blob: cf124c8c67ac32ab0eebd7f645466cddd72b0e49 [file] [log] [blame]
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerc0f58002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattnera5526832010-01-01 00:04:26 +000011// to promote better constant propagation, GCSE, LICM, PRE, etc.
Chris Lattnerc0f58002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattnerc0f58002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#include "llvm/Transforms/Scalar.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000024#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/PostOrderIterator.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SetVector.h"
28#include "llvm/ADT/Statistic.h"
James Molloyefbba722015-09-10 10:22:12 +000029#include "llvm/Analysis/GlobalsModRef.h"
Quentin Colombet6443cce2015-08-06 18:44:34 +000030#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth1305dc32014-03-04 11:45:46 +000031#include "llvm/IR/CFG.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000032#include "llvm/IR/Constants.h"
33#include "llvm/IR/DerivedTypes.h"
34#include "llvm/IR/Function.h"
35#include "llvm/IR/IRBuilder.h"
36#include "llvm/IR/Instructions.h"
37#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth4220e9c2014-03-04 11:17:44 +000038#include "llvm/IR/ValueHandle.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000039#include "llvm/Pass.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000040#include "llvm/Support/Debug.h"
Chris Lattnerb25de3f2009-08-23 04:37:46 +000041#include "llvm/Support/raw_ostream.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000042#include "llvm/Transforms/Utils/Local.h"
Chris Lattner1e506502005-05-07 21:59:39 +000043#include <algorithm>
Chris Lattner49525f82004-01-09 06:02:20 +000044using namespace llvm;
Brian Gaeke960707c2003-11-11 22:41:34 +000045
Chandler Carruth964daaa2014-04-22 02:55:47 +000046#define DEBUG_TYPE "reassociate"
47
Chris Lattner79a42ac2006-12-19 21:40:18 +000048STATISTIC(NumChanged, "Number of insts reassociated");
49STATISTIC(NumAnnihil, "Number of expr tree annihilated");
50STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnerbf3a0992002-10-01 22:38:41 +000051
Chris Lattner79a42ac2006-12-19 21:40:18 +000052namespace {
Chris Lattner2dd09db2009-09-02 06:11:42 +000053 struct ValueEntry {
Chris Lattner1e506502005-05-07 21:59:39 +000054 unsigned Rank;
55 Value *Op;
56 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
57 };
58 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
59 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
60 }
Chris Lattner4c065092006-03-04 09:31:13 +000061}
Chris Lattner1e506502005-05-07 21:59:39 +000062
Devang Patel702f45d2008-11-21 21:00:20 +000063#ifndef NDEBUG
Sanjay Patelc96ee082015-04-22 18:04:46 +000064/// Print out the expression identified in the Ops list.
Chris Lattner4c065092006-03-04 09:31:13 +000065///
Chris Lattner38abecb2009-12-31 18:40:32 +000066static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Sanjay Patelaf674fb2015-12-14 17:24:23 +000067 Module *M = I->getModule();
David Greened17c3912010-01-05 01:27:24 +000068 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattnerbc1512c2009-12-31 07:17:37 +000069 << *Ops[0].Op->getType() << '\t';
Chris Lattner57693dd2008-08-19 04:45:19 +000070 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
David Greened17c3912010-01-05 01:27:24 +000071 dbgs() << "[ ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +000072 Ops[i].Op->printAsOperand(dbgs(), false, M);
David Greened17c3912010-01-05 01:27:24 +000073 dbgs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner57693dd2008-08-19 04:45:19 +000074 }
Chris Lattner4c065092006-03-04 09:31:13 +000075}
Devang Patelcb181bb2008-11-21 20:00:59 +000076#endif
Bill Wendlingc94d86c2012-05-02 23:43:23 +000077
Dan Gohmand78c4002008-05-13 00:00:25 +000078namespace {
Chandler Carruth739ef802012-04-26 05:30:30 +000079 /// \brief Utility class representing a base and exponent pair which form one
80 /// factor of some product.
81 struct Factor {
82 Value *Base;
83 unsigned Power;
Chandler Carruth739ef802012-04-26 05:30:30 +000084 Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
Chandler Carruth739ef802012-04-26 05:30:30 +000085 };
Shuxin Yang7b0c94e2013-03-30 02:15:01 +000086
87 /// Utility class representing a non-constant Xor-operand. We classify
88 /// non-constant Xor-Operands into two categories:
89 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0
90 /// C2)
91 /// C2.1) The operand is in the form of "X | C", where C is a non-zero
92 /// constant.
93 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
94 /// operand as "E | 0"
95 class XorOpnd {
96 public:
97 XorOpnd(Value *V);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +000098
Craig Topperf40110f2014-04-25 05:29:35 +000099 bool isInvalid() const { return SymbolicPart == nullptr; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000100 bool isOrExpr() const { return isOr; }
101 Value *getValue() const { return OrigVal; }
102 Value *getSymbolicPart() const { return SymbolicPart; }
103 unsigned getSymbolicRank() const { return SymbolicRank; }
104 const APInt &getConstPart() const { return ConstPart; }
105
Craig Topperf40110f2014-04-25 05:29:35 +0000106 void Invalidate() { SymbolicPart = OrigVal = nullptr; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000107 void setSymbolicRank(unsigned R) { SymbolicRank = R; }
108
109 // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank.
110 // The purpose is twofold:
111 // 1) Cluster together the operands sharing the same symbolic-value.
112 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
113 // could potentially shorten crital path, and expose more loop-invariants.
114 // Note that values' rank are basically defined in RPO order (FIXME).
115 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
116 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
117 // "z" in the order of X-Y-Z is better than any other orders.
Shuxin Yang331f01d2013-04-08 22:00:43 +0000118 struct PtrSortFunctor {
119 bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) {
120 return LHS->getSymbolicRank() < RHS->getSymbolicRank();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000121 }
122 };
123 private:
124 Value *OrigVal;
125 Value *SymbolicPart;
126 APInt ConstPart;
127 unsigned SymbolicRank;
128 bool isOr;
129 };
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000130}
Chandler Carruth739ef802012-04-26 05:30:30 +0000131
132namespace {
Chris Lattner2dd09db2009-09-02 06:11:42 +0000133 class Reassociate : public FunctionPass {
Chris Lattner17229a72010-01-01 00:01:34 +0000134 DenseMap<BasicBlock*, unsigned> RankMap;
Craig Topper6e80c282012-03-26 06:58:25 +0000135 DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
Shuxin Yangc94c3bb2012-11-13 00:08:49 +0000136 SetVector<AssertingVH<Instruction> > RedoInsts;
Chris Lattner1e506502005-05-07 21:59:39 +0000137 bool MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000138 public:
Nick Lewyckye7da2d62007-05-06 13:37:16 +0000139 static char ID; // Pass identification, replacement for typeid
Owen Anderson6c18d1a2010-10-19 17:21:58 +0000140 Reassociate() : FunctionPass(ID) {
141 initializeReassociatePass(*PassRegistry::getPassRegistry());
142 }
Devang Patel09f162c2007-05-01 21:15:47 +0000143
Craig Topper3e4c6972014-03-05 09:10:37 +0000144 bool runOnFunction(Function &F) override;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000145
Craig Topper3e4c6972014-03-05 09:10:37 +0000146 void getAnalysisUsage(AnalysisUsage &AU) const override {
Chris Lattner820d9712002-10-21 20:00:28 +0000147 AU.setPreservesCFG();
James Molloyefbba722015-09-10 10:22:12 +0000148 AU.addPreserved<GlobalsAAWrapperPass>();
Chris Lattnerc0f58002002-05-08 22:19:27 +0000149 }
150 private:
Aditya Nandakumar3d0c46d2016-01-26 18:42:36 +0000151 void BuildRankMap(Function &F, ReversePostOrderTraversal<Function *> &RPOT);
152
Chris Lattnerc0f58002002-05-08 22:19:27 +0000153 unsigned getRank(Value *V);
Chad Rosierf8b55f12014-11-14 17:05:59 +0000154 void canonicalizeOperands(Instruction *I);
Duncan Sands78386032012-06-15 08:37:50 +0000155 void ReassociateExpression(BinaryOperator *I);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000156 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattner38abecb2009-12-31 18:40:32 +0000157 Value *OptimizeExpression(BinaryOperator *I,
158 SmallVectorImpl<ValueEntry> &Ops);
159 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000160 Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
161 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd,
162 Value *&Res);
163 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
164 APInt &ConstOpnd, Value *&Res);
Chandler Carruth739ef802012-04-26 05:30:30 +0000165 bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
166 SmallVectorImpl<Factor> &Factors);
167 Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
168 SmallVectorImpl<Factor> &Factors);
169 Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattner4c065092006-03-04 09:31:13 +0000170 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
Duncan Sands3293f462012-06-08 20:15:33 +0000171 void EraseInst(Instruction *I);
Aditya Nandakumar12d06042016-01-04 19:48:14 +0000172 void RecursivelyEraseDeadInsts(Instruction *I,
173 SetVector<AssertingVH<Instruction>> &Insts);
Duncan Sands3293f462012-06-08 20:15:33 +0000174 void OptimizeInst(Instruction *I);
Chad Rosier094ac772014-11-11 22:58:35 +0000175 Instruction *canonicalizeNegConstExpr(Instruction *I);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000176 };
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000177}
Chris Lattnerc0f58002002-05-08 22:19:27 +0000178
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000179XorOpnd::XorOpnd(Value *V) {
Shuxin Yang6662fd02013-04-01 18:13:05 +0000180 assert(!isa<ConstantInt>(V) && "No ConstantInt");
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000181 OrigVal = V;
182 Instruction *I = dyn_cast<Instruction>(V);
183 SymbolicRank = 0;
184
185 if (I && (I->getOpcode() == Instruction::Or ||
186 I->getOpcode() == Instruction::And)) {
187 Value *V0 = I->getOperand(0);
188 Value *V1 = I->getOperand(1);
189 if (isa<ConstantInt>(V0))
190 std::swap(V0, V1);
191
192 if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
193 ConstPart = C->getValue();
194 SymbolicPart = V0;
195 isOr = (I->getOpcode() == Instruction::Or);
196 return;
197 }
198 }
199
200 // view the operand as "V | 0"
201 SymbolicPart = V;
202 ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
203 isOr = true;
204}
205
Dan Gohmand78c4002008-05-13 00:00:25 +0000206char Reassociate::ID = 0;
Owen Andersona57b97e2010-07-21 22:09:45 +0000207INITIALIZE_PASS(Reassociate, "reassociate",
Owen Andersondf7a4f22010-10-07 22:25:06 +0000208 "Reassociate expressions", false, false)
Dan Gohmand78c4002008-05-13 00:00:25 +0000209
Brian Gaeke960707c2003-11-11 22:41:34 +0000210// Public interface to the Reassociate pass
Chris Lattner49525f82004-01-09 06:02:20 +0000211FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000212
Sanjay Patelc96ee082015-04-22 18:04:46 +0000213/// Return true if V is an instruction of the specified opcode and if it
214/// only has one use.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000215static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
216 if (V->hasOneUse() && isa<Instruction>(V) &&
Chad Rosierac6a2f52014-11-06 16:46:37 +0000217 cast<Instruction>(V)->getOpcode() == Opcode &&
218 (!isa<FPMathOperator>(V) ||
219 cast<Instruction>(V)->hasUnsafeAlgebra()))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000220 return cast<BinaryOperator>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000221 return nullptr;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000222}
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000223
Chad Rosier11ab9412014-08-14 15:23:01 +0000224static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
225 unsigned Opcode2) {
226 if (V->hasOneUse() && isa<Instruction>(V) &&
227 (cast<Instruction>(V)->getOpcode() == Opcode1 ||
Chad Rosierac6a2f52014-11-06 16:46:37 +0000228 cast<Instruction>(V)->getOpcode() == Opcode2) &&
229 (!isa<FPMathOperator>(V) ||
230 cast<Instruction>(V)->hasUnsafeAlgebra()))
Chad Rosier11ab9412014-08-14 15:23:01 +0000231 return cast<BinaryOperator>(V);
232 return nullptr;
233}
234
Aditya Nandakumar3d0c46d2016-01-26 18:42:36 +0000235void Reassociate::BuildRankMap(Function &F,
236 ReversePostOrderTraversal<Function *> &RPOT) {
Chris Lattner58c7eb62003-08-12 20:14:27 +0000237 unsigned i = 2;
Chris Lattner8ac196d2003-08-13 16:16:26 +0000238
Chad Rosierf59e5482014-11-14 15:01:38 +0000239 // Assign distinct ranks to function arguments.
240 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
Chris Lattnerf72ce6e2009-03-31 22:13:29 +0000241 ValueRankMap[&*I] = ++i;
Chad Rosierf59e5482014-11-14 15:01:38 +0000242 DEBUG(dbgs() << "Calculated Rank[" << I->getName() << "] = " << i << "\n");
243 }
Chris Lattner8ac196d2003-08-13 16:16:26 +0000244
Chris Lattnerc0f58002002-05-08 22:19:27 +0000245 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9f284e02005-05-08 20:57:04 +0000246 E = RPOT.end(); I != E; ++I) {
247 BasicBlock *BB = *I;
248 unsigned BBRank = RankMap[BB] = ++i << 16;
249
250 // Walk the basic block, adding precomputed ranks for any instructions that
251 // we cannot move. This ensures that the ranks for these instructions are
252 // all different in the block.
253 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
Quentin Colombet6443cce2015-08-06 18:44:34 +0000254 if (mayBeMemoryDependent(*I))
Chris Lattnerf72ce6e2009-03-31 22:13:29 +0000255 ValueRankMap[&*I] = ++BBRank;
Chris Lattner9f284e02005-05-08 20:57:04 +0000256 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000257}
258
259unsigned Reassociate::getRank(Value *V) {
Chris Lattnerf43e9742005-05-07 04:08:02 +0000260 Instruction *I = dyn_cast<Instruction>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000261 if (!I) {
Chris Lattner17229a72010-01-01 00:01:34 +0000262 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
263 return 0; // Otherwise it's a global or constant, rank 0.
