blob: 99c46ae8cbe40816f3e875a27015dbd811c29997 [file] [log] [blame]
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerc0f58002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattnera5526832010-01-01 00:04:26 +000011// to promote better constant propagation, GCSE, LICM, PRE, etc.
Chris Lattnerc0f58002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattnerc0f58002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Justin Bognerc2bf63d2016-04-26 23:39:29 +000023#include "llvm/Transforms/Scalar/Reassociate.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000024#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/PostOrderIterator.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SetVector.h"
28#include "llvm/ADT/Statistic.h"
James Molloyefbba722015-09-10 10:22:12 +000029#include "llvm/Analysis/GlobalsModRef.h"
Quentin Colombet6443cce2015-08-06 18:44:34 +000030#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth1305dc32014-03-04 11:45:46 +000031#include "llvm/IR/CFG.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000032#include "llvm/IR/Constants.h"
33#include "llvm/IR/DerivedTypes.h"
34#include "llvm/IR/Function.h"
35#include "llvm/IR/IRBuilder.h"
36#include "llvm/IR/Instructions.h"
37#include "llvm/IR/IntrinsicInst.h"
Craig Toppercbac691c2017-06-21 16:07:09 +000038#include "llvm/IR/PatternMatch.h"
Chandler Carruth4220e9c2014-03-04 11:17:44 +000039#include "llvm/IR/ValueHandle.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000040#include "llvm/Pass.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000041#include "llvm/Support/Debug.h"
Chris Lattnerb25de3f2009-08-23 04:37:46 +000042#include "llvm/Support/raw_ostream.h"
Justin Bognerc2bf63d2016-04-26 23:39:29 +000043#include "llvm/Transforms/Scalar.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000044#include "llvm/Transforms/Utils/Local.h"
Chris Lattner1e506502005-05-07 21:59:39 +000045#include <algorithm>
Chris Lattner49525f82004-01-09 06:02:20 +000046using namespace llvm;
Justin Bognerc2bf63d2016-04-26 23:39:29 +000047using namespace reassociate;
Brian Gaeke960707c2003-11-11 22:41:34 +000048
Chandler Carruth964daaa2014-04-22 02:55:47 +000049#define DEBUG_TYPE "reassociate"
50
Chris Lattner79a42ac2006-12-19 21:40:18 +000051STATISTIC(NumChanged, "Number of insts reassociated");
52STATISTIC(NumAnnihil, "Number of expr tree annihilated");
53STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnerbf3a0992002-10-01 22:38:41 +000054
Devang Patel702f45d2008-11-21 21:00:20 +000055#ifndef NDEBUG
Sanjay Patelc96ee082015-04-22 18:04:46 +000056/// Print out the expression identified in the Ops list.
Chris Lattner4c065092006-03-04 09:31:13 +000057///
Chris Lattner38abecb2009-12-31 18:40:32 +000058static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Sanjay Patelaf674fb2015-12-14 17:24:23 +000059 Module *M = I->getModule();
David Greened17c3912010-01-05 01:27:24 +000060 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattnerbc1512c2009-12-31 07:17:37 +000061 << *Ops[0].Op->getType() << '\t';
Chris Lattner57693dd2008-08-19 04:45:19 +000062 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
David Greened17c3912010-01-05 01:27:24 +000063 dbgs() << "[ ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +000064 Ops[i].Op->printAsOperand(dbgs(), false, M);
David Greened17c3912010-01-05 01:27:24 +000065 dbgs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner57693dd2008-08-19 04:45:19 +000066 }
Chris Lattner4c065092006-03-04 09:31:13 +000067}
Devang Patelcb181bb2008-11-21 20:00:59 +000068#endif
Bill Wendlingc94d86c2012-05-02 23:43:23 +000069
Justin Bognerc2bf63d2016-04-26 23:39:29 +000070/// Utility class representing a non-constant Xor-operand. We classify
71/// non-constant Xor-Operands into two categories:
72/// C1) The operand is in the form "X & C", where C is a constant and C != ~0
73/// C2)
74/// C2.1) The operand is in the form of "X | C", where C is a non-zero
75/// constant.
76/// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
77/// operand as "E | 0"
78class llvm::reassociate::XorOpnd {
79public:
80 XorOpnd(Value *V);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +000081
Justin Bognerc2bf63d2016-04-26 23:39:29 +000082 bool isInvalid() const { return SymbolicPart == nullptr; }
83 bool isOrExpr() const { return isOr; }
84 Value *getValue() const { return OrigVal; }
85 Value *getSymbolicPart() const { return SymbolicPart; }
86 unsigned getSymbolicRank() const { return SymbolicRank; }
87 const APInt &getConstPart() const { return ConstPart; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +000088
Justin Bognerc2bf63d2016-04-26 23:39:29 +000089 void Invalidate() { SymbolicPart = OrigVal = nullptr; }
90 void setSymbolicRank(unsigned R) { SymbolicRank = R; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +000091
Justin Bognerc2bf63d2016-04-26 23:39:29 +000092private:
93 Value *OrigVal;
94 Value *SymbolicPart;
95 APInt ConstPart;
96 unsigned SymbolicRank;
97 bool isOr;
98};
Chris Lattnerc0f58002002-05-08 22:19:27 +000099
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000100XorOpnd::XorOpnd(Value *V) {
Shuxin Yang6662fd02013-04-01 18:13:05 +0000101 assert(!isa<ConstantInt>(V) && "No ConstantInt");
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000102 OrigVal = V;
103 Instruction *I = dyn_cast<Instruction>(V);
104 SymbolicRank = 0;
105
106 if (I && (I->getOpcode() == Instruction::Or ||
107 I->getOpcode() == Instruction::And)) {
108 Value *V0 = I->getOperand(0);
109 Value *V1 = I->getOperand(1);
Craig Toppercbac691c2017-06-21 16:07:09 +0000110 const APInt *C;
111 if (match(V0, PatternMatch::m_APInt(C)))
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000112 std::swap(V0, V1);
113
Craig Toppercbac691c2017-06-21 16:07:09 +0000114 if (match(V1, PatternMatch::m_APInt(C))) {
115 ConstPart = *C;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000116 SymbolicPart = V0;
117 isOr = (I->getOpcode() == Instruction::Or);
118 return;
119 }
120 }
121
122 // view the operand as "V | 0"
123 SymbolicPart = V;
Craig Toppercbac691c2017-06-21 16:07:09 +0000124 ConstPart = APInt::getNullValue(V->getType()->getScalarSizeInBits());
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000125 isOr = true;
126}
127
Sanjay Patelc96ee082015-04-22 18:04:46 +0000128/// Return true if V is an instruction of the specified opcode and if it
129/// only has one use.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000130static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
131 if (V->hasOneUse() && isa<Instruction>(V) &&
Chad Rosierac6a2f52014-11-06 16:46:37 +0000132 cast<Instruction>(V)->getOpcode() == Opcode &&
133 (!isa<FPMathOperator>(V) ||
134 cast<Instruction>(V)->hasUnsafeAlgebra()))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000135 return cast<BinaryOperator>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000136 return nullptr;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000137}
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000138
Chad Rosier11ab9412014-08-14 15:23:01 +0000139static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
140 unsigned Opcode2) {
141 if (V->hasOneUse() && isa<Instruction>(V) &&
142 (cast<Instruction>(V)->getOpcode() == Opcode1 ||
Chad Rosierac6a2f52014-11-06 16:46:37 +0000143 cast<Instruction>(V)->getOpcode() == Opcode2) &&
144 (!isa<FPMathOperator>(V) ||
145 cast<Instruction>(V)->hasUnsafeAlgebra()))
Chad Rosier11ab9412014-08-14 15:23:01 +0000146 return cast<BinaryOperator>(V);
147 return nullptr;
148}
149
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +0000150void ReassociatePass::BuildRankMap(Function &F,
151 ReversePostOrderTraversal<Function*> &RPOT) {
Chris Lattner58c7eb62003-08-12 20:14:27 +0000152 unsigned i = 2;
Chris Lattner8ac196d2003-08-13 16:16:26 +0000153
Chad Rosierf59e5482014-11-14 15:01:38 +0000154 // Assign distinct ranks to function arguments.
155 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
Chris Lattnerf72ce6e2009-03-31 22:13:29 +0000156 ValueRankMap[&*I] = ++i;
Chad Rosierf59e5482014-11-14 15:01:38 +0000157 DEBUG(dbgs() << "Calculated Rank[" << I->getName() << "] = " << i << "\n");
158 }
Chris Lattner8ac196d2003-08-13 16:16:26 +0000159
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +0000160 // Traverse basic blocks in ReversePostOrder
Benjamin Kramer135f7352016-06-26 12:28:59 +0000161 for (BasicBlock *BB : RPOT) {
Chris Lattner9f284e02005-05-08 20:57:04 +0000162 unsigned BBRank = RankMap[BB] = ++i << 16;
163
164 // Walk the basic block, adding precomputed ranks for any instructions that
165 // we cannot move. This ensures that the ranks for these instructions are
166 // all different in the block.
Benjamin Kramer135f7352016-06-26 12:28:59 +0000167 for (Instruction &I : *BB)
168 if (mayBeMemoryDependent(I))
169 ValueRankMap[&I] = ++BBRank;
Chris Lattner9f284e02005-05-08 20:57:04 +0000170 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000171}
172
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000173unsigned ReassociatePass::getRank(Value *V) {
Chris Lattnerf43e9742005-05-07 04:08:02 +0000174 Instruction *I = dyn_cast<Instruction>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000175 if (!I) {
Chris Lattner17229a72010-01-01 00:01:34 +0000176 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
177 return 0; // Otherwise it's a global or constant, rank 0.
178 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000179
Chris Lattner17229a72010-01-01 00:01:34 +0000180 if (unsigned Rank = ValueRankMap[I])
181 return Rank; // Rank already known?
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000182
Chris Lattnerf43e9742005-05-07 04:08:02 +0000183 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
184 // we can reassociate expressions for code motion! Since we do not recurse
185 // for PHI nodes, we cannot have infinite recursion here, because there
186 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000187 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
188 for (unsigned i = 0, e = I->getNumOperands();
189 i != e && Rank != MaxRank; ++i)
190 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000191
Chris Lattner6e2086d2005-05-08 00:08:33 +0000192 // If this is a not or neg instruction, do not count it for rank. This
193 // assures us that X and ~X will have the same rank.
Robert Lougher1858ba72015-03-13 20:53:01 +0000194 if (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
195 !BinaryOperator::isFNeg(I))
Chris Lattner6e2086d2005-05-08 00:08:33 +0000196 ++Rank;
197
Chad Rosierf59e5482014-11-14 15:01:38 +0000198 DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n");
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000199
Chris Lattner17229a72010-01-01 00:01:34 +0000200 return ValueRankMap[I] = Rank;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000201}
202
Chad Rosier9a1ac6e2014-11-17 15:52:51 +0000203// Canonicalize constants to RHS. Otherwise, sort the operands by rank.
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000204void ReassociatePass::canonicalizeOperands(Instruction *I) {
Chad Rosierf8b55f12014-11-14 17:05:59 +0000205 assert(isa<BinaryOperator>(I) && "Expected binary operator.");
206 assert(I->isCommutative() && "Expected commutative operator.");
207
208 Value *LHS = I->getOperand(0);
209 Value *RHS = I->getOperand(1);
210 unsigned LHSRank = getRank(LHS);
211 unsigned RHSRank = getRank(RHS);
212
Chad Rosier9a1ac6e2014-11-17 15:52:51 +0000213 if (isa<Constant>(RHS))
214 return;
215
Chad Rosierf8b55f12014-11-14 17:05:59 +0000216 if (isa<Constant>(LHS) || RHSRank < LHSRank)
217 cast<BinaryOperator>(I)->swapOperands();
218}
219
Chad Rosier11ab9412014-08-14 15:23:01 +0000220static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
221 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000222 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000223 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
224 else {
225 BinaryOperator *Res =
226 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
227 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
228 return Res;
229 }
230}
231
232static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
233 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000234 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000235 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
236 else {
237 BinaryOperator *Res =
238 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
239 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
240 return Res;
241 }
242}
243
244static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
245 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000246 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000247 return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
248 else {
249 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
250 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
251 return Res;
252 }
253}
254
Sanjay Patelc96ee082015-04-22 18:04:46 +0000255/// Replace 0-X with X*-1.
Duncan Sands3293f462012-06-08 20:15:33 +0000256static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000257 Type *Ty = Neg->getType();
Robert Lougher1858ba72015-03-13 20:53:01 +0000258 Constant *NegOne = Ty->isIntOrIntVectorTy() ?
259 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
Chris Lattner877b1142005-05-08 21:28:52 +0000260
Chad Rosier11ab9412014-08-14 15:23:01 +0000261 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
262 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +0000263 Res->takeName(Neg);
Chris Lattner877b1142005-05-08 21:28:52 +0000264 Neg->replaceAllUsesWith(Res);
Devang Patel80d1d3a2011-04-28 22:48:14 +0000265 Res->setDebugLoc(Neg->getDebugLoc());
Chris Lattner877b1142005-05-08 21:28:52 +0000266 return Res;
267}
268
Sanjay Patelc96ee082015-04-22 18:04:46 +0000269/// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
270/// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000271/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
272/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
273/// even x in Bitwidth-bit arithmetic.
274static unsigned CarmichaelShift(unsigned Bitwidth) {
275 if (Bitwidth < 3)
276 return Bitwidth - 1;
277 return Bitwidth - 2;
278}
279
Sanjay Patelc96ee082015-04-22 18:04:46 +0000280/// Add the extra weight 'RHS' to the existing weight 'LHS',
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000281/// reducing the combined weight using any special properties of the operation.
