blob: 6f8dc2c29370bc812721335e40175d942a2cced4 [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
James Molloy493e57d2015-10-26 14:10:46 +000016#include "llvm/ADT/Optional.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000017#include "llvm/ADT/SmallPtrSet.h"
Chandler Carruthd9903882015-01-14 11:23:27 +000018#include "llvm/Analysis/AssumptionCache.h"
Dan Gohman949ab782010-12-15 20:10:26 +000019#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000020#include "llvm/Analysis/MemoryBuiltins.h"
Artur Pilipenko31bcca42016-02-24 12:49:04 +000021#include "llvm/Analysis/Loads.h"
Adam Nemete2b885c2015-04-23 20:09:20 +000022#include "llvm/Analysis/LoopInfo.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000023#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000024#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000025#include "llvm/IR/Constants.h"
26#include "llvm/IR/DataLayout.h"
Hal Finkel60db0582014-09-07 18:57:58 +000027#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000028#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000029#include "llvm/IR/GlobalAlias.h"
30#include "llvm/IR/GlobalVariable.h"
31#include "llvm/IR/Instructions.h"
32#include "llvm/IR/IntrinsicInst.h"
33#include "llvm/IR/LLVMContext.h"
34#include "llvm/IR/Metadata.h"
35#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000036#include "llvm/IR/PatternMatch.h"
Philip Reames5461d452015-04-23 17:36:48 +000037#include "llvm/IR/Statepoint.h"
Matt Arsenaultf1a7e622014-07-15 01:55:03 +000038#include "llvm/Support/Debug.h"
Chris Lattner965c7692008-06-02 01:18:21 +000039#include "llvm/Support/MathExtras.h"
Matthias Braun37e5d792016-01-28 06:29:33 +000040#include <algorithm>
41#include <array>
Chris Lattner64496902008-06-04 04:46:14 +000042#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000043using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000044using namespace llvm::PatternMatch;
45
46const unsigned MaxDepth = 6;
47
Philip Reames1c292272015-03-10 22:43:20 +000048// Controls the number of uses of the value searched for possible
49// dominating comparisons.
50static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
Igor Laevskycea9ede2015-09-29 14:57:52 +000051 cl::Hidden, cl::init(20));
Philip Reames1c292272015-03-10 22:43:20 +000052
Sanjay Patelaee84212014-11-04 16:27:42 +000053/// Returns the bitwidth of the given scalar or pointer type (if unknown returns
54/// 0). For vector types, returns the element type's bitwidth.
Mehdi Aminia28d91d2015-03-10 02:37:25 +000055static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
Duncan Sandsd3951082011-01-25 09:38:29 +000056 if (unsigned BitWidth = Ty->getScalarSizeInBits())
57 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000058
Mehdi Aminia28d91d2015-03-10 02:37:25 +000059 return DL.getPointerTypeSizeInBits(Ty);
Duncan Sandsd3951082011-01-25 09:38:29 +000060}
Chris Lattner965c7692008-06-02 01:18:21 +000061
Benjamin Kramercfd8d902014-09-12 08:56:53 +000062namespace {
Hal Finkel60db0582014-09-07 18:57:58 +000063// Simplifying using an assume can only be done in a particular control-flow
64// context (the context instruction provides that context). If an assume and
65// the context instruction are not in the same block then the DT helps in
66// figuring out if we can use it.
67struct Query {
Matthias Braunfeb81bc2016-01-15 22:22:04 +000068 const DataLayout &DL;
Chandler Carruth66b31302015-01-04 12:03:27 +000069 AssumptionCache *AC;
Hal Finkel60db0582014-09-07 18:57:58 +000070 const Instruction *CxtI;
71 const DominatorTree *DT;
72
Matthias Braun37e5d792016-01-28 06:29:33 +000073 /// Set of assumptions that should be excluded from further queries.
74 /// This is because of the potential for mutual recursion to cause
75 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
76 /// classic case of this is assume(x = y), which will attempt to determine
77 /// bits in x from bits in y, which will attempt to determine bits in y from
78 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
79 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
80 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
81 /// on.
82 std::array<const Value*, MaxDepth> Excluded;
83 unsigned NumExcluded;
84
Matthias Braunfeb81bc2016-01-15 22:22:04 +000085 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
86 const DominatorTree *DT)
Matthias Braun37e5d792016-01-28 06:29:33 +000087 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {}
Hal Finkel60db0582014-09-07 18:57:58 +000088
89 Query(const Query &Q, const Value *NewExcl)
Matthias Braun37e5d792016-01-28 06:29:33 +000090 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) {
91 Excluded = Q.Excluded;
92 Excluded[NumExcluded++] = NewExcl;
93 assert(NumExcluded <= Excluded.size());
94 }
95
96 bool isExcluded(const Value *Value) const {
97 if (NumExcluded == 0)
98 return false;
99 auto End = Excluded.begin() + NumExcluded;
100 return std::find(Excluded.begin(), End, Value) != End;
Hal Finkel60db0582014-09-07 18:57:58 +0000101 }
102};
Benjamin Kramercfd8d902014-09-12 08:56:53 +0000103} // end anonymous namespace
Hal Finkel60db0582014-09-07 18:57:58 +0000104
Sanjay Patel547e9752014-11-04 16:09:50 +0000105// Given the provided Value and, potentially, a context instruction, return
Hal Finkel60db0582014-09-07 18:57:58 +0000106// the preferred context instruction (if any).
107static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
108 // If we've been provided with a context instruction, then use that (provided
109 // it has been inserted).
110 if (CxtI && CxtI->getParent())
111 return CxtI;
112
113 // If the value is really an already-inserted instruction, then use that.
114 CxtI = dyn_cast<Instruction>(V);
115 if (CxtI && CxtI->getParent())
116 return CxtI;
117
118 return nullptr;
119}
120
121static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000122 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000123
124void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000125 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000126 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000127 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000128 ::computeKnownBits(V, KnownZero, KnownOne, Depth,
129 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000130}
131
Jingyue Wuca321902015-05-14 23:53:19 +0000132bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
133 AssumptionCache *AC, const Instruction *CxtI,
134 const DominatorTree *DT) {
135 assert(LHS->getType() == RHS->getType() &&
136 "LHS and RHS should have the same type");
137 assert(LHS->getType()->isIntOrIntVectorTy() &&
138 "LHS and RHS should be integers");
139 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
140 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
141 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
142 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
143 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
144 return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
145}
146
Hal Finkel60db0582014-09-07 18:57:58 +0000147static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000148 unsigned Depth, const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000149
150void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000151 const DataLayout &DL, unsigned Depth,
Chandler Carruth66b31302015-01-04 12:03:27 +0000152 AssumptionCache *AC, const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000153 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000154 ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
155 Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000156}
157
158static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000159 const Query &Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000160
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000161bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero,
Chandler Carruth66b31302015-01-04 12:03:27 +0000162 unsigned Depth, AssumptionCache *AC,
Hal Finkel60db0582014-09-07 18:57:58 +0000163 const Instruction *CxtI,
164 const DominatorTree *DT) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000165 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000166 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000167}
168
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000169static bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000170
171bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
172 AssumptionCache *AC, const Instruction *CxtI,
173 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000174 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000175}
176
Jingyue Wu10fcea52015-08-20 18:27:04 +0000177bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth,
178 AssumptionCache *AC, const Instruction *CxtI,
179 const DominatorTree *DT) {
180 bool NonNegative, Negative;
181 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
182 return NonNegative;
183}
184
Philip Reames8f12eba2016-03-09 21:31:47 +0000185bool llvm::isKnownPositive(Value *V, const DataLayout &DL, unsigned Depth,
186 AssumptionCache *AC, const Instruction *CxtI,
187 const DominatorTree *DT) {
188 if (auto *CI = dyn_cast<ConstantInt>(V))
189 return CI->getValue().isStrictlyPositive();
190
191 // TODO: We'd doing two recursive queries here. We should factor this such
192 // that only a single query is needed.
193 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
194 isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
195}
196
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000197static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q);
James Molloy1d88d6f2015-10-22 13:18:42 +0000198
199bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
200 AssumptionCache *AC, const Instruction *CxtI,
201 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000202 return ::isKnownNonEqual(V1, V2, Query(DL, AC,
203 safeCxtI(V1, safeCxtI(V2, CxtI)),
204 DT));
James Molloy1d88d6f2015-10-22 13:18:42 +0000205}
206
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000207static bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
208 const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000209
210bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
211 unsigned Depth, AssumptionCache *AC,
212 const Instruction *CxtI, const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000213 return ::MaskedValueIsZero(V, Mask, Depth,
214 Query(DL, AC, safeCxtI(V, CxtI), DT));
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000215}
216
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000217static unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q);
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000218
219unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL,
220 unsigned Depth, AssumptionCache *AC,
221 const Instruction *CxtI,
222 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000223 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
Hal Finkel60db0582014-09-07 18:57:58 +0000224}
225
Jay Foada0653a32014-05-14 21:14:37 +0000226static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
227 APInt &KnownZero, APInt &KnownOne,
228 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000229 unsigned Depth, const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000230 if (!Add) {
231 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
232 // We know that the top bits of C-X are clear if X contains less bits
233 // than C (i.e. no wrap-around can happen). For example, 20-X is
234 // positive if we can prove that X is >= 0 and < 16.
235 if (!CLHS->getValue().isNegative()) {
236 unsigned BitWidth = KnownZero.getBitWidth();
237 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
238 // NLZ can't be BitWidth with no sign bit
239 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000240 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkel60db0582014-09-07 18:57:58 +0000241
242 // If all of the MaskV bits are known to be zero, then we know the
243 // output top bits are zero, because we now know that the output is
244 // from [0-C].
245 if ((KnownZero2 & MaskV) == MaskV) {
246 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
247 // Top bits known zero.
248 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
249 }
250 }
251 }
252 }
253
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000254 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000255
David Majnemer97ddca32014-08-22 00:40:43 +0000256 // If an initial sequence of bits in the result is not needed, the
257 // corresponding bits in the operands are not needed.
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000258 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000259 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
260 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000261
David Majnemer97ddca32014-08-22 00:40:43 +0000262 // Carry in a 1 for a subtract, rather than a 0.
263 APInt CarryIn(BitWidth, 0);
264 if (!Add) {
265 // Sum = LHS + ~RHS + 1
266 std::swap(KnownZero2, KnownOne2);
267 CarryIn.setBit(0);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000268 }
269
David Majnemer97ddca32014-08-22 00:40:43 +0000270 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
271 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
272
273 // Compute known bits of the carry.
274 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
275 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
276
277 // Compute set of known bits (where all three relevant bits are known).
278 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
279 APInt RHSKnown = KnownZero2 | KnownOne2;
280 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
281 APInt Known = LHSKnown & RHSKnown & CarryKnown;
282
283 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
284 "known bits of sum differ");
285
286 // Compute known bits of the result.
287 KnownZero = ~PossibleSumOne & Known;
288 KnownOne = PossibleSumOne & Known;
289
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000290 // Are we still trying to solve for the sign bit?
David Majnemer97ddca32014-08-22 00:40:43 +0000291 if (!Known.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000292 if (NSW) {
David Majnemer97ddca32014-08-22 00:40:43 +0000293 // Adding two non-negative numbers, or subtracting a negative number from
294 // a non-negative one, can't wrap into negative.
295 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
296 KnownZero |= APInt::getSignBit(BitWidth);
297 // Adding two negative numbers, or subtracting a non-negative number from
298 // a negative one, can't wrap into non-negative.
299 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
300 KnownOne |= APInt::getSignBit(BitWidth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000301 }
302 }
303}
304
Jay Foada0653a32014-05-14 21:14:37 +0000305static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
306 APInt &KnownZero, APInt &KnownOne,
307 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000308 unsigned Depth, const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000309 unsigned BitWidth = KnownZero.getBitWidth();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000310 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
311 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000312
313 bool isKnownNegative = false;
314 bool isKnownNonNegative = false;
315 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000316 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000317 if (Op0 == Op1) {
318 // The product of a number with itself is non-negative.
319 isKnownNonNegative = true;
320 } else {
321 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
322 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
323 bool isKnownNegativeOp1 = KnownOne.isNegative();
324 bool isKnownNegativeOp0 = KnownOne2.isNegative();
325 // The product of two numbers with the same sign is non-negative.
326 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
327 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
328 // The product of a negative number and a non-negative number is either
329 // negative or zero.
330 if (!isKnownNonNegative)
331 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000332 isKnownNonZero(Op0, Depth, Q)) ||
Nick Lewyckyfa306072012-03-18 23:28:48 +0000333 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000334 isKnownNonZero(Op1, Depth, Q));
Nick Lewyckyfa306072012-03-18 23:28:48 +0000335 }
336 }
337
338 // If low bits are zero in either operand, output low known-0 bits.
Sanjay Patel5dd66c32015-09-17 20:51:50 +0000339 // Also compute a conservative estimate for high known-0 bits.
Nick Lewyckyfa306072012-03-18 23:28:48 +0000340 // More trickiness is possible, but this is sufficient for the
341 // interesting case of alignment computation.
342 KnownOne.clearAllBits();
343 unsigned TrailZ = KnownZero.countTrailingOnes() +
344 KnownZero2.countTrailingOnes();
345 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
346 KnownZero2.countLeadingOnes(),
347 BitWidth) - BitWidth;
348
349 TrailZ = std::min(TrailZ, BitWidth);
350 LeadZ = std::min(LeadZ, BitWidth);
351 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
352 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000353
354 // Only make use of no-wrap flags if we failed to compute the sign bit
355 // directly. This matters if the multiplication always overflows, in
356 // which case we prefer to follow the result of the direct computation,
357 // though as the program is invoking undefined behaviour we can choose
358 // whatever we like here.
359 if (isKnownNonNegative && !KnownOne.isNegative())
360 KnownZero.setBit(BitWidth - 1);
361 else if (isKnownNegative && !KnownZero.isNegative())
362 KnownOne.setBit(BitWidth - 1);
363}
364
Jingyue Wu37fcb592014-06-19 16:50:16 +0000365void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000366 APInt &KnownZero,
367 APInt &KnownOne) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000368 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000369 unsigned NumRanges = Ranges.getNumOperands() / 2;
370 assert(NumRanges >= 1);
371
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000372 KnownZero.setAllBits();
373 KnownOne.setAllBits();
374
Rafael Espindola53190532012-03-30 15:52:11 +0000375 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +0000376 ConstantInt *Lower =
377 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
378 ConstantInt *Upper =
379 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
Rafael Espindola53190532012-03-30 15:52:11 +0000380 ConstantRange Range(Lower->getValue(), Upper->getValue());
Rafael Espindola53190532012-03-30 15:52:11 +0000381
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000382 // The first CommonPrefixBits of all values in Range are equal.
383 unsigned CommonPrefixBits =
384 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
385
386 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
387 KnownOne &= Range.getUnsignedMax() & Mask;
388 KnownZero &= ~Range.getUnsignedMax() & Mask;
389 }
Rafael Espindola53190532012-03-30 15:52:11 +0000390}
Jay Foad5a29c362014-05-15 12:12:55 +0000391
Hal Finkel60db0582014-09-07 18:57:58 +0000392static bool isEphemeralValueOf(Instruction *I, const Value *E) {
393 SmallVector<const Value *, 16> WorkSet(1, I);
394 SmallPtrSet<const Value *, 32> Visited;
395 SmallPtrSet<const Value *, 16> EphValues;
396
Hal Finkelf2199b22015-10-23 20:37:08 +0000397 // The instruction defining an assumption's condition itself is always
398 // considered ephemeral to that assumption (even if it has other
399 // non-ephemeral users). See r246696's test case for an example.
400 if (std::find(I->op_begin(), I->op_end(), E) != I->op_end())
401 return true;
402
Hal Finkel60db0582014-09-07 18:57:58 +0000403 while (!WorkSet.empty()) {
404 const Value *V = WorkSet.pop_back_val();
David Blaikie70573dc2014-11-19 07:49:26 +0000405 if (!Visited.insert(V).second)
Hal Finkel60db0582014-09-07 18:57:58 +0000406 continue;
407
408 // If all uses of this value are ephemeral, then so is this value.
Benjamin Kramer56115612015-10-24 19:30:37 +0000409 if (std::all_of(V->user_begin(), V->user_end(),
410 [&](const User *U) { return EphValues.count(U); })) {
Hal Finkel60db0582014-09-07 18:57:58 +0000411 if (V == E)
412 return true;
413
414 EphValues.insert(V);
415 if (const User *U = dyn_cast<User>(V))
416 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
417 J != JE; ++J) {
418 if (isSafeToSpeculativelyExecute(*J))
419 WorkSet.push_back(*J);
420 }
421 }
422 }
423
424 return false;
425}
426
427// Is this an intrinsic that cannot be speculated but also cannot trap?
428static bool isAssumeLikeIntrinsic(const Instruction *I) {
429 if (const CallInst *CI = dyn_cast<CallInst>(I))
430 if (Function *F = CI->getCalledFunction())
431 switch (F->getIntrinsicID()) {
432 default: break;
433 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
434 case Intrinsic::assume:
435 case Intrinsic::dbg_declare:
436 case Intrinsic::dbg_value:
437 case Intrinsic::invariant_start:
438 case Intrinsic::invariant_end:
439 case Intrinsic::lifetime_start:
440 case Intrinsic::lifetime_end:
441 case Intrinsic::objectsize:
442 case Intrinsic::ptr_annotation:
443 case Intrinsic::var_annotation:
444 return true;
445 }
446
447 return false;
448}
449
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000450static bool isValidAssumeForContext(Value *V, const Instruction *CxtI,
451 const DominatorTree *DT) {
Hal Finkel60db0582014-09-07 18:57:58 +0000452 Instruction *Inv = cast<Instruction>(V);
453
454 // There are two restrictions on the use of an assume:
455 // 1. The assume must dominate the context (or the control flow must
456 // reach the assume whenever it reaches the context).
457 // 2. The context must not be in the assume's set of ephemeral values
458 // (otherwise we will use the assume to prove that the condition
459 // feeding the assume is trivially true, thus causing the removal of
460 // the assume).
