RHS = LHS.getOperand(1);
1305 LHS = LHS.getOperand(0);
1306 }
1307
Matthias Braunaf7d7702015-07-16 20:02:37 +00001308 return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT_CC), LHS, RHS)
Tim Northover3b0846e2014-05-24 12:50:23 +00001309 .getValue(1);
1310}
1311
Matthias Braunaf7d7702015-07-16 20:02:37 +00001312/// \defgroup AArch64CCMP CMP;CCMP matching
1313///
1314/// These functions deal with the formation of CMP;CCMP;... sequences.
1315/// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of
1316/// a comparison. They set the NZCV flags to a predefined value if their
1317/// predicate is false. This allows to express arbitrary conjunctions, for
1318/// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B))))"
1319/// expressed as:
1320/// cmp A
1321/// ccmp B, inv(CB), CA
1322/// check for CB flags
1323///
1324/// In general we can create code for arbitrary "... (and (and A B) C)"
1325/// sequences. We can also implement some "or" expressions, because "(or A B)"
1326/// is equivalent to "not (and (not A) (not B))" and we can implement some
1327/// negation operations:
1328/// We can negate the results of a single comparison by inverting the flags
1329/// used when the predicate fails and inverting the flags tested in the next
1330/// instruction; We can also negate the results of the whole previous
1331/// conditional compare sequence by inverting the flags tested in the next
1332/// instruction. However there is no way to negate the result of a partial
1333/// sequence.
1334///
1335/// Therefore on encountering an "or" expression we can negate the subtree on
1336/// one side and have to be able to push the negate to the leafs of the subtree
1337/// on the other side (see also the comments in code). As complete example:
1338/// "or (or (setCA (cmp A)) (setCB (cmp B)))
1339/// (and (setCC (cmp C)) (setCD (cmp D)))"
1340/// is transformed to
1341/// "not (and (not (and (setCC (cmp C)) (setCC (cmp D))))
1342/// (and (not (setCA (cmp A)) (not (setCB (cmp B))))))"
1343/// and implemented as:
1344/// cmp C
1345/// ccmp D, inv(CD), CC
1346/// ccmp A, CA, inv(CD)
1347/// ccmp B, CB, inv(CA)
1348/// check for CB flags
1349/// A counterexample is "or (and A B) (and C D)" which cannot be implemented
1350/// by conditional compare sequences.
1351/// @{
1352
Geoff Berrye41c2df2015-07-20 22:03:52 +00001353/// Create a conditional comparison; Use CCMP, CCMN or FCCMP as appropriate.
Matthias Braunaf7d7702015-07-16 20:02:37 +00001354static SDValue emitConditionalComparison(SDValue LHS, SDValue RHS,
1355 ISD::CondCode CC, SDValue CCOp,
Ahmed Bougacha78d6efd2016-01-22 19:43:57 +00001356 AArch64CC::CondCode Predicate,
1357 AArch64CC::CondCode OutCC,
Benjamin Kramerbdc49562016-06-12 15:39:02 +00001358 const SDLoc &DL, SelectionDAG &DAG) {
Matthias Braunaf7d7702015-07-16 20:02:37 +00001359 unsigned Opcode = 0;
Ahmed Bougacha171f7b92016-03-11 22:02:58 +00001360 if (LHS.getValueType().isFloatingPoint()) {
1361 assert(LHS.getValueType() != MVT::f128);
1362 if (LHS.getValueType() == MVT::f16) {
1363 LHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, LHS);
1364 RHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, RHS);
1365 }
Matthias Braunaf7d7702015-07-16 20:02:37 +00001366 Opcode = AArch64ISD::FCCMP;
Ahmed Bougacha171f7b92016-03-11 22:02:58 +00001367 } else if (RHS.getOpcode() == ISD::SUB) {
Matthias Braunaf7d7702015-07-16 20:02:37 +00001368 SDValue SubOp0 = RHS.getOperand(0);
Artyom Skrobov314ee042015-11-25 19:41:11 +00001369 if (isNullConstant(SubOp0) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
Matthias Braunfd13c142016-01-23 04:05:16 +00001370 // See emitComparison() on why we can only do this for SETEQ and SETNE.
1371 Opcode = AArch64ISD::CCMN;
1372 RHS = RHS.getOperand(1);
1373 }
Matthias Braunaf7d7702015-07-16 20:02:37 +00001374 }
1375 if (Opcode == 0)
1376 Opcode = AArch64ISD::CCMP;
1377
Ahmed Bougacha78d6efd2016-01-22 19:43:57 +00001378 SDValue Condition = DAG.getConstant(Predicate, DL, MVT_CC);
1379 AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC);
1380 unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC);
Matthias Braunaf7d7702015-07-16 20:02:37 +00001381 SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32);
1382 return DAG.getNode(Opcode, DL, MVT_CC, LHS, RHS, NZCVOp, Condition, CCOp);
1383}
1384
1385/// Returns true if @p Val is a tree of AND/OR/SETCC operations.
1386/// CanPushNegate is set to true if we can push a negate operation through
1387/// the tree in a was that we are left with AND operations and negate operations
1388/// at the leafs only. i.e. "not (or (or x y) z)" can be changed to
1389/// "and (and (not x) (not y)) (not z)"; "not (or (and x y) z)" cannot be
1390/// brought into such a form.
Matthias Braunfdef49b2016-01-23 04:05:22 +00001391static bool isConjunctionDisjunctionTree(const SDValue Val, bool &CanNegate,
Matthias Braunaf7d7702015-07-16 20:02:37 +00001392 unsigned Depth = 0) {
1393 if (!Val.hasOneUse())
1394 return false;
1395 unsigned Opcode = Val->getOpcode();
1396 if (Opcode == ISD::SETCC) {
Ahmed Bougacha171f7b92016-03-11 22:02:58 +00001397 if (Val->getOperand(0).getValueType() == MVT::f128)
1398 return false;
Matthias Braunfdef49b2016-01-23 04:05:22 +00001399 CanNegate = true;
Matthias Braunaf7d7702015-07-16 20:02:37 +00001400 return true;
1401 }
Matthias Braun985bdf92016-01-23 04:05:18 +00001402 // Protect against exponential runtime and stack overflow.
1403 if (Depth > 6)
Matthias Braunaf7d7702015-07-16 20:02:37 +00001404 return false;
1405 if (Opcode == ISD::AND || Opcode == ISD::OR) {
1406 SDValue O0 = Val->getOperand(0);
1407 SDValue O1 = Val->getOperand(1);
Matthias Braunfdef49b2016-01-23 04:05:22 +00001408 bool CanNegateL;
1409 if (!isConjunctionDisjunctionTree(O0, CanNegateL, Depth+1))
Matthias Braunaf7d7702015-07-16 20:02:37 +00001410 return false;
Matthias Braunfdef49b2016-01-23 04:05:22 +00001411 bool CanNegateR;
1412 if (!isConjunctionDisjunctionTree(O1, CanNegateR, Depth+1))
Matthias Braunaf7d7702015-07-16 20:02:37 +00001413 return false;
Matthias Braunfdef49b2016-01-23 04:05:22 +00001414
1415 if (Opcode == ISD::OR) {
1416 // For an OR expression we need to be able to negate at least one side or
1417 // we cannot do the transformation at all.
1418 if (!CanNegateL && !CanNegateR)
1419 return false;
1420 // We can however change a (not (or x y)) to (and (not x) (not y)) if we
1421 // can negate the x and y subtrees.
1422 CanNegate = CanNegateL && CanNegateR;
1423 } else {
1424 // If the operands are OR expressions then we finally need to negate their
1425 // outputs, we can only do that for the operand with emitted last by
1426 // negating OutCC, not for both operands.
1427 bool NeedsNegOutL = O0->getOpcode() == ISD::OR;
1428 bool NeedsNegOutR = O1->getOpcode() == ISD::OR;
1429 if (NeedsNegOutL && NeedsNegOutR)
1430 return false;
1431 // We cannot negate an AND operation (it would become an OR),
1432 CanNegate = false;
1433 }
Matthias Braunaf7d7702015-07-16 20:02:37 +00001434 return true;
1435 }
1436 return false;
1437}
1438
1439/// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain
1440/// of CCMP/CFCMP ops. See @ref AArch64CCMP.
1441/// Tries to transform the given i1 producing node @p Val to a series compare
1442/// and conditional compare operations. @returns an NZCV flags producing node
1443/// and sets @p OutCC to the flags that should be tested or returns SDValue() if
1444/// transformation was not possible.
1445/// On recursive invocations @p PushNegate may be set to true to have negation
1446/// effects pushed to the tree leafs; @p Predicate is an NZCV flag predicate
1447/// for the comparisons in the current subtree; @p Depth limits the search
1448/// depth to avoid stack overflow.
Matthias Braunfdef49b2016-01-23 04:05:22 +00001449static SDValue emitConjunctionDisjunctionTreeRec(SelectionDAG &DAG, SDValue Val,
1450 AArch64CC::CondCode &OutCC, bool Negate, SDValue CCOp,
1451 AArch64CC::CondCode Predicate) {
Matthias Braunaf7d7702015-07-16 20:02:37 +00001452 // We're at a tree leaf, produce a conditional comparison operation.
1453 unsigned Opcode = Val->getOpcode();
1454 if (Opcode == ISD::SETCC) {
1455 SDValue LHS = Val->getOperand(0);
1456 SDValue RHS = Val->getOperand(1);
1457 ISD::CondCode CC = cast<CondCodeSDNode>(Val->getOperand(2))->get();
1458 bool isInteger = LHS.getValueType().isInteger();
Matthias Braunfdef49b2016-01-23 04:05:22 +00001459 if (Negate)
Matthias Braunaf7d7702015-07-16 20:02:37 +00001460 CC = getSetCCInverse(CC, isInteger);
1461 SDLoc DL(Val);
1462 // Determine OutCC and handle FP special case.
1463 if (isInteger) {
1464 OutCC = changeIntCCToAArch64CC(CC);
1465 } else {
1466 assert(LHS.getValueType().isFloatingPoint());
1467 AArch64CC::CondCode ExtraCC;
Ahmed Bougacha99209b92016-01-22 19:43:54 +00001468 changeFPCCToANDAArch64CC(CC, OutCC, ExtraCC);
1469 // Some floating point conditions can't be tested with a single condition
1470 // code. Construct an additional comparison in this case.
Matthias Braunaf7d7702015-07-16 20:02:37 +00001471 if (ExtraCC != AArch64CC::AL) {
1472 SDValue ExtraCmp;
1473 if (!CCOp.getNode())
1474 ExtraCmp = emitComparison(LHS, RHS, CC, DL, DAG);
Ahmed Bougacha78d6efd2016-01-22 19:43:57 +00001475 else
1476 ExtraCmp = emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate,
1477 ExtraCC, DL, DAG);
Matthias Braunaf7d7702015-07-16 20:02:37 +00001478 CCOp = ExtraCmp;
Ahmed Bougacha99209b92016-01-22 19:43:54 +00001479 Predicate = ExtraCC;
Matthias Braunaf7d7702015-07-16 20:02:37 +00001480 }
1481 }
1482
1483 // Produce a normal comparison if we are first in the chain
Matthias Braunfdef49b2016-01-23 04:05:22 +00001484 if (!CCOp)
Matthias Braunaf7d7702015-07-16 20:02:37 +00001485 return emitComparison(LHS, RHS, CC, DL, DAG);
1486 // Otherwise produce a ccmp.
Ahmed Bougacha78d6efd2016-01-22 19:43:57 +00001487 return emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate, OutCC, DL,
Matthias Braunaf7d7702015-07-16 20:02:37 +00001488 DAG);
Matthias Braunfdef49b2016-01-23 04:05:22 +00001489 }
Junmo Park3ca3e192016-01-25 10:17:17 +00001490 assert((Opcode == ISD::AND || (Opcode == ISD::OR && Val->hasOneUse())) &&
1491 "Valid conjunction/disjunction tree");
Matthias Braunaf7d7702015-07-16 20:02:37 +00001492
1493 // Check if both sides can be transformed.
1494 SDValue LHS = Val->getOperand(0);
1495 SDValue RHS = Val->getOperand(1);
Matthias Braunaf7d7702015-07-16 20:02:37 +00001496
Matthias Braunfdef49b2016-01-23 04:05:22 +00001497 // In case of an OR we need to negate our operands and the result.
1498 // (A v B) <=> not(not(A) ^ not(B))
1499 bool NegateOpsAndResult = Opcode == ISD::OR;
Matthias Braunaf7d7702015-07-16 20:02:37 +00001500 // We can negate the results of all previous operations by inverting the
Matthias Braunfdef49b2016-01-23 04:05:22 +00001501 // predicate flags giving us a free negation for one side. The other side
1502 // must be negatable by itself.
1503 if (NegateOpsAndResult) {
1504 // See which side we can negate.
1505 bool CanNegateL;
1506 bool isValidL = isConjunctionDisjunctionTree(LHS, CanNegateL);
1507 assert(isValidL && "Valid conjunction/disjunction tree");
1508 (void)isValidL;
1509
1510#ifndef NDEBUG
1511 bool CanNegateR;
1512 bool isValidR = isConjunctionDisjunctionTree(RHS, CanNegateR);
1513 assert(isValidR && "Valid conjunction/disjunction tree");
1514 assert((CanNegateL || CanNegateR) && "Valid conjunction/disjunction tree");
1515#endif
1516
1517 // Order the side which we cannot negate to RHS so we can emit it first.
1518 if (!CanNegateL)
Matthias Braunaf7d7702015-07-16 20:02:37 +00001519 std::swap(LHS, RHS);
Matthias Braun46e56392015-08-20 23:33:34 +00001520 } else {
1521 bool NeedsNegOutL = LHS->getOpcode() == ISD::OR;
Matthias Braun327bca72016-01-23 06:49:29 +00001522 assert((!NeedsNegOutL || RHS->getOpcode() != ISD::OR) &&
Matthias Braunfdef49b2016-01-23 04:05:22 +00001523 "Valid conjunction/disjunction tree");
Matthias Braun46e56392015-08-20 23:33:34 +00001524 // Order the side where we need to negate the output flags to RHS so it
1525 // gets emitted first.
1526 if (NeedsNegOutL)
1527 std::swap(LHS, RHS);
Matthias Braunaf7d7702015-07-16 20:02:37 +00001528 }
1529
1530 // Emit RHS. If we want to negate the tree we only need to push a negate
1531 // through if we are already in a PushNegate case, otherwise we can negate
1532 // the "flags to test" afterwards.
1533 AArch64CC::CondCode RHSCC;
Matthias Braunfdef49b2016-01-23 04:05:22 +00001534 SDValue CmpR = emitConjunctionDisjunctionTreeRec(DAG, RHS, RHSCC, Negate,
1535 CCOp, Predicate);
1536 if (NegateOpsAndResult && !Negate)
Matthias Braunaf7d7702015-07-16 20:02:37 +00001537 RHSCC = AArch64CC::getInvertedCondCode(RHSCC);
Matthias Braunfdef49b2016-01-23 04:05:22 +00001538 // Emit LHS. We may need to negate it.
1539 SDValue CmpL = emitConjunctionDisjunctionTreeRec(DAG, LHS, OutCC,
1540 NegateOpsAndResult, CmpR,
1541 RHSCC);
Matthias Braunaf7d7702015-07-16 20:02:37 +00001542 // If we transformed an OR to and AND then we have to negate the result
Matthias Braunfdef49b2016-01-23 04:05:22 +00001543 // (or absorb the Negate parameter).
1544 if (NegateOpsAndResult && !Negate)
Matthias Braunaf7d7702015-07-16 20:02:37 +00001545 OutCC = AArch64CC::getInvertedCondCode(OutCC);
1546 return CmpL;
1547}
1548
Matthias Braunfdef49b2016-01-23 04:05:22 +00001549/// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain
1550/// of CCMP/CFCMP ops. See @ref AArch64CCMP.
1551/// \see emitConjunctionDisjunctionTreeRec().
1552static SDValue emitConjunctionDisjunctionTree(SelectionDAG &DAG, SDValue Val,
1553 AArch64CC::CondCode &OutCC) {
1554 bool CanNegate;
1555 if (!isConjunctionDisjunctionTree(Val, CanNegate))
1556 return SDValue();
1557
1558 return emitConjunctionDisjunctionTreeRec(DAG, Val, OutCC, false, SDValue(),
1559 AArch64CC::AL);
1560}
1561
Matthias Braunaf7d7702015-07-16 20:02:37 +00001562/// @}
1563
Tim Northover3b0846e2014-05-24 12:50:23 +00001564static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
Benjamin Kramerbdc49562016-06-12 15:39:02 +00001565 SDValue &AArch64cc, SelectionDAG &DAG,
1566 const SDLoc &dl) {
Tim Northover3b0846e2014-05-24 12:50:23 +00001567 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1568 EVT VT = RHS.getValueType();
1569 uint64_t C = RHSC->getZExtValue();
1570 if (!isLegalArithImmed(C)) {
1571 // Constant does not fit, try adjusting it by one?
1572 switch (CC) {
1573 default:
1574 break;
1575 case ISD::SETLT:
1576 case ISD::SETGE:
1577 if ((VT == MVT::i32 && C != 0x80000000 &&
1578 isLegalArithImmed((uint32_t)(C - 1))) ||
1579 (VT == MVT::i64 && C != 0x80000000ULL &&
1580 isLegalArithImmed(C - 1ULL))) {
1581 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1582 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001583 RHS = DAG.getConstant(C, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00001584 }
1585 break;
1586 case ISD::SETULT:
1587 case ISD::SETUGE:
1588 if ((VT == MVT::i32 && C != 0 &&
1589 isLegalArithImmed((uint32_t)(C - 1))) ||
1590 (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
1591 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1592 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001593 RHS = DAG.getConstant(C, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00001594 }
1595 break;
1596 case ISD::SETLE:
1597 case ISD::SETGT:
Oliver Stannard269a275c2014-11-03 15:28:40 +00001598 if ((VT == MVT::i32 && C != INT32_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001599 isLegalArithImmed((uint32_t)(C + 1))) ||
Oliver Stannard269a275c2014-11-03 15:28:40 +00001600 (VT == MVT::i64 && C != INT64_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001601 isLegalArithImmed(C + 1ULL))) {
1602 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1603 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001604 RHS = DAG.getConstant(C, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00001605 }
1606 break;
1607 case ISD::SETULE:
1608 case ISD::SETUGT:
Oliver Stannard269a275c2014-11-03 15:28:40 +00001609 if ((VT == MVT::i32 && C != UINT32_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001610 isLegalArithImmed((uint32_t)(C + 1))) ||
Oliver Stannard269a275c2014-11-03 15:28:40 +00001611 (VT == MVT::i64 && C != UINT64_MAX &&
Tim Northover3b0846e2014-05-24 12:50:23 +00001612 isLegalArithImmed(C + 1ULL))) {
1613 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1614 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001615 RHS = DAG.getConstant(C, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00001616 }
1617 break;
1618 }
1619 }
1620 }
Matthias Braunaf7d7702015-07-16 20:02:37 +00001621 SDValue Cmp;
1622 AArch64CC::CondCode AArch64CC;
David Xuee978202014-08-28 04:59:53 +00001623 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
Matthias Braunaf7d7702015-07-16 20:02:37 +00001624 const ConstantSDNode *RHSC = cast<ConstantSDNode>(RHS);
1625
1626 // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
1627 // For the i8 operand, the largest immediate is 255, so this can be easily
1628 // encoded in the compare instruction. For the i16 operand, however, the
1629 // largest immediate cannot be encoded in the compare.
1630 // Therefore, use a sign extending load and cmn to avoid materializing the
1631 // -1 constant. For example,
1632 // movz w1, #65535
1633 // ldrh w0, [x0, #0]
1634 // cmp w0, w1
1635 // >
1636 // ldrsh w0, [x0, #0]
1637 // cmn w0, #1
1638 // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
1639 // if and only if (sext LHS) == (sext RHS). The checks are in place to
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00001640 // ensure both the LHS and RHS are truly zero extended and to make sure the
Matthias Braunaf7d7702015-07-16 20:02:37 +00001641 // transformation is profitable.
1642 if ((RHSC->getZExtValue() >> 16 == 0) && isa<LoadSDNode>(LHS) &&
1643 cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
1644 cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
1645 LHS.getNode()->hasNUsesOfValue(1, 0)) {
1646 int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
1647 if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
1648 SDValue SExt =
1649 DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
1650 DAG.getValueType(MVT::i16));
1651 Cmp = emitComparison(SExt, DAG.getConstant(ValueofRHS, dl,
1652 RHS.getValueType()),
1653 CC, dl, DAG);
1654 AArch64CC = changeIntCCToAArch64CC(CC);
1655 }
1656 }
1657
1658 if (!Cmp && (RHSC->isNullValue() || RHSC->isOne())) {
1659 if ((Cmp = emitConjunctionDisjunctionTree(DAG, LHS, AArch64CC))) {
1660 if ((CC == ISD::SETNE) ^ RHSC->isNullValue())
1661 AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC);
David Xuee978202014-08-28 04:59:53 +00001662 }
1663 }
1664 }
Matthias Braunaf7d7702015-07-16 20:02:37 +00001665
1666 if (!Cmp) {
1667 Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
1668 AArch64CC = changeIntCCToAArch64CC(CC);
1669 }
1670 AArch64cc = DAG.getConstant(AArch64CC, dl, MVT_CC);
Tim Northover3b0846e2014-05-24 12:50:23 +00001671 return Cmp;
1672}
1673
1674static std::pair<SDValue, SDValue>
1675getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
1676 assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
1677 "Unsupported value type");
1678 SDValue Value, Overflow;
1679 SDLoc DL(Op);
1680 SDValue LHS = Op.getOperand(0);
1681 SDValue RHS = Op.getOperand(1);
1682 unsigned Opc = 0;
1683 switch (Op.getOpcode()) {
1684 default:
1685 llvm_unreachable("Unknown overflow instruction!");
1686 case ISD::SADDO:
1687 Opc = AArch64ISD::ADDS;
1688 CC = AArch64CC::VS;
1689 break;
1690 case ISD::UADDO:
1691 Opc = AArch64ISD::ADDS;
1692 CC = AArch64CC::HS;
1693 break;
1694 case ISD::SSUBO:
1695 Opc = AArch64ISD::SUBS;
1696 CC = AArch64CC::VS;
1697 break;
1698 case ISD::USUBO:
1699 Opc = AArch64ISD::SUBS;
1700 CC = AArch64CC::LO;
1701 break;
1702 // Multiply needs a little bit extra work.
1703 case ISD::SMULO:
1704 case ISD::UMULO: {
1705 CC = AArch64CC::NE;
David Blaikie186d2cb2015-03-24 16:24:01 +00001706 bool IsSigned = Op.getOpcode() == ISD::SMULO;
Tim Northover3b0846e2014-05-24 12:50:23 +00001707 if (Op.getValueType() == MVT::i32) {
1708 unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1709 // For a 32 bit multiply with overflow check we want the instruction
1710 // selector to generate a widening multiply (SMADDL/UMADDL). For that we
1711 // need to generate the following pattern:
1712 // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
1713 LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
1714 RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
1715 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1716 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001717 DAG.getConstant(0, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00001718 // On AArch64 the upper 32 bits are always zero extended for a 32 bit
1719 // operation. We need to clear out the upper 32 bits, because we used a
1720 // widening multiply that wrote all 64 bits. In the end this should be a
1721 // noop.
1722 Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
1723 if (IsSigned) {
1724 // The signed overflow check requires more than just a simple check for
1725 // any bit set in the upper 32 bits of the result. These bits could be
1726 // just the sign bits of a negative number. To perform the overflow
1727 // check we have to arithmetic shift right the 32nd bit of the result by
1728 // 31 bits. Then we compare the result to the upper 32 bits.
1729 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001730 DAG.getConstant(32, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00001731 UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
1732 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001733 DAG.getConstant(31, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00001734 // It is important that LowerBits is last, otherwise the arithmetic
1735 // shift will not be folded into the compare (SUBS).
1736 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
1737 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1738 .getValue(1);
1739 } else {
1740 // The overflow check for unsigned multiply is easy. We only need to
1741 // check if any of the upper 32 bits are set. This can be done with a
1742 // CMP (shifted register). For that we need to generate the following
1743 // pattern:
1744 // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
1745 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001746 DAG.getConstant(32, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00001747 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1748 Overflow =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001749 DAG.getNode(AArch64ISD::SUBS, DL, VTs,
1750 DAG.getConstant(0, DL, MVT::i64),
Tim Northover3b0846e2014-05-24 12:50:23 +00001751 UpperBits).getValue(1);
1752 }
1753 break;
1754 }
1755 assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
1756 // For the 64 bit multiply
1757 Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1758 if (IsSigned) {
1759 SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
1760 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001761 DAG.getConstant(63, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00001762 // It is important that LowerBits is last, otherwise the arithmetic
1763 // shift will not be folded into the compare (SUBS).
1764 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1765 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1766 .getValue(1);
1767 } else {
1768 SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
1769 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1770 Overflow =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001771 DAG.getNode(AArch64ISD::SUBS, DL, VTs,
1772 DAG.getConstant(0, DL, MVT::i64),
Tim Northover3b0846e2014-05-24 12:50:23 +00001773 UpperBits).getValue(1);
1774 }
1775 break;
1776 }
1777 } // switch (...)
1778
1779 if (Opc) {
1780 SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
1781
1782 // Emit the AArch64 operation with overflow check.
1783 Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
1784 Overflow = Value.getValue(1);
1785 }
1786 return std::make_pair(Value, Overflow);
1787}
1788
1789SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
1790 RTLIB::Libcall Call) const {
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00001791 SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
Craig Topper8fe40e02015-10-22 17:05:00 +00001792 return makeLibCall(DAG, Call, MVT::f128, Ops, false, SDLoc(Op)).first;
Tim Northover3b0846e2014-05-24 12:50:23 +00001793}
1794
1795static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
1796 SDValue Sel = Op.getOperand(0);
1797 SDValue Other = Op.getOperand(1);
1798
1799 // If neither operand is a SELECT_CC, give up.
1800 if (Sel.getOpcode() != ISD::SELECT_CC)
1801 std::swap(Sel, Other);
1802 if (Sel.getOpcode() != ISD::SELECT_CC)
1803 return Op;
1804
1805 // The folding we want to perform is:
1806 // (xor x, (select_cc a, b, cc, 0, -1) )
1807 // -->
1808 // (csel x, (xor x, -1), cc ...)
1809 //
1810 // The latter will get matched to a CSINV instruction.
1811
1812 ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
1813 SDValue LHS = Sel.getOperand(0);
1814 SDValue RHS = Sel.getOperand(1);
1815 SDValue TVal = Sel.getOperand(2);
1816 SDValue FVal = Sel.getOperand(3);
1817 SDLoc dl(Sel);
1818
1819 // FIXME: This could be generalized to non-integer comparisons.
1820 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
1821 return Op;
1822
1823 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
1824 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
1825
Eric Christopher572e03a2015-06-19 01:53:21 +00001826 // The values aren't constants, this isn't the pattern we're looking for.
Tim Northover3b0846e2014-05-24 12:50:23 +00001827 if (!CFVal || !CTVal)
1828 return Op;
1829
1830 // We can commute the SELECT_CC by inverting the condition. This
1831 // might be needed to make this fit into a CSINV pattern.
1832 if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
1833 std::swap(TVal, FVal);
1834 std::swap(CTVal, CFVal);
1835 CC = ISD::getSetCCInverse(CC, true);
1836 }
1837
1838 // If the constants line up, perform the transform!
1839 if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
1840 SDValue CCVal;
1841 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
1842
1843 FVal = Other;
1844 TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001845 DAG.getConstant(-1ULL, dl, Other.getValueType()));
Tim Northover3b0846e2014-05-24 12:50:23 +00001846
1847 return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
1848 CCVal, Cmp);
1849 }
1850
1851 return Op;
1852}
1853
1854static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
1855 EVT VT = Op.getValueType();
1856
1857 // Let legalize expand this if it isn't a legal type yet.
1858 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
1859 return SDValue();
1860
1861 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
1862
1863 unsigned Opc;
1864 bool ExtraOp = false;
1865 switch (Op.getOpcode()) {
1866 default:
Craig Topper2a30d782014-06-18 05:05:13 +00001867 llvm_unreachable("Invalid code");
Tim Northover3b0846e2014-05-24 12:50:23 +00001868 case ISD::ADDC:
1869 Opc = AArch64ISD::ADDS;
1870 break;
1871 case ISD::SUBC:
1872 Opc = AArch64ISD::SUBS;
1873 break;
1874 case ISD::ADDE:
1875 Opc = AArch64ISD::ADCS;
1876 ExtraOp = true;
1877 break;
1878 case ISD::SUBE:
1879 Opc = AArch64ISD::SBCS;
1880 ExtraOp = true;
1881 break;
1882 }
1883
1884 if (!ExtraOp)
1885 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
1886 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
1887 Op.getOperand(2));
1888}
1889
1890static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
1891 // Let legalize expand this if it isn't a legal type yet.
1892 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
1893 return SDValue();
1894
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001895 SDLoc dl(Op);
Tim Northover3b0846e2014-05-24 12:50:23 +00001896 AArch64CC::CondCode CC;
1897 // The actual operation that sets the overflow or carry flag.
1898 SDValue Value, Overflow;
1899 std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
1900
1901 // We use 0 and 1 as false and true values.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001902 SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
1903 SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00001904
1905 // We use an inverted condition, because the conditional select is inverted
1906 // too. This will allow it to be selected to a single instruction:
1907 // CSINC Wd, WZR, WZR, invert(cond).
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001908 SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
1909 Overflow = DAG.getNode(AArch64ISD::CSEL, dl, MVT::i32, FVal, TVal,
Tim Northover3b0846e2014-05-24 12:50:23 +00001910 CCVal, Overflow);
1911
1912 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001913 return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
Tim Northover3b0846e2014-05-24 12:50:23 +00001914}
1915
1916// Prefetch operands are:
1917// 1: Address to prefetch
1918// 2: bool isWrite
1919// 3: int locality (0 = no locality ... 3 = extreme locality)
1920// 4: bool isDataCache
1921static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
1922 SDLoc DL(Op);
1923 unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
1924 unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
Yi Konge56de692014-08-05 12:46:47 +00001925 unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00001926
1927 bool IsStream = !Locality;
1928 // When the locality number is set
1929 if (Locality) {
1930 // The front-end should have filtered out the out-of-range values
1931 assert(Locality <= 3 && "Prefetch locality out-of-range");
1932 // The locality degree is the opposite of the cache speed.
1933 // Put the number the other way around.
1934 // The encoding starts at 0 for level 1
1935 Locality = 3 - Locality;
1936 }
1937
1938 // built the mask value encoding the expected behavior.
1939 unsigned PrfOp = (IsWrite << 4) | // Load/Store bit
Yi Konge56de692014-08-05 12:46:47 +00001940 (!IsData << 3) | // IsDataCache bit
Tim Northover3b0846e2014-05-24 12:50:23 +00001941 (Locality << 1) | // Cache level bits
1942 (unsigned)IsStream; // Stream bit
1943 return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00001944 DAG.getConstant(PrfOp, DL, MVT::i32), Op.getOperand(1));
Tim Northover3b0846e2014-05-24 12:50:23 +00001945}
1946
1947SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
1948 SelectionDAG &DAG) const {
1949 assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
1950
1951 RTLIB::Libcall LC;
1952 LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
1953
1954 return LowerF128Call(Op, DAG, LC);
1955}
1956
1957SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
1958 SelectionDAG &DAG) const {
1959 if (Op.getOperand(0).getValueType() != MVT::f128) {
1960 // It's legal except when f128 is involved
1961 return Op;
1962 }
1963
1964 RTLIB::Libcall LC;
1965 LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
1966
1967 // FP_ROUND node has a second operand indicating whether it is known to be
1968 // precise. That doesn't take part in the LibCall so we can't directly use
1969 // LowerF128Call.
1970 SDValue SrcVal = Op.getOperand(0);
Craig Topper8fe40e02015-10-22 17:05:00 +00001971 return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
1972 SDLoc(Op)).first;
Tim Northover3b0846e2014-05-24 12:50:23 +00001973}
1974
1975static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
1976 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1977 // Any additional optimization in this function should be recorded
1978 // in the cost tables.
1979 EVT InVT = Op.getOperand(0).getValueType();
1980 EVT VT = Op.getValueType();
Pirama Arumuga Nainar1317d5f2015-12-10 17:16:49 +00001981 unsigned NumElts = InVT.getVectorNumElements();
1982
1983 // f16 vectors are promoted to f32 before a conversion.
1984 if (InVT.getVectorElementType() == MVT::f16) {
1985 MVT NewVT = MVT::getVectorVT(MVT::f32, NumElts);
1986 SDLoc dl(Op);
1987 return DAG.getNode(
1988 Op.getOpcode(), dl, Op.getValueType(),
1989 DAG.getNode(ISD::FP_EXTEND, dl, NewVT, Op.getOperand(0)));
1990 }
Tim Northover3b0846e2014-05-24 12:50:23 +00001991
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001992 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00001993 SDLoc dl(Op);
1994 SDValue Cv =
1995 DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
1996 Op.getOperand(0));
1997 return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
Tim Northoverdbecc3b2014-06-15 09:27:15 +00001998 }
1999
2000 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00002001 SDLoc dl(Op);
Oliver Stannard89d15422014-08-27 16:16:04 +00002002 MVT ExtVT =
2003 MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
2004 VT.getVectorNumElements());
2005 SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
Tim Northover3b0846e2014-05-24 12:50:23 +00002006 return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
2007 }
2008
2009 // Type changing conversions are illegal.
Tim Northoverdbecc3b2014-06-15 09:27:15 +00002010 return Op;
Tim Northover3b0846e2014-05-24 12:50:23 +00002011}
2012
2013SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
2014 SelectionDAG &DAG) const {
2015 if (Op.getOperand(0).getValueType().isVector())
2016 return LowerVectorFP_TO_INT(Op, DAG);
2017
Ahmed Bougacha1ffe7c72015-04-10 00:08:48 +00002018 // f16 conversions are promoted to f32.
2019 if (Op.getOperand(0).getValueType() == MVT::f16) {
2020 SDLoc dl(Op);
2021 return DAG.getNode(
2022 Op.getOpcode(), dl, Op.getValueType(),
2023 DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Op.getOperand(0)));
2024 }
2025
Tim Northover3b0846e2014-05-24 12:50:23 +00002026 if (Op.getOperand(0).getValueType() != MVT::f128) {
2027 // It's legal except when f128 is involved
2028 return Op;
2029 }
2030
2031 RTLIB::Libcall LC;
2032 if (Op.getOpcode() == ISD::FP_TO_SINT)
2033 LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
2034 else
2035 LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
2036
Benjamin Kramer6cd780f2015-02-17 15:29:18 +00002037 SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
Craig Topper8fe40e02015-10-22 17:05:00 +00002038 return makeLibCall(DAG, LC, Op.getValueType(), Ops, false, SDLoc(Op)).first;
Tim Northover3b0846e2014-05-24 12:50:23 +00002039}
2040
2041static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2042 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
2043 // Any additional optimization in this function should be recorded
2044 // in the cost tables.
2045 EVT VT = Op.getValueType();
2046 SDLoc dl(Op);
2047 SDValue In = Op.getOperand(0);
2048 EVT InVT = In.getValueType();
2049
Tim Northoveref0d7602014-06-15 09:27:06 +00002050 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
2051 MVT CastVT =
2052 MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
2053 InVT.getVectorNumElements());
2054 In = DAG.getNode(Op.getOpcode(), dl, CastVT, In);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002055 return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0, dl));
Tim Northover3b0846e2014-05-24 12:50:23 +00002056 }
2057
Tim Northoveref0d7602014-06-15 09:27:06 +00002058 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
2059 unsigned CastOpc =
2060 Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2061 EVT CastVT = VT.changeVectorElementTypeToInteger();
2062 In = DAG.getNode(CastOpc, dl, CastVT, In);
2063 return DAG.getNode(Op.getOpcode(), dl, VT, In);
Tim Northover3b0846e2014-05-24 12:50:23 +00002064 }
2065
Tim Northoveref0d7602014-06-15 09:27:06 +00002066 return Op;
Tim Northover3b0846e2014-05-24 12:50:23 +00002067}
2068
2069SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
2070 SelectionDAG &DAG) const {
2071 if (Op.getValueType().isVector())
2072 return LowerVectorINT_TO_FP(Op, DAG);
2073
Ahmed Bougacha1ffe7c72015-04-10 00:08:48 +00002074 // f16 conversions are promoted to f32.
2075 if (Op.getValueType() == MVT::f16) {
2076 SDLoc dl(Op);
2077 return DAG.getNode(
2078 ISD::FP_ROUND, dl, MVT::f16,
2079 DAG.getNode(Op.getOpcode(), dl, MVT::f32, Op.getOperand(0)),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002080 DAG.getIntPtrConstant(0, dl));
Ahmed Bougacha1ffe7c72015-04-10 00:08:48 +00002081 }
2082
Tim Northover3b0846e2014-05-24 12:50:23 +00002083 // i128 conversions are libcalls.
2084 if (Op.getOperand(0).getValueType() == MVT::i128)
2085 return SDValue();
2086
2087 // Other conversions are legal, unless it's to the completely software-based
2088 // fp128.
2089 if (Op.getValueType() != MVT::f128)
2090 return Op;
2091
2092 RTLIB::Libcall LC;
2093 if (Op.getOpcode() == ISD::SINT_TO_FP)
2094 LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2095 else
2096 LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2097
2098 return LowerF128Call(Op, DAG, LC);
2099}
2100
2101SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
2102 SelectionDAG &DAG) const {
2103 // For iOS, we want to call an alternative entry point: __sincos_stret,
2104 // which returns the values in two S / D registers.
2105 SDLoc dl(Op);
2106 SDValue Arg = Op.getOperand(0);
2107 EVT ArgVT = Arg.getValueType();
2108 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2109
2110 ArgListTy Args;
2111 ArgListEntry Entry;
2112
2113 Entry.Node = Arg;
2114 Entry.Ty = ArgTy;
Nirav Dave6de2c772017-03-18 00:43:57 +00002115 Entry.IsSExt = false;
2116 Entry.IsZExt = false;
Tim Northover3b0846e2014-05-24 12:50:23 +00002117 Args.push_back(Entry);
2118
2119 const char *LibcallName =
2120 (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
Mehdi Amini44ede332015-07-09 02:09:04 +00002121 SDValue Callee =
2122 DAG.getExternalSymbol(LibcallName, getPointerTy(DAG.getDataLayout()));
Tim Northover3b0846e2014-05-24 12:50:23 +00002123
Reid Kleckner343c3952014-11-20 23:51:47 +00002124 StructType *RetTy = StructType::get(ArgTy, ArgTy, nullptr);
Tim Northover3b0846e2014-05-24 12:50:23 +00002125 TargetLowering::CallLoweringInfo CLI(DAG);
Nirav Daveac6081c2017-03-18 00:44:07 +00002126 CLI.setDebugLoc(dl)
2127 .setChain(DAG.getEntryNode())
2128 .setLibCallee(CallingConv::Fast, RetTy, Callee, std::move(Args));
Tim Northover3b0846e2014-05-24 12:50:23 +00002129
2130 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2131 return CallResult.first;
2132}
2133
Tim Northoverf8bfe212014-07-18 13:07:05 +00002134static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) {
2135 if (Op.getValueType() != MVT::f16)
2136 return SDValue();
2137
2138 assert(Op.getOperand(0).getValueType() == MVT::i16);
2139 SDLoc DL(Op);
2140
2141 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
2142 Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
2143 return SDValue(
2144 DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002145 DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
Tim Northoverf8bfe212014-07-18 13:07:05 +00002146 0);
2147}
2148
Chad Rosierd9d0f862014-10-08 02:31:24 +00002149static EVT getExtensionTo64Bits(const EVT &OrigVT) {
2150 if (OrigVT.getSizeInBits() >= 64)
2151 return OrigVT;
2152
2153 assert(OrigVT.isSimple() && "Expecting a simple value type");
2154
2155 MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
2156 switch (OrigSimpleTy) {
2157 default: llvm_unreachable("Unexpected Vector Type");
2158 case MVT::v2i8:
2159 case MVT::v2i16:
2160 return MVT::v2i32;
2161 case MVT::v4i8:
2162 return MVT::v4i16;
2163 }
2164}
2165
2166static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG,
2167 const EVT &OrigTy,
2168 const EVT &ExtTy,
2169 unsigned ExtOpcode) {
2170 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
2171 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
2172 // 64-bits we need to insert a new extension so that it will be 64-bits.
2173 assert(ExtTy.is128BitVector() && "Unexpected extension size");
2174 if (OrigTy.getSizeInBits() >= 64)
2175 return N;
2176
2177 // Must extend size to at least 64 bits to be used as an operand for VMULL.
2178 EVT NewVT = getExtensionTo64Bits(OrigTy);
2179
2180 return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
2181}
2182
2183static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
2184 bool isSigned) {
2185 EVT VT = N->getValueType(0);
2186
2187 if (N->getOpcode() != ISD::BUILD_VECTOR)
2188 return false;
2189
Pete Cooper3af9a252015-06-26 18:17:36 +00002190 for (const SDValue &Elt : N->op_values()) {
Chad Rosierd9d0f862014-10-08 02:31:24 +00002191 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
Sanjay Patel1ed771f2016-09-14 16:37:15 +00002192 unsigned EltSize = VT.getScalarSizeInBits();
Chad Rosierd9d0f862014-10-08 02:31:24 +00002193 unsigned HalfSize = EltSize / 2;
2194 if (isSigned) {
2195 if (!isIntN(HalfSize, C->getSExtValue()))
2196 return false;
2197 } else {
2198 if (!isUIntN(HalfSize, C->getZExtValue()))
2199 return false;
2200 }
2201 continue;
2202 }
2203 return false;
2204 }
2205
2206 return true;
2207}
2208
2209static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) {
2210 if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
2211 return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG,
2212 N->getOperand(0)->getValueType(0),
2213 N->getValueType(0),
2214 N->getOpcode());
2215
2216 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
2217 EVT VT = N->getValueType(0);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002218 SDLoc dl(N);
Sanjay Patel1ed771f2016-09-14 16:37:15 +00002219 unsigned EltSize = VT.getScalarSizeInBits() / 2;
Chad Rosierd9d0f862014-10-08 02:31:24 +00002220 unsigned NumElts = VT.getVectorNumElements();
2221 MVT TruncVT = MVT::getIntegerVT(EltSize);
2222 SmallVector<SDValue, 8> Ops;
2223 for (unsigned i = 0; i != NumElts; ++i) {
2224 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
2225 const APInt &CInt = C->getAPIntValue();
2226 // Element types smaller than 32 bits are not legal, so use i32 elements.
2227 // The values are implicitly truncated so sext vs. zext doesn't matter.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00002228 Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
Chad Rosierd9d0f862014-10-08 02:31:24 +00002229 }
Ahmed Bougacha128f8732016-04-26 21:15:30 +00002230 return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
Chad Rosierd9d0f862014-10-08 02:31:24 +00002231}
2232
2233static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
Davide Italianode056862017-03-30 19:46:18 +00002234 return N->getOpcode() == ISD::SIGN_EXTEND ||
2235 isExtendedBUILD_VECTOR(N, DAG, true);
Chad Rosierd9d0f862014-10-08 02:31:24 +00002236}
2237
2238static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
Davide Italianode056862017-03-30 19:46:18 +00002239 return N->getOpcode() == ISD::ZERO_EXTEND ||
2240 isExtendedBUILD_VECTOR(N, DAG, false);
Chad Rosierd9d0f862014-10-08 02:31:24 +00002241}
2242
2243static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
2244 unsigned Opcode = N->getOpcode();
2245 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
2246 SDNode *N0 = N->getOperand(0).getNode();
2247 SDNode *N1 = N->getOperand(1).getNode();
2248 return N0->hasOneUse() && N1->hasOneUse() &&
2249 isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
2250 }
2251 return false;
2252}
2253
2254static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
2255 unsigned Opcode = N->getOpcode();
2256 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
2257 SDNode *N0 = N->getOperand(0).getNode();
2258 SDNode *N1 = N->getOperand(1).getNode();
2259 return N0->hasOneUse() && N1->hasOneUse() &&
2260 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
2261 }
2262 return false;
2263}
2264
2265static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
2266 // Multiplications are only custom-lowered for 128-bit vectors so that
2267 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
2268 EVT VT = Op.getValueType();
2269 assert(VT.is128BitVector() && VT.isInteger() &&
2270 "unexpected type for custom-lowering ISD::MUL");
2271 SDNode *N0 = Op.getOperand(0).getNode();
2272 SDNode *N1 = Op.getOperand(1).getNode();
2273 unsigned NewOpc = 0;
2274 bool isMLA = false;
2275 bool isN0SExt = isSignExtended(N0, DAG);
2276 bool isN1SExt = isSignExtended(N1, DAG);
2277 if (isN0SExt && isN1SExt)
2278 NewOpc = AArch64ISD::SMULL;
2279 else {
2280 bool isN0ZExt = isZeroExtended(N0, DAG);
2281 bool isN1ZExt = isZeroExtended(N1, DAG);
2282 if (isN0ZExt && isN1ZExt)
2283 NewOpc = AArch64ISD::UMULL;
2284 else if (isN1SExt || isN1ZExt) {
2285 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
2286 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
2287 if (isN1SExt && isAddSubSExt(N0, DAG)) {
2288 NewOpc = AArch64ISD::SMULL;
2289 isMLA = true;
2290 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
2291 NewOpc = AArch64ISD::UMULL;
2292 isMLA = true;
2293 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
2294 std::swap(N0, N1);
2295 NewOpc = AArch64ISD::UMULL;
2296 isMLA = true;
2297 }
2298 }
2299
2300 if (!NewOpc) {
2301 if (VT == MVT::v2i64)
2302 // Fall through to expand this. It is not legal.
2303 return SDValue();
2304 else
2305 // Other vector multiplications are legal.
2306 return Op;
2307 }
2308 }
2309
2310 // Legalize to a S/UMULL instruction
2311 SDLoc DL(Op);
2312 SDValue Op0;
2313 SDValue Op1 = skipExtensionForVectorMULL(N1, DAG);
2314 if (!isMLA) {
2315 Op0 = skipExtensionForVectorMULL(N0, DAG);
2316 assert(Op0.getValueType().is64BitVector() &&
2317 Op1.getValueType().is64BitVector() &&
2318 "unexpected types for extended operands to VMULL");
2319 return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
2320 }
2321 // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
2322 // isel lowering to take advantage of no-stall back to back s/umul + s/umla.
2323 // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
2324 SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG);
2325 SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG);
2326 EVT Op1VT = Op1.getValueType();
2327 return DAG.getNode(N0->getOpcode(), DL, VT,
2328 DAG.getNode(NewOpc, DL, VT,
2329 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
2330 DAG.getNode(NewOpc, DL, VT,
2331 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
2332}
Tim Northoverf8bfe212014-07-18 13:07:05 +00002333
Adhemerval Zanella7bc33192015-07-28 13:03:31 +00002334SDValue AArch64TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
2335 SelectionDAG &DAG) const {
2336 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2337 SDLoc dl(Op);
2338 switch (IntNo) {
2339 default: return SDValue(); // Don't custom lower most intrinsics.
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +00002340 case Intrinsic::thread_pointer: {
Adhemerval Zanella7bc33192015-07-28 13:03:31 +00002341 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2342 return DAG.getNode(AArch64ISD::THREAD_POINTER, dl, PtrVT);
2343 }
Silviu Barangadb1ddb32015-08-26 11:11:14 +00002344 case Intrinsic::aarch64_neon_smax:
2345 return DAG.getNode(ISD::SMAX, dl, Op.getValueType(),
2346 Op.getOperand(1), Op.getOperand(2));
2347 case Intrinsic::aarch64_neon_umax:
2348 return DAG.getNode(ISD::UMAX, dl, Op.getValueType(),
2349 Op.getOperand(1), Op.getOperand(2));
2350 case Intrinsic::aarch64_neon_smin:
2351 return DAG.getNode(ISD::SMIN, dl, Op.getValueType(),
2352 Op.getOperand(1), Op.getOperand(2));
2353 case Intrinsic::aarch64_neon_umin:
2354 return DAG.getNode(ISD::UMIN, dl, Op.getValueType(),
2355 Op.getOperand(1), Op.getOperand(2));
Adhemerval Zanella7bc33192015-07-28 13:03:31 +00002356 }
2357}
2358
Tim Northover3b0846e2014-05-24 12:50:23 +00002359SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
2360 SelectionDAG &DAG) const {
2361 switch (Op.getOpcode()) {
2362 default:
2363 llvm_unreachable("unimplemented operand");
2364 return SDValue();
Tim Northoverf8bfe212014-07-18 13:07:05 +00002365 case ISD::BITCAST:
2366 return LowerBITCAST(Op, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00002367 case ISD::GlobalAddress:
2368 return LowerGlobalAddress(Op, DAG);
2369 case ISD::GlobalTLSAddress:
2370 return LowerGlobalTLSAddress(Op, DAG);
2371 case ISD::SETCC:
2372 return LowerSETCC(Op, DAG);
2373 case ISD::BR_CC:
2374 return LowerBR_CC(Op, DAG);
2375 case ISD::SELECT:
2376 return LowerSELECT(Op, DAG);
2377 case ISD::SELECT_CC:
2378 return LowerSELECT_CC(Op, DAG);
2379 case ISD::JumpTable:
2380 return LowerJumpTable(Op, DAG);
2381 case ISD::ConstantPool:
2382 return LowerConstantPool(Op, DAG);
2383 case ISD::BlockAddress:
2384 return LowerBlockAddress(Op, DAG);
2385 case ISD::VASTART:
2386 return LowerVASTART(Op, DAG);
2387 case ISD::VACOPY:
2388 return LowerVACOPY(Op, DAG);
2389 case ISD::VAARG:
2390 return LowerVAARG(Op, DAG);
2391 case ISD::ADDC:
2392 case ISD::ADDE:
2393 case ISD::SUBC:
2394 case ISD::SUBE:
2395 return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
2396 case ISD::SADDO:
2397 case ISD::UADDO:
2398 case ISD::SSUBO:
2399 case ISD::USUBO:
2400 case ISD::SMULO:
2401 case ISD::UMULO:
2402 return LowerXALUO(Op, DAG);
2403 case ISD::FADD:
2404 return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
2405 case ISD::FSUB:
2406 return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
2407 case ISD::FMUL:
2408 return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
2409 case ISD::FDIV:
2410 return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
2411 case ISD::FP_ROUND:
2412 return LowerFP_ROUND(Op, DAG);
2413 case ISD::FP_EXTEND:
2414 return LowerFP_EXTEND(Op, DAG);
2415 case ISD::FRAMEADDR:
2416 return LowerFRAMEADDR(Op, DAG);
2417 case ISD::RETURNADDR:
2418 return LowerRETURNADDR(Op, DAG);
2419 case ISD::INSERT_VECTOR_ELT:
2420 return LowerINSERT_VECTOR_ELT(Op, DAG);
2421 case ISD::EXTRACT_VECTOR_ELT:
2422 return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2423 case ISD::BUILD_VECTOR:
2424 return LowerBUILD_VECTOR(Op, DAG);
2425 case ISD::VECTOR_SHUFFLE:
2426 return LowerVECTOR_SHUFFLE(Op, DAG);
2427 case ISD::EXTRACT_SUBVECTOR:
2428 return LowerEXTRACT_SUBVECTOR(Op, DAG);
2429 case ISD::SRA:
2430 case ISD::SRL:
2431 case ISD::SHL:
2432 return LowerVectorSRA_SRL_SHL(Op, DAG);
2433 case ISD::SHL_PARTS:
2434 return LowerShiftLeftParts(Op, DAG);
2435 case ISD::SRL_PARTS:
2436 case ISD::SRA_PARTS:
2437 return LowerShiftRightParts(Op, DAG);
2438 case ISD::CTPOP:
2439 return LowerCTPOP(Op, DAG);
2440 case ISD::FCOPYSIGN:
2441 return LowerFCOPYSIGN(Op, DAG);
2442 case ISD::AND:
Balaram Makamd4acd7e2016-07-05 20:24:05 +00002443 return LowerVectorAND(Op, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00002444 case ISD::OR:
Balaram Makamd4acd7e2016-07-05 20:24:05 +00002445 return LowerVectorOR(Op, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00002446 case ISD::XOR:
2447 return LowerXOR(Op, DAG);
2448 case ISD::PREFETCH:
2449 return LowerPREFETCH(Op, DAG);
2450 case ISD::SINT_TO_FP:
2451 case ISD::UINT_TO_FP:
2452 return LowerINT_TO_FP(Op, DAG);
2453 case ISD::FP_TO_SINT:
2454 case ISD::FP_TO_UINT:
2455 return LowerFP_TO_INT(Op, DAG);
2456 case ISD::FSINCOS:
2457 return LowerFSINCOS(Op, DAG);
Chad Rosierd9d0f862014-10-08 02:31:24 +00002458 case ISD::MUL:
2459 return LowerMUL(Op, DAG);
Adhemerval Zanella7bc33192015-07-28 13:03:31 +00002460 case ISD::INTRINSIC_WO_CHAIN:
2461 return LowerINTRINSIC_WO_CHAIN(Op, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00002462 }
2463}
2464
Tim Northover3b0846e2014-05-24 12:50:23 +00002465//===----------------------------------------------------------------------===//
2466// Calling Convention Implementation
2467//===----------------------------------------------------------------------===//
2468
2469#include "AArch64GenCallingConv.inc"
2470
Robin Morisset039781e2014-08-29 21:53:01 +00002471/// Selects the correct CCAssignFn for a given CallingConvention value.
