blob: a1b3eb47ecb7f5647d1a6505a9a85170fb74f441 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
Sean Silva6cda6dc2013-11-27 04:55:23 +0000131 incrementing counter, starting with 0). Note that basic blocks are
132 included in this numbering. For example, if the entry basic block is not
133 given a label name, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000134
135It also shows a convention that we follow in this document. When
136demonstrating instructions, we will follow an instruction with a comment
137that defines the type and name of value produced.
138
139High Level Structure
140====================
141
142Module Structure
143----------------
144
145LLVM programs are composed of ``Module``'s, each of which is a
146translation unit of the input programs. Each module consists of
147functions, global variables, and symbol table entries. Modules may be
148combined together with the LLVM linker, which merges function (and
149global variable) definitions, resolves forward declarations, and merges
150symbol table entries. Here is an example of the "hello world" module:
151
152.. code-block:: llvm
153
Michael Liaoa7699082013-03-06 18:24:34 +0000154 ; Declare the string constant as a global constant.
155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000156
Michael Liaoa7699082013-03-06 18:24:34 +0000157 ; External declaration of the puts function
158 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000159
160 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000161 define i32 @main() { ; i32()*
162 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
164
Michael Liaoa7699082013-03-06 18:24:34 +0000165 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000166 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000168 }
169
170 ; Named metadata
171 !1 = metadata !{i32 42}
172 !foo = !{!1, null}
173
174This example is made up of a :ref:`global variable <globalvars>` named
175"``.str``", an external declaration of the "``puts``" function, a
176:ref:`function definition <functionstructure>` for "``main``" and
177:ref:`named metadata <namedmetadatastructure>` "``foo``".
178
179In general, a module is made up of a list of global values (where both
180functions and global variables are global values). Global values are
181represented by a pointer to a memory location (in this case, a pointer
182to an array of char, and a pointer to a function), and have one of the
183following :ref:`linkage types <linkage>`.
184
185.. _linkage:
186
187Linkage Types
188-------------
189
190All Global Variables and Functions have one of the following types of
191linkage:
192
193``private``
194 Global values with "``private``" linkage are only directly
195 accessible by objects in the current module. In particular, linking
196 code into a module with an private global value may cause the
197 private to be renamed as necessary to avoid collisions. Because the
198 symbol is private to the module, all references can be updated. This
199 doesn't show up in any symbol table in the object file.
200``linker_private``
201 Similar to ``private``, but the symbol is passed through the
202 assembler and evaluated by the linker. Unlike normal strong symbols,
203 they are removed by the linker from the final linked image
204 (executable or dynamic library).
205``linker_private_weak``
206 Similar to "``linker_private``", but the symbol is weak. Note that
207 ``linker_private_weak`` symbols are subject to coalescing by the
208 linker. The symbols are removed by the linker from the final linked
209 image (executable or dynamic library).
210``internal``
211 Similar to private, but the value shows as a local symbol
212 (``STB_LOCAL`` in the case of ELF) in the object file. This
213 corresponds to the notion of the '``static``' keyword in C.
214``available_externally``
215 Globals with "``available_externally``" linkage are never emitted
216 into the object file corresponding to the LLVM module. They exist to
217 allow inlining and other optimizations to take place given knowledge
218 of the definition of the global, which is known to be somewhere
219 outside the module. Globals with ``available_externally`` linkage
220 are allowed to be discarded at will, and are otherwise the same as
221 ``linkonce_odr``. This linkage type is only allowed on definitions,
222 not declarations.
223``linkonce``
224 Globals with "``linkonce``" linkage are merged with other globals of
225 the same name when linkage occurs. This can be used to implement
226 some forms of inline functions, templates, or other code which must
227 be generated in each translation unit that uses it, but where the
228 body may be overridden with a more definitive definition later.
229 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
230 that ``linkonce`` linkage does not actually allow the optimizer to
231 inline the body of this function into callers because it doesn't
232 know if this definition of the function is the definitive definition
233 within the program or whether it will be overridden by a stronger
234 definition. To enable inlining and other optimizations, use
235 "``linkonce_odr``" linkage.
236``weak``
237 "``weak``" linkage has the same merging semantics as ``linkonce``
238 linkage, except that unreferenced globals with ``weak`` linkage may
239 not be discarded. This is used for globals that are declared "weak"
240 in C source code.
241``common``
242 "``common``" linkage is most similar to "``weak``" linkage, but they
243 are used for tentative definitions in C, such as "``int X;``" at
244 global scope. Symbols with "``common``" linkage are merged in the
245 same way as ``weak symbols``, and they may not be deleted if
246 unreferenced. ``common`` symbols may not have an explicit section,
247 must have a zero initializer, and may not be marked
248 ':ref:`constant <globalvars>`'. Functions and aliases may not have
249 common linkage.
250
251.. _linkage_appending:
252
253``appending``
254 "``appending``" linkage may only be applied to global variables of
255 pointer to array type. When two global variables with appending
256 linkage are linked together, the two global arrays are appended
257 together. This is the LLVM, typesafe, equivalent of having the
258 system linker append together "sections" with identical names when
259 .o files are linked.
260``extern_weak``
261 The semantics of this linkage follow the ELF object file model: the
262 symbol is weak until linked, if not linked, the symbol becomes null
263 instead of being an undefined reference.
264``linkonce_odr``, ``weak_odr``
265 Some languages allow differing globals to be merged, such as two
266 functions with different semantics. Other languages, such as
267 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000268 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000269 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
270 global will only be merged with equivalent globals. These linkage
271 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000272``external``
273 If none of the above identifiers are used, the global is externally
274 visible, meaning that it participates in linkage and can be used to
275 resolve external symbol references.
276
Sean Silvab084af42012-12-07 10:36:55 +0000277It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000278other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000279
Sean Silvab084af42012-12-07 10:36:55 +0000280.. _callingconv:
281
282Calling Conventions
283-------------------
284
285LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
286:ref:`invokes <i_invoke>` can all have an optional calling convention
287specified for the call. The calling convention of any pair of dynamic
288caller/callee must match, or the behavior of the program is undefined.
289The following calling conventions are supported by LLVM, and more may be
290added in the future:
291
292"``ccc``" - The C calling convention
293 This calling convention (the default if no other calling convention
294 is specified) matches the target C calling conventions. This calling
295 convention supports varargs function calls and tolerates some
296 mismatch in the declared prototype and implemented declaration of
297 the function (as does normal C).
298"``fastcc``" - The fast calling convention
299 This calling convention attempts to make calls as fast as possible
300 (e.g. by passing things in registers). This calling convention
301 allows the target to use whatever tricks it wants to produce fast
302 code for the target, without having to conform to an externally
303 specified ABI (Application Binary Interface). `Tail calls can only
304 be optimized when this, the GHC or the HiPE convention is
305 used. <CodeGenerator.html#id80>`_ This calling convention does not
306 support varargs and requires the prototype of all callees to exactly
307 match the prototype of the function definition.
308"``coldcc``" - The cold calling convention
309 This calling convention attempts to make code in the caller as
310 efficient as possible under the assumption that the call is not
311 commonly executed. As such, these calls often preserve all registers
312 so that the call does not break any live ranges in the caller side.
313 This calling convention does not support varargs and requires the
314 prototype of all callees to exactly match the prototype of the
315 function definition.
316"``cc 10``" - GHC convention
317 This calling convention has been implemented specifically for use by
318 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
319 It passes everything in registers, going to extremes to achieve this
320 by disabling callee save registers. This calling convention should
321 not be used lightly but only for specific situations such as an
322 alternative to the *register pinning* performance technique often
323 used when implementing functional programming languages. At the
324 moment only X86 supports this convention and it has the following
325 limitations:
326
327 - On *X86-32* only supports up to 4 bit type parameters. No
328 floating point types are supported.
329 - On *X86-64* only supports up to 10 bit type parameters and 6
330 floating point parameters.
331
332 This calling convention supports `tail call
333 optimization <CodeGenerator.html#id80>`_ but requires both the
334 caller and callee are using it.
335"``cc 11``" - The HiPE calling convention
336 This calling convention has been implemented specifically for use by
337 the `High-Performance Erlang
338 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
339 native code compiler of the `Ericsson's Open Source Erlang/OTP
340 system <http://www.erlang.org/download.shtml>`_. It uses more
341 registers for argument passing than the ordinary C calling
342 convention and defines no callee-saved registers. The calling
343 convention properly supports `tail call
344 optimization <CodeGenerator.html#id80>`_ but requires that both the
345 caller and the callee use it. It uses a *register pinning*
346 mechanism, similar to GHC's convention, for keeping frequently
347 accessed runtime components pinned to specific hardware registers.
348 At the moment only X86 supports this convention (both 32 and 64
349 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000350"``webkit_jscc``" - WebKit's JavaScript calling convention
351 This calling convention has been implemented for `WebKit FTL JIT
352 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
353 stack right to left (as cdecl does), and returns a value in the
354 platform's customary return register.
355"``anyregcc``" - Dynamic calling convention for code patching
356 This is a special convention that supports patching an arbitrary code
357 sequence in place of a call site. This convention forces the call
358 arguments into registers but allows them to be dynamcially
359 allocated. This can currently only be used with calls to
360 llvm.experimental.patchpoint because only this intrinsic records
361 the location of its arguments in a side table. See :doc:`StackMaps`.
Sean Silvab084af42012-12-07 10:36:55 +0000362"``cc <n>``" - Numbered convention
363 Any calling convention may be specified by number, allowing
364 target-specific calling conventions to be used. Target specific
365 calling conventions start at 64.
366
367More calling conventions can be added/defined on an as-needed basis, to
368support Pascal conventions or any other well-known target-independent
369convention.
370
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000371.. _visibilitystyles:
372
Sean Silvab084af42012-12-07 10:36:55 +0000373Visibility Styles
374-----------------
375
376All Global Variables and Functions have one of the following visibility
377styles:
378
379"``default``" - Default style
380 On targets that use the ELF object file format, default visibility
381 means that the declaration is visible to other modules and, in
382 shared libraries, means that the declared entity may be overridden.
383 On Darwin, default visibility means that the declaration is visible
384 to other modules. Default visibility corresponds to "external
385 linkage" in the language.
386"``hidden``" - Hidden style
387 Two declarations of an object with hidden visibility refer to the
388 same object if they are in the same shared object. Usually, hidden
389 visibility indicates that the symbol will not be placed into the
390 dynamic symbol table, so no other module (executable or shared
391 library) can reference it directly.
392"``protected``" - Protected style
393 On ELF, protected visibility indicates that the symbol will be
394 placed in the dynamic symbol table, but that references within the
395 defining module will bind to the local symbol. That is, the symbol
396 cannot be overridden by another module.
397
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000398.. _namedtypes:
399
Nico Rieck7157bb72014-01-14 15:22:47 +0000400DLL Storage Classes
401-------------------
402
403All Global Variables, Functions and Aliases can have one of the following
404DLL storage class:
405
406``dllimport``
407 "``dllimport``" causes the compiler to reference a function or variable via
408 a global pointer to a pointer that is set up by the DLL exporting the
409 symbol. On Microsoft Windows targets, the pointer name is formed by
410 combining ``__imp_`` and the function or variable name.
411``dllexport``
412 "``dllexport``" causes the compiler to provide a global pointer to a pointer
413 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
414 Microsoft Windows targets, the pointer name is formed by combining
415 ``__imp_`` and the function or variable name. Since this storage class
416 exists for defining a dll interface, the compiler, assembler and linker know
417 it is externally referenced and must refrain from deleting the symbol.
418
Sean Silvab084af42012-12-07 10:36:55 +0000419Named Types
420-----------
421
422LLVM IR allows you to specify name aliases for certain types. This can
423make it easier to read the IR and make the IR more condensed
424(particularly when recursive types are involved). An example of a name
425specification is:
426
427.. code-block:: llvm
428
429 %mytype = type { %mytype*, i32 }
430
431You may give a name to any :ref:`type <typesystem>` except
432":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
433expected with the syntax "%mytype".
434
435Note that type names are aliases for the structural type that they
436indicate, and that you can therefore specify multiple names for the same
437type. This often leads to confusing behavior when dumping out a .ll
438file. Since LLVM IR uses structural typing, the name is not part of the
439type. When printing out LLVM IR, the printer will pick *one name* to
440render all types of a particular shape. This means that if you have code
441where two different source types end up having the same LLVM type, that
442the dumper will sometimes print the "wrong" or unexpected type. This is
443an important design point and isn't going to change.
444
445.. _globalvars:
446
447Global Variables
448----------------
449
450Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000451instead of run-time.
452
453Global variables definitions must be initialized, may have an explicit section
454to be placed in, and may have an optional explicit alignment specified.
455
456Global variables in other translation units can also be declared, in which
457case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000458
459A variable may be defined as ``thread_local``, which means that it will
460not be shared by threads (each thread will have a separated copy of the
461variable). Not all targets support thread-local variables. Optionally, a
462TLS model may be specified:
463
464``localdynamic``
465 For variables that are only used within the current shared library.
466``initialexec``
467 For variables in modules that will not be loaded dynamically.
468``localexec``
469 For variables defined in the executable and only used within it.
470
471The models correspond to the ELF TLS models; see `ELF Handling For
472Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
473more information on under which circumstances the different models may
474be used. The target may choose a different TLS model if the specified
475model is not supported, or if a better choice of model can be made.
476
Michael Gottesman006039c2013-01-31 05:48:48 +0000477A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000478the contents of the variable will **never** be modified (enabling better
479optimization, allowing the global data to be placed in the read-only
480section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000481initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000482variable.
483
484LLVM explicitly allows *declarations* of global variables to be marked
485constant, even if the final definition of the global is not. This
486capability can be used to enable slightly better optimization of the
487program, but requires the language definition to guarantee that
488optimizations based on the 'constantness' are valid for the translation
489units that do not include the definition.
490
491As SSA values, global variables define pointer values that are in scope
492(i.e. they dominate) all basic blocks in the program. Global variables
493always define a pointer to their "content" type because they describe a
494region of memory, and all memory objects in LLVM are accessed through
495pointers.
496
497Global variables can be marked with ``unnamed_addr`` which indicates
498that the address is not significant, only the content. Constants marked
499like this can be merged with other constants if they have the same
500initializer. Note that a constant with significant address *can* be
501merged with a ``unnamed_addr`` constant, the result being a constant
502whose address is significant.
503
504A global variable may be declared to reside in a target-specific
505numbered address space. For targets that support them, address spaces
506may affect how optimizations are performed and/or what target
507instructions are used to access the variable. The default address space
508is zero. The address space qualifier must precede any other attributes.
509
510LLVM allows an explicit section to be specified for globals. If the
511target supports it, it will emit globals to the section specified.
512
Michael Gottesmane743a302013-02-04 03:22:00 +0000513By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000514variables defined within the module are not modified from their
515initial values before the start of the global initializer. This is
516true even for variables potentially accessible from outside the
517module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000518``@llvm.used`` or dllexported variables. This assumption may be suppressed
519by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000520
Sean Silvab084af42012-12-07 10:36:55 +0000521An explicit alignment may be specified for a global, which must be a
522power of 2. If not present, or if the alignment is set to zero, the
523alignment of the global is set by the target to whatever it feels
524convenient. If an explicit alignment is specified, the global is forced
525to have exactly that alignment. Targets and optimizers are not allowed
526to over-align the global if the global has an assigned section. In this
527case, the extra alignment could be observable: for example, code could
528assume that the globals are densely packed in their section and try to
529iterate over them as an array, alignment padding would break this
530iteration.
531
Nico Rieck7157bb72014-01-14 15:22:47 +0000532Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
533
534Syntax::
535
536 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
537 [AddrSpace] [unnamed_addr] [ExternallyInitialized]
538 <global | constant> <Type>
539 [, section "name"] [, align <Alignment>]
540
Sean Silvab084af42012-12-07 10:36:55 +0000541For example, the following defines a global in a numbered address space
542with an initializer, section, and alignment:
543
544.. code-block:: llvm
545
546 @G = addrspace(5) constant float 1.0, section "foo", align 4
547
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000548The following example just declares a global variable
549
550.. code-block:: llvm
551
552 @G = external global i32
553
Sean Silvab084af42012-12-07 10:36:55 +0000554The following example defines a thread-local global with the
555``initialexec`` TLS model:
556
557.. code-block:: llvm
558
559 @G = thread_local(initialexec) global i32 0, align 4
560
561.. _functionstructure:
562
563Functions
564---------
565
566LLVM function definitions consist of the "``define``" keyword, an
567optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000568style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
569an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000570an optional ``unnamed_addr`` attribute, a return type, an optional
571:ref:`parameter attribute <paramattrs>` for the return type, a function
572name, a (possibly empty) argument list (each with optional :ref:`parameter
573attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
574an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000575collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
576curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000577
578LLVM function declarations consist of the "``declare``" keyword, an
579optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000580style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
581an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000582an optional ``unnamed_addr`` attribute, a return type, an optional
583:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000584name, a possibly empty list of arguments, an optional alignment, an optional
585:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000586
Bill Wendling6822ecb2013-10-27 05:09:12 +0000587A function definition contains a list of basic blocks, forming the CFG (Control
588Flow Graph) for the function. Each basic block may optionally start with a label
589(giving the basic block a symbol table entry), contains a list of instructions,
590and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
591function return). If an explicit label is not provided, a block is assigned an
592implicit numbered label, using the next value from the same counter as used for
593unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
594entry block does not have an explicit label, it will be assigned label "%0",
595then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000596
597The first basic block in a function is special in two ways: it is
598immediately executed on entrance to the function, and it is not allowed
599to have predecessor basic blocks (i.e. there can not be any branches to
600the entry block of a function). Because the block can have no
601predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
602
603LLVM allows an explicit section to be specified for functions. If the
604target supports it, it will emit functions to the section specified.
605
606An explicit alignment may be specified for a function. If not present,
607or if the alignment is set to zero, the alignment of the function is set
608by the target to whatever it feels convenient. If an explicit alignment
609is specified, the function is forced to have at least that much
610alignment. All alignments must be a power of 2.
611
612If the ``unnamed_addr`` attribute is given, the address is know to not
613be significant and two identical functions can be merged.
614
615Syntax::
616
Nico Rieck7157bb72014-01-14 15:22:47 +0000617 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000618 [cconv] [ret attrs]
619 <ResultType> @<FunctionName> ([argument list])
620 [fn Attrs] [section "name"] [align N]
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000621 [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000622
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000623.. _langref_aliases:
624
Sean Silvab084af42012-12-07 10:36:55 +0000625Aliases
626-------
627
628Aliases act as "second name" for the aliasee value (which can be either
629function, global variable, another alias or bitcast of global value).
Nico Rieck7157bb72014-01-14 15:22:47 +0000630Aliases may have an optional :ref:`linkage type <linkage>`, an optional
631:ref:`visibility style <visibility>`, and an optional :ref:`DLL storage class
632<dllstorageclass>`.
Sean Silvab084af42012-12-07 10:36:55 +0000633
634Syntax::
635
Nico Rieck7157bb72014-01-14 15:22:47 +0000636 @<Name> = [Visibility] [DLLStorageClass] alias [Linkage] <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000637
Rafael Espindola65785492013-10-07 13:57:59 +0000638The linkage must be one of ``private``, ``linker_private``,
Rafael Espindola78527052013-10-06 15:10:43 +0000639``linker_private_weak``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000640``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Alp Tokerf907b892013-12-05 05:44:44 +0000641might not correctly handle dropping a weak symbol that is aliased by a non-weak
Rafael Espindola716e7402013-11-01 17:09:14 +0000642alias.
Rafael Espindola78527052013-10-06 15:10:43 +0000643
Sean Silvab084af42012-12-07 10:36:55 +0000644.. _namedmetadatastructure:
645
646Named Metadata
647--------------
648
649Named metadata is a collection of metadata. :ref:`Metadata
650nodes <metadata>` (but not metadata strings) are the only valid
651operands for a named metadata.
652
653Syntax::
654
655 ; Some unnamed metadata nodes, which are referenced by the named metadata.
656 !0 = metadata !{metadata !"zero"}
657 !1 = metadata !{metadata !"one"}
658 !2 = metadata !{metadata !"two"}
659 ; A named metadata.
660 !name = !{!0, !1, !2}
661
662.. _paramattrs:
663
664Parameter Attributes
665--------------------
666
667The return type and each parameter of a function type may have a set of
668*parameter attributes* associated with them. Parameter attributes are
669used to communicate additional information about the result or
670parameters of a function. Parameter attributes are considered to be part
671of the function, not of the function type, so functions with different
672parameter attributes can have the same function type.
673
674Parameter attributes are simple keywords that follow the type specified.
675If multiple parameter attributes are needed, they are space separated.
676For example:
677
678.. code-block:: llvm
679
680 declare i32 @printf(i8* noalias nocapture, ...)
681 declare i32 @atoi(i8 zeroext)
682 declare signext i8 @returns_signed_char()
683
684Note that any attributes for the function result (``nounwind``,
685``readonly``) come immediately after the argument list.
686
687Currently, only the following parameter attributes are defined:
688
689``zeroext``
690 This indicates to the code generator that the parameter or return
691 value should be zero-extended to the extent required by the target's
692 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
693 the caller (for a parameter) or the callee (for a return value).
694``signext``
695 This indicates to the code generator that the parameter or return
696 value should be sign-extended to the extent required by the target's
697 ABI (which is usually 32-bits) by the caller (for a parameter) or
698 the callee (for a return value).
699``inreg``
700 This indicates that this parameter or return value should be treated
701 in a special target-dependent fashion during while emitting code for
702 a function call or return (usually, by putting it in a register as
703 opposed to memory, though some targets use it to distinguish between
704 two different kinds of registers). Use of this attribute is
705 target-specific.
706``byval``
707 This indicates that the pointer parameter should really be passed by
708 value to the function. The attribute implies that a hidden copy of
709 the pointee is made between the caller and the callee, so the callee
710 is unable to modify the value in the caller. This attribute is only
711 valid on LLVM pointer arguments. It is generally used to pass
712 structs and arrays by value, but is also valid on pointers to
713 scalars. The copy is considered to belong to the caller not the
714 callee (for example, ``readonly`` functions should not write to
715 ``byval`` parameters). This is not a valid attribute for return
716 values.
717
718 The byval attribute also supports specifying an alignment with the
719 align attribute. It indicates the alignment of the stack slot to
720 form and the known alignment of the pointer specified to the call
721 site. If the alignment is not specified, then the code generator
722 makes a target-specific assumption.
723
Reid Klecknera534a382013-12-19 02:14:12 +0000724.. _attr_inalloca:
725
726``inalloca``
727
728.. Warning:: This feature is unstable and not fully implemented.
729
730 The ``inalloca`` argument attribute allows the caller to get the
731 address of an outgoing argument to a ``call`` or ``invoke`` before
732 it executes. It is similar to ``byval`` in that it is used to pass
733 arguments by value, but it guarantees that the argument will not be
734 copied.
735
736 To be :ref:`well formed <wellformed>`, the caller must pass in an
737 alloca value into an ``inalloca`` parameter, and an alloca may be
738 used as an ``inalloca`` argument at most once. The attribute can
739 only be applied to parameters that would be passed in memory and not
740 registers. The ``inalloca`` attribute cannot be used in conjunction
741 with other attributes that affect argument storage, like ``inreg``,
742 ``nest``, ``sret``, or ``byval``. The ``inalloca`` stack space is
743 considered to be clobbered by any call that uses it, so any
744 ``inalloca`` parameters cannot be marked ``readonly``.
745
746 Allocas passed with ``inalloca`` to a call must be in the opposite
747 order of the parameter list, meaning that the rightmost argument
748 must be allocated first. If a call has inalloca arguments, no other
749 allocas can occur between the first alloca used by the call and the
750 call site, unless they are are cleared by calls to
751 :ref:`llvm.stackrestore <int_stackrestore>`. Violating these rules
752 results in undefined behavior at runtime.
753
754 See :doc:`InAlloca` for more information on how to use this
755 attribute.
756
Sean Silvab084af42012-12-07 10:36:55 +0000757``sret``
758 This indicates that the pointer parameter specifies the address of a
759 structure that is the return value of the function in the source
760 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000761 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000762 not to trap and to be properly aligned. This may only be applied to
763 the first parameter. This is not a valid attribute for return
764 values.
765``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000766 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000767 the argument or return value do not alias pointer values which are
768 not *based* on it, ignoring certain "irrelevant" dependencies. For a
769 call to the parent function, dependencies between memory references
770 from before or after the call and from those during the call are
771 "irrelevant" to the ``noalias`` keyword for the arguments and return
772 value used in that call. The caller shares the responsibility with
773 the callee for ensuring that these requirements are met. For further
774 details, please see the discussion of the NoAlias response in `alias
775 analysis <AliasAnalysis.html#MustMayNo>`_.
776
777 Note that this definition of ``noalias`` is intentionally similar
778 to the definition of ``restrict`` in C99 for function arguments,
779 though it is slightly weaker.
780
781 For function return values, C99's ``restrict`` is not meaningful,
782 while LLVM's ``noalias`` is.
783``nocapture``
784 This indicates that the callee does not make any copies of the
785 pointer that outlive the callee itself. This is not a valid
786 attribute for return values.
787
788.. _nest:
789
790``nest``
791 This indicates that the pointer parameter can be excised using the
792 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000793 attribute for return values and can only be applied to one parameter.
794
795``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000796 This indicates that the function always returns the argument as its return
797 value. This is an optimization hint to the code generator when generating
798 the caller, allowing tail call optimization and omission of register saves
799 and restores in some cases; it is not checked or enforced when generating
800 the callee. The parameter and the function return type must be valid
801 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
802 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000803
804.. _gc:
805
806Garbage Collector Names
807-----------------------
808
809Each function may specify a garbage collector name, which is simply a
810string:
811
812.. code-block:: llvm
813
814 define void @f() gc "name" { ... }
815
816The compiler declares the supported values of *name*. Specifying a
817collector which will cause the compiler to alter its output in order to
818support the named garbage collection algorithm.
819
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000820.. _prefixdata:
821
822Prefix Data
823-----------
824
825Prefix data is data associated with a function which the code generator
826will emit immediately before the function body. The purpose of this feature
827is to allow frontends to associate language-specific runtime metadata with
828specific functions and make it available through the function pointer while
829still allowing the function pointer to be called. To access the data for a
830given function, a program may bitcast the function pointer to a pointer to
831the constant's type. This implies that the IR symbol points to the start
832of the prefix data.
833
834To maintain the semantics of ordinary function calls, the prefix data must
835have a particular format. Specifically, it must begin with a sequence of
836bytes which decode to a sequence of machine instructions, valid for the
837module's target, which transfer control to the point immediately succeeding
838the prefix data, without performing any other visible action. This allows
839the inliner and other passes to reason about the semantics of the function
840definition without needing to reason about the prefix data. Obviously this
841makes the format of the prefix data highly target dependent.
842
Peter Collingbourne213358a2013-09-23 20:14:21 +0000843Prefix data is laid out as if it were an initializer for a global variable
844of the prefix data's type. No padding is automatically placed between the
845prefix data and the function body. If padding is required, it must be part
846of the prefix data.
847
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000848A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
849which encodes the ``nop`` instruction:
850
851.. code-block:: llvm
852
853 define void @f() prefix i8 144 { ... }
854
855Generally prefix data can be formed by encoding a relative branch instruction
856which skips the metadata, as in this example of valid prefix data for the
857x86_64 architecture, where the first two bytes encode ``jmp .+10``:
858
859.. code-block:: llvm
860
861 %0 = type <{ i8, i8, i8* }>
862
863 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
864
865A function may have prefix data but no body. This has similar semantics
866to the ``available_externally`` linkage in that the data may be used by the
867optimizers but will not be emitted in the object file.
868
Bill Wendling63b88192013-02-06 06:52:58 +0000869.. _attrgrp:
870
871Attribute Groups
872----------------
873
874Attribute groups are groups of attributes that are referenced by objects within
875the IR. They are important for keeping ``.ll`` files readable, because a lot of
876functions will use the same set of attributes. In the degenerative case of a
877``.ll`` file that corresponds to a single ``.c`` file, the single attribute
878group will capture the important command line flags used to build that file.
879
880An attribute group is a module-level object. To use an attribute group, an
881object references the attribute group's ID (e.g. ``#37``). An object may refer
882to more than one attribute group. In that situation, the attributes from the
883different groups are merged.
884
885Here is an example of attribute groups for a function that should always be
886inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
887
888.. code-block:: llvm
889
890 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000891 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +0000892
893 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000894 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +0000895
896 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
897 define void @f() #0 #1 { ... }
898
Sean Silvab084af42012-12-07 10:36:55 +0000899.. _fnattrs:
900
901Function Attributes
902-------------------
903
904Function attributes are set to communicate additional information about
905a function. Function attributes are considered to be part of the
906function, not of the function type, so functions with different function
907attributes can have the same function type.
908
909Function attributes are simple keywords that follow the type specified.
910If multiple attributes are needed, they are space separated. For
911example:
912
913.. code-block:: llvm
914
915 define void @f() noinline { ... }
916 define void @f() alwaysinline { ... }
917 define void @f() alwaysinline optsize { ... }
918 define void @f() optsize { ... }
919
Sean Silvab084af42012-12-07 10:36:55 +0000920``alignstack(<n>)``
921 This attribute indicates that, when emitting the prologue and
922 epilogue, the backend should forcibly align the stack pointer.
923 Specify the desired alignment, which must be a power of two, in
924 parentheses.
925``alwaysinline``
926 This attribute indicates that the inliner should attempt to inline
927 this function into callers whenever possible, ignoring any active
928 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +0000929``builtin``
930 This indicates that the callee function at a call site should be
931 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +0000932 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +0000933 direct calls to functions which are declared with the ``nobuiltin``
934 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +0000935``cold``
936 This attribute indicates that this function is rarely called. When
937 computing edge weights, basic blocks post-dominated by a cold
938 function call are also considered to be cold; and, thus, given low
939 weight.
Sean Silvab084af42012-12-07 10:36:55 +0000940``inlinehint``
941 This attribute indicates that the source code contained a hint that
942 inlining this function is desirable (such as the "inline" keyword in
943 C/C++). It is just a hint; it imposes no requirements on the
944 inliner.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000945``minsize``
946 This attribute suggests that optimization passes and code generator
947 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000948 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000949 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +0000950``naked``
951 This attribute disables prologue / epilogue emission for the
952 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +0000953``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +0000954 This indicates that the callee function at a call site is not recognized as
955 a built-in function. LLVM will retain the original call and not replace it
956 with equivalent code based on the semantics of the built-in function, unless
957 the call site uses the ``builtin`` attribute. This is valid at call sites
958 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +0000959``noduplicate``
960 This attribute indicates that calls to the function cannot be
961 duplicated. A call to a ``noduplicate`` function may be moved
962 within its parent function, but may not be duplicated within
963 its parent function.
964
965 A function containing a ``noduplicate`` call may still
966 be an inlining candidate, provided that the call is not
967 duplicated by inlining. That implies that the function has
968 internal linkage and only has one call site, so the original
969 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000970``noimplicitfloat``
971 This attributes disables implicit floating point instructions.
972``noinline``
973 This attribute indicates that the inliner should never inline this
974 function in any situation. This attribute may not be used together
975 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +0000976``nonlazybind``
977 This attribute suppresses lazy symbol binding for the function. This
978 may make calls to the function faster, at the cost of extra program
979 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +0000980``noredzone``
981 This attribute indicates that the code generator should not use a
982 red zone, even if the target-specific ABI normally permits it.
983``noreturn``
984 This function attribute indicates that the function never returns
985 normally. This produces undefined behavior at runtime if the
986 function ever does dynamically return.
