blob: 75f646d1d43c6d410d2d65eca665f55a42bea333 [file] [log] [blame]
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerc0f58002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattnera5526832010-01-01 00:04:26 +000011// to promote better constant propagation, GCSE, LICM, PRE, etc.
Chris Lattnerc0f58002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattnerc0f58002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Justin Bognerc2bf63d2016-04-26 23:39:29 +000023#include "llvm/Transforms/Scalar/Reassociate.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000024#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/PostOrderIterator.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SetVector.h"
28#include "llvm/ADT/Statistic.h"
James Molloyefbba722015-09-10 10:22:12 +000029#include "llvm/Analysis/GlobalsModRef.h"
Quentin Colombet6443cce2015-08-06 18:44:34 +000030#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth1305dc32014-03-04 11:45:46 +000031#include "llvm/IR/CFG.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000032#include "llvm/IR/Constants.h"
33#include "llvm/IR/DerivedTypes.h"
34#include "llvm/IR/Function.h"
35#include "llvm/IR/IRBuilder.h"
36#include "llvm/IR/Instructions.h"
37#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth4220e9c2014-03-04 11:17:44 +000038#include "llvm/IR/ValueHandle.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000039#include "llvm/Pass.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000040#include "llvm/Support/Debug.h"
Chris Lattnerb25de3f2009-08-23 04:37:46 +000041#include "llvm/Support/raw_ostream.h"
Justin Bognerc2bf63d2016-04-26 23:39:29 +000042#include "llvm/Transforms/Scalar.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000043#include "llvm/Transforms/Utils/Local.h"
Chris Lattner1e506502005-05-07 21:59:39 +000044#include <algorithm>
Chris Lattner49525f82004-01-09 06:02:20 +000045using namespace llvm;
Justin Bognerc2bf63d2016-04-26 23:39:29 +000046using namespace reassociate;
Brian Gaeke960707c2003-11-11 22:41:34 +000047
Chandler Carruth964daaa2014-04-22 02:55:47 +000048#define DEBUG_TYPE "reassociate"
49
Chris Lattner79a42ac2006-12-19 21:40:18 +000050STATISTIC(NumChanged, "Number of insts reassociated");
51STATISTIC(NumAnnihil, "Number of expr tree annihilated");
52STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnerbf3a0992002-10-01 22:38:41 +000053
Devang Patel702f45d2008-11-21 21:00:20 +000054#ifndef NDEBUG
Sanjay Patelc96ee082015-04-22 18:04:46 +000055/// Print out the expression identified in the Ops list.
Chris Lattner4c065092006-03-04 09:31:13 +000056///
Chris Lattner38abecb2009-12-31 18:40:32 +000057static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Sanjay Patelaf674fb2015-12-14 17:24:23 +000058 Module *M = I->getModule();
David Greened17c3912010-01-05 01:27:24 +000059 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattnerbc1512c2009-12-31 07:17:37 +000060 << *Ops[0].Op->getType() << '\t';
Chris Lattner57693dd2008-08-19 04:45:19 +000061 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
David Greened17c3912010-01-05 01:27:24 +000062 dbgs() << "[ ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +000063 Ops[i].Op->printAsOperand(dbgs(), false, M);
David Greened17c3912010-01-05 01:27:24 +000064 dbgs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner57693dd2008-08-19 04:45:19 +000065 }
Chris Lattner4c065092006-03-04 09:31:13 +000066}
Devang Patelcb181bb2008-11-21 20:00:59 +000067#endif
Bill Wendlingc94d86c2012-05-02 23:43:23 +000068
Justin Bognerc2bf63d2016-04-26 23:39:29 +000069/// Utility class representing a non-constant Xor-operand. We classify
70/// non-constant Xor-Operands into two categories:
71/// C1) The operand is in the form "X & C", where C is a constant and C != ~0
72/// C2)
73/// C2.1) The operand is in the form of "X | C", where C is a non-zero
74/// constant.
75/// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
76/// operand as "E | 0"
77class llvm::reassociate::XorOpnd {
78public:
79 XorOpnd(Value *V);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +000080
Justin Bognerc2bf63d2016-04-26 23:39:29 +000081 bool isInvalid() const { return SymbolicPart == nullptr; }
82 bool isOrExpr() const { return isOr; }
83 Value *getValue() const { return OrigVal; }
84 Value *getSymbolicPart() const { return SymbolicPart; }
85 unsigned getSymbolicRank() const { return SymbolicRank; }
86 const APInt &getConstPart() const { return ConstPart; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +000087
Justin Bognerc2bf63d2016-04-26 23:39:29 +000088 void Invalidate() { SymbolicPart = OrigVal = nullptr; }
89 void setSymbolicRank(unsigned R) { SymbolicRank = R; }
Shuxin Yang7b0c94e2013-03-30 02:15:01 +000090
Justin Bognerc2bf63d2016-04-26 23:39:29 +000091private:
92 Value *OrigVal;
93 Value *SymbolicPart;
94 APInt ConstPart;
95 unsigned SymbolicRank;
96 bool isOr;
97};
Chris Lattnerc0f58002002-05-08 22:19:27 +000098
Shuxin Yang7b0c94e2013-03-30 02:15:01 +000099XorOpnd::XorOpnd(Value *V) {
Shuxin Yang6662fd02013-04-01 18:13:05 +0000100 assert(!isa<ConstantInt>(V) && "No ConstantInt");
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000101 OrigVal = V;
102 Instruction *I = dyn_cast<Instruction>(V);
103 SymbolicRank = 0;
104
105 if (I && (I->getOpcode() == Instruction::Or ||
106 I->getOpcode() == Instruction::And)) {
107 Value *V0 = I->getOperand(0);
108 Value *V1 = I->getOperand(1);
109 if (isa<ConstantInt>(V0))
110 std::swap(V0, V1);
111
112 if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
113 ConstPart = C->getValue();
114 SymbolicPart = V0;
115 isOr = (I->getOpcode() == Instruction::Or);
116 return;
117 }
118 }
119
120 // view the operand as "V | 0"
121 SymbolicPart = V;
122 ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
123 isOr = true;
124}
125
Sanjay Patelc96ee082015-04-22 18:04:46 +0000126/// Return true if V is an instruction of the specified opcode and if it
127/// only has one use.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000128static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
129 if (V->hasOneUse() && isa<Instruction>(V) &&
Chad Rosierac6a2f52014-11-06 16:46:37 +0000130 cast<Instruction>(V)->getOpcode() == Opcode &&
131 (!isa<FPMathOperator>(V) ||
132 cast<Instruction>(V)->hasUnsafeAlgebra()))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000133 return cast<BinaryOperator>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000134 return nullptr;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000135}
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000136
Chad Rosier11ab9412014-08-14 15:23:01 +0000137static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
138 unsigned Opcode2) {
139 if (V->hasOneUse() && isa<Instruction>(V) &&
140 (cast<Instruction>(V)->getOpcode() == Opcode1 ||
Chad Rosierac6a2f52014-11-06 16:46:37 +0000141 cast<Instruction>(V)->getOpcode() == Opcode2) &&
142 (!isa<FPMathOperator>(V) ||
143 cast<Instruction>(V)->hasUnsafeAlgebra()))
Chad Rosier11ab9412014-08-14 15:23:01 +0000144 return cast<BinaryOperator>(V);
145 return nullptr;
146}
147
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000148void ReassociatePass::BuildRankMap(
149 Function &F, ReversePostOrderTraversal<Function *> &RPOT) {
Chris Lattner58c7eb62003-08-12 20:14:27 +0000150 unsigned i = 2;
Chris Lattner8ac196d2003-08-13 16:16:26 +0000151
Chad Rosierf59e5482014-11-14 15:01:38 +0000152 // Assign distinct ranks to function arguments.
153 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
Chris Lattnerf72ce6e2009-03-31 22:13:29 +0000154 ValueRankMap[&*I] = ++i;
Chad Rosierf59e5482014-11-14 15:01:38 +0000155 DEBUG(dbgs() << "Calculated Rank[" << I->getName() << "] = " << i << "\n");
156 }
Chris Lattner8ac196d2003-08-13 16:16:26 +0000157
Chris Lattnerc0f58002002-05-08 22:19:27 +0000158 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9f284e02005-05-08 20:57:04 +0000159 E = RPOT.end(); I != E; ++I) {
160 BasicBlock *BB = *I;
161 unsigned BBRank = RankMap[BB] = ++i << 16;
162
163 // Walk the basic block, adding precomputed ranks for any instructions that
164 // we cannot move. This ensures that the ranks for these instructions are
165 // all different in the block.
166 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
Quentin Colombet6443cce2015-08-06 18:44:34 +0000167 if (mayBeMemoryDependent(*I))
Chris Lattnerf72ce6e2009-03-31 22:13:29 +0000168 ValueRankMap[&*I] = ++BBRank;
Chris Lattner9f284e02005-05-08 20:57:04 +0000169 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000170}
171
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000172unsigned ReassociatePass::getRank(Value *V) {
Chris Lattnerf43e9742005-05-07 04:08:02 +0000173 Instruction *I = dyn_cast<Instruction>(V);
Craig Topperf40110f2014-04-25 05:29:35 +0000174 if (!I) {
Chris Lattner17229a72010-01-01 00:01:34 +0000175 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
176 return 0; // Otherwise it's a global or constant, rank 0.
177 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000178
Chris Lattner17229a72010-01-01 00:01:34 +0000179 if (unsigned Rank = ValueRankMap[I])
180 return Rank; // Rank already known?
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000181
Chris Lattnerf43e9742005-05-07 04:08:02 +0000182 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
183 // we can reassociate expressions for code motion! Since we do not recurse
184 // for PHI nodes, we cannot have infinite recursion here, because there
185 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000186 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
187 for (unsigned i = 0, e = I->getNumOperands();
188 i != e && Rank != MaxRank; ++i)
189 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000190
Chris Lattner6e2086d2005-05-08 00:08:33 +0000191 // If this is a not or neg instruction, do not count it for rank. This
192 // assures us that X and ~X will have the same rank.