461
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000462 if (DT) {
463 if (DT->dominates(Inv, CxtI)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000464 return true;
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000465 } else if (Inv->getParent() == CxtI->getParent()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000466 // The context comes first, but they're both in the same block. Make sure
467 // there is nothing in between that might interrupt the control flow.
468 for (BasicBlock::const_iterator I =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000469 std::next(BasicBlock::const_iterator(CxtI)),
Hal Finkel60db0582014-09-07 18:57:58 +0000470 IE(Inv); I != IE; ++I)
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +0000471 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
Hal Finkel60db0582014-09-07 18:57:58 +0000472 return false;
473
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000474 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000475 }
476
477 return false;
478 }
479
480 // When we don't have a DT, we do a limited search...
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000481 if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000482 return true;
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000483 } else if (Inv->getParent() == CxtI->getParent()) {
Hal Finkel60db0582014-09-07 18:57:58 +0000484 // Search forward from the assume until we reach the context (or the end
485 // of the block); the common case is that the assume will come first.
486 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
487 IE = Inv->getParent()->end(); I != IE; ++I)
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000488 if (&*I == CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000489 return true;
490
491 // The context must come first...
492 for (BasicBlock::const_iterator I =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000493 std::next(BasicBlock::const_iterator(CxtI)),
Hal Finkel60db0582014-09-07 18:57:58 +0000494 IE(Inv); I != IE; ++I)
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +0000495 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
Hal Finkel60db0582014-09-07 18:57:58 +0000496 return false;
497
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000498 return !isEphemeralValueOf(Inv, CxtI);
Hal Finkel60db0582014-09-07 18:57:58 +0000499 }
500
501 return false;
502}
503
504bool llvm::isValidAssumeForContext(const Instruction *I,
505 const Instruction *CxtI,
Hal Finkel60db0582014-09-07 18:57:58 +0000506 const DominatorTree *DT) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000507 return ::isValidAssumeForContext(const_cast<Instruction *>(I), CxtI, DT);
Hal Finkel60db0582014-09-07 18:57:58 +0000508}
509
510template<typename LHS, typename RHS>
511inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>,
512 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>>
513m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
514 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L));
515}
516
517template<typename LHS, typename RHS>
518inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>,
519 BinaryOp_match<RHS, LHS, Instruction::And>>
520m_c_And(const LHS &L, const RHS &R) {
521 return m_CombineOr(m_And(L, R), m_And(R, L));
522}
523
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000524template<typename LHS, typename RHS>
525inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>,
526 BinaryOp_match<RHS, LHS, Instruction::Or>>
527m_c_Or(const LHS &L, const RHS &R) {
528 return m_CombineOr(m_Or(L, R), m_Or(R, L));
529}
530
531template<typename LHS, typename RHS>
532inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>,
533 BinaryOp_match<RHS, LHS, Instruction::Xor>>
534m_c_Xor(const LHS &L, const RHS &R) {
535 return m_CombineOr(m_Xor(L, R), m_Xor(R, L));
536}
537
Hal Finkel60db0582014-09-07 18:57:58 +0000538static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000539 APInt &KnownOne, unsigned Depth,
540 const Query &Q) {
Hal Finkel60db0582014-09-07 18:57:58 +0000541 // Use of assumptions is context-sensitive. If we don't have a context, we
542 // cannot use them!
Chandler Carruth66b31302015-01-04 12:03:27 +0000543 if (!Q.AC || !Q.CxtI)
Hal Finkel60db0582014-09-07 18:57:58 +0000544 return;
545
546 unsigned BitWidth = KnownZero.getBitWidth();
547
Chandler Carruth66b31302015-01-04 12:03:27 +0000548 for (auto &AssumeVH : Q.AC->assumptions()) {
549 if (!AssumeVH)
550 continue;
551 CallInst *I = cast<CallInst>(AssumeVH);
Chandler Carruth75c11b82015-01-04 23:13:57 +0000552 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
Chandler Carruth66b31302015-01-04 12:03:27 +0000553 "Got assumption for the wrong function!");
Matthias Braun37e5d792016-01-28 06:29:33 +0000554 if (Q.isExcluded(I))
Hal Finkel60db0582014-09-07 18:57:58 +0000555 continue;
556
Philip Reames00d3b272014-11-24 23:44:28 +0000557 // Warning: This loop can end up being somewhat performance sensetive.
558 // We're running this loop for once for each value queried resulting in a
559 // runtime of ~O(#assumes * #values).
560
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000561 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
Philip Reames00d3b272014-11-24 23:44:28 +0000562 "must be an assume intrinsic");
Benjamin Kramer619c4e52015-04-10 11:24:51 +0000563
Philip Reames00d3b272014-11-24 23:44:28 +0000564 Value *Arg = I->getArgOperand(0);
565
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000566 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000567 assert(BitWidth == 1 && "assume operand is not i1?");
568 KnownZero.clearAllBits();
569 KnownOne.setAllBits();
570 return;
571 }
572
David Majnemer9b609752014-12-12 23:59:29 +0000573 // The remaining tests are all recursive, so bail out if we hit the limit.
574 if (Depth == MaxDepth)
575 continue;
576
Hal Finkel60db0582014-09-07 18:57:58 +0000577 Value *A, *B;
578 auto m_V = m_CombineOr(m_Specific(V),
579 m_CombineOr(m_PtrToInt(m_Specific(V)),
580 m_BitCast(m_Specific(V))));
581
582 CmpInst::Predicate Pred;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000583 ConstantInt *C;
Hal Finkel60db0582014-09-07 18:57:58 +0000584 // assume(v = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000585 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000586 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000587 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000588 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000589 KnownZero |= RHSKnownZero;
590 KnownOne |= RHSKnownOne;
591 // assume(v & b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000592 } else if (match(Arg,
593 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000594 Pred == ICmpInst::ICMP_EQ &&
595 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel60db0582014-09-07 18:57:58 +0000596 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000597 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000598 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000599 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel60db0582014-09-07 18:57:58 +0000600
601 // For those bits in the mask that are known to be one, we can propagate
602 // known bits from the RHS to V.
603 KnownZero |= RHSKnownZero & MaskKnownOne;
604 KnownOne |= RHSKnownOne & MaskKnownOne;
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000605 // assume(~(v & b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000606 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
607 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000608 Pred == ICmpInst::ICMP_EQ &&
609 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000610 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000611 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000612 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000613 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000614
615 // For those bits in the mask that are known to be one, we can propagate
616 // inverted known bits from the RHS to V.
617 KnownZero |= RHSKnownOne & MaskKnownOne;
618 KnownOne |= RHSKnownZero & MaskKnownOne;
619 // assume(v | b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000620 } else if (match(Arg,
621 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000622 Pred == ICmpInst::ICMP_EQ &&
623 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000624 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000625 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000626 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000627 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000628
629 // For those bits in B that are known to be zero, we can propagate known
630 // bits from the RHS to V.
631 KnownZero |= RHSKnownZero & BKnownZero;
632 KnownOne |= RHSKnownOne & BKnownZero;
633 // assume(~(v | b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000634 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
635 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000636 Pred == ICmpInst::ICMP_EQ &&
637 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000638 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000639 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000640 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000641 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000642
643 // For those bits in B that are known to be zero, we can propagate
644 // inverted known bits from the RHS to V.
645 KnownZero |= RHSKnownOne & BKnownZero;
646 KnownOne |= RHSKnownZero & BKnownZero;
647 // assume(v ^ b = a)
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000648 } else if (match(Arg,
649 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000650 Pred == ICmpInst::ICMP_EQ &&
651 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000652 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000653 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000654 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000655 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000656
657 // For those bits in B that are known to be zero, we can propagate known
658 // bits from the RHS to V. For those bits in B that are known to be one,
659 // we can propagate inverted known bits from the RHS to V.
660 KnownZero |= RHSKnownZero & BKnownZero;
661 KnownOne |= RHSKnownOne & BKnownZero;
662 KnownZero |= RHSKnownOne & BKnownOne;
663 KnownOne |= RHSKnownZero & BKnownOne;
664 // assume(~(v ^ b) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000665 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
666 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000667 Pred == ICmpInst::ICMP_EQ &&
668 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000669 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000670 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000671 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000672 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000673
674 // For those bits in B that are known to be zero, we can propagate
675 // inverted known bits from the RHS to V. For those bits in B that are
676 // known to be one, we can propagate known bits from the RHS to V.
677 KnownZero |= RHSKnownOne & BKnownZero;
678 KnownOne |= RHSKnownZero & BKnownZero;
679 KnownZero |= RHSKnownZero & BKnownOne;
680 KnownOne |= RHSKnownOne & BKnownOne;
681 // assume(v << c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000682 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
683 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000684 Pred == ICmpInst::ICMP_EQ &&
685 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000686 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000687 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000688 // For those bits in RHS that are known, we can propagate them to known
689 // bits in V shifted to the right by C.
690 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
691 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
692 // assume(~(v << c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000693 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
694 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000695 Pred == ICmpInst::ICMP_EQ &&
696 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000697 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000698 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000699 // For those bits in RHS that are known, we can propagate them inverted
700 // to known bits in V shifted to the right by C.
701 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
702 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
703 // assume(v >> c = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000704 } else if (match(Arg,
705 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000706 m_AShr(m_V, m_ConstantInt(C))),
707 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000708 Pred == ICmpInst::ICMP_EQ &&
709 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000710 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000711 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000712 // For those bits in RHS that are known, we can propagate them to known
713 // bits in V shifted to the right by C.
714 KnownZero |= RHSKnownZero << C->getZExtValue();
715 KnownOne |= RHSKnownOne << C->getZExtValue();
716 // assume(~(v >> c) = a)
Philip Reames00d3b272014-11-24 23:44:28 +0000717 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000718 m_LShr(m_V, m_ConstantInt(C)),
719 m_AShr(m_V, m_ConstantInt(C)))),
Philip Reames00d3b272014-11-24 23:44:28 +0000720 m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000721 Pred == ICmpInst::ICMP_EQ &&
722 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000723 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000724 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000725 // For those bits in RHS that are known, we can propagate them inverted
726 // to known bits in V shifted to the right by C.
727 KnownZero |= RHSKnownOne << C->getZExtValue();
728 KnownOne |= RHSKnownZero << C->getZExtValue();
729 // assume(v >=_s c) where c is non-negative
Philip Reames00d3b272014-11-24 23:44:28 +0000730 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000731 Pred == ICmpInst::ICMP_SGE &&
732 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000733 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000734 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000735
736 if (RHSKnownZero.isNegative()) {
737 // We know that the sign bit is zero.
738 KnownZero |= APInt::getSignBit(BitWidth);
739 }
740 // assume(v >_s c) where c is at least -1.
Philip Reames00d3b272014-11-24 23:44:28 +0000741 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000742 Pred == ICmpInst::ICMP_SGT &&
743 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000744 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000745 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000746
747 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
748 // We know that the sign bit is zero.
749 KnownZero |= APInt::getSignBit(BitWidth);
750 }
751 // assume(v <=_s c) where c is negative
Philip Reames00d3b272014-11-24 23:44:28 +0000752 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000753 Pred == ICmpInst::ICMP_SLE &&
754 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000755 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000756 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000757
758 if (RHSKnownOne.isNegative()) {
759 // We know that the sign bit is one.
760 KnownOne |= APInt::getSignBit(BitWidth);
761 }
762 // assume(v <_s c) where c is non-positive
Philip Reames00d3b272014-11-24 23:44:28 +0000763 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000764 Pred == ICmpInst::ICMP_SLT &&
765 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000766 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000767 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000768
769 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
770 // We know that the sign bit is one.
771 KnownOne |= APInt::getSignBit(BitWidth);
772 }
773 // assume(v <=_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000774 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000775 Pred == ICmpInst::ICMP_ULE &&
776 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000777 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000778 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000779
780 // Whatever high bits in c are zero are known to be zero.
781 KnownZero |=
782 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
783 // assume(v <_u c)
Philip Reames00d3b272014-11-24 23:44:28 +0000784 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000785 Pred == ICmpInst::ICMP_ULT &&
786 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000787 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000788 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000789
790 // Whatever high bits in c are zero are known to be zero (if c is a power
791 // of 2, then one more).
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000792 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Hal Finkel15aeaaf2014-09-07 19:21:07 +0000793 KnownZero |=
794 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
795 else
796 KnownZero |=
797 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
Hal Finkel60db0582014-09-07 18:57:58 +0000798 }
799 }
800}
801
Hal Finkelf2199b22015-10-23 20:37:08 +0000802// Compute known bits from a shift operator, including those with a
803// non-constant shift amount. KnownZero and KnownOne are the outputs of this
804// function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
805// same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
806// functors that, given the known-zero or known-one bits respectively, and a
807// shift amount, compute the implied known-zero or known-one bits of the shift
808// operator's result respectively for that shift amount. The results from calling
809// KZF and KOF are conservatively combined for all permitted shift amounts.
810template <typename KZFunctor, typename KOFunctor>
811static void computeKnownBitsFromShiftOperator(Operator *I,
812 APInt &KnownZero, APInt &KnownOne,
813 APInt &KnownZero2, APInt &KnownOne2,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000814 unsigned Depth, const Query &Q, KZFunctor KZF, KOFunctor KOF) {
Hal Finkelf2199b22015-10-23 20:37:08 +0000815 unsigned BitWidth = KnownZero.getBitWidth();
816
817 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
818 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
819
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000820 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000821 KnownZero = KZF(KnownZero, ShiftAmt);
822 KnownOne = KOF(KnownOne, ShiftAmt);
823 return;
824 }
825
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000826 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000827
828 // Note: We cannot use KnownZero.getLimitedValue() here, because if
829 // BitWidth > 64 and any upper bits are known, we'll end up returning the
830 // limit value (which implies all bits are known).
831 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
832 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
833
834 // It would be more-clearly correct to use the two temporaries for this
835 // calculation. Reusing the APInts here to prevent unnecessary allocations.
Richard Trieu7a083812016-02-18 22:09:30 +0000836 KnownZero.clearAllBits();
837 KnownOne.clearAllBits();
Hal Finkelf2199b22015-10-23 20:37:08 +0000838
James Molloy493e57d2015-10-26 14:10:46 +0000839 // If we know the shifter operand is nonzero, we can sometimes infer more
840 // known bits. However this is expensive to compute, so be lazy about it and
841 // only compute it when absolutely necessary.
842 Optional<bool> ShifterOperandIsNonZero;
843
Hal Finkelf2199b22015-10-23 20:37:08 +0000844 // Early exit if we can't constrain any well-defined shift amount.
James Molloy493e57d2015-10-26 14:10:46 +0000845 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
846 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000847 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000848 if (!*ShifterOperandIsNonZero)
849 return;
850 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000851
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000852 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Hal Finkelf2199b22015-10-23 20:37:08 +0000853
854 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
855 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
856 // Combine the shifted known input bits only for those shift amounts
857 // compatible with its known constraints.
858 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
859 continue;
860 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
861 continue;
James Molloy493e57d2015-10-26 14:10:46 +0000862 // If we know the shifter is nonzero, we may be able to infer more known
863 // bits. This check is sunk down as far as possible to avoid the expensive
864 // call to isKnownNonZero if the cheaper checks above fail.
865 if (ShiftAmt == 0) {
866 if (!ShifterOperandIsNonZero.hasValue())
867 ShifterOperandIsNonZero =
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000868 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
James Molloy493e57d2015-10-26 14:10:46 +0000869 if (*ShifterOperandIsNonZero)
870 continue;
871 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000872
873 KnownZero &= KZF(KnownZero2, ShiftAmt);
874 KnownOne &= KOF(KnownOne2, ShiftAmt);
875 }
876
877 // If there are no compatible shift amounts, then we've proven that the shift
878 // amount must be >= the BitWidth, and the result is undefined. We could
879 // return anything we'd like, but we need to make sure the sets of known bits
880 // stay disjoint (it should be better for some other code to actually
881 // propagate the undef than to pick a value here using known bits).
Richard Trieu7a083812016-02-18 22:09:30 +0000882 if ((KnownZero & KnownOne) != 0) {
883 KnownZero.clearAllBits();
884 KnownOne.clearAllBits();
885 }
Hal Finkelf2199b22015-10-23 20:37:08 +0000886}
887
Jingyue Wu12b0c282015-06-15 05:46:29 +0000888static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000889 APInt &KnownOne, unsigned Depth,
890 const Query &Q) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000891 unsigned BitWidth = KnownZero.getBitWidth();
892
Chris Lattner965c7692008-06-02 01:18:21 +0000893 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000894 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000895 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000896 case Instruction::Load:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +0000897 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +0000898 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Jay Foad5a29c362014-05-15 12:12:55 +0000899 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000900 case Instruction::And: {
901 // If either the LHS or the RHS are Zero, the result is zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000902 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
903 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000904
Chris Lattner965c7692008-06-02 01:18:21 +0000905 // Output known-1 bits are only known if set in both the LHS & RHS.
906 KnownOne &= KnownOne2;
907 // Output known-0 are known to be clear if zero in either the LHS | RHS.
908 KnownZero |= KnownZero2;
Philip Reames2d858742015-11-10 18:46:14 +0000909
910 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
911 // here we handle the more general case of adding any odd number by
912 // matching the form add(x, add(x, y)) where y is odd.
913 // TODO: This could be generalized to clearing any bit set in y where the
914 // following bit is known to be unset in y.
915 Value *Y = nullptr;
916 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
917 m_Value(Y))) ||
918 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
919 m_Value(Y)))) {
920 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000921 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
Philip Reames2d858742015-11-10 18:46:14 +0000922 if (KnownOne3.countTrailingOnes() > 0)
923 KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
924 }
Jay Foad5a29c362014-05-15 12:12:55 +0000925 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000926 }
927 case Instruction::Or: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000928 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
929 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000930
Chris Lattner965c7692008-06-02 01:18:21 +0000931 // Output known-0 bits are only known if clear in both the LHS & RHS.
932 KnownZero &= KnownZero2;
933 // Output known-1 are known to be set if set in either the LHS | RHS.
934 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +0000935 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000936 }
937 case Instruction::Xor: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000938 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
939 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +0000940
Chris Lattner965c7692008-06-02 01:18:21 +0000941 // Output known-0 bits are known if clear or set in both the LHS & RHS.
