blob: bfbd33e5b9d6236a097632b60cb4b08e5dc81679 [file] [log] [blame]
Chandler Carruth664e3542013-01-07 01:37:14 +00001//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements a TargetTransformInfo analysis pass specific to the
11/// X86 target machine. It uses the target's detailed information to provide
12/// more precise answers to certain TTI queries, while letting the target
13/// independent and default TTI implementations handle the rest.
14///
15//===----------------------------------------------------------------------===//
Alexey Bataevb271a582016-10-12 13:24:13 +000016/// About Cost Model numbers used below it's necessary to say the following:
17/// the numbers correspond to some "generic" X86 CPU instead of usage of
18/// concrete CPU model. Usually the numbers correspond to CPU where the feature
19/// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
20/// the lookups below the cost is based on Nehalem as that was the first CPU
21/// to support that feature level and thus has most likely the worst case cost.
22/// Some examples of other technologies/CPUs:
23/// SSE 3 - Pentium4 / Athlon64
24/// SSE 4.1 - Penryn
25/// SSE 4.2 - Nehalem
26/// AVX - Sandy Bridge
27/// AVX2 - Haswell
28/// AVX-512 - Xeon Phi / Skylake
29/// And some examples of instruction target dependent costs (latency)
30/// divss sqrtss rsqrtss
31/// AMD K7 11-16 19 3
32/// Piledriver 9-24 13-15 5
33/// Jaguar 14 16 2
34/// Pentium II,III 18 30 2
35/// Nehalem 7-14 7-18 3
36/// Haswell 10-13 11 5
37/// TODO: Develop and implement the target dependent cost model and
38/// specialize cost numbers for different Cost Model Targets such as throughput,
39/// code size, latency and uop count.
40//===----------------------------------------------------------------------===//
Chandler Carruth664e3542013-01-07 01:37:14 +000041
Chandler Carruth93dcdc42015-01-31 11:17:59 +000042#include "X86TargetTransformInfo.h"
Chandler Carruthd3e73552013-01-07 03:08:10 +000043#include "llvm/Analysis/TargetTransformInfo.h"
Chandler Carruth705b1852015-01-31 03:43:40 +000044#include "llvm/CodeGen/BasicTTIImpl.h"
Juergen Ributzkaf26beda2014-01-25 02:02:55 +000045#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth664e3542013-01-07 01:37:14 +000046#include "llvm/Support/Debug.h"
Renato Golind4c392e2013-01-24 23:01:00 +000047#include "llvm/Target/CostTable.h"
Chandler Carruth8a8cd2b2014-01-07 11:48:04 +000048#include "llvm/Target/TargetLowering.h"
Hans Wennborg083ca9b2015-10-06 23:24:35 +000049
Chandler Carruth664e3542013-01-07 01:37:14 +000050using namespace llvm;
51
Chandler Carruth84e68b22014-04-22 02:41:26 +000052#define DEBUG_TYPE "x86tti"
53
Chandler Carruth664e3542013-01-07 01:37:14 +000054//===----------------------------------------------------------------------===//
55//
56// X86 cost model.
57//
58//===----------------------------------------------------------------------===//
59
Chandler Carruth705b1852015-01-31 03:43:40 +000060TargetTransformInfo::PopcntSupportKind
61X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
Chandler Carruth664e3542013-01-07 01:37:14 +000062 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
63 // TODO: Currently the __builtin_popcount() implementation using SSE3
64 // instructions is inefficient. Once the problem is fixed, we should
Craig Topper0a63e1d2013-09-08 00:47:31 +000065 // call ST->hasSSE3() instead of ST->hasPOPCNT().
Chandler Carruth705b1852015-01-31 03:43:40 +000066 return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
Chandler Carruth664e3542013-01-07 01:37:14 +000067}
68
Chandler Carruth705b1852015-01-31 03:43:40 +000069unsigned X86TTIImpl::getNumberOfRegisters(bool Vector) {
Nadav Rotemb1791a72013-01-09 22:29:00 +000070 if (Vector && !ST->hasSSE1())
71 return 0;
72
Adam Nemet2820a5b2014-07-09 18:22:33 +000073 if (ST->is64Bit()) {
74 if (Vector && ST->hasAVX512())
75 return 32;
Chandler Carruth664e3542013-01-07 01:37:14 +000076 return 16;
Adam Nemet2820a5b2014-07-09 18:22:33 +000077 }
Chandler Carruth664e3542013-01-07 01:37:14 +000078 return 8;
79}
80
Keno Fischer1ec5dd82017-04-05 20:51:38 +000081unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) const {
Nadav Rotemb1791a72013-01-09 22:29:00 +000082 if (Vector) {
Simon Pilgrim6f72eba2017-01-05 19:24:25 +000083 if (ST->hasAVX512())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +000084 return 512;
Simon Pilgrim6f72eba2017-01-05 19:24:25 +000085 if (ST->hasAVX())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +000086 return 256;
Simon Pilgrim6f72eba2017-01-05 19:24:25 +000087 if (ST->hasSSE1())
Mohammed Agabaria189e2d22017-01-05 09:51:02 +000088 return 128;
Nadav Rotemb1791a72013-01-09 22:29:00 +000089 return 0;
90 }
91
92 if (ST->is64Bit())
93 return 64;
Nadav Rotemb1791a72013-01-09 22:29:00 +000094
Hans Wennborg083ca9b2015-10-06 23:24:35 +000095 return 32;
Nadav Rotemb1791a72013-01-09 22:29:00 +000096}
97
Keno Fischer1ec5dd82017-04-05 20:51:38 +000098unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
99 return getRegisterBitWidth(true);
100}
101
Wei Mi062c7442015-05-06 17:12:25 +0000102unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
103 // If the loop will not be vectorized, don't interleave the loop.
104 // Let regular unroll to unroll the loop, which saves the overflow
105 // check and memory check cost.
106 if (VF == 1)
107 return 1;
108
Nadav Rotemb696c362013-01-09 01:15:42 +0000109 if (ST->isAtom())
110 return 1;
111
112 // Sandybridge and Haswell have multiple execution ports and pipelined
113 // vector units.
114 if (ST->hasAVX())
115 return 4;
116
117 return 2;
118}
119
Chandler Carruth93205eb2015-08-05 18:08:10 +0000120int X86TTIImpl::getArithmeticInstrCost(
Simon Pilgrim3e5b5252017-01-20 15:15:59 +0000121 unsigned Opcode, Type *Ty,
Mohammed Agabaria2c96c432017-01-11 08:23:37 +0000122 TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
123 TTI::OperandValueProperties Opd1PropInfo,
124 TTI::OperandValueProperties Opd2PropInfo,
125 ArrayRef<const Value *> Args) {
Chandler Carruth664e3542013-01-07 01:37:14 +0000126 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +0000127 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
Chandler Carruth664e3542013-01-07 01:37:14 +0000128
129 int ISD = TLI->InstructionOpcodeToISD(Opcode);
130 assert(ISD && "Invalid opcode");
131
Mohammed Agabaria2c96c432017-01-11 08:23:37 +0000132 static const CostTblEntry SLMCostTable[] = {
133 { ISD::MUL, MVT::v4i32, 11 }, // pmulld
134 { ISD::MUL, MVT::v8i16, 2 }, // pmullw
135 { ISD::MUL, MVT::v16i8, 14 }, // extend/pmullw/trunc sequence.
136 { ISD::FMUL, MVT::f64, 2 }, // mulsd
137 { ISD::FMUL, MVT::v2f64, 4 }, // mulpd
138 { ISD::FMUL, MVT::v4f32, 2 }, // mulps
139 { ISD::FDIV, MVT::f32, 17 }, // divss
140 { ISD::FDIV, MVT::v4f32, 39 }, // divps
141 { ISD::FDIV, MVT::f64, 32 }, // divsd
142 { ISD::FDIV, MVT::v2f64, 69 }, // divpd
143 { ISD::FADD, MVT::v2f64, 2 }, // addpd
144 { ISD::FSUB, MVT::v2f64, 2 }, // subpd
145 // v2i64/v4i64 mul is custom lowered as a series of long
146 // multiplies(3), shifts(3) and adds(2).
147 // slm muldq version throughput is 2
148 { ISD::MUL, MVT::v2i64, 11 },
149 };
150
151 if (ST->isSLM()) {
152 if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) {
153 // Check if the operands can be shrinked into a smaller datatype.
154 bool Op1Signed = false;
155 unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
156 bool Op2Signed = false;
157 unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
158
159 bool signedMode = Op1Signed | Op2Signed;
160 unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
161
162 if (OpMinSize <= 7)
163 return LT.first * 3; // pmullw/sext
164 if (!signedMode && OpMinSize <= 8)
165 return LT.first * 3; // pmullw/zext
166 if (OpMinSize <= 15)
167 return LT.first * 5; // pmullw/pmulhw/pshuf
168 if (!signedMode && OpMinSize <= 16)
169 return LT.first * 5; // pmullw/pmulhw/pshuf
170 }
171 if (const auto *Entry = CostTableLookup(SLMCostTable, ISD,
172 LT.second)) {
173 return LT.first * Entry->Cost;
174 }
175 }
176
Karthik Bhat7f33ff72014-08-25 04:56:54 +0000177 if (ISD == ISD::SDIV &&
178 Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
179 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
180 // On X86, vector signed division by constants power-of-two are
181 // normally expanded to the sequence SRA + SRL + ADD + SRA.
182 // The OperandValue properties many not be same as that of previous
183 // operation;conservatively assume OP_None.
Chandler Carruth93205eb2015-08-05 18:08:10 +0000184 int Cost = 2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info,
185 Op2Info, TargetTransformInfo::OP_None,
186 TargetTransformInfo::OP_None);
Karthik Bhat7f33ff72014-08-25 04:56:54 +0000187 Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
188 TargetTransformInfo::OP_None,
189 TargetTransformInfo::OP_None);
190 Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info,
191 TargetTransformInfo::OP_None,
192 TargetTransformInfo::OP_None);
193
194 return Cost;
195 }
196
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000197 static const CostTblEntry AVX512BWUniformConstCostTable[] = {
Simon Pilgrim9c589502017-01-08 14:14:36 +0000198 { ISD::SHL, MVT::v64i8, 2 }, // psllw + pand.
199 { ISD::SRL, MVT::v64i8, 2 }, // psrlw + pand.
200 { ISD::SRA, MVT::v64i8, 4 }, // psrlw, pand, pxor, psubb.
201
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000202 { ISD::SDIV, MVT::v32i16, 6 }, // vpmulhw sequence
203 { ISD::UDIV, MVT::v32i16, 6 }, // vpmulhuw sequence
204 };
205
206 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
207 ST->hasBWI()) {
208 if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
209 LT.second))
210 return LT.first * Entry->Cost;
211 }
212
213 static const CostTblEntry AVX512UniformConstCostTable[] = {
Simon Pilgrimd419b732017-01-14 19:24:23 +0000214 { ISD::SRA, MVT::v2i64, 1 },
215 { ISD::SRA, MVT::v4i64, 1 },
216 { ISD::SRA, MVT::v8i64, 1 },
217
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000218 { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
219 { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
220 };
221
222 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
223 ST->hasAVX512()) {
224 if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
225 LT.second))
226 return LT.first * Entry->Cost;
227 }
228
Craig Topper4b275762015-10-28 04:02:12 +0000229 static const CostTblEntry AVX2UniformConstCostTable[] = {
Simon Pilgrim9c589502017-01-08 14:14:36 +0000230 { ISD::SHL, MVT::v32i8, 2 }, // psllw + pand.
231 { ISD::SRL, MVT::v32i8, 2 }, // psrlw + pand.
232 { ISD::SRA, MVT::v32i8, 4 }, // psrlw, pand, pxor, psubb.
233
Simon Pilgrim8fbf1c12015-07-06 22:35:19 +0000234 { ISD::SRA, MVT::v4i64, 4 }, // 2 x psrad + shuffle.
235
Benjamin Kramer7c372272014-04-26 14:53:05 +0000236 { ISD::SDIV, MVT::v16i16, 6 }, // vpmulhw sequence
237 { ISD::UDIV, MVT::v16i16, 6 }, // vpmulhuw sequence
238 { ISD::SDIV, MVT::v8i32, 15 }, // vpmuldq sequence
239 { ISD::UDIV, MVT::v8i32, 15 }, // vpmuludq sequence
240 };
241
242 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
243 ST->hasAVX2()) {
Craig Topperee0c8592015-10-27 04:14:24 +0000244 if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
245 LT.second))
246 return LT.first * Entry->Cost;
Benjamin Kramer7c372272014-04-26 14:53:05 +0000247 }
248
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000249 static const CostTblEntry SSE2UniformConstCostTable[] = {
Simon Pilgrim9c589502017-01-08 14:14:36 +0000250 { ISD::SHL, MVT::v16i8, 2 }, // psllw + pand.
251 { ISD::SRL, MVT::v16i8, 2 }, // psrlw + pand.
252 { ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb.
253
254 { ISD::SHL, MVT::v32i8, 4 }, // 2*(psllw + pand).
255 { ISD::SRL, MVT::v32i8, 4 }, // 2*(psrlw + pand).
256 { ISD::SRA, MVT::v32i8, 8 }, // 2*(psrlw, pand, pxor, psubb).
257
Simon Pilgrim365be4f2016-10-20 18:00:35 +0000258 { ISD::SDIV, MVT::v16i16, 12 }, // pmulhw sequence
259 { ISD::SDIV, MVT::v8i16, 6 }, // pmulhw sequence
260 { ISD::UDIV, MVT::v16i16, 12 }, // pmulhuw sequence
261 { ISD::UDIV, MVT::v8i16, 6 }, // pmulhuw sequence
262 { ISD::SDIV, MVT::v8i32, 38 }, // pmuludq sequence
263 { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence
264 { ISD::UDIV, MVT::v8i32, 30 }, // pmuludq sequence
265 { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence
266 };
267
268 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
269 ST->hasSSE2()) {
270 // pmuldq sequence.
271 if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
272 return LT.first * 30;
273 if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
274 return LT.first * 15;
275
276 if (const auto *Entry = CostTableLookup(SSE2UniformConstCostTable, ISD,
277 LT.second))
278 return LT.first * Entry->Cost;
279 }
280
Simon Pilgrim1fa54872017-01-08 13:12:03 +0000281 static const CostTblEntry AVX2UniformCostTable[] = {
282 // Uniform splats are cheaper for the following instructions.
283 { ISD::SHL, MVT::v16i16, 1 }, // psllw.
284 { ISD::SRL, MVT::v16i16, 1 }, // psrlw.
285 { ISD::SRA, MVT::v16i16, 1 }, // psraw.