Robert Lougher1858ba72015-03-13 20:53:01 +0000193 if (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
194 !BinaryOperator::isFNeg(I))
Chris Lattner6e2086d2005-05-08 00:08:33 +0000195 ++Rank;
196
Chad Rosierf59e5482014-11-14 15:01:38 +0000197 DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n");
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000198
Chris Lattner17229a72010-01-01 00:01:34 +0000199 return ValueRankMap[I] = Rank;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000200}
201
Chad Rosier9a1ac6e2014-11-17 15:52:51 +0000202// Canonicalize constants to RHS. Otherwise, sort the operands by rank.
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000203void ReassociatePass::canonicalizeOperands(Instruction *I) {
Chad Rosierf8b55f12014-11-14 17:05:59 +0000204 assert(isa<BinaryOperator>(I) && "Expected binary operator.");
205 assert(I->isCommutative() && "Expected commutative operator.");
206
207 Value *LHS = I->getOperand(0);
208 Value *RHS = I->getOperand(1);
209 unsigned LHSRank = getRank(LHS);
210 unsigned RHSRank = getRank(RHS);
211
Chad Rosier9a1ac6e2014-11-17 15:52:51 +0000212 if (isa<Constant>(RHS))
213 return;
214
Chad Rosierf8b55f12014-11-14 17:05:59 +0000215 if (isa<Constant>(LHS) || RHSRank < LHSRank)
216 cast<BinaryOperator>(I)->swapOperands();
217}
218
Chad Rosier11ab9412014-08-14 15:23:01 +0000219static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
220 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000221 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000222 return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
223 else {
224 BinaryOperator *Res =
225 BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
226 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
227 return Res;
228 }
229}
230
231static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
232 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000233 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000234 return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
235 else {
236 BinaryOperator *Res =
237 BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
238 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
239 return Res;
240 }
241}
242
243static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
244 Instruction *InsertBefore, Value *FlagsOp) {
Robert Lougher1858ba72015-03-13 20:53:01 +0000245 if (S1->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000246 return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
247 else {
248 BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
249 Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
250 return Res;
251 }
252}
253
Sanjay Patelc96ee082015-04-22 18:04:46 +0000254/// Replace 0-X with X*-1.
Duncan Sands3293f462012-06-08 20:15:33 +0000255static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000256 Type *Ty = Neg->getType();
Robert Lougher1858ba72015-03-13 20:53:01 +0000257 Constant *NegOne = Ty->isIntOrIntVectorTy() ?
258 ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
Chris Lattner877b1142005-05-08 21:28:52 +0000259
Chad Rosier11ab9412014-08-14 15:23:01 +0000260 BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
261 Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +0000262 Res->takeName(Neg);
Chris Lattner877b1142005-05-08 21:28:52 +0000263 Neg->replaceAllUsesWith(Res);
Devang Patel80d1d3a2011-04-28 22:48:14 +0000264 Res->setDebugLoc(Neg->getDebugLoc());
Chris Lattner877b1142005-05-08 21:28:52 +0000265 return Res;
266}
267
Sanjay Patelc96ee082015-04-22 18:04:46 +0000268/// Returns k such that lambda(2^Bitwidth) = 2^k, where lambda is the Carmichael
269/// function. This means that x^(2^k) === 1 mod 2^Bitwidth for
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000270/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
271/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
272/// even x in Bitwidth-bit arithmetic.
273static unsigned CarmichaelShift(unsigned Bitwidth) {
274 if (Bitwidth < 3)
275 return Bitwidth - 1;
276 return Bitwidth - 2;
277}
278
Sanjay Patelc96ee082015-04-22 18:04:46 +0000279/// Add the extra weight 'RHS' to the existing weight 'LHS',
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000280/// reducing the combined weight using any special properties of the operation.
281/// The existing weight LHS represents the computation X op X op ... op X where
282/// X occurs LHS times. The combined weight represents X op X op ... op X with
283/// X occurring LHS + RHS times. If op is "Xor" for example then the combined
284/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
285/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
286static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
287 // If we were working with infinite precision arithmetic then the combined
288 // weight would be LHS + RHS. But we are using finite precision arithmetic,
289 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
290 // for nilpotent operations and addition, but not for idempotent operations
291 // and multiplication), so it is important to correctly reduce the combined
292 // weight back into range if wrapping would be wrong.
293
294 // If RHS is zero then the weight didn't change.
295 if (RHS.isMinValue())
296 return;
297 // If LHS is zero then the combined weight is RHS.
298 if (LHS.isMinValue()) {
299 LHS = RHS;
300 return;
301 }
302 // From this point on we know that neither LHS nor RHS is zero.
303
304 if (Instruction::isIdempotent(Opcode)) {
305 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
306 // weight of 1. Keeping weights at zero or one also means that wrapping is
307 // not a problem.
308 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
309 return; // Return a weight of 1.
310 }
311 if (Instruction::isNilpotent(Opcode)) {
312 // Nilpotent means X op X === 0, so reduce weights modulo 2.
313 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
314 LHS = 0; // 1 + 1 === 0 modulo 2.
315 return;
316 }
Chad Rosier11ab9412014-08-14 15:23:01 +0000317 if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000318 // TODO: Reduce the weight by exploiting nsw/nuw?
319 LHS += RHS;
320 return;
321 }
322
Chad Rosier11ab9412014-08-14 15:23:01 +0000323 assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
324 "Unknown associative operation!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000325 unsigned Bitwidth = LHS.getBitWidth();
326 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
327 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
328 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
329 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
330 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
331 // which by a happy accident means that they can always be represented using
332 // Bitwidth bits.
333 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
334 // the Carmichael number).
335 if (Bitwidth > 3) {
336 /// CM - The value of Carmichael's lambda function.
337 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
338 // Any weight W >= Threshold can be replaced with W - CM.
339 APInt Threshold = CM + Bitwidth;
340 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
341 // For Bitwidth 4 or more the following sum does not overflow.
342 LHS += RHS;
343 while (LHS.uge(Threshold))
344 LHS -= CM;
345 } else {
346 // To avoid problems with overflow do everything the same as above but using
347 // a larger type.
348 unsigned CM = 1U << CarmichaelShift(Bitwidth);
349 unsigned Threshold = CM + Bitwidth;
350 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
351 "Weights not reduced!");
352 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
353 while (Total >= Threshold)
354 Total -= CM;
355 LHS = Total;
356 }
357}
358
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000359typedef std::pair<Value*, APInt> RepeatedValue;
360
Sanjay Patelc96ee082015-04-22 18:04:46 +0000361/// Given an associative binary expression, return the leaf
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000362/// nodes in Ops along with their weights (how many times the leaf occurs). The
363/// original expression is the same as
364/// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
Nadav Rotem465834c2012-07-24 10:51:42 +0000365/// op
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000366/// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
367/// op
368/// ...
369/// op
370/// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
371///
Duncan Sandsac852c72012-11-15 09:58:38 +0000372/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000373///
374/// This routine may modify the function, in which case it returns 'true'. The
375/// changes it makes may well be destructive, changing the value computed by 'I'
376/// to something completely different. Thus if the routine returns 'true' then
377/// you MUST either replace I with a new expression computed from the Ops array,
378/// or use RewriteExprTree to put the values back in.
Chris Lattner1e506502005-05-07 21:59:39 +0000379///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000380/// A leaf node is either not a binary operation of the same kind as the root
381/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
382/// opcode), or is the same kind of binary operator but has a use which either
383/// does not belong to the expression, or does belong to the expression but is
384/// a leaf node. Every leaf node has at least one use that is a non-leaf node
385/// of the expression, while for non-leaf nodes (except for the root 'I') every
386/// use is a non-leaf node of the expression.
387///
388/// For example:
389/// expression graph node names
390///
391/// + | I
392/// / \ |
393/// + + | A, B
394/// / \ / \ |
395/// * + * | C, D, E
396/// / \ / \ / \ |
397/// + * | F, G
398///
399/// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000400/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000401///
402/// The expression is maximal: if some instruction is a binary operator of the
403/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
404/// then the instruction also belongs to the expression, is not a leaf node of
405/// it, and its operands also belong to the expression (but may be leaf nodes).
406///
407/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
408/// order to ensure that every non-root node in the expression has *exactly one*
409/// use by a non-leaf node of the expression. This destruction means that the
Duncan Sands3c05cd32012-05-26 16:42:52 +0000410/// caller MUST either replace 'I' with a new expression or use something like
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000411/// RewriteExprTree to put the values back in if the routine indicates that it
412/// made a change by returning 'true'.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000413///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000414/// In the above example either the right operand of A or the left operand of B
415/// will be replaced by undef. If it is B's operand then this gives:
416///
417/// + | I
418/// / \ |
419/// + + | A, B - operand of B replaced with undef
420/// / \ \ |
421/// * + * | C, D, E
422/// / \ / \ / \ |
423/// + * | F, G
424///
Duncan Sands3c05cd32012-05-26 16:42:52 +0000425/// Note that such undef operands can only be reached by passing through 'I'.
426/// For example, if you visit operands recursively starting from a leaf node
427/// then you will never see such an undef operand unless you get back to 'I',
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000428/// which requires passing through a phi node.
429///
430/// Note that this routine may also mutate binary operators of the wrong type
431/// that have all uses inside the expression (i.e. only used by non-leaf nodes
432/// of the expression) if it can turn them into binary operators of the right
433/// type and thus make the expression bigger.
434
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000435static bool LinearizeExprTree(BinaryOperator *I,
436 SmallVectorImpl<RepeatedValue> &Ops) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000437 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000438 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
439 unsigned Opcode = I->getOpcode();
Chad Rosier11ab9412014-08-14 15:23:01 +0000440 assert(I->isAssociative() && I->isCommutative() &&
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000441 "Expected an associative and commutative operation!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000442
443 // Visit all operands of the expression, keeping track of their weight (the
444 // number of paths from the expression root to the operand, or if you like
445 // the number of times that operand occurs in the linearized expression).
446 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
447 // while A has weight two.
448
449 // Worklist of non-leaf nodes (their operands are in the expression too) along
450 // with their weights, representing a certain number of paths to the operator.