282/// The existing weight LHS represents the computation X op X op ... op X where
283/// X occurs LHS times. The combined weight represents X op X op ... op X with
284/// X occurring LHS + RHS times. If op is "Xor" for example then the combined
285/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
286/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
287static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
288 // If we were working with infinite precision arithmetic then the combined
289 // weight would be LHS + RHS. But we are using finite precision arithmetic,
290 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
291 // for nilpotent operations and addition, but not for idempotent operations
292 // and multiplication), so it is important to correctly reduce the combined
293 // weight back into range if wrapping would be wrong.
294
295 // If RHS is zero then the weight didn't change.
296 if (RHS.isMinValue())
297 return;
298 // If LHS is zero then the combined weight is RHS.
299 if (LHS.isMinValue()) {
300 LHS = RHS;
301 return;
302 }
303 // From this point on we know that neither LHS nor RHS is zero.
304
305 if (Instruction::isIdempotent(Opcode)) {
306 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
307 // weight of 1. Keeping weights at zero or one also means that wrapping is
308 // not a problem.
309 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
310 return; // Return a weight of 1.
311 }
312 if (Instruction::isNilpotent(Opcode)) {
313 // Nilpotent means X op X === 0, so reduce weights modulo 2.
314 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
315 LHS = 0; // 1 + 1 === 0 modulo 2.
316 return;
317 }
Chad Rosier11ab9412014-08-14 15:23:01 +0000318 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000319 // TODO: Reduce the weight by exploiting nsw/nuw?
320 LHS += RHS;
321 return;
322 }
323
Chad Rosier11ab9412014-08-14 15:23:01 +0000324 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
325 "Unknown associative operation!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000326 unsigned Bitwidth = LHS.getBitWidth();
327 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
328 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
329 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
330 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
331 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
332 // which by a happy accident means that they can always be represented using
333 // Bitwidth bits.
334 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
335 // the Carmichael number).
336 if (Bitwidth > 3) {
337 /// CM - The value of Carmichael's lambda function.
338 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
339 // Any weight W >= Threshold can be replaced with W - CM.
340 APInt Threshold = CM + Bitwidth;
341 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
342 // For Bitwidth 4 or more the following sum does not overflow.
343 LHS += RHS;
344 while (LHS.uge(Threshold))
345 LHS -= CM;
346 } else {
347 // To avoid problems with overflow do everything the same as above but using
348 // a larger type.
349 unsigned CM = 1U << CarmichaelShift(Bitwidth);
350 unsigned Threshold = CM + Bitwidth;
351 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
352 "Weights not reduced!");
353 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
354 while (Total >= Threshold)
355 Total -= CM;
356 LHS = Total;
357 }
358}
359
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000360typedef std::pair<Value*, APInt> RepeatedValue;
361
Sanjay Patelc96ee082015-04-22 18:04:46 +0000362/// Given an associative binary expression, return the leaf
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000363/// nodes in Ops along with their weights (how many times the leaf occurs). The
364/// original expression is the same as
365/// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
Nadav Rotem465834c2012-07-24 10:51:42 +0000366/// op
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000367/// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
368/// op
369/// ...
370/// op
371/// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
372///
Duncan Sandsac852c72012-11-15 09:58:38 +0000373/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000374///
375/// This routine may modify the function, in which case it returns 'true'. The
376/// changes it makes may well be destructive, changing the value computed by 'I'
377/// to something completely different. Thus if the routine returns 'true' then
378/// you MUST either replace I with a new expression computed from the Ops array,
379/// or use RewriteExprTree to put the values back in.
Chris Lattner1e506502005-05-07 21:59:39 +0000380///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000381/// A leaf node is either not a binary operation of the same kind as the root
382/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
383/// opcode), or is the same kind of binary operator but has a use which either
384/// does not belong to the expression, or does belong to the expression but is
385/// a leaf node. Every leaf node has at least one use that is a non-leaf node
386/// of the expression, while for non-leaf nodes (except for the root 'I') every
387/// use is a non-leaf node of the expression.
388///
389/// For example:
390/// expression graph node names
391///
392/// + | I
393/// / \ |
394/// + + | A, B
395/// / \ / \ |
396/// * + * | C, D, E
397/// / \ / \ / \ |
398/// + * | F, G
399///
400/// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000401/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000402///
403/// The expression is maximal: if some instruction is a binary operator of the
404/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
405/// then the instruction also belongs to the expression, is not a leaf node of
406/// it, and its operands also belong to the expression (but may be leaf nodes).
407///
408/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
409/// order to ensure that every non-root node in the expression has *exactly one*
410/// use by a non-leaf node of the expression. This destruction means that the
Duncan Sands3c05cd32012-05-26 16:42:52 +0000411/// caller MUST either replace 'I' with a new expression or use something like
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000412/// RewriteExprTree to put the values back in if the routine indicates that it
413/// made a change by returning 'true'.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000414///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000415/// In the above example either the right operand of A or the left operand of B
416/// will be replaced by undef. If it is B's operand then this gives:
417///
418/// + | I
419/// / \ |
420/// + + | A, B - operand of B replaced with undef
421/// / \ \ |
422/// * + * | C, D, E
423/// / \ / \ / \ |
424/// + * | F, G
425///
Duncan Sands3c05cd32012-05-26 16:42:52 +0000426/// Note that such undef operands can only be reached by passing through 'I'.
427/// For example, if you visit operands recursively starting from a leaf node
428/// then you will never see such an undef operand unless you get back to 'I',
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000429/// which requires passing through a phi node.
430///
431/// Note that this routine may also mutate binary operators of the wrong type
432/// that have all uses inside the expression (i.e. only used by non-leaf nodes
433/// of the expression) if it can turn them into binary operators of the right
434/// type and thus make the expression bigger.
435
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000436static bool LinearizeExprTree(BinaryOperator *I,
437 SmallVectorImpl<RepeatedValue> &Ops) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000438 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000439 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
440 unsigned Opcode = I->getOpcode();
Chad Rosier11ab9412014-08-14 15:23:01 +0000441 assert(I->isAssociative() && I->isCommutative() &&
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000442 "Expected an associative and commutative operation!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000443
444 // Visit all operands of the expression, keeping track of their weight (the
445 // number of paths from the expression root to the operand, or if you like
446 // the number of times that operand occurs in the linearized expression).
447 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
448 // while A has weight two.
449
450 // Worklist of non-leaf nodes (their operands are in the expression too) along
451 // with their weights, representing a certain number of paths to the operator.
452 // If an operator occurs in the worklist multiple times then we found multiple
453 // ways to get to it.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000454 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
455 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000456 bool Changed = false;
Chris Lattner1e506502005-05-07 21:59:39 +0000457
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000458 // Leaves of the expression are values that either aren't the right kind of
459 // operation (eg: a constant, or a multiply in an add tree), or are, but have
460 // some uses that are not inside the expression. For example, in I = X + X,
461 // X = A + B, the value X has two uses (by I) that are in the expression. If
462 // X has any other uses, for example in a return instruction, then we consider
463 // X to be a leaf, and won't analyze it further. When we first visit a value,
464 // if it has more than one use then at first we conservatively consider it to
465 // be a leaf. Later, as the expression is explored, we may discover some more
466 // uses of the value from inside the expression. If all uses turn out to be
467 // from within the expression (and the value is a binary operator of the right
468 // kind) then the value is no longer considered to be a leaf, and its operands
469 // are explored.
Chris Lattner1e506502005-05-07 21:59:39 +0000470
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000471 // Leaves - Keeps track of the set of putative leaves as well as the number of
472 // paths to each leaf seen so far.
Duncan Sands72aea012012-06-12 20:26:43 +0000473 typedef DenseMap<Value*, APInt> LeafMap;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000474 LeafMap Leaves; // Leaf -> Total weight so far.
475 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
476
477#ifndef NDEBUG
478 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
479#endif
480 while (!Worklist.empty()) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000481 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000482 I = P.first; // We examine the operands of this binary operator.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000483
484 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
485 Value *Op = I->getOperand(OpIdx);
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000486 APInt Weight = P.second; // Number of paths to this operand.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000487 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
488 assert(!Op->use_empty() && "No uses, so how did we get to it?!");
489
490 // If this is a binary operation of the right kind with only one use then
491 // add its operands to the expression.
492 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
David Blaikie70573dc2014-11-19 07:49:26 +0000493 assert(Visited.insert(Op).second && "Not first visit!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000494 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
495 Worklist.push_back(std::make_pair(BO, Weight));
496 continue;
497 }
498
499 // Appears to be a leaf. Is the operand already in the set of leaves?
500 LeafMap::iterator It = Leaves.find(Op);
501 if (It == Leaves.end()) {
502 // Not in the leaf map. Must be the first time we saw this operand.
David Blaikie70573dc2014-11-19 07:49:26 +0000503 assert(Visited.insert(Op).second && "Not first visit!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000504 if (!Op->hasOneUse()) {
505 // This value has uses not accounted for by the expression, so it is
506 // not safe to modify. Mark it as being a leaf.
507 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
508 LeafOrder.push_back(Op);
509 Leaves[Op] = Weight;
510 continue;
511 }
512 // No uses outside the expression, try morphing it.
Simon Pilgrim475b40d2016-11-14 12:00:46 +0000513 } else {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000514 // Already in the leaf map.
Simon Pilgrim475b40d2016-11-14 12:00:46 +0000515 assert(It != Leaves.end() && Visited.count(Op) &&
516 "In leaf map but not visited!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000517
518 // Update the number of paths to the leaf.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000519 IncorporateWeight(It->second, Weight, Opcode);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000520
Duncan Sands56514522012-07-26 09:26:40 +0000521#if 0 // TODO: Re-enable once PR13021 is fixed.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000522 // The leaf already has one use from inside the expression. As we want
523 // exactly one such use, drop this new use of the leaf.
524 assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
525 I->setOperand(OpIdx, UndefValue::get(I->getType()));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000526 Changed = true;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000527
528 // If the leaf is a binary operation of the right kind and we now see
529 // that its multiple original uses were in fact all by nodes belonging
530 // to the expression, then no longer consider it to be a leaf and add
531 // its operands to the expression.
532 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
533 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
534 Worklist.push_back(std::make_pair(BO, It->second));
535 Leaves.erase(It);
536 continue;
537 }
Duncan Sands56514522012-07-26 09:26:40 +0000538#endif
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000539
540 // If we still have uses that are not accounted for by the expression
541 // then it is not safe to modify the value.
542 if (!Op->hasOneUse())
543 continue;
544
545 // No uses outside the expression, try morphing it.
546 Weight = It->second;
547 Leaves.erase(It); // Since the value may be morphed below.
548 }
549
550 // At this point we have a value which, first of all, is not a binary
551 // expression of the right kind, and secondly, is only used inside the
552 // expression. This means that it can safely be modified. See if we
553 // can usefully morph it into an expression of the right kind.
554 assert((!isa<Instruction>(Op) ||
Chad Rosierac6a2f52014-11-06 16:46:37 +0000555 cast<Instruction>(Op)->getOpcode() != Opcode
556 || (isa<FPMathOperator>(Op) &&
557 !cast<Instruction>(Op)->hasUnsafeAlgebra())) &&
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000558 "Should have been handled above!");
559 assert(Op->hasOneUse() && "Has uses outside the expression tree!");
560
561 // If this is a multiply expression, turn any internal negations into
562 // multiplies by -1 so they can be reassociated.
Chad Rosier11ab9412014-08-14 15:23:01 +0000563 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
564 if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
565 (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
566 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
567 BO = LowerNegateToMultiply(BO);
568 DEBUG(dbgs() << *BO << '\n');
569 Worklist.push_back(std::make_pair(BO, Weight));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000570 Changed = true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000571 continue;
572 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000573
574 // Failed to morph into an expression of the right type. This really is
575 // a leaf.
576 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
577 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
578 LeafOrder.push_back(Op);
579 Leaves[Op] = Weight;
Chris Lattner877b1142005-05-08 21:28:52 +0000580 }
581 }
582
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000583 // The leaves, repeated according to their weights, represent the linearized
584 // form of the expression.
585 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
586 Value *V = LeafOrder[i];
587 LeafMap::iterator It = Leaves.find(V);
588 if (It == Leaves.end())
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000589 // Node initially thought to be a leaf wasn't.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000590 continue;
591 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000592 APInt Weight = It->second;
593 if (Weight.isMinValue())
594 // Leaf already output or weight reduction eliminated it.
595 continue;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000596 // Ensure the leaf is only output once.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000597 It->second = 0;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000598 Ops.push_back(std::make_pair(V, Weight));
Chris Lattnerc0f58002002-05-08 22:19:27 +0000599 }
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000600
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000601 // For nilpotent operations or addition there may be no operands, for example
602 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
603 // in both cases the weight reduces to 0 causing the value to be skipped.
604 if (Ops.empty()) {
Duncan Sandsac852c72012-11-15 09:58:38 +0000605 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
Duncan Sands318a89d2012-06-13 09:42:13 +0000606 assert(Identity && "Associative operation without identity!");
Benjamin Kramerf5e2fc42015-05-29 19:43:39 +0000607 Ops.emplace_back(Identity, APInt(Bitwidth, 1));
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000608 }
609
Chad Rosiere53e8c82014-11-18 20:21:54 +0000610 return Changed;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000611}
612
Sanjay Patelc96ee082015-04-22 18:04:46 +0000613/// Now that the operands for this expression tree are
614/// linearized and optimized, emit them in-order.
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000615void ReassociatePass::RewriteExprTree(BinaryOperator *I,
616 SmallVectorImpl<ValueEntry> &Ops) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000617 assert(Ops.size() > 1 && "Single values should be used directly!");
Dan Gohman08d2c982011-02-02 02:02:34 +0000618
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000619 // Since our optimizations should never increase the number of operations, the
620 // new expression can usually be written reusing the existing binary operators
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000621 // from the original expression tree, without creating any new instructions,
622 // though the rewritten expression may have a completely different topology.
