blob: 9fae852106409470559655ef85d3f26a98d916f9 [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
James Molloy493e57d2015-10-26 14:10:46 +000016#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Chandler Carruthd9903882015-01-14 11:23:27 +000018#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000019#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000020#include "llvm/Analysis/MemoryBuiltins.h"
Artur Pilipenko31bcca42016-02-24 12:49:04 +000021#include "llvm/Analysis/Loads.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000022#include "llvm/Analysis/LoopInfo.h"
David Majnemer3ee5f342016-04-13 06:55:52 +000023#include "llvm/Analysis/VectorUtils.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000024#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000025#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000026#include "llvm/IR/Constants.h"
27#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000028#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000029#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000030#include "llvm/IR/GlobalAlias.h"
31#include "llvm/IR/GlobalVariable.h"
32#include "llvm/IR/Instructions.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/LLVMContext.h"
35#include "llvm/IR/Metadata.h"
36#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000037#include "llvm/IR/PatternMatch.h"
Philip Reames5461d452015-04-23 17:36:48 +000038#include "llvm/IR/Statepoint.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000039#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000040#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000041#include <algorithm>
42#include <array>
Chris Lattner64496902008-06-04 04:46:14 +000043#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000044using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000045using namespace llvm::PatternMatch;
46
47const unsigned MaxDepth = 6;
48
Philip Reames1c292272015-03-10 22:43:20 +000049// Controls the number of uses of the value searched for possible
50// dominating comparisons.
51static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000052 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000053
Sanjay Patelaee84212014-11-04 16:27:42 +000054/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
55/// 0). For vector types, returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000056static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000057 if (unsigned BitWidth = Ty->getScalarSizeInBits())
58 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000059
Mehdi Aminia28d91d2015-03-10 02:37:25 +000060 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000061}
Chris Lattner965c7692008-06-02 01:18:21 +000062
Benjamin Kramercfd8d902014-09-12 08:56:53 +000063namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000064// Simplifying using an assume can only be done in a particular control-flow
65// context (the context instruction provides that context). If an assume and
66// the context instruction are not in the same block then the DT helps in
67// figuring out if we can use it.
68struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +000069 const DataLayout &DL;
Chandler Carruth66b31302015-01-04 12:03:27 +000070 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +000071 const Instruction *CxtI;
72 const DominatorTree *DT;
73
Matthias Braun37e5d792016-01-28 06:29:33 +000074 /// Set of assumptions that should be excluded from further queries.
75 /// This is because of the potential for mutual recursion to cause
76 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
77 /// classic case of this is assume(x = y), which will attempt to determine
78 /// bits in x from bits in y, which will attempt to determine bits in y from
79 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
80 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
81 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
82 /// on.
83 std::array<const Value*, MaxDepth> Excluded;
84 unsigned NumExcluded;
85
Matthias Braunfeb81bc2016-01-15 22:22:04 +000086 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
87 const DominatorTree *DT)
Matthias Braun37e5d792016-01-28 06:29:33 +000088 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {}
Hal Finkel60db0582014-09-07 18:57:58 +000089
90 Query(const Query &Q, const Value *NewExcl)
Matthias Braun37e5d792016-01-28 06:29:33 +000091 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) {
92 Excluded = Q.Excluded;
93 Excluded[NumExcluded++] = NewExcl;
94 assert(NumExcluded <= Excluded.size());
95 }
96
97 bool isExcluded(const Value *Value) const {
98 if (NumExcluded == 0)
99 return false;
100 auto End = Excluded.begin() + NumExcluded;
101 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000102 }
103};
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000104} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000105
Sanjay Patel547e9752014-11-04 16:09:50 +0000106// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000107// the preferred context instruction (if any).
108static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
109 // If we've been provided with a context instruction, then use that (provided
110 // it has been inserted).
111 if (CxtI && CxtI->getParent())
112 return CxtI;
113
114 // If the value is really an already-inserted instruction, then use that.
115 CxtI = dyn_cast<Instruction>(V);
116 if (CxtI && CxtI->getParent())
117 return CxtI;
118
119 return nullptr;
120}
121
122static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000123 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000124
125void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000126 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000127 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000128 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000129 ::computeKnownBits(V, KnownZero, KnownOne, Depth,
130 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000131}
132
Jingyue Wuca321902015-05-14 23:53:19 +0000133bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
134 AssumptionCache *AC, const Instruction *CxtI,
135 const DominatorTree *DT) {
136 assert(LHS->getType() == RHS->getType() &&
137 "LHS and RHS should have the same type");
138 assert(LHS->getType()->isIntOrIntVectorTy() &&
139 "LHS and RHS should be integers");
140 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
141 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
142 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
143 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
144 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
145 return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
146}
147
Hal Finkel60db0582014-09-07 18:57:58 +0000148static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000149 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000150
151void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000152 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000153 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000154 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000155 ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
156 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000157}
158
159static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000160 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000161
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000162bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero,
Chandler Carruth66b31302015-01-04 12:03:27 +0000163 unsigned Depth, AssumptionCache *AC,
Hal Finkel60db0582014-09-07 18:57:58 +0000164 const Instruction *CxtI,
165 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000166 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000167 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000168}
169
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000170static bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000171
172bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
173 AssumptionCache *AC, const Instruction *CxtI,
174 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000175 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000176}
177
Jingyue Wu10fcea52015-08-20 18:27:04 +0000178bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth,
179 AssumptionCache *AC, const Instruction *CxtI,
180 const DominatorTree *DT) {
181 bool NonNegative, Negative;
182 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
183 return NonNegative;
184}
185
Philip Reames8f12eba2016-03-09 21:31:47 +0000186bool llvm::isKnownPositive(Value *V, const DataLayout &DL, unsigned Depth,
187 AssumptionCache *AC, const Instruction *CxtI,
188 const DominatorTree *DT) {
189 if (auto *CI = dyn_cast<ConstantInt>(V))
190 return CI->getValue().isStrictlyPositive();
191
192 // TODO: We'd doing two recursive queries here. We should factor this such
193 // that only a single query is needed.
194 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
195 isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
196}
197
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000198static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000199
200bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
201 AssumptionCache *AC, const Instruction *CxtI,
202 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000203 return ::isKnownNonEqual(V1, V2, Query(DL, AC,
204 safeCxtI(V1, safeCxtI(V2, CxtI)),
205 DT));
James Molloy1d88d6f2015-10-22 13:18:42 +0000206}
207
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000208static bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
209 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000210
211bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
212 unsigned Depth, AssumptionCache *AC,
213 const Instruction *CxtI, const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000214 return ::MaskedValueIsZero(V, Mask, Depth,
215 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000216}
217
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000218static unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000219
220unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL,
221 unsigned Depth, AssumptionCache *AC,
222 const Instruction *CxtI,
223 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000224 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000225}
226
Jay Foada0653a32014-05-14 21:14:37 +0000227static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
228 APInt &KnownZero, APInt &KnownOne,
229 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000230 unsigned Depth, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000231 if (!Add) {
232 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
233 // We know that the top bits of C-X are clear if X contains less bits
234 // than C (i.e. no wrap-around can happen). For example, 20-X is
235 // positive if we can prove that X is >= 0 and < 16.
236 if (!CLHS->getValue().isNegative()) {
237 unsigned BitWidth = KnownZero.getBitWidth();
238 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
239 // NLZ can't be BitWidth with no sign bit
240 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000241 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000242
243 // If all of the MaskV bits are known to be zero, then we know the
244 // output top bits are zero, because we now know that the output is
245 // from [0-C].
246 if ((KnownZero2 & MaskV) == MaskV) {
247 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
248 // Top bits known zero.
249 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
250 }
251 }
252 }
253 }
254
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000255 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000256
David Majnemer97ddca32014-08-22 00:40:43 +0000257 // If an initial sequence of bits in the result is not needed, the
258 // corresponding bits in the operands are not needed.
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000259 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000260 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
261 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000262
David Majnemer97ddca32014-08-22 00:40:43 +0000263 // Carry in a 1 for a subtract, rather than a 0.
264 APInt CarryIn(BitWidth, 0);
265 if (!Add) {
266 // Sum = LHS + ~RHS + 1
267 std::swap(KnownZero2, KnownOne2);
268 CarryIn.setBit(0);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000269 }
270
David Majnemer97ddca32014-08-22 00:40:43 +0000271 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
272 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
273
274 // Compute known bits of the carry.
275 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
276 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
277
278 // Compute set of known bits (where all three relevant bits are known).
279 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
280 APInt RHSKnown = KnownZero2 | KnownOne2;
281 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
282 APInt Known = LHSKnown & RHSKnown & CarryKnown;
283
284 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
285 "known bits of sum differ");
286
287 // Compute known bits of the result.
288 KnownZero = ~PossibleSumOne & Known;
289 KnownOne = PossibleSumOne & Known;
290
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000291 // Are we still trying to solve for the sign bit?
David Majnemer97ddca32014-08-22 00:40:43 +0000292 if (!Known.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000293 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000294 // Adding two non-negative numbers, or subtracting a negative number from
295 // a non-negative one, can't wrap into negative.
296 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
297 KnownZero |= APInt::getSignBit(BitWidth);
298 // Adding two negative numbers, or subtracting a non-negative number from
299 // a negative one, can't wrap into non-negative.
300 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
301 KnownOne |= APInt::getSignBit(BitWidth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000302 }
303 }
304}
305
Jay Foada0653a32014-05-14 21:14:37 +0000306static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
307 APInt &KnownZero, APInt &KnownOne,
308 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000309 unsigned Depth, const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000310 unsigned BitWidth = KnownZero.getBitWidth();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000311 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
312 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000313
314 bool isKnownNegative = false;
315 bool isKnownNonNegative = false;
316 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000317 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000318 if (Op0 == Op1) {
319 // The product of a number with itself is non-negative.
320 isKnownNonNegative = true;
321 } else {
322 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
323 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
324 bool isKnownNegativeOp1 = KnownOne.isNegative();
325 bool isKnownNegativeOp0 = KnownOne2.isNegative();
326 // The product of two numbers with the same sign is non-negative.
327 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
328 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
329 // The product of a negative number and a non-negative number is either
330 // negative or zero.
331 if (!isKnownNonNegative)
332 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000333 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000334 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000335 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000336 }
337 }
338
339 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000340 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000341 // More trickiness is possible, but this is sufficient for the
342 // interesting case of alignment computation.
343 KnownOne.clearAllBits();
344 unsigned TrailZ = KnownZero.countTrailingOnes() +
345 KnownZero2.countTrailingOnes();
346 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
347 KnownZero2.countLeadingOnes(),
348 BitWidth) - BitWidth;
349
350 TrailZ = std::min(TrailZ, BitWidth);
351 LeadZ = std::min(LeadZ, BitWidth);
352 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
353 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000354
355 // Only make use of no-wrap flags if we failed to compute the sign bit
356 // directly. This matters if the multiplication always overflows, in
357 // which case we prefer to follow the result of the direct computation,
358 // though as the program is invoking undefined behaviour we can choose
359 // whatever we like here.
360 if (isKnownNonNegative && !KnownOne.isNegative())
361 KnownZero.setBit(BitWidth - 1);
362 else if (isKnownNegative && !KnownZero.isNegative())
363 KnownOne.setBit(BitWidth - 1);
364}
365
Jingyue Wu37fcb592014-06-19 16:50:16 +0000366void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000367 APInt &KnownZero,
368 APInt &KnownOne) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000369 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000370 unsigned NumRanges = Ranges.getNumOperands() / 2;
371 assert(NumRanges >= 1);
372
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000373 KnownZero.setAllBits();
374 KnownOne.setAllBits();
375
Rafael Espindola53190532012-03-30 15:52:11 +0000376 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000377 ConstantInt *Lower =
378 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
379 ConstantInt *Upper =
380 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000381 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000382
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000383 // The first CommonPrefixBits of all values in Range are equal.
384 unsigned CommonPrefixBits =
385 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
386
387 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
388 KnownOne &= Range.getUnsignedMax() & Mask;
389 KnownZero &= ~Range.getUnsignedMax() & Mask;
390 }
Rafael Espindola53190532012-03-30 15:52:11 +0000391}
Jay Foad5a29c362014-05-15 12:12:55 +0000392
Hal Finkel60db0582014-09-07 18:57:58 +0000393static bool isEphemeralValueOf(Instruction *I, const Value *E) {
394 SmallVector<const Value *, 16> WorkSet(1, I);
395 SmallPtrSet<const Value *, 32> Visited;
396 SmallPtrSet<const Value *, 16> EphValues;
397
Hal Finkelf2199b22015-10-23 20:37:08 +0000398 // The instruction defining an assumption's condition itself is always
399 // considered ephemeral to that assumption (even if it has other
400 // non-ephemeral users). See r246696's test case for an example.
401 if (std::find(I->op_begin(), I->op_end(), E) != I->op_end())
402 return true;
403
Hal Finkel60db0582014-09-07 18:57:58 +0000404 while (!WorkSet.empty()) {
405 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000406 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000407 continue;
408
409 // If all uses of this value are ephemeral, then so is this value.
Benjamin Kramer56115612015-10-24 19:30:37 +0000410 if (std::all_of(V->user_begin(), V->user_end(),
411 [&](const User *U) { return EphValues.count(U); })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000412 if (V == E)
413 return true;
414
415 EphValues.insert(V);
416 if (const User *U = dyn_cast<User>(V))
417 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
418 J != JE; ++J) {
419 if (isSafeToSpeculativelyExecute(*J))
420 WorkSet.push_back(*J);
421 }
422 }
423 }
424
425 return false;
426}
427
428// Is this an intrinsic that cannot be speculated but also cannot trap?
429static bool isAssumeLikeIntrinsic(const Instruction *I) {
430 if (const CallInst *CI = dyn_cast<CallInst>(I))
431 if (Function *F = CI->getCalledFunction())
432 switch (F->getIntrinsicID()) {
433 default: break;
434 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
435 case Intrinsic::assume:
436 case Intrinsic::dbg_declare:
437 case Intrinsic::dbg_value:
438 case Intrinsic::invariant_start:
439 case Intrinsic::invariant_end:
440 case Intrinsic::lifetime_start:
441 case Intrinsic::lifetime_end:
442 case Intrinsic::objectsize:
443 case Intrinsic::ptr_annotation:
444 case Intrinsic::var_annotation:
445 return true;
446 }
447
448 return false;
449}
450
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000451static bool isValidAssumeForContext(Value *V, const Instruction *CxtI,
452 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000453 Instruction *Inv = cast<Instruction>(V);
454
455 // There are two restrictions on the use of an assume:
456 // 1. The assume must dominate the context (or the control flow must
457 // reach the assume whenever it reaches the context).
458 // 2. The context must not be in the assume's set of ephemeral values
459 // (otherwise we will use the assume to prove that the condition
460 // feeding the assume is trivially true, thus causing the removal of
461 // the assume).
462
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000463 if (DT) {
464 if (DT->dominates(Inv, CxtI)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000465 return true;
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000466 } else if (Inv->getParent() == CxtI->getParent()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000467 // The context comes first, but they're both in the same block. Make sure
468 // there is nothing in between that might interrupt the control flow.
469 for (BasicBlock::const_iterator I =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000470 std::next(BasicBlock::const_iterator(CxtI)),
Hal Finkel60db0582014-09-07 18:57:58 +0000471 IE(Inv); I != IE; ++I)
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +0000472 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
Hal Finkel60db0582014-09-07 18:57:58 +0000473 return false;
474
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000475 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000476 }
477
478 return false;
479 }
480
481 // When we don't have a DT, we do a limited search...
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000482 if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000483 return true;
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000484 } else if (Inv->getParent() == CxtI->getParent()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000485 // Search forward from the assume until we reach the context (or the end
486 // of the block); the common case is that the assume will come first.
487 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
488 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000489 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000490 return true;
491
492 // The context must come first...