451 // If an operator occurs in the worklist multiple times then we found multiple
452 // ways to get to it.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000453 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
454 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000455 bool Changed = false;
Chris Lattner1e506502005-05-07 21:59:39 +0000456
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000457 // Leaves of the expression are values that either aren't the right kind of
458 // operation (eg: a constant, or a multiply in an add tree), or are, but have
459 // some uses that are not inside the expression. For example, in I = X + X,
460 // X = A + B, the value X has two uses (by I) that are in the expression. If
461 // X has any other uses, for example in a return instruction, then we consider
462 // X to be a leaf, and won't analyze it further. When we first visit a value,
463 // if it has more than one use then at first we conservatively consider it to
464 // be a leaf. Later, as the expression is explored, we may discover some more
465 // uses of the value from inside the expression. If all uses turn out to be
466 // from within the expression (and the value is a binary operator of the right
467 // kind) then the value is no longer considered to be a leaf, and its operands
468 // are explored.
Chris Lattner1e506502005-05-07 21:59:39 +0000469
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000470 // Leaves - Keeps track of the set of putative leaves as well as the number of
471 // paths to each leaf seen so far.
Duncan Sands72aea012012-06-12 20:26:43 +0000472 typedef DenseMap<Value*, APInt> LeafMap;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000473 LeafMap Leaves; // Leaf -> Total weight so far.
474 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
475
476#ifndef NDEBUG
477 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
478#endif
479 while (!Worklist.empty()) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000480 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000481 I = P.first; // We examine the operands of this binary operator.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000482
483 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
484 Value *Op = I->getOperand(OpIdx);
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000485 APInt Weight = P.second; // Number of paths to this operand.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000486 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
487 assert(!Op->use_empty() && "No uses, so how did we get to it?!");
488
489 // If this is a binary operation of the right kind with only one use then
490 // add its operands to the expression.
491 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
David Blaikie70573dc2014-11-19 07:49:26 +0000492 assert(Visited.insert(Op).second && "Not first visit!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000493 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
494 Worklist.push_back(std::make_pair(BO, Weight));
495 continue;
496 }
497
498 // Appears to be a leaf. Is the operand already in the set of leaves?
499 LeafMap::iterator It = Leaves.find(Op);
500 if (It == Leaves.end()) {
501 // Not in the leaf map. Must be the first time we saw this operand.
David Blaikie70573dc2014-11-19 07:49:26 +0000502 assert(Visited.insert(Op).second && "Not first visit!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000503 if (!Op->hasOneUse()) {
504 // This value has uses not accounted for by the expression, so it is
505 // not safe to modify. Mark it as being a leaf.
506 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
507 LeafOrder.push_back(Op);
508 Leaves[Op] = Weight;
509 continue;
510 }
511 // No uses outside the expression, try morphing it.
512 } else if (It != Leaves.end()) {
513 // Already in the leaf map.
514 assert(Visited.count(Op) && "In leaf map but not visited!");
515
516 // Update the number of paths to the leaf.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000517 IncorporateWeight(It->second, Weight, Opcode);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000518
Duncan Sands56514522012-07-26 09:26:40 +0000519#if 0 // TODO: Re-enable once PR13021 is fixed.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000520 // The leaf already has one use from inside the expression. As we want
521 // exactly one such use, drop this new use of the leaf.
522 assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
523 I->setOperand(OpIdx, UndefValue::get(I->getType()));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000524 Changed = true;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000525
526 // If the leaf is a binary operation of the right kind and we now see
527 // that its multiple original uses were in fact all by nodes belonging
528 // to the expression, then no longer consider it to be a leaf and add
529 // its operands to the expression.
530 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
531 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
532 Worklist.push_back(std::make_pair(BO, It->second));
533 Leaves.erase(It);
534 continue;
535 }
Duncan Sands56514522012-07-26 09:26:40 +0000536#endif
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000537
538 // If we still have uses that are not accounted for by the expression
539 // then it is not safe to modify the value.
540 if (!Op->hasOneUse())
541 continue;
542
543 // No uses outside the expression, try morphing it.
544 Weight = It->second;
545 Leaves.erase(It); // Since the value may be morphed below.
546 }
547
548 // At this point we have a value which, first of all, is not a binary
549 // expression of the right kind, and secondly, is only used inside the
550 // expression. This means that it can safely be modified. See if we
551 // can usefully morph it into an expression of the right kind.
552 assert((!isa<Instruction>(Op) ||
Chad Rosierac6a2f52014-11-06 16:46:37 +0000553 cast<Instruction>(Op)->getOpcode() != Opcode
554 || (isa<FPMathOperator>(Op) &&
555 !cast<Instruction>(Op)->hasUnsafeAlgebra())) &&
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000556 "Should have been handled above!");
557 assert(Op->hasOneUse() && "Has uses outside the expression tree!");
558
559 // If this is a multiply expression, turn any internal negations into
560 // multiplies by -1 so they can be reassociated.
Chad Rosier11ab9412014-08-14 15:23:01 +0000561 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
562 if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
563 (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
564 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
565 BO = LowerNegateToMultiply(BO);
566 DEBUG(dbgs() << *BO << '\n');
567 Worklist.push_back(std::make_pair(BO, Weight));
Chad Rosiere53e8c82014-11-18 20:21:54 +0000568 Changed = true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000569 continue;
570 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000571
572 // Failed to morph into an expression of the right type. This really is
573 // a leaf.
574 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
575 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
576 LeafOrder.push_back(Op);
577 Leaves[Op] = Weight;
Chris Lattner877b1142005-05-08 21:28:52 +0000578 }
579 }
580
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000581 // The leaves, repeated according to their weights, represent the linearized
582 // form of the expression.
583 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
584 Value *V = LeafOrder[i];
585 LeafMap::iterator It = Leaves.find(V);
586 if (It == Leaves.end())
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000587 // Node initially thought to be a leaf wasn't.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000588 continue;
589 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000590 APInt Weight = It->second;
591 if (Weight.isMinValue())
592 // Leaf already output or weight reduction eliminated it.
593 continue;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000594 // Ensure the leaf is only output once.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000595 It->second = 0;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000596 Ops.push_back(std::make_pair(V, Weight));
Chris Lattnerc0f58002002-05-08 22:19:27 +0000597 }
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000598
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000599 // For nilpotent operations or addition there may be no operands, for example
600 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
601 // in both cases the weight reduces to 0 causing the value to be skipped.
602 if (Ops.empty()) {
Duncan Sandsac852c72012-11-15 09:58:38 +0000603 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
Duncan Sands318a89d2012-06-13 09:42:13 +0000604 assert(Identity && "Associative operation without identity!");
Benjamin Kramerf5e2fc42015-05-29 19:43:39 +0000605 Ops.emplace_back(Identity, APInt(Bitwidth, 1));
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000606 }
607
Chad Rosiere53e8c82014-11-18 20:21:54 +0000608 return Changed;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000609}
610
Sanjay Patelc96ee082015-04-22 18:04:46 +0000611/// Now that the operands for this expression tree are
612/// linearized and optimized, emit them in-order.
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000613void ReassociatePass::RewriteExprTree(BinaryOperator *I,
614 SmallVectorImpl<ValueEntry> &Ops) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000615 assert(Ops.size() > 1 && "Single values should be used directly!");
Dan Gohman08d2c982011-02-02 02:02:34 +0000616
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000617 // Since our optimizations should never increase the number of operations, the
618 // new expression can usually be written reusing the existing binary operators
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000619 // from the original expression tree, without creating any new instructions,
620 // though the rewritten expression may have a completely different topology.
621 // We take care to not change anything if the new expression will be the same
622 // as the original. If more than trivial changes (like commuting operands)
623 // were made then we are obliged to clear out any optional subclass data like
624 // nsw flags.
Dan Gohman08d2c982011-02-02 02:02:34 +0000625
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000626 /// NodesToRewrite - Nodes from the original expression available for writing
627 /// the new expression into.
628 SmallVector<BinaryOperator*, 8> NodesToRewrite;
629 unsigned Opcode = I->getOpcode();
Duncan Sands98382862012-06-29 19:03:05 +0000630 BinaryOperator *Op = I;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000631
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000632 /// NotRewritable - The operands being written will be the leaves of the new
633 /// expression and must not be used as inner nodes (via NodesToRewrite) by
634 /// mistake. Inner nodes are always reassociable, and usually leaves are not
635 /// (if they were they would have been incorporated into the expression and so
636 /// would not be leaves), so most of the time there is no danger of this. But
637 /// in rare cases a leaf may become reassociable if an optimization kills uses
638 /// of it, or it may momentarily become reassociable during rewriting (below)
639 /// due it being removed as an operand of one of its uses. Ensure that misuse
640 /// of leaf nodes as inner nodes cannot occur by remembering all of the future
641 /// leaves and refusing to reuse any of them as inner nodes.
642 SmallPtrSet<Value*, 8> NotRewritable;
643 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
644 NotRewritable.insert(Ops[i].Op);
645
Duncan Sands3c05cd32012-05-26 16:42:52 +0000646 // ExpressionChanged - Non-null if the rewritten expression differs from the
647 // original in some non-trivial way, requiring the clearing of optional flags.
648 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
Craig Topperf40110f2014-04-25 05:29:35 +0000649 BinaryOperator *ExpressionChanged = nullptr;
Duncan Sands514db112012-06-27 14:19:00 +0000650 for (unsigned i = 0; ; ++i) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000651 // The last operation (which comes earliest in the IR) is special as both
652 // operands will come from Ops, rather than just one with the other being
653 // a subexpression.
654 if (i+2 == Ops.size()) {
655 Value *NewLHS = Ops[i].Op;
656 Value *NewRHS = Ops[i+1].Op;
657 Value *OldLHS = Op->getOperand(0);
658 Value *OldRHS = Op->getOperand(1);
659
Chad Rosier90a2f9b2014-11-19 23:21:20 +0000660 if (NewLHS == OldLHS && NewRHS == OldRHS)
661 // Nothing changed, leave it alone.
