blob: 3540bdec8acef3b54790081a1113fb588d8b6213 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
Sean Silva6cda6dc2013-11-27 04:55:23 +0000131 incrementing counter, starting with 0). Note that basic blocks are
132 included in this numbering. For example, if the entry basic block is not
133 given a label name, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000134
135It also shows a convention that we follow in this document. When
136demonstrating instructions, we will follow an instruction with a comment
137that defines the type and name of value produced.
138
139High Level Structure
140====================
141
142Module Structure
143----------------
144
145LLVM programs are composed of ``Module``'s, each of which is a
146translation unit of the input programs. Each module consists of
147functions, global variables, and symbol table entries. Modules may be
148combined together with the LLVM linker, which merges function (and
149global variable) definitions, resolves forward declarations, and merges
150symbol table entries. Here is an example of the "hello world" module:
151
152.. code-block:: llvm
153
Michael Liaoa7699082013-03-06 18:24:34 +0000154 ; Declare the string constant as a global constant.
155 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000156
Michael Liaoa7699082013-03-06 18:24:34 +0000157 ; External declaration of the puts function
158 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000159
160 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000161 define i32 @main() { ; i32()*
162 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000163 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
164
Michael Liaoa7699082013-03-06 18:24:34 +0000165 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000166 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000168 }
169
170 ; Named metadata
171 !1 = metadata !{i32 42}
172 !foo = !{!1, null}
173
174This example is made up of a :ref:`global variable <globalvars>` named
175"``.str``", an external declaration of the "``puts``" function, a
176:ref:`function definition <functionstructure>` for "``main``" and
177:ref:`named metadata <namedmetadatastructure>` "``foo``".
178
179In general, a module is made up of a list of global values (where both
180functions and global variables are global values). Global values are
181represented by a pointer to a memory location (in this case, a pointer
182to an array of char, and a pointer to a function), and have one of the
183following :ref:`linkage types <linkage>`.
184
185.. _linkage:
186
187Linkage Types
188-------------
189
190All Global Variables and Functions have one of the following types of
191linkage:
192
193``private``
194 Global values with "``private``" linkage are only directly
195 accessible by objects in the current module. In particular, linking
196 code into a module with an private global value may cause the
197 private to be renamed as necessary to avoid collisions. Because the
198 symbol is private to the module, all references can be updated. This
199 doesn't show up in any symbol table in the object file.
200``linker_private``
201 Similar to ``private``, but the symbol is passed through the
202 assembler and evaluated by the linker. Unlike normal strong symbols,
203 they are removed by the linker from the final linked image
204 (executable or dynamic library).
205``linker_private_weak``
206 Similar to "``linker_private``", but the symbol is weak. Note that
207 ``linker_private_weak`` symbols are subject to coalescing by the
208 linker. The symbols are removed by the linker from the final linked
209 image (executable or dynamic library).
210``internal``
211 Similar to private, but the value shows as a local symbol
212 (``STB_LOCAL`` in the case of ELF) in the object file. This
213 corresponds to the notion of the '``static``' keyword in C.
214``available_externally``
215 Globals with "``available_externally``" linkage are never emitted
216 into the object file corresponding to the LLVM module. They exist to
217 allow inlining and other optimizations to take place given knowledge
218 of the definition of the global, which is known to be somewhere
219 outside the module. Globals with ``available_externally`` linkage
220 are allowed to be discarded at will, and are otherwise the same as
221 ``linkonce_odr``. This linkage type is only allowed on definitions,
222 not declarations.
223``linkonce``
224 Globals with "``linkonce``" linkage are merged with other globals of
225 the same name when linkage occurs. This can be used to implement
226 some forms of inline functions, templates, or other code which must
227 be generated in each translation unit that uses it, but where the
228 body may be overridden with a more definitive definition later.
229 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
230 that ``linkonce`` linkage does not actually allow the optimizer to
231 inline the body of this function into callers because it doesn't
232 know if this definition of the function is the definitive definition
233 within the program or whether it will be overridden by a stronger
234 definition. To enable inlining and other optimizations, use
235 "``linkonce_odr``" linkage.
236``weak``
237 "``weak``" linkage has the same merging semantics as ``linkonce``
238 linkage, except that unreferenced globals with ``weak`` linkage may
239 not be discarded. This is used for globals that are declared "weak"
240 in C source code.
241``common``
242 "``common``" linkage is most similar to "``weak``" linkage, but they
243 are used for tentative definitions in C, such as "``int X;``" at
244 global scope. Symbols with "``common``" linkage are merged in the
245 same way as ``weak symbols``, and they may not be deleted if
246 unreferenced. ``common`` symbols may not have an explicit section,
247 must have a zero initializer, and may not be marked
248 ':ref:`constant <globalvars>`'. Functions and aliases may not have
249 common linkage.
250
251.. _linkage_appending:
252
253``appending``
254 "``appending``" linkage may only be applied to global variables of
255 pointer to array type. When two global variables with appending
256 linkage are linked together, the two global arrays are appended
257 together. This is the LLVM, typesafe, equivalent of having the
258 system linker append together "sections" with identical names when
259 .o files are linked.
260``extern_weak``
261 The semantics of this linkage follow the ELF object file model: the
262 symbol is weak until linked, if not linked, the symbol becomes null
263 instead of being an undefined reference.
264``linkonce_odr``, ``weak_odr``
265 Some languages allow differing globals to be merged, such as two
266 functions with different semantics. Other languages, such as
267 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000268 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000269 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
270 global will only be merged with equivalent globals. These linkage
271 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000272``external``
273 If none of the above identifiers are used, the global is externally
274 visible, meaning that it participates in linkage and can be used to
275 resolve external symbol references.
276
Sean Silvab084af42012-12-07 10:36:55 +0000277It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000278other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000279
Sean Silvab084af42012-12-07 10:36:55 +0000280.. _callingconv:
281
282Calling Conventions
283-------------------
284
285LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
286:ref:`invokes <i_invoke>` can all have an optional calling convention
287specified for the call. The calling convention of any pair of dynamic
288caller/callee must match, or the behavior of the program is undefined.
289The following calling conventions are supported by LLVM, and more may be
290added in the future:
291
292"``ccc``" - The C calling convention
293 This calling convention (the default if no other calling convention
294 is specified) matches the target C calling conventions. This calling
295 convention supports varargs function calls and tolerates some
296 mismatch in the declared prototype and implemented declaration of
297 the function (as does normal C).
298"``fastcc``" - The fast calling convention
299 This calling convention attempts to make calls as fast as possible
300 (e.g. by passing things in registers). This calling convention
301 allows the target to use whatever tricks it wants to produce fast
302 code for the target, without having to conform to an externally
303 specified ABI (Application Binary Interface). `Tail calls can only
304 be optimized when this, the GHC or the HiPE convention is
305 used. <CodeGenerator.html#id80>`_ This calling convention does not
306 support varargs and requires the prototype of all callees to exactly
307 match the prototype of the function definition.
308"``coldcc``" - The cold calling convention
309 This calling convention attempts to make code in the caller as
310 efficient as possible under the assumption that the call is not
311 commonly executed. As such, these calls often preserve all registers
312 so that the call does not break any live ranges in the caller side.
313 This calling convention does not support varargs and requires the
314 prototype of all callees to exactly match the prototype of the
315 function definition.
316"``cc 10``" - GHC convention
317 This calling convention has been implemented specifically for use by
318 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
319 It passes everything in registers, going to extremes to achieve this
320 by disabling callee save registers. This calling convention should
321 not be used lightly but only for specific situations such as an
322 alternative to the *register pinning* performance technique often
323 used when implementing functional programming languages. At the
324 moment only X86 supports this convention and it has the following
325 limitations:
326
327 - On *X86-32* only supports up to 4 bit type parameters. No
328 floating point types are supported.
329 - On *X86-64* only supports up to 10 bit type parameters and 6
330 floating point parameters.
331
332 This calling convention supports `tail call
333 optimization <CodeGenerator.html#id80>`_ but requires both the
334 caller and callee are using it.
335"``cc 11``" - The HiPE calling convention
336 This calling convention has been implemented specifically for use by
337 the `High-Performance Erlang
338 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
339 native code compiler of the `Ericsson's Open Source Erlang/OTP
340 system <http://www.erlang.org/download.shtml>`_. It uses more
341 registers for argument passing than the ordinary C calling
342 convention and defines no callee-saved registers. The calling
343 convention properly supports `tail call
344 optimization <CodeGenerator.html#id80>`_ but requires that both the
345 caller and the callee use it. It uses a *register pinning*
346 mechanism, similar to GHC's convention, for keeping frequently
347 accessed runtime components pinned to specific hardware registers.
348 At the moment only X86 supports this convention (both 32 and 64
349 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000350"``webkit_jscc``" - WebKit's JavaScript calling convention
351 This calling convention has been implemented for `WebKit FTL JIT
352 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
353 stack right to left (as cdecl does), and returns a value in the
354 platform's customary return register.
355"``anyregcc``" - Dynamic calling convention for code patching
356 This is a special convention that supports patching an arbitrary code
357 sequence in place of a call site. This convention forces the call
358 arguments into registers but allows them to be dynamcially
359 allocated. This can currently only be used with calls to
360 llvm.experimental.patchpoint because only this intrinsic records
361 the location of its arguments in a side table. See :doc:`StackMaps`.
Sean Silvab084af42012-12-07 10:36:55 +0000362"``cc <n>``" - Numbered convention
363 Any calling convention may be specified by number, allowing
364 target-specific calling conventions to be used. Target specific
365 calling conventions start at 64.
366
367More calling conventions can be added/defined on an as-needed basis, to
368support Pascal conventions or any other well-known target-independent
369convention.
370
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000371.. _visibilitystyles:
372
Sean Silvab084af42012-12-07 10:36:55 +0000373Visibility Styles
374-----------------
375
376All Global Variables and Functions have one of the following visibility
377styles:
378
379"``default``" - Default style
380 On targets that use the ELF object file format, default visibility
381 means that the declaration is visible to other modules and, in
382 shared libraries, means that the declared entity may be overridden.
383 On Darwin, default visibility means that the declaration is visible
384 to other modules. Default visibility corresponds to "external
385 linkage" in the language.
386"``hidden``" - Hidden style
387 Two declarations of an object with hidden visibility refer to the
388 same object if they are in the same shared object. Usually, hidden
389 visibility indicates that the symbol will not be placed into the
390 dynamic symbol table, so no other module (executable or shared
391 library) can reference it directly.
392"``protected``" - Protected style
393 On ELF, protected visibility indicates that the symbol will be
394 placed in the dynamic symbol table, but that references within the
395 defining module will bind to the local symbol. That is, the symbol
396 cannot be overridden by another module.
397
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000398.. _namedtypes:
399
Nico Rieck7157bb72014-01-14 15:22:47 +0000400DLL Storage Classes
401-------------------
402
403All Global Variables, Functions and Aliases can have one of the following
404DLL storage class:
405
406``dllimport``
407 "``dllimport``" causes the compiler to reference a function or variable via
408 a global pointer to a pointer that is set up by the DLL exporting the
409 symbol. On Microsoft Windows targets, the pointer name is formed by
410 combining ``__imp_`` and the function or variable name.
411``dllexport``
412 "``dllexport``" causes the compiler to provide a global pointer to a pointer
413 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
414 Microsoft Windows targets, the pointer name is formed by combining
415 ``__imp_`` and the function or variable name. Since this storage class
416 exists for defining a dll interface, the compiler, assembler and linker know
417 it is externally referenced and must refrain from deleting the symbol.
418
Sean Silvab084af42012-12-07 10:36:55 +0000419Named Types
420-----------
421
422LLVM IR allows you to specify name aliases for certain types. This can
423make it easier to read the IR and make the IR more condensed
424(particularly when recursive types are involved). An example of a name
425specification is:
426
427.. code-block:: llvm
428
429 %mytype = type { %mytype*, i32 }
430
431You may give a name to any :ref:`type <typesystem>` except
432":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
433expected with the syntax "%mytype".
434
435Note that type names are aliases for the structural type that they
436indicate, and that you can therefore specify multiple names for the same
437type. This often leads to confusing behavior when dumping out a .ll
438file. Since LLVM IR uses structural typing, the name is not part of the
439type. When printing out LLVM IR, the printer will pick *one name* to
440render all types of a particular shape. This means that if you have code
441where two different source types end up having the same LLVM type, that
442the dumper will sometimes print the "wrong" or unexpected type. This is
443an important design point and isn't going to change.
444
445.. _globalvars:
446
447Global Variables
448----------------
449
450Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000451instead of run-time.
452
453Global variables definitions must be initialized, may have an explicit section
454to be placed in, and may have an optional explicit alignment specified.
455
456Global variables in other translation units can also be declared, in which
457case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000458
459A variable may be defined as ``thread_local``, which means that it will
460not be shared by threads (each thread will have a separated copy of the
461variable). Not all targets support thread-local variables. Optionally, a
462TLS model may be specified:
463
464``localdynamic``
465 For variables that are only used within the current shared library.
466``initialexec``
467 For variables in modules that will not be loaded dynamically.
468``localexec``
469 For variables defined in the executable and only used within it.
470
471The models correspond to the ELF TLS models; see `ELF Handling For
472Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
473more information on under which circumstances the different models may
474be used. The target may choose a different TLS model if the specified
475model is not supported, or if a better choice of model can be made.
476
Michael Gottesman006039c2013-01-31 05:48:48 +0000477A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000478the contents of the variable will **never** be modified (enabling better
479optimization, allowing the global data to be placed in the read-only
480section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000481initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000482variable.
483
484LLVM explicitly allows *declarations* of global variables to be marked
485constant, even if the final definition of the global is not. This
486capability can be used to enable slightly better optimization of the
487program, but requires the language definition to guarantee that
488optimizations based on the 'constantness' are valid for the translation
489units that do not include the definition.
490
491As SSA values, global variables define pointer values that are in scope
492(i.e. they dominate) all basic blocks in the program. Global variables
493always define a pointer to their "content" type because they describe a
494region of memory, and all memory objects in LLVM are accessed through
495pointers.
496
497Global variables can be marked with ``unnamed_addr`` which indicates
498that the address is not significant, only the content. Constants marked
499like this can be merged with other constants if they have the same
500initializer. Note that a constant with significant address *can* be
501merged with a ``unnamed_addr`` constant, the result being a constant
502whose address is significant.
503
504A global variable may be declared to reside in a target-specific
505numbered address space. For targets that support them, address spaces
506may affect how optimizations are performed and/or what target
507instructions are used to access the variable. The default address space
508is zero. The address space qualifier must precede any other attributes.
509
510LLVM allows an explicit section to be specified for globals. If the
511target supports it, it will emit globals to the section specified.
512
Michael Gottesmane743a302013-02-04 03:22:00 +0000513By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000514variables defined within the module are not modified from their
515initial values before the start of the global initializer. This is
516true even for variables potentially accessible from outside the
517module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000518``@llvm.used`` or dllexported variables. This assumption may be suppressed
519by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000520
Sean Silvab084af42012-12-07 10:36:55 +0000521An explicit alignment may be specified for a global, which must be a
522power of 2. If not present, or if the alignment is set to zero, the
523alignment of the global is set by the target to whatever it feels
524convenient. If an explicit alignment is specified, the global is forced
525to have exactly that alignment. Targets and optimizers are not allowed
526to over-align the global if the global has an assigned section. In this
527case, the extra alignment could be observable: for example, code could
528assume that the globals are densely packed in their section and try to
529iterate over them as an array, alignment padding would break this
530iteration.
531
Nico Rieck7157bb72014-01-14 15:22:47 +0000532Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
533
534Syntax::
535
536 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
537 [AddrSpace] [unnamed_addr] [ExternallyInitialized]
538 <global | constant> <Type>
539 [, section "name"] [, align <Alignment>]
540
Sean Silvab084af42012-12-07 10:36:55 +0000541For example, the following defines a global in a numbered address space
542with an initializer, section, and alignment:
543
544.. code-block:: llvm
545
546 @G = addrspace(5) constant float 1.0, section "foo", align 4
547
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000548The following example just declares a global variable
549
550.. code-block:: llvm
551
552 @G = external global i32
553
Sean Silvab084af42012-12-07 10:36:55 +0000554The following example defines a thread-local global with the
555``initialexec`` TLS model:
556
557.. code-block:: llvm
558
559 @G = thread_local(initialexec) global i32 0, align 4
560
561.. _functionstructure:
562
563Functions
564---------
565
566LLVM function definitions consist of the "``define``" keyword, an
567optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000568style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
569an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000570an optional ``unnamed_addr`` attribute, a return type, an optional
571:ref:`parameter attribute <paramattrs>` for the return type, a function
572name, a (possibly empty) argument list (each with optional :ref:`parameter
573attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
574an optional section, an optional alignment, an optional :ref:`garbage
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000575collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
576curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000577
578LLVM function declarations consist of the "``declare``" keyword, an
579optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000580style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
581an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000582an optional ``unnamed_addr`` attribute, a return type, an optional
583:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000584name, a possibly empty list of arguments, an optional alignment, an optional
585:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000586
Bill Wendling6822ecb2013-10-27 05:09:12 +0000587A function definition contains a list of basic blocks, forming the CFG (Control
588Flow Graph) for the function. Each basic block may optionally start with a label
589(giving the basic block a symbol table entry), contains a list of instructions,
590and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
591function return). If an explicit label is not provided, a block is assigned an
592implicit numbered label, using the next value from the same counter as used for
593unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
594entry block does not have an explicit label, it will be assigned label "%0",
595then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000596
597The first basic block in a function is special in two ways: it is
598immediately executed on entrance to the function, and it is not allowed
599to have predecessor basic blocks (i.e. there can not be any branches to
600the entry block of a function). Because the block can have no
601predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
602
603LLVM allows an explicit section to be specified for functions. If the
604target supports it, it will emit functions to the section specified.
605
606An explicit alignment may be specified for a function. If not present,
607or if the alignment is set to zero, the alignment of the function is set
608by the target to whatever it feels convenient. If an explicit alignment
609is specified, the function is forced to have at least that much
610alignment. All alignments must be a power of 2.
611
612If the ``unnamed_addr`` attribute is given, the address is know to not
613be significant and two identical functions can be merged.
614
615Syntax::
616
Nico Rieck7157bb72014-01-14 15:22:47 +0000617 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000618 [cconv] [ret attrs]
619 <ResultType> @<FunctionName> ([argument list])
620 [fn Attrs] [section "name"] [align N]
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000621 [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000622
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000623.. _langref_aliases:
624
Sean Silvab084af42012-12-07 10:36:55 +0000625Aliases
626-------
627
628Aliases act as "second name" for the aliasee value (which can be either
629function, global variable, another alias or bitcast of global value).
Nico Rieck7157bb72014-01-14 15:22:47 +0000630Aliases may have an optional :ref:`linkage type <linkage>`, an optional
631:ref:`visibility style <visibility>`, and an optional :ref:`DLL storage class
632<dllstorageclass>`.
Sean Silvab084af42012-12-07 10:36:55 +0000633
634Syntax::
635
Nico Rieck7157bb72014-01-14 15:22:47 +0000636 @<Name> = [Visibility] [DLLStorageClass] alias [Linkage] <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000637
Rafael Espindola65785492013-10-07 13:57:59 +0000638The linkage must be one of ``private``, ``linker_private``,
Rafael Espindola78527052013-10-06 15:10:43 +0000639``linker_private_weak``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000640``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Alp Tokerf907b892013-12-05 05:44:44 +0000641might not correctly handle dropping a weak symbol that is aliased by a non-weak
Rafael Espindola716e7402013-11-01 17:09:14 +0000642alias.
Rafael Espindola78527052013-10-06 15:10:43 +0000643
Sean Silvab084af42012-12-07 10:36:55 +0000644.. _namedmetadatastructure:
645
646Named Metadata
647--------------
648
649Named metadata is a collection of metadata. :ref:`Metadata
650nodes <metadata>` (but not metadata strings) are the only valid
651operands for a named metadata.
652
653Syntax::
654
655 ; Some unnamed metadata nodes, which are referenced by the named metadata.
656 !0 = metadata !{metadata !"zero"}
657 !1 = metadata !{metadata !"one"}
658 !2 = metadata !{metadata !"two"}
659 ; A named metadata.
660 !name = !{!0, !1, !2}
661
662.. _paramattrs:
663
664Parameter Attributes
665--------------------
666
667The return type and each parameter of a function type may have a set of
668*parameter attributes* associated with them. Parameter attributes are
669used to communicate additional information about the result or
670parameters of a function. Parameter attributes are considered to be part
671of the function, not of the function type, so functions with different
672parameter attributes can have the same function type.
673
674Parameter attributes are simple keywords that follow the type specified.
675If multiple parameter attributes are needed, they are space separated.
676For example:
677
678.. code-block:: llvm
679
680 declare i32 @printf(i8* noalias nocapture, ...)
681 declare i32 @atoi(i8 zeroext)
682 declare signext i8 @returns_signed_char()
683
684Note that any attributes for the function result (``nounwind``,
685``readonly``) come immediately after the argument list.
686
687Currently, only the following parameter attributes are defined:
688
689``zeroext``
690 This indicates to the code generator that the parameter or return
691 value should be zero-extended to the extent required by the target's
692 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
693 the caller (for a parameter) or the callee (for a return value).
694``signext``
695 This indicates to the code generator that the parameter or return
696 value should be sign-extended to the extent required by the target's
697 ABI (which is usually 32-bits) by the caller (for a parameter) or
698 the callee (for a return value).
699``inreg``
700 This indicates that this parameter or return value should be treated
701 in a special target-dependent fashion during while emitting code for
702 a function call or return (usually, by putting it in a register as
703 opposed to memory, though some targets use it to distinguish between
704 two different kinds of registers). Use of this attribute is
705 target-specific.
706``byval``
707 This indicates that the pointer parameter should really be passed by
708 value to the function. The attribute implies that a hidden copy of
709 the pointee is made between the caller and the callee, so the callee
710 is unable to modify the value in the caller. This attribute is only
711 valid on LLVM pointer arguments. It is generally used to pass
712 structs and arrays by value, but is also valid on pointers to
713 scalars. The copy is considered to belong to the caller not the
714 callee (for example, ``readonly`` functions should not write to
715 ``byval`` parameters). This is not a valid attribute for return
716 values.
717
718 The byval attribute also supports specifying an alignment with the
719 align attribute. It indicates the alignment of the stack slot to
720 form and the known alignment of the pointer specified to the call
721 site. If the alignment is not specified, then the code generator
722 makes a target-specific assumption.
723
Reid Klecknera534a382013-12-19 02:14:12 +0000724.. _attr_inalloca:
725
726``inalloca``
727
728.. Warning:: This feature is unstable and not fully implemented.
729
730 The ``inalloca`` argument attribute allows the caller to get the
731 address of an outgoing argument to a ``call`` or ``invoke`` before
732 it executes. It is similar to ``byval`` in that it is used to pass
733 arguments by value, but it guarantees that the argument will not be
734 copied.
735
736 To be :ref:`well formed <wellformed>`, the caller must pass in an
737 alloca value into an ``inalloca`` parameter, and an alloca may be
738 used as an ``inalloca`` argument at most once. The attribute can
739 only be applied to parameters that would be passed in memory and not
740 registers. The ``inalloca`` attribute cannot be used in conjunction
741 with other attributes that affect argument storage, like ``inreg``,
742 ``nest``, ``sret``, or ``byval``. The ``inalloca`` stack space is
743 considered to be clobbered by any call that uses it, so any
744 ``inalloca`` parameters cannot be marked ``readonly``.
745
746 Allocas passed with ``inalloca`` to a call must be in the opposite
747 order of the parameter list, meaning that the rightmost argument
748 must be allocated first. If a call has inalloca arguments, no other
749 allocas can occur between the first alloca used by the call and the
750 call site, unless they are are cleared by calls to
751 :ref:`llvm.stackrestore <int_stackrestore>`. Violating these rules
752 results in undefined behavior at runtime.
753
754 See :doc:`InAlloca` for more information on how to use this
755 attribute.
756
Sean Silvab084af42012-12-07 10:36:55 +0000757``sret``
758 This indicates that the pointer parameter specifies the address of a
759 structure that is the return value of the function in the source
760 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000761 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000762 not to trap and to be properly aligned. This may only be applied to
763 the first parameter. This is not a valid attribute for return
764 values.
765``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000766 This indicates that pointer values :ref:`based <pointeraliasing>` on
Sean Silvab084af42012-12-07 10:36:55 +0000767 the argument or return value do not alias pointer values which are
768 not *based* on it, ignoring certain "irrelevant" dependencies. For a
769 call to the parent function, dependencies between memory references
770 from before or after the call and from those during the call are
771 "irrelevant" to the ``noalias`` keyword for the arguments and return
772 value used in that call. The caller shares the responsibility with
773 the callee for ensuring that these requirements are met. For further
774 details, please see the discussion of the NoAlias response in `alias
775 analysis <AliasAnalysis.html#MustMayNo>`_.
776
777 Note that this definition of ``noalias`` is intentionally similar
778 to the definition of ``restrict`` in C99 for function arguments,
779 though it is slightly weaker.
780
781 For function return values, C99's ``restrict`` is not meaningful,
782 while LLVM's ``noalias`` is.
783``nocapture``
784 This indicates that the callee does not make any copies of the
785 pointer that outlive the callee itself. This is not a valid
786 attribute for return values.
787
788.. _nest:
789
790``nest``
791 This indicates that the pointer parameter can be excised using the
792 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000793 attribute for return values and can only be applied to one parameter.
794
795``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000796 This indicates that the function always returns the argument as its return
797 value. This is an optimization hint to the code generator when generating
798 the caller, allowing tail call optimization and omission of register saves
799 and restores in some cases; it is not checked or enforced when generating
800 the callee. The parameter and the function return type must be valid
801 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
802 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000803
804.. _gc:
805
806Garbage Collector Names
807-----------------------
808
809Each function may specify a garbage collector name, which is simply a
810string:
811
812.. code-block:: llvm
813
814 define void @f() gc "name" { ... }
815
816The compiler declares the supported values of *name*. Specifying a
817collector which will cause the compiler to alter its output in order to
818support the named garbage collection algorithm.
819
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000820.. _prefixdata:
821
822Prefix Data
823-----------
824
825Prefix data is data associated with a function which the code generator
826will emit immediately before the function body. The purpose of this feature
827is to allow frontends to associate language-specific runtime metadata with
828specific functions and make it available through the function pointer while
829still allowing the function pointer to be called. To access the data for a
830given function, a program may bitcast the function pointer to a pointer to
831the constant's type. This implies that the IR symbol points to the start
832of the prefix data.
833
834To maintain the semantics of ordinary function calls, the prefix data must
835have a particular format. Specifically, it must begin with a sequence of
836bytes which decode to a sequence of machine instructions, valid for the
837module's target, which transfer control to the point immediately succeeding
838the prefix data, without performing any other visible action. This allows
839the inliner and other passes to reason about the semantics of the function
840definition without needing to reason about the prefix data. Obviously this
841makes the format of the prefix data highly target dependent.
842
Peter Collingbourne213358a2013-09-23 20:14:21 +0000843Prefix data is laid out as if it were an initializer for a global variable
844of the prefix data's type. No padding is automatically placed between the
845prefix data and the function body. If padding is required, it must be part
846of the prefix data.
847
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000848A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
849which encodes the ``nop`` instruction:
850
851.. code-block:: llvm
852
853 define void @f() prefix i8 144 { ... }
854
855Generally prefix data can be formed by encoding a relative branch instruction
856which skips the metadata, as in this example of valid prefix data for the
857x86_64 architecture, where the first two bytes encode ``jmp .+10``:
858
859.. code-block:: llvm
860
861 %0 = type <{ i8, i8, i8* }>
862
863 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
864
865A function may have prefix data but no body. This has similar semantics
866to the ``available_externally`` linkage in that the data may be used by the
867optimizers but will not be emitted in the object file.
868
Bill Wendling63b88192013-02-06 06:52:58 +0000869.. _attrgrp:
870
871Attribute Groups
872----------------
873
874Attribute groups are groups of attributes that are referenced by objects within
875the IR. They are important for keeping ``.ll`` files readable, because a lot of
876functions will use the same set of attributes. In the degenerative case of a
877``.ll`` file that corresponds to a single ``.c`` file, the single attribute
878group will capture the important command line flags used to build that file.
879
880An attribute group is a module-level object. To use an attribute group, an
881object references the attribute group's ID (e.g. ``#37``). An object may refer
882to more than one attribute group. In that situation, the attributes from the
883different groups are merged.
884
885Here is an example of attribute groups for a function that should always be
886inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
887
888.. code-block:: llvm
889
890 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000891 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +0000892
893 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +0000894 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +0000895
896 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
897 define void @f() #0 #1 { ... }
898
Sean Silvab084af42012-12-07 10:36:55 +0000899.. _fnattrs:
900
901Function Attributes
902-------------------
903
904Function attributes are set to communicate additional information about
905a function. Function attributes are considered to be part of the
906function, not of the function type, so functions with different function
907attributes can have the same function type.
908
909Function attributes are simple keywords that follow the type specified.
910If multiple attributes are needed, they are space separated. For
911example:
912
913.. code-block:: llvm
914
915 define void @f() noinline { ... }
916 define void @f() alwaysinline { ... }
917 define void @f() alwaysinline optsize { ... }
918 define void @f() optsize { ... }
919
Sean Silvab084af42012-12-07 10:36:55 +0000920``alignstack(<n>)``
921 This attribute indicates that, when emitting the prologue and
922 epilogue, the backend should forcibly align the stack pointer.
923 Specify the desired alignment, which must be a power of two, in
924 parentheses.
925``alwaysinline``
926 This attribute indicates that the inliner should attempt to inline
927 this function into callers whenever possible, ignoring any active
928 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +0000929``builtin``
930 This indicates that the callee function at a call site should be
931 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +0000932 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Michael Gottesman41748d72013-06-27 00:25:01 +0000933 direct calls to functions which are declared with the ``nobuiltin``
934 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +0000935``cold``
936 This attribute indicates that this function is rarely called. When
937 computing edge weights, basic blocks post-dominated by a cold
938 function call are also considered to be cold; and, thus, given low
939 weight.
Sean Silvab084af42012-12-07 10:36:55 +0000940``inlinehint``
941 This attribute indicates that the source code contained a hint that
942 inlining this function is desirable (such as the "inline" keyword in
943 C/C++). It is just a hint; it imposes no requirements on the
944 inliner.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000945``minsize``
946 This attribute suggests that optimization passes and code generator
947 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000948 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +0000949 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +0000950``naked``
951 This attribute disables prologue / epilogue emission for the
952 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +0000953``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +0000954 This indicates that the callee function at a call site is not recognized as
955 a built-in function. LLVM will retain the original call and not replace it
956 with equivalent code based on the semantics of the built-in function, unless
957 the call site uses the ``builtin`` attribute. This is valid at call sites
958 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +0000959``noduplicate``
960 This attribute indicates that calls to the function cannot be
961 duplicated. A call to a ``noduplicate`` function may be moved
962 within its parent function, but may not be duplicated within
963 its parent function.
964
965 A function containing a ``noduplicate`` call may still
966 be an inlining candidate, provided that the call is not
967 duplicated by inlining. That implies that the function has
968 internal linkage and only has one call site, so the original
969 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000970``noimplicitfloat``
971 This attributes disables implicit floating point instructions.
972``noinline``
973 This attribute indicates that the inliner should never inline this
974 function in any situation. This attribute may not be used together
975 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +0000976``nonlazybind``
977 This attribute suppresses lazy symbol binding for the function. This
978 may make calls to the function faster, at the cost of extra program
979 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +0000980``noredzone``
981 This attribute indicates that the code generator should not use a
982 red zone, even if the target-specific ABI normally permits it.
983``noreturn``
984 This function attribute indicates that the function never returns
985 normally. This produces undefined behavior at runtime if the
986 function ever does dynamically return.