493 for (BasicBlock::const_iterator I =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000494 std::next(BasicBlock::const_iterator(CxtI)),
Hal Finkel60db0582014-09-07 18:57:58 +0000495 IE(Inv); I != IE; ++I)
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +0000496 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
Hal Finkel60db0582014-09-07 18:57:58 +0000497 return false;
498
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000499 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000500 }
501
502 return false;
503}
504
505bool llvm::isValidAssumeForContext(const Instruction *I,
506 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000507 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000508 return ::isValidAssumeForContext(const_cast<Instruction *>(I), CxtI, DT);
Hal Finkel60db0582014-09-07 18:57:58 +0000509}
510
511template<typename LHS, typename RHS>
512inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>,
513 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>>
514m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
515 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L));
516}
517
518template<typename LHS, typename RHS>
519inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>,
520 BinaryOp_match<RHS, LHS, Instruction::And>>
521m_c_And(const LHS &L, const RHS &R) {
522 return m_CombineOr(m_And(L, R), m_And(R, L));
523}
524
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000525template<typename LHS, typename RHS>
526inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>,
527 BinaryOp_match<RHS, LHS, Instruction::Or>>
528m_c_Or(const LHS &L, const RHS &R) {
529 return m_CombineOr(m_Or(L, R), m_Or(R, L));
530}
531
532template<typename LHS, typename RHS>
533inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>,
534 BinaryOp_match<RHS, LHS, Instruction::Xor>>
535m_c_Xor(const LHS &L, const RHS &R) {
536 return m_CombineOr(m_Xor(L, R), m_Xor(R, L));
537}
538
Hal Finkel60db0582014-09-07 18:57:58 +0000539static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000540 APInt &KnownOne, unsigned Depth,
541 const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000542 // Use of assumptions is context-sensitive. If we don't have a context, we
543 // cannot use them!
Chandler Carruth66b31302015-01-04 12:03:27 +0000544 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000545 return;
546
547 unsigned BitWidth = KnownZero.getBitWidth();
548
Chandler Carruth66b31302015-01-04 12:03:27 +0000549 for (auto &AssumeVH : Q.AC->assumptions()) {
550 if (!AssumeVH)
551 continue;
552 CallInst *I = cast<CallInst>(AssumeVH);
Chandler Carruth75c11b82015-01-04 23:13:57 +0000553 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
Chandler Carruth66b31302015-01-04 12:03:27 +0000554 "Got assumption for the wrong function!");
Matthias Braun37e5d792016-01-28 06:29:33 +0000555 if (Q.isExcluded(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000556 continue;
557
Philip Reames00d3b272014-11-24 23:44:28 +0000558 // Warning: This loop can end up being somewhat performance sensetive.
559 // We're running this loop for once for each value queried resulting in a
560 // runtime of ~O(#assumes * #values).
561
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000562 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
Philip Reames00d3b272014-11-24 23:44:28 +0000563 "must be an assume intrinsic");
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000564
Philip Reames00d3b272014-11-24 23:44:28 +0000565 Value *Arg = I->getArgOperand(0);
566
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000567 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000568 assert(BitWidth == 1 && "assume operand is not i1?");
569 KnownZero.clearAllBits();
570 KnownOne.setAllBits();
571 return;
572 }
573
David Majnemer9b609752014-12-12 23:59:29 +0000574 // The remaining tests are all recursive, so bail out if we hit the limit.
575 if (Depth == MaxDepth)
576 continue;
577
Hal Finkel60db0582014-09-07 18:57:58 +0000578 Value *A, *B;
579 auto m_V = m_CombineOr(m_Specific(V),
580 m_CombineOr(m_PtrToInt(m_Specific(V)),
581 m_BitCast(m_Specific(V))));
582
583 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000584 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000585 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000586 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000587 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000588 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000589 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000590 KnownZero |= RHSKnownZero;
591 KnownOne |= RHSKnownOne;
592 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000593 } else if (match(Arg,
594 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000595 Pred == ICmpInst::ICMP_EQ &&
596 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000597 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000598 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000599 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000600 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000601
602 // For those bits in the mask that are known to be one, we can propagate
603 // known bits from the RHS to V.
604 KnownZero |= RHSKnownZero & MaskKnownOne;
605 KnownOne |= RHSKnownOne & MaskKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000606 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000607 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
608 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000609 Pred == ICmpInst::ICMP_EQ &&
610 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000611 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000612 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000613 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000614 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000615
616 // For those bits in the mask that are known to be one, we can propagate
617 // inverted known bits from the RHS to V.
618 KnownZero |= RHSKnownOne & MaskKnownOne;
619 KnownOne |= RHSKnownZero & MaskKnownOne;
620 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000621 } else if (match(Arg,
622 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000623 Pred == ICmpInst::ICMP_EQ &&
624 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000625 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000626 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000627 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000628 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000629
630 // For those bits in B that are known to be zero, we can propagate known
631 // bits from the RHS to V.
632 KnownZero |= RHSKnownZero & BKnownZero;
633 KnownOne |= RHSKnownOne & BKnownZero;
634 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000635 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
636 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000637 Pred == ICmpInst::ICMP_EQ &&
638 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000639 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000640 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000641 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000642 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000643
644 // For those bits in B that are known to be zero, we can propagate
645 // inverted known bits from the RHS to V.
646 KnownZero |= RHSKnownOne & BKnownZero;
647 KnownOne |= RHSKnownZero & BKnownZero;
648 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000649 } else if (match(Arg,
650 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000651 Pred == ICmpInst::ICMP_EQ &&
652 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000653 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000654 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000655 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000656 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000657
658 // For those bits in B that are known to be zero, we can propagate known
659 // bits from the RHS to V. For those bits in B that are known to be one,
660 // we can propagate inverted known bits from the RHS to V.
661 KnownZero |= RHSKnownZero & BKnownZero;
662 KnownOne |= RHSKnownOne & BKnownZero;
663 KnownZero |= RHSKnownOne & BKnownOne;
664 KnownOne |= RHSKnownZero & BKnownOne;
665 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000666 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
667 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000668 Pred == ICmpInst::ICMP_EQ &&
669 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000670 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000671 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000672 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000673 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000674
675 // For those bits in B that are known to be zero, we can propagate
676 // inverted known bits from the RHS to V. For those bits in B that are
677 // known to be one, we can propagate known bits from the RHS to V.
678 KnownZero |= RHSKnownOne & BKnownZero;
679 KnownOne |= RHSKnownZero & BKnownZero;
680 KnownZero |= RHSKnownZero & BKnownOne;
681 KnownOne |= RHSKnownOne & BKnownOne;
682 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000683 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
684 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000685 Pred == ICmpInst::ICMP_EQ &&
686 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000687 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000688 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000689 // For those bits in RHS that are known, we can propagate them to known
690 // bits in V shifted to the right by C.
691 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
692 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
693 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000694 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
695 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000696 Pred == ICmpInst::ICMP_EQ &&
697 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000698 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000699 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000700 // For those bits in RHS that are known, we can propagate them inverted
701 // to known bits in V shifted to the right by C.
702 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
703 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
704 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000705 } else if (match(Arg,
706 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000707 m_AShr(m_V, m_ConstantInt(C))),
708 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000709 Pred == ICmpInst::ICMP_EQ &&
710 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000711 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000712 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000713 // For those bits in RHS that are known, we can propagate them to known
714 // bits in V shifted to the right by C.
715 KnownZero |= RHSKnownZero << C->getZExtValue();
716 KnownOne |= RHSKnownOne << C->getZExtValue();
717 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000718 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000719 m_LShr(m_V, m_ConstantInt(C)),
720 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000721 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000722 Pred == ICmpInst::ICMP_EQ &&
723 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000724 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000725 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000726 // For those bits in RHS that are known, we can propagate them inverted
727 // to known bits in V shifted to the right by C.
728 KnownZero |= RHSKnownOne << C->getZExtValue();
729 KnownOne |= RHSKnownZero << C->getZExtValue();
730 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000731 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000732 Pred == ICmpInst::ICMP_SGE &&
733 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000734 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000735 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000736
737 if (RHSKnownZero.isNegative()) {
738 // We know that the sign bit is zero.
739 KnownZero |= APInt::getSignBit(BitWidth);
740 }
741 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000742 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000743 Pred == ICmpInst::ICMP_SGT &&
744 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000745 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000746 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000747
748 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
749 // We know that the sign bit is zero.
750 KnownZero |= APInt::getSignBit(BitWidth);
751 }
752 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000753 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000754 Pred == ICmpInst::ICMP_SLE &&
755 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000756 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000757 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000758
759 if (RHSKnownOne.isNegative()) {
760 // We know that the sign bit is one.
761 KnownOne |= APInt::getSignBit(BitWidth);
762 }
763 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000764 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000765 Pred == ICmpInst::ICMP_SLT &&
766 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000767 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000768 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000769
770 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
771 // We know that the sign bit is one.
772 KnownOne |= APInt::getSignBit(BitWidth);
773 }
774 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000775 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000776 Pred == ICmpInst::ICMP_ULE &&
777 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000778 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000779 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000780
781 // Whatever high bits in c are zero are known to be zero.
782 KnownZero |=
783 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
784 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000785 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000786 Pred == ICmpInst::ICMP_ULT &&
787 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000788 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000789 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000790
791 // Whatever high bits in c are zero are known to be zero (if c is a power
792 // of 2, then one more).
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000793 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000794 KnownZero |=
795 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
796 else
797 KnownZero |=
798 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000799 }
800 }
801}
802
Hal Finkelf2199b22015-10-23 20:37:08 +0000803// Compute known bits from a shift operator, including those with a
804// non-constant shift amount. KnownZero and KnownOne are the outputs of this
805// function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
806// same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
807// functors that, given the known-zero or known-one bits respectively, and a
808// shift amount, compute the implied known-zero or known-one bits of the shift
809// operator's result respectively for that shift amount. The results from calling
810// KZF and KOF are conservatively combined for all permitted shift amounts.
811template <typename KZFunctor, typename KOFunctor>
812static void computeKnownBitsFromShiftOperator(Operator *I,
813 APInt &KnownZero, APInt &KnownOne,
814 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000815 unsigned Depth, const Query &Q, KZFunctor KZF, KOFunctor KOF) {
Hal Finkelf2199b22015-10-23 20:37:08 +0000816 unsigned BitWidth = KnownZero.getBitWidth();
817
818 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
819 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
820
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000821 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000822 KnownZero = KZF(KnownZero, ShiftAmt);
823 KnownOne = KOF(KnownOne, ShiftAmt);
824 return;
825 }
826
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000827 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000828
829 // Note: We cannot use KnownZero.getLimitedValue() here, because if
830 // BitWidth > 64 and any upper bits are known, we'll end up returning the
831 // limit value (which implies all bits are known).
832 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
833 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
834
835 // It would be more-clearly correct to use the two temporaries for this
836 // calculation. Reusing the APInts here to prevent unnecessary allocations.
Richard Trieu7a083812016-02-18 22:09:30 +0000837 KnownZero.clearAllBits();
838 KnownOne.clearAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +0000839
James Molloy493e57d2015-10-26 14:10:46 +0000840 // If we know the shifter operand is nonzero, we can sometimes infer more
841 // known bits. However this is expensive to compute, so be lazy about it and
842 // only compute it when absolutely necessary.
843 Optional<bool> ShifterOperandIsNonZero;
844
Hal Finkelf2199b22015-10-23 20:37:08 +0000845 // Early exit if we can't constrain any well-defined shift amount.
James Molloy493e57d2015-10-26 14:10:46 +0000846 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
847 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000848 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000849 if (!*ShifterOperandIsNonZero)
850 return;
851 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000852
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000853 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000854
855 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
856 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
857 // Combine the shifted known input bits only for those shift amounts
858 // compatible with its known constraints.
859 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
860 continue;
861 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
862 continue;
James Molloy493e57d2015-10-26 14:10:46 +0000863 // If we know the shifter is nonzero, we may be able to infer more known
864 // bits. This check is sunk down as far as possible to avoid the expensive
865 // call to isKnownNonZero if the cheaper checks above fail.
866 if (ShiftAmt == 0) {
867 if (!ShifterOperandIsNonZero.hasValue())
868 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000869 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000870 if (*ShifterOperandIsNonZero)
871 continue;
872 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000873
874 KnownZero &= KZF(KnownZero2, ShiftAmt);
875 KnownOne &= KOF(KnownOne2, ShiftAmt);
876 }
877
878 // If there are no compatible shift amounts, then we've proven that the shift
879 // amount must be >= the BitWidth, and the result is undefined. We could
880 // return anything we'd like, but we need to make sure the sets of known bits
881 // stay disjoint (it should be better for some other code to actually
882 // propagate the undef than to pick a value here using known bits).
Richard Trieu7a083812016-02-18 22:09:30 +0000883 if ((KnownZero & KnownOne) != 0) {
884 KnownZero.clearAllBits();
885 KnownOne.clearAllBits();
886 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000887}
888
Jingyue Wu12b0c282015-06-15 05:46:29 +0000889static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000890 APInt &KnownOne, unsigned Depth,
891 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000892 unsigned BitWidth = KnownZero.getBitWidth();
893
Chris Lattner965c7692008-06-02 01:18:21 +0000894 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000895 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000896 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000897 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000898 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000899 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Jay Foad5a29c362014-05-15 12:12:55 +0000900 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000901 case Instruction::And: {
902 // If either the LHS or the RHS are Zero, the result is zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000903 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
904 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000905
Chris Lattner965c7692008-06-02 01:18:21 +0000906 // Output known-1 bits are only known if set in both the LHS & RHS.
907 KnownOne &= KnownOne2;
908 // Output known-0 are known to be clear if zero in either the LHS | RHS.
909 KnownZero |= KnownZero2;
Philip Reames2d858742015-11-10 18:46:14 +0000910
911 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
912 // here we handle the more general case of adding any odd number by
913 // matching the form add(x, add(x, y)) where y is odd.
914 // TODO: This could be generalized to clearing any bit set in y where the
915 // following bit is known to be unset in y.
916 Value *Y = nullptr;
917 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
918 m_Value(Y))) ||
919 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
920 m_Value(Y)))) {
921 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000922 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
Philip Reames2d858742015-11-10 18:46:14 +0000923 if (KnownOne3.countTrailingOnes() > 0)
924 KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
925 }
Jay Foad5a29c362014-05-15 12:12:55 +0000926 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000927 }
928 case Instruction::Or: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000929 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
930 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000931
Chris Lattner965c7692008-06-02 01:18:21 +0000932 // Output known-0 bits are only known if clear in both the LHS & RHS.
933 KnownZero &= KnownZero2;
934 // Output known-1 are known to be set if set in either the LHS | RHS.
935 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +0000936 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000937 }
938 case Instruction::Xor: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000939 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
940 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000941
Chris Lattner965c7692008-06-02 01:18:21 +0000942 // Output known-0 bits are known if clear or set in both the LHS & RHS.
943 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
944 // Output known-1 are known to be set if set in only one of the LHS, RHS.
945 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
946 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +0000947 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000948 }
949 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000950 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000951 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000952 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000953 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000954 }
955 case Instruction::UDiv: {
956 // For the purposes of computing leading zeros we can conservatively
957 // treat a udiv as a logical right shift by the power of 2 known to
958 // be less than the denominator.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000959 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000960 unsigned LeadZ = KnownZero2.countLeadingOnes();
961
Jay Foad25a5e4c2010-12-01 08:53:58 +0000962 KnownOne2.clearAllBits();
963 KnownZero2.clearAllBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000964 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000965 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
966 if (RHSUnknownLeadingOnes != BitWidth)
967 LeadZ = std::min(BitWidth,
968 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
969
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000970 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000971 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000972 }
James Molloyc5eded52016-01-14 15:49:32 +0000973 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000974 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
975 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000976
977 // Only known if known in both the LHS and RHS.
978 KnownOne &= KnownOne2;
979 KnownZero &= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +0000980 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000981 case Instruction::FPTrunc:
982 case Instruction::FPExt:
983 case Instruction::FPToUI:
984 case Instruction::FPToSI:
985 case Instruction::SIToFP:
986 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +0000987 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +0000988 case Instruction::PtrToInt:
989 case Instruction::IntToPtr:
Matt Arsenaultf1a7e622014-07-15 01:55:03 +0000990 case Instruction::AddrSpaceCast: // Pointers could be different sizes.
Chris Lattner965c7692008-06-02 01:18:21 +0000991 // FALL THROUGH and handle them the same as zext/trunc.
992 case Instruction::ZExt:
993 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +0000994 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +0000995
Chris Lattner0cdbc7a2009-09-08 00:13:52 +0000996 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +0000997 // Note that we handle pointer operands here because of inttoptr/ptrtoint
998 // which fall through here.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000999 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +00001000
1001 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +00001002 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1003 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001004 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001005 KnownZero = KnownZero.zextOrTrunc(BitWidth);
1006 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001007 // Any top bits are known to be zero.
1008 if (BitWidth > SrcBitWidth)
1009 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001010 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001011 }
1012 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001013 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Patel9115cf82015-10-08 16:56:55 +00001014 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy() ||
1015 SrcTy->isFloatingPointTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001016 // TODO: For now, not handling conversions like:
1017 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001018 !I->getType()->isVectorTy()) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001019 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001020 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001021 }
1022 break;
1023 }
1024 case Instruction::SExt: {
1025 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001026 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001027
Jay Foad583abbc2010-12-07 08:25:19 +00001028 KnownZero = KnownZero.trunc(SrcBitWidth);
1029 KnownOne = KnownOne.trunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001030 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001031 KnownZero = KnownZero.zext(BitWidth);
1032 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001033
1034 // If the sign bit of the input is known set or clear, then we know the
1035 // top bits of the result.
