| Eugene Zelenko | 32a4056 | 2017-09-11 23:00:48 +0000 | [diff] [blame] | 1 | //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2 | // | 
|  | 3 | //                     The LLVM Compiler Infrastructure | 
|  | 4 | // | 
|  | 5 | // This file is distributed under the University of Illinois Open Source | 
|  | 6 | // License. See LICENSE.TXT for details. | 
|  | 7 | // | 
|  | 8 | //===----------------------------------------------------------------------===// | 
|  | 9 | // | 
|  | 10 | // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. | 
|  | 11 | // | 
| Aleksandr Urakov | 00d4c38 | 2018-10-23 14:27:45 +0000 | [diff] [blame] | 12 | // Software pipelining (SWP) is an instruction scheduling technique for loops | 
|  | 13 | // that overlap loop iterations and exploits ILP via a compiler transformation. | 
|  | 14 | // | 
|  | 15 | // Swing Modulo Scheduling is an implementation of software pipelining | 
|  | 16 | // that generates schedules that are near optimal in terms of initiation | 
|  | 17 | // interval, register requirements, and stage count. See the papers: | 
|  | 18 | // | 
|  | 19 | // "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa, | 
|  | 20 | // A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Proceedings of the 1996 | 
|  | 21 | // Conference on Parallel Architectures and Compilation Techiniques. | 
|  | 22 | // | 
|  | 23 | // "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J. | 
|  | 24 | // Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE | 
|  | 25 | // Transactions on Computers, Vol. 50, No. 3, 2001. | 
|  | 26 | // | 
|  | 27 | // "An Implementation of Swing Modulo Scheduling With Extensions for | 
|  | 28 | // Superblocks", by T. Lattner, Master's Thesis, University of Illinois at | 
|  | 29 | // Urbana-Chambpain, 2005. | 
|  | 30 | // | 
|  | 31 | // | 
|  | 32 | // The SMS algorithm consists of three main steps after computing the minimal | 
|  | 33 | // initiation interval (MII). | 
|  | 34 | // 1) Analyze the dependence graph and compute information about each | 
|  | 35 | //    instruction in the graph. | 
|  | 36 | // 2) Order the nodes (instructions) by priority based upon the heuristics | 
|  | 37 | //    described in the algorithm. | 
|  | 38 | // 3) Attempt to schedule the nodes in the specified order using the MII. | 
|  | 39 | // | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 40 | // This SMS implementation is a target-independent back-end pass. When enabled, | 
|  | 41 | // the pass runs just prior to the register allocation pass, while the machine | 
|  | 42 | // IR is in SSA form. If software pipelining is successful, then the original | 
|  | 43 | // loop is replaced by the optimized loop. The optimized loop contains one or | 
|  | 44 | // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If | 
|  | 45 | // the instructions cannot be scheduled in a given MII, we increase the MII by | 
|  | 46 | // one and try again. | 
|  | 47 | // | 
|  | 48 | // The SMS implementation is an extension of the ScheduleDAGInstrs class. We | 
|  | 49 | // represent loop carried dependences in the DAG as order edges to the Phi | 
|  | 50 | // nodes. We also perform several passes over the DAG to eliminate unnecessary | 
|  | 51 | // edges that inhibit the ability to pipeline. The implementation uses the | 
|  | 52 | // DFAPacketizer class to compute the minimum initiation interval and the check | 
|  | 53 | // where an instruction may be inserted in the pipelined schedule. | 
|  | 54 | // | 
|  | 55 | // In order for the SMS pass to work, several target specific hooks need to be | 
|  | 56 | // implemented to get information about the loop structure and to rewrite | 
|  | 57 | // instructions. | 
|  | 58 | // | 
|  | 59 | //===----------------------------------------------------------------------===// | 
|  | 60 |  | 
| Eugene Zelenko | cdc7161 | 2016-08-11 17:20:18 +0000 | [diff] [blame] | 61 | #include "llvm/ADT/ArrayRef.h" | 
|  | 62 | #include "llvm/ADT/BitVector.h" | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 63 | #include "llvm/ADT/DenseMap.h" | 
|  | 64 | #include "llvm/ADT/MapVector.h" | 
|  | 65 | #include "llvm/ADT/PriorityQueue.h" | 
|  | 66 | #include "llvm/ADT/SetVector.h" | 
|  | 67 | #include "llvm/ADT/SmallPtrSet.h" | 
|  | 68 | #include "llvm/ADT/SmallSet.h" | 
| Eugene Zelenko | cdc7161 | 2016-08-11 17:20:18 +0000 | [diff] [blame] | 69 | #include "llvm/ADT/SmallVector.h" | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 70 | #include "llvm/ADT/Statistic.h" | 
| Chandler Carruth | 6bda14b | 2017-06-06 11:49:48 +0000 | [diff] [blame] | 71 | #include "llvm/ADT/iterator_range.h" | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 72 | #include "llvm/Analysis/AliasAnalysis.h" | 
| Eugene Zelenko | cdc7161 | 2016-08-11 17:20:18 +0000 | [diff] [blame] | 73 | #include "llvm/Analysis/MemoryLocation.h" | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 74 | #include "llvm/Analysis/ValueTracking.h" | 
|  | 75 | #include "llvm/CodeGen/DFAPacketizer.h" | 
| Matthias Braun | f842297 | 2017-12-13 02:51:04 +0000 | [diff] [blame] | 76 | #include "llvm/CodeGen/LiveIntervals.h" | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 77 | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | 78 | #include "llvm/CodeGen/MachineDominators.h" | 
| Eugene Zelenko | cdc7161 | 2016-08-11 17:20:18 +0000 | [diff] [blame] | 79 | #include "llvm/CodeGen/MachineFunction.h" | 
|  | 80 | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | 81 | #include "llvm/CodeGen/MachineInstr.h" | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 82 | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | 83 | #include "llvm/CodeGen/MachineLoopInfo.h" | 
| Eugene Zelenko | cdc7161 | 2016-08-11 17:20:18 +0000 | [diff] [blame] | 84 | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | 85 | #include "llvm/CodeGen/MachineOperand.h" | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 86 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
| Aleksandr Urakov | 00d4c38 | 2018-10-23 14:27:45 +0000 | [diff] [blame] | 87 | #include "llvm/CodeGen/RegisterClassInfo.h" | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 88 | #include "llvm/CodeGen/RegisterPressure.h" | 
| Eugene Zelenko | cdc7161 | 2016-08-11 17:20:18 +0000 | [diff] [blame] | 89 | #include "llvm/CodeGen/ScheduleDAG.h" | 
| Aleksandr Urakov | 00d4c38 | 2018-10-23 14:27:45 +0000 | [diff] [blame] | 90 | #include "llvm/CodeGen/ScheduleDAGInstrs.h" | 
| Krzysztof Parzyszek | 8839124 | 2016-12-22 19:21:20 +0000 | [diff] [blame] | 91 | #include "llvm/CodeGen/ScheduleDAGMutation.h" | 
| Aleksandr Urakov | 00d4c38 | 2018-10-23 14:27:45 +0000 | [diff] [blame] | 92 | #include "llvm/CodeGen/TargetInstrInfo.h" | 
| David Blaikie | b3bde2e | 2017-11-17 01:07:10 +0000 | [diff] [blame] | 93 | #include "llvm/CodeGen/TargetOpcodes.h" | 
|  | 94 | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | 95 | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
| Nico Weber | 432a388 | 2018-04-30 14:59:11 +0000 | [diff] [blame] | 96 | #include "llvm/Config/llvm-config.h" | 
| Eugene Zelenko | cdc7161 | 2016-08-11 17:20:18 +0000 | [diff] [blame] | 97 | #include "llvm/IR/Attributes.h" | 
|  | 98 | #include "llvm/IR/DebugLoc.h" | 
| Eugene Zelenko | 32a4056 | 2017-09-11 23:00:48 +0000 | [diff] [blame] | 99 | #include "llvm/IR/Function.h" | 
|  | 100 | #include "llvm/MC/LaneBitmask.h" | 
|  | 101 | #include "llvm/MC/MCInstrDesc.h" | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 102 | #include "llvm/MC/MCInstrItineraries.h" | 
| Eugene Zelenko | 32a4056 | 2017-09-11 23:00:48 +0000 | [diff] [blame] | 103 | #include "llvm/MC/MCRegisterInfo.h" | 
|  | 104 | #include "llvm/Pass.h" | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 105 | #include "llvm/Support/CommandLine.h" | 
| Eugene Zelenko | 32a4056 | 2017-09-11 23:00:48 +0000 | [diff] [blame] | 106 | #include "llvm/Support/Compiler.h" | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 107 | #include "llvm/Support/Debug.h" | 
| Eugene Zelenko | cdc7161 | 2016-08-11 17:20:18 +0000 | [diff] [blame] | 108 | #include "llvm/Support/MathExtras.h" | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 109 | #include "llvm/Support/raw_ostream.h" | 
| Eugene Zelenko | cdc7161 | 2016-08-11 17:20:18 +0000 | [diff] [blame] | 110 | #include <algorithm> | 
|  | 111 | #include <cassert> | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 112 | #include <climits> | 
| Eugene Zelenko | cdc7161 | 2016-08-11 17:20:18 +0000 | [diff] [blame] | 113 | #include <cstdint> | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 114 | #include <deque> | 
| Eugene Zelenko | cdc7161 | 2016-08-11 17:20:18 +0000 | [diff] [blame] | 115 | #include <functional> | 
|  | 116 | #include <iterator> | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 117 | #include <map> | 
| Eugene Zelenko | 32a4056 | 2017-09-11 23:00:48 +0000 | [diff] [blame] | 118 | #include <memory> | 
| Eugene Zelenko | cdc7161 | 2016-08-11 17:20:18 +0000 | [diff] [blame] | 119 | #include <tuple> | 
|  | 120 | #include <utility> | 
|  | 121 | #include <vector> | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 122 |  | 
|  | 123 | using namespace llvm; | 
|  | 124 |  | 
|  | 125 | #define DEBUG_TYPE "pipeliner" | 
|  | 126 |  | 
|  | 127 | STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); | 
|  | 128 | STATISTIC(NumPipelined, "Number of loops software pipelined"); | 
| Roorda, Jan-Willem | 4b8bcf0 | 2018-03-07 18:53:36 +0000 | [diff] [blame] | 129 | STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 130 |  | 
|  | 131 | /// A command line option to turn software pipelining on or off. | 
| Benjamin Kramer | b7d3311 | 2016-08-06 11:13:10 +0000 | [diff] [blame] | 132 | static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), | 
|  | 133 | cl::ZeroOrMore, | 
|  | 134 | cl::desc("Enable Software Pipelining")); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 135 |  | 
|  | 136 | /// A command line option to enable SWP at -Os. | 
|  | 137 | static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", | 
|  | 138 | cl::desc("Enable SWP at Os."), cl::Hidden, | 
|  | 139 | cl::init(false)); | 
|  | 140 |  | 
|  | 141 | /// A command line argument to limit minimum initial interval for pipelining. | 
|  | 142 | static cl::opt<int> SwpMaxMii("pipeliner-max-mii", | 
| Hiroshi Inoue | 8f976ba | 2018-01-17 12:29:38 +0000 | [diff] [blame] | 143 | cl::desc("Size limit for the MII."), | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 144 | cl::Hidden, cl::init(27)); | 
|  | 145 |  | 
|  | 146 | /// A command line argument to limit the number of stages in the pipeline. | 
|  | 147 | static cl::opt<int> | 
|  | 148 | SwpMaxStages("pipeliner-max-stages", | 
|  | 149 | cl::desc("Maximum stages allowed in the generated scheduled."), | 
|  | 150 | cl::Hidden, cl::init(3)); | 
|  | 151 |  | 
|  | 152 | /// A command line option to disable the pruning of chain dependences due to | 
|  | 153 | /// an unrelated Phi. | 
|  | 154 | static cl::opt<bool> | 
|  | 155 | SwpPruneDeps("pipeliner-prune-deps", | 
|  | 156 | cl::desc("Prune dependences between unrelated Phi nodes."), | 
|  | 157 | cl::Hidden, cl::init(true)); | 
|  | 158 |  | 
|  | 159 | /// A command line option to disable the pruning of loop carried order | 
|  | 160 | /// dependences. | 
|  | 161 | static cl::opt<bool> | 
|  | 162 | SwpPruneLoopCarried("pipeliner-prune-loop-carried", | 
|  | 163 | cl::desc("Prune loop carried order dependences."), | 
|  | 164 | cl::Hidden, cl::init(true)); | 
|  | 165 |  | 
|  | 166 | #ifndef NDEBUG | 
|  | 167 | static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); | 
|  | 168 | #endif | 
|  | 169 |  | 
|  | 170 | static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", | 
|  | 171 | cl::ReallyHidden, cl::init(false), | 
|  | 172 | cl::ZeroOrMore, cl::desc("Ignore RecMII")); | 
|  | 173 |  | 
| Sumanth Gundapaneni | 62ac69d | 2018-10-18 15:51:16 +0000 | [diff] [blame] | 174 | // A command line option to enable the CopyToPhi DAG mutation. | 
| Aleksandr Urakov | 00d4c38 | 2018-10-23 14:27:45 +0000 | [diff] [blame] | 175 | static cl::opt<bool> | 
|  | 176 | SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, | 
|  | 177 | cl::init(true), cl::ZeroOrMore, | 
|  | 178 | cl::desc("Enable CopyToPhi DAG Mutation")); | 
| Sumanth Gundapaneni | 62ac69d | 2018-10-18 15:51:16 +0000 | [diff] [blame] | 179 |  | 
| Aleksandr Urakov | 00d4c38 | 2018-10-23 14:27:45 +0000 | [diff] [blame] | 180 | namespace { | 
|  | 181 |  | 
|  | 182 | class NodeSet; | 
|  | 183 | class SMSchedule; | 
|  | 184 |  | 
|  | 185 | /// The main class in the implementation of the target independent | 
|  | 186 | /// software pipeliner pass. | 
|  | 187 | class MachinePipeliner : public MachineFunctionPass { | 
|  | 188 | public: | 
|  | 189 | MachineFunction *MF = nullptr; | 
|  | 190 | const MachineLoopInfo *MLI = nullptr; | 
|  | 191 | const MachineDominatorTree *MDT = nullptr; | 
|  | 192 | const InstrItineraryData *InstrItins; | 
|  | 193 | const TargetInstrInfo *TII = nullptr; | 
|  | 194 | RegisterClassInfo RegClassInfo; | 
|  | 195 |  | 
|  | 196 | #ifndef NDEBUG | 
|  | 197 | static int NumTries; | 
|  | 198 | #endif | 
|  | 199 |  | 
|  | 200 | /// Cache the target analysis information about the loop. | 
|  | 201 | struct LoopInfo { | 
|  | 202 | MachineBasicBlock *TBB = nullptr; | 
|  | 203 | MachineBasicBlock *FBB = nullptr; | 
|  | 204 | SmallVector<MachineOperand, 4> BrCond; | 
|  | 205 | MachineInstr *LoopInductionVar = nullptr; | 
|  | 206 | MachineInstr *LoopCompare = nullptr; | 
|  | 207 | }; | 
|  | 208 | LoopInfo LI; | 
|  | 209 |  | 
|  | 210 | static char ID; | 
|  | 211 |  | 
|  | 212 | MachinePipeliner() : MachineFunctionPass(ID) { | 
|  | 213 | initializeMachinePipelinerPass(*PassRegistry::getPassRegistry()); | 
|  | 214 | } | 
|  | 215 |  | 
|  | 216 | bool runOnMachineFunction(MachineFunction &MF) override; | 
|  | 217 |  | 
|  | 218 | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | 219 | AU.addRequired<AAResultsWrapperPass>(); | 
|  | 220 | AU.addPreserved<AAResultsWrapperPass>(); | 
|  | 221 | AU.addRequired<MachineLoopInfo>(); | 
|  | 222 | AU.addRequired<MachineDominatorTree>(); | 
|  | 223 | AU.addRequired<LiveIntervals>(); | 
|  | 224 | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | 225 | } | 
|  | 226 |  | 
|  | 227 | private: | 
|  | 228 | void preprocessPhiNodes(MachineBasicBlock &B); | 
|  | 229 | bool canPipelineLoop(MachineLoop &L); | 
|  | 230 | bool scheduleLoop(MachineLoop &L); | 
|  | 231 | bool swingModuloScheduler(MachineLoop &L); | 
|  | 232 | }; | 
|  | 233 |  | 
|  | 234 | /// This class builds the dependence graph for the instructions in a loop, | 
|  | 235 | /// and attempts to schedule the instructions using the SMS algorithm. | 
|  | 236 | class SwingSchedulerDAG : public ScheduleDAGInstrs { | 
|  | 237 | MachinePipeliner &Pass; | 
|  | 238 | /// The minimum initiation interval between iterations for this schedule. | 
|  | 239 | unsigned MII = 0; | 
|  | 240 | /// Set to true if a valid pipelined schedule is found for the loop. | 
|  | 241 | bool Scheduled = false; | 
|  | 242 | MachineLoop &Loop; | 
|  | 243 | LiveIntervals &LIS; | 
|  | 244 | const RegisterClassInfo &RegClassInfo; | 
|  | 245 |  | 
|  | 246 | /// A toplogical ordering of the SUnits, which is needed for changing | 
|  | 247 | /// dependences and iterating over the SUnits. | 
|  | 248 | ScheduleDAGTopologicalSort Topo; | 
|  | 249 |  | 
|  | 250 | struct NodeInfo { | 
|  | 251 | int ASAP = 0; | 
|  | 252 | int ALAP = 0; | 
|  | 253 | int ZeroLatencyDepth = 0; | 
|  | 254 | int ZeroLatencyHeight = 0; | 
|  | 255 |  | 
|  | 256 | NodeInfo() = default; | 
|  | 257 | }; | 
|  | 258 | /// Computed properties for each node in the graph. | 
|  | 259 | std::vector<NodeInfo> ScheduleInfo; | 
|  | 260 |  | 
|  | 261 | enum OrderKind { BottomUp = 0, TopDown = 1 }; | 
|  | 262 | /// Computed node ordering for scheduling. | 
|  | 263 | SetVector<SUnit *> NodeOrder; | 
|  | 264 |  | 
|  | 265 | using NodeSetType = SmallVector<NodeSet, 8>; | 
|  | 266 | using ValueMapTy = DenseMap<unsigned, unsigned>; | 
|  | 267 | using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>; | 
|  | 268 | using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>; | 
|  | 269 |  | 
|  | 270 | /// Instructions to change when emitting the final schedule. | 
|  | 271 | DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges; | 
|  | 272 |  | 
|  | 273 | /// We may create a new instruction, so remember it because it | 
|  | 274 | /// must be deleted when the pass is finished. | 
|  | 275 | SmallPtrSet<MachineInstr *, 4> NewMIs; | 
|  | 276 |  | 
|  | 277 | /// Ordered list of DAG postprocessing steps. | 
|  | 278 | std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations; | 
|  | 279 |  | 
|  | 280 | /// Helper class to implement Johnson's circuit finding algorithm. | 
|  | 281 | class Circuits { | 
|  | 282 | std::vector<SUnit> &SUnits; | 
|  | 283 | SetVector<SUnit *> Stack; | 
|  | 284 | BitVector Blocked; | 
|  | 285 | SmallVector<SmallPtrSet<SUnit *, 4>, 10> B; | 
|  | 286 | SmallVector<SmallVector<int, 4>, 16> AdjK; | 
|  | 287 | // Node to Index from ScheduleDAGTopologicalSort | 
|  | 288 | std::vector<int> *Node2Idx; | 
|  | 289 | unsigned NumPaths; | 
|  | 290 | static unsigned MaxPaths; | 
|  | 291 |  | 
|  | 292 | public: | 
|  | 293 | Circuits(std::vector<SUnit> &SUs, ScheduleDAGTopologicalSort &Topo) | 
|  | 294 | : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) { | 
|  | 295 | Node2Idx = new std::vector<int>(SUs.size()); | 
|  | 296 | unsigned Idx = 0; | 
|  | 297 | for (const auto &NodeNum : Topo) | 
|  | 298 | Node2Idx->at(NodeNum) = Idx++; | 
|  | 299 | } | 
|  | 300 |  | 
|  | 301 | ~Circuits() { delete Node2Idx; } | 
|  | 302 |  | 
|  | 303 | /// Reset the data structures used in the circuit algorithm. | 
|  | 304 | void reset() { | 
|  | 305 | Stack.clear(); | 
|  | 306 | Blocked.reset(); | 
|  | 307 | B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>()); | 
|  | 308 | NumPaths = 0; | 
|  | 309 | } | 
|  | 310 |  | 
|  | 311 | void createAdjacencyStructure(SwingSchedulerDAG *DAG); | 
|  | 312 | bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false); | 
|  | 313 | void unblock(int U); | 
|  | 314 | }; | 
|  | 315 |  | 
|  | 316 | struct CopyToPhiMutation : public ScheduleDAGMutation { | 
|  | 317 | void apply(ScheduleDAGInstrs *DAG) override; | 
|  | 318 | }; | 
|  | 319 |  | 
|  | 320 | public: | 
|  | 321 | SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis, | 
|  | 322 | const RegisterClassInfo &rci) | 
|  | 323 | : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), Loop(L), LIS(lis), | 
|  | 324 | RegClassInfo(rci), Topo(SUnits, &ExitSU) { | 
|  | 325 | P.MF->getSubtarget().getSMSMutations(Mutations); | 
|  | 326 | if (SwpEnableCopyToPhi) | 
|  | 327 | Mutations.push_back(llvm::make_unique<CopyToPhiMutation>()); | 
|  | 328 | } | 
|  | 329 |  | 
|  | 330 | void schedule() override; | 
|  | 331 | void finishBlock() override; | 
|  | 332 |  | 
|  | 333 | /// Return true if the loop kernel has been scheduled. | 
|  | 334 | bool hasNewSchedule() { return Scheduled; } | 
|  | 335 |  | 
|  | 336 | /// Return the earliest time an instruction may be scheduled. | 
|  | 337 | int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; } | 
|  | 338 |  | 
|  | 339 | /// Return the latest time an instruction my be scheduled. | 
|  | 340 | int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; } | 
|  | 341 |  | 
|  | 342 | /// The mobility function, which the number of slots in which | 
|  | 343 | /// an instruction may be scheduled. | 
|  | 344 | int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); } | 
|  | 345 |  | 
|  | 346 | /// The depth, in the dependence graph, for a node. | 
|  | 347 | unsigned getDepth(SUnit *Node) { return Node->getDepth(); } | 
|  | 348 |  | 
|  | 349 | /// The maximum unweighted length of a path from an arbitrary node to the | 
|  | 350 | /// given node in which each edge has latency 0 | 
|  | 351 | int getZeroLatencyDepth(SUnit *Node) { | 
|  | 352 | return ScheduleInfo[Node->NodeNum].ZeroLatencyDepth; | 
|  | 353 | } | 
|  | 354 |  | 
|  | 355 | /// The height, in the dependence graph, for a node. | 
|  | 356 | unsigned getHeight(SUnit *Node) { return Node->getHeight(); } | 
|  | 357 |  | 
|  | 358 | /// The maximum unweighted length of a path from the given node to an | 
|  | 359 | /// arbitrary node in which each edge has latency 0 | 
|  | 360 | int getZeroLatencyHeight(SUnit *Node) { | 
|  | 361 | return ScheduleInfo[Node->NodeNum].ZeroLatencyHeight; | 
|  | 362 | } | 
|  | 363 |  | 
|  | 364 | /// Return true if the dependence is a back-edge in the data dependence graph. | 
|  | 365 | /// Since the DAG doesn't contain cycles, we represent a cycle in the graph | 
|  | 366 | /// using an anti dependence from a Phi to an instruction. | 
|  | 367 | bool isBackedge(SUnit *Source, const SDep &Dep) { | 
|  | 368 | if (Dep.getKind() != SDep::Anti) | 
|  | 369 | return false; | 
|  | 370 | return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI(); | 
|  | 371 | } | 
|  | 372 |  | 
|  | 373 | bool isLoopCarriedDep(SUnit *Source, const SDep &Dep, bool isSucc = true); | 
|  | 374 |  | 
|  | 375 | /// The distance function, which indicates that operation V of iteration I | 
|  | 376 | /// depends on operations U of iteration I-distance. | 
|  | 377 | unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) { | 
|  | 378 | // Instructions that feed a Phi have a distance of 1. Computing larger | 
|  | 379 | // values for arrays requires data dependence information. | 
|  | 380 | if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti) | 
|  | 381 | return 1; | 
|  | 382 | return 0; | 
|  | 383 | } | 
|  | 384 |  | 
|  | 385 | /// Set the Minimum Initiation Interval for this schedule attempt. | 
|  | 386 | void setMII(unsigned mii) { MII = mii; } | 
|  | 387 |  | 
|  | 388 | void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule); | 
|  | 389 |  | 
|  | 390 | void fixupRegisterOverlaps(std::deque<SUnit *> &Instrs); | 
|  | 391 |  | 
|  | 392 | /// Return the new base register that was stored away for the changed | 
|  | 393 | /// instruction. | 
|  | 394 | unsigned getInstrBaseReg(SUnit *SU) { | 
|  | 395 | DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = | 
|  | 396 | InstrChanges.find(SU); | 
|  | 397 | if (It != InstrChanges.end()) | 
|  | 398 | return It->second.first; | 
|  | 399 | return 0; | 
|  | 400 | } | 
|  | 401 |  | 
|  | 402 | void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) { | 
|  | 403 | Mutations.push_back(std::move(Mutation)); | 
|  | 404 | } | 
|  | 405 |  | 
|  | 406 | static bool classof(const ScheduleDAGInstrs *DAG) { return true; } | 
|  | 407 |  | 
|  | 408 | private: | 
|  | 409 | void addLoopCarriedDependences(AliasAnalysis *AA); | 
|  | 410 | void updatePhiDependences(); | 
|  | 411 | void changeDependences(); | 
|  | 412 | unsigned calculateResMII(); | 
|  | 413 | unsigned calculateRecMII(NodeSetType &RecNodeSets); | 
|  | 414 | void findCircuits(NodeSetType &NodeSets); | 
|  | 415 | void fuseRecs(NodeSetType &NodeSets); | 
|  | 416 | void removeDuplicateNodes(NodeSetType &NodeSets); | 
|  | 417 | void computeNodeFunctions(NodeSetType &NodeSets); | 
|  | 418 | void registerPressureFilter(NodeSetType &NodeSets); | 
|  | 419 | void colocateNodeSets(NodeSetType &NodeSets); | 
|  | 420 | void checkNodeSets(NodeSetType &NodeSets); | 
|  | 421 | void groupRemainingNodes(NodeSetType &NodeSets); | 
|  | 422 | void addConnectedNodes(SUnit *SU, NodeSet &NewSet, | 
|  | 423 | SetVector<SUnit *> &NodesAdded); | 
|  | 424 | void computeNodeOrder(NodeSetType &NodeSets); | 
|  | 425 | void checkValidNodeOrder(const NodeSetType &Circuits) const; | 
|  | 426 | bool schedulePipeline(SMSchedule &Schedule); | 
|  | 427 | void generatePipelinedLoop(SMSchedule &Schedule); | 
|  | 428 | void generateProlog(SMSchedule &Schedule, unsigned LastStage, | 
|  | 429 | MachineBasicBlock *KernelBB, ValueMapTy *VRMap, | 
|  | 430 | MBBVectorTy &PrologBBs); | 
|  | 431 | void generateEpilog(SMSchedule &Schedule, unsigned LastStage, | 
|  | 432 | MachineBasicBlock *KernelBB, ValueMapTy *VRMap, | 
|  | 433 | MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs); | 
|  | 434 | void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, | 
|  | 435 | MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, | 
|  | 436 | SMSchedule &Schedule, ValueMapTy *VRMap, | 
|  | 437 | InstrMapTy &InstrMap, unsigned LastStageNum, | 
|  | 438 | unsigned CurStageNum, bool IsLast); | 
|  | 439 | void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, | 
|  | 440 | MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, | 
|  | 441 | SMSchedule &Schedule, ValueMapTy *VRMap, | 
|  | 442 | InstrMapTy &InstrMap, unsigned LastStageNum, | 
|  | 443 | unsigned CurStageNum, bool IsLast); | 
|  | 444 | void removeDeadInstructions(MachineBasicBlock *KernelBB, | 
|  | 445 | MBBVectorTy &EpilogBBs); | 
|  | 446 | void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs, | 
|  | 447 | SMSchedule &Schedule); | 
|  | 448 | void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB, | 
|  | 449 | MBBVectorTy &EpilogBBs, SMSchedule &Schedule, | 
|  | 450 | ValueMapTy *VRMap); | 
|  | 451 | bool computeDelta(MachineInstr &MI, unsigned &Delta); | 
|  | 452 | void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI, | 
|  | 453 | unsigned Num); | 
|  | 454 | MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum, | 
|  | 455 | unsigned InstStageNum); | 
|  | 456 | MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum, | 
|  | 457 | unsigned InstStageNum, | 
|  | 458 | SMSchedule &Schedule); | 
|  | 459 | void updateInstruction(MachineInstr *NewMI, bool LastDef, | 
|  | 460 | unsigned CurStageNum, unsigned InstrStageNum, | 
|  | 461 | SMSchedule &Schedule, ValueMapTy *VRMap); | 
|  | 462 | MachineInstr *findDefInLoop(unsigned Reg); | 
|  | 463 | unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal, | 
|  | 464 | unsigned LoopStage, ValueMapTy *VRMap, | 
|  | 465 | MachineBasicBlock *BB); | 
|  | 466 | void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum, | 
|  | 467 | SMSchedule &Schedule, ValueMapTy *VRMap, | 
|  | 468 | InstrMapTy &InstrMap); | 
|  | 469 | void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule, | 
|  | 470 | InstrMapTy &InstrMap, unsigned CurStageNum, | 
|  | 471 | unsigned PhiNum, MachineInstr *Phi, | 
|  | 472 | unsigned OldReg, unsigned NewReg, | 
|  | 473 | unsigned PrevReg = 0); | 
|  | 474 | bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos, | 
|  | 475 | unsigned &OffsetPos, unsigned &NewBase, | 
|  | 476 | int64_t &NewOffset); | 
|  | 477 | void postprocessDAG(); | 
|  | 478 | }; | 
|  | 479 |  | 
|  | 480 | /// A NodeSet contains a set of SUnit DAG nodes with additional information | 
|  | 481 | /// that assigns a priority to the set. | 
|  | 482 | class NodeSet { | 
|  | 483 | SetVector<SUnit *> Nodes; | 
|  | 484 | bool HasRecurrence = false; | 
|  | 485 | unsigned RecMII = 0; | 
|  | 486 | int MaxMOV = 0; | 
|  | 487 | unsigned MaxDepth = 0; | 
|  | 488 | unsigned Colocate = 0; | 
|  | 489 | SUnit *ExceedPressure = nullptr; | 
|  | 490 | unsigned Latency = 0; | 
|  | 491 |  | 
|  | 492 | public: | 
|  | 493 | using iterator = SetVector<SUnit *>::const_iterator; | 
|  | 494 |  | 
|  | 495 | NodeSet() = default; | 
|  | 496 | NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) { | 
|  | 497 | Latency = 0; | 
|  | 498 | for (unsigned i = 0, e = Nodes.size(); i < e; ++i) | 
|  | 499 | for (const SDep &Succ : Nodes[i]->Succs) | 
|  | 500 | if (Nodes.count(Succ.getSUnit())) | 
|  | 501 | Latency += Succ.getLatency(); | 
|  | 502 | } | 
|  | 503 |  | 
|  | 504 | bool insert(SUnit *SU) { return Nodes.insert(SU); } | 
|  | 505 |  | 
|  | 506 | void insert(iterator S, iterator E) { Nodes.insert(S, E); } | 
|  | 507 |  | 
|  | 508 | template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) { | 
|  | 509 | return Nodes.remove_if(P); | 
|  | 510 | } | 
|  | 511 |  | 
|  | 512 | unsigned count(SUnit *SU) const { return Nodes.count(SU); } | 
|  | 513 |  | 
|  | 514 | bool hasRecurrence() { return HasRecurrence; }; | 
|  | 515 |  | 
|  | 516 | unsigned size() const { return Nodes.size(); } | 
|  | 517 |  | 
|  | 518 | bool empty() const { return Nodes.empty(); } | 
|  | 519 |  | 
|  | 520 | SUnit *getNode(unsigned i) const { return Nodes[i]; }; | 
|  | 521 |  | 
|  | 522 | void setRecMII(unsigned mii) { RecMII = mii; }; | 
|  | 523 |  | 
|  | 524 | void setColocate(unsigned c) { Colocate = c; }; | 