264 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000265
Chris Lattner17229a72010-01-01 00:01:34 +0000266 if (unsigned Rank = ValueRankMap[I])
267 return Rank; // Rank already known?
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000268
Chris Lattnerf43e9742005-05-07 04:08:02 +0000269 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
270 // we can reassociate expressions for code motion! Since we do not recurse
271 // for PHI nodes, we cannot have infinite recursion here, because there
272 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000273 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
274 for (unsigned i = 0, e = I->getNumOperands();
275 i != e && Rank != MaxRank; ++i)
276 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000277
Chris Lattner6e2086d2005-05-08 00:08:33 +0000278 // If this is a not or neg instruction, do not count it for rank. This
279 // assures us that X and ~X will have the same rank.
Robert Lougher1858ba72015-03-13 20:53:01 +0000280 if (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
281 !BinaryOperator::isFNeg(I))
Chris Lattner6e2086d2005-05-08 00:08:33 +0000282 ++Rank;
283
Chad Rosierf59e5482014-11-14 15:01:38 +0000284 DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n");
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000285
Chris Lattner17229a72010-01-01 00:01:34 +0000286 return ValueRankMap[I] = Rank;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000287}
288
Chad Rosier9a1ac6e2014-11-17 15:52:51 +0000289// Canonicalize constants to RHS. Otherwise, sort the operands by rank.
Chad Rosierf8b55f12014-11-14 17:05:59 +0000290void Reassociate::canonicalizeOperands(Instruction *I) {
291 assert(isa<BinaryOperator>(I) && "Expected binary operator.");
292 assert(I->isCommutative() && "Expected commutative operator.");
293
294 Value *LHS = I->getOperand(0);
295 Value *RHS = I->getOperand(1);
296 unsigned LHSRank = getRank(LHS);
297 unsigned RHSRank = getRank(RHS);
298
Chad Rosier9a1ac6e2014-11-17 15:52:51 +0000299 if (isa<Constant>(RHS))
300 return;
301
Chad Rosierf8b55f12014-11-14 17:05:59 +0000302 if (isa<Constant>(LHS) || RHSRank < LHSRank)
303 cast<BinaryOperator>(I)->swapOperands();
304}
305
Chad Rosier11ab9412014-08-14 15:23:01 +0000306static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
307 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000308 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000309 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
310 else {
311 BinaryOperator *Res =
312 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
313 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
314 return Res;
315 }
316}
317
318static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
319 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000320 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000321 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
322 else {
323 BinaryOperator *Res =
324 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
325 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
326 return Res;
327 }
328}
329
330static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
331 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000332 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000333 return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
334 else {
335 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
336 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
337 return Res;
338 }
339}
340
Sanjay Patelc96ee082015-04-22 18:04:46 +0000341/// Replace 0-X with X*-1.
Duncan Sands3293f462012-06-08 20:15:33 +0000342static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000343 Type *Ty = Neg->getType();
Robert Lougher1858ba72015-03-13 20:53:01 +0000344 Constant *NegOne = Ty->isIntOrIntVectorTy() ?
345 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
Chris Lattner877b1142005-05-08 21:28:52 +0000346
Chad Rosier11ab9412014-08-14 15:23:01 +0000347 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
348 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +0000349 Res->takeName(Neg);
Chris Lattner877b1142005-05-08 21:28:52 +0000350 Neg->replaceAllUsesWith(Res);
Devang Patel80d1d3a2011-04-28 22:48:14 +0000351 Res->setDebugLoc(Neg->getDebugLoc());
Chris Lattner877b1142005-05-08 21:28:52 +0000352 return Res;
353}
354
Sanjay Patelc96ee082015-04-22 18:04:46 +0000355/// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
356/// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000357/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
358/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
359/// even x in Bitwidth-bit arithmetic.
360static unsigned CarmichaelShift(unsigned Bitwidth) {
361 if (Bitwidth < 3)
362 return Bitwidth - 1;
363 return Bitwidth - 2;
364}
365
Sanjay Patelc96ee082015-04-22 18:04:46 +0000366/// Add the extra weight 'RHS' to the existing weight 'LHS',
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000367/// reducing the combined weight using any special properties of the operation.
368/// The existing weight LHS represents the computation X op X op ... op X where
369/// X occurs LHS times. The combined weight represents X op X op ... op X with
370/// X occurring LHS + RHS times. If op is "Xor" for example then the combined
371/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
372/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
373static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
374 // If we were working with infinite precision arithmetic then the combined
375 // weight would be LHS + RHS. But we are using finite precision arithmetic,
376 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
377 // for nilpotent operations and addition, but not for idempotent operations
378 // and multiplication), so it is important to correctly reduce the combined
379 // weight back into range if wrapping would be wrong.
380
381 // If RHS is zero then the weight didn't change.
382 if (RHS.isMinValue())
383 return;
384 // If LHS is zero then the combined weight is RHS.
385 if (LHS.isMinValue()) {
386 LHS = RHS;
387 return;
388 }
389 // From this point on we know that neither LHS nor RHS is zero.
390
391 if (Instruction::isIdempotent(Opcode)) {
392 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
393 // weight of 1. Keeping weights at zero or one also means that wrapping is
394 // not a problem.
395 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
396 return; // Return a weight of 1.
397 }
398 if (Instruction::isNilpotent(Opcode)) {
399 // Nilpotent means X op X === 0, so reduce weights modulo 2.
400 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
401 LHS = 0; // 1 + 1 === 0 modulo 2.
402 return;
403 }
Chad Rosier11ab9412014-08-14 15:23:01 +0000404 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000405 // TODO: Reduce the weight by exploiting nsw/nuw?
406 LHS += RHS;
407 return;
408 }
409
Chad Rosier11ab9412014-08-14 15:23:01 +0000410 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
411 "Unknown associative operation!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000412 unsigned Bitwidth = LHS.getBitWidth();
413 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
414 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
415 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
416 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
417 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
418 // which by a happy accident means that they can always be represented using
419 // Bitwidth bits.
420 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
421 // the Carmichael number).
422 if (Bitwidth > 3) {
423 /// CM - The value of Carmichael's lambda function.
424 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
425 // Any weight W >= Threshold can be replaced with W - CM.
426 APInt Threshold = CM + Bitwidth;
427 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
428 // For Bitwidth 4 or more the following sum does not overflow.
429 LHS += RHS;
430 while (LHS.uge(Threshold))
431 LHS -= CM;
432 } else {
433 // To avoid problems with overflow do everything the same as above but using
434 // a larger type.
435 unsigned CM = 1U << CarmichaelShift(Bitwidth);
436 unsigned Threshold = CM + Bitwidth;
437 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
438 "Weights not reduced!");
439 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
440 while (Total >= Threshold)
441 Total -= CM;
442 LHS = Total;
443 }
444}
445
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000446typedef std::pair<Value*, APInt> RepeatedValue;
447
Sanjay Patelc96ee082015-04-22 18:04:46 +0000448/// Given an associative binary expression, return the leaf
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000449/// nodes in Ops along with their weights (how many times the leaf occurs). The
450/// original expression is the same as
451/// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
Nadav Rotem465834c2012-07-24 10:51:42 +0000452/// op
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000453/// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
454/// op
455/// ...
456/// op
457/// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
458///
Duncan Sandsac852c72012-11-15 09:58:38 +0000459/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000460///
461/// This routine may modify the function, in which case it returns 'true'. The
462/// changes it makes may well be destructive, changing the value computed by 'I'
463/// to something completely different. Thus if the routine returns 'true' then
464/// you MUST either replace I with a new expression computed from the Ops array,
465/// or use RewriteExprTree to put the values back in.
Chris Lattner1e506502005-05-07 21:59:39 +0000466///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000467/// A leaf node is either not a binary operation of the same kind as the root
468/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
469/// opcode), or is the same kind of binary operator but has a use which either
470/// does not belong to the expression, or does belong to the expression but is
471/// a leaf node. Every leaf node has at least one use that is a non-leaf node
472/// of the expression, while for non-leaf nodes (except for the root 'I') every
473/// use is a non-leaf node of the expression.
474///
475/// For example:
476/// expression graph node names
477///
478/// + | I
479/// / \ |
480/// + + | A, B
481/// / \ / \ |
482/// * + * | C, D, E
483/// / \ / \ / \ |
484/// + * | F, G
485///
486/// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000487/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000488///
489/// The expression is maximal: if some instruction is a binary operator of the
490/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
491/// then the instruction also belongs to the expression, is not a leaf node of
492/// it, and its operands also belong to the expression (but may be leaf nodes).
493///
494/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
495/// order to ensure that every non-root node in the expression has *exactly one*
496/// use by a non-leaf node of the expression. This destruction means that the
Duncan Sands3c05cd32012-05-26 16:42:52 +0000497/// caller MUST either replace 'I' with a new expression or use something like
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000498/// RewriteExprTree to put the values back in if the routine indicates that it
499/// made a change by returning 'true'.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000500///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000501/// In the above example either the right operand of A or the left operand of B
502/// will be replaced by undef. If it is B's operand then this gives:
503///
504/// + | I
505/// / \ |
506/// + + | A, B - operand of B replaced with undef
507/// / \ \ |
508/// * + * | C, D, E
509/// / \ / \ / \ |
510/// + * | F, G
511///
Duncan Sands3c05cd32012-05-26 16:42:52 +0000512/// Note that such undef operands can only be reached by passing through 'I'.
513/// For example, if you visit operands recursively starting from a leaf node
514/// then you will never see such an undef operand unless you get back to 'I',
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000515/// which requires passing through a phi node.
516///
517/// Note that this routine may also mutate binary operators of the wrong type
518/// that have all uses inside the expression (i.e. only used by non-leaf nodes
519/// of the expression) if it can turn them into binary operators of the right
520/// type and thus make the expression bigger.
521
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000522static bool LinearizeExprTree(BinaryOperator *I,
523 SmallVectorImpl<RepeatedValue> &Ops) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000524 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000525 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
526 unsigned Opcode = I->getOpcode();
Chad Rosier11ab9412014-08-14 15:23:01 +0000527 assert(I->isAssociative() && I->isCommutative() &&
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000528 "Expected an associative and commutative operation!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000529
530 // Visit all operands of the expression, keeping track of their weight (the
531 // number of paths from the expression root to the operand, or if you like
532 // the number of times that operand occurs in the linearized expression).
533 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
534 // while A has weight two.
535
536 // Worklist of non-leaf nodes (their operands are in the expression too) along
537 // with their weights, representing a certain number of paths to the operator.
538 // If an operator occurs in the worklist multiple times then we found multiple
539 // ways to get to it.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000540 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
541 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000542 bool Changed = false;
Chris Lattner1e506502005-05-07 21:59:39 +0000543
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000544 // Leaves of the expression are values that either aren't the right kind of
545 // operation (eg: a constant, or a multiply in an add tree), or are, but have
546 // some uses that are not inside the expression. For example, in I = X + X,
547 // X = A + B, the value X has two uses (by I) that are in the expression. If
548 // X has any other uses, for example in a return instruction, then we consider
549 // X to be a leaf, and won't analyze it further. When we first visit a value,
550 // if it has more than one use then at first we conservatively consider it to
551 // be a leaf. Later, as the expression is explored, we may discover some more
552 // uses of the value from inside the expression. If all uses turn out to be
553 // from within the expression (and the value is a binary operator of the right
554 // kind) then the value is no longer considered to be a leaf, and its operands
555 // are explored.
Chris Lattner1e506502005-05-07 21:59:39 +0000556
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000557 // Leaves - Keeps track of the set of putative leaves as well as the number of
558 // paths to each leaf seen so far.
Duncan Sands72aea012012-06-12 20:26:43 +0000559 typedef DenseMap<Value*, APInt> LeafMap;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000560 LeafMap Leaves; // Leaf -> Total weight so far.
561 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
562
563#ifndef NDEBUG
564 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
565#endif
566 while (!Worklist.empty()) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000567 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000568 I = P.first; // We examine the operands of this binary operator.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000569
570 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
571 Value *Op = I->getOperand(OpIdx);
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000572 APInt Weight = P.second; // Number of paths to this operand.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000573 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
574 assert(!Op->use_empty() && "No uses, so how did we get to it?!");
575
576 // If this is a binary operation of the right kind with only one use then
577 // add its operands to the expression.
578 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
David Blaikie70573dc2014-11-19 07:49:26 +0000579 assert(Visited.insert(Op).second && "Not first visit!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000580 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
581 Worklist.push_back(std::make_pair(BO, Weight));
582 continue;
583 }
584
585 // Appears to be a leaf. Is the operand already in the set of leaves?
586 LeafMap::iterator It = Leaves.find(Op);
587 if (It == Leaves.end()) {
588 // Not in the leaf map. Must be the first time we saw this operand.
David Blaikie70573dc2014-11-19 07:49:26 +0000589 assert(Visited.insert(Op).second && "Not first visit!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000590 if (!Op->hasOneUse()) {
591 // This value has uses not accounted for by the expression, so it is
592 // not safe to modify. Mark it as being a leaf.
593 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
594 LeafOrder.push_back(Op);
595 Leaves[Op] = Weight;
596 continue;
597 }
598 // No uses outside the expression, try morphing it.
599 } else if (It != Leaves.end()) {
600 // Already in the leaf map.