1036 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
1037 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1038 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
1039 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001040 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001041 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001042 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001043 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001044 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1045 return (KnownZero << ShiftAmt) |
1046 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1047 };
1048
1049 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1050 return KnownOne << ShiftAmt;
1051 };
1052
1053 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001054 KnownZero2, KnownOne2, Depth, Q, KZF,
1055 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001056 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001057 }
1058 case Instruction::LShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001059 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001060 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1061 return APIntOps::lshr(KnownZero, ShiftAmt) |
1062 // High bits known zero.
1063 APInt::getHighBitsSet(BitWidth, ShiftAmt);
1064 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001065
Hal Finkelf2199b22015-10-23 20:37:08 +00001066 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1067 return APIntOps::lshr(KnownOne, ShiftAmt);
1068 };
1069
1070 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001071 KnownZero2, KnownOne2, Depth, Q, KZF,
1072 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001073 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001074 }
1075 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001076 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001077 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1078 return APIntOps::ashr(KnownZero, ShiftAmt);
1079 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001080
Hal Finkelf2199b22015-10-23 20:37:08 +00001081 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1082 return APIntOps::ashr(KnownOne, ShiftAmt);
1083 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001084
Hal Finkelf2199b22015-10-23 20:37:08 +00001085 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001086 KnownZero2, KnownOne2, Depth, Q, KZF,
1087 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001088 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001089 }
Chris Lattner965c7692008-06-02 01:18:21 +00001090 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001091 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001092 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001093 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1094 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001095 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001096 }
Chris Lattner965c7692008-06-02 01:18:21 +00001097 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001098 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001099 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001100 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1101 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001102 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001103 }
1104 case Instruction::SRem:
1105 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001106 APInt RA = Rem->getValue().abs();
1107 if (RA.isPowerOf2()) {
1108 APInt LowBits = RA - 1;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001109 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001110 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001111
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001112 // The low bits of the first operand are unchanged by the srem.
1113 KnownZero = KnownZero2 & LowBits;
1114 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001115
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001116 // If the first operand is non-negative or has all low bits zero, then
1117 // the upper bits are all zero.
1118 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1119 KnownZero |= ~LowBits;
1120
1121 // If the first operand is negative and not all low bits are zero, then
1122 // the upper bits are all one.
1123 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1124 KnownOne |= ~LowBits;
1125
Craig Topper1bef2c82012-12-22 19:15:35 +00001126 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001127 }
1128 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001129
1130 // The sign bit is the LHS's sign bit, except when the result of the
1131 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001132 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +00001133 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001134 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1135 Q);
Nick Lewyckye4679792011-03-07 01:50:10 +00001136 // If it's known zero, our sign bit is also zero.
1137 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +00001138 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +00001139 }
1140
Chris Lattner965c7692008-06-02 01:18:21 +00001141 break;
1142 case Instruction::URem: {
1143 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1144 APInt RA = Rem->getValue();
1145 if (RA.isPowerOf2()) {
1146 APInt LowBits = (RA - 1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001147 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001148 KnownZero |= ~LowBits;
1149 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001150 break;
1151 }
1152 }
1153
1154 // Since the result is less than or equal to either operand, any leading
1155 // zero bits in either operand must also exist in the result.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001156 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1157 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001158
Chris Lattner4612ae12009-01-20 18:22:57 +00001159 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +00001160 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +00001161 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001162 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001163 break;
1164 }
1165
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001166 case Instruction::Alloca: {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001167 AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001168 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001169 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001170 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001171
Chris Lattner965c7692008-06-02 01:18:21 +00001172 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001173 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001174 break;
1175 }
1176 case Instruction::GetElementPtr: {
1177 // Analyze all of the subscripts of this getelementptr instruction
1178 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001179 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001180 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1181 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001182 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1183
1184 gep_type_iterator GTI = gep_type_begin(I);
1185 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1186 Value *Index = I->getOperand(i);
Chris Lattner229907c2011-07-18 04:54:35 +00001187 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001188 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001189
1190 // Handle case when index is vector zeroinitializer
1191 Constant *CIndex = cast<Constant>(Index);
1192 if (CIndex->isZeroValue())
1193 continue;
1194
1195 if (CIndex->getType()->isVectorTy())
1196 Index = CIndex->getSplatValue();
1197
Chris Lattner965c7692008-06-02 01:18:21 +00001198 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001199 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001200 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001201 TrailZ = std::min<unsigned>(TrailZ,
1202 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001203 } else {
1204 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001205 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001206 if (!IndexedTy->isSized()) {
1207 TrailZ = 0;
1208 break;
1209 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001210 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001211 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Chris Lattner965c7692008-06-02 01:18:21 +00001212 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001213 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001214 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001215 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +00001216 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001217 }
1218 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001219
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001220 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001221 break;
1222 }
1223 case Instruction::PHI: {
1224 PHINode *P = cast<PHINode>(I);
1225 // Handle the case of a simple two-predecessor recurrence PHI.
1226 // There's a lot more that could theoretically be done here, but
1227 // this is sufficient to catch some interesting cases.
1228 if (P->getNumIncomingValues() == 2) {
1229 for (unsigned i = 0; i != 2; ++i) {
1230 Value *L = P->getIncomingValue(i);
1231 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001232 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001233 if (!LU)
1234 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001235 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001236 // Check for operations that have the property that if
1237 // both their operands have low zero bits, the result
1238 // will have low zero bits.
1239 if (Opcode == Instruction::Add ||
1240 Opcode == Instruction::Sub ||
1241 Opcode == Instruction::And ||
1242 Opcode == Instruction::Or ||
1243 Opcode == Instruction::Mul) {
1244 Value *LL = LU->getOperand(0);
1245 Value *LR = LU->getOperand(1);
1246 // Find a recurrence.
1247 if (LL == I)
1248 L = LR;
1249 else if (LR == I)
1250 L = LL;
1251 else
1252 break;
1253 // Ok, we have a PHI of the form L op= R. Check for low
1254 // zero bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001255 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001256
1257 // We need to take the minimum number of known bits
1258 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001259 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001260
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001261 KnownZero = APInt::getLowBitsSet(BitWidth,
David Greeneaebd9e02008-10-27 23:24:03 +00001262 std::min(KnownZero2.countTrailingOnes(),
1263 KnownZero3.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001264 break;
1265 }
1266 }
1267 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001268
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001269 // Unreachable blocks may have zero-operand PHI nodes.
1270 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001271 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001272
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001273 // Otherwise take the unions of the known bit sets of the operands,
1274 // taking conservative care to avoid excessive recursion.
1275 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001276 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001277 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001278 break;
1279
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001280 KnownZero = APInt::getAllOnesValue(BitWidth);
1281 KnownOne = APInt::getAllOnesValue(BitWidth);
Pete Cooper833f34d2015-05-12 20:05:31 +00001282 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001283 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001284 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001285
1286 KnownZero2 = APInt(BitWidth, 0);
1287 KnownOne2 = APInt(BitWidth, 0);
1288 // Recurse, but cap the recursion to one level, because we don't
1289 // want to waste time spinning around in loops.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001290 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001291 KnownZero &= KnownZero2;
1292 KnownOne &= KnownOne2;
1293 // If all bits have been ruled out, there's no need to check
1294 // more operands.
1295 if (!KnownZero && !KnownOne)
1296 break;
1297 }
1298 }
Chris Lattner965c7692008-06-02 01:18:21 +00001299 break;
1300 }
1301 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001302 case Instruction::Invoke:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001303 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +00001304 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Jingyue Wu37fcb592014-06-19 16:50:16 +00001305 // If a range metadata is attached to this IntrinsicInst, intersect the
1306 // explicit range specified by the metadata and the implicit range of
1307 // the intrinsic.
Chris Lattner965c7692008-06-02 01:18:21 +00001308 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1309 switch (II->getIntrinsicID()) {
1310 default: break;
Philip Reames675418e2015-10-06 20:20:45 +00001311 case Intrinsic::bswap:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001312 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reames675418e2015-10-06 20:20:45 +00001313 KnownZero |= KnownZero2.byteSwap();
1314 KnownOne |= KnownOne2.byteSwap();
1315 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001316 case Intrinsic::ctlz:
1317 case Intrinsic::cttz: {
1318 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001319 // If this call is undefined for 0, the result will be less than 2^n.
1320 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1321 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001322 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001323 break;
1324 }
1325 case Intrinsic::ctpop: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001326 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001327 // We can bound the space the count needs. Also, bits known to be zero
1328 // can't contribute to the population.
1329 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1330 unsigned LeadingZeros =
1331 APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
Aaron Ballman58f413c2015-10-15 13:55:43 +00001332 assert(LeadingZeros <= BitWidth);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001333 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1334 KnownOne &= ~KnownZero;
1335 // TODO: we could bound KnownOne using the lower bound on the number
1336 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001337 break;
1338 }
Sanjay Patel9115cf82015-10-08 16:56:55 +00001339 case Intrinsic::fabs: {
1340 Type *Ty = II->getType();
1341 APInt SignBit = APInt::getSignBit(Ty->getScalarSizeInBits());
1342 KnownZero |= APInt::getSplat(Ty->getPrimitiveSizeInBits(), SignBit);
1343 break;
1344 }
Chad Rosierb3628842011-05-26 23:13:19 +00001345 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001346 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001347 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001348 }
1349 }
1350 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001351 case Instruction::ExtractValue:
1352 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1353 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1354 if (EVI->getNumIndices() != 1) break;
1355 if (EVI->getIndices()[0] == 0) {
1356 switch (II->getIntrinsicID()) {
1357 default: break;
1358 case Intrinsic::uadd_with_overflow:
1359 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001360 computeKnownBitsAddSub(true, II->getArgOperand(0),
1361 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001362 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001363 break;
1364 case Intrinsic::usub_with_overflow:
1365 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001366 computeKnownBitsAddSub(false, II->getArgOperand(0),
1367 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001368 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001369 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001370 case Intrinsic::umul_with_overflow:
1371 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001372 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001373 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1374 Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001375 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001376 }
1377 }
1378 }
Chris Lattner965c7692008-06-02 01:18:21 +00001379 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001380}
1381
1382/// Determine which bits of V are known to be either zero or one and return
1383/// them in the KnownZero/KnownOne bit sets.
1384///
1385/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1386/// we cannot optimize based on the assumption that it is zero without changing
1387/// it to be an explicit zero. If we don't change it to zero, other code could
1388/// optimized based on the contradictory assumption that it is non-zero.
1389/// Because instcombine aggressively folds operations with undef args anyway,
1390/// this won't lose us code quality.
1391///
1392/// This function is defined on values with integer type, values with pointer
1393/// type, and vectors of integers. In the case
1394/// where V is a vector, known zero, and known one values are the
1395/// same width as the vector element, and the bit is set only if it is true
1396/// for all of the elements in the vector.
1397void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001398 unsigned Depth, const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001399 assert(V && "No Value?");
1400 assert(Depth <= MaxDepth && "Limit Search Depth");
1401 unsigned BitWidth = KnownZero.getBitWidth();
1402
1403 assert((V->getType()->isIntOrIntVectorTy() ||
Sanjay Patel9115cf82015-10-08 16:56:55 +00001404 V->getType()->isFPOrFPVectorTy() ||
Jingyue Wu12b0c282015-06-15 05:46:29 +00001405 V->getType()->getScalarType()->isPointerTy()) &&
Sanjay Patel9115cf82015-10-08 16:56:55 +00001406 "Not integer, floating point, or pointer type!");
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001407 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Jingyue Wu12b0c282015-06-15 05:46:29 +00001408 (!V->getType()->isIntOrIntVectorTy() ||
1409 V->getType()->getScalarSizeInBits() == BitWidth) &&
1410 KnownZero.getBitWidth() == BitWidth &&
1411 KnownOne.getBitWidth() == BitWidth &&
1412 "V, KnownOne and KnownZero should have same BitWidth");
1413
1414 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1415 // We know all of the bits for a constant!
1416 KnownOne = CI->getValue();
1417 KnownZero = ~KnownOne;
1418 return;
1419 }
1420 // Null and aggregate-zero are all-zeros.
1421 if (isa<ConstantPointerNull>(V) ||
1422 isa<ConstantAggregateZero>(V)) {
1423 KnownOne.clearAllBits();
1424 KnownZero = APInt::getAllOnesValue(BitWidth);
1425 return;
1426 }
1427 // Handle a constant vector by taking the intersection of the known bits of
1428 // each element. There is no real need to handle ConstantVector here, because
1429 // we don't handle undef in any particularly useful way.
1430 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1431 // We know that CDS must be a vector of integers. Take the intersection of
1432 // each element.
1433 KnownZero.setAllBits(); KnownOne.setAllBits();
1434 APInt Elt(KnownZero.getBitWidth(), 0);
1435 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1436 Elt = CDS->getElementAsInteger(i);
1437 KnownZero &= ~Elt;
1438 KnownOne &= Elt;
1439 }
1440 return;
1441 }
1442
Jingyue Wu12b0c282015-06-15 05:46:29 +00001443 // Start out not knowing anything.
1444 KnownZero.clearAllBits(); KnownOne.clearAllBits();
1445
1446 // Limit search depth.
1447 // All recursive calls that increase depth must come after this.
1448 if (Depth == MaxDepth)
1449 return;
1450
1451 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1452 // the bits of its aliasee.
1453 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00001454 if (!GA->isInterposable())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001455 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001456 return;
1457 }
1458
1459 if (Operator *I = dyn_cast<Operator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001460 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001461
Artur Pilipenko029d8532015-09-30 11:55:45 +00001462 // Aligned pointers have trailing zeros - refine KnownZero set
1463 if (V->getType()->isPointerTy()) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00001464 unsigned Align = V->getPointerAlignment(Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001465 if (Align)
1466 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1467 }
1468
Philip Reames146307e2016-03-03 19:44:06 +00001469 // computeKnownBitsFromAssume strictly refines KnownZero and
1470 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001471
1472 // Check whether a nearby assume intrinsic can determine some known bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001473 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001474
Jay Foad5a29c362014-05-15 12:12:55 +00001475 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001476}
1477
Sanjay Patelaee84212014-11-04 16:27:42 +00001478/// Determine whether the sign bit is known to be zero or one.
1479/// Convenience wrapper around computeKnownBits.
Hal Finkel60db0582014-09-07 18:57:58 +00001480void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001481 unsigned Depth, const Query &Q) {
1482 unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001483 if (!BitWidth) {
1484 KnownZero = false;
1485 KnownOne = false;
1486 return;
1487 }
1488 APInt ZeroBits(BitWidth, 0);
1489 APInt OneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001490 computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001491 KnownOne = OneBits[BitWidth - 1];
1492 KnownZero = ZeroBits[BitWidth - 1];
1493}
1494
Sanjay Patelaee84212014-11-04 16:27:42 +00001495/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001496/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001497/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001498/// types and vectors of integers.
Hal Finkel60db0582014-09-07 18:57:58 +00001499bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001500 const Query &Q) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001501 if (Constant *C = dyn_cast<Constant>(V)) {
1502 if (C->isNullValue())
1503 return OrZero;
1504 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1505 return CI->getValue().isPowerOf2();
1506 // TODO: Handle vector constants.
1507 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001508
1509 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1510 // it is shifted off the end then the result is undefined.
1511 if (match(V, m_Shl(m_One(), m_Value())))
1512 return true;
1513
1514 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1515 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +00001516 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001517 return true;
1518
1519 // The remaining tests are all recursive, so bail out if we hit the limit.
1520 if (Depth++ == MaxDepth)
1521 return false;
1522
Craig Topper9f008862014-04-15 04:59:12 +00001523 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001524 // A shift left or a logical shift right of a power of two is a power of two
1525 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001526 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001527 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001528 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001529
Duncan Sandsd3951082011-01-25 09:38:29 +00001530 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001531 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001532
1533 if (SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001534 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1535 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001536
Duncan Sandsba286d72011-10-26 20:55:21 +00001537 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1538 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001539 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1540 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001541 return true;
1542 // X & (-X) is always a power of two or zero.
1543 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1544 return true;
1545 return false;
1546 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001547
David Majnemerb7d54092013-07-30 21:01:36 +00001548 // Adding a power-of-two or zero to the same power-of-two or zero yields
1549 // either the original power-of-two, a larger power-of-two or zero.