987``nounwind``
988 This function attribute indicates that the function never returns
989 with an unwind or exceptional control flow. If the function does
990 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +0000991``optnone``
992 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000993 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +0000994 exception of interprocedural optimization passes.
995 This attribute cannot be used together with the ``alwaysinline``
996 attribute; this attribute is also incompatible
997 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000998
Paul Robinsondcbe35b2013-11-18 21:44:03 +0000999 This attribute requires the ``noinline`` attribute to be specified on
1000 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001001 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001002 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001003``optsize``
1004 This attribute suggests that optimization passes and code generator
1005 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001006 and otherwise do optimizations specifically to reduce code size as
1007 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001008``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001009 On a function, this attribute indicates that the function computes its
1010 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001011 without dereferencing any pointer arguments or otherwise accessing
1012 any mutable state (e.g. memory, control registers, etc) visible to
1013 caller functions. It does not write through any pointer arguments
1014 (including ``byval`` arguments) and never changes any state visible
1015 to callers. This means that it cannot unwind exceptions by calling
1016 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001017
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001018 On an argument, this attribute indicates that the function does not
1019 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001020 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001021``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001022 On a function, this attribute indicates that the function does not write
1023 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001024 modify any state (e.g. memory, control registers, etc) visible to
1025 caller functions. It may dereference pointer arguments and read
1026 state that may be set in the caller. A readonly function always
1027 returns the same value (or unwinds an exception identically) when
1028 called with the same set of arguments and global state. It cannot
1029 unwind an exception by calling the ``C++`` exception throwing
1030 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001031
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001032 On an argument, this attribute indicates that the function does not write
1033 through this pointer argument, even though it may write to the memory that
1034 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001035``returns_twice``
1036 This attribute indicates that this function can return twice. The C
1037 ``setjmp`` is an example of such a function. The compiler disables
1038 some optimizations (like tail calls) in the caller of these
1039 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001040``sanitize_address``
1041 This attribute indicates that AddressSanitizer checks
1042 (dynamic address safety analysis) are enabled for this function.
1043``sanitize_memory``
1044 This attribute indicates that MemorySanitizer checks (dynamic detection
1045 of accesses to uninitialized memory) are enabled for this function.
1046``sanitize_thread``
1047 This attribute indicates that ThreadSanitizer checks
1048 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001049``ssp``
1050 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001051 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001052 placed on the stack before the local variables that's checked upon
1053 return from the function to see if it has been overwritten. A
1054 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001055 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001056
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001057 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1058 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1059 - Calls to alloca() with variable sizes or constant sizes greater than
1060 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001061
1062 If a function that has an ``ssp`` attribute is inlined into a
1063 function that doesn't have an ``ssp`` attribute, then the resulting
1064 function will have an ``ssp`` attribute.
1065``sspreq``
1066 This attribute indicates that the function should *always* emit a
1067 stack smashing protector. This overrides the ``ssp`` function
1068 attribute.
1069
1070 If a function that has an ``sspreq`` attribute is inlined into a
1071 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001072 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1073 an ``sspreq`` attribute.
1074``sspstrong``
1075 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001076 protector. This attribute causes a strong heuristic to be used when
1077 determining if a function needs stack protectors. The strong heuristic
1078 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001079
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001080 - Arrays of any size and type
1081 - Aggregates containing an array of any size and type.
1082 - Calls to alloca().
1083 - Local variables that have had their address taken.
1084
1085 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001086
1087 If a function that has an ``sspstrong`` attribute is inlined into a
1088 function that doesn't have an ``sspstrong`` attribute, then the
1089 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001090``uwtable``
1091 This attribute indicates that the ABI being targeted requires that
1092 an unwind table entry be produce for this function even if we can
1093 show that no exceptions passes by it. This is normally the case for
1094 the ELF x86-64 abi, but it can be disabled for some compilation
1095 units.
Sean Silvab084af42012-12-07 10:36:55 +00001096
1097.. _moduleasm:
1098
1099Module-Level Inline Assembly
1100----------------------------
1101
1102Modules may contain "module-level inline asm" blocks, which corresponds
1103to the GCC "file scope inline asm" blocks. These blocks are internally
1104concatenated by LLVM and treated as a single unit, but may be separated
1105in the ``.ll`` file if desired. The syntax is very simple:
1106
1107.. code-block:: llvm
1108
1109 module asm "inline asm code goes here"
1110 module asm "more can go here"
1111
1112The strings can contain any character by escaping non-printable
1113characters. The escape sequence used is simply "\\xx" where "xx" is the
1114two digit hex code for the number.
1115
1116The inline asm code is simply printed to the machine code .s file when
1117assembly code is generated.
1118
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001119.. _langref_datalayout:
1120
Sean Silvab084af42012-12-07 10:36:55 +00001121Data Layout
1122-----------
1123
1124A module may specify a target specific data layout string that specifies
1125how data is to be laid out in memory. The syntax for the data layout is
1126simply:
1127
1128.. code-block:: llvm
1129
1130 target datalayout = "layout specification"
1131
1132The *layout specification* consists of a list of specifications
1133separated by the minus sign character ('-'). Each specification starts
1134with a letter and may include other information after the letter to
1135define some aspect of the data layout. The specifications accepted are
1136as follows:
1137
1138``E``
1139 Specifies that the target lays out data in big-endian form. That is,
1140 the bits with the most significance have the lowest address
1141 location.
1142``e``
1143 Specifies that the target lays out data in little-endian form. That
1144 is, the bits with the least significance have the lowest address
1145 location.
1146``S<size>``
1147 Specifies the natural alignment of the stack in bits. Alignment
1148 promotion of stack variables is limited to the natural stack
1149 alignment to avoid dynamic stack realignment. The stack alignment
1150 must be a multiple of 8-bits. If omitted, the natural stack
1151 alignment defaults to "unspecified", which does not prevent any
1152 alignment promotions.
1153``p[n]:<size>:<abi>:<pref>``
1154 This specifies the *size* of a pointer and its ``<abi>`` and
1155 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001156 bits. The address space, ``n`` is optional, and if not specified,
1157 denotes the default address space 0. The value of ``n`` must be
1158 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001159``i<size>:<abi>:<pref>``
1160 This specifies the alignment for an integer type of a given bit
1161 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1162``v<size>:<abi>:<pref>``
1163 This specifies the alignment for a vector type of a given bit
1164 ``<size>``.
1165``f<size>:<abi>:<pref>``
1166 This specifies the alignment for a floating point type of a given bit
1167 ``<size>``. Only values of ``<size>`` that are supported by the target
1168 will work. 32 (float) and 64 (double) are supported on all targets; 80
1169 or 128 (different flavors of long double) are also supported on some
1170 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001171``a:<abi>:<pref>``
1172 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001173``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001174 If present, specifies that llvm names are mangled in the output. The
1175 options are
1176
1177 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1178 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1179 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1180 symbols get a ``_`` prefix.
1181 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1182 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001183``n<size1>:<size2>:<size3>...``
1184 This specifies a set of native integer widths for the target CPU in
1185 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1186 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1187 this set are considered to support most general arithmetic operations
1188 efficiently.
1189
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001190On every specification that takes a ``<abi>:<pref>``, specifying the
1191``<pref>`` alignment is optional. If omitted, the preceding ``:``
1192should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1193
Sean Silvab084af42012-12-07 10:36:55 +00001194When constructing the data layout for a given target, LLVM starts with a
1195default set of specifications which are then (possibly) overridden by
1196the specifications in the ``datalayout`` keyword. The default
1197specifications are given in this list:
1198
1199- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001200- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1201- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1202 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001203- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001204- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1205- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1206- ``i16:16:16`` - i16 is 16-bit aligned
1207- ``i32:32:32`` - i32 is 32-bit aligned
1208- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1209 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001210- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001211- ``f32:32:32`` - float is 32-bit aligned
1212- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001213- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001214- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1215- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001216- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001217
1218When LLVM is determining the alignment for a given type, it uses the
1219following rules:
1220
1221#. If the type sought is an exact match for one of the specifications,
1222 that specification is used.
1223#. If no match is found, and the type sought is an integer type, then
1224 the smallest integer type that is larger than the bitwidth of the
1225 sought type is used. If none of the specifications are larger than
1226 the bitwidth then the largest integer type is used. For example,
1227 given the default specifications above, the i7 type will use the
1228 alignment of i8 (next largest) while both i65 and i256 will use the
1229 alignment of i64 (largest specified).
1230#. If no match is found, and the type sought is a vector type, then the
1231 largest vector type that is smaller than the sought vector type will
1232 be used as a fall back. This happens because <128 x double> can be
1233 implemented in terms of 64 <2 x double>, for example.
1234
1235The function of the data layout string may not be what you expect.
1236Notably, this is not a specification from the frontend of what alignment
1237the code generator should use.
1238
1239Instead, if specified, the target data layout is required to match what
1240the ultimate *code generator* expects. This string is used by the
1241mid-level optimizers to improve code, and this only works if it matches
1242what the ultimate code generator uses. If you would like to generate IR
1243that does not embed this target-specific detail into the IR, then you
1244don't have to specify the string. This will disable some optimizations
1245that require precise layout information, but this also prevents those
1246optimizations from introducing target specificity into the IR.
1247
Bill Wendling5cc90842013-10-18 23:41:25 +00001248.. _langref_triple:
1249
1250Target Triple
1251-------------
1252
1253A module may specify a target triple string that describes the target
1254host. The syntax for the target triple is simply:
1255
1256.. code-block:: llvm
1257
1258 target triple = "x86_64-apple-macosx10.7.0"
1259
1260The *target triple* string consists of a series of identifiers delimited
1261by the minus sign character ('-'). The canonical forms are:
1262
1263::
1264
1265 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1266 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1267
1268This information is passed along to the backend so that it generates
1269code for the proper architecture. It's possible to override this on the
1270command line with the ``-mtriple`` command line option.
1271
Sean Silvab084af42012-12-07 10:36:55 +00001272.. _pointeraliasing:
1273
1274Pointer Aliasing Rules
1275----------------------
1276
1277Any memory access must be done through a pointer value associated with
1278an address range of the memory access, otherwise the behavior is
1279undefined. Pointer values are associated with address ranges according
1280to the following rules:
1281
1282- A pointer value is associated with the addresses associated with any
1283 value it is *based* on.
1284- An address of a global variable is associated with the address range
1285 of the variable's storage.
1286- The result value of an allocation instruction is associated with the
1287 address range of the allocated storage.
1288- A null pointer in the default address-space is associated with no
1289 address.
1290- An integer constant other than zero or a pointer value returned from
1291 a function not defined within LLVM may be associated with address
1292 ranges allocated through mechanisms other than those provided by
1293 LLVM. Such ranges shall not overlap with any ranges of addresses
1294 allocated by mechanisms provided by LLVM.
1295
1296A pointer value is *based* on another pointer value according to the
1297following rules:
1298
1299- A pointer value formed from a ``getelementptr`` operation is *based*
1300 on the first operand of the ``getelementptr``.
1301- The result value of a ``bitcast`` is *based* on the operand of the
1302 ``bitcast``.
1303- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1304 values that contribute (directly or indirectly) to the computation of
1305 the pointer's value.
1306- The "*based* on" relationship is transitive.
1307
1308Note that this definition of *"based"* is intentionally similar to the
1309definition of *"based"* in C99, though it is slightly weaker.
1310
1311LLVM IR does not associate types with memory. The result type of a
1312``load`` merely indicates the size and alignment of the memory from
1313which to load, as well as the interpretation of the value. The first
1314operand type of a ``store`` similarly only indicates the size and
1315alignment of the store.
1316
1317Consequently, type-based alias analysis, aka TBAA, aka
1318``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1319:ref:`Metadata <metadata>` may be used to encode additional information
1320which specialized optimization passes may use to implement type-based
1321alias analysis.
1322
1323.. _volatile:
1324
1325Volatile Memory Accesses
1326------------------------
1327
1328Certain memory accesses, such as :ref:`load <i_load>`'s,
1329:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1330marked ``volatile``. The optimizers must not change the number of
1331volatile operations or change their order of execution relative to other
1332volatile operations. The optimizers *may* change the order of volatile
1333operations relative to non-volatile operations. This is not Java's
1334"volatile" and has no cross-thread synchronization behavior.
1335
Andrew Trick89fc5a62013-01-30 21:19:35 +00001336IR-level volatile loads and stores cannot safely be optimized into
1337llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1338flagged volatile. Likewise, the backend should never split or merge
1339target-legal volatile load/store instructions.
1340
Andrew Trick7e6f9282013-01-31 00:49:39 +00001341.. admonition:: Rationale
1342
1343 Platforms may rely on volatile loads and stores of natively supported
1344 data width to be executed as single instruction. For example, in C
1345 this holds for an l-value of volatile primitive type with native
1346 hardware support, but not necessarily for aggregate types. The
1347 frontend upholds these expectations, which are intentionally
1348 unspecified in the IR. The rules above ensure that IR transformation
1349 do not violate the frontend's contract with the language.
1350
Sean Silvab084af42012-12-07 10:36:55 +00001351.. _memmodel:
1352
1353Memory Model for Concurrent Operations
1354--------------------------------------
1355
1356The LLVM IR does not define any way to start parallel threads of
1357execution or to register signal handlers. Nonetheless, there are
1358platform-specific ways to create them, and we define LLVM IR's behavior
1359in their presence. This model is inspired by the C++0x memory model.
1360
1361For a more informal introduction to this model, see the :doc:`Atomics`.
1362
1363We define a *happens-before* partial order as the least partial order
1364that
1365
1366- Is a superset of single-thread program order, and
1367- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1368 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1369 techniques, like pthread locks, thread creation, thread joining,
1370 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1371 Constraints <ordering>`).
1372
1373Note that program order does not introduce *happens-before* edges
1374between a thread and signals executing inside that thread.
1375
1376Every (defined) read operation (load instructions, memcpy, atomic
1377loads/read-modify-writes, etc.) R reads a series of bytes written by
1378(defined) write operations (store instructions, atomic
1379stores/read-modify-writes, memcpy, etc.). For the purposes of this
1380section, initialized globals are considered to have a write of the
1381initializer which is atomic and happens before any other read or write
1382of the memory in question. For each byte of a read R, R\ :sub:`byte`
1383may see any write to the same byte, except:
1384
1385- If write\ :sub:`1` happens before write\ :sub:`2`, and
1386 write\ :sub:`2` happens before R\ :sub:`byte`, then
1387 R\ :sub:`byte` does not see write\ :sub:`1`.
1388- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1389 R\ :sub:`byte` does not see write\ :sub:`3`.
1390
1391Given that definition, R\ :sub:`byte` is defined as follows:
1392
1393- If R is volatile, the result is target-dependent. (Volatile is
1394 supposed to give guarantees which can support ``sig_atomic_t`` in
1395 C/C++, and may be used for accesses to addresses which do not behave
1396 like normal memory. It does not generally provide cross-thread
1397 synchronization.)
1398- Otherwise, if there is no write to the same byte that happens before
1399 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1400- Otherwise, if R\ :sub:`byte` may see exactly one write,
1401 R\ :sub:`byte` returns the value written by that write.
1402- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1403 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1404 Memory Ordering Constraints <ordering>` section for additional
1405 constraints on how the choice is made.
1406- Otherwise R\ :sub:`byte` returns ``undef``.
1407
1408R returns the value composed of the series of bytes it read. This
1409implies that some bytes within the value may be ``undef`` **without**
1410the entire value being ``undef``. Note that this only defines the
1411semantics of the operation; it doesn't mean that targets will emit more
1412than one instruction to read the series of bytes.
1413
1414Note that in cases where none of the atomic intrinsics are used, this
1415model places only one restriction on IR transformations on top of what
1416is required for single-threaded execution: introducing a store to a byte
1417which might not otherwise be stored is not allowed in general.
1418(Specifically, in the case where another thread might write to and read
1419from an address, introducing a store can change a load that may see
1420exactly one write into a load that may see multiple writes.)
1421
1422.. _ordering:
1423
1424Atomic Memory Ordering Constraints
1425----------------------------------
1426
1427Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1428:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1429:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1430an ordering parameter that determines which other atomic instructions on
1431the same address they *synchronize with*. These semantics are borrowed
1432from Java and C++0x, but are somewhat more colloquial. If these
1433descriptions aren't precise enough, check those specs (see spec
1434references in the :doc:`atomics guide <Atomics>`).
1435:ref:`fence <i_fence>` instructions treat these orderings somewhat
1436differently since they don't take an address. See that instruction's
1437documentation for details.
1438
1439For a simpler introduction to the ordering constraints, see the
1440:doc:`Atomics`.
1441
1442``unordered``
1443 The set of values that can be read is governed by the happens-before
1444 partial order. A value cannot be read unless some operation wrote
1445 it. This is intended to provide a guarantee strong enough to model
1446 Java's non-volatile shared variables. This ordering cannot be
1447 specified for read-modify-write operations; it is not strong enough
1448 to make them atomic in any interesting way.
1449``monotonic``
1450 In addition to the guarantees of ``unordered``, there is a single
1451 total order for modifications by ``monotonic`` operations on each
1452 address. All modification orders must be compatible with the
1453 happens-before order. There is no guarantee that the modification
1454 orders can be combined to a global total order for the whole program
1455 (and this often will not be possible). The read in an atomic
1456 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1457 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1458 order immediately before the value it writes. If one atomic read
1459 happens before another atomic read of the same address, the later
1460 read must see the same value or a later value in the address's
1461 modification order. This disallows reordering of ``monotonic`` (or
1462 stronger) operations on the same address. If an address is written
1463 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1464 read that address repeatedly, the other threads must eventually see
1465 the write. This corresponds to the C++0x/C1x
1466 ``memory_order_relaxed``.
1467``acquire``
1468 In addition to the guarantees of ``monotonic``, a
1469 *synchronizes-with* edge may be formed with a ``release`` operation.
1470 This is intended to model C++'s ``memory_order_acquire``.
1471``release``
1472 In addition to the guarantees of ``monotonic``, if this operation
1473 writes a value which is subsequently read by an ``acquire``
1474 operation, it *synchronizes-with* that operation. (This isn't a
1475 complete description; see the C++0x definition of a release
1476 sequence.) This corresponds to the C++0x/C1x
1477 ``memory_order_release``.
1478``acq_rel`` (acquire+release)
1479 Acts as both an ``acquire`` and ``release`` operation on its
1480 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1481``seq_cst`` (sequentially consistent)
1482 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1483 operation which only reads, ``release`` for an operation which only
1484 writes), there is a global total order on all
1485 sequentially-consistent operations on all addresses, which is
1486 consistent with the *happens-before* partial order and with the
1487 modification orders of all the affected addresses. Each
1488 sequentially-consistent read sees the last preceding write to the
1489 same address in this global order. This corresponds to the C++0x/C1x
1490 ``memory_order_seq_cst`` and Java volatile.
1491
1492.. _singlethread:
1493
1494If an atomic operation is marked ``singlethread``, it only *synchronizes
1495with* or participates in modification and seq\_cst total orderings with
1496other operations running in the same thread (for example, in signal
1497handlers).
1498
1499.. _fastmath:
1500
1501Fast-Math Flags
1502---------------
1503
1504LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1505:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1506:ref:`frem <i_frem>`) have the following flags that can set to enable
1507otherwise unsafe floating point operations
1508
1509``nnan``
1510 No NaNs - Allow optimizations to assume the arguments and result are not
1511 NaN. Such optimizations are required to retain defined behavior over
1512 NaNs, but the value of the result is undefined.
1513
1514``ninf``
1515 No Infs - Allow optimizations to assume the arguments and result are not
1516 +/-Inf. Such optimizations are required to retain defined behavior over
1517 +/-Inf, but the value of the result is undefined.
1518
1519``nsz``
1520 No Signed Zeros - Allow optimizations to treat the sign of a zero
1521 argument or result as insignificant.
1522
1523``arcp``
1524 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1525 argument rather than perform division.
1526
1527``fast``
1528 Fast - Allow algebraically equivalent transformations that may
1529 dramatically change results in floating point (e.g. reassociate). This
1530 flag implies all the others.
1531
1532.. _typesystem:
1533
1534Type System
1535===========
1536
1537The LLVM type system is one of the most important features of the
1538intermediate representation. Being typed enables a number of
1539optimizations to be performed on the intermediate representation
1540directly, without having to do extra analyses on the side before the
1541transformation. A strong type system makes it easier to read the
1542generated code and enables novel analyses and transformations that are
1543not feasible to perform on normal three address code representations.
1544
Rafael Espindola08013342013-12-07 19:34:20 +00001545.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001546
Rafael Espindola08013342013-12-07 19:34:20 +00001547Void Type
1548---------
Sean Silvab084af42012-12-07 10:36:55 +00001549
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001550:Overview:
1551
Rafael Espindola08013342013-12-07 19:34:20 +00001552
1553The void type does not represent any value and has no size.
1554
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001555:Syntax:
1556
Rafael Espindola08013342013-12-07 19:34:20 +00001557
1558::
1559
1560 void
Sean Silvab084af42012-12-07 10:36:55 +00001561
1562
Rafael Espindola08013342013-12-07 19:34:20 +00001563.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001564
Rafael Espindola08013342013-12-07 19:34:20 +00001565Function Type
1566-------------
Sean Silvab084af42012-12-07 10:36:55 +00001567
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001568:Overview:
1569
Sean Silvab084af42012-12-07 10:36:55 +00001570
Rafael Espindola08013342013-12-07 19:34:20 +00001571The function type can be thought of as a function signature. It consists of a
1572return type and a list of formal parameter types. The return type of a function
1573type is a void type or first class type --- except for :ref:`label <t_label>`
1574and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001575
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001576:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001577
Rafael Espindola08013342013-12-07 19:34:20 +00001578::
Sean Silvab084af42012-12-07 10:36:55 +00001579
Rafael Espindola08013342013-12-07 19:34:20 +00001580 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001581
Rafael Espindola08013342013-12-07 19:34:20 +00001582...where '``<parameter list>``' is a comma-separated list of type
1583specifiers. Optionally, the parameter list may include a type ``...``, which
1584indicates that the function takes a variable number of arguments. Variable
1585argument functions can access their arguments with the :ref:`variable argument
1586handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1587except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001588
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001589:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001590
Rafael Espindola08013342013-12-07 19:34:20 +00001591+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1592| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1593+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1594| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1595+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1596| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1597+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1598| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1599+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1600
1601.. _t_firstclass:
1602
1603First Class Types
1604-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001605
1606The :ref:`first class <t_firstclass>` types are perhaps the most important.
1607Values of these types are the only ones which can be produced by
1608instructions.
1609
Rafael Espindola08013342013-12-07 19:34:20 +00001610.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001611
Rafael Espindola08013342013-12-07 19:34:20 +00001612Single Value Types
1613^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001614
Rafael Espindola08013342013-12-07 19:34:20 +00001615These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001616
1617.. _t_integer:
1618
1619Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001620""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001621
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001622:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001623
1624The integer type is a very simple type that simply specifies an
1625arbitrary bit width for the integer type desired. Any bit width from 1
1626bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1627
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001628:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001629
1630::
1631
1632 iN
1633
1634The number of bits the integer will occupy is specified by the ``N``
1635value.
1636
1637Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001638*********
Sean Silvab084af42012-12-07 10:36:55 +00001639
1640+----------------+------------------------------------------------+
1641| ``i1`` | a single-bit integer. |
1642+----------------+------------------------------------------------+
1643| ``i32`` | a 32-bit integer. |
1644+----------------+------------------------------------------------+
1645| ``i1942652`` | a really big integer of over 1 million bits. |
1646+----------------+------------------------------------------------+
1647
1648.. _t_floating:
1649
1650Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001651""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001652
1653.. list-table::
1654 :header-rows: 1
1655
1656 * - Type
1657 - Description
1658
1659 * - ``half``
1660 - 16-bit floating point value
1661
1662 * - ``float``
1663 - 32-bit floating point value
1664
1665 * - ``double``
1666 - 64-bit floating point value
1667
1668 * - ``fp128``
1669 - 128-bit floating point value (112-bit mantissa)
1670
1671 * - ``x86_fp80``
1672 - 80-bit floating point value (X87)
1673
1674 * - ``ppc_fp128``
1675 - 128-bit floating point value (two 64-bits)
1676
1677.. _t_x86mmx:
1678
1679X86mmx Type
Rafael Espindola08013342013-12-07 19:34:20 +00001680"""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001681
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001682:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001683
1684The x86mmx type represents a value held in an MMX register on an x86
1685machine. The operations allowed on it are quite limited: parameters and
1686return values, load and store, and bitcast. User-specified MMX
1687instructions are represented as intrinsic or asm calls with arguments
1688and/or results of this type. There are no arrays, vectors or constants
1689of this type.
1690
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001691:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001692
1693::
1694
1695 x86mmx
1696
Sean Silvab084af42012-12-07 10:36:55 +00001697
Rafael Espindola08013342013-12-07 19:34:20 +00001698.. _t_pointer:
1699
1700Pointer Type
1701""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001702
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001703:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001704
Rafael Espindola08013342013-12-07 19:34:20 +00001705The pointer type is used to specify memory locations. Pointers are
1706commonly used to reference objects in memory.
1707
1708Pointer types may have an optional address space attribute defining the
1709numbered address space where the pointed-to object resides. The default
1710address space is number zero. The semantics of non-zero address spaces
1711are target-specific.
1712
1713Note that LLVM does not permit pointers to void (``void*``) nor does it
1714permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001715
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001716:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001717
1718::
1719
Rafael Espindola08013342013-12-07 19:34:20 +00001720 <type> *
1721
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001722:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001723
1724+-------------------------+--------------------------------------------------------------------------------------------------------------+
1725| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1726+-------------------------+--------------------------------------------------------------------------------------------------------------+
1727| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1728+-------------------------+--------------------------------------------------------------------------------------------------------------+
1729| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1730+-------------------------+--------------------------------------------------------------------------------------------------------------+
1731
1732.. _t_vector:
1733
1734Vector Type
1735"""""""""""
1736
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001737:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001738
1739A vector type is a simple derived type that represents a vector of
1740elements. Vector types are used when multiple primitive data are
1741operated in parallel using a single instruction (SIMD). A vector type
1742requires a size (number of elements) and an underlying primitive data
1743type. Vector types are considered :ref:`first class <t_firstclass>`.
1744
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001745:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001746
1747::
1748
1749 < <# elements> x <elementtype> >
1750
1751The number of elements is a constant integer value larger than 0;
1752elementtype may be any integer or floating point type, or a pointer to
1753these types. Vectors of size zero are not allowed.
1754
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001755:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001756
1757+-------------------+--------------------------------------------------+
1758| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1759+-------------------+--------------------------------------------------+
1760| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1761+-------------------+--------------------------------------------------+
1762| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1763+-------------------+--------------------------------------------------+
1764| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1765+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00001766
1767.. _t_label:
1768
1769Label Type
1770^^^^^^^^^^
1771
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001772:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001773
1774The label type represents code labels.
1775
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001776:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001777
1778::
1779
1780 label
1781
1782.. _t_metadata:
1783
1784Metadata Type
1785^^^^^^^^^^^^^
1786
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001787:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001788
1789The metadata type represents embedded metadata. No derived types may be
1790created from metadata except for :ref:`function <t_function>` arguments.
1791
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001792:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001793
1794::
1795
1796 metadata
1797
Sean Silvab084af42012-12-07 10:36:55 +00001798.. _t_aggregate:
1799
1800Aggregate Types
1801^^^^^^^^^^^^^^^
1802
1803Aggregate Types are a subset of derived types that can contain multiple
1804member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1805aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1806aggregate types.
1807
1808.. _t_array:
1809
1810Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00001811""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001812
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001813:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001814
1815The array type is a very simple derived type that arranges elements
1816sequentially in memory. The array type requires a size (number of
1817elements) and an underlying data type.
1818
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001819:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001820
1821::
1822
1823 [<# elements> x <elementtype>]
1824
1825The number of elements is a constant integer value; ``elementtype`` may
1826be any type with a size.
1827
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001828:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001829
1830+------------------+--------------------------------------+
1831| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1832+------------------+--------------------------------------+
1833| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1834+------------------+--------------------------------------+
1835| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1836+------------------+--------------------------------------+
1837
1838Here are some examples of multidimensional arrays:
1839
1840+-----------------------------+----------------------------------------------------------+
1841| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1842+-----------------------------+----------------------------------------------------------+
1843| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1844+-----------------------------+----------------------------------------------------------+
1845| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1846+-----------------------------+----------------------------------------------------------+
1847
1848There is no restriction on indexing beyond the end of the array implied
1849by a static type (though there are restrictions on indexing beyond the
1850bounds of an allocated object in some cases). This means that
1851single-dimension 'variable sized array' addressing can be implemented in
1852LLVM with a zero length array type. An implementation of 'pascal style
1853arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1854example.
1855
Sean Silvab084af42012-12-07 10:36:55 +00001856.. _t_struct:
1857
1858Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00001859""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001860
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001861:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001862
1863The structure type is used to represent a collection of data members
1864together in memory. The elements of a structure may be any type that has
1865a size.
1866
1867Structures in memory are accessed using '``load``' and '``store``' by
1868getting a pointer to a field with the '``getelementptr``' instruction.
1869Structures in registers are accessed using the '``extractvalue``' and
1870'``insertvalue``' instructions.
1871
1872Structures may optionally be "packed" structures, which indicate that
1873the alignment of the struct is one byte, and that there is no padding
1874between the elements. In non-packed structs, padding between field types
1875is inserted as defined by the DataLayout string in the module, which is
1876required to match what the underlying code generator expects.
1877
1878Structures can either be "literal" or "identified". A literal structure
1879is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1880identified types are always defined at the top level with a name.
1881Literal types are uniqued by their contents and can never be recursive
1882or opaque since there is no way to write one. Identified types can be
1883recursive, can be opaqued, and are never uniqued.
1884
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001885:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001886
1887::
1888
1889 %T1 = type { <type list> } ; Identified normal struct type
1890 %T2 = type <{ <type list> }> ; Identified packed struct type
1891
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001892:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001893
1894+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1895| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1896+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00001897| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00001898+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1899| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1900+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1901
1902.. _t_opaque:
1903
1904Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00001905""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001906
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001907:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001908
1909Opaque structure types are used to represent named structure types that
1910do not have a body specified. This corresponds (for example) to the C
1911notion of a forward declared structure.
1912
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001913:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001914
1915::
1916
1917 %X = type opaque
1918 %52 = type opaque
1919
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001920:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001921
1922+--------------+-------------------+
1923| ``opaque`` | An opaque type. |
1924+--------------+-------------------+
1925
Sean Silvab084af42012-12-07 10:36:55 +00001926Constants
1927=========
1928
1929LLVM has several different basic types of constants. This section
1930describes them all and their syntax.
1931
1932Simple Constants
1933----------------
1934
1935**Boolean constants**
1936 The two strings '``true``' and '``false``' are both valid constants
1937 of the ``i1`` type.
1938**Integer constants**
1939 Standard integers (such as '4') are constants of the
1940 :ref:`integer <t_integer>` type. Negative numbers may be used with
1941 integer types.
1942**Floating point constants**
1943 Floating point constants use standard decimal notation (e.g.
1944 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1945 hexadecimal notation (see below). The assembler requires the exact
1946 decimal value of a floating-point constant. For example, the
1947 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1948 decimal in binary. Floating point constants must have a :ref:`floating
1949 point <t_floating>` type.
1950**Null pointer constants**
1951 The identifier '``null``' is recognized as a null pointer constant
1952 and must be of :ref:`pointer type <t_pointer>`.