286 };
287
288 if (ST->hasAVX2() &&
289 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
290 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
291 if (const auto *Entry =
292 CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
293 return LT.first * Entry->Cost;
294 }
295
296 static const CostTblEntry SSE2UniformCostTable[] = {
297 // Uniform splats are cheaper for the following instructions.
298 { ISD::SHL, MVT::v8i16, 1 }, // psllw.
299 { ISD::SHL, MVT::v4i32, 1 }, // pslld
300 { ISD::SHL, MVT::v2i64, 1 }, // psllq.
301
302 { ISD::SRL, MVT::v8i16, 1 }, // psrlw.
303 { ISD::SRL, MVT::v4i32, 1 }, // psrld.
304 { ISD::SRL, MVT::v2i64, 1 }, // psrlq.
305
306 { ISD::SRA, MVT::v8i16, 1 }, // psraw.
307 { ISD::SRA, MVT::v4i32, 1 }, // psrad.
308 };
309
310 if (ST->hasSSE2() &&
311 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
312 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
313 if (const auto *Entry =
314 CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
315 return LT.first * Entry->Cost;
316 }
317
Simon Pilgrim820e1322016-10-27 15:27:00 +0000318 static const CostTblEntry AVX512DQCostTable[] = {
319 { ISD::MUL, MVT::v2i64, 1 },
320 { ISD::MUL, MVT::v4i64, 1 },
321 { ISD::MUL, MVT::v8i64, 1 }
322 };
323
324 // Look for AVX512DQ lowering tricks for custom cases.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000325 if (ST->hasDQI())
326 if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
Simon Pilgrim820e1322016-10-27 15:27:00 +0000327 return LT.first * Entry->Cost;
Simon Pilgrim820e1322016-10-27 15:27:00 +0000328
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000329 static const CostTblEntry AVX512BWCostTable[] = {
Simon Pilgrim6ed996c2017-01-15 20:44:00 +0000330 { ISD::SHL, MVT::v8i16, 1 }, // vpsllvw
331 { ISD::SRL, MVT::v8i16, 1 }, // vpsrlvw
332 { ISD::SRA, MVT::v8i16, 1 }, // vpsravw
333
334 { ISD::SHL, MVT::v16i16, 1 }, // vpsllvw
335 { ISD::SRL, MVT::v16i16, 1 }, // vpsrlvw
336 { ISD::SRA, MVT::v16i16, 1 }, // vpsravw
337
Simon Pilgrima4109d62017-01-07 17:54:10 +0000338 { ISD::SHL, MVT::v32i16, 1 }, // vpsllvw
339 { ISD::SRL, MVT::v32i16, 1 }, // vpsrlvw
340 { ISD::SRA, MVT::v32i16, 1 }, // vpsravw
341
Simon Pilgrim5a81fef2017-01-11 10:36:51 +0000342 { ISD::SHL, MVT::v64i8, 11 }, // vpblendvb sequence.
343 { ISD::SRL, MVT::v64i8, 11 }, // vpblendvb sequence.
344 { ISD::SRA, MVT::v64i8, 24 }, // vpblendvb sequence.
345
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000346 { ISD::MUL, MVT::v64i8, 11 }, // extend/pmullw/trunc sequence.
347 { ISD::MUL, MVT::v32i8, 4 }, // extend/pmullw/trunc sequence.
348 { ISD::MUL, MVT::v16i8, 4 }, // extend/pmullw/trunc sequence.
349
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000350 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
351 { ISD::SDIV, MVT::v64i8, 64*20 },
352 { ISD::SDIV, MVT::v32i16, 32*20 },
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000353 { ISD::UDIV, MVT::v64i8, 64*20 },
Simon Pilgrimd8333372017-01-06 11:12:53 +0000354 { ISD::UDIV, MVT::v32i16, 32*20 }
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000355 };
356
357 // Look for AVX512BW lowering tricks for custom cases.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000358 if (ST->hasBWI())
359 if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000360 return LT.first * Entry->Cost;
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000361
Craig Topper4b275762015-10-28 04:02:12 +0000362 static const CostTblEntry AVX512CostTable[] = {
Simon Pilgrimd8333372017-01-06 11:12:53 +0000363 { ISD::SHL, MVT::v16i32, 1 },
364 { ISD::SRL, MVT::v16i32, 1 },
365 { ISD::SRA, MVT::v16i32, 1 },
Simon Pilgrimd419b732017-01-14 19:24:23 +0000366
Simon Pilgrimd8333372017-01-06 11:12:53 +0000367 { ISD::SHL, MVT::v8i64, 1 },
368 { ISD::SRL, MVT::v8i64, 1 },
Simon Pilgrimd419b732017-01-14 19:24:23 +0000369
370 { ISD::SRA, MVT::v2i64, 1 },
371 { ISD::SRA, MVT::v4i64, 1 },
Simon Pilgrimd8333372017-01-06 11:12:53 +0000372 { ISD::SRA, MVT::v8i64, 1 },
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000373
Simon Pilgrimd8333372017-01-06 11:12:53 +0000374 { ISD::MUL, MVT::v32i8, 13 }, // extend/pmullw/trunc sequence.
375 { ISD::MUL, MVT::v16i8, 5 }, // extend/pmullw/trunc sequence.
376 { ISD::MUL, MVT::v16i32, 1 }, // pmulld
377 { ISD::MUL, MVT::v8i64, 8 }, // 3*pmuludq/3*shift/2*add
378
379 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
380 { ISD::SDIV, MVT::v16i32, 16*20 },
381 { ISD::SDIV, MVT::v8i64, 8*20 },
382 { ISD::UDIV, MVT::v16i32, 16*20 },
383 { ISD::UDIV, MVT::v8i64, 8*20 }
Elena Demikhovsky27012472014-09-16 07:57:37 +0000384 };
385
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000386 if (ST->hasAVX512())
Craig Topperee0c8592015-10-27 04:14:24 +0000387 if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
388 return LT.first * Entry->Cost;
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000389
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000390 static const CostTblEntry AVX2ShiftCostTable[] = {
Michael Liao70dd7f92013-03-20 22:01:10 +0000391 // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
392 // customize them to detect the cases where shift amount is a scalar one.
393 { ISD::SHL, MVT::v4i32, 1 },
394 { ISD::SRL, MVT::v4i32, 1 },
395 { ISD::SRA, MVT::v4i32, 1 },
396 { ISD::SHL, MVT::v8i32, 1 },
397 { ISD::SRL, MVT::v8i32, 1 },
398 { ISD::SRA, MVT::v8i32, 1 },
399 { ISD::SHL, MVT::v2i64, 1 },
400 { ISD::SRL, MVT::v2i64, 1 },
401 { ISD::SHL, MVT::v4i64, 1 },
402 { ISD::SRL, MVT::v4i64, 1 },
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000403 };
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000404
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000405 // Look for AVX2 lowering tricks.
406 if (ST->hasAVX2()) {
407 if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
408 (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
409 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
410 // On AVX2, a packed v16i16 shift left by a constant build_vector
411 // is lowered into a vector multiply (vpmullw).
412 return LT.first;
413
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000414 if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
Craig Topperee0c8592015-10-27 04:14:24 +0000415 return LT.first * Entry->Cost;
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000416 }
417
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000418 static const CostTblEntry XOPShiftCostTable[] = {
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000419 // 128bit shifts take 1cy, but right shifts require negation beforehand.
420 { ISD::SHL, MVT::v16i8, 1 },
421 { ISD::SRL, MVT::v16i8, 2 },
422 { ISD::SRA, MVT::v16i8, 2 },
423 { ISD::SHL, MVT::v8i16, 1 },
424 { ISD::SRL, MVT::v8i16, 2 },
425 { ISD::SRA, MVT::v8i16, 2 },
426 { ISD::SHL, MVT::v4i32, 1 },
427 { ISD::SRL, MVT::v4i32, 2 },
428 { ISD::SRA, MVT::v4i32, 2 },
429 { ISD::SHL, MVT::v2i64, 1 },
430 { ISD::SRL, MVT::v2i64, 2 },
431 { ISD::SRA, MVT::v2i64, 2 },
432 // 256bit shifts require splitting if AVX2 didn't catch them above.
Simon Pilgrim4599eaa2017-05-14 13:38:53 +0000433 { ISD::SHL, MVT::v32i8, 2+2 },
434 { ISD::SRL, MVT::v32i8, 4+2 },
435 { ISD::SRA, MVT::v32i8, 4+2 },
436 { ISD::SHL, MVT::v16i16, 2+2 },
437 { ISD::SRL, MVT::v16i16, 4+2 },
438 { ISD::SRA, MVT::v16i16, 4+2 },
439 { ISD::SHL, MVT::v8i32, 2+2 },
440 { ISD::SRL, MVT::v8i32, 4+2 },
441 { ISD::SRA, MVT::v8i32, 4+2 },
442 { ISD::SHL, MVT::v4i64, 2+2 },
443 { ISD::SRL, MVT::v4i64, 4+2 },
444 { ISD::SRA, MVT::v4i64, 4+2 },
Simon Pilgrim3d11c992015-09-30 08:17:50 +0000445 };
446
447 // Look for XOP lowering tricks.
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000448 if (ST->hasXOP())
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000449 if (const auto *Entry = CostTableLookup(XOPShiftCostTable, ISD, LT.second))
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000450 return LT.first * Entry->Cost;
Simon Pilgrim025e26d2016-10-20 16:39:11 +0000451
Simon Pilgrim1fa54872017-01-08 13:12:03 +0000452 static const CostTblEntry SSE2UniformShiftCostTable[] = {
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000453 // Uniform splats are cheaper for the following instructions.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000454 { ISD::SHL, MVT::v16i16, 2 }, // psllw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000455 { ISD::SHL, MVT::v8i32, 2 }, // pslld
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000456 { ISD::SHL, MVT::v4i64, 2 }, // psllq.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000457
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000458 { ISD::SRL, MVT::v16i16, 2 }, // psrlw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000459 { ISD::SRL, MVT::v8i32, 2 }, // psrld.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000460 { ISD::SRL, MVT::v4i64, 2 }, // psrlq.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000461
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000462 { ISD::SRA, MVT::v16i16, 2 }, // psraw.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000463 { ISD::SRA, MVT::v8i32, 2 }, // psrad.
Simon Pilgrim8fbf1c12015-07-06 22:35:19 +0000464 { ISD::SRA, MVT::v2i64, 4 }, // 2 x psrad + shuffle.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000465 { ISD::SRA, MVT::v4i64, 8 }, // 2 x psrad + shuffle.
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000466 };
467
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000468 if (ST->hasSSE2() &&
469 ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
470 (Op2Info == TargetTransformInfo::OK_UniformValue))) {
Michael Kuperstein3ceac2b2016-08-04 22:48:03 +0000471 if (const auto *Entry =
Simon Pilgrim1fa54872017-01-08 13:12:03 +0000472 CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
Craig Topperee0c8592015-10-27 04:14:24 +0000473 return LT.first * Entry->Cost;
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000474 }
475
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000476 if (ISD == ISD::SHL &&
477 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
Craig Toppereda02a92015-10-25 03:15:29 +0000478 MVT VT = LT.second;
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000479 // Vector shift left by non uniform constant can be lowered
Simon Pilgrime70644d2017-01-07 21:33:00 +0000480 // into vector multiply.
481 if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
482 ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000483 ISD = ISD::MUL;
484 }
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000485
Simon Pilgrim82e3e052017-01-07 21:47:10 +0000486 static const CostTblEntry AVX2CostTable[] = {
487 { ISD::SHL, MVT::v32i8, 11 }, // vpblendvb sequence.
488 { ISD::SHL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
489
490 { ISD::SRL, MVT::v32i8, 11 }, // vpblendvb sequence.
491 { ISD::SRL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
492
493 { ISD::SRA, MVT::v32i8, 24 }, // vpblendvb sequence.
494 { ISD::SRA, MVT::v16i16, 10 }, // extend/vpsravd/pack sequence.
495 { ISD::SRA, MVT::v2i64, 4 }, // srl/xor/sub sequence.
496 { ISD::SRA, MVT::v4i64, 4 }, // srl/xor/sub sequence.
497
498 { ISD::SUB, MVT::v32i8, 1 }, // psubb
499 { ISD::ADD, MVT::v32i8, 1 }, // paddb
500 { ISD::SUB, MVT::v16i16, 1 }, // psubw
501 { ISD::ADD, MVT::v16i16, 1 }, // paddw
502 { ISD::SUB, MVT::v8i32, 1 }, // psubd
503 { ISD::ADD, MVT::v8i32, 1 }, // paddd
504 { ISD::SUB, MVT::v4i64, 1 }, // psubq
505 { ISD::ADD, MVT::v4i64, 1 }, // paddq
506
507 { ISD::MUL, MVT::v32i8, 17 }, // extend/pmullw/trunc sequence.
508 { ISD::MUL, MVT::v16i8, 7 }, // extend/pmullw/trunc sequence.
509 { ISD::MUL, MVT::v16i16, 1 }, // pmullw
510 { ISD::MUL, MVT::v8i32, 1 }, // pmulld
511 { ISD::MUL, MVT::v4i64, 8 }, // 3*pmuludq/3*shift/2*add
512
513 { ISD::FDIV, MVT::f32, 7 }, // Haswell from http://www.agner.org/
514 { ISD::FDIV, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
515 { ISD::FDIV, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
516 { ISD::FDIV, MVT::f64, 14 }, // Haswell from http://www.agner.org/
517 { ISD::FDIV, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
518 { ISD::FDIV, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
519 };
520
521 // Look for AVX2 lowering tricks for custom cases.
522 if (ST->hasAVX2())
523 if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
524 return LT.first * Entry->Cost;
525
Simon Pilgrim100eae12017-01-07 17:03:51 +0000526 static const CostTblEntry AVX1CostTable[] = {
527 // We don't have to scalarize unsupported ops. We can issue two half-sized
528 // operations and we only need to extract the upper YMM half.
529 // Two ops + 1 extract + 1 insert = 4.
Simon Pilgrim72599712017-01-07 18:19:25 +0000530 { ISD::MUL, MVT::v16i16, 4 },
531 { ISD::MUL, MVT::v8i32, 4 },
532 { ISD::SUB, MVT::v32i8, 4 },
533 { ISD::ADD, MVT::v32i8, 4 },
534 { ISD::SUB, MVT::v16i16, 4 },
535 { ISD::ADD, MVT::v16i16, 4 },
536 { ISD::SUB, MVT::v8i32, 4 },
537 { ISD::ADD, MVT::v8i32, 4 },
538 { ISD::SUB, MVT::v4i64, 4 },
539 { ISD::ADD, MVT::v4i64, 4 },
Simon Pilgrim100eae12017-01-07 17:03:51 +0000540
541 // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
542 // are lowered as a series of long multiplies(3), shifts(3) and adds(2)
543 // Because we believe v4i64 to be a legal type, we must also include the
544 // extract+insert in the cost table. Therefore, the cost here is 18
545 // instead of 8.