601 assert(Visited.count(Op) && "In leaf map but not visited!");
602
603 // Update the number of paths to the leaf.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000604 IncorporateWeight(It->second, Weight, Opcode);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000605
Duncan Sands56514522012-07-26 09:26:40 +0000606#if 0 // TODO: Re-enable once PR13021 is fixed.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000607 // The leaf already has one use from inside the expression. As we want
608 // exactly one such use, drop this new use of the leaf.
609 assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
610 I->setOperand(OpIdx, UndefValue::get(I->getType()));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000611 Changed = true;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000612
613 // If the leaf is a binary operation of the right kind and we now see
614 // that its multiple original uses were in fact all by nodes belonging
615 // to the expression, then no longer consider it to be a leaf and add
616 // its operands to the expression.
617 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
618 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
619 Worklist.push_back(std::make_pair(BO, It->second));
620 Leaves.erase(It);
621 continue;
622 }
Duncan Sands56514522012-07-26 09:26:40 +0000623#endif
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000624
625 // If we still have uses that are not accounted for by the expression
626 // then it is not safe to modify the value.
627 if (!Op->hasOneUse())
628 continue;
629
630 // No uses outside the expression, try morphing it.
631 Weight = It->second;
632 Leaves.erase(It); // Since the value may be morphed below.
633 }
634
635 // At this point we have a value which, first of all, is not a binary
636 // expression of the right kind, and secondly, is only used inside the
637 // expression. This means that it can safely be modified. See if we
638 // can usefully morph it into an expression of the right kind.
639 assert((!isa<Instruction>(Op) ||
Chad Rosierac6a2f52014-11-06 16:46:37 +0000640 cast<Instruction>(Op)->getOpcode() != Opcode
641 || (isa<FPMathOperator>(Op) &&
642 !cast<Instruction>(Op)->hasUnsafeAlgebra())) &&
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000643 "Should have been handled above!");
644 assert(Op->hasOneUse() && "Has uses outside the expression tree!");
645
646 // If this is a multiply expression, turn any internal negations into
647 // multiplies by -1 so they can be reassociated.
Chad Rosier11ab9412014-08-14 15:23:01 +0000648 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
649 if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
650 (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
651 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
652 BO = LowerNegateToMultiply(BO);
653 DEBUG(dbgs() << *BO << '\n');
654 Worklist.push_back(std::make_pair(BO, Weight));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000655 Changed = true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000656 continue;
657 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000658
659 // Failed to morph into an expression of the right type. This really is
660 // a leaf.
661 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
662 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
663 LeafOrder.push_back(Op);
664 Leaves[Op] = Weight;
Chris Lattner877b1142005-05-08 21:28:52 +0000665 }
666 }
667
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000668 // The leaves, repeated according to their weights, represent the linearized
669 // form of the expression.
670 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
671 Value *V = LeafOrder[i];
672 LeafMap::iterator It = Leaves.find(V);
673 if (It == Leaves.end())
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000674 // Node initially thought to be a leaf wasn't.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000675 continue;
676 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000677 APInt Weight = It->second;
678 if (Weight.isMinValue())
679 // Leaf already output or weight reduction eliminated it.
680 continue;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000681 // Ensure the leaf is only output once.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000682 It->second = 0;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000683 Ops.push_back(std::make_pair(V, Weight));
Chris Lattnerc0f58002002-05-08 22:19:27 +0000684 }
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000685
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000686 // For nilpotent operations or addition there may be no operands, for example
687 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
688 // in both cases the weight reduces to 0 causing the value to be skipped.
689 if (Ops.empty()) {
Duncan Sandsac852c72012-11-15 09:58:38 +0000690 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
Duncan Sands318a89d2012-06-13 09:42:13 +0000691 assert(Identity && "Associative operation without identity!");
Benjamin Kramerf5e2fc42015-05-29 19:43:39 +0000692 Ops.emplace_back(Identity, APInt(Bitwidth, 1));
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000693 }
694
Chad Rosiere53e8c82014-11-18 20:21:54 +0000695 return Changed;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000696}
697
Sanjay Patelc96ee082015-04-22 18:04:46 +0000698/// Now that the operands for this expression tree are
699/// linearized and optimized, emit them in-order.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000700void Reassociate::RewriteExprTree(BinaryOperator *I,
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000701 SmallVectorImpl<ValueEntry> &Ops) {
702 assert(Ops.size() > 1 && "Single values should be used directly!");
Dan Gohman08d2c982011-02-02 02:02:34 +0000703
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000704 // Since our optimizations should never increase the number of operations, the
705 // new expression can usually be written reusing the existing binary operators
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000706 // from the original expression tree, without creating any new instructions,
707 // though the rewritten expression may have a completely different topology.
708 // We take care to not change anything if the new expression will be the same
709 // as the original. If more than trivial changes (like commuting operands)
710 // were made then we are obliged to clear out any optional subclass data like
711 // nsw flags.
Dan Gohman08d2c982011-02-02 02:02:34 +0000712
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000713 /// NodesToRewrite - Nodes from the original expression available for writing
714 /// the new expression into.
715 SmallVector<BinaryOperator*, 8> NodesToRewrite;
716 unsigned Opcode = I->getOpcode();
Duncan Sands98382862012-06-29 19:03:05 +0000717 BinaryOperator *Op = I;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000718
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000719 /// NotRewritable - The operands being written will be the leaves of the new
720 /// expression and must not be used as inner nodes (via NodesToRewrite) by
721 /// mistake. Inner nodes are always reassociable, and usually leaves are not
722 /// (if they were they would have been incorporated into the expression and so
723 /// would not be leaves), so most of the time there is no danger of this. But
724 /// in rare cases a leaf may become reassociable if an optimization kills uses
725 /// of it, or it may momentarily become reassociable during rewriting (below)
726 /// due it being removed as an operand of one of its uses. Ensure that misuse
727 /// of leaf nodes as inner nodes cannot occur by remembering all of the future
728 /// leaves and refusing to reuse any of them as inner nodes.
729 SmallPtrSet<Value*, 8> NotRewritable;
730 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
731 NotRewritable.insert(Ops[i].Op);
732
Duncan Sands3c05cd32012-05-26 16:42:52 +0000733 // ExpressionChanged - Non-null if the rewritten expression differs from the
734 // original in some non-trivial way, requiring the clearing of optional flags.
735 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
Craig Topperf40110f2014-04-25 05:29:35 +0000736 BinaryOperator *ExpressionChanged = nullptr;
Duncan Sands514db112012-06-27 14:19:00 +0000737 for (unsigned i = 0; ; ++i) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000738 // The last operation (which comes earliest in the IR) is special as both
739 // operands will come from Ops, rather than just one with the other being
740 // a subexpression.
741 if (i+2 == Ops.size()) {
742 Value *NewLHS = Ops[i].Op;
743 Value *NewRHS = Ops[i+1].Op;
744 Value *OldLHS = Op->getOperand(0);
745 Value *OldRHS = Op->getOperand(1);
746
Chad Rosier90a2f9b2014-11-19 23:21:20 +0000747 if (NewLHS == OldLHS && NewRHS == OldRHS)
748 // Nothing changed, leave it alone.
749 break;
750
751 if (NewLHS == OldRHS && NewRHS == OldLHS) {
752 // The order of the operands was reversed. Swap them.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000753 DEBUG(dbgs() << "RA: " << *Op << '\n');
Chad Rosier90a2f9b2014-11-19 23:21:20 +0000754 Op->swapOperands();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000755 DEBUG(dbgs() << "TO: " << *Op << '\n');
756 MadeChange = true;
757 ++NumChanged;
758 break;
759 }
760
761 // The new operation differs non-trivially from the original. Overwrite
762 // the old operands with the new ones.
763 DEBUG(dbgs() << "RA: " << *Op << '\n');
764 if (NewLHS != OldLHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000765 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
766 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000767 NodesToRewrite.push_back(BO);
768 Op->setOperand(0, NewLHS);
769 }
770 if (NewRHS != OldRHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000771 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
772 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000773 NodesToRewrite.push_back(BO);
774 Op->setOperand(1, NewRHS);
775 }
776 DEBUG(dbgs() << "TO: " << *Op << '\n');
777
Duncan Sands3c05cd32012-05-26 16:42:52 +0000778 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000779 MadeChange = true;
780 ++NumChanged;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000781
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000782 break;
Chris Lattner1e506502005-05-07 21:59:39 +0000783 }
Chris Lattner1e506502005-05-07 21:59:39 +0000784
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000785 // Not the last operation. The left-hand side will be a sub-expression
786 // while the right-hand side will be the current element of Ops.
787 Value *NewRHS = Ops[i].Op;
788 if (NewRHS != Op->getOperand(1)) {
789 DEBUG(dbgs() << "RA: " << *Op << '\n');
790 if (NewRHS == Op->getOperand(0)) {
791 // The new right-hand side was already present as the left operand. If
792 // we are lucky then swapping the operands will sort out both of them.
793 Op->swapOperands();
794 } else {
795 // Overwrite with the new right-hand side.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000796 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
797 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000798 NodesToRewrite.push_back(BO);
799 Op->setOperand(1, NewRHS);
Duncan Sands3c05cd32012-05-26 16:42:52 +0000800 ExpressionChanged = Op;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000801 }
802 DEBUG(dbgs() << "TO: " << *Op << '\n');
803 MadeChange = true;
804 ++NumChanged;
805 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000806
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000807 // Now deal with the left-hand side. If this is already an operation node
808 // from the original expression then just rewrite the rest of the expression
809 // into it.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000810 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
811 if (BO && !NotRewritable.count(BO)) {
Duncan Sands98382862012-06-29 19:03:05 +0000812 Op = BO;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000813 continue;
814 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000815
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000816 // Otherwise, grab a spare node from the original expression and use that as
Duncan Sands369c6d22012-06-29 13:25:06 +0000817 // the left-hand side. If there are no nodes left then the optimizers made
818 // an expression with more nodes than the original! This usually means that
819 // they did something stupid but it might mean that the problem was just too
820 // hard (finding the mimimal number of multiplications needed to realize a
821 // multiplication expression is NP-complete). Whatever the reason, smart or
822 // stupid, create a new node if there are none left.
Duncan Sands98382862012-06-29 19:03:05 +0000823 BinaryOperator *NewOp;
Duncan Sands369c6d22012-06-29 13:25:06 +0000824 if (NodesToRewrite.empty()) {
825 Constant *Undef = UndefValue::get(I->getType());
Duncan Sands98382862012-06-29 19:03:05 +0000826 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
827 Undef, Undef, "", I);
Robert Lougher1858ba72015-03-13 20:53:01 +0000828 if (NewOp->getType()->isFPOrFPVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000829 NewOp->setFastMathFlags(I->getFastMathFlags());
Duncan Sands98382862012-06-29 19:03:05 +0000830 } else {
831 NewOp = NodesToRewrite.pop_back_val();
Duncan Sands369c6d22012-06-29 13:25:06 +0000832 }
833
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000834 DEBUG(dbgs() << "RA: " << *Op << '\n');
Duncan Sands98382862012-06-29 19:03:05 +0000835 Op->setOperand(0, NewOp);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000836 DEBUG(dbgs() << "TO: " << *Op << '\n');
Duncan Sands3c05cd32012-05-26 16:42:52 +0000837 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000838 MadeChange = true;
839 ++NumChanged;
Duncan Sands98382862012-06-29 19:03:05 +0000840 Op = NewOp;
Chris Lattner1e506502005-05-07 21:59:39 +0000841 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000842
Duncan Sands3c05cd32012-05-26 16:42:52 +0000843 // If the expression changed non-trivially then clear out all subclass data
Duncan Sands514db112012-06-27 14:19:00 +0000844 // starting from the operator specified in ExpressionChanged, and compactify
845 // the operators to just before the expression root to guarantee that the
846 // expression tree is dominated by all of Ops.
847 if (ExpressionChanged)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000848 do {
Chad Rosier11ab9412014-08-14 15:23:01 +0000849 // Preserve FastMathFlags.
850 if (isa<FPMathOperator>(I)) {
851 FastMathFlags Flags = I->getFastMathFlags();
852 ExpressionChanged->clearSubclassOptionalData();
853 ExpressionChanged->setFastMathFlags(Flags);
854 } else
855 ExpressionChanged->clearSubclassOptionalData();
856
Duncan Sands3c05cd32012-05-26 16:42:52 +0000857 if (ExpressionChanged == I)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000858 break;
Duncan Sands514db112012-06-27 14:19:00 +0000859 ExpressionChanged->moveBefore(I);
Chandler Carruthcdf47882014-03-09 03:16:01 +0000860 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000861 } while (1);
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000862
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000863 // Throw away any left over nodes from the original expression.
864 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
Duncan Sands3293f462012-06-08 20:15:33 +0000865 RedoInsts.insert(NodesToRewrite[i]);
Chris Lattner1e506502005-05-07 21:59:39 +0000866}
867
Sanjay Patelc96ee082015-04-22 18:04:46 +0000868/// Insert instructions before the instruction pointed to by BI,
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000869/// that computes the negative version of the value specified. The negative
870/// version of the value is returned, and BI is left pointing at the instruction
871/// that should be processed next by the reassociation pass.
Owen Anderson2de9f542015-11-16 18:07:30 +0000872/// Also add intermediate instructions to the redo list that are modified while
873/// pushing the negates through adds. These will be revisited to see if
874/// additional opportunities have been exposed.