Tim Northover3b0846e2014-05-24 12:50:23 +00002472CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
2473 bool IsVarArg) const {
2474 switch (CC) {
2475 default:
2476 llvm_unreachable("Unsupported calling convention.");
2477 case CallingConv::WebKit_JS:
2478 return CC_AArch64_WebKit_JS;
Greg Fitzgeraldfa78d082015-01-19 17:40:05 +00002479 case CallingConv::GHC:
2480 return CC_AArch64_GHC;
Tim Northover3b0846e2014-05-24 12:50:23 +00002481 case CallingConv::C:
2482 case CallingConv::Fast:
Roman Levenstein2792b3f2016-03-10 04:35:09 +00002483 case CallingConv::PreserveMost:
Manman Ren2828c572016-03-18 23:38:49 +00002484 case CallingConv::CXX_FAST_TLS:
Manman Ren66b54e92016-08-26 19:28:17 +00002485 case CallingConv::Swift:
Tim Northover3b0846e2014-05-24 12:50:23 +00002486 if (!Subtarget->isTargetDarwin())
2487 return CC_AArch64_AAPCS;
2488 return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS;
2489 }
2490}
2491
Tim Northover406024a2016-08-10 21:44:01 +00002492CCAssignFn *
2493AArch64TargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const {
2494 return CC == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS
2495 : RetCC_AArch64_AAPCS;
2496}
2497
Tim Northover3b0846e2014-05-24 12:50:23 +00002498SDValue AArch64TargetLowering::LowerFormalArguments(
2499 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
Benjamin Kramerbdc49562016-06-12 15:39:02 +00002500 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2501 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00002502 MachineFunction &MF = DAG.getMachineFunction();
Matthias Braun941a7052016-07-28 18:40:00 +00002503 MachineFrameInfo &MFI = MF.getFrameInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +00002504
2505 // Assign locations to all of the incoming arguments.
2506 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002507 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2508 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002509
2510 // At this point, Ins[].VT may already be promoted to i32. To correctly
2511 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2512 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2513 // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
2514 // we use a special version of AnalyzeFormalArguments to pass in ValVT and
2515 // LocVT.
2516 unsigned NumArgs = Ins.size();
2517 Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
2518 unsigned CurArgIdx = 0;
2519 for (unsigned i = 0; i != NumArgs; ++i) {
2520 MVT ValVT = Ins[i].VT;
Andrew Trick05938a52015-02-16 18:10:47 +00002521 if (Ins[i].isOrigArg()) {
2522 std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx);
2523 CurArgIdx = Ins[i].getOrigArgIndex();
Tim Northover3b0846e2014-05-24 12:50:23 +00002524
Andrew Trick05938a52015-02-16 18:10:47 +00002525 // Get type of the original argument.
Mehdi Amini44ede332015-07-09 02:09:04 +00002526 EVT ActualVT = getValueType(DAG.getDataLayout(), CurOrigArg->getType(),
2527 /*AllowUnknown*/ true);
Andrew Trick05938a52015-02-16 18:10:47 +00002528 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
2529 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
2530 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
2531 ValVT = MVT::i8;
2532 else if (ActualMVT == MVT::i16)
2533 ValVT = MVT::i16;
2534 }
Tim Northover3b0846e2014-05-24 12:50:23 +00002535 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
2536 bool Res =
Tim Northover47e003c2014-05-26 17:21:53 +00002537 AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
Tim Northover3b0846e2014-05-24 12:50:23 +00002538 assert(!Res && "Call operand has unhandled type");
2539 (void)Res;
2540 }
2541 assert(ArgLocs.size() == Ins.size());
2542 SmallVector<SDValue, 16> ArgValues;
2543 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2544 CCValAssign &VA = ArgLocs[i];
2545
2546 if (Ins[i].Flags.isByVal()) {
2547 // Byval is used for HFAs in the PCS, but the system should work in a
2548 // non-compliant manner for larger structs.
Mehdi Amini44ede332015-07-09 02:09:04 +00002549 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00002550 int Size = Ins[i].Flags.getByValSize();
2551 unsigned NumRegs = (Size + 7) / 8;
2552
2553 // FIXME: This works on big-endian for composite byvals, which are the common
2554 // case. It should also work for fundamental types too.
2555 unsigned FrameIdx =
Matthias Braun941a7052016-07-28 18:40:00 +00002556 MFI.CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
Mehdi Amini44ede332015-07-09 02:09:04 +00002557 SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrVT);
Tim Northover3b0846e2014-05-24 12:50:23 +00002558 InVals.push_back(FrameIdxN);
2559
2560 continue;
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002561 }
Junmo Park3b8c7152016-01-05 09:36:47 +00002562
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002563 if (VA.isRegLoc()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00002564 // Arguments stored in registers.
2565 EVT RegVT = VA.getLocVT();
2566
2567 SDValue ArgValue;
2568 const TargetRegisterClass *RC;
2569
2570 if (RegVT == MVT::i32)
2571 RC = &AArch64::GPR32RegClass;
2572 else if (RegVT == MVT::i64)
2573 RC = &AArch64::GPR64RegClass;
Oliver Stannard6eda6ff2014-07-11 13:33:46 +00002574 else if (RegVT == MVT::f16)
2575 RC = &AArch64::FPR16RegClass;
Tim Northover3b0846e2014-05-24 12:50:23 +00002576 else if (RegVT == MVT::f32)
2577 RC = &AArch64::FPR32RegClass;
2578 else if (RegVT == MVT::f64 || RegVT.is64BitVector())
2579 RC = &AArch64::FPR64RegClass;
2580 else if (RegVT == MVT::f128 || RegVT.is128BitVector())
2581 RC = &AArch64::FPR128RegClass;
2582 else
2583 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2584
2585 // Transform the arguments in physical registers into virtual ones.
2586 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2587 ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2588
2589 // If this is an 8, 16 or 32-bit value, it is really passed promoted
2590 // to 64 bits. Insert an assert[sz]ext to capture this, then
2591 // truncate to the right size.
2592 switch (VA.getLocInfo()) {
2593 default:
2594 llvm_unreachable("Unknown loc info!");
2595 case CCValAssign::Full:
2596 break;
2597 case CCValAssign::BCvt:
2598 ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
2599 break;
Tim Northover47e003c2014-05-26 17:21:53 +00002600 case CCValAssign::AExt:
Tim Northover3b0846e2014-05-24 12:50:23 +00002601 case CCValAssign::SExt:
Tim Northover3b0846e2014-05-24 12:50:23 +00002602 case CCValAssign::ZExt:
Tim Northover47e003c2014-05-26 17:21:53 +00002603 // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt
2604 // nodes after our lowering.
2605 assert(RegVT == Ins[i].VT && "incorrect register location selected");
Tim Northover3b0846e2014-05-24 12:50:23 +00002606 break;
2607 }
2608
2609 InVals.push_back(ArgValue);
2610
2611 } else { // VA.isRegLoc()
2612 assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
2613 unsigned ArgOffset = VA.getLocMemOffset();
Amara Emerson82da7d02014-08-15 14:29:57 +00002614 unsigned ArgSize = VA.getValVT().getSizeInBits() / 8;
Tim Northover3b0846e2014-05-24 12:50:23 +00002615
2616 uint32_t BEAlign = 0;
Tim Northover293d4142014-12-03 17:49:26 +00002617 if (!Subtarget->isLittleEndian() && ArgSize < 8 &&
2618 !Ins[i].Flags.isInConsecutiveRegs())
Tim Northover3b0846e2014-05-24 12:50:23 +00002619 BEAlign = 8 - ArgSize;
2620
Matthias Braun941a7052016-07-28 18:40:00 +00002621 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
Tim Northover3b0846e2014-05-24 12:50:23 +00002622
2623 // Create load nodes to retrieve arguments from the stack.
Mehdi Amini44ede332015-07-09 02:09:04 +00002624 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
Tim Northover3b0846e2014-05-24 12:50:23 +00002625 SDValue ArgValue;
2626
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002627 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
Tim Northover47e003c2014-05-26 17:21:53 +00002628 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
Jiangning Liucc4f38b2014-06-03 03:25:09 +00002629 MVT MemVT = VA.getValVT();
2630
Tim Northover47e003c2014-05-26 17:21:53 +00002631 switch (VA.getLocInfo()) {
2632 default:
2633 break;
Tim Northover6890add2014-06-03 13:54:53 +00002634 case CCValAssign::BCvt:
2635 MemVT = VA.getLocVT();
2636 break;
Tim Northover47e003c2014-05-26 17:21:53 +00002637 case CCValAssign::SExt:
2638 ExtType = ISD::SEXTLOAD;
2639 break;
2640 case CCValAssign::ZExt:
2641 ExtType = ISD::ZEXTLOAD;
2642 break;
2643 case CCValAssign::AExt:
2644 ExtType = ISD::EXTLOAD;
2645 break;
Tim Northover3b0846e2014-05-24 12:50:23 +00002646 }
2647
Alex Lorenze40c8a22015-08-11 23:09:45 +00002648 ArgValue = DAG.getExtLoad(
2649 ExtType, DL, VA.getLocVT(), Chain, FIN,
2650 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
Justin Lebar9c375812016-07-15 18:27:10 +00002651 MemVT);
Tim Northover47e003c2014-05-26 17:21:53 +00002652
Tim Northover3b0846e2014-05-24 12:50:23 +00002653 InVals.push_back(ArgValue);
2654 }
2655 }
2656
2657 // varargs
Matthias Braundff243e2016-04-12 02:16:13 +00002658 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
Tim Northover3b0846e2014-05-24 12:50:23 +00002659 if (isVarArg) {
2660 if (!Subtarget->isTargetDarwin()) {
2661 // The AAPCS variadic function ABI is identical to the non-variadic
2662 // one. As a result there may be more arguments in registers and we should
2663 // save them for future reference.
2664 saveVarArgRegisters(CCInfo, DAG, DL, Chain);
2665 }
2666
Tim Northover3b0846e2014-05-24 12:50:23 +00002667 // This will point to the next argument passed via stack.
2668 unsigned StackOffset = CCInfo.getNextStackOffset();
2669 // We currently pass all varargs at 8-byte alignment.
2670 StackOffset = ((StackOffset + 7) & ~7);
Matthias Braun941a7052016-07-28 18:40:00 +00002671 FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true));
Tim Northover3b0846e2014-05-24 12:50:23 +00002672 }
2673
Tim Northover3b0846e2014-05-24 12:50:23 +00002674 unsigned StackArgSize = CCInfo.getNextStackOffset();
2675 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2676 if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
2677 // This is a non-standard ABI so by fiat I say we're allowed to make full
2678 // use of the stack area to be popped, which must be aligned to 16 bytes in
2679 // any case:
Rui Ueyamada00f2f2016-01-14 21:06:47 +00002680 StackArgSize = alignTo(StackArgSize, 16);
Tim Northover3b0846e2014-05-24 12:50:23 +00002681
2682 // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
2683 // a multiple of 16.
2684 FuncInfo->setArgumentStackToRestore(StackArgSize);
2685
2686 // This realignment carries over to the available bytes below. Our own
2687 // callers will guarantee the space is free by giving an aligned value to
2688 // CALLSEQ_START.
2689 }
2690 // Even if we're not expected to free up the space, it's useful to know how
2691 // much is there while considering tail calls (because we can reuse it).
2692 FuncInfo->setBytesInStackArgArea(StackArgSize);
2693
2694 return Chain;
2695}
2696
2697void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
Benjamin Kramerbdc49562016-06-12 15:39:02 +00002698 SelectionDAG &DAG,
2699 const SDLoc &DL,
Tim Northover3b0846e2014-05-24 12:50:23 +00002700 SDValue &Chain) const {
2701 MachineFunction &MF = DAG.getMachineFunction();
Matthias Braun941a7052016-07-28 18:40:00 +00002702 MachineFrameInfo &MFI = MF.getFrameInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +00002703 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
Mehdi Amini44ede332015-07-09 02:09:04 +00002704 auto PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00002705
2706 SmallVector<SDValue, 8> MemOps;
2707
2708 static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
2709 AArch64::X3, AArch64::X4, AArch64::X5,
2710 AArch64::X6, AArch64::X7 };
2711 static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
Tim Northover3b6b7ca2015-02-21 02:11:17 +00002712 unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs);
Tim Northover3b0846e2014-05-24 12:50:23 +00002713
2714 unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
2715 int GPRIdx = 0;
2716 if (GPRSaveSize != 0) {
Matthias Braun941a7052016-07-28 18:40:00 +00002717 GPRIdx = MFI.CreateStackObject(GPRSaveSize, 8, false);
Tim Northover3b0846e2014-05-24 12:50:23 +00002718
Mehdi Amini44ede332015-07-09 02:09:04 +00002719 SDValue FIN = DAG.getFrameIndex(GPRIdx, PtrVT);
Tim Northover3b0846e2014-05-24 12:50:23 +00002720
2721 for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
2722 unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
2723 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
Alex Lorenze40c8a22015-08-11 23:09:45 +00002724 SDValue Store = DAG.getStore(
2725 Val.getValue(1), DL, Val, FIN,
Justin Lebar9c375812016-07-15 18:27:10 +00002726 MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 8));
Tim Northover3b0846e2014-05-24 12:50:23 +00002727 MemOps.push_back(Store);
Mehdi Amini44ede332015-07-09 02:09:04 +00002728 FIN =
2729 DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getConstant(8, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00002730 }
2731 }
2732 FuncInfo->setVarArgsGPRIndex(GPRIdx);
2733 FuncInfo->setVarArgsGPRSize(GPRSaveSize);
2734
2735 if (Subtarget->hasFPARMv8()) {
2736 static const MCPhysReg FPRArgRegs[] = {
2737 AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
2738 AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
2739 static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
Tim Northover3b6b7ca2015-02-21 02:11:17 +00002740 unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs);
Tim Northover3b0846e2014-05-24 12:50:23 +00002741
2742 unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
2743 int FPRIdx = 0;
2744 if (FPRSaveSize != 0) {
Matthias Braun941a7052016-07-28 18:40:00 +00002745 FPRIdx = MFI.CreateStackObject(FPRSaveSize, 16, false);
Tim Northover3b0846e2014-05-24 12:50:23 +00002746
Mehdi Amini44ede332015-07-09 02:09:04 +00002747 SDValue FIN = DAG.getFrameIndex(FPRIdx, PtrVT);
Tim Northover3b0846e2014-05-24 12:50:23 +00002748
2749 for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
2750 unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
2751 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
2752
Alex Lorenze40c8a22015-08-11 23:09:45 +00002753 SDValue Store = DAG.getStore(
2754 Val.getValue(1), DL, Val, FIN,
Justin Lebar9c375812016-07-15 18:27:10 +00002755 MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 16));
Tim Northover3b0846e2014-05-24 12:50:23 +00002756 MemOps.push_back(Store);
Mehdi Amini44ede332015-07-09 02:09:04 +00002757 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
2758 DAG.getConstant(16, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00002759 }
2760 }
2761 FuncInfo->setVarArgsFPRIndex(FPRIdx);
2762 FuncInfo->setVarArgsFPRSize(FPRSaveSize);
2763 }
2764
2765 if (!MemOps.empty()) {
2766 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
2767 }
2768}
2769
2770/// LowerCallResult - Lower the result values of a call into the
2771/// appropriate copies out of appropriate physical registers.
2772SDValue AArch64TargetLowering::LowerCallResult(
2773 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
Benjamin Kramerbdc49562016-06-12 15:39:02 +00002774 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2775 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
Tim Northover3b0846e2014-05-24 12:50:23 +00002776 SDValue ThisVal) const {
2777 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2778 ? RetCC_AArch64_WebKit_JS
2779 : RetCC_AArch64_AAPCS;
2780 // Assign locations to each value returned by this call.
2781 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00002782 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2783 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00002784 CCInfo.AnalyzeCallResult(Ins, RetCC);
2785
2786 // Copy all of the result registers out of their specified physreg.
2787 for (unsigned i = 0; i != RVLocs.size(); ++i) {
2788 CCValAssign VA = RVLocs[i];
2789
2790 // Pass 'this' value directly from the argument to return value, to avoid
2791 // reg unit interference
David Majnemer5d261272016-07-20 04:13:01 +00002792 if (i == 0 && isThisReturn) {
Tim Northover3b0846e2014-05-24 12:50:23 +00002793 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
2794 "unexpected return calling convention register assignment");
2795 InVals.push_back(ThisVal);
2796 continue;
2797 }
2798
2799 SDValue Val =
2800 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2801 Chain = Val.getValue(1);
2802 InFlag = Val.getValue(2);
2803
2804 switch (VA.getLocInfo()) {
2805 default:
2806 llvm_unreachable("Unknown loc info!");
2807 case CCValAssign::Full:
2808 break;
2809 case CCValAssign::BCvt:
2810 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2811 break;
2812 }
2813
2814 InVals.push_back(Val);
2815 }
2816
2817 return Chain;
2818}
2819
Matthias Braun1af14142016-09-13 19:27:38 +00002820/// Return true if the calling convention is one that we can guarantee TCO for.
2821static bool canGuaranteeTCO(CallingConv::ID CC) {
2822 return CC == CallingConv::Fast;
2823}
2824
2825/// Return true if we might ever do TCO for calls with this calling convention.
2826static bool mayTailCallThisCC(CallingConv::ID CC) {
2827 switch (CC) {
2828 case CallingConv::C:
2829 case CallingConv::PreserveMost:
2830 case CallingConv::Swift:
2831 return true;
2832 default:
2833 return canGuaranteeTCO(CC);
2834 }
2835}
2836
Tim Northover3b0846e2014-05-24 12:50:23 +00002837bool AArch64TargetLowering::isEligibleForTailCallOptimization(
2838 SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
Tim Northover3b0846e2014-05-24 12:50:23 +00002839 const SmallVectorImpl<ISD::OutputArg> &Outs,
2840 const SmallVectorImpl<SDValue> &OutVals,
2841 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
Matthias Braun1af14142016-09-13 19:27:38 +00002842 if (!mayTailCallThisCC(CalleeCC))
Tim Northover3b0846e2014-05-24 12:50:23 +00002843 return false;
2844
Matthias Braun8d414362016-03-30 22:46:04 +00002845 MachineFunction &MF = DAG.getMachineFunction();
Tim Northover3b0846e2014-05-24 12:50:23 +00002846 const Function *CallerF = MF.getFunction();
2847 CallingConv::ID CallerCC = CallerF->getCallingConv();
2848 bool CCMatch = CallerCC == CalleeCC;
2849
2850 // Byval parameters hand the function a pointer directly into the stack area
2851 // we want to reuse during a tail call. Working around this *is* possible (see
2852 // X86) but less efficient and uglier in LowerCall.
2853 for (Function::const_arg_iterator i = CallerF->arg_begin(),
2854 e = CallerF->arg_end();
2855 i != e; ++i)
2856 if (i->hasByValAttr())
2857 return false;
2858
Matthias Braun1af14142016-09-13 19:27:38 +00002859 if (getTargetMachine().Options.GuaranteedTailCallOpt)
2860 return canGuaranteeTCO(CalleeCC) && CCMatch;
Tim Northover3b0846e2014-05-24 12:50:23 +00002861
Oliver Stannard12993dd2014-08-18 12:42:15 +00002862 // Externally-defined functions with weak linkage should not be
2863 // tail-called on AArch64 when the OS does not support dynamic
2864 // pre-emption of symbols, as the AAELF spec requires normal calls
2865 // to undefined weak functions to be replaced with a NOP or jump to the
2866 // next instruction. The behaviour of branch instructions in this
2867 // situation (as used for tail calls) is implementation-defined, so we
2868 // cannot rely on the linker replacing the tail call with a return.
2869 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2870 const GlobalValue *GV = G->getGlobal();
Daniel Sandersc81f4502015-06-16 15:44:21 +00002871 const Triple &TT = getTargetMachine().getTargetTriple();
Saleem Abdulrasool67f72992015-01-03 21:35:00 +00002872 if (GV->hasExternalWeakLinkage() &&
2873 (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
Oliver Stannard12993dd2014-08-18 12:42:15 +00002874 return false;
2875 }
2876
Tim Northover3b0846e2014-05-24 12:50:23 +00002877 // Now we search for cases where we can use a tail call without changing the
2878 // ABI. Sibcall is used in some places (particularly gcc) to refer to this
2879 // concept.
2880
2881 // I want anyone implementing a new calling convention to think long and hard
2882 // about this assert.
2883 assert((!isVarArg || CalleeCC == CallingConv::C) &&
2884 "Unexpected variadic calling convention");
2885
Matthias Braun8d414362016-03-30 22:46:04 +00002886 LLVMContext &C = *DAG.getContext();
Tim Northover3b0846e2014-05-24 12:50:23 +00002887 if (isVarArg && !Outs.empty()) {
2888 // At least two cases here: if caller is fastcc then we can't have any
2889 // memory arguments (we'd be expected to clean up the stack afterwards). If
2890 // caller is C then we could potentially use its argument area.
2891
2892 // FIXME: for now we take the most conservative of these in both cases:
2893 // disallow all variadic memory operands.
2894 SmallVector<CCValAssign, 16> ArgLocs;
Matthias Braun8d414362016-03-30 22:46:04 +00002895 CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
Tim Northover3b0846e2014-05-24 12:50:23 +00002896
2897 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
Pete Cooper7be8f8f2015-08-03 19:04:32 +00002898 for (const CCValAssign &ArgLoc : ArgLocs)
2899 if (!ArgLoc.isRegLoc())
Tim Northover3b0846e2014-05-24 12:50:23 +00002900 return false;
2901 }
2902
Matthias Braun8d414362016-03-30 22:46:04 +00002903 // Check that the call results are passed in the same way.
2904 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
2905 CCAssignFnForCall(CalleeCC, isVarArg),
2906 CCAssignFnForCall(CallerCC, isVarArg)))
2907 return false;
Matthias Braun870c34f2016-04-04 18:56:13 +00002908 // The callee has to preserve all registers the caller needs to preserve.
Matthias Braun74a0bd32016-04-13 21:43:16 +00002909 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
2910 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
Matthias Braun870c34f2016-04-04 18:56:13 +00002911 if (!CCMatch) {
Matthias Braun74a0bd32016-04-13 21:43:16 +00002912 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2913 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
Matthias Braun870c34f2016-04-04 18:56:13 +00002914 return false;
2915 }
Tim Northover3b0846e2014-05-24 12:50:23 +00002916
2917 // Nothing more to check if the callee is taking no arguments
2918 if (Outs.empty())
2919 return true;
2920
2921 SmallVector<CCValAssign, 16> ArgLocs;
Matthias Braun8d414362016-03-30 22:46:04 +00002922 CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
Tim Northover3b0846e2014-05-24 12:50:23 +00002923
2924 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2925
2926 const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2927
Matthias Braun74a0bd32016-04-13 21:43:16 +00002928 // If the stack arguments for this call do not fit into our own save area then
2929 // the call cannot be made tail.
2930 if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
2931 return false;
2932
Matthias Braun46b0f032016-04-14 01:10:42 +00002933 const MachineRegisterInfo &MRI = MF.getRegInfo();
2934 if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
2935 return false;
Matthias Braun74a0bd32016-04-13 21:43:16 +00002936
2937 return true;
Tim Northover3b0846e2014-05-24 12:50:23 +00002938}
2939
2940SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
2941 SelectionDAG &DAG,
Matthias Braun941a7052016-07-28 18:40:00 +00002942 MachineFrameInfo &MFI,
Tim Northover3b0846e2014-05-24 12:50:23 +00002943 int ClobberedFI) const {
2944 SmallVector<SDValue, 8> ArgChains;
Matthias Braun941a7052016-07-28 18:40:00 +00002945 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
2946 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
Tim Northover3b0846e2014-05-24 12:50:23 +00002947
2948 // Include the original chain at the beginning of the list. When this is
2949 // used by target LowerCall hooks, this helps legalize find the
2950 // CALLSEQ_BEGIN node.
2951 ArgChains.push_back(Chain);
2952
2953 // Add a chain value for each stack argument corresponding
2954 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
2955 UE = DAG.getEntryNode().getNode()->use_end();
2956 U != UE; ++U)
2957 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
2958 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
2959 if (FI->getIndex() < 0) {
Matthias Braun941a7052016-07-28 18:40:00 +00002960 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
Tim Northover3b0846e2014-05-24 12:50:23 +00002961 int64_t InLastByte = InFirstByte;
Matthias Braun941a7052016-07-28 18:40:00 +00002962 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
Tim Northover3b0846e2014-05-24 12:50:23 +00002963
2964 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
2965 (FirstByte <= InFirstByte && InFirstByte <= LastByte))
2966 ArgChains.push_back(SDValue(L, 1));
2967 }
2968
2969 // Build a tokenfactor for all the chains.
2970 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
2971}
2972
2973bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
2974 bool TailCallOpt) const {
2975 return CallCC == CallingConv::Fast && TailCallOpt;
2976}
2977
Tim Northover3b0846e2014-05-24 12:50:23 +00002978/// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
2979/// and add input and output parameter nodes.
2980SDValue
2981AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
2982 SmallVectorImpl<SDValue> &InVals) const {
2983 SelectionDAG &DAG = CLI.DAG;
2984 SDLoc &DL = CLI.DL;
2985 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2986 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2987 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2988 SDValue Chain = CLI.Chain;
2989 SDValue Callee = CLI.Callee;
2990 bool &IsTailCall = CLI.IsTailCall;
2991 CallingConv::ID CallConv = CLI.CallConv;
2992 bool IsVarArg = CLI.IsVarArg;
2993
2994 MachineFunction &MF = DAG.getMachineFunction();
Tim Northover3b0846e2014-05-24 12:50:23 +00002995 bool IsThisReturn = false;
2996
2997 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2998 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2999 bool IsSibCall = false;
3000
3001 if (IsTailCall) {
3002 // Check if it's really possible to do a tail call.
3003 IsTailCall = isEligibleForTailCallOptimization(
Matthias Brauncc7fba42016-04-01 02:49:17 +00003004 Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00003005 if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
3006 report_fatal_error("failed to perform tail call elimination on a call "
3007 "site marked musttail");
3008
3009 // A sibling call is one where we're under the usual C ABI and not planning
3010 // to change that but can still do a tail call:
3011 if (!TailCallOpt && IsTailCall)
3012 IsSibCall = true;
3013
3014 if (IsTailCall)
3015 ++NumTailCalls;
3016 }
3017
3018 // Analyze operands of the call, assigning locations to each operand.
3019 SmallVector<CCValAssign, 16> ArgLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00003020 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
3021 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00003022
3023 if (IsVarArg) {
3024 // Handle fixed and variable vector arguments differently.
3025 // Variable vector arguments always go into memory.
3026 unsigned NumArgs = Outs.size();
3027
3028 for (unsigned i = 0; i != NumArgs; ++i) {
3029 MVT ArgVT = Outs[i].VT;
3030 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
3031 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
3032 /*IsVarArg=*/ !Outs[i].IsFixed);
3033 bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
3034 assert(!Res && "Call operand has unhandled type");
3035 (void)Res;
3036 }
3037 } else {
3038 // At this point, Outs[].VT may already be promoted to i32. To correctly
3039 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
3040 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
3041 // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
3042 // we use a special version of AnalyzeCallOperands to pass in ValVT and
3043 // LocVT.
3044 unsigned NumArgs = Outs.size();
3045 for (unsigned i = 0; i != NumArgs; ++i) {
3046 MVT ValVT = Outs[i].VT;
3047 // Get type of the original argument.
Mehdi Amini44ede332015-07-09 02:09:04 +00003048 EVT ActualVT = getValueType(DAG.getDataLayout(),
3049 CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
Tim Northover3b0846e2014-05-24 12:50:23 +00003050 /*AllowUnknown*/ true);
3051 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
3052 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
3053 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
Tim Northover3b0846e2014-05-24 12:50:23 +00003054 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
Tim Northover47e003c2014-05-26 17:21:53 +00003055 ValVT = MVT::i8;
Tim Northover3b0846e2014-05-24 12:50:23 +00003056 else if (ActualMVT == MVT::i16)
Tim Northover47e003c2014-05-26 17:21:53 +00003057 ValVT = MVT::i16;
Tim Northover3b0846e2014-05-24 12:50:23 +00003058
3059 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
Tim Northover47e003c2014-05-26 17:21:53 +00003060 bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
Tim Northover3b0846e2014-05-24 12:50:23 +00003061 assert(!Res && "Call operand has unhandled type");
3062 (void)Res;
3063 }
3064 }
3065
3066 // Get a count of how many bytes are to be pushed on the stack.
3067 unsigned NumBytes = CCInfo.getNextStackOffset();
3068
3069 if (IsSibCall) {
3070 // Since we're not changing the ABI to make this a tail call, the memory
3071 // operands are already available in the caller's incoming argument space.
3072 NumBytes = 0;
3073 }
3074
3075 // FPDiff is the byte offset of the call's argument area from the callee's.
3076 // Stores to callee stack arguments will be placed in FixedStackSlots offset
3077 // by this amount for a tail call. In a sibling call it must be 0 because the
3078 // caller will deallocate the entire stack and the callee still expects its
3079 // arguments to begin at SP+0. Completely unused for non-tail calls.
3080 int FPDiff = 0;
3081
3082 if (IsTailCall && !IsSibCall) {
3083 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
3084
3085 // Since callee will pop argument stack as a tail call, we must keep the
3086 // popped size 16-byte aligned.
Rui Ueyamada00f2f2016-01-14 21:06:47 +00003087 NumBytes = alignTo(NumBytes, 16);
Tim Northover3b0846e2014-05-24 12:50:23 +00003088
3089 // FPDiff will be negative if this tail call requires more space than we
3090 // would automatically have in our incoming argument space. Positive if we
3091 // can actually shrink the stack.
3092 FPDiff = NumReusableBytes - NumBytes;
3093
3094 // The stack pointer must be 16-byte aligned at all times it's used for a
3095 // memory operation, which in practice means at *all* times and in
3096 // particular across call boundaries. Therefore our own arguments started at
3097 // a 16-byte aligned SP and the delta applied for the tail call should
3098 // satisfy the same constraint.
3099 assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
3100 }
3101
3102 // Adjust the stack pointer for the new arguments...
3103 // These operations are automatically eliminated by the prolog/epilog pass
3104 if (!IsSibCall)
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003105 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, DL,
3106 true),
3107 DL);
Tim Northover3b0846e2014-05-24 12:50:23 +00003108
Mehdi Amini44ede332015-07-09 02:09:04 +00003109 SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP,
3110 getPointerTy(DAG.getDataLayout()));
Tim Northover3b0846e2014-05-24 12:50:23 +00003111
3112 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3113 SmallVector<SDValue, 8> MemOpChains;
Mehdi Amini44ede332015-07-09 02:09:04 +00003114 auto PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00003115
3116 // Walk the register/memloc assignments, inserting copies/loads.
3117 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
3118 ++i, ++realArgIdx) {
3119 CCValAssign &VA = ArgLocs[i];
3120 SDValue Arg = OutVals[realArgIdx];
3121 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
3122
3123 // Promote the value if needed.
3124 switch (VA.getLocInfo()) {
3125 default:
3126 llvm_unreachable("Unknown loc info!");
3127 case CCValAssign::Full:
3128 break;
3129 case CCValAssign::SExt:
3130 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
3131 break;
3132 case CCValAssign::ZExt:
3133 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3134 break;
3135 case CCValAssign::AExt:
Tim Northover68ae5032014-05-26 17:22:07 +00003136 if (Outs[realArgIdx].ArgVT == MVT::i1) {
3137 // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
3138 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
3139 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
3140 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003141 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3142 break;
3143 case CCValAssign::BCvt:
3144 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3145 break;
3146 case CCValAssign::FPExt:
3147 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
3148 break;
3149 }
3150
3151 if (VA.isRegLoc()) {
Arnold Schwaighoferdb7bbcb2017-02-08 22:30:47 +00003152 if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
3153 Outs[0].VT == MVT::i64) {
Tim Northover3b0846e2014-05-24 12:50:23 +00003154 assert(VA.getLocVT() == MVT::i64 &&
3155 "unexpected calling convention register assignment");
3156 assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
3157 "unexpected use of 'returned'");
3158 IsThisReturn = true;
3159 }
3160 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3161 } else {
3162 assert(VA.isMemLoc());
3163
3164 SDValue DstAddr;
3165 MachinePointerInfo DstInfo;
3166
3167 // FIXME: This works on big-endian for composite byvals, which are the
3168 // common case. It should also work for fundamental types too.
3169 uint32_t BEAlign = 0;
3170 unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
Amara Emerson82da7d02014-08-15 14:29:57 +00003171 : VA.getValVT().getSizeInBits();
Tim Northover3b0846e2014-05-24 12:50:23 +00003172 OpSize = (OpSize + 7) / 8;
Tim Northover293d4142014-12-03 17:49:26 +00003173 if (!Subtarget->isLittleEndian() && !Flags.isByVal() &&
3174 !Flags.isInConsecutiveRegs()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00003175 if (OpSize < 8)
3176 BEAlign = 8 - OpSize;
3177 }
3178 unsigned LocMemOffset = VA.getLocMemOffset();
3179 int32_t Offset = LocMemOffset + BEAlign;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003180 SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
Mehdi Amini44ede332015-07-09 02:09:04 +00003181 PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
Tim Northover3b0846e2014-05-24 12:50:23 +00003182
3183 if (IsTailCall) {
3184 Offset = Offset + FPDiff;
Matthias Braun941a7052016-07-28 18:40:00 +00003185 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
Tim Northover3b0846e2014-05-24 12:50:23 +00003186
Mehdi Amini44ede332015-07-09 02:09:04 +00003187 DstAddr = DAG.getFrameIndex(FI, PtrVT);
Alex Lorenze40c8a22015-08-11 23:09:45 +00003188 DstInfo =
3189 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
Tim Northover3b0846e2014-05-24 12:50:23 +00003190
3191 // Make sure any stack arguments overlapping with where we're storing
3192 // are loaded before this eventual operation. Otherwise they'll be
3193 // clobbered.
3194 Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
3195 } else {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003196 SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
Tim Northover3b0846e2014-05-24 12:50:23 +00003197
Mehdi Amini44ede332015-07-09 02:09:04 +00003198 DstAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
Alex Lorenze40c8a22015-08-11 23:09:45 +00003199 DstInfo = MachinePointerInfo::getStack(DAG.getMachineFunction(),
3200 LocMemOffset);
Tim Northover3b0846e2014-05-24 12:50:23 +00003201 }
3202
3203 if (Outs[i].Flags.isByVal()) {
3204 SDValue SizeNode =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003205 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00003206 SDValue Cpy = DAG.getMemcpy(
3207 Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
Krzysztof Parzyszeka46c36b2015-04-13 17:16:45 +00003208 /*isVol = */ false, /*AlwaysInline = */ false,
3209 /*isTailCall = */ false,
3210 DstInfo, MachinePointerInfo());
Tim Northover3b0846e2014-05-24 12:50:23 +00003211
3212 MemOpChains.push_back(Cpy);
3213 } else {
3214 // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
3215 // promoted to a legal register type i32, we should truncate Arg back to
3216 // i1/i8/i16.
Tim Northover6890add2014-06-03 13:54:53 +00003217 if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
3218 VA.getValVT() == MVT::i16)
3219 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
Tim Northover3b0846e2014-05-24 12:50:23 +00003220
Justin Lebar9c375812016-07-15 18:27:10 +00003221 SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo);
Tim Northover3b0846e2014-05-24 12:50:23 +00003222 MemOpChains.push_back(Store);
3223 }
3224 }
3225 }
3226
3227 if (!MemOpChains.empty())
3228 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3229
3230 // Build a sequence of copy-to-reg nodes chained together with token chain
3231 // and flag operands which copy the outgoing args into the appropriate regs.
3232 SDValue InFlag;
Pete Cooper7be8f8f2015-08-03 19:04:32 +00003233 for (auto &RegToPass : RegsToPass) {
3234 Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
3235 RegToPass.second, InFlag);
Tim Northover3b0846e2014-05-24 12:50:23 +00003236 InFlag = Chain.getValue(1);
3237 }
3238
3239 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3240 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3241 // node so that legalize doesn't hack it.
Tim Northover879a0b22017-04-17 17:27:56 +00003242 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3243 auto GV = G->getGlobal();
3244 if (Subtarget->classifyGlobalFunctionReference(GV, getTargetMachine()) ==
3245 AArch64II::MO_GOT) {
3246 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_GOT);
3247 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
3248 } else {
Tim Northover3b0846e2014-05-24 12:50:23 +00003249 const GlobalValue *GV = G->getGlobal();
Tim Northover879a0b22017-04-17 17:27:56 +00003250 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0);
3251 }
3252 } else if (auto *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3253 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3254 Subtarget->isTargetMachO()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00003255 const char *Sym = S->getSymbol();
Mehdi Amini44ede332015-07-09 02:09:04 +00003256 Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, AArch64II::MO_GOT);
3257 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
Tim Northover879a0b22017-04-17 17:27:56 +00003258 } else {
3259 const char *Sym = S->getSymbol();
3260 Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, 0);
Tim Northover3b0846e2014-05-24 12:50:23 +00003261 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003262 }
3263
3264 // We don't usually want to end the call-sequence here because we would tidy
3265 // the frame up *after* the call, however in the ABI-changing tail-call case
3266 // we've carefully laid out the parameters so that when sp is reset they'll be
3267 // in the correct location.
3268 if (IsTailCall && !IsSibCall) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003269 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
3270 DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
Tim Northover3b0846e2014-05-24 12:50:23 +00003271 InFlag = Chain.getValue(1);
3272 }
3273
3274 std::vector<SDValue> Ops;
3275 Ops.push_back(Chain);
3276 Ops.push_back(Callee);
3277
3278 if (IsTailCall) {
3279 // Each tail call may have to adjust the stack by a different amount, so
3280 // this information must travel along with the operation for eventual
3281 // consumption by emitEpilogue.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003282 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00003283 }
3284
3285 // Add argument registers to the end of the list so that they are known live
3286 // into the call.
Pete Cooper7be8f8f2015-08-03 19:04:32 +00003287 for (auto &RegToPass : RegsToPass)
3288 Ops.push_back(DAG.getRegister(RegToPass.first,
3289 RegToPass.second.getValueType()));
Tim Northover3b0846e2014-05-24 12:50:23 +00003290
3291 // Add a register mask operand representing the call-preserved registers.
3292 const uint32_t *Mask;
Eric Christopher905f12d2015-01-29 00:19:42 +00003293 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +00003294 if (IsThisReturn) {
3295 // For 'this' returns, use the X0-preserving mask if applicable
Eric Christopher9deb75d2015-03-11 22:42:13 +00003296 Mask = TRI->getThisReturnPreservedMask(MF, CallConv);
Tim Northover3b0846e2014-05-24 12:50:23 +00003297 if (!Mask) {
3298 IsThisReturn = false;
Eric Christopher9deb75d2015-03-11 22:42:13 +00003299 Mask = TRI->getCallPreservedMask(MF, CallConv);
Tim Northover3b0846e2014-05-24 12:50:23 +00003300 }
3301 } else
Eric Christopher9deb75d2015-03-11 22:42:13 +00003302 Mask = TRI->getCallPreservedMask(MF, CallConv);
Tim Northover3b0846e2014-05-24 12:50:23 +00003303
3304 assert(Mask && "Missing call preserved mask for calling convention");
3305 Ops.push_back(DAG.getRegisterMask(Mask));
3306
3307 if (InFlag.getNode())
3308 Ops.push_back(InFlag);
3309
3310 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3311
3312 // If we're doing a tall call, use a TC_RETURN here rather than an
3313 // actual call instruction.
Arnold Schwaighoferf54b73d2015-05-08 23:52:00 +00003314 if (IsTailCall) {
Matthias Braun941a7052016-07-28 18:40:00 +00003315 MF.getFrameInfo().setHasTailCall();
Tim Northover3b0846e2014-05-24 12:50:23 +00003316 return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
Arnold Schwaighoferf54b73d2015-05-08 23:52:00 +00003317 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003318
3319 // Returns a chain and a flag for retval copy to use.
3320 Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
3321 InFlag = Chain.getValue(1);
3322
Rui Ueyamada00f2f2016-01-14 21:06:47 +00003323 uint64_t CalleePopBytes =
3324 DoesCalleeRestoreStack(CallConv, TailCallOpt) ? alignTo(NumBytes, 16) : 0;
Tim Northover3b0846e2014-05-24 12:50:23 +00003325
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003326 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
3327 DAG.getIntPtrConstant(CalleePopBytes, DL, true),
Tim Northover3b0846e2014-05-24 12:50:23 +00003328 InFlag, DL);
3329 if (!Ins.empty())
3330 InFlag = Chain.getValue(1);
3331
3332 // Handle result values, copying them out of physregs into vregs that we
3333 // return.
3334 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3335 InVals, IsThisReturn,
3336 IsThisReturn ? OutVals[0] : SDValue());
3337}
3338
3339bool AArch64TargetLowering::CanLowerReturn(
3340 CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
3341 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
3342 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
3343 ? RetCC_AArch64_WebKit_JS
3344 : RetCC_AArch64_AAPCS;
3345 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00003346 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
Tim Northover3b0846e2014-05-24 12:50:23 +00003347 return CCInfo.CheckReturn(Outs, RetCC);
3348}
3349
3350SDValue
3351AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
3352 bool isVarArg,
3353 const SmallVectorImpl<ISD::OutputArg> &Outs,
3354 const SmallVectorImpl<SDValue> &OutVals,
Benjamin Kramerbdc49562016-06-12 15:39:02 +00003355 const SDLoc &DL, SelectionDAG &DAG) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00003356 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
3357 ? RetCC_AArch64_WebKit_JS
3358 : RetCC_AArch64_AAPCS;
3359 SmallVector<CCValAssign, 16> RVLocs;
Eric Christopherb5217502014-08-06 18:45:26 +00003360 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
3361 *DAG.getContext());
Tim Northover3b0846e2014-05-24 12:50:23 +00003362 CCInfo.AnalyzeReturn(Outs, RetCC);
3363
3364 // Copy the result values into the output registers.
3365 SDValue Flag;
3366 SmallVector<SDValue, 4> RetOps(1, Chain);
3367 for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
3368 ++i, ++realRVLocIdx) {
3369 CCValAssign &VA = RVLocs[i];
3370 assert(VA.isRegLoc() && "Can only return in registers!");
3371 SDValue Arg = OutVals[realRVLocIdx];
3372
3373 switch (VA.getLocInfo()) {
3374 default:
3375 llvm_unreachable("Unknown loc info!");
3376 case CCValAssign::Full:
Tim Northover68ae5032014-05-26 17:22:07 +00003377 if (Outs[i].ArgVT == MVT::i1) {
3378 // AAPCS requires i1 to be zero-extended to i8 by the producer of the
3379 // value. This is strictly redundant on Darwin (which uses "zeroext
3380 // i1"), but will be optimised out before ISel.
3381 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
3382 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3383 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003384 break;
3385 case CCValAssign::BCvt:
3386 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3387 break;
3388 }
3389
3390 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
3391 Flag = Chain.getValue(1);
3392 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3393 }
Manman Rencbe4f942015-12-16 21:04:19 +00003394 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
3395 const MCPhysReg *I =
3396 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
3397 if (I) {
3398 for (; *I; ++I) {
3399 if (AArch64::GPR64RegClass.contains(*I))
3400 RetOps.push_back(DAG.getRegister(*I, MVT::i64));
3401 else if (AArch64::FPR64RegClass.contains(*I))
3402 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
3403 else
3404 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
3405 }
3406 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003407
3408 RetOps[0] = Chain; // Update chain.
3409
3410 // Add the flag if we have it.
3411 if (Flag.getNode())
3412 RetOps.push_back(Flag);
3413
3414 return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
3415}
3416
3417//===----------------------------------------------------------------------===//
3418// Other Lowering Code
3419//===----------------------------------------------------------------------===//
3420
3421SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
3422 SelectionDAG &DAG) const {
Mehdi Amini44ede332015-07-09 02:09:04 +00003423 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00003424 SDLoc DL(Op);
Asiri Rathnayake369c0302014-09-10 13:54:38 +00003425 const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
3426 const GlobalValue *GV = GN->getGlobal();
Tim Northover3b0846e2014-05-24 12:50:23 +00003427 unsigned char OpFlags =
3428 Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
3429
3430 assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
3431 "unexpected offset in global node");
3432
3433 // This also catched the large code model case for Darwin.
3434 if ((OpFlags & AArch64II::MO_GOT) != 0) {
3435 SDValue GotAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
3436 // FIXME: Once remat is capable of dealing with instructions with register
3437 // operands, expand this into two nodes instead of using a wrapper node.
3438 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
3439 }
3440
3441 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
3442 const unsigned char MO_NC = AArch64II::MO_NC;
3443 return DAG.getNode(
3444 AArch64ISD::WrapperLarge, DL, PtrVT,
3445 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G3),
3446 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
3447 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
3448 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
3449 } else {
3450 // Use ADRP/ADD or ADRP/LDR for everything else: the small model on ELF and
3451 // the only correct model on Darwin.
3452 SDValue Hi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3453 OpFlags | AArch64II::MO_PAGE);
3454 unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
3455 SDValue Lo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, LoFlags);
3456
3457 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3458 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3459 }
3460}
3461
3462/// \brief Convert a TLS address reference into the correct sequence of loads
3463/// and calls to compute the variable's address (for Darwin, currently) and
3464/// return an SDValue containing the final node.
3465
3466/// Darwin only has one TLS scheme which must be capable of dealing with the
3467/// fully general situation, in the worst case. This means:
3468/// + "extern __thread" declaration.
3469/// + Defined in a possibly unknown dynamic library.
3470///
3471/// The general system is that each __thread variable has a [3 x i64] descriptor
3472/// which contains information used by the runtime to calculate the address. The
3473/// only part of this the compiler needs to know about is the first xword, which
3474/// contains a function pointer that must be called with the address of the
3475/// entire descriptor in "x0".
3476///
3477/// Since this descriptor may be in a different unit, in general even the
3478/// descriptor must be accessed via an indirect load. The "ideal" code sequence
3479/// is:
3480/// adrp x0, _var@TLVPPAGE
3481/// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor
3482/// ldr x1, [x0] ; x1 contains 1st entry of descriptor,
3483/// ; the function pointer
3484/// blr x1 ; Uses descriptor address in x0
3485/// ; Address of _var is now in x0.
3486///
3487/// If the address of _var's descriptor *is* known to the linker, then it can
3488/// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
3489/// a slight efficiency gain.
3490SDValue
3491AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
3492 SelectionDAG &DAG) const {
3493 assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin");
3494
3495 SDLoc DL(Op);
Mehdi Amini44ede332015-07-09 02:09:04 +00003496 MVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00003497 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3498
3499 SDValue TLVPAddr =
3500 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3501 SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
3502
3503 // The first entry in the descriptor is a function pointer that we must call
3504 // to obtain the address of the variable.
3505 SDValue Chain = DAG.getEntryNode();
Justin Lebaradbf09e2016-09-11 01:38:58 +00003506 SDValue FuncTLVGet = DAG.getLoad(
3507 MVT::i64, DL, Chain, DescAddr,
3508 MachinePointerInfo::getGOT(DAG.getMachineFunction()),
3509 /* Alignment = */ 8,
3510 MachineMemOperand::MONonTemporal | MachineMemOperand::MOInvariant |
3511 MachineMemOperand::MODereferenceable);
Tim Northover3b0846e2014-05-24 12:50:23 +00003512 Chain = FuncTLVGet.getValue(1);
3513
Matthias Braun941a7052016-07-28 18:40:00 +00003514 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
3515 MFI.setAdjustsStack(true);
Tim Northover3b0846e2014-05-24 12:50:23 +00003516
3517 // TLS calls preserve all registers except those that absolutely must be
3518 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
3519 // silly).
Eric Christopher6c901622015-01-28 03:51:33 +00003520 const uint32_t *Mask =
Eric Christopher905f12d2015-01-29 00:19:42 +00003521 Subtarget->getRegisterInfo()->getTLSCallPreservedMask();
Tim Northover3b0846e2014-05-24 12:50:23 +00003522
3523 // Finally, we can make the call. This is just a degenerate version of a
3524 // normal AArch64 call node: x0 takes the address of the descriptor, and
3525 // returns the address of the variable in this thread.
3526 Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
3527 Chain =
3528 DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
3529 Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
3530 DAG.getRegisterMask(Mask), Chain.getValue(1));
3531 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
3532}
3533
3534/// When accessing thread-local variables under either the general-dynamic or
3535/// local-dynamic system, we make a "TLS-descriptor" call. The variable will
3536/// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
Kristof Beylsaea84612015-03-04 09:12:08 +00003537/// is a function pointer to carry out the resolution.
Tim Northover3b0846e2014-05-24 12:50:23 +00003538///
Kristof Beylsaea84612015-03-04 09:12:08 +00003539/// The sequence is:
3540/// adrp x0, :tlsdesc:var
3541/// ldr x1, [x0, #:tlsdesc_lo12:var]
3542/// add x0, x0, #:tlsdesc_lo12:var
3543/// .tlsdesccall var
3544/// blr x1
3545/// (TPIDR_EL0 offset now in x0)
Tim Northover3b0846e2014-05-24 12:50:23 +00003546///
Kristof Beylsaea84612015-03-04 09:12:08 +00003547/// The above sequence must be produced unscheduled, to enable the linker to
3548/// optimize/relax this sequence.
3549/// Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the
3550/// above sequence, and expanded really late in the compilation flow, to ensure
3551/// the sequence is produced as per above.
Benjamin Kramerbdc49562016-06-12 15:39:02 +00003552SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr,
3553 const SDLoc &DL,
Kristof Beylsaea84612015-03-04 09:12:08 +00003554 SelectionDAG &DAG) const {
Mehdi Amini44ede332015-07-09 02:09:04 +00003555 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00003556
Kristof Beylsaea84612015-03-04 09:12:08 +00003557 SDValue Chain = DAG.getEntryNode();
Tim Northover3b0846e2014-05-24 12:50:23 +00003558 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Kristof Beylsaea84612015-03-04 09:12:08 +00003559
Benjamin Kramer3bc1edf2016-07-02 11:41:39 +00003560 Chain =
3561 DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, {Chain, SymAddr});
Kristof Beylsaea84612015-03-04 09:12:08 +00003562 SDValue Glue = Chain.getValue(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003563
3564 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
3565}
3566
3567SDValue
3568AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
3569 SelectionDAG &DAG) const {
3570 assert(Subtarget->isTargetELF() && "This function expects an ELF target");
Petr Hosek9eb0a1e2017-04-04 19:51:53 +00003571 assert(Subtarget->useSmallAddressing() &&
Tim Northover3b0846e2014-05-24 12:50:23 +00003572 "ELF TLS only supported in small memory model");
Kristof Beylsaea84612015-03-04 09:12:08 +00003573 // Different choices can be made for the maximum size of the TLS area for a
3574 // module. For the small address model, the default TLS size is 16MiB and the
3575 // maximum TLS size is 4GiB.
3576 // FIXME: add -mtls-size command line option and make it control the 16MiB
3577 // vs. 4GiB code sequence generation.