|  | 525 |  | 
|  | 526 | void setExceedPressure(SUnit *SU) { ExceedPressure = SU; } | 
|  | 527 |  | 
|  | 528 | bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; } | 
|  | 529 |  | 
|  | 530 | int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; } | 
|  | 531 |  | 
|  | 532 | int getRecMII() { return RecMII; } | 
|  | 533 |  | 
|  | 534 | /// Summarize node functions for the entire node set. | 
|  | 535 | void computeNodeSetInfo(SwingSchedulerDAG *SSD) { | 
|  | 536 | for (SUnit *SU : *this) { | 
|  | 537 | MaxMOV = std::max(MaxMOV, SSD->getMOV(SU)); | 
|  | 538 | MaxDepth = std::max(MaxDepth, SSD->getDepth(SU)); | 
|  | 539 | } | 
|  | 540 | } | 
|  | 541 |  | 
|  | 542 | unsigned getLatency() { return Latency; } | 
|  | 543 |  | 
|  | 544 | unsigned getMaxDepth() { return MaxDepth; } | 
|  | 545 |  | 
|  | 546 | void clear() { | 
|  | 547 | Nodes.clear(); | 
|  | 548 | RecMII = 0; | 
|  | 549 | HasRecurrence = false; | 
|  | 550 | MaxMOV = 0; | 
|  | 551 | MaxDepth = 0; | 
|  | 552 | Colocate = 0; | 
|  | 553 | ExceedPressure = nullptr; | 
|  | 554 | } | 
|  | 555 |  | 
|  | 556 | operator SetVector<SUnit *> &() { return Nodes; } | 
|  | 557 |  | 
|  | 558 | /// Sort the node sets by importance. First, rank them by recurrence MII, | 
|  | 559 | /// then by mobility (least mobile done first), and finally by depth. | 
|  | 560 | /// Each node set may contain a colocate value which is used as the first | 
|  | 561 | /// tie breaker, if it's set. | 
|  | 562 | bool operator>(const NodeSet &RHS) const { | 
|  | 563 | if (RecMII == RHS.RecMII) { | 
|  | 564 | if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate) | 
|  | 565 | return Colocate < RHS.Colocate; | 
|  | 566 | if (MaxMOV == RHS.MaxMOV) | 
|  | 567 | return MaxDepth > RHS.MaxDepth; | 
|  | 568 | return MaxMOV < RHS.MaxMOV; | 
|  | 569 | } | 
|  | 570 | return RecMII > RHS.RecMII; | 
|  | 571 | } | 
|  | 572 |  | 
|  | 573 | bool operator==(const NodeSet &RHS) const { | 
|  | 574 | return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV && | 
|  | 575 | MaxDepth == RHS.MaxDepth; | 
|  | 576 | } | 
|  | 577 |  | 
|  | 578 | bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); } | 
|  | 579 |  | 
|  | 580 | iterator begin() { return Nodes.begin(); } | 
|  | 581 | iterator end() { return Nodes.end(); } | 
|  | 582 |  | 
|  | 583 | void print(raw_ostream &os) const { | 
|  | 584 | os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV | 
|  | 585 | << " depth " << MaxDepth << " col " << Colocate << "\n"; | 
|  | 586 | for (const auto &I : Nodes) | 
|  | 587 | os << "   SU(" << I->NodeNum << ") " << *(I->getInstr()); | 
|  | 588 | os << "\n"; | 
|  | 589 | } | 
|  | 590 |  | 
|  | 591 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | 592 | LLVM_DUMP_METHOD void dump() const { print(dbgs()); } | 
|  | 593 | #endif | 
|  | 594 | }; | 
|  | 595 |  | 
|  | 596 | /// This class represents the scheduled code.  The main data structure is a | 
|  | 597 | /// map from scheduled cycle to instructions.  During scheduling, the | 
|  | 598 | /// data structure explicitly represents all stages/iterations.   When | 
|  | 599 | /// the algorithm finshes, the schedule is collapsed into a single stage, | 
|  | 600 | /// which represents instructions from different loop iterations. | 
|  | 601 | /// | 
|  | 602 | /// The SMS algorithm allows negative values for cycles, so the first cycle | 
|  | 603 | /// in the schedule is the smallest cycle value. | 
|  | 604 | class SMSchedule { | 
|  | 605 | private: | 
|  | 606 | /// Map from execution cycle to instructions. | 
|  | 607 | DenseMap<int, std::deque<SUnit *>> ScheduledInstrs; | 
|  | 608 |  | 
|  | 609 | /// Map from instruction to execution cycle. | 
|  | 610 | std::map<SUnit *, int> InstrToCycle; | 
|  | 611 |  | 
|  | 612 | /// Map for each register and the max difference between its uses and def. | 
|  | 613 | /// The first element in the pair is the max difference in stages. The | 
|  | 614 | /// second is true if the register defines a Phi value and loop value is | 
|  | 615 | /// scheduled before the Phi. | 
|  | 616 | std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff; | 
|  | 617 |  | 
|  | 618 | /// Keep track of the first cycle value in the schedule.  It starts | 
|  | 619 | /// as zero, but the algorithm allows negative values. | 
|  | 620 | int FirstCycle = 0; | 
|  | 621 |  | 
|  | 622 | /// Keep track of the last cycle value in the schedule. | 
|  | 623 | int LastCycle = 0; | 
|  | 624 |  | 
|  | 625 | /// The initiation interval (II) for the schedule. | 
|  | 626 | int InitiationInterval = 0; | 
|  | 627 |  | 
|  | 628 | /// Target machine information. | 
|  | 629 | const TargetSubtargetInfo &ST; | 
|  | 630 |  | 
|  | 631 | /// Virtual register information. | 
|  | 632 | MachineRegisterInfo &MRI; | 
|  | 633 |  | 
|  | 634 | std::unique_ptr<DFAPacketizer> Resources; | 
|  | 635 |  | 
|  | 636 | public: | 
|  | 637 | SMSchedule(MachineFunction *mf) | 
|  | 638 | : ST(mf->getSubtarget()), MRI(mf->getRegInfo()), | 
|  | 639 | Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {} | 
|  | 640 |  | 
|  | 641 | void reset() { | 
|  | 642 | ScheduledInstrs.clear(); | 
|  | 643 | InstrToCycle.clear(); | 
|  | 644 | RegToStageDiff.clear(); | 
|  | 645 | FirstCycle = 0; | 
|  | 646 | LastCycle = 0; | 
|  | 647 | InitiationInterval = 0; | 
|  | 648 | } | 
|  | 649 |  | 
|  | 650 | /// Set the initiation interval for this schedule. | 
|  | 651 | void setInitiationInterval(int ii) { InitiationInterval = ii; } | 
|  | 652 |  | 
|  | 653 | /// Return the first cycle in the completed schedule.  This | 
|  | 654 | /// can be a negative value. | 
|  | 655 | int getFirstCycle() const { return FirstCycle; } | 
|  | 656 |  | 
|  | 657 | /// Return the last cycle in the finalized schedule. | 
|  | 658 | int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; } | 
|  | 659 |  | 
|  | 660 | /// Return the cycle of the earliest scheduled instruction in the dependence | 
|  | 661 | /// chain. | 
|  | 662 | int earliestCycleInChain(const SDep &Dep); | 
|  | 663 |  | 
|  | 664 | /// Return the cycle of the latest scheduled instruction in the dependence | 
|  | 665 | /// chain. | 
|  | 666 | int latestCycleInChain(const SDep &Dep); | 
|  | 667 |  | 
|  | 668 | void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, | 
|  | 669 | int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG); | 
|  | 670 | bool insert(SUnit *SU, int StartCycle, int EndCycle, int II); | 
|  | 671 |  | 
|  | 672 | /// Iterators for the cycle to instruction map. | 
|  | 673 | using sched_iterator = DenseMap<int, std::deque<SUnit *>>::iterator; | 
|  | 674 | using const_sched_iterator = | 
|  | 675 | DenseMap<int, std::deque<SUnit *>>::const_iterator; | 
|  | 676 |  | 
|  | 677 | /// Return true if the instruction is scheduled at the specified stage. | 
|  | 678 | bool isScheduledAtStage(SUnit *SU, unsigned StageNum) { | 
|  | 679 | return (stageScheduled(SU) == (int)StageNum); | 
|  | 680 | } | 
|  | 681 |  | 
|  | 682 | /// Return the stage for a scheduled instruction.  Return -1 if | 
|  | 683 | /// the instruction has not been scheduled. | 
|  | 684 | int stageScheduled(SUnit *SU) const { | 
|  | 685 | std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); | 
|  | 686 | if (it == InstrToCycle.end()) | 
|  | 687 | return -1; | 
|  | 688 | return (it->second - FirstCycle) / InitiationInterval; | 
|  | 689 | } | 
|  | 690 |  | 
|  | 691 | /// Return the cycle for a scheduled instruction. This function normalizes | 
|  | 692 | /// the first cycle to be 0. | 
|  | 693 | unsigned cycleScheduled(SUnit *SU) const { | 
|  | 694 | std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); | 
|  | 695 | assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled."); | 
|  | 696 | return (it->second - FirstCycle) % InitiationInterval; | 
|  | 697 | } | 
|  | 698 |  | 
|  | 699 | /// Return the maximum stage count needed for this schedule. | 
|  | 700 | unsigned getMaxStageCount() { | 
|  | 701 | return (LastCycle - FirstCycle) / InitiationInterval; | 
|  | 702 | } | 
|  | 703 |  | 
|  | 704 | /// Return the max. number of stages/iterations that can occur between a | 
|  | 705 | /// register definition and its uses. | 
|  | 706 | unsigned getStagesForReg(int Reg, unsigned CurStage) { | 
|  | 707 | std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; | 
|  | 708 | if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second) | 
|  | 709 | return 1; | 
|  | 710 | return Stages.first; | 
|  | 711 | } | 
|  | 712 |  | 
|  | 713 | /// The number of stages for a Phi is a little different than other | 
|  | 714 | /// instructions. The minimum value computed in RegToStageDiff is 1 | 
|  | 715 | /// because we assume the Phi is needed for at least 1 iteration. | 
|  | 716 | /// This is not the case if the loop value is scheduled prior to the | 
|  | 717 | /// Phi in the same stage.  This function returns the number of stages | 
|  | 718 | /// or iterations needed between the Phi definition and any uses. | 
|  | 719 | unsigned getStagesForPhi(int Reg) { | 
|  | 720 | std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; | 
|  | 721 | if (Stages.second) | 
|  | 722 | return Stages.first; | 
|  | 723 | return Stages.first - 1; | 
|  | 724 | } | 
|  | 725 |  | 
|  | 726 | /// Return the instructions that are scheduled at the specified cycle. | 
|  | 727 | std::deque<SUnit *> &getInstructions(int cycle) { | 
|  | 728 | return ScheduledInstrs[cycle]; | 
|  | 729 | } | 
|  | 730 |  | 
|  | 731 | bool isValidSchedule(SwingSchedulerDAG *SSD); | 
|  | 732 | void finalizeSchedule(SwingSchedulerDAG *SSD); | 
|  | 733 | void orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, | 
|  | 734 | std::deque<SUnit *> &Insts); | 
|  | 735 | bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi); | 
|  | 736 | bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Def, | 
|  | 737 | MachineOperand &MO); | 
|  | 738 | void print(raw_ostream &os) const; | 
|  | 739 | void dump() const; | 
|  | 740 | }; | 
|  | 741 |  | 
|  | 742 | } // end anonymous namespace | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 743 |  | 
|  | 744 | unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; | 
|  | 745 | char MachinePipeliner::ID = 0; | 
|  | 746 | #ifndef NDEBUG | 
|  | 747 | int MachinePipeliner::NumTries = 0; | 
|  | 748 | #endif | 
|  | 749 | char &llvm::MachinePipelinerID = MachinePipeliner::ID; | 
| Eugene Zelenko | 32a4056 | 2017-09-11 23:00:48 +0000 | [diff] [blame] | 750 |  | 
| Matthias Braun | 1527baa | 2017-05-25 21:26:32 +0000 | [diff] [blame] | 751 | INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 752 | "Modulo Software Pipelining", false, false) | 
|  | 753 | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) | 
|  | 754 | INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) | 
|  | 755 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) | 
|  | 756 | INITIALIZE_PASS_DEPENDENCY(LiveIntervals) | 
| Matthias Braun | 1527baa | 2017-05-25 21:26:32 +0000 | [diff] [blame] | 757 | INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 758 | "Modulo Software Pipelining", false, false) | 
|  | 759 |  | 
|  | 760 | /// The "main" function for implementing Swing Modulo Scheduling. | 
|  | 761 | bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { | 
| Matthias Braun | f1caa28 | 2017-12-15 22:22:58 +0000 | [diff] [blame] | 762 | if (skipFunction(mf.getFunction())) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 763 | return false; | 
|  | 764 |  | 
|  | 765 | if (!EnableSWP) | 
|  | 766 | return false; | 
|  | 767 |  | 
| Matthias Braun | f1caa28 | 2017-12-15 22:22:58 +0000 | [diff] [blame] | 768 | if (mf.getFunction().getAttributes().hasAttribute( | 
| Reid Kleckner | b518054 | 2017-03-21 16:57:19 +0000 | [diff] [blame] | 769 | AttributeList::FunctionIndex, Attribute::OptimizeForSize) && | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 770 | !EnableSWPOptSize.getPosition()) | 
|  | 771 | return false; | 
|  | 772 |  | 
|  | 773 | MF = &mf; | 
|  | 774 | MLI = &getAnalysis<MachineLoopInfo>(); | 
|  | 775 | MDT = &getAnalysis<MachineDominatorTree>(); | 
|  | 776 | TII = MF->getSubtarget().getInstrInfo(); | 
|  | 777 | RegClassInfo.runOnMachineFunction(*MF); | 
|  | 778 |  | 
|  | 779 | for (auto &L : *MLI) | 
|  | 780 | scheduleLoop(*L); | 
|  | 781 |  | 
|  | 782 | return false; | 
|  | 783 | } | 
|  | 784 |  | 
|  | 785 | /// Attempt to perform the SMS algorithm on the specified loop. This function is | 
|  | 786 | /// the main entry point for the algorithm.  The function identifies candidate | 
|  | 787 | /// loops, calculates the minimum initiation interval, and attempts to schedule | 
|  | 788 | /// the loop. | 
|  | 789 | bool MachinePipeliner::scheduleLoop(MachineLoop &L) { | 
|  | 790 | bool Changed = false; | 
|  | 791 | for (auto &InnerLoop : L) | 
|  | 792 | Changed |= scheduleLoop(*InnerLoop); | 
|  | 793 |  | 
|  | 794 | #ifndef NDEBUG | 
|  | 795 | // Stop trying after reaching the limit (if any). | 
|  | 796 | int Limit = SwpLoopLimit; | 
|  | 797 | if (Limit >= 0) { | 
|  | 798 | if (NumTries >= SwpLoopLimit) | 
|  | 799 | return Changed; | 
|  | 800 | NumTries++; | 
|  | 801 | } | 
|  | 802 | #endif | 
|  | 803 |  | 
|  | 804 | if (!canPipelineLoop(L)) | 
|  | 805 | return Changed; | 
|  | 806 |  | 
|  | 807 | ++NumTrytoPipeline; | 
|  | 808 |  | 
|  | 809 | Changed = swingModuloScheduler(L); | 
|  | 810 |  | 
|  | 811 | return Changed; | 
|  | 812 | } | 
|  | 813 |  | 
|  | 814 | /// Return true if the loop can be software pipelined.  The algorithm is | 
|  | 815 | /// restricted to loops with a single basic block.  Make sure that the | 
|  | 816 | /// branch in the loop can be analyzed. | 
|  | 817 | bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { | 
|  | 818 | if (L.getNumBlocks() != 1) | 
|  | 819 | return false; | 
|  | 820 |  | 
|  | 821 | // Check if the branch can't be understood because we can't do pipelining | 
|  | 822 | // if that's the case. | 
|  | 823 | LI.TBB = nullptr; | 
|  | 824 | LI.FBB = nullptr; | 
|  | 825 | LI.BrCond.clear(); | 
|  | 826 | if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) | 
|  | 827 | return false; | 
|  | 828 |  | 
|  | 829 | LI.LoopInductionVar = nullptr; | 
|  | 830 | LI.LoopCompare = nullptr; | 
|  | 831 | if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare)) | 
|  | 832 | return false; | 
|  | 833 |  | 
|  | 834 | if (!L.getLoopPreheader()) | 
|  | 835 | return false; | 
|  | 836 |  | 
| Krzysztof Parzyszek | c715a5d | 2018-03-21 16:39:11 +0000 | [diff] [blame] | 837 | // Remove any subregisters from inputs to phi nodes. | 
|  | 838 | preprocessPhiNodes(*L.getHeader()); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 839 | return true; | 
|  | 840 | } | 
|  | 841 |  | 
| Krzysztof Parzyszek | c715a5d | 2018-03-21 16:39:11 +0000 | [diff] [blame] | 842 | void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { | 
|  | 843 | MachineRegisterInfo &MRI = MF->getRegInfo(); | 
|  | 844 | SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes(); | 
|  | 845 |  | 
|  | 846 | for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) { | 
|  | 847 | MachineOperand &DefOp = PI.getOperand(0); | 
|  | 848 | assert(DefOp.getSubReg() == 0); | 
|  | 849 | auto *RC = MRI.getRegClass(DefOp.getReg()); | 
|  | 850 |  | 
|  | 851 | for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { | 
|  | 852 | MachineOperand &RegOp = PI.getOperand(i); | 
|  | 853 | if (RegOp.getSubReg() == 0) | 
|  | 854 | continue; | 
|  | 855 |  | 
|  | 856 | // If the operand uses a subregister, replace it with a new register | 
|  | 857 | // without subregisters, and generate a copy to the new register. | 
|  | 858 | unsigned NewReg = MRI.createVirtualRegister(RC); | 
|  | 859 | MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); | 
|  | 860 | MachineBasicBlock::iterator At = PredB.getFirstTerminator(); | 
|  | 861 | const DebugLoc &DL = PredB.findDebugLoc(At); | 
|  | 862 | auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) | 
|  | 863 | .addReg(RegOp.getReg(), getRegState(RegOp), | 
|  | 864 | RegOp.getSubReg()); | 
|  | 865 | Slots.insertMachineInstrInMaps(*Copy); | 
|  | 866 | RegOp.setReg(NewReg); | 
|  | 867 | RegOp.setSubReg(0); | 
|  | 868 | } | 
|  | 869 | } | 
|  | 870 | } | 
|  | 871 |  | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 872 | /// The SMS algorithm consists of the following main steps: | 
|  | 873 | /// 1. Computation and analysis of the dependence graph. | 
|  | 874 | /// 2. Ordering of the nodes (instructions). | 
|  | 875 | /// 3. Attempt to Schedule the loop. | 
|  | 876 | bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { | 
|  | 877 | assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); | 
|  | 878 |  | 
|  | 879 | SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo); | 
|  | 880 |  | 
|  | 881 | MachineBasicBlock *MBB = L.getHeader(); | 
|  | 882 | // The kernel should not include any terminator instructions.  These | 
|  | 883 | // will be added back later. | 
|  | 884 | SMS.startBlock(MBB); | 
|  | 885 |  | 
|  | 886 | // Compute the number of 'real' instructions in the basic block by | 
|  | 887 | // ignoring terminators. | 
|  | 888 | unsigned size = MBB->size(); | 
|  | 889 | for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), | 
|  | 890 | E = MBB->instr_end(); | 
|  | 891 | I != E; ++I, --size) | 
|  | 892 | ; | 
|  | 893 |  | 
|  | 894 | SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); | 
|  | 895 | SMS.schedule(); | 
|  | 896 | SMS.exitRegion(); | 
|  | 897 |  | 
|  | 898 | SMS.finishBlock(); | 
|  | 899 | return SMS.hasNewSchedule(); | 
|  | 900 | } | 
|  | 901 |  | 
|  | 902 | /// We override the schedule function in ScheduleDAGInstrs to implement the | 
|  | 903 | /// scheduling part of the Swing Modulo Scheduling algorithm. | 
|  | 904 | void SwingSchedulerDAG::schedule() { | 
|  | 905 | AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); | 
|  | 906 | buildSchedGraph(AA); | 
|  | 907 | addLoopCarriedDependences(AA); | 
|  | 908 | updatePhiDependences(); | 
|  | 909 | Topo.InitDAGTopologicalSorting(); | 
|  | 910 | changeDependences(); | 
| Sumanth Gundapaneni | 62ac69d | 2018-10-18 15:51:16 +0000 | [diff] [blame] | 911 | postprocessDAG(); | 
| Matthias Braun | 726e12c | 2018-09-19 00:23:35 +0000 | [diff] [blame] | 912 | LLVM_DEBUG(dump()); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 913 |  | 
|  | 914 | NodeSetType NodeSets; | 
|  | 915 | findCircuits(NodeSets); | 
| Roorda, Jan-Willem | 4b8bcf0 | 2018-03-07 18:53:36 +0000 | [diff] [blame] | 916 | NodeSetType Circuits = NodeSets; | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 917 |  | 
|  | 918 | // Calculate the MII. | 
|  | 919 | unsigned ResMII = calculateResMII(); | 
|  | 920 | unsigned RecMII = calculateRecMII(NodeSets); | 
|  | 921 |  | 
|  | 922 | fuseRecs(NodeSets); | 
|  | 923 |  | 
|  | 924 | // This flag is used for testing and can cause correctness problems. | 
|  | 925 | if (SwpIgnoreRecMII) | 
|  | 926 | RecMII = 0; | 
|  | 927 |  | 
|  | 928 | MII = std::max(ResMII, RecMII); | 
| Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 929 | LLVM_DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII | 
|  | 930 | << ", res=" << ResMII << ")\n"); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 931 |  | 
|  | 932 | // Can't schedule a loop without a valid MII. | 
|  | 933 | if (MII == 0) | 
|  | 934 | return; | 
|  | 935 |  | 
|  | 936 | // Don't pipeline large loops. | 
|  | 937 | if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) | 
|  | 938 | return; | 
|  | 939 |  | 
|  | 940 | computeNodeFunctions(NodeSets); | 
|  | 941 |  | 
|  | 942 | registerPressureFilter(NodeSets); | 
|  | 943 |  | 
|  | 944 | colocateNodeSets(NodeSets); | 
|  | 945 |  | 
|  | 946 | checkNodeSets(NodeSets); | 
|  | 947 |  | 
| Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 948 | LLVM_DEBUG({ | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 949 | for (auto &I : NodeSets) { | 
|  | 950 | dbgs() << "  Rec NodeSet "; | 
|  | 951 | I.dump(); | 
|  | 952 | } | 
|  | 953 | }); | 
|  | 954 |  | 
| Krzysztof Parzyszek | 6c2f868 | 2018-04-12 15:11:11 +0000 | [diff] [blame] | 955 | std::stable_sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>()); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 956 |  | 
|  | 957 | groupRemainingNodes(NodeSets); | 
|  | 958 |  | 
|  | 959 | removeDuplicateNodes(NodeSets); | 
|  | 960 |  | 
| Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 961 | LLVM_DEBUG({ | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 962 | for (auto &I : NodeSets) { | 
|  | 963 | dbgs() << "  NodeSet "; | 
|  | 964 | I.dump(); | 
|  | 965 | } | 
|  | 966 | }); | 
|  | 967 |  | 
|  | 968 | computeNodeOrder(NodeSets); | 
|  | 969 |  | 
| Roorda, Jan-Willem | 4b8bcf0 | 2018-03-07 18:53:36 +0000 | [diff] [blame] | 970 | // check for node order issues | 
|  | 971 | checkValidNodeOrder(Circuits); | 
|  | 972 |  | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 973 | SMSchedule Schedule(Pass.MF); | 
|  | 974 | Scheduled = schedulePipeline(Schedule); | 
|  | 975 |  | 
|  | 976 | if (!Scheduled) | 
|  | 977 | return; | 
|  | 978 |  | 
|  | 979 | unsigned numStages = Schedule.getMaxStageCount(); | 
|  | 980 | // No need to generate pipeline if there are no overlapped iterations. | 
|  | 981 | if (numStages == 0) | 
|  | 982 | return; | 
|  | 983 |  | 
|  | 984 | // Check that the maximum stage count is less than user-defined limit. | 
|  | 985 | if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) | 
|  | 986 | return; | 
|  | 987 |  | 
|  | 988 | generatePipelinedLoop(Schedule); | 
|  | 989 | ++NumPipelined; | 
|  | 990 | } | 
|  | 991 |  | 
|  | 992 | /// Clean up after the software pipeliner runs. | 
|  | 993 | void SwingSchedulerDAG::finishBlock() { | 
|  | 994 | for (MachineInstr *I : NewMIs) | 
|  | 995 | MF.DeleteMachineInstr(I); | 
|  | 996 | NewMIs.clear(); | 
|  | 997 |  | 
|  | 998 | // Call the superclass. | 
|  | 999 | ScheduleDAGInstrs::finishBlock(); | 
|  | 1000 | } | 
|  | 1001 |  | 
|  | 1002 | /// Return the register values for  the operands of a Phi instruction. | 
|  | 1003 | /// This function assume the instruction is a Phi. | 
|  | 1004 | static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, | 
|  | 1005 | unsigned &InitVal, unsigned &LoopVal) { | 
|  | 1006 | assert(Phi.isPHI() && "Expecting a Phi."); | 
|  | 1007 |  | 
|  | 1008 | InitVal = 0; | 
|  | 1009 | LoopVal = 0; | 
|  | 1010 | for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) | 
|  | 1011 | if (Phi.getOperand(i + 1).getMBB() != Loop) | 
|  | 1012 | InitVal = Phi.getOperand(i).getReg(); | 
| Simon Pilgrim | fbfb19b | 2017-03-16 19:52:00 +0000 | [diff] [blame] | 1013 | else | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1014 | LoopVal = Phi.getOperand(i).getReg(); | 
|  | 1015 |  | 
|  | 1016 | assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); | 
|  | 1017 | } | 
|  | 1018 |  | 
|  | 1019 | /// Return the Phi register value that comes from the incoming block. | 
|  | 1020 | static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { | 
|  | 1021 | for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) | 
|  | 1022 | if (Phi.getOperand(i + 1).getMBB() != LoopBB) | 
|  | 1023 | return Phi.getOperand(i).getReg(); | 
|  | 1024 | return 0; | 
|  | 1025 | } | 
|  | 1026 |  | 
| Hiroshi Inoue | 8f976ba | 2018-01-17 12:29:38 +0000 | [diff] [blame] | 1027 | /// Return the Phi register value that comes the loop block. | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1028 | static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { | 
|  | 1029 | for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) | 
|  | 1030 | if (Phi.getOperand(i + 1).getMBB() == LoopBB) | 
|  | 1031 | return Phi.getOperand(i).getReg(); | 
|  | 1032 | return 0; | 
|  | 1033 | } | 
|  | 1034 |  | 
|  | 1035 | /// Return true if SUb can be reached from SUa following the chain edges. | 
|  | 1036 | static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { | 
|  | 1037 | SmallPtrSet<SUnit *, 8> Visited; | 
|  | 1038 | SmallVector<SUnit *, 8> Worklist; | 
|  | 1039 | Worklist.push_back(SUa); | 
|  | 1040 | while (!Worklist.empty()) { | 
|  | 1041 | const SUnit *SU = Worklist.pop_back_val(); | 
|  | 1042 | for (auto &SI : SU->Succs) { | 
|  | 1043 | SUnit *SuccSU = SI.getSUnit(); | 
|  | 1044 | if (SI.getKind() == SDep::Order) { | 
|  | 1045 | if (Visited.count(SuccSU)) | 
|  | 1046 | continue; | 
|  | 1047 | if (SuccSU == SUb) | 
|  | 1048 | return true; | 
|  | 1049 | Worklist.push_back(SuccSU); | 
|  | 1050 | Visited.insert(SuccSU); | 
|  | 1051 | } | 
|  | 1052 | } | 
|  | 1053 | } | 
|  | 1054 | return false; | 
|  | 1055 | } | 
|  | 1056 |  | 
|  | 1057 | /// Return true if the instruction causes a chain between memory | 
|  | 1058 | /// references before and after it. | 
|  | 1059 | static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { | 
|  | 1060 | return MI.isCall() || MI.hasUnmodeledSideEffects() || | 
|  | 1061 | (MI.hasOrderedMemoryRef() && | 
| Justin Lebar | d98cf00 | 2016-09-10 01:03:20 +0000 | [diff] [blame] | 1062 | (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1063 | } | 
|  | 1064 |  | 
|  | 1065 | /// Return the underlying objects for the memory references of an instruction. | 
|  | 1066 | /// This function calls the code in ValueTracking, but first checks that the | 
|  | 1067 | /// instruction has a memory operand. | 
|  | 1068 | static void getUnderlyingObjects(MachineInstr *MI, | 
|  | 1069 | SmallVectorImpl<Value *> &Objs, | 
|  | 1070 | const DataLayout &DL) { | 
|  | 1071 | if (!MI->hasOneMemOperand()) | 
|  | 1072 | return; | 
|  | 1073 | MachineMemOperand *MM = *MI->memoperands_begin(); | 
|  | 1074 | if (!MM->getValue()) | 
|  | 1075 | return; | 
|  | 1076 | GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL); | 
| Krzysztof Parzyszek | 9f041b1 | 2018-03-26 16:50:11 +0000 | [diff] [blame] | 1077 | for (Value *V : Objs) { | 
|  | 1078 | if (!isIdentifiedObject(V)) { | 
|  | 1079 | Objs.clear(); | 
|  | 1080 | return; | 
|  | 1081 | } | 
|  | 1082 | Objs.push_back(V); | 
|  | 1083 | } | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1084 | } | 
|  | 1085 |  | 
|  | 1086 | /// Add a chain edge between a load and store if the store can be an | 
|  | 1087 | /// alias of the load on a subsequent iteration, i.e., a loop carried | 
|  | 1088 | /// dependence. This code is very similar to the code in ScheduleDAGInstrs | 
|  | 1089 | /// but that code doesn't create loop carried dependences. | 
|  | 1090 | void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { | 
|  | 1091 | MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads; | 
| Krzysztof Parzyszek | 9f041b1 | 2018-03-26 16:50:11 +0000 | [diff] [blame] | 1092 | Value *UnknownValue = | 
|  | 1093 | UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1094 | for (auto &SU : SUnits) { | 
|  | 1095 | MachineInstr &MI = *SU.getInstr(); | 
|  | 1096 | if (isDependenceBarrier(MI, AA)) | 
|  | 1097 | PendingLoads.clear(); | 
|  | 1098 | else if (MI.mayLoad()) { | 
|  | 1099 | SmallVector<Value *, 4> Objs; | 
|  | 1100 | getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); | 
| Krzysztof Parzyszek | 9f041b1 | 2018-03-26 16:50:11 +0000 | [diff] [blame] | 1101 | if (Objs.empty()) | 
|  | 1102 | Objs.push_back(UnknownValue); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1103 | for (auto V : Objs) { | 
|  | 1104 | SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; | 
|  | 1105 | SUs.push_back(&SU); | 
|  | 1106 | } | 
|  | 1107 | } else if (MI.mayStore()) { | 
|  | 1108 | SmallVector<Value *, 4> Objs; | 
|  | 1109 | getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); | 
| Krzysztof Parzyszek | 9f041b1 | 2018-03-26 16:50:11 +0000 | [diff] [blame] | 1110 | if (Objs.empty()) | 
|  | 1111 | Objs.push_back(UnknownValue); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1112 | for (auto V : Objs) { | 
|  | 1113 | MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I = | 
|  | 1114 | PendingLoads.find(V); | 
|  | 1115 | if (I == PendingLoads.end()) | 
|  | 1116 | continue; | 
|  | 1117 | for (auto Load : I->second) { | 
|  | 1118 | if (isSuccOrder(Load, &SU)) | 
|  | 1119 | continue; | 
|  | 1120 | MachineInstr &LdMI = *Load->getInstr(); | 
|  | 1121 | // First, perform the cheaper check that compares the base register. | 
|  | 1122 | // If they are the same and the load offset is less than the store | 
|  | 1123 | // offset, then mark the dependence as loop carried potentially. | 