987``nounwind``
988 This function attribute indicates that the function never returns
989 with an unwind or exceptional control flow. If the function does
990 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +0000991``optnone``
992 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000993 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +0000994 exception of interprocedural optimization passes.
995 This attribute cannot be used together with the ``alwaysinline``
996 attribute; this attribute is also incompatible
997 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +0000998
Paul Robinsondcbe35b2013-11-18 21:44:03 +0000999 This attribute requires the ``noinline`` attribute to be specified on
1000 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001001 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001002 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001003``optsize``
1004 This attribute suggests that optimization passes and code generator
1005 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001006 and otherwise do optimizations specifically to reduce code size as
1007 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001008``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001009 On a function, this attribute indicates that the function computes its
1010 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001011 without dereferencing any pointer arguments or otherwise accessing
1012 any mutable state (e.g. memory, control registers, etc) visible to
1013 caller functions. It does not write through any pointer arguments
1014 (including ``byval`` arguments) and never changes any state visible
1015 to callers. This means that it cannot unwind exceptions by calling
1016 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001017
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001018 On an argument, this attribute indicates that the function does not
1019 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001020 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001021``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001022 On a function, this attribute indicates that the function does not write
1023 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001024 modify any state (e.g. memory, control registers, etc) visible to
1025 caller functions. It may dereference pointer arguments and read
1026 state that may be set in the caller. A readonly function always
1027 returns the same value (or unwinds an exception identically) when
1028 called with the same set of arguments and global state. It cannot
1029 unwind an exception by calling the ``C++`` exception throwing
1030 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001031
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001032 On an argument, this attribute indicates that the function does not write
1033 through this pointer argument, even though it may write to the memory that
1034 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001035``returns_twice``
1036 This attribute indicates that this function can return twice. The C
1037 ``setjmp`` is an example of such a function. The compiler disables
1038 some optimizations (like tail calls) in the caller of these
1039 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001040``sanitize_address``
1041 This attribute indicates that AddressSanitizer checks
1042 (dynamic address safety analysis) are enabled for this function.
1043``sanitize_memory``
1044 This attribute indicates that MemorySanitizer checks (dynamic detection
1045 of accesses to uninitialized memory) are enabled for this function.
1046``sanitize_thread``
1047 This attribute indicates that ThreadSanitizer checks
1048 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001049``ssp``
1050 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001051 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001052 placed on the stack before the local variables that's checked upon
1053 return from the function to see if it has been overwritten. A
1054 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001055 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001056
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001057 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1058 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1059 - Calls to alloca() with variable sizes or constant sizes greater than
1060 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001061
1062 If a function that has an ``ssp`` attribute is inlined into a
1063 function that doesn't have an ``ssp`` attribute, then the resulting
1064 function will have an ``ssp`` attribute.
1065``sspreq``
1066 This attribute indicates that the function should *always* emit a
1067 stack smashing protector. This overrides the ``ssp`` function
1068 attribute.
1069
1070 If a function that has an ``sspreq`` attribute is inlined into a
1071 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001072 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1073 an ``sspreq`` attribute.
1074``sspstrong``
1075 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001076 protector. This attribute causes a strong heuristic to be used when
1077 determining if a function needs stack protectors. The strong heuristic
1078 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001079
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001080 - Arrays of any size and type
1081 - Aggregates containing an array of any size and type.
1082 - Calls to alloca().
1083 - Local variables that have had their address taken.
1084
1085 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001086
1087 If a function that has an ``sspstrong`` attribute is inlined into a
1088 function that doesn't have an ``sspstrong`` attribute, then the
1089 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001090``uwtable``
1091 This attribute indicates that the ABI being targeted requires that
1092 an unwind table entry be produce for this function even if we can
1093 show that no exceptions passes by it. This is normally the case for
1094 the ELF x86-64 abi, but it can be disabled for some compilation
1095 units.
Sean Silvab084af42012-12-07 10:36:55 +00001096
1097.. _moduleasm:
1098
1099Module-Level Inline Assembly
1100----------------------------
1101
1102Modules may contain "module-level inline asm" blocks, which corresponds
1103to the GCC "file scope inline asm" blocks. These blocks are internally
1104concatenated by LLVM and treated as a single unit, but may be separated
1105in the ``.ll`` file if desired. The syntax is very simple:
1106
1107.. code-block:: llvm
1108
1109 module asm "inline asm code goes here"
1110 module asm "more can go here"
1111
1112The strings can contain any character by escaping non-printable
1113characters. The escape sequence used is simply "\\xx" where "xx" is the
1114two digit hex code for the number.
1115
1116The inline asm code is simply printed to the machine code .s file when
1117assembly code is generated.
1118
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001119.. _langref_datalayout:
1120
Sean Silvab084af42012-12-07 10:36:55 +00001121Data Layout
1122-----------
1123
1124A module may specify a target specific data layout string that specifies
1125how data is to be laid out in memory. The syntax for the data layout is
1126simply:
1127
1128.. code-block:: llvm
1129
1130 target datalayout = "layout specification"
1131
1132The *layout specification* consists of a list of specifications
1133separated by the minus sign character ('-'). Each specification starts
1134with a letter and may include other information after the letter to
1135define some aspect of the data layout. The specifications accepted are
1136as follows:
1137
1138``E``
1139 Specifies that the target lays out data in big-endian form. That is,
1140 the bits with the most significance have the lowest address
1141 location.
1142``e``
1143 Specifies that the target lays out data in little-endian form. That
1144 is, the bits with the least significance have the lowest address
1145 location.
1146``S<size>``
1147 Specifies the natural alignment of the stack in bits. Alignment
1148 promotion of stack variables is limited to the natural stack
1149 alignment to avoid dynamic stack realignment. The stack alignment
1150 must be a multiple of 8-bits. If omitted, the natural stack
1151 alignment defaults to "unspecified", which does not prevent any
1152 alignment promotions.
1153``p[n]:<size>:<abi>:<pref>``
1154 This specifies the *size* of a pointer and its ``<abi>`` and
1155 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001156 bits. The address space, ``n`` is optional, and if not specified,
1157 denotes the default address space 0. The value of ``n`` must be
1158 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001159``i<size>:<abi>:<pref>``
1160 This specifies the alignment for an integer type of a given bit
1161 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1162``v<size>:<abi>:<pref>``
1163 This specifies the alignment for a vector type of a given bit
1164 ``<size>``.
1165``f<size>:<abi>:<pref>``
1166 This specifies the alignment for a floating point type of a given bit
1167 ``<size>``. Only values of ``<size>`` that are supported by the target
1168 will work. 32 (float) and 64 (double) are supported on all targets; 80
1169 or 128 (different flavors of long double) are also supported on some
1170 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001171``a:<abi>:<pref>``
1172 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001173``m:<mangling>``
1174 If prerest, specifies that llvm names are mangled in the output. The
1175 options are
1176 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1177 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1178 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1179 symbols get a ``_`` prefix.
Rafael Espindolaaf77e122014-01-10 13:42:12 +00001180 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
Rafael Espindolaaa842f02014-01-03 19:42:04 +00001181 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001182``n<size1>:<size2>:<size3>...``
1183 This specifies a set of native integer widths for the target CPU in
1184 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1185 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1186 this set are considered to support most general arithmetic operations
1187 efficiently.
1188
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001189On every specification that takes a ``<abi>:<pref>``, specifying the
1190``<pref>`` alignment is optional. If omitted, the preceding ``:``
1191should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1192
Sean Silvab084af42012-12-07 10:36:55 +00001193When constructing the data layout for a given target, LLVM starts with a
1194default set of specifications which are then (possibly) overridden by
1195the specifications in the ``datalayout`` keyword. The default
1196specifications are given in this list:
1197
1198- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001199- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1200- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1201 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001202- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001203- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1204- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1205- ``i16:16:16`` - i16 is 16-bit aligned
1206- ``i32:32:32`` - i32 is 32-bit aligned
1207- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1208 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001209- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001210- ``f32:32:32`` - float is 32-bit aligned
1211- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001212- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001213- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1214- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001215- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001216
1217When LLVM is determining the alignment for a given type, it uses the
1218following rules:
1219
1220#. If the type sought is an exact match for one of the specifications,
1221 that specification is used.
1222#. If no match is found, and the type sought is an integer type, then
1223 the smallest integer type that is larger than the bitwidth of the
1224 sought type is used. If none of the specifications are larger than
1225 the bitwidth then the largest integer type is used. For example,
1226 given the default specifications above, the i7 type will use the
1227 alignment of i8 (next largest) while both i65 and i256 will use the
1228 alignment of i64 (largest specified).
1229#. If no match is found, and the type sought is a vector type, then the
1230 largest vector type that is smaller than the sought vector type will
1231 be used as a fall back. This happens because <128 x double> can be
1232 implemented in terms of 64 <2 x double>, for example.
1233
1234The function of the data layout string may not be what you expect.
1235Notably, this is not a specification from the frontend of what alignment
1236the code generator should use.
1237
1238Instead, if specified, the target data layout is required to match what
1239the ultimate *code generator* expects. This string is used by the
1240mid-level optimizers to improve code, and this only works if it matches
1241what the ultimate code generator uses. If you would like to generate IR
1242that does not embed this target-specific detail into the IR, then you
1243don't have to specify the string. This will disable some optimizations
1244that require precise layout information, but this also prevents those
1245optimizations from introducing target specificity into the IR.
1246
Bill Wendling5cc90842013-10-18 23:41:25 +00001247.. _langref_triple:
1248
1249Target Triple
1250-------------
1251
1252A module may specify a target triple string that describes the target
1253host. The syntax for the target triple is simply:
1254
1255.. code-block:: llvm
1256
1257 target triple = "x86_64-apple-macosx10.7.0"
1258
1259The *target triple* string consists of a series of identifiers delimited
1260by the minus sign character ('-'). The canonical forms are:
1261
1262::
1263
1264 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1265 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1266
1267This information is passed along to the backend so that it generates
1268code for the proper architecture. It's possible to override this on the
1269command line with the ``-mtriple`` command line option.
1270
Sean Silvab084af42012-12-07 10:36:55 +00001271.. _pointeraliasing:
1272
1273Pointer Aliasing Rules
1274----------------------
1275
1276Any memory access must be done through a pointer value associated with
1277an address range of the memory access, otherwise the behavior is
1278undefined. Pointer values are associated with address ranges according
1279to the following rules:
1280
1281- A pointer value is associated with the addresses associated with any
1282 value it is *based* on.
1283- An address of a global variable is associated with the address range
1284 of the variable's storage.
1285- The result value of an allocation instruction is associated with the
1286 address range of the allocated storage.
1287- A null pointer in the default address-space is associated with no
1288 address.
1289- An integer constant other than zero or a pointer value returned from
1290 a function not defined within LLVM may be associated with address
1291 ranges allocated through mechanisms other than those provided by
1292 LLVM. Such ranges shall not overlap with any ranges of addresses
1293 allocated by mechanisms provided by LLVM.
1294
1295A pointer value is *based* on another pointer value according to the
1296following rules:
1297
1298- A pointer value formed from a ``getelementptr`` operation is *based*
1299 on the first operand of the ``getelementptr``.
1300- The result value of a ``bitcast`` is *based* on the operand of the
1301 ``bitcast``.
1302- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1303 values that contribute (directly or indirectly) to the computation of
1304 the pointer's value.
1305- The "*based* on" relationship is transitive.
1306
1307Note that this definition of *"based"* is intentionally similar to the
1308definition of *"based"* in C99, though it is slightly weaker.
1309
1310LLVM IR does not associate types with memory. The result type of a
1311``load`` merely indicates the size and alignment of the memory from
1312which to load, as well as the interpretation of the value. The first
1313operand type of a ``store`` similarly only indicates the size and
1314alignment of the store.
1315
1316Consequently, type-based alias analysis, aka TBAA, aka
1317``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1318:ref:`Metadata <metadata>` may be used to encode additional information
1319which specialized optimization passes may use to implement type-based
1320alias analysis.
1321
1322.. _volatile:
1323
1324Volatile Memory Accesses
1325------------------------
1326
1327Certain memory accesses, such as :ref:`load <i_load>`'s,
1328:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1329marked ``volatile``. The optimizers must not change the number of
1330volatile operations or change their order of execution relative to other
1331volatile operations. The optimizers *may* change the order of volatile
1332operations relative to non-volatile operations. This is not Java's
1333"volatile" and has no cross-thread synchronization behavior.
1334
Andrew Trick89fc5a62013-01-30 21:19:35 +00001335IR-level volatile loads and stores cannot safely be optimized into
1336llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1337flagged volatile. Likewise, the backend should never split or merge
1338target-legal volatile load/store instructions.
1339
Andrew Trick7e6f9282013-01-31 00:49:39 +00001340.. admonition:: Rationale
1341
1342 Platforms may rely on volatile loads and stores of natively supported
1343 data width to be executed as single instruction. For example, in C
1344 this holds for an l-value of volatile primitive type with native
1345 hardware support, but not necessarily for aggregate types. The
1346 frontend upholds these expectations, which are intentionally
1347 unspecified in the IR. The rules above ensure that IR transformation
1348 do not violate the frontend's contract with the language.
1349
Sean Silvab084af42012-12-07 10:36:55 +00001350.. _memmodel:
1351
1352Memory Model for Concurrent Operations
1353--------------------------------------
1354
1355The LLVM IR does not define any way to start parallel threads of
1356execution or to register signal handlers. Nonetheless, there are
1357platform-specific ways to create them, and we define LLVM IR's behavior
1358in their presence. This model is inspired by the C++0x memory model.
1359
1360For a more informal introduction to this model, see the :doc:`Atomics`.
1361
1362We define a *happens-before* partial order as the least partial order
1363that
1364
1365- Is a superset of single-thread program order, and
1366- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1367 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1368 techniques, like pthread locks, thread creation, thread joining,
1369 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1370 Constraints <ordering>`).
1371
1372Note that program order does not introduce *happens-before* edges
1373between a thread and signals executing inside that thread.
1374
1375Every (defined) read operation (load instructions, memcpy, atomic
1376loads/read-modify-writes, etc.) R reads a series of bytes written by
1377(defined) write operations (store instructions, atomic
1378stores/read-modify-writes, memcpy, etc.). For the purposes of this
1379section, initialized globals are considered to have a write of the
1380initializer which is atomic and happens before any other read or write
1381of the memory in question. For each byte of a read R, R\ :sub:`byte`
1382may see any write to the same byte, except:
1383
1384- If write\ :sub:`1` happens before write\ :sub:`2`, and
1385 write\ :sub:`2` happens before R\ :sub:`byte`, then
1386 R\ :sub:`byte` does not see write\ :sub:`1`.
1387- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1388 R\ :sub:`byte` does not see write\ :sub:`3`.
1389
1390Given that definition, R\ :sub:`byte` is defined as follows:
1391
1392- If R is volatile, the result is target-dependent. (Volatile is
1393 supposed to give guarantees which can support ``sig_atomic_t`` in
1394 C/C++, and may be used for accesses to addresses which do not behave
1395 like normal memory. It does not generally provide cross-thread
1396 synchronization.)
1397- Otherwise, if there is no write to the same byte that happens before
1398 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1399- Otherwise, if R\ :sub:`byte` may see exactly one write,
1400 R\ :sub:`byte` returns the value written by that write.
1401- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1402 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1403 Memory Ordering Constraints <ordering>` section for additional
1404 constraints on how the choice is made.
1405- Otherwise R\ :sub:`byte` returns ``undef``.
1406
1407R returns the value composed of the series of bytes it read. This
1408implies that some bytes within the value may be ``undef`` **without**
1409the entire value being ``undef``. Note that this only defines the
1410semantics of the operation; it doesn't mean that targets will emit more
1411than one instruction to read the series of bytes.
1412
1413Note that in cases where none of the atomic intrinsics are used, this
1414model places only one restriction on IR transformations on top of what
1415is required for single-threaded execution: introducing a store to a byte
1416which might not otherwise be stored is not allowed in general.
1417(Specifically, in the case where another thread might write to and read
1418from an address, introducing a store can change a load that may see
1419exactly one write into a load that may see multiple writes.)
1420
1421.. _ordering:
1422
1423Atomic Memory Ordering Constraints
1424----------------------------------
1425
1426Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1427:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1428:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1429an ordering parameter that determines which other atomic instructions on
1430the same address they *synchronize with*. These semantics are borrowed
1431from Java and C++0x, but are somewhat more colloquial. If these
1432descriptions aren't precise enough, check those specs (see spec
1433references in the :doc:`atomics guide <Atomics>`).
1434:ref:`fence <i_fence>` instructions treat these orderings somewhat
1435differently since they don't take an address. See that instruction's
1436documentation for details.
1437
1438For a simpler introduction to the ordering constraints, see the
1439:doc:`Atomics`.
1440
1441``unordered``
1442 The set of values that can be read is governed by the happens-before
1443 partial order. A value cannot be read unless some operation wrote
1444 it. This is intended to provide a guarantee strong enough to model
1445 Java's non-volatile shared variables. This ordering cannot be
1446 specified for read-modify-write operations; it is not strong enough
1447 to make them atomic in any interesting way.
1448``monotonic``
1449 In addition to the guarantees of ``unordered``, there is a single
1450 total order for modifications by ``monotonic`` operations on each
1451 address. All modification orders must be compatible with the
1452 happens-before order. There is no guarantee that the modification
1453 orders can be combined to a global total order for the whole program
1454 (and this often will not be possible). The read in an atomic
1455 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1456 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1457 order immediately before the value it writes. If one atomic read
1458 happens before another atomic read of the same address, the later
1459 read must see the same value or a later value in the address's
1460 modification order. This disallows reordering of ``monotonic`` (or
1461 stronger) operations on the same address. If an address is written
1462 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1463 read that address repeatedly, the other threads must eventually see
1464 the write. This corresponds to the C++0x/C1x
1465 ``memory_order_relaxed``.
1466``acquire``
1467 In addition to the guarantees of ``monotonic``, a
1468 *synchronizes-with* edge may be formed with a ``release`` operation.
1469 This is intended to model C++'s ``memory_order_acquire``.
1470``release``
1471 In addition to the guarantees of ``monotonic``, if this operation
1472 writes a value which is subsequently read by an ``acquire``
1473 operation, it *synchronizes-with* that operation. (This isn't a
1474 complete description; see the C++0x definition of a release
1475 sequence.) This corresponds to the C++0x/C1x
1476 ``memory_order_release``.
1477``acq_rel`` (acquire+release)
1478 Acts as both an ``acquire`` and ``release`` operation on its
1479 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1480``seq_cst`` (sequentially consistent)
1481 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1482 operation which only reads, ``release`` for an operation which only
1483 writes), there is a global total order on all
1484 sequentially-consistent operations on all addresses, which is
1485 consistent with the *happens-before* partial order and with the
1486 modification orders of all the affected addresses. Each
1487 sequentially-consistent read sees the last preceding write to the
1488 same address in this global order. This corresponds to the C++0x/C1x
1489 ``memory_order_seq_cst`` and Java volatile.
1490
1491.. _singlethread:
1492
1493If an atomic operation is marked ``singlethread``, it only *synchronizes
1494with* or participates in modification and seq\_cst total orderings with
1495other operations running in the same thread (for example, in signal
1496handlers).
1497
1498.. _fastmath:
1499
1500Fast-Math Flags
1501---------------
1502
1503LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1504:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1505:ref:`frem <i_frem>`) have the following flags that can set to enable
1506otherwise unsafe floating point operations
1507
1508``nnan``
1509 No NaNs - Allow optimizations to assume the arguments and result are not
1510 NaN. Such optimizations are required to retain defined behavior over
1511 NaNs, but the value of the result is undefined.
1512
1513``ninf``
1514 No Infs - Allow optimizations to assume the arguments and result are not
1515 +/-Inf. Such optimizations are required to retain defined behavior over
1516 +/-Inf, but the value of the result is undefined.
1517
1518``nsz``
1519 No Signed Zeros - Allow optimizations to treat the sign of a zero
1520 argument or result as insignificant.
1521
1522``arcp``
1523 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1524 argument rather than perform division.
1525
1526``fast``
1527 Fast - Allow algebraically equivalent transformations that may
1528 dramatically change results in floating point (e.g. reassociate). This
1529 flag implies all the others.
1530
1531.. _typesystem:
1532
1533Type System
1534===========
1535
1536The LLVM type system is one of the most important features of the
1537intermediate representation. Being typed enables a number of
1538optimizations to be performed on the intermediate representation
1539directly, without having to do extra analyses on the side before the
1540transformation. A strong type system makes it easier to read the
1541generated code and enables novel analyses and transformations that are
1542not feasible to perform on normal three address code representations.
1543
Rafael Espindola08013342013-12-07 19:34:20 +00001544.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001545
Rafael Espindola08013342013-12-07 19:34:20 +00001546Void Type
1547---------
Sean Silvab084af42012-12-07 10:36:55 +00001548
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001549:Overview:
1550
Rafael Espindola08013342013-12-07 19:34:20 +00001551
1552The void type does not represent any value and has no size.
1553
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001554:Syntax:
1555
Rafael Espindola08013342013-12-07 19:34:20 +00001556
1557::
1558
1559 void
Sean Silvab084af42012-12-07 10:36:55 +00001560
1561
Rafael Espindola08013342013-12-07 19:34:20 +00001562.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001563
Rafael Espindola08013342013-12-07 19:34:20 +00001564Function Type
1565-------------
Sean Silvab084af42012-12-07 10:36:55 +00001566
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001567:Overview:
1568
Sean Silvab084af42012-12-07 10:36:55 +00001569
Rafael Espindola08013342013-12-07 19:34:20 +00001570The function type can be thought of as a function signature. It consists of a
1571return type and a list of formal parameter types. The return type of a function
1572type is a void type or first class type --- except for :ref:`label <t_label>`
1573and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001574
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001575:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001576
Rafael Espindola08013342013-12-07 19:34:20 +00001577::
Sean Silvab084af42012-12-07 10:36:55 +00001578
Rafael Espindola08013342013-12-07 19:34:20 +00001579 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001580
Rafael Espindola08013342013-12-07 19:34:20 +00001581...where '``<parameter list>``' is a comma-separated list of type
1582specifiers. Optionally, the parameter list may include a type ``...``, which
1583indicates that the function takes a variable number of arguments. Variable
1584argument functions can access their arguments with the :ref:`variable argument
1585handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1586except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001587
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001588:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001589
Rafael Espindola08013342013-12-07 19:34:20 +00001590+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1591| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1592+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1593| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1594+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1595| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1596+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1597| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1598+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1599
1600.. _t_firstclass:
1601
1602First Class Types
1603-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001604
1605The :ref:`first class <t_firstclass>` types are perhaps the most important.
1606Values of these types are the only ones which can be produced by
1607instructions.
1608
Rafael Espindola08013342013-12-07 19:34:20 +00001609.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001610
Rafael Espindola08013342013-12-07 19:34:20 +00001611Single Value Types
1612^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001613
Rafael Espindola08013342013-12-07 19:34:20 +00001614These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001615
1616.. _t_integer:
1617
1618Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001619""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001620
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001621:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001622
1623The integer type is a very simple type that simply specifies an
1624arbitrary bit width for the integer type desired. Any bit width from 1
1625bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1626
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001627:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001628
1629::
1630
1631 iN
1632
1633The number of bits the integer will occupy is specified by the ``N``
1634value.
1635
1636Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001637*********
Sean Silvab084af42012-12-07 10:36:55 +00001638
1639+----------------+------------------------------------------------+
1640| ``i1`` | a single-bit integer. |
1641+----------------+------------------------------------------------+
1642| ``i32`` | a 32-bit integer. |
1643+----------------+------------------------------------------------+
1644| ``i1942652`` | a really big integer of over 1 million bits. |
1645+----------------+------------------------------------------------+
1646
1647.. _t_floating:
1648
1649Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001650""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001651
1652.. list-table::
1653 :header-rows: 1
1654
1655 * - Type
1656 - Description
1657
1658 * - ``half``
1659 - 16-bit floating point value
1660
1661 * - ``float``
1662 - 32-bit floating point value
1663
1664 * - ``double``
1665 - 64-bit floating point value
1666
1667 * - ``fp128``
1668 - 128-bit floating point value (112-bit mantissa)
1669
1670 * - ``x86_fp80``
1671 - 80-bit floating point value (X87)
1672
1673 * - ``ppc_fp128``
1674 - 128-bit floating point value (two 64-bits)
1675
1676.. _t_x86mmx:
1677
1678X86mmx Type
Rafael Espindola08013342013-12-07 19:34:20 +00001679"""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001680
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001681:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001682
1683The x86mmx type represents a value held in an MMX register on an x86
1684machine. The operations allowed on it are quite limited: parameters and
1685return values, load and store, and bitcast. User-specified MMX
1686instructions are represented as intrinsic or asm calls with arguments
1687and/or results of this type. There are no arrays, vectors or constants
1688of this type.
1689
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001690:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001691
1692::
1693
1694 x86mmx
1695
Sean Silvab084af42012-12-07 10:36:55 +00001696
Rafael Espindola08013342013-12-07 19:34:20 +00001697.. _t_pointer:
1698
1699Pointer Type
1700""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001701
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001702:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001703
Rafael Espindola08013342013-12-07 19:34:20 +00001704The pointer type is used to specify memory locations. Pointers are
1705commonly used to reference objects in memory.
1706
1707Pointer types may have an optional address space attribute defining the
1708numbered address space where the pointed-to object resides. The default
1709address space is number zero. The semantics of non-zero address spaces
1710are target-specific.
1711
1712Note that LLVM does not permit pointers to void (``void*``) nor does it
1713permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001714
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001715:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001716
1717::
1718
Rafael Espindola08013342013-12-07 19:34:20 +00001719 <type> *
1720
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001721:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001722
1723+-------------------------+--------------------------------------------------------------------------------------------------------------+
1724| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1725+-------------------------+--------------------------------------------------------------------------------------------------------------+
1726| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1727+-------------------------+--------------------------------------------------------------------------------------------------------------+
1728| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1729+-------------------------+--------------------------------------------------------------------------------------------------------------+
1730
1731.. _t_vector:
1732
1733Vector Type
1734"""""""""""
1735
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001736:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00001737
1738A vector type is a simple derived type that represents a vector of
1739elements. Vector types are used when multiple primitive data are
1740operated in parallel using a single instruction (SIMD). A vector type
1741requires a size (number of elements) and an underlying primitive data
1742type. Vector types are considered :ref:`first class <t_firstclass>`.
1743
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001744:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00001745
1746::
1747
1748 < <# elements> x <elementtype> >
1749
1750The number of elements is a constant integer value larger than 0;
1751elementtype may be any integer or floating point type, or a pointer to
1752these types. Vectors of size zero are not allowed.
1753
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001754:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001755
1756+-------------------+--------------------------------------------------+
1757| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1758+-------------------+--------------------------------------------------+
1759| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1760+-------------------+--------------------------------------------------+
1761| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1762+-------------------+--------------------------------------------------+
1763| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1764+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00001765
1766.. _t_label:
1767
1768Label Type
1769^^^^^^^^^^
1770
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001771:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001772
1773The label type represents code labels.
1774
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001775:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001776
1777::
1778
1779 label
1780
1781.. _t_metadata:
1782
1783Metadata Type
1784^^^^^^^^^^^^^
1785
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001786:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001787
1788The metadata type represents embedded metadata. No derived types may be
1789created from metadata except for :ref:`function <t_function>` arguments.
1790
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001791:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001792
1793::
1794
1795 metadata
1796
Sean Silvab084af42012-12-07 10:36:55 +00001797.. _t_aggregate:
1798
1799Aggregate Types
1800^^^^^^^^^^^^^^^
1801
1802Aggregate Types are a subset of derived types that can contain multiple
1803member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1804aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1805aggregate types.
1806
1807.. _t_array:
1808
1809Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00001810""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001811
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001812:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001813
1814The array type is a very simple derived type that arranges elements
1815sequentially in memory. The array type requires a size (number of
1816elements) and an underlying data type.
1817
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001818:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001819
1820::
1821
1822 [<# elements> x <elementtype>]
1823
1824The number of elements is a constant integer value; ``elementtype`` may
1825be any type with a size.
1826
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001827:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001828
1829+------------------+--------------------------------------+
1830| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1831+------------------+--------------------------------------+
1832| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1833+------------------+--------------------------------------+
1834| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1835+------------------+--------------------------------------+
1836
1837Here are some examples of multidimensional arrays:
1838
1839+-----------------------------+----------------------------------------------------------+
1840| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1841+-----------------------------+----------------------------------------------------------+
1842| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1843+-----------------------------+----------------------------------------------------------+
1844| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1845+-----------------------------+----------------------------------------------------------+
1846
1847There is no restriction on indexing beyond the end of the array implied
1848by a static type (though there are restrictions on indexing beyond the
1849bounds of an allocated object in some cases). This means that
1850single-dimension 'variable sized array' addressing can be implemented in
1851LLVM with a zero length array type. An implementation of 'pascal style
1852arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1853example.
1854
Sean Silvab084af42012-12-07 10:36:55 +00001855.. _t_struct:
1856
1857Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00001858""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001859
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001860:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001861
1862The structure type is used to represent a collection of data members
1863together in memory. The elements of a structure may be any type that has
1864a size.
1865
1866Structures in memory are accessed using '``load``' and '``store``' by
1867getting a pointer to a field with the '``getelementptr``' instruction.
1868Structures in registers are accessed using the '``extractvalue``' and
1869'``insertvalue``' instructions.
1870
1871Structures may optionally be "packed" structures, which indicate that
1872the alignment of the struct is one byte, and that there is no padding
1873between the elements. In non-packed structs, padding between field types
1874is inserted as defined by the DataLayout string in the module, which is
1875required to match what the underlying code generator expects.
1876
1877Structures can either be "literal" or "identified". A literal structure
1878is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1879identified types are always defined at the top level with a name.
1880Literal types are uniqued by their contents and can never be recursive
1881or opaque since there is no way to write one. Identified types can be
1882recursive, can be opaqued, and are never uniqued.
1883
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001884:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001885
1886::
1887
1888 %T1 = type { <type list> } ; Identified normal struct type
1889 %T2 = type <{ <type list> }> ; Identified packed struct type
1890
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001891:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001892
1893+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1894| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1895+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00001896| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00001897+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1898| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1899+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1900
1901.. _t_opaque:
1902
1903Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00001904""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001905
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001906:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001907
1908Opaque structure types are used to represent named structure types that
1909do not have a body specified. This corresponds (for example) to the C
1910notion of a forward declared structure.
1911
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001912:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001913
1914::
1915
1916 %X = type opaque
1917 %52 = type opaque
1918
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001919:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001920
1921+--------------+-------------------+
1922| ``opaque`` | An opaque type. |
1923+--------------+-------------------+
1924
Sean Silvab084af42012-12-07 10:36:55 +00001925Constants
1926=========
1927
1928LLVM has several different basic types of constants. This section
1929describes them all and their syntax.
1930
1931Simple Constants
1932----------------
1933
1934**Boolean constants**
1935 The two strings '``true``' and '``false``' are both valid constants
1936 of the ``i1`` type.
1937**Integer constants**
1938 Standard integers (such as '4') are constants of the
1939 :ref:`integer <t_integer>` type. Negative numbers may be used with
1940 integer types.
1941**Floating point constants**
1942 Floating point constants use standard decimal notation (e.g.
1943 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1944 hexadecimal notation (see below). The assembler requires the exact
1945 decimal value of a floating-point constant. For example, the
1946 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1947 decimal in binary. Floating point constants must have a :ref:`floating
1948 point <t_floating>` type.
1949**Null pointer constants**
1950 The identifier '``null``' is recognized as a null pointer constant
1951 and must be of :ref:`pointer type <t_pointer>`.