623 // We take care to not change anything if the new expression will be the same
624 // as the original. If more than trivial changes (like commuting operands)
625 // were made then we are obliged to clear out any optional subclass data like
626 // nsw flags.
Dan Gohman08d2c982011-02-02 02:02:34 +0000627
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000628 /// NodesToRewrite - Nodes from the original expression available for writing
629 /// the new expression into.
630 SmallVector<BinaryOperator*, 8> NodesToRewrite;
631 unsigned Opcode = I->getOpcode();
Duncan Sands98382862012-06-29 19:03:05 +0000632 BinaryOperator *Op = I;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000633
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000634 /// NotRewritable - The operands being written will be the leaves of the new
635 /// expression and must not be used as inner nodes (via NodesToRewrite) by
636 /// mistake. Inner nodes are always reassociable, and usually leaves are not
637 /// (if they were they would have been incorporated into the expression and so
638 /// would not be leaves), so most of the time there is no danger of this. But
639 /// in rare cases a leaf may become reassociable if an optimization kills uses
640 /// of it, or it may momentarily become reassociable during rewriting (below)
641 /// due it being removed as an operand of one of its uses. Ensure that misuse
642 /// of leaf nodes as inner nodes cannot occur by remembering all of the future
643 /// leaves and refusing to reuse any of them as inner nodes.
644 SmallPtrSet<Value*, 8> NotRewritable;
645 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
646 NotRewritable.insert(Ops[i].Op);
647
Duncan Sands3c05cd32012-05-26 16:42:52 +0000648 // ExpressionChanged - Non-null if the rewritten expression differs from the
649 // original in some non-trivial way, requiring the clearing of optional flags.
650 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
Craig Topperf40110f2014-04-25 05:29:35 +0000651 BinaryOperator *ExpressionChanged = nullptr;
Duncan Sands514db112012-06-27 14:19:00 +0000652 for (unsigned i = 0; ; ++i) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000653 // The last operation (which comes earliest in the IR) is special as both
654 // operands will come from Ops, rather than just one with the other being
655 // a subexpression.
656 if (i+2 == Ops.size()) {
657 Value *NewLHS = Ops[i].Op;
658 Value *NewRHS = Ops[i+1].Op;
659 Value *OldLHS = Op->getOperand(0);
660 Value *OldRHS = Op->getOperand(1);
661
Chad Rosier90a2f9b2014-11-19 23:21:20 +0000662 if (NewLHS == OldLHS && NewRHS == OldRHS)
663 // Nothing changed, leave it alone.
664 break;
665
666 if (NewLHS == OldRHS && NewRHS == OldLHS) {
667 // The order of the operands was reversed. Swap them.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000668 DEBUG(dbgs() << "RA: " << *Op << '\n');
Chad Rosier90a2f9b2014-11-19 23:21:20 +0000669 Op->swapOperands();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000670 DEBUG(dbgs() << "TO: " << *Op << '\n');
671 MadeChange = true;
672 ++NumChanged;
673 break;
674 }
675
676 // The new operation differs non-trivially from the original. Overwrite
677 // the old operands with the new ones.
678 DEBUG(dbgs() << "RA: " << *Op << '\n');
679 if (NewLHS != OldLHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000680 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
681 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000682 NodesToRewrite.push_back(BO);
683 Op->setOperand(0, NewLHS);
684 }
685 if (NewRHS != OldRHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000686 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
687 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000688 NodesToRewrite.push_back(BO);
689 Op->setOperand(1, NewRHS);
690 }
691 DEBUG(dbgs() << "TO: " << *Op << '\n');
692
Duncan Sands3c05cd32012-05-26 16:42:52 +0000693 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000694 MadeChange = true;
695 ++NumChanged;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000696
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000697 break;
Chris Lattner1e506502005-05-07 21:59:39 +0000698 }
Chris Lattner1e506502005-05-07 21:59:39 +0000699
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000700 // Not the last operation. The left-hand side will be a sub-expression
701 // while the right-hand side will be the current element of Ops.
702 Value *NewRHS = Ops[i].Op;
703 if (NewRHS != Op->getOperand(1)) {
704 DEBUG(dbgs() << "RA: " << *Op << '\n');
705 if (NewRHS == Op->getOperand(0)) {
706 // The new right-hand side was already present as the left operand. If
707 // we are lucky then swapping the operands will sort out both of them.
708 Op->swapOperands();
709 } else {
710 // Overwrite with the new right-hand side.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000711 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
712 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000713 NodesToRewrite.push_back(BO);
714 Op->setOperand(1, NewRHS);
Duncan Sands3c05cd32012-05-26 16:42:52 +0000715 ExpressionChanged = Op;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000716 }
717 DEBUG(dbgs() << "TO: " << *Op << '\n');
718 MadeChange = true;
719 ++NumChanged;
720 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000721
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000722 // Now deal with the left-hand side. If this is already an operation node
723 // from the original expression then just rewrite the rest of the expression
724 // into it.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000725 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
726 if (BO && !NotRewritable.count(BO)) {
Duncan Sands98382862012-06-29 19:03:05 +0000727 Op = BO;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000728 continue;
729 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000730
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000731 // Otherwise, grab a spare node from the original expression and use that as
Duncan Sands369c6d22012-06-29 13:25:06 +0000732 // the left-hand side. If there are no nodes left then the optimizers made
733 // an expression with more nodes than the original! This usually means that
734 // they did something stupid but it might mean that the problem was just too
735 // hard (finding the mimimal number of multiplications needed to realize a
736 // multiplication expression is NP-complete). Whatever the reason, smart or
737 // stupid, create a new node if there are none left.
Duncan Sands98382862012-06-29 19:03:05 +0000738 BinaryOperator *NewOp;
Duncan Sands369c6d22012-06-29 13:25:06 +0000739 if (NodesToRewrite.empty()) {
740 Constant *Undef = UndefValue::get(I->getType());
Duncan Sands98382862012-06-29 19:03:05 +0000741 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
742 Undef, Undef, "", I);
Robert Lougher1858ba72015-03-13 20:53:01 +0000743 if (NewOp->getType()->isFPOrFPVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000744 NewOp->setFastMathFlags(I->getFastMathFlags());
Duncan Sands98382862012-06-29 19:03:05 +0000745 } else {
746 NewOp = NodesToRewrite.pop_back_val();
Duncan Sands369c6d22012-06-29 13:25:06 +0000747 }
748
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000749 DEBUG(dbgs() << "RA: " << *Op << '\n');
Duncan Sands98382862012-06-29 19:03:05 +0000750 Op->setOperand(0, NewOp);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000751 DEBUG(dbgs() << "TO: " << *Op << '\n');
Duncan Sands3c05cd32012-05-26 16:42:52 +0000752 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000753 MadeChange = true;
754 ++NumChanged;
Duncan Sands98382862012-06-29 19:03:05 +0000755 Op = NewOp;
Chris Lattner1e506502005-05-07 21:59:39 +0000756 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000757
Duncan Sands3c05cd32012-05-26 16:42:52 +0000758 // If the expression changed non-trivially then clear out all subclass data
Duncan Sands514db112012-06-27 14:19:00 +0000759 // starting from the operator specified in ExpressionChanged, and compactify
760 // the operators to just before the expression root to guarantee that the
761 // expression tree is dominated by all of Ops.
762 if (ExpressionChanged)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000763 do {
Chad Rosier11ab9412014-08-14 15:23:01 +0000764 // Preserve FastMathFlags.
765 if (isa<FPMathOperator>(I)) {
766 FastMathFlags Flags = I->getFastMathFlags();
767 ExpressionChanged->clearSubclassOptionalData();
768 ExpressionChanged->setFastMathFlags(Flags);
769 } else
770 ExpressionChanged->clearSubclassOptionalData();
771
Duncan Sands3c05cd32012-05-26 16:42:52 +0000772 if (ExpressionChanged == I)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000773 break;
Duncan Sands514db112012-06-27 14:19:00 +0000774 ExpressionChanged->moveBefore(I);
Chandler Carruthcdf47882014-03-09 03:16:01 +0000775 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000776 } while (1);
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000777
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000778 // Throw away any left over nodes from the original expression.
779 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
Duncan Sands3293f462012-06-08 20:15:33 +0000780 RedoInsts.insert(NodesToRewrite[i]);
Chris Lattner1e506502005-05-07 21:59:39 +0000781}
782
Sanjay Patelc96ee082015-04-22 18:04:46 +0000783/// Insert instructions before the instruction pointed to by BI,
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000784/// that computes the negative version of the value specified. The negative
785/// version of the value is returned, and BI is left pointing at the instruction
786/// that should be processed next by the reassociation pass.
Owen Anderson2de9f542015-11-16 18:07:30 +0000787/// Also add intermediate instructions to the redo list that are modified while
788/// pushing the negates through adds. These will be revisited to see if
789/// additional opportunities have been exposed.
790static Value *NegateValue(Value *V, Instruction *BI,
791 SetVector<AssertingVH<Instruction>> &ToRedo) {
Mehdi Amini590a2702015-01-16 03:00:58 +0000792 if (Constant *C = dyn_cast<Constant>(V)) {
793 if (C->getType()->isFPOrFPVectorTy()) {
794 return ConstantExpr::getFNeg(C);
795 }
Chris Lattnerfed33972009-12-31 20:34:32 +0000796 return ConstantExpr::getNeg(C);
Mehdi Amini590a2702015-01-16 03:00:58 +0000797 }
798
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000799
Chris Lattner7bc532d2002-05-16 04:37:07 +0000800 // We are trying to expose opportunity for reassociation. One of the things
801 // that we want to do to achieve this is to push a negation as deep into an
802 // expression chain as possible, to expose the add instructions. In practice,
803 // this means that we turn this:
804 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
805 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
806 // the constants. We assume that instcombine will clean up the mess later if
Chris Lattnera5526832010-01-01 00:04:26 +0000807 // we introduce tons of unnecessary negation instructions.
Chris Lattner7bc532d2002-05-16 04:37:07 +0000808 //
Chad Rosier11ab9412014-08-14 15:23:01 +0000809 if (BinaryOperator *I =
810 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000811 // Push the negates through the add.
Owen Anderson2de9f542015-11-16 18:07:30 +0000812 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
813 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
David Majnemerf6e500a2015-06-24 21:27:36 +0000814 if (I->getOpcode() == Instruction::Add) {
815 I->setHasNoUnsignedWrap(false);
816 I->setHasNoSignedWrap(false);
817 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000818
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000819 // We must move the add instruction here, because the neg instructions do
820 // not dominate the old add instruction in general. By moving it, we are
821 // assured that the neg instructions we just inserted dominate the
822 // instruction we are about to insert after them.
823 //
824 I->moveBefore(BI);
825 I->setName(I->getName()+".neg");
Owen Anderson2de9f542015-11-16 18:07:30 +0000826
827 // Add the intermediate negates to the redo list as processing them later
828 // could expose more reassociating opportunities.
829 ToRedo.insert(I);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000830 return I;
831 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000832
Chris Lattnerfed33972009-12-31 20:34:32 +0000833 // Okay, we need to materialize a negated version of V with an instruction.
834 // Scan the use lists of V to see if we have one already.
Chandler Carruthcdf47882014-03-09 03:16:01 +0000835 for (User *U : V->users()) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000836 if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
837 continue;
Chris Lattnerfed33972009-12-31 20:34:32 +0000838
839 // We found one! Now we have to make sure that the definition dominates
840 // this use. We do this by moving it to the entry block (if it is a
841 // non-instruction value) or right after the definition. These negates will
842 // be zapped by reassociate later, so we don't need much finesse here.
Gabor Greif782f6242010-07-12 12:03:02 +0000843 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
Chris Lattnere199d2d2010-01-02 21:46:33 +0000844
845 // Verify that the negate is in this function, V might be a constant expr.
846 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
847 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000848
Chris Lattnerfed33972009-12-31 20:34:32 +0000849 BasicBlock::iterator InsertPt;
850 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
851 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
852 InsertPt = II->getNormalDest()->begin();
853 } else {
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +0000854 InsertPt = ++InstInput->getIterator();
Chris Lattnerfed33972009-12-31 20:34:32 +0000855 }
856 while (isa<PHINode>(InsertPt)) ++InsertPt;
857 } else {
858 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
859 }
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +0000860 TheNeg->moveBefore(&*InsertPt);
David Majnemerf6e500a2015-06-24 21:27:36 +0000861 if (TheNeg->getOpcode() == Instruction::Sub) {
862 TheNeg->setHasNoUnsignedWrap(false);
863 TheNeg->setHasNoSignedWrap(false);
864 } else {
865 TheNeg->andIRFlags(BI);
866 }
Owen Anderson2de9f542015-11-16 18:07:30 +0000867 ToRedo.insert(TheNeg);
Chris Lattnerfed33972009-12-31 20:34:32 +0000868 return TheNeg;
869 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000870
871 // Insert a 'neg' instruction that subtracts the value from zero to get the
872 // negation.
Owen Anderson2de9f542015-11-16 18:07:30 +0000873 BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
874 ToRedo.insert(NewNeg);
875 return NewNeg;
Chris Lattnerf43e9742005-05-07 04:08:02 +0000876}
877
Sanjay Patelc96ee082015-04-22 18:04:46 +0000878/// Return true if we should break up this subtract of X-Y into (X + -Y).
Nick Lewycky7935bcb2009-11-14 07:25:54 +0000879static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner902537c2008-02-17 20:44:51 +0000880 // If this is a negation, we can't split it up!