Tim Northover3b0846e2014-05-24 12:50:23 +00003578 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3579
3580 TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +00003581
3582 if (DAG.getTarget().Options.EmulatedTLS)
3583 return LowerToTLSEmulatedModel(GA, DAG);
3584
Kristof Beylsaea84612015-03-04 09:12:08 +00003585 if (!EnableAArch64ELFLocalDynamicTLSGeneration) {
3586 if (Model == TLSModel::LocalDynamic)
3587 Model = TLSModel::GeneralDynamic;
3588 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003589
3590 SDValue TPOff;
Mehdi Amini44ede332015-07-09 02:09:04 +00003591 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00003592 SDLoc DL(Op);
3593 const GlobalValue *GV = GA->getGlobal();
3594
3595 SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
3596
3597 if (Model == TLSModel::LocalExec) {
3598 SDValue HiVar = DAG.getTargetGlobalAddress(
Kristof Beylsaea84612015-03-04 09:12:08 +00003599 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
Tim Northover3b0846e2014-05-24 12:50:23 +00003600 SDValue LoVar = DAG.getTargetGlobalAddress(
3601 GV, DL, PtrVT, 0,
Kristof Beylsaea84612015-03-04 09:12:08 +00003602 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
Tim Northover3b0846e2014-05-24 12:50:23 +00003603
Kristof Beylsaea84612015-03-04 09:12:08 +00003604 SDValue TPWithOff_lo =
3605 SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003606 HiVar,
3607 DAG.getTargetConstant(0, DL, MVT::i32)),
Kristof Beylsaea84612015-03-04 09:12:08 +00003608 0);
3609 SDValue TPWithOff =
3610 SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPWithOff_lo,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003611 LoVar,
3612 DAG.getTargetConstant(0, DL, MVT::i32)),
Kristof Beylsaea84612015-03-04 09:12:08 +00003613 0);
3614 return TPWithOff;
Tim Northover3b0846e2014-05-24 12:50:23 +00003615 } else if (Model == TLSModel::InitialExec) {
3616 TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3617 TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
3618 } else if (Model == TLSModel::LocalDynamic) {
3619 // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
3620 // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
3621 // the beginning of the module's TLS region, followed by a DTPREL offset
3622 // calculation.
3623
3624 // These accesses will need deduplicating if there's more than one.
3625 AArch64FunctionInfo *MFI =
3626 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
3627 MFI->incNumLocalDynamicTLSAccesses();
3628
Tim Northover3b0846e2014-05-24 12:50:23 +00003629 // The call needs a relocation too for linker relaxation. It doesn't make
3630 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3631 // the address.
3632 SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
3633 AArch64II::MO_TLS);
3634
3635 // Now we can calculate the offset from TPIDR_EL0 to this module's
3636 // thread-local area.
Kristof Beylsaea84612015-03-04 09:12:08 +00003637 TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00003638
3639 // Now use :dtprel_whatever: operations to calculate this variable's offset
3640 // in its thread-storage area.
3641 SDValue HiVar = DAG.getTargetGlobalAddress(
Kristof Beylsaea84612015-03-04 09:12:08 +00003642 GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
Tim Northover3b0846e2014-05-24 12:50:23 +00003643 SDValue LoVar = DAG.getTargetGlobalAddress(
3644 GV, DL, MVT::i64, 0,
Tim Northover3b0846e2014-05-24 12:50:23 +00003645 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3646
Kristof Beylsaea84612015-03-04 09:12:08 +00003647 TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003648 DAG.getTargetConstant(0, DL, MVT::i32)),
Kristof Beylsaea84612015-03-04 09:12:08 +00003649 0);
3650 TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003651 DAG.getTargetConstant(0, DL, MVT::i32)),
Kristof Beylsaea84612015-03-04 09:12:08 +00003652 0);
3653 } else if (Model == TLSModel::GeneralDynamic) {
Tim Northover3b0846e2014-05-24 12:50:23 +00003654 // The call needs a relocation too for linker relaxation. It doesn't make
3655 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3656 // the address.
3657 SDValue SymAddr =
3658 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3659
3660 // Finally we can make a call to calculate the offset from tpidr_el0.
Kristof Beylsaea84612015-03-04 09:12:08 +00003661 TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00003662 } else
3663 llvm_unreachable("Unsupported ELF TLS access model");
3664
3665 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
3666}
3667
3668SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
3669 SelectionDAG &DAG) const {
3670 if (Subtarget->isTargetDarwin())
3671 return LowerDarwinGlobalTLSAddress(Op, DAG);
Davide Italianoa0bd28c2017-03-30 19:52:31 +00003672 if (Subtarget->isTargetELF())
Tim Northover3b0846e2014-05-24 12:50:23 +00003673 return LowerELFGlobalTLSAddress(Op, DAG);
3674
3675 llvm_unreachable("Unexpected platform trying to use TLS");
3676}
Eugene Zelenko049b0172017-01-06 00:30:53 +00003677
Tim Northover3b0846e2014-05-24 12:50:23 +00003678SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3679 SDValue Chain = Op.getOperand(0);
3680 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3681 SDValue LHS = Op.getOperand(2);
3682 SDValue RHS = Op.getOperand(3);
3683 SDValue Dest = Op.getOperand(4);
3684 SDLoc dl(Op);
3685
3686 // Handle f128 first, since lowering it will result in comparing the return
3687 // value of a libcall against zero, which is just what the rest of LowerBR_CC
3688 // is expecting to deal with.
3689 if (LHS.getValueType() == MVT::f128) {
3690 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3691
3692 // If softenSetCCOperands returned a scalar, we need to compare the result
3693 // against zero to select between true and false values.
3694 if (!RHS.getNode()) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003695 RHS = DAG.getConstant(0, dl, LHS.getValueType());
Tim Northover3b0846e2014-05-24 12:50:23 +00003696 CC = ISD::SETNE;
3697 }
3698 }
3699
3700 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
3701 // instruction.
3702 unsigned Opc = LHS.getOpcode();
Artyom Skrobov314ee042015-11-25 19:41:11 +00003703 if (LHS.getResNo() == 1 && isOneConstant(RHS) &&
Tim Northover3b0846e2014-05-24 12:50:23 +00003704 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3705 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
3706 assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
3707 "Unexpected condition code.");
3708 // Only lower legal XALUO ops.
3709 if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
3710 return SDValue();
3711
3712 // The actual operation with overflow check.
3713 AArch64CC::CondCode OFCC;
3714 SDValue Value, Overflow;
3715 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
3716
3717 if (CC == ISD::SETNE)
3718 OFCC = getInvertedCondCode(OFCC);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003719 SDValue CCVal = DAG.getConstant(OFCC, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003720
Ahmed Bougachadf956a22015-02-06 23:15:39 +00003721 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
3722 Overflow);
Tim Northover3b0846e2014-05-24 12:50:23 +00003723 }
3724
3725 if (LHS.getValueType().isInteger()) {
3726 assert((LHS.getValueType() == RHS.getValueType()) &&
3727 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3728
3729 // If the RHS of the comparison is zero, we can potentially fold this
3730 // to a specialized branch.
3731 const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
3732 if (RHSC && RHSC->getZExtValue() == 0) {
3733 if (CC == ISD::SETEQ) {
3734 // See if we can use a TBZ to fold in an AND as well.
3735 // TBZ has a smaller branch displacement than CBZ. If the offset is
3736 // out of bounds, a late MI-layer pass rewrites branches.
3737 // 403.gcc is an example that hits this case.
3738 if (LHS.getOpcode() == ISD::AND &&
3739 isa<ConstantSDNode>(LHS.getOperand(1)) &&
3740 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3741 SDValue Test = LHS.getOperand(0);
3742 uint64_t Mask = LHS.getConstantOperandVal(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003743 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003744 DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
3745 Dest);
Tim Northover3b0846e2014-05-24 12:50:23 +00003746 }
3747
3748 return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
3749 } else if (CC == ISD::SETNE) {
3750 // See if we can use a TBZ to fold in an AND as well.
3751 // TBZ has a smaller branch displacement than CBZ. If the offset is
3752 // out of bounds, a late MI-layer pass rewrites branches.
3753 // 403.gcc is an example that hits this case.
3754 if (LHS.getOpcode() == ISD::AND &&
3755 isa<ConstantSDNode>(LHS.getOperand(1)) &&
3756 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3757 SDValue Test = LHS.getOperand(0);
3758 uint64_t Mask = LHS.getConstantOperandVal(1);
Tim Northover3b0846e2014-05-24 12:50:23 +00003759 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003760 DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
3761 Dest);
Tim Northover3b0846e2014-05-24 12:50:23 +00003762 }
3763
3764 return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
Chad Rosier579c02c2014-08-01 14:48:56 +00003765 } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
3766 // Don't combine AND since emitComparison converts the AND to an ANDS
3767 // (a.k.a. TST) and the test in the test bit and branch instruction
3768 // becomes redundant. This would also increase register pressure.
Sanjay Patelb1f0a0f2016-09-14 16:05:51 +00003769 uint64_t Mask = LHS.getValueSizeInBits() - 1;
Chad Rosier579c02c2014-08-01 14:48:56 +00003770 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003771 DAG.getConstant(Mask, dl, MVT::i64), Dest);
Tim Northover3b0846e2014-05-24 12:50:23 +00003772 }
3773 }
Chad Rosier579c02c2014-08-01 14:48:56 +00003774 if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
3775 LHS.getOpcode() != ISD::AND) {
3776 // Don't combine AND since emitComparison converts the AND to an ANDS
3777 // (a.k.a. TST) and the test in the test bit and branch instruction
3778 // becomes redundant. This would also increase register pressure.
Sanjay Patelb1f0a0f2016-09-14 16:05:51 +00003779 uint64_t Mask = LHS.getValueSizeInBits() - 1;
Chad Rosier579c02c2014-08-01 14:48:56 +00003780 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003781 DAG.getConstant(Mask, dl, MVT::i64), Dest);
Chad Rosier579c02c2014-08-01 14:48:56 +00003782 }
Tim Northover3b0846e2014-05-24 12:50:23 +00003783
3784 SDValue CCVal;
3785 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3786 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
3787 Cmp);
3788 }
3789
3790 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3791
3792 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
3793 // clean. Some of them require two branches to implement.
3794 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3795 AArch64CC::CondCode CC1, CC2;
3796 changeFPCCToAArch64CC(CC, CC1, CC2);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003797 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003798 SDValue BR1 =
3799 DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
3800 if (CC2 != AArch64CC::AL) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003801 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003802 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
3803 Cmp);
3804 }
3805
3806 return BR1;
3807}
3808
3809SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
3810 SelectionDAG &DAG) const {
3811 EVT VT = Op.getValueType();
3812 SDLoc DL(Op);
3813
3814 SDValue In1 = Op.getOperand(0);
3815 SDValue In2 = Op.getOperand(1);
3816 EVT SrcVT = In2.getValueType();
Ahmed Bougacha2a97b1b2015-08-13 01:13:56 +00003817
3818 if (SrcVT.bitsLT(VT))
3819 In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
3820 else if (SrcVT.bitsGT(VT))
3821 In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0, DL));
Tim Northover3b0846e2014-05-24 12:50:23 +00003822
3823 EVT VecVT;
3824 EVT EltVT;
Benjamin Kramer5fbfe2f2015-02-28 13:20:15 +00003825 uint64_t EltMask;
3826 SDValue VecVal1, VecVal2;
Tim Northover3b0846e2014-05-24 12:50:23 +00003827 if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
3828 EltVT = MVT::i32;
Ahmed Bougachab0ae36f2015-08-04 00:42:34 +00003829 VecVT = (VT == MVT::v2f32 ? MVT::v2i32 : MVT::v4i32);
Benjamin Kramer5fbfe2f2015-02-28 13:20:15 +00003830 EltMask = 0x80000000ULL;
Tim Northover3b0846e2014-05-24 12:50:23 +00003831
3832 if (!VT.isVector()) {
3833 VecVal1 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3834 DAG.getUNDEF(VecVT), In1);
3835 VecVal2 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3836 DAG.getUNDEF(VecVT), In2);
3837 } else {
3838 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3839 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3840 }
3841 } else if (VT == MVT::f64 || VT == MVT::v2f64) {
3842 EltVT = MVT::i64;
3843 VecVT = MVT::v2i64;
3844
Eric Christopher572e03a2015-06-19 01:53:21 +00003845 // We want to materialize a mask with the high bit set, but the AdvSIMD
Tim Northover3b0846e2014-05-24 12:50:23 +00003846 // immediate moves cannot materialize that in a single instruction for
3847 // 64-bit elements. Instead, materialize zero and then negate it.
Benjamin Kramer5fbfe2f2015-02-28 13:20:15 +00003848 EltMask = 0;
Tim Northover3b0846e2014-05-24 12:50:23 +00003849
3850 if (!VT.isVector()) {
3851 VecVal1 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3852 DAG.getUNDEF(VecVT), In1);
3853 VecVal2 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3854 DAG.getUNDEF(VecVT), In2);
3855 } else {
3856 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3857 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3858 }
3859 } else {
3860 llvm_unreachable("Invalid type for copysign!");
3861 }
3862
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003863 SDValue BuildVec = DAG.getConstant(EltMask, DL, VecVT);
Tim Northover3b0846e2014-05-24 12:50:23 +00003864
3865 // If we couldn't materialize the mask above, then the mask vector will be
3866 // the zero vector, and we need to negate it here.
3867 if (VT == MVT::f64 || VT == MVT::v2f64) {
3868 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
3869 BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
3870 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
3871 }
3872
3873 SDValue Sel =
3874 DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
3875
3876 if (VT == MVT::f32)
3877 return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
3878 else if (VT == MVT::f64)
3879 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
3880 else
3881 return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
3882}
3883
3884SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
Duncan P. N. Exon Smith003bb7d2015-02-14 02:09:06 +00003885 if (DAG.getMachineFunction().getFunction()->hasFnAttribute(
3886 Attribute::NoImplicitFloat))
Tim Northover3b0846e2014-05-24 12:50:23 +00003887 return SDValue();
3888
Weiming Zhao7a2d1562014-11-19 00:29:14 +00003889 if (!Subtarget->hasNEON())
3890 return SDValue();
3891
Tim Northover3b0846e2014-05-24 12:50:23 +00003892 // While there is no integer popcount instruction, it can
3893 // be more efficiently lowered to the following sequence that uses
3894 // AdvSIMD registers/instructions as long as the copies to/from
3895 // the AdvSIMD registers are cheap.
3896 // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd
3897 // CNT V0.8B, V0.8B // 8xbyte pop-counts
3898 // ADDV B0, V0.8B // sum 8xbyte pop-counts
3899 // UMOV X0, V0.B[0] // copy byte result back to integer reg
3900 SDValue Val = Op.getOperand(0);
3901 SDLoc DL(Op);
3902 EVT VT = Op.getValueType();
Tim Northover3b0846e2014-05-24 12:50:23 +00003903
Hao Liue0335d72015-01-30 02:13:53 +00003904 if (VT == MVT::i32)
3905 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
3906 Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
Tim Northover3b0846e2014-05-24 12:50:23 +00003907
Hao Liue0335d72015-01-30 02:13:53 +00003908 SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val);
Tim Northover3b0846e2014-05-24 12:50:23 +00003909 SDValue UaddLV = DAG.getNode(
3910 ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003911 DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop);
Tim Northover3b0846e2014-05-24 12:50:23 +00003912
3913 if (VT == MVT::i64)
3914 UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
3915 return UaddLV;
3916}
3917
3918SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3919
3920 if (Op.getValueType().isVector())
3921 return LowerVSETCC(Op, DAG);
3922
3923 SDValue LHS = Op.getOperand(0);
3924 SDValue RHS = Op.getOperand(1);
3925 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3926 SDLoc dl(Op);
3927
3928 // We chose ZeroOrOneBooleanContents, so use zero and one.
3929 EVT VT = Op.getValueType();
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003930 SDValue TVal = DAG.getConstant(1, dl, VT);
3931 SDValue FVal = DAG.getConstant(0, dl, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00003932
3933 // Handle f128 first, since one possible outcome is a normal integer
3934 // comparison which gets picked up by the next if statement.
3935 if (LHS.getValueType() == MVT::f128) {
3936 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3937
3938 // If softenSetCCOperands returned a scalar, use it.
3939 if (!RHS.getNode()) {
3940 assert(LHS.getValueType() == Op.getValueType() &&
3941 "Unexpected setcc expansion!");
3942 return LHS;
3943 }
3944 }
3945
3946 if (LHS.getValueType().isInteger()) {
3947 SDValue CCVal;
3948 SDValue Cmp =
3949 getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
3950
3951 // Note that we inverted the condition above, so we reverse the order of
3952 // the true and false operands here. This will allow the setcc to be
3953 // matched to a single CSINC instruction.
3954 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
3955 }
3956
3957 // Now we know we're dealing with FP values.
3958 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3959
3960 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
3961 // and do the comparison.
3962 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3963
3964 AArch64CC::CondCode CC1, CC2;
3965 changeFPCCToAArch64CC(CC, CC1, CC2);
3966 if (CC2 == AArch64CC::AL) {
3967 changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003968 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003969
3970 // Note that we inverted the condition above, so we reverse the order of
3971 // the true and false operands here. This will allow the setcc to be
3972 // matched to a single CSINC instruction.
3973 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
3974 } else {
3975 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
3976 // totally clean. Some of them require two CSELs to implement. As is in
3977 // this case, we emit the first CSEL and then emit a second using the output
3978 // of the first as the RHS. We're effectively OR'ing the two CC's together.
3979
3980 // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003981 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003982 SDValue CS1 =
3983 DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3984
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00003985 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00003986 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3987 }
3988}
3989
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00003990SDValue AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC, SDValue LHS,
3991 SDValue RHS, SDValue TVal,
Benjamin Kramerbdc49562016-06-12 15:39:02 +00003992 SDValue FVal, const SDLoc &dl,
Tim Northover3b0846e2014-05-24 12:50:23 +00003993 SelectionDAG &DAG) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00003994 // Handle f128 first, because it will result in a comparison of some RTLIB
3995 // call result against zero.
3996 if (LHS.getValueType() == MVT::f128) {
3997 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3998
3999 // If softenSetCCOperands returned a scalar, we need to compare the result
4000 // against zero to select between true and false values.
4001 if (!RHS.getNode()) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004002 RHS = DAG.getConstant(0, dl, LHS.getValueType());
Tim Northover3b0846e2014-05-24 12:50:23 +00004003 CC = ISD::SETNE;
4004 }
4005 }
4006
Ahmed Bougacha88ddeae2015-11-17 16:45:40 +00004007 // Also handle f16, for which we need to do a f32 comparison.
4008 if (LHS.getValueType() == MVT::f16) {
4009 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
4010 RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
4011 }
4012
4013 // Next, handle integers.
Tim Northover3b0846e2014-05-24 12:50:23 +00004014 if (LHS.getValueType().isInteger()) {
4015 assert((LHS.getValueType() == RHS.getValueType()) &&
4016 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
4017
4018 unsigned Opcode = AArch64ISD::CSEL;
4019
4020 // If both the TVal and the FVal are constants, see if we can swap them in
4021 // order to for a CSINV or CSINC out of them.
4022 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
4023 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
4024
4025 if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
4026 std::swap(TVal, FVal);
4027 std::swap(CTVal, CFVal);
4028 CC = ISD::getSetCCInverse(CC, true);
4029 } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
4030 std::swap(TVal, FVal);
4031 std::swap(CTVal, CFVal);
4032 CC = ISD::getSetCCInverse(CC, true);
4033 } else if (TVal.getOpcode() == ISD::XOR) {
4034 // If TVal is a NOT we want to swap TVal and FVal so that we can match
4035 // with a CSINV rather than a CSEL.
Artyom Skrobov314ee042015-11-25 19:41:11 +00004036 if (isAllOnesConstant(TVal.getOperand(1))) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004037 std::swap(TVal, FVal);
4038 std::swap(CTVal, CFVal);
4039 CC = ISD::getSetCCInverse(CC, true);
4040 }
4041 } else if (TVal.getOpcode() == ISD::SUB) {
4042 // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
4043 // that we can match with a CSNEG rather than a CSEL.
Artyom Skrobov314ee042015-11-25 19:41:11 +00004044 if (isNullConstant(TVal.getOperand(0))) {
Tim Northover3b0846e2014-05-24 12:50:23 +00004045 std::swap(TVal, FVal);
4046 std::swap(CTVal, CFVal);
4047 CC = ISD::getSetCCInverse(CC, true);
4048 }
4049 } else if (CTVal && CFVal) {
4050 const int64_t TrueVal = CTVal->getSExtValue();
4051 const int64_t FalseVal = CFVal->getSExtValue();
4052 bool Swap = false;
4053
4054 // If both TVal and FVal are constants, see if FVal is the
4055 // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
4056 // instead of a CSEL in that case.
4057 if (TrueVal == ~FalseVal) {
4058 Opcode = AArch64ISD::CSINV;
4059 } else if (TrueVal == -FalseVal) {
4060 Opcode = AArch64ISD::CSNEG;
4061 } else if (TVal.getValueType() == MVT::i32) {
4062 // If our operands are only 32-bit wide, make sure we use 32-bit
4063 // arithmetic for the check whether we can use CSINC. This ensures that
4064 // the addition in the check will wrap around properly in case there is
4065 // an overflow (which would not be the case if we do the check with
4066 // 64-bit arithmetic).
4067 const uint32_t TrueVal32 = CTVal->getZExtValue();
4068 const uint32_t FalseVal32 = CFVal->getZExtValue();
4069
4070 if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
4071 Opcode = AArch64ISD::CSINC;
4072
4073 if (TrueVal32 > FalseVal32) {
4074 Swap = true;
4075 }
4076 }
4077 // 64-bit check whether we can use CSINC.
4078 } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
4079 Opcode = AArch64ISD::CSINC;
4080
4081 if (TrueVal > FalseVal) {
4082 Swap = true;
4083 }
4084 }
4085
4086 // Swap TVal and FVal if necessary.
4087 if (Swap) {
4088 std::swap(TVal, FVal);
4089 std::swap(CTVal, CFVal);
4090 CC = ISD::getSetCCInverse(CC, true);
4091 }
4092
4093 if (Opcode != AArch64ISD::CSEL) {
4094 // Drop FVal since we can get its value by simply inverting/negating
4095 // TVal.
4096 FVal = TVal;
4097 }
4098 }
4099
Chad Rosier58f505b2016-08-26 18:05:50 +00004100 // Avoid materializing a constant when possible by reusing a known value in
4101 // a register. However, don't perform this optimization if the known value
Chad Rosier0c621fd2016-10-26 18:15:32 +00004102 // is one, zero or negative one in the case of a CSEL. We can always
4103 // materialize these values using CSINC, CSEL and CSINV with wzr/xzr as the
4104 // FVal, respectively.
Chad Rosier58f505b2016-08-26 18:05:50 +00004105 ConstantSDNode *RHSVal = dyn_cast<ConstantSDNode>(RHS);
4106 if (Opcode == AArch64ISD::CSEL && RHSVal && !RHSVal->isOne() &&
4107 !RHSVal->isNullValue() && !RHSVal->isAllOnesValue()) {
4108 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
4109 // Transform "a == C ? C : x" to "a == C ? a : x" and "a != C ? x : C" to
4110 // "a != C ? x : a" to avoid materializing C.
4111 if (CTVal && CTVal == RHSVal && AArch64CC == AArch64CC::EQ)
4112 TVal = LHS;
4113 else if (CFVal && CFVal == RHSVal && AArch64CC == AArch64CC::NE)
4114 FVal = LHS;
Chad Rosier0c621fd2016-10-26 18:15:32 +00004115 } else if (Opcode == AArch64ISD::CSNEG && RHSVal && RHSVal->isOne()) {
4116 assert (CTVal && CFVal && "Expected constant operands for CSNEG.");
4117 // Use a CSINV to transform "a == C ? 1 : -1" to "a == C ? a : -1" to
4118 // avoid materializing C.
4119 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
4120 if (CTVal == RHSVal && AArch64CC == AArch64CC::EQ) {
4121 Opcode = AArch64ISD::CSINV;
4122 TVal = LHS;
4123 FVal = DAG.getConstant(0, dl, FVal.getValueType());
4124 }
Chad Rosier58f505b2016-08-26 18:05:50 +00004125 }
4126
Tim Northover3b0846e2014-05-24 12:50:23 +00004127 SDValue CCVal;
4128 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
4129
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00004130 EVT VT = TVal.getValueType();
Tim Northover3b0846e2014-05-24 12:50:23 +00004131 return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
4132 }
4133
4134 // Now we know we're dealing with FP values.
4135 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
4136 assert(LHS.getValueType() == RHS.getValueType());
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00004137 EVT VT = TVal.getValueType();
Tim Northover3b0846e2014-05-24 12:50:23 +00004138 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
4139
4140 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
4141 // clean. Some of them require two CSELs to implement.
4142 AArch64CC::CondCode CC1, CC2;
4143 changeFPCCToAArch64CC(CC, CC1, CC2);
Evandro Menezesce8d6012016-10-18 20:37:35 +00004144
4145 if (DAG.getTarget().Options.UnsafeFPMath) {
4146 // Transform "a == 0.0 ? 0.0 : x" to "a == 0.0 ? a : x" and
4147 // "a != 0.0 ? x : 0.0" to "a != 0.0 ? x : a" to avoid materializing 0.0.
4148 ConstantFPSDNode *RHSVal = dyn_cast<ConstantFPSDNode>(RHS);
4149 if (RHSVal && RHSVal->isZero()) {
4150 ConstantFPSDNode *CFVal = dyn_cast<ConstantFPSDNode>(FVal);
4151 ConstantFPSDNode *CTVal = dyn_cast<ConstantFPSDNode>(TVal);
4152
4153 if ((CC == ISD::SETEQ || CC == ISD::SETOEQ || CC == ISD::SETUEQ) &&
Roger Ferrer Ibanez80c0f332016-11-08 13:34:41 +00004154 CTVal && CTVal->isZero() && TVal.getValueType() == LHS.getValueType())
Evandro Menezesce8d6012016-10-18 20:37:35 +00004155 TVal = LHS;
4156 else if ((CC == ISD::SETNE || CC == ISD::SETONE || CC == ISD::SETUNE) &&
Roger Ferrer Ibanez80c0f332016-11-08 13:34:41 +00004157 CFVal && CFVal->isZero() &&
4158 FVal.getValueType() == LHS.getValueType())
Evandro Menezesce8d6012016-10-18 20:37:35 +00004159 FVal = LHS;
4160 }
4161 }
4162
4163 // Emit first, and possibly only, CSEL.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004164 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00004165 SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
4166
4167 // If we need a second CSEL, emit it, using the output of the first as the
4168 // RHS. We're effectively OR'ing the two CC's together.
4169 if (CC2 != AArch64CC::AL) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004170 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00004171 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
4172 }
4173
4174 // Otherwise, return the output of the first CSEL.
4175 return CS1;
4176}
4177
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00004178SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
4179 SelectionDAG &DAG) const {
4180 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4181 SDValue LHS = Op.getOperand(0);
4182 SDValue RHS = Op.getOperand(1);
4183 SDValue TVal = Op.getOperand(2);
4184 SDValue FVal = Op.getOperand(3);
4185 SDLoc DL(Op);
4186 return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
4187}
4188
4189SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
4190 SelectionDAG &DAG) const {
4191 SDValue CCVal = Op->getOperand(0);
4192 SDValue TVal = Op->getOperand(1);
4193 SDValue FVal = Op->getOperand(2);
4194 SDLoc DL(Op);
4195
4196 unsigned Opc = CCVal.getOpcode();
4197 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
4198 // instruction.
4199 if (CCVal.getResNo() == 1 &&
4200 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4201 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
4202 // Only lower legal XALUO ops.
4203 if (!DAG.getTargetLoweringInfo().isTypeLegal(CCVal->getValueType(0)))
4204 return SDValue();
4205
4206 AArch64CC::CondCode OFCC;
4207 SDValue Value, Overflow;
4208 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CCVal.getValue(0), DAG);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004209 SDValue CCVal = DAG.getConstant(OFCC, DL, MVT::i32);
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00004210
4211 return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
4212 CCVal, Overflow);
4213 }
4214
4215 // Lower it the same way as we would lower a SELECT_CC node.
4216 ISD::CondCode CC;
4217 SDValue LHS, RHS;
4218 if (CCVal.getOpcode() == ISD::SETCC) {
4219 LHS = CCVal.getOperand(0);
4220 RHS = CCVal.getOperand(1);
4221 CC = cast<CondCodeSDNode>(CCVal->getOperand(2))->get();
4222 } else {
4223 LHS = CCVal;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004224 RHS = DAG.getConstant(0, DL, CCVal.getValueType());
Matthias Braunb6ac8fa2015-04-07 17:33:05 +00004225 CC = ISD::SETNE;
4226 }
4227 return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
4228}
4229
Tim Northover3b0846e2014-05-24 12:50:23 +00004230SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
4231 SelectionDAG &DAG) const {
4232 // Jump table entries as PC relative offsets. No additional tweaking
4233 // is necessary here. Just get the address of the jump table.
4234 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
Mehdi Amini44ede332015-07-09 02:09:04 +00004235 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00004236 SDLoc DL(Op);
4237
4238 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
4239 !Subtarget->isTargetMachO()) {
4240 const unsigned char MO_NC = AArch64II::MO_NC;
4241 return DAG.getNode(
4242 AArch64ISD::WrapperLarge, DL, PtrVT,
4243 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G3),
4244 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G2 | MO_NC),
4245 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G1 | MO_NC),
4246 DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
4247 AArch64II::MO_G0 | MO_NC));
4248 }
4249
4250 SDValue Hi =
4251 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_PAGE);
4252 SDValue Lo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
4253 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4254 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
4255 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
4256}
4257
4258SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
4259 SelectionDAG &DAG) const {
4260 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
Mehdi Amini44ede332015-07-09 02:09:04 +00004261 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00004262 SDLoc DL(Op);
4263
4264 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
4265 // Use the GOT for the large code model on iOS.
4266 if (Subtarget->isTargetMachO()) {
4267 SDValue GotAddr = DAG.getTargetConstantPool(
4268 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
4269 AArch64II::MO_GOT);
4270 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
4271 }
4272
4273 const unsigned char MO_NC = AArch64II::MO_NC;
4274 return DAG.getNode(
4275 AArch64ISD::WrapperLarge, DL, PtrVT,
4276 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4277 CP->getOffset(), AArch64II::MO_G3),
4278 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4279 CP->getOffset(), AArch64II::MO_G2 | MO_NC),
4280 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4281 CP->getOffset(), AArch64II::MO_G1 | MO_NC),
4282 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4283 CP->getOffset(), AArch64II::MO_G0 | MO_NC));
4284 } else {
4285 // Use ADRP/ADD or ADRP/LDR for everything else: the small memory model on
4286 // ELF, the only valid one on Darwin.
4287 SDValue Hi =
4288 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4289 CP->getOffset(), AArch64II::MO_PAGE);
4290 SDValue Lo = DAG.getTargetConstantPool(
4291 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
4292 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4293
4294 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
4295 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
4296 }
4297}
4298
4299SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
4300 SelectionDAG &DAG) const {
4301 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
Mehdi Amini44ede332015-07-09 02:09:04 +00004302 EVT PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00004303 SDLoc DL(Op);
4304 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
4305 !Subtarget->isTargetMachO()) {
4306 const unsigned char MO_NC = AArch64II::MO_NC;
4307 return DAG.getNode(
4308 AArch64ISD::WrapperLarge, DL, PtrVT,
4309 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G3),
4310 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
4311 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
4312 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
4313 } else {
4314 SDValue Hi = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGE);
4315 SDValue Lo = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGEOFF |
4316 AArch64II::MO_NC);
4317 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
4318 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
4319 }
4320}
4321
4322SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
4323 SelectionDAG &DAG) const {
4324 AArch64FunctionInfo *FuncInfo =
4325 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
4326
4327 SDLoc DL(Op);
Mehdi Amini44ede332015-07-09 02:09:04 +00004328 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(),
4329 getPointerTy(DAG.getDataLayout()));
Tim Northover3b0846e2014-05-24 12:50:23 +00004330 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4331 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
Justin Lebar9c375812016-07-15 18:27:10 +00004332 MachinePointerInfo(SV));
Tim Northover3b0846e2014-05-24 12:50:23 +00004333}
4334
4335SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
4336 SelectionDAG &DAG) const {
4337 // The layout of the va_list struct is specified in the AArch64 Procedure Call
4338 // Standard, section B.3.
4339 MachineFunction &MF = DAG.getMachineFunction();
4340 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
Mehdi Amini44ede332015-07-09 02:09:04 +00004341 auto PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00004342 SDLoc DL(Op);
4343
4344 SDValue Chain = Op.getOperand(0);
4345 SDValue VAList = Op.getOperand(1);
4346 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4347 SmallVector<SDValue, 4> MemOps;
4348
4349 // void *__stack at offset 0
Mehdi Amini44ede332015-07-09 02:09:04 +00004350 SDValue Stack = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), PtrVT);
Tim Northover3b0846e2014-05-24 12:50:23 +00004351 MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
Justin Lebar9c375812016-07-15 18:27:10 +00004352 MachinePointerInfo(SV), /* Alignment = */ 8));
Tim Northover3b0846e2014-05-24 12:50:23 +00004353
4354 // void *__gr_top at offset 8
4355 int GPRSize = FuncInfo->getVarArgsGPRSize();
4356 if (GPRSize > 0) {
4357 SDValue GRTop, GRTopAddr;
4358
Mehdi Amini44ede332015-07-09 02:09:04 +00004359 GRTopAddr =
4360 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(8, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00004361
Mehdi Amini44ede332015-07-09 02:09:04 +00004362 GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), PtrVT);
4363 GRTop = DAG.getNode(ISD::ADD, DL, PtrVT, GRTop,
4364 DAG.getConstant(GPRSize, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00004365
4366 MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
Justin Lebar9c375812016-07-15 18:27:10 +00004367 MachinePointerInfo(SV, 8),
4368 /* Alignment = */ 8));
Tim Northover3b0846e2014-05-24 12:50:23 +00004369 }
4370
4371 // void *__vr_top at offset 16
4372 int FPRSize = FuncInfo->getVarArgsFPRSize();
4373 if (FPRSize > 0) {
4374 SDValue VRTop, VRTopAddr;
Mehdi Amini44ede332015-07-09 02:09:04 +00004375 VRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
4376 DAG.getConstant(16, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00004377
Mehdi Amini44ede332015-07-09 02:09:04 +00004378 VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), PtrVT);
4379 VRTop = DAG.getNode(ISD::ADD, DL, PtrVT, VRTop,
4380 DAG.getConstant(FPRSize, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00004381
4382 MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
Justin Lebar9c375812016-07-15 18:27:10 +00004383 MachinePointerInfo(SV, 16),
4384 /* Alignment = */ 8));
Tim Northover3b0846e2014-05-24 12:50:23 +00004385 }
4386
4387 // int __gr_offs at offset 24
Mehdi Amini44ede332015-07-09 02:09:04 +00004388 SDValue GROffsAddr =
4389 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(24, DL, PtrVT));
Justin Lebar9c375812016-07-15 18:27:10 +00004390 MemOps.push_back(DAG.getStore(
4391 Chain, DL, DAG.getConstant(-GPRSize, DL, MVT::i32), GROffsAddr,
4392 MachinePointerInfo(SV, 24), /* Alignment = */ 4));
Tim Northover3b0846e2014-05-24 12:50:23 +00004393
4394 // int __vr_offs at offset 28
Mehdi Amini44ede332015-07-09 02:09:04 +00004395 SDValue VROffsAddr =
4396 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(28, DL, PtrVT));
Justin Lebar9c375812016-07-15 18:27:10 +00004397 MemOps.push_back(DAG.getStore(
4398 Chain, DL, DAG.getConstant(-FPRSize, DL, MVT::i32), VROffsAddr,
4399 MachinePointerInfo(SV, 28), /* Alignment = */ 4));
Tim Northover3b0846e2014-05-24 12:50:23 +00004400
4401 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
4402}
4403
4404SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
4405 SelectionDAG &DAG) const {
4406 return Subtarget->isTargetDarwin() ? LowerDarwin_VASTART(Op, DAG)
4407 : LowerAAPCS_VASTART(Op, DAG);
4408}
4409
4410SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
4411 SelectionDAG &DAG) const {
4412 // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
4413 // pointer.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004414 SDLoc DL(Op);
Tim Northover3b0846e2014-05-24 12:50:23 +00004415 unsigned VaListSize = Subtarget->isTargetDarwin() ? 8 : 32;
4416 const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
4417 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
4418
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004419 return DAG.getMemcpy(Op.getOperand(0), DL, Op.getOperand(1),
4420 Op.getOperand(2),
4421 DAG.getConstant(VaListSize, DL, MVT::i32),
Krzysztof Parzyszeka46c36b2015-04-13 17:16:45 +00004422 8, false, false, false, MachinePointerInfo(DestSV),
Tim Northover3b0846e2014-05-24 12:50:23 +00004423 MachinePointerInfo(SrcSV));
4424}
4425
4426SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
4427 assert(Subtarget->isTargetDarwin() &&
4428 "automatic va_arg instruction only works on Darwin");
4429
4430 const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4431 EVT VT = Op.getValueType();
4432 SDLoc DL(Op);
4433 SDValue Chain = Op.getOperand(0);
4434 SDValue Addr = Op.getOperand(1);
4435 unsigned Align = Op.getConstantOperandVal(3);
Mehdi Amini44ede332015-07-09 02:09:04 +00004436 auto PtrVT = getPointerTy(DAG.getDataLayout());
Tim Northover3b0846e2014-05-24 12:50:23 +00004437
Justin Lebar9c375812016-07-15 18:27:10 +00004438 SDValue VAList = DAG.getLoad(PtrVT, DL, Chain, Addr, MachinePointerInfo(V));
Tim Northover3b0846e2014-05-24 12:50:23 +00004439 Chain = VAList.getValue(1);
4440
4441 if (Align > 8) {
4442 assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
Mehdi Amini44ede332015-07-09 02:09:04 +00004443 VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
4444 DAG.getConstant(Align - 1, DL, PtrVT));
4445 VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList,
4446 DAG.getConstant(-(int64_t)Align, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00004447 }
4448
4449 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
Mehdi Amini44ede332015-07-09 02:09:04 +00004450 uint64_t ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy);
Tim Northover3b0846e2014-05-24 12:50:23 +00004451
4452 // Scalar integer and FP values smaller than 64 bits are implicitly extended
4453 // up to 64 bits. At the very least, we have to increase the striding of the
4454 // vaargs list to match this, and for FP values we need to introduce
4455 // FP_ROUND nodes as well.
4456 if (VT.isInteger() && !VT.isVector())
4457 ArgSize = 8;
4458 bool NeedFPTrunc = false;
4459 if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
4460 ArgSize = 8;
4461 NeedFPTrunc = true;
4462 }
4463
4464 // Increment the pointer, VAList, to the next vaarg
Mehdi Amini44ede332015-07-09 02:09:04 +00004465 SDValue VANext = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
4466 DAG.getConstant(ArgSize, DL, PtrVT));
Tim Northover3b0846e2014-05-24 12:50:23 +00004467 // Store the incremented VAList to the legalized pointer
Justin Lebar9c375812016-07-15 18:27:10 +00004468 SDValue APStore =
4469 DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V));
Tim Northover3b0846e2014-05-24 12:50:23 +00004470
4471 // Load the actual argument out of the pointer VAList
4472 if (NeedFPTrunc) {
4473 // Load the value as an f64.
Justin Lebar9c375812016-07-15 18:27:10 +00004474 SDValue WideFP =
4475 DAG.getLoad(MVT::f64, DL, APStore, VAList, MachinePointerInfo());
Tim Northover3b0846e2014-05-24 12:50:23 +00004476 // Round the value down to an f32.
4477 SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004478 DAG.getIntPtrConstant(1, DL));
Tim Northover3b0846e2014-05-24 12:50:23 +00004479 SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
4480 // Merge the rounded value with the chain output of the load.
4481 return DAG.getMergeValues(Ops, DL);
4482 }
4483
Justin Lebar9c375812016-07-15 18:27:10 +00004484 return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo());
Tim Northover3b0846e2014-05-24 12:50:23 +00004485}
4486
4487SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
4488 SelectionDAG &DAG) const {
Matthias Braun941a7052016-07-28 18:40:00 +00004489 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
4490 MFI.setFrameAddressIsTaken(true);
Tim Northover3b0846e2014-05-24 12:50:23 +00004491
4492 EVT VT = Op.getValueType();
4493 SDLoc DL(Op);
4494 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4495 SDValue FrameAddr =
4496 DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
4497 while (Depth--)
4498 FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
Justin Lebar9c375812016-07-15 18:27:10 +00004499 MachinePointerInfo());
Tim Northover3b0846e2014-05-24 12:50:23 +00004500 return FrameAddr;
4501}
4502
4503// FIXME? Maybe this could be a TableGen attribute on some registers and
4504// this table could be generated automatically from RegInfo.
Pat Gavlina717f252015-07-09 17:40:29 +00004505unsigned AArch64TargetLowering::getRegisterByName(const char* RegName, EVT VT,
4506 SelectionDAG &DAG) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00004507 unsigned Reg = StringSwitch<unsigned>(RegName)
4508 .Case("sp", AArch64::SP)
Petr Hosekc3a9e6d2017-04-07 20:41:58 +00004509 .Case("x18", AArch64::X18)
4510 .Case("w18", AArch64::W18)
Tim Northover3b0846e2014-05-24 12:50:23 +00004511 .Default(0);
Petr Hosekc3a9e6d2017-04-07 20:41:58 +00004512 if ((Reg == AArch64::X18 || Reg == AArch64::W18) &&
4513 !Subtarget->isX18Reserved())
4514 Reg = 0;
Tim Northover3b0846e2014-05-24 12:50:23 +00004515 if (Reg)
4516 return Reg;
Luke Cheeseman85fd06d2015-06-01 12:02:47 +00004517 report_fatal_error(Twine("Invalid register name \""
4518 + StringRef(RegName) + "\"."));
Tim Northover3b0846e2014-05-24 12:50:23 +00004519}
4520
4521SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
4522 SelectionDAG &DAG) const {
4523 MachineFunction &MF = DAG.getMachineFunction();
Matthias Braun941a7052016-07-28 18:40:00 +00004524 MachineFrameInfo &MFI = MF.getFrameInfo();
4525 MFI.setReturnAddressIsTaken(true);
Tim Northover3b0846e2014-05-24 12:50:23 +00004526
4527 EVT VT = Op.getValueType();
4528 SDLoc DL(Op);
4529 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4530 if (Depth) {
4531 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
Mehdi Amini44ede332015-07-09 02:09:04 +00004532 SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout()));
Tim Northover3b0846e2014-05-24 12:50:23 +00004533 return DAG.getLoad(VT, DL, DAG.getEntryNode(),
4534 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
Justin Lebar9c375812016-07-15 18:27:10 +00004535 MachinePointerInfo());
Tim Northover3b0846e2014-05-24 12:50:23 +00004536 }
4537
4538 // Return LR, which contains the return address. Mark it an implicit live-in.
4539 unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
4540 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
4541}
4542
4543/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
4544/// i64 values and take a 2 x i64 value to shift plus a shift amount.
4545SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
4546 SelectionDAG &DAG) const {
4547 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4548 EVT VT = Op.getValueType();
4549 unsigned VTBits = VT.getSizeInBits();
4550 SDLoc dl(Op);
4551 SDValue ShOpLo = Op.getOperand(0);
4552 SDValue ShOpHi = Op.getOperand(1);
4553 SDValue ShAmt = Op.getOperand(2);
Tim Northover3b0846e2014-05-24 12:50:23 +00004554 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
4555
4556 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
4557
4558 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004559 DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
Tim Northoverf3be9d52015-12-02 00:33:54 +00004560 SDValue HiBitsForLo = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
4561
4562 // Unfortunately, if ShAmt == 0, we just calculated "(SHL ShOpHi, 64)" which
4563 // is "undef". We wanted 0, so CSEL it directly.
4564 SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
4565 ISD::SETEQ, dl, DAG);
4566 SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
4567 HiBitsForLo =
4568 DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
4569 HiBitsForLo, CCVal, Cmp);
4570
Tim Northover3b0846e2014-05-24 12:50:23 +00004571 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004572 DAG.getConstant(VTBits, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00004573
Tim Northoverf3be9d52015-12-02 00:33:54 +00004574 SDValue LoBitsForLo = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
4575 SDValue LoForNormalShift =
4576 DAG.getNode(ISD::OR, dl, VT, LoBitsForLo, HiBitsForLo);
Tim Northover3b0846e2014-05-24 12:50:23 +00004577
Tim Northoverf3be9d52015-12-02 00:33:54 +00004578 Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
4579 dl, DAG);
4580 CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
4581 SDValue LoForBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
4582 SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
4583 LoForNormalShift, CCVal, Cmp);
Tim Northover3b0846e2014-05-24 12:50:23 +00004584
4585 // AArch64 shifts larger than the register width are wrapped rather than
4586 // clamped, so we can't just emit "hi >> x".
Tim Northoverf3be9d52015-12-02 00:33:54 +00004587 SDValue HiForNormalShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
4588 SDValue HiForBigShift =
4589 Opc == ISD::SRA
4590 ? DAG.getNode(Opc, dl, VT, ShOpHi,
4591 DAG.getConstant(VTBits - 1, dl, MVT::i64))
4592 : DAG.getConstant(0, dl, VT);
4593 SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
4594 HiForNormalShift, CCVal, Cmp);
Tim Northover3b0846e2014-05-24 12:50:23 +00004595
4596 SDValue Ops[2] = { Lo, Hi };
4597 return DAG.getMergeValues(Ops, dl);
4598}
4599
4600/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
4601/// i64 values and take a 2 x i64 value to shift plus a shift amount.
4602SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
Tim Northoverf3be9d52015-12-02 00:33:54 +00004603 SelectionDAG &DAG) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00004604 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4605 EVT VT = Op.getValueType();
4606 unsigned VTBits = VT.getSizeInBits();
4607 SDLoc dl(Op);
4608 SDValue ShOpLo = Op.getOperand(0);
4609 SDValue ShOpHi = Op.getOperand(1);
4610 SDValue ShAmt = Op.getOperand(2);
Tim Northover3b0846e2014-05-24 12:50:23 +00004611
4612 assert(Op.getOpcode() == ISD::SHL_PARTS);
4613 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004614 DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
Tim Northoverf3be9d52015-12-02 00:33:54 +00004615 SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
4616
4617 // Unfortunately, if ShAmt == 0, we just calculated "(SRL ShOpLo, 64)" which
4618 // is "undef". We wanted 0, so CSEL it directly.
4619 SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
4620 ISD::SETEQ, dl, DAG);
4621 SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
4622 LoBitsForHi =
4623 DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
4624 LoBitsForHi, CCVal, Cmp);
4625
Tim Northover3b0846e2014-05-24 12:50:23 +00004626 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00004627 DAG.getConstant(VTBits, dl, MVT::i64));
Tim Northoverf3be9d52015-12-02 00:33:54 +00004628 SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
4629 SDValue HiForNormalShift =
4630 DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi);
Tim Northover3b0846e2014-05-24 12:50:23 +00004631
Tim Northoverf3be9d52015-12-02 00:33:54 +00004632 SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
Tim Northover3b0846e2014-05-24 12:50:23 +00004633
Tim Northoverf3be9d52015-12-02 00:33:54 +00004634 Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
4635 dl, DAG);
4636 CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
4637 SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
4638 HiForNormalShift, CCVal, Cmp);
Tim Northover3b0846e2014-05-24 12:50:23 +00004639
4640 // AArch64 shifts of larger than register sizes are wrapped rather than
4641 // clamped, so we can't just emit "lo << a" if a is too big.
Tim Northoverf3be9d52015-12-02 00:33:54 +00004642 SDValue LoForBigShift = DAG.getConstant(0, dl, VT);
4643 SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4644 SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
4645 LoForNormalShift, CCVal, Cmp);
Tim Northover3b0846e2014-05-24 12:50:23 +00004646
4647 SDValue Ops[2] = { Lo, Hi };
4648 return DAG.getMergeValues(Ops, dl);
4649}
4650
4651bool AArch64TargetLowering::isOffsetFoldingLegal(
4652 const GlobalAddressSDNode *GA) const {
4653 // The AArch64 target doesn't support folding offsets into global addresses.
4654 return false;
4655}
4656
4657bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
4658 // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases.
4659 // FIXME: We should be able to handle f128 as well with a clever lowering.
4660 if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32))
4661 return true;
4662
4663 if (VT == MVT::f64)
4664 return AArch64_AM::getFP64Imm(Imm) != -1;
4665 else if (VT == MVT::f32)
4666 return AArch64_AM::getFP32Imm(Imm) != -1;
4667 return false;
4668}
4669
4670//===----------------------------------------------------------------------===//
4671// AArch64 Optimization Hooks
4672//===----------------------------------------------------------------------===//
4673
Evandro Menezeseff2bd92016-10-24 16:14:58 +00004674static SDValue getEstimate(const AArch64Subtarget *ST, unsigned Opcode,
4675 SDValue Operand, SelectionDAG &DAG,
4676 int &ExtraSteps) {
4677 EVT VT = Operand.getValueType();
4678 if (ST->hasNEON() &&
4679 (VT == MVT::f64 || VT == MVT::v1f64 || VT == MVT::v2f64 ||
4680 VT == MVT::f32 || VT == MVT::v1f32 ||
4681 VT == MVT::v2f32 || VT == MVT::v4f32)) {
4682 if (ExtraSteps == TargetLoweringBase::ReciprocalEstimate::Unspecified)
4683 // For the reciprocal estimates, convergence is quadratic, so the number
4684 // of digits is doubled after each iteration. In ARMv8, the accuracy of
4685 // the initial estimate is 2^-8. Thus the number of extra steps to refine
4686 // the result for float (23 mantissa bits) is 2 and for double (52
4687 // mantissa bits) is 3.
4688 ExtraSteps = VT == MVT::f64 ? 3 : 2;
4689
4690 return DAG.getNode(Opcode, SDLoc(Operand), VT, Operand);
4691 }
4692
4693 return SDValue();
4694}
4695
Evandro Menezes21f9ce12016-11-10 23:31:06 +00004696SDValue AArch64TargetLowering::getSqrtEstimate(SDValue Operand,
4697 SelectionDAG &DAG, int Enabled,
4698 int &ExtraSteps,
4699 bool &UseOneConst,
4700 bool Reciprocal) const {
Evandro Menezeseff2bd92016-10-24 16:14:58 +00004701 if (Enabled == ReciprocalEstimate::Enabled ||
4702 (Enabled == ReciprocalEstimate::Unspecified && Subtarget->useRSqrt()))
4703 if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRSQRTE, Operand,
4704 DAG, ExtraSteps)) {
Evandro Menezes9fc54822016-11-14 23:29:01 +00004705 SDLoc DL(Operand);
4706 EVT VT = Operand.getValueType();
4707
4708 SDNodeFlags Flags;
4709 Flags.setUnsafeAlgebra(true);
4710
4711 // Newton reciprocal square root iteration: E * 0.5 * (3 - X * E^2)
4712 // AArch64 reciprocal square root iteration instruction: 0.5 * (3 - M * N)
4713 for (int i = ExtraSteps; i > 0; --i) {
4714 SDValue Step = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Estimate,
4715 &Flags);
4716 Step = DAG.getNode(AArch64ISD::FRSQRTS, DL, VT, Operand, Step, &Flags);
4717 Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, &Flags);
4718 }
4719
4720 if (!Reciprocal) {
4721 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
4722 VT);
4723 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
4724 SDValue Eq = DAG.getSetCC(DL, CCVT, Operand, FPZero, ISD::SETEQ);
4725
4726 Estimate = DAG.getNode(ISD::FMUL, DL, VT, Operand, Estimate, &Flags);
4727 // Correct the result if the operand is 0.0.
4728 Estimate = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, DL,
4729 VT, Eq, Operand, Estimate);
4730 }
4731
4732 ExtraSteps = 0;
Evandro Menezeseff2bd92016-10-24 16:14:58 +00004733 return Estimate;
4734 }
4735
4736 return SDValue();
4737}
4738
4739SDValue AArch64TargetLowering::getRecipEstimate(SDValue Operand,
4740 SelectionDAG &DAG, int Enabled,
4741 int &ExtraSteps) const {
4742 if (Enabled == ReciprocalEstimate::Enabled)
4743 if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRECPE, Operand,
Evandro Menezes9fc54822016-11-14 23:29:01 +00004744 DAG, ExtraSteps)) {
4745 SDLoc DL(Operand);
4746 EVT VT = Operand.getValueType();
4747
4748 SDNodeFlags Flags;
4749 Flags.setUnsafeAlgebra(true);
4750
4751 // Newton reciprocal iteration: E * (2 - X * E)
4752 // AArch64 reciprocal iteration instruction: (2 - M * N)
4753 for (int i = ExtraSteps; i > 0; --i) {
4754 SDValue Step = DAG.getNode(AArch64ISD::FRECPS, DL, VT, Operand,
4755 Estimate, &Flags);
4756 Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, &Flags);
4757 }
4758
4759 ExtraSteps = 0;
Evandro Menezeseff2bd92016-10-24 16:14:58 +00004760 return Estimate;
Evandro Menezes9fc54822016-11-14 23:29:01 +00004761 }
Evandro Menezeseff2bd92016-10-24 16:14:58 +00004762
4763 return SDValue();
4764}
4765
Tim Northover3b0846e2014-05-24 12:50:23 +00004766//===----------------------------------------------------------------------===//
4767// AArch64 Inline Assembly Support
4768//===----------------------------------------------------------------------===//
4769
4770// Table of Constraints
4771// TODO: This is the current set of constraints supported by ARM for the
4772// compiler, not all of them may make sense, e.g. S may be difficult to support.