1952
1953The one non-intuitive notation for constants is the hexadecimal form of
1954floating point constants. For example, the form
1955'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1956than) '``double 4.5e+15``'. The only time hexadecimal floating point
1957constants are required (and the only time that they are generated by the
1958disassembler) is when a floating point constant must be emitted but it
1959cannot be represented as a decimal floating point number in a reasonable
1960number of digits. For example, NaN's, infinities, and other special
1961values are represented in their IEEE hexadecimal format so that assembly
1962and disassembly do not cause any bits to change in the constants.
1963
1964When using the hexadecimal form, constants of types half, float, and
1965double are represented using the 16-digit form shown above (which
1966matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00001967must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00001968precision, respectively. Hexadecimal format is always used for long
1969double, and there are three forms of long double. The 80-bit format used
1970by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1971128-bit format used by PowerPC (two adjacent doubles) is represented by
1972``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00001973represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
1974will only work if they match the long double format on your target.
1975The IEEE 16-bit format (half precision) is represented by ``0xH``
1976followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
1977(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00001978
1979There are no constants of type x86mmx.
1980
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001981.. _complexconstants:
1982
Sean Silvab084af42012-12-07 10:36:55 +00001983Complex Constants
1984-----------------
1985
1986Complex constants are a (potentially recursive) combination of simple
1987constants and smaller complex constants.
1988
1989**Structure constants**
1990 Structure constants are represented with notation similar to
1991 structure type definitions (a comma separated list of elements,
1992 surrounded by braces (``{}``)). For example:
1993 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
1994 "``@G = external global i32``". Structure constants must have
1995 :ref:`structure type <t_struct>`, and the number and types of elements
1996 must match those specified by the type.
1997**Array constants**
1998 Array constants are represented with notation similar to array type
1999 definitions (a comma separated list of elements, surrounded by
2000 square brackets (``[]``)). For example:
2001 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2002 :ref:`array type <t_array>`, and the number and types of elements must
2003 match those specified by the type.
2004**Vector constants**
2005 Vector constants are represented with notation similar to vector
2006 type definitions (a comma separated list of elements, surrounded by
2007 less-than/greater-than's (``<>``)). For example:
2008 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2009 must have :ref:`vector type <t_vector>`, and the number and types of
2010 elements must match those specified by the type.
2011**Zero initialization**
2012 The string '``zeroinitializer``' can be used to zero initialize a
2013 value to zero of *any* type, including scalar and
2014 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2015 having to print large zero initializers (e.g. for large arrays) and
2016 is always exactly equivalent to using explicit zero initializers.
2017**Metadata node**
2018 A metadata node is a structure-like constant with :ref:`metadata
2019 type <t_metadata>`. For example:
2020 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2021 constants that are meant to be interpreted as part of the
2022 instruction stream, metadata is a place to attach additional
2023 information such as debug info.
2024
2025Global Variable and Function Addresses
2026--------------------------------------
2027
2028The addresses of :ref:`global variables <globalvars>` and
2029:ref:`functions <functionstructure>` are always implicitly valid
2030(link-time) constants. These constants are explicitly referenced when
2031the :ref:`identifier for the global <identifiers>` is used and always have
2032:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2033file:
2034
2035.. code-block:: llvm
2036
2037 @X = global i32 17
2038 @Y = global i32 42
2039 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2040
2041.. _undefvalues:
2042
2043Undefined Values
2044----------------
2045
2046The string '``undef``' can be used anywhere a constant is expected, and
2047indicates that the user of the value may receive an unspecified
2048bit-pattern. Undefined values may be of any type (other than '``label``'
2049or '``void``') and be used anywhere a constant is permitted.
2050
2051Undefined values are useful because they indicate to the compiler that
2052the program is well defined no matter what value is used. This gives the
2053compiler more freedom to optimize. Here are some examples of
2054(potentially surprising) transformations that are valid (in pseudo IR):
2055
2056.. code-block:: llvm
2057
2058 %A = add %X, undef
2059 %B = sub %X, undef
2060 %C = xor %X, undef
2061 Safe:
2062 %A = undef
2063 %B = undef
2064 %C = undef
2065
2066This is safe because all of the output bits are affected by the undef
2067bits. Any output bit can have a zero or one depending on the input bits.
2068
2069.. code-block:: llvm
2070
2071 %A = or %X, undef
2072 %B = and %X, undef
2073 Safe:
2074 %A = -1
2075 %B = 0
2076 Unsafe:
2077 %A = undef
2078 %B = undef
2079
2080These logical operations have bits that are not always affected by the
2081input. For example, if ``%X`` has a zero bit, then the output of the
2082'``and``' operation will always be a zero for that bit, no matter what
2083the corresponding bit from the '``undef``' is. As such, it is unsafe to
2084optimize or assume that the result of the '``and``' is '``undef``'.
2085However, it is safe to assume that all bits of the '``undef``' could be
20860, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2087all the bits of the '``undef``' operand to the '``or``' could be set,
2088allowing the '``or``' to be folded to -1.
2089
2090.. code-block:: llvm
2091
2092 %A = select undef, %X, %Y
2093 %B = select undef, 42, %Y
2094 %C = select %X, %Y, undef
2095 Safe:
2096 %A = %X (or %Y)
2097 %B = 42 (or %Y)
2098 %C = %Y
2099 Unsafe:
2100 %A = undef
2101 %B = undef
2102 %C = undef
2103
2104This set of examples shows that undefined '``select``' (and conditional
2105branch) conditions can go *either way*, but they have to come from one
2106of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2107both known to have a clear low bit, then ``%A`` would have to have a
2108cleared low bit. However, in the ``%C`` example, the optimizer is
2109allowed to assume that the '``undef``' operand could be the same as
2110``%Y``, allowing the whole '``select``' to be eliminated.
2111
2112.. code-block:: llvm
2113
2114 %A = xor undef, undef
2115
2116 %B = undef
2117 %C = xor %B, %B
2118
2119 %D = undef
2120 %E = icmp lt %D, 4
2121 %F = icmp gte %D, 4
2122
2123 Safe:
2124 %A = undef
2125 %B = undef
2126 %C = undef
2127 %D = undef
2128 %E = undef
2129 %F = undef
2130
2131This example points out that two '``undef``' operands are not
2132necessarily the same. This can be surprising to people (and also matches
2133C semantics) where they assume that "``X^X``" is always zero, even if
2134``X`` is undefined. This isn't true for a number of reasons, but the
2135short answer is that an '``undef``' "variable" can arbitrarily change
2136its value over its "live range". This is true because the variable
2137doesn't actually *have a live range*. Instead, the value is logically
2138read from arbitrary registers that happen to be around when needed, so
2139the value is not necessarily consistent over time. In fact, ``%A`` and
2140``%C`` need to have the same semantics or the core LLVM "replace all
2141uses with" concept would not hold.
2142
2143.. code-block:: llvm
2144
2145 %A = fdiv undef, %X
2146 %B = fdiv %X, undef
2147 Safe:
2148 %A = undef
2149 b: unreachable
2150
2151These examples show the crucial difference between an *undefined value*
2152and *undefined behavior*. An undefined value (like '``undef``') is
2153allowed to have an arbitrary bit-pattern. This means that the ``%A``
2154operation can be constant folded to '``undef``', because the '``undef``'
2155could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2156However, in the second example, we can make a more aggressive
2157assumption: because the ``undef`` is allowed to be an arbitrary value,
2158we are allowed to assume that it could be zero. Since a divide by zero
2159has *undefined behavior*, we are allowed to assume that the operation
2160does not execute at all. This allows us to delete the divide and all
2161code after it. Because the undefined operation "can't happen", the
2162optimizer can assume that it occurs in dead code.
2163
2164.. code-block:: llvm
2165
2166 a: store undef -> %X
2167 b: store %X -> undef
2168 Safe:
2169 a: <deleted>
2170 b: unreachable
2171
2172These examples reiterate the ``fdiv`` example: a store *of* an undefined
2173value can be assumed to not have any effect; we can assume that the
2174value is overwritten with bits that happen to match what was already
2175there. However, a store *to* an undefined location could clobber
2176arbitrary memory, therefore, it has undefined behavior.
2177
2178.. _poisonvalues:
2179
2180Poison Values
2181-------------
2182
2183Poison values are similar to :ref:`undef values <undefvalues>`, however
2184they also represent the fact that an instruction or constant expression
2185which cannot evoke side effects has nevertheless detected a condition
2186which results in undefined behavior.
2187
2188There is currently no way of representing a poison value in the IR; they
2189only exist when produced by operations such as :ref:`add <i_add>` with
2190the ``nsw`` flag.
2191
2192Poison value behavior is defined in terms of value *dependence*:
2193
2194- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2195- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2196 their dynamic predecessor basic block.
2197- Function arguments depend on the corresponding actual argument values
2198 in the dynamic callers of their functions.
2199- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2200 instructions that dynamically transfer control back to them.
2201- :ref:`Invoke <i_invoke>` instructions depend on the
2202 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2203 call instructions that dynamically transfer control back to them.
2204- Non-volatile loads and stores depend on the most recent stores to all
2205 of the referenced memory addresses, following the order in the IR
2206 (including loads and stores implied by intrinsics such as
2207 :ref:`@llvm.memcpy <int_memcpy>`.)
2208- An instruction with externally visible side effects depends on the
2209 most recent preceding instruction with externally visible side
2210 effects, following the order in the IR. (This includes :ref:`volatile
2211 operations <volatile>`.)
2212- An instruction *control-depends* on a :ref:`terminator
2213 instruction <terminators>` if the terminator instruction has
2214 multiple successors and the instruction is always executed when
2215 control transfers to one of the successors, and may not be executed
2216 when control is transferred to another.
2217- Additionally, an instruction also *control-depends* on a terminator
2218 instruction if the set of instructions it otherwise depends on would
2219 be different if the terminator had transferred control to a different
2220 successor.
2221- Dependence is transitive.
2222
2223Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2224with the additional affect that any instruction which has a *dependence*
2225on a poison value has undefined behavior.
2226
2227Here are some examples:
2228
2229.. code-block:: llvm
2230
2231 entry:
2232 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2233 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2234 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2235 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2236
2237 store i32 %poison, i32* @g ; Poison value stored to memory.
2238 %poison2 = load i32* @g ; Poison value loaded back from memory.
2239
2240 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2241
2242 %narrowaddr = bitcast i32* @g to i16*
2243 %wideaddr = bitcast i32* @g to i64*
2244 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2245 %poison4 = load i64* %wideaddr ; Returns a poison value.
2246
2247 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2248 br i1 %cmp, label %true, label %end ; Branch to either destination.
2249
2250 true:
2251 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2252 ; it has undefined behavior.
2253 br label %end
2254
2255 end:
2256 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2257 ; Both edges into this PHI are
2258 ; control-dependent on %cmp, so this
2259 ; always results in a poison value.
2260
2261 store volatile i32 0, i32* @g ; This would depend on the store in %true
2262 ; if %cmp is true, or the store in %entry
2263 ; otherwise, so this is undefined behavior.
2264
2265 br i1 %cmp, label %second_true, label %second_end
2266 ; The same branch again, but this time the
2267 ; true block doesn't have side effects.
2268
2269 second_true:
2270 ; No side effects!
2271 ret void
2272
2273 second_end:
2274 store volatile i32 0, i32* @g ; This time, the instruction always depends
2275 ; on the store in %end. Also, it is
2276 ; control-equivalent to %end, so this is
2277 ; well-defined (ignoring earlier undefined
2278 ; behavior in this example).
2279
2280.. _blockaddress:
2281
2282Addresses of Basic Blocks
2283-------------------------
2284
2285``blockaddress(@function, %block)``
2286
2287The '``blockaddress``' constant computes the address of the specified
2288basic block in the specified function, and always has an ``i8*`` type.
2289Taking the address of the entry block is illegal.
2290
2291This value only has defined behavior when used as an operand to the
2292':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2293against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002294undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002295no label is equal to the null pointer. This may be passed around as an
2296opaque pointer sized value as long as the bits are not inspected. This
2297allows ``ptrtoint`` and arithmetic to be performed on these values so
2298long as the original value is reconstituted before the ``indirectbr``
2299instruction.
2300
2301Finally, some targets may provide defined semantics when using the value
2302as the operand to an inline assembly, but that is target specific.
2303
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002304.. _constantexprs:
2305
Sean Silvab084af42012-12-07 10:36:55 +00002306Constant Expressions
2307--------------------
2308
2309Constant expressions are used to allow expressions involving other
2310constants to be used as constants. Constant expressions may be of any
2311:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2312that does not have side effects (e.g. load and call are not supported).
2313The following is the syntax for constant expressions:
2314
2315``trunc (CST to TYPE)``
2316 Truncate a constant to another type. The bit size of CST must be
2317 larger than the bit size of TYPE. Both types must be integers.
2318``zext (CST to TYPE)``
2319 Zero extend a constant to another type. The bit size of CST must be
2320 smaller than the bit size of TYPE. Both types must be integers.
2321``sext (CST to TYPE)``
2322 Sign extend a constant to another type. The bit size of CST must be
2323 smaller than the bit size of TYPE. Both types must be integers.
2324``fptrunc (CST to TYPE)``
2325 Truncate a floating point constant to another floating point type.
2326 The size of CST must be larger than the size of TYPE. Both types
2327 must be floating point.
2328``fpext (CST to TYPE)``
2329 Floating point extend a constant to another type. The size of CST
2330 must be smaller or equal to the size of TYPE. Both types must be
2331 floating point.
2332``fptoui (CST to TYPE)``
2333 Convert a floating point constant to the corresponding unsigned
2334 integer constant. TYPE must be a scalar or vector integer type. CST
2335 must be of scalar or vector floating point type. Both CST and TYPE
2336 must be scalars, or vectors of the same number of elements. If the
2337 value won't fit in the integer type, the results are undefined.
2338``fptosi (CST to TYPE)``
2339 Convert a floating point constant to the corresponding signed
2340 integer constant. TYPE must be a scalar or vector integer type. CST
2341 must be of scalar or vector floating point type. Both CST and TYPE
2342 must be scalars, or vectors of the same number of elements. If the
2343 value won't fit in the integer type, the results are undefined.
2344``uitofp (CST to TYPE)``
2345 Convert an unsigned integer constant to the corresponding floating
2346 point constant. TYPE must be a scalar or vector floating point type.
2347 CST must be of scalar or vector integer type. Both CST and TYPE must
2348 be scalars, or vectors of the same number of elements. If the value
2349 won't fit in the floating point type, the results are undefined.
2350``sitofp (CST to TYPE)``
2351 Convert a signed integer constant to the corresponding floating
2352 point constant. TYPE must be a scalar or vector floating point type.
2353 CST must be of scalar or vector integer type. Both CST and TYPE must
2354 be scalars, or vectors of the same number of elements. If the value
2355 won't fit in the floating point type, the results are undefined.
2356``ptrtoint (CST to TYPE)``
2357 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002358 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002359 pointer type. The ``CST`` value is zero extended, truncated, or
2360 unchanged to make it fit in ``TYPE``.
2361``inttoptr (CST to TYPE)``
2362 Convert an integer constant to a pointer constant. TYPE must be a
2363 pointer type. CST must be of integer type. The CST value is zero
2364 extended, truncated, or unchanged to make it fit in a pointer size.
2365 This one is *really* dangerous!
2366``bitcast (CST to TYPE)``
2367 Convert a constant, CST, to another TYPE. The constraints of the
2368 operands are the same as those for the :ref:`bitcast
2369 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002370``addrspacecast (CST to TYPE)``
2371 Convert a constant pointer or constant vector of pointer, CST, to another
2372 TYPE in a different address space. The constraints of the operands are the
2373 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002374``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2375 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2376 constants. As with the :ref:`getelementptr <i_getelementptr>`
2377 instruction, the index list may have zero or more indexes, which are
2378 required to make sense for the type of "CSTPTR".
2379``select (COND, VAL1, VAL2)``
2380 Perform the :ref:`select operation <i_select>` on constants.
2381``icmp COND (VAL1, VAL2)``
2382 Performs the :ref:`icmp operation <i_icmp>` on constants.
2383``fcmp COND (VAL1, VAL2)``
2384 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2385``extractelement (VAL, IDX)``
2386 Perform the :ref:`extractelement operation <i_extractelement>` on
2387 constants.
2388``insertelement (VAL, ELT, IDX)``
2389 Perform the :ref:`insertelement operation <i_insertelement>` on
2390 constants.
2391``shufflevector (VEC1, VEC2, IDXMASK)``
2392 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2393 constants.
2394``extractvalue (VAL, IDX0, IDX1, ...)``
2395 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2396 constants. The index list is interpreted in a similar manner as
2397 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2398 least one index value must be specified.
2399``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2400 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2401 The index list is interpreted in a similar manner as indices in a
2402 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2403 value must be specified.
2404``OPCODE (LHS, RHS)``
2405 Perform the specified operation of the LHS and RHS constants. OPCODE
2406 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2407 binary <bitwiseops>` operations. The constraints on operands are
2408 the same as those for the corresponding instruction (e.g. no bitwise
2409 operations on floating point values are allowed).
2410
2411Other Values
2412============
2413
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002414.. _inlineasmexprs:
2415
Sean Silvab084af42012-12-07 10:36:55 +00002416Inline Assembler Expressions
2417----------------------------
2418
2419LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2420Inline Assembly <moduleasm>`) through the use of a special value. This
2421value represents the inline assembler as a string (containing the
2422instructions to emit), a list of operand constraints (stored as a
2423string), a flag that indicates whether or not the inline asm expression
2424has side effects, and a flag indicating whether the function containing
2425the asm needs to align its stack conservatively. An example inline
2426assembler expression is:
2427
2428.. code-block:: llvm
2429
2430 i32 (i32) asm "bswap $0", "=r,r"
2431
2432Inline assembler expressions may **only** be used as the callee operand
2433of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2434Thus, typically we have:
2435
2436.. code-block:: llvm
2437
2438 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2439
2440Inline asms with side effects not visible in the constraint list must be
2441marked as having side effects. This is done through the use of the
2442'``sideeffect``' keyword, like so:
2443
2444.. code-block:: llvm
2445
2446 call void asm sideeffect "eieio", ""()
2447
2448In some cases inline asms will contain code that will not work unless
2449the stack is aligned in some way, such as calls or SSE instructions on
2450x86, yet will not contain code that does that alignment within the asm.
2451The compiler should make conservative assumptions about what the asm
2452might contain and should generate its usual stack alignment code in the
2453prologue if the '``alignstack``' keyword is present:
2454
2455.. code-block:: llvm
2456
2457 call void asm alignstack "eieio", ""()
2458
2459Inline asms also support using non-standard assembly dialects. The
2460assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2461the inline asm is using the Intel dialect. Currently, ATT and Intel are
2462the only supported dialects. An example is:
2463
2464.. code-block:: llvm
2465
2466 call void asm inteldialect "eieio", ""()
2467
2468If multiple keywords appear the '``sideeffect``' keyword must come
2469first, the '``alignstack``' keyword second and the '``inteldialect``'
2470keyword last.
2471
2472Inline Asm Metadata
2473^^^^^^^^^^^^^^^^^^^
2474
2475The call instructions that wrap inline asm nodes may have a
2476"``!srcloc``" MDNode attached to it that contains a list of constant
2477integers. If present, the code generator will use the integer as the
2478location cookie value when report errors through the ``LLVMContext``
2479error reporting mechanisms. This allows a front-end to correlate backend
2480errors that occur with inline asm back to the source code that produced
2481it. For example:
2482
2483.. code-block:: llvm
2484
2485 call void asm sideeffect "something bad", ""(), !srcloc !42
2486 ...
2487 !42 = !{ i32 1234567 }
2488
2489It is up to the front-end to make sense of the magic numbers it places
2490in the IR. If the MDNode contains multiple constants, the code generator
2491will use the one that corresponds to the line of the asm that the error
2492occurs on.
2493
2494.. _metadata:
2495
2496Metadata Nodes and Metadata Strings
2497-----------------------------------
2498
2499LLVM IR allows metadata to be attached to instructions in the program
2500that can convey extra information about the code to the optimizers and
2501code generator. One example application of metadata is source-level
2502debug information. There are two metadata primitives: strings and nodes.
2503All metadata has the ``metadata`` type and is identified in syntax by a
2504preceding exclamation point ('``!``').
2505
2506A metadata string is a string surrounded by double quotes. It can
2507contain any character by escaping non-printable characters with
2508"``\xx``" where "``xx``" is the two digit hex code. For example:
2509"``!"test\00"``".
2510
2511Metadata nodes are represented with notation similar to structure
2512constants (a comma separated list of elements, surrounded by braces and
2513preceded by an exclamation point). Metadata nodes can have any values as
2514their operand. For example:
2515
2516.. code-block:: llvm
2517
2518 !{ metadata !"test\00", i32 10}
2519
2520A :ref:`named metadata <namedmetadatastructure>` is a collection of
2521metadata nodes, which can be looked up in the module symbol table. For
2522example:
2523
2524.. code-block:: llvm
2525
2526 !foo = metadata !{!4, !3}
2527
2528Metadata can be used as function arguments. Here ``llvm.dbg.value``
2529function is using two metadata arguments:
2530
2531.. code-block:: llvm
2532
2533 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2534
2535Metadata can be attached with an instruction. Here metadata ``!21`` is
2536attached to the ``add`` instruction using the ``!dbg`` identifier:
2537
2538.. code-block:: llvm
2539
2540 %indvar.next = add i64 %indvar, 1, !dbg !21
2541
2542More information about specific metadata nodes recognized by the
2543optimizers and code generator is found below.
2544
2545'``tbaa``' Metadata
2546^^^^^^^^^^^^^^^^^^^
2547
2548In LLVM IR, memory does not have types, so LLVM's own type system is not
2549suitable for doing TBAA. Instead, metadata is added to the IR to
2550describe a type system of a higher level language. This can be used to
2551implement typical C/C++ TBAA, but it can also be used to implement
2552custom alias analysis behavior for other languages.
2553
2554The current metadata format is very simple. TBAA metadata nodes have up
2555to three fields, e.g.:
2556
2557.. code-block:: llvm
2558
2559 !0 = metadata !{ metadata !"an example type tree" }
2560 !1 = metadata !{ metadata !"int", metadata !0 }
2561 !2 = metadata !{ metadata !"float", metadata !0 }
2562 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2563
2564The first field is an identity field. It can be any value, usually a
2565metadata string, which uniquely identifies the type. The most important
2566name in the tree is the name of the root node. Two trees with different
2567root node names are entirely disjoint, even if they have leaves with
2568common names.
2569
2570The second field identifies the type's parent node in the tree, or is
2571null or omitted for a root node. A type is considered to alias all of
2572its descendants and all of its ancestors in the tree. Also, a type is
2573considered to alias all types in other trees, so that bitcode produced
2574from multiple front-ends is handled conservatively.
2575
2576If the third field is present, it's an integer which if equal to 1
2577indicates that the type is "constant" (meaning
2578``pointsToConstantMemory`` should return true; see `other useful
2579AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2580
2581'``tbaa.struct``' Metadata
2582^^^^^^^^^^^^^^^^^^^^^^^^^^
2583
2584The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2585aggregate assignment operations in C and similar languages, however it
2586is defined to copy a contiguous region of memory, which is more than
2587strictly necessary for aggregate types which contain holes due to
2588padding. Also, it doesn't contain any TBAA information about the fields
2589of the aggregate.
2590
2591``!tbaa.struct`` metadata can describe which memory subregions in a
2592memcpy are padding and what the TBAA tags of the struct are.
2593
2594The current metadata format is very simple. ``!tbaa.struct`` metadata
2595nodes are a list of operands which are in conceptual groups of three.
2596For each group of three, the first operand gives the byte offset of a
2597field in bytes, the second gives its size in bytes, and the third gives
2598its tbaa tag. e.g.:
2599
2600.. code-block:: llvm
2601
2602 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2603
2604This describes a struct with two fields. The first is at offset 0 bytes
2605with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2606and has size 4 bytes and has tbaa tag !2.
2607
2608Note that the fields need not be contiguous. In this example, there is a
26094 byte gap between the two fields. This gap represents padding which
2610does not carry useful data and need not be preserved.
2611
2612'``fpmath``' Metadata
2613^^^^^^^^^^^^^^^^^^^^^
2614
2615``fpmath`` metadata may be attached to any instruction of floating point
2616type. It can be used to express the maximum acceptable error in the
2617result of that instruction, in ULPs, thus potentially allowing the
2618compiler to use a more efficient but less accurate method of computing
2619it. ULP is defined as follows:
2620
2621 If ``x`` is a real number that lies between two finite consecutive
2622 floating-point numbers ``a`` and ``b``, without being equal to one
2623 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2624 distance between the two non-equal finite floating-point numbers
2625 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2626
2627The metadata node shall consist of a single positive floating point
2628number representing the maximum relative error, for example:
2629
2630.. code-block:: llvm
2631
2632 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2633
2634'``range``' Metadata
2635^^^^^^^^^^^^^^^^^^^^
2636
2637``range`` metadata may be attached only to loads of integer types. It
2638expresses the possible ranges the loaded value is in. The ranges are
2639represented with a flattened list of integers. The loaded value is known
2640to be in the union of the ranges defined by each consecutive pair. Each
2641pair has the following properties:
2642
2643- The type must match the type loaded by the instruction.
2644- The pair ``a,b`` represents the range ``[a,b)``.
2645- Both ``a`` and ``b`` are constants.
2646- The range is allowed to wrap.
2647- The range should not represent the full or empty set. That is,
2648 ``a!=b``.
2649
2650In addition, the pairs must be in signed order of the lower bound and
2651they must be non-contiguous.
2652
2653Examples:
2654
2655.. code-block:: llvm
2656
2657 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2658 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2659 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2660 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2661 ...
2662 !0 = metadata !{ i8 0, i8 2 }
2663 !1 = metadata !{ i8 255, i8 2 }
2664 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2665 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2666
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002667'``llvm.loop``'
2668^^^^^^^^^^^^^^^
2669
2670It is sometimes useful to attach information to loop constructs. Currently,
2671loop metadata is implemented as metadata attached to the branch instruction
2672in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00002673guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00002674specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002675
2676The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00002677itself to avoid merging it with any other identifier metadata, e.g.,
2678during module linkage or function inlining. That is, each loop should refer
2679to their own identification metadata even if they reside in separate functions.
2680The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002681constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002682
2683.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00002684
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002685 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00002686 !1 = metadata !{ metadata !1 }
2687
Paul Redmond5fdf8362013-05-28 20:00:34 +00002688The loop identifier metadata can be used to specify additional per-loop
2689metadata. Any operands after the first operand can be treated as user-defined
2690metadata. For example the ``llvm.vectorizer.unroll`` metadata is understood
2691by the loop vectorizer to indicate how many times to unroll the loop:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002692
Paul Redmond5fdf8362013-05-28 20:00:34 +00002693.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002694
Paul Redmond5fdf8362013-05-28 20:00:34 +00002695 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
2696 ...
2697 !0 = metadata !{ metadata !0, metadata !1 }
2698 !1 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 2 }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002699
2700'``llvm.mem``'
2701^^^^^^^^^^^^^^^
2702
2703Metadata types used to annotate memory accesses with information helpful
2704for optimizations are prefixed with ``llvm.mem``.
2705
2706'``llvm.mem.parallel_loop_access``' Metadata
2707^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2708
2709For a loop to be parallel, in addition to using
Paul Redmond5fdf8362013-05-28 20:00:34 +00002710the ``llvm.loop`` metadata to mark the loop latch branch instruction,
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002711also all of the memory accessing instructions in the loop body need to be
2712marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2713is at least one memory accessing instruction not marked with the metadata,
Paul Redmond5fdf8362013-05-28 20:00:34 +00002714the loop must be considered a sequential loop. This causes parallel loops to be
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002715converted to sequential loops due to optimization passes that are unaware of
2716the parallel semantics and that insert new memory instructions to the loop
2717body.
2718
2719Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00002720both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002721metadata types that refer to the same loop identifier metadata.
2722
2723.. code-block:: llvm
2724
2725 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002726 ...
2727 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2728 ...
2729 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2730 ...
2731 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002732
2733 for.end:
2734 ...
2735 !0 = metadata !{ metadata !0 }
2736
2737It is also possible to have nested parallel loops. In that case the
2738memory accesses refer to a list of loop identifier metadata nodes instead of
2739the loop identifier metadata node directly:
2740
2741.. code-block:: llvm
2742
2743 outer.for.body:
2744 ...
2745
2746 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002747 ...
2748 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2749 ...
2750 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2751 ...
2752 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002753
2754 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00002755 ...
2756 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2757 ...
2758 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2759 ...
2760 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002761
2762 outer.for.end: ; preds = %for.body
2763 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00002764 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
2765 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
2766 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002767
Paul Redmond5fdf8362013-05-28 20:00:34 +00002768'``llvm.vectorizer``'
2769^^^^^^^^^^^^^^^^^^^^^
2770
2771Metadata prefixed with ``llvm.vectorizer`` is used to control per-loop
2772vectorization parameters such as vectorization factor and unroll factor.
2773
2774``llvm.vectorizer`` metadata should be used in conjunction with ``llvm.loop``
2775loop identification metadata.
2776
2777'``llvm.vectorizer.unroll``' Metadata
2778^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2779
2780This metadata instructs the loop vectorizer to unroll the specified
2781loop exactly ``N`` times.
2782
2783The first operand is the string ``llvm.vectorizer.unroll`` and the second
2784operand is an integer specifying the unroll factor. For example:
2785
2786.. code-block:: llvm
2787
2788 !0 = metadata !{ metadata !"llvm.vectorizer.unroll", i32 4 }
2789
2790Note that setting ``llvm.vectorizer.unroll`` to 1 disables unrolling of the
2791loop.
2792
2793If ``llvm.vectorizer.unroll`` is set to 0 then the amount of unrolling will be
2794determined automatically.
2795
2796'``llvm.vectorizer.width``' Metadata
2797^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2798
Paul Redmondeccbb322013-05-30 17:22:46 +00002799This metadata sets the target width of the vectorizer to ``N``. Without
2800this metadata, the vectorizer will choose a width automatically.
2801Regardless of this metadata, the vectorizer will only vectorize loops if
2802it believes it is valid to do so.
Paul Redmond5fdf8362013-05-28 20:00:34 +00002803
2804The first operand is the string ``llvm.vectorizer.width`` and the second
2805operand is an integer specifying the width. For example:
2806
2807.. code-block:: llvm
2808
2809 !0 = metadata !{ metadata !"llvm.vectorizer.width", i32 4 }
2810
2811Note that setting ``llvm.vectorizer.width`` to 1 disables vectorization of the
2812loop.
2813
2814If ``llvm.vectorizer.width`` is set to 0 then the width will be determined
2815automatically.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00002816
Sean Silvab084af42012-12-07 10:36:55 +00002817Module Flags Metadata
2818=====================
2819
2820Information about the module as a whole is difficult to convey to LLVM's
2821subsystems. The LLVM IR isn't sufficient to transmit this information.
2822The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002823this. These flags are in the form of key / value pairs --- much like a
2824dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00002825look it up.
2826
2827The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2828Each triplet has the following form:
2829
2830- The first element is a *behavior* flag, which specifies the behavior
2831 when two (or more) modules are merged together, and it encounters two
2832 (or more) metadata with the same ID. The supported behaviors are
2833 described below.
2834- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002835 metadata. Each module may only have one flag entry for each unique ID (not
2836 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00002837- The third element is the value of the flag.