Chad Rosier11ab9412014-08-14 15:23:01 +0000881 if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
Chris Lattner902537c2008-02-17 20:44:51 +0000882 return false;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000883
Chad Rosierbd64d462014-10-09 20:06:29 +0000884 // Don't breakup X - undef.
885 if (isa<UndefValue>(Sub->getOperand(1)))
886 return false;
887
Chris Lattner902537c2008-02-17 20:44:51 +0000888 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattnera70d1382008-02-17 20:51:26 +0000889 // subtract or if this is only used by one.
Chad Rosier11ab9412014-08-14 15:23:01 +0000890 Value *V0 = Sub->getOperand(0);
891 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
892 isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +0000893 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000894 Value *V1 = Sub->getOperand(1);
895 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
896 isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +0000897 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000898 Value *VB = Sub->user_back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000899 if (Sub->hasOneUse() &&
Chad Rosier11ab9412014-08-14 15:23:01 +0000900 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
901 isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
Chris Lattner902537c2008-02-17 20:44:51 +0000902 return true;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000903
Chris Lattner902537c2008-02-17 20:44:51 +0000904 return false;
905}
906
Sanjay Patelc96ee082015-04-22 18:04:46 +0000907/// If we have (X-Y), and if either X is an add, or if this is only used by an
908/// add, transform this into (X+(0-Y)) to promote better reassociation.
Owen Anderson2de9f542015-11-16 18:07:30 +0000909static BinaryOperator *
910BreakUpSubtract(Instruction *Sub, SetVector<AssertingVH<Instruction>> &ToRedo) {
Chris Lattnera5526832010-01-01 00:04:26 +0000911 // Convert a subtract into an add and a neg instruction. This allows sub
912 // instructions to be commuted with other add instructions.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000913 //
Chris Lattnera5526832010-01-01 00:04:26 +0000914 // Calculate the negative value of Operand 1 of the sub instruction,
915 // and set it as the RHS of the add instruction we just made.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000916 //
Owen Anderson2de9f542015-11-16 18:07:30 +0000917 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
Chad Rosier11ab9412014-08-14 15:23:01 +0000918 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
Duncan Sands3293f462012-06-08 20:15:33 +0000919 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
920 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +0000921 New->takeName(Sub);
Chris Lattnerf43e9742005-05-07 04:08:02 +0000922
923 // Everyone now refers to the add instruction.
924 Sub->replaceAllUsesWith(New);
Devang Patel80d1d3a2011-04-28 22:48:14 +0000925 New->setDebugLoc(Sub->getDebugLoc());
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000926
David Greened17c3912010-01-05 01:27:24 +0000927 DEBUG(dbgs() << "Negated: " << *New << '\n');
Chris Lattnerf43e9742005-05-07 04:08:02 +0000928 return New;
Chris Lattner7bc532d2002-05-16 04:37:07 +0000929}
930
Sanjay Patelc96ee082015-04-22 18:04:46 +0000931/// If this is a shift of a reassociable multiply or is used by one, change
932/// this into a multiply by a constant to assist with further reassociation.
Duncan Sands3293f462012-06-08 20:15:33 +0000933static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
934 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
935 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000936
Duncan Sands3293f462012-06-08 20:15:33 +0000937 BinaryOperator *Mul =
938 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
939 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
940 Mul->takeName(Shl);
Chad Rosierb3eb4522014-11-07 22:12:57 +0000941
942 // Everyone now refers to the mul instruction.
Duncan Sands3293f462012-06-08 20:15:33 +0000943 Shl->replaceAllUsesWith(Mul);
944 Mul->setDebugLoc(Shl->getDebugLoc());
Chad Rosierb3eb4522014-11-07 22:12:57 +0000945
946 // We can safely preserve the nuw flag in all cases. It's also safe to turn a
947 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special
948 // handling.
949 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
950 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
951 if (NSW && NUW)
952 Mul->setHasNoSignedWrap(true);
953 Mul->setHasNoUnsignedWrap(NUW);
Duncan Sands3293f462012-06-08 20:15:33 +0000954 return Mul;
Chris Lattnercea57992005-05-07 04:24:13 +0000955}
956
Sanjay Patelc96ee082015-04-22 18:04:46 +0000957/// Scan backwards and forwards among values with the same rank as element i
958/// to see if X exists. If X does not exist, return i. This is useful when
959/// scanning for 'x' when we see '-x' because they both get the same rank.
Chris Lattner38abecb2009-12-31 18:40:32 +0000960static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
Chris Lattner5847e5e2005-05-08 18:59:37 +0000961 Value *X) {
962 unsigned XRank = Ops[i].Rank;
963 unsigned e = Ops.size();
Owen Anderson8373d332014-10-05 23:41:26 +0000964 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +0000965 if (Ops[j].Op == X)
966 return j;
Owen Anderson8373d332014-10-05 23:41:26 +0000967 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
968 if (Instruction *I2 = dyn_cast<Instruction>(X))
969 if (I1->isIdenticalTo(I2))
970 return j;
971 }
Chris Lattner0c59ac32010-01-01 01:13:15 +0000972 // Scan backwards.
Owen Anderson8373d332014-10-05 23:41:26 +0000973 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +0000974 if (Ops[j].Op == X)
975 return j;
Owen Anderson8373d332014-10-05 23:41:26 +0000976 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
977 if (Instruction *I2 = dyn_cast<Instruction>(X))
978 if (I1->isIdenticalTo(I2))
979 return j;
980 }
Chris Lattner5847e5e2005-05-08 18:59:37 +0000981 return i;
982}
983
Sanjay Patelc96ee082015-04-22 18:04:46 +0000984/// Emit a tree of add instructions, summing Ops together
Chris Lattner4c065092006-03-04 09:31:13 +0000985/// and returning the result. Insert the tree before I.
Bill Wendling274ba892012-05-02 09:59:45 +0000986static Value *EmitAddTreeOfValues(Instruction *I,
Sanjoy Dase6bca0e2017-05-01 17:07:49 +0000987 SmallVectorImpl<WeakTrackingVH> &Ops) {
Chris Lattner4c065092006-03-04 09:31:13 +0000988 if (Ops.size() == 1) return Ops.back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000989
Chris Lattner4c065092006-03-04 09:31:13 +0000990 Value *V1 = Ops.back();
991 Ops.pop_back();
992 Value *V2 = EmitAddTreeOfValues(I, Ops);
Chad Rosier11ab9412014-08-14 15:23:01 +0000993 return CreateAdd(V2, V1, "tmp", I, I);
Chris Lattner4c065092006-03-04 09:31:13 +0000994}
995
Sanjay Patelc96ee082015-04-22 18:04:46 +0000996/// If V is an expression tree that is a multiplication sequence,
997/// and if this sequence contains a multiply by Factor,
Chris Lattner4c065092006-03-04 09:31:13 +0000998/// remove Factor from the tree and return the new tree.
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000999Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001000 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
1001 if (!BO)
1002 return nullptr;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001003
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001004 SmallVector<RepeatedValue, 8> Tree;
1005 MadeChange |= LinearizeExprTree(BO, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00001006 SmallVector<ValueEntry, 8> Factors;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001007 Factors.reserve(Tree.size());
1008 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1009 RepeatedValue E = Tree[i];
1010 Factors.append(E.second.getZExtValue(),
1011 ValueEntry(getRank(E.first), E.first));
1012 }
Chris Lattner4c065092006-03-04 09:31:13 +00001013
1014 bool FoundFactor = false;
Chris Lattner0c59ac32010-01-01 01:13:15 +00001015 bool NeedsNegate = false;
1016 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Chris Lattner4c065092006-03-04 09:31:13 +00001017 if (Factors[i].Op == Factor) {
1018 FoundFactor = true;
1019 Factors.erase(Factors.begin()+i);
1020 break;
1021 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001022
Chris Lattner0c59ac32010-01-01 01:13:15 +00001023 // If this is a negative version of this factor, remove it.
Chad Rosier11ab9412014-08-14 15:23:01 +00001024 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001025 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1026 if (FC1->getValue() == -FC2->getValue()) {
1027 FoundFactor = NeedsNegate = true;
1028 Factors.erase(Factors.begin()+i);
1029 break;
1030 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001031 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1032 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
Benjamin Kramer46e38f32016-06-08 10:01:20 +00001033 const APFloat &F1 = FC1->getValueAPF();
Chad Rosier11ab9412014-08-14 15:23:01 +00001034 APFloat F2(FC2->getValueAPF());
1035 F2.changeSign();
1036 if (F1.compare(F2) == APFloat::cmpEqual) {
1037 FoundFactor = NeedsNegate = true;
1038 Factors.erase(Factors.begin() + i);
1039 break;
1040 }
1041 }
1042 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001043 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001044
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001045 if (!FoundFactor) {
1046 // Make sure to restore the operands to the expression tree.
1047 RewriteExprTree(BO, Factors);
Craig Topperf40110f2014-04-25 05:29:35 +00001048 return nullptr;
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001049 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001050
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001051 BasicBlock::iterator InsertPt = ++BO->getIterator();
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001052
Chris Lattner1d897942009-12-31 19:34:45 +00001053 // If this was just a single multiply, remove the multiply and return the only
1054 // remaining operand.
1055 if (Factors.size() == 1) {
Duncan Sands3293f462012-06-08 20:15:33 +00001056 RedoInsts.insert(BO);
Chris Lattner0c59ac32010-01-01 01:13:15 +00001057 V = Factors[0].Op;
1058 } else {
1059 RewriteExprTree(BO, Factors);
1060 V = BO;
Chris Lattner1d897942009-12-31 19:34:45 +00001061 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001062
Chris Lattner0c59ac32010-01-01 01:13:15 +00001063 if (NeedsNegate)
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001064 V = CreateNeg(V, "neg", &*InsertPt, BO);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001065
Chris Lattner0c59ac32010-01-01 01:13:15 +00001066 return V;
Chris Lattner4c065092006-03-04 09:31:13 +00001067}
1068
Sanjay Patelc96ee082015-04-22 18:04:46 +00001069/// If V is a single-use multiply, recursively add its operands as factors,
1070/// otherwise add V to the list of factors.
Chris Lattnerc6c15232010-03-05 07:18:54 +00001071///
1072/// Ops is the top-level list of add operands we're trying to factor.
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001073static void FindSingleUseMultiplyFactors(Value *V,
Chad Rosiere22c9922017-02-08 17:45:27 +00001074 SmallVectorImpl<Value*> &Factors) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001075 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001076 if (!BO) {
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001077 Factors.push_back(V);
1078 return;
1079 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001080
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001081 // Otherwise, add the LHS and RHS to the list of factors.
Chad Rosiere22c9922017-02-08 17:45:27 +00001082 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
1083 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001084}
1085
Sanjay Patelc96ee082015-04-22 18:04:46 +00001086/// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1087/// This optimizes based on identities. If it can be reduced to a single Value,
1088/// it is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner38abecb2009-12-31 18:40:32 +00001089static Value *OptimizeAndOrXor(unsigned Opcode,
1090 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001091 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1092 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1093 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1094 // First, check for X and ~X in the operand list.
1095 assert(i < Ops.size());
1096 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
1097 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1098 unsigned FoundX = FindInOperandList(Ops, i, X);
1099 if (FoundX != i) {
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001100 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattner5f8a0052009-12-31 07:59:34 +00001101 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001102
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001103 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattner5f8a0052009-12-31 07:59:34 +00001104 return Constant::getAllOnesValue(X->getType());
Chris Lattner5f8a0052009-12-31 07:59:34 +00001105 }
1106 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001107
Chris Lattner5f8a0052009-12-31 07:59:34 +00001108 // Next, check for duplicate pairs of values, which we assume are next to
1109 // each other, due to our sorting criteria.
1110 assert(i < Ops.size());
1111 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1112 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattner60c2ca72009-12-31 19:49:01 +00001113 // Drop duplicate values for And and Or.
Chris Lattner5f8a0052009-12-31 07:59:34 +00001114 Ops.erase(Ops.begin()+i);
1115 --i; --e;
1116 ++NumAnnihil;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001117 continue;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001118 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001119
Chris Lattner60c2ca72009-12-31 19:49:01 +00001120 // Drop pairs of values for Xor.
1121 assert(Opcode == Instruction::Xor);
1122 if (e == 2)
1123 return Constant::getNullValue(Ops[0].Op->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001124
Chris Lattnera5526832010-01-01 00:04:26 +00001125 // Y ^ X^X -> Y
Chris Lattner60c2ca72009-12-31 19:49:01 +00001126 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1127 i -= 1; e -= 2;
1128 ++NumAnnihil;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001129 }
1130 }
Craig Topperf40110f2014-04-25 05:29:35 +00001131 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001132}
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001133
Eric Christopherbfba5722015-12-16 23:10:53 +00001134/// Helper function of CombineXorOpnd(). It creates a bitwise-and
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001135/// instruction with the given two operands, and return the resulting
1136/// instruction. There are two special cases: 1) if the constant operand is 0,
1137/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1138/// be returned.
1139static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1140 const APInt &ConstOpnd) {
Craig Topperd96177c2017-06-18 18:15:38 +00001141 if (!ConstOpnd.isNullValue()) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001142 if (!ConstOpnd.isAllOnesValue()) {
Craig Toppercbac691c2017-06-21 16:07:09 +00001143 Instruction *I = BinaryOperator::CreateAnd(
1144 Opnd, ConstantInt::get(Opnd->getType(), ConstOpnd), "and.ra",
1145 InsertBefore);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001146 I->setDebugLoc(InsertBefore->getDebugLoc());
1147 return I;
1148 }
1149 return Opnd;
1150 }
Craig Topperf40110f2014-04-25 05:29:35 +00001151 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001152}
1153
1154// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1155// into "R ^ C", where C would be 0, and R is a symbolic value.