1550 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1551 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1552 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1553 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1554 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001555 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001556 return true;
1557 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1558 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001559 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001560 return true;
1561
1562 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1563 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001564 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001565
1566 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001567 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001568 // If i8 V is a power of two or zero:
1569 // ZeroBits: 1 1 1 0 1 1 1 1
1570 // ~ZeroBits: 0 0 0 1 0 0 0 0
1571 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1572 // If OrZero isn't set, we cannot give back a zero result.
1573 // Make sure either the LHS or RHS has a bit set.
1574 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1575 return true;
1576 }
1577 }
David Majnemerbeab5672013-05-18 19:30:37 +00001578
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001579 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001580 // is a power of two only if the first operand is a power of two and not
1581 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001582 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1583 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001584 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001585 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001586 }
1587
Duncan Sandsd3951082011-01-25 09:38:29 +00001588 return false;
1589}
1590
Chandler Carruth80d3e562012-12-07 02:08:58 +00001591/// \brief Test whether a GEP's result is known to be non-null.
1592///
1593/// Uses properties inherent in a GEP to try to determine whether it is known
1594/// to be non-null.
1595///
1596/// Currently this routine does not support vector GEPs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001597static bool isGEPKnownNonNull(GEPOperator *GEP, unsigned Depth,
1598 const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001599 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1600 return false;
1601
1602 // FIXME: Support vector-GEPs.
1603 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1604
1605 // If the base pointer is non-null, we cannot walk to a null address with an
1606 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001607 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001608 return true;
1609
Chandler Carruth80d3e562012-12-07 02:08:58 +00001610 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1611 // If so, then the GEP cannot produce a null pointer, as doing so would
1612 // inherently violate the inbounds contract within address space zero.
1613 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1614 GTI != GTE; ++GTI) {
1615 // Struct types are easy -- they must always be indexed by a constant.
1616 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1617 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1618 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001619 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001620 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1621 if (ElementOffset > 0)
1622 return true;
1623 continue;
1624 }
1625
1626 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001627 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001628 continue;
1629
1630 // Fast path the constant operand case both for efficiency and so we don't
1631 // increment Depth when just zipping down an all-constant GEP.
1632 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1633 if (!OpC->isZero())
1634 return true;
1635 continue;
1636 }
1637
1638 // We post-increment Depth here because while isKnownNonZero increments it
1639 // as well, when we pop back up that increment won't persist. We don't want
1640 // to recurse 10k times just because we have 10k GEP operands. We don't
1641 // bail completely out because we want to handle constant GEPs regardless
1642 // of depth.
1643 if (Depth++ >= MaxDepth)
1644 continue;
1645
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001646 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001647 return true;
1648 }
1649
1650 return false;
1651}
1652
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001653/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1654/// ensure that the value it's attached to is never Value? 'RangeType' is
1655/// is the type of the value described by the range.
1656static bool rangeMetadataExcludesValue(MDNode* Ranges,
1657 const APInt& Value) {
1658 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1659 assert(NumRanges >= 1);
1660 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001661 ConstantInt *Lower =
1662 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1663 ConstantInt *Upper =
1664 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001665 ConstantRange Range(Lower->getValue(), Upper->getValue());
1666 if (Range.contains(Value))
1667 return false;
1668 }
1669 return true;
1670}
1671
Sanjay Patelaee84212014-11-04 16:27:42 +00001672/// Return true if the given value is known to be non-zero when defined.
1673/// For vectors return true if every element is known to be non-zero when
1674/// defined. Supports values with integer or pointer type and vectors of
1675/// integers.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001676bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001677 if (Constant *C = dyn_cast<Constant>(V)) {
1678 if (C->isNullValue())
1679 return false;
1680 if (isa<ConstantInt>(C))
1681 // Must be non-zero due to null test above.
1682 return true;
1683 // TODO: Handle vectors
1684 return false;
1685 }
1686
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001687 if (Instruction* I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001688 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001689 // If the possible ranges don't contain zero, then the value is
1690 // definitely non-zero.
1691 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) {
1692 const APInt ZeroValue(Ty->getBitWidth(), 0);
1693 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1694 return true;
1695 }
1696 }
1697 }
1698
Duncan Sandsd3951082011-01-25 09:38:29 +00001699 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001700 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001701 return false;
1702
Chandler Carruth80d3e562012-12-07 02:08:58 +00001703 // Check for pointer simplifications.
1704 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +00001705 if (isKnownNonNull(V))
1706 return true;
Chandler Carruth80d3e562012-12-07 02:08:58 +00001707 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001708 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001709 return true;
1710 }
1711
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001712 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001713
1714 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001715 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001716 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001717 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001718
1719 // ext X != 0 if X != 0.
1720 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001721 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001722
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001723 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001724 // if the lowest bit is shifted off the end.
1725 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001726 // shl nuw can't remove any non-zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001727 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001728 if (BO->hasNoUnsignedWrap())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001729 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001730
Duncan Sandsd3951082011-01-25 09:38:29 +00001731 APInt KnownZero(BitWidth, 0);
1732 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001733 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001734 if (KnownOne[0])
1735 return true;
1736 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001737 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001738 // defined if the sign bit is shifted off the end.
1739 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001740 // shr exact can only shift out zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001741 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001742 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001743 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001744
Duncan Sandsd3951082011-01-25 09:38:29 +00001745 bool XKnownNonNegative, XKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001746 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001747 if (XKnownNegative)
1748 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001749
1750 // If the shifter operand is a constant, and all of the bits shifted
1751 // out are known to be zero, and X is known non-zero then at least one
1752 // non-zero bit must remain.
1753 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1754 APInt KnownZero(BitWidth, 0);
1755 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001756 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001757
1758 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1759 // Is there a known one in the portion not shifted out?
1760 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1761 return true;
1762 // Are all the bits to be shifted out known zero?
1763 if (KnownZero.countTrailingOnes() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001764 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001765 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001766 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001767 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001768 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001769 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001770 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001771 // X + Y.
1772 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1773 bool XKnownNonNegative, XKnownNegative;
1774 bool YKnownNonNegative, YKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001775 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1776 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001777
1778 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001779 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00001780 if (XKnownNonNegative && YKnownNonNegative)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001781 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001782 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001783
1784 // If X and Y are both negative (as signed values) then their sum is not
1785 // zero unless both X and Y equal INT_MIN.
1786 if (BitWidth && XKnownNegative && YKnownNegative) {
1787 APInt KnownZero(BitWidth, 0);
1788 APInt KnownOne(BitWidth, 0);
1789 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1790 // The sign bit of X is set. If some other bit is set then X is not equal
1791 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001792 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001793 if ((KnownOne & Mask) != 0)
1794 return true;
1795 // The sign bit of Y is set. If some other bit is set then Y is not equal
1796 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001797 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001798 if ((KnownOne & Mask) != 0)
1799 return true;
1800 }
1801
1802 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001803 if (XKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001804 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001805 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00001806 if (YKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001807 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001808 return true;
1809 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001810 // X * Y.
1811 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1812 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1813 // If X and Y are non-zero then so is X * Y as long as the multiplication
1814 // does not overflow.
1815 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001816 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001817 return true;
1818 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001819 // (C ? X : Y) != 0 if X != 0 and Y != 0.
1820 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001821 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1822 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001823 return true;
1824 }
James Molloy897048b2015-09-29 14:08:45 +00001825 // PHI
1826 else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1827 // Try and detect a recurrence that monotonically increases from a
1828 // starting value, as these are common as induction variables.
1829 if (PN->getNumIncomingValues() == 2) {
1830 Value *Start = PN->getIncomingValue(0);
1831 Value *Induction = PN->getIncomingValue(1);
1832 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1833 std::swap(Start, Induction);
1834 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1835 if (!C->isZero() && !C->isNegative()) {
1836 ConstantInt *X;
1837 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1838 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1839 !X->isNegative())
1840 return true;
1841 }
1842 }
1843 }
Jun Bum Limca832662016-02-01 17:03:07 +00001844 // Check if all incoming values are non-zero constant.
1845 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
1846 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
1847 });
1848 if (AllNonZeroConstants)
1849 return true;
James Molloy897048b2015-09-29 14:08:45 +00001850 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001851
1852 if (!BitWidth) return false;
1853 APInt KnownZero(BitWidth, 0);
1854 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001855 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001856 return KnownOne != 0;
1857}
1858
James Molloy1d88d6f2015-10-22 13:18:42 +00001859/// Return true if V2 == V1 + X, where X is known non-zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001860static bool isAddOfNonZero(Value *V1, Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00001861 BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
1862 if (!BO || BO->getOpcode() != Instruction::Add)
1863 return false;
1864 Value *Op = nullptr;
1865 if (V2 == BO->getOperand(0))
1866 Op = BO->getOperand(1);
1867 else if (V2 == BO->getOperand(1))
1868 Op = BO->getOperand(0);
1869 else
1870 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001871 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001872}
1873
1874/// Return true if it is known that V1 != V2.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001875static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00001876 if (V1->getType()->isVectorTy() || V1 == V2)
1877 return false;
1878 if (V1->getType() != V2->getType())
1879 // We can't look through casts yet.
1880 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001881 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00001882 return true;
1883
1884 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
1885 // Are any known bits in V1 contradictory to known bits in V2? If V1
1886 // has a known zero where V2 has a known one, they must not be equal.
1887 auto BitWidth = Ty->getBitWidth();
1888 APInt KnownZero1(BitWidth, 0);
1889 APInt KnownOne1(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001890 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001891 APInt KnownZero2(BitWidth, 0);
1892 APInt KnownOne2(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001893 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001894
1895 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
1896 if (OppositeBits.getBoolValue())
1897 return true;
1898 }
1899 return false;
1900}
1901
Sanjay Patelaee84212014-11-04 16:27:42 +00001902/// Return true if 'V & Mask' is known to be zero. We use this predicate to
1903/// simplify operations downstream. Mask is known to be zero for bits that V
1904/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00001905///
1906/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001907/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00001908/// where V is a vector, the mask, known zero, and known one values are the
1909/// same width as the vector element, and the bit is set only if it is true
1910/// for all of the elements in the vector.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001911bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
1912 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00001913 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001914 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001915 return (KnownZero & Mask) == Mask;
1916}
1917
1918
1919
Sanjay Patelaee84212014-11-04 16:27:42 +00001920/// Return the number of times the sign bit of the register is replicated into
1921/// the other bits. We know that at least 1 bit is always equal to the sign bit
1922/// (itself), but other cases can give us information. For example, immediately
1923/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
1924/// other, so we return 3.
Chris Lattner965c7692008-06-02 01:18:21 +00001925///
1926/// 'Op' must have a scalar integer type.
1927///
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001928unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q) {
1929 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00001930 unsigned Tmp, Tmp2;
1931 unsigned FirstAnswer = 1;
1932
Jay Foada0653a32014-05-14 21:14:37 +00001933 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00001934 // below.
1935
Chris Lattner965c7692008-06-02 01:18:21 +00001936 if (Depth == 6)
1937 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00001938
Dan Gohman80ca01c2009-07-17 20:47:02 +00001939 Operator *U = dyn_cast<Operator>(V);
1940 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001941 default: break;
1942 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00001943 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001944 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00001945
Nadav Rotemc99a3872015-03-06 00:23:58 +00001946 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00001947 const APInt *Denominator;
1948 // sdiv X, C -> adds log(C) sign bits.
1949 if (match(U->getOperand(1), m_APInt(Denominator))) {
1950
1951 // Ignore non-positive denominator.
1952 if (!Denominator->isStrictlyPositive())
1953 break;
1954
1955 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001956 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00001957
1958 // Add floor(log(C)) bits to the numerator bits.
1959 return std::min(TyBits, NumBits + Denominator->logBase2());
1960 }
1961 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00001962 }
1963
1964 case Instruction::SRem: {
1965 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00001966 // srem X, C -> we know that the result is within [-C+1,C) when C is a
1967 // positive constant. This let us put a lower bound on the number of sign
1968 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00001969 if (match(U->getOperand(1), m_APInt(Denominator))) {
1970
1971 // Ignore non-positive denominator.
1972 if (!Denominator->isStrictlyPositive())
1973 break;
1974
1975 // Calculate the incoming numerator bits. SRem by a positive constant
1976 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001977 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001978 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00001979
1980 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00001981 // denominator. Given that the denominator is positive, there are two
1982 // cases:
1983 //
1984 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
1985 // (1 << ceilLogBase2(C)).
1986 //
1987 // 2. the numerator is negative. Then the result range is (-C,0] and
1988 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
1989 //
1990 // Thus a lower bound on the number of sign bits is `TyBits -
1991 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00001992
Sanjoy Dase561fee2015-03-25 22:33:53 +00001993 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00001994 return std::max(NumrBits, ResBits);
1995 }
1996 break;
1997 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00001998
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001999 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002000 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002001 // ashr X, C -> adds C sign bits. Vectors too.
2002 const APInt *ShAmt;
2003 if (match(U->getOperand(1), m_APInt(ShAmt))) {
2004 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00002005 if (Tmp > TyBits) Tmp = TyBits;
2006 }
2007 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002008 }
2009 case Instruction::Shl: {
2010 const APInt *ShAmt;
2011 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002012 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002013 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002014 Tmp2 = ShAmt->getZExtValue();
2015 if (Tmp2 >= TyBits || // Bad shift.
2016 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2017 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002018 }
2019 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002020 }
Chris Lattner965c7692008-06-02 01:18:21 +00002021 case Instruction::And:
2022 case Instruction::Or:
2023 case Instruction::Xor: // NOT is handled here.
2024 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002025 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002026 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002027 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002028 FirstAnswer = std::min(Tmp, Tmp2);
2029 // We computed what we know about the sign bits as our first
2030 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002031 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002032 }
2033 break;
2034
2035 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002036 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002037 if (Tmp == 1) return 1; // Early out.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002038 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002039 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002040
Chris Lattner965c7692008-06-02 01:18:21 +00002041 case Instruction::Add:
2042 // Add can have at most one carry bit. Thus we know that the output
2043 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002044 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002045 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002046
Chris Lattner965c7692008-06-02 01:18:21 +00002047 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002048 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002049 if (CRHS->isAllOnesValue()) {
2050 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002051 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002052
Chris Lattner965c7692008-06-02 01:18:21 +00002053 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2054 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002055 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002056 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002057
Chris Lattner965c7692008-06-02 01:18:21 +00002058 // If we are subtracting one from a positive number, there is no carry
2059 // out of the result.
2060 if (KnownZero.isNegative())
2061 return Tmp;
2062 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002063
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002064 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002065 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002066 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002067
Chris Lattner965c7692008-06-02 01:18:21 +00002068 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002069 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002070 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002071
Chris Lattner965c7692008-06-02 01:18:21 +00002072 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002073 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002074 if (CLHS->isNullValue()) {
2075 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002076 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002077 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2078 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002079 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002080 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002081
Chris Lattner965c7692008-06-02 01:18:21 +00002082 // If the input is known to be positive (the sign bit is known clear),
2083 // the output of the NEG has the same number of sign bits as the input.
2084 if (KnownZero.isNegative())
2085 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002086
Chris Lattner965c7692008-06-02 01:18:21 +00002087 // Otherwise, we treat this like a SUB.
2088 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002089
Chris Lattner965c7692008-06-02 01:18:21 +00002090 // Sub can have at most one carry bit. Thus we know that the output
2091 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002092 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002093 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002094 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002095
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002096 case Instruction::PHI: {
2097 PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002098 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002099 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002100 if (NumIncomingValues > 4) break;
2101 // Unreachable blocks may have zero-operand PHI nodes.
2102 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002103
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002104 // Take the minimum of all incoming values. This can't infinitely loop
2105 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002106 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002107 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002108 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002109 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002110 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002111 }
2112 return Tmp;
2113 }
2114
Chris Lattner965c7692008-06-02 01:18:21 +00002115 case Instruction::Trunc:
2116 // FIXME: it's tricky to do anything useful for this, but it is an important
2117 // case for targets like X86.
2118 break;
2119 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002120
Chris Lattner965c7692008-06-02 01:18:21 +00002121 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2122 // use this information.
2123 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002124 APInt Mask;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002125 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002126
Chris Lattner965c7692008-06-02 01:18:21 +00002127 if (KnownZero.isNegative()) { // sign bit is 0
2128 Mask = KnownZero;
2129 } else if (KnownOne.isNegative()) { // sign bit is 1;
2130 Mask = KnownOne;
2131 } else {
2132 // Nothing known.
2133 return FirstAnswer;
2134 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002135
Chris Lattner965c7692008-06-02 01:18:21 +00002136 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
2137 // the number of identical bits in the top of the input value.