875static Value *NegateValue(Value *V, Instruction *BI,
876 SetVector<AssertingVH<Instruction>> &ToRedo) {
Mehdi Amini590a2702015-01-16 03:00:58 +0000877 if (Constant *C = dyn_cast<Constant>(V)) {
878 if (C->getType()->isFPOrFPVectorTy()) {
879 return ConstantExpr::getFNeg(C);
880 }
Chris Lattnerfed33972009-12-31 20:34:32 +0000881 return ConstantExpr::getNeg(C);
Mehdi Amini590a2702015-01-16 03:00:58 +0000882 }
883
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000884
Chris Lattner7bc532d2002-05-16 04:37:07 +0000885 // We are trying to expose opportunity for reassociation. One of the things
886 // that we want to do to achieve this is to push a negation as deep into an
887 // expression chain as possible, to expose the add instructions. In practice,
888 // this means that we turn this:
889 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
890 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
891 // the constants. We assume that instcombine will clean up the mess later if
Chris Lattnera5526832010-01-01 00:04:26 +0000892 // we introduce tons of unnecessary negation instructions.
Chris Lattner7bc532d2002-05-16 04:37:07 +0000893 //
Chad Rosier11ab9412014-08-14 15:23:01 +0000894 if (BinaryOperator *I =
895 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000896 // Push the negates through the add.
Owen Anderson2de9f542015-11-16 18:07:30 +0000897 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
898 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
David Majnemerf6e500a2015-06-24 21:27:36 +0000899 if (I->getOpcode() == Instruction::Add) {
900 I->setHasNoUnsignedWrap(false);
901 I->setHasNoSignedWrap(false);
902 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000903
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000904 // We must move the add instruction here, because the neg instructions do
905 // not dominate the old add instruction in general. By moving it, we are
906 // assured that the neg instructions we just inserted dominate the
907 // instruction we are about to insert after them.
908 //
909 I->moveBefore(BI);
910 I->setName(I->getName()+".neg");
Owen Anderson2de9f542015-11-16 18:07:30 +0000911
912 // Add the intermediate negates to the redo list as processing them later
913 // could expose more reassociating opportunities.
914 ToRedo.insert(I);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000915 return I;
916 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000917
Chris Lattnerfed33972009-12-31 20:34:32 +0000918 // Okay, we need to materialize a negated version of V with an instruction.
919 // Scan the use lists of V to see if we have one already.
Chandler Carruthcdf47882014-03-09 03:16:01 +0000920 for (User *U : V->users()) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000921 if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
922 continue;
Chris Lattnerfed33972009-12-31 20:34:32 +0000923
924 // We found one! Now we have to make sure that the definition dominates
925 // this use. We do this by moving it to the entry block (if it is a
926 // non-instruction value) or right after the definition. These negates will
927 // be zapped by reassociate later, so we don't need much finesse here.
Gabor Greif782f6242010-07-12 12:03:02 +0000928 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
Chris Lattnere199d2d2010-01-02 21:46:33 +0000929
930 // Verify that the negate is in this function, V might be a constant expr.
931 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
932 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000933
Chris Lattnerfed33972009-12-31 20:34:32 +0000934 BasicBlock::iterator InsertPt;
935 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
936 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
937 InsertPt = II->getNormalDest()->begin();
938 } else {
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +0000939 InsertPt = ++InstInput->getIterator();
Chris Lattnerfed33972009-12-31 20:34:32 +0000940 }
941 while (isa<PHINode>(InsertPt)) ++InsertPt;
942 } else {
943 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
944 }
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +0000945 TheNeg->moveBefore(&*InsertPt);
David Majnemerf6e500a2015-06-24 21:27:36 +0000946 if (TheNeg->getOpcode() == Instruction::Sub) {
947 TheNeg->setHasNoUnsignedWrap(false);
948 TheNeg->setHasNoSignedWrap(false);
949 } else {
950 TheNeg->andIRFlags(BI);
951 }
Owen Anderson2de9f542015-11-16 18:07:30 +0000952 ToRedo.insert(TheNeg);
Chris Lattnerfed33972009-12-31 20:34:32 +0000953 return TheNeg;
954 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000955
956 // Insert a 'neg' instruction that subtracts the value from zero to get the
957 // negation.
Owen Anderson2de9f542015-11-16 18:07:30 +0000958 BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
959 ToRedo.insert(NewNeg);
960 return NewNeg;
Chris Lattnerf43e9742005-05-07 04:08:02 +0000961}
962
Sanjay Patelc96ee082015-04-22 18:04:46 +0000963/// Return true if we should break up this subtract of X-Y into (X + -Y).
Nick Lewycky7935bcb2009-11-14 07:25:54 +0000964static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner902537c2008-02-17 20:44:51 +0000965 // If this is a negation, we can't split it up!
Chad Rosier11ab9412014-08-14 15:23:01 +0000966 if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
Chris Lattner902537c2008-02-17 20:44:51 +0000967 return false;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000968
Chad Rosierbd64d462014-10-09 20:06:29 +0000969 // Don't breakup X - undef.
970 if (isa<UndefValue>(Sub->getOperand(1)))
971 return false;
972
Chris Lattner902537c2008-02-17 20:44:51 +0000973 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattnera70d1382008-02-17 20:51:26 +0000974 // subtract or if this is only used by one.
Chad Rosier11ab9412014-08-14 15:23:01 +0000975 Value *V0 = Sub->getOperand(0);
976 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
977 isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +0000978 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000979 Value *V1 = Sub->getOperand(1);
980 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
981 isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +0000982 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000983 Value *VB = Sub->user_back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000984 if (Sub->hasOneUse() &&
Chad Rosier11ab9412014-08-14 15:23:01 +0000985 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
986 isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
Chris Lattner902537c2008-02-17 20:44:51 +0000987 return true;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000988
Chris Lattner902537c2008-02-17 20:44:51 +0000989 return false;
990}
991
Sanjay Patelc96ee082015-04-22 18:04:46 +0000992/// If we have (X-Y), and if either X is an add, or if this is only used by an
993/// add, transform this into (X+(0-Y)) to promote better reassociation.
Owen Anderson2de9f542015-11-16 18:07:30 +0000994static BinaryOperator *
995BreakUpSubtract(Instruction *Sub, SetVector<AssertingVH<Instruction>> &ToRedo) {
Chris Lattnera5526832010-01-01 00:04:26 +0000996 // Convert a subtract into an add and a neg instruction. This allows sub
997 // instructions to be commuted with other add instructions.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000998 //
Chris Lattnera5526832010-01-01 00:04:26 +0000999 // Calculate the negative value of Operand 1 of the sub instruction,
1000 // and set it as the RHS of the add instruction we just made.
Chris Lattnerf43e9742005-05-07 04:08:02 +00001001 //
Owen Anderson2de9f542015-11-16 18:07:30 +00001002 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
Chad Rosier11ab9412014-08-14 15:23:01 +00001003 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
Duncan Sands3293f462012-06-08 20:15:33 +00001004 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
1005 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +00001006 New->takeName(Sub);
Chris Lattnerf43e9742005-05-07 04:08:02 +00001007
1008 // Everyone now refers to the add instruction.
1009 Sub->replaceAllUsesWith(New);
Devang Patel80d1d3a2011-04-28 22:48:14 +00001010 New->setDebugLoc(Sub->getDebugLoc());
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +00001011
David Greened17c3912010-01-05 01:27:24 +00001012 DEBUG(dbgs() << "Negated: " << *New << '\n');
Chris Lattnerf43e9742005-05-07 04:08:02 +00001013 return New;
Chris Lattner7bc532d2002-05-16 04:37:07 +00001014}
1015
Sanjay Patelc96ee082015-04-22 18:04:46 +00001016/// If this is a shift of a reassociable multiply or is used by one, change
1017/// this into a multiply by a constant to assist with further reassociation.
Duncan Sands3293f462012-06-08 20:15:33 +00001018static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
1019 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
1020 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001021
Duncan Sands3293f462012-06-08 20:15:33 +00001022 BinaryOperator *Mul =
1023 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
1024 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
1025 Mul->takeName(Shl);
Chad Rosierb3eb4522014-11-07 22:12:57 +00001026
1027 // Everyone now refers to the mul instruction.
Duncan Sands3293f462012-06-08 20:15:33 +00001028 Shl->replaceAllUsesWith(Mul);
1029 Mul->setDebugLoc(Shl->getDebugLoc());
Chad Rosierb3eb4522014-11-07 22:12:57 +00001030
1031 // We can safely preserve the nuw flag in all cases. It's also safe to turn a
1032 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special
1033 // handling.
1034 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
1035 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
1036 if (NSW && NUW)
1037 Mul->setHasNoSignedWrap(true);
1038 Mul->setHasNoUnsignedWrap(NUW);
Duncan Sands3293f462012-06-08 20:15:33 +00001039 return Mul;
Chris Lattnercea57992005-05-07 04:24:13 +00001040}
1041
Sanjay Patelc96ee082015-04-22 18:04:46 +00001042/// Scan backwards and forwards among values with the same rank as element i
1043/// to see if X exists. If X does not exist, return i. This is useful when
1044/// scanning for 'x' when we see '-x' because they both get the same rank.
Chris Lattner38abecb2009-12-31 18:40:32 +00001045static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
Chris Lattner5847e5e2005-05-08 18:59:37 +00001046 Value *X) {
1047 unsigned XRank = Ops[i].Rank;
1048 unsigned e = Ops.size();
Owen Anderson8373d332014-10-05 23:41:26 +00001049 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +00001050 if (Ops[j].Op == X)
1051 return j;
Owen Anderson8373d332014-10-05 23:41:26 +00001052 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1053 if (Instruction *I2 = dyn_cast<Instruction>(X))
1054 if (I1->isIdenticalTo(I2))
1055 return j;
1056 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001057 // Scan backwards.
Owen Anderson8373d332014-10-05 23:41:26 +00001058 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +00001059 if (Ops[j].Op == X)
1060 return j;
Owen Anderson8373d332014-10-05 23:41:26 +00001061 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
1062 if (Instruction *I2 = dyn_cast<Instruction>(X))
1063 if (I1->isIdenticalTo(I2))
1064 return j;
1065 }
Chris Lattner5847e5e2005-05-08 18:59:37 +00001066 return i;
1067}
1068
Sanjay Patelc96ee082015-04-22 18:04:46 +00001069/// Emit a tree of add instructions, summing Ops together
Chris Lattner4c065092006-03-04 09:31:13 +00001070/// and returning the result. Insert the tree before I.
Bill Wendling274ba892012-05-02 09:59:45 +00001071static Value *EmitAddTreeOfValues(Instruction *I,
1072 SmallVectorImpl<WeakVH> &Ops){
Chris Lattner4c065092006-03-04 09:31:13 +00001073 if (Ops.size() == 1) return Ops.back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001074
Chris Lattner4c065092006-03-04 09:31:13 +00001075 Value *V1 = Ops.back();
1076 Ops.pop_back();
1077 Value *V2 = EmitAddTreeOfValues(I, Ops);
Chad Rosier11ab9412014-08-14 15:23:01 +00001078 return CreateAdd(V2, V1, "tmp", I, I);
Chris Lattner4c065092006-03-04 09:31:13 +00001079}
1080
Sanjay Patelc96ee082015-04-22 18:04:46 +00001081/// If V is an expression tree that is a multiplication sequence,
1082/// and if this sequence contains a multiply by Factor,
Chris Lattner4c065092006-03-04 09:31:13 +00001083/// remove Factor from the tree and return the new tree.
1084Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001085 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1086 if (!BO)
1087 return nullptr;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001088
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001089 SmallVector<RepeatedValue, 8> Tree;
1090 MadeChange |= LinearizeExprTree(BO, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00001091 SmallVector<ValueEntry, 8> Factors;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001092 Factors.reserve(Tree.size());
1093 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1094 RepeatedValue E = Tree[i];
1095 Factors.append(E.second.getZExtValue(),
1096 ValueEntry(getRank(E.first), E.first));
1097 }
Chris Lattner4c065092006-03-04 09:31:13 +00001098
1099 bool FoundFactor = false;
Chris Lattner0c59ac32010-01-01 01:13:15 +00001100 bool NeedsNegate = false;
1101 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Chris Lattner4c065092006-03-04 09:31:13 +00001102 if (Factors[i].Op == Factor) {
1103 FoundFactor = true;
1104 Factors.erase(Factors.begin()+i);
1105 break;
1106 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001107
Chris Lattner0c59ac32010-01-01 01:13:15 +00001108 // If this is a negative version of this factor, remove it.
Chad Rosier11ab9412014-08-14 15:23:01 +00001109 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001110 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1111 if (FC1->getValue() == -FC2->getValue()) {
1112 FoundFactor = NeedsNegate = true;
1113 Factors.erase(Factors.begin()+i);
1114 break;
1115 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001116 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1117 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1118 APFloat F1(FC1->getValueAPF());
1119 APFloat F2(FC2->getValueAPF());
1120 F2.changeSign();
1121 if (F1.compare(F2) == APFloat::cmpEqual) {
1122 FoundFactor = NeedsNegate = true;
1123 Factors.erase(Factors.begin() + i);
1124 break;
1125 }
1126 }
1127 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001128 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001129
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001130 if (!FoundFactor) {
1131 // Make sure to restore the operands to the expression tree.
1132 RewriteExprTree(BO, Factors);
Craig Topperf40110f2014-04-25 05:29:35 +00001133 return nullptr;
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001134 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001135
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001136 BasicBlock::iterator InsertPt = ++BO->getIterator();
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001137
Chris Lattner1d897942009-12-31 19:34:45 +00001138 // If this was just a single multiply, remove the multiply and return the only
1139 // remaining operand.
1140 if (Factors.size() == 1) {
Duncan Sands3293f462012-06-08 20:15:33 +00001141 RedoInsts.insert(BO);
Chris Lattner0c59ac32010-01-01 01:13:15 +00001142 V = Factors[0].Op;
1143 } else {
1144 RewriteExprTree(BO, Factors);
1145 V = BO;
Chris Lattner1d897942009-12-31 19:34:45 +00001146 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001147
Chris Lattner0c59ac32010-01-01 01:13:15 +00001148 if (NeedsNegate)
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001149 V = CreateNeg(V, "neg", &*InsertPt, BO);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001150
Chris Lattner0c59ac32010-01-01 01:13:15 +00001151 return V;
Chris Lattner4c065092006-03-04 09:31:13 +00001152}
1153
Sanjay Patelc96ee082015-04-22 18:04:46 +00001154/// If V is a single-use multiply, recursively add its operands as factors,
1155/// otherwise add V to the list of factors.