4773//
4774// r - A general register
4775// w - An FP/SIMD register of some size in the range v0-v31
4776// x - An FP/SIMD register of some size in the range v0-v15
4777// I - Constant that can be used with an ADD instruction
4778// J - Constant that can be used with a SUB instruction
4779// K - Constant that can be used with a 32-bit logical instruction
4780// L - Constant that can be used with a 64-bit logical instruction
4781// M - Constant that can be used as a 32-bit MOV immediate
4782// N - Constant that can be used as a 64-bit MOV immediate
4783// Q - A memory reference with base register and no offset
4784// S - A symbolic address
4785// Y - Floating point constant zero
4786// Z - Integer constant zero
4787//
4788// Note that general register operands will be output using their 64-bit x
4789// register name, whatever the size of the variable, unless the asm operand
4790// is prefixed by the %w modifier. Floating-point and SIMD register operands
4791// will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
4792// %q modifier.
Silviu Barangaf60be282016-05-09 11:10:44 +00004793const char *AArch64TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4794 // At this point, we have to lower this constraint to something else, so we
4795 // lower it to an "r" or "w". However, by doing this we will force the result
4796 // to be in register, while the X constraint is much more permissive.
4797 //
4798 // Although we are correct (we are free to emit anything, without
4799 // constraints), we might break use cases that would expect us to be more
4800 // efficient and emit something else.
4801 if (!Subtarget->hasFPARMv8())
4802 return "r";
4803
4804 if (ConstraintVT.isFloatingPoint())
4805 return "w";
4806
4807 if (ConstraintVT.isVector() &&
4808 (ConstraintVT.getSizeInBits() == 64 ||
4809 ConstraintVT.getSizeInBits() == 128))
4810 return "w";
4811
4812 return "r";
4813}
Tim Northover3b0846e2014-05-24 12:50:23 +00004814
4815/// getConstraintType - Given a constraint letter, return the type of
4816/// constraint it is for this target.
4817AArch64TargetLowering::ConstraintType
Benjamin Kramer9bfb6272015-07-05 19:29:18 +00004818AArch64TargetLowering::getConstraintType(StringRef Constraint) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00004819 if (Constraint.size() == 1) {
4820 switch (Constraint[0]) {
4821 default:
4822 break;
4823 case 'z':
4824 return C_Other;
4825 case 'x':
4826 case 'w':
4827 return C_RegisterClass;
4828 // An address with a single base register. Due to the way we
4829 // currently handle addresses it is the same as 'r'.
4830 case 'Q':
4831 return C_Memory;
4832 }
4833 }
4834 return TargetLowering::getConstraintType(Constraint);
4835}
4836
4837/// Examine constraint type and operand type and determine a weight value.
4838/// This object must already have been set up with the operand type
4839/// and the current alternative constraint selected.
4840TargetLowering::ConstraintWeight
4841AArch64TargetLowering::getSingleConstraintMatchWeight(
4842 AsmOperandInfo &info, const char *constraint) const {
4843 ConstraintWeight weight = CW_Invalid;
4844 Value *CallOperandVal = info.CallOperandVal;
4845 // If we don't have a value, we can't do a match,
4846 // but allow it at the lowest weight.
4847 if (!CallOperandVal)
4848 return CW_Default;
4849 Type *type = CallOperandVal->getType();
4850 // Look at the constraint type.
4851 switch (*constraint) {
4852 default:
4853 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
4854 break;
4855 case 'x':
4856 case 'w':
4857 if (type->isFloatingPointTy() || type->isVectorTy())
4858 weight = CW_Register;
4859 break;
4860 case 'z':
4861 weight = CW_Constant;
4862 break;
4863 }
4864 return weight;
4865}
4866
4867std::pair<unsigned, const TargetRegisterClass *>
4868AArch64TargetLowering::getRegForInlineAsmConstraint(
Benjamin Kramer9bfb6272015-07-05 19:29:18 +00004869 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00004870 if (Constraint.size() == 1) {
4871 switch (Constraint[0]) {
4872 case 'r':
4873 if (VT.getSizeInBits() == 64)
4874 return std::make_pair(0U, &AArch64::GPR64commonRegClass);
4875 return std::make_pair(0U, &AArch64::GPR32commonRegClass);
4876 case 'w':
Amara Emerson614b44b2016-11-07 15:42:12 +00004877 if (VT.getSizeInBits() == 16)
4878 return std::make_pair(0U, &AArch64::FPR16RegClass);
Akira Hatanakab8d28732016-07-21 21:39:05 +00004879 if (VT.getSizeInBits() == 32)
Tim Northover3b0846e2014-05-24 12:50:23 +00004880 return std::make_pair(0U, &AArch64::FPR32RegClass);
4881 if (VT.getSizeInBits() == 64)
4882 return std::make_pair(0U, &AArch64::FPR64RegClass);
4883 if (VT.getSizeInBits() == 128)
4884 return std::make_pair(0U, &AArch64::FPR128RegClass);
4885 break;
4886 // The instructions that this constraint is designed for can
4887 // only take 128-bit registers so just use that regclass.
4888 case 'x':
4889 if (VT.getSizeInBits() == 128)
4890 return std::make_pair(0U, &AArch64::FPR128_loRegClass);
4891 break;
4892 }
4893 }
4894 if (StringRef("{cc}").equals_lower(Constraint))
4895 return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
4896
4897 // Use the default implementation in TargetLowering to convert the register
4898 // constraint into a member of a register class.
4899 std::pair<unsigned, const TargetRegisterClass *> Res;
Eric Christopher11e4df72015-02-26 22:38:43 +00004900 Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
Tim Northover3b0846e2014-05-24 12:50:23 +00004901
4902 // Not found as a standard register?
4903 if (!Res.second) {
4904 unsigned Size = Constraint.size();
4905 if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
4906 tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
Benjamin Kramer9bfb6272015-07-05 19:29:18 +00004907 int RegNo;
4908 bool Failed = Constraint.slice(2, Size - 1).getAsInteger(10, RegNo);
4909 if (!Failed && RegNo >= 0 && RegNo <= 31) {
Tim Northover9508a702016-05-10 22:26:45 +00004910 // v0 - v31 are aliases of q0 - q31 or d0 - d31 depending on size.
Tim Northover3b0846e2014-05-24 12:50:23 +00004911 // By default we'll emit v0-v31 for this unless there's a modifier where
4912 // we'll emit the correct register as well.
Tim Northover9508a702016-05-10 22:26:45 +00004913 if (VT != MVT::Other && VT.getSizeInBits() == 64) {
4914 Res.first = AArch64::FPR64RegClass.getRegister(RegNo);
4915 Res.second = &AArch64::FPR64RegClass;
4916 } else {
4917 Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
4918 Res.second = &AArch64::FPR128RegClass;
4919 }
Tim Northover3b0846e2014-05-24 12:50:23 +00004920 }
4921 }
4922 }
4923
4924 return Res;
4925}
4926
4927/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4928/// vector. If it is invalid, don't add anything to Ops.
4929void AArch64TargetLowering::LowerAsmOperandForConstraint(
4930 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
4931 SelectionDAG &DAG) const {
4932 SDValue Result;
4933
4934 // Currently only support length 1 constraints.
4935 if (Constraint.length() != 1)
4936 return;
4937
4938 char ConstraintLetter = Constraint[0];
4939 switch (ConstraintLetter) {
4940 default:
4941 break;
4942
4943 // This set of constraints deal with valid constants for various instructions.
4944 // Validate and return a target constant for them if we can.
4945 case 'z': {
4946 // 'z' maps to xzr or wzr so it needs an input of 0.
Artyom Skrobov314ee042015-11-25 19:41:11 +00004947 if (!isNullConstant(Op))
Tim Northover3b0846e2014-05-24 12:50:23 +00004948 return;
4949
4950 if (Op.getValueType() == MVT::i64)
4951 Result = DAG.getRegister(AArch64::XZR, MVT::i64);
4952 else
4953 Result = DAG.getRegister(AArch64::WZR, MVT::i32);
4954 break;
4955 }
4956
4957 case 'I':
4958 case 'J':
4959 case 'K':
4960 case 'L':
4961 case 'M':
4962 case 'N':
4963 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4964 if (!C)
4965 return;
4966
4967 // Grab the value and do some validation.
4968 uint64_t CVal = C->getZExtValue();
4969 switch (ConstraintLetter) {
4970 // The I constraint applies only to simple ADD or SUB immediate operands:
4971 // i.e. 0 to 4095 with optional shift by 12
4972 // The J constraint applies only to ADD or SUB immediates that would be
4973 // valid when negated, i.e. if [an add pattern] were to be output as a SUB
4974 // instruction [or vice versa], in other words -1 to -4095 with optional
4975 // left shift by 12.
4976 case 'I':
4977 if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
4978 break;
4979 return;
4980 case 'J': {
4981 uint64_t NVal = -C->getSExtValue();
Tim Northover2c46beb2014-07-27 07:10:29 +00004982 if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
4983 CVal = C->getSExtValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00004984 break;
Tim Northover2c46beb2014-07-27 07:10:29 +00004985 }
Tim Northover3b0846e2014-05-24 12:50:23 +00004986 return;
4987 }
4988 // The K and L constraints apply *only* to logical immediates, including
4989 // what used to be the MOVI alias for ORR (though the MOVI alias has now
4990 // been removed and MOV should be used). So these constraints have to
4991 // distinguish between bit patterns that are valid 32-bit or 64-bit
4992 // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
4993 // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
4994 // versa.
4995 case 'K':
4996 if (AArch64_AM::isLogicalImmediate(CVal, 32))
4997 break;
4998 return;
4999 case 'L':
5000 if (AArch64_AM::isLogicalImmediate(CVal, 64))
5001 break;
5002 return;
5003 // The M and N constraints are a superset of K and L respectively, for use
5004 // with the MOV (immediate) alias. As well as the logical immediates they
5005 // also match 32 or 64-bit immediates that can be loaded either using a
5006 // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
5007 // (M) or 64-bit 0x1234000000000000 (N) etc.
5008 // As a note some of this code is liberally stolen from the asm parser.
5009 case 'M': {
5010 if (!isUInt<32>(CVal))
5011 return;
5012 if (AArch64_AM::isLogicalImmediate(CVal, 32))
5013 break;
5014 if ((CVal & 0xFFFF) == CVal)
5015 break;
5016 if ((CVal & 0xFFFF0000ULL) == CVal)
5017 break;
5018 uint64_t NCVal = ~(uint32_t)CVal;
5019 if ((NCVal & 0xFFFFULL) == NCVal)
5020 break;
5021 if ((NCVal & 0xFFFF0000ULL) == NCVal)
5022 break;
5023 return;
5024 }
5025 case 'N': {
5026 if (AArch64_AM::isLogicalImmediate(CVal, 64))
5027 break;
5028 if ((CVal & 0xFFFFULL) == CVal)
5029 break;
5030 if ((CVal & 0xFFFF0000ULL) == CVal)
5031 break;
5032 if ((CVal & 0xFFFF00000000ULL) == CVal)
5033 break;
5034 if ((CVal & 0xFFFF000000000000ULL) == CVal)
5035 break;
5036 uint64_t NCVal = ~CVal;
5037 if ((NCVal & 0xFFFFULL) == NCVal)
5038 break;
5039 if ((NCVal & 0xFFFF0000ULL) == NCVal)
5040 break;
5041 if ((NCVal & 0xFFFF00000000ULL) == NCVal)
5042 break;
5043 if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
5044 break;
5045 return;
5046 }
5047 default:
5048 return;
5049 }
5050
5051 // All assembler immediates are 64-bit integers.
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005052 Result = DAG.getTargetConstant(CVal, SDLoc(Op), MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00005053 break;
5054 }
5055
5056 if (Result.getNode()) {
5057 Ops.push_back(Result);
5058 return;
5059 }
5060
5061 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
5062}
5063
5064//===----------------------------------------------------------------------===//
5065// AArch64 Advanced SIMD Support
5066//===----------------------------------------------------------------------===//
5067
5068/// WidenVector - Given a value in the V64 register class, produce the
5069/// equivalent value in the V128 register class.
5070static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
5071 EVT VT = V64Reg.getValueType();
5072 unsigned NarrowSize = VT.getVectorNumElements();
5073 MVT EltTy = VT.getVectorElementType().getSimpleVT();
5074 MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
5075 SDLoc DL(V64Reg);
5076
5077 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005078 V64Reg, DAG.getConstant(0, DL, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00005079}
5080
5081/// getExtFactor - Determine the adjustment factor for the position when
5082/// generating an "extract from vector registers" instruction.
5083static unsigned getExtFactor(SDValue &V) {
5084 EVT EltType = V.getValueType().getVectorElementType();
5085 return EltType.getSizeInBits() / 8;
5086}
5087
5088/// NarrowVector - Given a value in the V128 register class, produce the
5089/// equivalent value in the V64 register class.
5090static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
5091 EVT VT = V128Reg.getValueType();
5092 unsigned WideSize = VT.getVectorNumElements();
5093 MVT EltTy = VT.getVectorElementType().getSimpleVT();
5094 MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
5095 SDLoc DL(V128Reg);
5096
5097 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
5098}
5099
5100// Gather data to see if the operation can be modelled as a
5101// shuffle in combination with VEXTs.
5102SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
5103 SelectionDAG &DAG) const {
Kevin Qinf0ec9af2014-06-18 05:54:42 +00005104 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
Tim Northover3b0846e2014-05-24 12:50:23 +00005105 SDLoc dl(Op);
5106 EVT VT = Op.getValueType();
5107 unsigned NumElts = VT.getVectorNumElements();
5108
Tim Northover7324e842014-07-24 15:39:55 +00005109 struct ShuffleSourceInfo {
5110 SDValue Vec;
5111 unsigned MinElt;
5112 unsigned MaxElt;
Tim Northover3b0846e2014-05-24 12:50:23 +00005113
Tim Northover7324e842014-07-24 15:39:55 +00005114 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
5115 // be compatible with the shuffle we intend to construct. As a result
5116 // ShuffleVec will be some sliding window into the original Vec.
5117 SDValue ShuffleVec;
5118
5119 // Code should guarantee that element i in Vec starts at element "WindowBase
5120 // + i * WindowScale in ShuffleVec".
5121 int WindowBase;
5122 int WindowScale;
5123
Tim Northover7324e842014-07-24 15:39:55 +00005124 ShuffleSourceInfo(SDValue Vec)
Eugene Zelenko049b0172017-01-06 00:30:53 +00005125 : Vec(Vec), MinElt(std::numeric_limits<unsigned>::max()), MaxElt(0),
5126 ShuffleVec(Vec), WindowBase(0), WindowScale(1) {}
5127
5128 bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
Tim Northover7324e842014-07-24 15:39:55 +00005129 };
5130
5131 // First gather all vectors used as an immediate source for this BUILD_VECTOR
5132 // node.
5133 SmallVector<ShuffleSourceInfo, 2> Sources;
Tim Northover3b0846e2014-05-24 12:50:23 +00005134 for (unsigned i = 0; i < NumElts; ++i) {
5135 SDValue V = Op.getOperand(i);
Sanjay Patel57195842016-03-14 17:28:46 +00005136 if (V.isUndef())
Tim Northover3b0846e2014-05-24 12:50:23 +00005137 continue;
Ahmed Bougachadfc77352016-01-14 02:12:30 +00005138 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5139 !isa<ConstantSDNode>(V.getOperand(1))) {
Tim Northover3b0846e2014-05-24 12:50:23 +00005140 // A shuffle can only come from building a vector from various
Ahmed Bougachadfc77352016-01-14 02:12:30 +00005141 // elements of other vectors, provided their indices are constant.
Tim Northover3b0846e2014-05-24 12:50:23 +00005142 return SDValue();
5143 }
5144
Tim Northover7324e842014-07-24 15:39:55 +00005145 // Add this element source to the list if it's not already there.
Tim Northover3b0846e2014-05-24 12:50:23 +00005146 SDValue SourceVec = V.getOperand(0);
David Majnemer0d955d02016-08-11 22:21:41 +00005147 auto Source = find(Sources, SourceVec);
Tim Northover7324e842014-07-24 15:39:55 +00005148 if (Source == Sources.end())
James Molloyf497d552014-10-17 17:06:31 +00005149 Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
Tim Northover3b0846e2014-05-24 12:50:23 +00005150
Tim Northover7324e842014-07-24 15:39:55 +00005151 // Update the minimum and maximum lane number seen.
5152 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
5153 Source->MinElt = std::min(Source->MinElt, EltNo);
5154 Source->MaxElt = std::max(Source->MaxElt, EltNo);
Tim Northover3b0846e2014-05-24 12:50:23 +00005155 }
5156
5157 // Currently only do something sane when at most two source vectors
Tim Northover7324e842014-07-24 15:39:55 +00005158 // are involved.
5159 if (Sources.size() > 2)
Tim Northover3b0846e2014-05-24 12:50:23 +00005160 return SDValue();
5161
Kevin Qin9a2a2c52014-07-24 02:05:42 +00005162 // Find out the smallest element size among result and two sources, and use
5163 // it as element size to build the shuffle_vector.
5164 EVT SmallestEltTy = VT.getVectorElementType();
Tim Northover7324e842014-07-24 15:39:55 +00005165 for (auto &Source : Sources) {
5166 EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00005167 if (SrcEltTy.bitsLT(SmallestEltTy)) {
5168 SmallestEltTy = SrcEltTy;
5169 }
5170 }
5171 unsigned ResMultiplier =
Sanjay Patel1ed771f2016-09-14 16:37:15 +00005172 VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00005173 NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
5174 EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
Tim Northover3b0846e2014-05-24 12:50:23 +00005175
Tim Northover7324e842014-07-24 15:39:55 +00005176 // If the source vector is too wide or too narrow, we may nevertheless be able
5177 // to construct a compatible shuffle either by concatenating it with UNDEF or
5178 // extracting a suitable range of elements.
5179 for (auto &Src : Sources) {
5180 EVT SrcVT = Src.ShuffleVec.getValueType();
Kevin Qinf0ec9af2014-06-18 05:54:42 +00005181
Tim Northover7324e842014-07-24 15:39:55 +00005182 if (SrcVT.getSizeInBits() == VT.getSizeInBits())
Tim Northover3b0846e2014-05-24 12:50:23 +00005183 continue;
Tim Northover7324e842014-07-24 15:39:55 +00005184
5185 // This stage of the search produces a source with the same element type as
5186 // the original, but with a total width matching the BUILD_VECTOR output.
5187 EVT EltVT = SrcVT.getVectorElementType();
James Molloyf497d552014-10-17 17:06:31 +00005188 unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
5189 EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
Tim Northover7324e842014-07-24 15:39:55 +00005190
5191 if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
5192 assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits());
Tim Northover3b0846e2014-05-24 12:50:23 +00005193 // We can pad out the smaller vector for free, so if it's part of a
5194 // shuffle...
Tim Northover7324e842014-07-24 15:39:55 +00005195 Src.ShuffleVec =
5196 DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
5197 DAG.getUNDEF(Src.ShuffleVec.getValueType()));
Tim Northover3b0846e2014-05-24 12:50:23 +00005198 continue;
5199 }
5200
Tim Northover7324e842014-07-24 15:39:55 +00005201 assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits());
Tim Northover3b0846e2014-05-24 12:50:23 +00005202
James Molloyf497d552014-10-17 17:06:31 +00005203 if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00005204 // Span too large for a VEXT to cope
5205 return SDValue();
5206 }
5207
James Molloyf497d552014-10-17 17:06:31 +00005208 if (Src.MinElt >= NumSrcElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00005209 // The extraction can just take the second half
Tim Northover7324e842014-07-24 15:39:55 +00005210 Src.ShuffleVec =
5211 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005212 DAG.getConstant(NumSrcElts, dl, MVT::i64));
James Molloyf497d552014-10-17 17:06:31 +00005213 Src.WindowBase = -NumSrcElts;
5214 } else if (Src.MaxElt < NumSrcElts) {
Tim Northover3b0846e2014-05-24 12:50:23 +00005215 // The extraction can just take the first half
Tim Northover5e84fe32014-12-06 00:33:37 +00005216 Src.ShuffleVec =
5217 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005218 DAG.getConstant(0, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00005219 } else {
5220 // An actual VEXT is needed
Tim Northover5e84fe32014-12-06 00:33:37 +00005221 SDValue VEXTSrc1 =
5222 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005223 DAG.getConstant(0, dl, MVT::i64));
Tim Northover7324e842014-07-24 15:39:55 +00005224 SDValue VEXTSrc2 =
5225 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005226 DAG.getConstant(NumSrcElts, dl, MVT::i64));
Tim Northover7324e842014-07-24 15:39:55 +00005227 unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);
5228
5229 Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005230 VEXTSrc2,
5231 DAG.getConstant(Imm, dl, MVT::i32));
Tim Northover7324e842014-07-24 15:39:55 +00005232 Src.WindowBase = -Src.MinElt;
Tim Northover3b0846e2014-05-24 12:50:23 +00005233 }
5234 }
5235
Tim Northover7324e842014-07-24 15:39:55 +00005236 // Another possible incompatibility occurs from the vector element types. We
5237 // can fix this by bitcasting the source vectors to the same type we intend
5238 // for the shuffle.
5239 for (auto &Src : Sources) {
5240 EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
5241 if (SrcEltTy == SmallestEltTy)
5242 continue;
5243 assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
5244 Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
5245 Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
5246 Src.WindowBase *= Src.WindowScale;
5247 }
Tim Northover3b0846e2014-05-24 12:50:23 +00005248
Tim Northover7324e842014-07-24 15:39:55 +00005249 // Final sanity check before we try to actually produce a shuffle.
5250 DEBUG(
5251 for (auto Src : Sources)
5252 assert(Src.ShuffleVec.getValueType() == ShuffleVT);
5253 );
5254
5255 // The stars all align, our next step is to produce the mask for the shuffle.
5256 SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
Sanjay Patel1ed771f2016-09-14 16:37:15 +00005257 int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
Kevin Qin9a2a2c52014-07-24 02:05:42 +00005258 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
Tim Northover3b0846e2014-05-24 12:50:23 +00005259 SDValue Entry = Op.getOperand(i);
Sanjay Patel57195842016-03-14 17:28:46 +00005260 if (Entry.isUndef())
Tim Northover7324e842014-07-24 15:39:55 +00005261 continue;
Tim Northover3b0846e2014-05-24 12:50:23 +00005262
David Majnemer0d955d02016-08-11 22:21:41 +00005263 auto Src = find(Sources, Entry.getOperand(0));
Tim Northover7324e842014-07-24 15:39:55 +00005264 int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
5265
5266 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
5267 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
5268 // segment.
5269 EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
Sanjay Patel1ed771f2016-09-14 16:37:15 +00005270 int BitsDefined =
5271 std::min(OrigEltTy.getSizeInBits(), VT.getScalarSizeInBits());
Tim Northover7324e842014-07-24 15:39:55 +00005272 int LanesDefined = BitsDefined / BitsPerShuffleLane;
5273
5274 // This source is expected to fill ResMultiplier lanes of the final shuffle,
5275 // starting at the appropriate offset.
5276 int *LaneMask = &Mask[i * ResMultiplier];
5277
5278 int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
5279 ExtractBase += NumElts * (Src - Sources.begin());
5280 for (int j = 0; j < LanesDefined; ++j)
5281 LaneMask[j] = ExtractBase + j;
Tim Northover3b0846e2014-05-24 12:50:23 +00005282 }
5283
5284 // Final check before we try to produce nonsense...
Tim Northover7324e842014-07-24 15:39:55 +00005285 if (!isShuffleMaskLegal(Mask, ShuffleVT))
5286 return SDValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00005287
Tim Northover7324e842014-07-24 15:39:55 +00005288 SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
5289 for (unsigned i = 0; i < Sources.size(); ++i)
5290 ShuffleOps[i] = Sources[i].ShuffleVec;
5291
5292 SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
Craig Topper2bd8b4b2016-07-01 06:54:47 +00005293 ShuffleOps[1], Mask);
Tim Northover7324e842014-07-24 15:39:55 +00005294 return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
Tim Northover3b0846e2014-05-24 12:50:23 +00005295}
5296
5297// check if an EXT instruction can handle the shuffle mask when the
5298// vector sources of the shuffle are the same.
5299static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
5300 unsigned NumElts = VT.getVectorNumElements();
5301
5302 // Assume that the first shuffle index is not UNDEF. Fail if it is.
5303 if (M[0] < 0)
5304 return false;
5305
5306 Imm = M[0];
5307
5308 // If this is a VEXT shuffle, the immediate value is the index of the first
5309 // element. The other shuffle indices must be the successive elements after
5310 // the first one.
5311 unsigned ExpectedElt = Imm;
5312 for (unsigned i = 1; i < NumElts; ++i) {
5313 // Increment the expected index. If it wraps around, just follow it
5314 // back to index zero and keep going.
5315 ++ExpectedElt;
5316 if (ExpectedElt == NumElts)
5317 ExpectedElt = 0;
5318
5319 if (M[i] < 0)
5320 continue; // ignore UNDEF indices
5321 if (ExpectedElt != static_cast<unsigned>(M[i]))
5322 return false;
5323 }
5324
5325 return true;
5326}
5327
5328// check if an EXT instruction can handle the shuffle mask when the
5329// vector sources of the shuffle are different.
5330static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
5331 unsigned &Imm) {
5332 // Look for the first non-undef element.
David Majnemer562e8292016-08-12 00:18:03 +00005333 const int *FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; });
Tim Northover3b0846e2014-05-24 12:50:23 +00005334
5335 // Benefit form APInt to handle overflow when calculating expected element.
5336 unsigned NumElts = VT.getVectorNumElements();
5337 unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
5338 APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
5339 // The following shuffle indices must be the successive elements after the
5340 // first real element.
5341 const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
5342 [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
5343 if (FirstWrongElt != M.end())
5344 return false;
5345
5346 // The index of an EXT is the first element if it is not UNDEF.
5347 // Watch out for the beginning UNDEFs. The EXT index should be the expected
Junmo Park3b8c7152016-01-05 09:36:47 +00005348 // value of the first element. E.g.
Tim Northover3b0846e2014-05-24 12:50:23 +00005349 // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
5350 // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
5351 // ExpectedElt is the last mask index plus 1.
5352 Imm = ExpectedElt.getZExtValue();
5353
5354 // There are two difference cases requiring to reverse input vectors.
5355 // For example, for vector <4 x i32> we have the following cases,
5356 // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
5357 // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
5358 // For both cases, we finally use mask <5, 6, 7, 0>, which requires
5359 // to reverse two input vectors.
5360 if (Imm < NumElts)
5361 ReverseEXT = true;
5362 else
5363 Imm -= NumElts;
5364
5365 return true;
5366}
5367
5368/// isREVMask - Check if a vector shuffle corresponds to a REV
5369/// instruction with the specified blocksize. (The order of the elements
5370/// within each block of the vector is reversed.)
5371static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
5372 assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
5373 "Only possible block sizes for REV are: 16, 32, 64");
5374
Sanjay Patel1ed771f2016-09-14 16:37:15 +00005375 unsigned EltSz = VT.getScalarSizeInBits();
Tim Northover3b0846e2014-05-24 12:50:23 +00005376 if (EltSz == 64)
5377 return false;
5378
5379 unsigned NumElts = VT.getVectorNumElements();
5380 unsigned BlockElts = M[0] + 1;
5381 // If the first shuffle index is UNDEF, be optimistic.
5382 if (M[0] < 0)
5383 BlockElts = BlockSize / EltSz;
5384
5385 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
5386 return false;
5387
5388 for (unsigned i = 0; i < NumElts; ++i) {
5389 if (M[i] < 0)
5390 continue; // ignore UNDEF indices
5391 if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
5392 return false;
5393 }
5394
5395 return true;
5396}
5397
5398static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5399 unsigned NumElts = VT.getVectorNumElements();
5400 WhichResult = (M[0] == 0 ? 0 : 1);
5401 unsigned Idx = WhichResult * NumElts / 2;
5402 for (unsigned i = 0; i != NumElts; i += 2) {
5403 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
5404 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
5405 return false;
5406 Idx += 1;
5407 }
5408
5409 return true;
5410}
5411
5412static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5413 unsigned NumElts = VT.getVectorNumElements();
5414 WhichResult = (M[0] == 0 ? 0 : 1);
5415 for (unsigned i = 0; i != NumElts; ++i) {
5416 if (M[i] < 0)
5417 continue; // ignore UNDEF indices
5418 if ((unsigned)M[i] != 2 * i + WhichResult)
5419 return false;
5420 }
5421
5422 return true;
5423}
5424
5425static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5426 unsigned NumElts = VT.getVectorNumElements();
5427 WhichResult = (M[0] == 0 ? 0 : 1);
5428 for (unsigned i = 0; i < NumElts; i += 2) {
5429 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
5430 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
5431 return false;
5432 }
5433 return true;
5434}
5435
5436/// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
5437/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5438/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
5439static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5440 unsigned NumElts = VT.getVectorNumElements();
5441 WhichResult = (M[0] == 0 ? 0 : 1);
5442 unsigned Idx = WhichResult * NumElts / 2;
5443 for (unsigned i = 0; i != NumElts; i += 2) {
5444 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
5445 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
5446 return false;
5447 Idx += 1;
5448 }
5449
5450 return true;
5451}
5452
5453/// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
5454/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5455/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
5456static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5457 unsigned Half = VT.getVectorNumElements() / 2;
5458 WhichResult = (M[0] == 0 ? 0 : 1);
5459 for (unsigned j = 0; j != 2; ++j) {
5460 unsigned Idx = WhichResult;
5461 for (unsigned i = 0; i != Half; ++i) {
5462 int MIdx = M[i + j * Half];
5463 if (MIdx >= 0 && (unsigned)MIdx != Idx)
5464 return false;
5465 Idx += 2;
5466 }
5467 }
5468
5469 return true;
5470}
5471
5472/// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
5473/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5474/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
5475static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5476 unsigned NumElts = VT.getVectorNumElements();
5477 WhichResult = (M[0] == 0 ? 0 : 1);
5478 for (unsigned i = 0; i < NumElts; i += 2) {
5479 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
5480 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
5481 return false;
5482 }
5483 return true;
5484}
5485
5486static bool isINSMask(ArrayRef<int> M, int NumInputElements,
5487 bool &DstIsLeft, int &Anomaly) {
5488 if (M.size() != static_cast<size_t>(NumInputElements))
5489 return false;
5490
5491 int NumLHSMatch = 0, NumRHSMatch = 0;
5492 int LastLHSMismatch = -1, LastRHSMismatch = -1;
5493
5494 for (int i = 0; i < NumInputElements; ++i) {
5495 if (M[i] == -1) {
5496 ++NumLHSMatch;
5497 ++NumRHSMatch;
5498 continue;
5499 }
5500
5501 if (M[i] == i)
5502 ++NumLHSMatch;
5503 else
5504 LastLHSMismatch = i;
5505
5506 if (M[i] == i + NumInputElements)
5507 ++NumRHSMatch;
5508 else
5509 LastRHSMismatch = i;
5510 }
5511
5512 if (NumLHSMatch == NumInputElements - 1) {
5513 DstIsLeft = true;
5514 Anomaly = LastLHSMismatch;
5515 return true;
5516 } else if (NumRHSMatch == NumInputElements - 1) {
5517 DstIsLeft = false;
5518 Anomaly = LastRHSMismatch;
5519 return true;
5520 }
5521
5522 return false;
5523}
5524
5525static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
5526 if (VT.getSizeInBits() != 128)
5527 return false;
5528
5529 unsigned NumElts = VT.getVectorNumElements();
5530
5531 for (int I = 0, E = NumElts / 2; I != E; I++) {
5532 if (Mask[I] != I)
5533 return false;
5534 }
5535
5536 int Offset = NumElts / 2;
5537 for (int I = NumElts / 2, E = NumElts; I != E; I++) {
5538 if (Mask[I] != I + SplitLHS * Offset)
5539 return false;
5540 }
5541
5542 return true;
5543}
5544
5545static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
5546 SDLoc DL(Op);
5547 EVT VT = Op.getValueType();
5548 SDValue V0 = Op.getOperand(0);
5549 SDValue V1 = Op.getOperand(1);
5550 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
5551
5552 if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
5553 VT.getVectorElementType() != V1.getValueType().getVectorElementType())
5554 return SDValue();
5555
Sanjay Patelb1f0a0f2016-09-14 16:05:51 +00005556 bool SplitV0 = V0.getValueSizeInBits() == 128;
Tim Northover3b0846e2014-05-24 12:50:23 +00005557
5558 if (!isConcatMask(Mask, VT, SplitV0))
5559 return SDValue();
5560
5561 EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
5562 VT.getVectorNumElements() / 2);
5563 if (SplitV0) {
5564 V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005565 DAG.getConstant(0, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00005566 }
Sanjay Patelb1f0a0f2016-09-14 16:05:51 +00005567 if (V1.getValueSizeInBits() == 128) {
Tim Northover3b0846e2014-05-24 12:50:23 +00005568 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005569 DAG.getConstant(0, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00005570 }
5571 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
5572}
5573
5574/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
5575/// the specified operations to build the shuffle.
5576static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
5577 SDValue RHS, SelectionDAG &DAG,
Benjamin Kramerbdc49562016-06-12 15:39:02 +00005578 const SDLoc &dl) {
Tim Northover3b0846e2014-05-24 12:50:23 +00005579 unsigned OpNum = (PFEntry >> 26) & 0x0F;
5580 unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
5581 unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
5582
5583 enum {
5584 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
5585 OP_VREV,
5586 OP_VDUP0,
5587 OP_VDUP1,
5588 OP_VDUP2,
5589 OP_VDUP3,
5590 OP_VEXT1,
5591 OP_VEXT2,
5592 OP_VEXT3,
5593 OP_VUZPL, // VUZP, left result
5594 OP_VUZPR, // VUZP, right result
5595 OP_VZIPL, // VZIP, left result
5596 OP_VZIPR, // VZIP, right result
5597 OP_VTRNL, // VTRN, left result
5598 OP_VTRNR // VTRN, right result
5599 };
5600
5601 if (OpNum == OP_COPY) {
5602 if (LHSID == (1 * 9 + 2) * 9 + 3)
5603 return LHS;
5604 assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
5605 return RHS;
5606 }
5607
5608 SDValue OpLHS, OpRHS;
5609 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
5610 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
5611 EVT VT = OpLHS.getValueType();
5612
5613 switch (OpNum) {
5614 default:
5615 llvm_unreachable("Unknown shuffle opcode!");
5616 case OP_VREV:
5617 // VREV divides the vector in half and swaps within the half.
5618 if (VT.getVectorElementType() == MVT::i32 ||
5619 VT.getVectorElementType() == MVT::f32)
5620 return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
5621 // vrev <4 x i16> -> REV32
Oliver Stannard89d15422014-08-27 16:16:04 +00005622 if (VT.getVectorElementType() == MVT::i16 ||
5623 VT.getVectorElementType() == MVT::f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005624 return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
5625 // vrev <4 x i8> -> REV16
5626 assert(VT.getVectorElementType() == MVT::i8);
5627 return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
5628 case OP_VDUP0:
5629 case OP_VDUP1:
5630 case OP_VDUP2:
5631 case OP_VDUP3: {
5632 EVT EltTy = VT.getVectorElementType();
5633 unsigned Opcode;
5634 if (EltTy == MVT::i8)
5635 Opcode = AArch64ISD::DUPLANE8;
Ahmed Bougacha941420d2015-04-16 23:57:07 +00005636 else if (EltTy == MVT::i16 || EltTy == MVT::f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005637 Opcode = AArch64ISD::DUPLANE16;
5638 else if (EltTy == MVT::i32 || EltTy == MVT::f32)
5639 Opcode = AArch64ISD::DUPLANE32;
5640 else if (EltTy == MVT::i64 || EltTy == MVT::f64)
5641 Opcode = AArch64ISD::DUPLANE64;
5642 else
5643 llvm_unreachable("Invalid vector element type?");
5644
5645 if (VT.getSizeInBits() == 64)
5646 OpLHS = WidenVector(OpLHS, DAG);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005647 SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00005648 return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
5649 }
5650 case OP_VEXT1:
5651 case OP_VEXT2:
5652 case OP_VEXT3: {
5653 unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
5654 return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005655 DAG.getConstant(Imm, dl, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00005656 }
5657 case OP_VUZPL:
5658 return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
5659 OpRHS);
5660 case OP_VUZPR:
5661 return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
5662 OpRHS);
5663 case OP_VZIPL:
5664 return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
5665 OpRHS);
5666 case OP_VZIPR:
5667 return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
5668 OpRHS);
5669 case OP_VTRNL:
5670 return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
5671 OpRHS);
5672 case OP_VTRNR:
5673 return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
5674 OpRHS);
5675 }
5676}
5677
5678static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
5679 SelectionDAG &DAG) {
5680 // Check to see if we can use the TBL instruction.
5681 SDValue V1 = Op.getOperand(0);
5682 SDValue V2 = Op.getOperand(1);
5683 SDLoc DL(Op);
5684
5685 EVT EltVT = Op.getValueType().getVectorElementType();
5686 unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
5687
5688 SmallVector<SDValue, 8> TBLMask;
5689 for (int Val : ShuffleMask) {
5690 for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
5691 unsigned Offset = Byte + Val * BytesPerElt;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005692 TBLMask.push_back(DAG.getConstant(Offset, DL, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00005693 }
5694 }
5695
5696 MVT IndexVT = MVT::v8i8;
5697 unsigned IndexLen = 8;
Sanjay Patelb1f0a0f2016-09-14 16:05:51 +00005698 if (Op.getValueSizeInBits() == 128) {
Tim Northover3b0846e2014-05-24 12:50:23 +00005699 IndexVT = MVT::v16i8;
5700 IndexLen = 16;
5701 }
5702
5703 SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
5704 SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
5705
5706 SDValue Shuffle;
Sanjay Patel57195842016-03-14 17:28:46 +00005707 if (V2.getNode()->isUndef()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00005708 if (IndexLen == 8)
5709 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
5710 Shuffle = DAG.getNode(
5711 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005712 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
Ahmed Bougacha128f8732016-04-26 21:15:30 +00005713 DAG.getBuildVector(IndexVT, DL,
5714 makeArrayRef(TBLMask.data(), IndexLen)));
Tim Northover3b0846e2014-05-24 12:50:23 +00005715 } else {
5716 if (IndexLen == 8) {
5717 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
5718 Shuffle = DAG.getNode(
5719 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005720 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
Ahmed Bougacha128f8732016-04-26 21:15:30 +00005721 DAG.getBuildVector(IndexVT, DL,
5722 makeArrayRef(TBLMask.data(), IndexLen)));
Tim Northover3b0846e2014-05-24 12:50:23 +00005723 } else {
5724 // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
5725 // cannot currently represent the register constraints on the input
5726 // table registers.
5727 // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
Ahmed Bougacha128f8732016-04-26 21:15:30 +00005728 // DAG.getBuildVector(IndexVT, DL, &TBLMask[0],
5729 // IndexLen));
Tim Northover3b0846e2014-05-24 12:50:23 +00005730 Shuffle = DAG.getNode(
5731 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
Ahmed Bougacha128f8732016-04-26 21:15:30 +00005732 DAG.getConstant(Intrinsic::aarch64_neon_tbl2, DL, MVT::i32), V1Cst,
5733 V2Cst, DAG.getBuildVector(IndexVT, DL,
5734 makeArrayRef(TBLMask.data(), IndexLen)));
Tim Northover3b0846e2014-05-24 12:50:23 +00005735 }
5736 }
5737 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
5738}
5739
5740static unsigned getDUPLANEOp(EVT EltType) {
5741 if (EltType == MVT::i8)
5742 return AArch64ISD::DUPLANE8;
Oliver Stannard89d15422014-08-27 16:16:04 +00005743 if (EltType == MVT::i16 || EltType == MVT::f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00005744 return AArch64ISD::DUPLANE16;
5745 if (EltType == MVT::i32 || EltType == MVT::f32)
5746 return AArch64ISD::DUPLANE32;
5747 if (EltType == MVT::i64 || EltType == MVT::f64)
5748 return AArch64ISD::DUPLANE64;
5749
5750 llvm_unreachable("Invalid vector element type?");
5751}
5752
5753SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
5754 SelectionDAG &DAG) const {
5755 SDLoc dl(Op);
5756 EVT VT = Op.getValueType();
5757
5758 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
5759
5760 // Convert shuffles that are directly supported on NEON to target-specific
5761 // DAG nodes, instead of keeping them as shuffles and matching them again
5762 // during code selection. This is more efficient and avoids the possibility
5763 // of inconsistencies between legalization and selection.
5764 ArrayRef<int> ShuffleMask = SVN->getMask();
5765
5766 SDValue V1 = Op.getOperand(0);
5767 SDValue V2 = Op.getOperand(1);
5768
Craig Topperbc56e3b2016-06-30 04:38:51 +00005769 if (SVN->isSplat()) {
Tim Northover3b0846e2014-05-24 12:50:23 +00005770 int Lane = SVN->getSplatIndex();
5771 // If this is undef splat, generate it via "just" vdup, if possible.
5772 if (Lane == -1)
5773 Lane = 0;
5774
5775 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
5776 return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
5777 V1.getOperand(0));
5778 // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
5779 // constant. If so, we can just reference the lane's definition directly.
5780 if (V1.getOpcode() == ISD::BUILD_VECTOR &&
5781 !isa<ConstantSDNode>(V1.getOperand(Lane)))
5782 return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
5783
5784 // Otherwise, duplicate from the lane of the input vector.
5785 unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
5786
5787 // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
5788 // to make a vector of the same size as this SHUFFLE. We can ignore the
5789 // extract entirely, and canonicalise the concat using WidenVector.
5790 if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
5791 Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
5792 V1 = V1.getOperand(0);
5793 } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
5794 unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
5795 Lane -= Idx * VT.getVectorNumElements() / 2;
5796 V1 = WidenVector(V1.getOperand(Idx), DAG);
5797 } else if (VT.getSizeInBits() == 64)
5798 V1 = WidenVector(V1, DAG);
5799
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005800 return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00005801 }
5802
5803 if (isREVMask(ShuffleMask, VT, 64))
5804 return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
5805 if (isREVMask(ShuffleMask, VT, 32))
5806 return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
5807 if (isREVMask(ShuffleMask, VT, 16))
5808 return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
5809
5810 bool ReverseEXT = false;
5811 unsigned Imm;
5812 if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
5813 if (ReverseEXT)
5814 std::swap(V1, V2);
5815 Imm *= getExtFactor(V1);
5816 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005817 DAG.getConstant(Imm, dl, MVT::i32));
Sanjay Patel57195842016-03-14 17:28:46 +00005818 } else if (V2->isUndef() && isSingletonEXTMask(ShuffleMask, VT, Imm)) {
Tim Northover3b0846e2014-05-24 12:50:23 +00005819 Imm *= getExtFactor(V1);
5820 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005821 DAG.getConstant(Imm, dl, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00005822 }
5823
5824 unsigned WhichResult;
5825 if (isZIPMask(ShuffleMask, VT, WhichResult)) {
5826 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5827 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5828 }
5829 if (isUZPMask(ShuffleMask, VT, WhichResult)) {
5830 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5831 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5832 }
5833 if (isTRNMask(ShuffleMask, VT, WhichResult)) {
5834 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5835 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5836 }
5837
5838 if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5839 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5840 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5841 }
5842 if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5843 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5844 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5845 }
5846 if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5847 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5848 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5849 }
5850
Ahmed Bougachaf8dfb472016-02-09 22:54:12 +00005851 if (SDValue Concat = tryFormConcatFromShuffle(Op, DAG))
Tim Northover3b0846e2014-05-24 12:50:23 +00005852 return Concat;
5853
5854 bool DstIsLeft;
5855 int Anomaly;
5856 int NumInputElements = V1.getValueType().getVectorNumElements();
5857 if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
5858 SDValue DstVec = DstIsLeft ? V1 : V2;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005859 SDValue DstLaneV = DAG.getConstant(Anomaly, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00005860
5861 SDValue SrcVec = V1;
5862 int SrcLane = ShuffleMask[Anomaly];
5863 if (SrcLane >= NumInputElements) {
5864 SrcVec = V2;
5865 SrcLane -= VT.getVectorNumElements();
5866 }
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005867 SDValue SrcLaneV = DAG.getConstant(SrcLane, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00005868
5869 EVT ScalarVT = VT.getVectorElementType();
Oliver Stannard89d15422014-08-27 16:16:04 +00005870
5871 if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00005872 ScalarVT = MVT::i32;
5873
5874 return DAG.getNode(
5875 ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
5876 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
5877 DstLaneV);
5878 }
5879
5880 // If the shuffle is not directly supported and it has 4 elements, use
5881 // the PerfectShuffle-generated table to synthesize it from other shuffles.
5882 unsigned NumElts = VT.getVectorNumElements();
5883 if (NumElts == 4) {
5884 unsigned PFIndexes[4];
5885 for (unsigned i = 0; i != 4; ++i) {
5886 if (ShuffleMask[i] < 0)
5887 PFIndexes[i] = 8;
5888 else
5889 PFIndexes[i] = ShuffleMask[i];
5890 }
5891
5892 // Compute the index in the perfect shuffle table.
5893 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
5894 PFIndexes[2] * 9 + PFIndexes[3];
5895 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5896 unsigned Cost = (PFEntry >> 30);
5897
5898 if (Cost <= 4)
5899 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5900 }
5901
5902 return GenerateTBL(Op, ShuffleMask, DAG);
5903}
5904
5905static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
5906 APInt &UndefBits) {
5907 EVT VT = BVN->getValueType(0);
5908 APInt SplatBits, SplatUndef;
5909 unsigned SplatBitSize;
5910 bool HasAnyUndefs;
5911 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
5912 unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
5913
5914 for (unsigned i = 0; i < NumSplats; ++i) {
5915 CnstBits <<= SplatBitSize;
5916 UndefBits <<= SplatBitSize;
5917 CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
5918 UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
5919 }
5920
5921 return true;
5922 }
5923
5924 return false;
5925}
5926
5927SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
5928 SelectionDAG &DAG) const {
5929 BuildVectorSDNode *BVN =
5930 dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5931 SDValue LHS = Op.getOperand(0);
5932 SDLoc dl(Op);
5933 EVT VT = Op.getValueType();
5934
5935 if (!BVN)
5936 return Op;
5937
5938 APInt CnstBits(VT.getSizeInBits(), 0);
5939 APInt UndefBits(VT.getSizeInBits(), 0);
5940 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5941 // We only have BIC vector immediate instruction, which is and-not.
5942 CnstBits = ~CnstBits;
5943
5944 // We make use of a little bit of goto ickiness in order to avoid having to
5945 // duplicate the immediate matching logic for the undef toggled case.
5946 bool SecondTry = false;
5947 AttemptModImm:
5948
5949 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5950 CnstBits = CnstBits.zextOrTrunc(64);
5951 uint64_t CnstVal = CnstBits.getZExtValue();
5952
5953 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5954 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5955 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5956 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005957 DAG.getConstant(CnstVal, dl, MVT::i32),
5958 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005959 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005960 }
5961
5962 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5963 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5964 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5965 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005966 DAG.getConstant(CnstVal, dl, MVT::i32),
5967 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005968 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005969 }
5970
5971 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5972 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5973 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5974 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005975 DAG.getConstant(CnstVal, dl, MVT::i32),
5976 DAG.getConstant(16, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005977 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005978 }
5979
5980 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5981 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5982 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5983 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005984 DAG.getConstant(CnstVal, dl, MVT::i32),
5985 DAG.getConstant(24, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005986 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005987 }
5988
5989 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5990 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5991 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5992 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00005993 DAG.getConstant(CnstVal, dl, MVT::i32),
5994 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00005995 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00005996 }
5997
5998 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5999 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
6000 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6001 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006002 DAG.getConstant(CnstVal, dl, MVT::i32),
6003 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00006004 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006005 }
6006 }
6007
6008 if (SecondTry)
6009 goto FailedModImm;
6010 SecondTry = true;
6011 CnstBits = ~UndefBits;
6012 goto AttemptModImm;
6013 }
6014
6015// We can always fall back to a non-immediate AND.
6016FailedModImm:
6017 return Op;
6018}
6019
6020// Specialized code to quickly find if PotentialBVec is a BuildVector that
6021// consists of only the same constant int value, returned in reference arg
6022// ConstVal
6023static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
6024 uint64_t &ConstVal) {
6025 BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
6026 if (!Bvec)
6027 return false;
6028 ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
6029 if (!FirstElt)
6030 return false;
6031 EVT VT = Bvec->getValueType(0);
6032 unsigned NumElts = VT.getVectorNumElements();
6033 for (unsigned i = 1; i < NumElts; ++i)
6034 if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
6035 return false;
6036 ConstVal = FirstElt->getZExtValue();
6037 return true;
6038}
6039
6040static unsigned getIntrinsicID(const SDNode *N) {
6041 unsigned Opcode = N->getOpcode();
6042 switch (Opcode) {
6043 default:
6044 return Intrinsic::not_intrinsic;
6045 case ISD::INTRINSIC_WO_CHAIN: {
6046 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
6047 if (IID < Intrinsic::num_intrinsics)
6048 return IID;
6049 return Intrinsic::not_intrinsic;
6050 }
6051 }
6052}
6053
6054// Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
6055// to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
6056// BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
6057// Also, logical shift right -> sri, with the same structure.
6058static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
6059 EVT VT = N->getValueType(0);
6060
6061 if (!VT.isVector())
6062 return SDValue();
6063
6064 SDLoc DL(N);
6065
6066 // Is the first op an AND?
6067 const SDValue And = N->getOperand(0);
6068 if (And.getOpcode() != ISD::AND)
6069 return SDValue();
6070
6071 // Is the second op an shl or lshr?
6072 SDValue Shift = N->getOperand(1);
6073 // This will have been turned into: AArch64ISD::VSHL vector, #shift
6074 // or AArch64ISD::VLSHR vector, #shift
6075 unsigned ShiftOpc = Shift.getOpcode();
6076 if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
6077 return SDValue();
6078 bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
6079
6080 // Is the shift amount constant?
6081 ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
6082 if (!C2node)
6083 return SDValue();
6084
6085 // Is the and mask vector all constant?
6086 uint64_t C1;
6087 if (!isAllConstantBuildVector(And.getOperand(1), C1))
6088 return SDValue();
6089
6090 // Is C1 == ~C2, taking into account how much one can shift elements of a
6091 // particular size?
6092 uint64_t C2 = C2node->getZExtValue();
Sanjay Patel1ed771f2016-09-14 16:37:15 +00006093 unsigned ElemSizeInBits = VT.getScalarSizeInBits();
Tim Northover3b0846e2014-05-24 12:50:23 +00006094 if (C2 > ElemSizeInBits)
6095 return SDValue();
6096 unsigned ElemMask = (1 << ElemSizeInBits) - 1;
6097 if ((C1 & ElemMask) != (~C2 & ElemMask))
6098 return SDValue();
6099
6100 SDValue X = And.getOperand(0);
6101 SDValue Y = Shift.getOperand(0);
6102
6103 unsigned Intrin =
6104 IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
6105 SDValue ResultSLI =
6106 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006107 DAG.getConstant(Intrin, DL, MVT::i32), X, Y,
6108 Shift.getOperand(1));
Tim Northover3b0846e2014-05-24 12:50:23 +00006109
6110 DEBUG(dbgs() << "aarch64-lower: transformed: \n");
6111 DEBUG(N->dump(&DAG));
6112 DEBUG(dbgs() << "into: \n");
6113 DEBUG(ResultSLI->dump(&DAG));
6114
6115 ++NumShiftInserts;
6116 return ResultSLI;
6117}
6118
6119SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
6120 SelectionDAG &DAG) const {
6121 // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
6122 if (EnableAArch64SlrGeneration) {
Ahmed Bougachaf8dfb472016-02-09 22:54:12 +00006123 if (SDValue Res = tryLowerToSLI(Op.getNode(), DAG))
Tim Northover3b0846e2014-05-24 12:50:23 +00006124 return Res;
6125 }
6126
6127 BuildVectorSDNode *BVN =
6128 dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
6129 SDValue LHS = Op.getOperand(1);
6130 SDLoc dl(Op);
6131 EVT VT = Op.getValueType();
6132
6133 // OR commutes, so try swapping the operands.
6134 if (!BVN) {
6135 LHS = Op.getOperand(0);
6136 BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
6137 }
6138 if (!BVN)
6139 return Op;
6140
6141 APInt CnstBits(VT.getSizeInBits(), 0);
6142 APInt UndefBits(VT.getSizeInBits(), 0);
6143 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
6144 // We make use of a little bit of goto ickiness in order to avoid having to
6145 // duplicate the immediate matching logic for the undef toggled case.