|  | 1124 | unsigned BaseReg1, BaseReg2; | 
|  | 1125 | int64_t Offset1, Offset2; | 
| Krzysztof Parzyszek | 9f041b1 | 2018-03-26 16:50:11 +0000 | [diff] [blame] | 1126 | if (TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) && | 
|  | 1127 | TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) { | 
|  | 1128 | if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) { | 
|  | 1129 | assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) && | 
|  | 1130 | "What happened to the chain edge?"); | 
|  | 1131 | SDep Dep(Load, SDep::Barrier); | 
|  | 1132 | Dep.setLatency(1); | 
|  | 1133 | SU.addPred(Dep); | 
|  | 1134 | continue; | 
|  | 1135 | } | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1136 | } | 
|  | 1137 | // Second, the more expensive check that uses alias analysis on the | 
|  | 1138 | // base registers. If they alias, and the load offset is less than | 
|  | 1139 | // the store offset, the mark the dependence as loop carried. | 
|  | 1140 | if (!AA) { | 
| Krzysztof Parzyszek | c715a5d | 2018-03-21 16:39:11 +0000 | [diff] [blame] | 1141 | SDep Dep(Load, SDep::Barrier); | 
|  | 1142 | Dep.setLatency(1); | 
|  | 1143 | SU.addPred(Dep); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1144 | continue; | 
|  | 1145 | } | 
|  | 1146 | MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); | 
|  | 1147 | MachineMemOperand *MMO2 = *MI.memoperands_begin(); | 
|  | 1148 | if (!MMO1->getValue() || !MMO2->getValue()) { | 
| Krzysztof Parzyszek | c715a5d | 2018-03-21 16:39:11 +0000 | [diff] [blame] | 1149 | SDep Dep(Load, SDep::Barrier); | 
|  | 1150 | Dep.setLatency(1); | 
|  | 1151 | SU.addPred(Dep); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1152 | continue; | 
|  | 1153 | } | 
|  | 1154 | if (MMO1->getValue() == MMO2->getValue() && | 
|  | 1155 | MMO1->getOffset() <= MMO2->getOffset()) { | 
| Krzysztof Parzyszek | c715a5d | 2018-03-21 16:39:11 +0000 | [diff] [blame] | 1156 | SDep Dep(Load, SDep::Barrier); | 
|  | 1157 | Dep.setLatency(1); | 
|  | 1158 | SU.addPred(Dep); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1159 | continue; | 
|  | 1160 | } | 
|  | 1161 | AliasResult AAResult = AA->alias( | 
| George Burgess IV | 6ef8002 | 2018-10-10 21:28:44 +0000 | [diff] [blame] | 1162 | MemoryLocation(MMO1->getValue(), LocationSize::unknown(), | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1163 | MMO1->getAAInfo()), | 
| George Burgess IV | 6ef8002 | 2018-10-10 21:28:44 +0000 | [diff] [blame] | 1164 | MemoryLocation(MMO2->getValue(), LocationSize::unknown(), | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1165 | MMO2->getAAInfo())); | 
|  | 1166 |  | 
| Krzysztof Parzyszek | c715a5d | 2018-03-21 16:39:11 +0000 | [diff] [blame] | 1167 | if (AAResult != NoAlias) { | 
|  | 1168 | SDep Dep(Load, SDep::Barrier); | 
|  | 1169 | Dep.setLatency(1); | 
|  | 1170 | SU.addPred(Dep); | 
|  | 1171 | } | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1172 | } | 
|  | 1173 | } | 
|  | 1174 | } | 
|  | 1175 | } | 
|  | 1176 | } | 
|  | 1177 |  | 
|  | 1178 | /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer | 
|  | 1179 | /// processes dependences for PHIs. This function adds true dependences | 
|  | 1180 | /// from a PHI to a use, and a loop carried dependence from the use to the | 
|  | 1181 | /// PHI. The loop carried dependence is represented as an anti dependence | 
|  | 1182 | /// edge. This function also removes chain dependences between unrelated | 
|  | 1183 | /// PHIs. | 
|  | 1184 | void SwingSchedulerDAG::updatePhiDependences() { | 
|  | 1185 | SmallVector<SDep, 4> RemoveDeps; | 
|  | 1186 | const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); | 
|  | 1187 |  | 
|  | 1188 | // Iterate over each DAG node. | 
|  | 1189 | for (SUnit &I : SUnits) { | 
|  | 1190 | RemoveDeps.clear(); | 
|  | 1191 | // Set to true if the instruction has an operand defined by a Phi. | 
|  | 1192 | unsigned HasPhiUse = 0; | 
|  | 1193 | unsigned HasPhiDef = 0; | 
|  | 1194 | MachineInstr *MI = I.getInstr(); | 
|  | 1195 | // Iterate over each operand, and we process the definitions. | 
|  | 1196 | for (MachineInstr::mop_iterator MOI = MI->operands_begin(), | 
|  | 1197 | MOE = MI->operands_end(); | 
|  | 1198 | MOI != MOE; ++MOI) { | 
|  | 1199 | if (!MOI->isReg()) | 
|  | 1200 | continue; | 
|  | 1201 | unsigned Reg = MOI->getReg(); | 
|  | 1202 | if (MOI->isDef()) { | 
|  | 1203 | // If the register is used by a Phi, then create an anti dependence. | 
|  | 1204 | for (MachineRegisterInfo::use_instr_iterator | 
|  | 1205 | UI = MRI.use_instr_begin(Reg), | 
|  | 1206 | UE = MRI.use_instr_end(); | 
|  | 1207 | UI != UE; ++UI) { | 
|  | 1208 | MachineInstr *UseMI = &*UI; | 
|  | 1209 | SUnit *SU = getSUnit(UseMI); | 
| Eugene Zelenko | cdc7161 | 2016-08-11 17:20:18 +0000 | [diff] [blame] | 1210 | if (SU != nullptr && UseMI->isPHI()) { | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1211 | if (!MI->isPHI()) { | 
|  | 1212 | SDep Dep(SU, SDep::Anti, Reg); | 
| Krzysztof Parzyszek | c715a5d | 2018-03-21 16:39:11 +0000 | [diff] [blame] | 1213 | Dep.setLatency(1); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1214 | I.addPred(Dep); | 
|  | 1215 | } else { | 
|  | 1216 | HasPhiDef = Reg; | 
|  | 1217 | // Add a chain edge to a dependent Phi that isn't an existing | 
|  | 1218 | // predecessor. | 
|  | 1219 | if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) | 
|  | 1220 | I.addPred(SDep(SU, SDep::Barrier)); | 
|  | 1221 | } | 
|  | 1222 | } | 
|  | 1223 | } | 
|  | 1224 | } else if (MOI->isUse()) { | 
|  | 1225 | // If the register is defined by a Phi, then create a true dependence. | 
|  | 1226 | MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); | 
| Eugene Zelenko | cdc7161 | 2016-08-11 17:20:18 +0000 | [diff] [blame] | 1227 | if (DefMI == nullptr) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1228 | continue; | 
|  | 1229 | SUnit *SU = getSUnit(DefMI); | 
| Eugene Zelenko | cdc7161 | 2016-08-11 17:20:18 +0000 | [diff] [blame] | 1230 | if (SU != nullptr && DefMI->isPHI()) { | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1231 | if (!MI->isPHI()) { | 
|  | 1232 | SDep Dep(SU, SDep::Data, Reg); | 
|  | 1233 | Dep.setLatency(0); | 
|  | 1234 | ST.adjustSchedDependency(SU, &I, Dep); | 
|  | 1235 | I.addPred(Dep); | 
|  | 1236 | } else { | 
|  | 1237 | HasPhiUse = Reg; | 
|  | 1238 | // Add a chain edge to a dependent Phi that isn't an existing | 
|  | 1239 | // predecessor. | 
|  | 1240 | if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) | 
|  | 1241 | I.addPred(SDep(SU, SDep::Barrier)); | 
|  | 1242 | } | 
|  | 1243 | } | 
|  | 1244 | } | 
|  | 1245 | } | 
|  | 1246 | // Remove order dependences from an unrelated Phi. | 
|  | 1247 | if (!SwpPruneDeps) | 
|  | 1248 | continue; | 
|  | 1249 | for (auto &PI : I.Preds) { | 
|  | 1250 | MachineInstr *PMI = PI.getSUnit()->getInstr(); | 
|  | 1251 | if (PMI->isPHI() && PI.getKind() == SDep::Order) { | 
|  | 1252 | if (I.getInstr()->isPHI()) { | 
|  | 1253 | if (PMI->getOperand(0).getReg() == HasPhiUse) | 
|  | 1254 | continue; | 
|  | 1255 | if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) | 
|  | 1256 | continue; | 
|  | 1257 | } | 
|  | 1258 | RemoveDeps.push_back(PI); | 
|  | 1259 | } | 
|  | 1260 | } | 
|  | 1261 | for (int i = 0, e = RemoveDeps.size(); i != e; ++i) | 
|  | 1262 | I.removePred(RemoveDeps[i]); | 
|  | 1263 | } | 
|  | 1264 | } | 
|  | 1265 |  | 
|  | 1266 | /// Iterate over each DAG node and see if we can change any dependences | 
|  | 1267 | /// in order to reduce the recurrence MII. | 
|  | 1268 | void SwingSchedulerDAG::changeDependences() { | 
|  | 1269 | // See if an instruction can use a value from the previous iteration. | 
|  | 1270 | // If so, we update the base and offset of the instruction and change | 
|  | 1271 | // the dependences. | 
|  | 1272 | for (SUnit &I : SUnits) { | 
|  | 1273 | unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; | 
|  | 1274 | int64_t NewOffset = 0; | 
|  | 1275 | if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, | 
|  | 1276 | NewOffset)) | 
|  | 1277 | continue; | 
|  | 1278 |  | 
|  | 1279 | // Get the MI and SUnit for the instruction that defines the original base. | 
|  | 1280 | unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg(); | 
|  | 1281 | MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); | 
|  | 1282 | if (!DefMI) | 
|  | 1283 | continue; | 
|  | 1284 | SUnit *DefSU = getSUnit(DefMI); | 
|  | 1285 | if (!DefSU) | 
|  | 1286 | continue; | 
|  | 1287 | // Get the MI and SUnit for the instruction that defins the new base. | 
|  | 1288 | MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); | 
|  | 1289 | if (!LastMI) | 
|  | 1290 | continue; | 
|  | 1291 | SUnit *LastSU = getSUnit(LastMI); | 
|  | 1292 | if (!LastSU) | 
|  | 1293 | continue; | 
|  | 1294 |  | 
|  | 1295 | if (Topo.IsReachable(&I, LastSU)) | 
|  | 1296 | continue; | 
|  | 1297 |  | 
|  | 1298 | // Remove the dependence. The value now depends on a prior iteration. | 
|  | 1299 | SmallVector<SDep, 4> Deps; | 
|  | 1300 | for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E; | 
|  | 1301 | ++P) | 
|  | 1302 | if (P->getSUnit() == DefSU) | 
|  | 1303 | Deps.push_back(*P); | 
|  | 1304 | for (int i = 0, e = Deps.size(); i != e; i++) { | 
|  | 1305 | Topo.RemovePred(&I, Deps[i].getSUnit()); | 
|  | 1306 | I.removePred(Deps[i]); | 
|  | 1307 | } | 
|  | 1308 | // Remove the chain dependence between the instructions. | 
|  | 1309 | Deps.clear(); | 
|  | 1310 | for (auto &P : LastSU->Preds) | 
|  | 1311 | if (P.getSUnit() == &I && P.getKind() == SDep::Order) | 
|  | 1312 | Deps.push_back(P); | 
|  | 1313 | for (int i = 0, e = Deps.size(); i != e; i++) { | 
|  | 1314 | Topo.RemovePred(LastSU, Deps[i].getSUnit()); | 
|  | 1315 | LastSU->removePred(Deps[i]); | 
|  | 1316 | } | 
|  | 1317 |  | 
|  | 1318 | // Add a dependence between the new instruction and the instruction | 
|  | 1319 | // that defines the new base. | 
|  | 1320 | SDep Dep(&I, SDep::Anti, NewBase); | 
| Sumanth Gundapaneni | 8916e43 | 2018-10-11 19:42:46 +0000 | [diff] [blame] | 1321 | Topo.AddPred(LastSU, &I); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1322 | LastSU->addPred(Dep); | 
|  | 1323 |  | 
|  | 1324 | // Remember the base and offset information so that we can update the | 
|  | 1325 | // instruction during code generation. | 
|  | 1326 | InstrChanges[&I] = std::make_pair(NewBase, NewOffset); | 
|  | 1327 | } | 
|  | 1328 | } | 
|  | 1329 |  | 
|  | 1330 | namespace { | 
| Eugene Zelenko | cdc7161 | 2016-08-11 17:20:18 +0000 | [diff] [blame] | 1331 |  | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1332 | // FuncUnitSorter - Comparison operator used to sort instructions by | 
|  | 1333 | // the number of functional unit choices. | 
|  | 1334 | struct FuncUnitSorter { | 
|  | 1335 | const InstrItineraryData *InstrItins; | 
|  | 1336 | DenseMap<unsigned, unsigned> Resources; | 
|  | 1337 |  | 
| Eugene Zelenko | 32a4056 | 2017-09-11 23:00:48 +0000 | [diff] [blame] | 1338 | FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {} | 
|  | 1339 |  | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1340 | // Compute the number of functional unit alternatives needed | 
|  | 1341 | // at each stage, and take the minimum value. We prioritize the | 
|  | 1342 | // instructions by the least number of choices first. | 
|  | 1343 | unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const { | 
|  | 1344 | unsigned schedClass = Inst->getDesc().getSchedClass(); | 
|  | 1345 | unsigned min = UINT_MAX; | 
|  | 1346 | for (const InstrStage *IS = InstrItins->beginStage(schedClass), | 
|  | 1347 | *IE = InstrItins->endStage(schedClass); | 
|  | 1348 | IS != IE; ++IS) { | 
|  | 1349 | unsigned funcUnits = IS->getUnits(); | 
|  | 1350 | unsigned numAlternatives = countPopulation(funcUnits); | 
|  | 1351 | if (numAlternatives < min) { | 
|  | 1352 | min = numAlternatives; | 
|  | 1353 | F = funcUnits; | 
|  | 1354 | } | 
|  | 1355 | } | 
|  | 1356 | return min; | 
|  | 1357 | } | 
|  | 1358 |  | 
|  | 1359 | // Compute the critical resources needed by the instruction. This | 
|  | 1360 | // function records the functional units needed by instructions that | 
|  | 1361 | // must use only one functional unit. We use this as a tie breaker | 
|  | 1362 | // for computing the resource MII. The instrutions that require | 
|  | 1363 | // the same, highly used, functional unit have high priority. | 
|  | 1364 | void calcCriticalResources(MachineInstr &MI) { | 
|  | 1365 | unsigned SchedClass = MI.getDesc().getSchedClass(); | 
|  | 1366 | for (const InstrStage *IS = InstrItins->beginStage(SchedClass), | 
|  | 1367 | *IE = InstrItins->endStage(SchedClass); | 
|  | 1368 | IS != IE; ++IS) { | 
|  | 1369 | unsigned FuncUnits = IS->getUnits(); | 
|  | 1370 | if (countPopulation(FuncUnits) == 1) | 
|  | 1371 | Resources[FuncUnits]++; | 
|  | 1372 | } | 
|  | 1373 | } | 
|  | 1374 |  | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1375 | /// Return true if IS1 has less priority than IS2. | 
|  | 1376 | bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { | 
|  | 1377 | unsigned F1 = 0, F2 = 0; | 
|  | 1378 | unsigned MFUs1 = minFuncUnits(IS1, F1); | 
|  | 1379 | unsigned MFUs2 = minFuncUnits(IS2, F2); | 
|  | 1380 | if (MFUs1 == 1 && MFUs2 == 1) | 
|  | 1381 | return Resources.lookup(F1) < Resources.lookup(F2); | 
|  | 1382 | return MFUs1 > MFUs2; | 
|  | 1383 | } | 
|  | 1384 | }; | 
| Eugene Zelenko | cdc7161 | 2016-08-11 17:20:18 +0000 | [diff] [blame] | 1385 |  | 
|  | 1386 | } // end anonymous namespace | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1387 |  | 
|  | 1388 | /// Calculate the resource constrained minimum initiation interval for the | 
|  | 1389 | /// specified loop. We use the DFA to model the resources needed for | 
|  | 1390 | /// each instruction, and we ignore dependences. A different DFA is created | 
|  | 1391 | /// for each cycle that is required. When adding a new instruction, we attempt | 
|  | 1392 | /// to add it to each existing DFA, until a legal space is found. If the | 
|  | 1393 | /// instruction cannot be reserved in an existing DFA, we create a new one. | 
|  | 1394 | unsigned SwingSchedulerDAG::calculateResMII() { | 
|  | 1395 | SmallVector<DFAPacketizer *, 8> Resources; | 
|  | 1396 | MachineBasicBlock *MBB = Loop.getHeader(); | 
|  | 1397 | Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget())); | 
|  | 1398 |  | 
|  | 1399 | // Sort the instructions by the number of available choices for scheduling, | 
|  | 1400 | // least to most. Use the number of critical resources as the tie breaker. | 
|  | 1401 | FuncUnitSorter FUS = | 
|  | 1402 | FuncUnitSorter(MF.getSubtarget().getInstrItineraryData()); | 
|  | 1403 | for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), | 
|  | 1404 | E = MBB->getFirstTerminator(); | 
|  | 1405 | I != E; ++I) | 
|  | 1406 | FUS.calcCriticalResources(*I); | 
|  | 1407 | PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> | 
|  | 1408 | FuncUnitOrder(FUS); | 
|  | 1409 |  | 
|  | 1410 | for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), | 
|  | 1411 | E = MBB->getFirstTerminator(); | 
|  | 1412 | I != E; ++I) | 
|  | 1413 | FuncUnitOrder.push(&*I); | 
|  | 1414 |  | 
|  | 1415 | while (!FuncUnitOrder.empty()) { | 
|  | 1416 | MachineInstr *MI = FuncUnitOrder.top(); | 
|  | 1417 | FuncUnitOrder.pop(); | 
|  | 1418 | if (TII->isZeroCost(MI->getOpcode())) | 
|  | 1419 | continue; | 
|  | 1420 | // Attempt to reserve the instruction in an existing DFA. At least one | 
|  | 1421 | // DFA is needed for each cycle. | 
|  | 1422 | unsigned NumCycles = getSUnit(MI)->Latency; | 
|  | 1423 | unsigned ReservedCycles = 0; | 
|  | 1424 | SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin(); | 
|  | 1425 | SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end(); | 
|  | 1426 | for (unsigned C = 0; C < NumCycles; ++C) | 
|  | 1427 | while (RI != RE) { | 
|  | 1428 | if ((*RI++)->canReserveResources(*MI)) { | 
|  | 1429 | ++ReservedCycles; | 
|  | 1430 | break; | 
|  | 1431 | } | 
|  | 1432 | } | 
|  | 1433 | // Start reserving resources using existing DFAs. | 
|  | 1434 | for (unsigned C = 0; C < ReservedCycles; ++C) { | 
|  | 1435 | --RI; | 
|  | 1436 | (*RI)->reserveResources(*MI); | 
|  | 1437 | } | 
|  | 1438 | // Add new DFAs, if needed, to reserve resources. | 
|  | 1439 | for (unsigned C = ReservedCycles; C < NumCycles; ++C) { | 
|  | 1440 | DFAPacketizer *NewResource = | 
|  | 1441 | TII->CreateTargetScheduleState(MF.getSubtarget()); | 
|  | 1442 | assert(NewResource->canReserveResources(*MI) && "Reserve error."); | 
|  | 1443 | NewResource->reserveResources(*MI); | 
|  | 1444 | Resources.push_back(NewResource); | 
|  | 1445 | } | 
|  | 1446 | } | 
|  | 1447 | int Resmii = Resources.size(); | 
|  | 1448 | // Delete the memory for each of the DFAs that were created earlier. | 
|  | 1449 | for (DFAPacketizer *RI : Resources) { | 
|  | 1450 | DFAPacketizer *D = RI; | 
|  | 1451 | delete D; | 
|  | 1452 | } | 
|  | 1453 | Resources.clear(); | 
|  | 1454 | return Resmii; | 
|  | 1455 | } | 
|  | 1456 |  | 
|  | 1457 | /// Calculate the recurrence-constrainted minimum initiation interval. | 
|  | 1458 | /// Iterate over each circuit.  Compute the delay(c) and distance(c) | 
|  | 1459 | /// for each circuit. The II needs to satisfy the inequality | 
|  | 1460 | /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest | 
| Hiroshi Inoue | c73b6d6 | 2018-06-20 05:29:26 +0000 | [diff] [blame] | 1461 | /// II that satisfies the inequality, and the RecMII is the maximum | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1462 | /// of those values. | 
|  | 1463 | unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { | 
|  | 1464 | unsigned RecMII = 0; | 
|  | 1465 |  | 
|  | 1466 | for (NodeSet &Nodes : NodeSets) { | 
| Eugene Zelenko | 32a4056 | 2017-09-11 23:00:48 +0000 | [diff] [blame] | 1467 | if (Nodes.empty()) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1468 | continue; | 
|  | 1469 |  | 
| Krzysztof Parzyszek | a212204 | 2018-03-26 16:33:16 +0000 | [diff] [blame] | 1470 | unsigned Delay = Nodes.getLatency(); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1471 | unsigned Distance = 1; | 
|  | 1472 |  | 
|  | 1473 | // ii = ceil(delay / distance) | 
|  | 1474 | unsigned CurMII = (Delay + Distance - 1) / Distance; | 
|  | 1475 | Nodes.setRecMII(CurMII); | 
|  | 1476 | if (CurMII > RecMII) | 
|  | 1477 | RecMII = CurMII; | 
|  | 1478 | } | 
|  | 1479 |  | 
|  | 1480 | return RecMII; | 
|  | 1481 | } | 
|  | 1482 |  | 
|  | 1483 | /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, | 
|  | 1484 | /// but we do this to find the circuits, and then change them back. | 
|  | 1485 | static void swapAntiDependences(std::vector<SUnit> &SUnits) { | 
|  | 1486 | SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; | 
|  | 1487 | for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { | 
|  | 1488 | SUnit *SU = &SUnits[i]; | 
|  | 1489 | for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); | 
|  | 1490 | IP != EP; ++IP) { | 
|  | 1491 | if (IP->getKind() != SDep::Anti) | 
|  | 1492 | continue; | 
|  | 1493 | DepsAdded.push_back(std::make_pair(SU, *IP)); | 
|  | 1494 | } | 
|  | 1495 | } | 
|  | 1496 | for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(), | 
|  | 1497 | E = DepsAdded.end(); | 
|  | 1498 | I != E; ++I) { | 
|  | 1499 | // Remove this anti dependency and add one in the reverse direction. | 
|  | 1500 | SUnit *SU = I->first; | 
|  | 1501 | SDep &D = I->second; | 
|  | 1502 | SUnit *TargetSU = D.getSUnit(); | 
|  | 1503 | unsigned Reg = D.getReg(); | 
|  | 1504 | unsigned Lat = D.getLatency(); | 
|  | 1505 | SU->removePred(D); | 
|  | 1506 | SDep Dep(SU, SDep::Anti, Reg); | 
|  | 1507 | Dep.setLatency(Lat); | 
|  | 1508 | TargetSU->addPred(Dep); | 
|  | 1509 | } | 
|  | 1510 | } | 
|  | 1511 |  | 
|  | 1512 | /// Create the adjacency structure of the nodes in the graph. | 
|  | 1513 | void SwingSchedulerDAG::Circuits::createAdjacencyStructure( | 
|  | 1514 | SwingSchedulerDAG *DAG) { | 
|  | 1515 | BitVector Added(SUnits.size()); | 
| Krzysztof Parzyszek | 8e1363d | 2018-03-26 16:05:55 +0000 | [diff] [blame] | 1516 | DenseMap<int, int> OutputDeps; | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1517 | for (int i = 0, e = SUnits.size(); i != e; ++i) { | 
|  | 1518 | Added.reset(); | 
|  | 1519 | // Add any successor to the adjacency matrix and exclude duplicates. | 
|  | 1520 | for (auto &SI : SUnits[i].Succs) { | 
| Krzysztof Parzyszek | 8e1363d | 2018-03-26 16:05:55 +0000 | [diff] [blame] | 1521 | // Only create a back-edge on the first and last nodes of a dependence | 
|  | 1522 | // chain. This records any chains and adds them later. | 
|  | 1523 | if (SI.getKind() == SDep::Output) { | 
|  | 1524 | int N = SI.getSUnit()->NodeNum; | 
|  | 1525 | int BackEdge = i; | 
|  | 1526 | auto Dep = OutputDeps.find(BackEdge); | 
|  | 1527 | if (Dep != OutputDeps.end()) { | 
|  | 1528 | BackEdge = Dep->second; | 
|  | 1529 | OutputDeps.erase(Dep); | 
|  | 1530 | } | 
|  | 1531 | OutputDeps[N] = BackEdge; | 
|  | 1532 | } | 
| Sumanth Gundapaneni | ada0f51 | 2018-10-25 21:27:08 +0000 | [diff] [blame] | 1533 | // Do not process a boundary node, an artificial node. | 
|  | 1534 | // A back-edge is processed only if it goes to a Phi. | 
|  | 1535 | if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() || | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1536 | (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) | 
|  | 1537 | continue; | 
|  | 1538 | int N = SI.getSUnit()->NodeNum; | 
|  | 1539 | if (!Added.test(N)) { | 
|  | 1540 | AdjK[i].push_back(N); | 
|  | 1541 | Added.set(N); | 
|  | 1542 | } | 
|  | 1543 | } | 
|  | 1544 | // A chain edge between a store and a load is treated as a back-edge in the | 
|  | 1545 | // adjacency matrix. | 
|  | 1546 | for (auto &PI : SUnits[i].Preds) { | 
|  | 1547 | if (!SUnits[i].getInstr()->mayStore() || | 
| Krzysztof Parzyszek | 8e1363d | 2018-03-26 16:05:55 +0000 | [diff] [blame] | 1548 | !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1549 | continue; | 
|  | 1550 | if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { | 
|  | 1551 | int N = PI.getSUnit()->NodeNum; | 
|  | 1552 | if (!Added.test(N)) { | 
|  | 1553 | AdjK[i].push_back(N); | 
|  | 1554 | Added.set(N); | 
|  | 1555 | } | 
|  | 1556 | } | 
|  | 1557 | } | 
|  | 1558 | } | 
| Krzysztof Parzyszek | 8e1363d | 2018-03-26 16:05:55 +0000 | [diff] [blame] | 1559 | // Add back-eges in the adjacency matrix for the output dependences. | 
|  | 1560 | for (auto &OD : OutputDeps) | 
|  | 1561 | if (!Added.test(OD.second)) { | 
|  | 1562 | AdjK[OD.first].push_back(OD.second); | 
|  | 1563 | Added.set(OD.second); | 
|  | 1564 | } | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1565 | } | 
|  | 1566 |  | 
|  | 1567 | /// Identify an elementary circuit in the dependence graph starting at the | 
|  | 1568 | /// specified node. | 
|  | 1569 | bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, | 
|  | 1570 | bool HasBackedge) { | 
|  | 1571 | SUnit *SV = &SUnits[V]; | 
|  | 1572 | bool F = false; | 
|  | 1573 | Stack.insert(SV); | 
|  | 1574 | Blocked.set(V); | 
|  | 1575 |  | 
|  | 1576 | for (auto W : AdjK[V]) { | 
|  | 1577 | if (NumPaths > MaxPaths) | 
|  | 1578 | break; | 
|  | 1579 | if (W < S) | 
|  | 1580 | continue; | 
|  | 1581 | if (W == S) { | 
|  | 1582 | if (!HasBackedge) | 
|  | 1583 | NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); | 
|  | 1584 | F = true; | 
|  | 1585 | ++NumPaths; | 
|  | 1586 | break; | 
|  | 1587 | } else if (!Blocked.test(W)) { | 
| Sumanth Gundapaneni | 77418a3 | 2018-10-11 19:45:07 +0000 | [diff] [blame] | 1588 | if (circuit(W, S, NodeSets, | 
|  | 1589 | Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1590 | F = true; | 
|  | 1591 | } | 
|  | 1592 | } | 
|  | 1593 |  | 
|  | 1594 | if (F) | 
|  | 1595 | unblock(V); | 
|  | 1596 | else { | 
|  | 1597 | for (auto W : AdjK[V]) { | 
|  | 1598 | if (W < S) | 
|  | 1599 | continue; | 
|  | 1600 | if (B[W].count(SV) == 0) | 
|  | 1601 | B[W].insert(SV); | 
|  | 1602 | } | 
|  | 1603 | } | 
|  | 1604 | Stack.pop_back(); | 
|  | 1605 | return F; | 
|  | 1606 | } | 
|  | 1607 |  | 
|  | 1608 | /// Unblock a node in the circuit finding algorithm. | 
|  | 1609 | void SwingSchedulerDAG::Circuits::unblock(int U) { | 
|  | 1610 | Blocked.reset(U); | 
|  | 1611 | SmallPtrSet<SUnit *, 4> &BU = B[U]; | 
|  | 1612 | while (!BU.empty()) { | 
|  | 1613 | SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); | 
|  | 1614 | assert(SI != BU.end() && "Invalid B set."); | 
|  | 1615 | SUnit *W = *SI; | 
|  | 1616 | BU.erase(W); | 
|  | 1617 | if (Blocked.test(W->NodeNum)) | 
|  | 1618 | unblock(W->NodeNum); | 
|  | 1619 | } | 
|  | 1620 | } | 
|  | 1621 |  | 
|  | 1622 | /// Identify all the elementary circuits in the dependence graph using | 
|  | 1623 | /// Johnson's circuit algorithm. | 
|  | 1624 | void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { | 
|  | 1625 | // Swap all the anti dependences in the DAG. That means it is no longer a DAG, | 
|  | 1626 | // but we do this to find the circuits, and then change them back. | 
|  | 1627 | swapAntiDependences(SUnits); | 
|  | 1628 |  | 
| Sumanth Gundapaneni | 77418a3 | 2018-10-11 19:45:07 +0000 | [diff] [blame] | 1629 | Circuits Cir(SUnits, Topo); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1630 | // Create the adjacency structure. | 
|  | 1631 | Cir.createAdjacencyStructure(this); | 
|  | 1632 | for (int i = 0, e = SUnits.size(); i != e; ++i) { | 
|  | 1633 | Cir.reset(); | 
|  | 1634 | Cir.circuit(i, i, NodeSets); | 
|  | 1635 | } | 
|  | 1636 |  | 
|  | 1637 | // Change the dependences back so that we've created a DAG again. | 
|  | 1638 | swapAntiDependences(SUnits); | 
|  | 1639 | } | 
|  | 1640 |  | 
| Sumanth Gundapaneni | 62ac69d | 2018-10-18 15:51:16 +0000 | [diff] [blame] | 1641 | // Create artificial dependencies between the source of COPY/REG_SEQUENCE that | 
|  | 1642 | // is loop-carried to the USE in next iteration. This will help pipeliner avoid | 
|  | 1643 | // additional copies that are needed across iterations. An artificial dependence | 
|  | 1644 | // edge is added from USE to SOURCE of COPY/REG_SEQUENCE. | 
|  | 1645 |  | 
|  | 1646 | // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) | 
|  | 1647 | // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE | 
|  | 1648 | // PHI-------True-Dep------> USEOfPhi | 
|  | 1649 |  | 
|  | 1650 | // The mutation creates | 
|  | 1651 | // USEOfPHI -------Artificial-Dep---> SRCOfCopy | 
|  | 1652 |  | 
|  | 1653 | // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy | 
|  | 1654 | // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled | 
|  | 1655 | // late  to avoid additional copies across iterations. The possible scheduling | 
|  | 1656 | // order would be | 
|  | 1657 | // USEOfPHI --- SRCOfCopy---  COPY/REG_SEQUENCE. | 
|  | 1658 |  | 
|  | 1659 | void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { | 
|  | 1660 | for (SUnit &SU : DAG->SUnits) { | 
|  | 1661 | // Find the COPY/REG_SEQUENCE instruction. | 
|  | 1662 | if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) | 
|  | 1663 | continue; | 
|  | 1664 |  | 
|  | 1665 | // Record the loop carried PHIs. | 
|  | 1666 | SmallVector<SUnit *, 4> PHISUs; | 
|  | 1667 | // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. | 
|  | 1668 | SmallVector<SUnit *, 4> SrcSUs; | 
|  | 1669 |  | 
|  | 1670 | for (auto &Dep : SU.Preds) { | 
|  | 1671 | SUnit *TmpSU = Dep.getSUnit(); | 
|  | 1672 | MachineInstr *TmpMI = TmpSU->getInstr(); | 
|  | 1673 | SDep::Kind DepKind = Dep.getKind(); | 
|  | 1674 | // Save the loop carried PHI. | 
|  | 1675 | if (DepKind == SDep::Anti && TmpMI->isPHI()) | 
|  | 1676 | PHISUs.push_back(TmpSU); | 
|  | 1677 | // Save the source of COPY/REG_SEQUENCE. | 
|  | 1678 | // If the source has no pre-decessors, we will end up creating cycles. | 
|  | 1679 | else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) | 
|  | 1680 | SrcSUs.push_back(TmpSU); | 
|  | 1681 | } | 
|  | 1682 |  | 
|  | 1683 | if (PHISUs.size() == 0 || SrcSUs.size() == 0) | 
|  | 1684 | continue; | 
|  | 1685 |  | 
|  | 1686 | // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this | 
|  | 1687 | // SUnit to the container. | 
|  | 1688 | SmallVector<SUnit *, 8> UseSUs; | 
|  | 1689 | for (auto I = PHISUs.begin(); I != PHISUs.end(); ++I) { | 
|  | 1690 | for (auto &Dep : (*I)->Succs) { | 
|  | 1691 | if (Dep.getKind() != SDep::Data) | 
|  | 1692 | continue; | 
|  | 1693 |  | 
|  | 1694 | SUnit *TmpSU = Dep.getSUnit(); | 