Chris Lattnerc6c15232010-03-05 07:18:54 +00001156///
1157/// Ops is the top-level list of add operands we're trying to factor.
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001158static void FindSingleUseMultiplyFactors(Value *V,
Chris Lattnerc6c15232010-03-05 07:18:54 +00001159 SmallVectorImpl<Value*> &Factors,
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001160 const SmallVectorImpl<ValueEntry> &Ops) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001161 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001162 if (!BO) {
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001163 Factors.push_back(V);
1164 return;
1165 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001166
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001167 // Otherwise, add the LHS and RHS to the list of factors.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001168 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1169 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001170}
1171
Sanjay Patelc96ee082015-04-22 18:04:46 +00001172/// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1173/// This optimizes based on identities. If it can be reduced to a single Value,
1174/// it is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner38abecb2009-12-31 18:40:32 +00001175static Value *OptimizeAndOrXor(unsigned Opcode,
1176 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001177 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1178 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1179 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1180 // First, check for X and ~X in the operand list.
1181 assert(i < Ops.size());
1182 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
1183 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1184 unsigned FoundX = FindInOperandList(Ops, i, X);
1185 if (FoundX != i) {
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001186 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattner5f8a0052009-12-31 07:59:34 +00001187 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001188
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001189 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattner5f8a0052009-12-31 07:59:34 +00001190 return Constant::getAllOnesValue(X->getType());
Chris Lattner5f8a0052009-12-31 07:59:34 +00001191 }
1192 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001193
Chris Lattner5f8a0052009-12-31 07:59:34 +00001194 // Next, check for duplicate pairs of values, which we assume are next to
1195 // each other, due to our sorting criteria.
1196 assert(i < Ops.size());
1197 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1198 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattner60c2ca72009-12-31 19:49:01 +00001199 // Drop duplicate values for And and Or.
Chris Lattner5f8a0052009-12-31 07:59:34 +00001200 Ops.erase(Ops.begin()+i);
1201 --i; --e;
1202 ++NumAnnihil;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001203 continue;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001204 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001205
Chris Lattner60c2ca72009-12-31 19:49:01 +00001206 // Drop pairs of values for Xor.
1207 assert(Opcode == Instruction::Xor);
1208 if (e == 2)
1209 return Constant::getNullValue(Ops[0].Op->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001210
Chris Lattnera5526832010-01-01 00:04:26 +00001211 // Y ^ X^X -> Y
Chris Lattner60c2ca72009-12-31 19:49:01 +00001212 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1213 i -= 1; e -= 2;
1214 ++NumAnnihil;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001215 }
1216 }
Craig Topperf40110f2014-04-25 05:29:35 +00001217 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001218}
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001219
Eric Christopherbfba5722015-12-16 23:10:53 +00001220/// Helper function of CombineXorOpnd(). It creates a bitwise-and
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001221/// instruction with the given two operands, and return the resulting
1222/// instruction. There are two special cases: 1) if the constant operand is 0,
1223/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1224/// be returned.
1225static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1226 const APInt &ConstOpnd) {
1227 if (ConstOpnd != 0) {
1228 if (!ConstOpnd.isAllOnesValue()) {
1229 LLVMContext &Ctx = Opnd->getType()->getContext();
1230 Instruction *I;
1231 I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
1232 "and.ra", InsertBefore);
1233 I->setDebugLoc(InsertBefore->getDebugLoc());
1234 return I;
1235 }
1236 return Opnd;
1237 }
Craig Topperf40110f2014-04-25 05:29:35 +00001238 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001239}
1240
1241// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1242// into "R ^ C", where C would be 0, and R is a symbolic value.
1243//
1244// If it was successful, true is returned, and the "R" and "C" is returned
1245// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1246// and both "Res" and "ConstOpnd" remain unchanged.
1247//
1248bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1249 APInt &ConstOpnd, Value *&Res) {
1250 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1251 // = ((x | c1) ^ c1) ^ (c1 ^ c2)
1252 // = (x & ~c1) ^ (c1 ^ c2)
1253 // It is useful only when c1 == c2.
1254 if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
1255 if (!Opnd1->getValue()->hasOneUse())
1256 return false;
1257
1258 const APInt &C1 = Opnd1->getConstPart();
1259 if (C1 != ConstOpnd)
1260 return false;
1261
1262 Value *X = Opnd1->getSymbolicPart();
1263 Res = createAndInstr(I, X, ~C1);
1264 // ConstOpnd was C2, now C1 ^ C2.
1265 ConstOpnd ^= C1;
1266
1267 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1268 RedoInsts.insert(T);
1269 return true;
1270 }
1271 return false;
1272}
1273
1274
1275// Helper function of OptimizeXor(). It tries to simplify
1276// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1277// symbolic value.
1278//
1279// If it was successful, true is returned, and the "R" and "C" is returned
1280// via "Res" and "ConstOpnd", respectively (If the entire expression is
1281// evaluated to a constant, the Res is set to NULL); otherwise, false is
1282// returned, and both "Res" and "ConstOpnd" remain unchanged.
1283bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
1284 APInt &ConstOpnd, Value *&Res) {
1285 Value *X = Opnd1->getSymbolicPart();
1286 if (X != Opnd2->getSymbolicPart())
1287 return false;
1288
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001289 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1290 int DeadInstNum = 1;
1291 if (Opnd1->getValue()->hasOneUse())
1292 DeadInstNum++;
1293 if (Opnd2->getValue()->hasOneUse())
1294 DeadInstNum++;
1295
1296 // Xor-Rule 2:
1297 // (x | c1) ^ (x & c2)
1298 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1299 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
1300 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
1301 //
1302 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1303 if (Opnd2->isOrExpr())
1304 std::swap(Opnd1, Opnd2);
1305
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001306 const APInt &C1 = Opnd1->getConstPart();
1307 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001308 APInt C3((~C1) ^ C2);
1309
1310 // Do not increase code size!
1311 if (C3 != 0 && !C3.isAllOnesValue()) {
1312 int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1313 if (NewInstNum > DeadInstNum)
1314 return false;
1315 }
1316
1317 Res = createAndInstr(I, X, C3);
1318 ConstOpnd ^= C1;
1319
1320 } else if (Opnd1->isOrExpr()) {
1321 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1322 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001323 const APInt &C1 = Opnd1->getConstPart();
1324 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001325 APInt C3 = C1 ^ C2;
1326
1327 // Do not increase code size
1328 if (C3 != 0 && !C3.isAllOnesValue()) {
1329 int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1330 if (NewInstNum > DeadInstNum)
1331 return false;
1332 }
1333
1334 Res = createAndInstr(I, X, C3);
1335 ConstOpnd ^= C3;
1336 } else {
1337 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1338 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001339 const APInt &C1 = Opnd1->getConstPart();
1340 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001341 APInt C3 = C1 ^ C2;
1342 Res = createAndInstr(I, X, C3);
1343 }
1344
1345 // Put the original operands in the Redo list; hope they will be deleted
1346 // as dead code.
1347 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1348 RedoInsts.insert(T);
1349 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1350 RedoInsts.insert(T);
1351
1352 return true;
1353}
1354
1355/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1356/// to a single Value, it is returned, otherwise the Ops list is mutated as
1357/// necessary.
1358Value *Reassociate::OptimizeXor(Instruction *I,
1359 SmallVectorImpl<ValueEntry> &Ops) {
1360 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1361 return V;
1362
1363 if (Ops.size() == 1)
Craig Topperf40110f2014-04-25 05:29:35 +00001364 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001365
1366 SmallVector<XorOpnd, 8> Opnds;
Shuxin Yang331f01d2013-04-08 22:00:43 +00001367 SmallVector<XorOpnd*, 8> OpndPtrs;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001368 Type *Ty = Ops[0].Op->getType();
1369 APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
1370
1371 // Step 1: Convert ValueEntry to XorOpnd
1372 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1373 Value *V = Ops[i].Op;
1374 if (!isa<ConstantInt>(V)) {
1375 XorOpnd O(V);
1376 O.setSymbolicRank(getRank(O.getSymbolicPart()));
1377 Opnds.push_back(O);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001378 } else
1379 ConstOpnd ^= cast<ConstantInt>(V)->getValue();
1380 }
1381
Shuxin Yang331f01d2013-04-08 22:00:43 +00001382 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1383 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1384 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1385 // with the previous loop --- the iterator of the "Opnds" may be invalidated
1386 // when new elements are added to the vector.
1387 for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1388 OpndPtrs.push_back(&Opnds[i]);
1389
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001390 // Step 2: Sort the Xor-Operands in a way such that the operands containing
1391 // the same symbolic value cluster together. For instance, the input operand
1392 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1393 // ("x | 123", "x & 789", "y & 456").
Chandler Carruth7b8e1122014-02-25 21:54:50 +00001394 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor());
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001395
1396 // Step 3: Combine adjacent operands
Craig Topperf40110f2014-04-25 05:29:35 +00001397 XorOpnd *PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001398 bool Changed = false;
1399 for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
Shuxin Yang331f01d2013-04-08 22:00:43 +00001400 XorOpnd *CurrOpnd = OpndPtrs[i];
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001401 // The combined value
1402 Value *CV;
1403
1404 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1405 if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1406 Changed = true;
1407 if (CV)
1408 *CurrOpnd = XorOpnd(CV);
1409 else {
1410 CurrOpnd->Invalidate();
1411 continue;
1412 }
1413 }
1414
1415 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1416 PrevOpnd = CurrOpnd;
1417 continue;
1418 }
1419
1420 // step 3.2: When previous and current operands share the same symbolic
1421 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1422 //
1423 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1424 // Remove previous operand
1425 PrevOpnd->Invalidate();
1426 if (CV) {
1427 *CurrOpnd = XorOpnd(CV);
1428 PrevOpnd = CurrOpnd;
1429 } else {
1430 CurrOpnd->Invalidate();
Craig Topperf40110f2014-04-25 05:29:35 +00001431 PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001432 }
1433 Changed = true;
1434 }
1435 }
1436
1437 // Step 4: Reassemble the Ops
1438 if (Changed) {
1439 Ops.clear();
1440 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1441 XorOpnd &O = Opnds[i];
1442 if (O.isInvalid())
1443 continue;
1444 ValueEntry VE(getRank(O.getValue()), O.getValue());
1445 Ops.push_back(VE);
1446 }
1447 if (ConstOpnd != 0) {
1448 Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
1449 ValueEntry VE(getRank(C), C);
1450 Ops.push_back(VE);
1451 }
1452 int Sz = Ops.size();
1453 if (Sz == 1)
1454 return Ops.back().Op;
1455 else if (Sz == 0) {
1456 assert(ConstOpnd == 0);
1457 return ConstantInt::get(Ty->getContext(), ConstOpnd);
1458 }
1459 }
1460
Craig Topperf40110f2014-04-25 05:29:35 +00001461 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001462}
1463
Sanjay Patelc96ee082015-04-22 18:04:46 +00001464/// Optimize a series of operands to an 'add' instruction. This
Chris Lattner5f8a0052009-12-31 07:59:34 +00001465/// optimizes based on identities. If it can be reduced to a single Value, it
1466/// is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner38abecb2009-12-31 18:40:32 +00001467Value *Reassociate::OptimizeAdd(Instruction *I,
1468 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001469 // Scan the operand lists looking for X and -X pairs. If we find any, we
Benjamin Kramer49689442014-05-31 15:01:54 +00001470 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it,
1471 // scan for any
Chris Lattner60b71b52009-12-31 19:24:52 +00001472 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Benjamin Kramer49689442014-05-31 15:01:54 +00001473
Chris Lattner5f8a0052009-12-31 07:59:34 +00001474 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner60b71b52009-12-31 19:24:52 +00001475 Value *TheOp = Ops[i].Op;
1476 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattner60c2ca72009-12-31 19:49:01 +00001477 // instances of the operand together. Due to our sorting criteria, we know
1478 // that these need to be next to each other in the vector.
1479 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1480 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner60b71b52009-12-31 19:24:52 +00001481 unsigned NumFound = 0;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001482 do {
1483 Ops.erase(Ops.begin()+i);
Chris Lattner60b71b52009-12-31 19:24:52 +00001484 ++NumFound;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001485 } while (i != Ops.size() && Ops[i].Op == TheOp);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001486
Chad Rosier78943bc2014-12-12 14:44:12 +00001487 DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
Chris Lattner60b71b52009-12-31 19:24:52 +00001488 ++NumFactor;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001489
Chris Lattner60b71b52009-12-31 19:24:52 +00001490 // Insert a new multiply.
Chad Rosier11ab9412014-08-14 15:23:01 +00001491 Type *Ty = TheOp->getType();
Robert Lougher1858ba72015-03-13 20:53:01 +00001492 Constant *C = Ty->isIntOrIntVectorTy() ?
1493 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
Chad Rosier11ab9412014-08-14 15:23:01 +00001494 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001495
Chris Lattner60b71b52009-12-31 19:24:52 +00001496 // Now that we have inserted a multiply, optimize it. This allows us to
1497 // handle cases that require multiple factoring steps, such as this:
1498 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
Chad Rosier11ab9412014-08-14 15:23:01 +00001499 RedoInsts.insert(Mul);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001500
Chris Lattner60b71b52009-12-31 19:24:52 +00001501 // If every add operand was a duplicate, return the multiply.