Simon Pilgrim72599712017-01-07 18:19:25 +0000546 { ISD::MUL, MVT::v4i64, 18 },
547
548 { ISD::MUL, MVT::v32i8, 26 }, // extend/pmullw/trunc sequence.
549
550 { ISD::FDIV, MVT::f32, 14 }, // SNB from http://www.agner.org/
551 { ISD::FDIV, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
552 { ISD::FDIV, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
553 { ISD::FDIV, MVT::f64, 22 }, // SNB from http://www.agner.org/
554 { ISD::FDIV, MVT::v2f64, 22 }, // SNB from http://www.agner.org/
555 { ISD::FDIV, MVT::v4f64, 44 }, // SNB from http://www.agner.org/
556
557 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
558 { ISD::SDIV, MVT::v32i8, 32*20 },
559 { ISD::SDIV, MVT::v16i16, 16*20 },
560 { ISD::SDIV, MVT::v8i32, 8*20 },
561 { ISD::SDIV, MVT::v4i64, 4*20 },
562 { ISD::UDIV, MVT::v32i8, 32*20 },
563 { ISD::UDIV, MVT::v16i16, 16*20 },
564 { ISD::UDIV, MVT::v8i32, 8*20 },
565 { ISD::UDIV, MVT::v4i64, 4*20 },
Simon Pilgrim100eae12017-01-07 17:03:51 +0000566 };
567
Simon Pilgrimdf7de7a2017-01-07 17:27:39 +0000568 if (ST->hasAVX())
Simon Pilgrim100eae12017-01-07 17:03:51 +0000569 if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
570 return LT.first * Entry->Cost;
571
Simon Pilgrim5b06e4d2017-01-05 19:19:39 +0000572 static const CostTblEntry SSE42CostTable[] = {
573 { ISD::FDIV, MVT::f32, 14 }, // Nehalem from http://www.agner.org/
574 { ISD::FDIV, MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
575 { ISD::FDIV, MVT::f64, 22 }, // Nehalem from http://www.agner.org/
576 { ISD::FDIV, MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
577 };
578
579 if (ST->hasSSE42())
580 if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
581 return LT.first * Entry->Cost;
582
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000583 static const CostTblEntry SSE41CostTable[] = {
584 { ISD::SHL, MVT::v16i8, 11 }, // pblendvb sequence.
585 { ISD::SHL, MVT::v32i8, 2*11 }, // pblendvb sequence.
586 { ISD::SHL, MVT::v8i16, 14 }, // pblendvb sequence.
587 { ISD::SHL, MVT::v16i16, 2*14 }, // pblendvb sequence.
Simon Pilgrim9681c402017-01-07 22:27:43 +0000588 { ISD::SHL, MVT::v4i32, 4 }, // pslld/paddd/cvttps2dq/pmulld
589 { ISD::SHL, MVT::v8i32, 2*4 }, // pslld/paddd/cvttps2dq/pmulld
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000590
591 { ISD::SRL, MVT::v16i8, 12 }, // pblendvb sequence.
592 { ISD::SRL, MVT::v32i8, 2*12 }, // pblendvb sequence.
593 { ISD::SRL, MVT::v8i16, 14 }, // pblendvb sequence.
594 { ISD::SRL, MVT::v16i16, 2*14 }, // pblendvb sequence.
595 { ISD::SRL, MVT::v4i32, 11 }, // Shift each lane + blend.
596 { ISD::SRL, MVT::v8i32, 2*11 }, // Shift each lane + blend.
597
598 { ISD::SRA, MVT::v16i8, 24 }, // pblendvb sequence.
599 { ISD::SRA, MVT::v32i8, 2*24 }, // pblendvb sequence.
600 { ISD::SRA, MVT::v8i16, 14 }, // pblendvb sequence.
601 { ISD::SRA, MVT::v16i16, 2*14 }, // pblendvb sequence.
602 { ISD::SRA, MVT::v4i32, 12 }, // Shift each lane + blend.
603 { ISD::SRA, MVT::v8i32, 2*12 }, // Shift each lane + blend.
Simon Pilgrim4c050c212017-01-05 19:42:43 +0000604
605 { ISD::MUL, MVT::v4i32, 1 } // pmulld
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000606 };
607
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000608 if (ST->hasSSE41())
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000609 if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
610 return LT.first * Entry->Cost;
Simon Pilgrim6ac1e982016-10-23 16:49:04 +0000611
Craig Topper4b275762015-10-28 04:02:12 +0000612 static const CostTblEntry SSE2CostTable[] = {
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000613 // We don't correctly identify costs of casts because they are marked as
614 // custom.
Simon Pilgrim59656802015-06-11 07:46:37 +0000615 { ISD::SHL, MVT::v16i8, 26 }, // cmpgtb sequence.
616 { ISD::SHL, MVT::v8i16, 32 }, // cmpgtb sequence.
617 { ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul.
Simon Pilgrim59764dc2015-07-18 20:06:30 +0000618 { ISD::SHL, MVT::v2i64, 4 }, // splat+shuffle sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000619 { ISD::SHL, MVT::v4i64, 2*4 }, // splat+shuffle sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000620
621 { ISD::SRL, MVT::v16i8, 26 }, // cmpgtb sequence.
622 { ISD::SRL, MVT::v8i16, 32 }, // cmpgtb sequence.
623 { ISD::SRL, MVT::v4i32, 16 }, // Shift each lane + blend.
Simon Pilgrim59764dc2015-07-18 20:06:30 +0000624 { ISD::SRL, MVT::v2i64, 4 }, // splat+shuffle sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000625 { ISD::SRL, MVT::v4i64, 2*4 }, // splat+shuffle sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000626
627 { ISD::SRA, MVT::v16i8, 54 }, // unpacked cmpgtb sequence.
628 { ISD::SRA, MVT::v8i16, 32 }, // cmpgtb sequence.
629 { ISD::SRA, MVT::v4i32, 16 }, // Shift each lane + blend.
Simon Pilgrim86478c62015-07-29 20:31:45 +0000630 { ISD::SRA, MVT::v2i64, 12 }, // srl/xor/sub sequence.
Simon Pilgrima18ae9b2015-10-17 13:23:38 +0000631 { ISD::SRA, MVT::v4i64, 2*12 }, // srl/xor/sub sequence.
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000632
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000633 { ISD::MUL, MVT::v16i8, 12 }, // extend/pmullw/trunc sequence.
Simon Pilgrime70644d2017-01-07 21:33:00 +0000634 { ISD::MUL, MVT::v8i16, 1 }, // pmullw
Simon Pilgrim4c050c212017-01-05 19:42:43 +0000635 { ISD::MUL, MVT::v4i32, 6 }, // 3*pmuludq/4*shuffle
Simon Pilgrima8bf9752017-01-05 19:01:50 +0000636 { ISD::MUL, MVT::v2i64, 8 }, // 3*pmuludq/3*shift/2*add
Simon Pilgrim779da8e2016-11-14 15:54:24 +0000637
Alexey Bataevd07c7312016-10-31 12:10:53 +0000638 { ISD::FDIV, MVT::f32, 23 }, // Pentium IV from http://www.agner.org/
639 { ISD::FDIV, MVT::v4f32, 39 }, // Pentium IV from http://www.agner.org/
640 { ISD::FDIV, MVT::f64, 38 }, // Pentium IV from http://www.agner.org/
641 { ISD::FDIV, MVT::v2f64, 69 }, // Pentium IV from http://www.agner.org/
642
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +0000643 // It is not a good idea to vectorize division. We have to scalarize it and
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000644 // in the process we will often end up having to spilling regular
645 // registers. The overhead of division is going to dominate most kernels
646 // anyways so try hard to prevent vectorization of division - it is
647 // generally a bad idea. Assume somewhat arbitrarily that we have to be able
648 // to hide "20 cycles" for each lane.
649 { ISD::SDIV, MVT::v16i8, 16*20 },
Simon Pilgrime70644d2017-01-07 21:33:00 +0000650 { ISD::SDIV, MVT::v8i16, 8*20 },
651 { ISD::SDIV, MVT::v4i32, 4*20 },
652 { ISD::SDIV, MVT::v2i64, 2*20 },
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000653 { ISD::UDIV, MVT::v16i8, 16*20 },
Simon Pilgrime70644d2017-01-07 21:33:00 +0000654 { ISD::UDIV, MVT::v8i16, 8*20 },
655 { ISD::UDIV, MVT::v4i32, 4*20 },
656 { ISD::UDIV, MVT::v2i64, 2*20 },
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000657 };
658
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000659 if (ST->hasSSE2())
Craig Topperee0c8592015-10-27 04:14:24 +0000660 if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
661 return LT.first * Entry->Cost;
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000662
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000663 static const CostTblEntry SSE1CostTable[] = {
Alexey Bataevd07c7312016-10-31 12:10:53 +0000664 { ISD::FDIV, MVT::f32, 17 }, // Pentium III from http://www.agner.org/
665 { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
666 };
667
668 if (ST->hasSSE1())
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000669 if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
Alexey Bataevd07c7312016-10-31 12:10:53 +0000670 return LT.first * Entry->Cost;
Simon Pilgrimaa186c62017-01-05 22:48:02 +0000671
Chandler Carruth664e3542013-01-07 01:37:14 +0000672 // Fallback to the default implementation.
Chandler Carruth705b1852015-01-31 03:43:40 +0000673 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
Chandler Carruth664e3542013-01-07 01:37:14 +0000674}
675
Chandler Carruth93205eb2015-08-05 18:08:10 +0000676int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
677 Type *SubTp) {
Simon Pilgrima62395a2017-01-05 14:33:32 +0000678 // 64-bit packed float vectors (v2f32) are widened to type v4f32.
679 // 64-bit packed integer vectors (v2i32) are promoted to type v2i64.
680 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
Karthik Bhate03a25d2014-06-20 04:32:48 +0000681
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000682 // For Broadcasts we are splatting the first element from the first input
683 // register, so only need to reference that input and all the output
684 // registers are the same.
685 if (Kind == TTI::SK_Broadcast)
686 LT.first = 1;
Simon Pilgrimbca02f92017-01-05 15:56:08 +0000687
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000688 // We are going to permute multiple sources and the result will be in multiple
689 // destinations. Providing an accurate cost only for splits where the element
690 // type remains the same.
691 if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
692 MVT LegalVT = LT.second;
693 if (LegalVT.getVectorElementType().getSizeInBits() ==
694 Tp->getVectorElementType()->getPrimitiveSizeInBits() &&
695 LegalVT.getVectorNumElements() < Tp->getVectorNumElements()) {
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000696
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000697 unsigned VecTySize = DL.getTypeStoreSize(Tp);
698 unsigned LegalVTSize = LegalVT.getStoreSize();
699 // Number of source vectors after legalization:
700 unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
701 // Number of destination vectors after legalization:
702 unsigned NumOfDests = LT.first;
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000703
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000704 Type *SingleOpTy = VectorType::get(Tp->getVectorElementType(),
705 LegalVT.getVectorNumElements());
Simon Pilgrimbca02f92017-01-05 15:56:08 +0000706
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000707 unsigned NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
708 return NumOfShuffles *
709 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, 0, nullptr);
710 }
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000711
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000712 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
713 }
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000714
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000715 // For 2-input shuffles, we must account for splitting the 2 inputs into many.
716 if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
Elena Demikhovsky21706cb2017-01-02 10:37:52 +0000717 // We assume that source and destination have the same vector type.