2838
2839When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002840``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2841each unique metadata ID string, there will be exactly one entry in the merged
2842modules ``llvm.module.flags`` metadata table, and the value for that entry will
2843be determined by the merge behavior flag, as described below. The only exception
2844is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00002845
2846The following behaviors are supported:
2847
2848.. list-table::
2849 :header-rows: 1
2850 :widths: 10 90
2851
2852 * - Value
2853 - Behavior
2854
2855 * - 1
2856 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002857 Emits an error if two values disagree, otherwise the resulting value
2858 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00002859
2860 * - 2
2861 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002862 Emits a warning if two values disagree. The result value will be the
2863 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00002864
2865 * - 3
2866 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002867 Adds a requirement that another module flag be present and have a
2868 specified value after linking is performed. The value must be a
2869 metadata pair, where the first element of the pair is the ID of the
2870 module flag to be restricted, and the second element of the pair is
2871 the value the module flag should be restricted to. This behavior can
2872 be used to restrict the allowable results (via triggering of an
2873 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002874
2875 * - 4
2876 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002877 Uses the specified value, regardless of the behavior or value of the
2878 other module. If both modules specify **Override**, but the values
2879 differ, an error will be emitted.
2880
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00002881 * - 5
2882 - **Append**
2883 Appends the two values, which are required to be metadata nodes.
2884
2885 * - 6
2886 - **AppendUnique**
2887 Appends the two values, which are required to be metadata
2888 nodes. However, duplicate entries in the second list are dropped
2889 during the append operation.
2890
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002891It is an error for a particular unique flag ID to have multiple behaviors,
2892except in the case of **Require** (which adds restrictions on another metadata
2893value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00002894
2895An example of module flags:
2896
2897.. code-block:: llvm
2898
2899 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2900 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2901 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2902 !3 = metadata !{ i32 3, metadata !"qux",
2903 metadata !{
2904 metadata !"foo", i32 1
2905 }
2906 }
2907 !llvm.module.flags = !{ !0, !1, !2, !3 }
2908
2909- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2910 if two or more ``!"foo"`` flags are seen is to emit an error if their
2911 values are not equal.
2912
2913- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2914 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002915 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00002916
2917- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2918 behavior if two or more ``!"qux"`` flags are seen is to emit a
2919 warning if their values are not equal.
2920
2921- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2922
2923 ::
2924
2925 metadata !{ metadata !"foo", i32 1 }
2926
Daniel Dunbar25c4b572013-01-15 01:22:53 +00002927 The behavior is to emit an error if the ``llvm.module.flags`` does not
2928 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2929 performed.
Sean Silvab084af42012-12-07 10:36:55 +00002930
2931Objective-C Garbage Collection Module Flags Metadata
2932----------------------------------------------------
2933
2934On the Mach-O platform, Objective-C stores metadata about garbage
2935collection in a special section called "image info". The metadata
2936consists of a version number and a bitmask specifying what types of
2937garbage collection are supported (if any) by the file. If two or more
2938modules are linked together their garbage collection metadata needs to
2939be merged rather than appended together.
2940
2941The Objective-C garbage collection module flags metadata consists of the
2942following key-value pairs:
2943
2944.. list-table::
2945 :header-rows: 1
2946 :widths: 30 70
2947
2948 * - Key
2949 - Value
2950
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002951 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002952 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00002953
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002954 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002955 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00002956 always 0.
2957
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002958 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002959 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00002960 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2961 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2962 Objective-C ABI version 2.
2963
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002964 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002965 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00002966 not. Valid values are 0, for no garbage collection, and 2, for garbage
2967 collection supported.
2968
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002969 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002970 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00002971 If present, its value must be 6. This flag requires that the
2972 ``Objective-C Garbage Collection`` flag have the value 2.
2973
2974Some important flag interactions:
2975
2976- If a module with ``Objective-C Garbage Collection`` set to 0 is
2977 merged with a module with ``Objective-C Garbage Collection`` set to
2978 2, then the resulting module has the
2979 ``Objective-C Garbage Collection`` flag set to 0.
2980- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2981 merged with a module with ``Objective-C GC Only`` set to 6.
2982
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002983Automatic Linker Flags Module Flags Metadata
2984--------------------------------------------
2985
2986Some targets support embedding flags to the linker inside individual object
2987files. Typically this is used in conjunction with language extensions which
2988allow source files to explicitly declare the libraries they depend on, and have
2989these automatically be transmitted to the linker via object files.
2990
2991These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002992using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00002993to be ``AppendUnique``, and the value for the key is expected to be a metadata
2994node which should be a list of other metadata nodes, each of which should be a
2995list of metadata strings defining linker options.
2996
2997For example, the following metadata section specifies two separate sets of
2998linker options, presumably to link against ``libz`` and the ``Cocoa``
2999framework::
3000
Michael Liaoa7699082013-03-06 18:24:34 +00003001 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003002 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003003 metadata !{ metadata !"-lz" },
3004 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003005 !llvm.module.flags = !{ !0 }
3006
3007The metadata encoding as lists of lists of options, as opposed to a collapsed
3008list of options, is chosen so that the IR encoding can use multiple option
3009strings to specify e.g., a single library, while still having that specifier be
3010preserved as an atomic element that can be recognized by a target specific
3011assembly writer or object file emitter.
3012
3013Each individual option is required to be either a valid option for the target's
3014linker, or an option that is reserved by the target specific assembly writer or
3015object file emitter. No other aspect of these options is defined by the IR.
3016
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003017.. _intrinsicglobalvariables:
3018
Sean Silvab084af42012-12-07 10:36:55 +00003019Intrinsic Global Variables
3020==========================
3021
3022LLVM has a number of "magic" global variables that contain data that
3023affect code generation or other IR semantics. These are documented here.
3024All globals of this sort should have a section specified as
3025"``llvm.metadata``". This section and all globals that start with
3026"``llvm.``" are reserved for use by LLVM.
3027
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003028.. _gv_llvmused:
3029
Sean Silvab084af42012-12-07 10:36:55 +00003030The '``llvm.used``' Global Variable
3031-----------------------------------
3032
Rafael Espindola74f2e462013-04-22 14:58:02 +00003033The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003034:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003035pointers to named global variables, functions and aliases which may optionally
3036have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003037use of it is:
3038
3039.. code-block:: llvm
3040
3041 @X = global i8 4
3042 @Y = global i32 123
3043
3044 @llvm.used = appending global [2 x i8*] [
3045 i8* @X,
3046 i8* bitcast (i32* @Y to i8*)
3047 ], section "llvm.metadata"
3048
Rafael Espindola74f2e462013-04-22 14:58:02 +00003049If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3050and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003051symbol that it cannot see (which is why they have to be named). For example, if
3052a variable has internal linkage and no references other than that from the
3053``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3054references from inline asms and other things the compiler cannot "see", and
3055corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003056
3057On some targets, the code generator must emit a directive to the
3058assembler or object file to prevent the assembler and linker from
3059molesting the symbol.
3060
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003061.. _gv_llvmcompilerused:
3062
Sean Silvab084af42012-12-07 10:36:55 +00003063The '``llvm.compiler.used``' Global Variable
3064--------------------------------------------
3065
3066The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3067directive, except that it only prevents the compiler from touching the
3068symbol. On targets that support it, this allows an intelligent linker to
3069optimize references to the symbol without being impeded as it would be
3070by ``@llvm.used``.
3071
3072This is a rare construct that should only be used in rare circumstances,
3073and should not be exposed to source languages.
3074
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003075.. _gv_llvmglobalctors:
3076
Sean Silvab084af42012-12-07 10:36:55 +00003077The '``llvm.global_ctors``' Global Variable
3078-------------------------------------------
3079
3080.. code-block:: llvm
3081
3082 %0 = type { i32, void ()* }
3083 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
3084
3085The ``@llvm.global_ctors`` array contains a list of constructor
3086functions and associated priorities. The functions referenced by this
3087array will be called in ascending order of priority (i.e. lowest first)
3088when the module is loaded. The order of functions with the same priority
3089is not defined.
3090
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003091.. _llvmglobaldtors:
3092
Sean Silvab084af42012-12-07 10:36:55 +00003093The '``llvm.global_dtors``' Global Variable
3094-------------------------------------------
3095
3096.. code-block:: llvm
3097
3098 %0 = type { i32, void ()* }
3099 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
3100
3101The ``@llvm.global_dtors`` array contains a list of destructor functions
3102and associated priorities. The functions referenced by this array will
3103be called in descending order of priority (i.e. highest first) when the
3104module is loaded. The order of functions with the same priority is not
3105defined.
3106
3107Instruction Reference
3108=====================
3109
3110The LLVM instruction set consists of several different classifications
3111of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3112instructions <binaryops>`, :ref:`bitwise binary
3113instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3114:ref:`other instructions <otherops>`.
3115
3116.. _terminators:
3117
3118Terminator Instructions
3119-----------------------
3120
3121As mentioned :ref:`previously <functionstructure>`, every basic block in a
3122program ends with a "Terminator" instruction, which indicates which
3123block should be executed after the current block is finished. These
3124terminator instructions typically yield a '``void``' value: they produce
3125control flow, not values (the one exception being the
3126':ref:`invoke <i_invoke>`' instruction).
3127
3128The terminator instructions are: ':ref:`ret <i_ret>`',
3129':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3130':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3131':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3132
3133.. _i_ret:
3134
3135'``ret``' Instruction
3136^^^^^^^^^^^^^^^^^^^^^
3137
3138Syntax:
3139"""""""
3140
3141::
3142
3143 ret <type> <value> ; Return a value from a non-void function
3144 ret void ; Return from void function
3145
3146Overview:
3147"""""""""
3148
3149The '``ret``' instruction is used to return control flow (and optionally
3150a value) from a function back to the caller.
3151
3152There are two forms of the '``ret``' instruction: one that returns a
3153value and then causes control flow, and one that just causes control
3154flow to occur.
3155
3156Arguments:
3157""""""""""
3158
3159The '``ret``' instruction optionally accepts a single argument, the
3160return value. The type of the return value must be a ':ref:`first
3161class <t_firstclass>`' type.
3162
3163A function is not :ref:`well formed <wellformed>` if it it has a non-void
3164return type and contains a '``ret``' instruction with no return value or
3165a return value with a type that does not match its type, or if it has a
3166void return type and contains a '``ret``' instruction with a return
3167value.
3168
3169Semantics:
3170""""""""""
3171
3172When the '``ret``' instruction is executed, control flow returns back to
3173the calling function's context. If the caller is a
3174":ref:`call <i_call>`" instruction, execution continues at the
3175instruction after the call. If the caller was an
3176":ref:`invoke <i_invoke>`" instruction, execution continues at the
3177beginning of the "normal" destination block. If the instruction returns
3178a value, that value shall set the call or invoke instruction's return
3179value.
3180
3181Example:
3182""""""""
3183
3184.. code-block:: llvm
3185
3186 ret i32 5 ; Return an integer value of 5
3187 ret void ; Return from a void function
3188 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3189
3190.. _i_br:
3191
3192'``br``' Instruction
3193^^^^^^^^^^^^^^^^^^^^
3194
3195Syntax:
3196"""""""
3197
3198::
3199
3200 br i1 <cond>, label <iftrue>, label <iffalse>
3201 br label <dest> ; Unconditional branch
3202
3203Overview:
3204"""""""""
3205
3206The '``br``' instruction is used to cause control flow to transfer to a
3207different basic block in the current function. There are two forms of
3208this instruction, corresponding to a conditional branch and an
3209unconditional branch.
3210
3211Arguments:
3212""""""""""
3213
3214The conditional branch form of the '``br``' instruction takes a single
3215'``i1``' value and two '``label``' values. The unconditional form of the
3216'``br``' instruction takes a single '``label``' value as a target.
3217
3218Semantics:
3219""""""""""
3220
3221Upon execution of a conditional '``br``' instruction, the '``i1``'
3222argument is evaluated. If the value is ``true``, control flows to the
3223'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3224to the '``iffalse``' ``label`` argument.
3225
3226Example:
3227""""""""
3228
3229.. code-block:: llvm
3230
3231 Test:
3232 %cond = icmp eq i32 %a, %b
3233 br i1 %cond, label %IfEqual, label %IfUnequal
3234 IfEqual:
3235 ret i32 1
3236 IfUnequal:
3237 ret i32 0
3238
3239.. _i_switch:
3240
3241'``switch``' Instruction
3242^^^^^^^^^^^^^^^^^^^^^^^^
3243
3244Syntax:
3245"""""""
3246
3247::
3248
3249 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3250
3251Overview:
3252"""""""""
3253
3254The '``switch``' instruction is used to transfer control flow to one of
3255several different places. It is a generalization of the '``br``'
3256instruction, allowing a branch to occur to one of many possible
3257destinations.
3258
3259Arguments:
3260""""""""""
3261
3262The '``switch``' instruction uses three parameters: an integer
3263comparison value '``value``', a default '``label``' destination, and an
3264array of pairs of comparison value constants and '``label``'s. The table
3265is not allowed to contain duplicate constant entries.
3266
3267Semantics:
3268""""""""""
3269
3270The ``switch`` instruction specifies a table of values and destinations.
3271When the '``switch``' instruction is executed, this table is searched
3272for the given value. If the value is found, control flow is transferred
3273to the corresponding destination; otherwise, control flow is transferred
3274to the default destination.
3275
3276Implementation:
3277"""""""""""""""
3278
3279Depending on properties of the target machine and the particular
3280``switch`` instruction, this instruction may be code generated in
3281different ways. For example, it could be generated as a series of
3282chained conditional branches or with a lookup table.
3283
3284Example:
3285""""""""
3286
3287.. code-block:: llvm
3288
3289 ; Emulate a conditional br instruction
3290 %Val = zext i1 %value to i32
3291 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3292
3293 ; Emulate an unconditional br instruction
3294 switch i32 0, label %dest [ ]
3295
3296 ; Implement a jump table:
3297 switch i32 %val, label %otherwise [ i32 0, label %onzero
3298 i32 1, label %onone
3299 i32 2, label %ontwo ]
3300
3301.. _i_indirectbr:
3302
3303'``indirectbr``' Instruction
3304^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3305
3306Syntax:
3307"""""""
3308
3309::
3310
3311 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3312
3313Overview:
3314"""""""""
3315
3316The '``indirectbr``' instruction implements an indirect branch to a
3317label within the current function, whose address is specified by
3318"``address``". Address must be derived from a
3319:ref:`blockaddress <blockaddress>` constant.
3320
3321Arguments:
3322""""""""""
3323
3324The '``address``' argument is the address of the label to jump to. The
3325rest of the arguments indicate the full set of possible destinations
3326that the address may point to. Blocks are allowed to occur multiple
3327times in the destination list, though this isn't particularly useful.
3328
3329This destination list is required so that dataflow analysis has an
3330accurate understanding of the CFG.
3331
3332Semantics:
3333""""""""""
3334
3335Control transfers to the block specified in the address argument. All
3336possible destination blocks must be listed in the label list, otherwise
3337this instruction has undefined behavior. This implies that jumps to
3338labels defined in other functions have undefined behavior as well.
3339
3340Implementation:
3341"""""""""""""""
3342
3343This is typically implemented with a jump through a register.
3344
3345Example:
3346""""""""
3347
3348.. code-block:: llvm
3349
3350 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3351
3352.. _i_invoke:
3353
3354'``invoke``' Instruction
3355^^^^^^^^^^^^^^^^^^^^^^^^
3356
3357Syntax:
3358"""""""
3359
3360::
3361
3362 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3363 to label <normal label> unwind label <exception label>
3364
3365Overview:
3366"""""""""
3367
3368The '``invoke``' instruction causes control to transfer to a specified
3369function, with the possibility of control flow transfer to either the
3370'``normal``' label or the '``exception``' label. If the callee function
3371returns with the "``ret``" instruction, control flow will return to the
3372"normal" label. If the callee (or any indirect callees) returns via the
3373":ref:`resume <i_resume>`" instruction or other exception handling
3374mechanism, control is interrupted and continued at the dynamically
3375nearest "exception" label.
3376
3377The '``exception``' label is a `landing
3378pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3379'``exception``' label is required to have the
3380":ref:`landingpad <i_landingpad>`" instruction, which contains the
3381information about the behavior of the program after unwinding happens,
3382as its first non-PHI instruction. The restrictions on the
3383"``landingpad``" instruction's tightly couples it to the "``invoke``"
3384instruction, so that the important information contained within the
3385"``landingpad``" instruction can't be lost through normal code motion.
3386
3387Arguments:
3388""""""""""
3389
3390This instruction requires several arguments:
3391
3392#. The optional "cconv" marker indicates which :ref:`calling
3393 convention <callingconv>` the call should use. If none is
3394 specified, the call defaults to using C calling conventions.
3395#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3396 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3397 are valid here.
3398#. '``ptr to function ty``': shall be the signature of the pointer to
3399 function value being invoked. In most cases, this is a direct
3400 function invocation, but indirect ``invoke``'s are just as possible,
3401 branching off an arbitrary pointer to function value.
3402#. '``function ptr val``': An LLVM value containing a pointer to a
3403 function to be invoked.
3404#. '``function args``': argument list whose types match the function
3405 signature argument types and parameter attributes. All arguments must
3406 be of :ref:`first class <t_firstclass>` type. If the function signature
3407 indicates the function accepts a variable number of arguments, the
3408 extra arguments can be specified.
3409#. '``normal label``': the label reached when the called function
3410 executes a '``ret``' instruction.
3411#. '``exception label``': the label reached when a callee returns via
3412 the :ref:`resume <i_resume>` instruction or other exception handling
3413 mechanism.
3414#. The optional :ref:`function attributes <fnattrs>` list. Only
3415 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3416 attributes are valid here.
3417
3418Semantics:
3419""""""""""
3420
3421This instruction is designed to operate as a standard '``call``'
3422instruction in most regards. The primary difference is that it
3423establishes an association with a label, which is used by the runtime
3424library to unwind the stack.
3425
3426This instruction is used in languages with destructors to ensure that
3427proper cleanup is performed in the case of either a ``longjmp`` or a
3428thrown exception. Additionally, this is important for implementation of
3429'``catch``' clauses in high-level languages that support them.
3430
3431For the purposes of the SSA form, the definition of the value returned
3432by the '``invoke``' instruction is deemed to occur on the edge from the
3433current block to the "normal" label. If the callee unwinds then no
3434return value is available.
3435
3436Example:
3437""""""""
3438
3439.. code-block:: llvm
3440
3441 %retval = invoke i32 @Test(i32 15) to label %Continue
3442 unwind label %TestCleanup ; {i32}:retval set
3443 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3444 unwind label %TestCleanup ; {i32}:retval set
3445
3446.. _i_resume:
3447
3448'``resume``' Instruction
3449^^^^^^^^^^^^^^^^^^^^^^^^
3450
3451Syntax:
3452"""""""
3453
3454::
3455
3456 resume <type> <value>
3457
3458Overview:
3459"""""""""
3460
3461The '``resume``' instruction is a terminator instruction that has no
3462successors.
3463
3464Arguments:
3465""""""""""
3466
3467The '``resume``' instruction requires one argument, which must have the
3468same type as the result of any '``landingpad``' instruction in the same
3469function.
3470
3471Semantics:
3472""""""""""
3473
3474The '``resume``' instruction resumes propagation of an existing
3475(in-flight) exception whose unwinding was interrupted with a
3476:ref:`landingpad <i_landingpad>` instruction.
3477
3478Example:
3479""""""""
3480
3481.. code-block:: llvm
3482
3483 resume { i8*, i32 } %exn
3484
3485.. _i_unreachable:
3486
3487'``unreachable``' Instruction
3488^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3489
3490Syntax:
3491"""""""
3492
3493::
3494
3495 unreachable
3496
3497Overview:
3498"""""""""
3499
3500The '``unreachable``' instruction has no defined semantics. This
3501instruction is used to inform the optimizer that a particular portion of
3502the code is not reachable. This can be used to indicate that the code
3503after a no-return function cannot be reached, and other facts.
3504
3505Semantics:
3506""""""""""
3507
3508The '``unreachable``' instruction has no defined semantics.
3509
3510.. _binaryops:
3511
3512Binary Operations
3513-----------------
3514
3515Binary operators are used to do most of the computation in a program.
3516They require two operands of the same type, execute an operation on
3517them, and produce a single value. The operands might represent multiple
3518data, as is the case with the :ref:`vector <t_vector>` data type. The
3519result value has the same type as its operands.
3520
3521There are several different binary operators:
3522
3523.. _i_add:
3524
3525'``add``' Instruction
3526^^^^^^^^^^^^^^^^^^^^^
3527
3528Syntax:
3529"""""""
3530
3531::
3532
3533 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3534 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3535 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3536 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3537
3538Overview:
3539"""""""""
3540
3541The '``add``' instruction returns the sum of its two operands.
3542
3543Arguments:
3544""""""""""
3545
3546The two arguments to the '``add``' instruction must be
3547:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3548arguments must have identical types.
3549
3550Semantics:
3551""""""""""
3552
3553The value produced is the integer sum of the two operands.
3554
3555If the sum has unsigned overflow, the result returned is the
3556mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3557the result.
3558
3559Because LLVM integers use a two's complement representation, this
3560instruction is appropriate for both signed and unsigned integers.
3561
3562``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3563respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3564result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3565unsigned and/or signed overflow, respectively, occurs.
3566
3567Example:
3568""""""""
3569
3570.. code-block:: llvm
3571
3572 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3573
3574.. _i_fadd:
3575
3576'``fadd``' Instruction
3577^^^^^^^^^^^^^^^^^^^^^^
3578
3579Syntax:
3580"""""""
3581
3582::
3583
3584 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3585
3586Overview:
3587"""""""""
3588
3589The '``fadd``' instruction returns the sum of its two operands.
3590
3591Arguments:
3592""""""""""
3593
3594The two arguments to the '``fadd``' instruction must be :ref:`floating
3595point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3596Both arguments must have identical types.
3597
3598Semantics:
3599""""""""""
3600
3601The value produced is the floating point sum of the two operands. This
3602instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3603which are optimization hints to enable otherwise unsafe floating point
3604optimizations:
3605
3606Example:
3607""""""""
3608
3609.. code-block:: llvm
3610
3611 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3612
3613'``sub``' Instruction
3614^^^^^^^^^^^^^^^^^^^^^
3615
3616Syntax:
3617"""""""
3618
3619::
3620
3621 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3622 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3623 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3624 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3625
3626Overview:
3627"""""""""
3628
3629The '``sub``' instruction returns the difference of its two operands.
3630
3631Note that the '``sub``' instruction is used to represent the '``neg``'
3632instruction present in most other intermediate representations.
3633
3634Arguments:
3635""""""""""
3636
3637The two arguments to the '``sub``' instruction must be
3638:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3639arguments must have identical types.
3640
3641Semantics:
3642""""""""""
3643
3644The value produced is the integer difference of the two operands.
3645
3646If the difference has unsigned overflow, the result returned is the
3647mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3648the result.
3649
3650Because LLVM integers use a two's complement representation, this
3651instruction is appropriate for both signed and unsigned integers.
3652
3653``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3654respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3655result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3656unsigned and/or signed overflow, respectively, occurs.
3657
3658Example:
3659""""""""
3660
3661.. code-block:: llvm
3662
3663 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3664 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3665
3666.. _i_fsub:
3667
3668'``fsub``' Instruction
3669^^^^^^^^^^^^^^^^^^^^^^
3670
3671Syntax:
3672"""""""
3673
3674::
3675
3676 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3677
3678Overview:
3679"""""""""
3680
3681The '``fsub``' instruction returns the difference of its two operands.
3682
3683Note that the '``fsub``' instruction is used to represent the '``fneg``'
3684instruction present in most other intermediate representations.
3685
3686Arguments:
3687""""""""""
3688
3689The two arguments to the '``fsub``' instruction must be :ref:`floating
3690point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3691Both arguments must have identical types.
3692
3693Semantics:
3694""""""""""
3695
3696The value produced is the floating point difference of the two operands.
3697This instruction can also take any number of :ref:`fast-math
3698flags <fastmath>`, which are optimization hints to enable otherwise
3699unsafe floating point optimizations:
3700
3701Example:
3702""""""""
3703
3704.. code-block:: llvm
3705
3706 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3707 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3708
3709'``mul``' Instruction
3710^^^^^^^^^^^^^^^^^^^^^
3711
3712Syntax:
3713"""""""
3714
3715::
3716
3717 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3718 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3719 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3720 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3721
3722Overview:
3723"""""""""
3724
3725The '``mul``' instruction returns the product of its two operands.
3726
3727Arguments:
3728""""""""""
3729
3730The two arguments to the '``mul``' instruction must be
3731:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3732arguments must have identical types.
3733
3734Semantics:
3735""""""""""
3736
3737The value produced is the integer product of the two operands.
3738
3739If the result of the multiplication has unsigned overflow, the result
3740returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3741bit width of the result.
3742
3743Because LLVM integers use a two's complement representation, and the
3744result is the same width as the operands, this instruction returns the
3745correct result for both signed and unsigned integers. If a full product
3746(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3747sign-extended or zero-extended as appropriate to the width of the full
3748product.
3749
3750``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3751respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3752result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3753unsigned and/or signed overflow, respectively, occurs.
3754
3755Example:
3756""""""""
3757
3758.. code-block:: llvm
3759
3760 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3761
3762.. _i_fmul:
3763
3764'``fmul``' Instruction
3765^^^^^^^^^^^^^^^^^^^^^^
3766
3767Syntax:
3768"""""""
3769
3770::
3771
3772 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3773
3774Overview:
3775"""""""""
3776
3777The '``fmul``' instruction returns the product of its two operands.
3778
3779Arguments:
3780""""""""""
3781
3782The two arguments to the '``fmul``' instruction must be :ref:`floating
3783point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3784Both arguments must have identical types.
3785
3786Semantics:
3787""""""""""
3788
3789The value produced is the floating point product of the two operands.
3790This instruction can also take any number of :ref:`fast-math
3791flags <fastmath>`, which are optimization hints to enable otherwise
3792unsafe floating point optimizations:
3793
3794Example:
3795""""""""
3796
3797.. code-block:: llvm
3798
3799 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3800
3801'``udiv``' Instruction
3802^^^^^^^^^^^^^^^^^^^^^^
3803
3804Syntax:
3805"""""""
3806
3807::
3808
3809 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3810 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3811
3812Overview:
3813"""""""""
3814
3815The '``udiv``' instruction returns the quotient of its two operands.
3816
3817Arguments:
3818""""""""""
3819
3820The two arguments to the '``udiv``' instruction must be
3821:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3822arguments must have identical types.
3823
3824Semantics:
3825""""""""""
3826
3827The value produced is the unsigned integer quotient of the two operands.
3828
3829Note that unsigned integer division and signed integer division are
3830distinct operations; for signed integer division, use '``sdiv``'.
3831
3832Division by zero leads to undefined behavior.
3833
3834If the ``exact`` keyword is present, the result value of the ``udiv`` is
3835a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3836such, "((a udiv exact b) mul b) == a").
3837
3838Example:
3839""""""""
3840
3841.. code-block:: llvm
3842
3843 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3844
3845'``sdiv``' Instruction
3846^^^^^^^^^^^^^^^^^^^^^^
3847
3848Syntax:
3849"""""""
3850
3851::
3852
3853 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3854 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3855
3856Overview:
3857"""""""""
3858
3859The '``sdiv``' instruction returns the quotient of its two operands.
3860
3861Arguments:
3862""""""""""
3863
3864The two arguments to the '``sdiv``' instruction must be
3865:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3866arguments must have identical types.
3867
3868Semantics:
3869""""""""""
3870
3871The value produced is the signed integer quotient of the two operands
3872rounded towards zero.
3873
3874Note that signed integer division and unsigned integer division are
3875distinct operations; for unsigned integer division, use '``udiv``'.
3876
3877Division by zero leads to undefined behavior. Overflow also leads to
3878undefined behavior; this is a rare case, but can occur, for example, by
3879doing a 32-bit division of -2147483648 by -1.
3880
3881If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3882a :ref:`poison value <poisonvalues>` if the result would be rounded.
3883
3884Example:
3885""""""""
3886
3887.. code-block:: llvm
3888
3889 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3890
3891.. _i_fdiv:
3892
3893'``fdiv``' Instruction
3894^^^^^^^^^^^^^^^^^^^^^^
3895
3896Syntax:
3897"""""""
3898
3899::
3900
3901 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3902
3903Overview:
3904"""""""""
3905
3906The '``fdiv``' instruction returns the quotient of its two operands.
3907
3908Arguments:
3909""""""""""
3910
3911The two arguments to the '``fdiv``' instruction must be :ref:`floating
3912point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3913Both arguments must have identical types.
3914
3915Semantics:
3916""""""""""
3917
3918The value produced is the floating point quotient of the two operands.
3919This instruction can also take any number of :ref:`fast-math
3920flags <fastmath>`, which are optimization hints to enable otherwise
3921unsafe floating point optimizations:
3922
3923Example:
3924""""""""
3925
3926.. code-block:: llvm
3927
3928 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3929
3930'``urem``' Instruction
3931^^^^^^^^^^^^^^^^^^^^^^
3932
3933Syntax:
3934"""""""
3935
3936::
3937
3938 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3939
3940Overview:
3941"""""""""
3942
3943The '``urem``' instruction returns the remainder from the unsigned
3944division of its two arguments.
3945
3946Arguments:
3947""""""""""
3948
3949The two arguments to the '``urem``' instruction must be
3950:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3951arguments must have identical types.
3952
3953Semantics:
3954""""""""""
3955
3956This instruction returns the unsigned integer *remainder* of a division.
3957This instruction always performs an unsigned division to get the
3958remainder.
3959
3960Note that unsigned integer remainder and signed integer remainder are
3961distinct operations; for signed integer remainder, use '``srem``'.
3962
3963Taking the remainder of a division by zero leads to undefined behavior.
3964
3965Example:
3966""""""""
3967
3968.. code-block:: llvm
3969
3970 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3971
3972'``srem``' Instruction
3973^^^^^^^^^^^^^^^^^^^^^^
3974
3975Syntax:
3976"""""""
3977
3978::
3979
3980 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3981
3982Overview:
3983"""""""""
3984
3985The '``srem``' instruction returns the remainder from the signed
3986division of its two operands. This instruction can also take
3987:ref:`vector <t_vector>` versions of the values in which case the elements
3988must be integers.
3989
3990Arguments:
3991""""""""""
3992
3993The two arguments to the '``srem``' instruction must be
3994:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3995arguments must have identical types.
3996
3997Semantics:
3998""""""""""
3999
4000This instruction returns the *remainder* of a division (where the result
4001is either zero or has the same sign as the dividend, ``op1``), not the
4002*modulo* operator (where the result is either zero or has the same sign
4003as the divisor, ``op2``) of a value. For more information about the
4004difference, see `The Math
4005Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4006table of how this is implemented in various languages, please see
4007`Wikipedia: modulo
4008operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4009
4010Note that signed integer remainder and unsigned integer remainder are
4011distinct operations; for unsigned integer remainder, use '``urem``'.
4012
4013Taking the remainder of a division by zero leads to undefined behavior.
4014Overflow also leads to undefined behavior; this is a rare case, but can
4015occur, for example, by taking the remainder of a 32-bit division of
4016-2147483648 by -1. (The remainder doesn't actually overflow, but this
4017rule lets srem be implemented using instructions that return both the
4018result of the division and the remainder.)
4019
4020Example:
4021""""""""
4022
4023.. code-block:: llvm
4024
4025 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
4026
4027.. _i_frem:
4028
4029'``frem``' Instruction
4030^^^^^^^^^^^^^^^^^^^^^^
4031
4032Syntax:
4033"""""""
4034
4035::
4036
4037 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
4038
4039Overview:
4040"""""""""
4041
4042The '``frem``' instruction returns the remainder from the division of
4043its two operands.
4044
4045Arguments:
4046""""""""""
4047
4048The two arguments to the '``frem``' instruction must be :ref:`floating
4049point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4050Both arguments must have identical types.