942 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
943 // Output known-1 are known to be set if set in only one of the LHS, RHS.
944 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
945 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +0000946 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000947 }
948 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000949 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Mehdi Aminia28d91d2015-03-10 02:37:25 +0000950 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000951 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000952 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000953 }
954 case Instruction::UDiv: {
955 // For the purposes of computing leading zeros we can conservatively
956 // treat a udiv as a logical right shift by the power of 2 known to
957 // be less than the denominator.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000958 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000959 unsigned LeadZ = KnownZero2.countLeadingOnes();
960
Jay Foad25a5e4c2010-12-01 08:53:58 +0000961 KnownOne2.clearAllBits();
962 KnownZero2.clearAllBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000963 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000964 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
965 if (RHSUnknownLeadingOnes != BitWidth)
966 LeadZ = std::min(BitWidth,
967 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
968
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000969 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000970 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000971 }
James Molloyc5eded52016-01-14 15:49:32 +0000972 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000973 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
974 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +0000975
976 // Only known if known in both the LHS and RHS.
977 KnownOne &= KnownOne2;
978 KnownZero &= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +0000979 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000980 case Instruction::FPTrunc:
981 case Instruction::FPExt:
982 case Instruction::FPToUI:
983 case Instruction::FPToSI:
984 case Instruction::SIToFP:
985 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +0000986 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +0000987 case Instruction::PtrToInt:
988 case Instruction::IntToPtr:
Matt Arsenaultf1a7e622014-07-15 01:55:03 +0000989 case Instruction::AddrSpaceCast: // Pointers could be different sizes.
Chris Lattner965c7692008-06-02 01:18:21 +0000990 // FALL THROUGH and handle them the same as zext/trunc.
991 case Instruction::ZExt:
992 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +0000993 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +0000994
Chris Lattner0cdbc7a2009-09-08 00:13:52 +0000995 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +0000996 // Note that we handle pointer operands here because of inttoptr/ptrtoint
997 // which fall through here.
Matthias Braunfeb81bc2016-01-15 22:22:04 +0000998 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
Nadav Rotem15198e92012-10-26 17:17:05 +0000999
1000 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +00001001 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1002 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001003 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001004 KnownZero = KnownZero.zextOrTrunc(BitWidth);
1005 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001006 // Any top bits are known to be zero.
1007 if (BitWidth > SrcBitWidth)
1008 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001009 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001010 }
1011 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +00001012 Type *SrcTy = I->getOperand(0)->getType();
Sanjay Patel9115cf82015-10-08 16:56:55 +00001013 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy() ||
1014 SrcTy->isFloatingPointTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +00001015 // TODO: For now, not handling conversions like:
1016 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +00001017 !I->getType()->isVectorTy()) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001018 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad5a29c362014-05-15 12:12:55 +00001019 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001020 }
1021 break;
1022 }
1023 case Instruction::SExt: {
1024 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +00001025 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +00001026
Jay Foad583abbc2010-12-07 08:25:19 +00001027 KnownZero = KnownZero.trunc(SrcBitWidth);
1028 KnownOne = KnownOne.trunc(SrcBitWidth);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001029 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Jay Foad583abbc2010-12-07 08:25:19 +00001030 KnownZero = KnownZero.zext(BitWidth);
1031 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +00001032
1033 // If the sign bit of the input is known set or clear, then we know the
1034 // top bits of the result.
1035 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
1036 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1037 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
1038 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +00001039 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001040 }
Hal Finkelf2199b22015-10-23 20:37:08 +00001041 case Instruction::Shl: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001042 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001043 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1044 return (KnownZero << ShiftAmt) |
1045 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1046 };
1047
1048 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1049 return KnownOne << ShiftAmt;
1050 };
1051
1052 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001053 KnownZero2, KnownOne2, Depth, Q, KZF,
1054 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001055 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001056 }
1057 case Instruction::LShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001058 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001059 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1060 return APIntOps::lshr(KnownZero, ShiftAmt) |
1061 // High bits known zero.
1062 APInt::getHighBitsSet(BitWidth, ShiftAmt);
1063 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001064
Hal Finkelf2199b22015-10-23 20:37:08 +00001065 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1066 return APIntOps::lshr(KnownOne, ShiftAmt);
1067 };
1068
1069 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001070 KnownZero2, KnownOne2, Depth, Q, KZF,
1071 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001072 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001073 }
1074 case Instruction::AShr: {
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001075 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Hal Finkelf2199b22015-10-23 20:37:08 +00001076 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1077 return APIntOps::ashr(KnownZero, ShiftAmt);
1078 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001079
Hal Finkelf2199b22015-10-23 20:37:08 +00001080 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1081 return APIntOps::ashr(KnownOne, ShiftAmt);
1082 };
Craig Topper1bef2c82012-12-22 19:15:35 +00001083
Hal Finkelf2199b22015-10-23 20:37:08 +00001084 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001085 KnownZero2, KnownOne2, Depth, Q, KZF,
1086 KOF);
Chris Lattner965c7692008-06-02 01:18:21 +00001087 break;
Hal Finkelf2199b22015-10-23 20:37:08 +00001088 }
Chris Lattner965c7692008-06-02 01:18:21 +00001089 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001090 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001091 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001092 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1093 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001094 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001095 }
Chris Lattner965c7692008-06-02 01:18:21 +00001096 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001097 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +00001098 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001099 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1100 Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001101 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001102 }
1103 case Instruction::SRem:
1104 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001105 APInt RA = Rem->getValue().abs();
1106 if (RA.isPowerOf2()) {
1107 APInt LowBits = RA - 1;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001108 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001109 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001110
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001111 // The low bits of the first operand are unchanged by the srem.
1112 KnownZero = KnownZero2 & LowBits;
1113 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001114
Duncan Sands26cd6bd2010-01-29 06:18:37 +00001115 // If the first operand is non-negative or has all low bits zero, then
1116 // the upper bits are all zero.
1117 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1118 KnownZero |= ~LowBits;
1119
1120 // If the first operand is negative and not all low bits are zero, then
1121 // the upper bits are all one.
1122 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1123 KnownOne |= ~LowBits;
1124
Craig Topper1bef2c82012-12-22 19:15:35 +00001125 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001126 }
1127 }
Nick Lewyckye4679792011-03-07 01:50:10 +00001128
1129 // The sign bit is the LHS's sign bit, except when the result of the
1130 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001131 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +00001132 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001133 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1134 Q);
Nick Lewyckye4679792011-03-07 01:50:10 +00001135 // If it's known zero, our sign bit is also zero.
1136 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +00001137 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +00001138 }
1139
Chris Lattner965c7692008-06-02 01:18:21 +00001140 break;
1141 case Instruction::URem: {
1142 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1143 APInt RA = Rem->getValue();
1144 if (RA.isPowerOf2()) {
1145 APInt LowBits = (RA - 1);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001146 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001147 KnownZero |= ~LowBits;
1148 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +00001149 break;
1150 }
1151 }
1152
1153 // Since the result is less than or equal to either operand, any leading
1154 // zero bits in either operand must also exist in the result.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001155 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1156 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001157
Chris Lattner4612ae12009-01-20 18:22:57 +00001158 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +00001159 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +00001160 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001161 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +00001162 break;
1163 }
1164
Victor Hernandeza3aaf852009-10-17 01:18:07 +00001165 case Instruction::Alloca: {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001166 AllocaInst *AI = cast<AllocaInst>(I);
Chris Lattner965c7692008-06-02 01:18:21 +00001167 unsigned Align = AI->getAlignment();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001168 if (Align == 0)
Eduard Burtescu90c44492016-01-18 00:10:01 +00001169 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001170
Chris Lattner965c7692008-06-02 01:18:21 +00001171 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001172 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +00001173 break;
1174 }
1175 case Instruction::GetElementPtr: {
1176 // Analyze all of the subscripts of this getelementptr instruction
1177 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +00001178 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001179 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1180 Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001181 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1182
1183 gep_type_iterator GTI = gep_type_begin(I);
1184 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1185 Value *Index = I->getOperand(i);
Chris Lattner229907c2011-07-18 04:54:35 +00001186 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001187 // Handle struct member offset arithmetic.
Matt Arsenault74742a12013-08-19 21:43:16 +00001188
1189 // Handle case when index is vector zeroinitializer
1190 Constant *CIndex = cast<Constant>(Index);
1191 if (CIndex->isZeroValue())
1192 continue;
1193
1194 if (CIndex->getType()->isVectorTy())
1195 Index = CIndex->getSplatValue();
1196
Chris Lattner965c7692008-06-02 01:18:21 +00001197 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001198 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +00001199 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001200 TrailZ = std::min<unsigned>(TrailZ,
1201 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +00001202 } else {
1203 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +00001204 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +00001205 if (!IndexedTy->isSized()) {
1206 TrailZ = 0;
1207 break;
1208 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +00001209 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001210 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
Chris Lattner965c7692008-06-02 01:18:21 +00001211 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001212 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001213 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00001214 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +00001215 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001216 }
1217 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001218
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001219 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +00001220 break;
1221 }
1222 case Instruction::PHI: {
1223 PHINode *P = cast<PHINode>(I);
1224 // Handle the case of a simple two-predecessor recurrence PHI.
1225 // There's a lot more that could theoretically be done here, but
1226 // this is sufficient to catch some interesting cases.
1227 if (P->getNumIncomingValues() == 2) {
1228 for (unsigned i = 0; i != 2; ++i) {
1229 Value *L = P->getIncomingValue(i);
1230 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +00001231 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +00001232 if (!LU)
1233 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +00001234 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +00001235 // Check for operations that have the property that if
1236 // both their operands have low zero bits, the result
1237 // will have low zero bits.
1238 if (Opcode == Instruction::Add ||
1239 Opcode == Instruction::Sub ||
1240 Opcode == Instruction::And ||
1241 Opcode == Instruction::Or ||
1242 Opcode == Instruction::Mul) {
1243 Value *LL = LU->getOperand(0);
1244 Value *LR = LU->getOperand(1);
1245 // Find a recurrence.
1246 if (LL == I)
1247 L = LR;
1248 else if (LR == I)
1249 L = LL;
1250 else
1251 break;
1252 // Ok, we have a PHI of the form L op= R. Check for low
1253 // zero bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001254 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001255
1256 // We need to take the minimum number of known bits
1257 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001258 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
David Greeneaebd9e02008-10-27 23:24:03 +00001259
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001260 KnownZero = APInt::getLowBitsSet(BitWidth,
David Greeneaebd9e02008-10-27 23:24:03 +00001261 std::min(KnownZero2.countTrailingOnes(),
1262 KnownZero3.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +00001263 break;
1264 }
1265 }
1266 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001267
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001268 // Unreachable blocks may have zero-operand PHI nodes.
1269 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +00001270 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +00001271
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001272 // Otherwise take the unions of the known bit sets of the operands,
1273 // taking conservative care to avoid excessive recursion.
1274 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +00001275 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +00001276 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +00001277 break;
1278
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001279 KnownZero = APInt::getAllOnesValue(BitWidth);
1280 KnownOne = APInt::getAllOnesValue(BitWidth);
Pete Cooper833f34d2015-05-12 20:05:31 +00001281 for (Value *IncValue : P->incoming_values()) {
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001282 // Skip direct self references.
Pete Cooper833f34d2015-05-12 20:05:31 +00001283 if (IncValue == P) continue;
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001284
1285 KnownZero2 = APInt(BitWidth, 0);
1286 KnownOne2 = APInt(BitWidth, 0);
1287 // Recurse, but cap the recursion to one level, because we don't
1288 // want to waste time spinning around in loops.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001289 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
Dan Gohmanbf0002e2009-05-21 02:28:33 +00001290 KnownZero &= KnownZero2;
1291 KnownOne &= KnownOne2;
1292 // If all bits have been ruled out, there's no need to check
1293 // more operands.
1294 if (!KnownZero && !KnownOne)
1295 break;
1296 }
1297 }
Chris Lattner965c7692008-06-02 01:18:21 +00001298 break;
1299 }
1300 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001301 case Instruction::Invoke:
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001302 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
Sanjoy Das1d1929a2015-10-28 03:20:15 +00001303 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
Jingyue Wu37fcb592014-06-19 16:50:16 +00001304 // If a range metadata is attached to this IntrinsicInst, intersect the
1305 // explicit range specified by the metadata and the implicit range of
1306 // the intrinsic.
Chris Lattner965c7692008-06-02 01:18:21 +00001307 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1308 switch (II->getIntrinsicID()) {
1309 default: break;
Philip Reames675418e2015-10-06 20:20:45 +00001310 case Intrinsic::bswap:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001311 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reames675418e2015-10-06 20:20:45 +00001312 KnownZero |= KnownZero2.byteSwap();
1313 KnownOne |= KnownOne2.byteSwap();
1314 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001315 case Intrinsic::ctlz:
1316 case Intrinsic::cttz: {
1317 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001318 // If this call is undefined for 0, the result will be less than 2^n.
1319 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1320 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +00001321 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +00001322 break;
1323 }
1324 case Intrinsic::ctpop: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001325 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001326 // We can bound the space the count needs. Also, bits known to be zero
1327 // can't contribute to the population.
1328 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1329 unsigned LeadingZeros =
1330 APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
Aaron Ballman58f413c2015-10-15 13:55:43 +00001331 assert(LeadingZeros <= BitWidth);
Philip Reamesddcf6b32015-10-14 22:42:12 +00001332 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1333 KnownOne &= ~KnownZero;
1334 // TODO: we could bound KnownOne using the lower bound on the number
1335 // of bits which might be set provided by popcnt KnownOne2.
Chris Lattner965c7692008-06-02 01:18:21 +00001336 break;
1337 }
Sanjay Patel9115cf82015-10-08 16:56:55 +00001338 case Intrinsic::fabs: {
1339 Type *Ty = II->getType();
1340 APInt SignBit = APInt::getSignBit(Ty->getScalarSizeInBits());
1341 KnownZero |= APInt::getSplat(Ty->getPrimitiveSizeInBits(), SignBit);
1342 break;
1343 }
Chad Rosierb3628842011-05-26 23:13:19 +00001344 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +00001345 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +00001346 break;
Chris Lattner965c7692008-06-02 01:18:21 +00001347 }
1348 }
1349 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001350 case Instruction::ExtractValue:
1351 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1352 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1353 if (EVI->getNumIndices() != 1) break;
1354 if (EVI->getIndices()[0] == 0) {
1355 switch (II->getIntrinsicID()) {
1356 default: break;
1357 case Intrinsic::uadd_with_overflow:
1358 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001359 computeKnownBitsAddSub(true, II->getArgOperand(0),
1360 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001361 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001362 break;
1363 case Intrinsic::usub_with_overflow:
1364 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +00001365 computeKnownBitsAddSub(false, II->getArgOperand(0),
1366 II->getArgOperand(1), false, KnownZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001367 KnownOne, KnownZero2, KnownOne2, Depth, Q);
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001368 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +00001369 case Intrinsic::umul_with_overflow:
1370 case Intrinsic::smul_with_overflow:
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001371 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001372 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1373 Q);
Nick Lewyckyfa306072012-03-18 23:28:48 +00001374 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +00001375 }
1376 }
1377 }
Chris Lattner965c7692008-06-02 01:18:21 +00001378 }
Jingyue Wu12b0c282015-06-15 05:46:29 +00001379}
1380
1381/// Determine which bits of V are known to be either zero or one and return
1382/// them in the KnownZero/KnownOne bit sets.
1383///
1384/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1385/// we cannot optimize based on the assumption that it is zero without changing
1386/// it to be an explicit zero. If we don't change it to zero, other code could
1387/// optimized based on the contradictory assumption that it is non-zero.
1388/// Because instcombine aggressively folds operations with undef args anyway,
1389/// this won't lose us code quality.
1390///
1391/// This function is defined on values with integer type, values with pointer
1392/// type, and vectors of integers. In the case
1393/// where V is a vector, known zero, and known one values are the
1394/// same width as the vector element, and the bit is set only if it is true
1395/// for all of the elements in the vector.
1396void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001397 unsigned Depth, const Query &Q) {
Jingyue Wu12b0c282015-06-15 05:46:29 +00001398 assert(V && "No Value?");
1399 assert(Depth <= MaxDepth && "Limit Search Depth");
1400 unsigned BitWidth = KnownZero.getBitWidth();
1401
1402 assert((V->getType()->isIntOrIntVectorTy() ||
Sanjay Patel9115cf82015-10-08 16:56:55 +00001403 V->getType()->isFPOrFPVectorTy() ||
Jingyue Wu12b0c282015-06-15 05:46:29 +00001404 V->getType()->getScalarType()->isPointerTy()) &&
Sanjay Patel9115cf82015-10-08 16:56:55 +00001405 "Not integer, floating point, or pointer type!");
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001406 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Jingyue Wu12b0c282015-06-15 05:46:29 +00001407 (!V->getType()->isIntOrIntVectorTy() ||
1408 V->getType()->getScalarSizeInBits() == BitWidth) &&
1409 KnownZero.getBitWidth() == BitWidth &&
1410 KnownOne.getBitWidth() == BitWidth &&
1411 "V, KnownOne and KnownZero should have same BitWidth");
1412
1413 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1414 // We know all of the bits for a constant!
1415 KnownOne = CI->getValue();
1416 KnownZero = ~KnownOne;
1417 return;
1418 }
1419 // Null and aggregate-zero are all-zeros.
1420 if (isa<ConstantPointerNull>(V) ||
1421 isa<ConstantAggregateZero>(V)) {
1422 KnownOne.clearAllBits();
1423 KnownZero = APInt::getAllOnesValue(BitWidth);
1424 return;
1425 }
1426 // Handle a constant vector by taking the intersection of the known bits of
1427 // each element. There is no real need to handle ConstantVector here, because
1428 // we don't handle undef in any particularly useful way.
1429 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1430 // We know that CDS must be a vector of integers. Take the intersection of
1431 // each element.