1502 if (Ops.empty())
1503 return Mul;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001504
Chris Lattner60b71b52009-12-31 19:24:52 +00001505 // Otherwise, we had some input that didn't have the dupe, such as
1506 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1507 // things being added by this operation.
1508 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001509
Chris Lattner60c2ca72009-12-31 19:49:01 +00001510 --i;
1511 e = Ops.size();
1512 continue;
Chris Lattner60b71b52009-12-31 19:24:52 +00001513 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001514
Benjamin Kramer49689442014-05-31 15:01:54 +00001515 // Check for X and -X or X and ~X in the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001516 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
1517 !BinaryOperator::isNot(TheOp))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001518 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001519
Benjamin Kramer49689442014-05-31 15:01:54 +00001520 Value *X = nullptr;
Chad Rosier11ab9412014-08-14 15:23:01 +00001521 if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
Benjamin Kramer49689442014-05-31 15:01:54 +00001522 X = BinaryOperator::getNegArgument(TheOp);
1523 else if (BinaryOperator::isNot(TheOp))
1524 X = BinaryOperator::getNotArgument(TheOp);
1525
Chris Lattner5f8a0052009-12-31 07:59:34 +00001526 unsigned FoundX = FindInOperandList(Ops, i, X);
1527 if (FoundX == i)
1528 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001529
Chris Lattner5f8a0052009-12-31 07:59:34 +00001530 // Remove X and -X from the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001531 if (Ops.size() == 2 &&
1532 (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001533 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001534
Benjamin Kramer49689442014-05-31 15:01:54 +00001535 // Remove X and ~X from the operand list.
1536 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
1537 return Constant::getAllOnesValue(X->getType());
1538
Chris Lattner5f8a0052009-12-31 07:59:34 +00001539 Ops.erase(Ops.begin()+i);
1540 if (i < FoundX)
1541 --FoundX;
1542 else
1543 --i; // Need to back up an extra one.
1544 Ops.erase(Ops.begin()+FoundX);
1545 ++NumAnnihil;
1546 --i; // Revisit element.
1547 e -= 2; // Removed two elements.
Benjamin Kramer49689442014-05-31 15:01:54 +00001548
1549 // if X and ~X we append -1 to the operand list.
1550 if (BinaryOperator::isNot(TheOp)) {
1551 Value *V = Constant::getAllOnesValue(X->getType());
1552 Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1553 e += 1;
1554 }
Chris Lattner5f8a0052009-12-31 07:59:34 +00001555 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001556
Chris Lattner177140a2009-12-31 18:17:13 +00001557 // Scan the operand list, checking to see if there are any common factors
1558 // between operands. Consider something like A*A+A*B*C+D. We would like to
1559 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1560 // To efficiently find this, we count the number of times a factor occurs
1561 // for any ADD operands that are MULs.
1562 DenseMap<Value*, unsigned> FactorOccurrences;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001563
Chris Lattner177140a2009-12-31 18:17:13 +00001564 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1565 // where they are actually the same multiply.
Chris Lattner177140a2009-12-31 18:17:13 +00001566 unsigned MaxOcc = 0;
Craig Topperf40110f2014-04-25 05:29:35 +00001567 Value *MaxOccVal = nullptr;
Chris Lattner177140a2009-12-31 18:17:13 +00001568 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001569 BinaryOperator *BOp =
1570 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001571 if (!BOp)
Chris Lattner177140a2009-12-31 18:17:13 +00001572 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001573
Chris Lattner177140a2009-12-31 18:17:13 +00001574 // Compute all of the factors of this added value.
1575 SmallVector<Value*, 8> Factors;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001576 FindSingleUseMultiplyFactors(BOp, Factors, Ops);
Chris Lattner177140a2009-12-31 18:17:13 +00001577 assert(Factors.size() > 1 && "Bad linearize!");
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001578
Chris Lattner177140a2009-12-31 18:17:13 +00001579 // Add one to FactorOccurrences for each unique factor in this op.
Chris Lattner0c59ac32010-01-01 01:13:15 +00001580 SmallPtrSet<Value*, 8> Duplicates;
1581 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1582 Value *Factor = Factors[i];
David Blaikie70573dc2014-11-19 07:49:26 +00001583 if (!Duplicates.insert(Factor).second)
Chad Rosier11ab9412014-08-14 15:23:01 +00001584 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001585
Chris Lattner0c59ac32010-01-01 01:13:15 +00001586 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001587 if (Occ > MaxOcc) {
1588 MaxOcc = Occ;
1589 MaxOccVal = Factor;
1590 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001591
Chris Lattner0c59ac32010-01-01 01:13:15 +00001592 // If Factor is a negative constant, add the negated value as a factor
1593 // because we can percolate the negate out. Watch for minint, which
1594 // cannot be positivified.
Chad Rosier11ab9412014-08-14 15:23:01 +00001595 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
Chris Lattnerb1a15122011-07-15 06:08:15 +00001596 if (CI->isNegative() && !CI->isMinValue(true)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001597 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1598 assert(!Duplicates.count(Factor) &&
1599 "Shouldn't have two constant factors, missed a canonicalize");
Chris Lattner0c59ac32010-01-01 01:13:15 +00001600 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001601 if (Occ > MaxOcc) {
1602 MaxOcc = Occ;
1603 MaxOccVal = Factor;
1604 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001605 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001606 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1607 if (CF->isNegative()) {
1608 APFloat F(CF->getValueAPF());
1609 F.changeSign();
1610 Factor = ConstantFP::get(CF->getContext(), F);
1611 assert(!Duplicates.count(Factor) &&
1612 "Shouldn't have two constant factors, missed a canonicalize");
1613 unsigned Occ = ++FactorOccurrences[Factor];
1614 if (Occ > MaxOcc) {
1615 MaxOcc = Occ;
1616 MaxOccVal = Factor;
1617 }
1618 }
1619 }
Chris Lattner177140a2009-12-31 18:17:13 +00001620 }
1621 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001622
Chris Lattner177140a2009-12-31 18:17:13 +00001623 // If any factor occurred more than one time, we can pull it out.
1624 if (MaxOcc > 1) {
Chad Rosier78943bc2014-12-12 14:44:12 +00001625 DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
Chris Lattner177140a2009-12-31 18:17:13 +00001626 ++NumFactor;
1627
1628 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1629 // this, we could otherwise run into situations where removing a factor
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001630 // from an expression will drop a use of maxocc, and this can cause
Chris Lattner177140a2009-12-31 18:17:13 +00001631 // RemoveFactorFromExpression on successive values to behave differently.
Chad Rosier11ab9412014-08-14 15:23:01 +00001632 Instruction *DummyInst =
Robert Lougher1858ba72015-03-13 20:53:01 +00001633 I->getType()->isIntOrIntVectorTy()
Chad Rosier11ab9412014-08-14 15:23:01 +00001634 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1635 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1636
Bill Wendling274ba892012-05-02 09:59:45 +00001637 SmallVector<WeakVH, 4> NewMulOps;
Duncan Sands69bdb582011-01-26 10:08:38 +00001638 for (unsigned i = 0; i != Ops.size(); ++i) {
Chris Lattnerab7087a2010-01-09 06:01:36 +00001639 // Only try to remove factors from expressions we're allowed to.
Chad Rosier11ab9412014-08-14 15:23:01 +00001640 BinaryOperator *BOp =
1641 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001642 if (!BOp)
Chris Lattnerab7087a2010-01-09 06:01:36 +00001643 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001644
Chris Lattner177140a2009-12-31 18:17:13 +00001645 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
Duncan Sands69bdb582011-01-26 10:08:38 +00001646 // The factorized operand may occur several times. Convert them all in
1647 // one fell swoop.
1648 for (unsigned j = Ops.size(); j != i;) {
1649 --j;
1650 if (Ops[j].Op == Ops[i].Op) {
1651 NewMulOps.push_back(V);
1652 Ops.erase(Ops.begin()+j);
1653 }
1654 }
1655 --i;
Chris Lattner177140a2009-12-31 18:17:13 +00001656 }
1657 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001658
Chris Lattner177140a2009-12-31 18:17:13 +00001659 // No need for extra uses anymore.
1660 delete DummyInst;
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001661
Chris Lattner177140a2009-12-31 18:17:13 +00001662 unsigned NumAddedValues = NewMulOps.size();
1663 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001664
Chris Lattner60b71b52009-12-31 19:24:52 +00001665 // Now that we have inserted the add tree, optimize it. This allows us to
1666 // handle cases that require multiple factoring steps, such as this:
Chris Lattner177140a2009-12-31 18:17:13 +00001667 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattnerac615502009-12-31 18:18:46 +00001668 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001669 (void)NumAddedValues;
Duncan Sands3293f462012-06-08 20:15:33 +00001670 if (Instruction *VI = dyn_cast<Instruction>(V))
1671 RedoInsts.insert(VI);
Chris Lattner60b71b52009-12-31 19:24:52 +00001672
1673 // Create the multiply.
Chad Rosier11ab9412014-08-14 15:23:01 +00001674 Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I);
Chris Lattner60b71b52009-12-31 19:24:52 +00001675
Chris Lattner60c2ca72009-12-31 19:49:01 +00001676 // Rerun associate on the multiply in case the inner expression turned into
1677 // a multiply. We want to make sure that we keep things in canonical form.
Duncan Sands3293f462012-06-08 20:15:33 +00001678 RedoInsts.insert(V2);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001679
Chris Lattner177140a2009-12-31 18:17:13 +00001680 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1681 // entire result expression is just the multiply "A*(B+C)".
1682 if (Ops.empty())
1683 return V2;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001684
Chris Lattnerac615502009-12-31 18:18:46 +00001685 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner177140a2009-12-31 18:17:13 +00001686 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattnerac615502009-12-31 18:18:46 +00001687 // things being added by this operation.
Chris Lattner177140a2009-12-31 18:17:13 +00001688 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1689 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001690
Craig Topperf40110f2014-04-25 05:29:35 +00001691 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001692}
Chris Lattner4c065092006-03-04 09:31:13 +00001693
Chandler Carruth739ef802012-04-26 05:30:30 +00001694/// \brief Build up a vector of value/power pairs factoring a product.
1695///
1696/// Given a series of multiplication operands, build a vector of factors and
1697/// the powers each is raised to when forming the final product. Sort them in
1698/// the order of descending power.
1699///
1700/// (x*x) -> [(x, 2)]
1701/// ((x*x)*x) -> [(x, 3)]
1702/// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1703///
1704/// \returns Whether any factors have a power greater than one.
1705bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1706 SmallVectorImpl<Factor> &Factors) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001707 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1708 // Compute the sum of powers of simplifiable factors.
Chandler Carruth739ef802012-04-26 05:30:30 +00001709 unsigned FactorPowerSum = 0;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001710 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1711 Value *Op = Ops[Idx-1].Op;
1712
1713 // Count the number of occurrences of this value.
1714 unsigned Count = 1;
1715 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1716 ++Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001717 // Track for simplification all factors which occur 2 or more times.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001718 if (Count > 1)
1719 FactorPowerSum += Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001720 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001721
Chandler Carruth739ef802012-04-26 05:30:30 +00001722 // We can only simplify factors if the sum of the powers of our simplifiable
1723 // factors is 4 or higher. When that is the case, we will *always* have
1724 // a simplification. This is an important invariant to prevent cyclicly
1725 // trying to simplify already minimal formations.
1726 if (FactorPowerSum < 4)
1727 return false;
1728
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001729 // Now gather the simplifiable factors, removing them from Ops.
1730 FactorPowerSum = 0;
1731 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1732 Value *Op = Ops[Idx-1].Op;
Chandler Carruth739ef802012-04-26 05:30:30 +00001733
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001734 // Count the number of occurrences of this value.
1735 unsigned Count = 1;
1736 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1737 ++Count;
1738 if (Count == 1)
1739 continue;
Benjamin Kramerbde91762012-06-02 10:20:22 +00001740 // Move an even number of occurrences to Factors.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001741 Count &= ~1U;
1742 Idx -= Count;
1743 FactorPowerSum += Count;
1744 Factors.push_back(Factor(Op, Count));
1745 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
Chandler Carruth739ef802012-04-26 05:30:30 +00001746 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001747
Chandler Carruth739ef802012-04-26 05:30:30 +00001748 // None of the adjustments above should have reduced the sum of factor powers
1749 // below our mininum of '4'.
1750 assert(FactorPowerSum >= 4);
1751
Justin Bogner90744d22016-04-26 22:22:18 +00001752 std::stable_sort(Factors.begin(), Factors.end(),
1753 [](const Factor &LHS, const Factor &RHS) {
1754 return LHS.Power > RHS.Power;
1755 });
Chandler Carruth739ef802012-04-26 05:30:30 +00001756 return true;
1757}
1758
1759/// \brief Build a tree of multiplies, computing the product of Ops.
1760static Value *buildMultiplyTree(IRBuilder<> &Builder,
1761 SmallVectorImpl<Value*> &Ops) {
1762 if (Ops.size() == 1)
1763 return Ops.back();
1764
1765 Value *LHS = Ops.pop_back_val();
1766 do {
Robert Lougher1858ba72015-03-13 20:53:01 +00001767 if (LHS->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +00001768 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1769 else
1770 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
Chandler Carruth739ef802012-04-26 05:30:30 +00001771 } while (!Ops.empty());
1772
1773 return LHS;
1774}
1775
1776/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1777///
1778/// Given a vector of values raised to various powers, where no two values are
1779/// equal and the powers are sorted in decreasing order, compute the minimal
1780/// DAG of multiplies to compute the final product, and return that product
1781/// value.
1782Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1783 SmallVectorImpl<Factor> &Factors) {
1784 assert(Factors[0].Power);
1785 SmallVector<Value *, 4> OuterProduct;
1786 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1787 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1788 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1789 LastIdx = Idx;
1790 continue;
1791 }
1792
1793 // We want to multiply across all the factors with the same power so that
1794 // we can raise them to that power as a single entity. Build a mini tree
1795 // for that.