1953
1954The one non-intuitive notation for constants is the hexadecimal form of
1955floating point constants. For example, the form
1956'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1957than) '``double 4.5e+15``'. The only time hexadecimal floating point
1958constants are required (and the only time that they are generated by the
1959disassembler) is when a floating point constant must be emitted but it
1960cannot be represented as a decimal floating point number in a reasonable
1961number of digits. For example, NaN's, infinities, and other special
1962values are represented in their IEEE hexadecimal format so that assembly
1963and disassembly do not cause any bits to change in the constants.
1964
1965When using the hexadecimal form, constants of types half, float, and
1966double are represented using the 16-digit form shown above (which
1967matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00001968must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00001969precision, respectively. Hexadecimal format is always used for long
1970double, and there are three forms of long double. The 80-bit format used
1971by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1972128-bit format used by PowerPC (two adjacent doubles) is represented by
1973``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00001974represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
1975will only work if they match the long double format on your target.
1976The IEEE 16-bit format (half precision) is represented by ``0xH``
1977followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
1978(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00001979
1980There are no constants of type x86mmx.
1981
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001982.. _complexconstants:
1983
Sean Silvab084af42012-12-07 10:36:55 +00001984Complex Constants
1985-----------------
1986
1987Complex constants are a (potentially recursive) combination of simple
1988constants and smaller complex constants.
1989
1990**Structure constants**
1991 Structure constants are represented with notation similar to
1992 structure type definitions (a comma separated list of elements,
1993 surrounded by braces (``{}``)). For example:
1994 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
1995 "``@G = external global i32``". Structure constants must have
1996 :ref:`structure type <t_struct>`, and the number and types of elements
1997 must match those specified by the type.
1998**Array constants**
1999 Array constants are represented with notation similar to array type
2000 definitions (a comma separated list of elements, surrounded by
2001 square brackets (``[]``)). For example:
2002 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2003 :ref:`array type <t_array>`, and the number and types of elements must
2004 match those specified by the type.
2005**Vector constants**
2006 Vector constants are represented with notation similar to vector
2007 type definitions (a comma separated list of elements, surrounded by
2008 less-than/greater-than's (``<>``)). For example:
2009 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2010 must have :ref:`vector type <t_vector>`, and the number and types of
2011 elements must match those specified by the type.
2012**Zero initialization**
2013 The string '``zeroinitializer``' can be used to zero initialize a
2014 value to zero of *any* type, including scalar and
2015 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2016 having to print large zero initializers (e.g. for large arrays) and
2017 is always exactly equivalent to using explicit zero initializers.
2018**Metadata node**
2019 A metadata node is a structure-like constant with :ref:`metadata
2020 type <t_metadata>`. For example:
2021 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2022 constants that are meant to be interpreted as part of the
2023 instruction stream, metadata is a place to attach additional
2024 information such as debug info.
2025
2026Global Variable and Function Addresses
2027--------------------------------------
2028
2029The addresses of :ref:`global variables <globalvars>` and
2030:ref:`functions <functionstructure>` are always implicitly valid
2031(link-time) constants. These constants are explicitly referenced when
2032the :ref:`identifier for the global <identifiers>` is used and always have
2033:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2034file:
2035
2036.. code-block:: llvm
2037
2038 @X = global i32 17
2039 @Y = global i32 42
2040 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2041
2042.. _undefvalues:
2043
2044Undefined Values
2045----------------
2046
2047The string '``undef``' can be used anywhere a constant is expected, and
2048indicates that the user of the value may receive an unspecified
2049bit-pattern. Undefined values may be of any type (other than '``label``'
2050or '``void``') and be used anywhere a constant is permitted.
2051
2052Undefined values are useful because they indicate to the compiler that
2053the program is well defined no matter what value is used. This gives the
2054compiler more freedom to optimize. Here are some examples of
2055(potentially surprising) transformations that are valid (in pseudo IR):
2056
2057.. code-block:: llvm
2058
2059 %A = add %X, undef
2060 %B = sub %X, undef
2061 %C = xor %X, undef
2062 Safe:
2063 %A = undef
2064 %B = undef
2065 %C = undef
2066
2067This is safe because all of the output bits are affected by the undef
2068bits. Any output bit can have a zero or one depending on the input bits.
2069
2070.. code-block:: llvm
2071
2072 %A = or %X, undef
2073 %B = and %X, undef
2074 Safe:
2075 %A = -1
2076 %B = 0
2077 Unsafe:
2078 %A = undef
2079 %B = undef
2080
2081These logical operations have bits that are not always affected by the
2082input. For example, if ``%X`` has a zero bit, then the output of the
2083'``and``' operation will always be a zero for that bit, no matter what
2084the corresponding bit from the '``undef``' is. As such, it is unsafe to
2085optimize or assume that the result of the '``and``' is '``undef``'.
2086However, it is safe to assume that all bits of the '``undef``' could be
20870, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2088all the bits of the '``undef``' operand to the '``or``' could be set,
2089allowing the '``or``' to be folded to -1.
2090
2091.. code-block:: llvm
2092
2093 %A = select undef, %X, %Y
2094 %B = select undef, 42, %Y
2095 %C = select %X, %Y, undef
2096 Safe:
2097 %A = %X (or %Y)
2098 %B = 42 (or %Y)
2099 %C = %Y
2100 Unsafe:
2101 %A = undef
2102 %B = undef
2103 %C = undef
2104
2105This set of examples shows that undefined '``select``' (and conditional
2106branch) conditions can go *either way*, but they have to come from one
2107of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2108both known to have a clear low bit, then ``%A`` would have to have a
2109cleared low bit. However, in the ``%C`` example, the optimizer is
2110allowed to assume that the '``undef``' operand could be the same as
2111``%Y``, allowing the whole '``select``' to be eliminated.
2112
2113.. code-block:: llvm
2114
2115 %A = xor undef, undef
2116
2117 %B = undef
2118 %C = xor %B, %B
2119
2120 %D = undef
2121 %E = icmp lt %D, 4
2122 %F = icmp gte %D, 4
2123
2124 Safe:
2125 %A = undef
2126 %B = undef
2127 %C = undef
2128 %D = undef
2129 %E = undef
2130 %F = undef
2131
2132This example points out that two '``undef``' operands are not
2133necessarily the same. This can be surprising to people (and also matches
2134C semantics) where they assume that "``X^X``" is always zero, even if
2135``X`` is undefined. This isn't true for a number of reasons, but the
2136short answer is that an '``undef``' "variable" can arbitrarily change
2137its value over its "live range". This is true because the variable
2138doesn't actually *have a live range*. Instead, the value is logically
2139read from arbitrary registers that happen to be around when needed, so
2140the value is not necessarily consistent over time. In fact, ``%A`` and
2141``%C`` need to have the same semantics or the core LLVM "replace all
2142uses with" concept would not hold.
2143
2144.. code-block:: llvm
2145
2146 %A = fdiv undef, %X
2147 %B = fdiv %X, undef
2148 Safe:
2149 %A = undef
2150 b: unreachable
2151
2152These examples show the crucial difference between an *undefined value*
2153and *undefined behavior*. An undefined value (like '``undef``') is
2154allowed to have an arbitrary bit-pattern. This means that the ``%A``
2155operation can be constant folded to '``undef``', because the '``undef``'
2156could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2157However, in the second example, we can make a more aggressive
2158assumption: because the ``undef`` is allowed to be an arbitrary value,
2159we are allowed to assume that it could be zero. Since a divide by zero
2160has *undefined behavior*, we are allowed to assume that the operation
2161does not execute at all. This allows us to delete the divide and all
2162code after it. Because the undefined operation "can't happen", the
2163optimizer can assume that it occurs in dead code.
2164
2165.. code-block:: llvm
2166
2167 a: store undef -> %X
2168 b: store %X -> undef
2169 Safe:
2170 a: <deleted>
2171 b: unreachable
2172
2173These examples reiterate the ``fdiv`` example: a store *of* an undefined
2174value can be assumed to not have any effect; we can assume that the
2175value is overwritten with bits that happen to match what was already
2176there. However, a store *to* an undefined location could clobber
2177arbitrary memory, therefore, it has undefined behavior.
2178
2179.. _poisonvalues:
2180
2181Poison Values
2182-------------
2183
2184Poison values are similar to :ref:`undef values <undefvalues>`, however
2185they also represent the fact that an instruction or constant expression
2186which cannot evoke side effects has nevertheless detected a condition
2187which results in undefined behavior.
2188
2189There is currently no way of representing a poison value in the IR; they
2190only exist when produced by operations such as :ref:`add <i_add>` with
2191the ``nsw`` flag.
2192
2193Poison value behavior is defined in terms of value *dependence*:
2194
2195- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2196- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2197 their dynamic predecessor basic block.
2198- Function arguments depend on the corresponding actual argument values
2199 in the dynamic callers of their functions.
2200- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2201 instructions that dynamically transfer control back to them.
2202- :ref:`Invoke <i_invoke>` instructions depend on the
2203 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2204 call instructions that dynamically transfer control back to them.
2205- Non-volatile loads and stores depend on the most recent stores to all
2206 of the referenced memory addresses, following the order in the IR
2207 (including loads and stores implied by intrinsics such as
2208 :ref:`@llvm.memcpy <int_memcpy>`.)
2209- An instruction with externally visible side effects depends on the
2210 most recent preceding instruction with externally visible side
2211 effects, following the order in the IR. (This includes :ref:`volatile
2212 operations <volatile>`.)
2213- An instruction *control-depends* on a :ref:`terminator
2214 instruction <terminators>` if the terminator instruction has
2215 multiple successors and the instruction is always executed when
2216 control transfers to one of the successors, and may not be executed
2217 when control is transferred to another.
2218- Additionally, an instruction also *control-depends* on a terminator
2219 instruction if the set of instructions it otherwise depends on would
2220 be different if the terminator had transferred control to a different
2221 successor.
2222- Dependence is transitive.
2223
2224Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2225with the additional affect that any instruction which has a *dependence*
2226on a poison value has undefined behavior.
2227
2228Here are some examples:
2229
2230.. code-block:: llvm
2231
2232 entry:
2233 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2234 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2235 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2236 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2237
2238 store i32 %poison, i32* @g ; Poison value stored to memory.
2239 %poison2 = load i32* @g ; Poison value loaded back from memory.
2240
2241 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2242
2243 %narrowaddr = bitcast i32* @g to i16*
2244 %wideaddr = bitcast i32* @g to i64*
2245 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2246 %poison4 = load i64* %wideaddr ; Returns a poison value.
2247
2248 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2249 br i1 %cmp, label %true, label %end ; Branch to either destination.
2250
2251 true:
2252 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2253 ; it has undefined behavior.
2254 br label %end
2255
2256 end:
2257 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2258 ; Both edges into this PHI are
2259 ; control-dependent on %cmp, so this
2260 ; always results in a poison value.
2261
2262 store volatile i32 0, i32* @g ; This would depend on the store in %true
2263 ; if %cmp is true, or the store in %entry
2264 ; otherwise, so this is undefined behavior.
2265
2266 br i1 %cmp, label %second_true, label %second_end
2267 ; The same branch again, but this time the
2268 ; true block doesn't have side effects.
2269
2270 second_true:
2271 ; No side effects!
2272 ret void
2273
2274 second_end:
2275 store volatile i32 0, i32* @g ; This time, the instruction always depends
2276 ; on the store in %end. Also, it is
2277 ; control-equivalent to %end, so this is
2278 ; well-defined (ignoring earlier undefined
2279 ; behavior in this example).
2280
2281.. _blockaddress:
2282
2283Addresses of Basic Blocks
2284-------------------------
2285
2286``blockaddress(@function, %block)``
2287
2288The '``blockaddress``' constant computes the address of the specified
2289basic block in the specified function, and always has an ``i8*`` type.
2290Taking the address of the entry block is illegal.
2291
2292This value only has defined behavior when used as an operand to the
2293':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2294against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002295undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002296no label is equal to the null pointer. This may be passed around as an
2297opaque pointer sized value as long as the bits are not inspected. This
2298allows ``ptrtoint`` and arithmetic to be performed on these values so
2299long as the original value is reconstituted before the ``indirectbr``
2300instruction.
2301
2302Finally, some targets may provide defined semantics when using the value
2303as the operand to an inline assembly, but that is target specific.
2304
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002305.. _constantexprs:
2306
Sean Silvab084af42012-12-07 10:36:55 +00002307Constant Expressions
2308--------------------
2309
2310Constant expressions are used to allow expressions involving other
2311constants to be used as constants. Constant expressions may be of any
2312:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2313that does not have side effects (e.g. load and call are not supported).
2314The following is the syntax for constant expressions:
2315
2316``trunc (CST to TYPE)``
2317 Truncate a constant to another type. The bit size of CST must be
2318 larger than the bit size of TYPE. Both types must be integers.
2319``zext (CST to TYPE)``
2320 Zero extend a constant to another type. The bit size of CST must be
2321 smaller than the bit size of TYPE. Both types must be integers.
2322``sext (CST to TYPE)``
2323 Sign extend a constant to another type. The bit size of CST must be
2324 smaller than the bit size of TYPE. Both types must be integers.
2325``fptrunc (CST to TYPE)``
2326 Truncate a floating point constant to another floating point type.
2327 The size of CST must be larger than the size of TYPE. Both types
2328 must be floating point.
2329``fpext (CST to TYPE)``
2330 Floating point extend a constant to another type. The size of CST
2331 must be smaller or equal to the size of TYPE. Both types must be
2332 floating point.
2333``fptoui (CST to TYPE)``
2334 Convert a floating point constant to the corresponding unsigned
2335 integer constant. TYPE must be a scalar or vector integer type. CST
2336 must be of scalar or vector floating point type. Both CST and TYPE
2337 must be scalars, or vectors of the same number of elements. If the
2338 value won't fit in the integer type, the results are undefined.
2339``fptosi (CST to TYPE)``
2340 Convert a floating point constant to the corresponding signed
2341 integer constant. TYPE must be a scalar or vector integer type. CST
2342 must be of scalar or vector floating point type. Both CST and TYPE
2343 must be scalars, or vectors of the same number of elements. If the
2344 value won't fit in the integer type, the results are undefined.
2345``uitofp (CST to TYPE)``
2346 Convert an unsigned integer constant to the corresponding floating
2347 point constant. TYPE must be a scalar or vector floating point type.
2348 CST must be of scalar or vector integer type. Both CST and TYPE must
2349 be scalars, or vectors of the same number of elements. If the value
2350 won't fit in the floating point type, the results are undefined.
2351``sitofp (CST to TYPE)``
2352 Convert a signed integer constant to the corresponding floating
2353 point constant. TYPE must be a scalar or vector floating point type.
2354 CST must be of scalar or vector integer type. Both CST and TYPE must
2355 be scalars, or vectors of the same number of elements. If the value
2356 won't fit in the floating point type, the results are undefined.
2357``ptrtoint (CST to TYPE)``
2358 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002359 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002360 pointer type. The ``CST`` value is zero extended, truncated, or
2361 unchanged to make it fit in ``TYPE``.
2362``inttoptr (CST to TYPE)``
2363 Convert an integer constant to a pointer constant. TYPE must be a
2364 pointer type. CST must be of integer type. The CST value is zero
2365 extended, truncated, or unchanged to make it fit in a pointer size.
2366 This one is *really* dangerous!
2367``bitcast (CST to TYPE)``
2368 Convert a constant, CST, to another TYPE. The constraints of the
2369 operands are the same as those for the :ref:`bitcast
2370 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002371``addrspacecast (CST to TYPE)``
2372 Convert a constant pointer or constant vector of pointer, CST, to another
2373 TYPE in a different address space. The constraints of the operands are the
2374 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002375``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2376 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2377 constants. As with the :ref:`getelementptr <i_getelementptr>`
2378 instruction, the index list may have zero or more indexes, which are
2379 required to make sense for the type of "CSTPTR".
2380``select (COND, VAL1, VAL2)``
2381 Perform the :ref:`select operation <i_select>` on constants.
2382``icmp COND (VAL1, VAL2)``
2383 Performs the :ref:`icmp operation <i_icmp>` on constants.
2384``fcmp COND (VAL1, VAL2)``
2385 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2386``extractelement (VAL, IDX)``
2387 Perform the :ref:`extractelement operation <i_extractelement>` on
2388 constants.
2389``insertelement (VAL, ELT, IDX)``
2390 Perform the :ref:`insertelement operation <i_insertelement>` on
2391 constants.
2392``shufflevector (VEC1, VEC2, IDXMASK)``
2393 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2394 constants.
2395``extractvalue (VAL, IDX0, IDX1, ...)``
2396 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2397 constants. The index list is interpreted in a similar manner as
2398 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2399 least one index value must be specified.
2400``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2401 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2402 The index list is interpreted in a similar manner as indices in a
2403 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2404 value must be specified.
2405``OPCODE (LHS, RHS)``
2406 Perform the specified operation of the LHS and RHS constants. OPCODE
2407 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2408 binary <bitwiseops>` operations. The constraints on operands are
2409 the same as those for the corresponding instruction (e.g. no bitwise
2410 operations on floating point values are allowed).
2411
2412Other Values
2413============
2414
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002415.. _inlineasmexprs:
2416
Sean Silvab084af42012-12-07 10:36:55 +00002417Inline Assembler Expressions
2418----------------------------
2419
2420LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2421Inline Assembly <moduleasm>`) through the use of a special value. This
2422value represents the inline assembler as a string (containing the
2423instructions to emit), a list of operand constraints (stored as a
2424string), a flag that indicates whether or not the inline asm expression
2425has side effects, and a flag indicating whether the function containing
2426the asm needs to align its stack conservatively. An example inline
2427assembler expression is:
2428
2429.. code-block:: llvm
2430
2431 i32 (i32) asm "bswap $0", "=r,r"
2432
2433Inline assembler expressions may **only** be used as the callee operand
2434of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2435Thus, typically we have:
2436
2437.. code-block:: llvm
2438
2439 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2440
2441Inline asms with side effects not visible in the constraint list must be
2442marked as having side effects. This is done through the use of the
2443'``sideeffect``' keyword, like so:
2444
2445.. code-block:: llvm
2446
2447 call void asm sideeffect "eieio", ""()
2448
2449In some cases inline asms will contain code that will not work unless
2450the stack is aligned in some way, such as calls or SSE instructions on
2451x86, yet will not contain code that does that alignment within the asm.
2452The compiler should make conservative assumptions about what the asm
2453might contain and should generate its usual stack alignment code in the
2454prologue if the '``alignstack``' keyword is present:
2455
2456.. code-block:: llvm
2457
2458 call void asm alignstack "eieio", ""()
2459
2460Inline asms also support using non-standard assembly dialects. The
2461assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2462the inline asm is using the Intel dialect. Currently, ATT and Intel are
2463the only supported dialects. An example is:
2464
2465.. code-block:: llvm
2466
2467 call void asm inteldialect "eieio", ""()
2468
2469If multiple keywords appear the '``sideeffect``' keyword must come
2470first, the '``alignstack``' keyword second and the '``inteldialect``'
2471keyword last.
2472
2473Inline Asm Metadata
2474^^^^^^^^^^^^^^^^^^^
2475
2476The call instructions that wrap inline asm nodes may have a
2477"``!srcloc``" MDNode attached to it that contains a list of constant
2478integers. If present, the code generator will use the integer as the
2479location cookie value when report errors through the ``LLVMContext``
2480error reporting mechanisms. This allows a front-end to correlate backend
2481errors that occur with inline asm back to the source code that produced
2482it. For example:
2483
2484.. code-block:: llvm
2485
2486 call void asm sideeffect "something bad", ""(), !srcloc !42
2487 ...
2488 !42 = !{ i32 1234567 }
2489
2490It is up to the front-end to make sense of the magic numbers it places
2491in the IR. If the MDNode contains multiple constants, the code generator
2492will use the one that corresponds to the line of the asm that the error
2493occurs on.
2494
2495.. _metadata:
2496
2497Metadata Nodes and Metadata Strings
2498-----------------------------------
2499
2500LLVM IR allows metadata to be attached to instructions in the program
2501that can convey extra information about the code to the optimizers and
2502code generator. One example application of metadata is source-level
2503debug information. There are two metadata primitives: strings and nodes.
2504All metadata has the ``metadata`` type and is identified in syntax by a
2505preceding exclamation point ('``!``').
2506
2507A metadata string is a string surrounded by double quotes. It can
2508contain any character by escaping non-printable characters with
2509"``\xx``" where "``xx``" is the two digit hex code. For example:
2510"``!"test\00"``".
2511
2512Metadata nodes are represented with notation similar to structure
2513constants (a comma separated list of elements, surrounded by braces and
2514preceded by an exclamation point). Metadata nodes can have any values as
2515their operand. For example:
2516
2517.. code-block:: llvm
2518
2519 !{ metadata !"test\00", i32 10}
2520
2521A :ref:`named metadata <namedmetadatastructure>` is a collection of
2522metadata nodes, which can be looked up in the module symbol table. For
2523example:
2524
2525.. code-block:: llvm
2526
2527 !foo = metadata !{!4, !3}
2528
2529Metadata can be used as function arguments. Here ``llvm.dbg.value``
2530function is using two metadata arguments:
2531
2532.. code-block:: llvm
2533
2534 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2535
2536Metadata can be attached with an instruction. Here metadata ``!21`` is
2537attached to the ``add`` instruction using the ``!dbg`` identifier:
2538
2539.. code-block:: llvm
2540
2541 %indvar.next = add i64 %indvar, 1, !dbg !21
2542
2543More information about specific metadata nodes recognized by the
2544optimizers and code generator is found below.
2545
2546'``tbaa``' Metadata
2547^^^^^^^^^^^^^^^^^^^
2548
2549In LLVM IR, memory does not have types, so LLVM's own type system is not
2550suitable for doing TBAA. Instead, metadata is added to the IR to
2551describe a type system of a higher level language. This can be used to
2552implement typical C/C++ TBAA, but it can also be used to implement
2553custom alias analysis behavior for other languages.
2554
2555The current metadata format is very simple. TBAA metadata nodes have up
2556to three fields, e.g.:
2557
2558.. code-block:: llvm
2559
2560 !0 = metadata !{ metadata !"an example type tree" }
2561 !1 = metadata !{ metadata !"int", metadata !0 }
2562 !2 = metadata !{ metadata !"float", metadata !0 }
2563 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2564
2565The first field is an identity field. It can be any value, usually a
2566metadata string, which uniquely identifies the type. The most important
2567name in the tree is the name of the root node. Two trees with different
2568root node names are entirely disjoint, even if they have leaves with
2569common names.
2570
2571The second field identifies the type's parent node in the tree, or is
2572null or omitted for a root node. A type is considered to alias all of
2573its descendants and all of its ancestors in the tree. Also, a type is
2574considered to alias all types in other trees, so that bitcode produced
2575from multiple front-ends is handled conservatively.
2576
2577If the third field is present, it's an integer which if equal to 1
2578indicates that the type is "constant" (meaning
2579``pointsToConstantMemory`` should return true; see `other useful
2580AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2581
2582'``tbaa.struct``' Metadata
2583^^^^^^^^^^^^^^^^^^^^^^^^^^
2584
2585The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2586aggregate assignment operations in C and similar languages, however it
2587is defined to copy a contiguous region of memory, which is more than
2588strictly necessary for aggregate types which contain holes due to
2589padding. Also, it doesn't contain any TBAA information about the fields
2590of the aggregate.
2591
2592``!tbaa.struct`` metadata can describe which memory subregions in a
2593memcpy are padding and what the TBAA tags of the struct are.
2594
2595The current metadata format is very simple. ``!tbaa.struct`` metadata
2596nodes are a list of operands which are in conceptual groups of three.
2597For each group of three, the first operand gives the byte offset of a
2598field in bytes, the second gives its size in bytes, and the third gives
2599its tbaa tag. e.g.:
2600
2601.. code-block:: llvm
2602
2603 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2604
2605This describes a struct with two fields. The first is at offset 0 bytes
2606with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2607and has size 4 bytes and has tbaa tag !2.
2608
2609Note that the fields need not be contiguous. In this example, there is a
26104 byte gap between the two fields. This gap represents padding which
2611does not carry useful data and need not be preserved.
2612
2613'``fpmath``' Metadata
2614^^^^^^^^^^^^^^^^^^^^^
2615
2616``fpmath`` metadata may be attached to any instruction of floating point
2617type. It can be used to express the maximum acceptable error in the
2618result of that instruction, in ULPs, thus potentially allowing the
2619compiler to use a more efficient but less accurate method of computing
2620it. ULP is defined as follows:
2621
2622 If ``x`` is a real number that lies between two finite consecutive
2623 floating-point numbers ``a`` and ``b``, without being equal to one
2624 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2625 distance between the two non-equal finite floating-point numbers
2626 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2627
2628The metadata node shall consist of a single positive floating point
2629number representing the maximum relative error, for example:
2630
2631.. code-block:: llvm
2632
2633 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2634
2635'``range``' Metadata
2636^^^^^^^^^^^^^^^^^^^^
2637
2638``range`` metadata may be attached only to loads of integer types. It
2639expresses the possible ranges the loaded value is in. The ranges are
2640represented with a flattened list of integers. The loaded value is known
2641to be in the union of the ranges defined by each consecutive pair. Each
2642pair has the following properties:
2643
2644- The type must match the type loaded by the instruction.
2645- The pair ``a,b`` represents the range ``[a,b)``.
2646- Both ``a`` and ``b`` are constants.
2647- The range is allowed to wrap.
2648- The range should not represent the full or empty set. That is,
2649 ``a!=b``.
2650
2651In addition, the pairs must be in signed order of the lower bound and
2652they must be non-contiguous.
2653
2654Examples:
2655
2656.. code-block:: llvm
2657
2658 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2659 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2660 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2661 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2662 ...
2663 !0 = metadata !{ i8 0, i8 2 }
2664 !1 = metadata !{ i8 255, i8 2 }
2665 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2666 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2667
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002668'``llvm.loop``'
2669^^^^^^^^^^^^^^^
2670
2671It is sometimes useful to attach information to loop constructs. Currently,
2672loop metadata is implemented as metadata attached to the branch instruction
2673in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002674guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002675specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002676
2677The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002678itself to avoid merging it with any other identifier metadata, e.g.,
2679during module linkage or function inlining. That is, each loop should refer
2680to their own identification metadata even if they reside in separate functions.
2681The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002682constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002683
2684.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002685
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002686 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002687 !1 = metadata !{ metadata !1 }
2688
Paul Redmond5fdf8362013-05-28 20:00:34 +00002689The loop identifier metadata can be used to specify additional per-loop
2690metadata. Any operands after the first operand can be treated as user-defined
2691metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2692by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002693
Paul Redmond5fdf8362013-05-28 20:00:34 +00002694.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002695
Paul Redmond5fdf8362013-05-28 20:00:34 +00002696 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2697 ...
2698 !0 = metadata !{ metadata !0, metadata !1 }
2699 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002700
2701'``llvm.mem``'
2702^^^^^^^^^^^^^^^
2703
2704Metadata types used to annotate memory accesses with information helpful
2705for optimizations are prefixed with ``llvm.mem``.
2706
2707'``llvm.mem.parallel_loop_access``' Metadata
2708^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2709
2710For a loop to be parallel, in addition to using
Paul Redmond5fdf8362013-05-28 20:00:34 +00002711the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002712also all of the memory accessing instructions in the loop body need to be
2713marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2714is at least one memory accessing instruction not marked with the metadata,
Paul Redmond5fdf8362013-05-28 20:00:34 +00002715the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002716converted to sequential loops due to optimization passes that are unaware of
2717the parallel semantics and that insert new memory instructions to the loop
2718body.
2719
2720Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00002721both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002722metadata types that refer to the same loop identifier metadata.
2723
2724.. code-block:: llvm
2725
2726 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002727 ...
2728 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2729 ...
2730 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2731 ...
2732 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002733
2734 for.end:
2735 ...
2736 !0 = metadata !{ metadata !0 }
2737
2738It is also possible to have nested parallel loops. In that case the
2739memory accesses refer to a list of loop identifier metadata nodes instead of
2740the loop identifier metadata node directly:
2741
2742.. code-block:: llvm
2743
2744 outer.for.body:
2745 ...
2746
2747 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002748 ...
2749 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2750 ...
2751 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2752 ...
2753 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002754
2755 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002756 ...
2757 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2758 ...
2759 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2760 ...
2761 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002762
2763 outer.for.end: ; preds = %for.body
2764 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00002765 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2766 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2767 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002768
Paul Redmond5fdf8362013-05-28 20:00:34 +00002769'``llvm.vectorizer``'
2770^^^^^^^^^^^^^^^^^^^^^
2771
2772Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2773vectorization parameters such as vectorization factor and unroll factor.
2774
2775``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2776loop identification metadata.
2777
2778'``llvm.vectorizer.unroll``' Metadata
2779^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2780
2781This metadata instructs the loop vectorizer to unroll the specified
2782loop exactly ``N`` times.
2783
2784The first operand is the string ``llvm.vectorizer.unroll`` and the second
2785operand is an integer specifying the unroll factor. For example:
2786
2787.. code-block:: llvm
2788
2789 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2790
2791Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2792loop.
2793
2794If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2795determined automatically.
2796
2797'``llvm.vectorizer.width``' Metadata
2798^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2799
Paul Redmondeccbb322013-05-30 17:22:46 +00002800This metadata sets the target width of the vectorizer to ``N``. Without
2801this metadata, the vectorizer will choose a width automatically.
2802Regardless of this metadata, the vectorizer will only vectorize loops if
2803it believes it is valid to do so.
Paul Redmond5fdf8362013-05-28 20:00:34 +00002804
2805The first operand is the string ``llvm.vectorizer.width`` and the second
2806operand is an integer specifying the width. For example:
2807
2808.. code-block:: llvm
2809
2810 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2811
2812Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2813loop.
2814
2815If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2816automatically.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002817
Sean Silvab084af42012-12-07 10:36:55 +00002818Module Flags Metadata
2819=====================
2820
2821Information about the module as a whole is difficult to convey to LLVM's
2822subsystems. The LLVM IR isn't sufficient to transmit this information.
2823The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002824this. These flags are in the form of key / value pairs --- much like a
2825dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00002826look it up.
2827
2828The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2829Each triplet has the following form:
2830
2831- The first element is a *behavior* flag, which specifies the behavior
2832 when two (or more) modules are merged together, and it encounters two
2833 (or more) metadata with the same ID. The supported behaviors are
2834 described below.
2835- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002836 metadata. Each module may only have one flag entry for each unique ID (not
2837 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00002838- The third element is the value of the flag.
2839
2840When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002841``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2842each unique metadata ID string, there will be exactly one entry in the merged
2843modules ``llvm.module.flags`` metadata table, and the value for that entry will
2844be determined by the merge behavior flag, as described below. The only exception
2845is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00002846
2847The following behaviors are supported:
2848
2849.. list-table::
2850 :header-rows: 1
2851 :widths: 10 90
2852
2853 * - Value
2854 - Behavior
2855
2856 * - 1
2857 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002858 Emits an error if two values disagree, otherwise the resulting value
2859 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00002860
2861 * - 2
2862 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002863 Emits a warning if two values disagree. The result value will be the
2864 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00002865
2866 * - 3
2867 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002868 Adds a requirement that another module flag be present and have a
2869 specified value after linking is performed. The value must be a
2870 metadata pair, where the first element of the pair is the ID of the
2871 module flag to be restricted, and the second element of the pair is
2872 the value the module flag should be restricted to. This behavior can
2873 be used to restrict the allowable results (via triggering of an
2874 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002875
2876 * - 4
2877 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002878 Uses the specified value, regardless of the behavior or value of the
2879 other module. If both modules specify **Override**, but the values
2880 differ, an error will be emitted.