662 break;
663
664 if (NewLHS == OldRHS && NewRHS == OldLHS) {
665 // The order of the operands was reversed. Swap them.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000666 DEBUG(dbgs() << "RA: " << *Op << '\n');
Chad Rosier90a2f9b2014-11-19 23:21:20 +0000667 Op->swapOperands();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000668 DEBUG(dbgs() << "TO: " << *Op << '\n');
669 MadeChange = true;
670 ++NumChanged;
671 break;
672 }
673
674 // The new operation differs non-trivially from the original. Overwrite
675 // the old operands with the new ones.
676 DEBUG(dbgs() << "RA: " << *Op << '\n');
677 if (NewLHS != OldLHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000678 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
679 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000680 NodesToRewrite.push_back(BO);
681 Op->setOperand(0, NewLHS);
682 }
683 if (NewRHS != OldRHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000684 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
685 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000686 NodesToRewrite.push_back(BO);
687 Op->setOperand(1, NewRHS);
688 }
689 DEBUG(dbgs() << "TO: " << *Op << '\n');
690
Duncan Sands3c05cd32012-05-26 16:42:52 +0000691 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000692 MadeChange = true;
693 ++NumChanged;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000694
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000695 break;
Chris Lattner1e506502005-05-07 21:59:39 +0000696 }
Chris Lattner1e506502005-05-07 21:59:39 +0000697
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000698 // Not the last operation. The left-hand side will be a sub-expression
699 // while the right-hand side will be the current element of Ops.
700 Value *NewRHS = Ops[i].Op;
701 if (NewRHS != Op->getOperand(1)) {
702 DEBUG(dbgs() << "RA: " << *Op << '\n');
703 if (NewRHS == Op->getOperand(0)) {
704 // The new right-hand side was already present as the left operand. If
705 // we are lucky then swapping the operands will sort out both of them.
706 Op->swapOperands();
707 } else {
708 // Overwrite with the new right-hand side.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000709 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
710 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000711 NodesToRewrite.push_back(BO);
712 Op->setOperand(1, NewRHS);
Duncan Sands3c05cd32012-05-26 16:42:52 +0000713 ExpressionChanged = Op;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000714 }
715 DEBUG(dbgs() << "TO: " << *Op << '\n');
716 MadeChange = true;
717 ++NumChanged;
718 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000719
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000720 // Now deal with the left-hand side. If this is already an operation node
721 // from the original expression then just rewrite the rest of the expression
722 // into it.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000723 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
724 if (BO && !NotRewritable.count(BO)) {
Duncan Sands98382862012-06-29 19:03:05 +0000725 Op = BO;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000726 continue;
727 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000728
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000729 // Otherwise, grab a spare node from the original expression and use that as
Duncan Sands369c6d22012-06-29 13:25:06 +0000730 // the left-hand side. If there are no nodes left then the optimizers made
731 // an expression with more nodes than the original! This usually means that
732 // they did something stupid but it might mean that the problem was just too
733 // hard (finding the mimimal number of multiplications needed to realize a
734 // multiplication expression is NP-complete). Whatever the reason, smart or
735 // stupid, create a new node if there are none left.
Duncan Sands98382862012-06-29 19:03:05 +0000736 BinaryOperator *NewOp;
Duncan Sands369c6d22012-06-29 13:25:06 +0000737 if (NodesToRewrite.empty()) {
738 Constant *Undef = UndefValue::get(I->getType());
Duncan Sands98382862012-06-29 19:03:05 +0000739 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
740 Undef, Undef, "", I);
Robert Lougher1858ba72015-03-13 20:53:01 +0000741 if (NewOp->getType()->isFPOrFPVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +0000742 NewOp->setFastMathFlags(I->getFastMathFlags());
Duncan Sands98382862012-06-29 19:03:05 +0000743 } else {
744 NewOp = NodesToRewrite.pop_back_val();
Duncan Sands369c6d22012-06-29 13:25:06 +0000745 }
746
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000747 DEBUG(dbgs() << "RA: " << *Op << '\n');
Duncan Sands98382862012-06-29 19:03:05 +0000748 Op->setOperand(0, NewOp);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000749 DEBUG(dbgs() << "TO: " << *Op << '\n');
Duncan Sands3c05cd32012-05-26 16:42:52 +0000750 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000751 MadeChange = true;
752 ++NumChanged;
Duncan Sands98382862012-06-29 19:03:05 +0000753 Op = NewOp;
Chris Lattner1e506502005-05-07 21:59:39 +0000754 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000755
Duncan Sands3c05cd32012-05-26 16:42:52 +0000756 // If the expression changed non-trivially then clear out all subclass data
Duncan Sands514db112012-06-27 14:19:00 +0000757 // starting from the operator specified in ExpressionChanged, and compactify
758 // the operators to just before the expression root to guarantee that the
759 // expression tree is dominated by all of Ops.
760 if (ExpressionChanged)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000761 do {
Chad Rosier11ab9412014-08-14 15:23:01 +0000762 // Preserve FastMathFlags.
763 if (isa<FPMathOperator>(I)) {
764 FastMathFlags Flags = I->getFastMathFlags();
765 ExpressionChanged->clearSubclassOptionalData();
766 ExpressionChanged->setFastMathFlags(Flags);
767 } else
768 ExpressionChanged->clearSubclassOptionalData();
769
Duncan Sands3c05cd32012-05-26 16:42:52 +0000770 if (ExpressionChanged == I)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000771 break;
Duncan Sands514db112012-06-27 14:19:00 +0000772 ExpressionChanged->moveBefore(I);
Chandler Carruthcdf47882014-03-09 03:16:01 +0000773 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000774 } while (1);
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000775
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000776 // Throw away any left over nodes from the original expression.
777 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
Duncan Sands3293f462012-06-08 20:15:33 +0000778 RedoInsts.insert(NodesToRewrite[i]);
Chris Lattner1e506502005-05-07 21:59:39 +0000779}
780
Sanjay Patelc96ee082015-04-22 18:04:46 +0000781/// Insert instructions before the instruction pointed to by BI,
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000782/// that computes the negative version of the value specified. The negative
783/// version of the value is returned, and BI is left pointing at the instruction
784/// that should be processed next by the reassociation pass.
Owen Anderson2de9f542015-11-16 18:07:30 +0000785/// Also add intermediate instructions to the redo list that are modified while
786/// pushing the negates through adds. These will be revisited to see if
787/// additional opportunities have been exposed.
788static Value *NegateValue(Value *V, Instruction *BI,
789 SetVector<AssertingVH<Instruction>> &ToRedo) {
Mehdi Amini590a2702015-01-16 03:00:58 +0000790 if (Constant *C = dyn_cast<Constant>(V)) {
791 if (C->getType()->isFPOrFPVectorTy()) {
792 return ConstantExpr::getFNeg(C);
793 }
Chris Lattnerfed33972009-12-31 20:34:32 +0000794 return ConstantExpr::getNeg(C);
Mehdi Amini590a2702015-01-16 03:00:58 +0000795 }
796
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000797
Chris Lattner7bc532d2002-05-16 04:37:07 +0000798 // We are trying to expose opportunity for reassociation. One of the things
799 // that we want to do to achieve this is to push a negation as deep into an
800 // expression chain as possible, to expose the add instructions. In practice,
801 // this means that we turn this:
802 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
803 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
804 // the constants. We assume that instcombine will clean up the mess later if
Chris Lattnera5526832010-01-01 00:04:26 +0000805 // we introduce tons of unnecessary negation instructions.
Chris Lattner7bc532d2002-05-16 04:37:07 +0000806 //
Chad Rosier11ab9412014-08-14 15:23:01 +0000807 if (BinaryOperator *I =
808 isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000809 // Push the negates through the add.
Owen Anderson2de9f542015-11-16 18:07:30 +0000810 I->setOperand(0, NegateValue(I->getOperand(0), BI, ToRedo));
811 I->setOperand(1, NegateValue(I->getOperand(1), BI, ToRedo));
David Majnemerf6e500a2015-06-24 21:27:36 +0000812 if (I->getOpcode() == Instruction::Add) {
813 I->setHasNoUnsignedWrap(false);
814 I->setHasNoSignedWrap(false);
815 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000816
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000817 // We must move the add instruction here, because the neg instructions do
818 // not dominate the old add instruction in general. By moving it, we are
819 // assured that the neg instructions we just inserted dominate the
820 // instruction we are about to insert after them.
821 //
822 I->moveBefore(BI);
823 I->setName(I->getName()+".neg");
Owen Anderson2de9f542015-11-16 18:07:30 +0000824
825 // Add the intermediate negates to the redo list as processing them later
826 // could expose more reassociating opportunities.
827 ToRedo.insert(I);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000828 return I;
829 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000830
Chris Lattnerfed33972009-12-31 20:34:32 +0000831 // Okay, we need to materialize a negated version of V with an instruction.
832 // Scan the use lists of V to see if we have one already.
Chandler Carruthcdf47882014-03-09 03:16:01 +0000833 for (User *U : V->users()) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000834 if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
835 continue;
Chris Lattnerfed33972009-12-31 20:34:32 +0000836
837 // We found one! Now we have to make sure that the definition dominates
838 // this use. We do this by moving it to the entry block (if it is a
839 // non-instruction value) or right after the definition. These negates will
840 // be zapped by reassociate later, so we don't need much finesse here.
Gabor Greif782f6242010-07-12 12:03:02 +0000841 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
Chris Lattnere199d2d2010-01-02 21:46:33 +0000842
843 // Verify that the negate is in this function, V might be a constant expr.
844 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
845 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000846
Chris Lattnerfed33972009-12-31 20:34:32 +0000847 BasicBlock::iterator InsertPt;
848 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
849 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
850 InsertPt = II->getNormalDest()->begin();
851 } else {
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +0000852 InsertPt = ++InstInput->getIterator();
Chris Lattnerfed33972009-12-31 20:34:32 +0000853 }
854 while (isa<PHINode>(InsertPt)) ++InsertPt;
855 } else {
856 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
857 }
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +0000858 TheNeg->moveBefore(&*InsertPt);
David Majnemerf6e500a2015-06-24 21:27:36 +0000859 if (TheNeg->getOpcode() == Instruction::Sub) {
860 TheNeg->setHasNoUnsignedWrap(false);
861 TheNeg->setHasNoSignedWrap(false);
862 } else {
863 TheNeg->andIRFlags(BI);
864 }
Owen Anderson2de9f542015-11-16 18:07:30 +0000865 ToRedo.insert(TheNeg);
Chris Lattnerfed33972009-12-31 20:34:32 +0000866 return TheNeg;
867 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000868
869 // Insert a 'neg' instruction that subtracts the value from zero to get the
870 // negation.