1432 KnownZero.setAllBits(); KnownOne.setAllBits();
1433 APInt Elt(KnownZero.getBitWidth(), 0);
1434 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1435 Elt = CDS->getElementAsInteger(i);
1436 KnownZero &= ~Elt;
1437 KnownOne &= Elt;
1438 }
1439 return;
1440 }
1441
Jingyue Wu12b0c282015-06-15 05:46:29 +00001442 // Start out not knowing anything.
1443 KnownZero.clearAllBits(); KnownOne.clearAllBits();
1444
1445 // Limit search depth.
1446 // All recursive calls that increase depth must come after this.
1447 if (Depth == MaxDepth)
1448 return;
1449
1450 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1451 // the bits of its aliasee.
1452 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00001453 if (!GA->isInterposable())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001454 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001455 return;
1456 }
1457
1458 if (Operator *I = dyn_cast<Operator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001459 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
Sanjay Patela67559c2015-09-25 20:12:43 +00001460
Artur Pilipenko029d8532015-09-30 11:55:45 +00001461 // Aligned pointers have trailing zeros - refine KnownZero set
1462 if (V->getType()->isPointerTy()) {
Artur Pilipenkoae51afc2016-02-24 12:25:10 +00001463 unsigned Align = V->getPointerAlignment(Q.DL);
Artur Pilipenko029d8532015-09-30 11:55:45 +00001464 if (Align)
1465 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1466 }
1467
Philip Reames146307e2016-03-03 19:44:06 +00001468 // computeKnownBitsFromAssume strictly refines KnownZero and
1469 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator.
Jingyue Wu12b0c282015-06-15 05:46:29 +00001470
1471 // Check whether a nearby assume intrinsic can determine some known bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001472 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
Jingyue Wu12b0c282015-06-15 05:46:29 +00001473
Jay Foad5a29c362014-05-15 12:12:55 +00001474 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +00001475}
1476
Sanjay Patelaee84212014-11-04 16:27:42 +00001477/// Determine whether the sign bit is known to be zero or one.
1478/// Convenience wrapper around computeKnownBits.
Hal Finkel60db0582014-09-07 18:57:58 +00001479void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001480 unsigned Depth, const Query &Q) {
1481 unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001482 if (!BitWidth) {
1483 KnownZero = false;
1484 KnownOne = false;
1485 return;
1486 }
1487 APInt ZeroBits(BitWidth, 0);
1488 APInt OneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001489 computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001490 KnownOne = OneBits[BitWidth - 1];
1491 KnownZero = ZeroBits[BitWidth - 1];
1492}
1493
Sanjay Patelaee84212014-11-04 16:27:42 +00001494/// Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +00001495/// bit set when defined. For vectors return true if every element is known to
Sanjay Patelaee84212014-11-04 16:27:42 +00001496/// be a power of two when defined. Supports values with integer or pointer
Duncan Sandsd3951082011-01-25 09:38:29 +00001497/// types and vectors of integers.
Hal Finkel60db0582014-09-07 18:57:58 +00001498bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001499 const Query &Q) {
Duncan Sandsba286d72011-10-26 20:55:21 +00001500 if (Constant *C = dyn_cast<Constant>(V)) {
1501 if (C->isNullValue())
1502 return OrZero;
1503 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1504 return CI->getValue().isPowerOf2();
1505 // TODO: Handle vector constants.
1506 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001507
1508 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1509 // it is shifted off the end then the result is undefined.
1510 if (match(V, m_Shl(m_One(), m_Value())))
1511 return true;
1512
1513 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1514 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +00001515 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +00001516 return true;
1517
1518 // The remaining tests are all recursive, so bail out if we hit the limit.
1519 if (Depth++ == MaxDepth)
1520 return false;
1521
Craig Topper9f008862014-04-15 04:59:12 +00001522 Value *X = nullptr, *Y = nullptr;
Sanjay Patel41160c22015-12-30 22:40:52 +00001523 // A shift left or a logical shift right of a power of two is a power of two
1524 // or zero.
Duncan Sands985ba632011-10-28 18:30:05 +00001525 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
Sanjay Patel41160c22015-12-30 22:40:52 +00001526 match(V, m_LShr(m_Value(X), m_Value()))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001527 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
Duncan Sands985ba632011-10-28 18:30:05 +00001528
Duncan Sandsd3951082011-01-25 09:38:29 +00001529 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001530 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001531
1532 if (SelectInst *SI = dyn_cast<SelectInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001533 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1534 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
Duncan Sandsba286d72011-10-26 20:55:21 +00001535
Duncan Sandsba286d72011-10-26 20:55:21 +00001536 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1537 // A power of two and'd with anything is a power of two or zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001538 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1539 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
Duncan Sandsba286d72011-10-26 20:55:21 +00001540 return true;
1541 // X & (-X) is always a power of two or zero.
1542 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1543 return true;
1544 return false;
1545 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001546
David Majnemerb7d54092013-07-30 21:01:36 +00001547 // Adding a power-of-two or zero to the same power-of-two or zero yields
1548 // either the original power-of-two, a larger power-of-two or zero.
1549 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1550 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1551 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1552 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1553 match(X, m_And(m_Value(), m_Specific(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001554 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001555 return true;
1556 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1557 match(Y, m_And(m_Value(), m_Specific(X))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001558 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
David Majnemerb7d54092013-07-30 21:01:36 +00001559 return true;
1560
1561 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1562 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001563 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001564
1565 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001566 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
David Majnemerb7d54092013-07-30 21:01:36 +00001567 // If i8 V is a power of two or zero:
1568 // ZeroBits: 1 1 1 0 1 1 1 1
1569 // ~ZeroBits: 0 0 0 1 0 0 0 0
1570 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1571 // If OrZero isn't set, we cannot give back a zero result.
1572 // Make sure either the LHS or RHS has a bit set.
1573 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1574 return true;
1575 }
1576 }
David Majnemerbeab5672013-05-18 19:30:37 +00001577
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001578 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +00001579 // is a power of two only if the first operand is a power of two and not
1580 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001581 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1582 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Hal Finkel60db0582014-09-07 18:57:58 +00001583 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001584 Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001585 }
1586
Duncan Sandsd3951082011-01-25 09:38:29 +00001587 return false;
1588}
1589
Chandler Carruth80d3e562012-12-07 02:08:58 +00001590/// \brief Test whether a GEP's result is known to be non-null.
1591///
1592/// Uses properties inherent in a GEP to try to determine whether it is known
1593/// to be non-null.
1594///
1595/// Currently this routine does not support vector GEPs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001596static bool isGEPKnownNonNull(GEPOperator *GEP, unsigned Depth,
1597 const Query &Q) {
Chandler Carruth80d3e562012-12-07 02:08:58 +00001598 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1599 return false;
1600
1601 // FIXME: Support vector-GEPs.
1602 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1603
1604 // If the base pointer is non-null, we cannot walk to a null address with an
1605 // inbounds GEP in address space zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001606 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001607 return true;
1608
Chandler Carruth80d3e562012-12-07 02:08:58 +00001609 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1610 // If so, then the GEP cannot produce a null pointer, as doing so would
1611 // inherently violate the inbounds contract within address space zero.
1612 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1613 GTI != GTE; ++GTI) {
1614 // Struct types are easy -- they must always be indexed by a constant.
1615 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1616 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1617 unsigned ElementIdx = OpC->getZExtValue();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001618 const StructLayout *SL = Q.DL.getStructLayout(STy);
Chandler Carruth80d3e562012-12-07 02:08:58 +00001619 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1620 if (ElementOffset > 0)
1621 return true;
1622 continue;
1623 }
1624
1625 // If we have a zero-sized type, the index doesn't matter. Keep looping.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001626 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
Chandler Carruth80d3e562012-12-07 02:08:58 +00001627 continue;
1628
1629 // Fast path the constant operand case both for efficiency and so we don't
1630 // increment Depth when just zipping down an all-constant GEP.
1631 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1632 if (!OpC->isZero())
1633 return true;
1634 continue;
1635 }
1636
1637 // We post-increment Depth here because while isKnownNonZero increments it
1638 // as well, when we pop back up that increment won't persist. We don't want
1639 // to recurse 10k times just because we have 10k GEP operands. We don't
1640 // bail completely out because we want to handle constant GEPs regardless
1641 // of depth.
1642 if (Depth++ >= MaxDepth)
1643 continue;
1644
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001645 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001646 return true;
1647 }
1648
1649 return false;
1650}
1651
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001652/// Does the 'Range' metadata (which must be a valid MD_range operand list)
1653/// ensure that the value it's attached to is never Value? 'RangeType' is
1654/// is the type of the value described by the range.
1655static bool rangeMetadataExcludesValue(MDNode* Ranges,
1656 const APInt& Value) {
1657 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1658 assert(NumRanges >= 1);
1659 for (unsigned i = 0; i < NumRanges; ++i) {
Duncan P. N. Exon Smith5bf8fef2014-12-09 18:38:53 +00001660 ConstantInt *Lower =
1661 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1662 ConstantInt *Upper =
1663 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001664 ConstantRange Range(Lower->getValue(), Upper->getValue());
1665 if (Range.contains(Value))
1666 return false;
1667 }
1668 return true;
1669}
1670
Sanjay Patelaee84212014-11-04 16:27:42 +00001671/// Return true if the given value is known to be non-zero when defined.
1672/// For vectors return true if every element is known to be non-zero when
1673/// defined. Supports values with integer or pointer type and vectors of
1674/// integers.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001675bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q) {
Duncan Sandsd3951082011-01-25 09:38:29 +00001676 if (Constant *C = dyn_cast<Constant>(V)) {
1677 if (C->isNullValue())
1678 return false;
1679 if (isa<ConstantInt>(C))
1680 // Must be non-zero due to null test above.
1681 return true;
1682 // TODO: Handle vectors
1683 return false;
1684 }
1685
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001686 if (Instruction* I = dyn_cast<Instruction>(V)) {
Duncan P. N. Exon Smithde36e802014-11-11 21:30:22 +00001687 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
Philip Reames4cb4d3e2014-10-30 20:25:19 +00001688 // If the possible ranges don't contain zero, then the value is
1689 // definitely non-zero.
1690 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) {
1691 const APInt ZeroValue(Ty->getBitWidth(), 0);
1692 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1693 return true;
1694 }
1695 }
1696 }
1697
Duncan Sandsd3951082011-01-25 09:38:29 +00001698 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001699 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +00001700 return false;
1701
Chandler Carruth80d3e562012-12-07 02:08:58 +00001702 // Check for pointer simplifications.
1703 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +00001704 if (isKnownNonNull(V))
1705 return true;
Chandler Carruth80d3e562012-12-07 02:08:58 +00001706 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001707 if (isGEPKnownNonNull(GEP, Depth, Q))
Chandler Carruth80d3e562012-12-07 02:08:58 +00001708 return true;
1709 }
1710
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001711 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
Duncan Sandsd3951082011-01-25 09:38:29 +00001712
1713 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001714 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001715 if (match(V, m_Or(m_Value(X), m_Value(Y))))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001716 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001717
1718 // ext X != 0 if X != 0.
1719 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001720 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001721
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001722 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001723 // if the lowest bit is shifted off the end.
1724 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001725 // shl nuw can't remove any non-zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001726 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001727 if (BO->hasNoUnsignedWrap())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001728 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001729
Duncan Sandsd3951082011-01-25 09:38:29 +00001730 APInt KnownZero(BitWidth, 0);
1731 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001732 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001733 if (KnownOne[0])
1734 return true;
1735 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001736 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001737 // defined if the sign bit is shifted off the end.
1738 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001739 // shr exact can only shift out zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001740 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001741 if (BO->isExact())
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001742 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001743
Duncan Sandsd3951082011-01-25 09:38:29 +00001744 bool XKnownNonNegative, XKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001745 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001746 if (XKnownNegative)
1747 return true;
James Molloyb6be1eb2015-09-24 16:06:32 +00001748
1749 // If the shifter operand is a constant, and all of the bits shifted
1750 // out are known to be zero, and X is known non-zero then at least one
1751 // non-zero bit must remain.
1752 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1753 APInt KnownZero(BitWidth, 0);
1754 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001755 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001756
1757 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1758 // Is there a known one in the portion not shifted out?
1759 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1760 return true;
1761 // Are all the bits to be shifted out known zero?
1762 if (KnownZero.countTrailingOnes() >= ShiftVal)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001763 return isKnownNonZero(X, Depth, Q);
James Molloyb6be1eb2015-09-24 16:06:32 +00001764 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001765 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001766 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001767 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001768 return isKnownNonZero(X, Depth, Q);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001769 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001770 // X + Y.
1771 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1772 bool XKnownNonNegative, XKnownNegative;
1773 bool YKnownNonNegative, YKnownNegative;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001774 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1775 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001776
1777 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001778 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00001779 if (XKnownNonNegative && YKnownNonNegative)
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001780 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001781 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001782
1783 // If X and Y are both negative (as signed values) then their sum is not
1784 // zero unless both X and Y equal INT_MIN.
1785 if (BitWidth && XKnownNegative && YKnownNegative) {
1786 APInt KnownZero(BitWidth, 0);
1787 APInt KnownOne(BitWidth, 0);
1788 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1789 // The sign bit of X is set. If some other bit is set then X is not equal
1790 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001791 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001792 if ((KnownOne & Mask) != 0)
1793 return true;
1794 // The sign bit of Y is set. If some other bit is set then Y is not equal
1795 // to INT_MIN.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001796 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001797 if ((KnownOne & Mask) != 0)
1798 return true;
1799 }
1800
1801 // The sum of a non-negative number and a power of two is not zero.
Hal Finkel60db0582014-09-07 18:57:58 +00001802 if (XKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001803 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001804 return true;
Hal Finkel60db0582014-09-07 18:57:58 +00001805 if (YKnownNonNegative &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001806 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001807 return true;
1808 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001809 // X * Y.
1810 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1811 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1812 // If X and Y are non-zero then so is X * Y as long as the multiplication
1813 // does not overflow.
1814 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001815 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
Duncan Sands7cb61e52011-10-27 19:16:21 +00001816 return true;
1817 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001818 // (C ? X : Y) != 0 if X != 0 and Y != 0.
1819 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001820 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1821 isKnownNonZero(SI->getFalseValue(), Depth, Q))
Duncan Sandsd3951082011-01-25 09:38:29 +00001822 return true;
1823 }
James Molloy897048b2015-09-29 14:08:45 +00001824 // PHI
1825 else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1826 // Try and detect a recurrence that monotonically increases from a
1827 // starting value, as these are common as induction variables.
1828 if (PN->getNumIncomingValues() == 2) {
1829 Value *Start = PN->getIncomingValue(0);
1830 Value *Induction = PN->getIncomingValue(1);
1831 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1832 std::swap(Start, Induction);
1833 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1834 if (!C->isZero() && !C->isNegative()) {
1835 ConstantInt *X;
1836 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1837 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1838 !X->isNegative())
1839 return true;
1840 }
1841 }
1842 }
Jun Bum Limca832662016-02-01 17:03:07 +00001843 // Check if all incoming values are non-zero constant.
1844 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
1845 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
1846 });
1847 if (AllNonZeroConstants)
1848 return true;
James Molloy897048b2015-09-29 14:08:45 +00001849 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001850
1851 if (!BitWidth) return false;
1852 APInt KnownZero(BitWidth, 0);
1853 APInt KnownOne(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001854 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Duncan Sandsd3951082011-01-25 09:38:29 +00001855 return KnownOne != 0;
1856}
1857
James Molloy1d88d6f2015-10-22 13:18:42 +00001858/// Return true if V2 == V1 + X, where X is known non-zero.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001859static bool isAddOfNonZero(Value *V1, Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00001860 BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
1861 if (!BO || BO->getOpcode() != Instruction::Add)
1862 return false;
1863 Value *Op = nullptr;
1864 if (V2 == BO->getOperand(0))
1865 Op = BO->getOperand(1);
1866 else if (V2 == BO->getOperand(1))
1867 Op = BO->getOperand(0);
1868 else
1869 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001870 return isKnownNonZero(Op, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001871}
1872
1873/// Return true if it is known that V1 != V2.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001874static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q) {
James Molloy1d88d6f2015-10-22 13:18:42 +00001875 if (V1->getType()->isVectorTy() || V1 == V2)
1876 return false;
1877 if (V1->getType() != V2->getType())
1878 // We can't look through casts yet.
1879 return false;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001880 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
James Molloy1d88d6f2015-10-22 13:18:42 +00001881 return true;
1882
1883 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
1884 // Are any known bits in V1 contradictory to known bits in V2? If V1
1885 // has a known zero where V2 has a known one, they must not be equal.
1886 auto BitWidth = Ty->getBitWidth();
1887 APInt KnownZero1(BitWidth, 0);
1888 APInt KnownOne1(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001889 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001890 APInt KnownZero2(BitWidth, 0);
1891 APInt KnownOne2(BitWidth, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001892 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
James Molloy1d88d6f2015-10-22 13:18:42 +00001893
1894 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
1895 if (OppositeBits.getBoolValue())
1896 return true;
1897 }
1898 return false;
1899}
1900
Sanjay Patelaee84212014-11-04 16:27:42 +00001901/// Return true if 'V & Mask' is known to be zero. We use this predicate to
1902/// simplify operations downstream. Mask is known to be zero for bits that V
1903/// cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00001904///
1905/// This function is defined on values with integer type, values with pointer
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001906/// type, and vectors of integers. In the case
Chris Lattner4bc28252009-09-08 00:06:16 +00001907/// where V is a vector, the mask, known zero, and known one values are the
1908/// same width as the vector element, and the bit is set only if it is true
1909/// for all of the elements in the vector.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001910bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
1911 const Query &Q) {
Chris Lattner965c7692008-06-02 01:18:21 +00001912 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001913 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00001914 return (KnownZero & Mask) == Mask;
1915}
1916
1917
1918
Sanjay Patelaee84212014-11-04 16:27:42 +00001919/// Return the number of times the sign bit of the register is replicated into
1920/// the other bits. We know that at least 1 bit is always equal to the sign bit
1921/// (itself), but other cases can give us information. For example, immediately
1922/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
1923/// other, so we return 3.
Chris Lattner965c7692008-06-02 01:18:21 +00001924///
1925/// 'Op' must have a scalar integer type.