2138 Mask = ~Mask;
2139 Mask <<= Mask.getBitWidth()-TyBits;
2140 // Return # leading zeros. We use 'min' here in case Val was zero before
2141 // shifting. We don't want to return '64' as for an i32 "0".
2142 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
2143}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002144
Sanjay Patelaee84212014-11-04 16:27:42 +00002145/// This function computes the integer multiple of Base that equals V.
2146/// If successful, it returns true and returns the multiple in
2147/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002148/// through SExt instructions only if LookThroughSExt is true.
2149bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002150 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002151 const unsigned MaxDepth = 6;
2152
Dan Gohman6a976bb2009-11-18 00:58:27 +00002153 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002154 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002155 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002156
Chris Lattner229907c2011-07-18 04:54:35 +00002157 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002158
Dan Gohman6a976bb2009-11-18 00:58:27 +00002159 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002160
2161 if (Base == 0)
2162 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002163
Victor Hernandez47444882009-11-10 08:28:35 +00002164 if (Base == 1) {
2165 Multiple = V;
2166 return true;
2167 }
2168
2169 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2170 Constant *BaseVal = ConstantInt::get(T, Base);
2171 if (CO && CO == BaseVal) {
2172 // Multiple is 1.
2173 Multiple = ConstantInt::get(T, 1);
2174 return true;
2175 }
2176
2177 if (CI && CI->getZExtValue() % Base == 0) {
2178 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002179 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002180 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002181
Victor Hernandez47444882009-11-10 08:28:35 +00002182 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002183
Victor Hernandez47444882009-11-10 08:28:35 +00002184 Operator *I = dyn_cast<Operator>(V);
2185 if (!I) return false;
2186
2187 switch (I->getOpcode()) {
2188 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002189 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002190 if (!LookThroughSExt) return false;
2191 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002192 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002193 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2194 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002195 case Instruction::Shl:
2196 case Instruction::Mul: {
2197 Value *Op0 = I->getOperand(0);
2198 Value *Op1 = I->getOperand(1);
2199
2200 if (I->getOpcode() == Instruction::Shl) {
2201 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2202 if (!Op1CI) return false;
2203 // Turn Op0 << Op1 into Op0 * 2^Op1
2204 APInt Op1Int = Op1CI->getValue();
2205 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002206 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002207 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002208 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002209 }
2210
Craig Topper9f008862014-04-15 04:59:12 +00002211 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002212 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2213 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2214 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002215 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002216 MulC->getType()->getPrimitiveSizeInBits())
2217 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002218 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002219 MulC->getType()->getPrimitiveSizeInBits())
2220 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002221
Chris Lattner72d283c2010-09-05 17:20:46 +00002222 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2223 Multiple = ConstantExpr::getMul(MulC, Op1C);
2224 return true;
2225 }
Victor Hernandez47444882009-11-10 08:28:35 +00002226
2227 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2228 if (Mul0CI->getValue() == 1) {
2229 // V == Base * Op1, so return Op1
2230 Multiple = Op1;
2231 return true;
2232 }
2233 }
2234
Craig Topper9f008862014-04-15 04:59:12 +00002235 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002236 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2237 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2238 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002239 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002240 MulC->getType()->getPrimitiveSizeInBits())
2241 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002242 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002243 MulC->getType()->getPrimitiveSizeInBits())
2244 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002245
Chris Lattner72d283c2010-09-05 17:20:46 +00002246 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2247 Multiple = ConstantExpr::getMul(MulC, Op0C);
2248 return true;
2249 }
Victor Hernandez47444882009-11-10 08:28:35 +00002250
2251 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2252 if (Mul1CI->getValue() == 1) {
2253 // V == Base * Op0, so return Op0
2254 Multiple = Op0;
2255 return true;
2256 }
2257 }
Victor Hernandez47444882009-11-10 08:28:35 +00002258 }
2259 }
2260
2261 // We could not determine if V is a multiple of Base.
2262 return false;
2263}
2264
David Majnemerb4b27232016-04-19 19:10:21 +00002265/// \brief Check call has a unary float signature
2266/// It checks following:
2267/// a) call should have a single argument
2268/// b) argument type should be floating point type
2269/// c) call instruction type and argument type should be same
2270/// d) call should only reads memory.
2271/// If all these condition is met then return ValidIntrinsicID
2272/// else return not_intrinsic.
2273static Intrinsic::ID checkUnaryFloatSignature(ImmutableCallSite ICS,
2274 Intrinsic::ID ValidIntrinsicID) {
2275 if (ICS.getNumArgOperands() != 1 ||
2276 !ICS.getArgOperand(0)->getType()->isFloatingPointTy() ||
2277 ICS.getType() != ICS.getArgOperand(0)->getType() ||
2278 !ICS.onlyReadsMemory())
2279 return Intrinsic::not_intrinsic;
2280
2281 return ValidIntrinsicID;
2282}
2283
2284/// \brief Check call has a binary float signature
2285/// It checks following:
2286/// a) call should have 2 arguments.
2287/// b) arguments type should be floating point type
2288/// c) call instruction type and arguments type should be same
2289/// d) call should only reads memory.
2290/// If all these condition is met then return ValidIntrinsicID
2291/// else return not_intrinsic.
2292static Intrinsic::ID checkBinaryFloatSignature(ImmutableCallSite ICS,
2293 Intrinsic::ID ValidIntrinsicID) {
2294 if (ICS.getNumArgOperands() != 2 ||
2295 !ICS.getArgOperand(0)->getType()->isFloatingPointTy() ||
2296 !ICS.getArgOperand(1)->getType()->isFloatingPointTy() ||
2297 ICS.getType() != ICS.getArgOperand(0)->getType() ||
2298 ICS.getType() != ICS.getArgOperand(1)->getType() ||
2299 !ICS.onlyReadsMemory())
2300 return Intrinsic::not_intrinsic;
2301
2302 return ValidIntrinsicID;
2303}
2304
2305Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2306 const TargetLibraryInfo *TLI) {
2307 const Function *F = ICS.getCalledFunction();
2308 if (!F)
2309 return Intrinsic::not_intrinsic;
2310
2311 if (F->isIntrinsic())
2312 return F->getIntrinsicID();
2313
2314 if (!TLI)
2315 return Intrinsic::not_intrinsic;
2316
2317 LibFunc::Func Func;
2318 // We're going to make assumptions on the semantics of the functions, check
2319 // that the target knows that it's available in this environment and it does
2320 // not have local linkage.
2321 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(F->getName(), Func))
2322 return Intrinsic::not_intrinsic;
2323
2324 // Otherwise check if we have a call to a function that can be turned into a
2325 // vector intrinsic.
2326 switch (Func) {
2327 default:
2328 break;
2329 case LibFunc::sin:
2330 case LibFunc::sinf:
2331 case LibFunc::sinl:
2332 return checkUnaryFloatSignature(ICS, Intrinsic::sin);
2333 case LibFunc::cos:
2334 case LibFunc::cosf:
2335 case LibFunc::cosl:
2336 return checkUnaryFloatSignature(ICS, Intrinsic::cos);
2337 case LibFunc::exp:
2338 case LibFunc::expf:
2339 case LibFunc::expl:
2340 return checkUnaryFloatSignature(ICS, Intrinsic::exp);
2341 case LibFunc::exp2:
2342 case LibFunc::exp2f:
2343 case LibFunc::exp2l:
2344 return checkUnaryFloatSignature(ICS, Intrinsic::exp2);
2345 case LibFunc::log:
2346 case LibFunc::logf:
2347 case LibFunc::logl:
2348 return checkUnaryFloatSignature(ICS, Intrinsic::log);
2349 case LibFunc::log10:
2350 case LibFunc::log10f:
2351 case LibFunc::log10l:
2352 return checkUnaryFloatSignature(ICS, Intrinsic::log10);
2353 case LibFunc::log2:
2354 case LibFunc::log2f:
2355 case LibFunc::log2l:
2356 return checkUnaryFloatSignature(ICS, Intrinsic::log2);
2357 case LibFunc::fabs:
2358 case LibFunc::fabsf:
2359 case LibFunc::fabsl:
2360 return checkUnaryFloatSignature(ICS, Intrinsic::fabs);
2361 case LibFunc::fmin:
2362 case LibFunc::fminf:
2363 case LibFunc::fminl:
2364 return checkBinaryFloatSignature(ICS, Intrinsic::minnum);
2365 case LibFunc::fmax:
2366 case LibFunc::fmaxf:
2367 case LibFunc::fmaxl:
2368 return checkBinaryFloatSignature(ICS, Intrinsic::maxnum);
2369 case LibFunc::copysign:
2370 case LibFunc::copysignf:
2371 case LibFunc::copysignl:
2372 return checkBinaryFloatSignature(ICS, Intrinsic::copysign);
2373 case LibFunc::floor:
2374 case LibFunc::floorf:
2375 case LibFunc::floorl:
2376 return checkUnaryFloatSignature(ICS, Intrinsic::floor);
2377 case LibFunc::ceil:
2378 case LibFunc::ceilf:
2379 case LibFunc::ceill:
2380 return checkUnaryFloatSignature(ICS, Intrinsic::ceil);
2381 case LibFunc::trunc:
2382 case LibFunc::truncf:
2383 case LibFunc::truncl:
2384 return checkUnaryFloatSignature(ICS, Intrinsic::trunc);
2385 case LibFunc::rint:
2386 case LibFunc::rintf:
2387 case LibFunc::rintl:
2388 return checkUnaryFloatSignature(ICS, Intrinsic::rint);
2389 case LibFunc::nearbyint:
2390 case LibFunc::nearbyintf:
2391 case LibFunc::nearbyintl:
2392 return checkUnaryFloatSignature(ICS, Intrinsic::nearbyint);
2393 case LibFunc::round:
2394 case LibFunc::roundf:
2395 case LibFunc::roundl:
2396 return checkUnaryFloatSignature(ICS, Intrinsic::round);
2397 case LibFunc::pow:
2398 case LibFunc::powf:
2399 case LibFunc::powl:
2400 return checkBinaryFloatSignature(ICS, Intrinsic::pow);
2401 case LibFunc::sqrt:
2402 case LibFunc::sqrtf:
2403 case LibFunc::sqrtl:
2404 if (ICS->hasNoNaNs())
2405 return checkUnaryFloatSignature(ICS, Intrinsic::sqrt);
2406 return Intrinsic::not_intrinsic;
2407 }
2408
2409 return Intrinsic::not_intrinsic;
2410}
2411
Sanjay Patelaee84212014-11-04 16:27:42 +00002412/// Return true if we can prove that the specified FP value is never equal to
2413/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002414///
2415/// NOTE: this function will need to be revisited when we support non-default
2416/// rounding modes!
2417///
David Majnemer3ee5f342016-04-13 06:55:52 +00002418bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2419 unsigned Depth) {
Chris Lattnera12a6de2008-06-02 01:29:46 +00002420 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2421 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002422
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002423 // FIXME: Magic number! At the least, this should be given a name because it's
2424 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2425 // expose it as a parameter, so it can be used for testing / experimenting.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002426 if (Depth == 6)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002427 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002428
Dan Gohman80ca01c2009-07-17 20:47:02 +00002429 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002430 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002431
2432 // Check if the nsz fast-math flag is set
2433 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2434 if (FPO->hasNoSignedZeros())
2435 return true;
2436
Chris Lattnera12a6de2008-06-02 01:29:46 +00002437 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002438 if (I->getOpcode() == Instruction::FAdd)
2439 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2440 if (CFP->isNullValue())
2441 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002442
Chris Lattnera12a6de2008-06-02 01:29:46 +00002443 // sitofp and uitofp turn into +0.0 for zero.
2444 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2445 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002446
David Majnemer3ee5f342016-04-13 06:55:52 +00002447 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
David Majnemerb4b27232016-04-19 19:10:21 +00002448 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002449 switch (IID) {
2450 default:
2451 break;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002452 // sqrt(-0.0) = -0.0, no other negative results are possible.
David Majnemer3ee5f342016-04-13 06:55:52 +00002453 case Intrinsic::sqrt:
2454 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2455 // fabs(x) != -0.0
2456 case Intrinsic::fabs:
2457 return true;
Chris Lattnera12a6de2008-06-02 01:29:46 +00002458 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002459 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002460
Chris Lattnera12a6de2008-06-02 01:29:46 +00002461 return false;
2462}
2463
David Majnemer3ee5f342016-04-13 06:55:52 +00002464bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2465 const TargetLibraryInfo *TLI,
2466 unsigned Depth) {
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002467 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2468 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2469
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002470 // FIXME: Magic number! At the least, this should be given a name because it's
2471 // used similarly in CannotBeNegativeZero(). A better fix may be to
2472 // expose it as a parameter, so it can be used for testing / experimenting.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002473 if (Depth == 6)
2474 return false; // Limit search depth.
2475
2476 const Operator *I = dyn_cast<Operator>(V);
2477 if (!I) return false;
2478
2479 switch (I->getOpcode()) {
2480 default: break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002481 // Unsigned integers are always nonnegative.
2482 case Instruction::UIToFP:
2483 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002484 case Instruction::FMul:
2485 // x*x is always non-negative or a NaN.
2486 if (I->getOperand(0) == I->getOperand(1))
2487 return true;
2488 // Fall through
2489 case Instruction::FAdd:
2490 case Instruction::FDiv:
2491 case Instruction::FRem:
David Majnemer3ee5f342016-04-13 06:55:52 +00002492 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2493 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002494 case Instruction::Select:
David Majnemer3ee5f342016-04-13 06:55:52 +00002495 return CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1) &&
2496 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002497 case Instruction::FPExt:
2498 case Instruction::FPTrunc:
2499 // Widening/narrowing never change sign.
David Majnemer3ee5f342016-04-13 06:55:52 +00002500 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2501 case Instruction::Call:
David Majnemerb4b27232016-04-19 19:10:21 +00002502 Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI);
David Majnemer3ee5f342016-04-13 06:55:52 +00002503 switch (IID) {
2504 default:
2505 break;
2506 case Intrinsic::maxnum:
2507 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) ||
2508 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2509 case Intrinsic::minnum:
2510 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2511 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2512 case Intrinsic::exp:
2513 case Intrinsic::exp2:
2514 case Intrinsic::fabs:
2515 case Intrinsic::sqrt:
2516 return true;
2517 case Intrinsic::powi:
2518 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2519 // powi(x,n) is non-negative if n is even.
2520 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2521 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002522 }
David Majnemer3ee5f342016-04-13 06:55:52 +00002523 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2524 case Intrinsic::fma:
2525 case Intrinsic::fmuladd:
2526 // x*x+y is non-negative if y is non-negative.
2527 return I->getOperand(0) == I->getOperand(1) &&
2528 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
2529 }
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002530 break;
2531 }
2532 return false;
2533}
2534
Sanjay Patelaee84212014-11-04 16:27:42 +00002535/// If the specified value can be set by repeating the same byte in memory,
2536/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002537/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2538/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2539/// byte store (e.g. i16 0x1234), return null.
2540Value *llvm::isBytewiseValue(Value *V) {
2541 // All byte-wide stores are splatable, even of arbitrary variables.
2542 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002543
2544 // Handle 'null' ConstantArrayZero etc.
2545 if (Constant *C = dyn_cast<Constant>(V))
2546 if (C->isNullValue())
2547 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002548
Chris Lattner9cb10352010-12-26 20:15:01 +00002549 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002550 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002551 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2552 if (CFP->getType()->isFloatTy())
2553 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2554 if (CFP->getType()->isDoubleTy())
2555 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2556 // Don't handle long double formats, which have strange constraints.
2557 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002558
Benjamin Kramer17d90152015-02-07 19:29:02 +00002559 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002560 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002561 if (CI->getBitWidth() % 8 == 0) {
2562 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002563
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002564 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002565 return nullptr;
2566 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002567 }
2568 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002569
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002570 // A ConstantDataArray/Vector is splatable if all its members are equal and
2571 // also splatable.