Elena Demikhovsky21706cb2017-01-02 10:37:52 +0000718 int NumOfDests = LT.first;
719 int NumOfShufflesPerDest = LT.first * 2 - 1;
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000720 LT.first = NumOfDests * NumOfShufflesPerDest;
Karthik Bhate03a25d2014-06-20 04:32:48 +0000721 }
722
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000723 static const CostTblEntry AVX512VBMIShuffleTbl[] = {
724 { TTI::SK_Reverse, MVT::v64i8, 1 }, // vpermb
725 { TTI::SK_Reverse, MVT::v32i8, 1 }, // vpermb
726
727 { TTI::SK_PermuteSingleSrc, MVT::v64i8, 1 }, // vpermb
728 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 1 }, // vpermb
729
730 { TTI::SK_PermuteTwoSrc, MVT::v64i8, 1 }, // vpermt2b
731 { TTI::SK_PermuteTwoSrc, MVT::v32i8, 1 }, // vpermt2b
732 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 1 } // vpermt2b
733 };
734
735 if (ST->hasVBMI())
736 if (const auto *Entry =
737 CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
738 return LT.first * Entry->Cost;
739
740 static const CostTblEntry AVX512BWShuffleTbl[] = {
741 { TTI::SK_Broadcast, MVT::v32i16, 1 }, // vpbroadcastw
742 { TTI::SK_Broadcast, MVT::v64i8, 1 }, // vpbroadcastb
743
744 { TTI::SK_Reverse, MVT::v32i16, 1 }, // vpermw
745 { TTI::SK_Reverse, MVT::v16i16, 1 }, // vpermw
Simon Pilgrima1b8e2c2017-01-07 15:37:50 +0000746 { TTI::SK_Reverse, MVT::v64i8, 2 }, // pshufb + vshufi64x2
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000747
748 { TTI::SK_PermuteSingleSrc, MVT::v32i16, 1 }, // vpermw
749 { TTI::SK_PermuteSingleSrc, MVT::v16i16, 1 }, // vpermw
750 { TTI::SK_PermuteSingleSrc, MVT::v8i16, 1 }, // vpermw
751 { TTI::SK_PermuteSingleSrc, MVT::v64i8, 8 }, // extend to v32i16
752 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 3 }, // vpermw + zext/trunc
753
754 { TTI::SK_PermuteTwoSrc, MVT::v32i16, 1 }, // vpermt2w
755 { TTI::SK_PermuteTwoSrc, MVT::v16i16, 1 }, // vpermt2w
756 { TTI::SK_PermuteTwoSrc, MVT::v8i16, 1 }, // vpermt2w
757 { TTI::SK_PermuteTwoSrc, MVT::v32i8, 3 }, // zext + vpermt2w + trunc
758 { TTI::SK_PermuteTwoSrc, MVT::v64i8, 19 }, // 6 * v32i8 + 1
759 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 3 } // zext + vpermt2w + trunc
760 };
761
762 if (ST->hasBWI())
763 if (const auto *Entry =
764 CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
765 return LT.first * Entry->Cost;
766
767 static const CostTblEntry AVX512ShuffleTbl[] = {
768 { TTI::SK_Broadcast, MVT::v8f64, 1 }, // vbroadcastpd
769 { TTI::SK_Broadcast, MVT::v16f32, 1 }, // vbroadcastps
770 { TTI::SK_Broadcast, MVT::v8i64, 1 }, // vpbroadcastq
771 { TTI::SK_Broadcast, MVT::v16i32, 1 }, // vpbroadcastd
772
773 { TTI::SK_Reverse, MVT::v8f64, 1 }, // vpermpd
774 { TTI::SK_Reverse, MVT::v16f32, 1 }, // vpermps
775 { TTI::SK_Reverse, MVT::v8i64, 1 }, // vpermq
776 { TTI::SK_Reverse, MVT::v16i32, 1 }, // vpermd
777
778 { TTI::SK_PermuteSingleSrc, MVT::v8f64, 1 }, // vpermpd
779 { TTI::SK_PermuteSingleSrc, MVT::v4f64, 1 }, // vpermpd
780 { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // vpermpd
781 { TTI::SK_PermuteSingleSrc, MVT::v16f32, 1 }, // vpermps
782 { TTI::SK_PermuteSingleSrc, MVT::v8f32, 1 }, // vpermps
783 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // vpermps
784 { TTI::SK_PermuteSingleSrc, MVT::v8i64, 1 }, // vpermq
785 { TTI::SK_PermuteSingleSrc, MVT::v4i64, 1 }, // vpermq
786 { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // vpermq
787 { TTI::SK_PermuteSingleSrc, MVT::v16i32, 1 }, // vpermd
788 { TTI::SK_PermuteSingleSrc, MVT::v8i32, 1 }, // vpermd
789 { TTI::SK_PermuteSingleSrc, MVT::v4i32, 1 }, // vpermd
790 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 1 }, // pshufb
791
792 { TTI::SK_PermuteTwoSrc, MVT::v8f64, 1 }, // vpermt2pd
793 { TTI::SK_PermuteTwoSrc, MVT::v16f32, 1 }, // vpermt2ps
794 { TTI::SK_PermuteTwoSrc, MVT::v8i64, 1 }, // vpermt2q
795 { TTI::SK_PermuteTwoSrc, MVT::v16i32, 1 }, // vpermt2d
796 { TTI::SK_PermuteTwoSrc, MVT::v4f64, 1 }, // vpermt2pd
797 { TTI::SK_PermuteTwoSrc, MVT::v8f32, 1 }, // vpermt2ps
798 { TTI::SK_PermuteTwoSrc, MVT::v4i64, 1 }, // vpermt2q
799 { TTI::SK_PermuteTwoSrc, MVT::v8i32, 1 }, // vpermt2d
800 { TTI::SK_PermuteTwoSrc, MVT::v2f64, 1 }, // vpermt2pd
801 { TTI::SK_PermuteTwoSrc, MVT::v4f32, 1 }, // vpermt2ps
802 { TTI::SK_PermuteTwoSrc, MVT::v2i64, 1 }, // vpermt2q
803 { TTI::SK_PermuteTwoSrc, MVT::v4i32, 1 } // vpermt2d
804 };
805
806 if (ST->hasAVX512())
807 if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
808 return LT.first * Entry->Cost;
809
810 static const CostTblEntry AVX2ShuffleTbl[] = {
811 { TTI::SK_Broadcast, MVT::v4f64, 1 }, // vbroadcastpd
812 { TTI::SK_Broadcast, MVT::v8f32, 1 }, // vbroadcastps
813 { TTI::SK_Broadcast, MVT::v4i64, 1 }, // vpbroadcastq
814 { TTI::SK_Broadcast, MVT::v8i32, 1 }, // vpbroadcastd
815 { TTI::SK_Broadcast, MVT::v16i16, 1 }, // vpbroadcastw
816 { TTI::SK_Broadcast, MVT::v32i8, 1 }, // vpbroadcastb
817
818 { TTI::SK_Reverse, MVT::v4f64, 1 }, // vpermpd
819 { TTI::SK_Reverse, MVT::v8f32, 1 }, // vpermps
820 { TTI::SK_Reverse, MVT::v4i64, 1 }, // vpermq
821 { TTI::SK_Reverse, MVT::v8i32, 1 }, // vpermd
822 { TTI::SK_Reverse, MVT::v16i16, 2 }, // vperm2i128 + pshufb
823 { TTI::SK_Reverse, MVT::v32i8, 2 }, // vperm2i128 + pshufb
824
825 { TTI::SK_Alternate, MVT::v16i16, 1 }, // vpblendw
Michael Kupersteine6d59fd2017-02-02 20:27:13 +0000826 { TTI::SK_Alternate, MVT::v32i8, 1 }, // vpblendvb
827
828 { TTI::SK_PermuteSingleSrc, MVT::v4i64, 1 }, // vpermq
829 { TTI::SK_PermuteSingleSrc, MVT::v8i32, 1 }, // vpermd
830 { TTI::SK_PermuteSingleSrc, MVT::v16i16, 4 }, // vperm2i128 + 2 * vpshufb
831 // + vpblendvb
832 { TTI::SK_PermuteSingleSrc, MVT::v32i8, 4 } // vperm2i128 + 2 * vpshufb
833 // + vpblendvb
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000834 };
835
836 if (ST->hasAVX2())
837 if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
838 return LT.first * Entry->Cost;
839
840 static const CostTblEntry AVX1ShuffleTbl[] = {
841 { TTI::SK_Broadcast, MVT::v4f64, 2 }, // vperm2f128 + vpermilpd
842 { TTI::SK_Broadcast, MVT::v8f32, 2 }, // vperm2f128 + vpermilps
843 { TTI::SK_Broadcast, MVT::v4i64, 2 }, // vperm2f128 + vpermilpd
844 { TTI::SK_Broadcast, MVT::v8i32, 2 }, // vperm2f128 + vpermilps
845 { TTI::SK_Broadcast, MVT::v16i16, 3 }, // vpshuflw + vpshufd + vinsertf128
846 { TTI::SK_Broadcast, MVT::v32i8, 2 }, // vpshufb + vinsertf128
847
848 { TTI::SK_Reverse, MVT::v4f64, 2 }, // vperm2f128 + vpermilpd
849 { TTI::SK_Reverse, MVT::v8f32, 2 }, // vperm2f128 + vpermilps
850 { TTI::SK_Reverse, MVT::v4i64, 2 }, // vperm2f128 + vpermilpd
851 { TTI::SK_Reverse, MVT::v8i32, 2 }, // vperm2f128 + vpermilps
852 { TTI::SK_Reverse, MVT::v16i16, 4 }, // vextractf128 + 2*pshufb
853 // + vinsertf128
854 { TTI::SK_Reverse, MVT::v32i8, 4 }, // vextractf128 + 2*pshufb
855 // + vinsertf128
856
857 { TTI::SK_Alternate, MVT::v4i64, 1 }, // vblendpd
858 { TTI::SK_Alternate, MVT::v4f64, 1 }, // vblendpd
859 { TTI::SK_Alternate, MVT::v8i32, 1 }, // vblendps
860 { TTI::SK_Alternate, MVT::v8f32, 1 }, // vblendps
861 { TTI::SK_Alternate, MVT::v16i16, 3 }, // vpand + vpandn + vpor
862 { TTI::SK_Alternate, MVT::v32i8, 3 } // vpand + vpandn + vpor
863 };
864
865 if (ST->hasAVX())
866 if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
867 return LT.first * Entry->Cost;
868
869 static const CostTblEntry SSE41ShuffleTbl[] = {
870 { TTI::SK_Alternate, MVT::v2i64, 1 }, // pblendw
871 { TTI::SK_Alternate, MVT::v2f64, 1 }, // movsd
872 { TTI::SK_Alternate, MVT::v4i32, 1 }, // pblendw
873 { TTI::SK_Alternate, MVT::v4f32, 1 }, // blendps
874 { TTI::SK_Alternate, MVT::v8i16, 1 }, // pblendw
875 { TTI::SK_Alternate, MVT::v16i8, 1 } // pblendvb
876 };
877
878 if (ST->hasSSE41())
879 if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
880 return LT.first * Entry->Cost;
881
882 static const CostTblEntry SSSE3ShuffleTbl[] = {
883 { TTI::SK_Broadcast, MVT::v8i16, 1 }, // pshufb
884 { TTI::SK_Broadcast, MVT::v16i8, 1 }, // pshufb
885
886 { TTI::SK_Reverse, MVT::v8i16, 1 }, // pshufb
887 { TTI::SK_Reverse, MVT::v16i8, 1 }, // pshufb
888
889 { TTI::SK_Alternate, MVT::v8i16, 3 }, // pshufb + pshufb + por
Michael Kupersteine6d59fd2017-02-02 20:27:13 +0000890 { TTI::SK_Alternate, MVT::v16i8, 3 }, // pshufb + pshufb + por
891
892 { TTI::SK_PermuteSingleSrc, MVT::v8i16, 1 }, // pshufb
893 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 1 } // pshufb
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000894 };
895
896 if (ST->hasSSSE3())
897 if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
898 return LT.first * Entry->Cost;
899
900 static const CostTblEntry SSE2ShuffleTbl[] = {
901 { TTI::SK_Broadcast, MVT::v2f64, 1 }, // shufpd
902 { TTI::SK_Broadcast, MVT::v2i64, 1 }, // pshufd
903 { TTI::SK_Broadcast, MVT::v4i32, 1 }, // pshufd
904 { TTI::SK_Broadcast, MVT::v8i16, 2 }, // pshuflw + pshufd
905 { TTI::SK_Broadcast, MVT::v16i8, 3 }, // unpck + pshuflw + pshufd
906
907 { TTI::SK_Reverse, MVT::v2f64, 1 }, // shufpd
908 { TTI::SK_Reverse, MVT::v2i64, 1 }, // pshufd
909 { TTI::SK_Reverse, MVT::v4i32, 1 }, // pshufd
910 { TTI::SK_Reverse, MVT::v8i16, 3 }, // pshuflw + pshufhw + pshufd
911 { TTI::SK_Reverse, MVT::v16i8, 9 }, // 2*pshuflw + 2*pshufhw
912 // + 2*pshufd + 2*unpck + packus
913
914 { TTI::SK_Alternate, MVT::v2i64, 1 }, // movsd
915 { TTI::SK_Alternate, MVT::v2f64, 1 }, // movsd
916 { TTI::SK_Alternate, MVT::v4i32, 2 }, // 2*shufps
917 { TTI::SK_Alternate, MVT::v8i16, 3 }, // pand + pandn + por
Michael Kupersteine6d59fd2017-02-02 20:27:13 +0000918 { TTI::SK_Alternate, MVT::v16i8, 3 }, // pand + pandn + por
919
920 { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // pshufd
921 { TTI::SK_PermuteSingleSrc, MVT::v4i32, 1 } // pshufd
Simon Pilgrimf74700a2017-01-05 17:56:19 +0000922 };
923
924 if (ST->hasSSE2())
925 if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
926 return LT.first * Entry->Cost;
927
928 static const CostTblEntry SSE1ShuffleTbl[] = {
929 { TTI::SK_Broadcast, MVT::v4f32, 1 }, // shufps
930 { TTI::SK_Reverse, MVT::v4f32, 1 }, // shufps
931 { TTI::SK_Alternate, MVT::v4f32, 2 } // 2*shufps
932 };
933
934 if (ST->hasSSE1())
935 if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
936 return LT.first * Entry->Cost;
937
Chandler Carruth705b1852015-01-31 03:43:40 +0000938 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
Chandler Carruth664e3542013-01-07 01:37:14 +0000939}
940
Jonas Paulssonfccc7d62017-04-12 11:49:08 +0000941int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
942 const Instruction *I) {
Chandler Carruth664e3542013-01-07 01:37:14 +0000943 int ISD = TLI->InstructionOpcodeToISD(Opcode);
944 assert(ISD && "Invalid opcode");
945
Cong Hou59898d82015-12-11 00:31:39 +0000946 // FIXME: Need a better design of the cost table to handle non-simple types of
947 // potential massive combinations (elem_num x src_type x dst_type).
948
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000949 static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
Simon Pilgrim841d7ca2016-11-24 14:46:55 +0000950 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
951 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +0000952 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
953 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +0000954 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
955 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
956
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000957 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000958 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000959 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000960 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +0000961 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +0000962 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000963
Simon Pilgrim841d7ca2016-11-24 14:46:55 +0000964 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +0000965 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f32, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +0000966 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f32, 1 },
Simon Pilgrim841d7ca2016-11-24 14:46:55 +0000967 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
Simon Pilgrim4e9b9cb2016-11-23 14:01:18 +0000968 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f64, 1 },
Simon Pilgrim03cd8f82016-11-23 13:42:09 +0000969 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f64, 1 },
970
971 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 1 },
972 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f32, 1 },
973 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f32, 1 },
974 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
975 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f64, 1 },
976 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f64, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000977 };
978
Michael Kupersteinf0c59332016-07-11 21:39:44 +0000979 // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
980 // 256-bit wide vectors.
981
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000982 static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
Elena Demikhovsky27012472014-09-16 07:57:37 +0000983 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 1 },
984 { ISD::FP_EXTEND, MVT::v8f64, MVT::v16f32, 3 },
985 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000986
987 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 1 },
988 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 1 },
989 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 1 },
990 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000991
992 // v16i1 -> v16i32 - load + broadcast
993 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
994 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000995 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
996 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
997 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
998 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +0000999 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
1000 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001001 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
1002 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +00001003
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001004 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +00001005 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001006 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +00001007 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001008 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +00001009 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
1010 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +00001011 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001012 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 26 },
1013 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 26 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001014
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001015 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001016 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001017 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001018 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
1019 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 2 },
1020 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 },
1021 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001022 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 5 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001023 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
1024 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 2 },
1025 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
1026 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001027 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 2 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001028 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001029 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
1030 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
1031 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
1032 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
1033 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001034 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 5 },
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001035 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 },
1036 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 12 },
1037 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 26 },
1038
1039 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
1040 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
1041 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 1 },
1042 { ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f32, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +00001043 };
1044
Craig Topper4b275762015-10-28 04:02:12 +00001045 static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
Tim Northoverf0e21612014-02-06 18:18:36 +00001046 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
1047 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001048 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
1049 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001050 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
1051 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001052 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
1053 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
1054 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
1055 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001056 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
1057 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001058 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
1059 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001060 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
1061 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
1062
1063 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 2 },
1064 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2 },
1065 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 },
1066 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2 },
1067 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 2 },
1068 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 4 },
Elena Demikhovsky27012472014-09-16 07:57:37 +00001069
1070 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 3 },
1071 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 3 },
Quentin Colombet360460b2014-11-11 02:23:47 +00001072
1073 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 8 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001074 };
1075
Craig Topper4b275762015-10-28 04:02:12 +00001076 static const TypeConversionCostTblEntry AVXConversionTbl[] = {
Tim Northoverf0e21612014-02-06 18:18:36 +00001077 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 6 },
1078 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001079 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 7 },
1080 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001081 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 6 },
1082 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001083 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 7 },
1084 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 4 },
1085 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1086 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001087 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 6 },
1088 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001089 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
1090 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001091 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
1092 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
1093
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001094 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 4 },
1095 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
1096 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001097 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 4 },
1098 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 4 },
1099 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 4 },
Tim Northoverf0e21612014-02-06 18:18:36 +00001100 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 9 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001101
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001102 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001103 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001104 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 },
1105 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001106 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i8, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001107 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 8 },
1108 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 3 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001109 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i16, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001110 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
1111 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001112 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001113 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001114
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001115 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001116 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001117 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 },
1118 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 2 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001119 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001120 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 5 },
1121 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001122 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001123 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001124 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001125 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 6 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +00001126 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001127 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 9 },
Quentin Colombet85b904d2014-03-27 22:27:41 +00001128 // The generic code to compute the scalar overhead is currently broken.