1796 SmallVector<Value *, 4> InnerProduct;
1797 InnerProduct.push_back(Factors[LastIdx].Base);
1798 do {
1799 InnerProduct.push_back(Factors[Idx].Base);
1800 ++Idx;
1801 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1802
1803 // Reset the base value of the first factor to the new expression tree.
1804 // We'll remove all the factors with the same power in a second pass.
Duncan Sands3293f462012-06-08 20:15:33 +00001805 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1806 if (Instruction *MI = dyn_cast<Instruction>(M))
1807 RedoInsts.insert(MI);
Chandler Carruth739ef802012-04-26 05:30:30 +00001808
1809 LastIdx = Idx;
1810 }
1811 // Unique factors with equal powers -- we've folded them into the first one's
1812 // base.
1813 Factors.erase(std::unique(Factors.begin(), Factors.end(),
Justin Bogner90744d22016-04-26 22:22:18 +00001814 [](const Factor &LHS, const Factor &RHS) {
1815 return LHS.Power == RHS.Power;
1816 }),
Chandler Carruth739ef802012-04-26 05:30:30 +00001817 Factors.end());
1818
1819 // Iteratively collect the base of each factor with an add power into the
1820 // outer product, and halve each power in preparation for squaring the
1821 // expression.
1822 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1823 if (Factors[Idx].Power & 1)
1824 OuterProduct.push_back(Factors[Idx].Base);
1825 Factors[Idx].Power >>= 1;
1826 }
1827 if (Factors[0].Power) {
1828 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1829 OuterProduct.push_back(SquareRoot);
1830 OuterProduct.push_back(SquareRoot);
1831 }
1832 if (OuterProduct.size() == 1)
1833 return OuterProduct.front();
1834
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001835 Value *V = buildMultiplyTree(Builder, OuterProduct);
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001836 return V;
Chandler Carruth739ef802012-04-26 05:30:30 +00001837}
1838
1839Value *Reassociate::OptimizeMul(BinaryOperator *I,
1840 SmallVectorImpl<ValueEntry> &Ops) {
1841 // We can only optimize the multiplies when there is a chain of more than
1842 // three, such that a balanced tree might require fewer total multiplies.
1843 if (Ops.size() < 4)
Craig Topperf40110f2014-04-25 05:29:35 +00001844 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001845
1846 // Try to turn linear trees of multiplies without other uses of the
1847 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1848 // re-use.
1849 SmallVector<Factor, 4> Factors;
1850 if (!collectMultiplyFactors(Ops, Factors))
Craig Topperf40110f2014-04-25 05:29:35 +00001851 return nullptr; // All distinct factors, so nothing left for us to do.
Chandler Carruth739ef802012-04-26 05:30:30 +00001852
1853 IRBuilder<> Builder(I);
1854 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1855 if (Ops.empty())
1856 return V;
1857
1858 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1859 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
Craig Topperf40110f2014-04-25 05:29:35 +00001860 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001861}
1862
Chris Lattner4c065092006-03-04 09:31:13 +00001863Value *Reassociate::OptimizeExpression(BinaryOperator *I,
Chris Lattner38abecb2009-12-31 18:40:32 +00001864 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere1850b82005-05-08 00:19:31 +00001865 // Now that we have the linearized expression tree, try to optimize it.
1866 // Start by folding any constants that we found.
Craig Topperf40110f2014-04-25 05:29:35 +00001867 Constant *Cst = nullptr;
Chris Lattner4c065092006-03-04 09:31:13 +00001868 unsigned Opcode = I->getOpcode();
Duncan Sandsac852c72012-11-15 09:58:38 +00001869 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1870 Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1871 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1872 }
1873 // If there was nothing but constants then we are done.
1874 if (Ops.empty())
1875 return Cst;
1876
1877 // Put the combined constant back at the end of the operand list, except if
1878 // there is no point. For example, an add of 0 gets dropped here, while a
1879 // multiplication by zero turns the whole expression into zero.
1880 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1881 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1882 return Cst;
1883 Ops.push_back(ValueEntry(0, Cst));
1884 }
1885
1886 if (Ops.size() == 1) return Ops[0].Op;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001887
Chris Lattner9039ff82009-12-31 07:33:14 +00001888 // Handle destructive annihilation due to identities between elements in the
Chris Lattnere1850b82005-05-08 00:19:31 +00001889 // argument list here.
Chandler Carruth739ef802012-04-26 05:30:30 +00001890 unsigned NumOps = Ops.size();
Chris Lattner5847e5e2005-05-08 18:59:37 +00001891 switch (Opcode) {
1892 default: break;
1893 case Instruction::And:
1894 case Instruction::Or:
Chris Lattner5f8a0052009-12-31 07:59:34 +00001895 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1896 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001897 break;
1898
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001899 case Instruction::Xor:
1900 if (Value *Result = OptimizeXor(I, Ops))
1901 return Result;
1902 break;
1903
Chandler Carruth739ef802012-04-26 05:30:30 +00001904 case Instruction::Add:
Chad Rosier11ab9412014-08-14 15:23:01 +00001905 case Instruction::FAdd:
Chris Lattner177140a2009-12-31 18:17:13 +00001906 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001907 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001908 break;
Chandler Carruth739ef802012-04-26 05:30:30 +00001909
1910 case Instruction::Mul:
Chad Rosier11ab9412014-08-14 15:23:01 +00001911 case Instruction::FMul:
Chandler Carruth739ef802012-04-26 05:30:30 +00001912 if (Value *Result = OptimizeMul(I, Ops))
1913 return Result;
1914 break;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001915 }
1916
Duncan Sands3293f462012-06-08 20:15:33 +00001917 if (Ops.size() != NumOps)
Chris Lattner4c065092006-03-04 09:31:13 +00001918 return OptimizeExpression(I, Ops);
Craig Topperf40110f2014-04-25 05:29:35 +00001919 return nullptr;
Chris Lattnere1850b82005-05-08 00:19:31 +00001920}
1921
Aditya Nandakumar12d06042016-01-04 19:48:14 +00001922// Remove dead instructions and if any operands are trivially dead add them to
1923// Insts so they will be removed as well.
1924void Reassociate::RecursivelyEraseDeadInsts(
1925 Instruction *I, SetVector<AssertingVH<Instruction>> &Insts) {
1926 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1927 SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end());
1928 ValueRankMap.erase(I);
1929 Insts.remove(I);
1930 RedoInsts.remove(I);
1931 I->eraseFromParent();
1932 for (auto Op : Ops)
1933 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1934 if (OpInst->use_empty())
1935 Insts.insert(OpInst);
1936}
1937
Sanjay Patelc96ee082015-04-22 18:04:46 +00001938/// Zap the given instruction, adding interesting operands to the work list.
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001939void Reassociate::EraseInst(Instruction *I) {
Duncan Sands3293f462012-06-08 20:15:33 +00001940 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1941 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1942 // Erase the dead instruction.
1943 ValueRankMap.erase(I);
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001944 RedoInsts.remove(I);
Duncan Sands3293f462012-06-08 20:15:33 +00001945 I->eraseFromParent();
1946 // Optimize its operands.
Duncan Sands78386032012-06-15 08:37:50 +00001947 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
Duncan Sands3293f462012-06-08 20:15:33 +00001948 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1949 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1950 // If this is a node in an expression tree, climb to the expression root
1951 // and add that since that's where optimization actually happens.
1952 unsigned Opcode = Op->getOpcode();
Chandler Carruthcdf47882014-03-09 03:16:01 +00001953 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
David Blaikie70573dc2014-11-19 07:49:26 +00001954 Visited.insert(Op).second)
Chandler Carruthcdf47882014-03-09 03:16:01 +00001955 Op = Op->user_back();
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001956 RedoInsts.insert(Op);
Duncan Sands3293f462012-06-08 20:15:33 +00001957 }
1958}
1959
Chad Rosier094ac772014-11-11 22:58:35 +00001960// Canonicalize expressions of the following form:
1961// x + (-Constant * y) -> x - (Constant * y)
1962// x - (-Constant * y) -> x + (Constant * y)
1963Instruction *Reassociate::canonicalizeNegConstExpr(Instruction *I) {
1964 if (!I->hasOneUse() || I->getType()->isVectorTy())
1965 return nullptr;
1966
David Majnemer587336d2015-05-28 06:16:39 +00001967 // Must be a fmul or fdiv instruction.
Chad Rosier094ac772014-11-11 22:58:35 +00001968 unsigned Opcode = I->getOpcode();
David Majnemer587336d2015-05-28 06:16:39 +00001969 if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv)
Chad Rosier094ac772014-11-11 22:58:35 +00001970 return nullptr;
1971
David Majnemer587336d2015-05-28 06:16:39 +00001972 auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
1973 auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
1974
1975 // Both operands are constant, let it get constant folded away.
1976 if (C0 && C1)
Chad Rosier094ac772014-11-11 22:58:35 +00001977 return nullptr;
1978
David Majnemer587336d2015-05-28 06:16:39 +00001979 ConstantFP *CF = C0 ? C0 : C1;
1980
1981 // Must have one constant operand.
1982 if (!CF)
1983 return nullptr;
1984
1985 // Must be a negative ConstantFP.
1986 if (!CF->isNegative())
Chad Rosier094ac772014-11-11 22:58:35 +00001987 return nullptr;
1988
1989 // User must be a binary operator with one or more uses.
1990 Instruction *User = I->user_back();
David Majnemer587336d2015-05-28 06:16:39 +00001991 if (!isa<BinaryOperator>(User) || !User->hasNUsesOrMore(1))
Chad Rosier094ac772014-11-11 22:58:35 +00001992 return nullptr;
1993
1994 unsigned UserOpcode = User->getOpcode();
David Majnemer587336d2015-05-28 06:16:39 +00001995 if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub)
Chad Rosier094ac772014-11-11 22:58:35 +00001996 return nullptr;
1997
1998 // Subtraction is not commutative. Explicitly, the following transform is
1999 // not valid: (-Constant * y) - x -> x + (Constant * y)
2000 if (!User->isCommutative() && User->getOperand(1) != I)
2001 return nullptr;
2002
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002003 // Change the sign of the constant.
David Majnemer587336d2015-05-28 06:16:39 +00002004 APFloat Val = CF->getValueAPF();
2005 Val.changeSign();
2006 I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val));
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002007
Chad Rosier094ac772014-11-11 22:58:35 +00002008 // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
2009 // ((-Const*y) + x) -> (x + (-Const*y)).
2010 if (User->getOperand(0) == I && User->isCommutative())
2011 cast<BinaryOperator>(User)->swapOperands();
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002012
Chad Rosier094ac772014-11-11 22:58:35 +00002013 Value *Op0 = User->getOperand(0);
2014 Value *Op1 = User->getOperand(1);
2015 BinaryOperator *NI;
David Majnemer587336d2015-05-28 06:16:39 +00002016 switch (UserOpcode) {
Chad Rosier094ac772014-11-11 22:58:35 +00002017 default:
2018 llvm_unreachable("Unexpected Opcode!");
Chad Rosier094ac772014-11-11 22:58:35 +00002019 case Instruction::FAdd:
2020 NI = BinaryOperator::CreateFSub(Op0, Op1);
2021 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
2022 break;
2023 case Instruction::FSub:
2024 NI = BinaryOperator::CreateFAdd(Op0, Op1);
2025 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
2026 break;
2027 }
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002028
Chad Rosier094ac772014-11-11 22:58:35 +00002029 NI->insertBefore(User);
2030 NI->setName(User->getName());
2031 User->replaceAllUsesWith(NI);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002032 NI->setDebugLoc(I->getDebugLoc());
Chad Rosier094ac772014-11-11 22:58:35 +00002033 RedoInsts.insert(I);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002034 MadeChange = true;
Chad Rosier094ac772014-11-11 22:58:35 +00002035 return NI;
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00002036}
2037
Sanjay Patelc96ee082015-04-22 18:04:46 +00002038/// Inspect and optimize the given instruction. Note that erasing
Duncan Sands3293f462012-06-08 20:15:33 +00002039/// instructions is not allowed.
2040void Reassociate::OptimizeInst(Instruction *I) {
2041 // Only consider operations that we understand.
2042 if (!isa<BinaryOperator>(I))
2043 return;
2044
Chad Rosier11ab9412014-08-14 15:23:01 +00002045 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
Duncan Sands3293f462012-06-08 20:15:33 +00002046 // If an operand of this shift is a reassociable multiply, or if the shift
2047 // is used by a reassociable multiply or add, turn into a multiply.
2048 if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
2049 (I->hasOneUse() &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00002050 (isReassociableOp(I->user_back(), Instruction::Mul) ||
2051 isReassociableOp(I->user_back(), Instruction::Add)))) {
Duncan Sands3293f462012-06-08 20:15:33 +00002052 Instruction *NI = ConvertShiftToMul(I);
2053 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002054 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002055 I = NI;
Chris Lattner877b1142005-05-08 21:28:52 +00002056 }
Chris Lattner8fdf75c2002-10-31 17:12:59 +00002057
Chad Rosier094ac772014-11-11 22:58:35 +00002058 // Canonicalize negative constants out of expressions.
2059 if (Instruction *Res = canonicalizeNegConstExpr(I))
2060 I = Res;
2061
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002062 // Commute binary operators, to canonicalize the order of their operands.
2063 // This can potentially expose more CSE opportunities, and makes writing other
2064 // transformations simpler.
2065 if (I->isCommutative())
2066 canonicalizeOperands(I);
Chad Rosier11ab9412014-08-14 15:23:01 +00002067
Robert Lougher1858ba72015-03-13 20:53:01 +00002068 // TODO: We should optimize vector Xor instructions, but they are
2069 // currently unsupported.