4051
4052Semantics:
4053""""""""""
4054
4055This instruction returns the *remainder* of a division. The remainder
4056has the same sign as the dividend. This instruction can also take any
4057number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4058to enable otherwise unsafe floating point optimizations:
4059
4060Example:
4061""""""""
4062
4063.. code-block:: llvm
4064
4065 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
4066
4067.. _bitwiseops:
4068
4069Bitwise Binary Operations
4070-------------------------
4071
4072Bitwise binary operators are used to do various forms of bit-twiddling
4073in a program. They are generally very efficient instructions and can
4074commonly be strength reduced from other instructions. They require two
4075operands of the same type, execute an operation on them, and produce a
4076single value. The resulting value is the same type as its operands.
4077
4078'``shl``' Instruction
4079^^^^^^^^^^^^^^^^^^^^^
4080
4081Syntax:
4082"""""""
4083
4084::
4085
4086 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
4087 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
4088 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
4089 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
4090
4091Overview:
4092"""""""""
4093
4094The '``shl``' instruction returns the first operand shifted to the left
4095a specified number of bits.
4096
4097Arguments:
4098""""""""""
4099
4100Both arguments to the '``shl``' instruction must be the same
4101:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4102'``op2``' is treated as an unsigned value.
4103
4104Semantics:
4105""""""""""
4106
4107The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4108where ``n`` is the width of the result. If ``op2`` is (statically or
4109dynamically) negative or equal to or larger than the number of bits in
4110``op1``, the result is undefined. If the arguments are vectors, each
4111vector element of ``op1`` is shifted by the corresponding shift amount
4112in ``op2``.
4113
4114If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4115value <poisonvalues>` if it shifts out any non-zero bits. If the
4116``nsw`` keyword is present, then the shift produces a :ref:`poison
4117value <poisonvalues>` if it shifts out any bits that disagree with the
4118resultant sign bit. As such, NUW/NSW have the same semantics as they
4119would if the shift were expressed as a mul instruction with the same
4120nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4121
4122Example:
4123""""""""
4124
4125.. code-block:: llvm
4126
4127 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
4128 <result> = shl i32 4, 2 ; yields {i32}: 16
4129 <result> = shl i32 1, 10 ; yields {i32}: 1024
4130 <result> = shl i32 1, 32 ; undefined
4131 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4132
4133'``lshr``' Instruction
4134^^^^^^^^^^^^^^^^^^^^^^
4135
4136Syntax:
4137"""""""
4138
4139::
4140
4141 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
4142 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
4143
4144Overview:
4145"""""""""
4146
4147The '``lshr``' instruction (logical shift right) returns the first
4148operand shifted to the right a specified number of bits with zero fill.
4149
4150Arguments:
4151""""""""""
4152
4153Both arguments to the '``lshr``' instruction must be the same
4154:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4155'``op2``' is treated as an unsigned value.
4156
4157Semantics:
4158""""""""""
4159
4160This instruction always performs a logical shift right operation. The
4161most significant bits of the result will be filled with zero bits after
4162the shift. If ``op2`` is (statically or dynamically) equal to or larger
4163than the number of bits in ``op1``, the result is undefined. If the
4164arguments are vectors, each vector element of ``op1`` is shifted by the
4165corresponding shift amount in ``op2``.
4166
4167If the ``exact`` keyword is present, the result value of the ``lshr`` is
4168a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4169non-zero.
4170
4171Example:
4172""""""""
4173
4174.. code-block:: llvm
4175
4176 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4177 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4178 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover8b5b3602013-05-07 06:17:14 +00004179 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004180 <result> = lshr i32 1, 32 ; undefined
4181 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4182
4183'``ashr``' Instruction
4184^^^^^^^^^^^^^^^^^^^^^^
4185
4186Syntax:
4187"""""""
4188
4189::
4190
4191 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4192 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4193
4194Overview:
4195"""""""""
4196
4197The '``ashr``' instruction (arithmetic shift right) returns the first
4198operand shifted to the right a specified number of bits with sign
4199extension.
4200
4201Arguments:
4202""""""""""
4203
4204Both arguments to the '``ashr``' instruction must be the same
4205:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4206'``op2``' is treated as an unsigned value.
4207
4208Semantics:
4209""""""""""
4210
4211This instruction always performs an arithmetic shift right operation,
4212The most significant bits of the result will be filled with the sign bit
4213of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4214than the number of bits in ``op1``, the result is undefined. If the
4215arguments are vectors, each vector element of ``op1`` is shifted by the
4216corresponding shift amount in ``op2``.
4217
4218If the ``exact`` keyword is present, the result value of the ``ashr`` is
4219a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4220non-zero.
4221
4222Example:
4223""""""""
4224
4225.. code-block:: llvm
4226
4227 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4228 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4229 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4230 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4231 <result> = ashr i32 1, 32 ; undefined
4232 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4233
4234'``and``' Instruction
4235^^^^^^^^^^^^^^^^^^^^^
4236
4237Syntax:
4238"""""""
4239
4240::
4241
4242 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4243
4244Overview:
4245"""""""""
4246
4247The '``and``' instruction returns the bitwise logical and of its two
4248operands.
4249
4250Arguments:
4251""""""""""
4252
4253The two arguments to the '``and``' instruction must be
4254:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4255arguments must have identical types.
4256
4257Semantics:
4258""""""""""
4259
4260The truth table used for the '``and``' instruction is:
4261
4262+-----+-----+-----+
4263| In0 | In1 | Out |
4264+-----+-----+-----+
4265| 0 | 0 | 0 |
4266+-----+-----+-----+
4267| 0 | 1 | 0 |
4268+-----+-----+-----+
4269| 1 | 0 | 0 |
4270+-----+-----+-----+
4271| 1 | 1 | 1 |
4272+-----+-----+-----+
4273
4274Example:
4275""""""""
4276
4277.. code-block:: llvm
4278
4279 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4280 <result> = and i32 15, 40 ; yields {i32}:result = 8
4281 <result> = and i32 4, 8 ; yields {i32}:result = 0
4282
4283'``or``' Instruction
4284^^^^^^^^^^^^^^^^^^^^
4285
4286Syntax:
4287"""""""
4288
4289::
4290
4291 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4292
4293Overview:
4294"""""""""
4295
4296The '``or``' instruction returns the bitwise logical inclusive or of its
4297two operands.
4298
4299Arguments:
4300""""""""""
4301
4302The two arguments to the '``or``' instruction must be
4303:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4304arguments must have identical types.
4305
4306Semantics:
4307""""""""""
4308
4309The truth table used for the '``or``' instruction is:
4310
4311+-----+-----+-----+
4312| In0 | In1 | Out |
4313+-----+-----+-----+
4314| 0 | 0 | 0 |
4315+-----+-----+-----+
4316| 0 | 1 | 1 |
4317+-----+-----+-----+
4318| 1 | 0 | 1 |
4319+-----+-----+-----+
4320| 1 | 1 | 1 |
4321+-----+-----+-----+
4322
4323Example:
4324""""""""
4325
4326::
4327
4328 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4329 <result> = or i32 15, 40 ; yields {i32}:result = 47
4330 <result> = or i32 4, 8 ; yields {i32}:result = 12
4331
4332'``xor``' Instruction
4333^^^^^^^^^^^^^^^^^^^^^
4334
4335Syntax:
4336"""""""
4337
4338::
4339
4340 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4341
4342Overview:
4343"""""""""
4344
4345The '``xor``' instruction returns the bitwise logical exclusive or of
4346its two operands. The ``xor`` is used to implement the "one's
4347complement" operation, which is the "~" operator in C.
4348
4349Arguments:
4350""""""""""
4351
4352The two arguments to the '``xor``' instruction must be
4353:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4354arguments must have identical types.
4355
4356Semantics:
4357""""""""""
4358
4359The truth table used for the '``xor``' instruction is:
4360
4361+-----+-----+-----+
4362| In0 | In1 | Out |
4363+-----+-----+-----+
4364| 0 | 0 | 0 |
4365+-----+-----+-----+
4366| 0 | 1 | 1 |
4367+-----+-----+-----+
4368| 1 | 0 | 1 |
4369+-----+-----+-----+
4370| 1 | 1 | 0 |
4371+-----+-----+-----+
4372
4373Example:
4374""""""""
4375
4376.. code-block:: llvm
4377
4378 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4379 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4380 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4381 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4382
4383Vector Operations
4384-----------------
4385
4386LLVM supports several instructions to represent vector operations in a
4387target-independent manner. These instructions cover the element-access
4388and vector-specific operations needed to process vectors effectively.
4389While LLVM does directly support these vector operations, many
4390sophisticated algorithms will want to use target-specific intrinsics to
4391take full advantage of a specific target.
4392
4393.. _i_extractelement:
4394
4395'``extractelement``' Instruction
4396^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4397
4398Syntax:
4399"""""""
4400
4401::
4402
4403 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4404
4405Overview:
4406"""""""""
4407
4408The '``extractelement``' instruction extracts a single scalar element
4409from a vector at a specified index.
4410
4411Arguments:
4412""""""""""
4413
4414The first operand of an '``extractelement``' instruction is a value of
4415:ref:`vector <t_vector>` type. The second operand is an index indicating
4416the position from which to extract the element. The index may be a
4417variable.
4418
4419Semantics:
4420""""""""""
4421
4422The result is a scalar of the same type as the element type of ``val``.
4423Its value is the value at position ``idx`` of ``val``. If ``idx``
4424exceeds the length of ``val``, the results are undefined.
4425
4426Example:
4427""""""""
4428
4429.. code-block:: llvm
4430
4431 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4432
4433.. _i_insertelement:
4434
4435'``insertelement``' Instruction
4436^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4437
4438Syntax:
4439"""""""
4440
4441::
4442
4443 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4444
4445Overview:
4446"""""""""
4447
4448The '``insertelement``' instruction inserts a scalar element into a
4449vector at a specified index.
4450
4451Arguments:
4452""""""""""
4453
4454The first operand of an '``insertelement``' instruction is a value of
4455:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4456type must equal the element type of the first operand. The third operand
4457is an index indicating the position at which to insert the value. The
4458index may be a variable.
4459
4460Semantics:
4461""""""""""
4462
4463The result is a vector of the same type as ``val``. Its element values
4464are those of ``val`` except at position ``idx``, where it gets the value
4465``elt``. If ``idx`` exceeds the length of ``val``, the results are
4466undefined.
4467
4468Example:
4469""""""""
4470
4471.. code-block:: llvm
4472
4473 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4474
4475.. _i_shufflevector:
4476
4477'``shufflevector``' Instruction
4478^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4479
4480Syntax:
4481"""""""
4482
4483::
4484
4485 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4486
4487Overview:
4488"""""""""
4489
4490The '``shufflevector``' instruction constructs a permutation of elements
4491from two input vectors, returning a vector with the same element type as
4492the input and length that is the same as the shuffle mask.
4493
4494Arguments:
4495""""""""""
4496
4497The first two operands of a '``shufflevector``' instruction are vectors
4498with the same type. The third argument is a shuffle mask whose element
4499type is always 'i32'. The result of the instruction is a vector whose
4500length is the same as the shuffle mask and whose element type is the
4501same as the element type of the first two operands.
4502
4503The shuffle mask operand is required to be a constant vector with either
4504constant integer or undef values.
4505
4506Semantics:
4507""""""""""
4508
4509The elements of the two input vectors are numbered from left to right
4510across both of the vectors. The shuffle mask operand specifies, for each
4511element of the result vector, which element of the two input vectors the
4512result element gets. The element selector may be undef (meaning "don't
4513care") and the second operand may be undef if performing a shuffle from
4514only one vector.
4515
4516Example:
4517""""""""
4518
4519.. code-block:: llvm
4520
4521 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4522 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4523 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4524 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4525 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4526 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4527 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4528 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4529
4530Aggregate Operations
4531--------------------
4532
4533LLVM supports several instructions for working with
4534:ref:`aggregate <t_aggregate>` values.
4535
4536.. _i_extractvalue:
4537
4538'``extractvalue``' Instruction
4539^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4540
4541Syntax:
4542"""""""
4543
4544::
4545
4546 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4547
4548Overview:
4549"""""""""
4550
4551The '``extractvalue``' instruction extracts the value of a member field
4552from an :ref:`aggregate <t_aggregate>` value.
4553
4554Arguments:
4555""""""""""
4556
4557The first operand of an '``extractvalue``' instruction is a value of
4558:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4559constant indices to specify which value to extract in a similar manner
4560as indices in a '``getelementptr``' instruction.
4561
4562The major differences to ``getelementptr`` indexing are:
4563
4564- Since the value being indexed is not a pointer, the first index is
4565 omitted and assumed to be zero.
4566- At least one index must be specified.
4567- Not only struct indices but also array indices must be in bounds.
4568
4569Semantics:
4570""""""""""
4571
4572The result is the value at the position in the aggregate specified by
4573the index operands.
4574
4575Example:
4576""""""""
4577
4578.. code-block:: llvm
4579
4580 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4581
4582.. _i_insertvalue:
4583
4584'``insertvalue``' Instruction
4585^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4586
4587Syntax:
4588"""""""
4589
4590::
4591
4592 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4593
4594Overview:
4595"""""""""
4596
4597The '``insertvalue``' instruction inserts a value into a member field in
4598an :ref:`aggregate <t_aggregate>` value.
4599
4600Arguments:
4601""""""""""
4602
4603The first operand of an '``insertvalue``' instruction is a value of
4604:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4605a first-class value to insert. The following operands are constant
4606indices indicating the position at which to insert the value in a
4607similar manner as indices in a '``extractvalue``' instruction. The value
4608to insert must have the same type as the value identified by the
4609indices.
4610
4611Semantics:
4612""""""""""
4613
4614The result is an aggregate of the same type as ``val``. Its value is
4615that of ``val`` except that the value at the position specified by the
4616indices is that of ``elt``.
4617
4618Example:
4619""""""""
4620
4621.. code-block:: llvm
4622
4623 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4624 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4625 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4626
4627.. _memoryops:
4628
4629Memory Access and Addressing Operations
4630---------------------------------------
4631
4632A key design point of an SSA-based representation is how it represents
4633memory. In LLVM, no memory locations are in SSA form, which makes things
4634very simple. This section describes how to read, write, and allocate
4635memory in LLVM.
4636
4637.. _i_alloca:
4638
4639'``alloca``' Instruction
4640^^^^^^^^^^^^^^^^^^^^^^^^
4641
4642Syntax:
4643"""""""
4644
4645::
4646
4647 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4648
4649Overview:
4650"""""""""
4651
4652The '``alloca``' instruction allocates memory on the stack frame of the
4653currently executing function, to be automatically released when this
4654function returns to its caller. The object is always allocated in the
4655generic address space (address space zero).
4656
4657Arguments:
4658""""""""""
4659
4660The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4661bytes of memory on the runtime stack, returning a pointer of the
4662appropriate type to the program. If "NumElements" is specified, it is
4663the number of elements allocated, otherwise "NumElements" is defaulted
4664to be one. If a constant alignment is specified, the value result of the
4665allocation is guaranteed to be aligned to at least that boundary. If not
4666specified, or if zero, the target can choose to align the allocation on
4667any convenient boundary compatible with the type.
4668
4669'``type``' may be any sized type.
4670
4671Semantics:
4672""""""""""
4673
4674Memory is allocated; a pointer is returned. The operation is undefined
4675if there is insufficient stack space for the allocation. '``alloca``'d
4676memory is automatically released when the function returns. The
4677'``alloca``' instruction is commonly used to represent automatic
4678variables that must have an address available. When the function returns
4679(either with the ``ret`` or ``resume`` instructions), the memory is
4680reclaimed. Allocating zero bytes is legal, but the result is undefined.
4681The order in which memory is allocated (ie., which way the stack grows)
4682is not specified.
4683
4684Example:
4685""""""""
4686
4687.. code-block:: llvm
4688
4689 %ptr = alloca i32 ; yields {i32*}:ptr
4690 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4691 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4692 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4693
4694.. _i_load:
4695
4696'``load``' Instruction
4697^^^^^^^^^^^^^^^^^^^^^^
4698
4699Syntax:
4700"""""""
4701
4702::
4703
4704 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4705 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4706 !<index> = !{ i32 1 }
4707
4708Overview:
4709"""""""""
4710
4711The '``load``' instruction is used to read from memory.
4712
4713Arguments:
4714""""""""""
4715
Eli Bendersky239a78b2013-04-17 20:17:08 +00004716The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00004717from which to load. The pointer must point to a :ref:`first
4718class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4719then the optimizer is not allowed to modify the number or order of
4720execution of this ``load`` with other :ref:`volatile
4721operations <volatile>`.
4722
4723If the ``load`` is marked as ``atomic``, it takes an extra
4724:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4725``release`` and ``acq_rel`` orderings are not valid on ``load``
4726instructions. Atomic loads produce :ref:`defined <memmodel>` results
4727when they may see multiple atomic stores. The type of the pointee must
4728be an integer type whose bit width is a power of two greater than or
4729equal to eight and less than or equal to a target-specific size limit.
4730``align`` must be explicitly specified on atomic loads, and the load has
4731undefined behavior if the alignment is not set to a value which is at
4732least the size in bytes of the pointee. ``!nontemporal`` does not have
4733any defined semantics for atomic loads.
4734
4735The optional constant ``align`` argument specifies the alignment of the
4736operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00004737or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004738alignment for the target. It is the responsibility of the code emitter
4739to ensure that the alignment information is correct. Overestimating the
4740alignment results in undefined behavior. Underestimating the alignment
4741may produce less efficient code. An alignment of 1 is always safe.
4742
4743The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004744metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00004745``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004746metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00004747that this load is not expected to be reused in the cache. The code
4748generator may select special instructions to save cache bandwidth, such
4749as the ``MOVNT`` instruction on x86.
4750
4751The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004752metadata name ``<index>`` corresponding to a metadata node with no
4753entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00004754instruction tells the optimizer and code generator that this load
4755address points to memory which does not change value during program
4756execution. The optimizer may then move this load around, for example, by
4757hoisting it out of loops using loop invariant code motion.
4758
4759Semantics:
4760""""""""""
4761
4762The location of memory pointed to is loaded. If the value being loaded
4763is of scalar type then the number of bytes read does not exceed the
4764minimum number of bytes needed to hold all bits of the type. For
4765example, loading an ``i24`` reads at most three bytes. When loading a
4766value of a type like ``i20`` with a size that is not an integral number
4767of bytes, the result is undefined if the value was not originally
4768written using a store of the same type.
4769
4770Examples:
4771"""""""""
4772
4773.. code-block:: llvm
4774
4775 %ptr = alloca i32 ; yields {i32*}:ptr
4776 store i32 3, i32* %ptr ; yields {void}
4777 %val = load i32* %ptr ; yields {i32}:val = i32 3
4778
4779.. _i_store:
4780
4781'``store``' Instruction
4782^^^^^^^^^^^^^^^^^^^^^^^
4783
4784Syntax:
4785"""""""
4786
4787::
4788
4789 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4790 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4791
4792Overview:
4793"""""""""
4794
4795The '``store``' instruction is used to write to memory.
4796
4797Arguments:
4798""""""""""
4799
Eli Benderskyca380842013-04-17 17:17:20 +00004800There are two arguments to the ``store`` instruction: a value to store
4801and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00004802operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00004803the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00004804then the optimizer is not allowed to modify the number or order of
4805execution of this ``store`` with other :ref:`volatile
4806operations <volatile>`.
4807
4808If the ``store`` is marked as ``atomic``, it takes an extra
4809:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4810``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4811instructions. Atomic loads produce :ref:`defined <memmodel>` results
4812when they may see multiple atomic stores. The type of the pointee must
4813be an integer type whose bit width is a power of two greater than or
4814equal to eight and less than or equal to a target-specific size limit.
4815``align`` must be explicitly specified on atomic stores, and the store
4816has undefined behavior if the alignment is not set to a value which is
4817at least the size in bytes of the pointee. ``!nontemporal`` does not
4818have any defined semantics for atomic stores.
4819
Eli Benderskyca380842013-04-17 17:17:20 +00004820The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00004821operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00004822or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00004823alignment for the target. It is the responsibility of the code emitter
4824to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00004825alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00004826alignment may produce less efficient code. An alignment of 1 is always
4827safe.
4828
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004829The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00004830name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00004831value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00004832tells the optimizer and code generator that this load is not expected to
4833be reused in the cache. The code generator may select special
4834instructions to save cache bandwidth, such as the MOVNT instruction on
4835x86.
4836
4837Semantics:
4838""""""""""
4839
Eli Benderskyca380842013-04-17 17:17:20 +00004840The contents of memory are updated to contain ``<value>`` at the
4841location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00004842of scalar type then the number of bytes written does not exceed the
4843minimum number of bytes needed to hold all bits of the type. For
4844example, storing an ``i24`` writes at most three bytes. When writing a
4845value of a type like ``i20`` with a size that is not an integral number
4846of bytes, it is unspecified what happens to the extra bits that do not
4847belong to the type, but they will typically be overwritten.
4848
4849Example:
4850""""""""
4851
4852.. code-block:: llvm
4853
4854 %ptr = alloca i32 ; yields {i32*}:ptr
4855 store i32 3, i32* %ptr ; yields {void}
4856 %val = load i32* %ptr ; yields {i32}:val = i32 3
4857
4858.. _i_fence:
4859
4860'``fence``' Instruction
4861^^^^^^^^^^^^^^^^^^^^^^^
4862
4863Syntax:
4864"""""""
4865
4866::
4867
4868 fence [singlethread] <ordering> ; yields {void}
4869
4870Overview:
4871"""""""""
4872
4873The '``fence``' instruction is used to introduce happens-before edges
4874between operations.
4875
4876Arguments:
4877""""""""""
4878
4879'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4880defines what *synchronizes-with* edges they add. They can only be given
4881``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4882
4883Semantics:
4884""""""""""
4885
4886A fence A which has (at least) ``release`` ordering semantics
4887*synchronizes with* a fence B with (at least) ``acquire`` ordering
4888semantics if and only if there exist atomic operations X and Y, both
4889operating on some atomic object M, such that A is sequenced before X, X
4890modifies M (either directly or through some side effect of a sequence
4891headed by X), Y is sequenced before B, and Y observes M. This provides a
4892*happens-before* dependency between A and B. Rather than an explicit
4893``fence``, one (but not both) of the atomic operations X or Y might
4894provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4895still *synchronize-with* the explicit ``fence`` and establish the
4896*happens-before* edge.
4897
4898A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4899``acquire`` and ``release`` semantics specified above, participates in
4900the global program order of other ``seq_cst`` operations and/or fences.
4901
4902The optional ":ref:`singlethread <singlethread>`" argument specifies
4903that the fence only synchronizes with other fences in the same thread.
4904(This is useful for interacting with signal handlers.)
4905
4906Example:
4907""""""""
4908
4909.. code-block:: llvm
4910
4911 fence acquire ; yields {void}
4912 fence singlethread seq_cst ; yields {void}
4913
4914.. _i_cmpxchg:
4915
4916'``cmpxchg``' Instruction
4917^^^^^^^^^^^^^^^^^^^^^^^^^
4918
4919Syntax:
4920"""""""
4921
4922::
4923
4924 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4925
4926Overview:
4927"""""""""
4928
4929The '``cmpxchg``' instruction is used to atomically modify memory. It
4930loads a value in memory and compares it to a given value. If they are
4931equal, it stores a new value into the memory.
4932
4933Arguments:
4934""""""""""
4935
4936There are three arguments to the '``cmpxchg``' instruction: an address
4937to operate on, a value to compare to the value currently be at that
4938address, and a new value to place at that address if the compared values
4939are equal. The type of '<cmp>' must be an integer type whose bit width
4940is a power of two greater than or equal to eight and less than or equal
4941to a target-specific size limit. '<cmp>' and '<new>' must have the same
4942type, and the type of '<pointer>' must be a pointer to that type. If the
4943``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4944to modify the number or order of execution of this ``cmpxchg`` with
4945other :ref:`volatile operations <volatile>`.
4946
4947The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4948synchronizes with other atomic operations.
4949
4950The optional "``singlethread``" argument declares that the ``cmpxchg``
4951is only atomic with respect to code (usually signal handlers) running in
4952the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4953respect to all other code in the system.
4954
4955The pointer passed into cmpxchg must have alignment greater than or
4956equal to the size in memory of the operand.
4957
4958Semantics:
4959""""""""""
4960
4961The contents of memory at the location specified by the '``<pointer>``'
4962operand is read and compared to '``<cmp>``'; if the read value is the
4963equal, '``<new>``' is written. The original value at the location is
4964returned.
4965
4966A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4967of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4968atomic load with an ordering parameter determined by dropping any
4969``release`` part of the ``cmpxchg``'s ordering.
4970
4971Example:
4972""""""""
4973
4974.. code-block:: llvm
4975
4976 entry:
4977 %orig = atomic load i32* %ptr unordered ; yields {i32}
4978 br label %loop
4979
4980 loop:
4981 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4982 %squared = mul i32 %cmp, %cmp
4983 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4984 %success = icmp eq i32 %cmp, %old
4985 br i1 %success, label %done, label %loop
4986
4987 done:
4988 ...
4989
4990.. _i_atomicrmw:
4991
4992'``atomicrmw``' Instruction
4993^^^^^^^^^^^^^^^^^^^^^^^^^^^
4994
4995Syntax:
4996"""""""
4997
4998::
4999
5000 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
5001
5002Overview:
5003"""""""""
5004
5005The '``atomicrmw``' instruction is used to atomically modify memory.
5006
5007Arguments:
5008""""""""""
5009
5010There are three arguments to the '``atomicrmw``' instruction: an
5011operation to apply, an address whose value to modify, an argument to the
5012operation. The operation must be one of the following keywords:
5013
5014- xchg
5015- add
5016- sub
5017- and
5018- nand
5019- or
5020- xor
5021- max
5022- min
5023- umax
5024- umin
5025
5026The type of '<value>' must be an integer type whose bit width is a power
5027of two greater than or equal to eight and less than or equal to a
5028target-specific size limit. The type of the '``<pointer>``' operand must
5029be a pointer to that type. If the ``atomicrmw`` is marked as
5030``volatile``, then the optimizer is not allowed to modify the number or
5031order of execution of this ``atomicrmw`` with other :ref:`volatile
5032operations <volatile>`.
5033
5034Semantics:
5035""""""""""
5036
5037The contents of memory at the location specified by the '``<pointer>``'
5038operand are atomically read, modified, and written back. The original
5039value at the location is returned. The modification is specified by the
5040operation argument:
5041
5042- xchg: ``*ptr = val``
5043- add: ``*ptr = *ptr + val``
5044- sub: ``*ptr = *ptr - val``
5045- and: ``*ptr = *ptr & val``
5046- nand: ``*ptr = ~(*ptr & val)``
5047- or: ``*ptr = *ptr | val``
5048- xor: ``*ptr = *ptr ^ val``
5049- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5050- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5051- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5052 comparison)
5053- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5054 comparison)
5055
5056Example:
5057""""""""
5058
5059.. code-block:: llvm
5060
5061 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
5062
5063.. _i_getelementptr:
5064
5065'``getelementptr``' Instruction
5066^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5067
5068Syntax:
5069"""""""
5070
5071::
5072
5073 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5074 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5075 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5076
5077Overview:
5078"""""""""
5079
5080The '``getelementptr``' instruction is used to get the address of a
5081subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5082address calculation only and does not access memory.
5083
5084Arguments:
5085""""""""""
5086
5087The first argument is always a pointer or a vector of pointers, and
5088forms the basis of the calculation. The remaining arguments are indices
5089that indicate which of the elements of the aggregate object are indexed.
5090The interpretation of each index is dependent on the type being indexed
5091into. The first index always indexes the pointer value given as the
5092first argument, the second index indexes a value of the type pointed to
5093(not necessarily the value directly pointed to, since the first index
5094can be non-zero), etc. The first type indexed into must be a pointer
5095value, subsequent types can be arrays, vectors, and structs. Note that
5096subsequent types being indexed into can never be pointers, since that
5097would require loading the pointer before continuing calculation.
5098
5099The type of each index argument depends on the type it is indexing into.
5100When indexing into a (optionally packed) structure, only ``i32`` integer
5101**constants** are allowed (when using a vector of indices they must all
5102be the **same** ``i32`` integer constant). When indexing into an array,
5103pointer or vector, integers of any width are allowed, and they are not
5104required to be constant. These integers are treated as signed values
5105where relevant.
5106
5107For example, let's consider a C code fragment and how it gets compiled
5108to LLVM:
5109
5110.. code-block:: c
5111
5112 struct RT {
5113 char A;
5114 int B[10][20];
5115 char C;
5116 };
5117 struct ST {
5118 int X;
5119 double Y;
5120 struct RT Z;
5121 };
5122
5123 int *foo(struct ST *s) {
5124 return &s[1].Z.B[5][13];
5125 }
5126
5127The LLVM code generated by Clang is:
5128
5129.. code-block:: llvm
5130
5131 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5132 %struct.ST = type { i32, double, %struct.RT }
5133
5134 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5135 entry:
5136 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5137 ret i32* %arrayidx
5138 }
5139
5140Semantics:
5141""""""""""
5142
5143In the example above, the first index is indexing into the
5144'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5145= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5146indexes into the third element of the structure, yielding a
5147'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5148structure. The third index indexes into the second element of the
5149structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5150dimensions of the array are subscripted into, yielding an '``i32``'
5151type. The '``getelementptr``' instruction returns a pointer to this
5152element, thus computing a value of '``i32*``' type.
5153
5154Note that it is perfectly legal to index partially through a structure,
5155returning a pointer to an inner element. Because of this, the LLVM code
5156for the given testcase is equivalent to:
5157
5158.. code-block:: llvm
5159
5160 define i32* @foo(%struct.ST* %s) {
5161 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5162 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5163 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5164 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5165 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5166 ret i32* %t5
5167 }
5168
5169If the ``inbounds`` keyword is present, the result value of the
5170``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5171pointer is not an *in bounds* address of an allocated object, or if any
5172of the addresses that would be formed by successive addition of the
5173offsets implied by the indices to the base address with infinitely
5174precise signed arithmetic are not an *in bounds* address of that
5175allocated object. The *in bounds* addresses for an allocated object are
5176all the addresses that point into the object, plus the address one byte
5177past the end. In cases where the base is a vector of pointers the
5178``inbounds`` keyword applies to each of the computations element-wise.
5179
5180If the ``inbounds`` keyword is not present, the offsets are added to the
5181base address with silently-wrapping two's complement arithmetic. If the
5182offsets have a different width from the pointer, they are sign-extended
5183or truncated to the width of the pointer. The result value of the
5184``getelementptr`` may be outside the object pointed to by the base
5185pointer. The result value may not necessarily be used to access memory
5186though, even if it happens to point into allocated storage. See the
5187:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5188information.
5189
5190The getelementptr instruction is often confusing. For some more insight
5191into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5192
5193Example:
5194""""""""
5195
5196.. code-block:: llvm
5197
5198 ; yields [12 x i8]*:aptr
5199 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5200 ; yields i8*:vptr
5201 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5202 ; yields i8*:eptr
5203 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5204 ; yields i32*:iptr
5205 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5206
5207In cases where the pointer argument is a vector of pointers, each index
5208must be a vector with the same number of elements. For example:
5209
5210.. code-block:: llvm
5211
5212 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5213
5214Conversion Operations
5215---------------------
5216
5217The instructions in this category are the conversion instructions
5218(casting) which all take a single operand and a type. They perform
5219various bit conversions on the operand.
5220
5221'``trunc .. to``' Instruction
5222^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5223
5224Syntax:
5225"""""""
5226
5227::
5228
5229 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5230
5231Overview:
5232"""""""""
5233
5234The '``trunc``' instruction truncates its operand to the type ``ty2``.
5235
5236Arguments:
5237""""""""""
5238
5239The '``trunc``' instruction takes a value to trunc, and a type to trunc
5240it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5241of the same number of integers. The bit size of the ``value`` must be
5242larger than the bit size of the destination type, ``ty2``. Equal sized
5243types are not allowed.