2881
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00002882 * - 5
2883 - **Append**
2884 Appends the two values, which are required to be metadata nodes.
2885
2886 * - 6
2887 - **AppendUnique**
2888 Appends the two values, which are required to be metadata
2889 nodes. However, duplicate entries in the second list are dropped
2890 during the append operation.
2891
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002892It is an error for a particular unique flag ID to have multiple behaviors,
2893except in the case of **Require** (which adds restrictions on another metadata
2894value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00002895
2896An example of module flags:
2897
2898.. code-block:: llvm
2899
2900 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2901 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2902 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2903 !3 = metadata !{ i32 3, metadata !"qux",
2904 metadata !{
2905 metadata !"foo", i32 1
2906 }
2907 }
2908 !llvm.module.flags = !{ !0, !1, !2, !3 }
2909
2910- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2911 if two or more ``!"foo"`` flags are seen is to emit an error if their
2912 values are not equal.
2913
2914- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2915 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002916 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00002917
2918- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2919 behavior if two or more ``!"qux"`` flags are seen is to emit a
2920 warning if their values are not equal.
2921
2922- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2923
2924 ::
2925
2926 metadata !{ metadata !"foo", i32 1 }
2927
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002928 The behavior is to emit an error if the ``llvm.module.flags`` does not
2929 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2930 performed.
Sean Silvab084af42012-12-07 10:36:55 +00002931
2932Objective-C Garbage Collection Module Flags Metadata
2933----------------------------------------------------
2934
2935On the Mach-O platform, Objective-C stores metadata about garbage
2936collection in a special section called "image info". The metadata
2937consists of a version number and a bitmask specifying what types of
2938garbage collection are supported (if any) by the file. If two or more
2939modules are linked together their garbage collection metadata needs to
2940be merged rather than appended together.
2941
2942The Objective-C garbage collection module flags metadata consists of the
2943following key-value pairs:
2944
2945.. list-table::
2946 :header-rows: 1
2947 :widths: 30 70
2948
2949 * - Key
2950 - Value
2951
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002952 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002953 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00002954
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002955 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002956 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00002957 always 0.
2958
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002959 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002960 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00002961 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2962 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2963 Objective-C ABI version 2.
2964
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002965 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002966 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00002967 not. Valid values are 0, for no garbage collection, and 2, for garbage
2968 collection supported.
2969
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002970 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002971 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00002972 If present, its value must be 6. This flag requires that the
2973 ``Objective-C Garbage Collection`` flag have the value 2.
2974
2975Some important flag interactions:
2976
2977- If a module with ``Objective-C Garbage Collection`` set to 0 is
2978 merged with a module with ``Objective-C Garbage Collection`` set to
2979 2, then the resulting module has the
2980 ``Objective-C Garbage Collection`` flag set to 0.
2981- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2982 merged with a module with ``Objective-C GC Only`` set to 6.
2983
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002984Automatic Linker Flags Module Flags Metadata
2985--------------------------------------------
2986
2987Some targets support embedding flags to the linker inside individual object
2988files. Typically this is used in conjunction with language extensions which
2989allow source files to explicitly declare the libraries they depend on, and have
2990these automatically be transmitted to the linker via object files.
2991
2992These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002993using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002994to be ``AppendUnique``, and the value for the key is expected to be a metadata
2995node which should be a list of other metadata nodes, each of which should be a
2996list of metadata strings defining linker options.
2997
2998For example, the following metadata section specifies two separate sets of
2999linker options, presumably to link against ``libz`` and the ``Cocoa``
3000framework::
3001
Michael Liaoa7699082013-03-06 18:24:34 +00003002 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003003 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003004 metadata !{ metadata !"-lz" },
3005 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003006 !llvm.module.flags = !{ !0 }
3007
3008The metadata encoding as lists of lists of options, as opposed to a collapsed
3009list of options, is chosen so that the IR encoding can use multiple option
3010strings to specify e.g., a single library, while still having that specifier be
3011preserved as an atomic element that can be recognized by a target specific
3012assembly writer or object file emitter.
3013
3014Each individual option is required to be either a valid option for the target's
3015linker, or an option that is reserved by the target specific assembly writer or
3016object file emitter. No other aspect of these options is defined by the IR.
3017
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003018.. _intrinsicglobalvariables:
3019
Sean Silvab084af42012-12-07 10:36:55 +00003020Intrinsic Global Variables
3021==========================
3022
3023LLVM has a number of "magic" global variables that contain data that
3024affect code generation or other IR semantics. These are documented here.
3025All globals of this sort should have a section specified as
3026"``llvm.metadata``". This section and all globals that start with
3027"``llvm.``" are reserved for use by LLVM.
3028
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003029.. _gv_llvmused:
3030
Sean Silvab084af42012-12-07 10:36:55 +00003031The '``llvm.used``' Global Variable
3032-----------------------------------
3033
Rafael Espindola74f2e462013-04-22 14:58:02 +00003034The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003035:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003036pointers to named global variables, functions and aliases which may optionally
3037have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003038use of it is:
3039
3040.. code-block:: llvm
3041
3042 @X = global i8 4
3043 @Y = global i32 123
3044
3045 @llvm.used = appending global [2 x i8*] [
3046 i8* @X,
3047 i8* bitcast (i32* @Y to i8*)
3048 ], section "llvm.metadata"
3049
Rafael Espindola74f2e462013-04-22 14:58:02 +00003050If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3051and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003052symbol that it cannot see (which is why they have to be named). For example, if
3053a variable has internal linkage and no references other than that from the
3054``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3055references from inline asms and other things the compiler cannot "see", and
3056corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003057
3058On some targets, the code generator must emit a directive to the
3059assembler or object file to prevent the assembler and linker from
3060molesting the symbol.
3061
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003062.. _gv_llvmcompilerused:
3063
Sean Silvab084af42012-12-07 10:36:55 +00003064The '``llvm.compiler.used``' Global Variable
3065--------------------------------------------
3066
3067The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3068directive, except that it only prevents the compiler from touching the
3069symbol. On targets that support it, this allows an intelligent linker to
3070optimize references to the symbol without being impeded as it would be
3071by ``@llvm.used``.
3072
3073This is a rare construct that should only be used in rare circumstances,
3074and should not be exposed to source languages.
3075
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003076.. _gv_llvmglobalctors:
3077
Sean Silvab084af42012-12-07 10:36:55 +00003078The '``llvm.global_ctors``' Global Variable
3079-------------------------------------------
3080
3081.. code-block:: llvm
3082
3083 %0 = type { i32, void ()* }
3084 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
3085
3086The ``@llvm.global_ctors`` array contains a list of constructor
3087functions and associated priorities. The functions referenced by this
3088array will be called in ascending order of priority (i.e. lowest first)
3089when the module is loaded. The order of functions with the same priority
3090is not defined.
3091
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003092.. _llvmglobaldtors:
3093
Sean Silvab084af42012-12-07 10:36:55 +00003094The '``llvm.global_dtors``' Global Variable
3095-------------------------------------------
3096
3097.. code-block:: llvm
3098
3099 %0 = type { i32, void ()* }
3100 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
3101
3102The ``@llvm.global_dtors`` array contains a list of destructor functions
3103and associated priorities. The functions referenced by this array will
3104be called in descending order of priority (i.e. highest first) when the
3105module is loaded. The order of functions with the same priority is not
3106defined.
3107
3108Instruction Reference
3109=====================
3110
3111The LLVM instruction set consists of several different classifications
3112of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3113instructions <binaryops>`, :ref:`bitwise binary
3114instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3115:ref:`other instructions <otherops>`.
3116
3117.. _terminators:
3118
3119Terminator Instructions
3120-----------------------
3121
3122As mentioned :ref:`previously <functionstructure>`, every basic block in a
3123program ends with a "Terminator" instruction, which indicates which
3124block should be executed after the current block is finished. These
3125terminator instructions typically yield a '``void``' value: they produce
3126control flow, not values (the one exception being the
3127':ref:`invoke <i_invoke>`' instruction).
3128
3129The terminator instructions are: ':ref:`ret <i_ret>`',
3130':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3131':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3132':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3133
3134.. _i_ret:
3135
3136'``ret``' Instruction
3137^^^^^^^^^^^^^^^^^^^^^
3138
3139Syntax:
3140"""""""
3141
3142::
3143
3144 ret <type> <value> ; Return a value from a non-void function
3145 ret void ; Return from void function
3146
3147Overview:
3148"""""""""
3149
3150The '``ret``' instruction is used to return control flow (and optionally
3151a value) from a function back to the caller.
3152
3153There are two forms of the '``ret``' instruction: one that returns a
3154value and then causes control flow, and one that just causes control
3155flow to occur.
3156
3157Arguments:
3158""""""""""
3159
3160The '``ret``' instruction optionally accepts a single argument, the
3161return value. The type of the return value must be a ':ref:`first
3162class <t_firstclass>`' type.
3163
3164A function is not :ref:`well formed <wellformed>` if it it has a non-void
3165return type and contains a '``ret``' instruction with no return value or
3166a return value with a type that does not match its type, or if it has a
3167void return type and contains a '``ret``' instruction with a return
3168value.
3169
3170Semantics:
3171""""""""""
3172
3173When the '``ret``' instruction is executed, control flow returns back to
3174the calling function's context. If the caller is a
3175":ref:`call <i_call>`" instruction, execution continues at the
3176instruction after the call. If the caller was an
3177":ref:`invoke <i_invoke>`" instruction, execution continues at the
3178beginning of the "normal" destination block. If the instruction returns
3179a value, that value shall set the call or invoke instruction's return
3180value.
3181
3182Example:
3183""""""""
3184
3185.. code-block:: llvm
3186
3187 ret i32 5 ; Return an integer value of 5
3188 ret void ; Return from a void function
3189 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3190
3191.. _i_br:
3192
3193'``br``' Instruction
3194^^^^^^^^^^^^^^^^^^^^
3195
3196Syntax:
3197"""""""
3198
3199::
3200
3201 br i1 <cond>, label <iftrue>, label <iffalse>
3202 br label <dest> ; Unconditional branch
3203
3204Overview:
3205"""""""""
3206
3207The '``br``' instruction is used to cause control flow to transfer to a
3208different basic block in the current function. There are two forms of
3209this instruction, corresponding to a conditional branch and an
3210unconditional branch.
3211
3212Arguments:
3213""""""""""
3214
3215The conditional branch form of the '``br``' instruction takes a single
3216'``i1``' value and two '``label``' values. The unconditional form of the
3217'``br``' instruction takes a single '``label``' value as a target.
3218
3219Semantics:
3220""""""""""
3221
3222Upon execution of a conditional '``br``' instruction, the '``i1``'
3223argument is evaluated. If the value is ``true``, control flows to the
3224'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3225to the '``iffalse``' ``label`` argument.
3226
3227Example:
3228""""""""
3229
3230.. code-block:: llvm
3231
3232 Test:
3233 %cond = icmp eq i32 %a, %b
3234 br i1 %cond, label %IfEqual, label %IfUnequal
3235 IfEqual:
3236 ret i32 1
3237 IfUnequal:
3238 ret i32 0
3239
3240.. _i_switch:
3241
3242'``switch``' Instruction
3243^^^^^^^^^^^^^^^^^^^^^^^^
3244
3245Syntax:
3246"""""""
3247
3248::
3249
3250 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3251
3252Overview:
3253"""""""""
3254
3255The '``switch``' instruction is used to transfer control flow to one of
3256several different places. It is a generalization of the '``br``'
3257instruction, allowing a branch to occur to one of many possible
3258destinations.
3259
3260Arguments:
3261""""""""""
3262
3263The '``switch``' instruction uses three parameters: an integer
3264comparison value '``value``', a default '``label``' destination, and an
3265array of pairs of comparison value constants and '``label``'s. The table
3266is not allowed to contain duplicate constant entries.
3267
3268Semantics:
3269""""""""""
3270
3271The ``switch`` instruction specifies a table of values and destinations.
3272When the '``switch``' instruction is executed, this table is searched
3273for the given value. If the value is found, control flow is transferred
3274to the corresponding destination; otherwise, control flow is transferred
3275to the default destination.
3276
3277Implementation:
3278"""""""""""""""
3279
3280Depending on properties of the target machine and the particular
3281``switch`` instruction, this instruction may be code generated in
3282different ways. For example, it could be generated as a series of
3283chained conditional branches or with a lookup table.
3284
3285Example:
3286""""""""
3287
3288.. code-block:: llvm
3289
3290 ; Emulate a conditional br instruction
3291 %Val = zext i1 %value to i32
3292 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3293
3294 ; Emulate an unconditional br instruction
3295 switch i32 0, label %dest [ ]
3296
3297 ; Implement a jump table:
3298 switch i32 %val, label %otherwise [ i32 0, label %onzero
3299 i32 1, label %onone
3300 i32 2, label %ontwo ]
3301
3302.. _i_indirectbr:
3303
3304'``indirectbr``' Instruction
3305^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3306
3307Syntax:
3308"""""""
3309
3310::
3311
3312 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3313
3314Overview:
3315"""""""""
3316
3317The '``indirectbr``' instruction implements an indirect branch to a
3318label within the current function, whose address is specified by
3319"``address``". Address must be derived from a
3320:ref:`blockaddress <blockaddress>` constant.
3321
3322Arguments:
3323""""""""""
3324
3325The '``address``' argument is the address of the label to jump to. The
3326rest of the arguments indicate the full set of possible destinations
3327that the address may point to. Blocks are allowed to occur multiple
3328times in the destination list, though this isn't particularly useful.
3329
3330This destination list is required so that dataflow analysis has an
3331accurate understanding of the CFG.
3332
3333Semantics:
3334""""""""""
3335
3336Control transfers to the block specified in the address argument. All
3337possible destination blocks must be listed in the label list, otherwise
3338this instruction has undefined behavior. This implies that jumps to
3339labels defined in other functions have undefined behavior as well.
3340
3341Implementation:
3342"""""""""""""""
3343
3344This is typically implemented with a jump through a register.
3345
3346Example:
3347""""""""
3348
3349.. code-block:: llvm
3350
3351 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3352
3353.. _i_invoke:
3354
3355'``invoke``' Instruction
3356^^^^^^^^^^^^^^^^^^^^^^^^
3357
3358Syntax:
3359"""""""
3360
3361::
3362
3363 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3364 to label <normal label> unwind label <exception label>
3365
3366Overview:
3367"""""""""
3368
3369The '``invoke``' instruction causes control to transfer to a specified
3370function, with the possibility of control flow transfer to either the
3371'``normal``' label or the '``exception``' label. If the callee function
3372returns with the "``ret``" instruction, control flow will return to the
3373"normal" label. If the callee (or any indirect callees) returns via the
3374":ref:`resume <i_resume>`" instruction or other exception handling
3375mechanism, control is interrupted and continued at the dynamically
3376nearest "exception" label.
3377
3378The '``exception``' label is a `landing
3379pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3380'``exception``' label is required to have the
3381":ref:`landingpad <i_landingpad>`" instruction, which contains the
3382information about the behavior of the program after unwinding happens,
3383as its first non-PHI instruction. The restrictions on the
3384"``landingpad``" instruction's tightly couples it to the "``invoke``"
3385instruction, so that the important information contained within the
3386"``landingpad``" instruction can't be lost through normal code motion.
3387
3388Arguments:
3389""""""""""
3390
3391This instruction requires several arguments:
3392
3393#. The optional "cconv" marker indicates which :ref:`calling
3394 convention <callingconv>` the call should use. If none is
3395 specified, the call defaults to using C calling conventions.
3396#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3397 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3398 are valid here.
3399#. '``ptr to function ty``': shall be the signature of the pointer to
3400 function value being invoked. In most cases, this is a direct
3401 function invocation, but indirect ``invoke``'s are just as possible,
3402 branching off an arbitrary pointer to function value.
3403#. '``function ptr val``': An LLVM value containing a pointer to a
3404 function to be invoked.
3405#. '``function args``': argument list whose types match the function
3406 signature argument types and parameter attributes. All arguments must
3407 be of :ref:`first class <t_firstclass>` type. If the function signature
3408 indicates the function accepts a variable number of arguments, the
3409 extra arguments can be specified.
3410#. '``normal label``': the label reached when the called function
3411 executes a '``ret``' instruction.
3412#. '``exception label``': the label reached when a callee returns via
3413 the :ref:`resume <i_resume>` instruction or other exception handling
3414 mechanism.
3415#. The optional :ref:`function attributes <fnattrs>` list. Only
3416 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3417 attributes are valid here.
3418
3419Semantics:
3420""""""""""
3421
3422This instruction is designed to operate as a standard '``call``'
3423instruction in most regards. The primary difference is that it
3424establishes an association with a label, which is used by the runtime
3425library to unwind the stack.
3426
3427This instruction is used in languages with destructors to ensure that
3428proper cleanup is performed in the case of either a ``longjmp`` or a
3429thrown exception. Additionally, this is important for implementation of
3430'``catch``' clauses in high-level languages that support them.
3431
3432For the purposes of the SSA form, the definition of the value returned
3433by the '``invoke``' instruction is deemed to occur on the edge from the
3434current block to the "normal" label. If the callee unwinds then no
3435return value is available.
3436
3437Example:
3438""""""""
3439
3440.. code-block:: llvm
3441
3442 %retval = invoke i32 @Test(i32 15) to label %Continue
3443 unwind label %TestCleanup ; {i32}:retval set
3444 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3445 unwind label %TestCleanup ; {i32}:retval set
3446
3447.. _i_resume:
3448
3449'``resume``' Instruction
3450^^^^^^^^^^^^^^^^^^^^^^^^
3451
3452Syntax:
3453"""""""
3454
3455::
3456
3457 resume <type> <value>
3458
3459Overview:
3460"""""""""
3461
3462The '``resume``' instruction is a terminator instruction that has no
3463successors.
3464
3465Arguments:
3466""""""""""
3467
3468The '``resume``' instruction requires one argument, which must have the
3469same type as the result of any '``landingpad``' instruction in the same
3470function.
3471
3472Semantics:
3473""""""""""
3474
3475The '``resume``' instruction resumes propagation of an existing
3476(in-flight) exception whose unwinding was interrupted with a
3477:ref:`landingpad <i_landingpad>` instruction.
3478
3479Example:
3480""""""""
3481
3482.. code-block:: llvm
3483
3484 resume { i8*, i32 } %exn
3485
3486.. _i_unreachable:
3487
3488'``unreachable``' Instruction
3489^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3490
3491Syntax:
3492"""""""
3493
3494::
3495
3496 unreachable
3497
3498Overview:
3499"""""""""
3500
3501The '``unreachable``' instruction has no defined semantics. This
3502instruction is used to inform the optimizer that a particular portion of
3503the code is not reachable. This can be used to indicate that the code
3504after a no-return function cannot be reached, and other facts.
3505
3506Semantics:
3507""""""""""
3508
3509The '``unreachable``' instruction has no defined semantics.
3510
3511.. _binaryops:
3512
3513Binary Operations
3514-----------------
3515
3516Binary operators are used to do most of the computation in a program.
3517They require two operands of the same type, execute an operation on
3518them, and produce a single value. The operands might represent multiple
3519data, as is the case with the :ref:`vector <t_vector>` data type. The
3520result value has the same type as its operands.
3521
3522There are several different binary operators:
3523
3524.. _i_add:
3525
3526'``add``' Instruction
3527^^^^^^^^^^^^^^^^^^^^^
3528
3529Syntax:
3530"""""""
3531
3532::
3533
3534 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3535 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3536 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3537 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3538
3539Overview:
3540"""""""""
3541
3542The '``add``' instruction returns the sum of its two operands.
3543
3544Arguments:
3545""""""""""
3546
3547The two arguments to the '``add``' instruction must be
3548:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3549arguments must have identical types.
3550
3551Semantics:
3552""""""""""
3553
3554The value produced is the integer sum of the two operands.
3555
3556If the sum has unsigned overflow, the result returned is the
3557mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3558the result.
3559
3560Because LLVM integers use a two's complement representation, this
3561instruction is appropriate for both signed and unsigned integers.
3562
3563``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3564respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3565result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3566unsigned and/or signed overflow, respectively, occurs.
3567
3568Example:
3569""""""""
3570
3571.. code-block:: llvm
3572
3573 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3574
3575.. _i_fadd:
3576
3577'``fadd``' Instruction
3578^^^^^^^^^^^^^^^^^^^^^^
3579
3580Syntax:
3581"""""""
3582
3583::
3584
3585 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3586
3587Overview:
3588"""""""""
3589
3590The '``fadd``' instruction returns the sum of its two operands.
3591
3592Arguments:
3593""""""""""
3594
3595The two arguments to the '``fadd``' instruction must be :ref:`floating
3596point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3597Both arguments must have identical types.
3598
3599Semantics:
3600""""""""""
3601
3602The value produced is the floating point sum of the two operands. This
3603instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3604which are optimization hints to enable otherwise unsafe floating point
3605optimizations:
3606
3607Example:
3608""""""""
3609
3610.. code-block:: llvm
3611
3612 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3613
3614'``sub``' Instruction
3615^^^^^^^^^^^^^^^^^^^^^
3616
3617Syntax:
3618"""""""
3619
3620::
3621
3622 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3623 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3624 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3625 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3626
3627Overview:
3628"""""""""
3629
3630The '``sub``' instruction returns the difference of its two operands.
3631
3632Note that the '``sub``' instruction is used to represent the '``neg``'
3633instruction present in most other intermediate representations.
3634
3635Arguments:
3636""""""""""
3637
3638The two arguments to the '``sub``' instruction must be
3639:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3640arguments must have identical types.
3641
3642Semantics:
3643""""""""""
3644
3645The value produced is the integer difference of the two operands.
3646
3647If the difference has unsigned overflow, the result returned is the
3648mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3649the result.
3650
3651Because LLVM integers use a two's complement representation, this
3652instruction is appropriate for both signed and unsigned integers.
3653
3654``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3655respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3656result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3657unsigned and/or signed overflow, respectively, occurs.
3658
3659Example:
3660""""""""
3661
3662.. code-block:: llvm
3663
3664 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3665 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3666
3667.. _i_fsub:
3668
3669'``fsub``' Instruction
3670^^^^^^^^^^^^^^^^^^^^^^
3671
3672Syntax:
3673"""""""
3674
3675::
3676
3677 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3678
3679Overview:
3680"""""""""
3681
3682The '``fsub``' instruction returns the difference of its two operands.
3683
3684Note that the '``fsub``' instruction is used to represent the '``fneg``'
3685instruction present in most other intermediate representations.
3686
3687Arguments:
3688""""""""""
3689
3690The two arguments to the '``fsub``' instruction must be :ref:`floating
3691point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3692Both arguments must have identical types.
3693
3694Semantics:
3695""""""""""
3696
3697The value produced is the floating point difference of the two operands.
3698This instruction can also take any number of :ref:`fast-math
3699flags <fastmath>`, which are optimization hints to enable otherwise
3700unsafe floating point optimizations:
3701
3702Example:
3703""""""""
3704
3705.. code-block:: llvm
3706
3707 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3708 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3709
3710'``mul``' Instruction
3711^^^^^^^^^^^^^^^^^^^^^
3712
3713Syntax:
3714"""""""
3715
3716::
3717
3718 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3719 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3720 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3721 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3722
3723Overview:
3724"""""""""
3725
3726The '``mul``' instruction returns the product of its two operands.
3727
3728Arguments:
3729""""""""""
3730
3731The two arguments to the '``mul``' instruction must be
3732:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3733arguments must have identical types.
3734
3735Semantics:
3736""""""""""
3737
3738The value produced is the integer product of the two operands.
3739
3740If the result of the multiplication has unsigned overflow, the result
3741returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3742bit width of the result.
3743
3744Because LLVM integers use a two's complement representation, and the
3745result is the same width as the operands, this instruction returns the
3746correct result for both signed and unsigned integers. If a full product
3747(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3748sign-extended or zero-extended as appropriate to the width of the full
3749product.
3750
3751``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3752respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3753result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3754unsigned and/or signed overflow, respectively, occurs.
3755
3756Example:
3757""""""""
3758
3759.. code-block:: llvm
3760
3761 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3762
3763.. _i_fmul:
3764
3765'``fmul``' Instruction
3766^^^^^^^^^^^^^^^^^^^^^^
3767
3768Syntax:
3769"""""""
3770
3771::
3772
3773 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3774
3775Overview:
3776"""""""""
3777
3778The '``fmul``' instruction returns the product of its two operands.
3779
3780Arguments:
3781""""""""""
3782
3783The two arguments to the '``fmul``' instruction must be :ref:`floating
3784point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3785Both arguments must have identical types.
3786
3787Semantics:
3788""""""""""
3789
3790The value produced is the floating point product of the two operands.
3791This instruction can also take any number of :ref:`fast-math
3792flags <fastmath>`, which are optimization hints to enable otherwise
3793unsafe floating point optimizations:
3794
3795Example:
3796""""""""
3797
3798.. code-block:: llvm
3799
3800 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3801
3802'``udiv``' Instruction
3803^^^^^^^^^^^^^^^^^^^^^^
3804
3805Syntax:
3806"""""""
3807
3808::
3809
3810 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3811 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3812
3813Overview:
3814"""""""""
3815
3816The '``udiv``' instruction returns the quotient of its two operands.
3817
3818Arguments:
3819""""""""""
3820
3821The two arguments to the '``udiv``' instruction must be
3822:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3823arguments must have identical types.
3824
3825Semantics:
3826""""""""""
3827
3828The value produced is the unsigned integer quotient of the two operands.
3829
3830Note that unsigned integer division and signed integer division are
3831distinct operations; for signed integer division, use '``sdiv``'.
3832
3833Division by zero leads to undefined behavior.
3834
3835If the ``exact`` keyword is present, the result value of the ``udiv`` is
3836a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3837such, "((a udiv exact b) mul b) == a").
3838
3839Example:
3840""""""""
3841
3842.. code-block:: llvm
3843
3844 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3845
3846'``sdiv``' Instruction
3847^^^^^^^^^^^^^^^^^^^^^^
3848
3849Syntax:
3850"""""""
3851
3852::
3853
3854 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3855 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3856
3857Overview:
3858"""""""""
3859
3860The '``sdiv``' instruction returns the quotient of its two operands.
3861
3862Arguments:
3863""""""""""
3864
3865The two arguments to the '``sdiv``' instruction must be
3866:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3867arguments must have identical types.
3868
3869Semantics:
3870""""""""""
3871
3872The value produced is the signed integer quotient of the two operands
3873rounded towards zero.
3874
3875Note that signed integer division and unsigned integer division are
3876distinct operations; for unsigned integer division, use '``udiv``'.
3877
3878Division by zero leads to undefined behavior. Overflow also leads to
3879undefined behavior; this is a rare case, but can occur, for example, by
3880doing a 32-bit division of -2147483648 by -1.
3881
3882If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3883a :ref:`poison value <poisonvalues>` if the result would be rounded.
3884
3885Example:
3886""""""""
3887
3888.. code-block:: llvm
3889
3890 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3891
3892.. _i_fdiv:
3893
3894'``fdiv``' Instruction
3895^^^^^^^^^^^^^^^^^^^^^^
3896
3897Syntax:
3898"""""""
3899
3900::
3901
3902 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3903
3904Overview:
3905"""""""""
3906
3907The '``fdiv``' instruction returns the quotient of its two operands.
3908
3909Arguments:
3910""""""""""
3911
3912The two arguments to the '``fdiv``' instruction must be :ref:`floating
3913point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3914Both arguments must have identical types.
3915
3916Semantics:
3917""""""""""
3918
3919The value produced is the floating point quotient of the two operands.
3920This instruction can also take any number of :ref:`fast-math
3921flags <fastmath>`, which are optimization hints to enable otherwise
3922unsafe floating point optimizations:
3923
3924Example:
3925""""""""
3926
3927.. code-block:: llvm
3928
3929 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3930
3931'``urem``' Instruction
3932^^^^^^^^^^^^^^^^^^^^^^
3933
3934Syntax:
3935"""""""
3936
3937::
3938
3939 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3940
3941Overview:
3942"""""""""
3943
3944The '``urem``' instruction returns the remainder from the unsigned
3945division of its two arguments.
3946
3947Arguments:
3948""""""""""
3949
3950The two arguments to the '``urem``' instruction must be
3951:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3952arguments must have identical types.
3953
3954Semantics:
3955""""""""""
3956
3957This instruction returns the unsigned integer *remainder* of a division.
3958This instruction always performs an unsigned division to get the
3959remainder.
3960
3961Note that unsigned integer remainder and signed integer remainder are
3962distinct operations; for signed integer remainder, use '``srem``'.
3963
3964Taking the remainder of a division by zero leads to undefined behavior.
3965
3966Example:
3967""""""""
3968
3969.. code-block:: llvm
3970
3971 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3972
3973'``srem``' Instruction
3974^^^^^^^^^^^^^^^^^^^^^^
3975
3976Syntax:
3977"""""""
3978
3979::
3980
3981 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3982
3983Overview:
3984"""""""""
3985
3986The '``srem``' instruction returns the remainder from the signed
3987division of its two operands. This instruction can also take
3988:ref:`vector <t_vector>` versions of the values in which case the elements
3989must be integers.
3990
3991Arguments:
3992""""""""""
3993
3994The two arguments to the '``srem``' instruction must be
3995:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3996arguments must have identical types.
3997
3998Semantics:
3999""""""""""
4000
4001This instruction returns the *remainder* of a division (where the result
4002is either zero or has the same sign as the dividend, ``op1``), not the
4003*modulo* operator (where the result is either zero or has the same sign
4004as the divisor, ``op2``) of a value. For more information about the
4005difference, see `The Math
4006Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4007table of how this is implemented in various languages, please see
4008`Wikipedia: modulo
4009operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4010
4011Note that signed integer remainder and unsigned integer remainder are
4012distinct operations; for unsigned integer remainder, use '``urem``'.
4013
4014Taking the remainder of a division by zero leads to undefined behavior.
4015Overflow also leads to undefined behavior; this is a rare case, but can
4016occur, for example, by taking the remainder of a 32-bit division of
4017-2147483648 by -1. (The remainder doesn't actually overflow, but this
4018rule lets srem be implemented using instructions that return both the
4019result of the division and the remainder.)
4020
4021Example:
4022""""""""
4023
4024.. code-block:: llvm
4025
4026 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
4027
4028.. _i_frem:
4029
4030'``frem``' Instruction
4031^^^^^^^^^^^^^^^^^^^^^^
4032
4033Syntax:
4034"""""""
4035
4036::
4037
4038 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4039
4040Overview:
4041"""""""""
4042
4043The '``frem``' instruction returns the remainder from the division of
4044its two operands.
4045
4046Arguments:
4047""""""""""
4048
4049The two arguments to the '``frem``' instruction must be :ref:`floating
4050point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4051Both arguments must have identical types.
4052
4053Semantics:
4054""""""""""
4055
4056This instruction returns the *remainder* of a division. The remainder
4057has the same sign as the dividend. This instruction can also take any
4058number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4059to enable otherwise unsafe floating point optimizations:
4060
4061Example:
4062""""""""
4063
4064.. code-block:: llvm
4065
4066 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
4067
4068.. _bitwiseops:
4069
4070Bitwise Binary Operations
4071-------------------------
4072
4073Bitwise binary operators are used to do various forms of bit-twiddling
4074in a program. They are generally very efficient instructions and can
4075commonly be strength reduced from other instructions. They require two
4076operands of the same type, execute an operation on them, and produce a
4077single value. The resulting value is the same type as its operands.