1156//
1157// If it was successful, true is returned, and the "R" and "C" is returned
1158// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1159// and both "Res" and "ConstOpnd" remain unchanged.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001160//
1161bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1162 APInt &ConstOpnd, Value *&Res) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001163 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1164 // = ((x | c1) ^ c1) ^ (c1 ^ c2)
1165 // = (x & ~c1) ^ (c1 ^ c2)
1166 // It is useful only when c1 == c2.
Craig Topperd96177c2017-06-18 18:15:38 +00001167 if (Opnd1->isOrExpr() && !Opnd1->getConstPart().isNullValue()) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001168 if (!Opnd1->getValue()->hasOneUse())
1169 return false;
1170
1171 const APInt &C1 = Opnd1->getConstPart();
1172 if (C1 != ConstOpnd)
1173 return false;
1174
1175 Value *X = Opnd1->getSymbolicPart();
1176 Res = createAndInstr(I, X, ~C1);
1177 // ConstOpnd was C2, now C1 ^ C2.
1178 ConstOpnd ^= C1;
1179
1180 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1181 RedoInsts.insert(T);
1182 return true;
1183 }
1184 return false;
1185}
1186
1187
1188// Helper function of OptimizeXor(). It tries to simplify
1189// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1190// symbolic value.
1191//
1192// If it was successful, true is returned, and the "R" and "C" is returned
1193// via "Res" and "ConstOpnd", respectively (If the entire expression is
1194// evaluated to a constant, the Res is set to NULL); otherwise, false is
1195// returned, and both "Res" and "ConstOpnd" remain unchanged.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001196bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1197 XorOpnd *Opnd2, APInt &ConstOpnd,
1198 Value *&Res) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001199 Value *X = Opnd1->getSymbolicPart();
1200 if (X != Opnd2->getSymbolicPart())
1201 return false;
1202
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001203 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1204 int DeadInstNum = 1;
1205 if (Opnd1->getValue()->hasOneUse())
1206 DeadInstNum++;
1207 if (Opnd2->getValue()->hasOneUse())
1208 DeadInstNum++;
1209
1210 // Xor-Rule 2:
1211 // (x | c1) ^ (x & c2)
1212 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1213 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
1214 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
1215 //
1216 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1217 if (Opnd2->isOrExpr())
1218 std::swap(Opnd1, Opnd2);
1219
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001220 const APInt &C1 = Opnd1->getConstPart();
1221 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001222 APInt C3((~C1) ^ C2);
1223
1224 // Do not increase code size!
Craig Topperd96177c2017-06-18 18:15:38 +00001225 if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1226 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001227 if (NewInstNum > DeadInstNum)
1228 return false;
1229 }
1230
1231 Res = createAndInstr(I, X, C3);
1232 ConstOpnd ^= C1;
1233
1234 } else if (Opnd1->isOrExpr()) {
1235 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1236 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001237 const APInt &C1 = Opnd1->getConstPart();
1238 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001239 APInt C3 = C1 ^ C2;
1240
1241 // Do not increase code size
Craig Topperd96177c2017-06-18 18:15:38 +00001242 if (!C3.isNullValue() && !C3.isAllOnesValue()) {
1243 int NewInstNum = ConstOpnd.getBoolValue() ? 1 : 2;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001244 if (NewInstNum > DeadInstNum)
1245 return false;
1246 }
1247
1248 Res = createAndInstr(I, X, C3);
1249 ConstOpnd ^= C3;
1250 } else {
1251 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1252 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001253 const APInt &C1 = Opnd1->getConstPart();
1254 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001255 APInt C3 = C1 ^ C2;
1256 Res = createAndInstr(I, X, C3);
1257 }
1258
1259 // Put the original operands in the Redo list; hope they will be deleted
1260 // as dead code.
1261 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1262 RedoInsts.insert(T);
1263 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1264 RedoInsts.insert(T);
1265
1266 return true;
1267}
1268
1269/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1270/// to a single Value, it is returned, otherwise the Ops list is mutated as
1271/// necessary.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001272Value *ReassociatePass::OptimizeXor(Instruction *I,
1273 SmallVectorImpl<ValueEntry> &Ops) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001274 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1275 return V;
1276
1277 if (Ops.size() == 1)
Craig Topperf40110f2014-04-25 05:29:35 +00001278 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001279
1280 SmallVector<XorOpnd, 8> Opnds;
Shuxin Yang331f01d2013-04-08 22:00:43 +00001281 SmallVector<XorOpnd*, 8> OpndPtrs;
Craig Toppercbac691c2017-06-21 16:07:09 +00001282 Type *Ty = Ops[0].Op->getType();
1283 APInt ConstOpnd(Ty->getScalarSizeInBits(), 0);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001284
1285 // Step 1: Convert ValueEntry to XorOpnd
1286 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1287 Value *V = Ops[i].Op;
Craig Toppercbac691c2017-06-21 16:07:09 +00001288 const APInt *C;
1289 // TODO: Support non-splat vectors.
1290 if (match(V, PatternMatch::m_APInt(C))) {
1291 ConstOpnd ^= *C;
1292 } else {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001293 XorOpnd O(V);
1294 O.setSymbolicRank(getRank(O.getSymbolicPart()));
1295 Opnds.push_back(O);
Craig Toppercbac691c2017-06-21 16:07:09 +00001296 }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001297 }
1298
Shuxin Yang331f01d2013-04-08 22:00:43 +00001299 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1300 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1301 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1302 // with the previous loop --- the iterator of the "Opnds" may be invalidated
1303 // when new elements are added to the vector.
1304 for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1305 OpndPtrs.push_back(&Opnds[i]);
1306
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001307 // Step 2: Sort the Xor-Operands in a way such that the operands containing
1308 // the same symbolic value cluster together. For instance, the input operand
1309 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1310 // ("x | 123", "x & 789", "y & 456").
Justin Bognercb8a21c2016-04-26 23:32:00 +00001311 //
1312 // The purpose is twofold:
1313 // 1) Cluster together the operands sharing the same symbolic-value.
1314 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
1315 // could potentially shorten crital path, and expose more loop-invariants.
1316 // Note that values' rank are basically defined in RPO order (FIXME).
1317 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1318 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1319 // "z" in the order of X-Y-Z is better than any other orders.
1320 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(),
1321 [](XorOpnd *LHS, XorOpnd *RHS) {
1322 return LHS->getSymbolicRank() < RHS->getSymbolicRank();
1323 });
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001324
1325 // Step 3: Combine adjacent operands
Craig Topperf40110f2014-04-25 05:29:35 +00001326 XorOpnd *PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001327 bool Changed = false;
1328 for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
Shuxin Yang331f01d2013-04-08 22:00:43 +00001329 XorOpnd *CurrOpnd = OpndPtrs[i];
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001330 // The combined value
1331 Value *CV;
1332
1333 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
Craig Topperd96177c2017-06-18 18:15:38 +00001334 if (!ConstOpnd.isNullValue() &&
1335 CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001336 Changed = true;
1337 if (CV)
1338 *CurrOpnd = XorOpnd(CV);
1339 else {
1340 CurrOpnd->Invalidate();
1341 continue;
1342 }
1343 }
1344
1345 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1346 PrevOpnd = CurrOpnd;
1347 continue;
1348 }
1349
1350 // step 3.2: When previous and current operands share the same symbolic
1351 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1352 //
1353 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1354 // Remove previous operand
1355 PrevOpnd->Invalidate();
1356 if (CV) {
1357 *CurrOpnd = XorOpnd(CV);
1358 PrevOpnd = CurrOpnd;
1359 } else {
1360 CurrOpnd->Invalidate();
Craig Topperf40110f2014-04-25 05:29:35 +00001361 PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001362 }
1363 Changed = true;
1364 }
1365 }
1366
1367 // Step 4: Reassemble the Ops
1368 if (Changed) {
1369 Ops.clear();
1370 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1371 XorOpnd &O = Opnds[i];
1372 if (O.isInvalid())
1373 continue;
1374 ValueEntry VE(getRank(O.getValue()), O.getValue());
1375 Ops.push_back(VE);
1376 }
Craig Topperd96177c2017-06-18 18:15:38 +00001377 if (!ConstOpnd.isNullValue()) {
Craig Toppercbac691c2017-06-21 16:07:09 +00001378 Value *C = ConstantInt::get(Ty, ConstOpnd);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001379 ValueEntry VE(getRank(C), C);
1380 Ops.push_back(VE);
1381 }
Craig Toppercbac691c2017-06-21 16:07:09 +00001382 unsigned Sz = Ops.size();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001383 if (Sz == 1)
1384 return Ops.back().Op;
Craig Toppercbac691c2017-06-21 16:07:09 +00001385 if (Sz == 0) {
1386 assert(ConstOpnd.isNullValue());
1387 return ConstantInt::get(Ty, ConstOpnd);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001388 }
1389 }
1390
Craig Topperf40110f2014-04-25 05:29:35 +00001391 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001392}
1393
Sanjay Patelc96ee082015-04-22 18:04:46 +00001394/// Optimize a series of operands to an 'add' instruction. This
Chris Lattner5f8a0052009-12-31 07:59:34 +00001395/// optimizes based on identities. If it can be reduced to a single Value, it
1396/// is returned, otherwise the Ops list is mutated as necessary.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001397Value *ReassociatePass::OptimizeAdd(Instruction *I,
1398 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001399 // Scan the operand lists looking for X and -X pairs. If we find any, we
Benjamin Kramer49689442014-05-31 15:01:54 +00001400 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it,
1401 // scan for any
Chris Lattner60b71b52009-12-31 19:24:52 +00001402 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Benjamin Kramer49689442014-05-31 15:01:54 +00001403
Chris Lattner5f8a0052009-12-31 07:59:34 +00001404 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner60b71b52009-12-31 19:24:52 +00001405 Value *TheOp = Ops[i].Op;
1406 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattner60c2ca72009-12-31 19:49:01 +00001407 // instances of the operand together. Due to our sorting criteria, we know
1408 // that these need to be next to each other in the vector.
1409 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1410 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner60b71b52009-12-31 19:24:52 +00001411 unsigned NumFound = 0;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001412 do {
1413 Ops.erase(Ops.begin()+i);
Chris Lattner60b71b52009-12-31 19:24:52 +00001414 ++NumFound;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001415 } while (i != Ops.size() && Ops[i].Op == TheOp);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001416
Chad Rosier78943bc2014-12-12 14:44:12 +00001417 DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
Chris Lattner60b71b52009-12-31 19:24:52 +00001418 ++NumFactor;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001419
Chris Lattner60b71b52009-12-31 19:24:52 +00001420 // Insert a new multiply.
Chad Rosier11ab9412014-08-14 15:23:01 +00001421 Type *Ty = TheOp->getType();
Robert Lougher1858ba72015-03-13 20:53:01 +00001422 Constant *C = Ty->isIntOrIntVectorTy() ?
1423 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
Chad Rosier11ab9412014-08-14 15:23:01 +00001424 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001425
Chris Lattner60b71b52009-12-31 19:24:52 +00001426 // Now that we have inserted a multiply, optimize it. This allows us to
1427 // handle cases that require multiple factoring steps, such as this:
1428 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
Chad Rosier11ab9412014-08-14 15:23:01 +00001429 RedoInsts.insert(Mul);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001430
Chris Lattner60b71b52009-12-31 19:24:52 +00001431 // If every add operand was a duplicate, return the multiply.
1432 if (Ops.empty())
1433 return Mul;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001434
Chris Lattner60b71b52009-12-31 19:24:52 +00001435 // Otherwise, we had some input that didn't have the dupe, such as
1436 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1437 // things being added by this operation.
1438 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001439
Chris Lattner60c2ca72009-12-31 19:49:01 +00001440 --i;
1441 e = Ops.size();
1442 continue;
Chris Lattner60b71b52009-12-31 19:24:52 +00001443 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001444
Benjamin Kramer49689442014-05-31 15:01:54 +00001445 // Check for X and -X or X and ~X in the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001446 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
1447 !BinaryOperator::isNot(TheOp))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001448 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001449
Benjamin Kramer49689442014-05-31 15:01:54 +00001450 Value *X = nullptr;
Chad Rosier11ab9412014-08-14 15:23:01 +00001451 if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
Benjamin Kramer49689442014-05-31 15:01:54 +00001452 X = BinaryOperator::getNegArgument(TheOp);
1453 else if (BinaryOperator::isNot(TheOp))
1454 X = BinaryOperator::getNotArgument(TheOp);
1455
Chris Lattner5f8a0052009-12-31 07:59:34 +00001456 unsigned FoundX = FindInOperandList(Ops, i, X);
1457 if (FoundX == i)
1458 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001459
Chris Lattner5f8a0052009-12-31 07:59:34 +00001460 // Remove X and -X from the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001461 if (Ops.size() == 2 &&
1462 (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001463 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001464
Benjamin Kramer49689442014-05-31 15:01:54 +00001465 // Remove X and ~X from the operand list.
1466 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
1467 return Constant::getAllOnesValue(X->getType());
1468
Chris Lattner5f8a0052009-12-31 07:59:34 +00001469 Ops.erase(Ops.begin()+i);
1470 if (i < FoundX)
1471 --FoundX;
1472 else
1473 --i; // Need to back up an extra one.
1474 Ops.erase(Ops.begin()+FoundX);
1475 ++NumAnnihil;
1476 --i; // Revisit element.
1477 e -= 2; // Removed two elements.
Benjamin Kramer49689442014-05-31 15:01:54 +00001478
1479 // if X and ~X we append -1 to the operand list.