1129 // Workaround this limitation by estimating the scalarization overhead
1130 // here. We have roughly 10 instructions per scalar element.
1131 // Multiply that by the vector width.
1132 // FIXME: remove that when PR19268 is fixed.
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001133 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 10 },
1134 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 20 },
1135 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 },
1136 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 13 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001137
Renato Goline1fb0592013-01-20 20:57:20 +00001138 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 1 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001139 { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 7 },
Adam Nemet6dafe972014-03-30 18:07:13 +00001140 // This node is expanded into scalarized operations but BasicTTI is overly
1141 // optimistic estimating its cost. It computes 3 per element (one
1142 // vector-extract, one scalar conversion and one vector-insert). The
1143 // problem is that the inserts form a read-modify-write chain so latency
1144 // should be factored in too. Inflating the cost per element by 1.
1145 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 8*4 },
Adam Nemet10c4ce22014-03-31 21:54:48 +00001146 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 4*4 },
Michael Kupersteinf0c59332016-07-11 21:39:44 +00001147
1148 { ISD::FP_EXTEND, MVT::v4f64, MVT::v4f32, 1 },
1149 { ISD::FP_ROUND, MVT::v4f32, MVT::v4f64, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001150 };
1151
Cong Hou59898d82015-12-11 00:31:39 +00001152 static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001153 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 2 },
1154 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001155 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 2 },
1156 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 2 },
1157 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
1158 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001159
Cong Hou59898d82015-12-11 00:31:39 +00001160 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
1161 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 2 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001162 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
1163 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 1 },
1164 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1165 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1166 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
1167 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 2 },
1168 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1169 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
1170 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
1171 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 4 },
1172 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1173 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1174 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
1175 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
1176 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
1177 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
Cong Hou59898d82015-12-11 00:31:39 +00001178
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001179 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 2 },
1180 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 1 },
1181 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 1 },
Cong Hou59898d82015-12-11 00:31:39 +00001182 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
Cong Hou59898d82015-12-11 00:31:39 +00001183 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001184 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 3 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001185 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 6 },
1186
Cong Hou59898d82015-12-11 00:31:39 +00001187 };
1188
1189 static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001190 // These are somewhat magic numbers justified by looking at the output of
1191 // Intel's IACA, running some kernels and making sure when we take
1192 // legalization into account the throughput will be overestimated.
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001193 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001194 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1195 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1196 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
Sanjay Patel04b34962016-07-06 19:15:54 +00001197 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001198 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1199 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
1200 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
Cong Hou59898d82015-12-11 00:31:39 +00001201
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001202 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
1203 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
1204 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
1205 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
1206 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
1207 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
1208 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
1209 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
Michael Kuperstein9a0542a2016-06-10 17:01:05 +00001210
Simon Pilgrim4ddc92b2016-10-18 07:42:15 +00001211 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 3 },
1212
Cong Hou59898d82015-12-11 00:31:39 +00001213 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 },
1214 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 6 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001215 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
1216 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 3 },
1217 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
1218 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 8 },
1219 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
1220 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 2 },
1221 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
1222 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 6 },
1223 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 3 },
1224 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
1225 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 9 },
1226 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 12 },
1227 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
1228 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 2 },
1229 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
1230 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 10 },
1231 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 3 },
1232 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
1233 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
Simon Pilgrim285d9e42016-07-17 19:02:27 +00001234 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001235 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 3 },
1236 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 5 },
Cong Hou59898d82015-12-11 00:31:39 +00001237
Cong Hou59898d82015-12-11 00:31:39 +00001238 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 4 },
Michael Kuperstein1b62e0e2016-07-06 18:26:48 +00001239 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 2 },
1240 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 },
1241 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 3 },
1242 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 3 },
1243 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
1244 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 7 },
1245 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
1246 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 10 },
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001247 };
1248
Chandler Carruth93205eb2015-08-05 18:08:10 +00001249 std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
1250 std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001251
1252 if (ST->hasSSE2() && !ST->hasAVX()) {
Cong Hou59898d82015-12-11 00:31:39 +00001253 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
Craig Topperee0c8592015-10-27 04:14:24 +00001254 LTDest.second, LTSrc.second))
1255 return LTSrc.first * Entry->Cost;
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001256 }
1257
Simon Pilgrime2c244f2015-07-19 15:36:12 +00001258 EVT SrcTy = TLI->getValueType(DL, Src);
1259 EVT DstTy = TLI->getValueType(DL, Dst);
1260
1261 // The function getSimpleVT only handles simple value types.
1262 if (!SrcTy.isSimple() || !DstTy.isSimple())
1263 return BaseT::getCastInstrCost(Opcode, Dst, Src);
1264
Elena Demikhovskya1a40cc2015-12-02 08:59:47 +00001265 if (ST->hasDQI())
1266 if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
1267 DstTy.getSimpleVT(),
1268 SrcTy.getSimpleVT()))
1269 return Entry->Cost;
1270
1271 if (ST->hasAVX512())
1272 if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
1273 DstTy.getSimpleVT(),
1274 SrcTy.getSimpleVT()))
1275 return Entry->Cost;
1276
Tim Northoverf0e21612014-02-06 18:18:36 +00001277 if (ST->hasAVX2()) {
Craig Topperee0c8592015-10-27 04:14:24 +00001278 if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
1279 DstTy.getSimpleVT(),
1280 SrcTy.getSimpleVT()))
1281 return Entry->Cost;
Tim Northoverf0e21612014-02-06 18:18:36 +00001282 }
1283
Chandler Carruth664e3542013-01-07 01:37:14 +00001284 if (ST->hasAVX()) {
Craig Topperee0c8592015-10-27 04:14:24 +00001285 if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
1286 DstTy.getSimpleVT(),
1287 SrcTy.getSimpleVT()))
1288 return Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001289 }
1290
Cong Hou59898d82015-12-11 00:31:39 +00001291 if (ST->hasSSE41()) {
1292 if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
1293 DstTy.getSimpleVT(),
1294 SrcTy.getSimpleVT()))
1295 return Entry->Cost;
1296 }
1297
1298 if (ST->hasSSE2()) {
1299 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
1300 DstTy.getSimpleVT(),
1301 SrcTy.getSimpleVT()))
1302 return Entry->Cost;
1303 }
1304
Chandler Carruth705b1852015-01-31 03:43:40 +00001305 return BaseT::getCastInstrCost(Opcode, Dst, Src);
Chandler Carruth664e3542013-01-07 01:37:14 +00001306}
1307
Jonas Paulssonfccc7d62017-04-12 11:49:08 +00001308int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
1309 const Instruction *I) {
Chandler Carruth664e3542013-01-07 01:37:14 +00001310 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001311 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
Chandler Carruth664e3542013-01-07 01:37:14 +00001312
1313 MVT MTy = LT.second;
1314
1315 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1316 assert(ISD && "Invalid opcode");
1317
Simon Pilgrimeec3a952016-05-09 21:14:38 +00001318 static const CostTblEntry SSE2CostTbl[] = {
1319 { ISD::SETCC, MVT::v2i64, 8 },
1320 { ISD::SETCC, MVT::v4i32, 1 },
1321 { ISD::SETCC, MVT::v8i16, 1 },
1322 { ISD::SETCC, MVT::v16i8, 1 },
1323 };
1324
Craig Topper4b275762015-10-28 04:02:12 +00001325 static const CostTblEntry SSE42CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001326 { ISD::SETCC, MVT::v2f64, 1 },
1327 { ISD::SETCC, MVT::v4f32, 1 },
1328 { ISD::SETCC, MVT::v2i64, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001329 };
1330
Craig Topper4b275762015-10-28 04:02:12 +00001331 static const CostTblEntry AVX1CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001332 { ISD::SETCC, MVT::v4f64, 1 },
1333 { ISD::SETCC, MVT::v8f32, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001334 // AVX1 does not support 8-wide integer compare.
Renato Goline1fb0592013-01-20 20:57:20 +00001335 { ISD::SETCC, MVT::v4i64, 4 },
1336 { ISD::SETCC, MVT::v8i32, 4 },
1337 { ISD::SETCC, MVT::v16i16, 4 },
1338 { ISD::SETCC, MVT::v32i8, 4 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001339 };
1340
Craig Topper4b275762015-10-28 04:02:12 +00001341 static const CostTblEntry AVX2CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +00001342 { ISD::SETCC, MVT::v4i64, 1 },
1343 { ISD::SETCC, MVT::v8i32, 1 },
1344 { ISD::SETCC, MVT::v16i16, 1 },
1345 { ISD::SETCC, MVT::v32i8, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +00001346 };
1347
Craig Topper4b275762015-10-28 04:02:12 +00001348 static const CostTblEntry AVX512CostTbl[] = {
Elena Demikhovsky27012472014-09-16 07:57:37 +00001349 { ISD::SETCC, MVT::v8i64, 1 },
1350 { ISD::SETCC, MVT::v16i32, 1 },
1351 { ISD::SETCC, MVT::v8f64, 1 },
1352 { ISD::SETCC, MVT::v16f32, 1 },
1353 };
1354
Craig Topperee0c8592015-10-27 04:14:24 +00001355 if (ST->hasAVX512())
1356 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
1357 return LT.first * Entry->Cost;
Elena Demikhovsky27012472014-09-16 07:57:37 +00001358
Craig Topperee0c8592015-10-27 04:14:24 +00001359 if (ST->hasAVX2())
1360 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1361 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001362
Craig Topperee0c8592015-10-27 04:14:24 +00001363 if (ST->hasAVX())
1364 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1365 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001366
Craig Topperee0c8592015-10-27 04:14:24 +00001367 if (ST->hasSSE42())
1368 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1369 return LT.first * Entry->Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001370
Simon Pilgrimeec3a952016-05-09 21:14:38 +00001371 if (ST->hasSSE2())
1372 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1373 return LT.first * Entry->Cost;
1374
Jonas Paulssonfccc7d62017-04-12 11:49:08 +00001375 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
Chandler Carruth664e3542013-01-07 01:37:14 +00001376}
1377
Simon Pilgrim14000b32016-05-24 08:17:50 +00001378int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
Jonas Paulssona48ea232017-03-14 06:35:36 +00001379 ArrayRef<Type *> Tys, FastMathFlags FMF,
1380 unsigned ScalarizationCostPassed) {
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001381 // Costs should match the codegen from:
1382 // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
1383 // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001384 // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001385 // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001386 // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
Simon Pilgrim14000b32016-05-24 08:17:50 +00001387 static const CostTblEntry XOPCostTbl[] = {
1388 { ISD::BITREVERSE, MVT::v4i64, 4 },
1389 { ISD::BITREVERSE, MVT::v8i32, 4 },
1390 { ISD::BITREVERSE, MVT::v16i16, 4 },
1391 { ISD::BITREVERSE, MVT::v32i8, 4 },
1392 { ISD::BITREVERSE, MVT::v2i64, 1 },
1393 { ISD::BITREVERSE, MVT::v4i32, 1 },
1394 { ISD::BITREVERSE, MVT::v8i16, 1 },
1395 { ISD::BITREVERSE, MVT::v16i8, 1 },
1396 { ISD::BITREVERSE, MVT::i64, 3 },
1397 { ISD::BITREVERSE, MVT::i32, 3 },
1398 { ISD::BITREVERSE, MVT::i16, 3 },
1399 { ISD::BITREVERSE, MVT::i8, 3 }
1400 };
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001401 static const CostTblEntry AVX2CostTbl[] = {
1402 { ISD::BITREVERSE, MVT::v4i64, 5 },
1403 { ISD::BITREVERSE, MVT::v8i32, 5 },
1404 { ISD::BITREVERSE, MVT::v16i16, 5 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001405 { ISD::BITREVERSE, MVT::v32i8, 5 },
1406 { ISD::BSWAP, MVT::v4i64, 1 },