4078
4079'``shl``' Instruction
4080^^^^^^^^^^^^^^^^^^^^^
4081
4082Syntax:
4083"""""""
4084
4085::
4086
4087 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4088 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4089 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4090 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4091
4092Overview:
4093"""""""""
4094
4095The '``shl``' instruction returns the first operand shifted to the left
4096a specified number of bits.
4097
4098Arguments:
4099""""""""""
4100
4101Both arguments to the '``shl``' instruction must be the same
4102:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4103'``op2``' is treated as an unsigned value.
4104
4105Semantics:
4106""""""""""
4107
4108The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4109where ``n`` is the width of the result. If ``op2`` is (statically or
4110dynamically) negative or equal to or larger than the number of bits in
4111``op1``, the result is undefined. If the arguments are vectors, each
4112vector element of ``op1`` is shifted by the corresponding shift amount
4113in ``op2``.
4114
4115If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4116value <poisonvalues>` if it shifts out any non-zero bits. If the
4117``nsw`` keyword is present, then the shift produces a :ref:`poison
4118value <poisonvalues>` if it shifts out any bits that disagree with the
4119resultant sign bit. As such, NUW/NSW have the same semantics as they
4120would if the shift were expressed as a mul instruction with the same
4121nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4122
4123Example:
4124""""""""
4125
4126.. code-block:: llvm
4127
4128 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4129 <result> = shl i32 4, 2 ; yields {i32}: 16
4130 <result> = shl i32 1, 10 ; yields {i32}: 1024
4131 <result> = shl i32 1, 32 ; undefined
4132 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4133
4134'``lshr``' Instruction
4135^^^^^^^^^^^^^^^^^^^^^^
4136
4137Syntax:
4138"""""""
4139
4140::
4141
4142 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4143 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4144
4145Overview:
4146"""""""""
4147
4148The '``lshr``' instruction (logical shift right) returns the first
4149operand shifted to the right a specified number of bits with zero fill.
4150
4151Arguments:
4152""""""""""
4153
4154Both arguments to the '``lshr``' instruction must be the same
4155:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4156'``op2``' is treated as an unsigned value.
4157
4158Semantics:
4159""""""""""
4160
4161This instruction always performs a logical shift right operation. The
4162most significant bits of the result will be filled with zero bits after
4163the shift. If ``op2`` is (statically or dynamically) equal to or larger
4164than the number of bits in ``op1``, the result is undefined. If the
4165arguments are vectors, each vector element of ``op1`` is shifted by the
4166corresponding shift amount in ``op2``.
4167
4168If the ``exact`` keyword is present, the result value of the ``lshr`` is
4169a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4170non-zero.
4171
4172Example:
4173""""""""
4174
4175.. code-block:: llvm
4176
4177 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4178 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4179 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover8b5b3602013-05-07 06:17:14 +00004180 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004181 <result> = lshr i32 1, 32 ; undefined
4182 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4183
4184'``ashr``' Instruction
4185^^^^^^^^^^^^^^^^^^^^^^
4186
4187Syntax:
4188"""""""
4189
4190::
4191
4192 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4193 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4194
4195Overview:
4196"""""""""
4197
4198The '``ashr``' instruction (arithmetic shift right) returns the first
4199operand shifted to the right a specified number of bits with sign
4200extension.
4201
4202Arguments:
4203""""""""""
4204
4205Both arguments to the '``ashr``' instruction must be the same
4206:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4207'``op2``' is treated as an unsigned value.
4208
4209Semantics:
4210""""""""""
4211
4212This instruction always performs an arithmetic shift right operation,
4213The most significant bits of the result will be filled with the sign bit
4214of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4215than the number of bits in ``op1``, the result is undefined. If the
4216arguments are vectors, each vector element of ``op1`` is shifted by the
4217corresponding shift amount in ``op2``.
4218
4219If the ``exact`` keyword is present, the result value of the ``ashr`` is
4220a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4221non-zero.
4222
4223Example:
4224""""""""
4225
4226.. code-block:: llvm
4227
4228 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4229 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4230 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4231 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4232 <result> = ashr i32 1, 32 ; undefined
4233 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4234
4235'``and``' Instruction
4236^^^^^^^^^^^^^^^^^^^^^
4237
4238Syntax:
4239"""""""
4240
4241::
4242
4243 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4244
4245Overview:
4246"""""""""
4247
4248The '``and``' instruction returns the bitwise logical and of its two
4249operands.
4250
4251Arguments:
4252""""""""""
4253
4254The two arguments to the '``and``' instruction must be
4255:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4256arguments must have identical types.
4257
4258Semantics:
4259""""""""""
4260
4261The truth table used for the '``and``' instruction is:
4262
4263+-----+-----+-----+
4264| In0 | In1 | Out |
4265+-----+-----+-----+
4266| 0 | 0 | 0 |
4267+-----+-----+-----+
4268| 0 | 1 | 0 |
4269+-----+-----+-----+
4270| 1 | 0 | 0 |
4271+-----+-----+-----+
4272| 1 | 1 | 1 |
4273+-----+-----+-----+
4274
4275Example:
4276""""""""
4277
4278.. code-block:: llvm
4279
4280 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4281 <result> = and i32 15, 40 ; yields {i32}:result = 8
4282 <result> = and i32 4, 8 ; yields {i32}:result = 0
4283
4284'``or``' Instruction
4285^^^^^^^^^^^^^^^^^^^^
4286
4287Syntax:
4288"""""""
4289
4290::
4291
4292 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4293
4294Overview:
4295"""""""""
4296
4297The '``or``' instruction returns the bitwise logical inclusive or of its
4298two operands.
4299
4300Arguments:
4301""""""""""
4302
4303The two arguments to the '``or``' instruction must be
4304:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4305arguments must have identical types.
4306
4307Semantics:
4308""""""""""
4309
4310The truth table used for the '``or``' instruction is:
4311
4312+-----+-----+-----+
4313| In0 | In1 | Out |
4314+-----+-----+-----+
4315| 0 | 0 | 0 |
4316+-----+-----+-----+
4317| 0 | 1 | 1 |
4318+-----+-----+-----+
4319| 1 | 0 | 1 |
4320+-----+-----+-----+
4321| 1 | 1 | 1 |
4322+-----+-----+-----+
4323
4324Example:
4325""""""""
4326
4327::
4328
4329 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4330 <result> = or i32 15, 40 ; yields {i32}:result = 47
4331 <result> = or i32 4, 8 ; yields {i32}:result = 12
4332
4333'``xor``' Instruction
4334^^^^^^^^^^^^^^^^^^^^^
4335
4336Syntax:
4337"""""""
4338
4339::
4340
4341 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4342
4343Overview:
4344"""""""""
4345
4346The '``xor``' instruction returns the bitwise logical exclusive or of
4347its two operands. The ``xor`` is used to implement the "one's
4348complement" operation, which is the "~" operator in C.
4349
4350Arguments:
4351""""""""""
4352
4353The two arguments to the '``xor``' instruction must be
4354:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4355arguments must have identical types.
4356
4357Semantics:
4358""""""""""
4359
4360The truth table used for the '``xor``' instruction is:
4361
4362+-----+-----+-----+
4363| In0 | In1 | Out |
4364+-----+-----+-----+
4365| 0 | 0 | 0 |
4366+-----+-----+-----+
4367| 0 | 1 | 1 |
4368+-----+-----+-----+
4369| 1 | 0 | 1 |
4370+-----+-----+-----+
4371| 1 | 1 | 0 |
4372+-----+-----+-----+
4373
4374Example:
4375""""""""
4376
4377.. code-block:: llvm
4378
4379 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4380 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4381 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4382 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4383
4384Vector Operations
4385-----------------
4386
4387LLVM supports several instructions to represent vector operations in a
4388target-independent manner. These instructions cover the element-access
4389and vector-specific operations needed to process vectors effectively.
4390While LLVM does directly support these vector operations, many
4391sophisticated algorithms will want to use target-specific intrinsics to
4392take full advantage of a specific target.
4393
4394.. _i_extractelement:
4395
4396'``extractelement``' Instruction
4397^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4398
4399Syntax:
4400"""""""
4401
4402::
4403
4404 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4405
4406Overview:
4407"""""""""
4408
4409The '``extractelement``' instruction extracts a single scalar element
4410from a vector at a specified index.
4411
4412Arguments:
4413""""""""""
4414
4415The first operand of an '``extractelement``' instruction is a value of
4416:ref:`vector <t_vector>` type. The second operand is an index indicating
4417the position from which to extract the element. The index may be a
4418variable.
4419
4420Semantics:
4421""""""""""
4422
4423The result is a scalar of the same type as the element type of ``val``.
4424Its value is the value at position ``idx`` of ``val``. If ``idx``
4425exceeds the length of ``val``, the results are undefined.
4426
4427Example:
4428""""""""
4429
4430.. code-block:: llvm
4431
4432 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4433
4434.. _i_insertelement:
4435
4436'``insertelement``' Instruction
4437^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4438
4439Syntax:
4440"""""""
4441
4442::
4443
4444 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4445
4446Overview:
4447"""""""""
4448
4449The '``insertelement``' instruction inserts a scalar element into a
4450vector at a specified index.
4451
4452Arguments:
4453""""""""""
4454
4455The first operand of an '``insertelement``' instruction is a value of
4456:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4457type must equal the element type of the first operand. The third operand
4458is an index indicating the position at which to insert the value. The
4459index may be a variable.
4460
4461Semantics:
4462""""""""""
4463
4464The result is a vector of the same type as ``val``. Its element values
4465are those of ``val`` except at position ``idx``, where it gets the value
4466``elt``. If ``idx`` exceeds the length of ``val``, the results are
4467undefined.
4468
4469Example:
4470""""""""
4471
4472.. code-block:: llvm
4473
4474 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4475
4476.. _i_shufflevector:
4477
4478'``shufflevector``' Instruction
4479^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4480
4481Syntax:
4482"""""""
4483
4484::
4485
4486 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4487
4488Overview:
4489"""""""""
4490
4491The '``shufflevector``' instruction constructs a permutation of elements
4492from two input vectors, returning a vector with the same element type as
4493the input and length that is the same as the shuffle mask.
4494
4495Arguments:
4496""""""""""
4497
4498The first two operands of a '``shufflevector``' instruction are vectors
4499with the same type. The third argument is a shuffle mask whose element
4500type is always 'i32'. The result of the instruction is a vector whose
4501length is the same as the shuffle mask and whose element type is the
4502same as the element type of the first two operands.
4503
4504The shuffle mask operand is required to be a constant vector with either
4505constant integer or undef values.
4506
4507Semantics:
4508""""""""""
4509
4510The elements of the two input vectors are numbered from left to right
4511across both of the vectors. The shuffle mask operand specifies, for each
4512element of the result vector, which element of the two input vectors the
4513result element gets. The element selector may be undef (meaning "don't
4514care") and the second operand may be undef if performing a shuffle from
4515only one vector.
4516
4517Example:
4518""""""""
4519
4520.. code-block:: llvm
4521
4522 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4523 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4524 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4525 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4526 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4527 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4528 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4529 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4530
4531Aggregate Operations
4532--------------------
4533
4534LLVM supports several instructions for working with
4535:ref:`aggregate <t_aggregate>` values.
4536
4537.. _i_extractvalue:
4538
4539'``extractvalue``' Instruction
4540^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4541
4542Syntax:
4543"""""""
4544
4545::
4546
4547 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4548
4549Overview:
4550"""""""""
4551
4552The '``extractvalue``' instruction extracts the value of a member field
4553from an :ref:`aggregate <t_aggregate>` value.
4554
4555Arguments:
4556""""""""""
4557
4558The first operand of an '``extractvalue``' instruction is a value of
4559:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4560constant indices to specify which value to extract in a similar manner
4561as indices in a '``getelementptr``' instruction.
4562
4563The major differences to ``getelementptr`` indexing are:
4564
4565- Since the value being indexed is not a pointer, the first index is
4566 omitted and assumed to be zero.
4567- At least one index must be specified.
4568- Not only struct indices but also array indices must be in bounds.
4569
4570Semantics:
4571""""""""""
4572
4573The result is the value at the position in the aggregate specified by
4574the index operands.
4575
4576Example:
4577""""""""
4578
4579.. code-block:: llvm
4580
4581 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4582
4583.. _i_insertvalue:
4584
4585'``insertvalue``' Instruction
4586^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4587
4588Syntax:
4589"""""""
4590
4591::
4592
4593 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4594
4595Overview:
4596"""""""""
4597
4598The '``insertvalue``' instruction inserts a value into a member field in
4599an :ref:`aggregate <t_aggregate>` value.
4600
4601Arguments:
4602""""""""""
4603
4604The first operand of an '``insertvalue``' instruction is a value of
4605:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4606a first-class value to insert. The following operands are constant
4607indices indicating the position at which to insert the value in a
4608similar manner as indices in a '``extractvalue``' instruction. The value
4609to insert must have the same type as the value identified by the
4610indices.
4611
4612Semantics:
4613""""""""""
4614
4615The result is an aggregate of the same type as ``val``. Its value is
4616that of ``val`` except that the value at the position specified by the
4617indices is that of ``elt``.
4618
4619Example:
4620""""""""
4621
4622.. code-block:: llvm
4623
4624 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4625 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4626 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4627
4628.. _memoryops:
4629
4630Memory Access and Addressing Operations
4631---------------------------------------
4632
4633A key design point of an SSA-based representation is how it represents
4634memory. In LLVM, no memory locations are in SSA form, which makes things
4635very simple. This section describes how to read, write, and allocate
4636memory in LLVM.
4637
4638.. _i_alloca:
4639
4640'``alloca``' Instruction
4641^^^^^^^^^^^^^^^^^^^^^^^^
4642
4643Syntax:
4644"""""""
4645
4646::
4647
4648 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4649
4650Overview:
4651"""""""""
4652
4653The '``alloca``' instruction allocates memory on the stack frame of the
4654currently executing function, to be automatically released when this
4655function returns to its caller. The object is always allocated in the
4656generic address space (address space zero).
4657
4658Arguments:
4659""""""""""
4660
4661The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4662bytes of memory on the runtime stack, returning a pointer of the
4663appropriate type to the program. If "NumElements" is specified, it is
4664the number of elements allocated, otherwise "NumElements" is defaulted
4665to be one. If a constant alignment is specified, the value result of the
4666allocation is guaranteed to be aligned to at least that boundary. If not
4667specified, or if zero, the target can choose to align the allocation on
4668any convenient boundary compatible with the type.
4669
4670'``type``' may be any sized type.
4671
4672Semantics:
4673""""""""""
4674
4675Memory is allocated; a pointer is returned. The operation is undefined
4676if there is insufficient stack space for the allocation. '``alloca``'d
4677memory is automatically released when the function returns. The
4678'``alloca``' instruction is commonly used to represent automatic
4679variables that must have an address available. When the function returns
4680(either with the ``ret`` or ``resume`` instructions), the memory is
4681reclaimed. Allocating zero bytes is legal, but the result is undefined.
4682The order in which memory is allocated (ie., which way the stack grows)
4683is not specified.
4684
4685Example:
4686""""""""
4687
4688.. code-block:: llvm
4689
4690 %ptr = alloca i32 ; yields {i32*}:ptr
4691 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4692 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4693 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4694
4695.. _i_load:
4696
4697'``load``' Instruction
4698^^^^^^^^^^^^^^^^^^^^^^
4699
4700Syntax:
4701"""""""
4702
4703::
4704
4705 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4706 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4707 !<index> = !{ i32 1 }
4708
4709Overview:
4710"""""""""
4711
4712The '``load``' instruction is used to read from memory.
4713
4714Arguments:
4715""""""""""
4716
Eli Bendersky239a78b2013-04-17 20:17:08 +00004717The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00004718from which to load. The pointer must point to a :ref:`first
4719class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4720then the optimizer is not allowed to modify the number or order of
4721execution of this ``load`` with other :ref:`volatile
4722operations <volatile>`.
4723
4724If the ``load`` is marked as ``atomic``, it takes an extra
4725:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4726``release`` and ``acq_rel`` orderings are not valid on ``load``
4727instructions. Atomic loads produce :ref:`defined <memmodel>` results
4728when they may see multiple atomic stores. The type of the pointee must
4729be an integer type whose bit width is a power of two greater than or
4730equal to eight and less than or equal to a target-specific size limit.
4731``align`` must be explicitly specified on atomic loads, and the load has
4732undefined behavior if the alignment is not set to a value which is at
4733least the size in bytes of the pointee. ``!nontemporal`` does not have
4734any defined semantics for atomic loads.
4735
4736The optional constant ``align`` argument specifies the alignment of the
4737operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00004738or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004739alignment for the target. It is the responsibility of the code emitter
4740to ensure that the alignment information is correct. Overestimating the
4741alignment results in undefined behavior. Underestimating the alignment
4742may produce less efficient code. An alignment of 1 is always safe.
4743
4744The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004745metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00004746``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004747metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00004748that this load is not expected to be reused in the cache. The code
4749generator may select special instructions to save cache bandwidth, such
4750as the ``MOVNT`` instruction on x86.
4751
4752The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004753metadata name ``<index>`` corresponding to a metadata node with no
4754entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00004755instruction tells the optimizer and code generator that this load
4756address points to memory which does not change value during program
4757execution. The optimizer may then move this load around, for example, by
4758hoisting it out of loops using loop invariant code motion.
4759
4760Semantics:
4761""""""""""
4762
4763The location of memory pointed to is loaded. If the value being loaded
4764is of scalar type then the number of bytes read does not exceed the
4765minimum number of bytes needed to hold all bits of the type. For
4766example, loading an ``i24`` reads at most three bytes. When loading a
4767value of a type like ``i20`` with a size that is not an integral number
4768of bytes, the result is undefined if the value was not originally
4769written using a store of the same type.
4770
4771Examples:
4772"""""""""
4773
4774.. code-block:: llvm
4775
4776 %ptr = alloca i32 ; yields {i32*}:ptr
4777 store i32 3, i32* %ptr ; yields {void}
4778 %val = load i32* %ptr ; yields {i32}:val = i32 3
4779
4780.. _i_store:
4781
4782'``store``' Instruction
4783^^^^^^^^^^^^^^^^^^^^^^^
4784
4785Syntax:
4786"""""""
4787
4788::
4789
4790 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4791 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4792
4793Overview:
4794"""""""""
4795
4796The '``store``' instruction is used to write to memory.
4797
4798Arguments:
4799""""""""""
4800
Eli Benderskyca380842013-04-17 17:17:20 +00004801There are two arguments to the ``store`` instruction: a value to store
4802and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00004803operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00004804the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00004805then the optimizer is not allowed to modify the number or order of
4806execution of this ``store`` with other :ref:`volatile
4807operations <volatile>`.
4808
4809If the ``store`` is marked as ``atomic``, it takes an extra
4810:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4811``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4812instructions. Atomic loads produce :ref:`defined <memmodel>` results
4813when they may see multiple atomic stores. The type of the pointee must
4814be an integer type whose bit width is a power of two greater than or
4815equal to eight and less than or equal to a target-specific size limit.
4816``align`` must be explicitly specified on atomic stores, and the store
4817has undefined behavior if the alignment is not set to a value which is
4818at least the size in bytes of the pointee. ``!nontemporal`` does not
4819have any defined semantics for atomic stores.
4820
Eli Benderskyca380842013-04-17 17:17:20 +00004821The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00004822operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00004823or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004824alignment for the target. It is the responsibility of the code emitter
4825to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00004826alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00004827alignment may produce less efficient code. An alignment of 1 is always
4828safe.
4829
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004830The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00004831name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004832value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00004833tells the optimizer and code generator that this load is not expected to
4834be reused in the cache. The code generator may select special
4835instructions to save cache bandwidth, such as the MOVNT instruction on
4836x86.
4837
4838Semantics:
4839""""""""""
4840
Eli Benderskyca380842013-04-17 17:17:20 +00004841The contents of memory are updated to contain ``<value>`` at the
4842location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00004843of scalar type then the number of bytes written does not exceed the
4844minimum number of bytes needed to hold all bits of the type. For
4845example, storing an ``i24`` writes at most three bytes. When writing a
4846value of a type like ``i20`` with a size that is not an integral number
4847of bytes, it is unspecified what happens to the extra bits that do not
4848belong to the type, but they will typically be overwritten.
4849
4850Example:
4851""""""""
4852
4853.. code-block:: llvm
4854
4855 %ptr = alloca i32 ; yields {i32*}:ptr
4856 store i32 3, i32* %ptr ; yields {void}
4857 %val = load i32* %ptr ; yields {i32}:val = i32 3
4858
4859.. _i_fence:
4860
4861'``fence``' Instruction
4862^^^^^^^^^^^^^^^^^^^^^^^
4863
4864Syntax:
4865"""""""
4866
4867::
4868
4869 fence [singlethread] <ordering> ; yields {void}
4870
4871Overview:
4872"""""""""
4873
4874The '``fence``' instruction is used to introduce happens-before edges
4875between operations.
4876
4877Arguments:
4878""""""""""
4879
4880'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4881defines what *synchronizes-with* edges they add. They can only be given
4882``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4883
4884Semantics:
4885""""""""""
4886
4887A fence A which has (at least) ``release`` ordering semantics
4888*synchronizes with* a fence B with (at least) ``acquire`` ordering
4889semantics if and only if there exist atomic operations X and Y, both
4890operating on some atomic object M, such that A is sequenced before X, X
4891modifies M (either directly or through some side effect of a sequence
4892headed by X), Y is sequenced before B, and Y observes M. This provides a
4893*happens-before* dependency between A and B. Rather than an explicit
4894``fence``, one (but not both) of the atomic operations X or Y might
4895provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4896still *synchronize-with* the explicit ``fence`` and establish the
4897*happens-before* edge.
4898
4899A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4900``acquire`` and ``release`` semantics specified above, participates in
4901the global program order of other ``seq_cst`` operations and/or fences.
4902
4903The optional ":ref:`singlethread <singlethread>`" argument specifies
4904that the fence only synchronizes with other fences in the same thread.
4905(This is useful for interacting with signal handlers.)
4906
4907Example:
4908""""""""
4909
4910.. code-block:: llvm
4911
4912 fence acquire ; yields {void}
4913 fence singlethread seq_cst ; yields {void}
4914
4915.. _i_cmpxchg:
4916
4917'``cmpxchg``' Instruction
4918^^^^^^^^^^^^^^^^^^^^^^^^^
4919
4920Syntax:
4921"""""""
4922
4923::
4924
4925 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4926
4927Overview:
4928"""""""""
4929
4930The '``cmpxchg``' instruction is used to atomically modify memory. It
4931loads a value in memory and compares it to a given value. If they are
4932equal, it stores a new value into the memory.
4933
4934Arguments:
4935""""""""""
4936
4937There are three arguments to the '``cmpxchg``' instruction: an address
4938to operate on, a value to compare to the value currently be at that
4939address, and a new value to place at that address if the compared values
4940are equal. The type of '<cmp>' must be an integer type whose bit width
4941is a power of two greater than or equal to eight and less than or equal
4942to a target-specific size limit. '<cmp>' and '<new>' must have the same
4943type, and the type of '<pointer>' must be a pointer to that type. If the
4944``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4945to modify the number or order of execution of this ``cmpxchg`` with
4946other :ref:`volatile operations <volatile>`.
4947
4948The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4949synchronizes with other atomic operations.
4950
4951The optional "``singlethread``" argument declares that the ``cmpxchg``
4952is only atomic with respect to code (usually signal handlers) running in
4953the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4954respect to all other code in the system.
4955
4956The pointer passed into cmpxchg must have alignment greater than or
4957equal to the size in memory of the operand.
4958
4959Semantics:
4960""""""""""
4961
4962The contents of memory at the location specified by the '``<pointer>``'
4963operand is read and compared to '``<cmp>``'; if the read value is the
4964equal, '``<new>``' is written. The original value at the location is
4965returned.
4966
4967A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4968of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4969atomic load with an ordering parameter determined by dropping any
4970``release`` part of the ``cmpxchg``'s ordering.
4971
4972Example:
4973""""""""
4974
4975.. code-block:: llvm
4976
4977 entry:
4978 %orig = atomic load i32* %ptr unordered ; yields {i32}
4979 br label %loop
4980
4981 loop:
4982 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4983 %squared = mul i32 %cmp, %cmp
4984 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4985 %success = icmp eq i32 %cmp, %old
4986 br i1 %success, label %done, label %loop
4987
4988 done:
4989 ...
4990
4991.. _i_atomicrmw:
4992
4993'``atomicrmw``' Instruction
4994^^^^^^^^^^^^^^^^^^^^^^^^^^^
4995
4996Syntax:
4997"""""""
4998
4999::
5000
5001 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
5002
5003Overview:
5004"""""""""
5005
5006The '``atomicrmw``' instruction is used to atomically modify memory.
5007
5008Arguments:
5009""""""""""
5010
5011There are three arguments to the '``atomicrmw``' instruction: an
5012operation to apply, an address whose value to modify, an argument to the
5013operation. The operation must be one of the following keywords:
5014
5015- xchg
5016- add
5017- sub
5018- and
5019- nand
5020- or
5021- xor
5022- max
5023- min
5024- umax
5025- umin
5026
5027The type of '<value>' must be an integer type whose bit width is a power
5028of two greater than or equal to eight and less than or equal to a
5029target-specific size limit. The type of the '``<pointer>``' operand must
5030be a pointer to that type. If the ``atomicrmw`` is marked as
5031``volatile``, then the optimizer is not allowed to modify the number or
5032order of execution of this ``atomicrmw`` with other :ref:`volatile
5033operations <volatile>`.
5034
5035Semantics:
5036""""""""""
5037
5038The contents of memory at the location specified by the '``<pointer>``'
5039operand are atomically read, modified, and written back. The original
5040value at the location is returned. The modification is specified by the
5041operation argument:
5042
5043- xchg: ``*ptr = val``
5044- add: ``*ptr = *ptr + val``
5045- sub: ``*ptr = *ptr - val``
5046- and: ``*ptr = *ptr & val``
5047- nand: ``*ptr = ~(*ptr & val)``
5048- or: ``*ptr = *ptr | val``
5049- xor: ``*ptr = *ptr ^ val``
5050- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5051- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5052- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5053 comparison)
5054- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5055 comparison)
5056
5057Example:
5058""""""""
5059
5060.. code-block:: llvm
5061
5062 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
5063
5064.. _i_getelementptr:
5065
5066'``getelementptr``' Instruction
5067^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5068
5069Syntax:
5070"""""""
5071
5072::
5073
5074 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5075 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5076 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5077
5078Overview:
5079"""""""""
5080
5081The '``getelementptr``' instruction is used to get the address of a
5082subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5083address calculation only and does not access memory.
5084
5085Arguments:
5086""""""""""
5087
5088The first argument is always a pointer or a vector of pointers, and
5089forms the basis of the calculation. The remaining arguments are indices
5090that indicate which of the elements of the aggregate object are indexed.
5091The interpretation of each index is dependent on the type being indexed
5092into. The first index always indexes the pointer value given as the
5093first argument, the second index indexes a value of the type pointed to
5094(not necessarily the value directly pointed to, since the first index
5095can be non-zero), etc. The first type indexed into must be a pointer
5096value, subsequent types can be arrays, vectors, and structs. Note that
5097subsequent types being indexed into can never be pointers, since that
5098would require loading the pointer before continuing calculation.
5099
5100The type of each index argument depends on the type it is indexing into.
5101When indexing into a (optionally packed) structure, only ``i32`` integer
5102**constants** are allowed (when using a vector of indices they must all
5103be the **same** ``i32`` integer constant). When indexing into an array,
5104pointer or vector, integers of any width are allowed, and they are not
5105required to be constant. These integers are treated as signed values
5106where relevant.
5107
5108For example, let's consider a C code fragment and how it gets compiled
5109to LLVM:
5110
5111.. code-block:: c
5112
5113 struct RT {
5114 char A;
5115 int B[10][20];
5116 char C;
5117 };
5118 struct ST {
5119 int X;
5120 double Y;
5121 struct RT Z;
5122 };
5123
5124 int *foo(struct ST *s) {
5125 return &s[1].Z.B[5][13];
5126 }
5127
5128The LLVM code generated by Clang is:
5129
5130.. code-block:: llvm
5131
5132 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5133 %struct.ST = type { i32, double, %struct.RT }
5134
5135 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5136 entry:
5137 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5138 ret i32* %arrayidx
5139 }
5140
5141Semantics:
5142""""""""""
5143
5144In the example above, the first index is indexing into the
5145'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5146= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5147indexes into the third element of the structure, yielding a
5148'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5149structure. The third index indexes into the second element of the
5150structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5151dimensions of the array are subscripted into, yielding an '``i32``'
5152type. The '``getelementptr``' instruction returns a pointer to this
5153element, thus computing a value of '``i32*``' type.
5154
5155Note that it is perfectly legal to index partially through a structure,
5156returning a pointer to an inner element. Because of this, the LLVM code
5157for the given testcase is equivalent to:
5158
5159.. code-block:: llvm
5160
5161 define i32* @foo(%struct.ST* %s) {
5162 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5163 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5164 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5165 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5166 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5167 ret i32* %t5
5168 }
5169
5170If the ``inbounds`` keyword is present, the result value of the
5171``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5172pointer is not an *in bounds* address of an allocated object, or if any
5173of the addresses that would be formed by successive addition of the
5174offsets implied by the indices to the base address with infinitely
5175precise signed arithmetic are not an *in bounds* address of that
5176allocated object. The *in bounds* addresses for an allocated object are
5177all the addresses that point into the object, plus the address one byte
5178past the end. In cases where the base is a vector of pointers the
5179``inbounds`` keyword applies to each of the computations element-wise.
5180
5181If the ``inbounds`` keyword is not present, the offsets are added to the
5182base address with silently-wrapping two's complement arithmetic. If the
5183offsets have a different width from the pointer, they are sign-extended
5184or truncated to the width of the pointer. The result value of the
5185``getelementptr`` may be outside the object pointed to by the base
5186pointer. The result value may not necessarily be used to access memory
5187though, even if it happens to point into allocated storage. See the
5188:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5189information.
5190
5191The getelementptr instruction is often confusing. For some more insight
5192into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5193
5194Example:
5195""""""""
5196
5197.. code-block:: llvm
5198
5199 ; yields [12 x i8]*:aptr
5200 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5201 ; yields i8*:vptr
5202 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5203 ; yields i8*:eptr
5204 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5205 ; yields i32*:iptr
5206 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5207
5208In cases where the pointer argument is a vector of pointers, each index
5209must be a vector with the same number of elements. For example:
5210
5211.. code-block:: llvm
5212
5213 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5214
5215Conversion Operations
5216---------------------
5217
5218The instructions in this category are the conversion instructions
5219(casting) which all take a single operand and a type. They perform
5220various bit conversions on the operand.
5221
5222'``trunc .. to``' Instruction
5223^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5224
5225Syntax:
5226"""""""
5227
5228::
5229
5230 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5231
5232Overview:
5233"""""""""
5234
5235The '``trunc``' instruction truncates its operand to the type ``ty2``.
5236
5237Arguments:
5238""""""""""
5239
5240The '``trunc``' instruction takes a value to trunc, and a type to trunc
5241it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5242of the same number of integers. The bit size of the ``value`` must be
5243larger than the bit size of the destination type, ``ty2``. Equal sized
5244types are not allowed.
5245
5246Semantics:
5247""""""""""
5248
5249The '``trunc``' instruction truncates the high order bits in ``value``
5250and converts the remaining bits to ``ty2``. Since the source size must
5251be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5252It will always truncate bits.