6146 bool SecondTry = false;
6147 AttemptModImm:
6148
6149 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
6150 CnstBits = CnstBits.zextOrTrunc(64);
6151 uint64_t CnstVal = CnstBits.getZExtValue();
6152
6153 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
6154 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
6155 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6156 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006157 DAG.getConstant(CnstVal, dl, MVT::i32),
6158 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00006159 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006160 }
6161
6162 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
6163 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
6164 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6165 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006166 DAG.getConstant(CnstVal, dl, MVT::i32),
6167 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00006168 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006169 }
6170
6171 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
6172 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
6173 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6174 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006175 DAG.getConstant(CnstVal, dl, MVT::i32),
6176 DAG.getConstant(16, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00006177 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006178 }
6179
6180 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
6181 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
6182 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6183 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006184 DAG.getConstant(CnstVal, dl, MVT::i32),
6185 DAG.getConstant(24, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00006186 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006187 }
6188
6189 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
6190 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
6191 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6192 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006193 DAG.getConstant(CnstVal, dl, MVT::i32),
6194 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00006195 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006196 }
6197
6198 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
6199 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
6200 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6201 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006202 DAG.getConstant(CnstVal, dl, MVT::i32),
6203 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverf7423fd2014-09-04 15:05:24 +00006204 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006205 }
6206 }
6207
6208 if (SecondTry)
6209 goto FailedModImm;
6210 SecondTry = true;
6211 CnstBits = UndefBits;
6212 goto AttemptModImm;
6213 }
6214
6215// We can always fall back to a non-immediate OR.
6216FailedModImm:
6217 return Op;
6218}
6219
Kevin Qin4473c192014-07-07 02:45:40 +00006220// Normalize the operands of BUILD_VECTOR. The value of constant operands will
6221// be truncated to fit element width.
6222static SDValue NormalizeBuildVector(SDValue Op,
6223 SelectionDAG &DAG) {
6224 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
Tim Northover3b0846e2014-05-24 12:50:23 +00006225 SDLoc dl(Op);
6226 EVT VT = Op.getValueType();
Kevin Qin4473c192014-07-07 02:45:40 +00006227 EVT EltTy= VT.getVectorElementType();
6228
6229 if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
6230 return Op;
6231
6232 SmallVector<SDValue, 16> Ops;
Pete Cooper7be8f8f2015-08-03 19:04:32 +00006233 for (SDValue Lane : Op->ops()) {
6234 if (auto *CstLane = dyn_cast<ConstantSDNode>(Lane)) {
Kevin Qin4473c192014-07-07 02:45:40 +00006235 APInt LowBits(EltTy.getSizeInBits(),
Pete Cooper7be8f8f2015-08-03 19:04:32 +00006236 CstLane->getZExtValue());
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006237 Lane = DAG.getConstant(LowBits.getZExtValue(), dl, MVT::i32);
Kevin Qin4473c192014-07-07 02:45:40 +00006238 }
6239 Ops.push_back(Lane);
6240 }
Ahmed Bougacha128f8732016-04-26 21:15:30 +00006241 return DAG.getBuildVector(VT, dl, Ops);
Kevin Qin4473c192014-07-07 02:45:40 +00006242}
6243
6244SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
6245 SelectionDAG &DAG) const {
6246 SDLoc dl(Op);
6247 EVT VT = Op.getValueType();
6248 Op = NormalizeBuildVector(Op, DAG);
6249 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
Tim Northover3b0846e2014-05-24 12:50:23 +00006250
6251 APInt CnstBits(VT.getSizeInBits(), 0);
6252 APInt UndefBits(VT.getSizeInBits(), 0);
6253 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
6254 // We make use of a little bit of goto ickiness in order to avoid having to
6255 // duplicate the immediate matching logic for the undef toggled case.
6256 bool SecondTry = false;
6257 AttemptModImm:
6258
6259 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
6260 CnstBits = CnstBits.zextOrTrunc(64);
6261 uint64_t CnstVal = CnstBits.getZExtValue();
6262
6263 // Certain magic vector constants (used to express things like NOT
6264 // and NEG) are passed through unmodified. This allows codegen patterns
6265 // for these operations to match. Special-purpose patterns will lower
6266 // these immediates to MOVIs if it proves necessary.
6267 if (VT.isInteger() && (CnstVal == 0 || CnstVal == ~0ULL))
6268 return Op;
6269
6270 // The many faces of MOVI...
6271 if (AArch64_AM::isAdvSIMDModImmType10(CnstVal)) {
6272 CnstVal = AArch64_AM::encodeAdvSIMDModImmType10(CnstVal);
6273 if (VT.getSizeInBits() == 128) {
6274 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::v2i64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006275 DAG.getConstant(CnstVal, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006276 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006277 }
6278
6279 // Support the V64 version via subregister insertion.
6280 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::f64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006281 DAG.getConstant(CnstVal, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006282 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006283 }
6284
6285 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
6286 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
6287 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6288 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006289 DAG.getConstant(CnstVal, dl, MVT::i32),
6290 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006291 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006292 }
6293
6294 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
6295 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
6296 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6297 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006298 DAG.getConstant(CnstVal, dl, MVT::i32),
6299 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006300 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006301 }
6302
6303 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
6304 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
6305 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6306 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006307 DAG.getConstant(CnstVal, dl, MVT::i32),
6308 DAG.getConstant(16, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006309 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006310 }
6311
6312 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
6313 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
6314 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6315 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006316 DAG.getConstant(CnstVal, dl, MVT::i32),
6317 DAG.getConstant(24, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006318 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006319 }
6320
6321 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
6322 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
6323 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6324 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006325 DAG.getConstant(CnstVal, dl, MVT::i32),
6326 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006327 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006328 }
6329
6330 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
6331 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
6332 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6333 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006334 DAG.getConstant(CnstVal, dl, MVT::i32),
6335 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006336 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006337 }
6338
6339 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
6340 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
6341 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6342 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006343 DAG.getConstant(CnstVal, dl, MVT::i32),
6344 DAG.getConstant(264, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006345 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006346 }
6347
6348 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
6349 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
6350 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6351 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006352 DAG.getConstant(CnstVal, dl, MVT::i32),
6353 DAG.getConstant(272, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006354 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006355 }
6356
6357 if (AArch64_AM::isAdvSIMDModImmType9(CnstVal)) {
6358 CnstVal = AArch64_AM::encodeAdvSIMDModImmType9(CnstVal);
6359 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
6360 SDValue Mov = DAG.getNode(AArch64ISD::MOVI, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006361 DAG.getConstant(CnstVal, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006362 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006363 }
6364
6365 // The few faces of FMOV...
6366 if (AArch64_AM::isAdvSIMDModImmType11(CnstVal)) {
6367 CnstVal = AArch64_AM::encodeAdvSIMDModImmType11(CnstVal);
6368 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4f32 : MVT::v2f32;
6369 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006370 DAG.getConstant(CnstVal, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006371 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006372 }
6373
6374 if (AArch64_AM::isAdvSIMDModImmType12(CnstVal) &&
6375 VT.getSizeInBits() == 128) {
6376 CnstVal = AArch64_AM::encodeAdvSIMDModImmType12(CnstVal);
6377 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MVT::v2f64,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006378 DAG.getConstant(CnstVal, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006379 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006380 }
6381
6382 // The many faces of MVNI...
6383 CnstVal = ~CnstVal;
6384 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
6385 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
6386 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6387 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006388 DAG.getConstant(CnstVal, dl, MVT::i32),
6389 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006390 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006391 }
6392
6393 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
6394 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
6395 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6396 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006397 DAG.getConstant(CnstVal, dl, MVT::i32),
6398 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006399 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006400 }
6401
6402 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
6403 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
6404 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6405 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006406 DAG.getConstant(CnstVal, dl, MVT::i32),
6407 DAG.getConstant(16, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006408 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006409 }
6410
6411 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
6412 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
6413 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6414 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006415 DAG.getConstant(CnstVal, dl, MVT::i32),
6416 DAG.getConstant(24, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006417 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006418 }
6419
6420 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
6421 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
6422 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6423 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006424 DAG.getConstant(CnstVal, dl, MVT::i32),
6425 DAG.getConstant(0, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006426 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006427 }
6428
6429 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
6430 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
6431 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6432 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006433 DAG.getConstant(CnstVal, dl, MVT::i32),
6434 DAG.getConstant(8, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006435 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006436 }
6437
6438 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
6439 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
6440 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6441 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006442 DAG.getConstant(CnstVal, dl, MVT::i32),
6443 DAG.getConstant(264, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006444 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006445 }
6446
6447 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
6448 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
6449 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6450 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006451 DAG.getConstant(CnstVal, dl, MVT::i32),
6452 DAG.getConstant(272, dl, MVT::i32));
Tim Northoverbb72e6c2014-09-04 09:46:14 +00006453 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
Tim Northover3b0846e2014-05-24 12:50:23 +00006454 }
6455 }
6456
6457 if (SecondTry)
6458 goto FailedModImm;
6459 SecondTry = true;
6460 CnstBits = UndefBits;
6461 goto AttemptModImm;
6462 }
6463FailedModImm:
6464
6465 // Scan through the operands to find some interesting properties we can
6466 // exploit:
6467 // 1) If only one value is used, we can use a DUP, or
6468 // 2) if only the low element is not undef, we can just insert that, or
6469 // 3) if only one constant value is used (w/ some non-constant lanes),
6470 // we can splat the constant value into the whole vector then fill
6471 // in the non-constant lanes.
6472 // 4) FIXME: If different constant values are used, but we can intelligently
6473 // select the values we'll be overwriting for the non-constant
6474 // lanes such that we can directly materialize the vector
6475 // some other way (MOVI, e.g.), we can be sneaky.
6476 unsigned NumElts = VT.getVectorNumElements();
6477 bool isOnlyLowElement = true;
6478 bool usesOnlyOneValue = true;
6479 bool usesOnlyOneConstantValue = true;
6480 bool isConstant = true;
6481 unsigned NumConstantLanes = 0;
6482 SDValue Value;
6483 SDValue ConstantValue;
6484 for (unsigned i = 0; i < NumElts; ++i) {
6485 SDValue V = Op.getOperand(i);
Sanjay Patel57195842016-03-14 17:28:46 +00006486 if (V.isUndef())
Tim Northover3b0846e2014-05-24 12:50:23 +00006487 continue;
6488 if (i > 0)
6489 isOnlyLowElement = false;
6490 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
6491 isConstant = false;
6492
6493 if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
6494 ++NumConstantLanes;
6495 if (!ConstantValue.getNode())
6496 ConstantValue = V;
6497 else if (ConstantValue != V)
6498 usesOnlyOneConstantValue = false;
6499 }
6500
6501 if (!Value.getNode())
6502 Value = V;
6503 else if (V != Value)
6504 usesOnlyOneValue = false;
6505 }
6506
6507 if (!Value.getNode())
6508 return DAG.getUNDEF(VT);
6509
6510 if (isOnlyLowElement)
6511 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
6512
6513 // Use DUP for non-constant splats. For f32 constant splats, reduce to
6514 // i32 and try again.
6515 if (usesOnlyOneValue) {
6516 if (!isConstant) {
6517 if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
6518 Value.getValueType() != VT)
6519 return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
6520
6521 // This is actually a DUPLANExx operation, which keeps everything vectory.
6522
6523 // DUPLANE works on 128-bit vectors, widen it if necessary.
6524 SDValue Lane = Value.getOperand(1);
6525 Value = Value.getOperand(0);
Sanjay Patelb1f0a0f2016-09-14 16:05:51 +00006526 if (Value.getValueSizeInBits() == 64)
Tim Northover3b0846e2014-05-24 12:50:23 +00006527 Value = WidenVector(Value, DAG);
6528
6529 unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
6530 return DAG.getNode(Opcode, dl, VT, Value, Lane);
6531 }
6532
6533 if (VT.getVectorElementType().isFloatingPoint()) {
6534 SmallVector<SDValue, 8> Ops;
Pirama Arumuga Nainar12aeefc2015-03-17 23:10:29 +00006535 EVT EltTy = VT.getVectorElementType();
6536 assert ((EltTy == MVT::f16 || EltTy == MVT::f32 || EltTy == MVT::f64) &&
6537 "Unsupported floating-point vector type");
6538 MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits());
Tim Northover3b0846e2014-05-24 12:50:23 +00006539 for (unsigned i = 0; i < NumElts; ++i)
6540 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
6541 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
Ahmed Bougacha128f8732016-04-26 21:15:30 +00006542 SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
Tim Northover3b0846e2014-05-24 12:50:23 +00006543 Val = LowerBUILD_VECTOR(Val, DAG);
6544 if (Val.getNode())
6545 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
6546 }
6547 }
6548
6549 // If there was only one constant value used and for more than one lane,
6550 // start by splatting that value, then replace the non-constant lanes. This
6551 // is better than the default, which will perform a separate initialization
6552 // for each lane.
6553 if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
6554 SDValue Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
6555 // Now insert the non-constant lanes.
6556 for (unsigned i = 0; i < NumElts; ++i) {
6557 SDValue V = Op.getOperand(i);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006558 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00006559 if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) {
6560 // Note that type legalization likely mucked about with the VT of the
6561 // source operand, so we may have to convert it here before inserting.
6562 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
6563 }
6564 }
6565 return Val;
6566 }
6567
6568 // If all elements are constants and the case above didn't get hit, fall back
6569 // to the default expansion, which will generate a load from the constant
6570 // pool.
6571 if (isConstant)
6572 return SDValue();
6573
6574 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
6575 if (NumElts >= 4) {
Ahmed Bougacha239d6352015-08-04 00:48:02 +00006576 if (SDValue shuffle = ReconstructShuffle(Op, DAG))
Tim Northover3b0846e2014-05-24 12:50:23 +00006577 return shuffle;
6578 }
6579
6580 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
6581 // know the default expansion would otherwise fall back on something even
6582 // worse. For a vector with one or two non-undef values, that's
6583 // scalar_to_vector for the elements followed by a shuffle (provided the
6584 // shuffle is valid for the target) and materialization element by element
6585 // on the stack followed by a load for everything else.
6586 if (!isConstant && !usesOnlyOneValue) {
6587 SDValue Vec = DAG.getUNDEF(VT);
6588 SDValue Op0 = Op.getOperand(0);
Tim Northover3b0846e2014-05-24 12:50:23 +00006589 unsigned i = 0;
Adam Nemetc5779462017-04-13 23:32:47 +00006590
6591 // Use SCALAR_TO_VECTOR for lane zero to
Tim Northover3b0846e2014-05-24 12:50:23 +00006592 // a) Avoid a RMW dependency on the full vector register, and
6593 // b) Allow the register coalescer to fold away the copy if the
Ahmed Bougachad3c03a52017-04-04 22:55:53 +00006594 // value is already in an S or D register, and we're forced to emit an
6595 // INSERT_SUBREG that we can't fold anywhere.
Adam Nemetc5779462017-04-13 23:32:47 +00006596 //
6597 // We also allow types like i8 and i16 which are illegal scalar but legal
6598 // vector element types. After type-legalization the inserted value is
6599 // extended (i32) and it is safe to cast them to the vector type by ignoring
6600 // the upper bits of the lowest lane (e.g. v8i8, v4i16).
6601 if (!Op0.isUndef()) {
Ahmed Bougachad3c03a52017-04-04 22:55:53 +00006602 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op0);
Tim Northover3b0846e2014-05-24 12:50:23 +00006603 ++i;
6604 }
6605 for (; i < NumElts; ++i) {
6606 SDValue V = Op.getOperand(i);
Sanjay Patel57195842016-03-14 17:28:46 +00006607 if (V.isUndef())
Tim Northover3b0846e2014-05-24 12:50:23 +00006608 continue;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006609 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00006610 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
6611 }
6612 return Vec;
6613 }
6614
6615 // Just use the default expansion. We failed to find a better alternative.
6616 return SDValue();
6617}
6618
6619SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
6620 SelectionDAG &DAG) const {
6621 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
6622
Tim Northovere4b8e132014-07-15 10:00:26 +00006623 // Check for non-constant or out of range lane.
6624 EVT VT = Op.getOperand(0).getValueType();
6625 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
6626 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
Tim Northover3b0846e2014-05-24 12:50:23 +00006627 return SDValue();
6628
Tim Northover3b0846e2014-05-24 12:50:23 +00006629
6630 // Insertion/extraction are legal for V128 types.
6631 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
Oliver Stannard89d15422014-08-27 16:16:04 +00006632 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
6633 VT == MVT::v8f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006634 return Op;
6635
6636 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
Oliver Stannard89d15422014-08-27 16:16:04 +00006637 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006638 return SDValue();
6639
6640 // For V64 types, we perform insertion by expanding the value
6641 // to a V128 type and perform the insertion on that.
6642 SDLoc DL(Op);
6643 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
6644 EVT WideTy = WideVec.getValueType();
6645
6646 SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
6647 Op.getOperand(1), Op.getOperand(2));
6648 // Re-narrow the resultant vector.
6649 return NarrowVector(Node, DAG);
6650}
6651
6652SDValue
6653AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6654 SelectionDAG &DAG) const {
6655 assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
6656
Tim Northovere4b8e132014-07-15 10:00:26 +00006657 // Check for non-constant or out of range lane.
6658 EVT VT = Op.getOperand(0).getValueType();
6659 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6660 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
Tim Northover3b0846e2014-05-24 12:50:23 +00006661 return SDValue();
6662
Tim Northover3b0846e2014-05-24 12:50:23 +00006663
6664 // Insertion/extraction are legal for V128 types.
6665 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
Oliver Stannard89d15422014-08-27 16:16:04 +00006666 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
6667 VT == MVT::v8f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006668 return Op;
6669
6670 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
Oliver Stannard89d15422014-08-27 16:16:04 +00006671 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
Tim Northover3b0846e2014-05-24 12:50:23 +00006672 return SDValue();
6673
6674 // For V64 types, we perform extraction by expanding the value
6675 // to a V128 type and perform the extraction on that.
6676 SDLoc DL(Op);
6677 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
6678 EVT WideTy = WideVec.getValueType();
6679
6680 EVT ExtrTy = WideTy.getVectorElementType();
6681 if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
6682 ExtrTy = MVT::i32;
6683
6684 // For extractions, we just return the result directly.
6685 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
6686 Op.getOperand(1));
6687}
6688
6689SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
6690 SelectionDAG &DAG) const {
6691 EVT VT = Op.getOperand(0).getValueType();
6692 SDLoc dl(Op);
6693 // Just in case...
6694 if (!VT.isVector())
6695 return SDValue();
6696
6697 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6698 if (!Cst)
6699 return SDValue();
6700 unsigned Val = Cst->getZExtValue();
6701
Sanjay Patelb1f0a0f2016-09-14 16:05:51 +00006702 unsigned Size = Op.getValueSizeInBits();
Charlie Turner7b7b06f2015-11-09 12:45:11 +00006703
6704 // This will get lowered to an appropriate EXTRACT_SUBREG in ISel.
6705 if (Val == 0)
6706 return Op;
6707
Tim Northover3b0846e2014-05-24 12:50:23 +00006708 // If this is extracting the upper 64-bits of a 128-bit vector, we match
6709 // that directly.
Sanjay Patel1ed771f2016-09-14 16:37:15 +00006710 if (Size == 64 && Val * VT.getScalarSizeInBits() == 64)
Tim Northover3b0846e2014-05-24 12:50:23 +00006711 return Op;
6712
6713 return SDValue();
6714}
6715
6716bool AArch64TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
6717 EVT VT) const {
6718 if (VT.getVectorNumElements() == 4 &&
6719 (VT.is128BitVector() || VT.is64BitVector())) {
6720 unsigned PFIndexes[4];
6721 for (unsigned i = 0; i != 4; ++i) {
6722 if (M[i] < 0)
6723 PFIndexes[i] = 8;
6724 else
6725 PFIndexes[i] = M[i];
6726 }
6727
6728 // Compute the index in the perfect shuffle table.
6729 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
6730 PFIndexes[2] * 9 + PFIndexes[3];
6731 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6732 unsigned Cost = (PFEntry >> 30);
6733
6734 if (Cost <= 4)
6735 return true;
6736 }
6737
6738 bool DummyBool;
6739 int DummyInt;
6740 unsigned DummyUnsigned;
6741
6742 return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
6743 isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
6744 isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
6745 // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
6746 isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
6747 isZIPMask(M, VT, DummyUnsigned) ||
6748 isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
6749 isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
6750 isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
6751 isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
6752 isConcatMask(M, VT, VT.getSizeInBits() == 128));
6753}
6754
6755/// getVShiftImm - Check if this is a valid build_vector for the immediate
6756/// operand of a vector shift operation, where all the elements of the
6757/// build_vector must have the same constant integer value.
6758static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
6759 // Ignore bit_converts.
6760 while (Op.getOpcode() == ISD::BITCAST)
6761 Op = Op.getOperand(0);
6762 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6763 APInt SplatBits, SplatUndef;
6764 unsigned SplatBitSize;
6765 bool HasAnyUndefs;
6766 if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
6767 HasAnyUndefs, ElementBits) ||
6768 SplatBitSize > ElementBits)
6769 return false;
6770 Cnt = SplatBits.getSExtValue();
6771 return true;
6772}
6773
6774/// isVShiftLImm - Check if this is a valid build_vector for the immediate
6775/// operand of a vector shift left operation. That value must be in the range:
6776/// 0 <= Value < ElementBits for a left shift; or
6777/// 0 <= Value <= ElementBits for a long left shift.
6778static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
6779 assert(VT.isVector() && "vector shift count is not a vector type");
Sanjay Patel1ed771f2016-09-14 16:37:15 +00006780 int64_t ElementBits = VT.getScalarSizeInBits();
Tim Northover3b0846e2014-05-24 12:50:23 +00006781 if (!getVShiftImm(Op, ElementBits, Cnt))
6782 return false;
6783 return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
6784}
6785
6786/// isVShiftRImm - Check if this is a valid build_vector for the immediate
Luke Cheesemanb5c627a2015-07-24 09:31:48 +00006787/// operand of a vector shift right operation. The value must be in the range:
6788/// 1 <= Value <= ElementBits for a right shift; or
6789static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, int64_t &Cnt) {
Tim Northover3b0846e2014-05-24 12:50:23 +00006790 assert(VT.isVector() && "vector shift count is not a vector type");
Sanjay Patel1ed771f2016-09-14 16:37:15 +00006791 int64_t ElementBits = VT.getScalarSizeInBits();
Tim Northover3b0846e2014-05-24 12:50:23 +00006792 if (!getVShiftImm(Op, ElementBits, Cnt))
6793 return false;
Tim Northover3b0846e2014-05-24 12:50:23 +00006794 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
6795}
6796
6797SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
6798 SelectionDAG &DAG) const {
6799 EVT VT = Op.getValueType();
6800 SDLoc DL(Op);
6801 int64_t Cnt;
6802
6803 if (!Op.getOperand(1).getValueType().isVector())
6804 return Op;
Sanjay Patel1ed771f2016-09-14 16:37:15 +00006805 unsigned EltSize = VT.getScalarSizeInBits();
Tim Northover3b0846e2014-05-24 12:50:23 +00006806
6807 switch (Op.getOpcode()) {
6808 default:
6809 llvm_unreachable("unexpected shift opcode");
6810
6811 case ISD::SHL:
6812 if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006813 return DAG.getNode(AArch64ISD::VSHL, DL, VT, Op.getOperand(0),
6814 DAG.getConstant(Cnt, DL, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00006815 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006816 DAG.getConstant(Intrinsic::aarch64_neon_ushl, DL,
6817 MVT::i32),
Tim Northover3b0846e2014-05-24 12:50:23 +00006818 Op.getOperand(0), Op.getOperand(1));
6819 case ISD::SRA:
6820 case ISD::SRL:
6821 // Right shift immediate
Luke Cheesemanb5c627a2015-07-24 09:31:48 +00006822 if (isVShiftRImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) {
Tim Northover3b0846e2014-05-24 12:50:23 +00006823 unsigned Opc =
6824 (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006825 return DAG.getNode(Opc, DL, VT, Op.getOperand(0),
6826 DAG.getConstant(Cnt, DL, MVT::i32));
Tim Northover3b0846e2014-05-24 12:50:23 +00006827 }
6828
6829 // Right shift register. Note, there is not a shift right register
6830 // instruction, but the shift left register instruction takes a signed
6831 // value, where negative numbers specify a right shift.
6832 unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
6833 : Intrinsic::aarch64_neon_ushl;
6834 // negate the shift amount
6835 SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
6836 SDValue NegShiftLeft =
6837 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00006838 DAG.getConstant(Opc, DL, MVT::i32), Op.getOperand(0),
6839 NegShift);
Tim Northover3b0846e2014-05-24 12:50:23 +00006840 return NegShiftLeft;
6841 }
6842
6843 return SDValue();
6844}
6845
6846static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
6847 AArch64CC::CondCode CC, bool NoNans, EVT VT,
Benjamin Kramerbdc49562016-06-12 15:39:02 +00006848 const SDLoc &dl, SelectionDAG &DAG) {
Tim Northover3b0846e2014-05-24 12:50:23 +00006849 EVT SrcVT = LHS.getValueType();
Tim Northover45aa89c2015-02-08 00:50:47 +00006850 assert(VT.getSizeInBits() == SrcVT.getSizeInBits() &&
6851 "function only supposed to emit natural comparisons");
Tim Northover3b0846e2014-05-24 12:50:23 +00006852
6853 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
6854 APInt CnstBits(VT.getSizeInBits(), 0);
6855 APInt UndefBits(VT.getSizeInBits(), 0);
6856 bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
6857 bool IsZero = IsCnst && (CnstBits == 0);
6858
6859 if (SrcVT.getVectorElementType().isFloatingPoint()) {
6860 switch (CC) {
6861 default:
6862 return SDValue();
6863 case AArch64CC::NE: {
6864 SDValue Fcmeq;
6865 if (IsZero)
6866 Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6867 else
6868 Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6869 return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
6870 }
6871 case AArch64CC::EQ:
6872 if (IsZero)
6873 return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6874 return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6875 case AArch64CC::GE:
6876 if (IsZero)
6877 return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
6878 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
6879 case AArch64CC::GT:
6880 if (IsZero)
6881 return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
6882 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
6883 case AArch64CC::LS:
6884 if (IsZero)
6885 return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
6886 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
6887 case AArch64CC::LT:
6888 if (!NoNans)
6889 return SDValue();
Justin Bognerb03fd122016-08-17 05:10:15 +00006890 // If we ignore NaNs then we can use to the MI implementation.
6891 LLVM_FALLTHROUGH;
Tim Northover3b0846e2014-05-24 12:50:23 +00006892 case AArch64CC::MI:
6893 if (IsZero)
6894 return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
6895 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
6896 }
6897 }
6898
6899 switch (CC) {
6900 default:
6901 return SDValue();
6902 case AArch64CC::NE: {
6903 SDValue Cmeq;
6904 if (IsZero)
6905 Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6906 else
6907 Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6908 return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
6909 }
6910 case AArch64CC::EQ:
6911 if (IsZero)
6912 return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6913 return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6914 case AArch64CC::GE:
6915 if (IsZero)
6916 return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
6917 return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
6918 case AArch64CC::GT:
6919 if (IsZero)
6920 return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
6921 return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
6922 case AArch64CC::LE:
6923 if (IsZero)
6924 return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
6925 return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
6926 case AArch64CC::LS:
6927 return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
6928 case AArch64CC::LO:
6929 return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
6930 case AArch64CC::LT:
6931 if (IsZero)
6932 return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
6933 return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
6934 case AArch64CC::HI:
6935 return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
6936 case AArch64CC::HS:
6937 return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
6938 }
6939}
6940
6941SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
6942 SelectionDAG &DAG) const {
6943 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6944 SDValue LHS = Op.getOperand(0);
6945 SDValue RHS = Op.getOperand(1);
Tim Northover45aa89c2015-02-08 00:50:47 +00006946 EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger();
Tim Northover3b0846e2014-05-24 12:50:23 +00006947 SDLoc dl(Op);
6948
6949 if (LHS.getValueType().getVectorElementType().isInteger()) {
6950 assert(LHS.getValueType() == RHS.getValueType());
6951 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
Tim Northover45aa89c2015-02-08 00:50:47 +00006952 SDValue Cmp =
6953 EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG);
6954 return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
Tim Northover3b0846e2014-05-24 12:50:23 +00006955 }
6956
Pirama Arumuga Nainar71e9a2a2016-01-22 01:16:57 +00006957 if (LHS.getValueType().getVectorElementType() == MVT::f16)
6958 return SDValue();
6959
Tim Northover3b0846e2014-05-24 12:50:23 +00006960 assert(LHS.getValueType().getVectorElementType() == MVT::f32 ||
6961 LHS.getValueType().getVectorElementType() == MVT::f64);
6962
6963 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
6964 // clean. Some of them require two branches to implement.
6965 AArch64CC::CondCode CC1, CC2;
6966 bool ShouldInvert;
6967 changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
6968
6969 bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
6970 SDValue Cmp =
Tim Northover45aa89c2015-02-08 00:50:47 +00006971 EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00006972 if (!Cmp.getNode())
6973 return SDValue();
6974
6975 if (CC2 != AArch64CC::AL) {
6976 SDValue Cmp2 =
Tim Northover45aa89c2015-02-08 00:50:47 +00006977 EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00006978 if (!Cmp2.getNode())
6979 return SDValue();
6980
Tim Northover45aa89c2015-02-08 00:50:47 +00006981 Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2);
Tim Northover3b0846e2014-05-24 12:50:23 +00006982 }
6983
Tim Northover45aa89c2015-02-08 00:50:47 +00006984 Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
6985
Tim Northover3b0846e2014-05-24 12:50:23 +00006986 if (ShouldInvert)
6987 return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
6988
6989 return Cmp;
6990}
6991
6992/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
6993/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
6994/// specified in the intrinsic calls.
6995bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
6996 const CallInst &I,
6997 unsigned Intrinsic) const {
Mehdi Aminia749f2a2015-07-09 02:09:52 +00006998 auto &DL = I.getModule()->getDataLayout();
Tim Northover3b0846e2014-05-24 12:50:23 +00006999 switch (Intrinsic) {
7000 case Intrinsic::aarch64_neon_ld2:
7001 case Intrinsic::aarch64_neon_ld3:
7002 case Intrinsic::aarch64_neon_ld4:
7003 case Intrinsic::aarch64_neon_ld1x2:
7004 case Intrinsic::aarch64_neon_ld1x3:
7005 case Intrinsic::aarch64_neon_ld1x4:
7006 case Intrinsic::aarch64_neon_ld2lane:
7007 case Intrinsic::aarch64_neon_ld3lane:
7008 case Intrinsic::aarch64_neon_ld4lane:
7009 case Intrinsic::aarch64_neon_ld2r:
7010 case Intrinsic::aarch64_neon_ld3r:
7011 case Intrinsic::aarch64_neon_ld4r: {
7012 Info.opc = ISD::INTRINSIC_W_CHAIN;
7013 // Conservatively set memVT to the entire set of vectors loaded.
Ahmed Bougacha97564c32015-12-09 01:19:50 +00007014 uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
Tim Northover3b0846e2014-05-24 12:50:23 +00007015 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
7016 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
7017 Info.offset = 0;
7018 Info.align = 0;
7019 Info.vol = false; // volatile loads with NEON intrinsics not supported
7020 Info.readMem = true;
7021 Info.writeMem = false;
7022 return true;
7023 }
7024 case Intrinsic::aarch64_neon_st2:
7025 case Intrinsic::aarch64_neon_st3:
7026 case Intrinsic::aarch64_neon_st4:
7027 case Intrinsic::aarch64_neon_st1x2:
7028 case Intrinsic::aarch64_neon_st1x3:
7029 case Intrinsic::aarch64_neon_st1x4:
7030 case Intrinsic::aarch64_neon_st2lane:
7031 case Intrinsic::aarch64_neon_st3lane:
7032 case Intrinsic::aarch64_neon_st4lane: {
7033 Info.opc = ISD::INTRINSIC_VOID;
7034 // Conservatively set memVT to the entire set of vectors stored.
7035 unsigned NumElts = 0;
7036 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
7037 Type *ArgTy = I.getArgOperand(ArgI)->getType();
7038 if (!ArgTy->isVectorTy())
7039 break;
Ahmed Bougacha97564c32015-12-09 01:19:50 +00007040 NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
Tim Northover3b0846e2014-05-24 12:50:23 +00007041 }
7042 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
7043 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
7044 Info.offset = 0;
7045 Info.align = 0;
7046 Info.vol = false; // volatile stores with NEON intrinsics not supported
7047 Info.readMem = false;
7048 Info.writeMem = true;
7049 return true;
7050 }
7051 case Intrinsic::aarch64_ldaxr:
7052 case Intrinsic::aarch64_ldxr: {
7053 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
7054 Info.opc = ISD::INTRINSIC_W_CHAIN;
7055 Info.memVT = MVT::getVT(PtrTy->getElementType());
7056 Info.ptrVal = I.getArgOperand(0);
7057 Info.offset = 0;
Mehdi Aminia749f2a2015-07-09 02:09:52 +00007058 Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
Tim Northover3b0846e2014-05-24 12:50:23 +00007059 Info.vol = true;
7060 Info.readMem = true;
7061 Info.writeMem = false;
7062 return true;
7063 }
7064 case Intrinsic::aarch64_stlxr:
7065 case Intrinsic::aarch64_stxr: {
7066 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
7067 Info.opc = ISD::INTRINSIC_W_CHAIN;
7068 Info.memVT = MVT::getVT(PtrTy->getElementType());
7069 Info.ptrVal = I.getArgOperand(1);
7070 Info.offset = 0;
Mehdi Aminia749f2a2015-07-09 02:09:52 +00007071 Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
Tim Northover3b0846e2014-05-24 12:50:23 +00007072 Info.vol = true;
7073 Info.readMem = false;
7074 Info.writeMem = true;
7075 return true;
7076 }
7077 case Intrinsic::aarch64_ldaxp:
Eugene Zelenko049b0172017-01-06 00:30:53 +00007078 case Intrinsic::aarch64_ldxp:
Tim Northover3b0846e2014-05-24 12:50:23 +00007079 Info.opc = ISD::INTRINSIC_W_CHAIN;
7080 Info.memVT = MVT::i128;
7081 Info.ptrVal = I.getArgOperand(0);
7082 Info.offset = 0;
7083 Info.align = 16;
7084 Info.vol = true;
7085 Info.readMem = true;
7086 Info.writeMem = false;
7087 return true;
Tim Northover3b0846e2014-05-24 12:50:23 +00007088 case Intrinsic::aarch64_stlxp:
Eugene Zelenko049b0172017-01-06 00:30:53 +00007089 case Intrinsic::aarch64_stxp:
Tim Northover3b0846e2014-05-24 12:50:23 +00007090 Info.opc = ISD::INTRINSIC_W_CHAIN;
7091 Info.memVT = MVT::i128;
7092 Info.ptrVal = I.getArgOperand(2);
7093 Info.offset = 0;
7094 Info.align = 16;
7095 Info.vol = true;
7096 Info.readMem = false;
7097 Info.writeMem = true;
7098 return true;
Tim Northover3b0846e2014-05-24 12:50:23 +00007099 default:
7100 break;
7101 }
7102
7103 return false;
7104}
7105
7106// Truncations from 64-bit GPR to 32-bit GPR is free.
7107bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
7108 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
7109 return false;
7110 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
7111 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00007112 return NumBits1 > NumBits2;
Tim Northover3b0846e2014-05-24 12:50:23 +00007113}
7114bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
Hao Liu40914502014-05-29 09:19:07 +00007115 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00007116 return false;
7117 unsigned NumBits1 = VT1.getSizeInBits();
7118 unsigned NumBits2 = VT2.getSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00007119 return NumBits1 > NumBits2;
Tim Northover3b0846e2014-05-24 12:50:23 +00007120}
7121
Chad Rosier54390052015-02-23 19:15:16 +00007122/// Check if it is profitable to hoist instruction in then/else to if.
7123/// Not profitable if I and it's user can form a FMA instruction
7124/// because we prefer FMSUB/FMADD.
7125bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const {
7126 if (I->getOpcode() != Instruction::FMul)
7127 return true;
7128
Davide Italiano3e9986f2017-04-18 00:29:54 +00007129 if (!I->hasOneUse())
Chad Rosier54390052015-02-23 19:15:16 +00007130 return true;
7131
7132 Instruction *User = I->user_back();
7133
7134 if (User &&
7135 !(User->getOpcode() == Instruction::FSub ||
7136 User->getOpcode() == Instruction::FAdd))
7137 return true;
7138
7139 const TargetOptions &Options = getTargetMachine().Options;
Mehdi Amini44ede332015-07-09 02:09:04 +00007140 const DataLayout &DL = I->getModule()->getDataLayout();
7141 EVT VT = getValueType(DL, User->getOperand(0)->getType());
Chad Rosier54390052015-02-23 19:15:16 +00007142
Eric Christopher114fa1c2016-02-29 22:50:49 +00007143 return !(isFMAFasterThanFMulAndFAdd(VT) &&
7144 isOperationLegalOrCustom(ISD::FMA, VT) &&
7145 (Options.AllowFPOpFusion == FPOpFusion::Fast ||
7146 Options.UnsafeFPMath));
Chad Rosier54390052015-02-23 19:15:16 +00007147}
7148
Tim Northover3b0846e2014-05-24 12:50:23 +00007149// All 32-bit GPR operations implicitly zero the high-half of the corresponding
7150// 64-bit GPR.
7151bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
7152 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
7153 return false;
7154 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
7155 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00007156 return NumBits1 == 32 && NumBits2 == 64;
Tim Northover3b0846e2014-05-24 12:50:23 +00007157}
7158bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
Hao Liu40914502014-05-29 09:19:07 +00007159 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
Tim Northover3b0846e2014-05-24 12:50:23 +00007160 return false;
7161 unsigned NumBits1 = VT1.getSizeInBits();
7162 unsigned NumBits2 = VT2.getSizeInBits();
Hao Liu40914502014-05-29 09:19:07 +00007163 return NumBits1 == 32 && NumBits2 == 64;
Tim Northover3b0846e2014-05-24 12:50:23 +00007164}
7165
7166bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
7167 EVT VT1 = Val.getValueType();
7168 if (isZExtFree(VT1, VT2)) {
7169 return true;
7170 }
7171
7172 if (Val.getOpcode() != ISD::LOAD)
7173 return false;
7174
7175 // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
Hao Liu40914502014-05-29 09:19:07 +00007176 return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
7177 VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
7178 VT1.getSizeInBits() <= 32);
Tim Northover3b0846e2014-05-24 12:50:23 +00007179}
7180
Quentin Colombet6843ac42015-03-31 20:52:32 +00007181bool AArch64TargetLowering::isExtFreeImpl(const Instruction *Ext) const {
7182 if (isa<FPExtInst>(Ext))
7183 return false;
7184
7185 // Vector types are next free.
7186 if (Ext->getType()->isVectorTy())
7187 return false;
7188
7189 for (const Use &U : Ext->uses()) {
7190 // The extension is free if we can fold it with a left shift in an
7191 // addressing mode or an arithmetic operation: add, sub, and cmp.
7192
7193 // Is there a shift?
7194 const Instruction *Instr = cast<Instruction>(U.getUser());
7195
7196 // Is this a constant shift?
7197 switch (Instr->getOpcode()) {
7198 case Instruction::Shl:
7199 if (!isa<ConstantInt>(Instr->getOperand(1)))
7200 return false;
7201 break;
7202 case Instruction::GetElementPtr: {
7203 gep_type_iterator GTI = gep_type_begin(Instr);
Mehdi Aminia749f2a2015-07-09 02:09:52 +00007204 auto &DL = Ext->getModule()->getDataLayout();
Peter Collingbourneab85225b2016-12-02 02:24:42 +00007205 std::advance(GTI, U.getOperandNo()-1);
7206 Type *IdxTy = GTI.getIndexedType();
Quentin Colombet6843ac42015-03-31 20:52:32 +00007207 // This extension will end up with a shift because of the scaling factor.
7208 // 8-bit sized types have a scaling factor of 1, thus a shift amount of 0.
7209 // Get the shift amount based on the scaling factor:
7210 // log2(sizeof(IdxTy)) - log2(8).
7211 uint64_t ShiftAmt =
Mehdi Aminia749f2a2015-07-09 02:09:52 +00007212 countTrailingZeros(DL.getTypeStoreSizeInBits(IdxTy)) - 3;
Quentin Colombet6843ac42015-03-31 20:52:32 +00007213 // Is the constant foldable in the shift of the addressing mode?
7214 // I.e., shift amount is between 1 and 4 inclusive.
7215 if (ShiftAmt == 0 || ShiftAmt > 4)
7216 return false;
7217 break;
7218 }
7219 case Instruction::Trunc:
7220 // Check if this is a noop.
7221 // trunc(sext ty1 to ty2) to ty1.
7222 if (Instr->getType() == Ext->getOperand(0)->getType())
7223 continue;
Justin Bognercd1d5aa2016-08-17 20:30:52 +00007224 LLVM_FALLTHROUGH;
Quentin Colombet6843ac42015-03-31 20:52:32 +00007225 default:
7226 return false;
7227 }
7228
7229 // At this point we can use the bfm family, so this extension is free
7230 // for that use.
7231 }
7232 return true;
7233}
7234
Tim Northover3b0846e2014-05-24 12:50:23 +00007235bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
7236 unsigned &RequiredAligment) const {
7237 if (!LoadedType.isSimple() ||
7238 (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
7239 return false;
7240 // Cyclone supports unaligned accesses.
7241 RequiredAligment = 0;
7242 unsigned NumBits = LoadedType.getSizeInBits();
7243 return NumBits == 32 || NumBits == 64;
7244}
7245
Matthew Simpson1bfa1592017-03-02 15:11:20 +00007246/// A helper function for determining the number of interleaved accesses we
7247/// will generate when lowering accesses of the given type.
Matthew Simpson1468d3e2017-04-10 18:34:37 +00007248unsigned
7249AArch64TargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
7250 const DataLayout &DL) const {
Matthew Simpson1bfa1592017-03-02 15:11:20 +00007251 return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
7252}
7253
Matthew Simpson1468d3e2017-04-10 18:34:37 +00007254bool AArch64TargetLowering::isLegalInterleavedAccessType(
7255 VectorType *VecTy, const DataLayout &DL) const {
7256
7257 unsigned VecSize = DL.getTypeSizeInBits(VecTy);
7258 unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
7259
7260 // Ensure the number of vector elements is greater than 1.
7261 if (VecTy->getNumElements() < 2)
7262 return false;
7263
7264 // Ensure the element type is legal.
7265 if (ElSize != 8 && ElSize != 16 && ElSize != 32 && ElSize != 64)
7266 return false;
7267
7268 // Ensure the total vector size is 64 or a multiple of 128. Types larger than
7269 // 128 will be split into multiple interleaved accesses.
7270 return VecSize == 64 || VecSize % 128 == 0;
7271}
7272
Hao Liu7ec8ee32015-06-26 02:32:07 +00007273/// \brief Lower an interleaved load into a ldN intrinsic.
7274///
7275/// E.g. Lower an interleaved load (Factor = 2):
7276/// %wide.vec = load <8 x i32>, <8 x i32>* %ptr
7277/// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
7278/// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
7279///
7280/// Into:
7281/// %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr)
7282/// %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0
7283/// %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1
7284bool AArch64TargetLowering::lowerInterleavedLoad(
7285 LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
7286 ArrayRef<unsigned> Indices, unsigned Factor) const {
7287 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
7288 "Invalid interleave factor");
7289 assert(!Shuffles.empty() && "Empty shufflevector input");
7290 assert(Shuffles.size() == Indices.size() &&
7291 "Unmatched number of shufflevectors and indices");
7292
Mehdi Aminia749f2a2015-07-09 02:09:52 +00007293 const DataLayout &DL = LI->getModule()->getDataLayout();
Hao Liu7ec8ee32015-06-26 02:32:07 +00007294
7295 VectorType *VecTy = Shuffles[0]->getType();
Hao Liu7ec8ee32015-06-26 02:32:07 +00007296
Matthew Simpson1bfa1592017-03-02 15:11:20 +00007297 // Skip if we do not have NEON and skip illegal vector types. We can
7298 // "legalize" wide vector types into multiple interleaved accesses as long as
7299 // the vector types are divisible by 128.
Matthew Simpson1468d3e2017-04-10 18:34:37 +00007300 if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(VecTy, DL))
Hao Liu7ec8ee32015-06-26 02:32:07 +00007301 return false;
7302
Matthew Simpson1bfa1592017-03-02 15:11:20 +00007303 unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);
7304
Hao Liu7ec8ee32015-06-26 02:32:07 +00007305 // A pointer vector can not be the return type of the ldN intrinsics. Need to
7306 // load integer vectors first and then convert to pointer vectors.
7307 Type *EltTy = VecTy->getVectorElementType();
7308 if (EltTy->isPointerTy())
Mehdi Aminia749f2a2015-07-09 02:09:52 +00007309 VecTy =
7310 VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
Hao Liu7ec8ee32015-06-26 02:32:07 +00007311
Matthew Simpson1bfa1592017-03-02 15:11:20 +00007312 IRBuilder<> Builder(LI);
7313
7314 // The base address of the load.
7315 Value *BaseAddr = LI->getPointerOperand();
7316
7317 if (NumLoads > 1) {
7318 // If we're going to generate more than one load, reset the sub-vector type
7319 // to something legal.
7320 VecTy = VectorType::get(VecTy->getVectorElementType(),
7321 VecTy->getVectorNumElements() / NumLoads);
7322
7323 // We will compute the pointer operand of each load from the original base
7324 // address using GEPs. Cast the base address to a pointer to the scalar
7325 // element type.
7326 BaseAddr = Builder.CreateBitCast(
7327 BaseAddr, VecTy->getVectorElementType()->getPointerTo(
7328 LI->getPointerAddressSpace()));
7329 }
7330
Hao Liu7ec8ee32015-06-26 02:32:07 +00007331 Type *PtrTy = VecTy->getPointerTo(LI->getPointerAddressSpace());
7332 Type *Tys[2] = {VecTy, PtrTy};
7333 static const Intrinsic::ID LoadInts[3] = {Intrinsic::aarch64_neon_ld2,
7334 Intrinsic::aarch64_neon_ld3,
7335 Intrinsic::aarch64_neon_ld4};
7336 Function *LdNFunc =
7337 Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
7338
Matthew Simpson1bfa1592017-03-02 15:11:20 +00007339 // Holds sub-vectors extracted from the load intrinsic return values. The
7340 // sub-vectors are associated with the shufflevector instructions they will
7341 // replace.
7342 DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
Hao Liu7ec8ee32015-06-26 02:32:07 +00007343
Matthew Simpson1bfa1592017-03-02 15:11:20 +00007344 for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
Hao Liu7ec8ee32015-06-26 02:32:07 +00007345
Matthew Simpson1bfa1592017-03-02 15:11:20 +00007346 // If we're generating more than one load, compute the base address of
7347 // subsequent loads as an offset from the previous.
7348 if (LoadCount > 0)
7349 BaseAddr = Builder.CreateConstGEP1_32(
7350 BaseAddr, VecTy->getVectorNumElements() * Factor);
Hao Liu7ec8ee32015-06-26 02:32:07 +00007351
Matthew Simpson1bfa1592017-03-02 15:11:20 +00007352 CallInst *LdN = Builder.CreateCall(
7353 LdNFunc, Builder.CreateBitCast(BaseAddr, PtrTy), "ldN");
Hao Liu7ec8ee32015-06-26 02:32:07 +00007354
Matthew Simpson1bfa1592017-03-02 15:11:20 +00007355 // Extract and store the sub-vectors returned by the load intrinsic.
7356 for (unsigned i = 0; i < Shuffles.size(); i++) {
7357 ShuffleVectorInst *SVI = Shuffles[i];
7358 unsigned Index = Indices[i];
Hao Liu7ec8ee32015-06-26 02:32:07 +00007359
Matthew Simpson1bfa1592017-03-02 15:11:20 +00007360 Value *SubVec = Builder.CreateExtractValue(LdN, Index);
7361
7362 // Convert the integer vector to pointer vector if the element is pointer.
7363 if (EltTy->isPointerTy())
7364 SubVec = Builder.CreateIntToPtr(SubVec, SVI->getType());
7365
7366 SubVecs[SVI].push_back(SubVec);
7367 }
7368 }
7369
7370 // Replace uses of the shufflevector instructions with the sub-vectors
7371 // returned by the load intrinsic. If a shufflevector instruction is
7372 // associated with more than one sub-vector, those sub-vectors will be
7373 // concatenated into a single wide vector.
7374 for (ShuffleVectorInst *SVI : Shuffles) {
7375 auto &SubVec = SubVecs[SVI];
7376 auto *WideVec =
7377 SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
7378 SVI->replaceAllUsesWith(WideVec);
Hao Liu7ec8ee32015-06-26 02:32:07 +00007379 }
7380
7381 return true;
7382}
7383
Hao Liu7ec8ee32015-06-26 02:32:07 +00007384/// \brief Lower an interleaved store into a stN intrinsic.
7385///
7386/// E.g. Lower an interleaved store (Factor = 3):
7387/// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
Alina Sbirlea77c5eaa2016-12-13 19:32:36 +00007388/// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
Hao Liu7ec8ee32015-06-26 02:32:07 +00007389/// store <12 x i32> %i.vec, <12 x i32>* %ptr
7390///
7391/// Into:
7392/// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
7393/// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
7394/// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
7395/// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
7396///
7397/// Note that the new shufflevectors will be removed and we'll only generate one
7398/// st3 instruction in CodeGen.
Alina Sbirlea77c5eaa2016-12-13 19:32:36 +00007399///
7400/// Example for a more general valid mask (Factor 3). Lower:
7401/// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
7402/// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
7403/// store <12 x i32> %i.vec, <12 x i32>* %ptr
7404///
7405/// Into:
7406/// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
7407/// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
7408/// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
7409/// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
Hao Liu7ec8ee32015-06-26 02:32:07 +00007410bool AArch64TargetLowering::lowerInterleavedStore(StoreInst *SI,
7411 ShuffleVectorInst *SVI,
7412 unsigned Factor) const {
7413 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
7414 "Invalid interleave factor");
7415
7416 VectorType *VecTy = SVI->getType();
7417 assert(VecTy->getVectorNumElements() % Factor == 0 &&
7418 "Invalid interleaved store");
7419
Alina Sbirlea77c5eaa2016-12-13 19:32:36 +00007420 unsigned LaneLen = VecTy->getVectorNumElements() / Factor;
Hao Liu7ec8ee32015-06-26 02:32:07 +00007421 Type *EltTy = VecTy->getVectorElementType();
Alina Sbirlea77c5eaa2016-12-13 19:32:36 +00007422 VectorType *SubVecTy = VectorType::get(EltTy, LaneLen);
Hao Liu7ec8ee32015-06-26 02:32:07 +00007423
Mehdi Aminia749f2a2015-07-09 02:09:52 +00007424 const DataLayout &DL = SI->getModule()->getDataLayout();
Hao Liu7ec8ee32015-06-26 02:32:07 +00007425
Matthew Simpson1bfa1592017-03-02 15:11:20 +00007426 // Skip if we do not have NEON and skip illegal vector types. We can
7427 // "legalize" wide vector types into multiple interleaved accesses as long as
7428 // the vector types are divisible by 128.
Matthew Simpson1468d3e2017-04-10 18:34:37 +00007429 if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(SubVecTy, DL))
Hao Liu7ec8ee32015-06-26 02:32:07 +00007430 return false;
7431
Matthew Simpson1bfa1592017-03-02 15:11:20 +00007432 unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
7433
Hao Liu7ec8ee32015-06-26 02:32:07 +00007434 Value *Op0 = SVI->getOperand(0);
7435 Value *Op1 = SVI->getOperand(1);
7436 IRBuilder<> Builder(SI);
7437
7438 // StN intrinsics don't support pointer vectors as arguments. Convert pointer
7439 // vectors to integer vectors.
7440 if (EltTy->isPointerTy()) {
Mehdi Aminia749f2a2015-07-09 02:09:52 +00007441 Type *IntTy = DL.getIntPtrType(EltTy);
Hao Liu7ec8ee32015-06-26 02:32:07 +00007442 unsigned NumOpElts =
7443 dyn_cast<VectorType>(Op0->getType())->getVectorNumElements();
7444
7445 // Convert to the corresponding integer vector.
7446 Type *IntVecTy = VectorType::get(IntTy, NumOpElts);
7447 Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
7448 Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
7449
Alina Sbirlea77c5eaa2016-12-13 19:32:36 +00007450 SubVecTy = VectorType::get(IntTy, LaneLen);
Hao Liu7ec8ee32015-06-26 02:32:07 +00007451 }
7452
Matthew Simpson1bfa1592017-03-02 15:11:20 +00007453 // The base address of the store.
7454 Value *BaseAddr = SI->getPointerOperand();
7455
7456 if (NumStores > 1) {
7457 // If we're going to generate more than one store, reset the lane length
7458 // and sub-vector type to something legal.