1926///
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001927unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q) {
1928 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
Chris Lattner965c7692008-06-02 01:18:21 +00001929 unsigned Tmp, Tmp2;
1930 unsigned FirstAnswer = 1;
1931
Jay Foada0653a32014-05-14 21:14:37 +00001932 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00001933 // below.
1934
Chris Lattner965c7692008-06-02 01:18:21 +00001935 if (Depth == 6)
1936 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00001937
Dan Gohman80ca01c2009-07-17 20:47:02 +00001938 Operator *U = dyn_cast<Operator>(V);
1939 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001940 default: break;
1941 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00001942 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001943 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00001944
Nadav Rotemc99a3872015-03-06 00:23:58 +00001945 case Instruction::SDiv: {
Nadav Rotem029c5c72015-03-03 21:39:02 +00001946 const APInt *Denominator;
1947 // sdiv X, C -> adds log(C) sign bits.
1948 if (match(U->getOperand(1), m_APInt(Denominator))) {
1949
1950 // Ignore non-positive denominator.
1951 if (!Denominator->isStrictlyPositive())
1952 break;
1953
1954 // Calculate the incoming numerator bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001955 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotem029c5c72015-03-03 21:39:02 +00001956
1957 // Add floor(log(C)) bits to the numerator bits.
1958 return std::min(TyBits, NumBits + Denominator->logBase2());
1959 }
1960 break;
Nadav Rotemc99a3872015-03-06 00:23:58 +00001961 }
1962
1963 case Instruction::SRem: {
1964 const APInt *Denominator;
Sanjoy Dase561fee2015-03-25 22:33:53 +00001965 // srem X, C -> we know that the result is within [-C+1,C) when C is a
1966 // positive constant. This let us put a lower bound on the number of sign
1967 // bits.
Nadav Rotemc99a3872015-03-06 00:23:58 +00001968 if (match(U->getOperand(1), m_APInt(Denominator))) {
1969
1970 // Ignore non-positive denominator.
1971 if (!Denominator->isStrictlyPositive())
1972 break;
1973
1974 // Calculate the incoming numerator bits. SRem by a positive constant
1975 // can't lower the number of sign bits.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00001976 unsigned NumrBits =
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001977 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Nadav Rotemc99a3872015-03-06 00:23:58 +00001978
1979 // Calculate the leading sign bit constraints by examining the
Sanjoy Dase561fee2015-03-25 22:33:53 +00001980 // denominator. Given that the denominator is positive, there are two
1981 // cases:
1982 //
1983 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
1984 // (1 << ceilLogBase2(C)).
1985 //
1986 // 2. the numerator is negative. Then the result range is (-C,0] and
1987 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
1988 //
1989 // Thus a lower bound on the number of sign bits is `TyBits -
1990 // ceilLogBase2(C)`.
Nadav Rotemc99a3872015-03-06 00:23:58 +00001991
Sanjoy Dase561fee2015-03-25 22:33:53 +00001992 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
Nadav Rotemc99a3872015-03-06 00:23:58 +00001993 return std::max(NumrBits, ResBits);
1994 }
1995 break;
1996 }
Nadav Rotem029c5c72015-03-03 21:39:02 +00001997
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001998 case Instruction::AShr: {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00001999 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002000 // ashr X, C -> adds C sign bits. Vectors too.
2001 const APInt *ShAmt;
2002 if (match(U->getOperand(1), m_APInt(ShAmt))) {
2003 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00002004 if (Tmp > TyBits) Tmp = TyBits;
2005 }
2006 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002007 }
2008 case Instruction::Shl: {
2009 const APInt *ShAmt;
2010 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00002011 // shl destroys sign bits.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002012 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002013 Tmp2 = ShAmt->getZExtValue();
2014 if (Tmp2 >= TyBits || // Bad shift.
2015 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2016 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00002017 }
2018 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00002019 }
Chris Lattner965c7692008-06-02 01:18:21 +00002020 case Instruction::And:
2021 case Instruction::Or:
2022 case Instruction::Xor: // NOT is handled here.
2023 // Logical binary ops preserve the number of sign bits at the worst.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002024 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002025 if (Tmp != 1) {
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002026 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002027 FirstAnswer = std::min(Tmp, Tmp2);
2028 // We computed what we know about the sign bits as our first
2029 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00002030 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00002031 }
2032 break;
2033
2034 case Instruction::Select:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002035 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002036 if (Tmp == 1) return 1; // Early out.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002037 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002038 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00002039
Chris Lattner965c7692008-06-02 01:18:21 +00002040 case Instruction::Add:
2041 // Add can have at most one carry bit. Thus we know that the output
2042 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002043 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002044 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00002045
Chris Lattner965c7692008-06-02 01:18:21 +00002046 // Special case decrementing a value (ADD X, -1):
David Majnemera55027f2014-12-26 09:20:17 +00002047 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00002048 if (CRHS->isAllOnesValue()) {
2049 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002050 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002051
Chris Lattner965c7692008-06-02 01:18:21 +00002052 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2053 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002054 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002055 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002056
Chris Lattner965c7692008-06-02 01:18:21 +00002057 // If we are subtracting one from a positive number, there is no carry
2058 // out of the result.
2059 if (KnownZero.isNegative())
2060 return Tmp;
2061 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002062
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002063 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002064 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002065 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002066
Chris Lattner965c7692008-06-02 01:18:21 +00002067 case Instruction::Sub:
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002068 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002069 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002070
Chris Lattner965c7692008-06-02 01:18:21 +00002071 // Handle NEG.
David Majnemera55027f2014-12-26 09:20:17 +00002072 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
Chris Lattner965c7692008-06-02 01:18:21 +00002073 if (CLHS->isNullValue()) {
2074 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002075 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002076 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2077 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002078 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00002079 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00002080
Chris Lattner965c7692008-06-02 01:18:21 +00002081 // If the input is known to be positive (the sign bit is known clear),
2082 // the output of the NEG has the same number of sign bits as the input.
2083 if (KnownZero.isNegative())
2084 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00002085
Chris Lattner965c7692008-06-02 01:18:21 +00002086 // Otherwise, we treat this like a SUB.
2087 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002088
Chris Lattner965c7692008-06-02 01:18:21 +00002089 // Sub can have at most one carry bit. Thus we know that the output
2090 // is, at worst, one more bit than the inputs.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002091 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
Chris Lattner965c7692008-06-02 01:18:21 +00002092 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002093 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00002094
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002095 case Instruction::PHI: {
2096 PHINode *PN = cast<PHINode>(U);
David Majnemer6ee8d172015-01-04 07:06:53 +00002097 unsigned NumIncomingValues = PN->getNumIncomingValues();
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002098 // Don't analyze large in-degree PHIs.
David Majnemer6ee8d172015-01-04 07:06:53 +00002099 if (NumIncomingValues > 4) break;
2100 // Unreachable blocks may have zero-operand PHI nodes.
2101 if (NumIncomingValues == 0) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002102
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002103 // Take the minimum of all incoming values. This can't infinitely loop
2104 // because of our depth threshold.
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002105 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
David Majnemer6ee8d172015-01-04 07:06:53 +00002106 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002107 if (Tmp == 1) return Tmp;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002108 Tmp = std::min(
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002109 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00002110 }
2111 return Tmp;
2112 }
2113
Chris Lattner965c7692008-06-02 01:18:21 +00002114 case Instruction::Trunc:
2115 // FIXME: it's tricky to do anything useful for this, but it is an important
2116 // case for targets like X86.
2117 break;
2118 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002119
Chris Lattner965c7692008-06-02 01:18:21 +00002120 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2121 // use this information.
2122 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00002123 APInt Mask;
Matthias Braunfeb81bc2016-01-15 22:22:04 +00002124 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
Craig Topper1bef2c82012-12-22 19:15:35 +00002125
Chris Lattner965c7692008-06-02 01:18:21 +00002126 if (KnownZero.isNegative()) { // sign bit is 0
2127 Mask = KnownZero;
2128 } else if (KnownOne.isNegative()) { // sign bit is 1;
2129 Mask = KnownOne;
2130 } else {
2131 // Nothing known.
2132 return FirstAnswer;
2133 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002134
Chris Lattner965c7692008-06-02 01:18:21 +00002135 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
2136 // the number of identical bits in the top of the input value.
2137 Mask = ~Mask;
2138 Mask <<= Mask.getBitWidth()-TyBits;
2139 // Return # leading zeros. We use 'min' here in case Val was zero before
2140 // shifting. We don't want to return '64' as for an i32 "0".
2141 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
2142}
Chris Lattnera12a6de2008-06-02 01:29:46 +00002143
Sanjay Patelaee84212014-11-04 16:27:42 +00002144/// This function computes the integer multiple of Base that equals V.
2145/// If successful, it returns true and returns the multiple in
2146/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00002147/// through SExt instructions only if LookThroughSExt is true.
2148bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00002149 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00002150 const unsigned MaxDepth = 6;
2151
Dan Gohman6a976bb2009-11-18 00:58:27 +00002152 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00002153 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00002154 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00002155
Chris Lattner229907c2011-07-18 04:54:35 +00002156 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00002157
Dan Gohman6a976bb2009-11-18 00:58:27 +00002158 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00002159
2160 if (Base == 0)
2161 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002162
Victor Hernandez47444882009-11-10 08:28:35 +00002163 if (Base == 1) {
2164 Multiple = V;
2165 return true;
2166 }
2167
2168 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2169 Constant *BaseVal = ConstantInt::get(T, Base);
2170 if (CO && CO == BaseVal) {
2171 // Multiple is 1.
2172 Multiple = ConstantInt::get(T, 1);
2173 return true;
2174 }
2175
2176 if (CI && CI->getZExtValue() % Base == 0) {
2177 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00002178 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00002179 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002180
Victor Hernandez47444882009-11-10 08:28:35 +00002181 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00002182
Victor Hernandez47444882009-11-10 08:28:35 +00002183 Operator *I = dyn_cast<Operator>(V);
2184 if (!I) return false;
2185
2186 switch (I->getOpcode()) {
2187 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002188 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00002189 if (!LookThroughSExt) return false;
2190 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00002191 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00002192 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2193 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00002194 case Instruction::Shl:
2195 case Instruction::Mul: {
2196 Value *Op0 = I->getOperand(0);
2197 Value *Op1 = I->getOperand(1);
2198
2199 if (I->getOpcode() == Instruction::Shl) {
2200 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2201 if (!Op1CI) return false;
2202 // Turn Op0 << Op1 into Op0 * 2^Op1
2203 APInt Op1Int = Op1CI->getValue();
2204 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00002205 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00002206 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00002207 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00002208 }
2209
Craig Topper9f008862014-04-15 04:59:12 +00002210 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002211 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2212 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2213 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002214 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002215 MulC->getType()->getPrimitiveSizeInBits())
2216 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002217 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002218 MulC->getType()->getPrimitiveSizeInBits())
2219 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002220
Chris Lattner72d283c2010-09-05 17:20:46 +00002221 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2222 Multiple = ConstantExpr::getMul(MulC, Op1C);
2223 return true;
2224 }
Victor Hernandez47444882009-11-10 08:28:35 +00002225
2226 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2227 if (Mul0CI->getValue() == 1) {
2228 // V == Base * Op1, so return Op1
2229 Multiple = Op1;
2230 return true;
2231 }
2232 }
2233
Craig Topper9f008862014-04-15 04:59:12 +00002234 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00002235 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2236 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2237 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00002238 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00002239 MulC->getType()->getPrimitiveSizeInBits())
2240 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002241 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00002242 MulC->getType()->getPrimitiveSizeInBits())
2243 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00002244
Chris Lattner72d283c2010-09-05 17:20:46 +00002245 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2246 Multiple = ConstantExpr::getMul(MulC, Op0C);
2247 return true;
2248 }
Victor Hernandez47444882009-11-10 08:28:35 +00002249
2250 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2251 if (Mul1CI->getValue() == 1) {
2252 // V == Base * Op0, so return Op0
2253 Multiple = Op0;
2254 return true;
2255 }
2256 }
Victor Hernandez47444882009-11-10 08:28:35 +00002257 }
2258 }
2259
2260 // We could not determine if V is a multiple of Base.
2261 return false;
2262}
2263
Sanjay Patelaee84212014-11-04 16:27:42 +00002264/// Return true if we can prove that the specified FP value is never equal to
2265/// -0.0.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002266///
2267/// NOTE: this function will need to be revisited when we support non-default
2268/// rounding modes!
2269///
2270bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
2271 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2272 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00002273
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002274 // FIXME: Magic number! At the least, this should be given a name because it's
2275 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2276 // expose it as a parameter, so it can be used for testing / experimenting.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002277 if (Depth == 6)
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002278 return false; // Limit search depth.
Chris Lattnera12a6de2008-06-02 01:29:46 +00002279
Dan Gohman80ca01c2009-07-17 20:47:02 +00002280 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00002281 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00002282
2283 // Check if the nsz fast-math flag is set
2284 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2285 if (FPO->hasNoSignedZeros())
2286 return true;
2287
Chris Lattnera12a6de2008-06-02 01:29:46 +00002288 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00002289 if (I->getOpcode() == Instruction::FAdd)
2290 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2291 if (CFP->isNullValue())
2292 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002293
Chris Lattnera12a6de2008-06-02 01:29:46 +00002294 // sitofp and uitofp turn into +0.0 for zero.
2295 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2296 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00002297
Chris Lattnera12a6de2008-06-02 01:29:46 +00002298 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2299 // sqrt(-0.0) = -0.0, no other negative results are possible.
2300 if (II->getIntrinsicID() == Intrinsic::sqrt)
Gabor Greif1abbde32010-06-23 23:38:07 +00002301 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
Craig Topper1bef2c82012-12-22 19:15:35 +00002302
Chris Lattnera12a6de2008-06-02 01:29:46 +00002303 if (const CallInst *CI = dyn_cast<CallInst>(I))
2304 if (const Function *F = CI->getCalledFunction()) {
2305 if (F->isDeclaration()) {
Daniel Dunbarca414c72009-07-26 08:34:35 +00002306 // abs(x) != -0.0
2307 if (F->getName() == "abs") return true;
Dale Johannesenf6a987b2009-09-25 20:54:50 +00002308 // fabs[lf](x) != -0.0
2309 if (F->getName() == "fabs") return true;
2310 if (F->getName() == "fabsf") return true;
2311 if (F->getName() == "fabsl") return true;
2312 if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
2313 F->getName() == "sqrtl")
Gabor Greif1abbde32010-06-23 23:38:07 +00002314 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
Chris Lattnera12a6de2008-06-02 01:29:46 +00002315 }
2316 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002317
Chris Lattnera12a6de2008-06-02 01:29:46 +00002318 return false;
2319}
2320
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002321bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) {
2322 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2323 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2324
Sanjay Patel40eaa8d2015-02-25 18:00:15 +00002325 // FIXME: Magic number! At the least, this should be given a name because it's
2326 // used similarly in CannotBeNegativeZero(). A better fix may be to
2327 // expose it as a parameter, so it can be used for testing / experimenting.
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002328 if (Depth == 6)
2329 return false; // Limit search depth.
2330
2331 const Operator *I = dyn_cast<Operator>(V);
2332 if (!I) return false;
2333
2334 switch (I->getOpcode()) {
2335 default: break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002336 // Unsigned integers are always nonnegative.
2337 case Instruction::UIToFP:
2338 return true;
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002339 case Instruction::FMul:
2340 // x*x is always non-negative or a NaN.
2341 if (I->getOperand(0) == I->getOperand(1))
2342 return true;
2343 // Fall through
2344 case Instruction::FAdd:
2345 case Instruction::FDiv:
2346 case Instruction::FRem:
2347 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) &&
2348 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002349 case Instruction::Select:
2350 return CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1) &&
2351 CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002352 case Instruction::FPExt:
2353 case Instruction::FPTrunc:
2354 // Widening/narrowing never change sign.
2355 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
2356 case Instruction::Call:
2357 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2358 switch (II->getIntrinsicID()) {
2359 default: break;
Fiona Glaserdb7824f2016-01-12 23:37:30 +00002360 case Intrinsic::maxnum:
2361 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) ||
2362 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
2363 case Intrinsic::minnum:
2364 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) &&
2365 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
Elena Demikhovsky45f04482015-01-28 08:03:58 +00002366 case Intrinsic::exp:
2367 case Intrinsic::exp2:
2368 case Intrinsic::fabs:
2369 case Intrinsic::sqrt:
2370 return true;
2371 case Intrinsic::powi:
2372 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2373 // powi(x,n) is non-negative if n is even.
2374 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2375 return true;
2376 }
2377 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
2378 case Intrinsic::fma:
2379 case Intrinsic::fmuladd:
2380 // x*x+y is non-negative if y is non-negative.
2381 return I->getOperand(0) == I->getOperand(1) &&
2382 CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1);
2383 }
2384 break;
2385 }
2386 return false;
2387}
2388
Sanjay Patelaee84212014-11-04 16:27:42 +00002389/// If the specified value can be set by repeating the same byte in memory,
2390/// return the i8 value that it is represented with. This is
Chris Lattner9cb10352010-12-26 20:15:01 +00002391/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2392/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2393/// byte store (e.g. i16 0x1234), return null.
2394Value *llvm::isBytewiseValue(Value *V) {
2395 // All byte-wide stores are splatable, even of arbitrary variables.
2396 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00002397
2398 // Handle 'null' ConstantArrayZero etc.
2399 if (Constant *C = dyn_cast<Constant>(V))
2400 if (C->isNullValue())
2401 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00002402
Chris Lattner9cb10352010-12-26 20:15:01 +00002403 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00002404 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00002405 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2406 if (CFP->getType()->isFloatTy())
2407 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2408 if (CFP->getType()->isDoubleTy())
2409 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2410 // Don't handle long double formats, which have strange constraints.
2411 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002412
Benjamin Kramer17d90152015-02-07 19:29:02 +00002413 // We can handle constant integers that are multiple of 8 bits.