|  | 1695 | MachineInstr *TmpMI = TmpSU->getInstr(); | 
|  | 1696 | if (TmpMI->isPHI() || TmpMI->isRegSequence()) { | 
|  | 1697 | PHISUs.push_back(TmpSU); | 
|  | 1698 | continue; | 
|  | 1699 | } | 
|  | 1700 | UseSUs.push_back(TmpSU); | 
|  | 1701 | } | 
|  | 1702 | } | 
|  | 1703 |  | 
|  | 1704 | if (UseSUs.size() == 0) | 
|  | 1705 | continue; | 
|  | 1706 |  | 
|  | 1707 | SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG); | 
|  | 1708 | // Add the artificial dependencies if it does not form a cycle. | 
|  | 1709 | for (auto I : UseSUs) { | 
|  | 1710 | for (auto Src : SrcSUs) { | 
|  | 1711 | if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { | 
|  | 1712 | Src->addPred(SDep(I, SDep::Artificial)); | 
|  | 1713 | SDAG->Topo.AddPred(Src, I); | 
|  | 1714 | } | 
|  | 1715 | } | 
|  | 1716 | } | 
|  | 1717 | } | 
|  | 1718 | } | 
|  | 1719 |  | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1720 | /// Return true for DAG nodes that we ignore when computing the cost functions. | 
| Hiroshi Inoue | c73b6d6 | 2018-06-20 05:29:26 +0000 | [diff] [blame] | 1721 | /// We ignore the back-edge recurrence in order to avoid unbounded recursion | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1722 | /// in the calculation of the ASAP, ALAP, etc functions. | 
|  | 1723 | static bool ignoreDependence(const SDep &D, bool isPred) { | 
|  | 1724 | if (D.isArtificial()) | 
|  | 1725 | return true; | 
|  | 1726 | return D.getKind() == SDep::Anti && isPred; | 
|  | 1727 | } | 
|  | 1728 |  | 
|  | 1729 | /// Compute several functions need to order the nodes for scheduling. | 
|  | 1730 | ///  ASAP - Earliest time to schedule a node. | 
|  | 1731 | ///  ALAP - Latest time to schedule a node. | 
|  | 1732 | ///  MOV - Mobility function, difference between ALAP and ASAP. | 
|  | 1733 | ///  D - Depth of each node. | 
|  | 1734 | ///  H - Height of each node. | 
|  | 1735 | void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1736 | ScheduleInfo.resize(SUnits.size()); | 
|  | 1737 |  | 
| Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1738 | LLVM_DEBUG({ | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1739 | for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), | 
|  | 1740 | E = Topo.end(); | 
|  | 1741 | I != E; ++I) { | 
| Matthias Braun | 726e12c | 2018-09-19 00:23:35 +0000 | [diff] [blame] | 1742 | const SUnit &SU = SUnits[*I]; | 
|  | 1743 | dumpNode(SU); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1744 | } | 
|  | 1745 | }); | 
|  | 1746 |  | 
|  | 1747 | int maxASAP = 0; | 
| Roorda, Jan-Willem | 4b8bcf0 | 2018-03-07 18:53:36 +0000 | [diff] [blame] | 1748 | // Compute ASAP and ZeroLatencyDepth. | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1749 | for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), | 
|  | 1750 | E = Topo.end(); | 
|  | 1751 | I != E; ++I) { | 
|  | 1752 | int asap = 0; | 
| Roorda, Jan-Willem | 4b8bcf0 | 2018-03-07 18:53:36 +0000 | [diff] [blame] | 1753 | int zeroLatencyDepth = 0; | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1754 | SUnit *SU = &SUnits[*I]; | 
|  | 1755 | for (SUnit::const_pred_iterator IP = SU->Preds.begin(), | 
|  | 1756 | EP = SU->Preds.end(); | 
|  | 1757 | IP != EP; ++IP) { | 
| Roorda, Jan-Willem | 4b8bcf0 | 2018-03-07 18:53:36 +0000 | [diff] [blame] | 1758 | SUnit *pred = IP->getSUnit(); | 
| Krzysztof Parzyszek | c715a5d | 2018-03-21 16:39:11 +0000 | [diff] [blame] | 1759 | if (IP->getLatency() == 0) | 
| Roorda, Jan-Willem | 4b8bcf0 | 2018-03-07 18:53:36 +0000 | [diff] [blame] | 1760 | zeroLatencyDepth = | 
|  | 1761 | std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1762 | if (ignoreDependence(*IP, true)) | 
|  | 1763 | continue; | 
| Krzysztof Parzyszek | c715a5d | 2018-03-21 16:39:11 +0000 | [diff] [blame] | 1764 | asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() - | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1765 | getDistance(pred, SU, *IP) * MII)); | 
|  | 1766 | } | 
|  | 1767 | maxASAP = std::max(maxASAP, asap); | 
|  | 1768 | ScheduleInfo[*I].ASAP = asap; | 
| Roorda, Jan-Willem | 4b8bcf0 | 2018-03-07 18:53:36 +0000 | [diff] [blame] | 1769 | ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth; | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1770 | } | 
|  | 1771 |  | 
| Roorda, Jan-Willem | 4b8bcf0 | 2018-03-07 18:53:36 +0000 | [diff] [blame] | 1772 | // Compute ALAP, ZeroLatencyHeight, and MOV. | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1773 | for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), | 
|  | 1774 | E = Topo.rend(); | 
|  | 1775 | I != E; ++I) { | 
|  | 1776 | int alap = maxASAP; | 
| Roorda, Jan-Willem | 4b8bcf0 | 2018-03-07 18:53:36 +0000 | [diff] [blame] | 1777 | int zeroLatencyHeight = 0; | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1778 | SUnit *SU = &SUnits[*I]; | 
|  | 1779 | for (SUnit::const_succ_iterator IS = SU->Succs.begin(), | 
|  | 1780 | ES = SU->Succs.end(); | 
|  | 1781 | IS != ES; ++IS) { | 
| Roorda, Jan-Willem | 4b8bcf0 | 2018-03-07 18:53:36 +0000 | [diff] [blame] | 1782 | SUnit *succ = IS->getSUnit(); | 
| Krzysztof Parzyszek | c715a5d | 2018-03-21 16:39:11 +0000 | [diff] [blame] | 1783 | if (IS->getLatency() == 0) | 
| Roorda, Jan-Willem | 4b8bcf0 | 2018-03-07 18:53:36 +0000 | [diff] [blame] | 1784 | zeroLatencyHeight = | 
|  | 1785 | std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1786 | if (ignoreDependence(*IS, true)) | 
|  | 1787 | continue; | 
| Krzysztof Parzyszek | c715a5d | 2018-03-21 16:39:11 +0000 | [diff] [blame] | 1788 | alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() + | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1789 | getDistance(SU, succ, *IS) * MII)); | 
|  | 1790 | } | 
|  | 1791 |  | 
|  | 1792 | ScheduleInfo[*I].ALAP = alap; | 
| Roorda, Jan-Willem | 4b8bcf0 | 2018-03-07 18:53:36 +0000 | [diff] [blame] | 1793 | ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight; | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1794 | } | 
|  | 1795 |  | 
|  | 1796 | // After computing the node functions, compute the summary for each node set. | 
|  | 1797 | for (NodeSet &I : NodeSets) | 
|  | 1798 | I.computeNodeSetInfo(this); | 
|  | 1799 |  | 
| Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1800 | LLVM_DEBUG({ | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1801 | for (unsigned i = 0; i < SUnits.size(); i++) { | 
|  | 1802 | dbgs() << "\tNode " << i << ":\n"; | 
|  | 1803 | dbgs() << "\t   ASAP = " << getASAP(&SUnits[i]) << "\n"; | 
|  | 1804 | dbgs() << "\t   ALAP = " << getALAP(&SUnits[i]) << "\n"; | 
|  | 1805 | dbgs() << "\t   MOV  = " << getMOV(&SUnits[i]) << "\n"; | 
|  | 1806 | dbgs() << "\t   D    = " << getDepth(&SUnits[i]) << "\n"; | 
|  | 1807 | dbgs() << "\t   H    = " << getHeight(&SUnits[i]) << "\n"; | 
| Roorda, Jan-Willem | 4b8bcf0 | 2018-03-07 18:53:36 +0000 | [diff] [blame] | 1808 | dbgs() << "\t   ZLD  = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; | 
|  | 1809 | dbgs() << "\t   ZLH  = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1810 | } | 
|  | 1811 | }); | 
|  | 1812 | } | 
|  | 1813 |  | 
|  | 1814 | /// Compute the Pred_L(O) set, as defined in the paper. The set is defined | 
|  | 1815 | /// as the predecessors of the elements of NodeOrder that are not also in | 
|  | 1816 | /// NodeOrder. | 
|  | 1817 | static bool pred_L(SetVector<SUnit *> &NodeOrder, | 
|  | 1818 | SmallSetVector<SUnit *, 8> &Preds, | 
|  | 1819 | const NodeSet *S = nullptr) { | 
|  | 1820 | Preds.clear(); | 
|  | 1821 | for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); | 
|  | 1822 | I != E; ++I) { | 
|  | 1823 | for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end(); | 
|  | 1824 | PI != PE; ++PI) { | 
|  | 1825 | if (S && S->count(PI->getSUnit()) == 0) | 
|  | 1826 | continue; | 
|  | 1827 | if (ignoreDependence(*PI, true)) | 
|  | 1828 | continue; | 
|  | 1829 | if (NodeOrder.count(PI->getSUnit()) == 0) | 
|  | 1830 | Preds.insert(PI->getSUnit()); | 
|  | 1831 | } | 
|  | 1832 | // Back-edges are predecessors with an anti-dependence. | 
|  | 1833 | for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(), | 
|  | 1834 | ES = (*I)->Succs.end(); | 
|  | 1835 | IS != ES; ++IS) { | 
|  | 1836 | if (IS->getKind() != SDep::Anti) | 
|  | 1837 | continue; | 
|  | 1838 | if (S && S->count(IS->getSUnit()) == 0) | 
|  | 1839 | continue; | 
|  | 1840 | if (NodeOrder.count(IS->getSUnit()) == 0) | 
|  | 1841 | Preds.insert(IS->getSUnit()); | 
|  | 1842 | } | 
|  | 1843 | } | 
| Eugene Zelenko | 32a4056 | 2017-09-11 23:00:48 +0000 | [diff] [blame] | 1844 | return !Preds.empty(); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1845 | } | 
|  | 1846 |  | 
|  | 1847 | /// Compute the Succ_L(O) set, as defined in the paper. The set is defined | 
|  | 1848 | /// as the successors of the elements of NodeOrder that are not also in | 
|  | 1849 | /// NodeOrder. | 
|  | 1850 | static bool succ_L(SetVector<SUnit *> &NodeOrder, | 
|  | 1851 | SmallSetVector<SUnit *, 8> &Succs, | 
|  | 1852 | const NodeSet *S = nullptr) { | 
|  | 1853 | Succs.clear(); | 
|  | 1854 | for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); | 
|  | 1855 | I != E; ++I) { | 
|  | 1856 | for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end(); | 
|  | 1857 | SI != SE; ++SI) { | 
|  | 1858 | if (S && S->count(SI->getSUnit()) == 0) | 
|  | 1859 | continue; | 
|  | 1860 | if (ignoreDependence(*SI, false)) | 
|  | 1861 | continue; | 
|  | 1862 | if (NodeOrder.count(SI->getSUnit()) == 0) | 
|  | 1863 | Succs.insert(SI->getSUnit()); | 
|  | 1864 | } | 
|  | 1865 | for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(), | 
|  | 1866 | PE = (*I)->Preds.end(); | 
|  | 1867 | PI != PE; ++PI) { | 
|  | 1868 | if (PI->getKind() != SDep::Anti) | 
|  | 1869 | continue; | 
|  | 1870 | if (S && S->count(PI->getSUnit()) == 0) | 
|  | 1871 | continue; | 
|  | 1872 | if (NodeOrder.count(PI->getSUnit()) == 0) | 
|  | 1873 | Succs.insert(PI->getSUnit()); | 
|  | 1874 | } | 
|  | 1875 | } | 
| Eugene Zelenko | 32a4056 | 2017-09-11 23:00:48 +0000 | [diff] [blame] | 1876 | return !Succs.empty(); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1877 | } | 
|  | 1878 |  | 
|  | 1879 | /// Return true if there is a path from the specified node to any of the nodes | 
|  | 1880 | /// in DestNodes. Keep track and return the nodes in any path. | 
|  | 1881 | static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, | 
|  | 1882 | SetVector<SUnit *> &DestNodes, | 
|  | 1883 | SetVector<SUnit *> &Exclude, | 
|  | 1884 | SmallPtrSet<SUnit *, 8> &Visited) { | 
|  | 1885 | if (Cur->isBoundaryNode()) | 
|  | 1886 | return false; | 
|  | 1887 | if (Exclude.count(Cur) != 0) | 
|  | 1888 | return false; | 
|  | 1889 | if (DestNodes.count(Cur) != 0) | 
|  | 1890 | return true; | 
|  | 1891 | if (!Visited.insert(Cur).second) | 
|  | 1892 | return Path.count(Cur) != 0; | 
|  | 1893 | bool FoundPath = false; | 
|  | 1894 | for (auto &SI : Cur->Succs) | 
|  | 1895 | FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); | 
|  | 1896 | for (auto &PI : Cur->Preds) | 
|  | 1897 | if (PI.getKind() == SDep::Anti) | 
|  | 1898 | FoundPath |= | 
|  | 1899 | computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); | 
|  | 1900 | if (FoundPath) | 
|  | 1901 | Path.insert(Cur); | 
|  | 1902 | return FoundPath; | 
|  | 1903 | } | 
|  | 1904 |  | 
|  | 1905 | /// Return true if Set1 is a subset of Set2. | 
|  | 1906 | template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) { | 
|  | 1907 | for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I) | 
|  | 1908 | if (Set2.count(*I) == 0) | 
|  | 1909 | return false; | 
|  | 1910 | return true; | 
|  | 1911 | } | 
|  | 1912 |  | 
|  | 1913 | /// Compute the live-out registers for the instructions in a node-set. | 
|  | 1914 | /// The live-out registers are those that are defined in the node-set, | 
|  | 1915 | /// but not used. Except for use operands of Phis. | 
|  | 1916 | static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, | 
|  | 1917 | NodeSet &NS) { | 
|  | 1918 | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); | 
|  | 1919 | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | 1920 | SmallVector<RegisterMaskPair, 8> LiveOutRegs; | 
|  | 1921 | SmallSet<unsigned, 4> Uses; | 
|  | 1922 | for (SUnit *SU : NS) { | 
|  | 1923 | const MachineInstr *MI = SU->getInstr(); | 
|  | 1924 | if (MI->isPHI()) | 
|  | 1925 | continue; | 
| Matthias Braun | fc37155 | 2016-10-24 21:36:43 +0000 | [diff] [blame] | 1926 | for (const MachineOperand &MO : MI->operands()) | 
|  | 1927 | if (MO.isReg() && MO.isUse()) { | 
|  | 1928 | unsigned Reg = MO.getReg(); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1929 | if (TargetRegisterInfo::isVirtualRegister(Reg)) | 
|  | 1930 | Uses.insert(Reg); | 
|  | 1931 | else if (MRI.isAllocatable(Reg)) | 
|  | 1932 | for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) | 
|  | 1933 | Uses.insert(*Units); | 
|  | 1934 | } | 
|  | 1935 | } | 
|  | 1936 | for (SUnit *SU : NS) | 
| Matthias Braun | fc37155 | 2016-10-24 21:36:43 +0000 | [diff] [blame] | 1937 | for (const MachineOperand &MO : SU->getInstr()->operands()) | 
|  | 1938 | if (MO.isReg() && MO.isDef() && !MO.isDead()) { | 
|  | 1939 | unsigned Reg = MO.getReg(); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1940 | if (TargetRegisterInfo::isVirtualRegister(Reg)) { | 
|  | 1941 | if (!Uses.count(Reg)) | 
| Krzysztof Parzyszek | 91b5cf8 | 2016-12-15 14:36:06 +0000 | [diff] [blame] | 1942 | LiveOutRegs.push_back(RegisterMaskPair(Reg, | 
|  | 1943 | LaneBitmask::getNone())); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1944 | } else if (MRI.isAllocatable(Reg)) { | 
|  | 1945 | for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) | 
|  | 1946 | if (!Uses.count(*Units)) | 
| Krzysztof Parzyszek | 91b5cf8 | 2016-12-15 14:36:06 +0000 | [diff] [blame] | 1947 | LiveOutRegs.push_back(RegisterMaskPair(*Units, | 
|  | 1948 | LaneBitmask::getNone())); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1949 | } | 
|  | 1950 | } | 
|  | 1951 | RPTracker.addLiveRegs(LiveOutRegs); | 
|  | 1952 | } | 
|  | 1953 |  | 
|  | 1954 | /// A heuristic to filter nodes in recurrent node-sets if the register | 
|  | 1955 | /// pressure of a set is too high. | 
|  | 1956 | void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { | 
|  | 1957 | for (auto &NS : NodeSets) { | 
|  | 1958 | // Skip small node-sets since they won't cause register pressure problems. | 
|  | 1959 | if (NS.size() <= 2) | 
|  | 1960 | continue; | 
|  | 1961 | IntervalPressure RecRegPressure; | 
|  | 1962 | RegPressureTracker RecRPTracker(RecRegPressure); | 
|  | 1963 | RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); | 
|  | 1964 | computeLiveOuts(MF, RecRPTracker, NS); | 
|  | 1965 | RecRPTracker.closeBottom(); | 
|  | 1966 |  | 
|  | 1967 | std::vector<SUnit *> SUnits(NS.begin(), NS.end()); | 
| Fangrui Song | 0cac726 | 2018-09-27 02:13:45 +0000 | [diff] [blame] | 1968 | llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1969 | return A->NodeNum > B->NodeNum; | 
|  | 1970 | }); | 
|  | 1971 |  | 
|  | 1972 | for (auto &SU : SUnits) { | 
|  | 1973 | // Since we're computing the register pressure for a subset of the | 
|  | 1974 | // instructions in a block, we need to set the tracker for each | 
|  | 1975 | // instruction in the node-set. The tracker is set to the instruction | 
|  | 1976 | // just after the one we're interested in. | 
|  | 1977 | MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); | 
|  | 1978 | RecRPTracker.setPos(std::next(CurInstI)); | 
|  | 1979 |  | 
|  | 1980 | RegPressureDelta RPDelta; | 
|  | 1981 | ArrayRef<PressureChange> CriticalPSets; | 
|  | 1982 | RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, | 
|  | 1983 | CriticalPSets, | 
|  | 1984 | RecRegPressure.MaxSetPressure); | 
|  | 1985 | if (RPDelta.Excess.isValid()) { | 
| Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 1986 | LLVM_DEBUG( | 
|  | 1987 | dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " | 
|  | 1988 | << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) | 
|  | 1989 | << ":" << RPDelta.Excess.getUnitInc()); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 1990 | NS.setExceedPressure(SU); | 
|  | 1991 | break; | 
|  | 1992 | } | 
|  | 1993 | RecRPTracker.recede(); | 
|  | 1994 | } | 
|  | 1995 | } | 
|  | 1996 | } | 
|  | 1997 |  | 
|  | 1998 | /// A heuristic to colocate node sets that have the same set of | 
|  | 1999 | /// successors. | 
|  | 2000 | void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { | 
|  | 2001 | unsigned Colocate = 0; | 
|  | 2002 | for (int i = 0, e = NodeSets.size(); i < e; ++i) { | 
|  | 2003 | NodeSet &N1 = NodeSets[i]; | 
|  | 2004 | SmallSetVector<SUnit *, 8> S1; | 
|  | 2005 | if (N1.empty() || !succ_L(N1, S1)) | 
|  | 2006 | continue; | 
|  | 2007 | for (int j = i + 1; j < e; ++j) { | 
|  | 2008 | NodeSet &N2 = NodeSets[j]; | 
|  | 2009 | if (N1.compareRecMII(N2) != 0) | 
|  | 2010 | continue; | 
|  | 2011 | SmallSetVector<SUnit *, 8> S2; | 
|  | 2012 | if (N2.empty() || !succ_L(N2, S2)) | 
|  | 2013 | continue; | 
|  | 2014 | if (isSubset(S1, S2) && S1.size() == S2.size()) { | 
|  | 2015 | N1.setColocate(++Colocate); | 
|  | 2016 | N2.setColocate(Colocate); | 
|  | 2017 | break; | 
|  | 2018 | } | 
|  | 2019 | } | 
|  | 2020 | } | 
|  | 2021 | } | 
|  | 2022 |  | 
|  | 2023 | /// Check if the existing node-sets are profitable. If not, then ignore the | 
|  | 2024 | /// recurrent node-sets, and attempt to schedule all nodes together. This is | 
| Krzysztof Parzyszek | 3ca2334 | 2018-03-26 17:07:41 +0000 | [diff] [blame] | 2025 | /// a heuristic. If the MII is large and all the recurrent node-sets are small, | 
|  | 2026 | /// then it's best to try to schedule all instructions together instead of | 
|  | 2027 | /// starting with the recurrent node-sets. | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2028 | void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { | 
|  | 2029 | // Look for loops with a large MII. | 
| Krzysztof Parzyszek | 3ca2334 | 2018-03-26 17:07:41 +0000 | [diff] [blame] | 2030 | if (MII < 17) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2031 | return; | 
|  | 2032 | // Check if the node-set contains only a simple add recurrence. | 
| Krzysztof Parzyszek | 3ca2334 | 2018-03-26 17:07:41 +0000 | [diff] [blame] | 2033 | for (auto &NS : NodeSets) { | 
|  | 2034 | if (NS.getRecMII() > 2) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2035 | return; | 
| Krzysztof Parzyszek | 3ca2334 | 2018-03-26 17:07:41 +0000 | [diff] [blame] | 2036 | if (NS.getMaxDepth() > MII) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2037 | return; | 
| Krzysztof Parzyszek | 3ca2334 | 2018-03-26 17:07:41 +0000 | [diff] [blame] | 2038 | } | 
|  | 2039 | NodeSets.clear(); | 
| Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 2040 | LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); | 
| Krzysztof Parzyszek | 3ca2334 | 2018-03-26 17:07:41 +0000 | [diff] [blame] | 2041 | return; | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2042 | } | 
|  | 2043 |  | 
|  | 2044 | /// Add the nodes that do not belong to a recurrence set into groups | 
|  | 2045 | /// based upon connected componenets. | 
|  | 2046 | void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { | 
|  | 2047 | SetVector<SUnit *> NodesAdded; | 
|  | 2048 | SmallPtrSet<SUnit *, 8> Visited; | 
|  | 2049 | // Add the nodes that are on a path between the previous node sets and | 
|  | 2050 | // the current node set. | 
|  | 2051 | for (NodeSet &I : NodeSets) { | 
|  | 2052 | SmallSetVector<SUnit *, 8> N; | 
|  | 2053 | // Add the nodes from the current node set to the previous node set. | 
|  | 2054 | if (succ_L(I, N)) { | 
|  | 2055 | SetVector<SUnit *> Path; | 
|  | 2056 | for (SUnit *NI : N) { | 
|  | 2057 | Visited.clear(); | 
|  | 2058 | computePath(NI, Path, NodesAdded, I, Visited); | 
|  | 2059 | } | 
| Eugene Zelenko | 32a4056 | 2017-09-11 23:00:48 +0000 | [diff] [blame] | 2060 | if (!Path.empty()) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2061 | I.insert(Path.begin(), Path.end()); | 
|  | 2062 | } | 
|  | 2063 | // Add the nodes from the previous node set to the current node set. | 
|  | 2064 | N.clear(); | 
|  | 2065 | if (succ_L(NodesAdded, N)) { | 
|  | 2066 | SetVector<SUnit *> Path; | 
|  | 2067 | for (SUnit *NI : N) { | 
|  | 2068 | Visited.clear(); | 
|  | 2069 | computePath(NI, Path, I, NodesAdded, Visited); | 
|  | 2070 | } | 
| Eugene Zelenko | 32a4056 | 2017-09-11 23:00:48 +0000 | [diff] [blame] | 2071 | if (!Path.empty()) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2072 | I.insert(Path.begin(), Path.end()); | 
|  | 2073 | } | 
|  | 2074 | NodesAdded.insert(I.begin(), I.end()); | 
|  | 2075 | } | 
|  | 2076 |  | 
|  | 2077 | // Create a new node set with the connected nodes of any successor of a node | 
|  | 2078 | // in a recurrent set. | 
|  | 2079 | NodeSet NewSet; | 
|  | 2080 | SmallSetVector<SUnit *, 8> N; | 
|  | 2081 | if (succ_L(NodesAdded, N)) | 
|  | 2082 | for (SUnit *I : N) | 
|  | 2083 | addConnectedNodes(I, NewSet, NodesAdded); | 
| Eugene Zelenko | 32a4056 | 2017-09-11 23:00:48 +0000 | [diff] [blame] | 2084 | if (!NewSet.empty()) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2085 | NodeSets.push_back(NewSet); | 
|  | 2086 |  | 
|  | 2087 | // Create a new node set with the connected nodes of any predecessor of a node | 
|  | 2088 | // in a recurrent set. | 
|  | 2089 | NewSet.clear(); | 
|  | 2090 | if (pred_L(NodesAdded, N)) | 
|  | 2091 | for (SUnit *I : N) | 
|  | 2092 | addConnectedNodes(I, NewSet, NodesAdded); | 
| Eugene Zelenko | 32a4056 | 2017-09-11 23:00:48 +0000 | [diff] [blame] | 2093 | if (!NewSet.empty()) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2094 | NodeSets.push_back(NewSet); | 
|  | 2095 |  | 
| Hiroshi Inoue | 372ffa1 | 2018-04-13 11:37:06 +0000 | [diff] [blame] | 2096 | // Create new nodes sets with the connected nodes any remaining node that | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2097 | // has no predecessor. | 
|  | 2098 | for (unsigned i = 0; i < SUnits.size(); ++i) { | 
|  | 2099 | SUnit *SU = &SUnits[i]; | 
|  | 2100 | if (NodesAdded.count(SU) == 0) { | 
|  | 2101 | NewSet.clear(); | 
|  | 2102 | addConnectedNodes(SU, NewSet, NodesAdded); | 
| Eugene Zelenko | 32a4056 | 2017-09-11 23:00:48 +0000 | [diff] [blame] | 2103 | if (!NewSet.empty()) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2104 | NodeSets.push_back(NewSet); | 
|  | 2105 | } | 
|  | 2106 | } | 
|  | 2107 | } | 
|  | 2108 |  | 
|  | 2109 | /// Add the node to the set, and add all is its connected nodes to the set. | 
|  | 2110 | void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, | 
|  | 2111 | SetVector<SUnit *> &NodesAdded) { | 
|  | 2112 | NewSet.insert(SU); | 
|  | 2113 | NodesAdded.insert(SU); | 
|  | 2114 | for (auto &SI : SU->Succs) { | 
|  | 2115 | SUnit *Successor = SI.getSUnit(); | 
|  | 2116 | if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) | 
|  | 2117 | addConnectedNodes(Successor, NewSet, NodesAdded); | 
|  | 2118 | } | 
|  | 2119 | for (auto &PI : SU->Preds) { | 
|  | 2120 | SUnit *Predecessor = PI.getSUnit(); | 
|  | 2121 | if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) | 
|  | 2122 | addConnectedNodes(Predecessor, NewSet, NodesAdded); | 
|  | 2123 | } | 
|  | 2124 | } | 
|  | 2125 |  | 
|  | 2126 | /// Return true if Set1 contains elements in Set2. The elements in common | 
|  | 2127 | /// are returned in a different container. | 
|  | 2128 | static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, | 
|  | 2129 | SmallSetVector<SUnit *, 8> &Result) { | 
|  | 2130 | Result.clear(); | 
|  | 2131 | for (unsigned i = 0, e = Set1.size(); i != e; ++i) { | 
|  | 2132 | SUnit *SU = Set1[i]; | 
|  | 2133 | if (Set2.count(SU) != 0) | 
|  | 2134 | Result.insert(SU); | 
|  | 2135 | } | 
|  | 2136 | return !Result.empty(); | 
|  | 2137 | } | 
|  | 2138 |  | 
|  | 2139 | /// Merge the recurrence node sets that have the same initial node. | 
|  | 2140 | void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { | 
|  | 2141 | for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; | 
|  | 2142 | ++I) { | 
|  | 2143 | NodeSet &NI = *I; | 
|  | 2144 | for (NodeSetType::iterator J = I + 1; J != E;) { | 
|  | 2145 | NodeSet &NJ = *J; | 
|  | 2146 | if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { | 
|  | 2147 | if (NJ.compareRecMII(NI) > 0) | 
|  | 2148 | NI.setRecMII(NJ.getRecMII()); | 
|  | 2149 | for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI; | 
|  | 2150 | ++NII) | 
|  | 2151 | I->insert(*NII); | 
|  | 2152 | NodeSets.erase(J); | 
|  | 2153 | E = NodeSets.end(); | 
|  | 2154 | } else { | 
|  | 2155 | ++J; | 
|  | 2156 | } | 
|  | 2157 | } | 
|  | 2158 | } | 
|  | 2159 | } | 
|  | 2160 |  | 
|  | 2161 | /// Remove nodes that have been scheduled in previous NodeSets. | 
|  | 2162 | void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { | 
|  | 2163 | for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; | 
|  | 2164 | ++I) | 
|  | 2165 | for (NodeSetType::iterator J = I + 1; J != E;) { | 
|  | 2166 | J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); | 
|  | 2167 |  | 
| Eugene Zelenko | 32a4056 | 2017-09-11 23:00:48 +0000 | [diff] [blame] | 2168 | if (J->empty()) { | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2169 | NodeSets.erase(J); | 
|  | 2170 | E = NodeSets.end(); | 
|  | 2171 | } else { | 
|  | 2172 | ++J; | 
|  | 2173 | } | 
|  | 2174 | } | 
|  | 2175 | } | 
|  | 2176 |  | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2177 | /// Compute an ordered list of the dependence graph nodes, which | 
|  | 2178 | /// indicates the order that the nodes will be scheduled.  This is a | 
|  | 2179 | /// two-level algorithm. First, a partial order is created, which | 
|  | 2180 | /// consists of a list of sets ordered from highest to lowest priority. | 
|  | 2181 | void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { | 
|  | 2182 | SmallSetVector<SUnit *, 8> R; | 
|  | 2183 | NodeOrder.clear(); | 
|  | 2184 |  | 
|  | 2185 | for (auto &Nodes : NodeSets) { | 
| Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 2186 | LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2187 | OrderKind Order; | 
|  | 2188 | SmallSetVector<SUnit *, 8> N; | 
|  | 2189 | if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) { | 
|  | 2190 | R.insert(N.begin(), N.end()); | 
|  | 2191 | Order = BottomUp; | 
| Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 2192 | LLVM_DEBUG(dbgs() << "  Bottom up (preds) "); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2193 | } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) { | 
|  | 2194 | R.insert(N.begin(), N.end()); | 
|  | 2195 | Order = TopDown; | 
| Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 2196 | LLVM_DEBUG(dbgs() << "  Top down (succs) "); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2197 | } else if (isIntersect(N, Nodes, R)) { | 
|  | 2198 | // If some of the successors are in the existing node-set, then use the | 
|  | 2199 | // top-down ordering. | 
|  | 2200 | Order = TopDown; | 
| Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 2201 | LLVM_DEBUG(dbgs() << "  Top down (intersect) "); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2202 | } else if (NodeSets.size() == 1) { | 
|  | 2203 | for (auto &N : Nodes) | 
|  | 2204 | if (N->Succs.size() == 0) | 
|  | 2205 | R.insert(N); | 
|  | 2206 | Order = BottomUp; | 
| Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 2207 | LLVM_DEBUG(dbgs() << "  Bottom up (all) "); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2208 | } else { | 
|  | 2209 | // Find the node with the highest ASAP. | 
|  | 2210 | SUnit *maxASAP = nullptr; | 
|  | 2211 | for (SUnit *SU : Nodes) { | 
| Krzysztof Parzyszek | a212204 | 2018-03-26 16:33:16 +0000 | [diff] [blame] | 2212 | if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || | 
|  | 2213 | (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2214 | maxASAP = SU; | 
|  | 2215 | } | 
|  | 2216 | R.insert(maxASAP); | 
|  | 2217 | Order = BottomUp; | 
| Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 2218 | LLVM_DEBUG(dbgs() << "  Bottom up (default) "); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2219 | } | 
|  | 2220 |  | 
|  | 2221 | while (!R.empty()) { | 
|  | 2222 | if (Order == TopDown) { | 
|  | 2223 | // Choose the node with the maximum height.  If more than one, choose | 
| Krzysztof Parzyszek | a212204 | 2018-03-26 16:33:16 +0000 | [diff] [blame] | 2224 | // the node wiTH the maximum ZeroLatencyHeight. If still more than one, | 