1480 if (BinaryOperator::isNot(TheOp)) {
1481 Value *V = Constant::getAllOnesValue(X->getType());
1482 Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1483 e += 1;
1484 }
Chris Lattner5f8a0052009-12-31 07:59:34 +00001485 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001486
Chris Lattner177140a2009-12-31 18:17:13 +00001487 // Scan the operand list, checking to see if there are any common factors
1488 // between operands. Consider something like A*A+A*B*C+D. We would like to
1489 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1490 // To efficiently find this, we count the number of times a factor occurs
1491 // for any ADD operands that are MULs.
1492 DenseMap<Value*, unsigned> FactorOccurrences;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001493
Chris Lattner177140a2009-12-31 18:17:13 +00001494 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1495 // where they are actually the same multiply.
Chris Lattner177140a2009-12-31 18:17:13 +00001496 unsigned MaxOcc = 0;
Craig Topperf40110f2014-04-25 05:29:35 +00001497 Value *MaxOccVal = nullptr;
Chris Lattner177140a2009-12-31 18:17:13 +00001498 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001499 BinaryOperator *BOp =
1500 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001501 if (!BOp)
Chris Lattner177140a2009-12-31 18:17:13 +00001502 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001503
Chris Lattner177140a2009-12-31 18:17:13 +00001504 // Compute all of the factors of this added value.
1505 SmallVector<Value*, 8> Factors;
Chad Rosiere22c9922017-02-08 17:45:27 +00001506 FindSingleUseMultiplyFactors(BOp, Factors);
Chris Lattner177140a2009-12-31 18:17:13 +00001507 assert(Factors.size() > 1 && "Bad linearize!");
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001508
Chris Lattner177140a2009-12-31 18:17:13 +00001509 // Add one to FactorOccurrences for each unique factor in this op.
Chris Lattner0c59ac32010-01-01 01:13:15 +00001510 SmallPtrSet<Value*, 8> Duplicates;
1511 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1512 Value *Factor = Factors[i];
David Blaikie70573dc2014-11-19 07:49:26 +00001513 if (!Duplicates.insert(Factor).second)
Chad Rosier11ab9412014-08-14 15:23:01 +00001514 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001515
Chris Lattner0c59ac32010-01-01 01:13:15 +00001516 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001517 if (Occ > MaxOcc) {
1518 MaxOcc = Occ;
1519 MaxOccVal = Factor;
1520 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001521
Chris Lattner0c59ac32010-01-01 01:13:15 +00001522 // If Factor is a negative constant, add the negated value as a factor
1523 // because we can percolate the negate out. Watch for minint, which
1524 // cannot be positivified.
Chad Rosier11ab9412014-08-14 15:23:01 +00001525 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
Chris Lattnerb1a15122011-07-15 06:08:15 +00001526 if (CI->isNegative() && !CI->isMinValue(true)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001527 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
Chad Rosier95abfa32017-02-23 18:49:03 +00001528 if (!Duplicates.insert(Factor).second)
1529 continue;
Chris Lattner0c59ac32010-01-01 01:13:15 +00001530 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001531 if (Occ > MaxOcc) {
1532 MaxOcc = Occ;
1533 MaxOccVal = Factor;
1534 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001535 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001536 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1537 if (CF->isNegative()) {
1538 APFloat F(CF->getValueAPF());
1539 F.changeSign();
1540 Factor = ConstantFP::get(CF->getContext(), F);
Chad Rosier95abfa32017-02-23 18:49:03 +00001541 if (!Duplicates.insert(Factor).second)
1542 continue;
Chad Rosier11ab9412014-08-14 15:23:01 +00001543 unsigned Occ = ++FactorOccurrences[Factor];
1544 if (Occ > MaxOcc) {
1545 MaxOcc = Occ;
1546 MaxOccVal = Factor;
1547 }
1548 }
1549 }
Chris Lattner177140a2009-12-31 18:17:13 +00001550 }
1551 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001552
Chris Lattner177140a2009-12-31 18:17:13 +00001553 // If any factor occurred more than one time, we can pull it out.
1554 if (MaxOcc > 1) {
Chad Rosier78943bc2014-12-12 14:44:12 +00001555 DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
Chris Lattner177140a2009-12-31 18:17:13 +00001556 ++NumFactor;
1557
1558 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1559 // this, we could otherwise run into situations where removing a factor
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001560 // from an expression will drop a use of maxocc, and this can cause
Chris Lattner177140a2009-12-31 18:17:13 +00001561 // RemoveFactorFromExpression on successive values to behave differently.
Chad Rosier11ab9412014-08-14 15:23:01 +00001562 Instruction *DummyInst =
Robert Lougher1858ba72015-03-13 20:53:01 +00001563 I->getType()->isIntOrIntVectorTy()
Chad Rosier11ab9412014-08-14 15:23:01 +00001564 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1565 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1566
Sanjoy Dase6bca0e2017-05-01 17:07:49 +00001567 SmallVector<WeakTrackingVH, 4> NewMulOps;
Duncan Sands69bdb582011-01-26 10:08:38 +00001568 for (unsigned i = 0; i != Ops.size(); ++i) {
Chris Lattnerab7087a2010-01-09 06:01:36 +00001569 // Only try to remove factors from expressions we're allowed to.
Chad Rosier11ab9412014-08-14 15:23:01 +00001570 BinaryOperator *BOp =
1571 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001572 if (!BOp)
Chris Lattnerab7087a2010-01-09 06:01:36 +00001573 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001574
Chris Lattner177140a2009-12-31 18:17:13 +00001575 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
Duncan Sands69bdb582011-01-26 10:08:38 +00001576 // The factorized operand may occur several times. Convert them all in
1577 // one fell swoop.
1578 for (unsigned j = Ops.size(); j != i;) {
1579 --j;
1580 if (Ops[j].Op == Ops[i].Op) {
1581 NewMulOps.push_back(V);
1582 Ops.erase(Ops.begin()+j);
1583 }
1584 }
1585 --i;
Chris Lattner177140a2009-12-31 18:17:13 +00001586 }
1587 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001588
Chris Lattner177140a2009-12-31 18:17:13 +00001589 // No need for extra uses anymore.
Reid Kleckner96ab8722017-05-18 17:24:10 +00001590 DummyInst->deleteValue();
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001591
Chris Lattner177140a2009-12-31 18:17:13 +00001592 unsigned NumAddedValues = NewMulOps.size();
1593 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001594
Chris Lattner60b71b52009-12-31 19:24:52 +00001595 // Now that we have inserted the add tree, optimize it. This allows us to
1596 // handle cases that require multiple factoring steps, such as this:
Chris Lattner177140a2009-12-31 18:17:13 +00001597 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattnerac615502009-12-31 18:18:46 +00001598 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001599 (void)NumAddedValues;
Duncan Sands3293f462012-06-08 20:15:33 +00001600 if (Instruction *VI = dyn_cast<Instruction>(V))
1601 RedoInsts.insert(VI);
Chris Lattner60b71b52009-12-31 19:24:52 +00001602
1603 // Create the multiply.
Chad Rosier11ab9412014-08-14 15:23:01 +00001604 Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I);
Chris Lattner60b71b52009-12-31 19:24:52 +00001605
Chris Lattner60c2ca72009-12-31 19:49:01 +00001606 // Rerun associate on the multiply in case the inner expression turned into
1607 // a multiply. We want to make sure that we keep things in canonical form.
Duncan Sands3293f462012-06-08 20:15:33 +00001608 RedoInsts.insert(V2);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001609
Chris Lattner177140a2009-12-31 18:17:13 +00001610 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1611 // entire result expression is just the multiply "A*(B+C)".
1612 if (Ops.empty())
1613 return V2;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001614
Chris Lattnerac615502009-12-31 18:18:46 +00001615 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner177140a2009-12-31 18:17:13 +00001616 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattnerac615502009-12-31 18:18:46 +00001617 // things being added by this operation.
Chris Lattner177140a2009-12-31 18:17:13 +00001618 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1619 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001620
Craig Topperf40110f2014-04-25 05:29:35 +00001621 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001622}
Chris Lattner4c065092006-03-04 09:31:13 +00001623
Chandler Carruth739ef802012-04-26 05:30:30 +00001624/// \brief Build up a vector of value/power pairs factoring a product.
1625///
1626/// Given a series of multiplication operands, build a vector of factors and
1627/// the powers each is raised to when forming the final product. Sort them in
1628/// the order of descending power.
1629///
1630/// (x*x) -> [(x, 2)]
1631/// ((x*x)*x) -> [(x, 3)]
1632/// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1633///
1634/// \returns Whether any factors have a power greater than one.
Craig Topper43507342017-06-19 16:23:43 +00001635static bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1636 SmallVectorImpl<Factor> &Factors) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001637 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1638 // Compute the sum of powers of simplifiable factors.
Chandler Carruth739ef802012-04-26 05:30:30 +00001639 unsigned FactorPowerSum = 0;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001640 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1641 Value *Op = Ops[Idx-1].Op;
1642
1643 // Count the number of occurrences of this value.
1644 unsigned Count = 1;
1645 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1646 ++Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001647 // Track for simplification all factors which occur 2 or more times.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001648 if (Count > 1)
1649 FactorPowerSum += Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001650 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001651
Chandler Carruth739ef802012-04-26 05:30:30 +00001652 // We can only simplify factors if the sum of the powers of our simplifiable
1653 // factors is 4 or higher. When that is the case, we will *always* have
1654 // a simplification. This is an important invariant to prevent cyclicly
1655 // trying to simplify already minimal formations.
1656 if (FactorPowerSum < 4)
1657 return false;
1658
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001659 // Now gather the simplifiable factors, removing them from Ops.
1660 FactorPowerSum = 0;
1661 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1662 Value *Op = Ops[Idx-1].Op;
Chandler Carruth739ef802012-04-26 05:30:30 +00001663
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001664 // Count the number of occurrences of this value.
1665 unsigned Count = 1;
1666 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1667 ++Count;
1668 if (Count == 1)
1669 continue;
Benjamin Kramerbde91762012-06-02 10:20:22 +00001670 // Move an even number of occurrences to Factors.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001671 Count &= ~1U;
1672 Idx -= Count;
1673 FactorPowerSum += Count;
1674 Factors.push_back(Factor(Op, Count));
1675 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
Chandler Carruth739ef802012-04-26 05:30:30 +00001676 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001677
Chandler Carruth739ef802012-04-26 05:30:30 +00001678 // None of the adjustments above should have reduced the sum of factor powers
1679 // below our mininum of '4'.
1680 assert(FactorPowerSum >= 4);
1681
Justin Bogner90744d22016-04-26 22:22:18 +00001682 std::stable_sort(Factors.begin(), Factors.end(),
1683 [](const Factor &LHS, const Factor &RHS) {
1684 return LHS.Power > RHS.Power;
1685 });
Chandler Carruth739ef802012-04-26 05:30:30 +00001686 return true;
1687}
1688
1689/// \brief Build a tree of multiplies, computing the product of Ops.
1690static Value *buildMultiplyTree(IRBuilder<> &Builder,
1691 SmallVectorImpl<Value*> &Ops) {
1692 if (Ops.size() == 1)
1693 return Ops.back();
1694
1695 Value *LHS = Ops.pop_back_val();
1696 do {
Robert Lougher1858ba72015-03-13 20:53:01 +00001697 if (LHS->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +00001698 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1699 else
1700 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
Chandler Carruth739ef802012-04-26 05:30:30 +00001701 } while (!Ops.empty());
1702
1703 return LHS;
1704}
1705
1706/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1707///
1708/// Given a vector of values raised to various powers, where no two values are
1709/// equal and the powers are sorted in decreasing order, compute the minimal
1710/// DAG of multiplies to compute the final product, and return that product
1711/// value.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001712Value *
1713ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1714 SmallVectorImpl<Factor> &Factors) {
Chandler Carruth739ef802012-04-26 05:30:30 +00001715 assert(Factors[0].Power);
1716 SmallVector<Value *, 4> OuterProduct;
1717 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1718 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1719 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1720 LastIdx = Idx;
1721 continue;
1722 }
1723
1724 // We want to multiply across all the factors with the same power so that
1725 // we can raise them to that power as a single entity. Build a mini tree
1726 // for that.
1727 SmallVector<Value *, 4> InnerProduct;
1728 InnerProduct.push_back(Factors[LastIdx].Base);
1729 do {
1730 InnerProduct.push_back(Factors[Idx].Base);
1731 ++Idx;
1732 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1733
1734 // Reset the base value of the first factor to the new expression tree.
1735 // We'll remove all the factors with the same power in a second pass.
Duncan Sands3293f462012-06-08 20:15:33 +00001736 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1737 if (Instruction *MI = dyn_cast<Instruction>(M))
1738 RedoInsts.insert(MI);
Chandler Carruth739ef802012-04-26 05:30:30 +00001739
1740 LastIdx = Idx;
1741 }
1742 // Unique factors with equal powers -- we've folded them into the first one's
1743 // base.
1744 Factors.erase(std::unique(Factors.begin(), Factors.end(),
Justin Bogner90744d22016-04-26 22:22:18 +00001745 [](const Factor &LHS, const Factor &RHS) {
1746 return LHS.Power == RHS.Power;
1747 }),
Chandler Carruth739ef802012-04-26 05:30:30 +00001748 Factors.end());
1749
1750 // Iteratively collect the base of each factor with an add power into the
1751 // outer product, and halve each power in preparation for squaring the
1752 // expression.
1753 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1754 if (Factors[Idx].Power & 1)
1755 OuterProduct.push_back(Factors[Idx].Base);
1756 Factors[Idx].Power >>= 1;
1757 }
1758 if (Factors[0].Power) {
1759 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1760 OuterProduct.push_back(SquareRoot);
1761 OuterProduct.push_back(SquareRoot);
1762 }
1763 if (OuterProduct.size() == 1)
1764 return OuterProduct.front();
1765
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001766 Value *V = buildMultiplyTree(Builder, OuterProduct);
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001767 return V;
Chandler Carruth739ef802012-04-26 05:30:30 +00001768}
1769
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001770Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
1771 SmallVectorImpl<ValueEntry> &Ops) {
Chandler Carruth739ef802012-04-26 05:30:30 +00001772 // We can only optimize the multiplies when there is a chain of more than
1773 // three, such that a balanced tree might require fewer total multiplies.