Chris Lattner9cb10352010-12-26 20:15:01 +00002414 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
Benjamin Kramer17d90152015-02-07 19:29:02 +00002415 if (CI->getBitWidth() % 8 == 0) {
2416 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
Craig Topper1bef2c82012-12-22 19:15:35 +00002417
Benjamin Kramerb4b51502015-03-25 16:49:59 +00002418 if (!CI->getValue().isSplat(8))
Benjamin Kramer17d90152015-02-07 19:29:02 +00002419 return nullptr;
2420 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
Chris Lattner9cb10352010-12-26 20:15:01 +00002421 }
2422 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002423
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002424 // A ConstantDataArray/Vector is splatable if all its members are equal and
2425 // also splatable.
2426 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2427 Value *Elt = CA->getElementAsConstant(0);
2428 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00002429 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00002430 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002431
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002432 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2433 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00002434 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00002435
Chris Lattner9cb10352010-12-26 20:15:01 +00002436 return Val;
2437 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00002438
Chris Lattner9cb10352010-12-26 20:15:01 +00002439 // Conceptually, we could handle things like:
2440 // %a = zext i8 %X to i16
2441 // %b = shl i16 %a, 8
2442 // %c = or i16 %a, %b
2443 // but until there is an example that actually needs this, it doesn't seem
2444 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00002445 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00002446}
2447
2448
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002449// This is the recursive version of BuildSubAggregate. It takes a few different
2450// arguments. Idxs is the index within the nested struct From that we are
2451// looking at now (which is of type IndexedType). IdxSkip is the number of
2452// indices from Idxs that should be left out when inserting into the resulting
2453// struct. To is the result struct built so far, new insertvalue instructions
2454// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00002455static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00002456 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002457 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002458 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00002459 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002460 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002461 // Save the original To argument so we can modify it
2462 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002463 // General case, the type indexed by Idxs is a struct
2464 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2465 // Process each struct element recursively
2466 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002467 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002468 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002469 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002470 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002471 if (!To) {
2472 // Couldn't find any inserted value for this index? Cleanup
2473 while (PrevTo != OrigTo) {
2474 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2475 PrevTo = Del->getAggregateOperand();
2476 Del->eraseFromParent();
2477 }
2478 // Stop processing elements
2479 break;
2480 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002481 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002482 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002483 if (To)
2484 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002485 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002486 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2487 // the struct's elements had a value that was inserted directly. In the latter
2488 // case, perhaps we can't determine each of the subelements individually, but
2489 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00002490
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002491 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00002492 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002493
2494 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00002495 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002496
2497 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002498 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00002499 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002500}
2501
2502// This helper takes a nested struct and extracts a part of it (which is again a
2503// struct) into a new value. For example, given the struct:
2504// { a, { b, { c, d }, e } }
2505// and the indices "1, 1" this returns
2506// { c, d }.
2507//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002508// It does this by inserting an insertvalue for each element in the resulting
2509// struct, as opposed to just inserting a single struct. This will only work if
2510// each of the elements of the substruct are known (ie, inserted into From by an
2511// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002512//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002513// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00002514static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00002515 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00002516 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00002517 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00002518 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00002519 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00002520 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002521 unsigned IdxSkip = Idxs.size();
2522
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002523 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002524}
2525
Sanjay Patelaee84212014-11-04 16:27:42 +00002526/// Given an aggregrate and an sequence of indices, see if
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002527/// the scalar value indexed is already around as a register, for example if it
2528/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00002529///
2530/// If InsertBefore is not null, this function will duplicate (modified)
2531/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00002532Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2533 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002534 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002535 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00002536 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002537 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002538 // We have indices, so V should have an indexable type.
2539 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2540 "Not looking at a struct or array?");
2541 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2542 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00002543
Chris Lattner67058832012-01-25 06:48:06 +00002544 if (Constant *C = dyn_cast<Constant>(V)) {
2545 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00002546 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00002547 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2548 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002549
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002550 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002551 // Loop the indices for the insertvalue instruction in parallel with the
2552 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002553 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002554 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2555 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00002556 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002557 // We can't handle this without inserting insertvalues
2558 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00002559 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002560
2561 // The requested index identifies a part of a nested aggregate. Handle
2562 // this specially. For example,
2563 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2564 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2565 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2566 // This can be changed into
2567 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2568 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2569 // which allows the unused 0,0 element from the nested struct to be
2570 // removed.
2571 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2572 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00002573 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002574
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002575 // This insert value inserts something else than what we are looking for.
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002576 // See if the (aggregate) value inserted into has the value we are
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002577 // looking for, then.
2578 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00002579 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002580 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002581 }
2582 // If we end up here, the indices of the insertvalue match with those
2583 // requested (though possibly only partially). Now we recursively look at
2584 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00002585 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00002586 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00002587 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002588 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002589
Chris Lattnerf7eb5432012-01-24 07:54:10 +00002590 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Benjamin Kramerdf005cb2015-08-08 18:27:36 +00002591 // If we're extracting a value from an aggregate that was extracted from
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002592 // something else, we can extract from that something else directly instead.
2593 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00002594
2595 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00002596 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002597 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00002598 SmallVector<unsigned, 5> Idxs;
2599 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002600 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00002601 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00002602
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002603 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00002604 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002605
Craig Topper1bef2c82012-12-22 19:15:35 +00002606 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00002607 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00002608
Jay Foad57aa6362011-07-13 10:26:04 +00002609 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002610 }
2611 // Otherwise, we don't know (such as, extracting from a function return value
2612 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00002613 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00002614}
Evan Chengda3db112008-06-30 07:31:25 +00002615
Sanjay Patelaee84212014-11-04 16:27:42 +00002616/// Analyze the specified pointer to see if it can be expressed as a base
2617/// pointer plus a constant offset. Return the base and offset to the caller.
Chris Lattnere28618d2010-11-30 22:25:26 +00002618Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002619 const DataLayout &DL) {
2620 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
Nuno Lopes368c4d02012-12-31 20:48:35 +00002621 APInt ByteOffset(BitWidth, 0);
Chandler Carruth76641272016-01-04 07:23:12 +00002622
2623 // We walk up the defs but use a visited set to handle unreachable code. In
2624 // that case, we stop after accumulating the cycle once (not that it
2625 // matters).
2626 SmallPtrSet<Value *, 16> Visited;
2627 while (Visited.insert(Ptr).second) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002628 if (Ptr->getType()->isVectorTy())
2629 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00002630
Nuno Lopes368c4d02012-12-31 20:48:35 +00002631 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002632 APInt GEPOffset(BitWidth, 0);
2633 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2634 break;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002635
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002636 ByteOffset += GEPOffset;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00002637
Nuno Lopes368c4d02012-12-31 20:48:35 +00002638 Ptr = GEP->getPointerOperand();
Matt Arsenaultfd78d0c2014-07-14 22:39:22 +00002639 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2640 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002641 Ptr = cast<Operator>(Ptr)->getOperand(0);
2642 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00002643 if (GA->isInterposable())
Nuno Lopes368c4d02012-12-31 20:48:35 +00002644 break;
2645 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00002646 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00002647 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00002648 }
2649 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00002650 Offset = ByteOffset.getSExtValue();
2651 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00002652}
2653
2654
Sanjay Patelaee84212014-11-04 16:27:42 +00002655/// This function computes the length of a null-terminated C string pointed to
2656/// by V. If successful, it returns true and returns the string in Str.
2657/// If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002658bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2659 uint64_t Offset, bool TrimAtNul) {
2660 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00002661
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002662 // Look through bitcast instructions and geps.
2663 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00002664
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002665 // If the value is a GEP instruction or constant expression, treat it as an
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002666 // offset.
2667 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Evan Chengda3db112008-06-30 07:31:25 +00002668 // Make sure the GEP has exactly three arguments.
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002669 if (GEP->getNumOperands() != 3)
2670 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002671
Evan Chengda3db112008-06-30 07:31:25 +00002672 // Make sure the index-ee is a pointer to array of i8.
Eduard Burtescu19eb0312016-01-19 17:28:00 +00002673 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
Craig Topper9f008862014-04-15 04:59:12 +00002674 if (!AT || !AT->getElementType()->isIntegerTy(8))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002675 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002676
Evan Chengda3db112008-06-30 07:31:25 +00002677 // Check to make sure that the first operand of the GEP is an integer and
2678 // has value 0 so that we are sure we're indexing into the initializer.
Dan Gohman0b4df042010-04-14 22:20:45 +00002679 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
Craig Topper9f008862014-04-15 04:59:12 +00002680 if (!FirstIdx || !FirstIdx->isZero())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002681 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002682
Evan Chengda3db112008-06-30 07:31:25 +00002683 // If the second index isn't a ConstantInt, then this is a variable index
2684 // into the array. If this occurs, we can't say anything meaningful about
2685 // the string.
2686 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00002687 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00002688 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002689 else
2690 return false;
Benjamin Kramer0248a3e2015-03-21 15:36:06 +00002691 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2692 TrimAtNul);
Evan Chengda3db112008-06-30 07:31:25 +00002693 }
Nick Lewycky46209882011-10-20 00:34:35 +00002694
Evan Chengda3db112008-06-30 07:31:25 +00002695 // The GEP instruction, constant or instruction, must reference a global
2696 // variable that is a constant and is initialized. The referenced constant
2697 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002698 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00002699 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002700 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002701
Nick Lewycky46209882011-10-20 00:34:35 +00002702 // Handle the all-zeros case
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002703 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00002704 // This is a degenerate case. The initializer is constant zero so the
2705 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002706 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002707 return true;
2708 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002709
Evan Chengda3db112008-06-30 07:31:25 +00002710 // Must be a Constant Array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002711 const ConstantDataArray *Array =
2712 dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00002713 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002714 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002715
Evan Chengda3db112008-06-30 07:31:25 +00002716 // Get the number of elements in the array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002717 uint64_t NumElts = Array->getType()->getArrayNumElements();
2718
2719 // Start out with the entire array in the StringRef.
2720 Str = Array->getAsString();
2721
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002722 if (Offset > NumElts)
2723 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00002724
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002725 // Skip over 'offset' bytes.
2726 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00002727
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002728 if (TrimAtNul) {
2729 // Trim off the \0 and anything after it. If the array is not nul
2730 // terminated, we just return the whole end of string. The client may know
2731 // some other way that the string is length-bound.
2732 Str = Str.substr(0, Str.find('\0'));
2733 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00002734 return true;
Evan Chengda3db112008-06-30 07:31:25 +00002735}
Eric Christopher4899cbc2010-03-05 06:58:57 +00002736
2737// These next two are very similar to the above, but also look through PHI
2738// nodes.
2739// TODO: See if we can integrate these two together.
2740
Sanjay Patelaee84212014-11-04 16:27:42 +00002741/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002742/// the specified pointer, return 'len+1'. If we can't, return 0.
Craig Topper71b7b682014-08-21 05:55:13 +00002743static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
Eric Christopher4899cbc2010-03-05 06:58:57 +00002744 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002745 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00002746
2747 // If this is a PHI node, there are two cases: either we have already seen it
2748 // or we haven't.
2749 if (PHINode *PN = dyn_cast<PHINode>(V)) {
David Blaikie70573dc2014-11-19 07:49:26 +00002750 if (!PHIs.insert(PN).second)
Eric Christopher4899cbc2010-03-05 06:58:57 +00002751 return ~0ULL; // already in the set.
2752
2753 // If it was new, see if all the input strings are the same length.
2754 uint64_t LenSoFar = ~0ULL;
Pete Cooper833f34d2015-05-12 20:05:31 +00002755 for (Value *IncValue : PN->incoming_values()) {
2756 uint64_t Len = GetStringLengthH(IncValue, PHIs);
Eric Christopher4899cbc2010-03-05 06:58:57 +00002757 if (Len == 0) return 0; // Unknown length -> unknown.
2758
2759 if (Len == ~0ULL) continue;
2760
2761 if (Len != LenSoFar && LenSoFar != ~0ULL)
2762 return 0; // Disagree -> unknown.
2763 LenSoFar = Len;
2764 }
2765
2766 // Success, all agree.
2767 return LenSoFar;
2768 }
2769
2770 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
2771 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2772 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
2773 if (Len1 == 0) return 0;
2774 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
2775 if (Len2 == 0) return 0;
2776 if (Len1 == ~0ULL) return Len2;
2777 if (Len2 == ~0ULL) return Len1;
2778 if (Len1 != Len2) return 0;
2779 return Len1;
2780 }
Craig Topper1bef2c82012-12-22 19:15:35 +00002781
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002782 // Otherwise, see if we can read the string.
2783 StringRef StrData;
2784 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00002785 return 0;
2786
Chris Lattnercf9e8f62012-02-05 02:29:43 +00002787 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00002788}
2789
Sanjay Patelaee84212014-11-04 16:27:42 +00002790/// If we can compute the length of the string pointed to by
Eric Christopher4899cbc2010-03-05 06:58:57 +00002791/// the specified pointer, return 'len+1'. If we can't, return 0.
2792uint64_t llvm::GetStringLength(Value *V) {
2793 if (!V->getType()->isPointerTy()) return 0;
2794
2795 SmallPtrSet<PHINode*, 32> PHIs;
2796 uint64_t Len = GetStringLengthH(V, PHIs);
2797 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
2798 // an empty string as a length.
2799 return Len == ~0ULL ? 1 : Len;
2800}
Dan Gohmana4fcd242010-12-15 20:02:24 +00002801
Adam Nemete2b885c2015-04-23 20:09:20 +00002802/// \brief \p PN defines a loop-variant pointer to an object. Check if the
2803/// previous iteration of the loop was referring to the same object as \p PN.
2804static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) {
2805 // Find the loop-defined value.
2806 Loop *L = LI->getLoopFor(PN->getParent());
2807 if (PN->getNumIncomingValues() != 2)
2808 return true;
2809
2810 // Find the value from previous iteration.
2811 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
2812 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
2813 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
2814 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
2815 return true;
2816
2817 // If a new pointer is loaded in the loop, the pointer references a different
2818 // object in every iteration. E.g.:
2819 // for (i)
2820 // int *p = a[i];
2821 // ...
2822 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
2823 if (!L->isLoopInvariant(Load->getPointerOperand()))
2824 return false;
2825 return true;
2826}
2827
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002828Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
2829 unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00002830 if (!V->getType()->isPointerTy())
2831 return V;
2832 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
2833 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2834 V = GEP->getPointerOperand();
Matt Arsenault70f4db882014-07-15 00:56:40 +00002835 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
2836 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00002837 V = cast<Operator>(V)->getOperand(0);
2838 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
Sanjoy Das5ce32722016-04-08 00:48:30 +00002839 if (GA->isInterposable())
Dan Gohmana4fcd242010-12-15 20:02:24 +00002840 return V;
2841 V = GA->getAliasee();
2842 } else {
Dan Gohman05b18f12010-12-15 20:49:55 +00002843 // See if InstructionSimplify knows any relevant tricks.
2844 if (Instruction *I = dyn_cast<Instruction>(V))
Chandler Carruth66b31302015-01-04 12:03:27 +00002845 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002846 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00002847 V = Simplified;
2848 continue;
2849 }
2850
Dan Gohmana4fcd242010-12-15 20:02:24 +00002851 return V;
2852 }
2853 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
2854 }
2855 return V;
2856}
Nick Lewycky3e334a42011-06-27 04:20:45 +00002857
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002858void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
Adam Nemete2b885c2015-04-23 20:09:20 +00002859 const DataLayout &DL, LoopInfo *LI,
2860 unsigned MaxLookup) {
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002861 SmallPtrSet<Value *, 4> Visited;
2862 SmallVector<Value *, 4> Worklist;
2863 Worklist.push_back(V);
2864 do {
2865 Value *P = Worklist.pop_back_val();
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002866 P = GetUnderlyingObject(P, DL, MaxLookup);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002867
David Blaikie70573dc2014-11-19 07:49:26 +00002868 if (!Visited.insert(P).second)
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002869 continue;
2870
2871 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
2872 Worklist.push_back(SI->getTrueValue());
2873 Worklist.push_back(SI->getFalseValue());
2874 continue;
2875 }
2876
2877 if (PHINode *PN = dyn_cast<PHINode>(P)) {
Adam Nemete2b885c2015-04-23 20:09:20 +00002878 // If this PHI changes the underlying object in every iteration of the
2879 // loop, don't look through it. Consider:
2880 // int **A;
2881 // for (i) {
2882 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
2883 // Curr = A[i];
2884 // *Prev, *Curr;
2885 //
2886 // Prev is tracking Curr one iteration behind so they refer to different
2887 // underlying objects.
2888 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
2889 isSameUnderlyingObjectInLoop(PN, LI))
Pete Cooper833f34d2015-05-12 20:05:31 +00002890 for (Value *IncValue : PN->incoming_values())
2891 Worklist.push_back(IncValue);
Dan Gohmaned7c24e22012-05-10 18:57:38 +00002892 continue;
2893 }
2894
2895 Objects.push_back(P);
2896 } while (!Worklist.empty());
2897}
2898
Sanjay Patelaee84212014-11-04 16:27:42 +00002899/// Return true if the only users of this pointer are lifetime markers.
Nick Lewycky3e334a42011-06-27 04:20:45 +00002900bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00002901 for (const User *U : V->users()) {
2902 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00002903 if (!II) return false;
2904
2905 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
2906 II->getIntrinsicID() != Intrinsic::lifetime_end)
2907 return false;
2908 }
2909 return true;
2910}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002911
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00002912bool llvm::isSafeToSpeculativelyExecute(const Value *V,
2913 const Instruction *CtxI,
2914 const DominatorTree *DT,
2915 const TargetLibraryInfo *TLI) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00002916 const Operator *Inst = dyn_cast<Operator>(V);
2917 if (!Inst)
2918 return false;
2919
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002920 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
2921 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
2922 if (C->canTrap())
2923 return false;
2924
2925 switch (Inst->getOpcode()) {
2926 default:
2927 return true;
2928 case Instruction::UDiv:
David Majnemerf20d7c42014-11-04 23:49:08 +00002929 case Instruction::URem: {
2930 // x / y is undefined if y == 0.
2931 const APInt *V;
2932 if (match(Inst->getOperand(1), m_APInt(V)))
2933 return *V != 0;
2934 return false;
2935 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002936 case Instruction::SDiv:
2937 case Instruction::SRem: {
David Majnemerf20d7c42014-11-04 23:49:08 +00002938 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
David Majnemer8a6578a2015-02-01 19:10:19 +00002939 const APInt *Numerator, *Denominator;
2940 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
2941 return false;
2942 // We cannot hoist this division if the denominator is 0.