| Roorda, Jan-Willem | 4b8bcf0 | 2018-03-07 18:53:36 +0000 | [diff] [blame] | 2225 | // choose the node with the lowest MOV. | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2226 | while (!R.empty()) { | 
|  | 2227 | SUnit *maxHeight = nullptr; | 
|  | 2228 | for (SUnit *I : R) { | 
| Eugene Zelenko | cdc7161 | 2016-08-11 17:20:18 +0000 | [diff] [blame] | 2229 | if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2230 | maxHeight = I; | 
|  | 2231 | else if (getHeight(I) == getHeight(maxHeight) && | 
| Roorda, Jan-Willem | 4b8bcf0 | 2018-03-07 18:53:36 +0000 | [diff] [blame] | 2232 | getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2233 | maxHeight = I; | 
| Roorda, Jan-Willem | 4b8bcf0 | 2018-03-07 18:53:36 +0000 | [diff] [blame] | 2234 | else if (getHeight(I) == getHeight(maxHeight) && | 
|  | 2235 | getZeroLatencyHeight(I) == | 
|  | 2236 | getZeroLatencyHeight(maxHeight) && | 
|  | 2237 | getMOV(I) < getMOV(maxHeight)) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2238 | maxHeight = I; | 
|  | 2239 | } | 
|  | 2240 | NodeOrder.insert(maxHeight); | 
| Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 2241 | LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2242 | R.remove(maxHeight); | 
|  | 2243 | for (const auto &I : maxHeight->Succs) { | 
|  | 2244 | if (Nodes.count(I.getSUnit()) == 0) | 
|  | 2245 | continue; | 
|  | 2246 | if (NodeOrder.count(I.getSUnit()) != 0) | 
|  | 2247 | continue; | 
|  | 2248 | if (ignoreDependence(I, false)) | 
|  | 2249 | continue; | 
|  | 2250 | R.insert(I.getSUnit()); | 
|  | 2251 | } | 
|  | 2252 | // Back-edges are predecessors with an anti-dependence. | 
|  | 2253 | for (const auto &I : maxHeight->Preds) { | 
|  | 2254 | if (I.getKind() != SDep::Anti) | 
|  | 2255 | continue; | 
|  | 2256 | if (Nodes.count(I.getSUnit()) == 0) | 
|  | 2257 | continue; | 
|  | 2258 | if (NodeOrder.count(I.getSUnit()) != 0) | 
|  | 2259 | continue; | 
|  | 2260 | R.insert(I.getSUnit()); | 
|  | 2261 | } | 
|  | 2262 | } | 
|  | 2263 | Order = BottomUp; | 
| Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 2264 | LLVM_DEBUG(dbgs() << "\n   Switching order to bottom up "); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2265 | SmallSetVector<SUnit *, 8> N; | 
|  | 2266 | if (pred_L(NodeOrder, N, &Nodes)) | 
|  | 2267 | R.insert(N.begin(), N.end()); | 
|  | 2268 | } else { | 
|  | 2269 | // Choose the node with the maximum depth.  If more than one, choose | 
| Roorda, Jan-Willem | 4b8bcf0 | 2018-03-07 18:53:36 +0000 | [diff] [blame] | 2270 | // the node with the maximum ZeroLatencyDepth. If still more than one, | 
|  | 2271 | // choose the node with the lowest MOV. | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2272 | while (!R.empty()) { | 
|  | 2273 | SUnit *maxDepth = nullptr; | 
|  | 2274 | for (SUnit *I : R) { | 
| Eugene Zelenko | cdc7161 | 2016-08-11 17:20:18 +0000 | [diff] [blame] | 2275 | if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2276 | maxDepth = I; | 
|  | 2277 | else if (getDepth(I) == getDepth(maxDepth) && | 
| Roorda, Jan-Willem | 4b8bcf0 | 2018-03-07 18:53:36 +0000 | [diff] [blame] | 2278 | getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2279 | maxDepth = I; | 
| Roorda, Jan-Willem | 4b8bcf0 | 2018-03-07 18:53:36 +0000 | [diff] [blame] | 2280 | else if (getDepth(I) == getDepth(maxDepth) && | 
|  | 2281 | getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && | 
|  | 2282 | getMOV(I) < getMOV(maxDepth)) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2283 | maxDepth = I; | 
|  | 2284 | } | 
|  | 2285 | NodeOrder.insert(maxDepth); | 
| Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 2286 | LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2287 | R.remove(maxDepth); | 
|  | 2288 | if (Nodes.isExceedSU(maxDepth)) { | 
|  | 2289 | Order = TopDown; | 
|  | 2290 | R.clear(); | 
|  | 2291 | R.insert(Nodes.getNode(0)); | 
|  | 2292 | break; | 
|  | 2293 | } | 
|  | 2294 | for (const auto &I : maxDepth->Preds) { | 
|  | 2295 | if (Nodes.count(I.getSUnit()) == 0) | 
|  | 2296 | continue; | 
|  | 2297 | if (NodeOrder.count(I.getSUnit()) != 0) | 
|  | 2298 | continue; | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2299 | R.insert(I.getSUnit()); | 
|  | 2300 | } | 
|  | 2301 | // Back-edges are predecessors with an anti-dependence. | 
|  | 2302 | for (const auto &I : maxDepth->Succs) { | 
|  | 2303 | if (I.getKind() != SDep::Anti) | 
|  | 2304 | continue; | 
|  | 2305 | if (Nodes.count(I.getSUnit()) == 0) | 
|  | 2306 | continue; | 
|  | 2307 | if (NodeOrder.count(I.getSUnit()) != 0) | 
|  | 2308 | continue; | 
|  | 2309 | R.insert(I.getSUnit()); | 
|  | 2310 | } | 
|  | 2311 | } | 
|  | 2312 | Order = TopDown; | 
| Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 2313 | LLVM_DEBUG(dbgs() << "\n   Switching order to top down "); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2314 | SmallSetVector<SUnit *, 8> N; | 
|  | 2315 | if (succ_L(NodeOrder, N, &Nodes)) | 
|  | 2316 | R.insert(N.begin(), N.end()); | 
|  | 2317 | } | 
|  | 2318 | } | 
| Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 2319 | LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2320 | } | 
|  | 2321 |  | 
| Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 2322 | LLVM_DEBUG({ | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2323 | dbgs() << "Node order: "; | 
|  | 2324 | for (SUnit *I : NodeOrder) | 
|  | 2325 | dbgs() << " " << I->NodeNum << " "; | 
|  | 2326 | dbgs() << "\n"; | 
|  | 2327 | }); | 
|  | 2328 | } | 
|  | 2329 |  | 
|  | 2330 | /// Process the nodes in the computed order and create the pipelined schedule | 
|  | 2331 | /// of the instructions, if possible. Return true if a schedule is found. | 
|  | 2332 | bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { | 
| Eugene Zelenko | 32a4056 | 2017-09-11 23:00:48 +0000 | [diff] [blame] | 2333 | if (NodeOrder.empty()) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2334 | return false; | 
|  | 2335 |  | 
|  | 2336 | bool scheduleFound = false; | 
|  | 2337 | // Keep increasing II until a valid schedule is found. | 
|  | 2338 | for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) { | 
|  | 2339 | Schedule.reset(); | 
|  | 2340 | Schedule.setInitiationInterval(II); | 
| Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 2341 | LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2342 |  | 
|  | 2343 | SetVector<SUnit *>::iterator NI = NodeOrder.begin(); | 
|  | 2344 | SetVector<SUnit *>::iterator NE = NodeOrder.end(); | 
|  | 2345 | do { | 
|  | 2346 | SUnit *SU = *NI; | 
|  | 2347 |  | 
|  | 2348 | // Compute the schedule time for the instruction, which is based | 
|  | 2349 | // upon the scheduled time for any predecessors/successors. | 
|  | 2350 | int EarlyStart = INT_MIN; | 
|  | 2351 | int LateStart = INT_MAX; | 
|  | 2352 | // These values are set when the size of the schedule window is limited | 
|  | 2353 | // due to chain dependences. | 
|  | 2354 | int SchedEnd = INT_MAX; | 
|  | 2355 | int SchedStart = INT_MIN; | 
|  | 2356 | Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, | 
|  | 2357 | II, this); | 
| Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 2358 | LLVM_DEBUG({ | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2359 | dbgs() << "Inst (" << SU->NodeNum << ") "; | 
|  | 2360 | SU->getInstr()->dump(); | 
|  | 2361 | dbgs() << "\n"; | 
|  | 2362 | }); | 
| Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 2363 | LLVM_DEBUG({ | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2364 | dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart | 
|  | 2365 | << " me: " << SchedEnd << " ms: " << SchedStart << "\n"; | 
|  | 2366 | }); | 
|  | 2367 |  | 
|  | 2368 | if (EarlyStart > LateStart || SchedEnd < EarlyStart || | 
|  | 2369 | SchedStart > LateStart) | 
|  | 2370 | scheduleFound = false; | 
|  | 2371 | else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { | 
|  | 2372 | SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); | 
|  | 2373 | scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); | 
|  | 2374 | } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { | 
|  | 2375 | SchedStart = std::max(SchedStart, LateStart - (int)II + 1); | 
|  | 2376 | scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); | 
|  | 2377 | } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { | 
|  | 2378 | SchedEnd = | 
|  | 2379 | std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); | 
|  | 2380 | // When scheduling a Phi it is better to start at the late cycle and go | 
|  | 2381 | // backwards. The default order may insert the Phi too far away from | 
|  | 2382 | // its first dependence. | 
|  | 2383 | if (SU->getInstr()->isPHI()) | 
|  | 2384 | scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); | 
|  | 2385 | else | 
|  | 2386 | scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); | 
|  | 2387 | } else { | 
|  | 2388 | int FirstCycle = Schedule.getFirstCycle(); | 
|  | 2389 | scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), | 
|  | 2390 | FirstCycle + getASAP(SU) + II - 1, II); | 
|  | 2391 | } | 
|  | 2392 | // Even if we find a schedule, make sure the schedule doesn't exceed the | 
|  | 2393 | // allowable number of stages. We keep trying if this happens. | 
|  | 2394 | if (scheduleFound) | 
|  | 2395 | if (SwpMaxStages > -1 && | 
|  | 2396 | Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) | 
|  | 2397 | scheduleFound = false; | 
|  | 2398 |  | 
| Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 2399 | LLVM_DEBUG({ | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2400 | if (!scheduleFound) | 
|  | 2401 | dbgs() << "\tCan't schedule\n"; | 
|  | 2402 | }); | 
|  | 2403 | } while (++NI != NE && scheduleFound); | 
|  | 2404 |  | 
|  | 2405 | // If a schedule is found, check if it is a valid schedule too. | 
|  | 2406 | if (scheduleFound) | 
|  | 2407 | scheduleFound = Schedule.isValidSchedule(this); | 
|  | 2408 | } | 
|  | 2409 |  | 
| Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 2410 | LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n"); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2411 |  | 
|  | 2412 | if (scheduleFound) | 
|  | 2413 | Schedule.finalizeSchedule(this); | 
|  | 2414 | else | 
|  | 2415 | Schedule.reset(); | 
|  | 2416 |  | 
|  | 2417 | return scheduleFound && Schedule.getMaxStageCount() > 0; | 
|  | 2418 | } | 
|  | 2419 |  | 
|  | 2420 | /// Given a schedule for the loop, generate a new version of the loop, | 
|  | 2421 | /// and replace the old version.  This function generates a prolog | 
|  | 2422 | /// that contains the initial iterations in the pipeline, and kernel | 
|  | 2423 | /// loop, and the epilogue that contains the code for the final | 
|  | 2424 | /// iterations. | 
|  | 2425 | void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) { | 
|  | 2426 | // Create a new basic block for the kernel and add it to the CFG. | 
|  | 2427 | MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); | 
|  | 2428 |  | 
|  | 2429 | unsigned MaxStageCount = Schedule.getMaxStageCount(); | 
|  | 2430 |  | 
|  | 2431 | // Remember the registers that are used in different stages. The index is | 
|  | 2432 | // the iteration, or stage, that the instruction is scheduled in.  This is | 
| Hiroshi Inoue | c73b6d6 | 2018-06-20 05:29:26 +0000 | [diff] [blame] | 2433 | // a map between register names in the original block and the names created | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2434 | // in each stage of the pipelined loop. | 
|  | 2435 | ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; | 
|  | 2436 | InstrMapTy InstrMap; | 
|  | 2437 |  | 
|  | 2438 | SmallVector<MachineBasicBlock *, 4> PrologBBs; | 
|  | 2439 | // Generate the prolog instructions that set up the pipeline. | 
|  | 2440 | generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs); | 
|  | 2441 | MF.insert(BB->getIterator(), KernelBB); | 
|  | 2442 |  | 
|  | 2443 | // Rearrange the instructions to generate the new, pipelined loop, | 
|  | 2444 | // and update register names as needed. | 
|  | 2445 | for (int Cycle = Schedule.getFirstCycle(), | 
|  | 2446 | LastCycle = Schedule.getFinalCycle(); | 
|  | 2447 | Cycle <= LastCycle; ++Cycle) { | 
|  | 2448 | std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle); | 
|  | 2449 | // This inner loop schedules each instruction in the cycle. | 
|  | 2450 | for (SUnit *CI : CycleInstrs) { | 
|  | 2451 | if (CI->getInstr()->isPHI()) | 
|  | 2452 | continue; | 
|  | 2453 | unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr())); | 
|  | 2454 | MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum); | 
|  | 2455 | updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap); | 
|  | 2456 | KernelBB->push_back(NewMI); | 
|  | 2457 | InstrMap[NewMI] = CI->getInstr(); | 
|  | 2458 | } | 
|  | 2459 | } | 
|  | 2460 |  | 
|  | 2461 | // Copy any terminator instructions to the new kernel, and update | 
|  | 2462 | // names as needed. | 
|  | 2463 | for (MachineBasicBlock::iterator I = BB->getFirstTerminator(), | 
|  | 2464 | E = BB->instr_end(); | 
|  | 2465 | I != E; ++I) { | 
|  | 2466 | MachineInstr *NewMI = MF.CloneMachineInstr(&*I); | 
|  | 2467 | updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap); | 
|  | 2468 | KernelBB->push_back(NewMI); | 
|  | 2469 | InstrMap[NewMI] = &*I; | 
|  | 2470 | } | 
|  | 2471 |  | 
|  | 2472 | KernelBB->transferSuccessors(BB); | 
|  | 2473 | KernelBB->replaceSuccessor(BB, KernelBB); | 
|  | 2474 |  | 
|  | 2475 | generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, | 
|  | 2476 | VRMap, InstrMap, MaxStageCount, MaxStageCount, false); | 
|  | 2477 | generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap, | 
|  | 2478 | InstrMap, MaxStageCount, MaxStageCount, false); | 
|  | 2479 |  | 
| Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 2480 | LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2481 |  | 
|  | 2482 | SmallVector<MachineBasicBlock *, 4> EpilogBBs; | 
|  | 2483 | // Generate the epilog instructions to complete the pipeline. | 
|  | 2484 | generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs, | 
|  | 2485 | PrologBBs); | 
|  | 2486 |  | 
|  | 2487 | // We need this step because the register allocation doesn't handle some | 
|  | 2488 | // situations well, so we insert copies to help out. | 
|  | 2489 | splitLifetimes(KernelBB, EpilogBBs, Schedule); | 
|  | 2490 |  | 
|  | 2491 | // Remove dead instructions due to loop induction variables. | 
|  | 2492 | removeDeadInstructions(KernelBB, EpilogBBs); | 
|  | 2493 |  | 
|  | 2494 | // Add branches between prolog and epilog blocks. | 
|  | 2495 | addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap); | 
|  | 2496 |  | 
|  | 2497 | // Remove the original loop since it's no longer referenced. | 
| Krzysztof Parzyszek | c715a5d | 2018-03-21 16:39:11 +0000 | [diff] [blame] | 2498 | for (auto &I : *BB) | 
|  | 2499 | LIS.RemoveMachineInstrFromMaps(I); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2500 | BB->clear(); | 
|  | 2501 | BB->eraseFromParent(); | 
|  | 2502 |  | 
|  | 2503 | delete[] VRMap; | 
|  | 2504 | } | 
|  | 2505 |  | 
|  | 2506 | /// Generate the pipeline prolog code. | 
|  | 2507 | void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage, | 
|  | 2508 | MachineBasicBlock *KernelBB, | 
|  | 2509 | ValueMapTy *VRMap, | 
|  | 2510 | MBBVectorTy &PrologBBs) { | 
|  | 2511 | MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader(); | 
| Eugene Zelenko | 32a4056 | 2017-09-11 23:00:48 +0000 | [diff] [blame] | 2512 | assert(PreheaderBB != nullptr && | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2513 | "Need to add code to handle loops w/o preheader"); | 
|  | 2514 | MachineBasicBlock *PredBB = PreheaderBB; | 
|  | 2515 | InstrMapTy InstrMap; | 
|  | 2516 |  | 
|  | 2517 | // Generate a basic block for each stage, not including the last stage, | 
|  | 2518 | // which will be generated in the kernel. Each basic block may contain | 
|  | 2519 | // instructions from multiple stages/iterations. | 
|  | 2520 | for (unsigned i = 0; i < LastStage; ++i) { | 
|  | 2521 | // Create and insert the prolog basic block prior to the original loop | 
|  | 2522 | // basic block.  The original loop is removed later. | 
|  | 2523 | MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); | 
|  | 2524 | PrologBBs.push_back(NewBB); | 
|  | 2525 | MF.insert(BB->getIterator(), NewBB); | 
|  | 2526 | NewBB->transferSuccessors(PredBB); | 
|  | 2527 | PredBB->addSuccessor(NewBB); | 
|  | 2528 | PredBB = NewBB; | 
|  | 2529 |  | 
|  | 2530 | // Generate instructions for each appropriate stage. Process instructions | 
|  | 2531 | // in original program order. | 
|  | 2532 | for (int StageNum = i; StageNum >= 0; --StageNum) { | 
|  | 2533 | for (MachineBasicBlock::iterator BBI = BB->instr_begin(), | 
|  | 2534 | BBE = BB->getFirstTerminator(); | 
|  | 2535 | BBI != BBE; ++BBI) { | 
|  | 2536 | if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) { | 
|  | 2537 | if (BBI->isPHI()) | 
|  | 2538 | continue; | 
|  | 2539 | MachineInstr *NewMI = | 
|  | 2540 | cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule); | 
|  | 2541 | updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule, | 
|  | 2542 | VRMap); | 
|  | 2543 | NewBB->push_back(NewMI); | 
|  | 2544 | InstrMap[NewMI] = &*BBI; | 
|  | 2545 | } | 
|  | 2546 | } | 
|  | 2547 | } | 
|  | 2548 | rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap); | 
| Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 2549 | LLVM_DEBUG({ | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2550 | dbgs() << "prolog:\n"; | 
|  | 2551 | NewBB->dump(); | 
|  | 2552 | }); | 
|  | 2553 | } | 
|  | 2554 |  | 
|  | 2555 | PredBB->replaceSuccessor(BB, KernelBB); | 
|  | 2556 |  | 
|  | 2557 | // Check if we need to remove the branch from the preheader to the original | 
|  | 2558 | // loop, and replace it with a branch to the new loop. | 
| Matt Arsenault | 1b9fc8e | 2016-09-14 20:43:16 +0000 | [diff] [blame] | 2559 | unsigned numBranches = TII->removeBranch(*PreheaderBB); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2560 | if (numBranches) { | 
|  | 2561 | SmallVector<MachineOperand, 0> Cond; | 
| Matt Arsenault | e8e0f5c | 2016-09-14 17:24:15 +0000 | [diff] [blame] | 2562 | TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc()); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2563 | } | 
|  | 2564 | } | 
|  | 2565 |  | 
|  | 2566 | /// Generate the pipeline epilog code. The epilog code finishes the iterations | 
|  | 2567 | /// that were started in either the prolog or the kernel.  We create a basic | 
|  | 2568 | /// block for each stage that needs to complete. | 
|  | 2569 | void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage, | 
|  | 2570 | MachineBasicBlock *KernelBB, | 
|  | 2571 | ValueMapTy *VRMap, | 
|  | 2572 | MBBVectorTy &EpilogBBs, | 
|  | 2573 | MBBVectorTy &PrologBBs) { | 
|  | 2574 | // We need to change the branch from the kernel to the first epilog block, so | 
|  | 2575 | // this call to analyze branch uses the kernel rather than the original BB. | 
|  | 2576 | MachineBasicBlock *TBB = nullptr, *FBB = nullptr; | 
|  | 2577 | SmallVector<MachineOperand, 4> Cond; | 
|  | 2578 | bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); | 
|  | 2579 | assert(!checkBranch && "generateEpilog must be able to analyze the branch"); | 
|  | 2580 | if (checkBranch) | 
|  | 2581 | return; | 
|  | 2582 |  | 
|  | 2583 | MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); | 
|  | 2584 | if (*LoopExitI == KernelBB) | 
|  | 2585 | ++LoopExitI; | 
|  | 2586 | assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); | 
|  | 2587 | MachineBasicBlock *LoopExitBB = *LoopExitI; | 
|  | 2588 |  | 
|  | 2589 | MachineBasicBlock *PredBB = KernelBB; | 
|  | 2590 | MachineBasicBlock *EpilogStart = LoopExitBB; | 
|  | 2591 | InstrMapTy InstrMap; | 
|  | 2592 |  | 
|  | 2593 | // Generate a basic block for each stage, not including the last stage, | 
|  | 2594 | // which was generated for the kernel.  Each basic block may contain | 
|  | 2595 | // instructions from multiple stages/iterations. | 
|  | 2596 | int EpilogStage = LastStage + 1; | 
|  | 2597 | for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { | 
|  | 2598 | MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); | 
|  | 2599 | EpilogBBs.push_back(NewBB); | 
|  | 2600 | MF.insert(BB->getIterator(), NewBB); | 
|  | 2601 |  | 
|  | 2602 | PredBB->replaceSuccessor(LoopExitBB, NewBB); | 
|  | 2603 | NewBB->addSuccessor(LoopExitBB); | 
|  | 2604 |  | 
|  | 2605 | if (EpilogStart == LoopExitBB) | 
|  | 2606 | EpilogStart = NewBB; | 
|  | 2607 |  | 
|  | 2608 | // Add instructions to the epilog depending on the current block. | 
|  | 2609 | // Process instructions in original program order. | 
|  | 2610 | for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { | 
|  | 2611 | for (auto &BBI : *BB) { | 
|  | 2612 | if (BBI.isPHI()) | 
|  | 2613 | continue; | 
|  | 2614 | MachineInstr *In = &BBI; | 
|  | 2615 | if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) { | 
| Krzysztof Parzyszek | 785b6ce | 2018-03-26 15:45:55 +0000 | [diff] [blame] | 2616 | // Instructions with memoperands in the epilog are updated with | 
|  | 2617 | // conservative values. | 
|  | 2618 | MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2619 | updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap); | 
|  | 2620 | NewBB->push_back(NewMI); | 
|  | 2621 | InstrMap[NewMI] = In; | 
|  | 2622 | } | 
|  | 2623 | } | 
|  | 2624 | } | 
|  | 2625 | generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, | 
|  | 2626 | VRMap, InstrMap, LastStage, EpilogStage, i == 1); | 
|  | 2627 | generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap, | 
|  | 2628 | InstrMap, LastStage, EpilogStage, i == 1); | 
|  | 2629 | PredBB = NewBB; | 
|  | 2630 |  | 
| Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 2631 | LLVM_DEBUG({ | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2632 | dbgs() << "epilog:\n"; | 
|  | 2633 | NewBB->dump(); | 
|  | 2634 | }); | 
|  | 2635 | } | 
|  | 2636 |  | 
|  | 2637 | // Fix any Phi nodes in the loop exit block. | 
|  | 2638 | for (MachineInstr &MI : *LoopExitBB) { | 
|  | 2639 | if (!MI.isPHI()) | 
|  | 2640 | break; | 
|  | 2641 | for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { | 
|  | 2642 | MachineOperand &MO = MI.getOperand(i); | 
|  | 2643 | if (MO.getMBB() == BB) | 
|  | 2644 | MO.setMBB(PredBB); | 
|  | 2645 | } | 
|  | 2646 | } | 
|  | 2647 |  | 
|  | 2648 | // Create a branch to the new epilog from the kernel. | 
|  | 2649 | // Remove the original branch and add a new branch to the epilog. | 
| Matt Arsenault | 1b9fc8e | 2016-09-14 20:43:16 +0000 | [diff] [blame] | 2650 | TII->removeBranch(*KernelBB); | 
| Matt Arsenault | e8e0f5c | 2016-09-14 17:24:15 +0000 | [diff] [blame] | 2651 | TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2652 | // Add a branch to the loop exit. | 
|  | 2653 | if (EpilogBBs.size() > 0) { | 
|  | 2654 | MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); | 
|  | 2655 | SmallVector<MachineOperand, 4> Cond1; | 
| Matt Arsenault | e8e0f5c | 2016-09-14 17:24:15 +0000 | [diff] [blame] | 2656 | TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2657 | } | 
|  | 2658 | } | 
|  | 2659 |  | 
|  | 2660 | /// Replace all uses of FromReg that appear outside the specified | 
|  | 2661 | /// basic block with ToReg. | 
|  | 2662 | static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, | 
|  | 2663 | MachineBasicBlock *MBB, | 
|  | 2664 | MachineRegisterInfo &MRI, | 
|  | 2665 | LiveIntervals &LIS) { | 
|  | 2666 | for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), | 
|  | 2667 | E = MRI.use_end(); | 
|  | 2668 | I != E;) { | 
|  | 2669 | MachineOperand &O = *I; | 
|  | 2670 | ++I; | 
|  | 2671 | if (O.getParent()->getParent() != MBB) | 
|  | 2672 | O.setReg(ToReg); | 
|  | 2673 | } | 
|  | 2674 | if (!LIS.hasInterval(ToReg)) | 
|  | 2675 | LIS.createEmptyInterval(ToReg); | 
|  | 2676 | } | 
|  | 2677 |  | 
|  | 2678 | /// Return true if the register has a use that occurs outside the | 
|  | 2679 | /// specified loop. | 
|  | 2680 | static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, | 
|  | 2681 | MachineRegisterInfo &MRI) { | 
|  | 2682 | for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), | 
|  | 2683 | E = MRI.use_end(); | 
|  | 2684 | I != E; ++I) | 
|  | 2685 | if (I->getParent()->getParent() != BB) | 
|  | 2686 | return true; | 
|  | 2687 | return false; | 
|  | 2688 | } | 
|  | 2689 |  | 
|  | 2690 | /// Generate Phis for the specific block in the generated pipelined code. | 
|  | 2691 | /// This function looks at the Phis from the original code to guide the | 
|  | 2692 | /// creation of new Phis. | 
|  | 2693 | void SwingSchedulerDAG::generateExistingPhis( | 
|  | 2694 | MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, | 
|  | 2695 | MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, | 
|  | 2696 | InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, | 
|  | 2697 | bool IsLast) { | 
| Simon Pilgrim | 6bdc755 | 2017-03-31 10:59:37 +0000 | [diff] [blame] | 2698 | // Compute the stage number for the initial value of the Phi, which | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2699 | // comes from the prolog. The prolog to use depends on to which kernel/ | 
|  | 2700 | // epilog that we're adding the Phi. | 
|  | 2701 | unsigned PrologStage = 0; | 
|  | 2702 | unsigned PrevStage = 0; | 
|  | 2703 | bool InKernel = (LastStageNum == CurStageNum); | 
|  | 2704 | if (InKernel) { | 
|  | 2705 | PrologStage = LastStageNum - 1; | 
|  | 2706 | PrevStage = CurStageNum; | 
|  | 2707 | } else { | 
|  | 2708 | PrologStage = LastStageNum - (CurStageNum - LastStageNum); | 
|  | 2709 | PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; | 
|  | 2710 | } | 
|  | 2711 |  | 
|  | 2712 | for (MachineBasicBlock::iterator BBI = BB->instr_begin(), | 
|  | 2713 | BBE = BB->getFirstNonPHI(); | 
|  | 2714 | BBI != BBE; ++BBI) { | 
|  | 2715 | unsigned Def = BBI->getOperand(0).getReg(); | 
|  | 2716 |  | 
|  | 2717 | unsigned InitVal = 0; | 
|  | 2718 | unsigned LoopVal = 0; | 
|  | 2719 | getPhiRegs(*BBI, BB, InitVal, LoopVal); | 
|  | 2720 |  | 
|  | 2721 | unsigned PhiOp1 = 0; | 
|  | 2722 | // The Phi value from the loop body typically is defined in the loop, but | 
|  | 2723 | // not always. So, we need to check if the value is defined in the loop. | 
|  | 2724 | unsigned PhiOp2 = LoopVal; | 
|  | 2725 | if (VRMap[LastStageNum].count(LoopVal)) | 
|  | 2726 | PhiOp2 = VRMap[LastStageNum][LoopVal]; | 
|  | 2727 |  | 
|  | 2728 | int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); | 
|  | 2729 | int LoopValStage = | 
|  | 2730 | Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); | 
|  | 2731 | unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum); | 
|  | 2732 | if (NumStages == 0) { | 
|  | 2733 | // We don't need to generate a Phi anymore, but we need to rename any uses | 
|  | 2734 | // of the Phi value. | 
|  | 2735 | unsigned NewReg = VRMap[PrevStage][LoopVal]; | 
|  | 2736 | rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI, | 
| Krzysztof Parzyszek | 16e66f5 | 2018-03-26 16:41:36 +0000 | [diff] [blame] | 2737 | Def, InitVal, NewReg); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2738 | if (VRMap[CurStageNum].count(LoopVal)) | 
|  | 2739 | VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; | 
|  | 2740 | } | 
|  | 2741 | // Adjust the number of Phis needed depending on the number of prologs left, | 
| Krzysztof Parzyszek | 3f72a6b | 2018-03-26 16:37:55 +0000 | [diff] [blame] | 2742 | // and the distance from where the Phi is first scheduled. The number of | 
|  | 2743 | // Phis cannot exceed the number of prolog stages. Each stage can | 
|  | 2744 | // potentially define two values. | 
|  | 2745 | unsigned MaxPhis = PrologStage + 2; | 
|  | 2746 | if (!InKernel && (int)PrologStage <= LoopValStage) | 
|  | 2747 | MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); | 
|  | 2748 | unsigned NumPhis = std::min(NumStages, MaxPhis); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2749 |  | 
|  | 2750 | unsigned NewReg = 0; | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2751 | unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; | 
|  | 2752 | // In the epilog, we may need to look back one stage to get the correct | 
|  | 2753 | // Phi name because the epilog and prolog blocks execute the same stage. | 
|  | 2754 | // The correct name is from the previous block only when the Phi has | 
|  | 2755 | // been completely scheduled prior to the epilog, and Phi value is not | 