Owen Anderson2de9f542015-11-16 18:07:30 +0000871 BinaryOperator *NewNeg = CreateNeg(V, V->getName() + ".neg", BI, BI);
872 ToRedo.insert(NewNeg);
873 return NewNeg;
Chris Lattnerf43e9742005-05-07 04:08:02 +0000874}
875
Sanjay Patelc96ee082015-04-22 18:04:46 +0000876/// Return true if we should break up this subtract of X-Y into (X + -Y).
Nick Lewycky7935bcb2009-11-14 07:25:54 +0000877static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner902537c2008-02-17 20:44:51 +0000878 // If this is a negation, we can't split it up!
Chad Rosier11ab9412014-08-14 15:23:01 +0000879 if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
Chris Lattner902537c2008-02-17 20:44:51 +0000880 return false;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000881
Chad Rosierbd64d462014-10-09 20:06:29 +0000882 // Don't breakup X - undef.
883 if (isa<UndefValue>(Sub->getOperand(1)))
884 return false;
885
Chris Lattner902537c2008-02-17 20:44:51 +0000886 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattnera70d1382008-02-17 20:51:26 +0000887 // subtract or if this is only used by one.
Chad Rosier11ab9412014-08-14 15:23:01 +0000888 Value *V0 = Sub->getOperand(0);
889 if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
890 isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +0000891 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000892 Value *V1 = Sub->getOperand(1);
893 if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
894 isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
Chris Lattner902537c2008-02-17 20:44:51 +0000895 return true;
Chad Rosier11ab9412014-08-14 15:23:01 +0000896 Value *VB = Sub->user_back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000897 if (Sub->hasOneUse() &&
Chad Rosier11ab9412014-08-14 15:23:01 +0000898 (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
899 isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
Chris Lattner902537c2008-02-17 20:44:51 +0000900 return true;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000901
Chris Lattner902537c2008-02-17 20:44:51 +0000902 return false;
903}
904
Sanjay Patelc96ee082015-04-22 18:04:46 +0000905/// If we have (X-Y), and if either X is an add, or if this is only used by an
906/// add, transform this into (X+(0-Y)) to promote better reassociation.
Owen Anderson2de9f542015-11-16 18:07:30 +0000907static BinaryOperator *
908BreakUpSubtract(Instruction *Sub, SetVector<AssertingVH<Instruction>> &ToRedo) {
Chris Lattnera5526832010-01-01 00:04:26 +0000909 // Convert a subtract into an add and a neg instruction. This allows sub
910 // instructions to be commuted with other add instructions.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000911 //
Chris Lattnera5526832010-01-01 00:04:26 +0000912 // Calculate the negative value of Operand 1 of the sub instruction,
913 // and set it as the RHS of the add instruction we just made.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000914 //
Owen Anderson2de9f542015-11-16 18:07:30 +0000915 Value *NegVal = NegateValue(Sub->getOperand(1), Sub, ToRedo);
Chad Rosier11ab9412014-08-14 15:23:01 +0000916 BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
Duncan Sands3293f462012-06-08 20:15:33 +0000917 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
918 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +0000919 New->takeName(Sub);
Chris Lattnerf43e9742005-05-07 04:08:02 +0000920
921 // Everyone now refers to the add instruction.
922 Sub->replaceAllUsesWith(New);
Devang Patel80d1d3a2011-04-28 22:48:14 +0000923 New->setDebugLoc(Sub->getDebugLoc());
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000924
David Greened17c3912010-01-05 01:27:24 +0000925 DEBUG(dbgs() << "Negated: " << *New << '\n');
Chris Lattnerf43e9742005-05-07 04:08:02 +0000926 return New;
Chris Lattner7bc532d2002-05-16 04:37:07 +0000927}
928
Sanjay Patelc96ee082015-04-22 18:04:46 +0000929/// If this is a shift of a reassociable multiply or is used by one, change
930/// this into a multiply by a constant to assist with further reassociation.
Duncan Sands3293f462012-06-08 20:15:33 +0000931static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
932 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
933 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000934
Duncan Sands3293f462012-06-08 20:15:33 +0000935 BinaryOperator *Mul =
936 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
937 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
938 Mul->takeName(Shl);
Chad Rosierb3eb4522014-11-07 22:12:57 +0000939
940 // Everyone now refers to the mul instruction.
Duncan Sands3293f462012-06-08 20:15:33 +0000941 Shl->replaceAllUsesWith(Mul);
942 Mul->setDebugLoc(Shl->getDebugLoc());
Chad Rosierb3eb4522014-11-07 22:12:57 +0000943
944 // We can safely preserve the nuw flag in all cases. It's also safe to turn a
945 // nuw nsw shl into a nuw nsw mul. However, nsw in isolation requires special
946 // handling.
947 bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
948 bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
949 if (NSW && NUW)
950 Mul->setHasNoSignedWrap(true);
951 Mul->setHasNoUnsignedWrap(NUW);
Duncan Sands3293f462012-06-08 20:15:33 +0000952 return Mul;
Chris Lattnercea57992005-05-07 04:24:13 +0000953}
954
Sanjay Patelc96ee082015-04-22 18:04:46 +0000955/// Scan backwards and forwards among values with the same rank as element i
956/// to see if X exists. If X does not exist, return i. This is useful when
957/// scanning for 'x' when we see '-x' because they both get the same rank.
Chris Lattner38abecb2009-12-31 18:40:32 +0000958static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
Chris Lattner5847e5e2005-05-08 18:59:37 +0000959 Value *X) {
960 unsigned XRank = Ops[i].Rank;
961 unsigned e = Ops.size();
Owen Anderson8373d332014-10-05 23:41:26 +0000962 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +0000963 if (Ops[j].Op == X)
964 return j;
Owen Anderson8373d332014-10-05 23:41:26 +0000965 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
966 if (Instruction *I2 = dyn_cast<Instruction>(X))
967 if (I1->isIdenticalTo(I2))
968 return j;
969 }
Chris Lattner0c59ac32010-01-01 01:13:15 +0000970 // Scan backwards.
Owen Anderson8373d332014-10-05 23:41:26 +0000971 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
Chris Lattner5847e5e2005-05-08 18:59:37 +0000972 if (Ops[j].Op == X)
973 return j;
Owen Anderson8373d332014-10-05 23:41:26 +0000974 if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
975 if (Instruction *I2 = dyn_cast<Instruction>(X))
976 if (I1->isIdenticalTo(I2))
977 return j;
978 }
Chris Lattner5847e5e2005-05-08 18:59:37 +0000979 return i;
980}
981
Sanjay Patelc96ee082015-04-22 18:04:46 +0000982/// Emit a tree of add instructions, summing Ops together
Chris Lattner4c065092006-03-04 09:31:13 +0000983/// and returning the result. Insert the tree before I.
Bill Wendling274ba892012-05-02 09:59:45 +0000984static Value *EmitAddTreeOfValues(Instruction *I,
985 SmallVectorImpl<WeakVH> &Ops){
Chris Lattner4c065092006-03-04 09:31:13 +0000986 if (Ops.size() == 1) return Ops.back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000987
Chris Lattner4c065092006-03-04 09:31:13 +0000988 Value *V1 = Ops.back();
989 Ops.pop_back();
990 Value *V2 = EmitAddTreeOfValues(I, Ops);
Chad Rosier11ab9412014-08-14 15:23:01 +0000991 return CreateAdd(V2, V1, "tmp", I, I);
Chris Lattner4c065092006-03-04 09:31:13 +0000992}
993
Sanjay Patelc96ee082015-04-22 18:04:46 +0000994/// If V is an expression tree that is a multiplication sequence,
995/// and if this sequence contains a multiply by Factor,
Chris Lattner4c065092006-03-04 09:31:13 +0000996/// remove Factor from the tree and return the new tree.
Justin Bognerc2bf63d2016-04-26 23:39:29 +0000997Value *ReassociatePass::RemoveFactorFromExpression(Value *V, Value *Factor) {
Chad Rosier11ab9412014-08-14 15:23:01 +0000998 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
999 if (!BO)
1000 return nullptr;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001001
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001002 SmallVector<RepeatedValue, 8> Tree;
1003 MadeChange |= LinearizeExprTree(BO, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00001004 SmallVector<ValueEntry, 8> Factors;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001005 Factors.reserve(Tree.size());
1006 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1007 RepeatedValue E = Tree[i];
1008 Factors.append(E.second.getZExtValue(),
1009 ValueEntry(getRank(E.first), E.first));
1010 }
Chris Lattner4c065092006-03-04 09:31:13 +00001011
1012 bool FoundFactor = false;
Chris Lattner0c59ac32010-01-01 01:13:15 +00001013 bool NeedsNegate = false;
1014 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Chris Lattner4c065092006-03-04 09:31:13 +00001015 if (Factors[i].Op == Factor) {
1016 FoundFactor = true;
1017 Factors.erase(Factors.begin()+i);
1018 break;
1019 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001020
Chris Lattner0c59ac32010-01-01 01:13:15 +00001021 // If this is a negative version of this factor, remove it.
Chad Rosier11ab9412014-08-14 15:23:01 +00001022 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001023 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1024 if (FC1->getValue() == -FC2->getValue()) {
1025 FoundFactor = NeedsNegate = true;
1026 Factors.erase(Factors.begin()+i);
1027 break;
1028 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001029 } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
1030 if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
1031 APFloat F1(FC1->getValueAPF());
1032 APFloat F2(FC2->getValueAPF());
1033 F2.changeSign();
1034 if (F1.compare(F2) == APFloat::cmpEqual) {
1035 FoundFactor = NeedsNegate = true;
1036 Factors.erase(Factors.begin() + i);
1037 break;
1038 }
1039 }
1040 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001041 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001042
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001043 if (!FoundFactor) {
1044 // Make sure to restore the operands to the expression tree.