2943 if (*Denominator == 0)
2944 return false;
2945 // It's safe to hoist if the denominator is not 0 or -1.
2946 if (*Denominator != -1)
2947 return true;
2948 // At this point we know that the denominator is -1. It is safe to hoist as
2949 // long we know that the numerator is not INT_MIN.
2950 if (match(Inst->getOperand(0), m_APInt(Numerator)))
2951 return !Numerator->isMinSignedValue();
2952 // The numerator *might* be MinSignedValue.
David Majnemerf20d7c42014-11-04 23:49:08 +00002953 return false;
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002954 }
2955 case Instruction::Load: {
2956 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00002957 if (!LI->isUnordered() ||
2958 // Speculative load may create a race that did not exist in the source.
Kostya Serebryany5cb86d52015-10-14 00:21:05 +00002959 LI->getParent()->getParent()->hasFnAttribute(
2960 Attribute::SanitizeThread) ||
2961 // Speculative load may load data from dirty regions.
2962 LI->getParent()->getParent()->hasFnAttribute(
2963 Attribute::SanitizeAddress))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002964 return false;
Mehdi Aminia28d91d2015-03-10 02:37:25 +00002965 const DataLayout &DL = LI->getModule()->getDataLayout();
Artur Pilipenko34d8ba82015-08-17 15:54:26 +00002966 return isDereferenceableAndAlignedPointer(
2967 LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002968 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00002969 case Instruction::Call: {
David Majnemer0a92f862015-08-28 21:13:39 +00002970 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
2971 switch (II->getIntrinsicID()) {
2972 // These synthetic intrinsics have no side-effects and just mark
2973 // information about their operands.
2974 // FIXME: There are other no-op synthetic instructions that potentially
2975 // should be considered at least *safe* to speculate...
2976 case Intrinsic::dbg_declare:
2977 case Intrinsic::dbg_value:
2978 return true;
2979
2980 case Intrinsic::bswap:
2981 case Intrinsic::ctlz:
2982 case Intrinsic::ctpop:
2983 case Intrinsic::cttz:
2984 case Intrinsic::objectsize:
2985 case Intrinsic::sadd_with_overflow:
2986 case Intrinsic::smul_with_overflow:
2987 case Intrinsic::ssub_with_overflow:
2988 case Intrinsic::uadd_with_overflow:
2989 case Intrinsic::umul_with_overflow:
2990 case Intrinsic::usub_with_overflow:
2991 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00002992 // These intrinsics are defined to have the same behavior as libm
2993 // functions except for setting errno.
David Majnemer0a92f862015-08-28 21:13:39 +00002994 case Intrinsic::sqrt:
2995 case Intrinsic::fma:
2996 case Intrinsic::fmuladd:
Peter Zotov0218d0f2016-04-03 12:30:46 +00002997 return true;
2998 // These intrinsics are defined to have the same behavior as libm
2999 // functions, and the corresponding libm functions never set errno.
3000 case Intrinsic::trunc:
3001 case Intrinsic::copysign:
David Majnemer0a92f862015-08-28 21:13:39 +00003002 case Intrinsic::fabs:
3003 case Intrinsic::minnum:
3004 case Intrinsic::maxnum:
3005 return true;
Peter Zotov0218d0f2016-04-03 12:30:46 +00003006 // These intrinsics are defined to have the same behavior as libm
3007 // functions, which never overflow when operating on the IEEE754 types
3008 // that we support, and never set errno otherwise.
3009 case Intrinsic::ceil:
3010 case Intrinsic::floor:
3011 case Intrinsic::nearbyint:
3012 case Intrinsic::rint:
3013 case Intrinsic::round:
3014 return true;
David Majnemer0a92f862015-08-28 21:13:39 +00003015 // TODO: are convert_{from,to}_fp16 safe?
3016 // TODO: can we list target-specific intrinsics here?
3017 default: break;
3018 }
3019 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003020 return false; // The called function could have undefined behavior or
David Majnemer0a92f862015-08-28 21:13:39 +00003021 // side-effects, even if marked readnone nounwind.
Nick Lewyckyb4039f62011-12-21 05:52:02 +00003022 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003023 case Instruction::VAArg:
3024 case Instruction::Alloca:
3025 case Instruction::Invoke:
3026 case Instruction::PHI:
3027 case Instruction::Store:
3028 case Instruction::Ret:
3029 case Instruction::Br:
3030 case Instruction::IndirectBr:
3031 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003032 case Instruction::Unreachable:
3033 case Instruction::Fence:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003034 case Instruction::AtomicRMW:
3035 case Instruction::AtomicCmpXchg:
David Majnemer654e1302015-07-31 17:58:14 +00003036 case Instruction::LandingPad:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003037 case Instruction::Resume:
David Majnemer8a1c45d2015-12-12 05:38:55 +00003038 case Instruction::CatchSwitch:
David Majnemer654e1302015-07-31 17:58:14 +00003039 case Instruction::CatchPad:
David Majnemer654e1302015-07-31 17:58:14 +00003040 case Instruction::CatchRet:
3041 case Instruction::CleanupPad:
3042 case Instruction::CleanupRet:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00003043 return false; // Misc instructions which have effects
3044 }
3045}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003046
Quentin Colombet6443cce2015-08-06 18:44:34 +00003047bool llvm::mayBeMemoryDependent(const Instruction &I) {
3048 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3049}
3050
Sanjay Patelaee84212014-11-04 16:27:42 +00003051/// Return true if we know that the specified value is never null.
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003052bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
Chen Li0d043b52015-09-14 18:10:43 +00003053 assert(V->getType()->isPointerTy() && "V must be pointer type");
3054
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003055 // Alloca never returns null, malloc might.
3056 if (isa<AllocaInst>(V)) return true;
3057
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003058 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003059 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00003060 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003061
Pete Cooper6b716212015-08-27 03:16:29 +00003062 // A global variable in address space 0 is non null unless extern weak.
3063 // Other address spaces may have null as a valid address for a global,
3064 // so we can't assume anything.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003065 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
Pete Cooper6b716212015-08-27 03:16:29 +00003066 return !GV->hasExternalWeakLinkage() &&
3067 GV->getType()->getAddressSpace() == 0;
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00003068
Philip Reamescdb72f32014-10-20 22:40:55 +00003069 // A Load tagged w/nonnull metadata is never null.
3070 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
Philip Reames5a3f5f72014-10-21 00:13:20 +00003071 return LI->getMetadata(LLVMContext::MD_nonnull);
Philip Reamescdb72f32014-10-20 22:40:55 +00003072
Benjamin Kramer3a09ef62015-04-10 14:50:08 +00003073 if (auto CS = ImmutableCallSite(V))
Hal Finkelb0407ba2014-07-18 15:51:28 +00003074 if (CS.isReturnNonNull())
Nick Lewyckyec373542014-05-20 05:13:21 +00003075 return true;
3076
Dan Gohman1b0f79d2013-01-31 02:40:59 +00003077 return false;
3078}
David Majnemer491331a2015-01-02 07:29:43 +00003079
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003080static bool isKnownNonNullFromDominatingCondition(const Value *V,
3081 const Instruction *CtxI,
3082 const DominatorTree *DT) {
Chen Li0d043b52015-09-14 18:10:43 +00003083 assert(V->getType()->isPointerTy() && "V must be pointer type");
3084
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003085 unsigned NumUsesExplored = 0;
3086 for (auto U : V->users()) {
3087 // Avoid massive lists
3088 if (NumUsesExplored >= DomConditionsMaxUses)
3089 break;
3090 NumUsesExplored++;
3091 // Consider only compare instructions uniquely controlling a branch
3092 const ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
3093 if (!Cmp)
3094 continue;
3095
Sanjoy Dasf8a0db52015-05-18 18:07:00 +00003096 for (auto *CmpU : Cmp->users()) {
3097 const BranchInst *BI = dyn_cast<BranchInst>(CmpU);
3098 if (!BI)
3099 continue;
3100
3101 assert(BI->isConditional() && "uses a comparison!");
3102
3103 BasicBlock *NonNullSuccessor = nullptr;
3104 CmpInst::Predicate Pred;
3105
3106 if (match(const_cast<ICmpInst*>(Cmp),
3107 m_c_ICmp(Pred, m_Specific(V), m_Zero()))) {
3108 if (Pred == ICmpInst::ICMP_EQ)
3109 NonNullSuccessor = BI->getSuccessor(1);
3110 else if (Pred == ICmpInst::ICMP_NE)
3111 NonNullSuccessor = BI->getSuccessor(0);
3112 }
3113
3114 if (NonNullSuccessor) {
3115 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3116 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3117 return true;
3118 }
3119 }
3120 }
3121
3122 return false;
3123}
3124
3125bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
3126 const DominatorTree *DT, const TargetLibraryInfo *TLI) {
3127 if (isKnownNonNull(V, TLI))
3128 return true;
3129
3130 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3131}
3132
David Majnemer491331a2015-01-02 07:29:43 +00003133OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003134 const DataLayout &DL,
Chandler Carruth66b31302015-01-04 12:03:27 +00003135 AssumptionCache *AC,
David Majnemer491331a2015-01-02 07:29:43 +00003136 const Instruction *CxtI,
3137 const DominatorTree *DT) {
3138 // Multiplying n * m significant bits yields a result of n + m significant
3139 // bits. If the total number of significant bits does not exceed the
3140 // result bit width (minus 1), there is no overflow.
3141 // This means if we have enough leading zero bits in the operands
3142 // we can guarantee that the result does not overflow.
3143 // Ref: "Hacker's Delight" by Henry Warren
3144 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3145 APInt LHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003146 APInt LHSKnownOne(BitWidth, 0);
David Majnemer491331a2015-01-02 07:29:43 +00003147 APInt RHSKnownZero(BitWidth, 0);
David Majnemerc8a576b2015-01-02 07:29:47 +00003148 APInt RHSKnownOne(BitWidth, 0);
Chandler Carruth66b31302015-01-04 12:03:27 +00003149 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3150 DT);
3151 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3152 DT);
David Majnemer491331a2015-01-02 07:29:43 +00003153 // Note that underestimating the number of zero bits gives a more
3154 // conservative answer.
3155 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3156 RHSKnownZero.countLeadingOnes();
3157 // First handle the easy case: if we have enough zero bits there's
3158 // definitely no overflow.
3159 if (ZeroBits >= BitWidth)
3160 return OverflowResult::NeverOverflows;
3161
3162 // Get the largest possible values for each operand.
3163 APInt LHSMax = ~LHSKnownZero;
3164 APInt RHSMax = ~RHSKnownZero;
3165
3166 // We know the multiply operation doesn't overflow if the maximum values for
3167 // each operand will not overflow after we multiply them together.
David Majnemerc8a576b2015-01-02 07:29:47 +00003168 bool MaxOverflow;
3169 LHSMax.umul_ov(RHSMax, MaxOverflow);
3170 if (!MaxOverflow)
3171 return OverflowResult::NeverOverflows;
David Majnemer491331a2015-01-02 07:29:43 +00003172
David Majnemerc8a576b2015-01-02 07:29:47 +00003173 // We know it always overflows if multiplying the smallest possible values for
3174 // the operands also results in overflow.
3175 bool MinOverflow;
3176 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3177 if (MinOverflow)
3178 return OverflowResult::AlwaysOverflows;
3179
3180 return OverflowResult::MayOverflow;
David Majnemer491331a2015-01-02 07:29:43 +00003181}
David Majnemer5310c1e2015-01-07 00:39:50 +00003182
3183OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
Mehdi Aminia28d91d2015-03-10 02:37:25 +00003184 const DataLayout &DL,
David Majnemer5310c1e2015-01-07 00:39:50 +00003185 AssumptionCache *AC,
3186 const Instruction *CxtI,
3187 const DominatorTree *DT) {
3188 bool LHSKnownNonNegative, LHSKnownNegative;
3189 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3190 AC, CxtI, DT);
3191 if (LHSKnownNonNegative || LHSKnownNegative) {
3192 bool RHSKnownNonNegative, RHSKnownNegative;
3193 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3194 AC, CxtI, DT);
3195
3196 if (LHSKnownNegative && RHSKnownNegative) {
3197 // The sign bit is set in both cases: this MUST overflow.
3198 // Create a simple add instruction, and insert it into the struct.
3199 return OverflowResult::AlwaysOverflows;
3200 }
3201
3202 if (LHSKnownNonNegative && RHSKnownNonNegative) {
3203 // The sign bit is clear in both cases: this CANNOT overflow.
3204 // Create a simple add instruction, and insert it into the struct.
3205 return OverflowResult::NeverOverflows;
3206 }
3207 }
3208
3209 return OverflowResult::MayOverflow;
3210}
James Molloy71b91c22015-05-11 14:42:20 +00003211
Jingyue Wu10fcea52015-08-20 18:27:04 +00003212static OverflowResult computeOverflowForSignedAdd(
3213 Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL,
3214 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) {
3215 if (Add && Add->hasNoSignedWrap()) {
3216 return OverflowResult::NeverOverflows;
3217 }
3218
3219 bool LHSKnownNonNegative, LHSKnownNegative;
3220 bool RHSKnownNonNegative, RHSKnownNegative;
3221 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3222 AC, CxtI, DT);
3223 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3224 AC, CxtI, DT);
3225
3226 if ((LHSKnownNonNegative && RHSKnownNegative) ||
3227 (LHSKnownNegative && RHSKnownNonNegative)) {
3228 // The sign bits are opposite: this CANNOT overflow.
3229 return OverflowResult::NeverOverflows;
3230 }
3231
3232 // The remaining code needs Add to be available. Early returns if not so.
3233 if (!Add)
3234 return OverflowResult::MayOverflow;
3235
3236 // If the sign of Add is the same as at least one of the operands, this add
3237 // CANNOT overflow. This is particularly useful when the sum is
3238 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3239 // operands.
3240 bool LHSOrRHSKnownNonNegative =
3241 (LHSKnownNonNegative || RHSKnownNonNegative);
3242 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3243 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3244 bool AddKnownNonNegative, AddKnownNegative;
3245 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3246 /*Depth=*/0, AC, CxtI, DT);
3247 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3248 (AddKnownNegative && LHSOrRHSKnownNegative)) {
3249 return OverflowResult::NeverOverflows;
3250 }
3251 }
3252
3253 return OverflowResult::MayOverflow;
3254}
3255
3256OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add,
3257 const DataLayout &DL,
3258 AssumptionCache *AC,
3259 const Instruction *CxtI,
3260 const DominatorTree *DT) {
3261 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3262 Add, DL, AC, CxtI, DT);
3263}
3264
3265OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS,
3266 const DataLayout &DL,
3267 AssumptionCache *AC,
3268 const Instruction *CxtI,
3269 const DominatorTree *DT) {
3270 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3271}
3272
Jingyue Wu42f1d672015-07-28 18:22:40 +00003273bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
3274 // FIXME: This conservative implementation can be relaxed. E.g. most
3275 // atomic operations are guaranteed to terminate on most platforms
3276 // and most functions terminate.
3277
3278 return !I->isAtomic() && // atomics may never succeed on some platforms
3279 !isa<CallInst>(I) && // could throw and might not terminate
3280 !isa<InvokeInst>(I) && // might not terminate and could throw to
3281 // non-successor (see bug 24185 for details).
3282 !isa<ResumeInst>(I) && // has no successors
3283 !isa<ReturnInst>(I); // has no successors
3284}
3285
3286bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3287 const Loop *L) {
3288 // The loop header is guaranteed to be executed for every iteration.
3289 //
3290 // FIXME: Relax this constraint to cover all basic blocks that are
3291 // guaranteed to be executed at every iteration.
3292 if (I->getParent() != L->getHeader()) return false;
3293
3294 for (const Instruction &LI : *L->getHeader()) {
3295 if (&LI == I) return true;
3296 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3297 }
3298 llvm_unreachable("Instruction not contained in its own parent basic block.");
3299}
3300
3301bool llvm::propagatesFullPoison(const Instruction *I) {
3302 switch (I->getOpcode()) {
3303 case Instruction::Add:
3304 case Instruction::Sub:
3305 case Instruction::Xor:
3306 case Instruction::Trunc:
3307 case Instruction::BitCast:
3308 case Instruction::AddrSpaceCast:
3309 // These operations all propagate poison unconditionally. Note that poison
3310 // is not any particular value, so xor or subtraction of poison with
3311 // itself still yields poison, not zero.
3312 return true;
3313
3314 case Instruction::AShr:
3315 case Instruction::SExt:
3316 // For these operations, one bit of the input is replicated across
3317 // multiple output bits. A replicated poison bit is still poison.
3318 return true;
3319
3320 case Instruction::Shl: {
3321 // Left shift *by* a poison value is poison. The number of
3322 // positions to shift is unsigned, so no negative values are
3323 // possible there. Left shift by zero places preserves poison. So
3324 // it only remains to consider left shift of poison by a positive
3325 // number of places.
3326 //
3327 // A left shift by a positive number of places leaves the lowest order bit
3328 // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3329 // make the poison operand violate that flag, yielding a fresh full-poison
3330 // value.
3331 auto *OBO = cast<OverflowingBinaryOperator>(I);
3332 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3333 }
3334
3335 case Instruction::Mul: {
3336 // A multiplication by zero yields a non-poison zero result, so we need to
3337 // rule out zero as an operand. Conservatively, multiplication by a
3338 // non-zero constant is not multiplication by zero.
3339 //
3340 // Multiplication by a non-zero constant can leave some bits
3341 // non-poisoned. For example, a multiplication by 2 leaves the lowest
3342 // order bit unpoisoned. So we need to consider that.
3343 //
3344 // Multiplication by 1 preserves poison. If the multiplication has a
3345 // no-wrap flag, then we can make the poison operand violate that flag
3346 // when multiplied by any integer other than 0 and 1.
3347 auto *OBO = cast<OverflowingBinaryOperator>(I);
3348 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3349 for (Value *V : OBO->operands()) {
3350 if (auto *CI = dyn_cast<ConstantInt>(V)) {
3351 // A ConstantInt cannot yield poison, so we can assume that it is
3352 // the other operand that is poison.