5244
5245Semantics:
5246""""""""""
5247
5248The '``trunc``' instruction truncates the high order bits in ``value``
5249and converts the remaining bits to ``ty2``. Since the source size must
5250be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5251It will always truncate bits.
5252
5253Example:
5254""""""""
5255
5256.. code-block:: llvm
5257
5258 %X = trunc i32 257 to i8 ; yields i8:1
5259 %Y = trunc i32 123 to i1 ; yields i1:true
5260 %Z = trunc i32 122 to i1 ; yields i1:false
5261 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5262
5263'``zext .. to``' Instruction
5264^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5265
5266Syntax:
5267"""""""
5268
5269::
5270
5271 <result> = zext <ty> <value> to <ty2> ; yields ty2
5272
5273Overview:
5274"""""""""
5275
5276The '``zext``' instruction zero extends its operand to type ``ty2``.
5277
5278Arguments:
5279""""""""""
5280
5281The '``zext``' instruction takes a value to cast, and a type to cast it
5282to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5283the same number of integers. The bit size of the ``value`` must be
5284smaller than the bit size of the destination type, ``ty2``.
5285
5286Semantics:
5287""""""""""
5288
5289The ``zext`` fills the high order bits of the ``value`` with zero bits
5290until it reaches the size of the destination type, ``ty2``.
5291
5292When zero extending from i1, the result will always be either 0 or 1.
5293
5294Example:
5295""""""""
5296
5297.. code-block:: llvm
5298
5299 %X = zext i32 257 to i64 ; yields i64:257
5300 %Y = zext i1 true to i32 ; yields i32:1
5301 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5302
5303'``sext .. to``' Instruction
5304^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5305
5306Syntax:
5307"""""""
5308
5309::
5310
5311 <result> = sext <ty> <value> to <ty2> ; yields ty2
5312
5313Overview:
5314"""""""""
5315
5316The '``sext``' sign extends ``value`` to the type ``ty2``.
5317
5318Arguments:
5319""""""""""
5320
5321The '``sext``' instruction takes a value to cast, and a type to cast it
5322to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5323the same number of integers. The bit size of the ``value`` must be
5324smaller than the bit size of the destination type, ``ty2``.
5325
5326Semantics:
5327""""""""""
5328
5329The '``sext``' instruction performs a sign extension by copying the sign
5330bit (highest order bit) of the ``value`` until it reaches the bit size
5331of the type ``ty2``.
5332
5333When sign extending from i1, the extension always results in -1 or 0.
5334
5335Example:
5336""""""""
5337
5338.. code-block:: llvm
5339
5340 %X = sext i8 -1 to i16 ; yields i16 :65535
5341 %Y = sext i1 true to i32 ; yields i32:-1
5342 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5343
5344'``fptrunc .. to``' Instruction
5345^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5346
5347Syntax:
5348"""""""
5349
5350::
5351
5352 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5353
5354Overview:
5355"""""""""
5356
5357The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5358
5359Arguments:
5360""""""""""
5361
5362The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5363value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5364The size of ``value`` must be larger than the size of ``ty2``. This
5365implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5366
5367Semantics:
5368""""""""""
5369
5370The '``fptrunc``' instruction truncates a ``value`` from a larger
5371:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5372point <t_floating>` type. If the value cannot fit within the
5373destination type, ``ty2``, then the results are undefined.
5374
5375Example:
5376""""""""
5377
5378.. code-block:: llvm
5379
5380 %X = fptrunc double 123.0 to float ; yields float:123.0
5381 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5382
5383'``fpext .. to``' Instruction
5384^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5385
5386Syntax:
5387"""""""
5388
5389::
5390
5391 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5392
5393Overview:
5394"""""""""
5395
5396The '``fpext``' extends a floating point ``value`` to a larger floating
5397point value.
5398
5399Arguments:
5400""""""""""
5401
5402The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5403``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5404to. The source type must be smaller than the destination type.
5405
5406Semantics:
5407""""""""""
5408
5409The '``fpext``' instruction extends the ``value`` from a smaller
5410:ref:`floating point <t_floating>` type to a larger :ref:`floating
5411point <t_floating>` type. The ``fpext`` cannot be used to make a
5412*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5413*no-op cast* for a floating point cast.
5414
5415Example:
5416""""""""
5417
5418.. code-block:: llvm
5419
5420 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5421 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5422
5423'``fptoui .. to``' Instruction
5424^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5425
5426Syntax:
5427"""""""
5428
5429::
5430
5431 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5432
5433Overview:
5434"""""""""
5435
5436The '``fptoui``' converts a floating point ``value`` to its unsigned
5437integer equivalent of type ``ty2``.
5438
5439Arguments:
5440""""""""""
5441
5442The '``fptoui``' instruction takes a value to cast, which must be a
5443scalar or vector :ref:`floating point <t_floating>` value, and a type to
5444cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5445``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5446type with the same number of elements as ``ty``
5447
5448Semantics:
5449""""""""""
5450
5451The '``fptoui``' instruction converts its :ref:`floating
5452point <t_floating>` operand into the nearest (rounding towards zero)
5453unsigned integer value. If the value cannot fit in ``ty2``, the results
5454are undefined.
5455
5456Example:
5457""""""""
5458
5459.. code-block:: llvm
5460
5461 %X = fptoui double 123.0 to i32 ; yields i32:123
5462 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5463 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5464
5465'``fptosi .. to``' Instruction
5466^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5467
5468Syntax:
5469"""""""
5470
5471::
5472
5473 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5474
5475Overview:
5476"""""""""
5477
5478The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5479``value`` to type ``ty2``.
5480
5481Arguments:
5482""""""""""
5483
5484The '``fptosi``' instruction takes a value to cast, which must be a
5485scalar or vector :ref:`floating point <t_floating>` value, and a type to
5486cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5487``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5488type with the same number of elements as ``ty``
5489
5490Semantics:
5491""""""""""
5492
5493The '``fptosi``' instruction converts its :ref:`floating
5494point <t_floating>` operand into the nearest (rounding towards zero)
5495signed integer value. If the value cannot fit in ``ty2``, the results
5496are undefined.
5497
5498Example:
5499""""""""
5500
5501.. code-block:: llvm
5502
5503 %X = fptosi double -123.0 to i32 ; yields i32:-123
5504 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5505 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5506
5507'``uitofp .. to``' Instruction
5508^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5509
5510Syntax:
5511"""""""
5512
5513::
5514
5515 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5516
5517Overview:
5518"""""""""
5519
5520The '``uitofp``' instruction regards ``value`` as an unsigned integer
5521and converts that value to the ``ty2`` type.
5522
5523Arguments:
5524""""""""""
5525
5526The '``uitofp``' instruction takes a value to cast, which must be a
5527scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5528``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5529``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5530type with the same number of elements as ``ty``
5531
5532Semantics:
5533""""""""""
5534
5535The '``uitofp``' instruction interprets its operand as an unsigned
5536integer quantity and converts it to the corresponding floating point
5537value. If the value cannot fit in the floating point value, the results
5538are undefined.
5539
5540Example:
5541""""""""
5542
5543.. code-block:: llvm
5544
5545 %X = uitofp i32 257 to float ; yields float:257.0
5546 %Y = uitofp i8 -1 to double ; yields double:255.0
5547
5548'``sitofp .. to``' Instruction
5549^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5550
5551Syntax:
5552"""""""
5553
5554::
5555
5556 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5557
5558Overview:
5559"""""""""
5560
5561The '``sitofp``' instruction regards ``value`` as a signed integer and
5562converts that value to the ``ty2`` type.
5563
5564Arguments:
5565""""""""""
5566
5567The '``sitofp``' instruction takes a value to cast, which must be a
5568scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5569``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5570``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5571type with the same number of elements as ``ty``
5572
5573Semantics:
5574""""""""""
5575
5576The '``sitofp``' instruction interprets its operand as a signed integer
5577quantity and converts it to the corresponding floating point value. If
5578the value cannot fit in the floating point value, the results are
5579undefined.
5580
5581Example:
5582""""""""
5583
5584.. code-block:: llvm
5585
5586 %X = sitofp i32 257 to float ; yields float:257.0
5587 %Y = sitofp i8 -1 to double ; yields double:-1.0
5588
5589.. _i_ptrtoint:
5590
5591'``ptrtoint .. to``' Instruction
5592^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5593
5594Syntax:
5595"""""""
5596
5597::
5598
5599 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5600
5601Overview:
5602"""""""""
5603
5604The '``ptrtoint``' instruction converts the pointer or a vector of
5605pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5606
5607Arguments:
5608""""""""""
5609
5610The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5611a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5612type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5613a vector of integers type.
5614
5615Semantics:
5616""""""""""
5617
5618The '``ptrtoint``' instruction converts ``value`` to integer type
5619``ty2`` by interpreting the pointer value as an integer and either
5620truncating or zero extending that value to the size of the integer type.
5621If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5622``value`` is larger than ``ty2`` then a truncation is done. If they are
5623the same size, then nothing is done (*no-op cast*) other than a type
5624change.
5625
5626Example:
5627""""""""
5628
5629.. code-block:: llvm
5630
5631 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5632 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5633 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5634
5635.. _i_inttoptr:
5636
5637'``inttoptr .. to``' Instruction
5638^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5639
5640Syntax:
5641"""""""
5642
5643::
5644
5645 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5646
5647Overview:
5648"""""""""
5649
5650The '``inttoptr``' instruction converts an integer ``value`` to a
5651pointer type, ``ty2``.
5652
5653Arguments:
5654""""""""""
5655
5656The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5657cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5658type.
5659
5660Semantics:
5661""""""""""
5662
5663The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5664applying either a zero extension or a truncation depending on the size
5665of the integer ``value``. If ``value`` is larger than the size of a
5666pointer then a truncation is done. If ``value`` is smaller than the size
5667of a pointer then a zero extension is done. If they are the same size,
5668nothing is done (*no-op cast*).
5669
5670Example:
5671""""""""
5672
5673.. code-block:: llvm
5674
5675 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5676 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5677 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5678 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5679
5680.. _i_bitcast:
5681
5682'``bitcast .. to``' Instruction
5683^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5684
5685Syntax:
5686"""""""
5687
5688::
5689
5690 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5691
5692Overview:
5693"""""""""
5694
5695The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5696changing any bits.
5697
5698Arguments:
5699""""""""""
5700
5701The '``bitcast``' instruction takes a value to cast, which must be a
5702non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00005703also be a non-aggregate :ref:`first class <t_firstclass>` type. The
5704bit sizes of ``value`` and the destination type, ``ty2``, must be
5705identical. If the source type is a pointer, the destination type must
5706also be a pointer of the same size. This instruction supports bitwise
5707conversion of vectors to integers and to vectors of other types (as
5708long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00005709
5710Semantics:
5711""""""""""
5712
Matt Arsenault24b49c42013-07-31 17:49:08 +00005713The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
5714is always a *no-op cast* because no bits change with this
5715conversion. The conversion is done as if the ``value`` had been stored
5716to memory and read back as type ``ty2``. Pointer (or vector of
5717pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005718pointers) types with the same address space through this instruction.
5719To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
5720or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00005721
5722Example:
5723""""""""
5724
5725.. code-block:: llvm
5726
5727 %X = bitcast i8 255 to i8 ; yields i8 :-1
5728 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5729 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5730 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5731
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005732.. _i_addrspacecast:
5733
5734'``addrspacecast .. to``' Instruction
5735^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5736
5737Syntax:
5738"""""""
5739
5740::
5741
5742 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
5743
5744Overview:
5745"""""""""
5746
5747The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
5748address space ``n`` to type ``pty2`` in address space ``m``.
5749
5750Arguments:
5751""""""""""
5752
5753The '``addrspacecast``' instruction takes a pointer or vector of pointer value
5754to cast and a pointer type to cast it to, which must have a different
5755address space.
5756
5757Semantics:
5758""""""""""
5759
5760The '``addrspacecast``' instruction converts the pointer value
5761``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00005762value modification, depending on the target and the address space
5763pair. Pointer conversions within the same address space must be
5764performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005765conversion is legal then both result and operand refer to the same memory
5766location.
5767
5768Example:
5769""""""""
5770
5771.. code-block:: llvm
5772
Matt Arsenault9c13dd02013-11-15 22:43:50 +00005773 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
5774 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
5775 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00005776
Sean Silvab084af42012-12-07 10:36:55 +00005777.. _otherops:
5778
5779Other Operations
5780----------------
5781
5782The instructions in this category are the "miscellaneous" instructions,
5783which defy better classification.
5784
5785.. _i_icmp:
5786
5787'``icmp``' Instruction
5788^^^^^^^^^^^^^^^^^^^^^^
5789
5790Syntax:
5791"""""""
5792
5793::
5794
5795 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5796
5797Overview:
5798"""""""""
5799
5800The '``icmp``' instruction returns a boolean value or a vector of
5801boolean values based on comparison of its two integer, integer vector,
5802pointer, or pointer vector operands.
5803
5804Arguments:
5805""""""""""
5806
5807The '``icmp``' instruction takes three operands. The first operand is
5808the condition code indicating the kind of comparison to perform. It is
5809not a value, just a keyword. The possible condition code are:
5810
5811#. ``eq``: equal
5812#. ``ne``: not equal
5813#. ``ugt``: unsigned greater than
5814#. ``uge``: unsigned greater or equal
5815#. ``ult``: unsigned less than
5816#. ``ule``: unsigned less or equal
5817#. ``sgt``: signed greater than
5818#. ``sge``: signed greater or equal
5819#. ``slt``: signed less than
5820#. ``sle``: signed less or equal
5821
5822The remaining two arguments must be :ref:`integer <t_integer>` or
5823:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5824must also be identical types.
5825
5826Semantics:
5827""""""""""
5828
5829The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5830code given as ``cond``. The comparison performed always yields either an
5831:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5832
5833#. ``eq``: yields ``true`` if the operands are equal, ``false``
5834 otherwise. No sign interpretation is necessary or performed.
5835#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5836 otherwise. No sign interpretation is necessary or performed.
5837#. ``ugt``: interprets the operands as unsigned values and yields
5838 ``true`` if ``op1`` is greater than ``op2``.
5839#. ``uge``: interprets the operands as unsigned values and yields
5840 ``true`` if ``op1`` is greater than or equal to ``op2``.
5841#. ``ult``: interprets the operands as unsigned values and yields
5842 ``true`` if ``op1`` is less than ``op2``.
5843#. ``ule``: interprets the operands as unsigned values and yields
5844 ``true`` if ``op1`` is less than or equal to ``op2``.
5845#. ``sgt``: interprets the operands as signed values and yields ``true``
5846 if ``op1`` is greater than ``op2``.
5847#. ``sge``: interprets the operands as signed values and yields ``true``
5848 if ``op1`` is greater than or equal to ``op2``.
5849#. ``slt``: interprets the operands as signed values and yields ``true``
5850 if ``op1`` is less than ``op2``.
5851#. ``sle``: interprets the operands as signed values and yields ``true``
5852 if ``op1`` is less than or equal to ``op2``.
5853
5854If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5855are compared as if they were integers.
5856
5857If the operands are integer vectors, then they are compared element by
5858element. The result is an ``i1`` vector with the same number of elements
5859as the values being compared. Otherwise, the result is an ``i1``.
5860
5861Example:
5862""""""""
5863
5864.. code-block:: llvm
5865
5866 <result> = icmp eq i32 4, 5 ; yields: result=false
5867 <result> = icmp ne float* %X, %X ; yields: result=false
5868 <result> = icmp ult i16 4, 5 ; yields: result=true
5869 <result> = icmp sgt i16 4, 5 ; yields: result=false
5870 <result> = icmp ule i16 -4, 5 ; yields: result=false
5871 <result> = icmp sge i16 4, 5 ; yields: result=false
5872
5873Note that the code generator does not yet support vector types with the
5874``icmp`` instruction.
5875
5876.. _i_fcmp:
5877
5878'``fcmp``' Instruction
5879^^^^^^^^^^^^^^^^^^^^^^
5880
5881Syntax:
5882"""""""
5883
5884::
5885
5886 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5887
5888Overview:
5889"""""""""
5890
5891The '``fcmp``' instruction returns a boolean value or vector of boolean
5892values based on comparison of its operands.
5893
5894If the operands are floating point scalars, then the result type is a
5895boolean (:ref:`i1 <t_integer>`).
5896
5897If the operands are floating point vectors, then the result type is a
5898vector of boolean with the same number of elements as the operands being
5899compared.
5900
5901Arguments:
5902""""""""""
5903
5904The '``fcmp``' instruction takes three operands. The first operand is
5905the condition code indicating the kind of comparison to perform. It is
5906not a value, just a keyword. The possible condition code are:
5907
5908#. ``false``: no comparison, always returns false
5909#. ``oeq``: ordered and equal
5910#. ``ogt``: ordered and greater than
5911#. ``oge``: ordered and greater than or equal
5912#. ``olt``: ordered and less than
5913#. ``ole``: ordered and less than or equal
5914#. ``one``: ordered and not equal
5915#. ``ord``: ordered (no nans)
5916#. ``ueq``: unordered or equal
5917#. ``ugt``: unordered or greater than
5918#. ``uge``: unordered or greater than or equal
5919#. ``ult``: unordered or less than
5920#. ``ule``: unordered or less than or equal
5921#. ``une``: unordered or not equal
5922#. ``uno``: unordered (either nans)
5923#. ``true``: no comparison, always returns true
5924
5925*Ordered* means that neither operand is a QNAN while *unordered* means
5926that either operand may be a QNAN.
5927
5928Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5929point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5930type. They must have identical types.
5931
5932Semantics:
5933""""""""""
5934
5935The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5936condition code given as ``cond``. If the operands are vectors, then the
5937vectors are compared element by element. Each comparison performed
5938always yields an :ref:`i1 <t_integer>` result, as follows:
5939
5940#. ``false``: always yields ``false``, regardless of operands.
5941#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5942 is equal to ``op2``.
5943#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5944 is greater than ``op2``.
5945#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5946 is greater than or equal to ``op2``.
5947#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5948 is less than ``op2``.
5949#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5950 is less than or equal to ``op2``.
5951#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5952 is not equal to ``op2``.
5953#. ``ord``: yields ``true`` if both operands are not a QNAN.
5954#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5955 equal to ``op2``.
5956#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5957 greater than ``op2``.
5958#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5959 greater than or equal to ``op2``.
5960#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5961 less than ``op2``.
5962#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5963 less than or equal to ``op2``.
5964#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5965 not equal to ``op2``.
5966#. ``uno``: yields ``true`` if either operand is a QNAN.
5967#. ``true``: always yields ``true``, regardless of operands.
5968
5969Example:
5970""""""""
5971
5972.. code-block:: llvm
5973
5974 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5975 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5976 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5977 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5978
5979Note that the code generator does not yet support vector types with the
5980``fcmp`` instruction.
5981
5982.. _i_phi:
5983
5984'``phi``' Instruction
5985^^^^^^^^^^^^^^^^^^^^^
5986
5987Syntax:
5988"""""""
5989
5990::
5991
5992 <result> = phi <ty> [ <val0>, <label0>], ...
5993
5994Overview:
5995"""""""""
5996
5997The '``phi``' instruction is used to implement the φ node in the SSA
5998graph representing the function.
5999
6000Arguments:
6001""""""""""
6002
6003The type of the incoming values is specified with the first type field.
6004After this, the '``phi``' instruction takes a list of pairs as
6005arguments, with one pair for each predecessor basic block of the current
6006block. Only values of :ref:`first class <t_firstclass>` type may be used as
6007the value arguments to the PHI node. Only labels may be used as the
6008label arguments.
6009
6010There must be no non-phi instructions between the start of a basic block
6011and the PHI instructions: i.e. PHI instructions must be first in a basic
6012block.
6013
6014For the purposes of the SSA form, the use of each incoming value is
6015deemed to occur on the edge from the corresponding predecessor block to
6016the current block (but after any definition of an '``invoke``'
6017instruction's return value on the same edge).
6018
6019Semantics:
6020""""""""""
6021
6022At runtime, the '``phi``' instruction logically takes on the value
6023specified by the pair corresponding to the predecessor basic block that
6024executed just prior to the current block.
6025
6026Example:
6027""""""""
6028
6029.. code-block:: llvm
6030
6031 Loop: ; Infinite loop that counts from 0 on up...
6032 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6033 %nextindvar = add i32 %indvar, 1
6034 br label %Loop
6035
6036.. _i_select:
6037
6038'``select``' Instruction
6039^^^^^^^^^^^^^^^^^^^^^^^^
6040
6041Syntax:
6042"""""""
6043
6044::
6045
6046 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6047
6048 selty is either i1 or {<N x i1>}
6049
6050Overview:
6051"""""""""
6052
6053The '``select``' instruction is used to choose one value based on a
6054condition, without branching.
6055
6056Arguments:
6057""""""""""
6058
6059The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6060values indicating the condition, and two values of the same :ref:`first
6061class <t_firstclass>` type. If the val1/val2 are vectors and the
6062condition is a scalar, then entire vectors are selected, not individual
6063elements.
6064
6065Semantics:
6066""""""""""
6067
6068If the condition is an i1 and it evaluates to 1, the instruction returns
6069the first value argument; otherwise, it returns the second value
6070argument.
6071
6072If the condition is a vector of i1, then the value arguments must be
6073vectors of the same size, and the selection is done element by element.
6074
6075Example:
6076""""""""
6077
6078.. code-block:: llvm
6079
6080 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6081
6082.. _i_call:
6083
6084'``call``' Instruction
6085^^^^^^^^^^^^^^^^^^^^^^
6086
6087Syntax:
6088"""""""
6089
6090::
6091
6092 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
6093
6094Overview:
6095"""""""""
6096
6097The '``call``' instruction represents a simple function call.
6098
6099Arguments:
6100""""""""""
6101
6102This instruction requires several arguments:
6103
6104#. The optional "tail" marker indicates that the callee function does
6105 not access any allocas or varargs in the caller. Note that calls may
6106 be marked "tail" even if they do not occur before a
6107 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
6108 function call is eligible for tail call optimization, but `might not
6109 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
6110 The code generator may optimize calls marked "tail" with either 1)
6111 automatic `sibling call
6112 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
6113 callee have matching signatures, or 2) forced tail call optimization
6114 when the following extra requirements are met:
6115
6116 - Caller and callee both have the calling convention ``fastcc``.
6117 - The call is in tail position (ret immediately follows call and ret
6118 uses value of call or is void).
6119 - Option ``-tailcallopt`` is enabled, or
6120 ``llvm::GuaranteedTailCallOpt`` is ``true``.
6121 - `Platform specific constraints are
6122 met. <CodeGenerator.html#tailcallopt>`_
6123
6124#. The optional "cconv" marker indicates which :ref:`calling
6125 convention <callingconv>` the call should use. If none is
6126 specified, the call defaults to using C calling conventions. The
6127 calling convention of the call must match the calling convention of
6128 the target function, or else the behavior is undefined.
6129#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6130 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6131 are valid here.
6132#. '``ty``': the type of the call instruction itself which is also the
6133 type of the return value. Functions that return no value are marked
6134 ``void``.
6135#. '``fnty``': shall be the signature of the pointer to function value
6136 being invoked. The argument types must match the types implied by
6137 this signature. This type can be omitted if the function is not
6138 varargs and if the function type does not return a pointer to a
6139 function.
6140#. '``fnptrval``': An LLVM value containing a pointer to a function to
6141 be invoked. In most cases, this is a direct function invocation, but
6142 indirect ``call``'s are just as possible, calling an arbitrary pointer
6143 to function value.
6144#. '``function args``': argument list whose types match the function
6145 signature argument types and parameter attributes. All arguments must
6146 be of :ref:`first class <t_firstclass>` type. If the function signature
6147 indicates the function accepts a variable number of arguments, the
6148 extra arguments can be specified.
6149#. The optional :ref:`function attributes <fnattrs>` list. Only
6150 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6151 attributes are valid here.
6152
6153Semantics:
6154""""""""""
6155
6156The '``call``' instruction is used to cause control flow to transfer to
6157a specified function, with its incoming arguments bound to the specified
6158values. Upon a '``ret``' instruction in the called function, control
6159flow continues with the instruction after the function call, and the
6160return value of the function is bound to the result argument.
6161
6162Example:
6163""""""""
6164
6165.. code-block:: llvm
6166
6167 %retval = call i32 @test(i32 %argc)
6168 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6169 %X = tail call i32 @foo() ; yields i32
6170 %Y = tail call fastcc i32 @foo() ; yields i32
6171 call void %foo(i8 97 signext)
6172
6173 %struct.A = type { i32, i8 }
6174 %r = call %struct.A @foo() ; yields { 32, i8 }
6175 %gr = extractvalue %struct.A %r, 0 ; yields i32
6176 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6177 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6178 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6179
6180llvm treats calls to some functions with names and arguments that match
6181the standard C99 library as being the C99 library functions, and may
6182perform optimizations or generate code for them under that assumption.
6183This is something we'd like to change in the future to provide better
6184support for freestanding environments and non-C-based languages.
6185
6186.. _i_va_arg:
6187
6188'``va_arg``' Instruction
6189^^^^^^^^^^^^^^^^^^^^^^^^
6190
6191Syntax:
6192"""""""
6193
6194::
6195
6196 <resultval> = va_arg <va_list*> <arglist>, <argty>
6197
6198Overview:
6199"""""""""
6200
6201The '``va_arg``' instruction is used to access arguments passed through
6202the "variable argument" area of a function call. It is used to implement
6203the ``va_arg`` macro in C.
6204
6205Arguments:
6206""""""""""
6207
6208This instruction takes a ``va_list*`` value and the type of the
6209argument. It returns a value of the specified argument type and
6210increments the ``va_list`` to point to the next argument. The actual
6211type of ``va_list`` is target specific.
6212
6213Semantics:
6214""""""""""
6215
6216The '``va_arg``' instruction loads an argument of the specified type
6217from the specified ``va_list`` and causes the ``va_list`` to point to
6218the next argument. For more information, see the variable argument
6219handling :ref:`Intrinsic Functions <int_varargs>`.
6220
6221It is legal for this instruction to be called in a function which does
6222not take a variable number of arguments, for example, the ``vfprintf``
6223function.
6224
6225``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6226function <intrinsics>` because it takes a type as an argument.
6227
6228Example:
6229""""""""
6230
6231See the :ref:`variable argument processing <int_varargs>` section.
6232
6233Note that the code generator does not yet fully support va\_arg on many
6234targets. Also, it does not currently support va\_arg with aggregate
6235types on any target.
6236
6237.. _i_landingpad:
6238
6239'``landingpad``' Instruction
6240^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6241
6242Syntax:
6243"""""""
6244
6245::
6246
6247 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6248 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6249
6250 <clause> := catch <type> <value>
6251 <clause> := filter <array constant type> <array constant>
6252
6253Overview:
6254"""""""""
6255
6256The '``landingpad``' instruction is used by `LLVM's exception handling
6257system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006258is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006259code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6260defines values supplied by the personality function (``pers_fn``) upon
6261re-entry to the function. The ``resultval`` has the type ``resultty``.
6262
6263Arguments:
6264""""""""""
6265
6266This instruction takes a ``pers_fn`` value. This is the personality
6267function associated with the unwinding mechanism. The optional
6268``cleanup`` flag indicates that the landing pad block is a cleanup.
6269
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006270A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006271contains the global variable representing the "type" that may be caught
6272or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6273clause takes an array constant as its argument. Use
6274"``[0 x i8**] undef``" for a filter which cannot throw. The
6275'``landingpad``' instruction must contain *at least* one ``clause`` or
6276the ``cleanup`` flag.
6277
6278Semantics:
6279""""""""""
6280
6281The '``landingpad``' instruction defines the values which are set by the
6282personality function (``pers_fn``) upon re-entry to the function, and
6283therefore the "result type" of the ``landingpad`` instruction. As with
6284calling conventions, how the personality function results are
6285represented in LLVM IR is target specific.
6286
6287The clauses are applied in order from top to bottom. If two
6288``landingpad`` instructions are merged together through inlining, the
6289clauses from the calling function are appended to the list of clauses.
6290When the call stack is being unwound due to an exception being thrown,
6291the exception is compared against each ``clause`` in turn. If it doesn't
6292match any of the clauses, and the ``cleanup`` flag is not set, then
6293unwinding continues further up the call stack.
6294
6295The ``landingpad`` instruction has several restrictions:
6296
6297- A landing pad block is a basic block which is the unwind destination
6298 of an '``invoke``' instruction.
6299- A landing pad block must have a '``landingpad``' instruction as its
6300 first non-PHI instruction.
6301- There can be only one '``landingpad``' instruction within the landing
6302 pad block.
6303- A basic block that is not a landing pad block may not include a
6304 '``landingpad``' instruction.
6305- All '``landingpad``' instructions in a function must have the same
6306 personality function.
6307
6308Example:
6309""""""""
6310
6311.. code-block:: llvm
6312
6313 ;; A landing pad which can catch an integer.
6314 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6315 catch i8** @_ZTIi
6316 ;; A landing pad that is a cleanup.
6317 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6318 cleanup
6319 ;; A landing pad which can catch an integer and can only throw a double.
6320 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6321 catch i8** @_ZTIi
6322 filter [1 x i8**] [@_ZTId]
6323
6324.. _intrinsics:
6325
6326Intrinsic Functions
6327===================
6328
6329LLVM supports the notion of an "intrinsic function". These functions
6330have well known names and semantics and are required to follow certain
6331restrictions. Overall, these intrinsics represent an extension mechanism
6332for the LLVM language that does not require changing all of the
6333transformations in LLVM when adding to the language (or the bitcode
6334reader/writer, the parser, etc...).
6335
6336Intrinsic function names must all start with an "``llvm.``" prefix. This
6337prefix is reserved in LLVM for intrinsic names; thus, function names may
6338not begin with this prefix. Intrinsic functions must always be external
6339functions: you cannot define the body of intrinsic functions. Intrinsic
6340functions may only be used in call or invoke instructions: it is illegal
6341to take the address of an intrinsic function. Additionally, because
6342intrinsic functions are part of the LLVM language, it is required if any
6343are added that they be documented here.
6344
6345Some intrinsic functions can be overloaded, i.e., the intrinsic
6346represents a family of functions that perform the same operation but on
6347different data types. Because LLVM can represent over 8 million
6348different integer types, overloading is used commonly to allow an
6349intrinsic function to operate on any integer type. One or more of the
6350argument types or the result type can be overloaded to accept any
6351integer type. Argument types may also be defined as exactly matching a
6352previous argument's type or the result type. This allows an intrinsic
6353function which accepts multiple arguments, but needs all of them to be
6354of the same type, to only be overloaded with respect to a single
6355argument or the result.
6356
6357Overloaded intrinsics will have the names of its overloaded argument
6358types encoded into its function name, each preceded by a period. Only
6359those types which are overloaded result in a name suffix. Arguments
6360whose type is matched against another type do not. For example, the
6361``llvm.ctpop`` function can take an integer of any width and returns an
6362integer of exactly the same integer width. This leads to a family of
6363functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6364``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6365overloaded, and only one type suffix is required. Because the argument's
6366type is matched against the return type, it does not require its own
6367name suffix.
6368
6369To learn how to add an intrinsic function, please see the `Extending
6370LLVM Guide <ExtendingLLVM.html>`_.
6371
6372.. _int_varargs:
6373
6374Variable Argument Handling Intrinsics
6375-------------------------------------
6376
6377Variable argument support is defined in LLVM with the
6378:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6379functions. These functions are related to the similarly named macros
6380defined in the ``<stdarg.h>`` header file.
6381
6382All of these functions operate on arguments that use a target-specific
6383value type "``va_list``". The LLVM assembly language reference manual
6384does not define what this type is, so all transformations should be
6385prepared to handle these functions regardless of the type used.
6386
6387This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6388variable argument handling intrinsic functions are used.