1774 if (Ops.size() < 4)
Craig Topperf40110f2014-04-25 05:29:35 +00001775 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001776
1777 // Try to turn linear trees of multiplies without other uses of the
1778 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1779 // re-use.
1780 SmallVector<Factor, 4> Factors;
1781 if (!collectMultiplyFactors(Ops, Factors))
Craig Topperf40110f2014-04-25 05:29:35 +00001782 return nullptr; // All distinct factors, so nothing left for us to do.
Chandler Carruth739ef802012-04-26 05:30:30 +00001783
1784 IRBuilder<> Builder(I);
Vyacheslav Klochkov68a677a2016-11-22 20:23:04 +00001785 // The reassociate transformation for FP operations is performed only
1786 // if unsafe algebra is permitted by FastMathFlags. Propagate those flags
1787 // to the newly generated operations.
1788 if (auto FPI = dyn_cast<FPMathOperator>(I))
1789 Builder.setFastMathFlags(FPI->getFastMathFlags());
1790
Chandler Carruth739ef802012-04-26 05:30:30 +00001791 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1792 if (Ops.empty())
1793 return V;
1794
1795 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1796 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
Craig Topperf40110f2014-04-25 05:29:35 +00001797 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001798}
1799
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001800Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
1801 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere1850b82005-05-08 00:19:31 +00001802 // Now that we have the linearized expression tree, try to optimize it.
1803 // Start by folding any constants that we found.
Craig Topperf40110f2014-04-25 05:29:35 +00001804 Constant *Cst = nullptr;
Chris Lattner4c065092006-03-04 09:31:13 +00001805 unsigned Opcode = I->getOpcode();
Duncan Sandsac852c72012-11-15 09:58:38 +00001806 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1807 Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1808 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1809 }
1810 // If there was nothing but constants then we are done.
1811 if (Ops.empty())
1812 return Cst;
1813
1814 // Put the combined constant back at the end of the operand list, except if
1815 // there is no point. For example, an add of 0 gets dropped here, while a
1816 // multiplication by zero turns the whole expression into zero.
1817 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1818 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1819 return Cst;
1820 Ops.push_back(ValueEntry(0, Cst));
1821 }
1822
1823 if (Ops.size() == 1) return Ops[0].Op;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001824
Chris Lattner9039ff82009-12-31 07:33:14 +00001825 // Handle destructive annihilation due to identities between elements in the
Chris Lattnere1850b82005-05-08 00:19:31 +00001826 // argument list here.
Chandler Carruth739ef802012-04-26 05:30:30 +00001827 unsigned NumOps = Ops.size();
Chris Lattner5847e5e2005-05-08 18:59:37 +00001828 switch (Opcode) {
1829 default: break;
1830 case Instruction::And:
1831 case Instruction::Or:
Chris Lattner5f8a0052009-12-31 07:59:34 +00001832 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1833 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001834 break;
1835
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001836 case Instruction::Xor:
1837 if (Value *Result = OptimizeXor(I, Ops))
1838 return Result;
1839 break;
1840
Chandler Carruth739ef802012-04-26 05:30:30 +00001841 case Instruction::Add:
Chad Rosier11ab9412014-08-14 15:23:01 +00001842 case Instruction::FAdd:
Chris Lattner177140a2009-12-31 18:17:13 +00001843 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001844 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001845 break;
Chandler Carruth739ef802012-04-26 05:30:30 +00001846
1847 case Instruction::Mul:
Chad Rosier11ab9412014-08-14 15:23:01 +00001848 case Instruction::FMul:
Chandler Carruth739ef802012-04-26 05:30:30 +00001849 if (Value *Result = OptimizeMul(I, Ops))
1850 return Result;
1851 break;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001852 }
1853
Duncan Sands3293f462012-06-08 20:15:33 +00001854 if (Ops.size() != NumOps)
Chris Lattner4c065092006-03-04 09:31:13 +00001855 return OptimizeExpression(I, Ops);
Craig Topperf40110f2014-04-25 05:29:35 +00001856 return nullptr;
Chris Lattnere1850b82005-05-08 00:19:31 +00001857}
1858
Aditya Nandakumar12d06042016-01-04 19:48:14 +00001859// Remove dead instructions and if any operands are trivially dead add them to
1860// Insts so they will be removed as well.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001861void ReassociatePass::RecursivelyEraseDeadInsts(
Aditya Nandakumar12d06042016-01-04 19:48:14 +00001862 Instruction *I, SetVector<AssertingVH<Instruction>> &Insts) {
1863 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1864 SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end());
1865 ValueRankMap.erase(I);
1866 Insts.remove(I);
1867 RedoInsts.remove(I);
1868 I->eraseFromParent();
1869 for (auto Op : Ops)
1870 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1871 if (OpInst->use_empty())
1872 Insts.insert(OpInst);
1873}
1874
Sanjay Patelc96ee082015-04-22 18:04:46 +00001875/// Zap the given instruction, adding interesting operands to the work list.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001876void ReassociatePass::EraseInst(Instruction *I) {
Duncan Sands3293f462012-06-08 20:15:33 +00001877 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
Chad Rosier27ac0d82016-08-30 13:58:35 +00001878 DEBUG(dbgs() << "Erasing dead inst: "; I->dump());
1879
Duncan Sands3293f462012-06-08 20:15:33 +00001880 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1881 // Erase the dead instruction.
1882 ValueRankMap.erase(I);
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001883 RedoInsts.remove(I);
Duncan Sands3293f462012-06-08 20:15:33 +00001884 I->eraseFromParent();
1885 // Optimize its operands.
Duncan Sands78386032012-06-15 08:37:50 +00001886 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
Duncan Sands3293f462012-06-08 20:15:33 +00001887 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1888 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1889 // If this is a node in an expression tree, climb to the expression root
1890 // and add that since that's where optimization actually happens.
1891 unsigned Opcode = Op->getOpcode();
Chandler Carruthcdf47882014-03-09 03:16:01 +00001892 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
David Blaikie70573dc2014-11-19 07:49:26 +00001893 Visited.insert(Op).second)
Chandler Carruthcdf47882014-03-09 03:16:01 +00001894 Op = Op->user_back();
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001895 RedoInsts.insert(Op);
Duncan Sands3293f462012-06-08 20:15:33 +00001896 }
1897}
1898
Chad Rosier094ac772014-11-11 22:58:35 +00001899// Canonicalize expressions of the following form:
1900// x + (-Constant * y) -> x - (Constant * y)
1901// x - (-Constant * y) -> x + (Constant * y)
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001902Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) {
Chad Rosier094ac772014-11-11 22:58:35 +00001903 if (!I->hasOneUse() || I->getType()->isVectorTy())
1904 return nullptr;
1905
David Majnemer587336d2015-05-28 06:16:39 +00001906 // Must be a fmul or fdiv instruction.
Chad Rosier094ac772014-11-11 22:58:35 +00001907 unsigned Opcode = I->getOpcode();
David Majnemer587336d2015-05-28 06:16:39 +00001908 if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv)
Chad Rosier094ac772014-11-11 22:58:35 +00001909 return nullptr;
1910
David Majnemer587336d2015-05-28 06:16:39 +00001911 auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
1912 auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
1913
1914 // Both operands are constant, let it get constant folded away.
1915 if (C0 && C1)
Chad Rosier094ac772014-11-11 22:58:35 +00001916 return nullptr;
1917
David Majnemer587336d2015-05-28 06:16:39 +00001918 ConstantFP *CF = C0 ? C0 : C1;
1919
1920 // Must have one constant operand.
1921 if (!CF)
1922 return nullptr;
1923
1924 // Must be a negative ConstantFP.
1925 if (!CF->isNegative())
Chad Rosier094ac772014-11-11 22:58:35 +00001926 return nullptr;
1927
1928 // User must be a binary operator with one or more uses.
1929 Instruction *User = I->user_back();
Davide Italiano79eb3b02017-05-16 22:38:40 +00001930 if (!isa<BinaryOperator>(User) || User->use_empty())
Chad Rosier094ac772014-11-11 22:58:35 +00001931 return nullptr;
1932
1933 unsigned UserOpcode = User->getOpcode();
David Majnemer587336d2015-05-28 06:16:39 +00001934 if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub)
Chad Rosier094ac772014-11-11 22:58:35 +00001935 return nullptr;
1936
1937 // Subtraction is not commutative. Explicitly, the following transform is
1938 // not valid: (-Constant * y) - x -> x + (Constant * y)
1939 if (!User->isCommutative() && User->getOperand(1) != I)
1940 return nullptr;
1941
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001942 // Change the sign of the constant.
David Majnemer587336d2015-05-28 06:16:39 +00001943 APFloat Val = CF->getValueAPF();
1944 Val.changeSign();
1945 I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val));
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001946
Chad Rosier094ac772014-11-11 22:58:35 +00001947 // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
1948 // ((-Const*y) + x) -> (x + (-Const*y)).
1949 if (User->getOperand(0) == I && User->isCommutative())
1950 cast<BinaryOperator>(User)->swapOperands();
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001951
Chad Rosier094ac772014-11-11 22:58:35 +00001952 Value *Op0 = User->getOperand(0);
1953 Value *Op1 = User->getOperand(1);
1954 BinaryOperator *NI;
David Majnemer587336d2015-05-28 06:16:39 +00001955 switch (UserOpcode) {
Chad Rosier094ac772014-11-11 22:58:35 +00001956 default:
1957 llvm_unreachable("Unexpected Opcode!");
Chad Rosier094ac772014-11-11 22:58:35 +00001958 case Instruction::FAdd:
1959 NI = BinaryOperator::CreateFSub(Op0, Op1);
1960 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1961 break;
1962 case Instruction::FSub:
1963 NI = BinaryOperator::CreateFAdd(Op0, Op1);
1964 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1965 break;
1966 }
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001967
Chad Rosier094ac772014-11-11 22:58:35 +00001968 NI->insertBefore(User);
1969 NI->setName(User->getName());
1970 User->replaceAllUsesWith(NI);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001971 NI->setDebugLoc(I->getDebugLoc());
Chad Rosier094ac772014-11-11 22:58:35 +00001972 RedoInsts.insert(I);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001973 MadeChange = true;
Chad Rosier094ac772014-11-11 22:58:35 +00001974 return NI;
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001975}
1976
Sanjay Patelc96ee082015-04-22 18:04:46 +00001977/// Inspect and optimize the given instruction. Note that erasing
Duncan Sands3293f462012-06-08 20:15:33 +00001978/// instructions is not allowed.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001979void ReassociatePass::OptimizeInst(Instruction *I) {
Duncan Sands3293f462012-06-08 20:15:33 +00001980 // Only consider operations that we understand.
1981 if (!isa<BinaryOperator>(I))
1982 return;
1983
Chad Rosier11ab9412014-08-14 15:23:01 +00001984 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
Duncan Sands3293f462012-06-08 20:15:33 +00001985 // If an operand of this shift is a reassociable multiply, or if the shift
1986 // is used by a reassociable multiply or add, turn into a multiply.
1987 if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
1988 (I->hasOneUse() &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00001989 (isReassociableOp(I->user_back(), Instruction::Mul) ||
1990 isReassociableOp(I->user_back(), Instruction::Add)))) {
Duncan Sands3293f462012-06-08 20:15:33 +00001991 Instruction *NI = ConvertShiftToMul(I);
1992 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00001993 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00001994 I = NI;
Chris Lattner877b1142005-05-08 21:28:52 +00001995 }
Chris Lattner8fdf75c2002-10-31 17:12:59 +00001996
Chad Rosier094ac772014-11-11 22:58:35 +00001997 // Canonicalize negative constants out of expressions.
1998 if (Instruction *Res = canonicalizeNegConstExpr(I))
1999 I = Res;
2000
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002001 // Commute binary operators, to canonicalize the order of their operands.
2002 // This can potentially expose more CSE opportunities, and makes writing other
2003 // transformations simpler.
2004 if (I->isCommutative())
2005 canonicalizeOperands(I);
Chad Rosier11ab9412014-08-14 15:23:01 +00002006
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002007 // Don't optimize floating point instructions that don't have unsafe algebra.
Owen Anderson630077e2015-11-20 08:16:13 +00002008 if (I->getType()->isFPOrFPVectorTy() && !I->hasUnsafeAlgebra())
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002009 return;
Owen Andersonf4f80e12012-05-07 20:47:23 +00002010
Dan Gohman1c6c3482011-04-12 00:11:56 +00002011 // Do not reassociate boolean (i1) expressions. We want to preserve the
2012 // original order of evaluation for short-circuited comparisons that
2013 // SimplifyCFG has folded to AND/OR expressions. If the expression
2014 // is not further optimized, it is likely to be transformed back to a
2015 // short-circuited form for code gen, and the source order may have been
2016 // optimized for the most likely conditions.
Duncan Sands3293f462012-06-08 20:15:33 +00002017 if (I->getType()->isIntegerTy(1))
Dan Gohman1c6c3482011-04-12 00:11:56 +00002018 return;
Chris Lattner7bc532d2002-05-16 04:37:07 +00002019
Dan Gohman1c6c3482011-04-12 00:11:56 +00002020 // If this is a subtract instruction which is not already in negate form,
2021 // see if we can convert it to X+-Y.