2572 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2573 Value *Elt = CA->getElementAsConstant(0);
2574 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002575 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002576 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002577
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002578 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2579 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002580 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002581
Chris Lattner9cb10352010-12-26 20:15:01 +00002582 return Val;
2583 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002584
Chris Lattner9cb10352010-12-26 20:15:01 +00002585 // Conceptually, we could handle things like:
2586 // %a = zext i8 %X to i16
2587 // %b = shl i16 %a, 8
2588 // %c = or i16 %a, %b
2589 // but until there is an example that actually needs this, it doesn't seem
2590 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002591 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002592}
2593
2594
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002595// This is the recursive version of BuildSubAggregate. It takes a few different
2596// arguments. Idxs is the index within the nested struct From that we are
2597// looking at now (which is of type IndexedType). IdxSkip is the number of
2598// indices from Idxs that should be left out when inserting into the resulting
2599// struct. To is the result struct built so far, new insertvalue instructions
2600// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002601static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002602 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002603 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002604 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002605 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002606 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002607 // Save the original To argument so we can modify it
2608 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002609 // General case, the type indexed by Idxs is a struct
2610 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2611 // Process each struct element recursively
2612 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002613 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002614 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002615 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002616 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002617 if (!To) {
2618 // Couldn't find any inserted value for this index? Cleanup
2619 while (PrevTo != OrigTo) {
2620 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2621 PrevTo = Del->getAggregateOperand();
2622 Del->eraseFromParent();
2623 }
2624 // Stop processing elements
2625 break;
2626 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002627 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002628 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002629 if (To)
2630 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002631 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002632 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2633 // the struct's elements had a value that was inserted directly. In the latter
2634 // case, perhaps we can't determine each of the subelements individually, but
2635 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002636
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002637 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002638 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002639
2640 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002641 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002642
2643 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002644 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002645 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002646}
2647
2648// This helper takes a nested struct and extracts a part of it (which is again a
2649// struct) into a new value. For example, given the struct:
2650// { a, { b, { c, d }, e } }
2651// and the indices "1, 1" this returns
2652// { c, d }.
2653//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002654// It does this by inserting an insertvalue for each element in the resulting
2655// struct, as opposed to just inserting a single struct. This will only work if
2656// each of the elements of the substruct are known (ie, inserted into From by an
2657// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002658//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002659// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002660static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002661 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002662 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002663 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002664 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002665 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002666 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002667 unsigned IdxSkip = Idxs.size();
2668
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002669 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002670}
2671
Sanjay Patelaee84212014-11-04 16:27:42 +00002672/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002673/// the scalar value indexed is already around as a register, for example if it
2674/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002675///
2676/// If InsertBefore is not null, this function will duplicate (modified)
2677/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002678Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2679 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002680 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002681 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002682 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002683 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002684 // We have indices, so V should have an indexable type.
2685 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2686 "Not looking at a struct or array?");
2687 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2688 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002689
Chris Lattner67058832012-01-25 06:48:06 +00002690 if (Constant *C = dyn_cast<Constant>(V)) {
2691 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002692 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002693 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2694 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002695
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002696 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002697 // Loop the indices for the insertvalue instruction in parallel with the
2698 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002699 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002700 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2701 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002702 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002703 // We can't handle this without inserting insertvalues
2704 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002705 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002706
2707 // The requested index identifies a part of a nested aggregate. Handle
2708 // this specially. For example,
2709 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2710 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2711 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2712 // This can be changed into
2713 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2714 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2715 // which allows the unused 0,0 element from the nested struct to be
2716 // removed.
2717 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2718 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002719 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002720
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002721 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002722 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002723 // looking for, then.
2724 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002725 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002726 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002727 }
2728 // If we end up here, the indices of the insertvalue match with those
2729 // requested (though possibly only partially). Now we recursively look at
2730 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002731 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002732 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002733 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002734 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002735
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002736 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002737 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002738 // something else, we can extract from that something else directly instead.
2739 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002740
2741 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002742 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002743 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002744 SmallVector<unsigned, 5> Idxs;
2745 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002746 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002747 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002748
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002749 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002750 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002751
Craig Topper1bef2c82012-12-22 19:15:35 +00002752 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002753 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002754
Jay Foad57aa6362011-07-13 10:26:04 +00002755 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002756 }
2757 // Otherwise, we don't know (such as, extracting from a function return value
2758 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002759 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002760}
Evan Chengda3db112008-06-30 07:31:25 +00002761
Sanjay Patelaee84212014-11-04 16:27:42 +00002762/// Analyze the specified pointer to see if it can be expressed as a base
2763/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002764Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002765 const DataLayout &DL) {
2766 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00002767 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00002768
2769 // We walk up the defs but use a visited set to handle unreachable code. In
2770 // that case, we stop after accumulating the cycle once (not that it
2771 // matters).
2772 SmallPtrSet<Value *, 16> Visited;
2773 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002774 if (Ptr->getType()->isVectorTy())
2775 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002776
Nuno Lopes368c4d02012-12-31 20:48:35 +00002777 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002778 APInt GEPOffset(BitWidth, 0);
2779 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2780 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002781
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002782 ByteOffset += GEPOffset;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002783
Nuno Lopes368c4d02012-12-31 20:48:35 +00002784 Ptr = GEP->getPointerOperand();
Matt Arsenaultfd78d0c2014-07-14 22:39:22 +00002785 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2786 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002787 Ptr = cast<Operator>(Ptr)->getOperand(0);
2788 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00002789 if (GA->isInterposable())
Nuno Lopes368c4d02012-12-31 20:48:35 +00002790 break;
2791 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002792 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002793 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002794 }
2795 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002796 Offset = ByteOffset.getSExtValue();
2797 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002798}
2799
David L Kreitzer752c1442016-04-13 14:31:06 +00002800bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
2801 // Make sure the GEP has exactly three arguments.
2802 if (GEP->getNumOperands() != 3)
2803 return false;
2804
2805 // Make sure the index-ee is a pointer to array of i8.
2806 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
2807 if (!AT || !AT->getElementType()->isIntegerTy(8))
2808 return false;
2809
2810 // Check to make sure that the first operand of the GEP is an integer and
2811 // has value 0 so that we are sure we're indexing into the initializer.
2812 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
2813 if (!FirstIdx || !FirstIdx->isZero())
2814 return false;
2815
2816 return true;
2817}
Chris Lattnere28618d2010-11-30 22:25:26 +00002818
Sanjay Patelaee84212014-11-04 16:27:42 +00002819/// This function computes the length of a null-terminated C string pointed to
2820/// by V. If successful, it returns true and returns the string in Str.
2821/// If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002822bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2823 uint64_t Offset, bool TrimAtNul) {
2824 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002825
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002826 // Look through bitcast instructions and geps.
2827 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002828
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002829 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002830 // offset.
2831 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
David L Kreitzer752c1442016-04-13 14:31:06 +00002832 // The GEP operator should be based on a pointer to string constant, and is
2833 // indexing into the string constant.
2834 if (!isGEPBasedOnPointerToString(GEP))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002835 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002836
Evan Chengda3db112008-06-30 07:31:25 +00002837 // If the second index isn't a ConstantInt, then this is a variable index
2838 // into the array. If this occurs, we can't say anything meaningful about
2839 // the string.
2840 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00002841 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00002842 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002843 else
2844 return false;
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002845 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2846 TrimAtNul);
Evan Chengda3db112008-06-30 07:31:25 +00002847 }
Nick Lewycky46209882011-10-20 00:34:35 +00002848
Evan Chengda3db112008-06-30 07:31:25 +00002849 // The GEP instruction, constant or instruction, must reference a global
2850 // variable that is a constant and is initialized. The referenced constant
2851 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002852 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00002853 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002854 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002855
Nick Lewycky46209882011-10-20 00:34:35 +00002856 // Handle the all-zeros case
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002857 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00002858 // This is a degenerate case. The initializer is constant zero so the
2859 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002860 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002861 return true;
2862 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002863
Evan Chengda3db112008-06-30 07:31:25 +00002864 // Must be a Constant Array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002865 const ConstantDataArray *Array =
2866 dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00002867 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002868 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002869
Evan Chengda3db112008-06-30 07:31:25 +00002870 // Get the number of elements in the array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002871 uint64_t NumElts = Array->getType()->getArrayNumElements();
2872
2873 // Start out with the entire array in the StringRef.
2874 Str = Array->getAsString();
2875
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002876 if (Offset > NumElts)
2877 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002878
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002879 // Skip over 'offset' bytes.
2880 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00002881
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002882 if (TrimAtNul) {
2883 // Trim off the \0 and anything after it. If the array is not nul
2884 // terminated, we just return the whole end of string. The client may know
2885 // some other way that the string is length-bound.
2886 Str = Str.substr(0, Str.find('\0'));
2887 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002888 return true;
Evan Chengda3db112008-06-30 07:31:25 +00002889}
Eric Christopher4899cbc2010-03-05 06:58:57 +00002890
2891// These next two are very similar to the above, but also look through PHI
2892// nodes.
2893// TODO: See if we can integrate these two together.
2894
Sanjay Patelaee84212014-11-04 16:27:42 +00002895/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002896/// the specified pointer, return 'len+1'. If we can't, return 0.
Craig Topper71b7b682014-08-21 05:55:13 +00002897static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00002898 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002899 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00002900
2901 // If this is a PHI node, there are two cases: either we have already seen it
2902 // or we haven't.
2903 if (PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00002904 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00002905 return ~0ULL; // already in the set.
2906
2907 // If it was new, see if all the input strings are the same length.
2908 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00002909 for (Value *IncValue : PN->incoming_values()) {
2910 uint64_t Len = GetStringLengthH(IncValue, PHIs);
Eric Christopher4899cbc2010-03-05 06:58:57 +00002911 if (Len == 0) return 0; // Unknown length -> unknown.
2912
2913 if (Len == ~0ULL) continue;
2914
2915 if (Len != LenSoFar && LenSoFar != ~0ULL)
2916 return 0; // Disagree -> unknown.
2917 LenSoFar = Len;
2918 }
2919
2920 // Success, all agree.
2921 return LenSoFar;
2922 }
2923
2924 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
2925 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2926 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
2927 if (Len1 == 0) return 0;
2928 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
2929 if (Len2 == 0) return 0;
2930 if (Len1 == ~0ULL) return Len2;
2931 if (Len2 == ~0ULL) return Len1;
2932 if (Len1 != Len2) return 0;
2933 return Len1;
2934 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002935
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002936 // Otherwise, see if we can read the string.
2937 StringRef StrData;
2938 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00002939 return 0;
2940
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002941 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00002942}
2943
Sanjay Patelaee84212014-11-04 16:27:42 +00002944/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002945/// the specified pointer, return 'len+1'. If we can't, return 0.
2946uint64_t llvm::GetStringLength(Value *V) {
2947 if (!V->getType()->isPointerTy()) return 0;
2948
2949 SmallPtrSet<PHINode*, 32> PHIs;
2950 uint64_t Len = GetStringLengthH(V, PHIs);
2951 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
2952 // an empty string as a length.
2953 return Len == ~0ULL ? 1 : Len;
2954}
Dan Gohmana4fcd242010-12-15 20:02:24 +00002955
Adam Nemete2b885c2015-04-23 20:09:20 +00002956/// \brief \p PN defines a loop-variant pointer to an object. Check if the
2957/// previous iteration of the loop was referring to the same object as \p PN.
2958static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) {
2959 // Find the loop-defined value.
2960 Loop *L = LI->getLoopFor(PN->getParent());
2961 if (PN->getNumIncomingValues() != 2)
2962 return true;
2963
2964 // Find the value from previous iteration.
2965 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
2966 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
2967 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
2968 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
2969 return true;
2970
2971 // If a new pointer is loaded in the loop, the pointer references a different
2972 // object in every iteration. E.g.:
2973 // for (i)
2974 // int *p = a[i];
2975 // ...
2976 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
2977 if (!L->isLoopInvariant(Load->getPointerOperand()))
2978 return false;
2979 return true;
2980}
2981
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002982Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
2983 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00002984 if (!V->getType()->isPointerTy())
2985 return V;
2986 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
2987 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2988 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00002989 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
2990 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00002991 V = cast<Operator>(V)->getOperand(0);
2992 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00002993 if (GA->isInterposable())
Dan Gohmana4fcd242010-12-15 20:02:24 +00002994 return V;
2995 V = GA->getAliasee();
2996 } else {
Dan Gohman05b18f12010-12-15 20:49:55 +00002997 // See if InstructionSimplify knows any relevant tricks.
2998 if (Instruction *I = dyn_cast<Instruction>(V))
Chandler Carruth66b31302015-01-04 12:03:27 +00002999 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003000 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00003001 V = Simplified;
3002 continue;
3003 }
3004
Dan Gohmana4fcd242010-12-15 20:02:24 +00003005 return V;
3006 }
3007 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3008 }
3009 return V;
3010}
Nick Lewycky3e334a42011-06-27 04:20:45 +00003011
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003012void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00003013 const DataLayout &DL, LoopInfo *LI,
3014 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003015 SmallPtrSet<Value *, 4> Visited;
3016 SmallVector<Value *, 4> Worklist;
3017 Worklist.push_back(V);
3018 do {
3019 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003020 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003021
David Blaikie70573dc2014-11-19 07:49:26 +00003022 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003023 continue;
3024
3025 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3026 Worklist.push_back(SI->getTrueValue());
3027 Worklist.push_back(SI->getFalseValue());
3028 continue;
3029 }
3030
3031 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00003032 // If this PHI changes the underlying object in every iteration of the
3033 // loop, don't look through it. Consider:
3034 // int **A;
3035 // for (i) {
3036 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3037 // Curr = A[i];
3038 // *Prev, *Curr;
3039 //
3040 // Prev is tracking Curr one iteration behind so they refer to different
3041 // underlying objects.
3042 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3043 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00003044 for (Value *IncValue : PN->incoming_values())
3045 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00003046 continue;
3047 }
3048
3049 Objects.push_back(P);
3050 } while (!Worklist.empty());
3051}
3052
Sanjay Patelaee84212014-11-04 16:27:42 +00003053/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00003054bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00003055 for (const User *U : V->users()) {
3056 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00003057 if (!II) return false;
3058
3059 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3060 II->getIntrinsicID() != Intrinsic::lifetime_end)
3061 return false;
3062 }
3063 return true;
3064}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003065
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003066bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3067 const Instruction *CtxI,
3068 const DominatorTree *DT,
3069 const TargetLibraryInfo *TLI) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00003070 const Operator *Inst = dyn_cast<Operator>(V);
3071 if (!Inst)
3072 return false;
3073
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003074 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3075 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3076 if (C->canTrap())
3077 return false;
3078
3079 switch (Inst->getOpcode()) {
3080 default:
3081 return true;
3082 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00003083 case Instruction::URem: {
3084 // x / y is undefined if y == 0.
3085 const APInt *V;
3086 if (match(Inst->getOperand(1), m_APInt(V)))
3087 return *V != 0;
3088 return false;
3089 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003090 case Instruction::SDiv:
3091 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00003092 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00003093 const APInt *Numerator, *Denominator;
3094 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3095 return false;
3096 // We cannot hoist this division if the denominator is 0.
3097 if (*Denominator == 0)
3098 return false;
3099 // It's safe to hoist if the denominator is not 0 or -1.
3100 if (*Denominator != -1)
3101 return true;
3102 // At this point we know that the denominator is -1. It is safe to hoist as
3103 // long we know that the numerator is not INT_MIN.
3104 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3105 return !Numerator->isMinSignedValue();
3106 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00003107 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003108 }
3109 case Instruction::Load: {
3110 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00003111 if (!LI->isUnordered() ||
3112 // Speculative load may create a race that did not exist in the source.
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00003113 LI->getParent()->getParent()->hasFnAttribute(
3114 Attribute::SanitizeThread) ||
3115 // Speculative load may load data from dirty regions.
3116 LI->getParent()->getParent()->hasFnAttribute(
3117 Attribute::SanitizeAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003118 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003119 const DataLayout &DL = LI->getModule()->getDataLayout();
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00003120 return isDereferenceableAndAlignedPointer(
3121 LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003122 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003123 case Instruction::Call: {
David Majnemer0a92f862015-08-28 21:13:39 +00003124 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3125 switch (II->getIntrinsicID()) {
3126 // These synthetic intrinsics have no side-effects and just mark
3127 // information about their operands.
3128 // FIXME: There are other no-op synthetic instructions that potentially
3129 // should be considered at least *safe* to speculate...
3130 case Intrinsic::dbg_declare:
3131 case Intrinsic::dbg_value:
3132 return true;
3133
3134 case Intrinsic::bswap:
3135 case Intrinsic::ctlz:
3136 case Intrinsic::ctpop:
3137 case Intrinsic::cttz:
3138 case Intrinsic::objectsize:
3139 case Intrinsic::sadd_with_overflow:
3140 case Intrinsic::smul_with_overflow:
3141 case Intrinsic::ssub_with_overflow:
3142 case Intrinsic::uadd_with_overflow:
3143 case Intrinsic::umul_with_overflow:
3144 case Intrinsic::usub_with_overflow:
3145 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003146 // These intrinsics are defined to have the same behavior as libm
3147 // functions except for setting errno.