6389
6390.. code-block:: llvm
6391
6392 define i32 @test(i32 %X, ...) {
6393 ; Initialize variable argument processing
6394 %ap = alloca i8*
6395 %ap2 = bitcast i8** %ap to i8*
6396 call void @llvm.va_start(i8* %ap2)
6397
6398 ; Read a single integer argument
6399 %tmp = va_arg i8** %ap, i32
6400
6401 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6402 %aq = alloca i8*
6403 %aq2 = bitcast i8** %aq to i8*
6404 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6405 call void @llvm.va_end(i8* %aq2)
6406
6407 ; Stop processing of arguments.
6408 call void @llvm.va_end(i8* %ap2)
6409 ret i32 %tmp
6410 }
6411
6412 declare void @llvm.va_start(i8*)
6413 declare void @llvm.va_copy(i8*, i8*)
6414 declare void @llvm.va_end(i8*)
6415
6416.. _int_va_start:
6417
6418'``llvm.va_start``' Intrinsic
6419^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6420
6421Syntax:
6422"""""""
6423
6424::
6425
Nick Lewycky04f6de02013-09-11 22:04:52 +00006426 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006427
6428Overview:
6429"""""""""
6430
6431The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6432subsequent use by ``va_arg``.
6433
6434Arguments:
6435""""""""""
6436
6437The argument is a pointer to a ``va_list`` element to initialize.
6438
6439Semantics:
6440""""""""""
6441
6442The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6443available in C. In a target-dependent way, it initializes the
6444``va_list`` element to which the argument points, so that the next call
6445to ``va_arg`` will produce the first variable argument passed to the
6446function. Unlike the C ``va_start`` macro, this intrinsic does not need
6447to know the last argument of the function as the compiler can figure
6448that out.
6449
6450'``llvm.va_end``' Intrinsic
6451^^^^^^^^^^^^^^^^^^^^^^^^^^^
6452
6453Syntax:
6454"""""""
6455
6456::
6457
6458 declare void @llvm.va_end(i8* <arglist>)
6459
6460Overview:
6461"""""""""
6462
6463The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6464initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6465
6466Arguments:
6467""""""""""
6468
6469The argument is a pointer to a ``va_list`` to destroy.
6470
6471Semantics:
6472""""""""""
6473
6474The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6475available in C. In a target-dependent way, it destroys the ``va_list``
6476element to which the argument points. Calls to
6477:ref:`llvm.va_start <int_va_start>` and
6478:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6479``llvm.va_end``.
6480
6481.. _int_va_copy:
6482
6483'``llvm.va_copy``' Intrinsic
6484^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6485
6486Syntax:
6487"""""""
6488
6489::
6490
6491 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6492
6493Overview:
6494"""""""""
6495
6496The '``llvm.va_copy``' intrinsic copies the current argument position
6497from the source argument list to the destination argument list.
6498
6499Arguments:
6500""""""""""
6501
6502The first argument is a pointer to a ``va_list`` element to initialize.
6503The second argument is a pointer to a ``va_list`` element to copy from.
6504
6505Semantics:
6506""""""""""
6507
6508The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6509available in C. In a target-dependent way, it copies the source
6510``va_list`` element into the destination ``va_list`` element. This
6511intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6512arbitrarily complex and require, for example, memory allocation.
6513
6514Accurate Garbage Collection Intrinsics
6515--------------------------------------
6516
6517LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6518(GC) requires the implementation and generation of these intrinsics.
6519These intrinsics allow identification of :ref:`GC roots on the
6520stack <int_gcroot>`, as well as garbage collector implementations that
6521require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6522Front-ends for type-safe garbage collected languages should generate
6523these intrinsics to make use of the LLVM garbage collectors. For more
6524details, see `Accurate Garbage Collection with
6525LLVM <GarbageCollection.html>`_.
6526
6527The garbage collection intrinsics only operate on objects in the generic
6528address space (address space zero).
6529
6530.. _int_gcroot:
6531
6532'``llvm.gcroot``' Intrinsic
6533^^^^^^^^^^^^^^^^^^^^^^^^^^^
6534
6535Syntax:
6536"""""""
6537
6538::
6539
6540 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6541
6542Overview:
6543"""""""""
6544
6545The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6546the code generator, and allows some metadata to be associated with it.
6547
6548Arguments:
6549""""""""""
6550
6551The first argument specifies the address of a stack object that contains
6552the root pointer. The second pointer (which must be either a constant or
6553a global value address) contains the meta-data to be associated with the
6554root.
6555
6556Semantics:
6557""""""""""
6558
6559At runtime, a call to this intrinsic stores a null pointer into the
6560"ptrloc" location. At compile-time, the code generator generates
6561information to allow the runtime to find the pointer at GC safe points.
6562The '``llvm.gcroot``' intrinsic may only be used in a function which
6563:ref:`specifies a GC algorithm <gc>`.
6564
6565.. _int_gcread:
6566
6567'``llvm.gcread``' Intrinsic
6568^^^^^^^^^^^^^^^^^^^^^^^^^^^
6569
6570Syntax:
6571"""""""
6572
6573::
6574
6575 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6576
6577Overview:
6578"""""""""
6579
6580The '``llvm.gcread``' intrinsic identifies reads of references from heap
6581locations, allowing garbage collector implementations that require read
6582barriers.
6583
6584Arguments:
6585""""""""""
6586
6587The second argument is the address to read from, which should be an
6588address allocated from the garbage collector. The first object is a
6589pointer to the start of the referenced object, if needed by the language
6590runtime (otherwise null).
6591
6592Semantics:
6593""""""""""
6594
6595The '``llvm.gcread``' intrinsic has the same semantics as a load
6596instruction, but may be replaced with substantially more complex code by
6597the garbage collector runtime, as needed. The '``llvm.gcread``'
6598intrinsic may only be used in a function which :ref:`specifies a GC
6599algorithm <gc>`.
6600
6601.. _int_gcwrite:
6602
6603'``llvm.gcwrite``' Intrinsic
6604^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6605
6606Syntax:
6607"""""""
6608
6609::
6610
6611 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6612
6613Overview:
6614"""""""""
6615
6616The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6617locations, allowing garbage collector implementations that require write
6618barriers (such as generational or reference counting collectors).
6619
6620Arguments:
6621""""""""""
6622
6623The first argument is the reference to store, the second is the start of
6624the object to store it to, and the third is the address of the field of
6625Obj to store to. If the runtime does not require a pointer to the
6626object, Obj may be null.
6627
6628Semantics:
6629""""""""""
6630
6631The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6632instruction, but may be replaced with substantially more complex code by
6633the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6634intrinsic may only be used in a function which :ref:`specifies a GC
6635algorithm <gc>`.
6636
6637Code Generator Intrinsics
6638-------------------------
6639
6640These intrinsics are provided by LLVM to expose special features that
6641may only be implemented with code generator support.
6642
6643'``llvm.returnaddress``' Intrinsic
6644^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6645
6646Syntax:
6647"""""""
6648
6649::
6650
6651 declare i8 *@llvm.returnaddress(i32 <level>)
6652
6653Overview:
6654"""""""""
6655
6656The '``llvm.returnaddress``' intrinsic attempts to compute a
6657target-specific value indicating the return address of the current
6658function or one of its callers.
6659
6660Arguments:
6661""""""""""
6662
6663The argument to this intrinsic indicates which function to return the
6664address for. Zero indicates the calling function, one indicates its
6665caller, etc. The argument is **required** to be a constant integer
6666value.
6667
6668Semantics:
6669""""""""""
6670
6671The '``llvm.returnaddress``' intrinsic either returns a pointer
6672indicating the return address of the specified call frame, or zero if it
6673cannot be identified. The value returned by this intrinsic is likely to
6674be incorrect or 0 for arguments other than zero, so it should only be
6675used for debugging purposes.
6676
6677Note that calling this intrinsic does not prevent function inlining or
6678other aggressive transformations, so the value returned may not be that
6679of the obvious source-language caller.
6680
6681'``llvm.frameaddress``' Intrinsic
6682^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6683
6684Syntax:
6685"""""""
6686
6687::
6688
6689 declare i8* @llvm.frameaddress(i32 <level>)
6690
6691Overview:
6692"""""""""
6693
6694The '``llvm.frameaddress``' intrinsic attempts to return the
6695target-specific frame pointer value for the specified stack frame.
6696
6697Arguments:
6698""""""""""
6699
6700The argument to this intrinsic indicates which function to return the
6701frame pointer for. Zero indicates the calling function, one indicates
6702its caller, etc. The argument is **required** to be a constant integer
6703value.
6704
6705Semantics:
6706""""""""""
6707
6708The '``llvm.frameaddress``' intrinsic either returns a pointer
6709indicating the frame address of the specified call frame, or zero if it
6710cannot be identified. The value returned by this intrinsic is likely to
6711be incorrect or 0 for arguments other than zero, so it should only be
6712used for debugging purposes.
6713
6714Note that calling this intrinsic does not prevent function inlining or
6715other aggressive transformations, so the value returned may not be that
6716of the obvious source-language caller.
6717
6718.. _int_stacksave:
6719
6720'``llvm.stacksave``' Intrinsic
6721^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6722
6723Syntax:
6724"""""""
6725
6726::
6727
6728 declare i8* @llvm.stacksave()
6729
6730Overview:
6731"""""""""
6732
6733The '``llvm.stacksave``' intrinsic is used to remember the current state
6734of the function stack, for use with
6735:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6736implementing language features like scoped automatic variable sized
6737arrays in C99.
6738
6739Semantics:
6740""""""""""
6741
6742This intrinsic returns a opaque pointer value that can be passed to
6743:ref:`llvm.stackrestore <int_stackrestore>`. When an
6744``llvm.stackrestore`` intrinsic is executed with a value saved from
6745``llvm.stacksave``, it effectively restores the state of the stack to
6746the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6747practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6748were allocated after the ``llvm.stacksave`` was executed.
6749
6750.. _int_stackrestore:
6751
6752'``llvm.stackrestore``' Intrinsic
6753^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6754
6755Syntax:
6756"""""""
6757
6758::
6759
6760 declare void @llvm.stackrestore(i8* %ptr)
6761
6762Overview:
6763"""""""""
6764
6765The '``llvm.stackrestore``' intrinsic is used to restore the state of
6766the function stack to the state it was in when the corresponding
6767:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6768useful for implementing language features like scoped automatic variable
6769sized arrays in C99.
6770
6771Semantics:
6772""""""""""
6773
6774See the description for :ref:`llvm.stacksave <int_stacksave>`.
6775
6776'``llvm.prefetch``' Intrinsic
6777^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6778
6779Syntax:
6780"""""""
6781
6782::
6783
6784 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6785
6786Overview:
6787"""""""""
6788
6789The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6790insert a prefetch instruction if supported; otherwise, it is a noop.
6791Prefetches have no effect on the behavior of the program but can change
6792its performance characteristics.
6793
6794Arguments:
6795""""""""""
6796
6797``address`` is the address to be prefetched, ``rw`` is the specifier
6798determining if the fetch should be for a read (0) or write (1), and
6799``locality`` is a temporal locality specifier ranging from (0) - no
6800locality, to (3) - extremely local keep in cache. The ``cache type``
6801specifies whether the prefetch is performed on the data (1) or
6802instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6803arguments must be constant integers.
6804
6805Semantics:
6806""""""""""
6807
6808This intrinsic does not modify the behavior of the program. In
6809particular, prefetches cannot trap and do not produce a value. On
6810targets that support this intrinsic, the prefetch can provide hints to
6811the processor cache for better performance.
6812
6813'``llvm.pcmarker``' Intrinsic
6814^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6815
6816Syntax:
6817"""""""
6818
6819::
6820
6821 declare void @llvm.pcmarker(i32 <id>)
6822
6823Overview:
6824"""""""""
6825
6826The '``llvm.pcmarker``' intrinsic is a method to export a Program
6827Counter (PC) in a region of code to simulators and other tools. The
6828method is target specific, but it is expected that the marker will use
6829exported symbols to transmit the PC of the marker. The marker makes no
6830guarantees that it will remain with any specific instruction after
6831optimizations. It is possible that the presence of a marker will inhibit
6832optimizations. The intended use is to be inserted after optimizations to
6833allow correlations of simulation runs.
6834
6835Arguments:
6836""""""""""
6837
6838``id`` is a numerical id identifying the marker.
6839
6840Semantics:
6841""""""""""
6842
6843This intrinsic does not modify the behavior of the program. Backends
6844that do not support this intrinsic may ignore it.
6845
6846'``llvm.readcyclecounter``' Intrinsic
6847^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6848
6849Syntax:
6850"""""""
6851
6852::
6853
6854 declare i64 @llvm.readcyclecounter()
6855
6856Overview:
6857"""""""""
6858
6859The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6860counter register (or similar low latency, high accuracy clocks) on those
6861targets that support it. On X86, it should map to RDTSC. On Alpha, it
6862should map to RPCC. As the backing counters overflow quickly (on the
6863order of 9 seconds on alpha), this should only be used for small
6864timings.
6865
6866Semantics:
6867""""""""""
6868
6869When directly supported, reading the cycle counter should not modify any
6870memory. Implementations are allowed to either return a application
6871specific value or a system wide value. On backends without support, this
6872is lowered to a constant 0.
6873
Tim Northoverbc933082013-05-23 19:11:20 +00006874Note that runtime support may be conditional on the privilege-level code is
6875running at and the host platform.
6876
Sean Silvab084af42012-12-07 10:36:55 +00006877Standard C Library Intrinsics
6878-----------------------------
6879
6880LLVM provides intrinsics for a few important standard C library
6881functions. These intrinsics allow source-language front-ends to pass
6882information about the alignment of the pointer arguments to the code
6883generator, providing opportunity for more efficient code generation.
6884
6885.. _int_memcpy:
6886
6887'``llvm.memcpy``' Intrinsic
6888^^^^^^^^^^^^^^^^^^^^^^^^^^^
6889
6890Syntax:
6891"""""""
6892
6893This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6894integer bit width and for different address spaces. Not all targets
6895support all bit widths however.
6896
6897::
6898
6899 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6900 i32 <len>, i32 <align>, i1 <isvolatile>)
6901 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6902 i64 <len>, i32 <align>, i1 <isvolatile>)
6903
6904Overview:
6905"""""""""
6906
6907The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6908source location to the destination location.
6909
6910Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6911intrinsics do not return a value, takes extra alignment/isvolatile
6912arguments and the pointers can be in specified address spaces.
6913
6914Arguments:
6915""""""""""
6916
6917The first argument is a pointer to the destination, the second is a
6918pointer to the source. The third argument is an integer argument
6919specifying the number of bytes to copy, the fourth argument is the
6920alignment of the source and destination locations, and the fifth is a
6921boolean indicating a volatile access.
6922
6923If the call to this intrinsic has an alignment value that is not 0 or 1,
6924then the caller guarantees that both the source and destination pointers
6925are aligned to that boundary.
6926
6927If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6928a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6929very cleanly specified and it is unwise to depend on it.
6930
6931Semantics:
6932""""""""""
6933
6934The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6935source location to the destination location, which are not allowed to
6936overlap. It copies "len" bytes of memory over. If the argument is known
6937to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00006938argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00006939
6940'``llvm.memmove``' Intrinsic
6941^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6942
6943Syntax:
6944"""""""
6945
6946This is an overloaded intrinsic. You can use llvm.memmove on any integer
6947bit width and for different address space. Not all targets support all
6948bit widths however.
6949
6950::
6951
6952 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6953 i32 <len>, i32 <align>, i1 <isvolatile>)
6954 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6955 i64 <len>, i32 <align>, i1 <isvolatile>)
6956
6957Overview:
6958"""""""""
6959
6960The '``llvm.memmove.*``' intrinsics move a block of memory from the
6961source location to the destination location. It is similar to the
6962'``llvm.memcpy``' intrinsic but allows the two memory locations to
6963overlap.
6964
6965Note that, unlike the standard libc function, the ``llvm.memmove.*``
6966intrinsics do not return a value, takes extra alignment/isvolatile
6967arguments and the pointers can be in specified address spaces.
6968
6969Arguments:
6970""""""""""
6971
6972The first argument is a pointer to the destination, the second is a
6973pointer to the source. The third argument is an integer argument
6974specifying the number of bytes to copy, the fourth argument is the
6975alignment of the source and destination locations, and the fifth is a
6976boolean indicating a volatile access.
6977
6978If the call to this intrinsic has an alignment value that is not 0 or 1,
6979then the caller guarantees that the source and destination pointers are
6980aligned to that boundary.
6981
6982If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6983is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6984not very cleanly specified and it is unwise to depend on it.
6985
6986Semantics:
6987""""""""""
6988
6989The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6990source location to the destination location, which may overlap. It
6991copies "len" bytes of memory over. If the argument is known to be
6992aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00006993otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00006994
6995'``llvm.memset.*``' Intrinsics
6996^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6997
6998Syntax:
6999"""""""
7000
7001This is an overloaded intrinsic. You can use llvm.memset on any integer
7002bit width and for different address spaces. However, not all targets
7003support all bit widths.
7004
7005::
7006
7007 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7008 i32 <len>, i32 <align>, i1 <isvolatile>)
7009 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7010 i64 <len>, i32 <align>, i1 <isvolatile>)
7011
7012Overview:
7013"""""""""
7014
7015The '``llvm.memset.*``' intrinsics fill a block of memory with a
7016particular byte value.
7017
7018Note that, unlike the standard libc function, the ``llvm.memset``
7019intrinsic does not return a value and takes extra alignment/volatile
7020arguments. Also, the destination can be in an arbitrary address space.
7021
7022Arguments:
7023""""""""""
7024
7025The first argument is a pointer to the destination to fill, the second
7026is the byte value with which to fill it, the third argument is an
7027integer argument specifying the number of bytes to fill, and the fourth
7028argument is the known alignment of the destination location.
7029
7030If the call to this intrinsic has an alignment value that is not 0 or 1,
7031then the caller guarantees that the destination pointer is aligned to
7032that boundary.
7033
7034If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7035a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7036very cleanly specified and it is unwise to depend on it.
7037
7038Semantics:
7039""""""""""
7040
7041The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7042at the destination location. If the argument is known to be aligned to
7043some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007044it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007045
7046'``llvm.sqrt.*``' Intrinsic
7047^^^^^^^^^^^^^^^^^^^^^^^^^^^
7048
7049Syntax:
7050"""""""
7051
7052This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7053floating point or vector of floating point type. Not all targets support
7054all types however.
7055
7056::
7057
7058 declare float @llvm.sqrt.f32(float %Val)
7059 declare double @llvm.sqrt.f64(double %Val)
7060 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7061 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7062 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7063
7064Overview:
7065"""""""""
7066
7067The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7068returning the same value as the libm '``sqrt``' functions would. Unlike
7069``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7070negative numbers other than -0.0 (which allows for better optimization,
7071because there is no need to worry about errno being set).
7072``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7073
7074Arguments:
7075""""""""""
7076
7077The argument and return value are floating point numbers of the same
7078type.
7079
7080Semantics:
7081""""""""""
7082
7083This function returns the sqrt of the specified operand if it is a
7084nonnegative floating point number.
7085
7086'``llvm.powi.*``' Intrinsic
7087^^^^^^^^^^^^^^^^^^^^^^^^^^^
7088
7089Syntax:
7090"""""""
7091
7092This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7093floating point or vector of floating point type. Not all targets support
7094all types however.
7095
7096::
7097
7098 declare float @llvm.powi.f32(float %Val, i32 %power)
7099 declare double @llvm.powi.f64(double %Val, i32 %power)
7100 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7101 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7102 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7103
7104Overview:
7105"""""""""
7106
7107The '``llvm.powi.*``' intrinsics return the first operand raised to the
7108specified (positive or negative) power. The order of evaluation of
7109multiplications is not defined. When a vector of floating point type is
7110used, the second argument remains a scalar integer value.
7111
7112Arguments:
7113""""""""""
7114
7115The second argument is an integer power, and the first is a value to
7116raise to that power.
7117
7118Semantics:
7119""""""""""
7120
7121This function returns the first value raised to the second power with an
7122unspecified sequence of rounding operations.
7123
7124'``llvm.sin.*``' Intrinsic
7125^^^^^^^^^^^^^^^^^^^^^^^^^^
7126
7127Syntax:
7128"""""""
7129
7130This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7131floating point or vector of floating point type. Not all targets support
7132all types however.
7133
7134::
7135
7136 declare float @llvm.sin.f32(float %Val)
7137 declare double @llvm.sin.f64(double %Val)
7138 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7139 declare fp128 @llvm.sin.f128(fp128 %Val)
7140 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7141
7142Overview:
7143"""""""""
7144
7145The '``llvm.sin.*``' intrinsics return the sine of the operand.
7146
7147Arguments:
7148""""""""""
7149
7150The argument and return value are floating point numbers of the same
7151type.
7152
7153Semantics:
7154""""""""""
7155
7156This function returns the sine of the specified operand, returning the
7157same values as the libm ``sin`` functions would, and handles error
7158conditions in the same way.
7159
7160'``llvm.cos.*``' Intrinsic
7161^^^^^^^^^^^^^^^^^^^^^^^^^^
7162
7163Syntax:
7164"""""""
7165
7166This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7167floating point or vector of floating point type. Not all targets support
7168all types however.
7169
7170::
7171
7172 declare float @llvm.cos.f32(float %Val)
7173 declare double @llvm.cos.f64(double %Val)
7174 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7175 declare fp128 @llvm.cos.f128(fp128 %Val)
7176 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7177
7178Overview:
7179"""""""""
7180
7181The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7182
7183Arguments:
7184""""""""""
7185
7186The argument and return value are floating point numbers of the same
7187type.
7188
7189Semantics:
7190""""""""""
7191
7192This function returns the cosine of the specified operand, returning the
7193same values as the libm ``cos`` functions would, and handles error
7194conditions in the same way.
7195
7196'``llvm.pow.*``' Intrinsic
7197^^^^^^^^^^^^^^^^^^^^^^^^^^
7198
7199Syntax:
7200"""""""
7201
7202This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7203floating point or vector of floating point type. Not all targets support
7204all types however.
7205
7206::
7207
7208 declare float @llvm.pow.f32(float %Val, float %Power)
7209 declare double @llvm.pow.f64(double %Val, double %Power)
7210 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7211 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7212 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7213
7214Overview:
7215"""""""""
7216
7217The '``llvm.pow.*``' intrinsics return the first operand raised to the
7218specified (positive or negative) power.
7219
7220Arguments:
7221""""""""""
7222
7223The second argument is a floating point power, and the first is a value
7224to raise to that power.
7225
7226Semantics:
7227""""""""""
7228
7229This function returns the first value raised to the second power,
7230returning the same values as the libm ``pow`` functions would, and
7231handles error conditions in the same way.
7232
7233'``llvm.exp.*``' Intrinsic
7234^^^^^^^^^^^^^^^^^^^^^^^^^^
7235
7236Syntax:
7237"""""""
7238
7239This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7240floating point or vector of floating point type. Not all targets support
7241all types however.
7242
7243::
7244
7245 declare float @llvm.exp.f32(float %Val)
7246 declare double @llvm.exp.f64(double %Val)
7247 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7248 declare fp128 @llvm.exp.f128(fp128 %Val)
7249 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7250
7251Overview:
7252"""""""""
7253
7254The '``llvm.exp.*``' intrinsics perform the exp function.
7255
7256Arguments:
7257""""""""""
7258
7259The argument and return value are floating point numbers of the same
7260type.
7261
7262Semantics:
7263""""""""""
7264
7265This function returns the same values as the libm ``exp`` functions
7266would, and handles error conditions in the same way.
7267
7268'``llvm.exp2.*``' Intrinsic
7269^^^^^^^^^^^^^^^^^^^^^^^^^^^
7270
7271Syntax:
7272"""""""
7273
7274This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7275floating point or vector of floating point type. Not all targets support
7276all types however.
7277
7278::
7279
7280 declare float @llvm.exp2.f32(float %Val)
7281 declare double @llvm.exp2.f64(double %Val)
7282 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7283 declare fp128 @llvm.exp2.f128(fp128 %Val)
7284 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7285
7286Overview:
7287"""""""""
7288
7289The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7290
7291Arguments:
7292""""""""""
7293
7294The argument and return value are floating point numbers of the same
7295type.
7296
7297Semantics:
7298""""""""""
7299
7300This function returns the same values as the libm ``exp2`` functions
7301would, and handles error conditions in the same way.
7302
7303'``llvm.log.*``' Intrinsic
7304^^^^^^^^^^^^^^^^^^^^^^^^^^
7305
7306Syntax:
7307"""""""
7308
7309This is an overloaded intrinsic. You can use ``llvm.log`` on any
7310floating point or vector of floating point type. Not all targets support
7311all types however.
7312
7313::
7314
7315 declare float @llvm.log.f32(float %Val)
7316 declare double @llvm.log.f64(double %Val)
7317 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7318 declare fp128 @llvm.log.f128(fp128 %Val)
7319 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7320
7321Overview:
7322"""""""""
7323
7324The '``llvm.log.*``' intrinsics perform the log function.
7325
7326Arguments:
7327""""""""""
7328
7329The argument and return value are floating point numbers of the same
7330type.
7331
7332Semantics:
7333""""""""""
7334
7335This function returns the same values as the libm ``log`` functions
7336would, and handles error conditions in the same way.
7337
7338'``llvm.log10.*``' Intrinsic
7339^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7340
7341Syntax:
7342"""""""
7343
7344This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7345floating point or vector of floating point type. Not all targets support
7346all types however.
7347
7348::
7349
7350 declare float @llvm.log10.f32(float %Val)
7351 declare double @llvm.log10.f64(double %Val)
7352 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7353 declare fp128 @llvm.log10.f128(fp128 %Val)
7354 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7355
7356Overview:
7357"""""""""
7358
7359The '``llvm.log10.*``' intrinsics perform the log10 function.
7360
7361Arguments:
7362""""""""""
7363
7364The argument and return value are floating point numbers of the same
7365type.
7366
7367Semantics:
7368""""""""""
7369
7370This function returns the same values as the libm ``log10`` functions
7371would, and handles error conditions in the same way.
7372
7373'``llvm.log2.*``' Intrinsic
7374^^^^^^^^^^^^^^^^^^^^^^^^^^^
7375
7376Syntax:
7377"""""""
7378
7379This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7380floating point or vector of floating point type. Not all targets support
7381all types however.
7382
7383::
7384
7385 declare float @llvm.log2.f32(float %Val)
7386 declare double @llvm.log2.f64(double %Val)
7387 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7388 declare fp128 @llvm.log2.f128(fp128 %Val)
7389 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7390
7391Overview:
7392"""""""""
7393
7394The '``llvm.log2.*``' intrinsics perform the log2 function.
7395
7396Arguments:
7397""""""""""
7398
7399The argument and return value are floating point numbers of the same
7400type.
7401
7402Semantics:
7403""""""""""
7404
7405This function returns the same values as the libm ``log2`` functions
7406would, and handles error conditions in the same way.
7407
7408'``llvm.fma.*``' Intrinsic
7409^^^^^^^^^^^^^^^^^^^^^^^^^^
7410
7411Syntax:
7412"""""""
7413
7414This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7415floating point or vector of floating point type. Not all targets support
7416all types however.
7417
7418::
7419
7420 declare float @llvm.fma.f32(float %a, float %b, float %c)
7421 declare double @llvm.fma.f64(double %a, double %b, double %c)
7422 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7423 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7424 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7425
7426Overview:
7427"""""""""
7428
7429The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7430operation.
7431
7432Arguments:
7433""""""""""
7434
7435The argument and return value are floating point numbers of the same
7436type.
7437
7438Semantics:
7439""""""""""
7440
7441This function returns the same values as the libm ``fma`` functions
7442would.
7443
7444'``llvm.fabs.*``' Intrinsic
7445^^^^^^^^^^^^^^^^^^^^^^^^^^^
7446
7447Syntax:
7448"""""""
7449
7450This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7451floating point or vector of floating point type. Not all targets support
7452all types however.
7453
7454::
7455
7456 declare float @llvm.fabs.f32(float %Val)
7457 declare double @llvm.fabs.f64(double %Val)
7458 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7459 declare fp128 @llvm.fabs.f128(fp128 %Val)
7460 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7461
7462Overview:
7463"""""""""
7464
7465The '``llvm.fabs.*``' intrinsics return the absolute value of the
7466operand.
7467
7468Arguments:
7469""""""""""
7470
7471The argument and return value are floating point numbers of the same
7472type.
7473
7474Semantics:
7475""""""""""
7476
7477This function returns the same values as the libm ``fabs`` functions
7478would, and handles error conditions in the same way.
7479
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00007480'``llvm.copysign.*``' Intrinsic
7481^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7482
7483Syntax:
7484"""""""
7485
7486This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
7487floating point or vector of floating point type. Not all targets support
7488all types however.
7489
7490::
7491
7492 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
7493 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
7494 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
7495 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
7496 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
7497
7498Overview:
7499"""""""""
7500
7501The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
7502first operand and the sign of the second operand.
7503
7504Arguments:
7505""""""""""
7506
7507The arguments and return value are floating point numbers of the same
7508type.
7509
7510Semantics:
7511""""""""""
7512
7513This function returns the same values as the libm ``copysign``
7514functions would, and handles error conditions in the same way.
7515
Sean Silvab084af42012-12-07 10:36:55 +00007516'``llvm.floor.*``' Intrinsic
7517^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7518
7519Syntax:
7520"""""""
7521
7522This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7523floating point or vector of floating point type. Not all targets support
7524all types however.
7525
7526::
7527
7528 declare float @llvm.floor.f32(float %Val)
7529 declare double @llvm.floor.f64(double %Val)
7530 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7531 declare fp128 @llvm.floor.f128(fp128 %Val)
7532 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7533
7534Overview:
7535"""""""""
7536
7537The '``llvm.floor.*``' intrinsics return the floor of the operand.
7538
7539Arguments:
7540""""""""""
7541
7542The argument and return value are floating point numbers of the same
7543type.
7544
7545Semantics:
7546""""""""""
7547
7548This function returns the same values as the libm ``floor`` functions
7549would, and handles error conditions in the same way.
7550
7551'``llvm.ceil.*``' Intrinsic
7552^^^^^^^^^^^^^^^^^^^^^^^^^^^
7553
7554Syntax:
7555"""""""
7556
7557This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7558floating point or vector of floating point type. Not all targets support
7559all types however.
7560
7561::
7562
7563 declare float @llvm.ceil.f32(float %Val)
7564 declare double @llvm.ceil.f64(double %Val)
7565 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7566 declare fp128 @llvm.ceil.f128(fp128 %Val)
7567 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7568
7569Overview:
7570"""""""""
7571
7572The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7573
7574Arguments:
7575""""""""""
7576
7577The argument and return value are floating point numbers of the same
7578type.
7579
7580Semantics:
7581""""""""""
7582
7583This function returns the same values as the libm ``ceil`` functions
7584would, and handles error conditions in the same way.
7585
7586'``llvm.trunc.*``' Intrinsic
7587^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7588
7589Syntax:
7590"""""""
7591
7592This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7593floating point or vector of floating point type. Not all targets support
7594all types however.
7595
7596::
7597
7598 declare float @llvm.trunc.f32(float %Val)
7599 declare double @llvm.trunc.f64(double %Val)
7600 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7601 declare fp128 @llvm.trunc.f128(fp128 %Val)
7602 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7603
7604Overview:
7605"""""""""
7606
7607The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7608nearest integer not larger in magnitude than the operand.
7609
7610Arguments:
7611""""""""""
7612
7613The argument and return value are floating point numbers of the same
7614type.
7615
7616Semantics:
7617""""""""""
7618
7619This function returns the same values as the libm ``trunc`` functions
7620would, and handles error conditions in the same way.