|  | 2756 | // needed in multiple stages. | 
|  | 2757 | int StageDiff = 0; | 
|  | 2758 | if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && | 
|  | 2759 | NumPhis == 1) | 
|  | 2760 | StageDiff = 1; | 
|  | 2761 | // Adjust the computations below when the phi and the loop definition | 
|  | 2762 | // are scheduled in different stages. | 
|  | 2763 | if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) | 
|  | 2764 | StageDiff = StageScheduled - LoopValStage; | 
|  | 2765 | for (unsigned np = 0; np < NumPhis; ++np) { | 
|  | 2766 | // If the Phi hasn't been scheduled, then use the initial Phi operand | 
|  | 2767 | // value. Otherwise, use the scheduled version of the instruction. This | 
|  | 2768 | // is a little complicated when a Phi references another Phi. | 
|  | 2769 | if (np > PrologStage || StageScheduled >= (int)LastStageNum) | 
|  | 2770 | PhiOp1 = InitVal; | 
|  | 2771 | // Check if the Phi has already been scheduled in a prolog stage. | 
|  | 2772 | else if (PrologStage >= AccessStage + StageDiff + np && | 
|  | 2773 | VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) | 
|  | 2774 | PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; | 
|  | 2775 | // Check if the Phi has already been scheduled, but the loop intruction | 
|  | 2776 | // is either another Phi, or doesn't occur in the loop. | 
|  | 2777 | else if (PrologStage >= AccessStage + StageDiff + np) { | 
|  | 2778 | // If the Phi references another Phi, we need to examine the other | 
|  | 2779 | // Phi to get the correct value. | 
|  | 2780 | PhiOp1 = LoopVal; | 
|  | 2781 | MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); | 
|  | 2782 | int Indirects = 1; | 
|  | 2783 | while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { | 
|  | 2784 | int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1)); | 
|  | 2785 | if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) | 
|  | 2786 | PhiOp1 = getInitPhiReg(*InstOp1, BB); | 
|  | 2787 | else | 
|  | 2788 | PhiOp1 = getLoopPhiReg(*InstOp1, BB); | 
|  | 2789 | InstOp1 = MRI.getVRegDef(PhiOp1); | 
|  | 2790 | int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1)); | 
|  | 2791 | int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); | 
|  | 2792 | if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && | 
|  | 2793 | VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { | 
|  | 2794 | PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; | 
|  | 2795 | break; | 
|  | 2796 | } | 
|  | 2797 | ++Indirects; | 
|  | 2798 | } | 
|  | 2799 | } else | 
|  | 2800 | PhiOp1 = InitVal; | 
|  | 2801 | // If this references a generated Phi in the kernel, get the Phi operand | 
|  | 2802 | // from the incoming block. | 
|  | 2803 | if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) | 
|  | 2804 | if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) | 
|  | 2805 | PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); | 
|  | 2806 |  | 
|  | 2807 | MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); | 
|  | 2808 | bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); | 
|  | 2809 | // In the epilog, a map lookup is needed to get the value from the kernel, | 
|  | 2810 | // or previous epilog block. How is does this depends on if the | 
|  | 2811 | // instruction is scheduled in the previous block. | 
|  | 2812 | if (!InKernel) { | 
|  | 2813 | int StageDiffAdj = 0; | 
|  | 2814 | if (LoopValStage != -1 && StageScheduled > LoopValStage) | 
|  | 2815 | StageDiffAdj = StageScheduled - LoopValStage; | 
|  | 2816 | // Use the loop value defined in the kernel, unless the kernel | 
|  | 2817 | // contains the last definition of the Phi. | 
|  | 2818 | if (np == 0 && PrevStage == LastStageNum && | 
|  | 2819 | (StageScheduled != 0 || LoopValStage != 0) && | 
|  | 2820 | VRMap[PrevStage - StageDiffAdj].count(LoopVal)) | 
|  | 2821 | PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; | 
|  | 2822 | // Use the value defined by the Phi. We add one because we switch | 
|  | 2823 | // from looking at the loop value to the Phi definition. | 
|  | 2824 | else if (np > 0 && PrevStage == LastStageNum && | 
|  | 2825 | VRMap[PrevStage - np + 1].count(Def)) | 
|  | 2826 | PhiOp2 = VRMap[PrevStage - np + 1][Def]; | 
|  | 2827 | // Use the loop value defined in the kernel. | 
| Brendon Cahoon | e3841eea | 2018-08-27 22:04:50 +0000 | [diff] [blame] | 2828 | else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 && | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2829 | VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) | 
|  | 2830 | PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; | 
|  | 2831 | // Use the value defined by the Phi, unless we're generating the first | 
|  | 2832 | // epilog and the Phi refers to a Phi in a different stage. | 
|  | 2833 | else if (VRMap[PrevStage - np].count(Def) && | 
|  | 2834 | (!LoopDefIsPhi || PrevStage != LastStageNum)) | 
|  | 2835 | PhiOp2 = VRMap[PrevStage - np][Def]; | 
|  | 2836 | } | 
|  | 2837 |  | 
|  | 2838 | // Check if we can reuse an existing Phi. This occurs when a Phi | 
|  | 2839 | // references another Phi, and the other Phi is scheduled in an | 
|  | 2840 | // earlier stage. We can try to reuse an existing Phi up until the last | 
|  | 2841 | // stage of the current Phi. | 
| Brendon Cahoon | e3841eea | 2018-08-27 22:04:50 +0000 | [diff] [blame] | 2842 | if (LoopDefIsPhi) { | 
|  | 2843 | if (static_cast<int>(PrologStage - np) >= StageScheduled) { | 
|  | 2844 | int LVNumStages = Schedule.getStagesForPhi(LoopVal); | 
|  | 2845 | int StageDiff = (StageScheduled - LoopValStage); | 
|  | 2846 | LVNumStages -= StageDiff; | 
|  | 2847 | // Make sure the loop value Phi has been processed already. | 
|  | 2848 | if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { | 
|  | 2849 | NewReg = PhiOp2; | 
|  | 2850 | unsigned ReuseStage = CurStageNum; | 
|  | 2851 | if (Schedule.isLoopCarried(this, *PhiInst)) | 
|  | 2852 | ReuseStage -= LVNumStages; | 
|  | 2853 | // Check if the Phi to reuse has been generated yet. If not, then | 
|  | 2854 | // there is nothing to reuse. | 
|  | 2855 | if (VRMap[ReuseStage - np].count(LoopVal)) { | 
|  | 2856 | NewReg = VRMap[ReuseStage - np][LoopVal]; | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2857 |  | 
| Brendon Cahoon | e3841eea | 2018-08-27 22:04:50 +0000 | [diff] [blame] | 2858 | rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, | 
|  | 2859 | &*BBI, Def, NewReg); | 
|  | 2860 | // Update the map with the new Phi name. | 
|  | 2861 | VRMap[CurStageNum - np][Def] = NewReg; | 
|  | 2862 | PhiOp2 = NewReg; | 
|  | 2863 | if (VRMap[LastStageNum - np - 1].count(LoopVal)) | 
|  | 2864 | PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2865 |  | 
| Brendon Cahoon | e3841eea | 2018-08-27 22:04:50 +0000 | [diff] [blame] | 2866 | if (IsLast && np == NumPhis - 1) | 
|  | 2867 | replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); | 
|  | 2868 | continue; | 
|  | 2869 | } | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2870 | } | 
| Brendon Cahoon | e3841eea | 2018-08-27 22:04:50 +0000 | [diff] [blame] | 2871 | } | 
|  | 2872 | if (InKernel && StageDiff > 0 && | 
|  | 2873 | VRMap[CurStageNum - StageDiff - np].count(LoopVal)) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2874 | PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; | 
|  | 2875 | } | 
|  | 2876 |  | 
|  | 2877 | const TargetRegisterClass *RC = MRI.getRegClass(Def); | 
|  | 2878 | NewReg = MRI.createVirtualRegister(RC); | 
|  | 2879 |  | 
|  | 2880 | MachineInstrBuilder NewPhi = | 
|  | 2881 | BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), | 
|  | 2882 | TII->get(TargetOpcode::PHI), NewReg); | 
|  | 2883 | NewPhi.addReg(PhiOp1).addMBB(BB1); | 
|  | 2884 | NewPhi.addReg(PhiOp2).addMBB(BB2); | 
|  | 2885 | if (np == 0) | 
|  | 2886 | InstrMap[NewPhi] = &*BBI; | 
|  | 2887 |  | 
|  | 2888 | // We define the Phis after creating the new pipelined code, so | 
|  | 2889 | // we need to rename the Phi values in scheduled instructions. | 
|  | 2890 |  | 
|  | 2891 | unsigned PrevReg = 0; | 
|  | 2892 | if (InKernel && VRMap[PrevStage - np].count(LoopVal)) | 
|  | 2893 | PrevReg = VRMap[PrevStage - np][LoopVal]; | 
|  | 2894 | rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, | 
|  | 2895 | Def, NewReg, PrevReg); | 
|  | 2896 | // If the Phi has been scheduled, use the new name for rewriting. | 
|  | 2897 | if (VRMap[CurStageNum - np].count(Def)) { | 
|  | 2898 | unsigned R = VRMap[CurStageNum - np][Def]; | 
|  | 2899 | rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, | 
|  | 2900 | R, NewReg); | 
|  | 2901 | } | 
|  | 2902 |  | 
|  | 2903 | // Check if we need to rename any uses that occurs after the loop. The | 
|  | 2904 | // register to replace depends on whether the Phi is scheduled in the | 
|  | 2905 | // epilog. | 
|  | 2906 | if (IsLast && np == NumPhis - 1) | 
|  | 2907 | replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); | 
|  | 2908 |  | 
|  | 2909 | // In the kernel, a dependent Phi uses the value from this Phi. | 
|  | 2910 | if (InKernel) | 
|  | 2911 | PhiOp2 = NewReg; | 
|  | 2912 |  | 
|  | 2913 | // Update the map with the new Phi name. | 
|  | 2914 | VRMap[CurStageNum - np][Def] = NewReg; | 
|  | 2915 | } | 
|  | 2916 |  | 
|  | 2917 | while (NumPhis++ < NumStages) { | 
|  | 2918 | rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis, | 
|  | 2919 | &*BBI, Def, NewReg, 0); | 
|  | 2920 | } | 
|  | 2921 |  | 
|  | 2922 | // Check if we need to rename a Phi that has been eliminated due to | 
|  | 2923 | // scheduling. | 
|  | 2924 | if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) | 
|  | 2925 | replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); | 
|  | 2926 | } | 
|  | 2927 | } | 
|  | 2928 |  | 
|  | 2929 | /// Generate Phis for the specified block in the generated pipelined code. | 
|  | 2930 | /// These are new Phis needed because the definition is scheduled after the | 
| Hiroshi Inoue | c73b6d6 | 2018-06-20 05:29:26 +0000 | [diff] [blame] | 2931 | /// use in the pipelined sequence. | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 2932 | void SwingSchedulerDAG::generatePhis( | 
|  | 2933 | MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, | 
|  | 2934 | MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, | 
|  | 2935 | InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, | 
|  | 2936 | bool IsLast) { | 
|  | 2937 | // Compute the stage number that contains the initial Phi value, and | 
|  | 2938 | // the Phi from the previous stage. | 
|  | 2939 | unsigned PrologStage = 0; | 
|  | 2940 | unsigned PrevStage = 0; | 
|  | 2941 | unsigned StageDiff = CurStageNum - LastStageNum; | 
|  | 2942 | bool InKernel = (StageDiff == 0); | 
|  | 2943 | if (InKernel) { | 
|  | 2944 | PrologStage = LastStageNum - 1; | 
|  | 2945 | PrevStage = CurStageNum; | 
|  | 2946 | } else { | 
|  | 2947 | PrologStage = LastStageNum - StageDiff; | 
|  | 2948 | PrevStage = LastStageNum + StageDiff - 1; | 
|  | 2949 | } | 
|  | 2950 |  | 
|  | 2951 | for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), | 
|  | 2952 | BBE = BB->instr_end(); | 
|  | 2953 | BBI != BBE; ++BBI) { | 
|  | 2954 | for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { | 
|  | 2955 | MachineOperand &MO = BBI->getOperand(i); | 
|  | 2956 | if (!MO.isReg() || !MO.isDef() || | 
|  | 2957 | !TargetRegisterInfo::isVirtualRegister(MO.getReg())) | 
|  | 2958 | continue; | 
|  | 2959 |  | 
|  | 2960 | int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); | 
|  | 2961 | assert(StageScheduled != -1 && "Expecting scheduled instruction."); | 
|  | 2962 | unsigned Def = MO.getReg(); | 
|  | 2963 | unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum); | 
|  | 2964 | // An instruction scheduled in stage 0 and is used after the loop | 
|  | 2965 | // requires a phi in the epilog for the last definition from either | 
|  | 2966 | // the kernel or prolog. | 
|  | 2967 | if (!InKernel && NumPhis == 0 && StageScheduled == 0 && | 
|  | 2968 | hasUseAfterLoop(Def, BB, MRI)) | 
|  | 2969 | NumPhis = 1; | 
|  | 2970 | if (!InKernel && (unsigned)StageScheduled > PrologStage) | 
|  | 2971 | continue; | 
|  | 2972 |  | 
|  | 2973 | unsigned PhiOp2 = VRMap[PrevStage][Def]; | 
|  | 2974 | if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) | 
|  | 2975 | if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) | 
|  | 2976 | PhiOp2 = getLoopPhiReg(*InstOp2, BB2); | 
|  | 2977 | // The number of Phis can't exceed the number of prolog stages. The | 
|  | 2978 | // prolog stage number is zero based. | 
|  | 2979 | if (NumPhis > PrologStage + 1 - StageScheduled) | 
|  | 2980 | NumPhis = PrologStage + 1 - StageScheduled; | 
|  | 2981 | for (unsigned np = 0; np < NumPhis; ++np) { | 
|  | 2982 | unsigned PhiOp1 = VRMap[PrologStage][Def]; | 
|  | 2983 | if (np <= PrologStage) | 
|  | 2984 | PhiOp1 = VRMap[PrologStage - np][Def]; | 
|  | 2985 | if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { | 
|  | 2986 | if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) | 
|  | 2987 | PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); | 
|  | 2988 | if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) | 
|  | 2989 | PhiOp1 = getInitPhiReg(*InstOp1, NewBB); | 
|  | 2990 | } | 
|  | 2991 | if (!InKernel) | 
|  | 2992 | PhiOp2 = VRMap[PrevStage - np][Def]; | 
|  | 2993 |  | 
|  | 2994 | const TargetRegisterClass *RC = MRI.getRegClass(Def); | 
|  | 2995 | unsigned NewReg = MRI.createVirtualRegister(RC); | 
|  | 2996 |  | 
|  | 2997 | MachineInstrBuilder NewPhi = | 
|  | 2998 | BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), | 
|  | 2999 | TII->get(TargetOpcode::PHI), NewReg); | 
|  | 3000 | NewPhi.addReg(PhiOp1).addMBB(BB1); | 
|  | 3001 | NewPhi.addReg(PhiOp2).addMBB(BB2); | 
|  | 3002 | if (np == 0) | 
|  | 3003 | InstrMap[NewPhi] = &*BBI; | 
|  | 3004 |  | 
|  | 3005 | // Rewrite uses and update the map. The actions depend upon whether | 
|  | 3006 | // we generating code for the kernel or epilog blocks. | 
|  | 3007 | if (InKernel) { | 
|  | 3008 | rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, | 
|  | 3009 | &*BBI, PhiOp1, NewReg); | 
|  | 3010 | rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, | 
|  | 3011 | &*BBI, PhiOp2, NewReg); | 
|  | 3012 |  | 
|  | 3013 | PhiOp2 = NewReg; | 
|  | 3014 | VRMap[PrevStage - np - 1][Def] = NewReg; | 
|  | 3015 | } else { | 
|  | 3016 | VRMap[CurStageNum - np][Def] = NewReg; | 
|  | 3017 | if (np == NumPhis - 1) | 
|  | 3018 | rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, | 
|  | 3019 | &*BBI, Def, NewReg); | 
|  | 3020 | } | 
|  | 3021 | if (IsLast && np == NumPhis - 1) | 
|  | 3022 | replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); | 
|  | 3023 | } | 
|  | 3024 | } | 
|  | 3025 | } | 
|  | 3026 | } | 
|  | 3027 |  | 
|  | 3028 | /// Remove instructions that generate values with no uses. | 
|  | 3029 | /// Typically, these are induction variable operations that generate values | 
|  | 3030 | /// used in the loop itself.  A dead instruction has a definition with | 
|  | 3031 | /// no uses, or uses that occur in the original loop only. | 
|  | 3032 | void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB, | 
|  | 3033 | MBBVectorTy &EpilogBBs) { | 
|  | 3034 | // For each epilog block, check that the value defined by each instruction | 
|  | 3035 | // is used.  If not, delete it. | 
|  | 3036 | for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(), | 
|  | 3037 | MBE = EpilogBBs.rend(); | 
|  | 3038 | MBB != MBE; ++MBB) | 
|  | 3039 | for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(), | 
|  | 3040 | ME = (*MBB)->instr_rend(); | 
|  | 3041 | MI != ME;) { | 
|  | 3042 | // From DeadMachineInstructionElem. Don't delete inline assembly. | 
|  | 3043 | if (MI->isInlineAsm()) { | 
|  | 3044 | ++MI; | 
|  | 3045 | continue; | 
|  | 3046 | } | 
|  | 3047 | bool SawStore = false; | 
|  | 3048 | // Check if it's safe to remove the instruction due to side effects. | 
|  | 3049 | // We can, and want to, remove Phis here. | 
|  | 3050 | if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { | 
|  | 3051 | ++MI; | 
|  | 3052 | continue; | 
|  | 3053 | } | 
|  | 3054 | bool used = true; | 
|  | 3055 | for (MachineInstr::mop_iterator MOI = MI->operands_begin(), | 
|  | 3056 | MOE = MI->operands_end(); | 
|  | 3057 | MOI != MOE; ++MOI) { | 
|  | 3058 | if (!MOI->isReg() || !MOI->isDef()) | 
|  | 3059 | continue; | 
|  | 3060 | unsigned reg = MOI->getReg(); | 
| Krzysztof Parzyszek | b9b75b8 | 2018-03-26 15:53:23 +0000 | [diff] [blame] | 3061 | // Assume physical registers are used, unless they are marked dead. | 
|  | 3062 | if (TargetRegisterInfo::isPhysicalRegister(reg)) { | 
|  | 3063 | used = !MOI->isDead(); | 
|  | 3064 | if (used) | 
|  | 3065 | break; | 
|  | 3066 | continue; | 
|  | 3067 | } | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3068 | unsigned realUses = 0; | 
|  | 3069 | for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), | 
|  | 3070 | EI = MRI.use_end(); | 
|  | 3071 | UI != EI; ++UI) { | 
|  | 3072 | // Check if there are any uses that occur only in the original | 
|  | 3073 | // loop.  If so, that's not a real use. | 
|  | 3074 | if (UI->getParent()->getParent() != BB) { | 
|  | 3075 | realUses++; | 
|  | 3076 | used = true; | 
|  | 3077 | break; | 
|  | 3078 | } | 
|  | 3079 | } | 
|  | 3080 | if (realUses > 0) | 
|  | 3081 | break; | 
|  | 3082 | used = false; | 
|  | 3083 | } | 
|  | 3084 | if (!used) { | 
| Krzysztof Parzyszek | c715a5d | 2018-03-21 16:39:11 +0000 | [diff] [blame] | 3085 | LIS.RemoveMachineInstrFromMaps(*MI); | 
| Duncan P. N. Exon Smith | 5c001c3 | 2016-08-30 00:13:12 +0000 | [diff] [blame] | 3086 | MI++->eraseFromParent(); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3087 | continue; | 
|  | 3088 | } | 
|  | 3089 | ++MI; | 
|  | 3090 | } | 
|  | 3091 | // In the kernel block, check if we can remove a Phi that generates a value | 
|  | 3092 | // used in an instruction removed in the epilog block. | 
|  | 3093 | for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), | 
|  | 3094 | BBE = KernelBB->getFirstNonPHI(); | 
|  | 3095 | BBI != BBE;) { | 
|  | 3096 | MachineInstr *MI = &*BBI; | 
|  | 3097 | ++BBI; | 
|  | 3098 | unsigned reg = MI->getOperand(0).getReg(); | 
|  | 3099 | if (MRI.use_begin(reg) == MRI.use_end()) { | 
| Krzysztof Parzyszek | c715a5d | 2018-03-21 16:39:11 +0000 | [diff] [blame] | 3100 | LIS.RemoveMachineInstrFromMaps(*MI); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3101 | MI->eraseFromParent(); | 
|  | 3102 | } | 
|  | 3103 | } | 
|  | 3104 | } | 
|  | 3105 |  | 
|  | 3106 | /// For loop carried definitions, we split the lifetime of a virtual register | 
|  | 3107 | /// that has uses past the definition in the next iteration. A copy with a new | 
|  | 3108 | /// virtual register is inserted before the definition, which helps with | 
|  | 3109 | /// generating a better register assignment. | 
|  | 3110 | /// | 
|  | 3111 | ///   v1 = phi(a, v2)     v1 = phi(a, v2) | 
|  | 3112 | ///   v2 = phi(b, v3)     v2 = phi(b, v3) | 
|  | 3113 | ///   v3 = ..             v4 = copy v1 | 
|  | 3114 | ///   .. = V1             v3 = .. | 
|  | 3115 | ///                       .. = v4 | 
|  | 3116 | void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB, | 
|  | 3117 | MBBVectorTy &EpilogBBs, | 
|  | 3118 | SMSchedule &Schedule) { | 
|  | 3119 | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); | 
| Bob Wilson | 90ecac0 | 2018-01-04 02:58:15 +0000 | [diff] [blame] | 3120 | for (auto &PHI : KernelBB->phis()) { | 
|  | 3121 | unsigned Def = PHI.getOperand(0).getReg(); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3122 | // Check for any Phi definition that used as an operand of another Phi | 
|  | 3123 | // in the same block. | 
|  | 3124 | for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), | 
|  | 3125 | E = MRI.use_instr_end(); | 
|  | 3126 | I != E; ++I) { | 
|  | 3127 | if (I->isPHI() && I->getParent() == KernelBB) { | 
|  | 3128 | // Get the loop carried definition. | 
| Bob Wilson | 90ecac0 | 2018-01-04 02:58:15 +0000 | [diff] [blame] | 3129 | unsigned LCDef = getLoopPhiReg(PHI, KernelBB); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3130 | if (!LCDef) | 
|  | 3131 | continue; | 
|  | 3132 | MachineInstr *MI = MRI.getVRegDef(LCDef); | 
|  | 3133 | if (!MI || MI->getParent() != KernelBB || MI->isPHI()) | 
|  | 3134 | continue; | 
|  | 3135 | // Search through the rest of the block looking for uses of the Phi | 
|  | 3136 | // definition. If one occurs, then split the lifetime. | 
|  | 3137 | unsigned SplitReg = 0; | 
|  | 3138 | for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), | 
|  | 3139 | KernelBB->instr_end())) | 
|  | 3140 | if (BBJ.readsRegister(Def)) { | 
|  | 3141 | // We split the lifetime when we find the first use. | 
|  | 3142 | if (SplitReg == 0) { | 
|  | 3143 | SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); | 
|  | 3144 | BuildMI(*KernelBB, MI, MI->getDebugLoc(), | 
|  | 3145 | TII->get(TargetOpcode::COPY), SplitReg) | 
|  | 3146 | .addReg(Def); | 
|  | 3147 | } | 
|  | 3148 | BBJ.substituteRegister(Def, SplitReg, 0, *TRI); | 
|  | 3149 | } | 
|  | 3150 | if (!SplitReg) | 
|  | 3151 | continue; | 
|  | 3152 | // Search through each of the epilog blocks for any uses to be renamed. | 
|  | 3153 | for (auto &Epilog : EpilogBBs) | 
|  | 3154 | for (auto &I : *Epilog) | 
|  | 3155 | if (I.readsRegister(Def)) | 
|  | 3156 | I.substituteRegister(Def, SplitReg, 0, *TRI); | 
|  | 3157 | break; | 
|  | 3158 | } | 
|  | 3159 | } | 
|  | 3160 | } | 
|  | 3161 | } | 
|  | 3162 |  | 
|  | 3163 | /// Remove the incoming block from the Phis in a basic block. | 
|  | 3164 | static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { | 
|  | 3165 | for (MachineInstr &MI : *BB) { | 
|  | 3166 | if (!MI.isPHI()) | 
|  | 3167 | break; | 
|  | 3168 | for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) | 
|  | 3169 | if (MI.getOperand(i + 1).getMBB() == Incoming) { | 
|  | 3170 | MI.RemoveOperand(i + 1); | 
|  | 3171 | MI.RemoveOperand(i); | 
|  | 3172 | break; | 
|  | 3173 | } | 
|  | 3174 | } | 
|  | 3175 | } | 
|  | 3176 |  | 
|  | 3177 | /// Create branches from each prolog basic block to the appropriate epilog | 
|  | 3178 | /// block.  These edges are needed if the loop ends before reaching the | 
|  | 3179 | /// kernel. | 
|  | 3180 | void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs, | 
|  | 3181 | MachineBasicBlock *KernelBB, | 
|  | 3182 | MBBVectorTy &EpilogBBs, | 
|  | 3183 | SMSchedule &Schedule, ValueMapTy *VRMap) { | 
|  | 3184 | assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); | 
|  | 3185 | MachineInstr *IndVar = Pass.LI.LoopInductionVar; | 
|  | 3186 | MachineInstr *Cmp = Pass.LI.LoopCompare; | 
|  | 3187 | MachineBasicBlock *LastPro = KernelBB; | 
|  | 3188 | MachineBasicBlock *LastEpi = KernelBB; | 
|  | 3189 |  | 
|  | 3190 | // Start from the blocks connected to the kernel and work "out" | 
|  | 3191 | // to the first prolog and the last epilog blocks. | 
|  | 3192 | SmallVector<MachineInstr *, 4> PrevInsts; | 
|  | 3193 | unsigned MaxIter = PrologBBs.size() - 1; | 
|  | 3194 | unsigned LC = UINT_MAX; | 
|  | 3195 | unsigned LCMin = UINT_MAX; | 
|  | 3196 | for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { | 
|  | 3197 | // Add branches to the prolog that go to the corresponding | 
|  | 3198 | // epilog, and the fall-thru prolog/kernel block. | 
|  | 3199 | MachineBasicBlock *Prolog = PrologBBs[j]; | 
|  | 3200 | MachineBasicBlock *Epilog = EpilogBBs[i]; | 
|  | 3201 | // We've executed one iteration, so decrement the loop count and check for | 
|  | 3202 | // the loop end. | 
|  | 3203 | SmallVector<MachineOperand, 4> Cond; | 
|  | 3204 | // Check if the LOOP0 has already been removed. If so, then there is no need | 
|  | 3205 | // to reduce the trip count. | 
|  | 3206 | if (LC != 0) | 
| Krzysztof Parzyszek | 8fb181c | 2016-08-01 17:55:48 +0000 | [diff] [blame] | 3207 | LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j, | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3208 | MaxIter); | 
|  | 3209 |  | 
|  | 3210 | // Record the value of the first trip count, which is used to determine if | 
|  | 3211 | // branches and blocks can be removed for constant trip counts. | 
|  | 3212 | if (LCMin == UINT_MAX) | 
|  | 3213 | LCMin = LC; | 
|  | 3214 |  | 
|  | 3215 | unsigned numAdded = 0; | 
|  | 3216 | if (TargetRegisterInfo::isVirtualRegister(LC)) { | 
|  | 3217 | Prolog->addSuccessor(Epilog); | 
| Matt Arsenault | e8e0f5c | 2016-09-14 17:24:15 +0000 | [diff] [blame] | 3218 | numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3219 | } else if (j >= LCMin) { | 
|  | 3220 | Prolog->addSuccessor(Epilog); | 
|  | 3221 | Prolog->removeSuccessor(LastPro); | 
|  | 3222 | LastEpi->removeSuccessor(Epilog); | 
| Matt Arsenault | e8e0f5c | 2016-09-14 17:24:15 +0000 | [diff] [blame] | 3223 | numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3224 | removePhis(Epilog, LastEpi); | 
|  | 3225 | // Remove the blocks that are no longer referenced. | 
|  | 3226 | if (LastPro != LastEpi) { | 
|  | 3227 | LastEpi->clear(); | 
|  | 3228 | LastEpi->eraseFromParent(); | 
|  | 3229 | } | 
|  | 3230 | LastPro->clear(); | 
|  | 3231 | LastPro->eraseFromParent(); | 
|  | 3232 | } else { | 
| Matt Arsenault | e8e0f5c | 2016-09-14 17:24:15 +0000 | [diff] [blame] | 3233 | numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3234 | removePhis(Epilog, Prolog); | 
|  | 3235 | } | 
|  | 3236 | LastPro = Prolog; | 
|  | 3237 | LastEpi = Epilog; | 
|  | 3238 | for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), | 
|  | 3239 | E = Prolog->instr_rend(); | 
|  | 3240 | I != E && numAdded > 0; ++I, --numAdded) | 
|  | 3241 | updateInstruction(&*I, false, j, 0, Schedule, VRMap); | 
|  | 3242 | } | 
|  | 3243 | } | 
|  | 3244 |  | 
|  | 3245 | /// Return true if we can compute the amount the instruction changes | 
|  | 3246 | /// during each iteration. Set Delta to the amount of the change. | 
|  | 3247 | bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { | 
|  | 3248 | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); | 
|  | 3249 | unsigned BaseReg; | 
|  | 3250 | int64_t Offset; | 
|  | 3251 | if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI)) | 
|  | 3252 | return false; | 
|  | 3253 |  | 
|  | 3254 | MachineRegisterInfo &MRI = MF.getRegInfo(); | 
|  | 3255 | // Check if there is a Phi. If so, get the definition in the loop. | 
|  | 3256 | MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); | 
|  | 3257 | if (BaseDef && BaseDef->isPHI()) { | 
|  | 3258 | BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); | 
|  | 3259 | BaseDef = MRI.getVRegDef(BaseReg); | 
|  | 3260 | } | 
|  | 3261 | if (!BaseDef) | 
|  | 3262 | return false; | 
|  | 3263 |  | 
|  | 3264 | int D = 0; | 
| Krzysztof Parzyszek | 8fb181c | 2016-08-01 17:55:48 +0000 | [diff] [blame] | 3265 | if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3266 | return false; | 
|  | 3267 |  | 
|  | 3268 | Delta = D; | 
|  | 3269 | return true; | 
|  | 3270 | } | 
|  | 3271 |  | 
|  | 3272 | /// Update the memory operand with a new offset when the pipeliner | 
| Justin Lebar | cf56e92 | 2016-08-12 23:58:19 +0000 | [diff] [blame] | 3273 | /// generates a new copy of the instruction that refers to a | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3274 | /// different memory location. | 
|  | 3275 | void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI, | 
|  | 3276 | MachineInstr &OldMI, unsigned Num) { | 
|  | 3277 | if (Num == 0) | 
|  | 3278 | return; | 
|  | 3279 | // If the instruction has memory operands, then adjust the offset | 
|  | 3280 | // when the instruction appears in different stages. | 
| Chandler Carruth | c73c030 | 2018-08-16 21:30:05 +0000 | [diff] [blame] | 3281 | if (NewMI.memoperands_empty()) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3282 | return; | 
| Chandler Carruth | c73c030 | 2018-08-16 21:30:05 +0000 | [diff] [blame] | 3283 | SmallVector<MachineMemOperand *, 2> NewMMOs; | 
| Justin Lebar | 0a33a7a | 2016-08-23 17:18:07 +0000 | [diff] [blame] | 3284 | for (MachineMemOperand *MMO : NewMI.memoperands()) { | 
| Justin Lebar | adbf09e | 2016-09-11 01:38:58 +0000 | [diff] [blame] | 3285 | if (MMO->isVolatile() || (MMO->isInvariant() && MMO->isDereferenceable()) || | 
|  | 3286 | (!MMO->getValue())) { | 
| Chandler Carruth | c73c030 | 2018-08-16 21:30:05 +0000 | [diff] [blame] | 3287 | NewMMOs.push_back(MMO); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3288 | continue; | 