1407 { ISD::BSWAP, MVT::v8i32, 1 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001408 { ISD::BSWAP, MVT::v16i16, 1 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001409 { ISD::CTLZ, MVT::v4i64, 23 },
1410 { ISD::CTLZ, MVT::v8i32, 18 },
1411 { ISD::CTLZ, MVT::v16i16, 14 },
1412 { ISD::CTLZ, MVT::v32i8, 9 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001413 { ISD::CTPOP, MVT::v4i64, 7 },
1414 { ISD::CTPOP, MVT::v8i32, 11 },
1415 { ISD::CTPOP, MVT::v16i16, 9 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001416 { ISD::CTPOP, MVT::v32i8, 6 },
1417 { ISD::CTTZ, MVT::v4i64, 10 },
1418 { ISD::CTTZ, MVT::v8i32, 14 },
1419 { ISD::CTTZ, MVT::v16i16, 12 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001420 { ISD::CTTZ, MVT::v32i8, 9 },
1421 { ISD::FSQRT, MVT::f32, 7 }, // Haswell from http://www.agner.org/
1422 { ISD::FSQRT, MVT::v4f32, 7 }, // Haswell from http://www.agner.org/
1423 { ISD::FSQRT, MVT::v8f32, 14 }, // Haswell from http://www.agner.org/
1424 { ISD::FSQRT, MVT::f64, 14 }, // Haswell from http://www.agner.org/
1425 { ISD::FSQRT, MVT::v2f64, 14 }, // Haswell from http://www.agner.org/
1426 { ISD::FSQRT, MVT::v4f64, 28 }, // Haswell from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001427 };
1428 static const CostTblEntry AVX1CostTbl[] = {
Simon Pilgrim2d1c6d62017-05-07 20:58:55 +00001429 { ISD::BITREVERSE, MVT::v4i64, 12 }, // 2 x 128-bit Op + extract/insert
1430 { ISD::BITREVERSE, MVT::v8i32, 12 }, // 2 x 128-bit Op + extract/insert
1431 { ISD::BITREVERSE, MVT::v16i16, 12 }, // 2 x 128-bit Op + extract/insert
1432 { ISD::BITREVERSE, MVT::v32i8, 12 }, // 2 x 128-bit Op + extract/insert
Simon Pilgrim356e8232016-06-20 23:08:21 +00001433 { ISD::BSWAP, MVT::v4i64, 4 },
1434 { ISD::BSWAP, MVT::v8i32, 4 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001435 { ISD::BSWAP, MVT::v16i16, 4 },
Simon Pilgrim2d1c6d62017-05-07 20:58:55 +00001436 { ISD::CTLZ, MVT::v4i64, 48 }, // 2 x 128-bit Op + extract/insert
1437 { ISD::CTLZ, MVT::v8i32, 38 }, // 2 x 128-bit Op + extract/insert
1438 { ISD::CTLZ, MVT::v16i16, 30 }, // 2 x 128-bit Op + extract/insert
1439 { ISD::CTLZ, MVT::v32i8, 20 }, // 2 x 128-bit Op + extract/insert
1440 { ISD::CTPOP, MVT::v4i64, 16 }, // 2 x 128-bit Op + extract/insert
1441 { ISD::CTPOP, MVT::v8i32, 24 }, // 2 x 128-bit Op + extract/insert
1442 { ISD::CTPOP, MVT::v16i16, 20 }, // 2 x 128-bit Op + extract/insert
1443 { ISD::CTPOP, MVT::v32i8, 14 }, // 2 x 128-bit Op + extract/insert
1444 { ISD::CTTZ, MVT::v4i64, 22 }, // 2 x 128-bit Op + extract/insert
1445 { ISD::CTTZ, MVT::v8i32, 30 }, // 2 x 128-bit Op + extract/insert
1446 { ISD::CTTZ, MVT::v16i16, 26 }, // 2 x 128-bit Op + extract/insert
1447 { ISD::CTTZ, MVT::v32i8, 20 }, // 2 x 128-bit Op + extract/insert
Alexey Bataevd07c7312016-10-31 12:10:53 +00001448 { ISD::FSQRT, MVT::f32, 14 }, // SNB from http://www.agner.org/
1449 { ISD::FSQRT, MVT::v4f32, 14 }, // SNB from http://www.agner.org/
1450 { ISD::FSQRT, MVT::v8f32, 28 }, // SNB from http://www.agner.org/
1451 { ISD::FSQRT, MVT::f64, 21 }, // SNB from http://www.agner.org/
1452 { ISD::FSQRT, MVT::v2f64, 21 }, // SNB from http://www.agner.org/
1453 { ISD::FSQRT, MVT::v4f64, 43 }, // SNB from http://www.agner.org/
1454 };
1455 static const CostTblEntry SSE42CostTbl[] = {
Simon Pilgrima0b0b742017-03-15 11:57:42 +00001456 { ISD::FSQRT, MVT::f32, 18 }, // Nehalem from http://www.agner.org/
1457 { ISD::FSQRT, MVT::v4f32, 18 }, // Nehalem from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001458 };
1459 static const CostTblEntry SSSE3CostTbl[] = {
1460 { ISD::BITREVERSE, MVT::v2i64, 5 },
1461 { ISD::BITREVERSE, MVT::v4i32, 5 },
1462 { ISD::BITREVERSE, MVT::v8i16, 5 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001463 { ISD::BITREVERSE, MVT::v16i8, 5 },
1464 { ISD::BSWAP, MVT::v2i64, 1 },
1465 { ISD::BSWAP, MVT::v4i32, 1 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001466 { ISD::BSWAP, MVT::v8i16, 1 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001467 { ISD::CTLZ, MVT::v2i64, 23 },
1468 { ISD::CTLZ, MVT::v4i32, 18 },
1469 { ISD::CTLZ, MVT::v8i16, 14 },
1470 { ISD::CTLZ, MVT::v16i8, 9 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001471 { ISD::CTPOP, MVT::v2i64, 7 },
1472 { ISD::CTPOP, MVT::v4i32, 11 },
1473 { ISD::CTPOP, MVT::v8i16, 9 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001474 { ISD::CTPOP, MVT::v16i8, 6 },
1475 { ISD::CTTZ, MVT::v2i64, 10 },
1476 { ISD::CTTZ, MVT::v4i32, 14 },
1477 { ISD::CTTZ, MVT::v8i16, 12 },
1478 { ISD::CTTZ, MVT::v16i8, 9 }
Simon Pilgrim356e8232016-06-20 23:08:21 +00001479 };
1480 static const CostTblEntry SSE2CostTbl[] = {
Simon Pilgrim06c70ad2017-03-15 19:34:55 +00001481 { ISD::BITREVERSE, MVT::v2i64, 29 },
1482 { ISD::BITREVERSE, MVT::v4i32, 27 },
1483 { ISD::BITREVERSE, MVT::v8i16, 27 },
1484 { ISD::BITREVERSE, MVT::v16i8, 20 },
Simon Pilgrim356e8232016-06-20 23:08:21 +00001485 { ISD::BSWAP, MVT::v2i64, 7 },
1486 { ISD::BSWAP, MVT::v4i32, 7 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001487 { ISD::BSWAP, MVT::v8i16, 7 },
Simon Pilgrimd02c5522016-11-08 14:10:28 +00001488 { ISD::CTLZ, MVT::v2i64, 25 },
1489 { ISD::CTLZ, MVT::v4i32, 26 },
1490 { ISD::CTLZ, MVT::v8i16, 20 },
1491 { ISD::CTLZ, MVT::v16i8, 17 },
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001492 { ISD::CTPOP, MVT::v2i64, 12 },
1493 { ISD::CTPOP, MVT::v4i32, 15 },
1494 { ISD::CTPOP, MVT::v8i16, 13 },
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001495 { ISD::CTPOP, MVT::v16i8, 10 },
1496 { ISD::CTTZ, MVT::v2i64, 14 },
1497 { ISD::CTTZ, MVT::v4i32, 18 },
1498 { ISD::CTTZ, MVT::v8i16, 16 },
Alexey Bataevd07c7312016-10-31 12:10:53 +00001499 { ISD::CTTZ, MVT::v16i8, 13 },
1500 { ISD::FSQRT, MVT::f64, 32 }, // Nehalem from http://www.agner.org/
1501 { ISD::FSQRT, MVT::v2f64, 32 }, // Nehalem from http://www.agner.org/
1502 };
1503 static const CostTblEntry SSE1CostTbl[] = {
Simon Pilgrima0b0b742017-03-15 11:57:42 +00001504 { ISD::FSQRT, MVT::f32, 28 }, // Pentium III from http://www.agner.org/
1505 { ISD::FSQRT, MVT::v4f32, 56 }, // Pentium III from http://www.agner.org/
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001506 };
Simon Pilgrim06c70ad2017-03-15 19:34:55 +00001507 static const CostTblEntry X64CostTbl[] = { // 64-bit targets
1508 { ISD::BITREVERSE, MVT::i64, 14 }
1509 };
1510 static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
1511 { ISD::BITREVERSE, MVT::i32, 14 },
1512 { ISD::BITREVERSE, MVT::i16, 14 },
1513 { ISD::BITREVERSE, MVT::i8, 11 }
1514 };
Simon Pilgrim14000b32016-05-24 08:17:50 +00001515
1516 unsigned ISD = ISD::DELETED_NODE;
1517 switch (IID) {
1518 default:
1519 break;
1520 case Intrinsic::bitreverse:
1521 ISD = ISD::BITREVERSE;
1522 break;
Simon Pilgrim356e8232016-06-20 23:08:21 +00001523 case Intrinsic::bswap:
1524 ISD = ISD::BSWAP;
1525 break;
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001526 case Intrinsic::ctlz:
1527 ISD = ISD::CTLZ;
1528 break;
Simon Pilgrim1b4f5112016-07-20 10:41:28 +00001529 case Intrinsic::ctpop:
1530 ISD = ISD::CTPOP;
1531 break;
Simon Pilgrim5d5ca9c2016-08-04 10:51:41 +00001532 case Intrinsic::cttz:
1533 ISD = ISD::CTTZ;
1534 break;
Alexey Bataevd07c7312016-10-31 12:10:53 +00001535 case Intrinsic::sqrt:
1536 ISD = ISD::FSQRT;
1537 break;
Simon Pilgrim14000b32016-05-24 08:17:50 +00001538 }
1539
1540 // Legalize the type.
1541 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
1542 MVT MTy = LT.second;
1543
1544 // Attempt to lookup cost.
1545 if (ST->hasXOP())
1546 if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
1547 return LT.first * Entry->Cost;
1548
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001549 if (ST->hasAVX2())
1550 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
1551 return LT.first * Entry->Cost;
1552
1553 if (ST->hasAVX())
1554 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
1555 return LT.first * Entry->Cost;
1556
Alexey Bataevd07c7312016-10-31 12:10:53 +00001557 if (ST->hasSSE42())
1558 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
1559 return LT.first * Entry->Cost;
1560
Simon Pilgrim3fc09f72016-06-11 19:23:02 +00001561 if (ST->hasSSSE3())
1562 if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
1563 return LT.first * Entry->Cost;
1564
Simon Pilgrim356e8232016-06-20 23:08:21 +00001565 if (ST->hasSSE2())
1566 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
1567 return LT.first * Entry->Cost;
1568
Alexey Bataevd07c7312016-10-31 12:10:53 +00001569 if (ST->hasSSE1())
1570 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
1571 return LT.first * Entry->Cost;
1572
Simon Pilgrim06c70ad2017-03-15 19:34:55 +00001573 if (ST->is64Bit())
1574 if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
1575 return LT.first * Entry->Cost;
1576
1577 if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
1578 return LT.first * Entry->Cost;
1579
Jonas Paulssona48ea232017-03-14 06:35:36 +00001580 return BaseT::getIntrinsicInstrCost(IID, RetTy, Tys, FMF, ScalarizationCostPassed);
Simon Pilgrim14000b32016-05-24 08:17:50 +00001581}
1582
1583int X86TTIImpl::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
Jonas Paulssona48ea232017-03-14 06:35:36 +00001584 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) {
1585 return BaseT::getIntrinsicInstrCost(IID, RetTy, Args, FMF, VF);
Simon Pilgrim14000b32016-05-24 08:17:50 +00001586}
1587
Chandler Carruth93205eb2015-08-05 18:08:10 +00001588int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
Chandler Carruth664e3542013-01-07 01:37:14 +00001589 assert(Val->isVectorTy() && "This must be a vector type");
1590
Sanjay Patelaedc3472016-05-25 17:27:54 +00001591 Type *ScalarType = Val->getScalarType();
1592
Chandler Carruth664e3542013-01-07 01:37:14 +00001593 if (Index != -1U) {
1594 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001595 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
Chandler Carruth664e3542013-01-07 01:37:14 +00001596
1597 // This type is legalized to a scalar type.
1598 if (!LT.second.isVector())
1599 return 0;
1600
1601 // The type may be split. Normalize the index to the new type.
1602 unsigned Width = LT.second.getVectorNumElements();
1603 Index = Index % Width;
1604
1605 // Floating point scalars are already located in index #0.
Sanjay Patelaedc3472016-05-25 17:27:54 +00001606 if (ScalarType->isFloatingPointTy() && Index == 0)
Chandler Carruth664e3542013-01-07 01:37:14 +00001607 return 0;
1608 }
1609
Sanjay Patelaedc3472016-05-25 17:27:54 +00001610 // Add to the base cost if we know that the extracted element of a vector is
1611 // destined to be moved to and used in the integer register file.
1612 int RegisterFileMoveCost = 0;
1613 if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
1614 RegisterFileMoveCost = 1;
1615
1616 return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
Chandler Carruth664e3542013-01-07 01:37:14 +00001617}
1618
Chandler Carruth93205eb2015-08-05 18:08:10 +00001619int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
Jonas Paulssonfccc7d62017-04-12 11:49:08 +00001620 unsigned AddressSpace, const Instruction *I) {
Alp Tokerf907b892013-12-05 05:44:44 +00001621 // Handle non-power-of-two vectors such as <3 x float>
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001622 if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
1623 unsigned NumElem = VTy->getVectorNumElements();
1624
1625 // Handle a few common cases:
1626 // <3 x float>
1627 if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
1628 // Cost = 64 bit store + extract + 32 bit store.
1629 return 3;
1630
1631 // <3 x double>
1632 if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
1633 // Cost = 128 bit store + unpack + 64 bit store.
1634 return 3;
1635
Alp Tokerf907b892013-12-05 05:44:44 +00001636 // Assume that all other non-power-of-two numbers are scalarized.
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001637 if (!isPowerOf2_32(NumElem)) {
Chandler Carruth93205eb2015-08-05 18:08:10 +00001638 int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
1639 AddressSpace);
1640 int SplitCost = getScalarizationOverhead(Src, Opcode == Instruction::Load,
1641 Opcode == Instruction::Store);
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +00001642 return NumElem * Cost + SplitCost;
1643 }
1644 }
1645
Chandler Carruth664e3542013-01-07 01:37:14 +00001646 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001647 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
Chandler Carruth664e3542013-01-07 01:37:14 +00001648 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
1649 "Invalid Opcode");
1650
1651 // Each load/store unit costs 1.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001652 int Cost = LT.first * 1;
Chandler Carruth664e3542013-01-07 01:37:14 +00001653
Sanjay Patel9f6c4d52016-03-09 22:23:33 +00001654 // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
1655 // proxy for a double-pumped AVX memory interface such as on Sandybridge.
1656 if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
1657 Cost *= 2;
Chandler Carruth664e3542013-01-07 01:37:14 +00001658
1659 return Cost;
1660}
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001661
Chandler Carruth93205eb2015-08-05 18:08:10 +00001662int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
1663 unsigned Alignment,
1664 unsigned AddressSpace) {
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001665 VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
1666 if (!SrcVTy)
1667 // To calculate scalar take the regular cost, without mask
1668 return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace);
1669
1670 unsigned NumElem = SrcVTy->getVectorNumElements();
1671 VectorType *MaskTy =
Mehdi Amini867e9142016-04-14 04:36:40 +00001672 VectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
Elena Demikhovsky20662e32015-10-19 07:43:38 +00001673 if ((Opcode == Instruction::Load && !isLegalMaskedLoad(SrcVTy)) ||
1674 (Opcode == Instruction::Store && !isLegalMaskedStore(SrcVTy)) ||
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001675 !isPowerOf2_32(NumElem)) {
1676 // Scalarization
Chandler Carruth93205eb2015-08-05 18:08:10 +00001677 int MaskSplitCost = getScalarizationOverhead(MaskTy, false, true);
1678 int ScalarCompareCost = getCmpSelInstrCost(
Mehdi Amini867e9142016-04-14 04:36:40 +00001679 Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr);
Chandler Carruth93205eb2015-08-05 18:08:10 +00001680 int BranchCost = getCFInstrCost(Instruction::Br);
1681 int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001682
Chandler Carruth93205eb2015-08-05 18:08:10 +00001683 int ValueSplitCost = getScalarizationOverhead(
1684 SrcVTy, Opcode == Instruction::Load, Opcode == Instruction::Store);
1685 int MemopCost =
Chandler Carruth705b1852015-01-31 03:43:40 +00001686 NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
1687 Alignment, AddressSpace);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001688 return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
1689 }
1690
1691 // Legalize the type.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001692 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
Cong Houda4e8ae2015-10-28 18:15:46 +00001693 auto VT = TLI->getValueType(DL, SrcVTy);
Chandler Carruth93205eb2015-08-05 18:08:10 +00001694 int Cost = 0;
Cong Houda4e8ae2015-10-28 18:15:46 +00001695 if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001696 LT.second.getVectorNumElements() == NumElem)
1697 // Promotion requires expand/truncate for data and a shuffle for mask.