7621
7622'``llvm.rint.*``' Intrinsic
7623^^^^^^^^^^^^^^^^^^^^^^^^^^^
7624
7625Syntax:
7626"""""""
7627
7628This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7629floating point or vector of floating point type. Not all targets support
7630all types however.
7631
7632::
7633
7634 declare float @llvm.rint.f32(float %Val)
7635 declare double @llvm.rint.f64(double %Val)
7636 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7637 declare fp128 @llvm.rint.f128(fp128 %Val)
7638 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7639
7640Overview:
7641"""""""""
7642
7643The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7644nearest integer. It may raise an inexact floating-point exception if the
7645operand isn't an integer.
7646
7647Arguments:
7648""""""""""
7649
7650The argument and return value are floating point numbers of the same
7651type.
7652
7653Semantics:
7654""""""""""
7655
7656This function returns the same values as the libm ``rint`` functions
7657would, and handles error conditions in the same way.
7658
7659'``llvm.nearbyint.*``' Intrinsic
7660^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7661
7662Syntax:
7663"""""""
7664
7665This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7666floating point or vector of floating point type. Not all targets support
7667all types however.
7668
7669::
7670
7671 declare float @llvm.nearbyint.f32(float %Val)
7672 declare double @llvm.nearbyint.f64(double %Val)
7673 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7674 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7675 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7676
7677Overview:
7678"""""""""
7679
7680The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7681nearest integer.
7682
7683Arguments:
7684""""""""""
7685
7686The argument and return value are floating point numbers of the same
7687type.
7688
7689Semantics:
7690""""""""""
7691
7692This function returns the same values as the libm ``nearbyint``
7693functions would, and handles error conditions in the same way.
7694
Hal Finkel171817e2013-08-07 22:49:12 +00007695'``llvm.round.*``' Intrinsic
7696^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7697
7698Syntax:
7699"""""""
7700
7701This is an overloaded intrinsic. You can use ``llvm.round`` on any
7702floating point or vector of floating point type. Not all targets support
7703all types however.
7704
7705::
7706
7707 declare float @llvm.round.f32(float %Val)
7708 declare double @llvm.round.f64(double %Val)
7709 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
7710 declare fp128 @llvm.round.f128(fp128 %Val)
7711 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
7712
7713Overview:
7714"""""""""
7715
7716The '``llvm.round.*``' intrinsics returns the operand rounded to the
7717nearest integer.
7718
7719Arguments:
7720""""""""""
7721
7722The argument and return value are floating point numbers of the same
7723type.
7724
7725Semantics:
7726""""""""""
7727
7728This function returns the same values as the libm ``round``
7729functions would, and handles error conditions in the same way.
7730
Sean Silvab084af42012-12-07 10:36:55 +00007731Bit Manipulation Intrinsics
7732---------------------------
7733
7734LLVM provides intrinsics for a few important bit manipulation
7735operations. These allow efficient code generation for some algorithms.
7736
7737'``llvm.bswap.*``' Intrinsics
7738^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7739
7740Syntax:
7741"""""""
7742
7743This is an overloaded intrinsic function. You can use bswap on any
7744integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7745
7746::
7747
7748 declare i16 @llvm.bswap.i16(i16 <id>)
7749 declare i32 @llvm.bswap.i32(i32 <id>)
7750 declare i64 @llvm.bswap.i64(i64 <id>)
7751
7752Overview:
7753"""""""""
7754
7755The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7756values with an even number of bytes (positive multiple of 16 bits).
7757These are useful for performing operations on data that is not in the
7758target's native byte order.
7759
7760Semantics:
7761""""""""""
7762
7763The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7764and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7765intrinsic returns an i32 value that has the four bytes of the input i32
7766swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7767returned i32 will have its bytes in 3, 2, 1, 0 order. The
7768``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7769concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7770respectively).
7771
7772'``llvm.ctpop.*``' Intrinsic
7773^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7774
7775Syntax:
7776"""""""
7777
7778This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7779bit width, or on any vector with integer elements. Not all targets
7780support all bit widths or vector types, however.
7781
7782::
7783
7784 declare i8 @llvm.ctpop.i8(i8 <src>)
7785 declare i16 @llvm.ctpop.i16(i16 <src>)
7786 declare i32 @llvm.ctpop.i32(i32 <src>)
7787 declare i64 @llvm.ctpop.i64(i64 <src>)
7788 declare i256 @llvm.ctpop.i256(i256 <src>)
7789 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7790
7791Overview:
7792"""""""""
7793
7794The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7795in a value.
7796
7797Arguments:
7798""""""""""
7799
7800The only argument is the value to be counted. The argument may be of any
7801integer type, or a vector with integer elements. The return type must
7802match the argument type.
7803
7804Semantics:
7805""""""""""
7806
7807The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7808each element of a vector.
7809
7810'``llvm.ctlz.*``' Intrinsic
7811^^^^^^^^^^^^^^^^^^^^^^^^^^^
7812
7813Syntax:
7814"""""""
7815
7816This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7817integer bit width, or any vector whose elements are integers. Not all
7818targets support all bit widths or vector types, however.
7819
7820::
7821
7822 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7823 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7824 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7825 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7826 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7827 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7828
7829Overview:
7830"""""""""
7831
7832The '``llvm.ctlz``' family of intrinsic functions counts the number of
7833leading zeros in a variable.
7834
7835Arguments:
7836""""""""""
7837
7838The first argument is the value to be counted. This argument may be of
7839any integer type, or a vectory with integer element type. The return
7840type must match the first argument type.
7841
7842The second argument must be a constant and is a flag to indicate whether
7843the intrinsic should ensure that a zero as the first argument produces a
7844defined result. Historically some architectures did not provide a
7845defined result for zero values as efficiently, and many algorithms are
7846now predicated on avoiding zero-value inputs.
7847
7848Semantics:
7849""""""""""
7850
7851The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7852zeros in a variable, or within each element of the vector. If
7853``src == 0`` then the result is the size in bits of the type of ``src``
7854if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7855``llvm.ctlz(i32 2) = 30``.
7856
7857'``llvm.cttz.*``' Intrinsic
7858^^^^^^^^^^^^^^^^^^^^^^^^^^^
7859
7860Syntax:
7861"""""""
7862
7863This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7864integer bit width, or any vector of integer elements. Not all targets
7865support all bit widths or vector types, however.
7866
7867::
7868
7869 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7870 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7871 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7872 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7873 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7874 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7875
7876Overview:
7877"""""""""
7878
7879The '``llvm.cttz``' family of intrinsic functions counts the number of
7880trailing zeros.
7881
7882Arguments:
7883""""""""""
7884
7885The first argument is the value to be counted. This argument may be of
7886any integer type, or a vectory with integer element type. The return
7887type must match the first argument type.
7888
7889The second argument must be a constant and is a flag to indicate whether
7890the intrinsic should ensure that a zero as the first argument produces a
7891defined result. Historically some architectures did not provide a
7892defined result for zero values as efficiently, and many algorithms are
7893now predicated on avoiding zero-value inputs.
7894
7895Semantics:
7896""""""""""
7897
7898The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7899zeros in a variable, or within each element of a vector. If ``src == 0``
7900then the result is the size in bits of the type of ``src`` if
7901``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7902``llvm.cttz(2) = 1``.
7903
7904Arithmetic with Overflow Intrinsics
7905-----------------------------------
7906
7907LLVM provides intrinsics for some arithmetic with overflow operations.
7908
7909'``llvm.sadd.with.overflow.*``' Intrinsics
7910^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7911
7912Syntax:
7913"""""""
7914
7915This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7916on any integer bit width.
7917
7918::
7919
7920 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7921 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7922 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7923
7924Overview:
7925"""""""""
7926
7927The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7928a signed addition of the two arguments, and indicate whether an overflow
7929occurred during the signed summation.
7930
7931Arguments:
7932""""""""""
7933
7934The arguments (%a and %b) and the first element of the result structure
7935may be of integer types of any bit width, but they must have the same
7936bit width. The second element of the result structure must be of type
7937``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7938addition.
7939
7940Semantics:
7941""""""""""
7942
7943The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007944a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00007945first element of which is the signed summation, and the second element
7946of which is a bit specifying if the signed summation resulted in an
7947overflow.
7948
7949Examples:
7950"""""""""
7951
7952.. code-block:: llvm
7953
7954 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7955 %sum = extractvalue {i32, i1} %res, 0
7956 %obit = extractvalue {i32, i1} %res, 1
7957 br i1 %obit, label %overflow, label %normal
7958
7959'``llvm.uadd.with.overflow.*``' Intrinsics
7960^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7961
7962Syntax:
7963"""""""
7964
7965This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7966on any integer bit width.
7967
7968::
7969
7970 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7971 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7972 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7973
7974Overview:
7975"""""""""
7976
7977The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7978an unsigned addition of the two arguments, and indicate whether a carry
7979occurred during the unsigned summation.
7980
7981Arguments:
7982""""""""""
7983
7984The arguments (%a and %b) and the first element of the result structure
7985may be of integer types of any bit width, but they must have the same
7986bit width. The second element of the result structure must be of type
7987``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7988addition.
7989
7990Semantics:
7991""""""""""
7992
7993The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007994an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00007995first element of which is the sum, and the second element of which is a
7996bit specifying if the unsigned summation resulted in a carry.
7997
7998Examples:
7999"""""""""
8000
8001.. code-block:: llvm
8002
8003 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8004 %sum = extractvalue {i32, i1} %res, 0
8005 %obit = extractvalue {i32, i1} %res, 1
8006 br i1 %obit, label %carry, label %normal
8007
8008'``llvm.ssub.with.overflow.*``' Intrinsics
8009^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8010
8011Syntax:
8012"""""""
8013
8014This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8015on any integer bit width.
8016
8017::
8018
8019 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8020 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8021 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8022
8023Overview:
8024"""""""""
8025
8026The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8027a signed subtraction of the two arguments, and indicate whether an
8028overflow occurred during the signed subtraction.
8029
8030Arguments:
8031""""""""""
8032
8033The arguments (%a and %b) and the first element of the result structure
8034may be of integer types of any bit width, but they must have the same
8035bit width. The second element of the result structure must be of type
8036``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8037subtraction.
8038
8039Semantics:
8040""""""""""
8041
8042The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008043a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008044first element of which is the subtraction, and the second element of
8045which is a bit specifying if the signed subtraction resulted in an
8046overflow.
8047
8048Examples:
8049"""""""""
8050
8051.. code-block:: llvm
8052
8053 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8054 %sum = extractvalue {i32, i1} %res, 0
8055 %obit = extractvalue {i32, i1} %res, 1
8056 br i1 %obit, label %overflow, label %normal
8057
8058'``llvm.usub.with.overflow.*``' Intrinsics
8059^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8060
8061Syntax:
8062"""""""
8063
8064This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8065on any integer bit width.
8066
8067::
8068
8069 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8070 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8071 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8072
8073Overview:
8074"""""""""
8075
8076The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8077an unsigned subtraction of the two arguments, and indicate whether an
8078overflow occurred during the unsigned subtraction.
8079
8080Arguments:
8081""""""""""
8082
8083The arguments (%a and %b) and the first element of the result structure
8084may be of integer types of any bit width, but they must have the same
8085bit width. The second element of the result structure must be of type
8086``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8087subtraction.
8088
8089Semantics:
8090""""""""""
8091
8092The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008093an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008094the first element of which is the subtraction, and the second element of
8095which is a bit specifying if the unsigned subtraction resulted in an
8096overflow.
8097
8098Examples:
8099"""""""""
8100
8101.. code-block:: llvm
8102
8103 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8104 %sum = extractvalue {i32, i1} %res, 0
8105 %obit = extractvalue {i32, i1} %res, 1
8106 br i1 %obit, label %overflow, label %normal
8107
8108'``llvm.smul.with.overflow.*``' Intrinsics
8109^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8110
8111Syntax:
8112"""""""
8113
8114This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8115on any integer bit width.
8116
8117::
8118
8119 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8120 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8121 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8122
8123Overview:
8124"""""""""
8125
8126The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8127a signed multiplication of the two arguments, and indicate whether an
8128overflow occurred during the signed multiplication.
8129
8130Arguments:
8131""""""""""
8132
8133The arguments (%a and %b) and the first element of the result structure
8134may be of integer types of any bit width, but they must have the same
8135bit width. The second element of the result structure must be of type
8136``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8137multiplication.
8138
8139Semantics:
8140""""""""""
8141
8142The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008143a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008144the first element of which is the multiplication, and the second element
8145of which is a bit specifying if the signed multiplication resulted in an
8146overflow.
8147
8148Examples:
8149"""""""""
8150
8151.. code-block:: llvm
8152
8153 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8154 %sum = extractvalue {i32, i1} %res, 0
8155 %obit = extractvalue {i32, i1} %res, 1
8156 br i1 %obit, label %overflow, label %normal
8157
8158'``llvm.umul.with.overflow.*``' Intrinsics
8159^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8160
8161Syntax:
8162"""""""
8163
8164This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8165on any integer bit width.
8166
8167::
8168
8169 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8170 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8171 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8172
8173Overview:
8174"""""""""
8175
8176The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8177a unsigned multiplication of the two arguments, and indicate whether an
8178overflow occurred during the unsigned multiplication.
8179
8180Arguments:
8181""""""""""
8182
8183The arguments (%a and %b) and the first element of the result structure
8184may be of integer types of any bit width, but they must have the same
8185bit width. The second element of the result structure must be of type
8186``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8187multiplication.
8188
8189Semantics:
8190""""""""""
8191
8192The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008193an unsigned multiplication of the two arguments. They return a structure ---
8194the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008195element of which is a bit specifying if the unsigned multiplication
8196resulted in an overflow.
8197
8198Examples:
8199"""""""""
8200
8201.. code-block:: llvm
8202
8203 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8204 %sum = extractvalue {i32, i1} %res, 0
8205 %obit = extractvalue {i32, i1} %res, 1
8206 br i1 %obit, label %overflow, label %normal
8207
8208Specialised Arithmetic Intrinsics
8209---------------------------------
8210
8211'``llvm.fmuladd.*``' Intrinsic
8212^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8213
8214Syntax:
8215"""""""
8216
8217::
8218
8219 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8220 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8221
8222Overview:
8223"""""""""
8224
8225The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008226expressions that can be fused if the code generator determines that (a) the
8227target instruction set has support for a fused operation, and (b) that the
8228fused operation is more efficient than the equivalent, separate pair of mul
8229and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008230
8231Arguments:
8232""""""""""
8233
8234The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8235multiplicands, a and b, and an addend c.
8236
8237Semantics:
8238""""""""""
8239
8240The expression:
8241
8242::
8243
8244 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8245
8246is equivalent to the expression a \* b + c, except that rounding will
8247not be performed between the multiplication and addition steps if the
8248code generator fuses the operations. Fusion is not guaranteed, even if
8249the target platform supports it. If a fused multiply-add is required the
8250corresponding llvm.fma.\* intrinsic function should be used instead.
8251
8252Examples:
8253"""""""""
8254
8255.. code-block:: llvm
8256
8257 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8258
8259Half Precision Floating Point Intrinsics
8260----------------------------------------
8261
8262For most target platforms, half precision floating point is a
8263storage-only format. This means that it is a dense encoding (in memory)
8264but does not support computation in the format.
8265
8266This means that code must first load the half-precision floating point
8267value as an i16, then convert it to float with
8268:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8269then be performed on the float value (including extending to double
8270etc). To store the value back to memory, it is first converted to float
8271if needed, then converted to i16 with
8272:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8273i16 value.
8274
8275.. _int_convert_to_fp16:
8276
8277'``llvm.convert.to.fp16``' Intrinsic
8278^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8279
8280Syntax:
8281"""""""
8282
8283::
8284
8285 declare i16 @llvm.convert.to.fp16(f32 %a)
8286
8287Overview:
8288"""""""""
8289
8290The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8291from single precision floating point format to half precision floating
8292point format.
8293
8294Arguments:
8295""""""""""
8296
8297The intrinsic function contains single argument - the value to be
8298converted.
8299
8300Semantics:
8301""""""""""
8302
8303The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8304from single precision floating point format to half precision floating
8305point format. The return value is an ``i16`` which contains the
8306converted number.
8307
8308Examples:
8309"""""""""
8310
8311.. code-block:: llvm
8312
8313 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8314 store i16 %res, i16* @x, align 2
8315
8316.. _int_convert_from_fp16:
8317
8318'``llvm.convert.from.fp16``' Intrinsic
8319^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8320
8321Syntax:
8322"""""""
8323
8324::
8325
8326 declare f32 @llvm.convert.from.fp16(i16 %a)
8327
8328Overview:
8329"""""""""
8330
8331The '``llvm.convert.from.fp16``' intrinsic function performs a
8332conversion from half precision floating point format to single precision
8333floating point format.
8334
8335Arguments:
8336""""""""""
8337
8338The intrinsic function contains single argument - the value to be
8339converted.
8340
8341Semantics:
8342""""""""""
8343
8344The '``llvm.convert.from.fp16``' intrinsic function performs a
8345conversion from half single precision floating point format to single
8346precision floating point format. The input half-float value is
8347represented by an ``i16`` value.
8348
8349Examples:
8350"""""""""
8351
8352.. code-block:: llvm
8353
8354 %a = load i16* @x, align 2
8355 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8356
8357Debugger Intrinsics
8358-------------------
8359
8360The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8361prefix), are described in the `LLVM Source Level
8362Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8363document.
8364
8365Exception Handling Intrinsics
8366-----------------------------
8367
8368The LLVM exception handling intrinsics (which all start with
8369``llvm.eh.`` prefix), are described in the `LLVM Exception
8370Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8371
8372.. _int_trampoline:
8373
8374Trampoline Intrinsics
8375---------------------
8376
8377These intrinsics make it possible to excise one parameter, marked with
8378the :ref:`nest <nest>` attribute, from a function. The result is a
8379callable function pointer lacking the nest parameter - the caller does
8380not need to provide a value for it. Instead, the value to use is stored
8381in advance in a "trampoline", a block of memory usually allocated on the
8382stack, which also contains code to splice the nest value into the
8383argument list. This is used to implement the GCC nested function address
8384extension.
8385
8386For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8387then the resulting function pointer has signature ``i32 (i32, i32)*``.
8388It can be created as follows:
8389
8390.. code-block:: llvm
8391
8392 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8393 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8394 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8395 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8396 %fp = bitcast i8* %p to i32 (i32, i32)*
8397
8398The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8399``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8400
8401.. _int_it:
8402
8403'``llvm.init.trampoline``' Intrinsic
8404^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8405
8406Syntax:
8407"""""""
8408
8409::
8410
8411 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8412
8413Overview:
8414"""""""""
8415
8416This fills the memory pointed to by ``tramp`` with executable code,
8417turning it into a trampoline.
8418
8419Arguments:
8420""""""""""
8421
8422The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8423pointers. The ``tramp`` argument must point to a sufficiently large and
8424sufficiently aligned block of memory; this memory is written to by the
8425intrinsic. Note that the size and the alignment are target-specific -
8426LLVM currently provides no portable way of determining them, so a
8427front-end that generates this intrinsic needs to have some
8428target-specific knowledge. The ``func`` argument must hold a function
8429bitcast to an ``i8*``.
8430
8431Semantics:
8432""""""""""
8433
8434The block of memory pointed to by ``tramp`` is filled with target
8435dependent code, turning it into a function. Then ``tramp`` needs to be
8436passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8437be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8438function's signature is the same as that of ``func`` with any arguments
8439marked with the ``nest`` attribute removed. At most one such ``nest``
8440argument is allowed, and it must be of pointer type. Calling the new
8441function is equivalent to calling ``func`` with the same argument list,
8442but with ``nval`` used for the missing ``nest`` argument. If, after
8443calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8444modified, then the effect of any later call to the returned function
8445pointer is undefined.
8446
8447.. _int_at:
8448
8449'``llvm.adjust.trampoline``' Intrinsic
8450^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8451
8452Syntax:
8453"""""""
8454
8455::
8456
8457 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8458
8459Overview:
8460"""""""""
8461
8462This performs any required machine-specific adjustment to the address of
8463a trampoline (passed as ``tramp``).
8464
8465Arguments:
8466""""""""""
8467
8468``tramp`` must point to a block of memory which already has trampoline
8469code filled in by a previous call to
8470:ref:`llvm.init.trampoline <int_it>`.
8471
8472Semantics:
8473""""""""""
8474
8475On some architectures the address of the code to be executed needs to be
8476different to the address where the trampoline is actually stored. This
8477intrinsic returns the executable address corresponding to ``tramp``
8478after performing the required machine specific adjustments. The pointer
8479returned can then be :ref:`bitcast and executed <int_trampoline>`.
8480
8481Memory Use Markers
8482------------------
8483
8484This class of intrinsics exists to information about the lifetime of
8485memory objects and ranges where variables are immutable.
8486
Reid Klecknera534a382013-12-19 02:14:12 +00008487.. _int_lifestart:
8488
Sean Silvab084af42012-12-07 10:36:55 +00008489'``llvm.lifetime.start``' Intrinsic
8490^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8491
8492Syntax:
8493"""""""
8494
8495::
8496
8497 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8498
8499Overview:
8500"""""""""
8501
8502The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8503object's lifetime.
8504
8505Arguments:
8506""""""""""
8507
8508The first argument is a constant integer representing the size of the
8509object, or -1 if it is variable sized. The second argument is a pointer
8510to the object.
8511
8512Semantics:
8513""""""""""
8514
8515This intrinsic indicates that before this point in the code, the value
8516of the memory pointed to by ``ptr`` is dead. This means that it is known
8517to never be used and has an undefined value. A load from the pointer
8518that precedes this intrinsic can be replaced with ``'undef'``.
8519
Reid Klecknera534a382013-12-19 02:14:12 +00008520.. _int_lifeend:
8521
Sean Silvab084af42012-12-07 10:36:55 +00008522'``llvm.lifetime.end``' Intrinsic
8523^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8524
8525Syntax:
8526"""""""
8527
8528::
8529
8530 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8531
8532Overview:
8533"""""""""
8534
8535The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8536object's lifetime.
8537
8538Arguments:
8539""""""""""
8540
8541The first argument is a constant integer representing the size of the
8542object, or -1 if it is variable sized. The second argument is a pointer
8543to the object.
8544
8545Semantics:
8546""""""""""
8547
8548This intrinsic indicates that after this point in the code, the value of
8549the memory pointed to by ``ptr`` is dead. This means that it is known to
8550never be used and has an undefined value. Any stores into the memory
8551object following this intrinsic may be removed as dead.
8552
8553'``llvm.invariant.start``' Intrinsic
8554^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8555
8556Syntax:
8557"""""""
8558
8559::
8560
8561 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8562
8563Overview:
8564"""""""""
8565
8566The '``llvm.invariant.start``' intrinsic specifies that the contents of
8567a memory object will not change.
8568
8569Arguments:
8570""""""""""
8571
8572The first argument is a constant integer representing the size of the
8573object, or -1 if it is variable sized. The second argument is a pointer
8574to the object.
8575
8576Semantics:
8577""""""""""
8578
8579This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8580the return value, the referenced memory location is constant and
8581unchanging.
8582
8583'``llvm.invariant.end``' Intrinsic
8584^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8585
8586Syntax:
8587"""""""
8588
8589::
8590
8591 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8592
8593Overview:
8594"""""""""
8595
8596The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8597memory object are mutable.
8598
8599Arguments:
8600""""""""""
8601
8602The first argument is the matching ``llvm.invariant.start`` intrinsic.
8603The second argument is a constant integer representing the size of the
8604object, or -1 if it is variable sized and the third argument is a
8605pointer to the object.
8606
8607Semantics:
8608""""""""""
8609
8610This intrinsic indicates that the memory is mutable again.
8611
8612General Intrinsics
8613------------------
8614
8615This class of intrinsics is designed to be generic and has no specific
8616purpose.
8617
8618'``llvm.var.annotation``' Intrinsic
8619^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8620
8621Syntax:
8622"""""""
8623
8624::
8625
8626 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8627
8628Overview:
8629"""""""""
8630
8631The '``llvm.var.annotation``' intrinsic.
8632
8633Arguments:
8634""""""""""
8635
8636The first argument is a pointer to a value, the second is a pointer to a
8637global string, the third is a pointer to a global string which is the
8638source file name, and the last argument is the line number.
8639
8640Semantics:
8641""""""""""
8642
8643This intrinsic allows annotation of local variables with arbitrary
8644strings. This can be useful for special purpose optimizations that want
8645to look for these annotations. These have no other defined use; they are
8646ignored by code generation and optimization.
8647
Michael Gottesman88d18832013-03-26 00:34:27 +00008648'``llvm.ptr.annotation.*``' Intrinsic
8649^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8650
8651Syntax:
8652"""""""
8653
8654This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8655pointer to an integer of any width. *NOTE* you must specify an address space for
8656the pointer. The identifier for the default address space is the integer
8657'``0``'.
8658
8659::
8660
8661 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8662 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8663 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8664 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8665 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8666
8667Overview:
8668"""""""""
8669
8670The '``llvm.ptr.annotation``' intrinsic.
8671
8672Arguments:
8673""""""""""
8674
8675The first argument is a pointer to an integer value of arbitrary bitwidth
8676(result of some expression), the second is a pointer to a global string, the
8677third is a pointer to a global string which is the source file name, and the
8678last argument is the line number. It returns the value of the first argument.
8679
8680Semantics:
8681""""""""""
8682
8683This intrinsic allows annotation of a pointer to an integer with arbitrary
8684strings. This can be useful for special purpose optimizations that want to look
8685for these annotations. These have no other defined use; they are ignored by code
8686generation and optimization.
8687
Sean Silvab084af42012-12-07 10:36:55 +00008688'``llvm.annotation.*``' Intrinsic
8689^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8690
8691Syntax:
8692"""""""
8693
8694This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8695any integer bit width.
8696
8697::
8698
8699 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8700 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8701 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8702 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8703 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8704
8705Overview:
8706"""""""""
8707
8708The '``llvm.annotation``' intrinsic.
8709
8710Arguments:
8711""""""""""
8712
8713The first argument is an integer value (result of some expression), the
8714second is a pointer to a global string, the third is a pointer to a
8715global string which is the source file name, and the last argument is
8716the line number. It returns the value of the first argument.
8717
8718Semantics:
8719""""""""""
8720
8721This intrinsic allows annotations to be put on arbitrary expressions
8722with arbitrary strings. This can be useful for special purpose
8723optimizations that want to look for these annotations. These have no
8724other defined use; they are ignored by code generation and optimization.
8725
8726'``llvm.trap``' Intrinsic
8727^^^^^^^^^^^^^^^^^^^^^^^^^
8728
8729Syntax:
8730"""""""
8731
8732::
8733
8734 declare void @llvm.trap() noreturn nounwind
8735
8736Overview:
8737"""""""""
8738
8739The '``llvm.trap``' intrinsic.
8740
8741Arguments:
8742""""""""""
8743
8744None.
8745
8746Semantics:
8747""""""""""
8748
8749This intrinsic is lowered to the target dependent trap instruction. If
8750the target does not have a trap instruction, this intrinsic will be
8751lowered to a call of the ``abort()`` function.
8752
8753'``llvm.debugtrap``' Intrinsic
8754^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8755
8756Syntax:
8757"""""""
8758
8759::
8760
8761 declare void @llvm.debugtrap() nounwind
8762
8763Overview:
8764"""""""""
8765
8766The '``llvm.debugtrap``' intrinsic.
8767
8768Arguments:
8769""""""""""
8770
8771None.
8772
8773Semantics:
8774""""""""""
8775
8776This intrinsic is lowered to code which is intended to cause an
8777execution trap with the intention of requesting the attention of a
8778debugger.
8779
8780'``llvm.stackprotector``' Intrinsic
8781^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8782
8783Syntax:
8784"""""""
8785
8786::
8787
8788 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8789
8790Overview:
8791"""""""""
8792
8793The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8794onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8795is placed on the stack before local variables.
8796
8797Arguments:
8798""""""""""
8799
8800The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8801The first argument is the value loaded from the stack guard
8802``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8803enough space to hold the value of the guard.
8804
8805Semantics:
8806""""""""""
8807
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008808This intrinsic causes the prologue/epilogue inserter to force the position of
8809the ``AllocaInst`` stack slot to be before local variables on the stack. This is
8810to ensure that if a local variable on the stack is overwritten, it will destroy
8811the value of the guard. When the function exits, the guard on the stack is
8812checked against the original guard by ``llvm.stackprotectorcheck``. If they are
8813different, then ``llvm.stackprotectorcheck`` causes the program to abort by
8814calling the ``__stack_chk_fail()`` function.
8815
8816'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00008817^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008818
8819Syntax:
8820"""""""
8821
8822::
8823
8824 declare void @llvm.stackprotectorcheck(i8** <guard>)
8825
8826Overview:
8827"""""""""
8828
8829The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00008830created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00008831``__stack_chk_fail()`` function.
8832
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008833Arguments:
8834""""""""""
8835
8836The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
8837the variable ``@__stack_chk_guard``.
8838
8839Semantics:
8840""""""""""
8841
8842This intrinsic is provided to perform the stack protector check by comparing
8843``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
8844values do not match call the ``__stack_chk_fail()`` function.
8845
8846The reason to provide this as an IR level intrinsic instead of implementing it
8847via other IR operations is that in order to perform this operation at the IR
8848level without an intrinsic, one would need to create additional basic blocks to
8849handle the success/failure cases. This makes it difficult to stop the stack
8850protector check from disrupting sibling tail calls in Codegen. With this
8851intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00008852codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00008853
Sean Silvab084af42012-12-07 10:36:55 +00008854'``llvm.objectsize``' Intrinsic
8855^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8856
8857Syntax:
8858"""""""
8859
8860::
8861
8862 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8863 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8864
8865Overview:
8866"""""""""
8867
8868The ``llvm.objectsize`` intrinsic is designed to provide information to
8869the optimizers to determine at compile time whether a) an operation
8870(like memcpy) will overflow a buffer that corresponds to an object, or
8871b) that a runtime check for overflow isn't necessary. An object in this
8872context means an allocation of a specific class, structure, array, or
8873other object.
8874
8875Arguments:
8876""""""""""
8877
8878The ``llvm.objectsize`` intrinsic takes two arguments. The first
8879argument is a pointer to or into the ``object``. The second argument is
8880a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8881or -1 (if false) when the object size is unknown. The second argument
8882only accepts constants.
8883
8884Semantics:
8885""""""""""
8886
8887The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8888the size of the object concerned. If the size cannot be determined at
8889compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8890on the ``min`` argument).
8891
8892'``llvm.expect``' Intrinsic
8893^^^^^^^^^^^^^^^^^^^^^^^^^^^
8894
8895Syntax:
8896"""""""
8897
8898::
8899
8900 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8901 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8902
8903Overview:
8904"""""""""
8905
8906The ``llvm.expect`` intrinsic provides information about expected (the
8907most probable) value of ``val``, which can be used by optimizers.
8908
8909Arguments:
8910""""""""""
8911
8912The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8913a value. The second argument is an expected value, this needs to be a
8914constant value, variables are not allowed.
8915
8916Semantics:
8917""""""""""
8918
8919This intrinsic is lowered to the ``val``.
8920
8921'``llvm.donothing``' Intrinsic
8922^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8923
8924Syntax:
8925"""""""
8926
8927::
8928
8929 declare void @llvm.donothing() nounwind readnone
8930
8931Overview:
8932"""""""""
8933
8934The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8935only intrinsic that can be called with an invoke instruction.
8936
8937Arguments:
8938""""""""""
8939
8940None.
8941
8942Semantics:
8943""""""""""
8944
8945This intrinsic does nothing, and it's removed by optimizers and ignored
8946by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00008947
8948Stack Map Intrinsics
8949--------------------
8950
8951LLVM provides experimental intrinsics to support runtime patching
8952mechanisms commonly desired in dynamic language JITs. These intrinsics
8953are described in :doc:`StackMaps`.