7459 LaneLen /= NumStores;
7460 SubVecTy = VectorType::get(SubVecTy->getVectorElementType(), LaneLen);
7461
7462 // We will compute the pointer operand of each store from the original base
7463 // address using GEPs. Cast the base address to a pointer to the scalar
7464 // element type.
7465 BaseAddr = Builder.CreateBitCast(
7466 BaseAddr, SubVecTy->getVectorElementType()->getPointerTo(
7467 SI->getPointerAddressSpace()));
7468 }
7469
7470 auto Mask = SVI->getShuffleMask();
7471
Hao Liu7ec8ee32015-06-26 02:32:07 +00007472 Type *PtrTy = SubVecTy->getPointerTo(SI->getPointerAddressSpace());
7473 Type *Tys[2] = {SubVecTy, PtrTy};
7474 static const Intrinsic::ID StoreInts[3] = {Intrinsic::aarch64_neon_st2,
7475 Intrinsic::aarch64_neon_st3,
7476 Intrinsic::aarch64_neon_st4};
7477 Function *StNFunc =
7478 Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys);
7479
Matthew Simpson1bfa1592017-03-02 15:11:20 +00007480 for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
Hao Liu7ec8ee32015-06-26 02:32:07 +00007481
Matthew Simpson1bfa1592017-03-02 15:11:20 +00007482 SmallVector<Value *, 5> Ops;
7483
7484 // Split the shufflevector operands into sub vectors for the new stN call.
7485 for (unsigned i = 0; i < Factor; i++) {
7486 unsigned IdxI = StoreCount * LaneLen * Factor + i;
7487 if (Mask[IdxI] >= 0) {
7488 Ops.push_back(Builder.CreateShuffleVector(
7489 Op0, Op1, createSequentialMask(Builder, Mask[IdxI], LaneLen, 0)));
7490 } else {
7491 unsigned StartMask = 0;
7492 for (unsigned j = 1; j < LaneLen; j++) {
7493 unsigned IdxJ = StoreCount * LaneLen * Factor + j;
7494 if (Mask[IdxJ * Factor + IdxI] >= 0) {
7495 StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
7496 break;
7497 }
Alina Sbirlea77c5eaa2016-12-13 19:32:36 +00007498 }
Matthew Simpson1bfa1592017-03-02 15:11:20 +00007499 // Note: Filling undef gaps with random elements is ok, since
7500 // those elements were being written anyway (with undefs).
7501 // In the case of all undefs we're defaulting to using elems from 0
7502 // Note: StartMask cannot be negative, it's checked in
7503 // isReInterleaveMask
7504 Ops.push_back(Builder.CreateShuffleVector(
7505 Op0, Op1, createSequentialMask(Builder, StartMask, LaneLen, 0)));
Alina Sbirlea77c5eaa2016-12-13 19:32:36 +00007506 }
Alina Sbirlea77c5eaa2016-12-13 19:32:36 +00007507 }
Hao Liu7ec8ee32015-06-26 02:32:07 +00007508
Matthew Simpson1bfa1592017-03-02 15:11:20 +00007509 // If we generating more than one store, we compute the base address of
7510 // subsequent stores as an offset from the previous.
7511 if (StoreCount > 0)
7512 BaseAddr = Builder.CreateConstGEP1_32(BaseAddr, LaneLen * Factor);
7513
7514 Ops.push_back(Builder.CreateBitCast(BaseAddr, PtrTy));
7515 Builder.CreateCall(StNFunc, Ops);
7516 }
Hao Liu7ec8ee32015-06-26 02:32:07 +00007517 return true;
7518}
7519
Tim Northover3b0846e2014-05-24 12:50:23 +00007520static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
7521 unsigned AlignCheck) {
7522 return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
7523 (DstAlign == 0 || DstAlign % AlignCheck == 0));
7524}
7525
7526EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
7527 unsigned SrcAlign, bool IsMemset,
7528 bool ZeroMemset,
7529 bool MemcpyStrSrc,
7530 MachineFunction &MF) const {
7531 // Don't use AdvSIMD to implement 16-byte memset. It would have taken one
7532 // instruction to materialize the v2i64 zero and one store (with restrictive
7533 // addressing mode). Just do two i64 store of zero-registers.
7534 bool Fast;
7535 const Function *F = MF.getFunction();
7536 if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 &&
Duncan P. N. Exon Smith003bb7d2015-02-14 02:09:06 +00007537 !F->hasFnAttribute(Attribute::NoImplicitFloat) &&
Tim Northover3b0846e2014-05-24 12:50:23 +00007538 (memOpAlign(SrcAlign, DstAlign, 16) ||
Matt Arsenault6f2a5262014-07-27 17:46:40 +00007539 (allowsMisalignedMemoryAccesses(MVT::f128, 0, 1, &Fast) && Fast)))
Tim Northover3b0846e2014-05-24 12:50:23 +00007540 return MVT::f128;
7541
Lang Hames90333852015-04-09 03:40:33 +00007542 if (Size >= 8 &&
7543 (memOpAlign(SrcAlign, DstAlign, 8) ||
7544 (allowsMisalignedMemoryAccesses(MVT::i64, 0, 1, &Fast) && Fast)))
7545 return MVT::i64;
7546
7547 if (Size >= 4 &&
7548 (memOpAlign(SrcAlign, DstAlign, 4) ||
7549 (allowsMisalignedMemoryAccesses(MVT::i32, 0, 1, &Fast) && Fast)))
Lang Hames522bf132015-04-09 05:34:57 +00007550 return MVT::i32;
Lang Hames90333852015-04-09 03:40:33 +00007551
7552 return MVT::Other;
Tim Northover3b0846e2014-05-24 12:50:23 +00007553}
7554
7555// 12-bit optionally shifted immediates are legal for adds.
7556bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
Geoff Berry486f49c2016-06-07 16:48:43 +00007557 // Avoid UB for INT64_MIN.
7558 if (Immed == std::numeric_limits<int64_t>::min())
7559 return false;
7560 // Same encoding for add/sub, just flip the sign.
7561 Immed = std::abs(Immed);
Eric Christopher114fa1c2016-02-29 22:50:49 +00007562 return ((Immed >> 12) == 0 || ((Immed & 0xfff) == 0 && Immed >> 24 == 0));
Tim Northover3b0846e2014-05-24 12:50:23 +00007563}
7564
7565// Integer comparisons are implemented with ADDS/SUBS, so the range of valid
7566// immediates is the same as for an add or a sub.
7567bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00007568 return isLegalAddImmediate(Immed);
7569}
7570
7571/// isLegalAddressingMode - Return true if the addressing mode represented
7572/// by AM is legal for this target, for a load/store of the specified type.
Mehdi Amini0cdec1e2015-07-09 02:09:40 +00007573bool AArch64TargetLowering::isLegalAddressingMode(const DataLayout &DL,
7574 const AddrMode &AM, Type *Ty,
Matt Arsenaultbd7d80a2015-06-01 05:31:59 +00007575 unsigned AS) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00007576 // AArch64 has five basic addressing modes:
7577 // reg
7578 // reg + 9-bit signed offset
7579 // reg + SIZE_IN_BYTES * 12-bit unsigned offset
7580 // reg1 + reg2
7581 // reg + SIZE_IN_BYTES * reg
7582
7583 // No global is ever allowed as a base.
7584 if (AM.BaseGV)
7585 return false;
7586
7587 // No reg+reg+imm addressing.
7588 if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
7589 return false;
7590
7591 // check reg + imm case:
7592 // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
7593 uint64_t NumBytes = 0;
7594 if (Ty->isSized()) {
Mehdi Amini0cdec1e2015-07-09 02:09:40 +00007595 uint64_t NumBits = DL.getTypeSizeInBits(Ty);
Tim Northover3b0846e2014-05-24 12:50:23 +00007596 NumBytes = NumBits / 8;
7597 if (!isPowerOf2_64(NumBits))
7598 NumBytes = 0;
7599 }
7600
7601 if (!AM.Scale) {
7602 int64_t Offset = AM.BaseOffs;
7603
7604 // 9-bit signed offset
Haicheng Wuf8b83402016-12-07 01:45:04 +00007605 if (isInt<9>(Offset))
Tim Northover3b0846e2014-05-24 12:50:23 +00007606 return true;
7607
7608 // 12-bit unsigned offset
7609 unsigned shift = Log2_64(NumBytes);
7610 if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
7611 // Must be a multiple of NumBytes (NumBytes is a power of 2)
7612 (Offset >> shift) << shift == Offset)
7613 return true;
7614 return false;
7615 }
7616
7617 // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
7618
Haicheng Wu6bb0e392016-12-21 21:40:47 +00007619 return AM.Scale == 1 || (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes);
Tim Northover3b0846e2014-05-24 12:50:23 +00007620}
7621
Mehdi Amini0cdec1e2015-07-09 02:09:40 +00007622int AArch64TargetLowering::getScalingFactorCost(const DataLayout &DL,
7623 const AddrMode &AM, Type *Ty,
Matt Arsenaultbd7d80a2015-06-01 05:31:59 +00007624 unsigned AS) const {
Tim Northover3b0846e2014-05-24 12:50:23 +00007625 // Scaling factors are not free at all.
7626 // Operands | Rt Latency
7627 // -------------------------------------------
7628 // Rt, [Xn, Xm] | 4
7629 // -------------------------------------------
7630 // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
7631 // Rt, [Xn, Wm, <extend> #imm] |
Mehdi Amini0cdec1e2015-07-09 02:09:40 +00007632 if (isLegalAddressingMode(DL, AM, Ty, AS))
Tim Northover3b0846e2014-05-24 12:50:23 +00007633 // Scale represents reg2 * scale, thus account for 1 if
7634 // it is not equal to 0 or 1.
7635 return AM.Scale != 0 && AM.Scale != 1;
7636 return -1;
7637}
7638
7639bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
7640 VT = VT.getScalarType();
7641
7642 if (!VT.isSimple())
7643 return false;
7644
7645 switch (VT.getSimpleVT().SimpleTy) {
7646 case MVT::f32:
7647 case MVT::f64:
7648 return true;
7649 default:
7650 break;
7651 }
7652
7653 return false;
7654}
7655
7656const MCPhysReg *
7657AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
7658 // LR is a callee-save register, but we must treat it as clobbered by any call
7659 // site. Hence we include LR in the scratch registers, which are in turn added
7660 // as implicit-defs for stackmaps and patchpoints.
7661 static const MCPhysReg ScratchRegs[] = {
7662 AArch64::X16, AArch64::X17, AArch64::LR, 0
7663 };
7664 return ScratchRegs;
7665}
7666
7667bool
7668AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const {
7669 EVT VT = N->getValueType(0);
7670 // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
7671 // it with shift to let it be lowered to UBFX.
7672 if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
7673 isa<ConstantSDNode>(N->getOperand(1))) {
7674 uint64_t TruncMask = N->getConstantOperandVal(1);
7675 if (isMask_64(TruncMask) &&
7676 N->getOperand(0).getOpcode() == ISD::SRL &&
7677 isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
7678 return false;
7679 }
7680 return true;
7681}
7682
7683bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
7684 Type *Ty) const {
7685 assert(Ty->isIntegerTy());
7686
7687 unsigned BitSize = Ty->getPrimitiveSizeInBits();
7688 if (BitSize == 0)
7689 return false;
7690
7691 int64_t Val = Imm.getSExtValue();
7692 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
7693 return true;
7694
7695 if ((int64_t)Val < 0)
7696 Val = ~Val;
7697 if (BitSize == 32)
7698 Val &= (1LL << 32) - 1;
7699
7700 unsigned LZ = countLeadingZeros((uint64_t)Val);
7701 unsigned Shift = (63 - LZ) / 16;
7702 // MOVZ is free so return true for one or fewer MOVK.
David Blaikie186d2cb2015-03-24 16:24:01 +00007703 return Shift < 3;
Tim Northover3b0846e2014-05-24 12:50:23 +00007704}
7705
Sanjay Pateld6cb4ec2016-03-03 15:56:08 +00007706/// Turn vector tests of the signbit in the form of:
7707/// xor (sra X, elt_size(X)-1), -1
7708/// into:
7709/// cmge X, X, #0
7710static SDValue foldVectorXorShiftIntoCmp(SDNode *N, SelectionDAG &DAG,
7711 const AArch64Subtarget *Subtarget) {
7712 EVT VT = N->getValueType(0);
7713 if (!Subtarget->hasNEON() || !VT.isVector())
7714 return SDValue();
7715
7716 // There must be a shift right algebraic before the xor, and the xor must be a
7717 // 'not' operation.
7718 SDValue Shift = N->getOperand(0);
7719 SDValue Ones = N->getOperand(1);
7720 if (Shift.getOpcode() != AArch64ISD::VASHR || !Shift.hasOneUse() ||
7721 !ISD::isBuildVectorAllOnes(Ones.getNode()))
7722 return SDValue();
7723
7724 // The shift should be smearing the sign bit across each vector element.
7725 auto *ShiftAmt = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
7726 EVT ShiftEltTy = Shift.getValueType().getVectorElementType();
7727 if (!ShiftAmt || ShiftAmt->getZExtValue() != ShiftEltTy.getSizeInBits() - 1)
7728 return SDValue();
7729
7730 return DAG.getNode(AArch64ISD::CMGEz, SDLoc(N), VT, Shift.getOperand(0));
7731}
7732
Tim Northover3b0846e2014-05-24 12:50:23 +00007733// Generate SUBS and CSEL for integer abs.
7734static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
7735 EVT VT = N->getValueType(0);
7736
7737 SDValue N0 = N->getOperand(0);
7738 SDValue N1 = N->getOperand(1);
7739 SDLoc DL(N);
7740
7741 // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
7742 // and change it to SUB and CSEL.
7743 if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
7744 N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
7745 N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
7746 if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
7747 if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007748 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
Tim Northover3b0846e2014-05-24 12:50:23 +00007749 N0.getOperand(0));
7750 // Generate SUBS & CSEL.
7751 SDValue Cmp =
7752 DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007753 N0.getOperand(0), DAG.getConstant(0, DL, VT));
Tim Northover3b0846e2014-05-24 12:50:23 +00007754 return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007755 DAG.getConstant(AArch64CC::PL, DL, MVT::i32),
Tim Northover3b0846e2014-05-24 12:50:23 +00007756 SDValue(Cmp.getNode(), 1));
7757 }
7758 return SDValue();
7759}
7760
Tim Northover3b0846e2014-05-24 12:50:23 +00007761static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
7762 TargetLowering::DAGCombinerInfo &DCI,
7763 const AArch64Subtarget *Subtarget) {
7764 if (DCI.isBeforeLegalizeOps())
7765 return SDValue();
7766
Sanjay Pateld6cb4ec2016-03-03 15:56:08 +00007767 if (SDValue Cmp = foldVectorXorShiftIntoCmp(N, DAG, Subtarget))
7768 return Cmp;
7769
Tim Northover3b0846e2014-05-24 12:50:23 +00007770 return performIntegerAbsCombine(N, DAG);
7771}
7772
Chad Rosier17020f92014-07-23 14:57:52 +00007773SDValue
7774AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
7775 SelectionDAG &DAG,
7776 std::vector<SDNode *> *Created) const {
Reid Klecknerb5180542017-03-21 16:57:19 +00007777 AttributeList Attr = DAG.getMachineFunction().getFunction()->getAttributes();
Haicheng Wu6a6bc752016-03-28 18:17:07 +00007778 if (isIntDivCheap(N->getValueType(0), Attr))
7779 return SDValue(N,0); // Lower SDIV as SDIV
7780
Chad Rosier17020f92014-07-23 14:57:52 +00007781 // fold (sdiv X, pow2)
7782 EVT VT = N->getValueType(0);
7783 if ((VT != MVT::i32 && VT != MVT::i64) ||
7784 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
7785 return SDValue();
7786
7787 SDLoc DL(N);
7788 SDValue N0 = N->getOperand(0);
7789 unsigned Lg2 = Divisor.countTrailingZeros();
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007790 SDValue Zero = DAG.getConstant(0, DL, VT);
7791 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
Chad Rosier17020f92014-07-23 14:57:52 +00007792
7793 // Add (N0 < 0) ? Pow2 - 1 : 0;
7794 SDValue CCVal;
7795 SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL);
7796 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
7797 SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp);
7798
7799 if (Created) {
7800 Created->push_back(Cmp.getNode());
7801 Created->push_back(Add.getNode());
7802 Created->push_back(CSel.getNode());
7803 }
7804
7805 // Divide by pow2.
7806 SDValue SRA =
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007807 DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, DL, MVT::i64));
Chad Rosier17020f92014-07-23 14:57:52 +00007808
7809 // If we're dividing by a positive value, we're done. Otherwise, we must
7810 // negate the result.
7811 if (Divisor.isNonNegative())
7812 return SRA;
7813
7814 if (Created)
7815 Created->push_back(SRA.getNode());
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00007816 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
Chad Rosier17020f92014-07-23 14:57:52 +00007817}
7818
Tim Northover3b0846e2014-05-24 12:50:23 +00007819static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
7820 TargetLowering::DAGCombinerInfo &DCI,
7821 const AArch64Subtarget *Subtarget) {
7822 if (DCI.isBeforeLegalizeOps())
7823 return SDValue();
7824
Chad Rosier31ee8132016-11-11 17:07:37 +00007825 // The below optimizations require a constant RHS.
7826 if (!isa<ConstantSDNode>(N->getOperand(1)))
7827 return SDValue();
7828
7829 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(1));
7830 const APInt &ConstValue = C->getAPIntValue();
7831
Tim Northover3b0846e2014-05-24 12:50:23 +00007832 // Multiplication of a power of two plus/minus one can be done more
7833 // cheaply as as shift+add/sub. For now, this is true unilaterally. If
7834 // future CPUs have a cheaper MADD instruction, this may need to be
7835 // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
7836 // 64-bit is 5 cycles, so this is always a win.
Haicheng Wufaee2b72016-11-15 20:16:48 +00007837 // More aggressively, some multiplications N0 * C can be lowered to
7838 // shift+add+shift if the constant C = A * B where A = 2^N + 1 and B = 2^M,
7839 // e.g. 6=3*2=(2+1)*2.
7840 // TODO: consider lowering more cases, e.g. C = 14, -6, -14 or even 45
7841 // which equals to (1+2)*16-(1+2).
7842 SDValue N0 = N->getOperand(0);
7843 // TrailingZeroes is used to test if the mul can be lowered to
7844 // shift+add+shift.
7845 unsigned TrailingZeroes = ConstValue.countTrailingZeros();
7846 if (TrailingZeroes) {
7847 // Conservatively do not lower to shift+add+shift if the mul might be
7848 // folded into smul or umul.
7849 if (N0->hasOneUse() && (isSignExtended(N0.getNode(), DAG) ||
7850 isZeroExtended(N0.getNode(), DAG)))
7851 return SDValue();
7852 // Conservatively do not lower to shift+add+shift if the mul might be
7853 // folded into madd or msub.
7854 if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ADD ||
7855 N->use_begin()->getOpcode() == ISD::SUB))
7856 return SDValue();
7857 }
7858 // Use ShiftedConstValue instead of ConstValue to support both shift+add/sub
7859 // and shift+add+shift.
7860 APInt ShiftedConstValue = ConstValue.ashr(TrailingZeroes);
7861
Chad Rosierd6e85ce2016-11-11 17:49:34 +00007862 unsigned ShiftAmt, AddSubOpc;
7863 // Is the shifted value the LHS operand of the add/sub?
7864 bool ShiftValUseIsN0 = true;
7865 // Do we need to negate the result?
7866 bool NegateResult = false;
7867
Chad Rosier31ee8132016-11-11 17:07:37 +00007868 if (ConstValue.isNonNegative()) {
7869 // (mul x, 2^N + 1) => (add (shl x, N), x)
Chad Rosier31ee8132016-11-11 17:07:37 +00007870 // (mul x, 2^N - 1) => (sub (shl x, N), x)
Haicheng Wufaee2b72016-11-15 20:16:48 +00007871 // (mul x, (2^N + 1) * 2^M) => (shl (add (shl x, N), x), M)
7872 APInt SCVMinus1 = ShiftedConstValue - 1;
Chad Rosier31ee8132016-11-11 17:07:37 +00007873 APInt CVPlus1 = ConstValue + 1;
Haicheng Wufaee2b72016-11-15 20:16:48 +00007874 if (SCVMinus1.isPowerOf2()) {
7875 ShiftAmt = SCVMinus1.logBase2();
Chad Rosierd6e85ce2016-11-11 17:49:34 +00007876 AddSubOpc = ISD::ADD;
7877 } else if (CVPlus1.isPowerOf2()) {
7878 ShiftAmt = CVPlus1.logBase2();
7879 AddSubOpc = ISD::SUB;
7880 } else
7881 return SDValue();
Chad Rosier31ee8132016-11-11 17:07:37 +00007882 } else {
7883 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
Chad Rosier31ee8132016-11-11 17:07:37 +00007884 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
Chad Rosierd6e85ce2016-11-11 17:49:34 +00007885 APInt CVNegPlus1 = -ConstValue + 1;
Chad Rosier31ee8132016-11-11 17:07:37 +00007886 APInt CVNegMinus1 = -ConstValue - 1;
Chad Rosierd6e85ce2016-11-11 17:49:34 +00007887 if (CVNegPlus1.isPowerOf2()) {
7888 ShiftAmt = CVNegPlus1.logBase2();
7889 AddSubOpc = ISD::SUB;
7890 ShiftValUseIsN0 = false;
7891 } else if (CVNegMinus1.isPowerOf2()) {
7892 ShiftAmt = CVNegMinus1.logBase2();
7893 AddSubOpc = ISD::ADD;
7894 NegateResult = true;
7895 } else
7896 return SDValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00007897 }
Chad Rosierd6e85ce2016-11-11 17:49:34 +00007898
7899 SDLoc DL(N);
7900 EVT VT = N->getValueType(0);
Haicheng Wufaee2b72016-11-15 20:16:48 +00007901 SDValue ShiftedVal = DAG.getNode(ISD::SHL, DL, VT, N0,
Chad Rosierd6e85ce2016-11-11 17:49:34 +00007902 DAG.getConstant(ShiftAmt, DL, MVT::i64));
7903
7904 SDValue AddSubN0 = ShiftValUseIsN0 ? ShiftedVal : N0;
7905 SDValue AddSubN1 = ShiftValUseIsN0 ? N0 : ShiftedVal;
7906 SDValue Res = DAG.getNode(AddSubOpc, DL, VT, AddSubN0, AddSubN1);
Haicheng Wufaee2b72016-11-15 20:16:48 +00007907 assert(!(NegateResult && TrailingZeroes) &&
7908 "NegateResult and TrailingZeroes cannot both be true for now.");
Chad Rosierd6e85ce2016-11-11 17:49:34 +00007909 // Negate the result.
Haicheng Wufaee2b72016-11-15 20:16:48 +00007910 if (NegateResult)
7911 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
7912 // Shift the result.
7913 if (TrailingZeroes)
7914 return DAG.getNode(ISD::SHL, DL, VT, Res,
7915 DAG.getConstant(TrailingZeroes, DL, MVT::i64));
7916 return Res;
Tim Northover3b0846e2014-05-24 12:50:23 +00007917}
7918
Jim Grosbachf7502c42014-07-18 00:40:52 +00007919static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
7920 SelectionDAG &DAG) {
7921 // Take advantage of vector comparisons producing 0 or -1 in each lane to
7922 // optimize away operation when it's from a constant.
7923 //
7924 // The general transformation is:
7925 // UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
7926 // AND(VECTOR_CMP(x,y), constant2)
7927 // constant2 = UNARYOP(constant)
7928
Jim Grosbach8f6f0852014-07-23 20:41:38 +00007929 // Early exit if this isn't a vector operation, the operand of the
7930 // unary operation isn't a bitwise AND, or if the sizes of the operations
7931 // aren't the same.
Jim Grosbachf7502c42014-07-18 00:40:52 +00007932 EVT VT = N->getValueType(0);
7933 if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
Jim Grosbach8f6f0852014-07-23 20:41:38 +00007934 N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
7935 VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
Jim Grosbachf7502c42014-07-18 00:40:52 +00007936 return SDValue();
7937
Jim Grosbach724e4382014-07-23 20:41:43 +00007938 // Now check that the other operand of the AND is a constant. We could
Jim Grosbachf7502c42014-07-18 00:40:52 +00007939 // make the transformation for non-constant splats as well, but it's unclear
7940 // that would be a benefit as it would not eliminate any operations, just
7941 // perform one more step in scalar code before moving to the vector unit.
7942 if (BuildVectorSDNode *BV =
7943 dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
Jim Grosbach724e4382014-07-23 20:41:43 +00007944 // Bail out if the vector isn't a constant.
7945 if (!BV->isConstant())
Jim Grosbachf7502c42014-07-18 00:40:52 +00007946 return SDValue();
7947
7948 // Everything checks out. Build up the new and improved node.
7949 SDLoc DL(N);
7950 EVT IntVT = BV->getValueType(0);
7951 // Create a new constant of the appropriate type for the transformed
7952 // DAG.
7953 SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
7954 // The AND node needs bitcasts to/from an integer vector type around it.
7955 SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
7956 SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
7957 N->getOperand(0)->getOperand(0), MaskConst);
7958 SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
7959 return Res;
7960 }
7961
7962 return SDValue();
7963}
7964
Weiming Zhaocc4bf3f2014-12-04 20:25:50 +00007965static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG,
7966 const AArch64Subtarget *Subtarget) {
Jim Grosbachf7502c42014-07-18 00:40:52 +00007967 // First try to optimize away the conversion when it's conditionally from
7968 // a constant. Vectors only.
Ahmed Bougacha239d6352015-08-04 00:48:02 +00007969 if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG))
Jim Grosbachf7502c42014-07-18 00:40:52 +00007970 return Res;
7971
Tim Northover3b0846e2014-05-24 12:50:23 +00007972 EVT VT = N->getValueType(0);
7973 if (VT != MVT::f32 && VT != MVT::f64)
7974 return SDValue();
Jim Grosbachf7502c42014-07-18 00:40:52 +00007975
Tim Northover3b0846e2014-05-24 12:50:23 +00007976 // Only optimize when the source and destination types have the same width.
Sanjay Patelb1f0a0f2016-09-14 16:05:51 +00007977 if (VT.getSizeInBits() != N->getOperand(0).getValueSizeInBits())
Tim Northover3b0846e2014-05-24 12:50:23 +00007978 return SDValue();
7979
7980 // If the result of an integer load is only used by an integer-to-float
7981 // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
Chad Rosier1f385612015-10-02 16:42:59 +00007982 // This eliminates an "integer-to-vector-move" UOP and improves throughput.
Tim Northover3b0846e2014-05-24 12:50:23 +00007983 SDValue N0 = N->getOperand(0);
Weiming Zhaocc4bf3f2014-12-04 20:25:50 +00007984 if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
Tim Northover3b0846e2014-05-24 12:50:23 +00007985 // Do not change the width of a volatile load.
7986 !cast<LoadSDNode>(N0)->isVolatile()) {
7987 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
7988 SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
Justin Lebar9c375812016-07-15 18:27:10 +00007989 LN0->getPointerInfo(), LN0->getAlignment(),
7990 LN0->getMemOperand()->getFlags());
Tim Northover3b0846e2014-05-24 12:50:23 +00007991
7992 // Make sure successors of the original load stay after it by updating them
7993 // to use the new Chain.
7994 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
7995
7996 unsigned Opcode =
7997 (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
7998 return DAG.getNode(Opcode, SDLoc(N), VT, Load);
7999 }
8000
8001 return SDValue();
8002}
8003
Chad Rosierfa30c9b2015-10-07 17:39:18 +00008004/// Fold a floating-point multiply by power of two into floating-point to
8005/// fixed-point conversion.
8006static SDValue performFpToIntCombine(SDNode *N, SelectionDAG &DAG,
Silviu Barangafa00ba32016-08-08 13:13:57 +00008007 TargetLowering::DAGCombinerInfo &DCI,
Chad Rosierfa30c9b2015-10-07 17:39:18 +00008008 const AArch64Subtarget *Subtarget) {
8009 if (!Subtarget->hasNEON())
8010 return SDValue();
8011
8012 SDValue Op = N->getOperand(0);
Tim Northover6092de52016-03-10 23:02:21 +00008013 if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
8014 Op.getOpcode() != ISD::FMUL)
Chad Rosierfa30c9b2015-10-07 17:39:18 +00008015 return SDValue();
8016
8017 SDValue ConstVec = Op->getOperand(1);
8018 if (!isa<BuildVectorSDNode>(ConstVec))
8019 return SDValue();
8020
8021 MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
8022 uint32_t FloatBits = FloatTy.getSizeInBits();
8023 if (FloatBits != 32 && FloatBits != 64)
8024 return SDValue();
8025
8026 MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
8027 uint32_t IntBits = IntTy.getSizeInBits();
8028 if (IntBits != 16 && IntBits != 32 && IntBits != 64)
8029 return SDValue();
8030
8031 // Avoid conversions where iN is larger than the float (e.g., float -> i64).
8032 if (IntBits > FloatBits)
8033 return SDValue();
8034
8035 BitVector UndefElements;
8036 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
8037 int32_t Bits = IntBits == 64 ? 64 : 32;
8038 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, Bits + 1);
8039 if (C == -1 || C == 0 || C > Bits)
8040 return SDValue();
8041
8042 MVT ResTy;
8043 unsigned NumLanes = Op.getValueType().getVectorNumElements();
8044 switch (NumLanes) {
8045 default:
8046 return SDValue();
8047 case 2:
8048 ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
8049 break;
8050 case 4:
Silviu Barangafa00ba32016-08-08 13:13:57 +00008051 ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64;
Chad Rosierfa30c9b2015-10-07 17:39:18 +00008052 break;
8053 }
8054
Silviu Barangafa00ba32016-08-08 13:13:57 +00008055 if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps())
8056 return SDValue();
8057
8058 assert((ResTy != MVT::v4i64 || DCI.isBeforeLegalizeOps()) &&
8059 "Illegal vector type after legalization");
8060
Chad Rosierfa30c9b2015-10-07 17:39:18 +00008061 SDLoc DL(N);
8062 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
8063 unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfp2fxs
8064 : Intrinsic::aarch64_neon_vcvtfp2fxu;
8065 SDValue FixConv =
8066 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ResTy,
8067 DAG.getConstant(IntrinsicOpcode, DL, MVT::i32),
8068 Op->getOperand(0), DAG.getConstant(C, DL, MVT::i32));
8069 // We can handle smaller integers by generating an extra trunc.
8070 if (IntBits < FloatBits)
8071 FixConv = DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), FixConv);
8072
8073 return FixConv;
8074}
8075
Chad Rosier7c6ac2b2015-10-07 17:51:37 +00008076/// Fold a floating-point divide by power of two into fixed-point to
8077/// floating-point conversion.
8078static SDValue performFDivCombine(SDNode *N, SelectionDAG &DAG,
Tim Northover85cf5642016-08-26 18:52:31 +00008079 TargetLowering::DAGCombinerInfo &DCI,
Chad Rosier7c6ac2b2015-10-07 17:51:37 +00008080 const AArch64Subtarget *Subtarget) {
8081 if (!Subtarget->hasNEON())
8082 return SDValue();
8083
8084 SDValue Op = N->getOperand(0);
8085 unsigned Opc = Op->getOpcode();
Tim Northover85cf5642016-08-26 18:52:31 +00008086 if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
8087 !Op.getOperand(0).getValueType().isSimple() ||
Chad Rosier7c6ac2b2015-10-07 17:51:37 +00008088 (Opc != ISD::SINT_TO_FP && Opc != ISD::UINT_TO_FP))
8089 return SDValue();
8090
8091 SDValue ConstVec = N->getOperand(1);
8092 if (!isa<BuildVectorSDNode>(ConstVec))
8093 return SDValue();
8094
8095 MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
8096 int32_t IntBits = IntTy.getSizeInBits();
8097 if (IntBits != 16 && IntBits != 32 && IntBits != 64)
8098 return SDValue();
8099
8100 MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
8101 int32_t FloatBits = FloatTy.getSizeInBits();
8102 if (FloatBits != 32 && FloatBits != 64)
8103 return SDValue();
8104
8105 // Avoid conversions where iN is larger than the float (e.g., i64 -> float).
8106 if (IntBits > FloatBits)
8107 return SDValue();
8108
8109 BitVector UndefElements;
8110 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
8111 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, FloatBits + 1);
8112 if (C == -1 || C == 0 || C > FloatBits)
8113 return SDValue();
8114
8115 MVT ResTy;
8116 unsigned NumLanes = Op.getValueType().getVectorNumElements();
8117 switch (NumLanes) {
8118 default:
8119 return SDValue();
8120 case 2:
8121 ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
8122 break;
8123 case 4:
Tim Northover85cf5642016-08-26 18:52:31 +00008124 ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64;
Chad Rosier7c6ac2b2015-10-07 17:51:37 +00008125 break;
8126 }
8127
Tim Northover85cf5642016-08-26 18:52:31 +00008128 if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps())
8129 return SDValue();
8130
Chad Rosier7c6ac2b2015-10-07 17:51:37 +00008131 SDLoc DL(N);
8132 SDValue ConvInput = Op.getOperand(0);
8133 bool IsSigned = Opc == ISD::SINT_TO_FP;
8134 if (IntBits < FloatBits)
8135 ConvInput = DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL,
8136 ResTy, ConvInput);
8137
8138 unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfxs2fp
8139 : Intrinsic::aarch64_neon_vcvtfxu2fp;
8140 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(),
8141 DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), ConvInput,
8142 DAG.getConstant(C, DL, MVT::i32));
8143}
8144
Tim Northover3b0846e2014-05-24 12:50:23 +00008145/// An EXTR instruction is made up of two shifts, ORed together. This helper
8146/// searches for and classifies those shifts.
8147static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
8148 bool &FromHi) {
8149 if (N.getOpcode() == ISD::SHL)
8150 FromHi = false;
8151 else if (N.getOpcode() == ISD::SRL)
8152 FromHi = true;
8153 else
8154 return false;
8155
8156 if (!isa<ConstantSDNode>(N.getOperand(1)))
8157 return false;
8158
8159 ShiftAmount = N->getConstantOperandVal(1);
8160 Src = N->getOperand(0);
8161 return true;
8162}
8163
8164/// EXTR instruction extracts a contiguous chunk of bits from two existing
8165/// registers viewed as a high/low pair. This function looks for the pattern:
8166/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
8167/// EXTR. Can't quite be done in TableGen because the two immediates aren't
8168/// independent.
8169static SDValue tryCombineToEXTR(SDNode *N,
8170 TargetLowering::DAGCombinerInfo &DCI) {
8171 SelectionDAG &DAG = DCI.DAG;
8172 SDLoc DL(N);
8173 EVT VT = N->getValueType(0);
8174
8175 assert(N->getOpcode() == ISD::OR && "Unexpected root");
8176
8177 if (VT != MVT::i32 && VT != MVT::i64)
8178 return SDValue();
8179
8180 SDValue LHS;
8181 uint32_t ShiftLHS = 0;
Eugene Zelenko049b0172017-01-06 00:30:53 +00008182 bool LHSFromHi = false;
Tim Northover3b0846e2014-05-24 12:50:23 +00008183 if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
8184 return SDValue();
8185
8186 SDValue RHS;
8187 uint32_t ShiftRHS = 0;
Eugene Zelenko049b0172017-01-06 00:30:53 +00008188 bool RHSFromHi = false;
Tim Northover3b0846e2014-05-24 12:50:23 +00008189 if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
8190 return SDValue();
8191
8192 // If they're both trying to come from the high part of the register, they're
8193 // not really an EXTR.
8194 if (LHSFromHi == RHSFromHi)
8195 return SDValue();
8196
8197 if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
8198 return SDValue();
8199
8200 if (LHSFromHi) {
8201 std::swap(LHS, RHS);
8202 std::swap(ShiftLHS, ShiftRHS);
8203 }
8204
8205 return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008206 DAG.getConstant(ShiftRHS, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00008207}
8208
8209static SDValue tryCombineToBSL(SDNode *N,
8210 TargetLowering::DAGCombinerInfo &DCI) {
8211 EVT VT = N->getValueType(0);
8212 SelectionDAG &DAG = DCI.DAG;
8213 SDLoc DL(N);
8214
8215 if (!VT.isVector())
8216 return SDValue();
8217
8218 SDValue N0 = N->getOperand(0);
8219 if (N0.getOpcode() != ISD::AND)
8220 return SDValue();
8221
8222 SDValue N1 = N->getOperand(1);
8223 if (N1.getOpcode() != ISD::AND)
8224 return SDValue();
8225
8226 // We only have to look for constant vectors here since the general, variable
8227 // case can be handled in TableGen.
Sanjay Patel1ed771f2016-09-14 16:37:15 +00008228 unsigned Bits = VT.getScalarSizeInBits();
Tim Northover3b0846e2014-05-24 12:50:23 +00008229 uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
8230 for (int i = 1; i >= 0; --i)
8231 for (int j = 1; j >= 0; --j) {
8232 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
8233 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
8234 if (!BVN0 || !BVN1)
8235 continue;
8236
8237 bool FoundMatch = true;
8238 for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
8239 ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
8240 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
8241 if (!CN0 || !CN1 ||
8242 CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
8243 FoundMatch = false;
8244 break;
8245 }
8246 }
8247
8248 if (FoundMatch)
8249 return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
8250 N0->getOperand(1 - i), N1->getOperand(1 - j));
8251 }
8252
8253 return SDValue();
8254}
8255
8256static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
8257 const AArch64Subtarget *Subtarget) {
8258 // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
Tim Northover3b0846e2014-05-24 12:50:23 +00008259 SelectionDAG &DAG = DCI.DAG;
8260 EVT VT = N->getValueType(0);
8261
8262 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
8263 return SDValue();
8264
Ahmed Bougachaf8dfb472016-02-09 22:54:12 +00008265 if (SDValue Res = tryCombineToEXTR(N, DCI))
Tim Northover3b0846e2014-05-24 12:50:23 +00008266 return Res;
8267
Ahmed Bougachaf8dfb472016-02-09 22:54:12 +00008268 if (SDValue Res = tryCombineToBSL(N, DCI))
Tim Northover3b0846e2014-05-24 12:50:23 +00008269 return Res;
8270
8271 return SDValue();
8272}
8273
Chad Rosier14aa2ad2016-05-26 19:41:33 +00008274static SDValue performSRLCombine(SDNode *N,
8275 TargetLowering::DAGCombinerInfo &DCI) {
8276 SelectionDAG &DAG = DCI.DAG;
8277 EVT VT = N->getValueType(0);
8278 if (VT != MVT::i32 && VT != MVT::i64)
8279 return SDValue();
8280
8281 // Canonicalize (srl (bswap i32 x), 16) to (rotr (bswap i32 x), 16), if the
8282 // high 16-bits of x are zero. Similarly, canonicalize (srl (bswap i64 x), 32)
8283 // to (rotr (bswap i64 x), 32), if the high 32-bits of x are zero.
8284 SDValue N0 = N->getOperand(0);
8285 if (N0.getOpcode() == ISD::BSWAP) {
8286 SDLoc DL(N);
8287 SDValue N1 = N->getOperand(1);
8288 SDValue N00 = N0.getOperand(0);
8289 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
8290 uint64_t ShiftAmt = C->getZExtValue();
8291 if (VT == MVT::i32 && ShiftAmt == 16 &&
8292 DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(32, 16)))
8293 return DAG.getNode(ISD::ROTR, DL, VT, N0, N1);
8294 if (VT == MVT::i64 && ShiftAmt == 32 &&
8295 DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(64, 32)))
8296 return DAG.getNode(ISD::ROTR, DL, VT, N0, N1);
8297 }
8298 }
8299 return SDValue();
8300}
8301
Tim Northover3b0846e2014-05-24 12:50:23 +00008302static SDValue performBitcastCombine(SDNode *N,
8303 TargetLowering::DAGCombinerInfo &DCI,
8304 SelectionDAG &DAG) {
8305 // Wait 'til after everything is legalized to try this. That way we have
8306 // legal vector types and such.
8307 if (DCI.isBeforeLegalizeOps())
8308 return SDValue();
8309
8310 // Remove extraneous bitcasts around an extract_subvector.
8311 // For example,
8312 // (v4i16 (bitconvert
8313 // (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
8314 // becomes
8315 // (extract_subvector ((v8i16 ...), (i64 4)))
8316
8317 // Only interested in 64-bit vectors as the ultimate result.
8318 EVT VT = N->getValueType(0);
8319 if (!VT.isVector())
8320 return SDValue();
8321 if (VT.getSimpleVT().getSizeInBits() != 64)
8322 return SDValue();
8323 // Is the operand an extract_subvector starting at the beginning or halfway
8324 // point of the vector? A low half may also come through as an
8325 // EXTRACT_SUBREG, so look for that, too.
8326 SDValue Op0 = N->getOperand(0);
8327 if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
8328 !(Op0->isMachineOpcode() &&
8329 Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG))
8330 return SDValue();
8331 uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
8332 if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
8333 if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
8334 return SDValue();
8335 } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) {
8336 if (idx != AArch64::dsub)
8337 return SDValue();
8338 // The dsub reference is equivalent to a lane zero subvector reference.
8339 idx = 0;
8340 }
8341 // Look through the bitcast of the input to the extract.
8342 if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
8343 return SDValue();
8344 SDValue Source = Op0->getOperand(0)->getOperand(0);
8345 // If the source type has twice the number of elements as our destination
8346 // type, we know this is an extract of the high or low half of the vector.
8347 EVT SVT = Source->getValueType(0);
8348 if (SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
8349 return SDValue();
8350
8351 DEBUG(dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
8352
8353 // Create the simplified form to just extract the low or high half of the
8354 // vector directly rather than bothering with the bitcasts.
8355 SDLoc dl(N);
8356 unsigned NumElements = VT.getVectorNumElements();
8357 if (idx) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008358 SDValue HalfIdx = DAG.getConstant(NumElements, dl, MVT::i64);
Tim Northover3b0846e2014-05-24 12:50:23 +00008359 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
8360 } else {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008361 SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, dl, MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00008362 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
8363 Source, SubReg),
8364 0);
8365 }
8366}
8367
8368static SDValue performConcatVectorsCombine(SDNode *N,
8369 TargetLowering::DAGCombinerInfo &DCI,
8370 SelectionDAG &DAG) {
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00008371 SDLoc dl(N);
8372 EVT VT = N->getValueType(0);
8373 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
8374
Ahmed Bougachae0afb1f2015-03-17 03:23:09 +00008375 // Optimize concat_vectors of truncated vectors, where the intermediate
8376 // type is illegal, to avoid said illegality, e.g.,
8377 // (v4i16 (concat_vectors (v2i16 (truncate (v2i64))),
8378 // (v2i16 (truncate (v2i64)))))
8379 // ->
Ahmed Bougachae6bb09a2015-03-21 01:08:39 +00008380 // (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))),
8381 // (v4i32 (bitcast (v2i64))),
8382 // <0, 2, 4, 6>)))
Ahmed Bougachae0afb1f2015-03-17 03:23:09 +00008383 // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed
8384 // on both input and result type, so we might generate worse code.
8385 // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8.
8386 if (N->getNumOperands() == 2 &&
8387 N0->getOpcode() == ISD::TRUNCATE &&
8388 N1->getOpcode() == ISD::TRUNCATE) {
8389 SDValue N00 = N0->getOperand(0);
8390 SDValue N10 = N1->getOperand(0);
8391 EVT N00VT = N00.getValueType();
8392
8393 if (N00VT == N10.getValueType() &&
8394 (N00VT == MVT::v2i64 || N00VT == MVT::v4i32) &&
8395 N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) {
Ahmed Bougachae6bb09a2015-03-21 01:08:39 +00008396 MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16);
8397 SmallVector<int, 8> Mask(MidVT.getVectorNumElements());
8398 for (size_t i = 0; i < Mask.size(); ++i)
8399 Mask[i] = i * 2;
8400 return DAG.getNode(ISD::TRUNCATE, dl, VT,
8401 DAG.getVectorShuffle(
8402 MidVT, dl,
8403 DAG.getNode(ISD::BITCAST, dl, MidVT, N00),
8404 DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask));
Ahmed Bougachae0afb1f2015-03-17 03:23:09 +00008405 }
8406 }
8407
Tim Northover3b0846e2014-05-24 12:50:23 +00008408 // Wait 'til after everything is legalized to try this. That way we have
8409 // legal vector types and such.
8410 if (DCI.isBeforeLegalizeOps())
8411 return SDValue();
8412
Tim Northover3b0846e2014-05-24 12:50:23 +00008413 // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
8414 // splat. The indexed instructions are going to be expecting a DUPLANE64, so
8415 // canonicalise to that.
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00008416 if (N0 == N1 && VT.getVectorNumElements() == 2) {
Sanjay Patel1ed771f2016-09-14 16:37:15 +00008417 assert(VT.getScalarSizeInBits() == 64);
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00008418 return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008419 DAG.getConstant(0, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00008420 }
8421
8422 // Canonicalise concat_vectors so that the right-hand vector has as few
8423 // bit-casts as possible before its real operation. The primary matching
8424 // destination for these operations will be the narrowing "2" instructions,
8425 // which depend on the operation being performed on this right-hand vector.
8426 // For example,
8427 // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS))))
8428 // becomes
8429 // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
8430
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00008431 if (N1->getOpcode() != ISD::BITCAST)
Tim Northover3b0846e2014-05-24 12:50:23 +00008432 return SDValue();
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00008433 SDValue RHS = N1->getOperand(0);
Tim Northover3b0846e2014-05-24 12:50:23 +00008434 MVT RHSTy = RHS.getValueType().getSimpleVT();
8435 // If the RHS is not a vector, this is not the pattern we're looking for.
8436 if (!RHSTy.isVector())
8437 return SDValue();
8438
8439 DEBUG(dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
8440
8441 MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
8442 RHSTy.getVectorNumElements() * 2);
Ahmed Bougachae33e6c92015-03-17 03:19:18 +00008443 return DAG.getNode(ISD::BITCAST, dl, VT,
8444 DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
8445 DAG.getNode(ISD::BITCAST, dl, RHSTy, N0),
8446 RHS));
Tim Northover3b0846e2014-05-24 12:50:23 +00008447}
8448
8449static SDValue tryCombineFixedPointConvert(SDNode *N,
8450 TargetLowering::DAGCombinerInfo &DCI,
8451 SelectionDAG &DAG) {
8452 // Wait 'til after everything is legalized to try this. That way we have
8453 // legal vector types and such.
8454 if (DCI.isBeforeLegalizeOps())
8455 return SDValue();
8456 // Transform a scalar conversion of a value from a lane extract into a
8457 // lane extract of a vector conversion. E.g., from foo1 to foo2:
8458 // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
8459 // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
8460 //
8461 // The second form interacts better with instruction selection and the
8462 // register allocator to avoid cross-class register copies that aren't
8463 // coalescable due to a lane reference.
8464
8465 // Check the operand and see if it originates from a lane extract.
8466 SDValue Op1 = N->getOperand(1);
8467 if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
8468 // Yep, no additional predication needed. Perform the transform.
8469 SDValue IID = N->getOperand(0);
8470 SDValue Shift = N->getOperand(2);
8471 SDValue Vec = Op1.getOperand(0);
8472 SDValue Lane = Op1.getOperand(1);
8473 EVT ResTy = N->getValueType(0);
8474 EVT VecResTy;
8475 SDLoc DL(N);
8476
8477 // The vector width should be 128 bits by the time we get here, even
8478 // if it started as 64 bits (the extract_vector handling will have
8479 // done so).
Sanjay Patelb1f0a0f2016-09-14 16:05:51 +00008480 assert(Vec.getValueSizeInBits() == 128 &&
Tim Northover3b0846e2014-05-24 12:50:23 +00008481 "unexpected vector size on extract_vector_elt!");
8482 if (Vec.getValueType() == MVT::v4i32)
8483 VecResTy = MVT::v4f32;
8484 else if (Vec.getValueType() == MVT::v2i64)
8485 VecResTy = MVT::v2f64;
8486 else
Craig Topper2a30d782014-06-18 05:05:13 +00008487 llvm_unreachable("unexpected vector type!");
Tim Northover3b0846e2014-05-24 12:50:23 +00008488
8489 SDValue Convert =
8490 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
8491 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
8492 }
8493 return SDValue();
8494}
8495
8496// AArch64 high-vector "long" operations are formed by performing the non-high
8497// version on an extract_subvector of each operand which gets the high half:
8498//
8499// (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
8500//
8501// However, there are cases which don't have an extract_high explicitly, but
8502// have another operation that can be made compatible with one for free. For
8503// example:
8504//
8505// (dupv64 scalar) --> (extract_high (dup128 scalar))
8506//
8507// This routine does the actual conversion of such DUPs, once outer routines
8508// have determined that everything else is in order.
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00008509// It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold
8510// similarly here.
Tim Northover3b0846e2014-05-24 12:50:23 +00008511static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
Tim Northover3b0846e2014-05-24 12:50:23 +00008512 switch (N.getOpcode()) {
8513 case AArch64ISD::DUP:
Tim Northover3b0846e2014-05-24 12:50:23 +00008514 case AArch64ISD::DUPLANE8:
8515 case AArch64ISD::DUPLANE16:
8516 case AArch64ISD::DUPLANE32:
8517 case AArch64ISD::DUPLANE64:
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00008518 case AArch64ISD::MOVI:
8519 case AArch64ISD::MOVIshift:
8520 case AArch64ISD::MOVIedit:
8521 case AArch64ISD::MOVImsl:
8522 case AArch64ISD::MVNIshift:
8523 case AArch64ISD::MVNImsl:
Tim Northover3b0846e2014-05-24 12:50:23 +00008524 break;
8525 default:
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00008526 // FMOV could be supported, but isn't very useful, as it would only occur
8527 // if you passed a bitcast' floating point immediate to an eligible long
8528 // integer op (addl, smull, ...).
Tim Northover3b0846e2014-05-24 12:50:23 +00008529 return SDValue();
8530 }
8531
8532 MVT NarrowTy = N.getSimpleValueType();
8533 if (!NarrowTy.is64BitVector())
8534 return SDValue();
8535
8536 MVT ElementTy = NarrowTy.getVectorElementType();
8537 unsigned NumElems = NarrowTy.getVectorNumElements();
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00008538 MVT NewVT = MVT::getVectorVT(ElementTy, NumElems * 2);
Tim Northover3b0846e2014-05-24 12:50:23 +00008539
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008540 SDLoc dl(N);
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +00008541 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NarrowTy,
8542 DAG.getNode(N->getOpcode(), dl, NewVT, N->ops()),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008543 DAG.getConstant(NumElems, dl, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00008544}
8545
8546static bool isEssentiallyExtractSubvector(SDValue N) {
8547 if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR)
8548 return true;
8549
8550 return N.getOpcode() == ISD::BITCAST &&
8551 N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR;
8552}
8553
8554/// \brief Helper structure to keep track of ISD::SET_CC operands.
8555struct GenericSetCCInfo {
8556 const SDValue *Opnd0;
8557 const SDValue *Opnd1;
8558 ISD::CondCode CC;
8559};
8560
8561/// \brief Helper structure to keep track of a SET_CC lowered into AArch64 code.
8562struct AArch64SetCCInfo {
8563 const SDValue *Cmp;
8564 AArch64CC::CondCode CC;
8565};
8566
8567/// \brief Helper structure to keep track of SetCC information.
8568union SetCCInfo {
8569 GenericSetCCInfo Generic;
8570 AArch64SetCCInfo AArch64;
8571};
8572
8573/// \brief Helper structure to be able to read SetCC information. If set to
8574/// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
8575/// GenericSetCCInfo.
8576struct SetCCInfoAndKind {
8577 SetCCInfo Info;
8578 bool IsAArch64;
8579};
8580
8581/// \brief Check whether or not \p Op is a SET_CC operation, either a generic or
8582/// an
8583/// AArch64 lowered one.
8584/// \p SetCCInfo is filled accordingly.
8585/// \post SetCCInfo is meanginfull only when this function returns true.
8586/// \return True when Op is a kind of SET_CC operation.
8587static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
8588 // If this is a setcc, this is straight forward.
8589 if (Op.getOpcode() == ISD::SETCC) {
8590 SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
8591 SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
8592 SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8593 SetCCInfo.IsAArch64 = false;
8594 return true;
8595 }
8596 // Otherwise, check if this is a matching csel instruction.
8597 // In other words:
8598 // - csel 1, 0, cc
8599 // - csel 0, 1, !cc
8600 if (Op.getOpcode() != AArch64ISD::CSEL)
8601 return false;
8602 // Set the information about the operands.
8603 // TODO: we want the operands of the Cmp not the csel
8604 SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
8605 SetCCInfo.IsAArch64 = true;
8606 SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
8607 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
8608
8609 // Check that the operands matches the constraints:
8610 // (1) Both operands must be constants.