Hans Wennborg083ca9b2015-10-06 23:24:35 +00001698 Cost += getShuffleCost(TTI::SK_Alternate, SrcVTy, 0, nullptr) +
1699 getShuffleCost(TTI::SK_Alternate, MaskTy, 0, nullptr);
Chandler Carruth705b1852015-01-31 03:43:40 +00001700
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001701 else if (LT.second.getVectorNumElements() > NumElem) {
1702 VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(),
1703 LT.second.getVectorNumElements());
1704 // Expanding requires fill mask with zeroes
Chandler Carruth705b1852015-01-31 03:43:40 +00001705 Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
Elena Demikhovskya3232f72015-01-25 08:44:46 +00001706 }
1707 if (!ST->hasAVX512())
1708 return Cost + LT.first*4; // Each maskmov costs 4
1709
1710 // AVX-512 masked load/store is cheapper
1711 return Cost+LT.first;
1712}
1713
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001714int X86TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
1715 const SCEV *Ptr) {
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001716 // Address computations in vectorized code with non-consecutive addresses will
1717 // likely result in more instructions compared to scalar code where the
1718 // computation can more often be merged into the index mode. The resulting
1719 // extra micro-ops can significantly decrease throughput.
1720 unsigned NumVectorInstToHideOverhead = 10;
1721
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001722 // Cost modeling of Strided Access Computation is hidden by the indexing
1723 // modes of X86 regardless of the stride value. We dont believe that there
1724 // is a difference between constant strided access in gerenal and constant
1725 // strided value which is less than or equal to 64.
1726 // Even in the case of (loop invariant) stride whose value is not known at
1727 // compile time, the address computation will not incur more than one extra
1728 // ADD instruction.
1729 if (Ty->isVectorTy() && SE) {
1730 if (!BaseT::isStridedAccess(Ptr))
1731 return NumVectorInstToHideOverhead;
1732 if (!BaseT::getConstantStrideStep(SE, Ptr))
1733 return 1;
1734 }
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001735
Mohammed Agabaria23599ba2017-01-05 14:03:41 +00001736 return BaseT::getAddressComputationCost(Ty, SE, Ptr);
Arnold Schwaighofer6042a262013-07-12 19:16:07 +00001737}
Yi Jiang5c343de2013-09-19 17:48:48 +00001738
Chandler Carruth93205eb2015-08-05 18:08:10 +00001739int X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy,
1740 bool IsPairwise) {
Michael Liao5bf95782014-12-04 05:20:33 +00001741
Chandler Carruth93205eb2015-08-05 18:08:10 +00001742 std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
Michael Liao5bf95782014-12-04 05:20:33 +00001743
Yi Jiang5c343de2013-09-19 17:48:48 +00001744 MVT MTy = LT.second;
Michael Liao5bf95782014-12-04 05:20:33 +00001745
Yi Jiang5c343de2013-09-19 17:48:48 +00001746 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1747 assert(ISD && "Invalid opcode");
Michael Liao5bf95782014-12-04 05:20:33 +00001748
1749 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
1750 // and make it as the cost.
1751
Craig Topper4b275762015-10-28 04:02:12 +00001752 static const CostTblEntry SSE42CostTblPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001753 { ISD::FADD, MVT::v2f64, 2 },
1754 { ISD::FADD, MVT::v4f32, 4 },
1755 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
1756 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
1757 { ISD::ADD, MVT::v8i16, 5 },
1758 };
Michael Liao5bf95782014-12-04 05:20:33 +00001759
Craig Topper4b275762015-10-28 04:02:12 +00001760 static const CostTblEntry AVX1CostTblPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001761 { ISD::FADD, MVT::v4f32, 4 },
1762 { ISD::FADD, MVT::v4f64, 5 },
1763 { ISD::FADD, MVT::v8f32, 7 },
1764 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
1765 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
1766 { ISD::ADD, MVT::v4i64, 5 }, // The data reported by the IACA tool is "4.8".
1767 { ISD::ADD, MVT::v8i16, 5 },
1768 { ISD::ADD, MVT::v8i32, 5 },
1769 };
1770
Craig Topper4b275762015-10-28 04:02:12 +00001771 static const CostTblEntry SSE42CostTblNoPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001772 { ISD::FADD, MVT::v2f64, 2 },
1773 { ISD::FADD, MVT::v4f32, 4 },
1774 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
1775 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3".
1776 { ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3".
1777 };
Michael Liao5bf95782014-12-04 05:20:33 +00001778
Craig Topper4b275762015-10-28 04:02:12 +00001779 static const CostTblEntry AVX1CostTblNoPairWise[] = {
Yi Jiang5c343de2013-09-19 17:48:48 +00001780 { ISD::FADD, MVT::v4f32, 3 },
1781 { ISD::FADD, MVT::v4f64, 3 },
1782 { ISD::FADD, MVT::v8f32, 4 },
1783 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
1784 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "2.8".
1785 { ISD::ADD, MVT::v4i64, 3 },
1786 { ISD::ADD, MVT::v8i16, 4 },
1787 { ISD::ADD, MVT::v8i32, 5 },
1788 };
Michael Liao5bf95782014-12-04 05:20:33 +00001789
Yi Jiang5c343de2013-09-19 17:48:48 +00001790 if (IsPairwise) {
Craig Topperee0c8592015-10-27 04:14:24 +00001791 if (ST->hasAVX())
1792 if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy))
1793 return LT.first * Entry->Cost;
Michael Liao5bf95782014-12-04 05:20:33 +00001794
Craig Topperee0c8592015-10-27 04:14:24 +00001795 if (ST->hasSSE42())
1796 if (const auto *Entry = CostTableLookup(SSE42CostTblPairWise, ISD, MTy))
1797 return LT.first * Entry->Cost;
Yi Jiang5c343de2013-09-19 17:48:48 +00001798 } else {
Craig Topperee0c8592015-10-27 04:14:24 +00001799 if (ST->hasAVX())
1800 if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
1801 return LT.first * Entry->Cost;
Michael Liao5bf95782014-12-04 05:20:33 +00001802
Craig Topperee0c8592015-10-27 04:14:24 +00001803 if (ST->hasSSE42())
1804 if (const auto *Entry = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy))
1805 return LT.first * Entry->Cost;
Yi Jiang5c343de2013-09-19 17:48:48 +00001806 }
1807
Chandler Carruth705b1852015-01-31 03:43:40 +00001808 return BaseT::getReductionCost(Opcode, ValTy, IsPairwise);
Yi Jiang5c343de2013-09-19 17:48:48 +00001809}
1810
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001811/// \brief Calculate the cost of materializing a 64-bit value. This helper
1812/// method might only calculate a fraction of a larger immediate. Therefore it
1813/// is valid to return a cost of ZERO.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001814int X86TTIImpl::getIntImmCost(int64_t Val) {
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001815 if (Val == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001816 return TTI::TCC_Free;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001817
1818 if (isInt<32>(Val))
Chandler Carruth705b1852015-01-31 03:43:40 +00001819 return TTI::TCC_Basic;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001820
Chandler Carruth705b1852015-01-31 03:43:40 +00001821 return 2 * TTI::TCC_Basic;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001822}
1823
Chandler Carruth93205eb2015-08-05 18:08:10 +00001824int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001825 assert(Ty->isIntegerTy());
1826
1827 unsigned BitSize = Ty->getPrimitiveSizeInBits();
1828 if (BitSize == 0)
1829 return ~0U;
1830
Juergen Ributzka43176172014-05-19 21:00:53 +00001831 // Never hoist constants larger than 128bit, because this might lead to
1832 // incorrect code generation or assertions in codegen.
1833 // Fixme: Create a cost model for types larger than i128 once the codegen
1834 // issues have been fixed.
1835 if (BitSize > 128)
Chandler Carruth705b1852015-01-31 03:43:40 +00001836 return TTI::TCC_Free;
Juergen Ributzka43176172014-05-19 21:00:53 +00001837
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001838 if (Imm == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001839 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001840
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001841 // Sign-extend all constants to a multiple of 64-bit.
1842 APInt ImmVal = Imm;
1843 if (BitSize & 0x3f)
1844 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
1845
1846 // Split the constant into 64-bit chunks and calculate the cost for each
1847 // chunk.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001848 int Cost = 0;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001849 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
1850 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
1851 int64_t Val = Tmp.getSExtValue();
1852 Cost += getIntImmCost(Val);
1853 }
Sanjay Patel4c7d0942016-04-05 19:27:39 +00001854 // We need at least one instruction to materialize the constant.
Chandler Carruth93205eb2015-08-05 18:08:10 +00001855 return std::max(1, Cost);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001856}
1857
Chandler Carruth93205eb2015-08-05 18:08:10 +00001858int X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
1859 Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001860 assert(Ty->isIntegerTy());
1861
1862 unsigned BitSize = Ty->getPrimitiveSizeInBits();
Juergen Ributzka43176172014-05-19 21:00:53 +00001863 // There is no cost model for constants with a bit size of 0. Return TCC_Free
1864 // here, so that constant hoisting will ignore this constant.
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001865 if (BitSize == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001866 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001867
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001868 unsigned ImmIdx = ~0U;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001869 switch (Opcode) {
Chandler Carruth705b1852015-01-31 03:43:40 +00001870 default:
1871 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001872 case Instruction::GetElementPtr:
Juergen Ributzka27435b32014-04-02 21:45:36 +00001873 // Always hoist the base address of a GetElementPtr. This prevents the
1874 // creation of new constants for every base constant that gets constant
1875 // folded with the offset.
Juergen Ributzka631c4912014-03-25 18:01:25 +00001876 if (Idx == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001877 return 2 * TTI::TCC_Basic;
1878 return TTI::TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001879 case Instruction::Store:
1880 ImmIdx = 0;
1881 break;
Craig Topper074e8452015-12-20 18:41:54 +00001882 case Instruction::ICmp:
1883 // This is an imperfect hack to prevent constant hoisting of
1884 // compares that might be trying to check if a 64-bit value fits in
1885 // 32-bits. The backend can optimize these cases using a right shift by 32.
1886 // Ideally we would check the compare predicate here. There also other
1887 // similar immediates the backend can use shifts for.
1888 if (Idx == 1 && Imm.getBitWidth() == 64) {
1889 uint64_t ImmVal = Imm.getZExtValue();
1890 if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
1891 return TTI::TCC_Free;
1892 }
1893 ImmIdx = 1;
1894 break;
Craig Topper79dd1bf2015-10-06 02:50:24 +00001895 case Instruction::And:
1896 // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
1897 // by using a 32-bit operation with implicit zero extension. Detect such
1898 // immediates here as the normal path expects bit 31 to be sign extended.
1899 if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
1900 return TTI::TCC_Free;
Justin Bognerb03fd122016-08-17 05:10:15 +00001901 LLVM_FALLTHROUGH;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001902 case Instruction::Add:
1903 case Instruction::Sub:
1904 case Instruction::Mul:
1905 case Instruction::UDiv:
1906 case Instruction::SDiv:
1907 case Instruction::URem:
1908 case Instruction::SRem:
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001909 case Instruction::Or:
1910 case Instruction::Xor:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001911 ImmIdx = 1;
1912 break;
Michael Zolotukhin1f4a9602014-04-30 19:17:32 +00001913 // Always return TCC_Free for the shift value of a shift instruction.
1914 case Instruction::Shl:
1915 case Instruction::LShr:
1916 case Instruction::AShr:
1917 if (Idx == 1)
Chandler Carruth705b1852015-01-31 03:43:40 +00001918 return TTI::TCC_Free;
Michael Zolotukhin1f4a9602014-04-30 19:17:32 +00001919 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001920 case Instruction::Trunc:
1921 case Instruction::ZExt:
1922 case Instruction::SExt:
1923 case Instruction::IntToPtr:
1924 case Instruction::PtrToInt:
1925 case Instruction::BitCast:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001926 case Instruction::PHI:
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001927 case Instruction::Call:
1928 case Instruction::Select:
1929 case Instruction::Ret:
1930 case Instruction::Load:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001931 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001932 }
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001933
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001934 if (Idx == ImmIdx) {
Chandler Carruth93205eb2015-08-05 18:08:10 +00001935 int NumConstants = (BitSize + 63) / 64;
1936 int Cost = X86TTIImpl::getIntImmCost(Imm, Ty);
Chandler Carruth705b1852015-01-31 03:43:40 +00001937 return (Cost <= NumConstants * TTI::TCC_Basic)
Chandler Carruth93205eb2015-08-05 18:08:10 +00001938 ? static_cast<int>(TTI::TCC_Free)
Chandler Carruth705b1852015-01-31 03:43:40 +00001939 : Cost;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001940 }
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001941
Chandler Carruth705b1852015-01-31 03:43:40 +00001942 return X86TTIImpl::getIntImmCost(Imm, Ty);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001943}
1944
Chandler Carruth93205eb2015-08-05 18:08:10 +00001945int X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
1946 Type *Ty) {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001947 assert(Ty->isIntegerTy());
1948
1949 unsigned BitSize = Ty->getPrimitiveSizeInBits();
Juergen Ributzka43176172014-05-19 21:00:53 +00001950 // There is no cost model for constants with a bit size of 0. Return TCC_Free
1951 // here, so that constant hoisting will ignore this constant.