2070 if (I->getType()->isVectorTy() && I->getOpcode() == Instruction::Xor)
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002071 return;
Owen Andersonf4f80e12012-05-07 20:47:23 +00002072
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002073 // Don't optimize floating point instructions that don't have unsafe algebra.
Owen Anderson630077e2015-11-20 08:16:13 +00002074 if (I->getType()->isFPOrFPVectorTy() && !I->hasUnsafeAlgebra())
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002075 return;
Owen Andersonf4f80e12012-05-07 20:47:23 +00002076
Dan Gohman1c6c3482011-04-12 00:11:56 +00002077 // Do not reassociate boolean (i1) expressions. We want to preserve the
2078 // original order of evaluation for short-circuited comparisons that
2079 // SimplifyCFG has folded to AND/OR expressions. If the expression
2080 // is not further optimized, it is likely to be transformed back to a
2081 // short-circuited form for code gen, and the source order may have been
2082 // optimized for the most likely conditions.
Duncan Sands3293f462012-06-08 20:15:33 +00002083 if (I->getType()->isIntegerTy(1))
Dan Gohman1c6c3482011-04-12 00:11:56 +00002084 return;
Chris Lattner7bc532d2002-05-16 04:37:07 +00002085
Dan Gohman1c6c3482011-04-12 00:11:56 +00002086 // If this is a subtract instruction which is not already in negate form,
2087 // see if we can convert it to X+-Y.
Duncan Sands3293f462012-06-08 20:15:33 +00002088 if (I->getOpcode() == Instruction::Sub) {
2089 if (ShouldBreakUpSubtract(I)) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002090 Instruction *NI = BreakUpSubtract(I, RedoInsts);
Duncan Sands3293f462012-06-08 20:15:33 +00002091 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002092 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002093 I = NI;
2094 } else if (BinaryOperator::isNeg(I)) {
Dan Gohman1c6c3482011-04-12 00:11:56 +00002095 // Otherwise, this is a negation. See if the operand is a multiply tree
2096 // and if this is not an inner node of a multiply tree.
Duncan Sands3293f462012-06-08 20:15:33 +00002097 if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2098 (!I->hasOneUse() ||
Chandler Carruthcdf47882014-03-09 03:16:01 +00002099 !isReassociableOp(I->user_back(), Instruction::Mul))) {
Duncan Sands3293f462012-06-08 20:15:33 +00002100 Instruction *NI = LowerNegateToMultiply(I);
Owen Anderson2de9f542015-11-16 18:07:30 +00002101 // If the negate was simplified, revisit the users to see if we can
2102 // reassociate further.
2103 for (User *U : NI->users()) {
2104 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2105 RedoInsts.insert(Tmp);
2106 }
Duncan Sands3293f462012-06-08 20:15:33 +00002107 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002108 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002109 I = NI;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002110 }
2111 }
Chad Rosier11ab9412014-08-14 15:23:01 +00002112 } else if (I->getOpcode() == Instruction::FSub) {
2113 if (ShouldBreakUpSubtract(I)) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002114 Instruction *NI = BreakUpSubtract(I, RedoInsts);
Chad Rosier11ab9412014-08-14 15:23:01 +00002115 RedoInsts.insert(I);
2116 MadeChange = true;
2117 I = NI;
2118 } else if (BinaryOperator::isFNeg(I)) {
2119 // Otherwise, this is a negation. See if the operand is a multiply tree
2120 // and if this is not an inner node of a multiply tree.
2121 if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
2122 (!I->hasOneUse() ||
2123 !isReassociableOp(I->user_back(), Instruction::FMul))) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002124 // If the negate was simplified, revisit the users to see if we can
2125 // reassociate further.
Chad Rosier11ab9412014-08-14 15:23:01 +00002126 Instruction *NI = LowerNegateToMultiply(I);
Owen Anderson2de9f542015-11-16 18:07:30 +00002127 for (User *U : NI->users()) {
2128 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2129 RedoInsts.insert(Tmp);
2130 }
Chad Rosier11ab9412014-08-14 15:23:01 +00002131 RedoInsts.insert(I);
2132 MadeChange = true;
2133 I = NI;
2134 }
2135 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002136 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002137
Duncan Sands3293f462012-06-08 20:15:33 +00002138 // If this instruction is an associative binary operator, process it.
2139 if (!I->isAssociative()) return;
2140 BinaryOperator *BO = cast<BinaryOperator>(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002141
2142 // If this is an interior node of a reassociable tree, ignore it until we
2143 // get to the root of the tree, to avoid N^2 analysis.
Nadav Rotem10888112012-07-23 13:44:15 +00002144 unsigned Opcode = BO->getOpcode();
Owen Anderson2de9f542015-11-16 18:07:30 +00002145 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2146 // During the initial run we will get to the root of the tree.
2147 // But if we get here while we are redoing instructions, there is no
2148 // guarantee that the root will be visited. So Redo later
Aditya Nandakumarf94c1492016-01-07 23:22:55 +00002149 if (BO->user_back() != BO &&
2150 BO->getParent() == BO->user_back()->getParent())
Owen Anderson2de9f542015-11-16 18:07:30 +00002151 RedoInsts.insert(BO->user_back());
Dan Gohman1c6c3482011-04-12 00:11:56 +00002152 return;
Owen Anderson2de9f542015-11-16 18:07:30 +00002153 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002154
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002155 // If this is an add tree that is used by a sub instruction, ignore it
Dan Gohman1c6c3482011-04-12 00:11:56 +00002156 // until we process the subtract.
Duncan Sands3293f462012-06-08 20:15:33 +00002157 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00002158 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
Dan Gohman1c6c3482011-04-12 00:11:56 +00002159 return;
Chad Rosier11ab9412014-08-14 15:23:01 +00002160 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2161 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2162 return;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002163
Duncan Sands3293f462012-06-08 20:15:33 +00002164 ReassociateExpression(BO);
Chris Lattner2fc319d2006-03-14 07:11:11 +00002165}
Chris Lattner1e506502005-05-07 21:59:39 +00002166
Duncan Sands78386032012-06-15 08:37:50 +00002167void Reassociate::ReassociateExpression(BinaryOperator *I) {
Chris Lattner60b71b52009-12-31 19:24:52 +00002168 // First, walk the expression tree, linearizing the tree, collecting the
2169 // operand information.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002170 SmallVector<RepeatedValue, 8> Tree;
2171 MadeChange |= LinearizeExprTree(I, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00002172 SmallVector<ValueEntry, 8> Ops;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002173 Ops.reserve(Tree.size());
2174 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2175 RepeatedValue E = Tree[i];
2176 Ops.append(E.second.getZExtValue(),
2177 ValueEntry(getRank(E.first), E.first));
2178 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002179
Duncan Sandsc94ac6f2012-05-26 07:47:48 +00002180 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2181
Chris Lattner2fc319d2006-03-14 07:11:11 +00002182 // Now that we have linearized the tree to a list and have gathered all of
2183 // the operands and their ranks, sort the operands by their rank. Use a
2184 // stable_sort so that values with equal ranks will have their relative
2185 // positions maintained (and so the compiler is deterministic). Note that
2186 // this sorts so that the highest ranking values end up at the beginning of
2187 // the vector.
2188 std::stable_sort(Ops.begin(), Ops.end());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002189
Sanjay Patelc96ee082015-04-22 18:04:46 +00002190 // Now that we have the expression tree in a convenient
Chris Lattner2fc319d2006-03-14 07:11:11 +00002191 // sorted form, optimize it globally if possible.
2192 if (Value *V = OptimizeExpression(I, Ops)) {
Duncan Sands78386032012-06-15 08:37:50 +00002193 if (V == I)
2194 // Self-referential expression in unreachable code.
2195 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002196 // This expression tree simplified to something that isn't a tree,
2197 // eliminate it.
David Greened17c3912010-01-05 01:27:24 +00002198 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner2fc319d2006-03-14 07:11:11 +00002199 I->replaceAllUsesWith(V);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002200 if (Instruction *VI = dyn_cast<Instruction>(V))
2201 VI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002202 RedoInsts.insert(I);
Chris Lattnerba1f36a2009-12-31 17:51:05 +00002203 ++NumAnnihil;
Duncan Sands78386032012-06-15 08:37:50 +00002204 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002205 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002206
Chris Lattner2fc319d2006-03-14 07:11:11 +00002207 // We want to sink immediates as deeply as possible except in the case where
2208 // this is a multiply tree used only by an add, and the immediate is a -1.
2209 // In this case we reassociate to put the negation on the outside so that we
2210 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
Chad Rosier11ab9412014-08-14 15:23:01 +00002211 if (I->hasOneUse()) {
2212 if (I->getOpcode() == Instruction::Mul &&
2213 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2214 isa<ConstantInt>(Ops.back().Op) &&
2215 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
2216 ValueEntry Tmp = Ops.pop_back_val();
2217 Ops.insert(Ops.begin(), Tmp);
2218 } else if (I->getOpcode() == Instruction::FMul &&
2219 cast<Instruction>(I->user_back())->getOpcode() ==
2220 Instruction::FAdd &&
2221 isa<ConstantFP>(Ops.back().Op) &&
2222 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2223 ValueEntry Tmp = Ops.pop_back_val();
2224 Ops.insert(Ops.begin(), Tmp);
2225 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002226 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002227
David Greened17c3912010-01-05 01:27:24 +00002228 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002229
Chris Lattner2fc319d2006-03-14 07:11:11 +00002230 if (Ops.size() == 1) {
Duncan Sands78386032012-06-15 08:37:50 +00002231 if (Ops[0].Op == I)
2232 // Self-referential expression in unreachable code.
2233 return;
2234
Chris Lattner2fc319d2006-03-14 07:11:11 +00002235 // This expression tree simplified to something that isn't a tree,
2236 // eliminate it.
2237 I->replaceAllUsesWith(Ops[0].Op);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002238 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2239 OI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002240 RedoInsts.insert(I);
Duncan Sands78386032012-06-15 08:37:50 +00002241 return;
Chris Lattnerc0f58002002-05-08 22:19:27 +00002242 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002243
Chris Lattner60b71b52009-12-31 19:24:52 +00002244 // Now that we ordered and optimized the expressions, splat them back into
2245 // the expression tree, removing any unneeded nodes.
2246 RewriteExprTree(I, Ops);
Chris Lattnerc0f58002002-05-08 22:19:27 +00002247}
2248
Chris Lattner113f4f42002-06-25 16:13:24 +00002249bool Reassociate::runOnFunction(Function &F) {
Andrew Kayloraa641a52016-04-22 22:06:11 +00002250 if (skipFunction(F))
Paul Robinsonaf4e64d2014-02-06 00:07:05 +00002251 return false;
2252
Aditya Nandakumar3d0c46d2016-01-26 18:42:36 +00002253 // Reassociate needs for each instruction to have its operands already
2254 // processed, so we first perform a RPOT of the basic blocks so that
2255 // when we process a basic block, all its dominators have been processed
2256 // before.
2257 ReversePostOrderTraversal<Function *> RPOT(&F);
2258 BuildRankMap(F, RPOT);
Chris Lattnerc0f58002002-05-08 22:19:27 +00002259
Chris Lattner1e506502005-05-07 21:59:39 +00002260 MadeChange = false;
Aditya Nandakumar3d0c46d2016-01-26 18:42:36 +00002261 for (BasicBlock *BI : RPOT) {
2262 // Use a worklist to keep track of which instructions have been processed
2263 // (and which insts won't be optimized again) so when redoing insts,
2264 // optimize insts rightaway which won't be processed later.
2265 SmallSet<Instruction *, 8> Worklist;
2266
2267 // Insert all instructions in the BB
2268 for (Instruction &I : *BI)
2269 Worklist.insert(&I);
2270
Duncan Sands3293f462012-06-08 20:15:33 +00002271 // Optimize every instruction in the basic block.
Aditya Nandakumar3d0c46d2016-01-26 18:42:36 +00002272 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;) {
2273 // This instruction has been processed.
2274 Worklist.erase(&*II);
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002275 if (isInstructionTriviallyDead(&*II)) {
2276 EraseInst(&*II++);
Duncan Sands3293f462012-06-08 20:15:33 +00002277 } else {
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002278 OptimizeInst(&*II);
Duncan P. N. Exon Smithe9bc5792016-02-21 20:39:50 +00002279 assert(II->getParent() == &*BI && "Moved to a different block!");
Duncan Sands3293f462012-06-08 20:15:33 +00002280 ++II;
2281 }
Duncan Sands9a5cf922012-06-08 13:37:30 +00002282
Aditya Nandakumar3d0c46d2016-01-26 18:42:36 +00002283 // If the above optimizations produced new instructions to optimize or
2284 // made modifications which need to be redone, do them now if they won't
2285 // be handled later.
2286 while (!RedoInsts.empty()) {
2287 Instruction *I = RedoInsts.pop_back_val();
2288 // Process instructions that won't be processed later, either
2289 // inside the block itself or in another basic block (based on rank),
2290 // since these will be processed later.
2291 if ((I->getParent() != BI || !Worklist.count(I)) &&
2292 RankMap[I->getParent()] <= RankMap[BI]) {
2293 if (isInstructionTriviallyDead(I))
2294 EraseInst(I);
2295 else
2296 OptimizeInst(I);
2297 }
2298 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002299 }
Duncan Sands3293f462012-06-08 20:15:33 +00002300 }
Chris Lattnerc0f58002002-05-08 22:19:27 +00002301
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00002302 // We are done with the rank map.
2303 RankMap.clear();
2304 ValueRankMap.clear();
2305
Chris Lattner1e506502005-05-07 21:59:39 +00002306 return MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +00002307}