1045 RewriteExprTree(BO, Factors);
Craig Topperf40110f2014-04-25 05:29:35 +00001046 return nullptr;
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001047 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001048
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001049 BasicBlock::iterator InsertPt = ++BO->getIterator();
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001050
Chris Lattner1d897942009-12-31 19:34:45 +00001051 // If this was just a single multiply, remove the multiply and return the only
1052 // remaining operand.
1053 if (Factors.size() == 1) {
Duncan Sands3293f462012-06-08 20:15:33 +00001054 RedoInsts.insert(BO);
Chris Lattner0c59ac32010-01-01 01:13:15 +00001055 V = Factors[0].Op;
1056 } else {
1057 RewriteExprTree(BO, Factors);
1058 V = BO;
Chris Lattner1d897942009-12-31 19:34:45 +00001059 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001060
Chris Lattner0c59ac32010-01-01 01:13:15 +00001061 if (NeedsNegate)
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00001062 V = CreateNeg(V, "neg", &*InsertPt, BO);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001063
Chris Lattner0c59ac32010-01-01 01:13:15 +00001064 return V;
Chris Lattner4c065092006-03-04 09:31:13 +00001065}
1066
Sanjay Patelc96ee082015-04-22 18:04:46 +00001067/// If V is a single-use multiply, recursively add its operands as factors,
1068/// otherwise add V to the list of factors.
Chris Lattnerc6c15232010-03-05 07:18:54 +00001069///
1070/// Ops is the top-level list of add operands we're trying to factor.
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001071static void FindSingleUseMultiplyFactors(Value *V,
Chris Lattnerc6c15232010-03-05 07:18:54 +00001072 SmallVectorImpl<Value*> &Factors,
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001073 const SmallVectorImpl<ValueEntry> &Ops) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001074 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001075 if (!BO) {
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001076 Factors.push_back(V);
1077 return;
1078 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001079
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001080 // Otherwise, add the LHS and RHS to the list of factors.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001081 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1082 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001083}
1084
Sanjay Patelc96ee082015-04-22 18:04:46 +00001085/// Optimize a series of operands to an 'and', 'or', or 'xor' instruction.
1086/// This optimizes based on identities. If it can be reduced to a single Value,
1087/// it is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner38abecb2009-12-31 18:40:32 +00001088static Value *OptimizeAndOrXor(unsigned Opcode,
1089 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001090 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1091 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1092 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1093 // First, check for X and ~X in the operand list.
1094 assert(i < Ops.size());
1095 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
1096 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1097 unsigned FoundX = FindInOperandList(Ops, i, X);
1098 if (FoundX != i) {
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001099 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattner5f8a0052009-12-31 07:59:34 +00001100 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001101
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001102 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattner5f8a0052009-12-31 07:59:34 +00001103 return Constant::getAllOnesValue(X->getType());
Chris Lattner5f8a0052009-12-31 07:59:34 +00001104 }
1105 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001106
Chris Lattner5f8a0052009-12-31 07:59:34 +00001107 // Next, check for duplicate pairs of values, which we assume are next to
1108 // each other, due to our sorting criteria.
1109 assert(i < Ops.size());
1110 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1111 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattner60c2ca72009-12-31 19:49:01 +00001112 // Drop duplicate values for And and Or.
Chris Lattner5f8a0052009-12-31 07:59:34 +00001113 Ops.erase(Ops.begin()+i);
1114 --i; --e;
1115 ++NumAnnihil;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001116 continue;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001117 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001118
Chris Lattner60c2ca72009-12-31 19:49:01 +00001119 // Drop pairs of values for Xor.
1120 assert(Opcode == Instruction::Xor);
1121 if (e == 2)
1122 return Constant::getNullValue(Ops[0].Op->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001123
Chris Lattnera5526832010-01-01 00:04:26 +00001124 // Y ^ X^X -> Y
Chris Lattner60c2ca72009-12-31 19:49:01 +00001125 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1126 i -= 1; e -= 2;
1127 ++NumAnnihil;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001128 }
1129 }
Craig Topperf40110f2014-04-25 05:29:35 +00001130 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001131}
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001132
Eric Christopherbfba5722015-12-16 23:10:53 +00001133/// Helper function of CombineXorOpnd(). It creates a bitwise-and
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001134/// instruction with the given two operands, and return the resulting
1135/// instruction. There are two special cases: 1) if the constant operand is 0,
1136/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1137/// be returned.
1138static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1139 const APInt &ConstOpnd) {
1140 if (ConstOpnd != 0) {
1141 if (!ConstOpnd.isAllOnesValue()) {
1142 LLVMContext &Ctx = Opnd->getType()->getContext();
1143 Instruction *I;
1144 I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
1145 "and.ra", InsertBefore);
1146 I->setDebugLoc(InsertBefore->getDebugLoc());
1147 return I;
1148 }
1149 return Opnd;
1150 }
Craig Topperf40110f2014-04-25 05:29:35 +00001151 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001152}
1153
1154// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1155// into "R ^ C", where C would be 0, and R is a symbolic value.
1156//
1157// If it was successful, true is returned, and the "R" and "C" is returned
1158// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1159// and both "Res" and "ConstOpnd" remain unchanged.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001160//
1161bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1162 APInt &ConstOpnd, Value *&Res) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001163 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1164 // = ((x | c1) ^ c1) ^ (c1 ^ c2)
1165 // = (x & ~c1) ^ (c1 ^ c2)
1166 // It is useful only when c1 == c2.
1167 if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
1168 if (!Opnd1->getValue()->hasOneUse())
1169 return false;
1170
1171 const APInt &C1 = Opnd1->getConstPart();
1172 if (C1 != ConstOpnd)
1173 return false;
1174
1175 Value *X = Opnd1->getSymbolicPart();
1176 Res = createAndInstr(I, X, ~C1);
1177 // ConstOpnd was C2, now C1 ^ C2.
1178 ConstOpnd ^= C1;
1179
1180 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1181 RedoInsts.insert(T);
1182 return true;
1183 }
1184 return false;
1185}
1186
1187
1188// Helper function of OptimizeXor(). It tries to simplify
1189// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1190// symbolic value.
1191//
1192// If it was successful, true is returned, and the "R" and "C" is returned
1193// via "Res" and "ConstOpnd", respectively (If the entire expression is
1194// evaluated to a constant, the Res is set to NULL); otherwise, false is
1195// returned, and both "Res" and "ConstOpnd" remain unchanged.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001196bool ReassociatePass::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1197 XorOpnd *Opnd2, APInt &ConstOpnd,
1198 Value *&Res) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001199 Value *X = Opnd1->getSymbolicPart();
1200 if (X != Opnd2->getSymbolicPart())
1201 return false;
1202
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001203 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1204 int DeadInstNum = 1;
1205 if (Opnd1->getValue()->hasOneUse())
1206 DeadInstNum++;
1207 if (Opnd2->getValue()->hasOneUse())
1208 DeadInstNum++;
1209
1210 // Xor-Rule 2:
1211 // (x | c1) ^ (x & c2)
1212 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1213 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
1214 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
1215 //
1216 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1217 if (Opnd2->isOrExpr())
1218 std::swap(Opnd1, Opnd2);
1219
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001220 const APInt &C1 = Opnd1->getConstPart();
1221 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001222 APInt C3((~C1) ^ C2);
1223
1224 // Do not increase code size!
1225 if (C3 != 0 && !C3.isAllOnesValue()) {
1226 int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1227 if (NewInstNum > DeadInstNum)
1228 return false;
1229 }
1230
1231 Res = createAndInstr(I, X, C3);
1232 ConstOpnd ^= C1;
1233
1234 } else if (Opnd1->isOrExpr()) {
1235 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1236 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001237 const APInt &C1 = Opnd1->getConstPart();
1238 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001239 APInt C3 = C1 ^ C2;
1240
1241 // Do not increase code size
1242 if (C3 != 0 && !C3.isAllOnesValue()) {
1243 int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1244 if (NewInstNum > DeadInstNum)
1245 return false;
1246 }
1247
1248 Res = createAndInstr(I, X, C3);
1249 ConstOpnd ^= C3;
1250 } else {
1251 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1252 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001253 const APInt &C1 = Opnd1->getConstPart();
1254 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001255 APInt C3 = C1 ^ C2;
1256 Res = createAndInstr(I, X, C3);
1257 }
1258
1259 // Put the original operands in the Redo list; hope they will be deleted
1260 // as dead code.
1261 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1262 RedoInsts.insert(T);
1263 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1264 RedoInsts.insert(T);
1265
1266 return true;
1267}
1268
1269/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1270/// to a single Value, it is returned, otherwise the Ops list is mutated as
1271/// necessary.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001272Value *ReassociatePass::OptimizeXor(Instruction *I,
1273 SmallVectorImpl<ValueEntry> &Ops) {
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001274 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1275 return V;
1276
1277 if (Ops.size() == 1)
Craig Topperf40110f2014-04-25 05:29:35 +00001278 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001279
1280 SmallVector<XorOpnd, 8> Opnds;
Shuxin Yang331f01d2013-04-08 22:00:43 +00001281 SmallVector<XorOpnd*, 8> OpndPtrs;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001282 Type *Ty = Ops[0].Op->getType();
1283 APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
1284
1285 // Step 1: Convert ValueEntry to XorOpnd
1286 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1287 Value *V = Ops[i].Op;
1288 if (!isa<ConstantInt>(V)) {
1289 XorOpnd O(V);
1290 O.setSymbolicRank(getRank(O.getSymbolicPart()));
1291 Opnds.push_back(O);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001292 } else
1293 ConstOpnd ^= cast<ConstantInt>(V)->getValue();
1294 }
1295
Shuxin Yang331f01d2013-04-08 22:00:43 +00001296 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1297 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1298 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1299 // with the previous loop --- the iterator of the "Opnds" may be invalidated
1300 // when new elements are added to the vector.