David Majnemer0a92f862015-08-28 21:13:39 +00003148 case Intrinsic::sqrt:
3149 case Intrinsic::fma:
3150 case Intrinsic::fmuladd:
Peter Zotov0218d0f2016-04-03 12:30:46 +00003151 return true;
3152 // These intrinsics are defined to have the same behavior as libm
3153 // functions, and the corresponding libm functions never set errno.
3154 case Intrinsic::trunc:
3155 case Intrinsic::copysign:
David Majnemer0a92f862015-08-28 21:13:39 +00003156 case Intrinsic::fabs:
3157 case Intrinsic::minnum:
3158 case Intrinsic::maxnum:
3159 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003160 // These intrinsics are defined to have the same behavior as libm
3161 // functions, which never overflow when operating on the IEEE754 types
3162 // that we support, and never set errno otherwise.
3163 case Intrinsic::ceil:
3164 case Intrinsic::floor:
3165 case Intrinsic::nearbyint:
3166 case Intrinsic::rint:
3167 case Intrinsic::round:
3168 return true;
David Majnemer0a92f862015-08-28 21:13:39 +00003169 // TODO: are convert_{from,to}_fp16 safe?
3170 // TODO: can we list target-specific intrinsics here?
3171 default: break;
3172 }
3173 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003174 return false; // The called function could have undefined behavior or
David Majnemer0a92f862015-08-28 21:13:39 +00003175 // side-effects, even if marked readnone nounwind.
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003176 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003177 case Instruction::VAArg:
3178 case Instruction::Alloca:
3179 case Instruction::Invoke:
3180 case Instruction::PHI:
3181 case Instruction::Store:
3182 case Instruction::Ret:
3183 case Instruction::Br:
3184 case Instruction::IndirectBr:
3185 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003186 case Instruction::Unreachable:
3187 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003188 case Instruction::AtomicRMW:
3189 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003190 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003191 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003192 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003193 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003194 case Instruction::CatchRet:
3195 case Instruction::CleanupPad:
3196 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003197 return false; // Misc instructions which have effects
3198 }
3199}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003200
Quentin Colombet6443cce2015-08-06 18:44:34 +00003201bool llvm::mayBeMemoryDependent(const Instruction &I) {
3202 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3203}
3204
Sanjay Patelaee84212014-11-04 16:27:42 +00003205/// Return true if we know that the specified value is never null.
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003206bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
Chen Li0d043b52015-09-14 18:10:43 +00003207 assert(V->getType()->isPointerTy() && "V must be pointer type");
3208
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003209 // Alloca never returns null, malloc might.
3210 if (isa<AllocaInst>(V)) return true;
3211
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003212 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003213 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003214 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003215
Pete Cooper6b716212015-08-27 03:16:29 +00003216 // A global variable in address space 0 is non null unless extern weak.
3217 // Other address spaces may have null as a valid address for a global,
3218 // so we can't assume anything.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003219 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
Pete Cooper6b716212015-08-27 03:16:29 +00003220 return !GV->hasExternalWeakLinkage() &&
3221 GV->getType()->getAddressSpace() == 0;
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003222
Philip Reamescdb72f32014-10-20 22:40:55 +00003223 // A Load tagged w/nonnull metadata is never null.
3224 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00003225 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00003226
Benjamin Kramer3a09ef62015-04-10 14:50:08 +00003227 if (auto CS = ImmutableCallSite(V))
Hal Finkelb0407ba2014-07-18 15:51:28 +00003228 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00003229 return true;
3230
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003231 return false;
3232}
David Majnemer491331a2015-01-02 07:29:43 +00003233
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003234static bool isKnownNonNullFromDominatingCondition(const Value *V,
3235 const Instruction *CtxI,
3236 const DominatorTree *DT) {
Chen Li0d043b52015-09-14 18:10:43 +00003237 assert(V->getType()->isPointerTy() && "V must be pointer type");
3238
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003239 unsigned NumUsesExplored = 0;
3240 for (auto U : V->users()) {
3241 // Avoid massive lists
3242 if (NumUsesExplored >= DomConditionsMaxUses)
3243 break;
3244 NumUsesExplored++;
3245 // Consider only compare instructions uniquely controlling a branch
3246 const ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
3247 if (!Cmp)
3248 continue;
3249
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003250 for (auto *CmpU : Cmp->users()) {
3251 const BranchInst *BI = dyn_cast<BranchInst>(CmpU);
3252 if (!BI)
3253 continue;
3254
3255 assert(BI->isConditional() && "uses a comparison!");
3256
3257 BasicBlock *NonNullSuccessor = nullptr;
3258 CmpInst::Predicate Pred;
3259
3260 if (match(const_cast<ICmpInst*>(Cmp),
3261 m_c_ICmp(Pred, m_Specific(V), m_Zero()))) {
3262 if (Pred == ICmpInst::ICMP_EQ)
3263 NonNullSuccessor = BI->getSuccessor(1);
3264 else if (Pred == ICmpInst::ICMP_NE)
3265 NonNullSuccessor = BI->getSuccessor(0);
3266 }
3267
3268 if (NonNullSuccessor) {
3269 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3270 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3271 return true;
3272 }
3273 }
3274 }
3275
3276 return false;
3277}
3278
3279bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
3280 const DominatorTree *DT, const TargetLibraryInfo *TLI) {
3281 if (isKnownNonNull(V, TLI))
3282 return true;
3283
3284 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3285}
3286
David Majnemer491331a2015-01-02 07:29:43 +00003287OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003288 const DataLayout &DL,
Chandler Carruth66b31302015-01-04 12:03:27 +00003289 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003290 const Instruction *CxtI,
3291 const DominatorTree *DT) {
3292 // Multiplying n * m significant bits yields a result of n + m significant
3293 // bits. If the total number of significant bits does not exceed the
3294 // result bit width (minus 1), there is no overflow.
3295 // This means if we have enough leading zero bits in the operands
3296 // we can guarantee that the result does not overflow.
3297 // Ref: "Hacker's Delight" by Henry Warren
3298 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3299 APInt LHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003300 APInt LHSKnownOne(BitWidth, 0);
David Majnemer491331a2015-01-02 07:29:43 +00003301 APInt RHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003302 APInt RHSKnownOne(BitWidth, 0);
Chandler Carruth66b31302015-01-04 12:03:27 +00003303 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3304 DT);
3305 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3306 DT);
David Majnemer491331a2015-01-02 07:29:43 +00003307 // Note that underestimating the number of zero bits gives a more
3308 // conservative answer.
3309 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3310 RHSKnownZero.countLeadingOnes();
3311 // First handle the easy case: if we have enough zero bits there's
3312 // definitely no overflow.
3313 if (ZeroBits >= BitWidth)
3314 return OverflowResult::NeverOverflows;
3315
3316 // Get the largest possible values for each operand.
3317 APInt LHSMax = ~LHSKnownZero;
3318 APInt RHSMax = ~RHSKnownZero;
3319
3320 // We know the multiply operation doesn't overflow if the maximum values for
3321 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003322 bool MaxOverflow;
3323 LHSMax.umul_ov(RHSMax, MaxOverflow);
3324 if (!MaxOverflow)
3325 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003326
David Majnemerc8a576b2015-01-02 07:29:47 +00003327 // We know it always overflows if multiplying the smallest possible values for
3328 // the operands also results in overflow.
3329 bool MinOverflow;
3330 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3331 if (MinOverflow)
3332 return OverflowResult::AlwaysOverflows;
3333
3334 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003335}
David Majnemer5310c1e2015-01-07 00:39:50 +00003336
3337OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003338 const DataLayout &DL,
David Majnemer5310c1e2015-01-07 00:39:50 +00003339 AssumptionCache *AC,
3340 const Instruction *CxtI,
3341 const DominatorTree *DT) {
3342 bool LHSKnownNonNegative, LHSKnownNegative;
3343 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3344 AC, CxtI, DT);
3345 if (LHSKnownNonNegative || LHSKnownNegative) {
3346 bool RHSKnownNonNegative, RHSKnownNegative;
3347 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3348 AC, CxtI, DT);
3349
3350 if (LHSKnownNegative && RHSKnownNegative) {
3351 // The sign bit is set in both cases: this MUST overflow.
3352 // Create a simple add instruction, and insert it into the struct.
3353 return OverflowResult::AlwaysOverflows;
3354 }
3355
3356 if (LHSKnownNonNegative && RHSKnownNonNegative) {
3357 // The sign bit is clear in both cases: this CANNOT overflow.
3358 // Create a simple add instruction, and insert it into the struct.
3359 return OverflowResult::NeverOverflows;
3360 }
3361 }
3362
3363 return OverflowResult::MayOverflow;
3364}
James Molloy71b91c22015-05-11 14:42:20 +00003365
Jingyue Wu10fcea52015-08-20 18:27:04 +00003366static OverflowResult computeOverflowForSignedAdd(
3367 Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL,
3368 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) {
3369 if (Add && Add->hasNoSignedWrap()) {
3370 return OverflowResult::NeverOverflows;
3371 }
3372
3373 bool LHSKnownNonNegative, LHSKnownNegative;
3374 bool RHSKnownNonNegative, RHSKnownNegative;
3375 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3376 AC, CxtI, DT);
3377 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3378 AC, CxtI, DT);
3379
3380 if ((LHSKnownNonNegative && RHSKnownNegative) ||
3381 (LHSKnownNegative && RHSKnownNonNegative)) {
3382 // The sign bits are opposite: this CANNOT overflow.
3383 return OverflowResult::NeverOverflows;
3384 }
3385
3386 // The remaining code needs Add to be available. Early returns if not so.
3387 if (!Add)
3388 return OverflowResult::MayOverflow;
3389
3390 // If the sign of Add is the same as at least one of the operands, this add
3391 // CANNOT overflow. This is particularly useful when the sum is
3392 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3393 // operands.
3394 bool LHSOrRHSKnownNonNegative =
3395 (LHSKnownNonNegative || RHSKnownNonNegative);
3396 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3397 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3398 bool AddKnownNonNegative, AddKnownNegative;
3399 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3400 /*Depth=*/0, AC, CxtI, DT);
3401 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3402 (AddKnownNegative && LHSOrRHSKnownNegative)) {
3403 return OverflowResult::NeverOverflows;
3404 }
3405 }
3406
3407 return OverflowResult::MayOverflow;
3408}
3409
3410OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add,
3411 const DataLayout &DL,
3412 AssumptionCache *AC,
3413 const Instruction *CxtI,
3414 const DominatorTree *DT) {
3415 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3416 Add, DL, AC, CxtI, DT);
3417}
3418
3419OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS,
3420 const DataLayout &DL,
3421 AssumptionCache *AC,
3422 const Instruction *CxtI,
3423 const DominatorTree *DT) {
3424 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3425}
3426
Jingyue Wu42f1d672015-07-28 18:22:40 +00003427bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
3428 // FIXME: This conservative implementation can be relaxed. E.g. most
3429 // atomic operations are guaranteed to terminate on most platforms
3430 // and most functions terminate.
3431
3432 return !I->isAtomic() && // atomics may never succeed on some platforms
3433 !isa<CallInst>(I) && // could throw and might not terminate
3434 !isa<InvokeInst>(I) && // might not terminate and could throw to
3435 // non-successor (see bug 24185 for details).
3436 !isa<ResumeInst>(I) && // has no successors
3437 !isa<ReturnInst>(I); // has no successors
3438}
3439
3440bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3441 const Loop *L) {
3442 // The loop header is guaranteed to be executed for every iteration.
3443 //
3444 // FIXME: Relax this constraint to cover all basic blocks that are
3445 // guaranteed to be executed at every iteration.
3446 if (I->getParent() != L->getHeader()) return false;
3447
3448 for (const Instruction &LI : *L->getHeader()) {
3449 if (&LI == I) return true;
3450 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3451 }
3452 llvm_unreachable("Instruction not contained in its own parent basic block.");
3453}
3454
3455bool llvm::propagatesFullPoison(const Instruction *I) {
3456 switch (I->getOpcode()) {
3457 case Instruction::Add:
3458 case Instruction::Sub:
3459 case Instruction::Xor:
3460 case Instruction::Trunc:
3461 case Instruction::BitCast:
3462 case Instruction::AddrSpaceCast:
3463 // These operations all propagate poison unconditionally. Note that poison
3464 // is not any particular value, so xor or subtraction of poison with
3465 // itself still yields poison, not zero.
3466 return true;
3467
3468 case Instruction::AShr:
3469 case Instruction::SExt:
3470 // For these operations, one bit of the input is replicated across
3471 // multiple output bits. A replicated poison bit is still poison.
3472 return true;
3473
3474 case Instruction::Shl: {
3475 // Left shift *by* a poison value is poison. The number of
3476 // positions to shift is unsigned, so no negative values are
3477 // possible there. Left shift by zero places preserves poison. So
3478 // it only remains to consider left shift of poison by a positive
3479 // number of places.
3480 //
3481 // A left shift by a positive number of places leaves the lowest order bit
3482 // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3483 // make the poison operand violate that flag, yielding a fresh full-poison
3484 // value.
3485 auto *OBO = cast<OverflowingBinaryOperator>(I);
3486 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3487 }
3488
3489 case Instruction::Mul: {
3490 // A multiplication by zero yields a non-poison zero result, so we need to
3491 // rule out zero as an operand. Conservatively, multiplication by a
3492 // non-zero constant is not multiplication by zero.
3493 //
3494 // Multiplication by a non-zero constant can leave some bits
3495 // non-poisoned. For example, a multiplication by 2 leaves the lowest
3496 // order bit unpoisoned. So we need to consider that.
3497 //
3498 // Multiplication by 1 preserves poison. If the multiplication has a
3499 // no-wrap flag, then we can make the poison operand violate that flag
3500 // when multiplied by any integer other than 0 and 1.
3501 auto *OBO = cast<OverflowingBinaryOperator>(I);
3502 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3503 for (Value *V : OBO->operands()) {
3504 if (auto *CI = dyn_cast<ConstantInt>(V)) {
3505 // A ConstantInt cannot yield poison, so we can assume that it is
3506 // the other operand that is poison.
3507 return !CI->isZero();
3508 }
3509 }
3510 }
3511 return false;
3512 }
3513
3514 case Instruction::GetElementPtr:
3515 // A GEP implicitly represents a sequence of additions, subtractions,
3516 // truncations, sign extensions and multiplications. The multiplications
3517 // are by the non-zero sizes of some set of types, so we do not have to be
3518 // concerned with multiplication by zero. If the GEP is in-bounds, then
3519 // these operations are implicitly no-signed-wrap so poison is propagated
3520 // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3521 return cast<GEPOperator>(I)->isInBounds();
3522
3523 default:
3524 return false;
3525 }
3526}
3527
3528const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3529 switch (I->getOpcode()) {
3530 case Instruction::Store:
3531 return cast<StoreInst>(I)->getPointerOperand();
3532
3533 case Instruction::Load:
3534 return cast<LoadInst>(I)->getPointerOperand();
3535
3536 case Instruction::AtomicCmpXchg:
3537 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3538
3539 case Instruction::AtomicRMW:
3540 return cast<AtomicRMWInst>(I)->getPointerOperand();
3541
3542 case Instruction::UDiv:
3543 case Instruction::SDiv:
3544 case Instruction::URem:
3545 case Instruction::SRem:
3546 return I->getOperand(1);
3547
3548 default:
3549 return nullptr;
3550 }
3551}
3552
3553bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3554 // We currently only look for uses of poison values within the same basic
3555 // block, as that makes it easier to guarantee that the uses will be
3556 // executed given that PoisonI is executed.
3557 //
3558 // FIXME: Expand this to consider uses beyond the same basic block. To do
3559 // this, look out for the distinction between post-dominance and strong
3560 // post-dominance.
3561 const BasicBlock *BB = PoisonI->getParent();
3562
3563 // Set of instructions that we have proved will yield poison if PoisonI
3564 // does.
3565 SmallSet<const Value *, 16> YieldsPoison;
3566 YieldsPoison.insert(PoisonI);
3567
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +00003568 for (BasicBlock::const_iterator I = PoisonI->getIterator(), E = BB->end();
3569 I != E; ++I) {
3570 if (&*I != PoisonI) {
3571 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&*I);
Jingyue Wu42f1d672015-07-28 18:22:40 +00003572 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) return true;
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +00003573 if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
3574 return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003575 }
3576
3577 // Mark poison that propagates from I through uses of I.