5253
5254Example:
5255""""""""
5256
5257.. code-block:: llvm
5258
5259 %X = trunc i32 257 to i8 ; yields i8:1
5260 %Y = trunc i32 123 to i1 ; yields i1:true
5261 %Z = trunc i32 122 to i1 ; yields i1:false
5262 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5263
5264'``zext .. to``' Instruction
5265^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5266
5267Syntax:
5268"""""""
5269
5270::
5271
5272 <result> = zext <ty> <value> to <ty2> ; yields ty2
5273
5274Overview:
5275"""""""""
5276
5277The '``zext``' instruction zero extends its operand to type ``ty2``.
5278
5279Arguments:
5280""""""""""
5281
5282The '``zext``' instruction takes a value to cast, and a type to cast it
5283to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5284the same number of integers. The bit size of the ``value`` must be
5285smaller than the bit size of the destination type, ``ty2``.
5286
5287Semantics:
5288""""""""""
5289
5290The ``zext`` fills the high order bits of the ``value`` with zero bits
5291until it reaches the size of the destination type, ``ty2``.
5292
5293When zero extending from i1, the result will always be either 0 or 1.
5294
5295Example:
5296""""""""
5297
5298.. code-block:: llvm
5299
5300 %X = zext i32 257 to i64 ; yields i64:257
5301 %Y = zext i1 true to i32 ; yields i32:1
5302 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5303
5304'``sext .. to``' Instruction
5305^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5306
5307Syntax:
5308"""""""
5309
5310::
5311
5312 <result> = sext <ty> <value> to <ty2> ; yields ty2
5313
5314Overview:
5315"""""""""
5316
5317The '``sext``' sign extends ``value`` to the type ``ty2``.
5318
5319Arguments:
5320""""""""""
5321
5322The '``sext``' instruction takes a value to cast, and a type to cast it
5323to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5324the same number of integers. The bit size of the ``value`` must be
5325smaller than the bit size of the destination type, ``ty2``.
5326
5327Semantics:
5328""""""""""
5329
5330The '``sext``' instruction performs a sign extension by copying the sign
5331bit (highest order bit) of the ``value`` until it reaches the bit size
5332of the type ``ty2``.
5333
5334When sign extending from i1, the extension always results in -1 or 0.
5335
5336Example:
5337""""""""
5338
5339.. code-block:: llvm
5340
5341 %X = sext i8 -1 to i16 ; yields i16 :65535
5342 %Y = sext i1 true to i32 ; yields i32:-1
5343 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5344
5345'``fptrunc .. to``' Instruction
5346^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5347
5348Syntax:
5349"""""""
5350
5351::
5352
5353 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5354
5355Overview:
5356"""""""""
5357
5358The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5359
5360Arguments:
5361""""""""""
5362
5363The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5364value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5365The size of ``value`` must be larger than the size of ``ty2``. This
5366implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5367
5368Semantics:
5369""""""""""
5370
5371The '``fptrunc``' instruction truncates a ``value`` from a larger
5372:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5373point <t_floating>` type. If the value cannot fit within the
5374destination type, ``ty2``, then the results are undefined.
5375
5376Example:
5377""""""""
5378
5379.. code-block:: llvm
5380
5381 %X = fptrunc double 123.0 to float ; yields float:123.0
5382 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5383
5384'``fpext .. to``' Instruction
5385^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5386
5387Syntax:
5388"""""""
5389
5390::
5391
5392 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5393
5394Overview:
5395"""""""""
5396
5397The '``fpext``' extends a floating point ``value`` to a larger floating
5398point value.
5399
5400Arguments:
5401""""""""""
5402
5403The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5404``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5405to. The source type must be smaller than the destination type.
5406
5407Semantics:
5408""""""""""
5409
5410The '``fpext``' instruction extends the ``value`` from a smaller
5411:ref:`floating point <t_floating>` type to a larger :ref:`floating
5412point <t_floating>` type. The ``fpext`` cannot be used to make a
5413*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5414*no-op cast* for a floating point cast.
5415
5416Example:
5417""""""""
5418
5419.. code-block:: llvm
5420
5421 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5422 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5423
5424'``fptoui .. to``' Instruction
5425^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5426
5427Syntax:
5428"""""""
5429
5430::
5431
5432 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5433
5434Overview:
5435"""""""""
5436
5437The '``fptoui``' converts a floating point ``value`` to its unsigned
5438integer equivalent of type ``ty2``.
5439
5440Arguments:
5441""""""""""
5442
5443The '``fptoui``' instruction takes a value to cast, which must be a
5444scalar or vector :ref:`floating point <t_floating>` value, and a type to
5445cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5446``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5447type with the same number of elements as ``ty``
5448
5449Semantics:
5450""""""""""
5451
5452The '``fptoui``' instruction converts its :ref:`floating
5453point <t_floating>` operand into the nearest (rounding towards zero)
5454unsigned integer value. If the value cannot fit in ``ty2``, the results
5455are undefined.
5456
5457Example:
5458""""""""
5459
5460.. code-block:: llvm
5461
5462 %X = fptoui double 123.0 to i32 ; yields i32:123
5463 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5464 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5465
5466'``fptosi .. to``' Instruction
5467^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5468
5469Syntax:
5470"""""""
5471
5472::
5473
5474 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5475
5476Overview:
5477"""""""""
5478
5479The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5480``value`` to type ``ty2``.
5481
5482Arguments:
5483""""""""""
5484
5485The '``fptosi``' instruction takes a value to cast, which must be a
5486scalar or vector :ref:`floating point <t_floating>` value, and a type to
5487cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5488``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5489type with the same number of elements as ``ty``
5490
5491Semantics:
5492""""""""""
5493
5494The '``fptosi``' instruction converts its :ref:`floating
5495point <t_floating>` operand into the nearest (rounding towards zero)
5496signed integer value. If the value cannot fit in ``ty2``, the results
5497are undefined.
5498
5499Example:
5500""""""""
5501
5502.. code-block:: llvm
5503
5504 %X = fptosi double -123.0 to i32 ; yields i32:-123
5505 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5506 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5507
5508'``uitofp .. to``' Instruction
5509^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5510
5511Syntax:
5512"""""""
5513
5514::
5515
5516 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5517
5518Overview:
5519"""""""""
5520
5521The '``uitofp``' instruction regards ``value`` as an unsigned integer
5522and converts that value to the ``ty2`` type.
5523
5524Arguments:
5525""""""""""
5526
5527The '``uitofp``' instruction takes a value to cast, which must be a
5528scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5529``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5530``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5531type with the same number of elements as ``ty``
5532
5533Semantics:
5534""""""""""
5535
5536The '``uitofp``' instruction interprets its operand as an unsigned
5537integer quantity and converts it to the corresponding floating point
5538value. If the value cannot fit in the floating point value, the results
5539are undefined.
5540
5541Example:
5542""""""""
5543
5544.. code-block:: llvm
5545
5546 %X = uitofp i32 257 to float ; yields float:257.0
5547 %Y = uitofp i8 -1 to double ; yields double:255.0
5548
5549'``sitofp .. to``' Instruction
5550^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5551
5552Syntax:
5553"""""""
5554
5555::
5556
5557 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5558
5559Overview:
5560"""""""""
5561
5562The '``sitofp``' instruction regards ``value`` as a signed integer and
5563converts that value to the ``ty2`` type.
5564
5565Arguments:
5566""""""""""
5567
5568The '``sitofp``' instruction takes a value to cast, which must be a
5569scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5570``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5571``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5572type with the same number of elements as ``ty``
5573
5574Semantics:
5575""""""""""
5576
5577The '``sitofp``' instruction interprets its operand as a signed integer
5578quantity and converts it to the corresponding floating point value. If
5579the value cannot fit in the floating point value, the results are
5580undefined.
5581
5582Example:
5583""""""""
5584
5585.. code-block:: llvm
5586
5587 %X = sitofp i32 257 to float ; yields float:257.0
5588 %Y = sitofp i8 -1 to double ; yields double:-1.0
5589
5590.. _i_ptrtoint:
5591
5592'``ptrtoint .. to``' Instruction
5593^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5594
5595Syntax:
5596"""""""
5597
5598::
5599
5600 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5601
5602Overview:
5603"""""""""
5604
5605The '``ptrtoint``' instruction converts the pointer or a vector of
5606pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5607
5608Arguments:
5609""""""""""
5610
5611The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5612a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5613type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5614a vector of integers type.
5615
5616Semantics:
5617""""""""""
5618
5619The '``ptrtoint``' instruction converts ``value`` to integer type
5620``ty2`` by interpreting the pointer value as an integer and either
5621truncating or zero extending that value to the size of the integer type.
5622If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5623``value`` is larger than ``ty2`` then a truncation is done. If they are
5624the same size, then nothing is done (*no-op cast*) other than a type
5625change.
5626
5627Example:
5628""""""""
5629
5630.. code-block:: llvm
5631
5632 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5633 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5634 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5635
5636.. _i_inttoptr:
5637
5638'``inttoptr .. to``' Instruction
5639^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5640
5641Syntax:
5642"""""""
5643
5644::
5645
5646 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5647
5648Overview:
5649"""""""""
5650
5651The '``inttoptr``' instruction converts an integer ``value`` to a
5652pointer type, ``ty2``.
5653
5654Arguments:
5655""""""""""
5656
5657The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5658cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5659type.
5660
5661Semantics:
5662""""""""""
5663
5664The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5665applying either a zero extension or a truncation depending on the size
5666of the integer ``value``. If ``value`` is larger than the size of a
5667pointer then a truncation is done. If ``value`` is smaller than the size
5668of a pointer then a zero extension is done. If they are the same size,
5669nothing is done (*no-op cast*).
5670
5671Example:
5672""""""""
5673
5674.. code-block:: llvm
5675
5676 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5677 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5678 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5679 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5680
5681.. _i_bitcast:
5682
5683'``bitcast .. to``' Instruction
5684^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5685
5686Syntax:
5687"""""""
5688
5689::
5690
5691 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5692
5693Overview:
5694"""""""""
5695
5696The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5697changing any bits.
5698
5699Arguments:
5700""""""""""
5701
5702The '``bitcast``' instruction takes a value to cast, which must be a
5703non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00005704also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5705bit sizes of ``value`` and the destination type, ``ty2``, must be
5706identical. If the source type is a pointer, the destination type must
5707also be a pointer of the same size. This instruction supports bitwise
5708conversion of vectors to integers and to vectors of other types (as
5709long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00005710
5711Semantics:
5712""""""""""
5713
Matt Arsenault24b49c42013-07-31 17:49:08 +00005714The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5715is always a *no-op cast* because no bits change with this
5716conversion. The conversion is done as if the ``value`` had been stored
5717to memory and read back as type ``ty2``. Pointer (or vector of
5718pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005719pointers) types with the same address space through this instruction.
5720To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
5721or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00005722
5723Example:
5724""""""""
5725
5726.. code-block:: llvm
5727
5728 %X = bitcast i8 255 to i8 ; yields i8 :-1
5729 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5730 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5731 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5732
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005733.. _i_addrspacecast:
5734
5735'``addrspacecast .. to``' Instruction
5736^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5737
5738Syntax:
5739"""""""
5740
5741::
5742
5743 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
5744
5745Overview:
5746"""""""""
5747
5748The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
5749address space ``n`` to type ``pty2`` in address space ``m``.
5750
5751Arguments:
5752""""""""""
5753
5754The '``addrspacecast``' instruction takes a pointer or vector of pointer value
5755to cast and a pointer type to cast it to, which must have a different
5756address space.
5757
5758Semantics:
5759""""""""""
5760
5761The '``addrspacecast``' instruction converts the pointer value
5762``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00005763value modification, depending on the target and the address space
5764pair. Pointer conversions within the same address space must be
5765performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005766conversion is legal then both result and operand refer to the same memory
5767location.
5768
5769Example:
5770""""""""
5771
5772.. code-block:: llvm
5773
Matt Arsenault9c13dd02013-11-15 22:43:50 +00005774 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
5775 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
5776 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005777
Sean Silvab084af42012-12-07 10:36:55 +00005778.. _otherops:
5779
5780Other Operations
5781----------------
5782
5783The instructions in this category are the "miscellaneous" instructions,
5784which defy better classification.
5785
5786.. _i_icmp:
5787
5788'``icmp``' Instruction
5789^^^^^^^^^^^^^^^^^^^^^^
5790
5791Syntax:
5792"""""""
5793
5794::
5795
5796 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5797
5798Overview:
5799"""""""""
5800
5801The '``icmp``' instruction returns a boolean value or a vector of
5802boolean values based on comparison of its two integer, integer vector,
5803pointer, or pointer vector operands.
5804
5805Arguments:
5806""""""""""
5807
5808The '``icmp``' instruction takes three operands. The first operand is
5809the condition code indicating the kind of comparison to perform. It is
5810not a value, just a keyword. The possible condition code are:
5811
5812#. ``eq``: equal
5813#. ``ne``: not equal
5814#. ``ugt``: unsigned greater than
5815#. ``uge``: unsigned greater or equal
5816#. ``ult``: unsigned less than
5817#. ``ule``: unsigned less or equal
5818#. ``sgt``: signed greater than
5819#. ``sge``: signed greater or equal
5820#. ``slt``: signed less than
5821#. ``sle``: signed less or equal
5822
5823The remaining two arguments must be :ref:`integer <t_integer>` or
5824:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5825must also be identical types.
5826
5827Semantics:
5828""""""""""
5829
5830The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5831code given as ``cond``. The comparison performed always yields either an
5832:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5833
5834#. ``eq``: yields ``true`` if the operands are equal, ``false``
5835 otherwise. No sign interpretation is necessary or performed.
5836#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5837 otherwise. No sign interpretation is necessary or performed.
5838#. ``ugt``: interprets the operands as unsigned values and yields
5839 ``true`` if ``op1`` is greater than ``op2``.
5840#. ``uge``: interprets the operands as unsigned values and yields
5841 ``true`` if ``op1`` is greater than or equal to ``op2``.
5842#. ``ult``: interprets the operands as unsigned values and yields
5843 ``true`` if ``op1`` is less than ``op2``.
5844#. ``ule``: interprets the operands as unsigned values and yields
5845 ``true`` if ``op1`` is less than or equal to ``op2``.
5846#. ``sgt``: interprets the operands as signed values and yields ``true``
5847 if ``op1`` is greater than ``op2``.
5848#. ``sge``: interprets the operands as signed values and yields ``true``
5849 if ``op1`` is greater than or equal to ``op2``.
5850#. ``slt``: interprets the operands as signed values and yields ``true``
5851 if ``op1`` is less than ``op2``.
5852#. ``sle``: interprets the operands as signed values and yields ``true``
5853 if ``op1`` is less than or equal to ``op2``.
5854
5855If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5856are compared as if they were integers.
5857
5858If the operands are integer vectors, then they are compared element by
5859element. The result is an ``i1`` vector with the same number of elements
5860as the values being compared. Otherwise, the result is an ``i1``.
5861
5862Example:
5863""""""""
5864
5865.. code-block:: llvm
5866
5867 <result> = icmp eq i32 4, 5 ; yields: result=false
5868 <result> = icmp ne float* %X, %X ; yields: result=false
5869 <result> = icmp ult i16 4, 5 ; yields: result=true
5870 <result> = icmp sgt i16 4, 5 ; yields: result=false
5871 <result> = icmp ule i16 -4, 5 ; yields: result=false
5872 <result> = icmp sge i16 4, 5 ; yields: result=false
5873
5874Note that the code generator does not yet support vector types with the
5875``icmp`` instruction.
5876
5877.. _i_fcmp:
5878
5879'``fcmp``' Instruction
5880^^^^^^^^^^^^^^^^^^^^^^
5881
5882Syntax:
5883"""""""
5884
5885::
5886
5887 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5888
5889Overview:
5890"""""""""
5891
5892The '``fcmp``' instruction returns a boolean value or vector of boolean
5893values based on comparison of its operands.
5894
5895If the operands are floating point scalars, then the result type is a
5896boolean (:ref:`i1 <t_integer>`).
5897
5898If the operands are floating point vectors, then the result type is a
5899vector of boolean with the same number of elements as the operands being
5900compared.
5901
5902Arguments:
5903""""""""""
5904
5905The '``fcmp``' instruction takes three operands. The first operand is
5906the condition code indicating the kind of comparison to perform. It is
5907not a value, just a keyword. The possible condition code are:
5908
5909#. ``false``: no comparison, always returns false
5910#. ``oeq``: ordered and equal
5911#. ``ogt``: ordered and greater than
5912#. ``oge``: ordered and greater than or equal
5913#. ``olt``: ordered and less than
5914#. ``ole``: ordered and less than or equal
5915#. ``one``: ordered and not equal
5916#. ``ord``: ordered (no nans)
5917#. ``ueq``: unordered or equal
5918#. ``ugt``: unordered or greater than
5919#. ``uge``: unordered or greater than or equal
5920#. ``ult``: unordered or less than
5921#. ``ule``: unordered or less than or equal
5922#. ``une``: unordered or not equal
5923#. ``uno``: unordered (either nans)
5924#. ``true``: no comparison, always returns true
5925
5926*Ordered* means that neither operand is a QNAN while *unordered* means
5927that either operand may be a QNAN.
5928
5929Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5930point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5931type. They must have identical types.
5932
5933Semantics:
5934""""""""""
5935
5936The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5937condition code given as ``cond``. If the operands are vectors, then the
5938vectors are compared element by element. Each comparison performed
5939always yields an :ref:`i1 <t_integer>` result, as follows:
5940
5941#. ``false``: always yields ``false``, regardless of operands.
5942#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5943 is equal to ``op2``.
5944#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5945 is greater than ``op2``.
5946#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5947 is greater than or equal to ``op2``.
5948#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5949 is less than ``op2``.
5950#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5951 is less than or equal to ``op2``.
5952#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5953 is not equal to ``op2``.
5954#. ``ord``: yields ``true`` if both operands are not a QNAN.
5955#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5956 equal to ``op2``.
5957#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5958 greater than ``op2``.
5959#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5960 greater than or equal to ``op2``.
5961#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5962 less than ``op2``.
5963#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5964 less than or equal to ``op2``.
5965#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5966 not equal to ``op2``.
5967#. ``uno``: yields ``true`` if either operand is a QNAN.
5968#. ``true``: always yields ``true``, regardless of operands.
5969
5970Example:
5971""""""""
5972
5973.. code-block:: llvm
5974
5975 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5976 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5977 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5978 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5979
5980Note that the code generator does not yet support vector types with the
5981``fcmp`` instruction.
5982
5983.. _i_phi:
5984
5985'``phi``' Instruction
5986^^^^^^^^^^^^^^^^^^^^^
5987
5988Syntax:
5989"""""""
5990
5991::
5992
5993 <result> = phi <ty> [ <val0>, <label0>], ...
5994
5995Overview:
5996"""""""""
5997
5998The '``phi``' instruction is used to implement the φ node in the SSA
5999graph representing the function.
6000
6001Arguments:
6002""""""""""
6003
6004The type of the incoming values is specified with the first type field.
6005After this, the '``phi``' instruction takes a list of pairs as
6006arguments, with one pair for each predecessor basic block of the current
6007block. Only values of :ref:`first class <t_firstclass>` type may be used as
6008the value arguments to the PHI node. Only labels may be used as the
6009label arguments.
6010
6011There must be no non-phi instructions between the start of a basic block
6012and the PHI instructions: i.e. PHI instructions must be first in a basic
6013block.
6014
6015For the purposes of the SSA form, the use of each incoming value is
6016deemed to occur on the edge from the corresponding predecessor block to
6017the current block (but after any definition of an '``invoke``'
6018instruction's return value on the same edge).
6019
6020Semantics:
6021""""""""""
6022
6023At runtime, the '``phi``' instruction logically takes on the value
6024specified by the pair corresponding to the predecessor basic block that
6025executed just prior to the current block.
6026
6027Example:
6028""""""""
6029
6030.. code-block:: llvm
6031
6032 Loop: ; Infinite loop that counts from 0 on up...
6033 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6034 %nextindvar = add i32 %indvar, 1
6035 br label %Loop
6036
6037.. _i_select:
6038
6039'``select``' Instruction
6040^^^^^^^^^^^^^^^^^^^^^^^^
6041
6042Syntax:
6043"""""""
6044
6045::
6046
6047 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6048
6049 selty is either i1 or {<N x i1>}
6050
6051Overview:
6052"""""""""
6053
6054The '``select``' instruction is used to choose one value based on a
6055condition, without branching.
6056
6057Arguments:
6058""""""""""
6059
6060The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6061values indicating the condition, and two values of the same :ref:`first
6062class <t_firstclass>` type. If the val1/val2 are vectors and the
6063condition is a scalar, then entire vectors are selected, not individual
6064elements.
6065
6066Semantics:
6067""""""""""
6068
6069If the condition is an i1 and it evaluates to 1, the instruction returns
6070the first value argument; otherwise, it returns the second value
6071argument.
6072
6073If the condition is a vector of i1, then the value arguments must be
6074vectors of the same size, and the selection is done element by element.
6075
6076Example:
6077""""""""
6078
6079.. code-block:: llvm
6080
6081 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6082
6083.. _i_call:
6084
6085'``call``' Instruction
6086^^^^^^^^^^^^^^^^^^^^^^
6087
6088Syntax:
6089"""""""
6090
6091::
6092
6093 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
6094
6095Overview:
6096"""""""""
6097
6098The '``call``' instruction represents a simple function call.
6099
6100Arguments:
6101""""""""""
6102
6103This instruction requires several arguments:
6104
6105#. The optional "tail" marker indicates that the callee function does
6106 not access any allocas or varargs in the caller. Note that calls may
6107 be marked "tail" even if they do not occur before a
6108 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
6109 function call is eligible for tail call optimization, but `might not
6110 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
6111 The code generator may optimize calls marked "tail" with either 1)
6112 automatic `sibling call
6113 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
6114 callee have matching signatures, or 2) forced tail call optimization
6115 when the following extra requirements are met:
6116
6117 - Caller and callee both have the calling convention ``fastcc``.
6118 - The call is in tail position (ret immediately follows call and ret
6119 uses value of call or is void).
6120 - Option ``-tailcallopt`` is enabled, or
6121 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6122 - `Platform specific constraints are
6123 met. <CodeGenerator.html#tailcallopt>`_
6124
6125#. The optional "cconv" marker indicates which :ref:`calling
6126 convention <callingconv>` the call should use. If none is
6127 specified, the call defaults to using C calling conventions. The
6128 calling convention of the call must match the calling convention of
6129 the target function, or else the behavior is undefined.
6130#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6131 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6132 are valid here.
6133#. '``ty``': the type of the call instruction itself which is also the
6134 type of the return value. Functions that return no value are marked
6135 ``void``.
6136#. '``fnty``': shall be the signature of the pointer to function value
6137 being invoked. The argument types must match the types implied by
6138 this signature. This type can be omitted if the function is not
6139 varargs and if the function type does not return a pointer to a
6140 function.
6141#. '``fnptrval``': An LLVM value containing a pointer to a function to
6142 be invoked. In most cases, this is a direct function invocation, but
6143 indirect ``call``'s are just as possible, calling an arbitrary pointer
6144 to function value.
6145#. '``function args``': argument list whose types match the function
6146 signature argument types and parameter attributes. All arguments must
6147 be of :ref:`first class <t_firstclass>` type. If the function signature
6148 indicates the function accepts a variable number of arguments, the
6149 extra arguments can be specified.
6150#. The optional :ref:`function attributes <fnattrs>` list. Only
6151 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6152 attributes are valid here.
6153
6154Semantics:
6155""""""""""
6156
6157The '``call``' instruction is used to cause control flow to transfer to
6158a specified function, with its incoming arguments bound to the specified
6159values. Upon a '``ret``' instruction in the called function, control
6160flow continues with the instruction after the function call, and the
6161return value of the function is bound to the result argument.
6162
6163Example:
6164""""""""
6165
6166.. code-block:: llvm
6167
6168 %retval = call i32 @test(i32 %argc)
6169 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6170 %X = tail call i32 @foo() ; yields i32
6171 %Y = tail call fastcc i32 @foo() ; yields i32
6172 call void %foo(i8 97 signext)
6173
6174 %struct.A = type { i32, i8 }
6175 %r = call %struct.A @foo() ; yields { 32, i8 }
6176 %gr = extractvalue %struct.A %r, 0 ; yields i32
6177 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6178 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6179 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6180
6181llvm treats calls to some functions with names and arguments that match
6182the standard C99 library as being the C99 library functions, and may
6183perform optimizations or generate code for them under that assumption.
6184This is something we'd like to change in the future to provide better
6185support for freestanding environments and non-C-based languages.
6186
6187.. _i_va_arg:
6188
6189'``va_arg``' Instruction
6190^^^^^^^^^^^^^^^^^^^^^^^^
6191
6192Syntax:
6193"""""""
6194
6195::
6196
6197 <resultval> = va_arg <va_list*> <arglist>, <argty>
6198
6199Overview:
6200"""""""""
6201
6202The '``va_arg``' instruction is used to access arguments passed through
6203the "variable argument" area of a function call. It is used to implement
6204the ``va_arg`` macro in C.
6205
6206Arguments:
6207""""""""""
6208
6209This instruction takes a ``va_list*`` value and the type of the
6210argument. It returns a value of the specified argument type and
6211increments the ``va_list`` to point to the next argument. The actual
6212type of ``va_list`` is target specific.
6213
6214Semantics:
6215""""""""""
6216
6217The '``va_arg``' instruction loads an argument of the specified type
6218from the specified ``va_list`` and causes the ``va_list`` to point to
6219the next argument. For more information, see the variable argument
6220handling :ref:`Intrinsic Functions <int_varargs>`.
6221
6222It is legal for this instruction to be called in a function which does
6223not take a variable number of arguments, for example, the ``vfprintf``
6224function.
6225
6226``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6227function <intrinsics>` because it takes a type as an argument.
6228
6229Example:
6230""""""""
6231
6232See the :ref:`variable argument processing <int_varargs>` section.
6233
6234Note that the code generator does not yet fully support va\_arg on many
6235targets. Also, it does not currently support va\_arg with aggregate
6236types on any target.
6237
6238.. _i_landingpad:
6239
6240'``landingpad``' Instruction
6241^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6242
6243Syntax:
6244"""""""
6245
6246::
6247
6248 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6249 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6250
6251 <clause> := catch <type> <value>
6252 <clause> := filter <array constant type> <array constant>
6253
6254Overview:
6255"""""""""
6256
6257The '``landingpad``' instruction is used by `LLVM's exception handling
6258system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006259is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006260code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6261defines values supplied by the personality function (``pers_fn``) upon
6262re-entry to the function. The ``resultval`` has the type ``resultty``.
6263
6264Arguments:
6265""""""""""
6266
6267This instruction takes a ``pers_fn`` value. This is the personality
6268function associated with the unwinding mechanism. The optional
6269``cleanup`` flag indicates that the landing pad block is a cleanup.
6270
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006271A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006272contains the global variable representing the "type" that may be caught
6273or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6274clause takes an array constant as its argument. Use
6275"``[0 x i8**] undef``" for a filter which cannot throw. The
6276'``landingpad``' instruction must contain *at least* one ``clause`` or
6277the ``cleanup`` flag.
6278
6279Semantics:
6280""""""""""
6281
6282The '``landingpad``' instruction defines the values which are set by the
6283personality function (``pers_fn``) upon re-entry to the function, and
6284therefore the "result type" of the ``landingpad`` instruction. As with
6285calling conventions, how the personality function results are
6286represented in LLVM IR is target specific.
6287
6288The clauses are applied in order from top to bottom. If two
6289``landingpad`` instructions are merged together through inlining, the
6290clauses from the calling function are appended to the list of clauses.
6291When the call stack is being unwound due to an exception being thrown,
6292the exception is compared against each ``clause`` in turn. If it doesn't
6293match any of the clauses, and the ``cleanup`` flag is not set, then
6294unwinding continues further up the call stack.
6295
6296The ``landingpad`` instruction has several restrictions:
6297
6298- A landing pad block is a basic block which is the unwind destination
6299 of an '``invoke``' instruction.
6300- A landing pad block must have a '``landingpad``' instruction as its
6301 first non-PHI instruction.
6302- There can be only one '``landingpad``' instruction within the landing
6303 pad block.
6304- A basic block that is not a landing pad block may not include a
6305 '``landingpad``' instruction.
6306- All '``landingpad``' instructions in a function must have the same
6307 personality function.
6308
6309Example:
6310""""""""
6311
6312.. code-block:: llvm
6313
6314 ;; A landing pad which can catch an integer.
6315 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6316 catch i8** @_ZTIi
6317 ;; A landing pad that is a cleanup.
6318 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6319 cleanup
6320 ;; A landing pad which can catch an integer and can only throw a double.
6321 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6322 catch i8** @_ZTIi
6323 filter [1 x i8**] [@_ZTId]
6324
6325.. _intrinsics:
6326
6327Intrinsic Functions
6328===================
6329
6330LLVM supports the notion of an "intrinsic function". These functions
6331have well known names and semantics and are required to follow certain
6332restrictions. Overall, these intrinsics represent an extension mechanism
6333for the LLVM language that does not require changing all of the
6334transformations in LLVM when adding to the language (or the bitcode
6335reader/writer, the parser, etc...).
6336
6337Intrinsic function names must all start with an "``llvm.``" prefix. This
6338prefix is reserved in LLVM for intrinsic names; thus, function names may
6339not begin with this prefix. Intrinsic functions must always be external
6340functions: you cannot define the body of intrinsic functions. Intrinsic
6341functions may only be used in call or invoke instructions: it is illegal
6342to take the address of an intrinsic function. Additionally, because
6343intrinsic functions are part of the LLVM language, it is required if any
6344are added that they be documented here.
6345
6346Some intrinsic functions can be overloaded, i.e., the intrinsic
6347represents a family of functions that perform the same operation but on
6348different data types. Because LLVM can represent over 8 million
6349different integer types, overloading is used commonly to allow an
6350intrinsic function to operate on any integer type. One or more of the
6351argument types or the result type can be overloaded to accept any
6352integer type. Argument types may also be defined as exactly matching a
6353previous argument's type or the result type. This allows an intrinsic
6354function which accepts multiple arguments, but needs all of them to be
6355of the same type, to only be overloaded with respect to a single
6356argument or the result.
6357
6358Overloaded intrinsics will have the names of its overloaded argument
6359types encoded into its function name, each preceded by a period. Only
6360those types which are overloaded result in a name suffix. Arguments
6361whose type is matched against another type do not. For example, the
6362``llvm.ctpop`` function can take an integer of any width and returns an
6363integer of exactly the same integer width. This leads to a family of
6364functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6365``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6366overloaded, and only one type suffix is required. Because the argument's
6367type is matched against the return type, it does not require its own
6368name suffix.
6369
6370To learn how to add an intrinsic function, please see the `Extending
6371LLVM Guide <ExtendingLLVM.html>`_.
6372
6373.. _int_varargs:
6374
6375Variable Argument Handling Intrinsics
6376-------------------------------------
6377
6378Variable argument support is defined in LLVM with the
6379:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6380functions. These functions are related to the similarly named macros
6381defined in the ``<stdarg.h>`` header file.
6382
6383All of these functions operate on arguments that use a target-specific
6384value type "``va_list``". The LLVM assembly language reference manual
6385does not define what this type is, so all transformations should be
6386prepared to handle these functions regardless of the type used.
6387
6388This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6389variable argument handling intrinsic functions are used.
6390
6391.. code-block:: llvm
6392
6393 define i32 @test(i32 %X, ...) {
6394 ; Initialize variable argument processing
6395 %ap = alloca i8*
6396 %ap2 = bitcast i8** %ap to i8*
6397 call void @llvm.va_start(i8* %ap2)
6398
6399 ; Read a single integer argument
6400 %tmp = va_arg i8** %ap, i32
6401
6402 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6403 %aq = alloca i8*
6404 %aq2 = bitcast i8** %aq to i8*
6405 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6406 call void @llvm.va_end(i8* %aq2)
6407
6408 ; Stop processing of arguments.