1301 for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1302 OpndPtrs.push_back(&Opnds[i]);
1303
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001304 // Step 2: Sort the Xor-Operands in a way such that the operands containing
1305 // the same symbolic value cluster together. For instance, the input operand
1306 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1307 // ("x | 123", "x & 789", "y & 456").
Justin Bognercb8a21c2016-04-26 23:32:00 +00001308 //
1309 // The purpose is twofold:
1310 // 1) Cluster together the operands sharing the same symbolic-value.
1311 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
1312 // could potentially shorten crital path, and expose more loop-invariants.
1313 // Note that values' rank are basically defined in RPO order (FIXME).
1314 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
1315 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
1316 // "z" in the order of X-Y-Z is better than any other orders.
1317 std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(),
1318 [](XorOpnd *LHS, XorOpnd *RHS) {
1319 return LHS->getSymbolicRank() < RHS->getSymbolicRank();
1320 });
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001321
1322 // Step 3: Combine adjacent operands
Craig Topperf40110f2014-04-25 05:29:35 +00001323 XorOpnd *PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001324 bool Changed = false;
1325 for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
Shuxin Yang331f01d2013-04-08 22:00:43 +00001326 XorOpnd *CurrOpnd = OpndPtrs[i];
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001327 // The combined value
1328 Value *CV;
1329
1330 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1331 if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1332 Changed = true;
1333 if (CV)
1334 *CurrOpnd = XorOpnd(CV);
1335 else {
1336 CurrOpnd->Invalidate();
1337 continue;
1338 }
1339 }
1340
1341 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1342 PrevOpnd = CurrOpnd;
1343 continue;
1344 }
1345
1346 // step 3.2: When previous and current operands share the same symbolic
1347 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1348 //
1349 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1350 // Remove previous operand
1351 PrevOpnd->Invalidate();
1352 if (CV) {
1353 *CurrOpnd = XorOpnd(CV);
1354 PrevOpnd = CurrOpnd;
1355 } else {
1356 CurrOpnd->Invalidate();
Craig Topperf40110f2014-04-25 05:29:35 +00001357 PrevOpnd = nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001358 }
1359 Changed = true;
1360 }
1361 }
1362
1363 // Step 4: Reassemble the Ops
1364 if (Changed) {
1365 Ops.clear();
1366 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1367 XorOpnd &O = Opnds[i];
1368 if (O.isInvalid())
1369 continue;
1370 ValueEntry VE(getRank(O.getValue()), O.getValue());
1371 Ops.push_back(VE);
1372 }
1373 if (ConstOpnd != 0) {
1374 Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
1375 ValueEntry VE(getRank(C), C);
1376 Ops.push_back(VE);
1377 }
1378 int Sz = Ops.size();
1379 if (Sz == 1)
1380 return Ops.back().Op;
1381 else if (Sz == 0) {
1382 assert(ConstOpnd == 0);
1383 return ConstantInt::get(Ty->getContext(), ConstOpnd);
1384 }
1385 }
1386
Craig Topperf40110f2014-04-25 05:29:35 +00001387 return nullptr;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001388}
1389
Sanjay Patelc96ee082015-04-22 18:04:46 +00001390/// Optimize a series of operands to an 'add' instruction. This
Chris Lattner5f8a0052009-12-31 07:59:34 +00001391/// optimizes based on identities. If it can be reduced to a single Value, it
1392/// is returned, otherwise the Ops list is mutated as necessary.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001393Value *ReassociatePass::OptimizeAdd(Instruction *I,
1394 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001395 // Scan the operand lists looking for X and -X pairs. If we find any, we
Benjamin Kramer49689442014-05-31 15:01:54 +00001396 // can simplify expressions like X+-X == 0 and X+~X ==-1. While we're at it,
1397 // scan for any
Chris Lattner60b71b52009-12-31 19:24:52 +00001398 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Benjamin Kramer49689442014-05-31 15:01:54 +00001399
Chris Lattner5f8a0052009-12-31 07:59:34 +00001400 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner60b71b52009-12-31 19:24:52 +00001401 Value *TheOp = Ops[i].Op;
1402 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattner60c2ca72009-12-31 19:49:01 +00001403 // instances of the operand together. Due to our sorting criteria, we know
1404 // that these need to be next to each other in the vector.
1405 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1406 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner60b71b52009-12-31 19:24:52 +00001407 unsigned NumFound = 0;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001408 do {
1409 Ops.erase(Ops.begin()+i);
Chris Lattner60b71b52009-12-31 19:24:52 +00001410 ++NumFound;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001411 } while (i != Ops.size() && Ops[i].Op == TheOp);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001412
Chad Rosier78943bc2014-12-12 14:44:12 +00001413 DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
Chris Lattner60b71b52009-12-31 19:24:52 +00001414 ++NumFactor;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001415
Chris Lattner60b71b52009-12-31 19:24:52 +00001416 // Insert a new multiply.
Chad Rosier11ab9412014-08-14 15:23:01 +00001417 Type *Ty = TheOp->getType();
Robert Lougher1858ba72015-03-13 20:53:01 +00001418 Constant *C = Ty->isIntOrIntVectorTy() ?
1419 ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
Chad Rosier11ab9412014-08-14 15:23:01 +00001420 Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001421
Chris Lattner60b71b52009-12-31 19:24:52 +00001422 // Now that we have inserted a multiply, optimize it. This allows us to
1423 // handle cases that require multiple factoring steps, such as this:
1424 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
Chad Rosier11ab9412014-08-14 15:23:01 +00001425 RedoInsts.insert(Mul);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001426
Chris Lattner60b71b52009-12-31 19:24:52 +00001427 // If every add operand was a duplicate, return the multiply.
1428 if (Ops.empty())
1429 return Mul;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001430
Chris Lattner60b71b52009-12-31 19:24:52 +00001431 // Otherwise, we had some input that didn't have the dupe, such as
1432 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1433 // things being added by this operation.
1434 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001435
Chris Lattner60c2ca72009-12-31 19:49:01 +00001436 --i;
1437 e = Ops.size();
1438 continue;
Chris Lattner60b71b52009-12-31 19:24:52 +00001439 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001440
Benjamin Kramer49689442014-05-31 15:01:54 +00001441 // Check for X and -X or X and ~X in the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001442 if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
1443 !BinaryOperator::isNot(TheOp))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001444 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001445
Benjamin Kramer49689442014-05-31 15:01:54 +00001446 Value *X = nullptr;
Chad Rosier11ab9412014-08-14 15:23:01 +00001447 if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
Benjamin Kramer49689442014-05-31 15:01:54 +00001448 X = BinaryOperator::getNegArgument(TheOp);
1449 else if (BinaryOperator::isNot(TheOp))
1450 X = BinaryOperator::getNotArgument(TheOp);
1451
Chris Lattner5f8a0052009-12-31 07:59:34 +00001452 unsigned FoundX = FindInOperandList(Ops, i, X);
1453 if (FoundX == i)
1454 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001455
Chris Lattner5f8a0052009-12-31 07:59:34 +00001456 // Remove X and -X from the operand list.
Chad Rosier11ab9412014-08-14 15:23:01 +00001457 if (Ops.size() == 2 &&
1458 (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001459 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001460
Benjamin Kramer49689442014-05-31 15:01:54 +00001461 // Remove X and ~X from the operand list.
1462 if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
1463 return Constant::getAllOnesValue(X->getType());
1464
Chris Lattner5f8a0052009-12-31 07:59:34 +00001465 Ops.erase(Ops.begin()+i);
1466 if (i < FoundX)
1467 --FoundX;
1468 else
1469 --i; // Need to back up an extra one.
1470 Ops.erase(Ops.begin()+FoundX);
1471 ++NumAnnihil;
1472 --i; // Revisit element.
1473 e -= 2; // Removed two elements.
Benjamin Kramer49689442014-05-31 15:01:54 +00001474
1475 // if X and ~X we append -1 to the operand list.
1476 if (BinaryOperator::isNot(TheOp)) {
1477 Value *V = Constant::getAllOnesValue(X->getType());
1478 Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
1479 e += 1;
1480 }
Chris Lattner5f8a0052009-12-31 07:59:34 +00001481 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001482
Chris Lattner177140a2009-12-31 18:17:13 +00001483 // Scan the operand list, checking to see if there are any common factors
1484 // between operands. Consider something like A*A+A*B*C+D. We would like to
1485 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1486 // To efficiently find this, we count the number of times a factor occurs
1487 // for any ADD operands that are MULs.
1488 DenseMap<Value*, unsigned> FactorOccurrences;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001489
Chris Lattner177140a2009-12-31 18:17:13 +00001490 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1491 // where they are actually the same multiply.
Chris Lattner177140a2009-12-31 18:17:13 +00001492 unsigned MaxOcc = 0;
Craig Topperf40110f2014-04-25 05:29:35 +00001493 Value *MaxOccVal = nullptr;
Chris Lattner177140a2009-12-31 18:17:13 +00001494 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chad Rosier11ab9412014-08-14 15:23:01 +00001495 BinaryOperator *BOp =
1496 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001497 if (!BOp)
Chris Lattner177140a2009-12-31 18:17:13 +00001498 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001499
Chris Lattner177140a2009-12-31 18:17:13 +00001500 // Compute all of the factors of this added value.
1501 SmallVector<Value*, 8> Factors;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001502 FindSingleUseMultiplyFactors(BOp, Factors, Ops);
Chris Lattner177140a2009-12-31 18:17:13 +00001503 assert(Factors.size() > 1 && "Bad linearize!");
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001504
Chris Lattner177140a2009-12-31 18:17:13 +00001505 // Add one to FactorOccurrences for each unique factor in this op.
Chris Lattner0c59ac32010-01-01 01:13:15 +00001506 SmallPtrSet<Value*, 8> Duplicates;
1507 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1508 Value *Factor = Factors[i];
David Blaikie70573dc2014-11-19 07:49:26 +00001509 if (!Duplicates.insert(Factor).second)
Chad Rosier11ab9412014-08-14 15:23:01 +00001510 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001511
Chris Lattner0c59ac32010-01-01 01:13:15 +00001512 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001513 if (Occ > MaxOcc) {
1514 MaxOcc = Occ;
1515 MaxOccVal = Factor;
1516 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001517
Chris Lattner0c59ac32010-01-01 01:13:15 +00001518 // If Factor is a negative constant, add the negated value as a factor
1519 // because we can percolate the negate out. Watch for minint, which
1520 // cannot be positivified.