|  | 3289 | } | 
|  | 3290 | unsigned Delta; | 
| Krzysztof Parzyszek | 785b6ce | 2018-03-26 15:45:55 +0000 | [diff] [blame] | 3291 | if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3292 | int64_t AdjOffset = Delta * Num; | 
| Chandler Carruth | c73c030 | 2018-08-16 21:30:05 +0000 | [diff] [blame] | 3293 | NewMMOs.push_back( | 
|  | 3294 | MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize())); | 
| Krzysztof Parzyszek | 2d79017 | 2018-02-27 22:40:52 +0000 | [diff] [blame] | 3295 | } else { | 
| Krzysztof Parzyszek | cc3f630 | 2018-08-20 20:37:57 +0000 | [diff] [blame] | 3296 | NewMMOs.push_back( | 
|  | 3297 | MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize)); | 
| Krzysztof Parzyszek | 2d79017 | 2018-02-27 22:40:52 +0000 | [diff] [blame] | 3298 | } | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3299 | } | 
| Chandler Carruth | c73c030 | 2018-08-16 21:30:05 +0000 | [diff] [blame] | 3300 | NewMI.setMemRefs(MF, NewMMOs); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3301 | } | 
|  | 3302 |  | 
|  | 3303 | /// Clone the instruction for the new pipelined loop and update the | 
|  | 3304 | /// memory operands, if needed. | 
|  | 3305 | MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI, | 
|  | 3306 | unsigned CurStageNum, | 
|  | 3307 | unsigned InstStageNum) { | 
|  | 3308 | MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); | 
|  | 3309 | // Check for tied operands in inline asm instructions. This should be handled | 
|  | 3310 | // elsewhere, but I'm not sure of the best solution. | 
|  | 3311 | if (OldMI->isInlineAsm()) | 
|  | 3312 | for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { | 
|  | 3313 | const auto &MO = OldMI->getOperand(i); | 
|  | 3314 | if (MO.isReg() && MO.isUse()) | 
|  | 3315 | break; | 
|  | 3316 | unsigned UseIdx; | 
|  | 3317 | if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) | 
|  | 3318 | NewMI->tieOperands(i, UseIdx); | 
|  | 3319 | } | 
|  | 3320 | updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); | 
|  | 3321 | return NewMI; | 
|  | 3322 | } | 
|  | 3323 |  | 
|  | 3324 | /// Clone the instruction for the new pipelined loop. If needed, this | 
|  | 3325 | /// function updates the instruction using the values saved in the | 
|  | 3326 | /// InstrChanges structure. | 
|  | 3327 | MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI, | 
|  | 3328 | unsigned CurStageNum, | 
|  | 3329 | unsigned InstStageNum, | 
|  | 3330 | SMSchedule &Schedule) { | 
|  | 3331 | MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); | 
|  | 3332 | DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = | 
|  | 3333 | InstrChanges.find(getSUnit(OldMI)); | 
|  | 3334 | if (It != InstrChanges.end()) { | 
|  | 3335 | std::pair<unsigned, int64_t> RegAndOffset = It->second; | 
|  | 3336 | unsigned BasePos, OffsetPos; | 
| Krzysztof Parzyszek | 8fb181c | 2016-08-01 17:55:48 +0000 | [diff] [blame] | 3337 | if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3338 | return nullptr; | 
|  | 3339 | int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); | 
|  | 3340 | MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); | 
|  | 3341 | if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum) | 
|  | 3342 | NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); | 
|  | 3343 | NewMI->getOperand(OffsetPos).setImm(NewOffset); | 
|  | 3344 | } | 
|  | 3345 | updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); | 
|  | 3346 | return NewMI; | 
|  | 3347 | } | 
|  | 3348 |  | 
|  | 3349 | /// Update the machine instruction with new virtual registers.  This | 
|  | 3350 | /// function may change the defintions and/or uses. | 
|  | 3351 | void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef, | 
|  | 3352 | unsigned CurStageNum, | 
|  | 3353 | unsigned InstrStageNum, | 
|  | 3354 | SMSchedule &Schedule, | 
|  | 3355 | ValueMapTy *VRMap) { | 
|  | 3356 | for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { | 
|  | 3357 | MachineOperand &MO = NewMI->getOperand(i); | 
|  | 3358 | if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) | 
|  | 3359 | continue; | 
|  | 3360 | unsigned reg = MO.getReg(); | 
|  | 3361 | if (MO.isDef()) { | 
|  | 3362 | // Create a new virtual register for the definition. | 
|  | 3363 | const TargetRegisterClass *RC = MRI.getRegClass(reg); | 
|  | 3364 | unsigned NewReg = MRI.createVirtualRegister(RC); | 
|  | 3365 | MO.setReg(NewReg); | 
|  | 3366 | VRMap[CurStageNum][reg] = NewReg; | 
|  | 3367 | if (LastDef) | 
|  | 3368 | replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); | 
|  | 3369 | } else if (MO.isUse()) { | 
|  | 3370 | MachineInstr *Def = MRI.getVRegDef(reg); | 
|  | 3371 | // Compute the stage that contains the last definition for instruction. | 
|  | 3372 | int DefStageNum = Schedule.stageScheduled(getSUnit(Def)); | 
|  | 3373 | unsigned StageNum = CurStageNum; | 
|  | 3374 | if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { | 
|  | 3375 | // Compute the difference in stages between the defintion and the use. | 
|  | 3376 | unsigned StageDiff = (InstrStageNum - DefStageNum); | 
|  | 3377 | // Make an adjustment to get the last definition. | 
|  | 3378 | StageNum -= StageDiff; | 
|  | 3379 | } | 
|  | 3380 | if (VRMap[StageNum].count(reg)) | 
|  | 3381 | MO.setReg(VRMap[StageNum][reg]); | 
|  | 3382 | } | 
|  | 3383 | } | 
|  | 3384 | } | 
|  | 3385 |  | 
|  | 3386 | /// Return the instruction in the loop that defines the register. | 
|  | 3387 | /// If the definition is a Phi, then follow the Phi operand to | 
|  | 3388 | /// the instruction in the loop. | 
|  | 3389 | MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) { | 
|  | 3390 | SmallPtrSet<MachineInstr *, 8> Visited; | 
|  | 3391 | MachineInstr *Def = MRI.getVRegDef(Reg); | 
|  | 3392 | while (Def->isPHI()) { | 
|  | 3393 | if (!Visited.insert(Def).second) | 
|  | 3394 | break; | 
|  | 3395 | for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) | 
|  | 3396 | if (Def->getOperand(i + 1).getMBB() == BB) { | 
|  | 3397 | Def = MRI.getVRegDef(Def->getOperand(i).getReg()); | 
|  | 3398 | break; | 
|  | 3399 | } | 
|  | 3400 | } | 
|  | 3401 | return Def; | 
|  | 3402 | } | 
|  | 3403 |  | 
|  | 3404 | /// Return the new name for the value from the previous stage. | 
|  | 3405 | unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage, | 
|  | 3406 | unsigned LoopVal, unsigned LoopStage, | 
|  | 3407 | ValueMapTy *VRMap, | 
|  | 3408 | MachineBasicBlock *BB) { | 
|  | 3409 | unsigned PrevVal = 0; | 
|  | 3410 | if (StageNum > PhiStage) { | 
|  | 3411 | MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); | 
|  | 3412 | if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) | 
|  | 3413 | // The name is defined in the previous stage. | 
|  | 3414 | PrevVal = VRMap[StageNum - 1][LoopVal]; | 
|  | 3415 | else if (VRMap[StageNum].count(LoopVal)) | 
|  | 3416 | // The previous name is defined in the current stage when the instruction | 
|  | 3417 | // order is swapped. | 
|  | 3418 | PrevVal = VRMap[StageNum][LoopVal]; | 
| Krzysztof Parzyszek | df24da2 | 2016-12-22 18:49:55 +0000 | [diff] [blame] | 3419 | else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3420 | // The loop value hasn't yet been scheduled. | 
|  | 3421 | PrevVal = LoopVal; | 
|  | 3422 | else if (StageNum == PhiStage + 1) | 
|  | 3423 | // The loop value is another phi, which has not been scheduled. | 
|  | 3424 | PrevVal = getInitPhiReg(*LoopInst, BB); | 
|  | 3425 | else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) | 
|  | 3426 | // The loop value is another phi, which has been scheduled. | 
|  | 3427 | PrevVal = | 
|  | 3428 | getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), | 
|  | 3429 | LoopStage, VRMap, BB); | 
|  | 3430 | } | 
|  | 3431 | return PrevVal; | 
|  | 3432 | } | 
|  | 3433 |  | 
|  | 3434 | /// Rewrite the Phi values in the specified block to use the mappings | 
|  | 3435 | /// from the initial operand. Once the Phi is scheduled, we switch | 
|  | 3436 | /// to using the loop value instead of the Phi value, so those names | 
|  | 3437 | /// do not need to be rewritten. | 
|  | 3438 | void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB, | 
|  | 3439 | unsigned StageNum, | 
|  | 3440 | SMSchedule &Schedule, | 
|  | 3441 | ValueMapTy *VRMap, | 
|  | 3442 | InstrMapTy &InstrMap) { | 
| Bob Wilson | 90ecac0 | 2018-01-04 02:58:15 +0000 | [diff] [blame] | 3443 | for (auto &PHI : BB->phis()) { | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3444 | unsigned InitVal = 0; | 
|  | 3445 | unsigned LoopVal = 0; | 
| Bob Wilson | 90ecac0 | 2018-01-04 02:58:15 +0000 | [diff] [blame] | 3446 | getPhiRegs(PHI, BB, InitVal, LoopVal); | 
|  | 3447 | unsigned PhiDef = PHI.getOperand(0).getReg(); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3448 |  | 
|  | 3449 | unsigned PhiStage = | 
|  | 3450 | (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef))); | 
|  | 3451 | unsigned LoopStage = | 
|  | 3452 | (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); | 
|  | 3453 | unsigned NumPhis = Schedule.getStagesForPhi(PhiDef); | 
|  | 3454 | if (NumPhis > StageNum) | 
|  | 3455 | NumPhis = StageNum; | 
|  | 3456 | for (unsigned np = 0; np <= NumPhis; ++np) { | 
|  | 3457 | unsigned NewVal = | 
|  | 3458 | getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); | 
|  | 3459 | if (!NewVal) | 
|  | 3460 | NewVal = InitVal; | 
| Bob Wilson | 90ecac0 | 2018-01-04 02:58:15 +0000 | [diff] [blame] | 3461 | rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &PHI, | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3462 | PhiDef, NewVal); | 
|  | 3463 | } | 
|  | 3464 | } | 
|  | 3465 | } | 
|  | 3466 |  | 
|  | 3467 | /// Rewrite a previously scheduled instruction to use the register value | 
|  | 3468 | /// from the new instruction. Make sure the instruction occurs in the | 
|  | 3469 | /// basic block, and we don't change the uses in the new instruction. | 
|  | 3470 | void SwingSchedulerDAG::rewriteScheduledInstr( | 
|  | 3471 | MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap, | 
|  | 3472 | unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, | 
|  | 3473 | unsigned NewReg, unsigned PrevReg) { | 
|  | 3474 | bool InProlog = (CurStageNum < Schedule.getMaxStageCount()); | 
|  | 3475 | int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum; | 
|  | 3476 | // Rewrite uses that have been scheduled already to use the new | 
|  | 3477 | // Phi register. | 
|  | 3478 | for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), | 
|  | 3479 | EI = MRI.use_end(); | 
|  | 3480 | UI != EI;) { | 
|  | 3481 | MachineOperand &UseOp = *UI; | 
|  | 3482 | MachineInstr *UseMI = UseOp.getParent(); | 
|  | 3483 | ++UI; | 
|  | 3484 | if (UseMI->getParent() != BB) | 
|  | 3485 | continue; | 
|  | 3486 | if (UseMI->isPHI()) { | 
|  | 3487 | if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) | 
|  | 3488 | continue; | 
|  | 3489 | if (getLoopPhiReg(*UseMI, BB) != OldReg) | 
|  | 3490 | continue; | 
|  | 3491 | } | 
|  | 3492 | InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); | 
|  | 3493 | assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); | 
|  | 3494 | SUnit *OrigMISU = getSUnit(OrigInstr->second); | 
|  | 3495 | int StageSched = Schedule.stageScheduled(OrigMISU); | 
|  | 3496 | int CycleSched = Schedule.cycleScheduled(OrigMISU); | 
|  | 3497 | unsigned ReplaceReg = 0; | 
|  | 3498 | // This is the stage for the scheduled instruction. | 
|  | 3499 | if (StagePhi == StageSched && Phi->isPHI()) { | 
|  | 3500 | int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi)); | 
|  | 3501 | if (PrevReg && InProlog) | 
|  | 3502 | ReplaceReg = PrevReg; | 
|  | 3503 | else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) && | 
|  | 3504 | (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI())) | 
|  | 3505 | ReplaceReg = PrevReg; | 
|  | 3506 | else | 
|  | 3507 | ReplaceReg = NewReg; | 
|  | 3508 | } | 
|  | 3509 | // The scheduled instruction occurs before the scheduled Phi, and the | 
|  | 3510 | // Phi is not loop carried. | 
|  | 3511 | if (!InProlog && StagePhi + 1 == StageSched && | 
|  | 3512 | !Schedule.isLoopCarried(this, *Phi)) | 
|  | 3513 | ReplaceReg = NewReg; | 
|  | 3514 | if (StagePhi > StageSched && Phi->isPHI()) | 
|  | 3515 | ReplaceReg = NewReg; | 
|  | 3516 | if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) | 
|  | 3517 | ReplaceReg = NewReg; | 
|  | 3518 | if (ReplaceReg) { | 
|  | 3519 | MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); | 
|  | 3520 | UseOp.setReg(ReplaceReg); | 
|  | 3521 | } | 
|  | 3522 | } | 
|  | 3523 | } | 
|  | 3524 |  | 
|  | 3525 | /// Check if we can change the instruction to use an offset value from the | 
|  | 3526 | /// previous iteration. If so, return true and set the base and offset values | 
|  | 3527 | /// so that we can rewrite the load, if necessary. | 
|  | 3528 | ///   v1 = Phi(v0, v3) | 
|  | 3529 | ///   v2 = load v1, 0 | 
|  | 3530 | ///   v3 = post_store v1, 4, x | 
|  | 3531 | /// This function enables the load to be rewritten as v2 = load v3, 4. | 
|  | 3532 | bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, | 
|  | 3533 | unsigned &BasePos, | 
|  | 3534 | unsigned &OffsetPos, | 
|  | 3535 | unsigned &NewBase, | 
|  | 3536 | int64_t &Offset) { | 
|  | 3537 | // Get the load instruction. | 
| Krzysztof Parzyszek | 8fb181c | 2016-08-01 17:55:48 +0000 | [diff] [blame] | 3538 | if (TII->isPostIncrement(*MI)) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3539 | return false; | 
|  | 3540 | unsigned BasePosLd, OffsetPosLd; | 
| Krzysztof Parzyszek | 8fb181c | 2016-08-01 17:55:48 +0000 | [diff] [blame] | 3541 | if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3542 | return false; | 
|  | 3543 | unsigned BaseReg = MI->getOperand(BasePosLd).getReg(); | 
|  | 3544 |  | 
|  | 3545 | // Look for the Phi instruction. | 
| Justin Bogner | fdf9bf4 | 2017-10-10 23:50:49 +0000 | [diff] [blame] | 3546 | MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3547 | MachineInstr *Phi = MRI.getVRegDef(BaseReg); | 
|  | 3548 | if (!Phi || !Phi->isPHI()) | 
|  | 3549 | return false; | 
|  | 3550 | // Get the register defined in the loop block. | 
|  | 3551 | unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); | 
|  | 3552 | if (!PrevReg) | 
|  | 3553 | return false; | 
|  | 3554 |  | 
|  | 3555 | // Check for the post-increment load/store instruction. | 
|  | 3556 | MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); | 
|  | 3557 | if (!PrevDef || PrevDef == MI) | 
|  | 3558 | return false; | 
|  | 3559 |  | 
| Krzysztof Parzyszek | 8fb181c | 2016-08-01 17:55:48 +0000 | [diff] [blame] | 3560 | if (!TII->isPostIncrement(*PrevDef)) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3561 | return false; | 
|  | 3562 |  | 
|  | 3563 | unsigned BasePos1 = 0, OffsetPos1 = 0; | 
| Krzysztof Parzyszek | 8fb181c | 2016-08-01 17:55:48 +0000 | [diff] [blame] | 3564 | if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3565 | return false; | 
|  | 3566 |  | 
| Krzysztof Parzyszek | 40df8a2 | 2018-03-26 16:17:06 +0000 | [diff] [blame] | 3567 | // Make sure that the instructions do not access the same memory location in | 
|  | 3568 | // the next iteration. | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3569 | int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); | 
|  | 3570 | int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); | 
| Krzysztof Parzyszek | 40df8a2 | 2018-03-26 16:17:06 +0000 | [diff] [blame] | 3571 | MachineInstr *NewMI = MF.CloneMachineInstr(MI); | 
|  | 3572 | NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); | 
|  | 3573 | bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); | 
|  | 3574 | MF.DeleteMachineInstr(NewMI); | 
|  | 3575 | if (!Disjoint) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3576 | return false; | 
|  | 3577 |  | 
|  | 3578 | // Set the return value once we determine that we return true. | 
|  | 3579 | BasePos = BasePosLd; | 
|  | 3580 | OffsetPos = OffsetPosLd; | 
|  | 3581 | NewBase = PrevReg; | 
|  | 3582 | Offset = StoreOffset; | 
|  | 3583 | return true; | 
|  | 3584 | } | 
|  | 3585 |  | 
|  | 3586 | /// Apply changes to the instruction if needed. The changes are need | 
|  | 3587 | /// to improve the scheduling and depend up on the final schedule. | 
| Krzysztof Parzyszek | 8f174dd | 2017-10-11 15:51:44 +0000 | [diff] [blame] | 3588 | void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, | 
|  | 3589 | SMSchedule &Schedule) { | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3590 | SUnit *SU = getSUnit(MI); | 
|  | 3591 | DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = | 
|  | 3592 | InstrChanges.find(SU); | 
|  | 3593 | if (It != InstrChanges.end()) { | 
|  | 3594 | std::pair<unsigned, int64_t> RegAndOffset = It->second; | 
|  | 3595 | unsigned BasePos, OffsetPos; | 
| Krzysztof Parzyszek | 8fb181c | 2016-08-01 17:55:48 +0000 | [diff] [blame] | 3596 | if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) | 
| Krzysztof Parzyszek | 8f174dd | 2017-10-11 15:51:44 +0000 | [diff] [blame] | 3597 | return; | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3598 | unsigned BaseReg = MI->getOperand(BasePos).getReg(); | 
|  | 3599 | MachineInstr *LoopDef = findDefInLoop(BaseReg); | 
|  | 3600 | int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); | 
|  | 3601 | int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); | 
|  | 3602 | int BaseStageNum = Schedule.stageScheduled(SU); | 
|  | 3603 | int BaseCycleNum = Schedule.cycleScheduled(SU); | 
|  | 3604 | if (BaseStageNum < DefStageNum) { | 
|  | 3605 | MachineInstr *NewMI = MF.CloneMachineInstr(MI); | 
|  | 3606 | int OffsetDiff = DefStageNum - BaseStageNum; | 
|  | 3607 | if (DefCycleNum < BaseCycleNum) { | 
|  | 3608 | NewMI->getOperand(BasePos).setReg(RegAndOffset.first); | 
|  | 3609 | if (OffsetDiff > 0) | 
|  | 3610 | --OffsetDiff; | 
|  | 3611 | } | 
|  | 3612 | int64_t NewOffset = | 
|  | 3613 | MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; | 
|  | 3614 | NewMI->getOperand(OffsetPos).setImm(NewOffset); | 
| Krzysztof Parzyszek | 8f174dd | 2017-10-11 15:51:44 +0000 | [diff] [blame] | 3615 | SU->setInstr(NewMI); | 
|  | 3616 | MISUnitMap[NewMI] = SU; | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3617 | NewMIs.insert(NewMI); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3618 | } | 
|  | 3619 | } | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3620 | } | 
|  | 3621 |  | 
| Krzysztof Parzyszek | 8e1363d | 2018-03-26 16:05:55 +0000 | [diff] [blame] | 3622 | /// Return true for an order or output dependence that is loop carried | 
|  | 3623 | /// potentially. A dependence is loop carried if the destination defines a valu | 
|  | 3624 | /// that may be used or defined by the source in a subsequent iteration. | 
|  | 3625 | bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, | 
|  | 3626 | bool isSucc) { | 
|  | 3627 | if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || | 
|  | 3628 | Dep.isArtificial()) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3629 | return false; | 
|  | 3630 |  | 
|  | 3631 | if (!SwpPruneLoopCarried) | 
|  | 3632 | return true; | 
|  | 3633 |  | 
| Krzysztof Parzyszek | 8e1363d | 2018-03-26 16:05:55 +0000 | [diff] [blame] | 3634 | if (Dep.getKind() == SDep::Output) | 
|  | 3635 | return true; | 
|  | 3636 |  | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3637 | MachineInstr *SI = Source->getInstr(); | 
|  | 3638 | MachineInstr *DI = Dep.getSUnit()->getInstr(); | 
|  | 3639 | if (!isSucc) | 
|  | 3640 | std::swap(SI, DI); | 
|  | 3641 | assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); | 
|  | 3642 |  | 
|  | 3643 | // Assume ordered loads and stores may have a loop carried dependence. | 
|  | 3644 | if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || | 
|  | 3645 | SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) | 
|  | 3646 | return true; | 
|  | 3647 |  | 
|  | 3648 | // Only chain dependences between a load and store can be loop carried. | 
|  | 3649 | if (!DI->mayStore() || !SI->mayLoad()) | 
|  | 3650 | return false; | 
|  | 3651 |  | 
|  | 3652 | unsigned DeltaS, DeltaD; | 
|  | 3653 | if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) | 
|  | 3654 | return true; | 
|  | 3655 |  | 
|  | 3656 | unsigned BaseRegS, BaseRegD; | 
|  | 3657 | int64_t OffsetS, OffsetD; | 
|  | 3658 | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); | 
|  | 3659 | if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) || | 
|  | 3660 | !TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI)) | 
|  | 3661 | return true; | 
|  | 3662 |  | 
|  | 3663 | if (BaseRegS != BaseRegD) | 
|  | 3664 | return true; | 
|  | 3665 |  | 
| Krzysztof Parzyszek | 8c07d0c | 2018-03-26 16:58:40 +0000 | [diff] [blame] | 3666 | // Check that the base register is incremented by a constant value for each | 
|  | 3667 | // iteration. | 
|  | 3668 | MachineInstr *Def = MRI.getVRegDef(BaseRegS); | 
|  | 3669 | if (!Def || !Def->isPHI()) | 
|  | 3670 | return true; | 
|  | 3671 | unsigned InitVal = 0; | 
|  | 3672 | unsigned LoopVal = 0; | 
|  | 3673 | getPhiRegs(*Def, BB, InitVal, LoopVal); | 
|  | 3674 | MachineInstr *LoopDef = MRI.getVRegDef(LoopVal); | 
|  | 3675 | int D = 0; | 
|  | 3676 | if (!LoopDef || !TII->getIncrementValue(*LoopDef, D)) | 
|  | 3677 | return true; | 
|  | 3678 |  | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3679 | uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); | 
|  | 3680 | uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); | 
|  | 3681 |  | 
|  | 3682 | // This is the main test, which checks the offset values and the loop | 
|  | 3683 | // increment value to determine if the accesses may be loop carried. | 
|  | 3684 | if (OffsetS >= OffsetD) | 
|  | 3685 | return OffsetS + AccessSizeS > DeltaS; | 
| Simon Pilgrim | fbfb19b | 2017-03-16 19:52:00 +0000 | [diff] [blame] | 3686 | else | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3687 | return OffsetD + AccessSizeD > DeltaD; | 
|  | 3688 |  | 
|  | 3689 | return true; | 
|  | 3690 | } | 
|  | 3691 |  | 
| Krzysztof Parzyszek | 8839124 | 2016-12-22 19:21:20 +0000 | [diff] [blame] | 3692 | void SwingSchedulerDAG::postprocessDAG() { | 
|  | 3693 | for (auto &M : Mutations) | 
|  | 3694 | M->apply(this); | 
|  | 3695 | } | 
|  | 3696 |  | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3697 | /// Try to schedule the node at the specified StartCycle and continue | 
|  | 3698 | /// until the node is schedule or the EndCycle is reached.  This function | 
|  | 3699 | /// returns true if the node is scheduled.  This routine may search either | 
|  | 3700 | /// forward or backward for a place to insert the instruction based upon | 
|  | 3701 | /// the relative values of StartCycle and EndCycle. | 
|  | 3702 | bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { | 
|  | 3703 | bool forward = true; | 
|  | 3704 | if (StartCycle > EndCycle) | 
|  | 3705 | forward = false; | 
|  | 3706 |  | 
|  | 3707 | // The terminating condition depends on the direction. | 
|  | 3708 | int termCycle = forward ? EndCycle + 1 : EndCycle - 1; | 
|  | 3709 | for (int curCycle = StartCycle; curCycle != termCycle; | 
|  | 3710 | forward ? ++curCycle : --curCycle) { | 
|  | 3711 |  | 
|  | 3712 | // Add the already scheduled instructions at the specified cycle to the DFA. | 
|  | 3713 | Resources->clearResources(); | 
|  | 3714 | for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); | 
|  | 3715 | checkCycle <= LastCycle; checkCycle += II) { | 
|  | 3716 | std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; | 
|  | 3717 |  | 
|  | 3718 | for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(), | 
|  | 3719 | E = cycleInstrs.end(); | 
|  | 3720 | I != E; ++I) { | 
|  | 3721 | if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode())) | 
|  | 3722 | continue; | 
|  | 3723 | assert(Resources->canReserveResources(*(*I)->getInstr()) && | 
|  | 3724 | "These instructions have already been scheduled."); | 
|  | 3725 | Resources->reserveResources(*(*I)->getInstr()); | 
|  | 3726 | } | 
|  | 3727 | } | 
|  | 3728 | if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || | 
|  | 3729 | Resources->canReserveResources(*SU->getInstr())) { | 
| Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 3730 | LLVM_DEBUG({ | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3731 | dbgs() << "\tinsert at cycle " << curCycle << " "; | 
|  | 3732 | SU->getInstr()->dump(); | 
|  | 3733 | }); | 
|  | 3734 |  | 
|  | 3735 | ScheduledInstrs[curCycle].push_back(SU); | 
|  | 3736 | InstrToCycle.insert(std::make_pair(SU, curCycle)); | 
|  | 3737 | if (curCycle > LastCycle) | 
|  | 3738 | LastCycle = curCycle; | 
|  | 3739 | if (curCycle < FirstCycle) | 
|  | 3740 | FirstCycle = curCycle; | 
|  | 3741 | return true; | 
|  | 3742 | } | 
| Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 3743 | LLVM_DEBUG({ | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3744 | dbgs() << "\tfailed to insert at cycle " << curCycle << " "; | 
|  | 3745 | SU->getInstr()->dump(); | 
|  | 3746 | }); | 
|  | 3747 | } | 
|  | 3748 | return false; | 
|  | 3749 | } | 
|  | 3750 |  | 
|  | 3751 | // Return the cycle of the earliest scheduled instruction in the chain. | 
|  | 3752 | int SMSchedule::earliestCycleInChain(const SDep &Dep) { | 
|  | 3753 | SmallPtrSet<SUnit *, 8> Visited; | 
|  | 3754 | SmallVector<SDep, 8> Worklist; | 
|  | 3755 | Worklist.push_back(Dep); | 
|  | 3756 | int EarlyCycle = INT_MAX; | 
|  | 3757 | while (!Worklist.empty()) { | 
|  | 3758 | const SDep &Cur = Worklist.pop_back_val(); | 
|  | 3759 | SUnit *PrevSU = Cur.getSUnit(); | 
|  | 3760 | if (Visited.count(PrevSU)) | 
|  | 3761 | continue; | 
|  | 3762 | std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); | 
|  | 3763 | if (it == InstrToCycle.end()) | 
|  | 3764 | continue; | 
|  | 3765 | EarlyCycle = std::min(EarlyCycle, it->second); | 
|  | 3766 | for (const auto &PI : PrevSU->Preds) | 
| Krzysztof Parzyszek | 8e1363d | 2018-03-26 16:05:55 +0000 | [diff] [blame] | 3767 | if (PI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3768 | Worklist.push_back(PI); | 
|  | 3769 | Visited.insert(PrevSU); | 
|  | 3770 | } | 
|  | 3771 | return EarlyCycle; | 
|  | 3772 | } | 
|  | 3773 |  | 
|  | 3774 | // Return the cycle of the latest scheduled instruction in the chain. | 
|  | 3775 | int SMSchedule::latestCycleInChain(const SDep &Dep) { | 
|  | 3776 | SmallPtrSet<SUnit *, 8> Visited; | 
|  | 3777 | SmallVector<SDep, 8> Worklist; | 
|  | 3778 | Worklist.push_back(Dep); | 
|  | 3779 | int LateCycle = INT_MIN; | 
|  | 3780 | while (!Worklist.empty()) { | 
|  | 3781 | const SDep &Cur = Worklist.pop_back_val(); | 
|  | 3782 | SUnit *SuccSU = Cur.getSUnit(); | 
|  | 3783 | if (Visited.count(SuccSU)) | 
|  | 3784 | continue; | 
|  | 3785 | std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); | 
|  | 3786 | if (it == InstrToCycle.end()) | 
|  | 3787 | continue; | 
|  | 3788 | LateCycle = std::max(LateCycle, it->second); | 
|  | 3789 | for (const auto &SI : SuccSU->Succs) | 
| Krzysztof Parzyszek | 8e1363d | 2018-03-26 16:05:55 +0000 | [diff] [blame] | 3790 | if (SI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3791 | Worklist.push_back(SI); | 
|  | 3792 | Visited.insert(SuccSU); | 
|  | 3793 | } | 
|  | 3794 | return LateCycle; | 
|  | 3795 | } | 
|  | 3796 |  | 
|  | 3797 | /// If an instruction has a use that spans multiple iterations, then | 
|  | 3798 | /// return true. These instructions are characterized by having a back-ege | 
|  | 3799 | /// to a Phi, which contains a reference to another Phi. | 
|  | 3800 | static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { | 
|  | 3801 | for (auto &P : SU->Preds) | 
|  | 3802 | if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) | 
|  | 3803 | for (auto &S : P.getSUnit()->Succs) | 
| Krzysztof Parzyszek | b9b75b8 | 2018-03-26 15:53:23 +0000 | [diff] [blame] | 3804 | if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3805 | return P.getSUnit(); | 
|  | 3806 | return nullptr; | 
|  | 3807 | } | 
|  | 3808 |  | 
|  | 3809 | /// Compute the scheduling start slot for the instruction.  The start slot | 
|  | 3810 | /// depends on any predecessor or successor nodes scheduled already. | 
|  | 3811 | void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, | 
|  | 3812 | int *MinEnd, int *MaxStart, int II, | 
|  | 3813 | SwingSchedulerDAG *DAG) { | 
|  | 3814 | // Iterate over each instruction that has been scheduled already.  The start | 