6409 call void @llvm.va_end(i8* %ap2)
6410 ret i32 %tmp
6411 }
6412
6413 declare void @llvm.va_start(i8*)
6414 declare void @llvm.va_copy(i8*, i8*)
6415 declare void @llvm.va_end(i8*)
6416
6417.. _int_va_start:
6418
6419'``llvm.va_start``' Intrinsic
6420^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6421
6422Syntax:
6423"""""""
6424
6425::
6426
Nick Lewycky04f6de02013-09-11 22:04:52 +00006427 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006428
6429Overview:
6430"""""""""
6431
6432The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6433subsequent use by ``va_arg``.
6434
6435Arguments:
6436""""""""""
6437
6438The argument is a pointer to a ``va_list`` element to initialize.
6439
6440Semantics:
6441""""""""""
6442
6443The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6444available in C. In a target-dependent way, it initializes the
6445``va_list`` element to which the argument points, so that the next call
6446to ``va_arg`` will produce the first variable argument passed to the
6447function. Unlike the C ``va_start`` macro, this intrinsic does not need
6448to know the last argument of the function as the compiler can figure
6449that out.
6450
6451'``llvm.va_end``' Intrinsic
6452^^^^^^^^^^^^^^^^^^^^^^^^^^^
6453
6454Syntax:
6455"""""""
6456
6457::
6458
6459 declare void @llvm.va_end(i8* <arglist>)
6460
6461Overview:
6462"""""""""
6463
6464The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6465initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6466
6467Arguments:
6468""""""""""
6469
6470The argument is a pointer to a ``va_list`` to destroy.
6471
6472Semantics:
6473""""""""""
6474
6475The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6476available in C. In a target-dependent way, it destroys the ``va_list``
6477element to which the argument points. Calls to
6478:ref:`llvm.va_start <int_va_start>` and
6479:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6480``llvm.va_end``.
6481
6482.. _int_va_copy:
6483
6484'``llvm.va_copy``' Intrinsic
6485^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6486
6487Syntax:
6488"""""""
6489
6490::
6491
6492 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6493
6494Overview:
6495"""""""""
6496
6497The '``llvm.va_copy``' intrinsic copies the current argument position
6498from the source argument list to the destination argument list.
6499
6500Arguments:
6501""""""""""
6502
6503The first argument is a pointer to a ``va_list`` element to initialize.
6504The second argument is a pointer to a ``va_list`` element to copy from.
6505
6506Semantics:
6507""""""""""
6508
6509The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6510available in C. In a target-dependent way, it copies the source
6511``va_list`` element into the destination ``va_list`` element. This
6512intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6513arbitrarily complex and require, for example, memory allocation.
6514
6515Accurate Garbage Collection Intrinsics
6516--------------------------------------
6517
6518LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6519(GC) requires the implementation and generation of these intrinsics.
6520These intrinsics allow identification of :ref:`GC roots on the
6521stack <int_gcroot>`, as well as garbage collector implementations that
6522require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6523Front-ends for type-safe garbage collected languages should generate
6524these intrinsics to make use of the LLVM garbage collectors. For more
6525details, see `Accurate Garbage Collection with
6526LLVM <GarbageCollection.html>`_.
6527
6528The garbage collection intrinsics only operate on objects in the generic
6529address space (address space zero).
6530
6531.. _int_gcroot:
6532
6533'``llvm.gcroot``' Intrinsic
6534^^^^^^^^^^^^^^^^^^^^^^^^^^^
6535
6536Syntax:
6537"""""""
6538
6539::
6540
6541 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6542
6543Overview:
6544"""""""""
6545
6546The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6547the code generator, and allows some metadata to be associated with it.
6548
6549Arguments:
6550""""""""""
6551
6552The first argument specifies the address of a stack object that contains
6553the root pointer. The second pointer (which must be either a constant or
6554a global value address) contains the meta-data to be associated with the
6555root.
6556
6557Semantics:
6558""""""""""
6559
6560At runtime, a call to this intrinsic stores a null pointer into the
6561"ptrloc" location. At compile-time, the code generator generates
6562information to allow the runtime to find the pointer at GC safe points.
6563The '``llvm.gcroot``' intrinsic may only be used in a function which
6564:ref:`specifies a GC algorithm <gc>`.
6565
6566.. _int_gcread:
6567
6568'``llvm.gcread``' Intrinsic
6569^^^^^^^^^^^^^^^^^^^^^^^^^^^
6570
6571Syntax:
6572"""""""
6573
6574::
6575
6576 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6577
6578Overview:
6579"""""""""
6580
6581The '``llvm.gcread``' intrinsic identifies reads of references from heap
6582locations, allowing garbage collector implementations that require read
6583barriers.
6584
6585Arguments:
6586""""""""""
6587
6588The second argument is the address to read from, which should be an
6589address allocated from the garbage collector. The first object is a
6590pointer to the start of the referenced object, if needed by the language
6591runtime (otherwise null).
6592
6593Semantics:
6594""""""""""
6595
6596The '``llvm.gcread``' intrinsic has the same semantics as a load
6597instruction, but may be replaced with substantially more complex code by
6598the garbage collector runtime, as needed. The '``llvm.gcread``'
6599intrinsic may only be used in a function which :ref:`specifies a GC
6600algorithm <gc>`.
6601
6602.. _int_gcwrite:
6603
6604'``llvm.gcwrite``' Intrinsic
6605^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6606
6607Syntax:
6608"""""""
6609
6610::
6611
6612 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6613
6614Overview:
6615"""""""""
6616
6617The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6618locations, allowing garbage collector implementations that require write
6619barriers (such as generational or reference counting collectors).
6620
6621Arguments:
6622""""""""""
6623
6624The first argument is the reference to store, the second is the start of
6625the object to store it to, and the third is the address of the field of
6626Obj to store to. If the runtime does not require a pointer to the
6627object, Obj may be null.
6628
6629Semantics:
6630""""""""""
6631
6632The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6633instruction, but may be replaced with substantially more complex code by
6634the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6635intrinsic may only be used in a function which :ref:`specifies a GC
6636algorithm <gc>`.
6637
6638Code Generator Intrinsics
6639-------------------------
6640
6641These intrinsics are provided by LLVM to expose special features that
6642may only be implemented with code generator support.
6643
6644'``llvm.returnaddress``' Intrinsic
6645^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6646
6647Syntax:
6648"""""""
6649
6650::
6651
6652 declare i8 *@llvm.returnaddress(i32 <level>)
6653
6654Overview:
6655"""""""""
6656
6657The '``llvm.returnaddress``' intrinsic attempts to compute a
6658target-specific value indicating the return address of the current
6659function or one of its callers.
6660
6661Arguments:
6662""""""""""
6663
6664The argument to this intrinsic indicates which function to return the
6665address for. Zero indicates the calling function, one indicates its
6666caller, etc. The argument is **required** to be a constant integer
6667value.
6668
6669Semantics:
6670""""""""""
6671
6672The '``llvm.returnaddress``' intrinsic either returns a pointer
6673indicating the return address of the specified call frame, or zero if it
6674cannot be identified. The value returned by this intrinsic is likely to
6675be incorrect or 0 for arguments other than zero, so it should only be
6676used for debugging purposes.
6677
6678Note that calling this intrinsic does not prevent function inlining or
6679other aggressive transformations, so the value returned may not be that
6680of the obvious source-language caller.
6681
6682'``llvm.frameaddress``' Intrinsic
6683^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6684
6685Syntax:
6686"""""""
6687
6688::
6689
6690 declare i8* @llvm.frameaddress(i32 <level>)
6691
6692Overview:
6693"""""""""
6694
6695The '``llvm.frameaddress``' intrinsic attempts to return the
6696target-specific frame pointer value for the specified stack frame.
6697
6698Arguments:
6699""""""""""
6700
6701The argument to this intrinsic indicates which function to return the
6702frame pointer for. Zero indicates the calling function, one indicates
6703its caller, etc. The argument is **required** to be a constant integer
6704value.
6705
6706Semantics:
6707""""""""""
6708
6709The '``llvm.frameaddress``' intrinsic either returns a pointer
6710indicating the frame address of the specified call frame, or zero if it
6711cannot be identified. The value returned by this intrinsic is likely to
6712be incorrect or 0 for arguments other than zero, so it should only be
6713used for debugging purposes.
6714
6715Note that calling this intrinsic does not prevent function inlining or
6716other aggressive transformations, so the value returned may not be that
6717of the obvious source-language caller.
6718
6719.. _int_stacksave:
6720
6721'``llvm.stacksave``' Intrinsic
6722^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6723
6724Syntax:
6725"""""""
6726
6727::
6728
6729 declare i8* @llvm.stacksave()
6730
6731Overview:
6732"""""""""
6733
6734The '``llvm.stacksave``' intrinsic is used to remember the current state
6735of the function stack, for use with
6736:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6737implementing language features like scoped automatic variable sized
6738arrays in C99.
6739
6740Semantics:
6741""""""""""
6742
6743This intrinsic returns a opaque pointer value that can be passed to
6744:ref:`llvm.stackrestore <int_stackrestore>`. When an
6745``llvm.stackrestore`` intrinsic is executed with a value saved from
6746``llvm.stacksave``, it effectively restores the state of the stack to
6747the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6748practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6749were allocated after the ``llvm.stacksave`` was executed.
6750
6751.. _int_stackrestore:
6752
6753'``llvm.stackrestore``' Intrinsic
6754^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6755
6756Syntax:
6757"""""""
6758
6759::
6760
6761 declare void @llvm.stackrestore(i8* %ptr)
6762
6763Overview:
6764"""""""""
6765
6766The '``llvm.stackrestore``' intrinsic is used to restore the state of
6767the function stack to the state it was in when the corresponding
6768:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6769useful for implementing language features like scoped automatic variable
6770sized arrays in C99.
6771
6772Semantics:
6773""""""""""
6774
6775See the description for :ref:`llvm.stacksave <int_stacksave>`.
6776
6777'``llvm.prefetch``' Intrinsic
6778^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6779
6780Syntax:
6781"""""""
6782
6783::
6784
6785 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6786
6787Overview:
6788"""""""""
6789
6790The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6791insert a prefetch instruction if supported; otherwise, it is a noop.
6792Prefetches have no effect on the behavior of the program but can change
6793its performance characteristics.
6794
6795Arguments:
6796""""""""""
6797
6798``address`` is the address to be prefetched, ``rw`` is the specifier
6799determining if the fetch should be for a read (0) or write (1), and
6800``locality`` is a temporal locality specifier ranging from (0) - no
6801locality, to (3) - extremely local keep in cache. The ``cache type``
6802specifies whether the prefetch is performed on the data (1) or
6803instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6804arguments must be constant integers.
6805
6806Semantics:
6807""""""""""
6808
6809This intrinsic does not modify the behavior of the program. In
6810particular, prefetches cannot trap and do not produce a value. On
6811targets that support this intrinsic, the prefetch can provide hints to
6812the processor cache for better performance.
6813
6814'``llvm.pcmarker``' Intrinsic
6815^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6816
6817Syntax:
6818"""""""
6819
6820::
6821
6822 declare void @llvm.pcmarker(i32 <id>)
6823
6824Overview:
6825"""""""""
6826
6827The '``llvm.pcmarker``' intrinsic is a method to export a Program
6828Counter (PC) in a region of code to simulators and other tools. The
6829method is target specific, but it is expected that the marker will use
6830exported symbols to transmit the PC of the marker. The marker makes no
6831guarantees that it will remain with any specific instruction after
6832optimizations. It is possible that the presence of a marker will inhibit
6833optimizations. The intended use is to be inserted after optimizations to
6834allow correlations of simulation runs.
6835
6836Arguments:
6837""""""""""
6838
6839``id`` is a numerical id identifying the marker.
6840
6841Semantics:
6842""""""""""
6843
6844This intrinsic does not modify the behavior of the program. Backends
6845that do not support this intrinsic may ignore it.
6846
6847'``llvm.readcyclecounter``' Intrinsic
6848^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6849
6850Syntax:
6851"""""""
6852
6853::
6854
6855 declare i64 @llvm.readcyclecounter()
6856
6857Overview:
6858"""""""""
6859
6860The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6861counter register (or similar low latency, high accuracy clocks) on those
6862targets that support it. On X86, it should map to RDTSC. On Alpha, it
6863should map to RPCC. As the backing counters overflow quickly (on the
6864order of 9 seconds on alpha), this should only be used for small
6865timings.
6866
6867Semantics:
6868""""""""""
6869
6870When directly supported, reading the cycle counter should not modify any
6871memory. Implementations are allowed to either return a application
6872specific value or a system wide value. On backends without support, this
6873is lowered to a constant 0.
6874
Tim Northoverbc933082013-05-23 19:11:20 +00006875Note that runtime support may be conditional on the privilege-level code is
6876running at and the host platform.
6877
Sean Silvab084af42012-12-07 10:36:55 +00006878Standard C Library Intrinsics
6879-----------------------------
6880
6881LLVM provides intrinsics for a few important standard C library
6882functions. These intrinsics allow source-language front-ends to pass
6883information about the alignment of the pointer arguments to the code
6884generator, providing opportunity for more efficient code generation.
6885
6886.. _int_memcpy:
6887
6888'``llvm.memcpy``' Intrinsic
6889^^^^^^^^^^^^^^^^^^^^^^^^^^^
6890
6891Syntax:
6892"""""""
6893
6894This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6895integer bit width and for different address spaces. Not all targets
6896support all bit widths however.
6897
6898::
6899
6900 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6901 i32 <len>, i32 <align>, i1 <isvolatile>)
6902 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6903 i64 <len>, i32 <align>, i1 <isvolatile>)
6904
6905Overview:
6906"""""""""
6907
6908The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6909source location to the destination location.
6910
6911Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6912intrinsics do not return a value, takes extra alignment/isvolatile
6913arguments and the pointers can be in specified address spaces.
6914
6915Arguments:
6916""""""""""
6917
6918The first argument is a pointer to the destination, the second is a
6919pointer to the source. The third argument is an integer argument
6920specifying the number of bytes to copy, the fourth argument is the
6921alignment of the source and destination locations, and the fifth is a
6922boolean indicating a volatile access.
6923
6924If the call to this intrinsic has an alignment value that is not 0 or 1,
6925then the caller guarantees that both the source and destination pointers
6926are aligned to that boundary.
6927
6928If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6929a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6930very cleanly specified and it is unwise to depend on it.
6931
6932Semantics:
6933""""""""""
6934
6935The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6936source location to the destination location, which are not allowed to
6937overlap. It copies "len" bytes of memory over. If the argument is known
6938to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00006939argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00006940
6941'``llvm.memmove``' Intrinsic
6942^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6943
6944Syntax:
6945"""""""
6946
6947This is an overloaded intrinsic. You can use llvm.memmove on any integer
6948bit width and for different address space. Not all targets support all
6949bit widths however.
6950
6951::
6952
6953 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6954 i32 <len>, i32 <align>, i1 <isvolatile>)
6955 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6956 i64 <len>, i32 <align>, i1 <isvolatile>)
6957
6958Overview:
6959"""""""""
6960
6961The '``llvm.memmove.*``' intrinsics move a block of memory from the
6962source location to the destination location. It is similar to the
6963'``llvm.memcpy``' intrinsic but allows the two memory locations to
6964overlap.
6965
6966Note that, unlike the standard libc function, the ``llvm.memmove.*``
6967intrinsics do not return a value, takes extra alignment/isvolatile
6968arguments and the pointers can be in specified address spaces.
6969
6970Arguments:
6971""""""""""
6972
6973The first argument is a pointer to the destination, the second is a
6974pointer to the source. The third argument is an integer argument
6975specifying the number of bytes to copy, the fourth argument is the
6976alignment of the source and destination locations, and the fifth is a
6977boolean indicating a volatile access.
6978
6979If the call to this intrinsic has an alignment value that is not 0 or 1,
6980then the caller guarantees that the source and destination pointers are
6981aligned to that boundary.
6982
6983If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6984is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6985not very cleanly specified and it is unwise to depend on it.
6986
6987Semantics:
6988""""""""""
6989
6990The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6991source location to the destination location, which may overlap. It
6992copies "len" bytes of memory over. If the argument is known to be
6993aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00006994otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00006995
6996'``llvm.memset.*``' Intrinsics
6997^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6998
6999Syntax:
7000"""""""
7001
7002This is an overloaded intrinsic. You can use llvm.memset on any integer
7003bit width and for different address spaces. However, not all targets
7004support all bit widths.
7005
7006::
7007
7008 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7009 i32 <len>, i32 <align>, i1 <isvolatile>)
7010 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7011 i64 <len>, i32 <align>, i1 <isvolatile>)
7012
7013Overview:
7014"""""""""
7015
7016The '``llvm.memset.*``' intrinsics fill a block of memory with a
7017particular byte value.
7018
7019Note that, unlike the standard libc function, the ``llvm.memset``
7020intrinsic does not return a value and takes extra alignment/volatile
7021arguments. Also, the destination can be in an arbitrary address space.
7022
7023Arguments:
7024""""""""""
7025
7026The first argument is a pointer to the destination to fill, the second
7027is the byte value with which to fill it, the third argument is an
7028integer argument specifying the number of bytes to fill, and the fourth
7029argument is the known alignment of the destination location.
7030
7031If the call to this intrinsic has an alignment value that is not 0 or 1,
7032then the caller guarantees that the destination pointer is aligned to
7033that boundary.
7034
7035If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7036a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7037very cleanly specified and it is unwise to depend on it.
7038
7039Semantics:
7040""""""""""
7041
7042The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7043at the destination location. If the argument is known to be aligned to
7044some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007045it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007046
7047'``llvm.sqrt.*``' Intrinsic
7048^^^^^^^^^^^^^^^^^^^^^^^^^^^
7049
7050Syntax:
7051"""""""
7052
7053This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7054floating point or vector of floating point type. Not all targets support
7055all types however.
7056
7057::
7058
7059 declare float @llvm.sqrt.f32(float %Val)
7060 declare double @llvm.sqrt.f64(double %Val)
7061 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7062 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7063 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7064
7065Overview:
7066"""""""""
7067
7068The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7069returning the same value as the libm '``sqrt``' functions would. Unlike
7070``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7071negative numbers other than -0.0 (which allows for better optimization,
7072because there is no need to worry about errno being set).
7073``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7074
7075Arguments:
7076""""""""""
7077
7078The argument and return value are floating point numbers of the same
7079type.
7080
7081Semantics:
7082""""""""""
7083
7084This function returns the sqrt of the specified operand if it is a
7085nonnegative floating point number.
7086
7087'``llvm.powi.*``' Intrinsic
7088^^^^^^^^^^^^^^^^^^^^^^^^^^^
7089
7090Syntax:
7091"""""""
7092
7093This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7094floating point or vector of floating point type. Not all targets support
7095all types however.
7096
7097::
7098
7099 declare float @llvm.powi.f32(float %Val, i32 %power)
7100 declare double @llvm.powi.f64(double %Val, i32 %power)
7101 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7102 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7103 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7104
7105Overview:
7106"""""""""
7107
7108The '``llvm.powi.*``' intrinsics return the first operand raised to the
7109specified (positive or negative) power. The order of evaluation of
7110multiplications is not defined. When a vector of floating point type is
7111used, the second argument remains a scalar integer value.
7112
7113Arguments:
7114""""""""""
7115
7116The second argument is an integer power, and the first is a value to
7117raise to that power.
7118
7119Semantics:
7120""""""""""
7121
7122This function returns the first value raised to the second power with an
7123unspecified sequence of rounding operations.
7124
7125'``llvm.sin.*``' Intrinsic
7126^^^^^^^^^^^^^^^^^^^^^^^^^^
7127
7128Syntax:
7129"""""""
7130
7131This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7132floating point or vector of floating point type. Not all targets support
7133all types however.
7134
7135::
7136
7137 declare float @llvm.sin.f32(float %Val)
7138 declare double @llvm.sin.f64(double %Val)
7139 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7140 declare fp128 @llvm.sin.f128(fp128 %Val)
7141 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7142
7143Overview:
7144"""""""""
7145
7146The '``llvm.sin.*``' intrinsics return the sine of the operand.
7147
7148Arguments:
7149""""""""""
7150
7151The argument and return value are floating point numbers of the same
7152type.
7153
7154Semantics:
7155""""""""""
7156
7157This function returns the sine of the specified operand, returning the
7158same values as the libm ``sin`` functions would, and handles error
7159conditions in the same way.
7160
7161'``llvm.cos.*``' Intrinsic
7162^^^^^^^^^^^^^^^^^^^^^^^^^^
7163
7164Syntax:
7165"""""""
7166
7167This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7168floating point or vector of floating point type. Not all targets support
7169all types however.
7170
7171::
7172
7173 declare float @llvm.cos.f32(float %Val)
7174 declare double @llvm.cos.f64(double %Val)
7175 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7176 declare fp128 @llvm.cos.f128(fp128 %Val)
7177 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7178
7179Overview:
7180"""""""""
7181
7182The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7183
7184Arguments:
7185""""""""""
7186
7187The argument and return value are floating point numbers of the same
7188type.
7189
7190Semantics:
7191""""""""""
7192
7193This function returns the cosine of the specified operand, returning the
7194same values as the libm ``cos`` functions would, and handles error
7195conditions in the same way.
7196
7197'``llvm.pow.*``' Intrinsic
7198^^^^^^^^^^^^^^^^^^^^^^^^^^
7199
7200Syntax:
7201"""""""
7202
7203This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7204floating point or vector of floating point type. Not all targets support
7205all types however.
7206
7207::
7208
7209 declare float @llvm.pow.f32(float %Val, float %Power)
7210 declare double @llvm.pow.f64(double %Val, double %Power)
7211 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7212 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7213 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7214
7215Overview:
7216"""""""""
7217
7218The '``llvm.pow.*``' intrinsics return the first operand raised to the
7219specified (positive or negative) power.
7220
7221Arguments:
7222""""""""""
7223
7224The second argument is a floating point power, and the first is a value
7225to raise to that power.
7226
7227Semantics:
7228""""""""""
7229
7230This function returns the first value raised to the second power,
7231returning the same values as the libm ``pow`` functions would, and
7232handles error conditions in the same way.
7233
7234'``llvm.exp.*``' Intrinsic
7235^^^^^^^^^^^^^^^^^^^^^^^^^^
7236
7237Syntax:
7238"""""""
7239
7240This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7241floating point or vector of floating point type. Not all targets support
7242all types however.
7243
7244::
7245
7246 declare float @llvm.exp.f32(float %Val)
7247 declare double @llvm.exp.f64(double %Val)
7248 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7249 declare fp128 @llvm.exp.f128(fp128 %Val)
7250 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7251
7252Overview:
7253"""""""""
7254
7255The '``llvm.exp.*``' intrinsics perform the exp function.
7256
7257Arguments:
7258""""""""""
7259
7260The argument and return value are floating point numbers of the same
7261type.
7262
7263Semantics:
7264""""""""""
7265
7266This function returns the same values as the libm ``exp`` functions
7267would, and handles error conditions in the same way.
7268
7269'``llvm.exp2.*``' Intrinsic
7270^^^^^^^^^^^^^^^^^^^^^^^^^^^
7271
7272Syntax:
7273"""""""
7274
7275This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7276floating point or vector of floating point type. Not all targets support
7277all types however.
7278
7279::
7280
7281 declare float @llvm.exp2.f32(float %Val)
7282 declare double @llvm.exp2.f64(double %Val)
7283 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7284 declare fp128 @llvm.exp2.f128(fp128 %Val)
7285 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7286
7287Overview:
7288"""""""""
7289
7290The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7291
7292Arguments:
7293""""""""""
7294
7295The argument and return value are floating point numbers of the same
7296type.
7297
7298Semantics:
7299""""""""""
7300
7301This function returns the same values as the libm ``exp2`` functions
7302would, and handles error conditions in the same way.
7303
7304'``llvm.log.*``' Intrinsic
7305^^^^^^^^^^^^^^^^^^^^^^^^^^
7306
7307Syntax:
7308"""""""
7309
7310This is an overloaded intrinsic. You can use ``llvm.log`` on any
7311floating point or vector of floating point type. Not all targets support
7312all types however.
7313
7314::
7315
7316 declare float @llvm.log.f32(float %Val)
7317 declare double @llvm.log.f64(double %Val)
7318 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7319 declare fp128 @llvm.log.f128(fp128 %Val)
7320 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7321
7322Overview:
7323"""""""""
7324
7325The '``llvm.log.*``' intrinsics perform the log function.
7326
7327Arguments:
7328""""""""""
7329
7330The argument and return value are floating point numbers of the same
7331type.
7332
7333Semantics:
7334""""""""""
7335
7336This function returns the same values as the libm ``log`` functions
7337would, and handles error conditions in the same way.
7338
7339'``llvm.log10.*``' Intrinsic
7340^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7341
7342Syntax:
7343"""""""
7344
7345This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7346floating point or vector of floating point type. Not all targets support
7347all types however.
7348
7349::
7350
7351 declare float @llvm.log10.f32(float %Val)
7352 declare double @llvm.log10.f64(double %Val)
7353 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7354 declare fp128 @llvm.log10.f128(fp128 %Val)
7355 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7356
7357Overview:
7358"""""""""
7359
7360The '``llvm.log10.*``' intrinsics perform the log10 function.
7361
7362Arguments:
7363""""""""""
7364
7365The argument and return value are floating point numbers of the same
7366type.
7367
7368Semantics:
7369""""""""""
7370
7371This function returns the same values as the libm ``log10`` functions
7372would, and handles error conditions in the same way.
7373
7374'``llvm.log2.*``' Intrinsic
7375^^^^^^^^^^^^^^^^^^^^^^^^^^^
7376
7377Syntax:
7378"""""""
7379
7380This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7381floating point or vector of floating point type. Not all targets support
7382all types however.
7383
7384::
7385
7386 declare float @llvm.log2.f32(float %Val)
7387 declare double @llvm.log2.f64(double %Val)
7388 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7389 declare fp128 @llvm.log2.f128(fp128 %Val)
7390 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7391
7392Overview:
7393"""""""""
7394
7395The '``llvm.log2.*``' intrinsics perform the log2 function.
7396
7397Arguments:
7398""""""""""
7399
7400The argument and return value are floating point numbers of the same
7401type.
7402
7403Semantics:
7404""""""""""
7405
7406This function returns the same values as the libm ``log2`` functions
7407would, and handles error conditions in the same way.
7408
7409'``llvm.fma.*``' Intrinsic
7410^^^^^^^^^^^^^^^^^^^^^^^^^^
7411
7412Syntax:
7413"""""""
7414
7415This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7416floating point or vector of floating point type. Not all targets support
7417all types however.
7418
7419::
7420
7421 declare float @llvm.fma.f32(float %a, float %b, float %c)
7422 declare double @llvm.fma.f64(double %a, double %b, double %c)
7423 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7424 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7425 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7426
7427Overview:
7428"""""""""
7429
7430The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7431operation.
7432
7433Arguments:
7434""""""""""
7435
7436The argument and return value are floating point numbers of the same
7437type.
7438
7439Semantics:
7440""""""""""
7441
7442This function returns the same values as the libm ``fma`` functions
7443would.
7444
7445'``llvm.fabs.*``' Intrinsic
7446^^^^^^^^^^^^^^^^^^^^^^^^^^^
7447
7448Syntax:
7449"""""""
7450
7451This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7452floating point or vector of floating point type. Not all targets support
7453all types however.
7454
7455::
7456
7457 declare float @llvm.fabs.f32(float %Val)
7458 declare double @llvm.fabs.f64(double %Val)
7459 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7460 declare fp128 @llvm.fabs.f128(fp128 %Val)
7461 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7462
7463Overview:
7464"""""""""
7465
7466The '``llvm.fabs.*``' intrinsics return the absolute value of the
7467operand.
7468
7469Arguments:
7470""""""""""
7471
7472The argument and return value are floating point numbers of the same
7473type.
7474
7475Semantics:
7476""""""""""
7477
7478This function returns the same values as the libm ``fabs`` functions
7479would, and handles error conditions in the same way.
7480
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007481'``llvm.copysign.*``' Intrinsic
7482^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7483
7484Syntax:
7485"""""""
7486
7487This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7488floating point or vector of floating point type. Not all targets support
7489all types however.
7490
7491::
7492
7493 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7494 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7495 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7496 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7497 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7498
7499Overview:
7500"""""""""
7501
7502The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7503first operand and the sign of the second operand.
7504
7505Arguments:
7506""""""""""
7507
7508The arguments and return value are floating point numbers of the same
7509type.
7510
7511Semantics:
7512""""""""""
7513
7514This function returns the same values as the libm ``copysign``
7515functions would, and handles error conditions in the same way.
7516
Sean Silvab084af42012-12-07 10:36:55 +00007517'``llvm.floor.*``' Intrinsic
7518^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7519
7520Syntax:
7521"""""""
7522
7523This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7524floating point or vector of floating point type. Not all targets support
7525all types however.
7526
7527::
7528
7529 declare float @llvm.floor.f32(float %Val)
7530 declare double @llvm.floor.f64(double %Val)
7531 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7532 declare fp128 @llvm.floor.f128(fp128 %Val)
7533 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7534
7535Overview:
7536"""""""""
7537
7538The '``llvm.floor.*``' intrinsics return the floor of the operand.
7539
7540Arguments:
7541""""""""""
7542
7543The argument and return value are floating point numbers of the same
7544type.
7545
7546Semantics:
7547""""""""""
7548
7549This function returns the same values as the libm ``floor`` functions
7550would, and handles error conditions in the same way.
7551
7552'``llvm.ceil.*``' Intrinsic
7553^^^^^^^^^^^^^^^^^^^^^^^^^^^
7554
7555Syntax:
7556"""""""
7557
7558This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7559floating point or vector of floating point type. Not all targets support
7560all types however.
7561
7562::
7563
7564 declare float @llvm.ceil.f32(float %Val)
7565 declare double @llvm.ceil.f64(double %Val)
7566 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7567 declare fp128 @llvm.ceil.f128(fp128 %Val)
7568 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7569
7570Overview:
7571"""""""""
7572
7573The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7574
7575Arguments:
7576""""""""""
7577
7578The argument and return value are floating point numbers of the same
7579type.
7580
7581Semantics:
7582""""""""""
7583
7584This function returns the same values as the libm ``ceil`` functions
7585would, and handles error conditions in the same way.
7586
7587'``llvm.trunc.*``' Intrinsic
7588^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7589
7590Syntax:
7591"""""""
7592
7593This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7594floating point or vector of floating point type. Not all targets support
7595all types however.
7596
7597::
7598
7599 declare float @llvm.trunc.f32(float %Val)
7600 declare double @llvm.trunc.f64(double %Val)
7601 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7602 declare fp128 @llvm.trunc.f128(fp128 %Val)
7603 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7604
7605Overview:
7606"""""""""
7607
7608The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7609nearest integer not larger in magnitude than the operand.
7610
7611Arguments:
7612""""""""""
7613
7614The argument and return value are floating point numbers of the same
7615type.
7616
7617Semantics:
7618""""""""""
7619
7620This function returns the same values as the libm ``trunc`` functions
7621would, and handles error conditions in the same way.
7622
7623'``llvm.rint.*``' Intrinsic
7624^^^^^^^^^^^^^^^^^^^^^^^^^^^
7625
7626Syntax:
7627"""""""
7628
7629This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7630floating point or vector of floating point type. Not all targets support
7631all types however.