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001952 if (BitSize == 0)
Chandler Carruth705b1852015-01-31 03:43:40 +00001953 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001954
1955 switch (IID) {
Chandler Carruth705b1852015-01-31 03:43:40 +00001956 default:
1957 return TTI::TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001958 case Intrinsic::sadd_with_overflow:
1959 case Intrinsic::uadd_with_overflow:
1960 case Intrinsic::ssub_with_overflow:
1961 case Intrinsic::usub_with_overflow:
1962 case Intrinsic::smul_with_overflow:
1963 case Intrinsic::umul_with_overflow:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001964 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
Chandler Carruth705b1852015-01-31 03:43:40 +00001965 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001966 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001967 case Intrinsic::experimental_stackmap:
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001968 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
Chandler Carruth705b1852015-01-31 03:43:40 +00001969 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001970 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001971 case Intrinsic::experimental_patchpoint_void:
1972 case Intrinsic::experimental_patchpoint_i64:
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001973 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
Chandler Carruth705b1852015-01-31 03:43:40 +00001974 return TTI::TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001975 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001976 }
Chandler Carruth705b1852015-01-31 03:43:40 +00001977 return X86TTIImpl::getIntImmCost(Imm, Ty);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001978}
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00001979
Elena Demikhovsky54946982015-12-28 20:10:59 +00001980// Return an average cost of Gather / Scatter instruction, maybe improved later
1981int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, Value *Ptr,
1982 unsigned Alignment, unsigned AddressSpace) {
1983
1984 assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
1985 unsigned VF = SrcVTy->getVectorNumElements();
1986
1987 // Try to reduce index size from 64 bit (default for GEP)
1988 // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
1989 // operation will use 16 x 64 indices which do not fit in a zmm and needs
1990 // to split. Also check that the base pointer is the same for all lanes,
1991 // and that there's at most one variable index.
1992 auto getIndexSizeInBits = [](Value *Ptr, const DataLayout& DL) {
1993 unsigned IndexSize = DL.getPointerSizeInBits();
1994 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1995 if (IndexSize < 64 || !GEP)
1996 return IndexSize;
Simon Pilgrim14000b32016-05-24 08:17:50 +00001997
Elena Demikhovsky54946982015-12-28 20:10:59 +00001998 unsigned NumOfVarIndices = 0;
1999 Value *Ptrs = GEP->getPointerOperand();
2000 if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
2001 return IndexSize;
2002 for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
2003 if (isa<Constant>(GEP->getOperand(i)))
2004 continue;
2005 Type *IndxTy = GEP->getOperand(i)->getType();
2006 if (IndxTy->isVectorTy())
2007 IndxTy = IndxTy->getVectorElementType();
2008 if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
2009 !isa<SExtInst>(GEP->getOperand(i))) ||
2010 ++NumOfVarIndices > 1)
2011 return IndexSize; // 64
2012 }
2013 return (unsigned)32;
2014 };
2015
2016
2017 // Trying to reduce IndexSize to 32 bits for vector 16.
2018 // By default the IndexSize is equal to pointer size.
2019 unsigned IndexSize = (VF >= 16) ? getIndexSizeInBits(Ptr, DL) :
2020 DL.getPointerSizeInBits();
2021
Mehdi Amini867e9142016-04-14 04:36:40 +00002022 Type *IndexVTy = VectorType::get(IntegerType::get(SrcVTy->getContext(),
Elena Demikhovsky54946982015-12-28 20:10:59 +00002023 IndexSize), VF);
2024 std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
2025 std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
2026 int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
2027 if (SplitFactor > 1) {
2028 // Handle splitting of vector of pointers
2029 Type *SplitSrcTy = VectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
2030 return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
2031 AddressSpace);
2032 }
2033
2034 // The gather / scatter cost is given by Intel architects. It is a rough
2035 // number since we are looking at one instruction in a time.
2036 const int GSOverhead = 2;
2037 return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
2038 Alignment, AddressSpace);
2039}
2040
2041/// Return the cost of full scalarization of gather / scatter operation.
2042///
2043/// Opcode - Load or Store instruction.
2044/// SrcVTy - The type of the data vector that should be gathered or scattered.
2045/// VariableMask - The mask is non-constant at compile time.
2046/// Alignment - Alignment for one element.
2047/// AddressSpace - pointer[s] address space.
2048///
2049int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
2050 bool VariableMask, unsigned Alignment,
2051 unsigned AddressSpace) {
2052 unsigned VF = SrcVTy->getVectorNumElements();
2053
2054 int MaskUnpackCost = 0;
2055 if (VariableMask) {
2056 VectorType *MaskTy =
Mehdi Amini867e9142016-04-14 04:36:40 +00002057 VectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
Elena Demikhovsky54946982015-12-28 20:10:59 +00002058 MaskUnpackCost = getScalarizationOverhead(MaskTy, false, true);
2059 int ScalarCompareCost =
Mehdi Amini867e9142016-04-14 04:36:40 +00002060 getCmpSelInstrCost(Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()),
Elena Demikhovsky54946982015-12-28 20:10:59 +00002061 nullptr);
2062 int BranchCost = getCFInstrCost(Instruction::Br);
2063 MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
2064 }
2065
2066 // The cost of the scalar loads/stores.
2067 int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
2068 Alignment, AddressSpace);
2069
2070 int InsertExtractCost = 0;
2071 if (Opcode == Instruction::Load)
2072 for (unsigned i = 0; i < VF; ++i)
2073 // Add the cost of inserting each scalar load into the vector
2074 InsertExtractCost +=
2075 getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
2076 else
2077 for (unsigned i = 0; i < VF; ++i)
2078 // Add the cost of extracting each element out of the data vector
2079 InsertExtractCost +=
2080 getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
2081
2082 return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
2083}
2084
2085/// Calculate the cost of Gather / Scatter operation
2086int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy,
2087 Value *Ptr, bool VariableMask,
2088 unsigned Alignment) {
2089 assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
2090 unsigned VF = SrcVTy->getVectorNumElements();
2091 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
2092 if (!PtrTy && Ptr->getType()->isVectorTy())
2093 PtrTy = dyn_cast<PointerType>(Ptr->getType()->getVectorElementType());
2094 assert(PtrTy && "Unexpected type for Ptr argument");
2095 unsigned AddressSpace = PtrTy->getAddressSpace();
2096
2097 bool Scalarize = false;
2098 if ((Opcode == Instruction::Load && !isLegalMaskedGather(SrcVTy)) ||
2099 (Opcode == Instruction::Store && !isLegalMaskedScatter(SrcVTy)))
2100 Scalarize = true;
2101 // Gather / Scatter for vector 2 is not profitable on KNL / SKX
2102 // Vector-4 of gather/scatter instruction does not exist on KNL.
2103 // We can extend it to 8 elements, but zeroing upper bits of
2104 // the mask vector will add more instructions. Right now we give the scalar
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002105 // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
2106 // is better in the VariableMask case.
Elena Demikhovsky54946982015-12-28 20:10:59 +00002107 if (VF == 2 || (VF == 4 && !ST->hasVLX()))
2108 Scalarize = true;
2109
2110 if (Scalarize)
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002111 return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
2112 AddressSpace);
Elena Demikhovsky54946982015-12-28 20:10:59 +00002113
2114 return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
2115}
2116
Elena Demikhovsky20662e32015-10-19 07:43:38 +00002117bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy) {
2118 Type *ScalarTy = DataTy->getScalarType();
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +00002119 int DataWidth = isa<PointerType>(ScalarTy) ?
2120 DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00002121
Igor Bregerf44b79d2016-08-02 09:15:28 +00002122 return ((DataWidth == 32 || DataWidth == 64) && ST->hasAVX()) ||
2123 ((DataWidth == 8 || DataWidth == 16) && ST->hasBWI());
NAKAMURA Takumi0b305db2015-07-14 04:03:49 +00002124}
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00002125
Elena Demikhovsky20662e32015-10-19 07:43:38 +00002126bool X86TTIImpl::isLegalMaskedStore(Type *DataType) {
2127 return isLegalMaskedLoad(DataType);
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00002128}
2129
Elena Demikhovsky09285852015-10-25 15:37:55 +00002130bool X86TTIImpl::isLegalMaskedGather(Type *DataTy) {
2131 // This function is called now in two cases: from the Loop Vectorizer
2132 // and from the Scalarizer.
2133 // When the Loop Vectorizer asks about legality of the feature,
2134 // the vectorization factor is not calculated yet. The Loop Vectorizer
2135 // sends a scalar type and the decision is based on the width of the
2136 // scalar element.
2137 // Later on, the cost model will estimate usage this intrinsic based on
2138 // the vector type.
2139 // The Scalarizer asks again about legality. It sends a vector type.
2140 // In this case we can reject non-power-of-2 vectors.
2141 if (isa<VectorType>(DataTy) && !isPowerOf2_32(DataTy->getVectorNumElements()))
2142 return false;
2143 Type *ScalarTy = DataTy->getScalarType();
Elena Demikhovsky1ca72e12015-11-19 07:17:16 +00002144 int DataWidth = isa<PointerType>(ScalarTy) ?
2145 DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits();
Elena Demikhovsky09285852015-10-25 15:37:55 +00002146
2147 // AVX-512 allows gather and scatter
Igor Bregerf44b79d2016-08-02 09:15:28 +00002148 return (DataWidth == 32 || DataWidth == 64) && ST->hasAVX512();
Elena Demikhovsky09285852015-10-25 15:37:55 +00002149}
2150
2151bool X86TTIImpl::isLegalMaskedScatter(Type *DataType) {
2152 return isLegalMaskedGather(DataType);
2153}
2154
Eric Christopherd566fb12015-07-29 22:09:48 +00002155bool X86TTIImpl::areInlineCompatible(const Function *Caller,
2156 const Function *Callee) const {
Eric Christophere1002262015-07-02 01:11:50 +00002157 const TargetMachine &TM = getTLI()->getTargetMachine();
2158
2159 // Work this as a subsetting of subtarget features.
2160 const FeatureBitset &CallerBits =
2161 TM.getSubtargetImpl(*Caller)->getFeatureBits();
2162 const FeatureBitset &CalleeBits =
2163 TM.getSubtargetImpl(*Callee)->getFeatureBits();
2164
2165 // FIXME: This is likely too limiting as it will include subtarget features
2166 // that we might not care about for inlining, but it is conservatively
2167 // correct.
2168 return (CallerBits & CalleeBits) == CalleeBits;
2169}
Michael Kupersteinb2443ed2016-10-20 21:04:31 +00002170
2171bool X86TTIImpl::enableInterleavedAccessVectorization() {
2172 // TODO: We expect this to be beneficial regardless of arch,
2173 // but there are currently some unexplained performance artifacts on Atom.
2174 // As a temporary solution, disable on Atom.
Mohammed Agabaria20caee92017-01-25 09:14:48 +00002175 return !(ST->isAtom());
Michael Kupersteinb2443ed2016-10-20 21:04:31 +00002176}
Elena Demikhovsky21706cb2017-01-02 10:37:52 +00002177
2178// Get estimation for interleaved load/store operations and strided load.
2179// \p Indices contains indices for strided load.
2180// \p Factor - the factor of interleaving.
2181// AVX-512 provides 3-src shuffles that significantly reduces the cost.
2182int X86TTIImpl::getInterleavedMemoryOpCostAVX512(unsigned Opcode, Type *VecTy,
2183 unsigned Factor,
2184 ArrayRef<unsigned> Indices,
2185 unsigned Alignment,
2186 unsigned AddressSpace) {
2187
2188 // VecTy for interleave memop is <VF*Factor x Elt>.
2189 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
2190 // VecTy = <12 x i32>.
2191
2192 // Calculate the number of memory operations (NumOfMemOps), required
2193 // for load/store the VecTy.
2194 MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
2195 unsigned VecTySize = DL.getTypeStoreSize(VecTy);
2196 unsigned LegalVTSize = LegalVT.getStoreSize();
2197 unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
2198
2199 // Get the cost of one memory operation.
2200 Type *SingleMemOpTy = VectorType::get(VecTy->getVectorElementType(),
2201 LegalVT.getVectorNumElements());
2202 unsigned MemOpCost =
2203 getMemoryOpCost(Opcode, SingleMemOpTy, Alignment, AddressSpace);
2204
2205 if (Opcode == Instruction::Load) {
2206 // Kind of shuffle depends on number of loaded values.
2207 // If we load the entire data in one register, we can use a 1-src shuffle.
2208 // Otherwise, we'll merge 2 sources in each operation.
2209 TTI::ShuffleKind ShuffleKind =
2210 (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
2211
2212 unsigned ShuffleCost =
2213 getShuffleCost(ShuffleKind, SingleMemOpTy, 0, nullptr);
2214
2215 unsigned NumOfLoadsInInterleaveGrp =
2216 Indices.size() ? Indices.size() : Factor;
2217 Type *ResultTy = VectorType::get(VecTy->getVectorElementType(),
2218 VecTy->getVectorNumElements() / Factor);
2219 unsigned NumOfResults =
2220 getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
2221 NumOfLoadsInInterleaveGrp;
2222
2223 // About a half of the loads may be folded in shuffles when we have only
2224 // one result. If we have more than one result, we do not fold loads at all.
2225 unsigned NumOfUnfoldedLoads =
2226 NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
2227
2228 // Get a number of shuffle operations per result.
2229 unsigned NumOfShufflesPerResult =
2230 std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
2231
2232 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
2233 // When we have more than one destination, we need additional instructions
2234 // to keep sources.
2235 unsigned NumOfMoves = 0;
2236 if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
2237 NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
2238
2239 int Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
2240 NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
2241
2242 return Cost;
2243 }
2244
2245 // Store.
2246 assert(Opcode == Instruction::Store &&
2247 "Expected Store Instruction at this point");
2248
2249 // There is no strided stores meanwhile. And store can't be folded in
2250 // shuffle.
2251 unsigned NumOfSources = Factor; // The number of values to be merged.
2252 unsigned ShuffleCost =
2253 getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, 0, nullptr);
2254 unsigned NumOfShufflesPerStore = NumOfSources - 1;
2255
2256 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
2257 // We need additional instructions to keep sources.
2258 unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
2259 int Cost = NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
2260 NumOfMoves;
2261 return Cost;
2262}
2263
2264int X86TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
2265 unsigned Factor,
2266 ArrayRef<unsigned> Indices,
2267 unsigned Alignment,
2268 unsigned AddressSpace) {
2269 auto isSupportedOnAVX512 = [](Type *VecTy, bool &RequiresBW) {
2270 RequiresBW = false;
2271 Type *EltTy = VecTy->getVectorElementType();
2272 if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
2273 EltTy->isIntegerTy(32) || EltTy->isPointerTy())
2274 return true;
2275 if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8)) {
2276 RequiresBW = true;
2277 return true;
2278 }
2279 return false;
2280 };
2281 bool RequiresBW;
2282 bool HasAVX512Solution = isSupportedOnAVX512(VecTy, RequiresBW);
2283 if (ST->hasAVX512() && HasAVX512Solution && (!RequiresBW || ST->hasBWI()))
2284 return getInterleavedMemoryOpCostAVX512(Opcode, VecTy, Factor, Indices,
2285 Alignment, AddressSpace);
2286 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
2287 Alignment, AddressSpace);
2288}