8611 // (2) One must be 1 and the other must be 0.
8612 ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
8613 ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8614
8615 // Check (1).
8616 if (!TValue || !FValue)
8617 return false;
8618
8619 // Check (2).
8620 if (!TValue->isOne()) {
8621 // Update the comparison when we are interested in !cc.
8622 std::swap(TValue, FValue);
8623 SetCCInfo.Info.AArch64.CC =
8624 AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
8625 }
8626 return TValue->isOne() && FValue->isNullValue();
8627}
8628
8629// Returns true if Op is setcc or zext of setcc.
8630static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
8631 if (isSetCC(Op, Info))
8632 return true;
8633 return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
8634 isSetCC(Op->getOperand(0), Info));
8635}
8636
8637// The folding we want to perform is:
8638// (add x, [zext] (setcc cc ...) )
8639// -->
8640// (csel x, (add x, 1), !cc ...)
8641//
8642// The latter will get matched to a CSINC instruction.
8643static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
8644 assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
8645 SDValue LHS = Op->getOperand(0);
8646 SDValue RHS = Op->getOperand(1);
8647 SetCCInfoAndKind InfoAndKind;
8648
8649 // If neither operand is a SET_CC, give up.
8650 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
8651 std::swap(LHS, RHS);
8652 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
8653 return SDValue();
8654 }
8655
8656 // FIXME: This could be generatized to work for FP comparisons.
8657 EVT CmpVT = InfoAndKind.IsAArch64
8658 ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
8659 : InfoAndKind.Info.Generic.Opnd0->getValueType();
8660 if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
8661 return SDValue();
8662
8663 SDValue CCVal;
8664 SDValue Cmp;
8665 SDLoc dl(Op);
8666 if (InfoAndKind.IsAArch64) {
8667 CCVal = DAG.getConstant(
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008668 AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), dl,
8669 MVT::i32);
Tim Northover3b0846e2014-05-24 12:50:23 +00008670 Cmp = *InfoAndKind.Info.AArch64.Cmp;
8671 } else
8672 Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0,
8673 *InfoAndKind.Info.Generic.Opnd1,
8674 ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
8675 CCVal, DAG, dl);
8676
8677 EVT VT = Op->getValueType(0);
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008678 LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, dl, VT));
Tim Northover3b0846e2014-05-24 12:50:23 +00008679 return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
8680}
8681
8682// The basic add/sub long vector instructions have variants with "2" on the end
8683// which act on the high-half of their inputs. They are normally matched by
8684// patterns like:
8685//
8686// (add (zeroext (extract_high LHS)),
8687// (zeroext (extract_high RHS)))
8688// -> uaddl2 vD, vN, vM
8689//
8690// However, if one of the extracts is something like a duplicate, this
8691// instruction can still be used profitably. This function puts the DAG into a
8692// more appropriate form for those patterns to trigger.
8693static SDValue performAddSubLongCombine(SDNode *N,
8694 TargetLowering::DAGCombinerInfo &DCI,
8695 SelectionDAG &DAG) {
8696 if (DCI.isBeforeLegalizeOps())
8697 return SDValue();
8698
8699 MVT VT = N->getSimpleValueType(0);
8700 if (!VT.is128BitVector()) {
8701 if (N->getOpcode() == ISD::ADD)
8702 return performSetccAddFolding(N, DAG);
8703 return SDValue();
8704 }
8705
8706 // Make sure both branches are extended in the same way.
8707 SDValue LHS = N->getOperand(0);
8708 SDValue RHS = N->getOperand(1);
8709 if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
8710 LHS.getOpcode() != ISD::SIGN_EXTEND) ||
8711 LHS.getOpcode() != RHS.getOpcode())
8712 return SDValue();
8713
8714 unsigned ExtType = LHS.getOpcode();
8715
8716 // It's not worth doing if at least one of the inputs isn't already an
8717 // extract, but we don't know which it'll be so we have to try both.
8718 if (isEssentiallyExtractSubvector(LHS.getOperand(0))) {
8719 RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
8720 if (!RHS.getNode())
8721 return SDValue();
8722
8723 RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
8724 } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) {
8725 LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
8726 if (!LHS.getNode())
8727 return SDValue();
8728
8729 LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
8730 }
8731
8732 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
8733}
8734
8735// Massage DAGs which we can use the high-half "long" operations on into
8736// something isel will recognize better. E.g.
8737//
8738// (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
8739// (aarch64_neon_umull (extract_high (v2i64 vec)))
8740// (extract_high (v2i64 (dup128 scalar)))))
8741//
Hal Finkelcd8664c2015-12-11 23:11:52 +00008742static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
Tim Northover3b0846e2014-05-24 12:50:23 +00008743 TargetLowering::DAGCombinerInfo &DCI,
8744 SelectionDAG &DAG) {
8745 if (DCI.isBeforeLegalizeOps())
8746 return SDValue();
8747
Hal Finkelcd8664c2015-12-11 23:11:52 +00008748 SDValue LHS = N->getOperand(1);
8749 SDValue RHS = N->getOperand(2);
Tim Northover3b0846e2014-05-24 12:50:23 +00008750 assert(LHS.getValueType().is64BitVector() &&
8751 RHS.getValueType().is64BitVector() &&
8752 "unexpected shape for long operation");
8753
8754 // Either node could be a DUP, but it's not worth doing both of them (you'd
8755 // just as well use the non-high version) so look for a corresponding extract
8756 // operation on the other "wing".
8757 if (isEssentiallyExtractSubvector(LHS)) {
8758 RHS = tryExtendDUPToExtractHigh(RHS, DAG);
8759 if (!RHS.getNode())
8760 return SDValue();
8761 } else if (isEssentiallyExtractSubvector(RHS)) {
8762 LHS = tryExtendDUPToExtractHigh(LHS, DAG);
8763 if (!LHS.getNode())
8764 return SDValue();
8765 }
8766
Hal Finkelcd8664c2015-12-11 23:11:52 +00008767 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
8768 N->getOperand(0), LHS, RHS);
Tim Northover3b0846e2014-05-24 12:50:23 +00008769}
8770
8771static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
8772 MVT ElemTy = N->getSimpleValueType(0).getScalarType();
8773 unsigned ElemBits = ElemTy.getSizeInBits();
8774
8775 int64_t ShiftAmount;
8776 if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
8777 APInt SplatValue, SplatUndef;
8778 unsigned SplatBitSize;
8779 bool HasAnyUndefs;
8780 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
8781 HasAnyUndefs, ElemBits) ||
8782 SplatBitSize != ElemBits)
8783 return SDValue();
8784
8785 ShiftAmount = SplatValue.getSExtValue();
8786 } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
8787 ShiftAmount = CVN->getSExtValue();
8788 } else
8789 return SDValue();
8790
8791 unsigned Opcode;
8792 bool IsRightShift;
8793 switch (IID) {
8794 default:
8795 llvm_unreachable("Unknown shift intrinsic");
8796 case Intrinsic::aarch64_neon_sqshl:
8797 Opcode = AArch64ISD::SQSHL_I;
8798 IsRightShift = false;
8799 break;
8800 case Intrinsic::aarch64_neon_uqshl:
8801 Opcode = AArch64ISD::UQSHL_I;
8802 IsRightShift = false;
8803 break;
8804 case Intrinsic::aarch64_neon_srshl:
8805 Opcode = AArch64ISD::SRSHR_I;
8806 IsRightShift = true;
8807 break;
8808 case Intrinsic::aarch64_neon_urshl:
8809 Opcode = AArch64ISD::URSHR_I;
8810 IsRightShift = true;
8811 break;
8812 case Intrinsic::aarch64_neon_sqshlu:
8813 Opcode = AArch64ISD::SQSHLU_I;
8814 IsRightShift = false;
8815 break;
8816 }
8817
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008818 if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) {
8819 SDLoc dl(N);
8820 return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
8821 DAG.getConstant(-ShiftAmount, dl, MVT::i32));
8822 } else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) {
8823 SDLoc dl(N);
8824 return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
8825 DAG.getConstant(ShiftAmount, dl, MVT::i32));
8826 }
Tim Northover3b0846e2014-05-24 12:50:23 +00008827
8828 return SDValue();
8829}
8830
8831// The CRC32[BH] instructions ignore the high bits of their data operand. Since
8832// the intrinsics must be legal and take an i32, this means there's almost
8833// certainly going to be a zext in the DAG which we can eliminate.
8834static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
8835 SDValue AndN = N->getOperand(2);
8836 if (AndN.getOpcode() != ISD::AND)
8837 return SDValue();
8838
8839 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
8840 if (!CMask || CMask->getZExtValue() != Mask)
8841 return SDValue();
8842
8843 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
8844 N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
8845}
8846
Ahmed Bougachafab58922015-03-10 20:45:38 +00008847static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N,
8848 SelectionDAG &DAG) {
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008849 SDLoc dl(N);
8850 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0),
8851 DAG.getNode(Opc, dl,
Ahmed Bougachafab58922015-03-10 20:45:38 +00008852 N->getOperand(1).getSimpleValueType(),
8853 N->getOperand(1)),
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00008854 DAG.getConstant(0, dl, MVT::i64));
Ahmed Bougachafab58922015-03-10 20:45:38 +00008855}
8856
Tim Northover3b0846e2014-05-24 12:50:23 +00008857static SDValue performIntrinsicCombine(SDNode *N,
8858 TargetLowering::DAGCombinerInfo &DCI,
8859 const AArch64Subtarget *Subtarget) {
8860 SelectionDAG &DAG = DCI.DAG;
8861 unsigned IID = getIntrinsicID(N);
8862 switch (IID) {
8863 default:
8864 break;
8865 case Intrinsic::aarch64_neon_vcvtfxs2fp:
8866 case Intrinsic::aarch64_neon_vcvtfxu2fp:
8867 return tryCombineFixedPointConvert(N, DCI, DAG);
Ahmed Bougachafab58922015-03-10 20:45:38 +00008868 case Intrinsic::aarch64_neon_saddv:
8869 return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG);
8870 case Intrinsic::aarch64_neon_uaddv:
8871 return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG);
8872 case Intrinsic::aarch64_neon_sminv:
8873 return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG);
8874 case Intrinsic::aarch64_neon_uminv:
8875 return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG);
8876 case Intrinsic::aarch64_neon_smaxv:
8877 return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG);
8878 case Intrinsic::aarch64_neon_umaxv:
8879 return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00008880 case Intrinsic::aarch64_neon_fmax:
James Molloyedf38f02015-08-11 12:06:33 +00008881 return DAG.getNode(ISD::FMAXNAN, SDLoc(N), N->getValueType(0),
Tim Northover3b0846e2014-05-24 12:50:23 +00008882 N->getOperand(1), N->getOperand(2));
8883 case Intrinsic::aarch64_neon_fmin:
James Molloyedf38f02015-08-11 12:06:33 +00008884 return DAG.getNode(ISD::FMINNAN, SDLoc(N), N->getValueType(0),
Tim Northover3b0846e2014-05-24 12:50:23 +00008885 N->getOperand(1), N->getOperand(2));
James Molloyb7b2a1e2015-08-11 12:06:37 +00008886 case Intrinsic::aarch64_neon_fmaxnm:
8887 return DAG.getNode(ISD::FMAXNUM, SDLoc(N), N->getValueType(0),
8888 N->getOperand(1), N->getOperand(2));
8889 case Intrinsic::aarch64_neon_fminnm:
8890 return DAG.getNode(ISD::FMINNUM, SDLoc(N), N->getValueType(0),
8891 N->getOperand(1), N->getOperand(2));
Tim Northover3b0846e2014-05-24 12:50:23 +00008892 case Intrinsic::aarch64_neon_smull:
8893 case Intrinsic::aarch64_neon_umull:
8894 case Intrinsic::aarch64_neon_pmull:
8895 case Intrinsic::aarch64_neon_sqdmull:
Hal Finkelcd8664c2015-12-11 23:11:52 +00008896 return tryCombineLongOpWithDup(IID, N, DCI, DAG);
Tim Northover3b0846e2014-05-24 12:50:23 +00008897 case Intrinsic::aarch64_neon_sqshl:
8898 case Intrinsic::aarch64_neon_uqshl:
8899 case Intrinsic::aarch64_neon_sqshlu:
8900 case Intrinsic::aarch64_neon_srshl:
8901 case Intrinsic::aarch64_neon_urshl:
8902 return tryCombineShiftImm(IID, N, DAG);
8903 case Intrinsic::aarch64_crc32b:
8904 case Intrinsic::aarch64_crc32cb:
8905 return tryCombineCRC32(0xff, N, DAG);
8906 case Intrinsic::aarch64_crc32h:
8907 case Intrinsic::aarch64_crc32ch:
8908 return tryCombineCRC32(0xffff, N, DAG);
8909 }
8910 return SDValue();
8911}
8912
8913static SDValue performExtendCombine(SDNode *N,
8914 TargetLowering::DAGCombinerInfo &DCI,
8915 SelectionDAG &DAG) {
8916 // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
8917 // we can convert that DUP into another extract_high (of a bigger DUP), which
8918 // helps the backend to decide that an sabdl2 would be useful, saving a real
8919 // extract_high operation.
8920 if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
Hal Finkelcd8664c2015-12-11 23:11:52 +00008921 N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
Tim Northover3b0846e2014-05-24 12:50:23 +00008922 SDNode *ABDNode = N->getOperand(0).getNode();
Hal Finkelcd8664c2015-12-11 23:11:52 +00008923 unsigned IID = getIntrinsicID(ABDNode);
8924 if (IID == Intrinsic::aarch64_neon_sabd ||
8925 IID == Intrinsic::aarch64_neon_uabd) {
8926 SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
8927 if (!NewABD.getNode())
8928 return SDValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00008929
Hal Finkelcd8664c2015-12-11 23:11:52 +00008930 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
8931 NewABD);
8932 }
Tim Northover3b0846e2014-05-24 12:50:23 +00008933 }
8934
8935 // This is effectively a custom type legalization for AArch64.
8936 //
8937 // Type legalization will split an extend of a small, legal, type to a larger
8938 // illegal type by first splitting the destination type, often creating
8939 // illegal source types, which then get legalized in isel-confusing ways,
8940 // leading to really terrible codegen. E.g.,
8941 // %result = v8i32 sext v8i8 %value
8942 // becomes
8943 // %losrc = extract_subreg %value, ...
8944 // %hisrc = extract_subreg %value, ...
8945 // %lo = v4i32 sext v4i8 %losrc
8946 // %hi = v4i32 sext v4i8 %hisrc
8947 // Things go rapidly downhill from there.
8948 //
8949 // For AArch64, the [sz]ext vector instructions can only go up one element
8950 // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
8951 // take two instructions.
8952 //
8953 // This implies that the most efficient way to do the extend from v8i8
8954 // to two v4i32 values is to first extend the v8i8 to v8i16, then do
8955 // the normal splitting to happen for the v8i16->v8i32.
8956
8957 // This is pre-legalization to catch some cases where the default
8958 // type legalization will create ill-tempered code.
8959 if (!DCI.isBeforeLegalizeOps())
8960 return SDValue();
8961
8962 // We're only interested in cleaning things up for non-legal vector types
8963 // here. If both the source and destination are legal, things will just
8964 // work naturally without any fiddling.
Matthew Simpson13dddb02015-12-17 21:29:47 +00008965 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
Tim Northover3b0846e2014-05-24 12:50:23 +00008966 EVT ResVT = N->getValueType(0);
8967 if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
8968 return SDValue();
8969 // If the vector type isn't a simple VT, it's beyond the scope of what
8970 // we're worried about here. Let legalization do its thing and hope for
8971 // the best.
Jim Grosbachec2b0d02014-08-28 22:08:28 +00008972 SDValue Src = N->getOperand(0);
8973 EVT SrcVT = Src->getValueType(0);
8974 if (!ResVT.isSimple() || !SrcVT.isSimple())
Tim Northover3b0846e2014-05-24 12:50:23 +00008975 return SDValue();
8976
Tim Northover3b0846e2014-05-24 12:50:23 +00008977 // If the source VT is a 64-bit vector, we can play games and get the
8978 // better results we want.
8979 if (SrcVT.getSizeInBits() != 64)
8980 return SDValue();
8981
Sanjay Patel1ed771f2016-09-14 16:37:15 +00008982 unsigned SrcEltSize = SrcVT.getScalarSizeInBits();
Tim Northover3b0846e2014-05-24 12:50:23 +00008983 unsigned ElementCount = SrcVT.getVectorNumElements();
8984 SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
8985 SDLoc DL(N);
8986 Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
8987
8988 // Now split the rest of the operation into two halves, each with a 64
8989 // bit source.
8990 EVT LoVT, HiVT;
8991 SDValue Lo, Hi;
8992 unsigned NumElements = ResVT.getVectorNumElements();
8993 assert(!(NumElements & 1) && "Splitting vector, but not in half!");
8994 LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
8995 ResVT.getVectorElementType(), NumElements / 2);
8996
8997 EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
8998 LoVT.getVectorNumElements());
8999 Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00009000 DAG.getConstant(0, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00009001 Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00009002 DAG.getConstant(InNVT.getVectorNumElements(), DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00009003 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
9004 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
9005
9006 // Now combine the parts back together so we still have a single result
9007 // like the combiner expects.
9008 return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
9009}
9010
Geoff Berry8301c642016-11-16 19:35:19 +00009011static SDValue splitStoreSplat(SelectionDAG &DAG, StoreSDNode &St,
9012 SDValue SplatVal, unsigned NumVecElts) {
Geoff Berrye8de67ab2016-11-14 19:59:11 +00009013 unsigned OrigAlignment = St.getAlignment();
Geoff Berry8301c642016-11-16 19:35:19 +00009014 unsigned EltOffset = SplatVal.getValueType().getSizeInBits() / 8;
Geoff Berrydef4bfa2016-11-14 19:39:00 +00009015
9016 // Create scalar stores. This is at least as good as the code sequence for a
9017 // split unaligned store which is a dup.s, ext.b, and two stores.
9018 // Most of the time the three stores should be replaced by store pair
9019 // instructions (stp).
Geoff Berrye8de67ab2016-11-14 19:59:11 +00009020 SDLoc DL(&St);
9021 SDValue BasePtr = St.getBasePtr();
John Brawn3a9c8422017-02-06 18:07:20 +00009022 const MachinePointerInfo &PtrInfo = St.getPointerInfo();
Geoff Berrydef4bfa2016-11-14 19:39:00 +00009023 SDValue NewST1 =
John Brawn3a9c8422017-02-06 18:07:20 +00009024 DAG.getStore(St.getChain(), DL, SplatVal, BasePtr, PtrInfo,
Geoff Berry8301c642016-11-16 19:35:19 +00009025 OrigAlignment, St.getMemOperand()->getFlags());
Geoff Berrydef4bfa2016-11-14 19:39:00 +00009026
9027 unsigned Offset = EltOffset;
9028 while (--NumVecElts) {
Geoff Berry8301c642016-11-16 19:35:19 +00009029 unsigned Alignment = MinAlign(OrigAlignment, Offset);
Geoff Berrydef4bfa2016-11-14 19:39:00 +00009030 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
9031 DAG.getConstant(Offset, DL, MVT::i64));
9032 NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
John Brawn3a9c8422017-02-06 18:07:20 +00009033 PtrInfo.getWithOffset(Offset), Alignment,
Geoff Berrye8de67ab2016-11-14 19:59:11 +00009034 St.getMemOperand()->getFlags());
Geoff Berrydef4bfa2016-11-14 19:39:00 +00009035 Offset += EltOffset;
9036 }
9037 return NewST1;
9038}
9039
Geoff Berry526c5052016-11-14 19:39:04 +00009040/// Replace a splat of zeros to a vector store by scalar stores of WZR/XZR. The
9041/// load store optimizer pass will merge them to store pair stores. This should
9042/// be better than a movi to create the vector zero followed by a vector store
9043/// if the zero constant is not re-used, since one instructions and one register
9044/// live range will be removed.
9045///
9046/// For example, the final generated code should be:
9047///
9048/// stp xzr, xzr, [x0]
9049///
9050/// instead of:
9051///
9052/// movi v0.2d, #0
9053/// str q0, [x0]
9054///
Geoff Berrye8de67ab2016-11-14 19:59:11 +00009055static SDValue replaceZeroVectorStore(SelectionDAG &DAG, StoreSDNode &St) {
9056 SDValue StVal = St.getValue();
Geoff Berry526c5052016-11-14 19:39:04 +00009057 EVT VT = StVal.getValueType();
9058
Geoff Berry8301c642016-11-16 19:35:19 +00009059 // It is beneficial to scalarize a zero splat store for 2 or 3 i64 elements or
9060 // 2, 3 or 4 i32 elements.
Geoff Berry526c5052016-11-14 19:39:04 +00009061 int NumVecElts = VT.getVectorNumElements();
Geoff Berry8301c642016-11-16 19:35:19 +00009062 if (!(((NumVecElts == 2 || NumVecElts == 3) &&
9063 VT.getVectorElementType().getSizeInBits() == 64) ||
9064 ((NumVecElts == 2 || NumVecElts == 3 || NumVecElts == 4) &&
9065 VT.getVectorElementType().getSizeInBits() == 32)))
Geoff Berry526c5052016-11-14 19:39:04 +00009066 return SDValue();
9067
9068 if (StVal.getOpcode() != ISD::BUILD_VECTOR)
9069 return SDValue();
9070
9071 // If the zero constant has more than one use then the vector store could be
9072 // better since the constant mov will be amortized and stp q instructions
9073 // should be able to be formed.
9074 if (!StVal.hasOneUse())
9075 return SDValue();
9076
9077 // If the immediate offset of the address operand is too large for the stp
9078 // instruction, then bail out.
Geoff Berrye8de67ab2016-11-14 19:59:11 +00009079 if (DAG.isBaseWithConstantOffset(St.getBasePtr())) {
9080 int64_t Offset = St.getBasePtr()->getConstantOperandVal(1);
Geoff Berry526c5052016-11-14 19:39:04 +00009081 if (Offset < -512 || Offset > 504)
9082 return SDValue();
9083 }
9084
9085 for (int I = 0; I < NumVecElts; ++I) {
9086 SDValue EltVal = StVal.getOperand(I);
Geoff Berry8301c642016-11-16 19:35:19 +00009087 if (!isNullConstant(EltVal) && !isNullFPConstant(EltVal))
Geoff Berry526c5052016-11-14 19:39:04 +00009088 return SDValue();
9089 }
Geoff Berry8301c642016-11-16 19:35:19 +00009090
Geoff Berry526c5052016-11-14 19:39:04 +00009091 // Use WZR/XZR here to prevent DAGCombiner::MergeConsecutiveStores from
9092 // undoing this transformation.
Geoff Berry8301c642016-11-16 19:35:19 +00009093 SDValue SplatVal = VT.getVectorElementType().getSizeInBits() == 32
9094 ? DAG.getRegister(AArch64::WZR, MVT::i32)
9095 : DAG.getRegister(AArch64::XZR, MVT::i64);
9096 return splitStoreSplat(DAG, St, SplatVal, NumVecElts);
Geoff Berry526c5052016-11-14 19:39:04 +00009097}
9098
Tim Northover3b0846e2014-05-24 12:50:23 +00009099/// Replace a splat of a scalar to a vector store by scalar stores of the scalar
9100/// value. The load store optimizer pass will merge them to store pair stores.
9101/// This has better performance than a splat of the scalar followed by a split
9102/// vector store. Even if the stores are not merged it is four stores vs a dup,
9103/// followed by an ext.b and two stores.
Geoff Berrye8de67ab2016-11-14 19:59:11 +00009104static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode &St) {
9105 SDValue StVal = St.getValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00009106 EVT VT = StVal.getValueType();
9107
9108 // Don't replace floating point stores, they possibly won't be transformed to
9109 // stp because of the store pair suppress pass.
9110 if (VT.isFloatingPoint())
9111 return SDValue();
9112
Tim Northover3b0846e2014-05-24 12:50:23 +00009113 // We can express a splat as store pair(s) for 2 or 4 elements.
9114 unsigned NumVecElts = VT.getVectorNumElements();
9115 if (NumVecElts != 4 && NumVecElts != 2)
9116 return SDValue();
Tim Northover3b0846e2014-05-24 12:50:23 +00009117
9118 // Check that this is a splat.
Geoff Berry25fa4992016-11-11 19:25:20 +00009119 // Make sure that each of the relevant vector element locations are inserted
9120 // to, i.e. 0 and 1 for v2i64 and 0, 1, 2, 3 for v4i32.
9121 std::bitset<4> IndexNotInserted((1 << NumVecElts) - 1);
9122 SDValue SplatVal;
9123 for (unsigned I = 0; I < NumVecElts; ++I) {
9124 // Check for insert vector elements.
9125 if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
Tim Northover3b0846e2014-05-24 12:50:23 +00009126 return SDValue();
Geoff Berry25fa4992016-11-11 19:25:20 +00009127
9128 // Check that same value is inserted at each vector element.
9129 if (I == 0)
9130 SplatVal = StVal.getOperand(1);
9131 else if (StVal.getOperand(1) != SplatVal)
Tim Northover3b0846e2014-05-24 12:50:23 +00009132 return SDValue();
Geoff Berry25fa4992016-11-11 19:25:20 +00009133
9134 // Check insert element index.
9135 ConstantSDNode *CIndex = dyn_cast<ConstantSDNode>(StVal.getOperand(2));
9136 if (!CIndex)
9137 return SDValue();
9138 uint64_t IndexVal = CIndex->getZExtValue();
9139 if (IndexVal >= NumVecElts)
9140 return SDValue();
9141 IndexNotInserted.reset(IndexVal);
9142
9143 StVal = StVal.getOperand(0);
Tim Northover3b0846e2014-05-24 12:50:23 +00009144 }
Geoff Berry25fa4992016-11-11 19:25:20 +00009145 // Check that all vector element locations were inserted to.
9146 if (IndexNotInserted.any())
9147 return SDValue();
9148
Geoff Berry8301c642016-11-16 19:35:19 +00009149 return splitStoreSplat(DAG, St, SplatVal, NumVecElts);
Tim Northover3b0846e2014-05-24 12:50:23 +00009150}
9151
Geoff Berry8301c642016-11-16 19:35:19 +00009152static SDValue splitStores(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
9153 SelectionDAG &DAG,
9154 const AArch64Subtarget *Subtarget) {
Tim Northover3b0846e2014-05-24 12:50:23 +00009155 if (!DCI.isBeforeLegalize())
9156 return SDValue();
9157
9158 StoreSDNode *S = cast<StoreSDNode>(N);
9159 if (S->isVolatile())
9160 return SDValue();
9161
Geoff Berry526c5052016-11-14 19:39:04 +00009162 SDValue StVal = S->getValue();
9163 EVT VT = StVal.getValueType();
9164 if (!VT.isVector())
9165 return SDValue();
9166
9167 // If we get a splat of zeros, convert this vector store to a store of
9168 // scalars. They will be merged into store pairs of xzr thereby removing one
9169 // instruction and one register.
Geoff Berrye8de67ab2016-11-14 19:59:11 +00009170 if (SDValue ReplacedZeroSplat = replaceZeroVectorStore(DAG, *S))
Geoff Berry526c5052016-11-14 19:39:04 +00009171 return ReplacedZeroSplat;
9172
Sanjay Patelbbbf9a12015-09-25 21:49:48 +00009173 // FIXME: The logic for deciding if an unaligned store should be split should
9174 // be included in TLI.allowsMisalignedMemoryAccesses(), and there should be
9175 // a call to that function here.
9176
Matthias Braun651cff42016-06-02 18:03:53 +00009177 if (!Subtarget->isMisaligned128StoreSlow())
Tim Northover3b0846e2014-05-24 12:50:23 +00009178 return SDValue();
9179
Sanjay Patel924879a2015-08-04 15:49:57 +00009180 // Don't split at -Oz.
9181 if (DAG.getMachineFunction().getFunction()->optForMinSize())
Tim Northover3b0846e2014-05-24 12:50:23 +00009182 return SDValue();
9183
Tim Northover3b0846e2014-05-24 12:50:23 +00009184 // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
9185 // those up regresses performance on micro-benchmarks and olden/bh.
Geoff Berry526c5052016-11-14 19:39:04 +00009186 if (VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
Tim Northover3b0846e2014-05-24 12:50:23 +00009187 return SDValue();
9188
9189 // Split unaligned 16B stores. They are terrible for performance.
9190 // Don't split stores with alignment of 1 or 2. Code that uses clang vector
9191 // extensions can use this to mark that it does not want splitting to happen
9192 // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
9193 // eliminating alignment hazards is only 1 in 8 for alignment of 2.
9194 if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
9195 S->getAlignment() <= 2)
9196 return SDValue();
9197
9198 // If we get a splat of a scalar convert this vector store to a store of
9199 // scalars. They will be merged into store pairs thereby removing two
9200 // instructions.
Geoff Berrye8de67ab2016-11-14 19:59:11 +00009201 if (SDValue ReplacedSplat = replaceSplatVectorStore(DAG, *S))
Tim Northover3b0846e2014-05-24 12:50:23 +00009202 return ReplacedSplat;
9203
9204 SDLoc DL(S);
9205 unsigned NumElts = VT.getVectorNumElements() / 2;
9206 // Split VT into two.
9207 EVT HalfVT =
9208 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts);
9209 SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00009210 DAG.getConstant(0, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00009211 SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00009212 DAG.getConstant(NumElts, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00009213 SDValue BasePtr = S->getBasePtr();
9214 SDValue NewST1 =
9215 DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
Justin Lebar9c375812016-07-15 18:27:10 +00009216 S->getAlignment(), S->getMemOperand()->getFlags());
Tim Northover3b0846e2014-05-24 12:50:23 +00009217 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +00009218 DAG.getConstant(8, DL, MVT::i64));
Tim Northover3b0846e2014-05-24 12:50:23 +00009219 return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
Justin Lebar9c375812016-07-15 18:27:10 +00009220 S->getPointerInfo(), S->getAlignment(),
9221 S->getMemOperand()->getFlags());
Tim Northover3b0846e2014-05-24 12:50:23 +00009222}
9223
9224/// Target-specific DAG combine function for post-increment LD1 (lane) and
9225/// post-increment LD1R.
9226static SDValue performPostLD1Combine(SDNode *N,
9227 TargetLowering::DAGCombinerInfo &DCI,
9228 bool IsLaneOp) {
9229 if (DCI.isBeforeLegalizeOps())
9230 return SDValue();
9231
9232 SelectionDAG &DAG = DCI.DAG;
9233 EVT VT = N->getValueType(0);
9234
9235 unsigned LoadIdx = IsLaneOp ? 1 : 0;
9236 SDNode *LD = N->getOperand(LoadIdx).getNode();
9237 // If it is not LOAD, can not do such combine.
9238 if (LD->getOpcode() != ISD::LOAD)
9239 return SDValue();
9240
9241 LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
9242 EVT MemVT = LoadSDN->getMemoryVT();
9243 // Check if memory operand is the same type as the vector element.
9244 if (MemVT != VT.getVectorElementType())
9245 return SDValue();
9246
9247 // Check if there are other uses. If so, do not combine as it will introduce
9248 // an extra load.
9249 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
9250 ++UI) {
9251 if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
9252 continue;
9253 if (*UI != N)
9254 return SDValue();
9255 }
9256
9257 SDValue Addr = LD->getOperand(1);
9258 SDValue Vector = N->getOperand(0);
9259 // Search for a use of the address operand that is an increment.
9260 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
9261 Addr.getNode()->use_end(); UI != UE; ++UI) {
9262 SDNode *User = *UI;
9263 if (User->getOpcode() != ISD::ADD
9264 || UI.getUse().getResNo() != Addr.getResNo())
9265 continue;
9266
9267 // Check that the add is independent of the load. Otherwise, folding it
9268 // would create a cycle.
9269 if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User))
9270 continue;
9271 // Also check that add is not used in the vector operand. This would also
9272 // create a cycle.
9273 if (User->isPredecessorOf(Vector.getNode()))
9274 continue;
9275
9276 // If the increment is a constant, it must match the memory ref size.
9277 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
9278 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
9279 uint32_t IncVal = CInc->getZExtValue();
9280 unsigned NumBytes = VT.getScalarSizeInBits() / 8;
9281 if (IncVal != NumBytes)
9282 continue;
9283 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
9284 }
9285
Ahmed Bougacha2448ef52015-04-17 21:02:30 +00009286 // Finally, check that the vector doesn't depend on the load.
9287 // Again, this would create a cycle.
9288 // The load depending on the vector is fine, as that's the case for the
9289 // LD1*post we'll eventually generate anyway.
9290 if (LoadSDN->isPredecessorOf(Vector.getNode()))
9291 continue;
9292
Tim Northover3b0846e2014-05-24 12:50:23 +00009293 SmallVector<SDValue, 8> Ops;
9294 Ops.push_back(LD->getOperand(0)); // Chain
9295 if (IsLaneOp) {
9296 Ops.push_back(Vector); // The vector to be inserted
9297 Ops.push_back(N->getOperand(2)); // The lane to be inserted in the vector
9298 }
9299 Ops.push_back(Addr);
9300 Ops.push_back(Inc);
9301
9302 EVT Tys[3] = { VT, MVT::i64, MVT::Other };
Craig Toppere1d12942014-08-27 05:25:25 +00009303 SDVTList SDTys = DAG.getVTList(Tys);
Tim Northover3b0846e2014-05-24 12:50:23 +00009304 unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
9305 SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
9306 MemVT,
9307 LoadSDN->getMemOperand());
9308
9309 // Update the uses.
Benjamin Kramer3bc1edf2016-07-02 11:41:39 +00009310 SDValue NewResults[] = {
9311 SDValue(LD, 0), // The result of load
9312 SDValue(UpdN.getNode(), 2) // Chain
9313 };
Tim Northover3b0846e2014-05-24 12:50:23 +00009314 DCI.CombineTo(LD, NewResults);
9315 DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result
9316 DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register
9317
9318 break;
9319 }
9320 return SDValue();
9321}
9322
Tim Northover339c83e2015-11-10 00:44:23 +00009323/// Simplify \Addr given that the top byte of it is ignored by HW during
9324/// address translation.
9325static bool performTBISimplification(SDValue Addr,
9326 TargetLowering::DAGCombinerInfo &DCI,
9327 SelectionDAG &DAG) {
9328 APInt DemandedMask = APInt::getLowBitsSet(64, 56);
9329 APInt KnownZero, KnownOne;
9330 TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
9331 DCI.isBeforeLegalizeOps());
9332 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9333 if (TLI.SimplifyDemandedBits(Addr, DemandedMask, KnownZero, KnownOne, TLO)) {
9334 DCI.CommitTargetLoweringOpt(TLO);
9335 return true;
9336 }
9337 return false;
9338}
9339
9340static SDValue performSTORECombine(SDNode *N,
9341 TargetLowering::DAGCombinerInfo &DCI,
9342 SelectionDAG &DAG,
9343 const AArch64Subtarget *Subtarget) {
Geoff Berry8301c642016-11-16 19:35:19 +00009344 if (SDValue Split = splitStores(N, DCI, DAG, Subtarget))
Tim Northover339c83e2015-11-10 00:44:23 +00009345 return Split;
9346
9347 if (Subtarget->supportsAddressTopByteIgnored() &&
9348 performTBISimplification(N->getOperand(2), DCI, DAG))
9349 return SDValue(N, 0);
9350
9351 return SDValue();
9352}
9353
Nirav Dave54e22f32017-03-14 00:34:14 +00009354/// This function handles the log2-shuffle pattern produced by the
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009355/// LoopVectorizer for the across vector reduction. It consists of
9356/// log2(NumVectorElements) steps and, in each step, 2^(s) elements
9357/// are reduced, where s is an induction variable from 0 to
9358/// log2(NumVectorElements).
9359static SDValue tryMatchAcrossLaneShuffleForReduction(SDNode *N, SDValue OpV,
9360 unsigned Op,
9361 SelectionDAG &DAG) {
9362 EVT VTy = OpV->getOperand(0).getValueType();
9363 if (!VTy.isVector())
Chad Rosier6c36eff2015-09-03 18:13:57 +00009364 return SDValue();
9365
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009366 int NumVecElts = VTy.getVectorNumElements();
Jun Bum Lim0aace132015-10-09 14:11:25 +00009367 if (Op == ISD::FMAXNUM || Op == ISD::FMINNUM) {
9368 if (NumVecElts != 4)
9369 return SDValue();
9370 } else {
9371 if (NumVecElts != 4 && NumVecElts != 8 && NumVecElts != 16)
9372 return SDValue();
9373 }
Chad Rosier6c36eff2015-09-03 18:13:57 +00009374
9375 int NumExpectedSteps = APInt(8, NumVecElts).logBase2();
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009376 SDValue PreOp = OpV;
Chad Rosier6c36eff2015-09-03 18:13:57 +00009377 // Iterate over each step of the across vector reduction.
9378 for (int CurStep = 0; CurStep != NumExpectedSteps; ++CurStep) {
Chad Rosier6c36eff2015-09-03 18:13:57 +00009379 SDValue CurOp = PreOp.getOperand(0);
9380 SDValue Shuffle = PreOp.getOperand(1);
9381 if (Shuffle.getOpcode() != ISD::VECTOR_SHUFFLE) {
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009382 // Try to swap the 1st and 2nd operand as add and min/max instructions
9383 // are commutative.
Chad Rosier6c36eff2015-09-03 18:13:57 +00009384 CurOp = PreOp.getOperand(1);
9385 Shuffle = PreOp.getOperand(0);
9386 if (Shuffle.getOpcode() != ISD::VECTOR_SHUFFLE)
9387 return SDValue();
9388 }
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009389
9390 // Check if the input vector is fed by the operator we want to handle,
9391 // except the last step; the very first input vector is not necessarily
9392 // the same operator we are handling.
9393 if (CurOp.getOpcode() != Op && (CurStep != (NumExpectedSteps - 1)))
9394 return SDValue();
9395
Chad Rosier6c36eff2015-09-03 18:13:57 +00009396 // Check if it forms one step of the across vector reduction.
9397 // E.g.,
9398 // %cur = add %1, %0
9399 // %shuffle = vector_shuffle %cur, <2, 3, u, u>
9400 // %pre = add %cur, %shuffle
9401 if (Shuffle.getOperand(0) != CurOp)
9402 return SDValue();
9403
9404 int NumMaskElts = 1 << CurStep;
9405 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Shuffle)->getMask();
9406 // Check mask values in each step.
9407 // We expect the shuffle mask in each step follows a specific pattern
9408 // denoted here by the <M, U> form, where M is a sequence of integers
9409 // starting from NumMaskElts, increasing by 1, and the number integers
9410 // in M should be NumMaskElts. U is a sequence of UNDEFs and the number
9411 // of undef in U should be NumVecElts - NumMaskElts.
9412 // E.g., for <8 x i16>, mask values in each step should be :
9413 // step 0 : <1,u,u,u,u,u,u,u>
9414 // step 1 : <2,3,u,u,u,u,u,u>
9415 // step 2 : <4,5,6,7,u,u,u,u>
9416 for (int i = 0; i < NumVecElts; ++i)
9417 if ((i < NumMaskElts && Mask[i] != (NumMaskElts + i)) ||
9418 (i >= NumMaskElts && !(Mask[i] < 0)))
9419 return SDValue();
9420
9421 PreOp = CurOp;
9422 }
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009423 unsigned Opcode;
Jun Bum Lim0aace132015-10-09 14:11:25 +00009424 bool IsIntrinsic = false;
9425
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009426 switch (Op) {
9427 default:
9428 llvm_unreachable("Unexpected operator for across vector reduction");
9429 case ISD::ADD:
9430 Opcode = AArch64ISD::UADDV;
9431 break;
9432 case ISD::SMAX:
9433 Opcode = AArch64ISD::SMAXV;
9434 break;
9435 case ISD::UMAX:
9436 Opcode = AArch64ISD::UMAXV;
9437 break;
9438 case ISD::SMIN:
9439 Opcode = AArch64ISD::SMINV;
9440 break;
9441 case ISD::UMIN:
9442 Opcode = AArch64ISD::UMINV;
9443 break;
Jun Bum Lim0aace132015-10-09 14:11:25 +00009444 case ISD::FMAXNUM:
9445 Opcode = Intrinsic::aarch64_neon_fmaxnmv;
9446 IsIntrinsic = true;
9447 break;
9448 case ISD::FMINNUM:
9449 Opcode = Intrinsic::aarch64_neon_fminnmv;
9450 IsIntrinsic = true;
9451 break;
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009452 }
Chad Rosier6c36eff2015-09-03 18:13:57 +00009453 SDLoc DL(N);
Jun Bum Lim0aace132015-10-09 14:11:25 +00009454
9455 return IsIntrinsic
9456 ? DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, N->getValueType(0),
9457 DAG.getConstant(Opcode, DL, MVT::i32), PreOp)
9458 : DAG.getNode(
9459 ISD::EXTRACT_VECTOR_ELT, DL, N->getValueType(0),
9460 DAG.getNode(Opcode, DL, PreOp.getSimpleValueType(), PreOp),
9461 DAG.getConstant(0, DL, MVT::i64));
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009462}
9463
9464/// Target-specific DAG combine for the across vector min/max reductions.
9465/// This function specifically handles the final clean-up step of the vector
9466/// min/max reductions produced by the LoopVectorizer. It is the log2-shuffle
9467/// pattern, which narrows down and finds the final min/max value from all
9468/// elements of the vector.
9469/// For example, for a <16 x i8> vector :
9470/// svn0 = vector_shuffle %0, undef<8,9,10,11,12,13,14,15,u,u,u,u,u,u,u,u>
9471/// %smax0 = smax %arr, svn0
9472/// %svn1 = vector_shuffle %smax0, undef<4,5,6,7,u,u,u,u,u,u,u,u,u,u,u,u>
9473/// %smax1 = smax %smax0, %svn1
9474/// %svn2 = vector_shuffle %smax1, undef<2,3,u,u,u,u,u,u,u,u,u,u,u,u,u,u>
9475/// %smax2 = smax %smax1, svn2
9476/// %svn3 = vector_shuffle %smax2, undef<1,u,u,u,u,u,u,u,u,u,u,u,u,u,u,u>
9477/// %sc = setcc %smax2, %svn3, gt
9478/// %n0 = extract_vector_elt %sc, #0
9479/// %n1 = extract_vector_elt %smax2, #0
9480/// %n2 = extract_vector_elt $smax2, #1
9481/// %result = select %n0, %n1, n2
9482/// becomes :
9483/// %1 = smaxv %0
9484/// %result = extract_vector_elt %1, 0
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009485static SDValue
9486performAcrossLaneMinMaxReductionCombine(SDNode *N, SelectionDAG &DAG,
9487 const AArch64Subtarget *Subtarget) {
9488 if (!Subtarget->hasNEON())
9489 return SDValue();
9490
9491 SDValue N0 = N->getOperand(0);
9492 SDValue IfTrue = N->getOperand(1);
9493 SDValue IfFalse = N->getOperand(2);
9494
9495 // Check if the SELECT merges up the final result of the min/max
9496 // from a vector.
9497 if (N0.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9498 IfTrue.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9499 IfFalse.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9500 return SDValue();
9501
9502 // Expect N0 is fed by SETCC.
9503 SDValue SetCC = N0.getOperand(0);
9504 EVT SetCCVT = SetCC.getValueType();
9505 if (SetCC.getOpcode() != ISD::SETCC || !SetCCVT.isVector() ||
9506 SetCCVT.getVectorElementType() != MVT::i1)
9507 return SDValue();
9508
9509 SDValue VectorOp = SetCC.getOperand(0);
9510 unsigned Op = VectorOp->getOpcode();
9511 // Check if the input vector is fed by the operator we want to handle.
Jun Bum Lim0aace132015-10-09 14:11:25 +00009512 if (Op != ISD::SMAX && Op != ISD::UMAX && Op != ISD::SMIN &&
9513 Op != ISD::UMIN && Op != ISD::FMAXNUM && Op != ISD::FMINNUM)
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009514 return SDValue();
9515
9516 EVT VTy = VectorOp.getValueType();
9517 if (!VTy.isVector())
9518 return SDValue();
9519
Jun Bum Lim0aace132015-10-09 14:11:25 +00009520 if (VTy.getSizeInBits() < 64)
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009521 return SDValue();
9522
Jun Bum Lim0aace132015-10-09 14:11:25 +00009523 EVT EltTy = VTy.getVectorElementType();
9524 if (Op == ISD::FMAXNUM || Op == ISD::FMINNUM) {
9525 if (EltTy != MVT::f32)
9526 return SDValue();
9527 } else {
9528 if (EltTy != MVT::i32 && EltTy != MVT::i16 && EltTy != MVT::i8)
9529 return SDValue();
9530 }
9531
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009532 // Check if extracting from the same vector.
9533 // For example,
9534 // %sc = setcc %vector, %svn1, gt
9535 // %n0 = extract_vector_elt %sc, #0
9536 // %n1 = extract_vector_elt %vector, #0
9537 // %n2 = extract_vector_elt $vector, #1
9538 if (!(VectorOp == IfTrue->getOperand(0) &&
9539 VectorOp == IfFalse->getOperand(0)))
9540 return SDValue();
9541
9542 // Check if the condition code is matched with the operator type.
9543 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
9544 if ((Op == ISD::SMAX && CC != ISD::SETGT && CC != ISD::SETGE) ||
9545 (Op == ISD::UMAX && CC != ISD::SETUGT && CC != ISD::SETUGE) ||
9546 (Op == ISD::SMIN && CC != ISD::SETLT && CC != ISD::SETLE) ||
Jun Bum Lim0aace132015-10-09 14:11:25 +00009547 (Op == ISD::UMIN && CC != ISD::SETULT && CC != ISD::SETULE) ||
9548 (Op == ISD::FMAXNUM && CC != ISD::SETOGT && CC != ISD::SETOGE &&
9549 CC != ISD::SETUGT && CC != ISD::SETUGE && CC != ISD::SETGT &&
9550 CC != ISD::SETGE) ||
9551 (Op == ISD::FMINNUM && CC != ISD::SETOLT && CC != ISD::SETOLE &&
9552 CC != ISD::SETULT && CC != ISD::SETULE && CC != ISD::SETLT &&
9553 CC != ISD::SETLE))
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009554 return SDValue();
9555
9556 // Expect to check only lane 0 from the vector SETCC.
Artyom Skrobov314ee042015-11-25 19:41:11 +00009557 if (!isNullConstant(N0.getOperand(1)))
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009558 return SDValue();
9559
9560 // Expect to extract the true value from lane 0.
Artyom Skrobov314ee042015-11-25 19:41:11 +00009561 if (!isNullConstant(IfTrue.getOperand(1)))
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009562 return SDValue();
9563
9564 // Expect to extract the false value from lane 1.
Artyom Skrobov314ee042015-11-25 19:41:11 +00009565 if (!isOneConstant(IfFalse.getOperand(1)))
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009566 return SDValue();
9567
9568 return tryMatchAcrossLaneShuffleForReduction(N, SetCC, Op, DAG);
9569}
9570
9571/// Target-specific DAG combine for the across vector add reduction.
9572/// This function specifically handles the final clean-up step of the vector
9573/// add reduction produced by the LoopVectorizer. It is the log2-shuffle
9574/// pattern, which adds all elements of a vector together.
9575/// For example, for a <4 x i32> vector :
9576/// %1 = vector_shuffle %0, <2,3,u,u>
9577/// %2 = add %0, %1
9578/// %3 = vector_shuffle %2, <1,u,u,u>
9579/// %4 = add %2, %3
9580/// %result = extract_vector_elt %4, 0
9581/// becomes :
9582/// %0 = uaddv %0
9583/// %result = extract_vector_elt %0, 0
9584static SDValue
9585performAcrossLaneAddReductionCombine(SDNode *N, SelectionDAG &DAG,
9586 const AArch64Subtarget *Subtarget) {
9587 if (!Subtarget->hasNEON())
9588 return SDValue();
9589 SDValue N0 = N->getOperand(0);
9590 SDValue N1 = N->getOperand(1);
9591
9592 // Check if the input vector is fed by the ADD.
9593 if (N0->getOpcode() != ISD::ADD)
9594 return SDValue();
9595
9596 // The vector extract idx must constant zero because we only expect the final
9597 // result of the reduction is placed in lane 0.
Artyom Skrobov314ee042015-11-25 19:41:11 +00009598 if (!isNullConstant(N1))
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009599 return SDValue();
9600
9601 EVT VTy = N0.getValueType();
9602 if (!VTy.isVector())
9603 return SDValue();
9604
9605 EVT EltTy = VTy.getVectorElementType();
9606 if (EltTy != MVT::i32 && EltTy != MVT::i16 && EltTy != MVT::i8)
9607 return SDValue();
9608
Jun Bum Lim0aace132015-10-09 14:11:25 +00009609 if (VTy.getSizeInBits() < 64)
9610 return SDValue();
9611
Jun Bum Lim34b9bd02015-09-14 16:19:52 +00009612 return tryMatchAcrossLaneShuffleForReduction(N, N0, ISD::ADD, DAG);
Chad Rosier6c36eff2015-09-03 18:13:57 +00009613}
9614
Tim Northover3b0846e2014-05-24 12:50:23 +00009615/// Target-specific DAG combine function for NEON load/store intrinsics
9616/// to merge base address updates.
9617static SDValue performNEONPostLDSTCombine(SDNode *N,
9618 TargetLowering::DAGCombinerInfo &DCI,
9619 SelectionDAG &DAG) {
9620 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9621 return SDValue();
9622
9623 unsigned AddrOpIdx = N->getNumOperands() - 1;
9624 SDValue Addr = N->getOperand(AddrOpIdx);
9625
9626 // Search for a use of the address operand that is an increment.
9627 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
9628 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
9629 SDNode *User = *UI;
9630 if (User->getOpcode() != ISD::ADD ||
9631 UI.getUse().getResNo() != Addr.getResNo())
9632 continue;
9633
9634 // Check that the add is independent of the load/store. Otherwise, folding
9635 // it would create a cycle.
9636 if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
9637 continue;
9638
9639 // Find the new opcode for the updating load/store.
9640 bool IsStore = false;
9641 bool IsLaneOp = false;
9642 bool IsDupOp = false;
9643 unsigned NewOpc = 0;
9644 unsigned NumVecs = 0;
9645 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9646 switch (IntNo) {
9647 default: llvm_unreachable("unexpected intrinsic for Neon base update");
9648 case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post;
9649 NumVecs = 2; break;
9650 case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post;
9651 NumVecs = 3; break;
9652 case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post;
9653 NumVecs = 4; break;
9654 case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post;
9655 NumVecs = 2; IsStore = true; break;
9656 case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post;
9657 NumVecs = 3; IsStore = true; break;
9658 case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post;
9659 NumVecs = 4; IsStore = true; break;
9660 case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post;
9661 NumVecs = 2; break;
9662 case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post;
9663 NumVecs = 3; break;
9664 case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post;
9665 NumVecs = 4; break;
9666 case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post;
9667 NumVecs = 2; IsStore = true; break;
9668 case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post;
9669 NumVecs = 3; IsStore = true; break;
9670 case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post;
9671 NumVecs = 4; IsStore = true; break;
9672 case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost;
9673 NumVecs = 2; IsDupOp = true; break;
9674 case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost;
9675 NumVecs = 3; IsDupOp = true; break;
9676 case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost;
9677 NumVecs = 4; IsDupOp = true; break;
9678 case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost;
9679 NumVecs = 2; IsLaneOp = true; break;
9680 case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost;
9681 NumVecs = 3; IsLaneOp = true; break;
9682 case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost;
9683 NumVecs = 4; IsLaneOp = true; break;
9684 case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost;
9685 NumVecs = 2; IsStore = true; IsLaneOp = true; break;
9686 case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost;
9687 NumVecs = 3; IsStore = true; IsLaneOp = true; break;
9688 case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost;
9689 NumVecs = 4; IsStore = true; IsLaneOp = true; break;
9690 }
9691
9692 EVT VecTy;
9693 if (IsStore)
9694 VecTy = N->getOperand(2).getValueType();
9695 else
9696 VecTy = N->getValueType(0);
9697
9698 // If the increment is a constant, it must match the memory ref size.
9699 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
9700 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
9701 uint32_t IncVal = CInc->getZExtValue();
9702 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
9703 if (IsLaneOp || IsDupOp)
9704 NumBytes /= VecTy.getVectorNumElements();
9705 if (IncVal != NumBytes)
9706 continue;
9707 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
9708 }
9709 SmallVector<SDValue, 8> Ops;
9710 Ops.push_back(N->getOperand(0)); // Incoming chain
9711 // Load lane and store have vector list as input.
9712 if (IsLaneOp || IsStore)
9713 for (unsigned i = 2; i < AddrOpIdx; ++i)
9714 Ops.push_back(N->getOperand(i));
9715 Ops.push_back(Addr); // Base register
9716 Ops.push_back(Inc);
9717
9718 // Return Types.