7632
7633::
7634
7635 declare float @llvm.rint.f32(float %Val)
7636 declare double @llvm.rint.f64(double %Val)
7637 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7638 declare fp128 @llvm.rint.f128(fp128 %Val)
7639 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7640
7641Overview:
7642"""""""""
7643
7644The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7645nearest integer. It may raise an inexact floating-point exception if the
7646operand isn't an integer.
7647
7648Arguments:
7649""""""""""
7650
7651The argument and return value are floating point numbers of the same
7652type.
7653
7654Semantics:
7655""""""""""
7656
7657This function returns the same values as the libm ``rint`` functions
7658would, and handles error conditions in the same way.
7659
7660'``llvm.nearbyint.*``' Intrinsic
7661^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7662
7663Syntax:
7664"""""""
7665
7666This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7667floating point or vector of floating point type. Not all targets support
7668all types however.
7669
7670::
7671
7672 declare float @llvm.nearbyint.f32(float %Val)
7673 declare double @llvm.nearbyint.f64(double %Val)
7674 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7675 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7676 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7677
7678Overview:
7679"""""""""
7680
7681The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7682nearest integer.
7683
7684Arguments:
7685""""""""""
7686
7687The argument and return value are floating point numbers of the same
7688type.
7689
7690Semantics:
7691""""""""""
7692
7693This function returns the same values as the libm ``nearbyint``
7694functions would, and handles error conditions in the same way.
7695
Hal Finkel171817e2013-08-07 22:49:12 +00007696'``llvm.round.*``' Intrinsic
7697^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7698
7699Syntax:
7700"""""""
7701
7702This is an overloaded intrinsic. You can use ``llvm.round`` on any
7703floating point or vector of floating point type. Not all targets support
7704all types however.
7705
7706::
7707
7708 declare float @llvm.round.f32(float %Val)
7709 declare double @llvm.round.f64(double %Val)
7710 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7711 declare fp128 @llvm.round.f128(fp128 %Val)
7712 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7713
7714Overview:
7715"""""""""
7716
7717The '``llvm.round.*``' intrinsics returns the operand rounded to the
7718nearest integer.
7719
7720Arguments:
7721""""""""""
7722
7723The argument and return value are floating point numbers of the same
7724type.
7725
7726Semantics:
7727""""""""""
7728
7729This function returns the same values as the libm ``round``
7730functions would, and handles error conditions in the same way.
7731
Sean Silvab084af42012-12-07 10:36:55 +00007732Bit Manipulation Intrinsics
7733---------------------------
7734
7735LLVM provides intrinsics for a few important bit manipulation
7736operations. These allow efficient code generation for some algorithms.
7737
7738'``llvm.bswap.*``' Intrinsics
7739^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7740
7741Syntax:
7742"""""""
7743
7744This is an overloaded intrinsic function. You can use bswap on any
7745integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7746
7747::
7748
7749 declare i16 @llvm.bswap.i16(i16 <id>)
7750 declare i32 @llvm.bswap.i32(i32 <id>)
7751 declare i64 @llvm.bswap.i64(i64 <id>)
7752
7753Overview:
7754"""""""""
7755
7756The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7757values with an even number of bytes (positive multiple of 16 bits).
7758These are useful for performing operations on data that is not in the
7759target's native byte order.
7760
7761Semantics:
7762""""""""""
7763
7764The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7765and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7766intrinsic returns an i32 value that has the four bytes of the input i32
7767swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7768returned i32 will have its bytes in 3, 2, 1, 0 order. The
7769``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7770concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7771respectively).
7772
7773'``llvm.ctpop.*``' Intrinsic
7774^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7775
7776Syntax:
7777"""""""
7778
7779This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7780bit width, or on any vector with integer elements. Not all targets
7781support all bit widths or vector types, however.
7782
7783::
7784
7785 declare i8 @llvm.ctpop.i8(i8 <src>)
7786 declare i16 @llvm.ctpop.i16(i16 <src>)
7787 declare i32 @llvm.ctpop.i32(i32 <src>)
7788 declare i64 @llvm.ctpop.i64(i64 <src>)
7789 declare i256 @llvm.ctpop.i256(i256 <src>)
7790 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7791
7792Overview:
7793"""""""""
7794
7795The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7796in a value.
7797
7798Arguments:
7799""""""""""
7800
7801The only argument is the value to be counted. The argument may be of any
7802integer type, or a vector with integer elements. The return type must
7803match the argument type.
7804
7805Semantics:
7806""""""""""
7807
7808The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7809each element of a vector.
7810
7811'``llvm.ctlz.*``' Intrinsic
7812^^^^^^^^^^^^^^^^^^^^^^^^^^^
7813
7814Syntax:
7815"""""""
7816
7817This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7818integer bit width, or any vector whose elements are integers. Not all
7819targets support all bit widths or vector types, however.
7820
7821::
7822
7823 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7824 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7825 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7826 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7827 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7828 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7829
7830Overview:
7831"""""""""
7832
7833The '``llvm.ctlz``' family of intrinsic functions counts the number of
7834leading zeros in a variable.
7835
7836Arguments:
7837""""""""""
7838
7839The first argument is the value to be counted. This argument may be of
7840any integer type, or a vectory with integer element type. The return
7841type must match the first argument type.
7842
7843The second argument must be a constant and is a flag to indicate whether
7844the intrinsic should ensure that a zero as the first argument produces a
7845defined result. Historically some architectures did not provide a
7846defined result for zero values as efficiently, and many algorithms are
7847now predicated on avoiding zero-value inputs.
7848
7849Semantics:
7850""""""""""
7851
7852The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7853zeros in a variable, or within each element of the vector. If
7854``src == 0`` then the result is the size in bits of the type of ``src``
7855if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7856``llvm.ctlz(i32 2) = 30``.
7857
7858'``llvm.cttz.*``' Intrinsic
7859^^^^^^^^^^^^^^^^^^^^^^^^^^^
7860
7861Syntax:
7862"""""""
7863
7864This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7865integer bit width, or any vector of integer elements. Not all targets
7866support all bit widths or vector types, however.
7867
7868::
7869
7870 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7871 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7872 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7873 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7874 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7875 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7876
7877Overview:
7878"""""""""
7879
7880The '``llvm.cttz``' family of intrinsic functions counts the number of
7881trailing zeros.
7882
7883Arguments:
7884""""""""""
7885
7886The first argument is the value to be counted. This argument may be of
7887any integer type, or a vectory with integer element type. The return
7888type must match the first argument type.
7889
7890The second argument must be a constant and is a flag to indicate whether
7891the intrinsic should ensure that a zero as the first argument produces a
7892defined result. Historically some architectures did not provide a
7893defined result for zero values as efficiently, and many algorithms are
7894now predicated on avoiding zero-value inputs.
7895
7896Semantics:
7897""""""""""
7898
7899The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7900zeros in a variable, or within each element of a vector. If ``src == 0``
7901then the result is the size in bits of the type of ``src`` if
7902``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7903``llvm.cttz(2) = 1``.
7904
7905Arithmetic with Overflow Intrinsics
7906-----------------------------------
7907
7908LLVM provides intrinsics for some arithmetic with overflow operations.
7909
7910'``llvm.sadd.with.overflow.*``' Intrinsics
7911^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7912
7913Syntax:
7914"""""""
7915
7916This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7917on any integer bit width.
7918
7919::
7920
7921 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7922 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7923 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7924
7925Overview:
7926"""""""""
7927
7928The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7929a signed addition of the two arguments, and indicate whether an overflow
7930occurred during the signed summation.
7931
7932Arguments:
7933""""""""""
7934
7935The arguments (%a and %b) and the first element of the result structure
7936may be of integer types of any bit width, but they must have the same
7937bit width. The second element of the result structure must be of type
7938``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7939addition.
7940
7941Semantics:
7942""""""""""
7943
7944The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007945a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00007946first element of which is the signed summation, and the second element
7947of which is a bit specifying if the signed summation resulted in an
7948overflow.
7949
7950Examples:
7951"""""""""
7952
7953.. code-block:: llvm
7954
7955 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7956 %sum = extractvalue {i32, i1} %res, 0
7957 %obit = extractvalue {i32, i1} %res, 1
7958 br i1 %obit, label %overflow, label %normal
7959
7960'``llvm.uadd.with.overflow.*``' Intrinsics
7961^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7962
7963Syntax:
7964"""""""
7965
7966This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7967on any integer bit width.
7968
7969::
7970
7971 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7972 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7973 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7974
7975Overview:
7976"""""""""
7977
7978The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7979an unsigned addition of the two arguments, and indicate whether a carry
7980occurred during the unsigned summation.
7981
7982Arguments:
7983""""""""""
7984
7985The arguments (%a and %b) and the first element of the result structure
7986may be of integer types of any bit width, but they must have the same
7987bit width. The second element of the result structure must be of type
7988``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7989addition.
7990
7991Semantics:
7992""""""""""
7993
7994The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007995an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00007996first element of which is the sum, and the second element of which is a
7997bit specifying if the unsigned summation resulted in a carry.
7998
7999Examples:
8000"""""""""
8001
8002.. code-block:: llvm
8003
8004 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8005 %sum = extractvalue {i32, i1} %res, 0
8006 %obit = extractvalue {i32, i1} %res, 1
8007 br i1 %obit, label %carry, label %normal
8008
8009'``llvm.ssub.with.overflow.*``' Intrinsics
8010^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8011
8012Syntax:
8013"""""""
8014
8015This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8016on any integer bit width.
8017
8018::
8019
8020 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8021 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8022 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8023
8024Overview:
8025"""""""""
8026
8027The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8028a signed subtraction of the two arguments, and indicate whether an
8029overflow occurred during the signed subtraction.
8030
8031Arguments:
8032""""""""""
8033
8034The arguments (%a and %b) and the first element of the result structure
8035may be of integer types of any bit width, but they must have the same
8036bit width. The second element of the result structure must be of type
8037``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8038subtraction.
8039
8040Semantics:
8041""""""""""
8042
8043The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008044a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008045first element of which is the subtraction, and the second element of
8046which is a bit specifying if the signed subtraction resulted in an
8047overflow.
8048
8049Examples:
8050"""""""""
8051
8052.. code-block:: llvm
8053
8054 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8055 %sum = extractvalue {i32, i1} %res, 0
8056 %obit = extractvalue {i32, i1} %res, 1
8057 br i1 %obit, label %overflow, label %normal
8058
8059'``llvm.usub.with.overflow.*``' Intrinsics
8060^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8061
8062Syntax:
8063"""""""
8064
8065This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8066on any integer bit width.
8067
8068::
8069
8070 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8071 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8072 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8073
8074Overview:
8075"""""""""
8076
8077The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8078an unsigned subtraction of the two arguments, and indicate whether an
8079overflow occurred during the unsigned subtraction.
8080
8081Arguments:
8082""""""""""
8083
8084The arguments (%a and %b) and the first element of the result structure
8085may be of integer types of any bit width, but they must have the same
8086bit width. The second element of the result structure must be of type
8087``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8088subtraction.
8089
8090Semantics:
8091""""""""""
8092
8093The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008094an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008095the first element of which is the subtraction, and the second element of
8096which is a bit specifying if the unsigned subtraction resulted in an
8097overflow.
8098
8099Examples:
8100"""""""""
8101
8102.. code-block:: llvm
8103
8104 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8105 %sum = extractvalue {i32, i1} %res, 0
8106 %obit = extractvalue {i32, i1} %res, 1
8107 br i1 %obit, label %overflow, label %normal
8108
8109'``llvm.smul.with.overflow.*``' Intrinsics
8110^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8111
8112Syntax:
8113"""""""
8114
8115This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8116on any integer bit width.
8117
8118::
8119
8120 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8121 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8122 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8123
8124Overview:
8125"""""""""
8126
8127The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8128a signed multiplication of the two arguments, and indicate whether an
8129overflow occurred during the signed multiplication.
8130
8131Arguments:
8132""""""""""
8133
8134The arguments (%a and %b) and the first element of the result structure
8135may be of integer types of any bit width, but they must have the same
8136bit width. The second element of the result structure must be of type
8137``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8138multiplication.
8139
8140Semantics:
8141""""""""""
8142
8143The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008144a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008145the first element of which is the multiplication, and the second element
8146of which is a bit specifying if the signed multiplication resulted in an
8147overflow.
8148
8149Examples:
8150"""""""""
8151
8152.. code-block:: llvm
8153
8154 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8155 %sum = extractvalue {i32, i1} %res, 0
8156 %obit = extractvalue {i32, i1} %res, 1
8157 br i1 %obit, label %overflow, label %normal
8158
8159'``llvm.umul.with.overflow.*``' Intrinsics
8160^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8161
8162Syntax:
8163"""""""
8164
8165This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8166on any integer bit width.
8167
8168::
8169
8170 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8171 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8172 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8173
8174Overview:
8175"""""""""
8176
8177The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8178a unsigned multiplication of the two arguments, and indicate whether an
8179overflow occurred during the unsigned multiplication.
8180
8181Arguments:
8182""""""""""
8183
8184The arguments (%a and %b) and the first element of the result structure
8185may be of integer types of any bit width, but they must have the same
8186bit width. The second element of the result structure must be of type
8187``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8188multiplication.
8189
8190Semantics:
8191""""""""""
8192
8193The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008194an unsigned multiplication of the two arguments. They return a structure ---
8195the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008196element of which is a bit specifying if the unsigned multiplication
8197resulted in an overflow.
8198
8199Examples:
8200"""""""""
8201
8202.. code-block:: llvm
8203
8204 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8205 %sum = extractvalue {i32, i1} %res, 0
8206 %obit = extractvalue {i32, i1} %res, 1
8207 br i1 %obit, label %overflow, label %normal
8208
8209Specialised Arithmetic Intrinsics
8210---------------------------------
8211
8212'``llvm.fmuladd.*``' Intrinsic
8213^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8214
8215Syntax:
8216"""""""
8217
8218::
8219
8220 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8221 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8222
8223Overview:
8224"""""""""
8225
8226The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008227expressions that can be fused if the code generator determines that (a) the
8228target instruction set has support for a fused operation, and (b) that the
8229fused operation is more efficient than the equivalent, separate pair of mul
8230and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008231
8232Arguments:
8233""""""""""
8234
8235The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8236multiplicands, a and b, and an addend c.
8237
8238Semantics:
8239""""""""""
8240
8241The expression:
8242
8243::
8244
8245 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8246
8247is equivalent to the expression a \* b + c, except that rounding will
8248not be performed between the multiplication and addition steps if the
8249code generator fuses the operations. Fusion is not guaranteed, even if
8250the target platform supports it. If a fused multiply-add is required the
8251corresponding llvm.fma.\* intrinsic function should be used instead.
8252
8253Examples:
8254"""""""""
8255
8256.. code-block:: llvm
8257
8258 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8259
8260Half Precision Floating Point Intrinsics
8261----------------------------------------
8262
8263For most target platforms, half precision floating point is a
8264storage-only format. This means that it is a dense encoding (in memory)
8265but does not support computation in the format.
8266
8267This means that code must first load the half-precision floating point
8268value as an i16, then convert it to float with
8269:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8270then be performed on the float value (including extending to double
8271etc). To store the value back to memory, it is first converted to float
8272if needed, then converted to i16 with
8273:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8274i16 value.
8275
8276.. _int_convert_to_fp16:
8277
8278'``llvm.convert.to.fp16``' Intrinsic
8279^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8280
8281Syntax:
8282"""""""
8283
8284::
8285
8286 declare i16 @llvm.convert.to.fp16(f32 %a)
8287
8288Overview:
8289"""""""""
8290
8291The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8292from single precision floating point format to half precision floating
8293point format.
8294
8295Arguments:
8296""""""""""
8297
8298The intrinsic function contains single argument - the value to be
8299converted.
8300
8301Semantics:
8302""""""""""
8303
8304The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8305from single precision floating point format to half precision floating
8306point format. The return value is an ``i16`` which contains the
8307converted number.
8308
8309Examples:
8310"""""""""
8311
8312.. code-block:: llvm
8313
8314 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8315 store i16 %res, i16* @x, align 2
8316
8317.. _int_convert_from_fp16:
8318
8319'``llvm.convert.from.fp16``' Intrinsic
8320^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8321
8322Syntax:
8323"""""""
8324
8325::
8326
8327 declare f32 @llvm.convert.from.fp16(i16 %a)
8328
8329Overview:
8330"""""""""
8331
8332The '``llvm.convert.from.fp16``' intrinsic function performs a
8333conversion from half precision floating point format to single precision
8334floating point format.
8335
8336Arguments:
8337""""""""""
8338
8339The intrinsic function contains single argument - the value to be
8340converted.
8341
8342Semantics:
8343""""""""""
8344
8345The '``llvm.convert.from.fp16``' intrinsic function performs a
8346conversion from half single precision floating point format to single
8347precision floating point format. The input half-float value is
8348represented by an ``i16`` value.
8349
8350Examples:
8351"""""""""
8352
8353.. code-block:: llvm
8354
8355 %a = load i16* @x, align 2
8356 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8357
8358Debugger Intrinsics
8359-------------------
8360
8361The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8362prefix), are described in the `LLVM Source Level
8363Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8364document.
8365
8366Exception Handling Intrinsics
8367-----------------------------
8368
8369The LLVM exception handling intrinsics (which all start with
8370``llvm.eh.`` prefix), are described in the `LLVM Exception
8371Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8372
8373.. _int_trampoline:
8374
8375Trampoline Intrinsics
8376---------------------
8377
8378These intrinsics make it possible to excise one parameter, marked with
8379the :ref:`nest <nest>` attribute, from a function. The result is a
8380callable function pointer lacking the nest parameter - the caller does
8381not need to provide a value for it. Instead, the value to use is stored
8382in advance in a "trampoline", a block of memory usually allocated on the
8383stack, which also contains code to splice the nest value into the
8384argument list. This is used to implement the GCC nested function address
8385extension.
8386
8387For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8388then the resulting function pointer has signature ``i32 (i32, i32)*``.
8389It can be created as follows:
8390
8391.. code-block:: llvm
8392
8393 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8394 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8395 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8396 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8397 %fp = bitcast i8* %p to i32 (i32, i32)*
8398
8399The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8400``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8401
8402.. _int_it:
8403
8404'``llvm.init.trampoline``' Intrinsic
8405^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8406
8407Syntax:
8408"""""""
8409
8410::
8411
8412 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8413
8414Overview:
8415"""""""""
8416
8417This fills the memory pointed to by ``tramp`` with executable code,
8418turning it into a trampoline.
8419
8420Arguments:
8421""""""""""
8422
8423The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8424pointers. The ``tramp`` argument must point to a sufficiently large and
8425sufficiently aligned block of memory; this memory is written to by the
8426intrinsic. Note that the size and the alignment are target-specific -
8427LLVM currently provides no portable way of determining them, so a
8428front-end that generates this intrinsic needs to have some
8429target-specific knowledge. The ``func`` argument must hold a function
8430bitcast to an ``i8*``.
8431
8432Semantics:
8433""""""""""
8434
8435The block of memory pointed to by ``tramp`` is filled with target
8436dependent code, turning it into a function. Then ``tramp`` needs to be
8437passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8438be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8439function's signature is the same as that of ``func`` with any arguments
8440marked with the ``nest`` attribute removed. At most one such ``nest``
8441argument is allowed, and it must be of pointer type. Calling the new
8442function is equivalent to calling ``func`` with the same argument list,
8443but with ``nval`` used for the missing ``nest`` argument. If, after
8444calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8445modified, then the effect of any later call to the returned function
8446pointer is undefined.
8447
8448.. _int_at:
8449
8450'``llvm.adjust.trampoline``' Intrinsic
8451^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8452
8453Syntax:
8454"""""""
8455
8456::
8457
8458 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8459
8460Overview:
8461"""""""""
8462
8463This performs any required machine-specific adjustment to the address of
8464a trampoline (passed as ``tramp``).
8465
8466Arguments:
8467""""""""""
8468
8469``tramp`` must point to a block of memory which already has trampoline
8470code filled in by a previous call to
8471:ref:`llvm.init.trampoline <int_it>`.
8472
8473Semantics:
8474""""""""""
8475
8476On some architectures the address of the code to be executed needs to be
8477different to the address where the trampoline is actually stored. This
8478intrinsic returns the executable address corresponding to ``tramp``
8479after performing the required machine specific adjustments. The pointer
8480returned can then be :ref:`bitcast and executed <int_trampoline>`.
8481
8482Memory Use Markers
8483------------------
8484
8485This class of intrinsics exists to information about the lifetime of
8486memory objects and ranges where variables are immutable.
8487
Reid Klecknera534a382013-12-19 02:14:12 +00008488.. _int_lifestart:
8489
Sean Silvab084af42012-12-07 10:36:55 +00008490'``llvm.lifetime.start``' Intrinsic
8491^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8492
8493Syntax:
8494"""""""
8495
8496::
8497
8498 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8499
8500Overview:
8501"""""""""
8502
8503The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8504object's lifetime.
8505
8506Arguments:
8507""""""""""
8508
8509The first argument is a constant integer representing the size of the
8510object, or -1 if it is variable sized. The second argument is a pointer
8511to the object.
8512
8513Semantics:
8514""""""""""
8515
8516This intrinsic indicates that before this point in the code, the value
8517of the memory pointed to by ``ptr`` is dead. This means that it is known
8518to never be used and has an undefined value. A load from the pointer
8519that precedes this intrinsic can be replaced with ``'undef'``.
8520
Reid Klecknera534a382013-12-19 02:14:12 +00008521.. _int_lifeend:
8522
Sean Silvab084af42012-12-07 10:36:55 +00008523'``llvm.lifetime.end``' Intrinsic
8524^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8525
8526Syntax:
8527"""""""
8528
8529::
8530
8531 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8532
8533Overview:
8534"""""""""
8535
8536The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8537object's lifetime.
8538
8539Arguments:
8540""""""""""
8541
8542The first argument is a constant integer representing the size of the
8543object, or -1 if it is variable sized. The second argument is a pointer
8544to the object.
8545
8546Semantics:
8547""""""""""
8548
8549This intrinsic indicates that after this point in the code, the value of
8550the memory pointed to by ``ptr`` is dead. This means that it is known to
8551never be used and has an undefined value. Any stores into the memory
8552object following this intrinsic may be removed as dead.
8553
8554'``llvm.invariant.start``' Intrinsic
8555^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8556
8557Syntax:
8558"""""""
8559
8560::
8561
8562 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8563
8564Overview:
8565"""""""""
8566
8567The '``llvm.invariant.start``' intrinsic specifies that the contents of
8568a memory object will not change.
8569
8570Arguments:
8571""""""""""
8572
8573The first argument is a constant integer representing the size of the
8574object, or -1 if it is variable sized. The second argument is a pointer
8575to the object.
8576
8577Semantics:
8578""""""""""
8579
8580This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8581the return value, the referenced memory location is constant and
8582unchanging.
8583
8584'``llvm.invariant.end``' Intrinsic
8585^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8586
8587Syntax:
8588"""""""
8589
8590::
8591
8592 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8593
8594Overview:
8595"""""""""
8596
8597The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8598memory object are mutable.
8599
8600Arguments:
8601""""""""""
8602
8603The first argument is the matching ``llvm.invariant.start`` intrinsic.
8604The second argument is a constant integer representing the size of the
8605object, or -1 if it is variable sized and the third argument is a
8606pointer to the object.
8607
8608Semantics:
8609""""""""""
8610
8611This intrinsic indicates that the memory is mutable again.
8612
8613General Intrinsics
8614------------------
8615
8616This class of intrinsics is designed to be generic and has no specific
8617purpose.
8618
8619'``llvm.var.annotation``' Intrinsic
8620^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8621
8622Syntax:
8623"""""""
8624
8625::
8626
8627 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8628
8629Overview:
8630"""""""""
8631
8632The '``llvm.var.annotation``' intrinsic.
8633
8634Arguments:
8635""""""""""
8636
8637The first argument is a pointer to a value, the second is a pointer to a
8638global string, the third is a pointer to a global string which is the
8639source file name, and the last argument is the line number.
8640
8641Semantics:
8642""""""""""
8643
8644This intrinsic allows annotation of local variables with arbitrary
8645strings. This can be useful for special purpose optimizations that want
8646to look for these annotations. These have no other defined use; they are
8647ignored by code generation and optimization.
8648
Michael Gottesman88d18832013-03-26 00:34:27 +00008649'``llvm.ptr.annotation.*``' Intrinsic
8650^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8651
8652Syntax:
8653"""""""
8654
8655This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8656pointer to an integer of any width. *NOTE* you must specify an address space for
8657the pointer. The identifier for the default address space is the integer
8658'``0``'.
8659
8660::
8661
8662 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8663 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8664 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8665 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8666 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8667
8668Overview:
8669"""""""""
8670
8671The '``llvm.ptr.annotation``' intrinsic.
8672
8673Arguments:
8674""""""""""
8675
8676The first argument is a pointer to an integer value of arbitrary bitwidth
8677(result of some expression), the second is a pointer to a global string, the
8678third is a pointer to a global string which is the source file name, and the
8679last argument is the line number. It returns the value of the first argument.
8680
8681Semantics:
8682""""""""""
8683
8684This intrinsic allows annotation of a pointer to an integer with arbitrary
8685strings. This can be useful for special purpose optimizations that want to look
8686for these annotations. These have no other defined use; they are ignored by code
8687generation and optimization.
8688
Sean Silvab084af42012-12-07 10:36:55 +00008689'``llvm.annotation.*``' Intrinsic
8690^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8691
8692Syntax:
8693"""""""
8694
8695This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8696any integer bit width.
8697
8698::
8699
8700 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8701 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8702 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8703 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8704 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8705
8706Overview:
8707"""""""""
8708
8709The '``llvm.annotation``' intrinsic.
8710
8711Arguments:
8712""""""""""
8713
8714The first argument is an integer value (result of some expression), the
8715second is a pointer to a global string, the third is a pointer to a
8716global string which is the source file name, and the last argument is
8717the line number. It returns the value of the first argument.
8718
8719Semantics:
8720""""""""""
8721
8722This intrinsic allows annotations to be put on arbitrary expressions
8723with arbitrary strings. This can be useful for special purpose
8724optimizations that want to look for these annotations. These have no
8725other defined use; they are ignored by code generation and optimization.
8726
8727'``llvm.trap``' Intrinsic
8728^^^^^^^^^^^^^^^^^^^^^^^^^
8729
8730Syntax:
8731"""""""
8732
8733::
8734
8735 declare void @llvm.trap() noreturn nounwind
8736
8737Overview:
8738"""""""""
8739
8740The '``llvm.trap``' intrinsic.
8741
8742Arguments:
8743""""""""""
8744
8745None.
8746
8747Semantics:
8748""""""""""
8749
8750This intrinsic is lowered to the target dependent trap instruction. If
8751the target does not have a trap instruction, this intrinsic will be
8752lowered to a call of the ``abort()`` function.
8753
8754'``llvm.debugtrap``' Intrinsic
8755^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8756
8757Syntax:
8758"""""""
8759
8760::
8761
8762 declare void @llvm.debugtrap() nounwind
8763
8764Overview:
8765"""""""""
8766
8767The '``llvm.debugtrap``' intrinsic.
8768
8769Arguments:
8770""""""""""
8771
8772None.
8773
8774Semantics:
8775""""""""""
8776
8777This intrinsic is lowered to code which is intended to cause an
8778execution trap with the intention of requesting the attention of a
8779debugger.
8780
8781'``llvm.stackprotector``' Intrinsic
8782^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8783
8784Syntax:
8785"""""""
8786
8787::
8788
8789 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8790
8791Overview:
8792"""""""""
8793
8794The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8795onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8796is placed on the stack before local variables.
8797
8798Arguments:
8799""""""""""
8800
8801The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8802The first argument is the value loaded from the stack guard
8803``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8804enough space to hold the value of the guard.
8805
8806Semantics:
8807""""""""""
8808
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008809This intrinsic causes the prologue/epilogue inserter to force the position of
8810the ``AllocaInst`` stack slot to be before local variables on the stack. This is
8811to ensure that if a local variable on the stack is overwritten, it will destroy
8812the value of the guard. When the function exits, the guard on the stack is
8813checked against the original guard by ``llvm.stackprotectorcheck``. If they are
8814different, then ``llvm.stackprotectorcheck`` causes the program to abort by
8815calling the ``__stack_chk_fail()`` function.
8816
8817'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00008818^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008819
8820Syntax:
8821"""""""
8822
8823::
8824
8825 declare void @llvm.stackprotectorcheck(i8** <guard>)
8826
8827Overview:
8828"""""""""
8829
8830The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00008831created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00008832``__stack_chk_fail()`` function.
8833
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008834Arguments:
8835""""""""""
8836
8837The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
8838the variable ``@__stack_chk_guard``.
8839
8840Semantics:
8841""""""""""
8842
8843This intrinsic is provided to perform the stack protector check by comparing
8844``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
8845values do not match call the ``__stack_chk_fail()`` function.
8846
8847The reason to provide this as an IR level intrinsic instead of implementing it
8848via other IR operations is that in order to perform this operation at the IR
8849level without an intrinsic, one would need to create additional basic blocks to
8850handle the success/failure cases. This makes it difficult to stop the stack
8851protector check from disrupting sibling tail calls in Codegen. With this
8852intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00008853codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008854
Sean Silvab084af42012-12-07 10:36:55 +00008855'``llvm.objectsize``' Intrinsic
8856^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8857
8858Syntax:
8859"""""""
8860
8861::
8862
8863 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8864 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8865
8866Overview:
8867"""""""""
8868
8869The ``llvm.objectsize`` intrinsic is designed to provide information to
8870the optimizers to determine at compile time whether a) an operation
8871(like memcpy) will overflow a buffer that corresponds to an object, or
8872b) that a runtime check for overflow isn't necessary. An object in this
8873context means an allocation of a specific class, structure, array, or
8874other object.
8875
8876Arguments:
8877""""""""""
8878
8879The ``llvm.objectsize`` intrinsic takes two arguments. The first
8880argument is a pointer to or into the ``object``. The second argument is
8881a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8882or -1 (if false) when the object size is unknown. The second argument
8883only accepts constants.
8884
8885Semantics:
8886""""""""""
8887
8888The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8889the size of the object concerned. If the size cannot be determined at
8890compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8891on the ``min`` argument).
8892
8893'``llvm.expect``' Intrinsic
8894^^^^^^^^^^^^^^^^^^^^^^^^^^^
8895
8896Syntax:
8897"""""""
8898
8899::
8900
8901 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8902 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8903
8904Overview:
8905"""""""""
8906
8907The ``llvm.expect`` intrinsic provides information about expected (the
8908most probable) value of ``val``, which can be used by optimizers.
8909
8910Arguments:
8911""""""""""
8912
8913The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8914a value. The second argument is an expected value, this needs to be a
8915constant value, variables are not allowed.
8916
8917Semantics:
8918""""""""""
8919
8920This intrinsic is lowered to the ``val``.
8921
8922'``llvm.donothing``' Intrinsic
8923^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8924
8925Syntax:
8926"""""""
8927
8928::
8929
8930 declare void @llvm.donothing() nounwind readnone
8931
8932Overview:
8933"""""""""
8934
8935The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8936only intrinsic that can be called with an invoke instruction.
8937
8938Arguments:
8939""""""""""
8940
8941None.
8942
8943Semantics:
8944""""""""""
8945
8946This intrinsic does nothing, and it's removed by optimizers and ignored
8947by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00008948
8949Stack Map Intrinsics
8950--------------------
8951
8952LLVM provides experimental intrinsics to support runtime patching
8953mechanisms commonly desired in dynamic language JITs. These intrinsics
8954are described in :doc:`StackMaps`.