| Hiroshi Inoue | c73b6d6 | 2018-06-20 05:29:26 +0000 | [diff] [blame] | 3815 | // slot computation depends on whether the previously scheduled instruction | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3816 | // is a predecessor or successor of the specified instruction. | 
|  | 3817 | for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { | 
|  | 3818 |  | 
|  | 3819 | // Iterate over each instruction in the current cycle. | 
|  | 3820 | for (SUnit *I : getInstructions(cycle)) { | 
|  | 3821 | // Because we're processing a DAG for the dependences, we recognize | 
|  | 3822 | // the back-edge in recurrences by anti dependences. | 
|  | 3823 | for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { | 
|  | 3824 | const SDep &Dep = SU->Preds[i]; | 
|  | 3825 | if (Dep.getSUnit() == I) { | 
|  | 3826 | if (!DAG->isBackedge(SU, Dep)) { | 
| Krzysztof Parzyszek | c715a5d | 2018-03-21 16:39:11 +0000 | [diff] [blame] | 3827 | int EarlyStart = cycle + Dep.getLatency() - | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3828 | DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; | 
|  | 3829 | *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); | 
| Krzysztof Parzyszek | 8e1363d | 2018-03-26 16:05:55 +0000 | [diff] [blame] | 3830 | if (DAG->isLoopCarriedDep(SU, Dep, false)) { | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3831 | int End = earliestCycleInChain(Dep) + (II - 1); | 
|  | 3832 | *MinEnd = std::min(*MinEnd, End); | 
|  | 3833 | } | 
|  | 3834 | } else { | 
| Krzysztof Parzyszek | c715a5d | 2018-03-21 16:39:11 +0000 | [diff] [blame] | 3835 | int LateStart = cycle - Dep.getLatency() + | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3836 | DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; | 
|  | 3837 | *MinLateStart = std::min(*MinLateStart, LateStart); | 
|  | 3838 | } | 
|  | 3839 | } | 
|  | 3840 | // For instruction that requires multiple iterations, make sure that | 
|  | 3841 | // the dependent instruction is not scheduled past the definition. | 
|  | 3842 | SUnit *BE = multipleIterations(I, DAG); | 
|  | 3843 | if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && | 
|  | 3844 | !SU->isPred(I)) | 
|  | 3845 | *MinLateStart = std::min(*MinLateStart, cycle); | 
|  | 3846 | } | 
| Krzysztof Parzyszek | a212204 | 2018-03-26 16:33:16 +0000 | [diff] [blame] | 3847 | for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3848 | if (SU->Succs[i].getSUnit() == I) { | 
|  | 3849 | const SDep &Dep = SU->Succs[i]; | 
|  | 3850 | if (!DAG->isBackedge(SU, Dep)) { | 
| Krzysztof Parzyszek | c715a5d | 2018-03-21 16:39:11 +0000 | [diff] [blame] | 3851 | int LateStart = cycle - Dep.getLatency() + | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3852 | DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; | 
|  | 3853 | *MinLateStart = std::min(*MinLateStart, LateStart); | 
| Krzysztof Parzyszek | 8e1363d | 2018-03-26 16:05:55 +0000 | [diff] [blame] | 3854 | if (DAG->isLoopCarriedDep(SU, Dep)) { | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3855 | int Start = latestCycleInChain(Dep) + 1 - II; | 
|  | 3856 | *MaxStart = std::max(*MaxStart, Start); | 
|  | 3857 | } | 
|  | 3858 | } else { | 
| Krzysztof Parzyszek | c715a5d | 2018-03-21 16:39:11 +0000 | [diff] [blame] | 3859 | int EarlyStart = cycle + Dep.getLatency() - | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3860 | DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; | 
|  | 3861 | *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); | 
|  | 3862 | } | 
|  | 3863 | } | 
| Krzysztof Parzyszek | a212204 | 2018-03-26 16:33:16 +0000 | [diff] [blame] | 3864 | } | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3865 | } | 
|  | 3866 | } | 
|  | 3867 | } | 
|  | 3868 |  | 
|  | 3869 | /// Order the instructions within a cycle so that the definitions occur | 
|  | 3870 | /// before the uses. Returns true if the instruction is added to the start | 
|  | 3871 | /// of the list, or false if added to the end. | 
| Krzysztof Parzyszek | f13bbf1 | 2018-03-26 16:23:29 +0000 | [diff] [blame] | 3872 | void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3873 | std::deque<SUnit *> &Insts) { | 
|  | 3874 | MachineInstr *MI = SU->getInstr(); | 
|  | 3875 | bool OrderBeforeUse = false; | 
|  | 3876 | bool OrderAfterDef = false; | 
|  | 3877 | bool OrderBeforeDef = false; | 
|  | 3878 | unsigned MoveDef = 0; | 
|  | 3879 | unsigned MoveUse = 0; | 
|  | 3880 | int StageInst1 = stageScheduled(SU); | 
|  | 3881 |  | 
|  | 3882 | unsigned Pos = 0; | 
|  | 3883 | for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; | 
|  | 3884 | ++I, ++Pos) { | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3885 | for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { | 
|  | 3886 | MachineOperand &MO = MI->getOperand(i); | 
|  | 3887 | if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) | 
|  | 3888 | continue; | 
| Krzysztof Parzyszek | f13bbf1 | 2018-03-26 16:23:29 +0000 | [diff] [blame] | 3889 |  | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3890 | unsigned Reg = MO.getReg(); | 
|  | 3891 | unsigned BasePos, OffsetPos; | 
| Krzysztof Parzyszek | 8fb181c | 2016-08-01 17:55:48 +0000 | [diff] [blame] | 3892 | if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3893 | if (MI->getOperand(BasePos).getReg() == Reg) | 
|  | 3894 | if (unsigned NewReg = SSD->getInstrBaseReg(SU)) | 
|  | 3895 | Reg = NewReg; | 
|  | 3896 | bool Reads, Writes; | 
|  | 3897 | std::tie(Reads, Writes) = | 
|  | 3898 | (*I)->getInstr()->readsWritesVirtualRegister(Reg); | 
|  | 3899 | if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { | 
|  | 3900 | OrderBeforeUse = true; | 
| Krzysztof Parzyszek | f13bbf1 | 2018-03-26 16:23:29 +0000 | [diff] [blame] | 3901 | if (MoveUse == 0) | 
|  | 3902 | MoveUse = Pos; | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3903 | } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { | 
|  | 3904 | // Add the instruction after the scheduled instruction. | 
|  | 3905 | OrderAfterDef = true; | 
|  | 3906 | MoveDef = Pos; | 
|  | 3907 | } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { | 
|  | 3908 | if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { | 
|  | 3909 | OrderBeforeUse = true; | 
| Krzysztof Parzyszek | f13bbf1 | 2018-03-26 16:23:29 +0000 | [diff] [blame] | 3910 | if (MoveUse == 0) | 
|  | 3911 | MoveUse = Pos; | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3912 | } else { | 
|  | 3913 | OrderAfterDef = true; | 
|  | 3914 | MoveDef = Pos; | 
|  | 3915 | } | 
|  | 3916 | } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { | 
|  | 3917 | OrderBeforeUse = true; | 
| Krzysztof Parzyszek | f13bbf1 | 2018-03-26 16:23:29 +0000 | [diff] [blame] | 3918 | if (MoveUse == 0) | 
|  | 3919 | MoveUse = Pos; | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3920 | if (MoveUse != 0) { | 
|  | 3921 | OrderAfterDef = true; | 
|  | 3922 | MoveDef = Pos - 1; | 
|  | 3923 | } | 
|  | 3924 | } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { | 
|  | 3925 | // Add the instruction before the scheduled instruction. | 
|  | 3926 | OrderBeforeUse = true; | 
| Krzysztof Parzyszek | f13bbf1 | 2018-03-26 16:23:29 +0000 | [diff] [blame] | 3927 | if (MoveUse == 0) | 
|  | 3928 | MoveUse = Pos; | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3929 | } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && | 
|  | 3930 | isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { | 
| Krzysztof Parzyszek | f13bbf1 | 2018-03-26 16:23:29 +0000 | [diff] [blame] | 3931 | if (MoveUse == 0) { | 
|  | 3932 | OrderBeforeDef = true; | 
|  | 3933 | MoveUse = Pos; | 
|  | 3934 | } | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3935 | } | 
|  | 3936 | } | 
|  | 3937 | // Check for order dependences between instructions. Make sure the source | 
|  | 3938 | // is ordered before the destination. | 
| Krzysztof Parzyszek | 8e1363d | 2018-03-26 16:05:55 +0000 | [diff] [blame] | 3939 | for (auto &S : SU->Succs) { | 
|  | 3940 | if (S.getSUnit() != *I) | 
|  | 3941 | continue; | 
|  | 3942 | if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { | 
|  | 3943 | OrderBeforeUse = true; | 
|  | 3944 | if (Pos < MoveUse) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3945 | MoveUse = Pos; | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3946 | } | 
| Krzysztof Parzyszek | 8e1363d | 2018-03-26 16:05:55 +0000 | [diff] [blame] | 3947 | } | 
|  | 3948 | for (auto &P : SU->Preds) { | 
|  | 3949 | if (P.getSUnit() != *I) | 
|  | 3950 | continue; | 
|  | 3951 | if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { | 
|  | 3952 | OrderAfterDef = true; | 
|  | 3953 | MoveDef = Pos; | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3954 | } | 
| Krzysztof Parzyszek | 8e1363d | 2018-03-26 16:05:55 +0000 | [diff] [blame] | 3955 | } | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3956 | } | 
|  | 3957 |  | 
|  | 3958 | // A circular dependence. | 
|  | 3959 | if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) | 
|  | 3960 | OrderBeforeUse = false; | 
|  | 3961 |  | 
|  | 3962 | // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due | 
|  | 3963 | // to a loop-carried dependence. | 
|  | 3964 | if (OrderBeforeDef) | 
|  | 3965 | OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); | 
|  | 3966 |  | 
|  | 3967 | // The uncommon case when the instruction order needs to be updated because | 
|  | 3968 | // there is both a use and def. | 
|  | 3969 | if (OrderBeforeUse && OrderAfterDef) { | 
|  | 3970 | SUnit *UseSU = Insts.at(MoveUse); | 
|  | 3971 | SUnit *DefSU = Insts.at(MoveDef); | 
|  | 3972 | if (MoveUse > MoveDef) { | 
|  | 3973 | Insts.erase(Insts.begin() + MoveUse); | 
|  | 3974 | Insts.erase(Insts.begin() + MoveDef); | 
|  | 3975 | } else { | 
|  | 3976 | Insts.erase(Insts.begin() + MoveDef); | 
|  | 3977 | Insts.erase(Insts.begin() + MoveUse); | 
|  | 3978 | } | 
| Krzysztof Parzyszek | f13bbf1 | 2018-03-26 16:23:29 +0000 | [diff] [blame] | 3979 | orderDependence(SSD, UseSU, Insts); | 
|  | 3980 | orderDependence(SSD, SU, Insts); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3981 | orderDependence(SSD, DefSU, Insts); | 
| Krzysztof Parzyszek | f13bbf1 | 2018-03-26 16:23:29 +0000 | [diff] [blame] | 3982 | return; | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3983 | } | 
|  | 3984 | // Put the new instruction first if there is a use in the list. Otherwise, | 
|  | 3985 | // put it at the end of the list. | 
|  | 3986 | if (OrderBeforeUse) | 
|  | 3987 | Insts.push_front(SU); | 
|  | 3988 | else | 
|  | 3989 | Insts.push_back(SU); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3990 | } | 
|  | 3991 |  | 
|  | 3992 | /// Return true if the scheduled Phi has a loop carried operand. | 
|  | 3993 | bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { | 
|  | 3994 | if (!Phi.isPHI()) | 
|  | 3995 | return false; | 
| Hiroshi Inoue | c73b6d6 | 2018-06-20 05:29:26 +0000 | [diff] [blame] | 3996 | assert(Phi.isPHI() && "Expecting a Phi."); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 3997 | SUnit *DefSU = SSD->getSUnit(&Phi); | 
|  | 3998 | unsigned DefCycle = cycleScheduled(DefSU); | 
|  | 3999 | int DefStage = stageScheduled(DefSU); | 
|  | 4000 |  | 
|  | 4001 | unsigned InitVal = 0; | 
|  | 4002 | unsigned LoopVal = 0; | 
|  | 4003 | getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); | 
|  | 4004 | SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); | 
|  | 4005 | if (!UseSU) | 
|  | 4006 | return true; | 
|  | 4007 | if (UseSU->getInstr()->isPHI()) | 
|  | 4008 | return true; | 
|  | 4009 | unsigned LoopCycle = cycleScheduled(UseSU); | 
|  | 4010 | int LoopStage = stageScheduled(UseSU); | 
| Simon Pilgrim | 3d8482a | 2016-11-14 10:40:23 +0000 | [diff] [blame] | 4011 | return (LoopCycle > DefCycle) || (LoopStage <= DefStage); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 4012 | } | 
|  | 4013 |  | 
|  | 4014 | /// Return true if the instruction is a definition that is loop carried | 
|  | 4015 | /// and defines the use on the next iteration. | 
|  | 4016 | ///        v1 = phi(v2, v3) | 
|  | 4017 | ///  (Def) v3 = op v1 | 
|  | 4018 | ///  (MO)   = v1 | 
|  | 4019 | /// If MO appears before Def, then then v1 and v3 may get assigned to the same | 
|  | 4020 | /// register. | 
|  | 4021 | bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, | 
|  | 4022 | MachineInstr *Def, MachineOperand &MO) { | 
|  | 4023 | if (!MO.isReg()) | 
|  | 4024 | return false; | 
|  | 4025 | if (Def->isPHI()) | 
|  | 4026 | return false; | 
|  | 4027 | MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); | 
|  | 4028 | if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) | 
|  | 4029 | return false; | 
|  | 4030 | if (!isLoopCarried(SSD, *Phi)) | 
|  | 4031 | return false; | 
|  | 4032 | unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); | 
|  | 4033 | for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { | 
|  | 4034 | MachineOperand &DMO = Def->getOperand(i); | 
|  | 4035 | if (!DMO.isReg() || !DMO.isDef()) | 
|  | 4036 | continue; | 
|  | 4037 | if (DMO.getReg() == LoopReg) | 
|  | 4038 | return true; | 
|  | 4039 | } | 
|  | 4040 | return false; | 
|  | 4041 | } | 
|  | 4042 |  | 
|  | 4043 | // Check if the generated schedule is valid. This function checks if | 
|  | 4044 | // an instruction that uses a physical register is scheduled in a | 
|  | 4045 | // different stage than the definition. The pipeliner does not handle | 
|  | 4046 | // physical register values that may cross a basic block boundary. | 
|  | 4047 | bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 4048 | for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) { | 
|  | 4049 | SUnit &SU = SSD->SUnits[i]; | 
|  | 4050 | if (!SU.hasPhysRegDefs) | 
|  | 4051 | continue; | 
|  | 4052 | int StageDef = stageScheduled(&SU); | 
|  | 4053 | assert(StageDef != -1 && "Instruction should have been scheduled."); | 
|  | 4054 | for (auto &SI : SU.Succs) | 
|  | 4055 | if (SI.isAssignedRegDep()) | 
| Simon Pilgrim | b39236b | 2016-07-29 18:57:32 +0000 | [diff] [blame] | 4056 | if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg())) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 4057 | if (stageScheduled(SI.getSUnit()) != StageDef) | 
|  | 4058 | return false; | 
|  | 4059 | } | 
|  | 4060 | return true; | 
|  | 4061 | } | 
|  | 4062 |  | 
| Roorda, Jan-Willem | 4b8bcf0 | 2018-03-07 18:53:36 +0000 | [diff] [blame] | 4063 | /// A property of the node order in swing-modulo-scheduling is | 
|  | 4064 | /// that for nodes outside circuits the following holds: | 
|  | 4065 | /// none of them is scheduled after both a successor and a | 
|  | 4066 | /// predecessor. | 
|  | 4067 | /// The method below checks whether the property is met. | 
|  | 4068 | /// If not, debug information is printed and statistics information updated. | 
|  | 4069 | /// Note that we do not use an assert statement. | 
|  | 4070 | /// The reason is that although an invalid node oder may prevent | 
|  | 4071 | /// the pipeliner from finding a pipelined schedule for arbitrary II, | 
|  | 4072 | /// it does not lead to the generation of incorrect code. | 
|  | 4073 | void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { | 
|  | 4074 |  | 
|  | 4075 | // a sorted vector that maps each SUnit to its index in the NodeOrder | 
|  | 4076 | typedef std::pair<SUnit *, unsigned> UnitIndex; | 
|  | 4077 | std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); | 
|  | 4078 |  | 
|  | 4079 | for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) | 
|  | 4080 | Indices.push_back(std::make_pair(NodeOrder[i], i)); | 
|  | 4081 |  | 
|  | 4082 | auto CompareKey = [](UnitIndex i1, UnitIndex i2) { | 
|  | 4083 | return std::get<0>(i1) < std::get<0>(i2); | 
|  | 4084 | }; | 
|  | 4085 |  | 
|  | 4086 | // sort, so that we can perform a binary search | 
| Fangrui Song | 0cac726 | 2018-09-27 02:13:45 +0000 | [diff] [blame] | 4087 | llvm::sort(Indices, CompareKey); | 
| Roorda, Jan-Willem | 4b8bcf0 | 2018-03-07 18:53:36 +0000 | [diff] [blame] | 4088 |  | 
|  | 4089 | bool Valid = true; | 
| David L Kreitzer | febf70a | 2018-03-16 21:21:23 +0000 | [diff] [blame] | 4090 | (void)Valid; | 
| Roorda, Jan-Willem | 4b8bcf0 | 2018-03-07 18:53:36 +0000 | [diff] [blame] | 4091 | // for each SUnit in the NodeOrder, check whether | 
|  | 4092 | // it appears after both a successor and a predecessor | 
|  | 4093 | // of the SUnit. If this is the case, and the SUnit | 
|  | 4094 | // is not part of circuit, then the NodeOrder is not | 
|  | 4095 | // valid. | 
|  | 4096 | for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { | 
|  | 4097 | SUnit *SU = NodeOrder[i]; | 
|  | 4098 | unsigned Index = i; | 
|  | 4099 |  | 
|  | 4100 | bool PredBefore = false; | 
|  | 4101 | bool SuccBefore = false; | 
|  | 4102 |  | 
|  | 4103 | SUnit *Succ; | 
|  | 4104 | SUnit *Pred; | 
| David L Kreitzer | febf70a | 2018-03-16 21:21:23 +0000 | [diff] [blame] | 4105 | (void)Succ; | 
|  | 4106 | (void)Pred; | 
| Roorda, Jan-Willem | 4b8bcf0 | 2018-03-07 18:53:36 +0000 | [diff] [blame] | 4107 |  | 
|  | 4108 | for (SDep &PredEdge : SU->Preds) { | 
|  | 4109 | SUnit *PredSU = PredEdge.getSUnit(); | 
|  | 4110 | unsigned PredIndex = | 
|  | 4111 | std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(), | 
|  | 4112 | std::make_pair(PredSU, 0), CompareKey)); | 
|  | 4113 | if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { | 
|  | 4114 | PredBefore = true; | 
|  | 4115 | Pred = PredSU; | 
|  | 4116 | break; | 
|  | 4117 | } | 
|  | 4118 | } | 
|  | 4119 |  | 
|  | 4120 | for (SDep &SuccEdge : SU->Succs) { | 
|  | 4121 | SUnit *SuccSU = SuccEdge.getSUnit(); | 
|  | 4122 | unsigned SuccIndex = | 
|  | 4123 | std::get<1>(*std::lower_bound(Indices.begin(), Indices.end(), | 
|  | 4124 | std::make_pair(SuccSU, 0), CompareKey)); | 
|  | 4125 | if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { | 
|  | 4126 | SuccBefore = true; | 
|  | 4127 | Succ = SuccSU; | 
|  | 4128 | break; | 
|  | 4129 | } | 
|  | 4130 | } | 
|  | 4131 |  | 
|  | 4132 | if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { | 
|  | 4133 | // instructions in circuits are allowed to be scheduled | 
|  | 4134 | // after both a successor and predecessor. | 
|  | 4135 | bool InCircuit = std::any_of( | 
|  | 4136 | Circuits.begin(), Circuits.end(), | 
|  | 4137 | [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); | 
|  | 4138 | if (InCircuit) | 
| Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 4139 | LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";); | 
| Roorda, Jan-Willem | 4b8bcf0 | 2018-03-07 18:53:36 +0000 | [diff] [blame] | 4140 | else { | 
|  | 4141 | Valid = false; | 
|  | 4142 | NumNodeOrderIssues++; | 
| Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 4143 | LLVM_DEBUG(dbgs() << "Predecessor ";); | 
| Roorda, Jan-Willem | 4b8bcf0 | 2018-03-07 18:53:36 +0000 | [diff] [blame] | 4144 | } | 
| Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 4145 | LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum | 
|  | 4146 | << " are scheduled before node " << SU->NodeNum | 
|  | 4147 | << "\n";); | 
| Roorda, Jan-Willem | 4b8bcf0 | 2018-03-07 18:53:36 +0000 | [diff] [blame] | 4148 | } | 
|  | 4149 | } | 
|  | 4150 |  | 
| Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 4151 | LLVM_DEBUG({ | 
| Roorda, Jan-Willem | 4b8bcf0 | 2018-03-07 18:53:36 +0000 | [diff] [blame] | 4152 | if (!Valid) | 
|  | 4153 | dbgs() << "Invalid node order found!\n"; | 
|  | 4154 | }); | 
|  | 4155 | } | 
|  | 4156 |  | 
| Krzysztof Parzyszek | 8f174dd | 2017-10-11 15:51:44 +0000 | [diff] [blame] | 4157 | /// Attempt to fix the degenerate cases when the instruction serialization | 
|  | 4158 | /// causes the register lifetimes to overlap. For example, | 
|  | 4159 | ///   p' = store_pi(p, b) | 
|  | 4160 | ///      = load p, offset | 
|  | 4161 | /// In this case p and p' overlap, which means that two registers are needed. | 
|  | 4162 | /// Instead, this function changes the load to use p' and updates the offset. | 
|  | 4163 | void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { | 
|  | 4164 | unsigned OverlapReg = 0; | 
|  | 4165 | unsigned NewBaseReg = 0; | 
|  | 4166 | for (SUnit *SU : Instrs) { | 
|  | 4167 | MachineInstr *MI = SU->getInstr(); | 
|  | 4168 | for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { | 
|  | 4169 | const MachineOperand &MO = MI->getOperand(i); | 
|  | 4170 | // Look for an instruction that uses p. The instruction occurs in the | 
|  | 4171 | // same cycle but occurs later in the serialized order. | 
|  | 4172 | if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { | 
|  | 4173 | // Check that the instruction appears in the InstrChanges structure, | 
|  | 4174 | // which contains instructions that can have the offset updated. | 
|  | 4175 | DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = | 
|  | 4176 | InstrChanges.find(SU); | 
|  | 4177 | if (It != InstrChanges.end()) { | 
|  | 4178 | unsigned BasePos, OffsetPos; | 
|  | 4179 | // Update the base register and adjust the offset. | 
|  | 4180 | if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { | 
| Krzysztof Parzyszek | 12bdcab | 2017-10-11 15:59:51 +0000 | [diff] [blame] | 4181 | MachineInstr *NewMI = MF.CloneMachineInstr(MI); | 
|  | 4182 | NewMI->getOperand(BasePos).setReg(NewBaseReg); | 
|  | 4183 | int64_t NewOffset = | 
|  | 4184 | MI->getOperand(OffsetPos).getImm() - It->second.second; | 
|  | 4185 | NewMI->getOperand(OffsetPos).setImm(NewOffset); | 
|  | 4186 | SU->setInstr(NewMI); | 
|  | 4187 | MISUnitMap[NewMI] = SU; | 
|  | 4188 | NewMIs.insert(NewMI); | 
| Krzysztof Parzyszek | 8f174dd | 2017-10-11 15:51:44 +0000 | [diff] [blame] | 4189 | } | 
|  | 4190 | } | 
|  | 4191 | OverlapReg = 0; | 
|  | 4192 | NewBaseReg = 0; | 
|  | 4193 | break; | 
|  | 4194 | } | 
|  | 4195 | // Look for an instruction of the form p' = op(p), which uses and defines | 
|  | 4196 | // two virtual registers that get allocated to the same physical register. | 
|  | 4197 | unsigned TiedUseIdx = 0; | 
|  | 4198 | if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { | 
|  | 4199 | // OverlapReg is p in the example above. | 
|  | 4200 | OverlapReg = MI->getOperand(TiedUseIdx).getReg(); | 
|  | 4201 | // NewBaseReg is p' in the example above. | 
|  | 4202 | NewBaseReg = MI->getOperand(i).getReg(); | 
|  | 4203 | break; | 
|  | 4204 | } | 
|  | 4205 | } | 
|  | 4206 | } | 
|  | 4207 | } | 
|  | 4208 |  | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 4209 | /// After the schedule has been formed, call this function to combine | 
|  | 4210 | /// the instructions from the different stages/cycles.  That is, this | 
|  | 4211 | /// function creates a schedule that represents a single iteration. | 
|  | 4212 | void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { | 
|  | 4213 | // Move all instructions to the first stage from later stages. | 
|  | 4214 | for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { | 
|  | 4215 | for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; | 
|  | 4216 | ++stage) { | 
|  | 4217 | std::deque<SUnit *> &cycleInstrs = | 
|  | 4218 | ScheduledInstrs[cycle + (stage * InitiationInterval)]; | 
|  | 4219 | for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(), | 
|  | 4220 | E = cycleInstrs.rend(); | 
|  | 4221 | I != E; ++I) | 
|  | 4222 | ScheduledInstrs[cycle].push_front(*I); | 
|  | 4223 | } | 
|  | 4224 | } | 
|  | 4225 | // Iterate over the definitions in each instruction, and compute the | 
|  | 4226 | // stage difference for each use.  Keep the maximum value. | 
|  | 4227 | for (auto &I : InstrToCycle) { | 
|  | 4228 | int DefStage = stageScheduled(I.first); | 
|  | 4229 | MachineInstr *MI = I.first->getInstr(); | 
|  | 4230 | for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { | 
|  | 4231 | MachineOperand &Op = MI->getOperand(i); | 
|  | 4232 | if (!Op.isReg() || !Op.isDef()) | 
|  | 4233 | continue; | 
|  | 4234 |  | 
|  | 4235 | unsigned Reg = Op.getReg(); | 
|  | 4236 | unsigned MaxDiff = 0; | 
|  | 4237 | bool PhiIsSwapped = false; | 
|  | 4238 | for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), | 
|  | 4239 | EI = MRI.use_end(); | 
|  | 4240 | UI != EI; ++UI) { | 
|  | 4241 | MachineOperand &UseOp = *UI; | 
|  | 4242 | MachineInstr *UseMI = UseOp.getParent(); | 
|  | 4243 | SUnit *SUnitUse = SSD->getSUnit(UseMI); | 
|  | 4244 | int UseStage = stageScheduled(SUnitUse); | 
|  | 4245 | unsigned Diff = 0; | 
|  | 4246 | if (UseStage != -1 && UseStage >= DefStage) | 
|  | 4247 | Diff = UseStage - DefStage; | 
|  | 4248 | if (MI->isPHI()) { | 
|  | 4249 | if (isLoopCarried(SSD, *MI)) | 
|  | 4250 | ++Diff; | 
|  | 4251 | else | 
|  | 4252 | PhiIsSwapped = true; | 
|  | 4253 | } | 
|  | 4254 | MaxDiff = std::max(Diff, MaxDiff); | 
|  | 4255 | } | 
|  | 4256 | RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); | 
|  | 4257 | } | 
|  | 4258 | } | 
|  | 4259 |  | 
|  | 4260 | // Erase all the elements in the later stages. Only one iteration should | 
|  | 4261 | // remain in the scheduled list, and it contains all the instructions. | 
|  | 4262 | for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) | 
|  | 4263 | ScheduledInstrs.erase(cycle); | 
|  | 4264 |  | 
|  | 4265 | // Change the registers in instruction as specified in the InstrChanges | 
|  | 4266 | // map. We need to use the new registers to create the correct order. | 
|  | 4267 | for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { | 
|  | 4268 | SUnit *SU = &SSD->SUnits[i]; | 
| Krzysztof Parzyszek | 8f174dd | 2017-10-11 15:51:44 +0000 | [diff] [blame] | 4269 | SSD->applyInstrChange(SU->getInstr(), *this); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 4270 | } | 
|  | 4271 |  | 
|  | 4272 | // Reorder the instructions in each cycle to fix and improve the | 
|  | 4273 | // generated code. | 
|  | 4274 | for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { | 
|  | 4275 | std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; | 
| Krzysztof Parzyszek | f13bbf1 | 2018-03-26 16:23:29 +0000 | [diff] [blame] | 4276 | std::deque<SUnit *> newOrderPhi; | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 4277 | for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { | 
|  | 4278 | SUnit *SU = cycleInstrs[i]; | 
| Krzysztof Parzyszek | f13bbf1 | 2018-03-26 16:23:29 +0000 | [diff] [blame] | 4279 | if (SU->getInstr()->isPHI()) | 
|  | 4280 | newOrderPhi.push_back(SU); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 4281 | } | 
|  | 4282 | std::deque<SUnit *> newOrderI; | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 4283 | for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { | 
|  | 4284 | SUnit *SU = cycleInstrs[i]; | 
| Krzysztof Parzyszek | f13bbf1 | 2018-03-26 16:23:29 +0000 | [diff] [blame] | 4285 | if (!SU->getInstr()->isPHI()) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 4286 | orderDependence(SSD, SU, newOrderI); | 
|  | 4287 | } | 
|  | 4288 | // Replace the old order with the new order. | 
| Krzysztof Parzyszek | f13bbf1 | 2018-03-26 16:23:29 +0000 | [diff] [blame] | 4289 | cycleInstrs.swap(newOrderPhi); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 4290 | cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end()); | 
| Krzysztof Parzyszek | 8f174dd | 2017-10-11 15:51:44 +0000 | [diff] [blame] | 4291 | SSD->fixupRegisterOverlaps(cycleInstrs); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 4292 | } | 
|  | 4293 |  | 
| Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 4294 | LLVM_DEBUG(dump();); | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 4295 | } | 
|  | 4296 |  | 
| Aaron Ballman | 615eb47 | 2017-10-15 14:32:27 +0000 | [diff] [blame] | 4297 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
| Brendon Cahoon | 254f889 | 2016-07-29 16:44:44 +0000 | [diff] [blame] | 4298 | /// Print the schedule information to the given output. | 
|  | 4299 | void SMSchedule::print(raw_ostream &os) const { | 
|  | 4300 | // Iterate over each cycle. | 
|  | 4301 | for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { | 
|  | 4302 | // Iterate over each instruction in the cycle. | 
|  | 4303 | const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); | 
|  | 4304 | for (SUnit *CI : cycleInstrs->second) { | 
|  | 4305 | os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; | 
|  | 4306 | os << "(" << CI->NodeNum << ") "; | 
|  | 4307 | CI->getInstr()->print(os); | 
|  | 4308 | os << "\n"; | 
|  | 4309 | } | 
|  | 4310 | } | 
|  | 4311 | } | 
|  | 4312 |  | 
|  | 4313 | /// Utility function used for debugging to print the schedule. | 
| Matthias Braun | 8c209aa | 2017-01-28 02:02:38 +0000 | [diff] [blame] | 4314 | LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } | 
|  | 4315 | #endif |