3353 return !CI->isZero();
3354 }
3355 }
3356 }
3357 return false;
3358 }
3359
3360 case Instruction::GetElementPtr:
3361 // A GEP implicitly represents a sequence of additions, subtractions,
3362 // truncations, sign extensions and multiplications. The multiplications
3363 // are by the non-zero sizes of some set of types, so we do not have to be
3364 // concerned with multiplication by zero. If the GEP is in-bounds, then
3365 // these operations are implicitly no-signed-wrap so poison is propagated
3366 // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3367 return cast<GEPOperator>(I)->isInBounds();
3368
3369 default:
3370 return false;
3371 }
3372}
3373
3374const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3375 switch (I->getOpcode()) {
3376 case Instruction::Store:
3377 return cast<StoreInst>(I)->getPointerOperand();
3378
3379 case Instruction::Load:
3380 return cast<LoadInst>(I)->getPointerOperand();
3381
3382 case Instruction::AtomicCmpXchg:
3383 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3384
3385 case Instruction::AtomicRMW:
3386 return cast<AtomicRMWInst>(I)->getPointerOperand();
3387
3388 case Instruction::UDiv:
3389 case Instruction::SDiv:
3390 case Instruction::URem:
3391 case Instruction::SRem:
3392 return I->getOperand(1);
3393
3394 default:
3395 return nullptr;
3396 }
3397}
3398
3399bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3400 // We currently only look for uses of poison values within the same basic
3401 // block, as that makes it easier to guarantee that the uses will be
3402 // executed given that PoisonI is executed.
3403 //
3404 // FIXME: Expand this to consider uses beyond the same basic block. To do
3405 // this, look out for the distinction between post-dominance and strong
3406 // post-dominance.
3407 const BasicBlock *BB = PoisonI->getParent();
3408
3409 // Set of instructions that we have proved will yield poison if PoisonI
3410 // does.
3411 SmallSet<const Value *, 16> YieldsPoison;
3412 YieldsPoison.insert(PoisonI);
3413
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +00003414 for (BasicBlock::const_iterator I = PoisonI->getIterator(), E = BB->end();
3415 I != E; ++I) {
3416 if (&*I != PoisonI) {
3417 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&*I);
Jingyue Wu42f1d672015-07-28 18:22:40 +00003418 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) return true;
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +00003419 if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
3420 return false;
Jingyue Wu42f1d672015-07-28 18:22:40 +00003421 }
3422
3423 // Mark poison that propagates from I through uses of I.
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +00003424 if (YieldsPoison.count(&*I)) {
Jingyue Wu42f1d672015-07-28 18:22:40 +00003425 for (const User *User : I->users()) {
3426 const Instruction *UserI = cast<Instruction>(User);
3427 if (UserI->getParent() == BB && propagatesFullPoison(UserI))
3428 YieldsPoison.insert(User);
3429 }
3430 }
3431 }
3432 return false;
3433}
3434
James Molloy134bec22015-08-11 09:12:57 +00003435static bool isKnownNonNaN(Value *V, FastMathFlags FMF) {
3436 if (FMF.noNaNs())
3437 return true;
3438
3439 if (auto *C = dyn_cast<ConstantFP>(V))
3440 return !C->isNaN();
3441 return false;
3442}
3443
3444static bool isKnownNonZero(Value *V) {
3445 if (auto *C = dyn_cast<ConstantFP>(V))
3446 return !C->isZero();
3447 return false;
3448}
3449
3450static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3451 FastMathFlags FMF,
James Molloy270ef8c2015-05-15 16:04:50 +00003452 Value *CmpLHS, Value *CmpRHS,
3453 Value *TrueVal, Value *FalseVal,
3454 Value *&LHS, Value *&RHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003455 LHS = CmpLHS;
3456 RHS = CmpRHS;
3457
James Molloy134bec22015-08-11 09:12:57 +00003458 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
3459 // return inconsistent results between implementations.
3460 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3461 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3462 // Therefore we behave conservatively and only proceed if at least one of the
3463 // operands is known to not be zero, or if we don't care about signed zeroes.
3464 switch (Pred) {
3465 default: break;
3466 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3467 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3468 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3469 !isKnownNonZero(CmpRHS))
3470 return {SPF_UNKNOWN, SPNB_NA, false};
3471 }
3472
3473 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3474 bool Ordered = false;
3475
3476 // When given one NaN and one non-NaN input:
3477 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3478 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3479 // ordered comparison fails), which could be NaN or non-NaN.
3480 // so here we discover exactly what NaN behavior is required/accepted.
3481 if (CmpInst::isFPPredicate(Pred)) {
3482 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3483 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3484
3485 if (LHSSafe && RHSSafe) {
3486 // Both operands are known non-NaN.
3487 NaNBehavior = SPNB_RETURNS_ANY;
3488 } else if (CmpInst::isOrdered(Pred)) {
3489 // An ordered comparison will return false when given a NaN, so it
3490 // returns the RHS.
3491 Ordered = true;
3492 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003493 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003494 NaNBehavior = SPNB_RETURNS_NAN;
3495 else if (RHSSafe)
3496 NaNBehavior = SPNB_RETURNS_OTHER;
3497 else
3498 // Completely unsafe.
3499 return {SPF_UNKNOWN, SPNB_NA, false};
3500 } else {
3501 Ordered = false;
3502 // An unordered comparison will return true when given a NaN, so it
3503 // returns the LHS.
3504 if (LHSSafe)
James Molloy8990b062015-08-12 15:11:43 +00003505 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
James Molloy134bec22015-08-11 09:12:57 +00003506 NaNBehavior = SPNB_RETURNS_OTHER;
3507 else if (RHSSafe)
3508 NaNBehavior = SPNB_RETURNS_NAN;
3509 else
3510 // Completely unsafe.
3511 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003512 }
3513 }
3514
James Molloy71b91c22015-05-11 14:42:20 +00003515 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
James Molloy134bec22015-08-11 09:12:57 +00003516 std::swap(CmpLHS, CmpRHS);
3517 Pred = CmpInst::getSwappedPredicate(Pred);
3518 if (NaNBehavior == SPNB_RETURNS_NAN)
3519 NaNBehavior = SPNB_RETURNS_OTHER;
3520 else if (NaNBehavior == SPNB_RETURNS_OTHER)
3521 NaNBehavior = SPNB_RETURNS_NAN;
3522 Ordered = !Ordered;
3523 }
3524
3525 // ([if]cmp X, Y) ? X : Y
3526 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
James Molloy71b91c22015-05-11 14:42:20 +00003527 switch (Pred) {
James Molloy134bec22015-08-11 09:12:57 +00003528 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
James Molloy71b91c22015-05-11 14:42:20 +00003529 case ICmpInst::ICMP_UGT:
James Molloy134bec22015-08-11 09:12:57 +00003530 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003531 case ICmpInst::ICMP_SGT:
James Molloy134bec22015-08-11 09:12:57 +00003532 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003533 case ICmpInst::ICMP_ULT:
James Molloy134bec22015-08-11 09:12:57 +00003534 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003535 case ICmpInst::ICMP_SLT:
James Molloy134bec22015-08-11 09:12:57 +00003536 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
3537 case FCmpInst::FCMP_UGT:
3538 case FCmpInst::FCMP_UGE:
3539 case FCmpInst::FCMP_OGT:
3540 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
3541 case FCmpInst::FCMP_ULT:
3542 case FCmpInst::FCMP_ULE:
3543 case FCmpInst::FCMP_OLT:
3544 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
James Molloy71b91c22015-05-11 14:42:20 +00003545 }
3546 }
3547
3548 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
3549 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
3550 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
3551
3552 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
3553 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
3554 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003555 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003556 }
3557
3558 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
3559 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
3560 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
James Molloy134bec22015-08-11 09:12:57 +00003561 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003562 }
3563 }
Sanjoy Dasc9d6d8b2016-03-31 05:14:29 +00003564
James Molloy71b91c22015-05-11 14:42:20 +00003565 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
3566 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
Sanjoy Das56df0ec2016-03-31 05:14:34 +00003567 if (Pred == ICmpInst::ICMP_SGT && C1->getType() == C2->getType() &&
3568 ~C1->getValue() == C2->getValue() &&
James Molloy71b91c22015-05-11 14:42:20 +00003569 (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
3570 match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
3571 LHS = TrueVal;
3572 RHS = FalseVal;
James Molloy134bec22015-08-11 09:12:57 +00003573 return {SPF_SMIN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003574 }
3575 }
3576 }
3577
3578 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
3579
James Molloy134bec22015-08-11 09:12:57 +00003580 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy71b91c22015-05-11 14:42:20 +00003581}
James Molloy270ef8c2015-05-15 16:04:50 +00003582
James Molloy569cea62015-09-02 17:25:25 +00003583static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
3584 Instruction::CastOps *CastOp) {
James Molloy270ef8c2015-05-15 16:04:50 +00003585 CastInst *CI = dyn_cast<CastInst>(V1);
3586 Constant *C = dyn_cast<Constant>(V2);
James Molloy569cea62015-09-02 17:25:25 +00003587 CastInst *CI2 = dyn_cast<CastInst>(V2);
3588 if (!CI)
James Molloy270ef8c2015-05-15 16:04:50 +00003589 return nullptr;
3590 *CastOp = CI->getOpcode();
3591
James Molloy569cea62015-09-02 17:25:25 +00003592 if (CI2) {
3593 // If V1 and V2 are both the same cast from the same type, we can look
3594 // through V1.
3595 if (CI2->getOpcode() == CI->getOpcode() &&
3596 CI2->getSrcTy() == CI->getSrcTy())
3597 return CI2->getOperand(0);
3598 return nullptr;
3599 } else if (!C) {
3600 return nullptr;
3601 }
3602
James Molloy2b21a7c2015-05-20 18:41:25 +00003603 if (isa<SExtInst>(CI) && CmpI->isSigned()) {
3604 Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy());
3605 // This is only valid if the truncated value can be sign-extended
3606 // back to the original value.
3607 if (ConstantExpr::getSExt(T, C->getType()) == C)
3608 return T;
3609 return nullptr;
3610 }
3611 if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
James Molloy270ef8c2015-05-15 16:04:50 +00003612 return ConstantExpr::getTrunc(C, CI->getSrcTy());
3613
3614 if (isa<TruncInst>(CI))
3615 return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
3616
James Molloy134bec22015-08-11 09:12:57 +00003617 if (isa<FPToUIInst>(CI))
3618 return ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
3619
3620 if (isa<FPToSIInst>(CI))
3621 return ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
3622
3623 if (isa<UIToFPInst>(CI))
3624 return ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
3625
3626 if (isa<SIToFPInst>(CI))
3627 return ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
3628
3629 if (isa<FPTruncInst>(CI))
3630 return ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
3631
3632 if (isa<FPExtInst>(CI))
3633 return ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
3634
James Molloy270ef8c2015-05-15 16:04:50 +00003635 return nullptr;
3636}
3637
James Molloy134bec22015-08-11 09:12:57 +00003638SelectPatternResult llvm::matchSelectPattern(Value *V,
James Molloy270ef8c2015-05-15 16:04:50 +00003639 Value *&LHS, Value *&RHS,
3640 Instruction::CastOps *CastOp) {
3641 SelectInst *SI = dyn_cast<SelectInst>(V);
James Molloy134bec22015-08-11 09:12:57 +00003642 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003643
James Molloy134bec22015-08-11 09:12:57 +00003644 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
3645 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003646
James Molloy134bec22015-08-11 09:12:57 +00003647 CmpInst::Predicate Pred = CmpI->getPredicate();
James Molloy270ef8c2015-05-15 16:04:50 +00003648 Value *CmpLHS = CmpI->getOperand(0);
3649 Value *CmpRHS = CmpI->getOperand(1);
3650 Value *TrueVal = SI->getTrueValue();
3651 Value *FalseVal = SI->getFalseValue();
James Molloy134bec22015-08-11 09:12:57 +00003652 FastMathFlags FMF;
3653 if (isa<FPMathOperator>(CmpI))
3654 FMF = CmpI->getFastMathFlags();
James Molloy270ef8c2015-05-15 16:04:50 +00003655
3656 // Bail out early.
3657 if (CmpI->isEquality())
James Molloy134bec22015-08-11 09:12:57 +00003658 return {SPF_UNKNOWN, SPNB_NA, false};
James Molloy270ef8c2015-05-15 16:04:50 +00003659
3660 // Deal with type mismatches.
3661 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
James Molloy569cea62015-09-02 17:25:25 +00003662 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00003663 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00003664 cast<CastInst>(TrueVal)->getOperand(0), C,
3665 LHS, RHS);
James Molloy569cea62015-09-02 17:25:25 +00003666 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
James Molloy134bec22015-08-11 09:12:57 +00003667 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
James Molloy270ef8c2015-05-15 16:04:50 +00003668 C, cast<CastInst>(FalseVal)->getOperand(0),
3669 LHS, RHS);
3670 }
James Molloy134bec22015-08-11 09:12:57 +00003671 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
James Molloy270ef8c2015-05-15 16:04:50 +00003672 LHS, RHS);
3673}
Sanjoy Dasa7e13782015-10-24 05:37:35 +00003674
3675ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) {
3676 const unsigned NumRanges = Ranges.getNumOperands() / 2;
3677 assert(NumRanges >= 1 && "Must have at least one range!");
3678 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
3679
3680 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
3681 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
3682
3683 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
3684
3685 for (unsigned i = 1; i < NumRanges; ++i) {
3686 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
3687 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
3688
3689 // Note: unionWith will potentially create a range that contains values not
3690 // contained in any of the original N ranges.
3691 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
3692 }
3693
3694 return CR;
3695}
Sanjoy Das3ef1e682015-10-28 03:20:19 +00003696
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003697/// Return true if "icmp Pred LHS RHS" is always true.
Sanjoy Das55ea67c2015-11-06 19:01:08 +00003698static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
3699 const DataLayout &DL, unsigned Depth,
3700 AssumptionCache *AC, const Instruction *CxtI,
3701 const DominatorTree *DT) {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00003702 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003703 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
3704 return true;
3705
3706 switch (Pred) {
3707 default:
3708 return false;
3709
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003710 case CmpInst::ICMP_SLE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00003711 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003712
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003713 // LHS s<= LHS +_{nsw} C if C >= 0
Sanjoy Dasdc26df42015-11-11 00:16:41 +00003714 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00003715 return !C->isNegative();
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003716 return false;
3717 }
3718
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003719 case CmpInst::ICMP_ULE: {
Sanjoy Dasaf1400f2015-11-10 23:56:15 +00003720 const APInt *C;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003721
Sanjoy Dasdc26df42015-11-11 00:16:41 +00003722 // LHS u<= LHS +_{nuw} C for any C
3723 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
Sanjoy Dasc01b4d22015-11-06 19:01:03 +00003724 return true;
Sanjoy Das92568102015-11-10 23:56:20 +00003725
3726 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
3727 auto MatchNUWAddsToSameValue = [&](Value *A, Value *B, Value *&X,
3728 const APInt *&CA, const APInt *&CB) {
3729 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
3730 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
3731 return true;
3732
3733 // If X & C == 0 then (X | C) == X +_{nuw} C
3734 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
3735 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
3736 unsigned BitWidth = CA->getBitWidth();
3737 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3738 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
3739
3740 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
3741 return true;
3742 }
3743
3744 return false;
3745 };
3746
3747 Value *X;
3748 const APInt *CLHS, *CRHS;
Sanjoy Dasdc26df42015-11-11 00:16:41 +00003749 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
3750 return CLHS->ule(*CRHS);
Sanjoy Das92568102015-11-10 23:56:20 +00003751
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003752 return false;
3753 }
3754 }
3755}
3756
3757/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
3758/// ALHS ARHS" is true.
3759static bool isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS,
Sanjoy Das55ea67c2015-11-06 19:01:08 +00003760 Value *ARHS, Value *BLHS, Value *BRHS,
3761 const DataLayout &DL, unsigned Depth,
3762 AssumptionCache *AC, const Instruction *CxtI,
3763 const DominatorTree *DT) {
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003764 switch (Pred) {
3765 default:
3766 return false;
3767
3768 case CmpInst::ICMP_SLT:
3769 case CmpInst::ICMP_SLE:
Sanjoy Das55ea67c2015-11-06 19:01:08 +00003770 return isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
3771 DT) &&
3772 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI,
3773 DT);
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003774
3775 case CmpInst::ICMP_ULT:
3776 case CmpInst::ICMP_ULE:
Sanjoy Das55ea67c2015-11-06 19:01:08 +00003777 return isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
3778 DT) &&
3779 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI,
3780 DT);
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003781 }
3782}
3783
Sanjoy Das55ea67c2015-11-06 19:01:08 +00003784bool llvm::isImpliedCondition(Value *LHS, Value *RHS, const DataLayout &DL,
3785 unsigned Depth, AssumptionCache *AC,
3786 const Instruction *CxtI,
3787 const DominatorTree *DT) {
Sanjoy Das3ef1e682015-10-28 03:20:19 +00003788 assert(LHS->getType() == RHS->getType() && "mismatched type");
3789 Type *OpTy = LHS->getType();
3790 assert(OpTy->getScalarType()->isIntegerTy(1));
3791
3792 // LHS ==> RHS by definition
3793 if (LHS == RHS) return true;
3794
3795 if (OpTy->isVectorTy())
3796 // TODO: extending the code below to handle vectors
3797 return false;
3798 assert(OpTy->isIntegerTy(1) && "implied by above");
3799
3800 ICmpInst::Predicate APred, BPred;
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003801 Value *ALHS, *ARHS;
3802 Value *BLHS, *BRHS;
Sanjoy Das3ef1e682015-10-28 03:20:19 +00003803
Sanjoy Das9349dcc2015-11-06 19:00:57 +00003804 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
3805 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
3806 return false;
3807
3808 if (APred == BPred)
Sanjoy Das55ea67c2015-11-06 19:01:08 +00003809 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
3810 CxtI, DT);
Sanjoy Das3ef1e682015-10-28 03:20:19 +00003811
3812 return false;
3813}