9719 EVT Tys[6];
9720 unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
9721 unsigned n;
9722 for (n = 0; n < NumResultVecs; ++n)
9723 Tys[n] = VecTy;
9724 Tys[n++] = MVT::i64; // Type of write back register
9725 Tys[n] = MVT::Other; // Type of the chain
Craig Toppere1d12942014-08-27 05:25:25 +00009726 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
Tim Northover3b0846e2014-05-24 12:50:23 +00009727
9728 MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
9729 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
9730 MemInt->getMemoryVT(),
9731 MemInt->getMemOperand());
9732
9733 // Update the uses.
9734 std::vector<SDValue> NewResults;
9735 for (unsigned i = 0; i < NumResultVecs; ++i) {
9736 NewResults.push_back(SDValue(UpdN.getNode(), i));
9737 }
9738 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
9739 DCI.CombineTo(N, NewResults);
9740 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
9741
9742 break;
9743 }
9744 return SDValue();
9745}
9746
Louis Gerbarg03c627e2014-08-29 21:00:22 +00009747// Checks to see if the value is the prescribed width and returns information
9748// about its extension mode.
9749static
9750bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) {
9751 ExtType = ISD::NON_EXTLOAD;
9752 switch(V.getNode()->getOpcode()) {
9753 default:
9754 return false;
9755 case ISD::LOAD: {
9756 LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
9757 if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8)
9758 || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) {
9759 ExtType = LoadNode->getExtensionType();
9760 return true;
9761 }
9762 return false;
9763 }
9764 case ISD::AssertSext: {
9765 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
9766 if ((TypeNode->getVT() == MVT::i8 && width == 8)
9767 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
9768 ExtType = ISD::SEXTLOAD;
9769 return true;
9770 }
9771 return false;
9772 }
9773 case ISD::AssertZext: {
9774 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
9775 if ((TypeNode->getVT() == MVT::i8 && width == 8)
9776 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
9777 ExtType = ISD::ZEXTLOAD;
9778 return true;
9779 }
9780 return false;
9781 }
9782 case ISD::Constant:
9783 case ISD::TargetConstant: {
Eric Christopher114fa1c2016-02-29 22:50:49 +00009784 return std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) <
9785 1LL << (width - 1);
Louis Gerbarg03c627e2014-08-29 21:00:22 +00009786 }
9787 }
9788
9789 return true;
9790}
9791
9792// This function does a whole lot of voodoo to determine if the tests are
9793// equivalent without and with a mask. Essentially what happens is that given a
9794// DAG resembling:
9795//
9796// +-------------+ +-------------+ +-------------+ +-------------+
9797// | Input | | AddConstant | | CompConstant| | CC |
9798// +-------------+ +-------------+ +-------------+ +-------------+
9799// | | | |
9800// V V | +----------+
9801// +-------------+ +----+ | |
9802// | ADD | |0xff| | |
9803// +-------------+ +----+ | |
9804// | | | |
9805// V V | |
9806// +-------------+ | |
9807// | AND | | |
9808// +-------------+ | |
9809// | | |
9810// +-----+ | |
9811// | | |
9812// V V V
9813// +-------------+
9814// | CMP |
9815// +-------------+
9816//
9817// The AND node may be safely removed for some combinations of inputs. In
9818// particular we need to take into account the extension type of the Input,
9819// the exact values of AddConstant, CompConstant, and CC, along with the nominal
9820// width of the input (this can work for any width inputs, the above graph is
9821// specific to 8 bits.
9822//
9823// The specific equations were worked out by generating output tables for each
9824// AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
9825// problem was simplified by working with 4 bit inputs, which means we only
9826// needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
9827// extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
9828// patterns present in both extensions (0,7). For every distinct set of
9829// AddConstant and CompConstants bit patterns we can consider the masked and
9830// unmasked versions to be equivalent if the result of this function is true for
9831// all 16 distinct bit patterns of for the current extension type of Input (w0).
9832//
9833// sub w8, w0, w1
9834// and w10, w8, #0x0f
9835// cmp w8, w2
9836// cset w9, AArch64CC
9837// cmp w10, w2
9838// cset w11, AArch64CC
9839// cmp w9, w11
9840// cset w0, eq
9841// ret
9842//
9843// Since the above function shows when the outputs are equivalent it defines
9844// when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
9845// would be expensive to run during compiles. The equations below were written
9846// in a test harness that confirmed they gave equivalent outputs to the above
9847// for all inputs function, so they can be used determine if the removal is
9848// legal instead.
9849//
9850// isEquivalentMaskless() is the code for testing if the AND can be removed
9851// factored out of the DAG recognition as the DAG can take several forms.
9852
David Majnemere61e4bf2016-06-21 05:10:24 +00009853static bool isEquivalentMaskless(unsigned CC, unsigned width,
9854 ISD::LoadExtType ExtType, int AddConstant,
9855 int CompConstant) {
Louis Gerbarg03c627e2014-08-29 21:00:22 +00009856 // By being careful about our equations and only writing the in term
9857 // symbolic values and well known constants (0, 1, -1, MaxUInt) we can
9858 // make them generally applicable to all bit widths.
David Majnemere61e4bf2016-06-21 05:10:24 +00009859 int MaxUInt = (1 << width);
Louis Gerbarg03c627e2014-08-29 21:00:22 +00009860
9861 // For the purposes of these comparisons sign extending the type is
9862 // equivalent to zero extending the add and displacing it by half the integer
9863 // width. Provided we are careful and make sure our equations are valid over
9864 // the whole range we can just adjust the input and avoid writing equations
9865 // for sign extended inputs.
9866 if (ExtType == ISD::SEXTLOAD)
9867 AddConstant -= (1 << (width-1));
9868
9869 switch(CC) {
9870 case AArch64CC::LE:
Eugene Zelenko049b0172017-01-06 00:30:53 +00009871 case AArch64CC::GT:
Louis Gerbarg03c627e2014-08-29 21:00:22 +00009872 if ((AddConstant == 0) ||
9873 (CompConstant == MaxUInt - 1 && AddConstant < 0) ||
9874 (AddConstant >= 0 && CompConstant < 0) ||
9875 (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant))
9876 return true;
Eugene Zelenko049b0172017-01-06 00:30:53 +00009877 break;
Louis Gerbarg03c627e2014-08-29 21:00:22 +00009878 case AArch64CC::LT:
Eugene Zelenko049b0172017-01-06 00:30:53 +00009879 case AArch64CC::GE:
Louis Gerbarg03c627e2014-08-29 21:00:22 +00009880 if ((AddConstant == 0) ||
9881 (AddConstant >= 0 && CompConstant <= 0) ||
9882 (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant))
9883 return true;
Eugene Zelenko049b0172017-01-06 00:30:53 +00009884 break;
Louis Gerbarg03c627e2014-08-29 21:00:22 +00009885 case AArch64CC::HI:
Eugene Zelenko049b0172017-01-06 00:30:53 +00009886 case AArch64CC::LS:
Louis Gerbarg03c627e2014-08-29 21:00:22 +00009887 if ((AddConstant >= 0 && CompConstant < 0) ||
9888 (AddConstant <= 0 && CompConstant >= -1 &&
9889 CompConstant < AddConstant + MaxUInt))
9890 return true;
Eugene Zelenko049b0172017-01-06 00:30:53 +00009891 break;
Louis Gerbarg03c627e2014-08-29 21:00:22 +00009892 case AArch64CC::PL:
Eugene Zelenko049b0172017-01-06 00:30:53 +00009893 case AArch64CC::MI:
Louis Gerbarg03c627e2014-08-29 21:00:22 +00009894 if ((AddConstant == 0) ||
9895 (AddConstant > 0 && CompConstant <= 0) ||
9896 (AddConstant < 0 && CompConstant <= AddConstant))
9897 return true;
Eugene Zelenko049b0172017-01-06 00:30:53 +00009898 break;
Louis Gerbarg03c627e2014-08-29 21:00:22 +00009899 case AArch64CC::LO:
Eugene Zelenko049b0172017-01-06 00:30:53 +00009900 case AArch64CC::HS:
Louis Gerbarg03c627e2014-08-29 21:00:22 +00009901 if ((AddConstant >= 0 && CompConstant <= 0) ||
9902 (AddConstant <= 0 && CompConstant >= 0 &&
9903 CompConstant <= AddConstant + MaxUInt))
9904 return true;
Eugene Zelenko049b0172017-01-06 00:30:53 +00009905 break;
Louis Gerbarg03c627e2014-08-29 21:00:22 +00009906 case AArch64CC::EQ:
Eugene Zelenko049b0172017-01-06 00:30:53 +00009907 case AArch64CC::NE:
Louis Gerbarg03c627e2014-08-29 21:00:22 +00009908 if ((AddConstant > 0 && CompConstant < 0) ||
9909 (AddConstant < 0 && CompConstant >= 0 &&
9910 CompConstant < AddConstant + MaxUInt) ||
9911 (AddConstant >= 0 && CompConstant >= 0 &&
9912 CompConstant >= AddConstant) ||
9913 (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant))
Louis Gerbarg03c627e2014-08-29 21:00:22 +00009914 return true;
Eugene Zelenko049b0172017-01-06 00:30:53 +00009915 break;
Louis Gerbarg03c627e2014-08-29 21:00:22 +00009916 case AArch64CC::VS:
9917 case AArch64CC::VC:
9918 case AArch64CC::AL:
9919 case AArch64CC::NV:
9920 return true;
9921 case AArch64CC::Invalid:
9922 break;
9923 }
9924
9925 return false;
9926}
9927
9928static
9929SDValue performCONDCombine(SDNode *N,
9930 TargetLowering::DAGCombinerInfo &DCI,
9931 SelectionDAG &DAG, unsigned CCIndex,
9932 unsigned CmpIndex) {
9933 unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue();
9934 SDNode *SubsNode = N->getOperand(CmpIndex).getNode();
9935 unsigned CondOpcode = SubsNode->getOpcode();
9936
9937 if (CondOpcode != AArch64ISD::SUBS)
9938 return SDValue();
9939
9940 // There is a SUBS feeding this condition. Is it fed by a mask we can
9941 // use?
9942
9943 SDNode *AndNode = SubsNode->getOperand(0).getNode();
9944 unsigned MaskBits = 0;
9945
9946 if (AndNode->getOpcode() != ISD::AND)
9947 return SDValue();
9948
9949 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) {
9950 uint32_t CNV = CN->getZExtValue();
9951 if (CNV == 255)
9952 MaskBits = 8;
9953 else if (CNV == 65535)
9954 MaskBits = 16;
9955 }
9956
9957 if (!MaskBits)
9958 return SDValue();
9959
9960 SDValue AddValue = AndNode->getOperand(0);
9961
9962 if (AddValue.getOpcode() != ISD::ADD)
9963 return SDValue();
9964
9965 // The basic dag structure is correct, grab the inputs and validate them.
9966
9967 SDValue AddInputValue1 = AddValue.getNode()->getOperand(0);
9968 SDValue AddInputValue2 = AddValue.getNode()->getOperand(1);
9969 SDValue SubsInputValue = SubsNode->getOperand(1);
9970
9971 // The mask is present and the provenance of all the values is a smaller type,
9972 // lets see if the mask is superfluous.
9973
9974 if (!isa<ConstantSDNode>(AddInputValue2.getNode()) ||
9975 !isa<ConstantSDNode>(SubsInputValue.getNode()))
9976 return SDValue();
9977
9978 ISD::LoadExtType ExtType;
9979
9980 if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) ||
9981 !checkValueWidth(AddInputValue2, MaskBits, ExtType) ||
9982 !checkValueWidth(AddInputValue1, MaskBits, ExtType) )
9983 return SDValue();
9984
9985 if(!isEquivalentMaskless(CC, MaskBits, ExtType,
9986 cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(),
9987 cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue()))
9988 return SDValue();
9989
9990 // The AND is not necessary, remove it.
9991
9992 SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0),
9993 SubsNode->getValueType(1));
9994 SDValue Ops[] = { AddValue, SubsNode->getOperand(1) };
9995
9996 SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops);
9997 DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode());
9998
9999 return SDValue(N, 0);
10000}
10001
Tim Northover3b0846e2014-05-24 12:50:23 +000010002// Optimize compare with zero and branch.
10003static SDValue performBRCONDCombine(SDNode *N,
10004 TargetLowering::DAGCombinerInfo &DCI,
10005 SelectionDAG &DAG) {
Ahmed Bougachaf8dfb472016-02-09 22:54:12 +000010006 if (SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3))
Louis Gerbarg03c627e2014-08-29 21:00:22 +000010007 N = NV.getNode();
Tim Northover3b0846e2014-05-24 12:50:23 +000010008 SDValue Chain = N->getOperand(0);
10009 SDValue Dest = N->getOperand(1);
10010 SDValue CCVal = N->getOperand(2);
10011 SDValue Cmp = N->getOperand(3);
10012
10013 assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
10014 unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
10015 if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
10016 return SDValue();
10017
10018 unsigned CmpOpc = Cmp.getOpcode();
10019 if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
10020 return SDValue();
10021
10022 // Only attempt folding if there is only one use of the flag and no use of the
10023 // value.
10024 if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
10025 return SDValue();
10026
10027 SDValue LHS = Cmp.getOperand(0);
10028 SDValue RHS = Cmp.getOperand(1);
10029
10030 assert(LHS.getValueType() == RHS.getValueType() &&
10031 "Expected the value type to be the same for both operands!");
10032 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
10033 return SDValue();
10034
Artyom Skrobov314ee042015-11-25 19:41:11 +000010035 if (isNullConstant(LHS))
Tim Northover3b0846e2014-05-24 12:50:23 +000010036 std::swap(LHS, RHS);
10037
Artyom Skrobov314ee042015-11-25 19:41:11 +000010038 if (!isNullConstant(RHS))
Tim Northover3b0846e2014-05-24 12:50:23 +000010039 return SDValue();
10040
10041 if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
10042 LHS.getOpcode() == ISD::SRL)
10043 return SDValue();
10044
10045 // Fold the compare into the branch instruction.
10046 SDValue BR;
10047 if (CC == AArch64CC::EQ)
10048 BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
10049 else
10050 BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
10051
10052 // Do not add new nodes to DAG combiner worklist.
10053 DCI.CombineTo(N, BR, false);
10054
10055 return SDValue();
10056}
10057
Geoff Berry9e934b02016-01-04 18:55:47 +000010058// Optimize some simple tbz/tbnz cases. Returns the new operand and bit to test
10059// as well as whether the test should be inverted. This code is required to
10060// catch these cases (as opposed to standard dag combines) because
10061// AArch64ISD::TBZ is matched during legalization.
10062static SDValue getTestBitOperand(SDValue Op, unsigned &Bit, bool &Invert,
10063 SelectionDAG &DAG) {
10064
10065 if (!Op->hasOneUse())
10066 return Op;
10067
10068 // We don't handle undef/constant-fold cases below, as they should have
10069 // already been taken care of (e.g. and of 0, test of undefined shifted bits,
10070 // etc.)
10071
10072 // (tbz (trunc x), b) -> (tbz x, b)
10073 // This case is just here to enable more of the below cases to be caught.
10074 if (Op->getOpcode() == ISD::TRUNCATE &&
10075 Bit < Op->getValueType(0).getSizeInBits()) {
10076 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
10077 }
10078
10079 if (Op->getNumOperands() != 2)
10080 return Op;
10081
10082 auto *C = dyn_cast<ConstantSDNode>(Op->getOperand(1));
10083 if (!C)
10084 return Op;
10085
10086 switch (Op->getOpcode()) {
10087 default:
10088 return Op;
10089
10090 // (tbz (and x, m), b) -> (tbz x, b)
10091 case ISD::AND:
10092 if ((C->getZExtValue() >> Bit) & 1)
10093 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
10094 return Op;
10095
10096 // (tbz (shl x, c), b) -> (tbz x, b-c)
10097 case ISD::SHL:
10098 if (C->getZExtValue() <= Bit &&
10099 (Bit - C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
10100 Bit = Bit - C->getZExtValue();
10101 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
10102 }
10103 return Op;
10104
10105 // (tbz (sra x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits in x
10106 case ISD::SRA:
10107 Bit = Bit + C->getZExtValue();
10108 if (Bit >= Op->getValueType(0).getSizeInBits())
10109 Bit = Op->getValueType(0).getSizeInBits() - 1;
10110 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
10111
10112 // (tbz (srl x, c), b) -> (tbz x, b+c)
10113 case ISD::SRL:
10114 if ((Bit + C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
10115 Bit = Bit + C->getZExtValue();
10116 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
10117 }
10118 return Op;
10119
10120 // (tbz (xor x, -1), b) -> (tbnz x, b)
10121 case ISD::XOR:
10122 if ((C->getZExtValue() >> Bit) & 1)
10123 Invert = !Invert;
10124 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
10125 }
10126}
10127
10128// Optimize test single bit zero/non-zero and branch.
10129static SDValue performTBZCombine(SDNode *N,
10130 TargetLowering::DAGCombinerInfo &DCI,
10131 SelectionDAG &DAG) {
10132 unsigned Bit = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
10133 bool Invert = false;
10134 SDValue TestSrc = N->getOperand(1);
10135 SDValue NewTestSrc = getTestBitOperand(TestSrc, Bit, Invert, DAG);
10136
10137 if (TestSrc == NewTestSrc)
10138 return SDValue();
10139
10140 unsigned NewOpc = N->getOpcode();
10141 if (Invert) {
10142 if (NewOpc == AArch64ISD::TBZ)
10143 NewOpc = AArch64ISD::TBNZ;
10144 else {
10145 assert(NewOpc == AArch64ISD::TBNZ);
10146 NewOpc = AArch64ISD::TBZ;
10147 }
10148 }
10149
10150 SDLoc DL(N);
10151 return DAG.getNode(NewOpc, DL, MVT::Other, N->getOperand(0), NewTestSrc,
10152 DAG.getConstant(Bit, DL, MVT::i64), N->getOperand(3));
10153}
10154
Tim Northover3b0846e2014-05-24 12:50:23 +000010155// vselect (v1i1 setcc) ->
10156// vselect (v1iXX setcc) (XX is the size of the compared operand type)
10157// FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
10158// condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
10159// such VSELECT.
10160static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
10161 SDValue N0 = N->getOperand(0);
10162 EVT CCVT = N0.getValueType();
10163
10164 if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
10165 CCVT.getVectorElementType() != MVT::i1)
10166 return SDValue();
10167
10168 EVT ResVT = N->getValueType(0);
10169 EVT CmpVT = N0.getOperand(0).getValueType();
10170 // Only combine when the result type is of the same size as the compared
10171 // operands.
10172 if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
10173 return SDValue();
10174
10175 SDValue IfTrue = N->getOperand(1);
10176 SDValue IfFalse = N->getOperand(2);
10177 SDValue SetCC =
10178 DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
10179 N0.getOperand(0), N0.getOperand(1),
10180 cast<CondCodeSDNode>(N0.getOperand(2))->get());
10181 return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
10182 IfTrue, IfFalse);
10183}
10184
10185/// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
10186/// the compare-mask instructions rather than going via NZCV, even if LHS and
10187/// RHS are really scalar. This replaces any scalar setcc in the above pattern
10188/// with a vector one followed by a DUP shuffle on the result.
Ahmed Bougachac004c602015-04-27 21:43:12 +000010189static SDValue performSelectCombine(SDNode *N,
10190 TargetLowering::DAGCombinerInfo &DCI) {
10191 SelectionDAG &DAG = DCI.DAG;
Tim Northover3b0846e2014-05-24 12:50:23 +000010192 SDValue N0 = N->getOperand(0);
10193 EVT ResVT = N->getValueType(0);
Tim Northover3c0915e2014-08-29 15:34:58 +000010194
Ahmed Bougachac004c602015-04-27 21:43:12 +000010195 if (N0.getOpcode() != ISD::SETCC)
Tim Northover3c0915e2014-08-29 15:34:58 +000010196 return SDValue();
Tim Northover3b0846e2014-05-24 12:50:23 +000010197
Ahmed Bougachac004c602015-04-27 21:43:12 +000010198 // Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered
10199 // scalar SetCCResultType. We also don't expect vectors, because we assume
10200 // that selects fed by vector SETCCs are canonicalized to VSELECT.
10201 assert((N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) &&
10202 "Scalar-SETCC feeding SELECT has unexpected result type!");
10203
Tim Northoverc1c05ae2014-08-29 13:05:18 +000010204 // If NumMaskElts == 0, the comparison is larger than select result. The
10205 // largest real NEON comparison is 64-bits per lane, which means the result is
10206 // at most 32-bits and an illegal vector. Just bail out for now.
Tim Northover3c0915e2014-08-29 15:34:58 +000010207 EVT SrcVT = N0.getOperand(0).getValueType();
Ahmed Bougachad0ce0582014-12-01 20:59:00 +000010208
10209 // Don't try to do this optimization when the setcc itself has i1 operands.
10210 // There are no legal vectors of i1, so this would be pointless.
10211 if (SrcVT == MVT::i1)
10212 return SDValue();
10213
Tim Northover3c0915e2014-08-29 15:34:58 +000010214 int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits();
Tim Northoverc1c05ae2014-08-29 13:05:18 +000010215 if (!ResVT.isVector() || NumMaskElts == 0)
Tim Northover3b0846e2014-05-24 12:50:23 +000010216 return SDValue();
10217
Tim Northoverc1c05ae2014-08-29 13:05:18 +000010218 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts);
Tim Northover3b0846e2014-05-24 12:50:23 +000010219 EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
10220
Ahmed Bougacha89bba612015-04-27 21:01:20 +000010221 // Also bail out if the vector CCVT isn't the same size as ResVT.
10222 // This can happen if the SETCC operand size doesn't divide the ResVT size
10223 // (e.g., f64 vs v3f32).
10224 if (CCVT.getSizeInBits() != ResVT.getSizeInBits())
10225 return SDValue();
10226
Ahmed Bougachac004c602015-04-27 21:43:12 +000010227 // Make sure we didn't create illegal types, if we're not supposed to.
10228 assert(DCI.isBeforeLegalize() ||
10229 DAG.getTargetLoweringInfo().isTypeLegal(SrcVT));
10230
Tim Northover3b0846e2014-05-24 12:50:23 +000010231 // First perform a vector comparison, where lane 0 is the one we're interested
10232 // in.
Tim Northoverc1c05ae2014-08-29 13:05:18 +000010233 SDLoc DL(N0);
Tim Northover3b0846e2014-05-24 12:50:23 +000010234 SDValue LHS =
10235 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
10236 SDValue RHS =
10237 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
10238 SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
10239
10240 // Now duplicate the comparison mask we want across all other lanes.
10241 SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
Craig Topper2bd8b4b2016-07-01 06:54:47 +000010242 SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask);
Tim Northoverc1c05ae2014-08-29 13:05:18 +000010243 Mask = DAG.getNode(ISD::BITCAST, DL,
10244 ResVT.changeVectorElementTypeToInteger(), Mask);
Tim Northover3b0846e2014-05-24 12:50:23 +000010245
10246 return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
10247}
10248
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +000010249/// Get rid of unnecessary NVCASTs (that don't change the type).
10250static SDValue performNVCASTCombine(SDNode *N) {
10251 if (N->getValueType(0) == N->getOperand(0).getValueType())
10252 return N->getOperand(0);
10253
10254 return SDValue();
10255}
10256
Tim Northover3b0846e2014-05-24 12:50:23 +000010257SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
10258 DAGCombinerInfo &DCI) const {
10259 SelectionDAG &DAG = DCI.DAG;
10260 switch (N->getOpcode()) {
10261 default:
10262 break;
10263 case ISD::ADD:
10264 case ISD::SUB:
10265 return performAddSubLongCombine(N, DCI, DAG);
10266 case ISD::XOR:
10267 return performXorCombine(N, DAG, DCI, Subtarget);
10268 case ISD::MUL:
10269 return performMulCombine(N, DAG, DCI, Subtarget);
10270 case ISD::SINT_TO_FP:
10271 case ISD::UINT_TO_FP:
Weiming Zhaocc4bf3f2014-12-04 20:25:50 +000010272 return performIntToFpCombine(N, DAG, Subtarget);
Chad Rosierfa30c9b2015-10-07 17:39:18 +000010273 case ISD::FP_TO_SINT:
10274 case ISD::FP_TO_UINT:
Silviu Barangafa00ba32016-08-08 13:13:57 +000010275 return performFpToIntCombine(N, DAG, DCI, Subtarget);
Chad Rosier7c6ac2b2015-10-07 17:51:37 +000010276 case ISD::FDIV:
Tim Northover85cf5642016-08-26 18:52:31 +000010277 return performFDivCombine(N, DAG, DCI, Subtarget);
Tim Northover3b0846e2014-05-24 12:50:23 +000010278 case ISD::OR:
10279 return performORCombine(N, DCI, Subtarget);
Chad Rosier14aa2ad2016-05-26 19:41:33 +000010280 case ISD::SRL:
10281 return performSRLCombine(N, DCI);
Tim Northover3b0846e2014-05-24 12:50:23 +000010282 case ISD::INTRINSIC_WO_CHAIN:
10283 return performIntrinsicCombine(N, DCI, Subtarget);
10284 case ISD::ANY_EXTEND:
10285 case ISD::ZERO_EXTEND:
10286 case ISD::SIGN_EXTEND:
10287 return performExtendCombine(N, DCI, DAG);
10288 case ISD::BITCAST:
10289 return performBitcastCombine(N, DCI, DAG);
10290 case ISD::CONCAT_VECTORS:
10291 return performConcatVectorsCombine(N, DCI, DAG);
Jun Bum Lim34b9bd02015-09-14 16:19:52 +000010292 case ISD::SELECT: {
10293 SDValue RV = performSelectCombine(N, DCI);
10294 if (!RV.getNode())
10295 RV = performAcrossLaneMinMaxReductionCombine(N, DAG, Subtarget);
10296 return RV;
10297 }
Tim Northover3b0846e2014-05-24 12:50:23 +000010298 case ISD::VSELECT:
10299 return performVSelectCombine(N, DCI.DAG);
Tim Northover339c83e2015-11-10 00:44:23 +000010300 case ISD::LOAD:
10301 if (performTBISimplification(N->getOperand(1), DCI, DAG))
10302 return SDValue(N, 0);
10303 break;
Tim Northover3b0846e2014-05-24 12:50:23 +000010304 case ISD::STORE:
10305 return performSTORECombine(N, DCI, DAG, Subtarget);
10306 case AArch64ISD::BRCOND:
10307 return performBRCONDCombine(N, DCI, DAG);
Geoff Berry9e934b02016-01-04 18:55:47 +000010308 case AArch64ISD::TBNZ:
10309 case AArch64ISD::TBZ:
10310 return performTBZCombine(N, DCI, DAG);
Louis Gerbarg03c627e2014-08-29 21:00:22 +000010311 case AArch64ISD::CSEL:
10312 return performCONDCombine(N, DCI, DAG, 2, 3);
Tim Northover3b0846e2014-05-24 12:50:23 +000010313 case AArch64ISD::DUP:
10314 return performPostLD1Combine(N, DCI, false);
Ahmed Bougacha8c7754b2015-06-16 01:18:14 +000010315 case AArch64ISD::NVCAST:
10316 return performNVCASTCombine(N);
Tim Northover3b0846e2014-05-24 12:50:23 +000010317 case ISD::INSERT_VECTOR_ELT:
10318 return performPostLD1Combine(N, DCI, true);
Chad Rosier6c36eff2015-09-03 18:13:57 +000010319 case ISD::EXTRACT_VECTOR_ELT:
Jun Bum Lim34b9bd02015-09-14 16:19:52 +000010320 return performAcrossLaneAddReductionCombine(N, DAG, Subtarget);
Tim Northover3b0846e2014-05-24 12:50:23 +000010321 case ISD::INTRINSIC_VOID:
10322 case ISD::INTRINSIC_W_CHAIN:
10323 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10324 case Intrinsic::aarch64_neon_ld2:
10325 case Intrinsic::aarch64_neon_ld3:
10326 case Intrinsic::aarch64_neon_ld4:
10327 case Intrinsic::aarch64_neon_ld1x2:
10328 case Intrinsic::aarch64_neon_ld1x3:
10329 case Intrinsic::aarch64_neon_ld1x4:
10330 case Intrinsic::aarch64_neon_ld2lane:
10331 case Intrinsic::aarch64_neon_ld3lane:
10332 case Intrinsic::aarch64_neon_ld4lane:
10333 case Intrinsic::aarch64_neon_ld2r:
10334 case Intrinsic::aarch64_neon_ld3r:
10335 case Intrinsic::aarch64_neon_ld4r:
10336 case Intrinsic::aarch64_neon_st2:
10337 case Intrinsic::aarch64_neon_st3:
10338 case Intrinsic::aarch64_neon_st4:
10339 case Intrinsic::aarch64_neon_st1x2:
10340 case Intrinsic::aarch64_neon_st1x3:
10341 case Intrinsic::aarch64_neon_st1x4:
10342 case Intrinsic::aarch64_neon_st2lane:
10343 case Intrinsic::aarch64_neon_st3lane:
10344 case Intrinsic::aarch64_neon_st4lane:
10345 return performNEONPostLDSTCombine(N, DCI, DAG);
10346 default:
10347 break;
10348 }
10349 }
10350 return SDValue();
10351}
10352
10353// Check if the return value is used as only a return value, as otherwise
10354// we can't perform a tail-call. In particular, we need to check for
10355// target ISD nodes that are returns and any other "odd" constructs
10356// that the generic analysis code won't necessarily catch.
10357bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
10358 SDValue &Chain) const {
10359 if (N->getNumValues() != 1)
10360 return false;
10361 if (!N->hasNUsesOfValue(1, 0))
10362 return false;
10363
10364 SDValue TCChain = Chain;
10365 SDNode *Copy = *N->use_begin();
10366 if (Copy->getOpcode() == ISD::CopyToReg) {
10367 // If the copy has a glue operand, we conservatively assume it isn't safe to
10368 // perform a tail call.
10369 if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
10370 MVT::Glue)
10371 return false;
10372 TCChain = Copy->getOperand(0);
10373 } else if (Copy->getOpcode() != ISD::FP_EXTEND)
10374 return false;
10375
10376 bool HasRet = false;
10377 for (SDNode *Node : Copy->uses()) {
10378 if (Node->getOpcode() != AArch64ISD::RET_FLAG)
10379 return false;
10380 HasRet = true;
10381 }
10382
10383 if (!HasRet)
10384 return false;
10385
10386 Chain = TCChain;
10387 return true;
10388}
10389
10390// Return whether the an instruction can potentially be optimized to a tail
10391// call. This will cause the optimizers to attempt to move, or duplicate,
10392// return instructions to help enable tail call optimizations for this
10393// instruction.
10394bool AArch64TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
Eric Christopher114fa1c2016-02-29 22:50:49 +000010395 return CI->isTailCall();
Tim Northover3b0846e2014-05-24 12:50:23 +000010396}
10397
10398bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
10399 SDValue &Offset,
10400 ISD::MemIndexedMode &AM,
10401 bool &IsInc,
10402 SelectionDAG &DAG) const {
10403 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
10404 return false;
10405
10406 Base = Op->getOperand(0);
10407 // All of the indexed addressing mode instructions take a signed
10408 // 9 bit immediate offset.
10409 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
Haicheng Wu9ac20a12016-12-22 01:39:24 +000010410 int64_t RHSC = RHS->getSExtValue();
10411 if (Op->getOpcode() == ISD::SUB)
10412 RHSC = -(uint64_t)RHSC;
10413 if (!isInt<9>(RHSC))
Tim Northover3b0846e2014-05-24 12:50:23 +000010414 return false;
10415 IsInc = (Op->getOpcode() == ISD::ADD);
10416 Offset = Op->getOperand(1);
10417 return true;
10418 }
10419 return false;
10420}
10421
10422bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
10423 SDValue &Offset,
10424 ISD::MemIndexedMode &AM,
10425 SelectionDAG &DAG) const {
10426 EVT VT;
10427 SDValue Ptr;
10428 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
10429 VT = LD->getMemoryVT();
10430 Ptr = LD->getBasePtr();
10431 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
10432 VT = ST->getMemoryVT();
10433 Ptr = ST->getBasePtr();
10434 } else
10435 return false;
10436
10437 bool IsInc;
10438 if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
10439 return false;
10440 AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
10441 return true;
10442}
10443
10444bool AArch64TargetLowering::getPostIndexedAddressParts(
10445 SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
10446 ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
10447 EVT VT;
10448 SDValue Ptr;
10449 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
10450 VT = LD->getMemoryVT();
10451 Ptr = LD->getBasePtr();
10452 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
10453 VT = ST->getMemoryVT();
10454 Ptr = ST->getBasePtr();
10455 } else
10456 return false;
10457
10458 bool IsInc;
10459 if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
10460 return false;
10461 // Post-indexing updates the base, so it's not a valid transform
10462 // if that's not the same as the load's pointer.
10463 if (Ptr != Base)
10464 return false;
10465 AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
10466 return true;
10467}
10468
Tim Northoverf8bfe212014-07-18 13:07:05 +000010469static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
10470 SelectionDAG &DAG) {
Tim Northoverf8bfe212014-07-18 13:07:05 +000010471 SDLoc DL(N);
10472 SDValue Op = N->getOperand(0);
Ahmed Bougacha87946322014-12-01 20:52:32 +000010473
10474 if (N->getValueType(0) != MVT::i16 || Op.getValueType() != MVT::f16)
10475 return;
10476
Tim Northoverf8bfe212014-07-18 13:07:05 +000010477 Op = SDValue(
10478 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
10479 DAG.getUNDEF(MVT::i32), Op,
Sergey Dmitrouk842a51b2015-04-28 14:05:47 +000010480 DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
Tim Northoverf8bfe212014-07-18 13:07:05 +000010481 0);
10482 Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
10483 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
10484}
10485
Charlie Turner434d4592015-10-16 15:38:25 +000010486static void ReplaceReductionResults(SDNode *N,
10487 SmallVectorImpl<SDValue> &Results,
10488 SelectionDAG &DAG, unsigned InterOp,
10489 unsigned AcrossOp) {
10490 EVT LoVT, HiVT;
10491 SDValue Lo, Hi;
10492 SDLoc dl(N);
10493 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
10494 std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
10495 SDValue InterVal = DAG.getNode(InterOp, dl, LoVT, Lo, Hi);
10496 SDValue SplitVal = DAG.getNode(AcrossOp, dl, LoVT, InterVal);
10497 Results.push_back(SplitVal);
10498}
10499
Tim Northover2f32e7f2016-08-04 19:32:28 +000010500static std::pair<SDValue, SDValue> splitInt128(SDValue N, SelectionDAG &DAG) {
10501 SDLoc DL(N);
10502 SDValue Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, N);
10503 SDValue Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64,
10504 DAG.getNode(ISD::SRL, DL, MVT::i128, N,
10505 DAG.getConstant(64, DL, MVT::i64)));
10506 return std::make_pair(Lo, Hi);
10507}
10508
Tim Northovercdf15292016-04-14 17:03:29 +000010509static void ReplaceCMP_SWAP_128Results(SDNode *N,
10510 SmallVectorImpl<SDValue> & Results,
10511 SelectionDAG &DAG) {
10512 assert(N->getValueType(0) == MVT::i128 &&
10513 "AtomicCmpSwap on types less than 128 should be legal");
Tim Northover2f32e7f2016-08-04 19:32:28 +000010514 auto Desired = splitInt128(N->getOperand(2), DAG);
10515 auto New = splitInt128(N->getOperand(3), DAG);
10516 SDValue Ops[] = {N->getOperand(1), Desired.first, Desired.second,
10517 New.first, New.second, N->getOperand(0)};
Tim Northovercdf15292016-04-14 17:03:29 +000010518 SDNode *CmpSwap = DAG.getMachineNode(
10519 AArch64::CMP_SWAP_128, SDLoc(N),
10520 DAG.getVTList(MVT::i64, MVT::i64, MVT::i32, MVT::Other), Ops);
10521
10522 MachineFunction &MF = DAG.getMachineFunction();
10523 MachineSDNode::mmo_iterator MemOp = MF.allocateMemRefsArray(1);
10524 MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
10525 cast<MachineSDNode>(CmpSwap)->setMemRefs(MemOp, MemOp + 1);
10526
10527 Results.push_back(SDValue(CmpSwap, 0));
10528 Results.push_back(SDValue(CmpSwap, 1));
10529 Results.push_back(SDValue(CmpSwap, 3));
10530}
10531
Tim Northover3b0846e2014-05-24 12:50:23 +000010532void AArch64TargetLowering::ReplaceNodeResults(
10533 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
10534 switch (N->getOpcode()) {
10535 default:
10536 llvm_unreachable("Don't know how to custom expand this");
Tim Northoverf8bfe212014-07-18 13:07:05 +000010537 case ISD::BITCAST:
10538 ReplaceBITCASTResults(N, Results, DAG);
10539 return;
Charlie Turner434d4592015-10-16 15:38:25 +000010540 case AArch64ISD::SADDV:
10541 ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::SADDV);
10542 return;
10543 case AArch64ISD::UADDV:
10544 ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::UADDV);
10545 return;
10546 case AArch64ISD::SMINV:
10547 ReplaceReductionResults(N, Results, DAG, ISD::SMIN, AArch64ISD::SMINV);
10548 return;
10549 case AArch64ISD::UMINV:
10550 ReplaceReductionResults(N, Results, DAG, ISD::UMIN, AArch64ISD::UMINV);
10551 return;
10552 case AArch64ISD::SMAXV:
10553 ReplaceReductionResults(N, Results, DAG, ISD::SMAX, AArch64ISD::SMAXV);
10554 return;
10555 case AArch64ISD::UMAXV:
10556 ReplaceReductionResults(N, Results, DAG, ISD::UMAX, AArch64ISD::UMAXV);
10557 return;
Tim Northover3b0846e2014-05-24 12:50:23 +000010558 case ISD::FP_TO_UINT:
10559 case ISD::FP_TO_SINT:
10560 assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
10561 // Let normal code take care of it by not adding anything to Results.
10562 return;
Tim Northovercdf15292016-04-14 17:03:29 +000010563 case ISD::ATOMIC_CMP_SWAP:
10564 ReplaceCMP_SWAP_128Results(N, Results, DAG);
10565 return;
Tim Northover3b0846e2014-05-24 12:50:23 +000010566 }
10567}
10568
Akira Hatanakae5b6e0d2014-07-25 19:31:34 +000010569bool AArch64TargetLowering::useLoadStackGuardNode() const {
Petr Hoseka7d59162017-02-24 03:10:10 +000010570 if (Subtarget->isTargetAndroid() || Subtarget->isTargetFuchsia())
10571 return TargetLowering::useLoadStackGuardNode();
10572 return true;
Akira Hatanakae5b6e0d2014-07-25 19:31:34 +000010573}
10574
Sanjay Patel1dd15592015-07-28 23:05:48 +000010575unsigned AArch64TargetLowering::combineRepeatedFPDivisors() const {
Hao Liu44e5d7a2014-11-21 06:39:58 +000010576 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
10577 // reciprocal if there are three or more FDIVs.
Sanjay Patel1dd15592015-07-28 23:05:48 +000010578 return 3;
Hao Liu44e5d7a2014-11-21 06:39:58 +000010579}
10580
Chandler Carruth9d010ff2014-07-03 00:23:43 +000010581TargetLoweringBase::LegalizeTypeAction
10582AArch64TargetLowering::getPreferredVectorAction(EVT VT) const {
10583 MVT SVT = VT.getSimpleVT();
10584 // During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8,
10585 // v4i16, v2i32 instead of to promote.
10586 if (SVT == MVT::v1i8 || SVT == MVT::v1i16 || SVT == MVT::v1i32
10587 || SVT == MVT::v1f32)
10588 return TypeWidenVector;
10589
10590 return TargetLoweringBase::getPreferredVectorAction(VT);
10591}
10592
Robin Morisseted3d48f2014-09-03 21:29:59 +000010593// Loads and stores less than 128-bits are already atomic; ones above that
10594// are doomed anyway, so defer to the default libcall and blame the OS when
10595// things go wrong.
10596bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
10597 unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
10598 return Size == 128;
10599}
10600
10601// Loads and stores less than 128-bits are already atomic; ones above that
10602// are doomed anyway, so defer to the default libcall and blame the OS when
10603// things go wrong.
Ahmed Bougacha52468672015-09-11 17:08:28 +000010604TargetLowering::AtomicExpansionKind
10605AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
Robin Morisseted3d48f2014-09-03 21:29:59 +000010606 unsigned Size = LI->getType()->getPrimitiveSizeInBits();
Ahmed Bougacha52468672015-09-11 17:08:28 +000010607 return Size == 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None;
Robin Morisseted3d48f2014-09-03 21:29:59 +000010608}
10609
10610// For the real atomic operations, we have ldxr/stxr up to 128 bits,
Ahmed Bougacha52468672015-09-11 17:08:28 +000010611TargetLowering::AtomicExpansionKind
JF Bastienf14889e2015-03-04 15:47:57 +000010612AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
Robin Morisseted3d48f2014-09-03 21:29:59 +000010613 unsigned Size = AI->getType()->getPrimitiveSizeInBits();
Ahmed Bougacha9d677132015-09-11 17:08:17 +000010614 return Size <= 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None;
Robin Morisseted3d48f2014-09-03 21:29:59 +000010615}
10616
Ahmed Bougacha52468672015-09-11 17:08:28 +000010617bool AArch64TargetLowering::shouldExpandAtomicCmpXchgInIR(
10618 AtomicCmpXchgInst *AI) const {
Tim Northovercdf15292016-04-14 17:03:29 +000010619 // At -O0, fast-regalloc cannot cope with the live vregs necessary to
10620 // implement cmpxchg without spilling. If the address being exchanged is also
10621 // on the stack and close enough to the spill slot, this can lead to a
10622 // situation where the monitor always gets cleared and the atomic operation
10623 // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
10624 return getTargetMachine().getOptLevel() != 0;
Robin Morisset25c8e312014-09-17 00:06:58 +000010625}
10626
Tim Northover3b0846e2014-05-24 12:50:23 +000010627Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
10628 AtomicOrdering Ord) const {
10629 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10630 Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
JF Bastien800f87a2016-04-06 21:19:33 +000010631 bool IsAcquire = isAcquireOrStronger(Ord);
Tim Northover3b0846e2014-05-24 12:50:23 +000010632
10633 // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
10634 // intrinsic must return {i64, i64} and we have to recombine them into a
10635 // single i128 here.
10636 if (ValTy->getPrimitiveSizeInBits() == 128) {
10637 Intrinsic::ID Int =
10638 IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
Eugene Zelenko049b0172017-01-06 00:30:53 +000010639 Function *Ldxr = Intrinsic::getDeclaration(M, Int);
Tim Northover3b0846e2014-05-24 12:50:23 +000010640
10641 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
10642 Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
10643
10644 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
10645 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
10646 Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
10647 Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
10648 return Builder.CreateOr(
10649 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
10650 }
10651
10652 Type *Tys[] = { Addr->getType() };
10653 Intrinsic::ID Int =
10654 IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
Eugene Zelenko049b0172017-01-06 00:30:53 +000010655 Function *Ldxr = Intrinsic::getDeclaration(M, Int, Tys);
Tim Northover3b0846e2014-05-24 12:50:23 +000010656
10657 return Builder.CreateTruncOrBitCast(
10658 Builder.CreateCall(Ldxr, Addr),
10659 cast<PointerType>(Addr->getType())->getElementType());
10660}
10661
Ahmed Bougacha07a844d2015-09-22 17:21:44 +000010662void AArch64TargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
10663 IRBuilder<> &Builder) const {
10664 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Eugene Zelenko049b0172017-01-06 00:30:53 +000010665 Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::aarch64_clrex));
Ahmed Bougacha07a844d2015-09-22 17:21:44 +000010666}
10667
Tim Northover3b0846e2014-05-24 12:50:23 +000010668Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
10669 Value *Val, Value *Addr,
10670 AtomicOrdering Ord) const {
10671 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
JF Bastien800f87a2016-04-06 21:19:33 +000010672 bool IsRelease = isReleaseOrStronger(Ord);
Tim Northover3b0846e2014-05-24 12:50:23 +000010673
10674 // Since the intrinsics must have legal type, the i128 intrinsics take two
10675 // parameters: "i64, i64". We must marshal Val into the appropriate form
10676 // before the call.
10677 if (Val->getType()->getPrimitiveSizeInBits() == 128) {
10678 Intrinsic::ID Int =
10679 IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
10680 Function *Stxr = Intrinsic::getDeclaration(M, Int);
10681 Type *Int64Ty = Type::getInt64Ty(M->getContext());
10682
10683 Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
10684 Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
10685 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
David Blaikieff6409d2015-05-18 22:13:54 +000010686 return Builder.CreateCall(Stxr, {Lo, Hi, Addr});
Tim Northover3b0846e2014-05-24 12:50:23 +000010687 }
10688
10689 Intrinsic::ID Int =
10690 IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
10691 Type *Tys[] = { Addr->getType() };
10692 Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
10693
David Blaikieff6409d2015-05-18 22:13:54 +000010694 return Builder.CreateCall(Stxr,
10695 {Builder.CreateZExtOrBitCast(
10696 Val, Stxr->getFunctionType()->getParamType(0)),
10697 Addr});
Tim Northover3b0846e2014-05-24 12:50:23 +000010698}
Tim Northover3c55cca2014-11-27 21:02:42 +000010699
10700bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
10701 Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
10702 return Ty->isArrayTy();
10703}
Matthias Braunaf7d7702015-07-16 20:02:37 +000010704
10705bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &,
10706 EVT) const {
10707 return false;
10708}
Evgeniy Stepanovd1aad262015-10-26 18:28:25 +000010709
Petr Hoseka7d59162017-02-24 03:10:10 +000010710static Value *UseTlsOffset(IRBuilder<> &IRB, unsigned Offset) {
Evgeniy Stepanovdde29e22016-04-05 22:41:50 +000010711 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
10712 Function *ThreadPointerFunc =
Marcin Koscielnicki3fdc2572016-04-19 20:51:05 +000010713 Intrinsic::getDeclaration(M, Intrinsic::thread_pointer);
Evgeniy Stepanovdde29e22016-04-05 22:41:50 +000010714 return IRB.CreatePointerCast(
Petr Hoseka7d59162017-02-24 03:10:10 +000010715 IRB.CreateConstGEP1_32(IRB.CreateCall(ThreadPointerFunc), Offset),
Evgeniy Stepanovdde29e22016-04-05 22:41:50 +000010716 Type::getInt8PtrTy(IRB.getContext())->getPointerTo(0));
10717}
10718
Petr Hoseka7d59162017-02-24 03:10:10 +000010719Value *AArch64TargetLowering::getIRStackGuard(IRBuilder<> &IRB) const {
10720 // Android provides a fixed TLS slot for the stack cookie. See the definition
10721 // of TLS_SLOT_STACK_GUARD in
10722 // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
10723 if (Subtarget->isTargetAndroid())
10724 return UseTlsOffset(IRB, 0x28);
Evgeniy Stepanovd1aad262015-10-26 18:28:25 +000010725
Petr Hoseka7d59162017-02-24 03:10:10 +000010726 // Fuchsia is similar.
10727 // <magenta/tls.h> defines MX_TLS_STACK_GUARD_OFFSET with this value.
10728 if (Subtarget->isTargetFuchsia())
10729 return UseTlsOffset(IRB, -0x10);
10730
10731 return TargetLowering::getIRStackGuard(IRB);
10732}
10733
10734Value *AArch64TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
Evgeniy Stepanovd1aad262015-10-26 18:28:25 +000010735 // Android provides a fixed TLS slot for the SafeStack pointer. See the
10736 // definition of TLS_SLOT_SAFESTACK in
10737 // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
Petr Hoseka7d59162017-02-24 03:10:10 +000010738 if (Subtarget->isTargetAndroid())
10739 return UseTlsOffset(IRB, 0x48);
10740
10741 // Fuchsia is similar.
10742 // <magenta/tls.h> defines MX_TLS_UNSAFE_SP_OFFSET with this value.
10743 if (Subtarget->isTargetFuchsia())
10744 return UseTlsOffset(IRB, -0x8);
10745
10746 return TargetLowering::getSafeStackPointerLocation(IRB);
Evgeniy Stepanovd1aad262015-10-26 18:28:25 +000010747}
Manman Rencbe4f942015-12-16 21:04:19 +000010748
Geoff Berry5d534b62017-02-21 18:53:14 +000010749bool AArch64TargetLowering::isMaskAndCmp0FoldingBeneficial(
10750 const Instruction &AndI) const {
10751 // Only sink 'and' mask to cmp use block if it is masking a single bit, since
10752 // this is likely to be fold the and/cmp/br into a single tbz instruction. It
10753 // may be beneficial to sink in other cases, but we would have to check that
10754 // the cmp would not get folded into the br to form a cbz for these to be
10755 // beneficial.
10756 ConstantInt* Mask = dyn_cast<ConstantInt>(AndI.getOperand(1));
10757 if (!Mask)
10758 return false;
10759 return Mask->getUniqueInteger().isPowerOf2();
10760}
10761
Manman Rencbe4f942015-12-16 21:04:19 +000010762void AArch64TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
10763 // Update IsSplitCSR in AArch64unctionInfo.
10764 AArch64FunctionInfo *AFI = Entry->getParent()->getInfo<AArch64FunctionInfo>();
10765 AFI->setIsSplitCSR(true);
10766}
10767
10768void AArch64TargetLowering::insertCopiesSplitCSR(
10769 MachineBasicBlock *Entry,
10770 const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
10771 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
10772 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
10773 if (!IStart)
10774 return;
10775
10776 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
10777 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
Manman Ren4632e8e2016-01-15 20:13:28 +000010778 MachineBasicBlock::iterator MBBI = Entry->begin();
Manman Rencbe4f942015-12-16 21:04:19 +000010779 for (const MCPhysReg *I = IStart; *I; ++I) {
10780 const TargetRegisterClass *RC = nullptr;
10781 if (AArch64::GPR64RegClass.contains(*I))
10782 RC = &AArch64::GPR64RegClass;
10783 else if (AArch64::FPR64RegClass.contains(*I))
10784 RC = &AArch64::FPR64RegClass;
10785 else
10786 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
10787
10788 unsigned NewVR = MRI->createVirtualRegister(RC);
10789 // Create copy from CSR to a virtual register.
10790 // FIXME: this currently does not emit CFI pseudo-instructions, it works
10791 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
10792 // nounwind. If we want to generalize this later, we may need to emit
10793 // CFI pseudo-instructions.
10794 assert(Entry->getParent()->getFunction()->hasFnAttribute(
10795 Attribute::NoUnwind) &&
10796 "Function should be nounwind in insertCopiesSplitCSR!");
10797 Entry->addLiveIn(*I);
Manman Ren4632e8e2016-01-15 20:13:28 +000010798 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
Manman Rencbe4f942015-12-16 21:04:19 +000010799 .addReg(*I);
10800
Manman Ren4632e8e2016-01-15 20:13:28 +000010801 // Insert the copy-back instructions right before the terminator.
Manman Rencbe4f942015-12-16 21:04:19 +000010802 for (auto *Exit : Exits)
Manman Ren4632e8e2016-01-15 20:13:28 +000010803 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
10804 TII->get(TargetOpcode::COPY), *I)
Manman Rencbe4f942015-12-16 21:04:19 +000010805 .addReg(NewVR);
10806 }
10807}
Haicheng Wu6a6bc752016-03-28 18:17:07 +000010808
Reid Klecknerb5180542017-03-21 16:57:19 +000010809bool AArch64TargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const {
Haicheng Wu6a6bc752016-03-28 18:17:07 +000010810 // Integer division on AArch64 is expensive. However, when aggressively
10811 // optimizing for code size, we prefer to use a div instruction, as it is
10812 // usually smaller than the alternative sequence.
10813 // The exception to this is vector division. Since AArch64 doesn't have vector
10814 // integer division, leaving the division as-is is a loss even in terms of
10815 // size, because it will have to be scalarized, while the alternative code
10816 // sequence can be performed in vector form.
10817 bool OptSize =
Reid Klecknerb5180542017-03-21 16:57:19 +000010818 Attr.hasAttribute(AttributeList::FunctionIndex, Attribute::MinSize);
Haicheng Wu6a6bc752016-03-28 18:17:07 +000010819 return OptSize && !VT.isVector();
10820}
Tim Northoverf19d4672017-02-08 17:57:20 +000010821
10822unsigned
10823AArch64TargetLowering::getVaListSizeInBits(const DataLayout &DL) const {
10824 if (Subtarget->isTargetDarwin())
10825 return getPointerTy(DL).getSizeInBits();
10826
10827 return 3 * getPointerTy(DL).getSizeInBits() + 2 * 32;
10828}