Duncan Sands3293f462012-06-08 20:15:33 +00002022 if (I->getOpcode() == Instruction::Sub) {
2023 if (ShouldBreakUpSubtract(I)) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002024 Instruction *NI = BreakUpSubtract(I, RedoInsts);
Duncan Sands3293f462012-06-08 20:15:33 +00002025 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002026 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002027 I = NI;
2028 } else if (BinaryOperator::isNeg(I)) {
Dan Gohman1c6c3482011-04-12 00:11:56 +00002029 // Otherwise, this is a negation. See if the operand is a multiply tree
2030 // and if this is not an inner node of a multiply tree.
Duncan Sands3293f462012-06-08 20:15:33 +00002031 if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2032 (!I->hasOneUse() ||
Chandler Carruthcdf47882014-03-09 03:16:01 +00002033 !isReassociableOp(I->user_back(), Instruction::Mul))) {
Duncan Sands3293f462012-06-08 20:15:33 +00002034 Instruction *NI = LowerNegateToMultiply(I);
Owen Anderson2de9f542015-11-16 18:07:30 +00002035 // If the negate was simplified, revisit the users to see if we can
2036 // reassociate further.
2037 for (User *U : NI->users()) {
2038 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2039 RedoInsts.insert(Tmp);
2040 }
Duncan Sands3293f462012-06-08 20:15:33 +00002041 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002042 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002043 I = NI;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002044 }
2045 }
Chad Rosier11ab9412014-08-14 15:23:01 +00002046 } else if (I->getOpcode() == Instruction::FSub) {
2047 if (ShouldBreakUpSubtract(I)) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002048 Instruction *NI = BreakUpSubtract(I, RedoInsts);
Chad Rosier11ab9412014-08-14 15:23:01 +00002049 RedoInsts.insert(I);
2050 MadeChange = true;
2051 I = NI;
2052 } else if (BinaryOperator::isFNeg(I)) {
2053 // Otherwise, this is a negation. See if the operand is a multiply tree
2054 // and if this is not an inner node of a multiply tree.
2055 if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
2056 (!I->hasOneUse() ||
2057 !isReassociableOp(I->user_back(), Instruction::FMul))) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002058 // If the negate was simplified, revisit the users to see if we can
2059 // reassociate further.
Chad Rosier11ab9412014-08-14 15:23:01 +00002060 Instruction *NI = LowerNegateToMultiply(I);
Owen Anderson2de9f542015-11-16 18:07:30 +00002061 for (User *U : NI->users()) {
2062 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2063 RedoInsts.insert(Tmp);
2064 }
Chad Rosier11ab9412014-08-14 15:23:01 +00002065 RedoInsts.insert(I);
2066 MadeChange = true;
2067 I = NI;
2068 }
2069 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002070 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002071
Duncan Sands3293f462012-06-08 20:15:33 +00002072 // If this instruction is an associative binary operator, process it.
2073 if (!I->isAssociative()) return;
2074 BinaryOperator *BO = cast<BinaryOperator>(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002075
2076 // If this is an interior node of a reassociable tree, ignore it until we
2077 // get to the root of the tree, to avoid N^2 analysis.
Nadav Rotem10888112012-07-23 13:44:15 +00002078 unsigned Opcode = BO->getOpcode();
Owen Anderson2de9f542015-11-16 18:07:30 +00002079 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2080 // During the initial run we will get to the root of the tree.
2081 // But if we get here while we are redoing instructions, there is no
2082 // guarantee that the root will be visited. So Redo later
Aditya Nandakumarf94c1492016-01-07 23:22:55 +00002083 if (BO->user_back() != BO &&
2084 BO->getParent() == BO->user_back()->getParent())
Owen Anderson2de9f542015-11-16 18:07:30 +00002085 RedoInsts.insert(BO->user_back());
Dan Gohman1c6c3482011-04-12 00:11:56 +00002086 return;
Owen Anderson2de9f542015-11-16 18:07:30 +00002087 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002088
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002089 // If this is an add tree that is used by a sub instruction, ignore it
Dan Gohman1c6c3482011-04-12 00:11:56 +00002090 // until we process the subtract.
Duncan Sands3293f462012-06-08 20:15:33 +00002091 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00002092 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
Dan Gohman1c6c3482011-04-12 00:11:56 +00002093 return;
Chad Rosier11ab9412014-08-14 15:23:01 +00002094 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2095 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2096 return;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002097
Duncan Sands3293f462012-06-08 20:15:33 +00002098 ReassociateExpression(BO);
Chris Lattner2fc319d2006-03-14 07:11:11 +00002099}
Chris Lattner1e506502005-05-07 21:59:39 +00002100
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002101void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
Chris Lattner60b71b52009-12-31 19:24:52 +00002102 // First, walk the expression tree, linearizing the tree, collecting the
2103 // operand information.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002104 SmallVector<RepeatedValue, 8> Tree;
2105 MadeChange |= LinearizeExprTree(I, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00002106 SmallVector<ValueEntry, 8> Ops;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002107 Ops.reserve(Tree.size());
2108 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2109 RepeatedValue E = Tree[i];
2110 Ops.append(E.second.getZExtValue(),
2111 ValueEntry(getRank(E.first), E.first));
2112 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002113
Duncan Sandsc94ac6f2012-05-26 07:47:48 +00002114 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2115
Chris Lattner2fc319d2006-03-14 07:11:11 +00002116 // Now that we have linearized the tree to a list and have gathered all of
2117 // the operands and their ranks, sort the operands by their rank. Use a
2118 // stable_sort so that values with equal ranks will have their relative
2119 // positions maintained (and so the compiler is deterministic). Note that
2120 // this sorts so that the highest ranking values end up at the beginning of
2121 // the vector.
2122 std::stable_sort(Ops.begin(), Ops.end());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002123
Sanjay Patelc96ee082015-04-22 18:04:46 +00002124 // Now that we have the expression tree in a convenient
Chris Lattner2fc319d2006-03-14 07:11:11 +00002125 // sorted form, optimize it globally if possible.
2126 if (Value *V = OptimizeExpression(I, Ops)) {
Duncan Sands78386032012-06-15 08:37:50 +00002127 if (V == I)
2128 // Self-referential expression in unreachable code.
2129 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002130 // This expression tree simplified to something that isn't a tree,
2131 // eliminate it.
David Greened17c3912010-01-05 01:27:24 +00002132 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner2fc319d2006-03-14 07:11:11 +00002133 I->replaceAllUsesWith(V);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002134 if (Instruction *VI = dyn_cast<Instruction>(V))
2135 VI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002136 RedoInsts.insert(I);
Chris Lattnerba1f36a2009-12-31 17:51:05 +00002137 ++NumAnnihil;
Duncan Sands78386032012-06-15 08:37:50 +00002138 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002139 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002140
Chris Lattner2fc319d2006-03-14 07:11:11 +00002141 // We want to sink immediates as deeply as possible except in the case where
2142 // this is a multiply tree used only by an add, and the immediate is a -1.
2143 // In this case we reassociate to put the negation on the outside so that we
2144 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
Chad Rosier11ab9412014-08-14 15:23:01 +00002145 if (I->hasOneUse()) {
2146 if (I->getOpcode() == Instruction::Mul &&
2147 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2148 isa<ConstantInt>(Ops.back().Op) &&
2149 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
2150 ValueEntry Tmp = Ops.pop_back_val();
2151 Ops.insert(Ops.begin(), Tmp);
2152 } else if (I->getOpcode() == Instruction::FMul &&
2153 cast<Instruction>(I->user_back())->getOpcode() ==
2154 Instruction::FAdd &&
2155 isa<ConstantFP>(Ops.back().Op) &&
2156 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2157 ValueEntry Tmp = Ops.pop_back_val();
2158 Ops.insert(Ops.begin(), Tmp);
2159 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002160 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002161
David Greened17c3912010-01-05 01:27:24 +00002162 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002163
Chris Lattner2fc319d2006-03-14 07:11:11 +00002164 if (Ops.size() == 1) {
Duncan Sands78386032012-06-15 08:37:50 +00002165 if (Ops[0].Op == I)
2166 // Self-referential expression in unreachable code.
2167 return;
2168
Chris Lattner2fc319d2006-03-14 07:11:11 +00002169 // This expression tree simplified to something that isn't a tree,
2170 // eliminate it.
2171 I->replaceAllUsesWith(Ops[0].Op);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002172 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2173 OI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002174 RedoInsts.insert(I);
Duncan Sands78386032012-06-15 08:37:50 +00002175 return;
Chris Lattnerc0f58002002-05-08 22:19:27 +00002176 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002177
Chris Lattner60b71b52009-12-31 19:24:52 +00002178 // Now that we ordered and optimized the expressions, splat them back into
2179 // the expression tree, removing any unneeded nodes.
2180 RewriteExprTree(I, Ops);
Chris Lattnerc0f58002002-05-08 22:19:27 +00002181}
2182
Chandler Carruth164a2aa62016-06-17 00:11:01 +00002183PreservedAnalyses ReassociatePass::run(Function &F, FunctionAnalysisManager &) {
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +00002184 // Get the functions basic blocks in Reverse Post Order. This order is used by
2185 // BuildRankMap to pre calculate ranks correctly. It also excludes dead basic
2186 // blocks (it has been seen that the analysis in this pass could hang when
2187 // analysing dead basic blocks).
2188 ReversePostOrderTraversal<Function *> RPOT(&F);
2189
Chad Rosierea7e4642016-08-17 15:54:39 +00002190 // Calculate the rank map for F.
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +00002191 BuildRankMap(F, RPOT);
Chris Lattnerc0f58002002-05-08 22:19:27 +00002192
Chris Lattner1e506502005-05-07 21:59:39 +00002193 MadeChange = false;
Bjorn Pettersson7424c8c2016-11-02 08:55:19 +00002194 // Traverse the same blocks that was analysed by BuildRankMap.
2195 for (BasicBlock *BI : RPOT) {
2196 assert(RankMap.count(&*BI) && "BB should be ranked.");
Duncan Sands3293f462012-06-08 20:15:33 +00002197 // Optimize every instruction in the basic block.
Chad Rosierea7e4642016-08-17 15:54:39 +00002198 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;)
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002199 if (isInstructionTriviallyDead(&*II)) {
2200 EraseInst(&*II++);
Duncan Sands3293f462012-06-08 20:15:33 +00002201 } else {
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002202 OptimizeInst(&*II);
Duncan P. N. Exon Smithe9bc5792016-02-21 20:39:50 +00002203 assert(II->getParent() == &*BI && "Moved to a different block!");
Duncan Sands3293f462012-06-08 20:15:33 +00002204 ++II;
2205 }
Duncan Sands9a5cf922012-06-08 13:37:30 +00002206
Chad Rosierea7e4642016-08-17 15:54:39 +00002207 // Make a copy of all the instructions to be redone so we can remove dead
2208 // instructions.
2209 SetVector<AssertingVH<Instruction>> ToRedo(RedoInsts);
2210 // Iterate over all instructions to be reevaluated and remove trivially dead
2211 // instructions. If any operand of the trivially dead instruction becomes
2212 // dead mark it for deletion as well. Continue this process until all
2213 // trivially dead instructions have been removed.
2214 while (!ToRedo.empty()) {
2215 Instruction *I = ToRedo.pop_back_val();
Davide Italiano631cd272016-10-28 02:47:09 +00002216 if (isInstructionTriviallyDead(I)) {
Chad Rosierea7e4642016-08-17 15:54:39 +00002217 RecursivelyEraseDeadInsts(I, ToRedo);
Davide Italiano631cd272016-10-28 02:47:09 +00002218 MadeChange = true;
2219 }
Chad Rosierea7e4642016-08-17 15:54:39 +00002220 }
2221
2222 // Now that we have removed dead instructions, we can reoptimize the
2223 // remaining instructions.
2224 while (!RedoInsts.empty()) {
2225 Instruction *I = RedoInsts.pop_back_val();
2226 if (isInstructionTriviallyDead(I))
2227 EraseInst(I);
2228 else
2229 OptimizeInst(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002230 }
Duncan Sands3293f462012-06-08 20:15:33 +00002231 }
Chris Lattnerc0f58002002-05-08 22:19:27 +00002232
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00002233 // We are done with the rank map.
2234 RankMap.clear();
2235 ValueRankMap.clear();
2236
Davide Italiano39893bd2016-05-29 00:41:17 +00002237 if (MadeChange) {
Chandler Carruthca68a3e2017-01-15 06:32:49 +00002238 PreservedAnalyses PA;
2239 PA.preserveSet<CFGAnalyses>();
Davide Italiano39893bd2016-05-29 00:41:17 +00002240 PA.preserve<GlobalsAA>();
2241 return PA;
2242 }
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002243
2244 return PreservedAnalyses::all();
2245}
2246
2247namespace {
2248 class ReassociateLegacyPass : public FunctionPass {
2249 ReassociatePass Impl;
2250 public:
2251 static char ID; // Pass identification, replacement for typeid
2252 ReassociateLegacyPass() : FunctionPass(ID) {
2253 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2254 }
2255
2256 bool runOnFunction(Function &F) override {
2257 if (skipFunction(F))
2258 return false;
2259
Chandler Carruth164a2aa62016-06-17 00:11:01 +00002260 FunctionAnalysisManager DummyFAM;
2261 auto PA = Impl.run(F, DummyFAM);
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002262 return !PA.areAllPreserved();
2263 }
2264
2265 void getAnalysisUsage(AnalysisUsage &AU) const override {
2266 AU.setPreservesCFG();
2267 AU.addPreserved<GlobalsAAWrapperPass>();
2268 }
2269 };
2270}
2271
2272char ReassociateLegacyPass::ID = 0;
2273INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
2274 "Reassociate expressions", false, false)
2275
2276// Public interface to the Reassociate pass
2277FunctionPass *llvm::createReassociatePass() {
2278 return new ReassociateLegacyPass();
Chris Lattnerc0f58002002-05-08 22:19:27 +00002279}