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +00003578 if (YieldsPoison.count(&*I)) {
Jingyue Wu42f1d672015-07-28 18:22:40 +00003579 for (const User *User : I->users()) {
3580 const Instruction *UserI = cast<Instruction>(User);
3581 if (UserI->getParent() == BB && propagatesFullPoison(UserI))
3582 YieldsPoison.insert(User);
3583 }
3584 }
3585 }
3586 return false;
3587}
3588
James Molloy134bec22015-08-11 09:12:57 +00003589static bool isKnownNonNaN(Value *V, FastMathFlags FMF) {
3590 if (FMF.noNaNs())
3591 return true;
3592
3593 if (auto *C = dyn_cast<ConstantFP>(V))
3594 return !C->isNaN();
3595 return false;
3596}
3597
3598static bool isKnownNonZero(Value *V) {
3599 if (auto *C = dyn_cast<ConstantFP>(V))
3600 return !C->isZero();
3601 return false;
3602}
3603
3604static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3605 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00003606 Value *CmpLHS, Value *CmpRHS,
3607 Value *TrueVal, Value *FalseVal,
3608 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003609 LHS = CmpLHS;
3610 RHS = CmpRHS;
3611
James Molloy134bec22015-08-11 09:12:57 +00003612 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
3613 // return inconsistent results between implementations.
3614 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3615 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3616 // Therefore we behave conservatively and only proceed if at least one of the
3617 // operands is known to not be zero, or if we don't care about signed zeroes.
3618 switch (Pred) {
3619 default: break;
3620 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3621 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3622 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3623 !isKnownNonZero(CmpRHS))
3624 return {SPF_UNKNOWN, SPNB_NA, false};
3625 }
3626
3627 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3628 bool Ordered = false;
3629
3630 // When given one NaN and one non-NaN input:
3631 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3632 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3633 // ordered comparison fails), which could be NaN or non-NaN.
3634 // so here we discover exactly what NaN behavior is required/accepted.
3635 if (CmpInst::isFPPredicate(Pred)) {
3636 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3637 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3638
3639 if (LHSSafe && RHSSafe) {
3640 // Both operands are known non-NaN.
3641 NaNBehavior = SPNB_RETURNS_ANY;
3642 } else if (CmpInst::isOrdered(Pred)) {
3643 // An ordered comparison will return false when given a NaN, so it
3644 // returns the RHS.
3645 Ordered = true;
3646 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003647 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003648 NaNBehavior = SPNB_RETURNS_NAN;
3649 else if (RHSSafe)
3650 NaNBehavior = SPNB_RETURNS_OTHER;
3651 else
3652 // Completely unsafe.
3653 return {SPF_UNKNOWN, SPNB_NA, false};
3654 } else {
3655 Ordered = false;
3656 // An unordered comparison will return true when given a NaN, so it
3657 // returns the LHS.
3658 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003659 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003660 NaNBehavior = SPNB_RETURNS_OTHER;
3661 else if (RHSSafe)
3662 NaNBehavior = SPNB_RETURNS_NAN;
3663 else
3664 // Completely unsafe.
3665 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003666 }
3667 }
3668
James Molloy71b91c22015-05-11 14:42:20 +00003669 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00003670 std::swap(CmpLHS, CmpRHS);
3671 Pred = CmpInst::getSwappedPredicate(Pred);
3672 if (NaNBehavior == SPNB_RETURNS_NAN)
3673 NaNBehavior = SPNB_RETURNS_OTHER;
3674 else if (NaNBehavior == SPNB_RETURNS_OTHER)
3675 NaNBehavior = SPNB_RETURNS_NAN;
3676 Ordered = !Ordered;
3677 }
3678
3679 // ([if]cmp X, Y) ? X : Y
3680 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003681 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00003682 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00003683 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00003684 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003685 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00003686 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003687 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00003688 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003689 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00003690 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
3691 case FCmpInst::FCMP_UGT:
3692 case FCmpInst::FCMP_UGE:
3693 case FCmpInst::FCMP_OGT:
3694 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
3695 case FCmpInst::FCMP_ULT:
3696 case FCmpInst::FCMP_ULE:
3697 case FCmpInst::FCMP_OLT:
3698 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00003699 }
3700 }
3701
3702 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
3703 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
3704 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
3705
3706 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
3707 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
3708 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003709 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003710 }
3711
3712 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
3713 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
3714 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003715 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003716 }
3717 }
Sanjoy Dasc9d6d8b2016-03-31 05:14:29 +00003718
James Molloy71b91c22015-05-11 14:42:20 +00003719 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
3720 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
Sanjoy Das56df0ec2016-03-31 05:14:34 +00003721 if (Pred == ICmpInst::ICMP_SGT && C1->getType() == C2->getType() &&
3722 ~C1->getValue() == C2->getValue() &&
James Molloy71b91c22015-05-11 14:42:20 +00003723 (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
3724 match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
3725 LHS = TrueVal;
3726 RHS = FalseVal;
James Molloy134bec22015-08-11 09:12:57 +00003727 return {SPF_SMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003728 }
3729 }
3730 }
3731
3732 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
3733
James Molloy134bec22015-08-11 09:12:57 +00003734 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003735}
James Molloy270ef8c2015-05-15 16:04:50 +00003736
James Molloy569cea62015-09-02 17:25:25 +00003737static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
3738 Instruction::CastOps *CastOp) {
James Molloy270ef8c2015-05-15 16:04:50 +00003739 CastInst *CI = dyn_cast<CastInst>(V1);
3740 Constant *C = dyn_cast<Constant>(V2);
James Molloy569cea62015-09-02 17:25:25 +00003741 CastInst *CI2 = dyn_cast<CastInst>(V2);
3742 if (!CI)
James Molloy270ef8c2015-05-15 16:04:50 +00003743 return nullptr;
3744 *CastOp = CI->getOpcode();
3745
James Molloy569cea62015-09-02 17:25:25 +00003746 if (CI2) {
3747 // If V1 and V2 are both the same cast from the same type, we can look
3748 // through V1.
3749 if (CI2->getOpcode() == CI->getOpcode() &&
3750 CI2->getSrcTy() == CI->getSrcTy())
3751 return CI2->getOperand(0);
3752 return nullptr;
3753 } else if (!C) {
3754 return nullptr;
3755 }
3756
James Molloy2b21a7c2015-05-20 18:41:25 +00003757 if (isa<SExtInst>(CI) && CmpI->isSigned()) {
3758 Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy());
3759 // This is only valid if the truncated value can be sign-extended
3760 // back to the original value.
3761 if (ConstantExpr::getSExt(T, C->getType()) == C)
3762 return T;
3763 return nullptr;
3764 }
3765 if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
James Molloy270ef8c2015-05-15 16:04:50 +00003766 return ConstantExpr::getTrunc(C, CI->getSrcTy());
3767
3768 if (isa<TruncInst>(CI))
3769 return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
3770
James Molloy134bec22015-08-11 09:12:57 +00003771 if (isa<FPToUIInst>(CI))
3772 return ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
3773
3774 if (isa<FPToSIInst>(CI))
3775 return ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
3776
3777 if (isa<UIToFPInst>(CI))
3778 return ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
3779
3780 if (isa<SIToFPInst>(CI))
3781 return ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
3782
3783 if (isa<FPTruncInst>(CI))
3784 return ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
3785
3786 if (isa<FPExtInst>(CI))
3787 return ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
3788
James Molloy270ef8c2015-05-15 16:04:50 +00003789 return nullptr;
3790}
3791
James Molloy134bec22015-08-11 09:12:57 +00003792SelectPatternResult llvm::matchSelectPattern(Value *V,
James Molloy270ef8c2015-05-15 16:04:50 +00003793 Value *&LHS, Value *&RHS,
3794 Instruction::CastOps *CastOp) {
3795 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00003796 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003797
James Molloy134bec22015-08-11 09:12:57 +00003798 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
3799 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003800
James Molloy134bec22015-08-11 09:12:57 +00003801 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00003802 Value *CmpLHS = CmpI->getOperand(0);
3803 Value *CmpRHS = CmpI->getOperand(1);
3804 Value *TrueVal = SI->getTrueValue();
3805 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00003806 FastMathFlags FMF;
3807 if (isa<FPMathOperator>(CmpI))
3808 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00003809
3810 // Bail out early.
3811 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00003812 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003813
3814 // Deal with type mismatches.
3815 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00003816 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00003817 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00003818 cast<CastInst>(TrueVal)->getOperand(0), C,
3819 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00003820 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00003821 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00003822 C, cast<CastInst>(FalseVal)->getOperand(0),
3823 LHS, RHS);
3824 }
James Molloy134bec22015-08-11 09:12:57 +00003825 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00003826 LHS, RHS);
3827}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00003828
3829ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) {
3830 const unsigned NumRanges = Ranges.getNumOperands() / 2;
3831 assert(NumRanges >= 1 && "Must have at least one range!");
3832 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
3833
3834 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
3835 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
3836
3837 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
3838
3839 for (unsigned i = 1; i < NumRanges; ++i) {
3840 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
3841 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
3842
3843 // Note: unionWith will potentially create a range that contains values not
3844 // contained in any of the original N ranges.
3845 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
3846 }
3847
3848 return CR;
3849}
Sanjoy Das3ef1e682015-10-28 03:20:19 +00003850
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003851/// Return true if "icmp Pred LHS RHS" is always true.
Sanjoy Das55ea67c2015-11-06 19:01:08 +00003852static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
3853 const DataLayout &DL, unsigned Depth,
3854 AssumptionCache *AC, const Instruction *CxtI,
3855 const DominatorTree *DT) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00003856 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003857 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
3858 return true;
3859
3860 switch (Pred) {
3861 default:
3862 return false;
3863
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003864 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00003865 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003866
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003867 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00003868 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00003869 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003870 return false;
3871 }
3872
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003873 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00003874 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003875
Sanjoy Dasdc26df42015-11-11 00:16:41 +00003876 // LHS u<= LHS +_{nuw} C for any C
3877 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00003878 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00003879
3880 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
3881 auto MatchNUWAddsToSameValue = [&](Value *A, Value *B, Value *&X,
3882 const APInt *&CA, const APInt *&CB) {
3883 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
3884 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
3885 return true;
3886
3887 // If X & C == 0 then (X | C) == X +_{nuw} C
3888 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
3889 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
3890 unsigned BitWidth = CA->getBitWidth();
3891 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3892 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
3893
3894 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
3895 return true;
3896 }
3897
3898 return false;
3899 };
3900
3901 Value *X;
3902 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00003903 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
3904 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00003905
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003906 return false;
3907 }
3908 }
3909}
3910
3911/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
Chad Rosier41dd31f2016-04-20 19:15:26 +00003912/// ALHS ARHS" is true. Otherwise, return None.
3913static Optional<bool>
3914isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS, Value *ARHS,
3915 Value *BLHS, Value *BRHS, const DataLayout &DL,
3916 unsigned Depth, AssumptionCache *AC,
3917 const Instruction *CxtI, const DominatorTree *DT) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003918 switch (Pred) {
3919 default:
Chad Rosier41dd31f2016-04-20 19:15:26 +00003920 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003921
3922 case CmpInst::ICMP_SLT:
3923 case CmpInst::ICMP_SLE:
Chad Rosier41dd31f2016-04-20 19:15:26 +00003924 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
3925 DT) &&
3926 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
3927 return true;
3928 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003929
3930 case CmpInst::ICMP_ULT:
3931 case CmpInst::ICMP_ULE:
Chad Rosier41dd31f2016-04-20 19:15:26 +00003932 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
3933 DT) &&
3934 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
3935 return true;
3936 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003937 }
3938}
3939
Chad Rosier41dd31f2016-04-20 19:15:26 +00003940/// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
3941/// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
3942/// BRHS" is false. Otherwise, return None if we can't infer anything.
3943static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
3944 Value *ALHS, Value *ARHS,
3945 CmpInst::Predicate BPred,
3946 Value *BLHS, Value *BRHS) {
Chad Rosierb7dfbb42016-04-19 17:19:14 +00003947 // The operands of the two compares must match.
3948 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
3949 bool IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
3950 if (!IsMatchingOps && !IsSwappedOps)
Chad Rosier41dd31f2016-04-20 19:15:26 +00003951 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00003952
3953 // Canonicalize the operands so they're matching.
3954 if (IsSwappedOps) {
3955 std::swap(BLHS, BRHS);
3956 BPred = ICmpInst::getSwappedPredicate(BPred);
3957 }
3958
3959 // If the predicates match, then we know the first condition implies the
3960 // second is true.
Chad Rosier41dd31f2016-04-20 19:15:26 +00003961 if (APred == BPred)
Chad Rosierb7dfbb42016-04-19 17:19:14 +00003962 return true;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00003963
3964 // If an inverted APred matches BPred, we can infer the second condition is
3965 // false.
Chad Rosier41dd31f2016-04-20 19:15:26 +00003966 if (CmpInst::getInversePredicate(APred) == BPred)
3967 return false;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00003968
3969 // If a swapped APred matches BPred, we can infer the second condition is
3970 // false in many cases.
3971 if (CmpInst::getSwappedPredicate(APred) == BPred) {
3972 switch (APred) {
3973 default:
3974 break;
3975 case CmpInst::ICMP_UGT: // A >u B implies A <u B is false.
3976 case CmpInst::ICMP_ULT: // A <u B implies A >u B is false.
3977 case CmpInst::ICMP_SGT: // A >s B implies A <s B is false.
3978 case CmpInst::ICMP_SLT: // A <s B implies A >s B is false.
Chad Rosier41dd31f2016-04-20 19:15:26 +00003979 return false;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00003980 }
3981 }
3982
3983 // The predicates must match sign or at least one of them must be an equality
3984 // comparison (which is signless).
3985 if (ICmpInst::isSigned(APred) != ICmpInst::isSigned(BPred) &&
3986 !ICmpInst::isEquality(APred) && !ICmpInst::isEquality(BPred))
Chad Rosier41dd31f2016-04-20 19:15:26 +00003987 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00003988
3989 switch (APred) {
3990 default:
3991 break;
3992 case CmpInst::ICMP_EQ:
3993 // A == B implies A > B and A < B are false.
Chad Rosier41dd31f2016-04-20 19:15:26 +00003994 if (CmpInst::isFalseWhenEqual(BPred))
3995 return false;
3996
Chad Rosierb7dfbb42016-04-19 17:19:14 +00003997 break;
3998 case CmpInst::ICMP_UGT:
3999 case CmpInst::ICMP_ULT:
4000 case CmpInst::ICMP_SGT:
4001 case CmpInst::ICMP_SLT:
4002 // A > B implies A == B is false.
4003 // A < B implies A == B is false.
Chad Rosier41dd31f2016-04-20 19:15:26 +00004004 if (BPred == CmpInst::ICMP_EQ)
4005 return false;
4006
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004007 // A > B implies A != B is true.
4008 // A < B implies A != B is true.
Chad Rosier41dd31f2016-04-20 19:15:26 +00004009 if (BPred == CmpInst::ICMP_NE)
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004010 return true;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004011 break;
4012 }
Chad Rosier41dd31f2016-04-20 19:15:26 +00004013 return None;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004014}
4015
Chad Rosier41dd31f2016-04-20 19:15:26 +00004016Optional<bool> llvm::isImpliedCondition(Value *LHS, Value *RHS,
4017 const DataLayout &DL, unsigned Depth,
4018 AssumptionCache *AC,
4019 const Instruction *CxtI,
4020 const DominatorTree *DT) {
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004021 assert(LHS->getType() == RHS->getType() && "mismatched type");
4022 Type *OpTy = LHS->getType();
4023 assert(OpTy->getScalarType()->isIntegerTy(1));
4024
4025 // LHS ==> RHS by definition
Chad Rosier41dd31f2016-04-20 19:15:26 +00004026 if (LHS == RHS)
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004027 return true;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004028
4029 if (OpTy->isVectorTy())
4030 // TODO: extending the code below to handle vectors
Chad Rosier41dd31f2016-04-20 19:15:26 +00004031 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004032 assert(OpTy->isIntegerTy(1) && "implied by above");
4033
4034 ICmpInst::Predicate APred, BPred;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004035 Value *ALHS, *ARHS;
4036 Value *BLHS, *BRHS;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004037
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004038 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4039 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
Chad Rosier41dd31f2016-04-20 19:15:26 +00004040 return None;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00004041
Chad Rosier41dd31f2016-04-20 19:15:26 +00004042 Optional<bool> Implication =
4043 isImpliedCondMatchingOperands(APred, ALHS, ARHS, BPred, BLHS, BRHS);
4044 if (Implication)
4045 return Implication;
Chad Rosierb7dfbb42016-04-19 17:19:14 +00004046
Chad Rosier41dd31f2016-04-20 19:15:26 +00004047 if (APred == BPred)
Sanjoy Das55ea67c2015-11-06 19:01:08 +00004048 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4049 CxtI, DT);
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004050
Chad Rosier41dd31f2016-04-20 19:15:26 +00004051 return None;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00004052}