Chad Rosier11ab9412014-08-14 15:23:01 +00001521 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
Chris Lattnerb1a15122011-07-15 06:08:15 +00001522 if (CI->isNegative() && !CI->isMinValue(true)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001523 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1524 assert(!Duplicates.count(Factor) &&
1525 "Shouldn't have two constant factors, missed a canonicalize");
Chris Lattner0c59ac32010-01-01 01:13:15 +00001526 unsigned Occ = ++FactorOccurrences[Factor];
Chad Rosier11ab9412014-08-14 15:23:01 +00001527 if (Occ > MaxOcc) {
1528 MaxOcc = Occ;
1529 MaxOccVal = Factor;
1530 }
Chris Lattner0c59ac32010-01-01 01:13:15 +00001531 }
Chad Rosier11ab9412014-08-14 15:23:01 +00001532 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
1533 if (CF->isNegative()) {
1534 APFloat F(CF->getValueAPF());
1535 F.changeSign();
1536 Factor = ConstantFP::get(CF->getContext(), F);
1537 assert(!Duplicates.count(Factor) &&
1538 "Shouldn't have two constant factors, missed a canonicalize");
1539 unsigned Occ = ++FactorOccurrences[Factor];
1540 if (Occ > MaxOcc) {
1541 MaxOcc = Occ;
1542 MaxOccVal = Factor;
1543 }
1544 }
1545 }
Chris Lattner177140a2009-12-31 18:17:13 +00001546 }
1547 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001548
Chris Lattner177140a2009-12-31 18:17:13 +00001549 // If any factor occurred more than one time, we can pull it out.
1550 if (MaxOcc > 1) {
Chad Rosier78943bc2014-12-12 14:44:12 +00001551 DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
Chris Lattner177140a2009-12-31 18:17:13 +00001552 ++NumFactor;
1553
1554 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1555 // this, we could otherwise run into situations where removing a factor
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001556 // from an expression will drop a use of maxocc, and this can cause
Chris Lattner177140a2009-12-31 18:17:13 +00001557 // RemoveFactorFromExpression on successive values to behave differently.
Chad Rosier11ab9412014-08-14 15:23:01 +00001558 Instruction *DummyInst =
Robert Lougher1858ba72015-03-13 20:53:01 +00001559 I->getType()->isIntOrIntVectorTy()
Chad Rosier11ab9412014-08-14 15:23:01 +00001560 ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
1561 : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
1562
Bill Wendling274ba892012-05-02 09:59:45 +00001563 SmallVector<WeakVH, 4> NewMulOps;
Duncan Sands69bdb582011-01-26 10:08:38 +00001564 for (unsigned i = 0; i != Ops.size(); ++i) {
Chris Lattnerab7087a2010-01-09 06:01:36 +00001565 // Only try to remove factors from expressions we're allowed to.
Chad Rosier11ab9412014-08-14 15:23:01 +00001566 BinaryOperator *BOp =
1567 isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001568 if (!BOp)
Chris Lattnerab7087a2010-01-09 06:01:36 +00001569 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001570
Chris Lattner177140a2009-12-31 18:17:13 +00001571 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
Duncan Sands69bdb582011-01-26 10:08:38 +00001572 // The factorized operand may occur several times. Convert them all in
1573 // one fell swoop.
1574 for (unsigned j = Ops.size(); j != i;) {
1575 --j;
1576 if (Ops[j].Op == Ops[i].Op) {
1577 NewMulOps.push_back(V);
1578 Ops.erase(Ops.begin()+j);
1579 }
1580 }
1581 --i;
Chris Lattner177140a2009-12-31 18:17:13 +00001582 }
1583 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001584
Chris Lattner177140a2009-12-31 18:17:13 +00001585 // No need for extra uses anymore.
1586 delete DummyInst;
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001587
Chris Lattner177140a2009-12-31 18:17:13 +00001588 unsigned NumAddedValues = NewMulOps.size();
1589 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001590
Chris Lattner60b71b52009-12-31 19:24:52 +00001591 // Now that we have inserted the add tree, optimize it. This allows us to
1592 // handle cases that require multiple factoring steps, such as this:
Chris Lattner177140a2009-12-31 18:17:13 +00001593 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattnerac615502009-12-31 18:18:46 +00001594 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001595 (void)NumAddedValues;
Duncan Sands3293f462012-06-08 20:15:33 +00001596 if (Instruction *VI = dyn_cast<Instruction>(V))
1597 RedoInsts.insert(VI);
Chris Lattner60b71b52009-12-31 19:24:52 +00001598
1599 // Create the multiply.
Chad Rosier11ab9412014-08-14 15:23:01 +00001600 Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I);
Chris Lattner60b71b52009-12-31 19:24:52 +00001601
Chris Lattner60c2ca72009-12-31 19:49:01 +00001602 // Rerun associate on the multiply in case the inner expression turned into
1603 // a multiply. We want to make sure that we keep things in canonical form.
Duncan Sands3293f462012-06-08 20:15:33 +00001604 RedoInsts.insert(V2);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001605
Chris Lattner177140a2009-12-31 18:17:13 +00001606 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1607 // entire result expression is just the multiply "A*(B+C)".
1608 if (Ops.empty())
1609 return V2;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001610
Chris Lattnerac615502009-12-31 18:18:46 +00001611 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner177140a2009-12-31 18:17:13 +00001612 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattnerac615502009-12-31 18:18:46 +00001613 // things being added by this operation.
Chris Lattner177140a2009-12-31 18:17:13 +00001614 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1615 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001616
Craig Topperf40110f2014-04-25 05:29:35 +00001617 return nullptr;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001618}
Chris Lattner4c065092006-03-04 09:31:13 +00001619
Chandler Carruth739ef802012-04-26 05:30:30 +00001620/// \brief Build up a vector of value/power pairs factoring a product.
1621///
1622/// Given a series of multiplication operands, build a vector of factors and
1623/// the powers each is raised to when forming the final product. Sort them in
1624/// the order of descending power.
1625///
1626/// (x*x) -> [(x, 2)]
1627/// ((x*x)*x) -> [(x, 3)]
1628/// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1629///
1630/// \returns Whether any factors have a power greater than one.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001631bool ReassociatePass::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1632 SmallVectorImpl<Factor> &Factors) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001633 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1634 // Compute the sum of powers of simplifiable factors.
Chandler Carruth739ef802012-04-26 05:30:30 +00001635 unsigned FactorPowerSum = 0;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001636 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1637 Value *Op = Ops[Idx-1].Op;
1638
1639 // Count the number of occurrences of this value.
1640 unsigned Count = 1;
1641 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1642 ++Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001643 // Track for simplification all factors which occur 2 or more times.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001644 if (Count > 1)
1645 FactorPowerSum += Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001646 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001647
Chandler Carruth739ef802012-04-26 05:30:30 +00001648 // We can only simplify factors if the sum of the powers of our simplifiable
1649 // factors is 4 or higher. When that is the case, we will *always* have
1650 // a simplification. This is an important invariant to prevent cyclicly
1651 // trying to simplify already minimal formations.
1652 if (FactorPowerSum < 4)
1653 return false;
1654
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001655 // Now gather the simplifiable factors, removing them from Ops.
1656 FactorPowerSum = 0;
1657 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1658 Value *Op = Ops[Idx-1].Op;
Chandler Carruth739ef802012-04-26 05:30:30 +00001659
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001660 // Count the number of occurrences of this value.
1661 unsigned Count = 1;
1662 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1663 ++Count;
1664 if (Count == 1)
1665 continue;
Benjamin Kramerbde91762012-06-02 10:20:22 +00001666 // Move an even number of occurrences to Factors.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001667 Count &= ~1U;
1668 Idx -= Count;
1669 FactorPowerSum += Count;
1670 Factors.push_back(Factor(Op, Count));
1671 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
Chandler Carruth739ef802012-04-26 05:30:30 +00001672 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001673
Chandler Carruth739ef802012-04-26 05:30:30 +00001674 // None of the adjustments above should have reduced the sum of factor powers
1675 // below our mininum of '4'.
1676 assert(FactorPowerSum >= 4);
1677
Justin Bogner90744d22016-04-26 22:22:18 +00001678 std::stable_sort(Factors.begin(), Factors.end(),
1679 [](const Factor &LHS, const Factor &RHS) {
1680 return LHS.Power > RHS.Power;
1681 });
Chandler Carruth739ef802012-04-26 05:30:30 +00001682 return true;
1683}
1684
1685/// \brief Build a tree of multiplies, computing the product of Ops.
1686static Value *buildMultiplyTree(IRBuilder<> &Builder,
1687 SmallVectorImpl<Value*> &Ops) {
1688 if (Ops.size() == 1)
1689 return Ops.back();
1690
1691 Value *LHS = Ops.pop_back_val();
1692 do {
Robert Lougher1858ba72015-03-13 20:53:01 +00001693 if (LHS->getType()->isIntOrIntVectorTy())
Chad Rosier11ab9412014-08-14 15:23:01 +00001694 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1695 else
1696 LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
Chandler Carruth739ef802012-04-26 05:30:30 +00001697 } while (!Ops.empty());
1698
1699 return LHS;
1700}
1701
1702/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1703///
1704/// Given a vector of values raised to various powers, where no two values are
1705/// equal and the powers are sorted in decreasing order, compute the minimal
1706/// DAG of multiplies to compute the final product, and return that product
1707/// value.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001708Value *
1709ReassociatePass::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1710 SmallVectorImpl<Factor> &Factors) {
Chandler Carruth739ef802012-04-26 05:30:30 +00001711 assert(Factors[0].Power);
1712 SmallVector<Value *, 4> OuterProduct;
1713 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1714 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1715 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1716 LastIdx = Idx;
1717 continue;
1718 }
1719
1720 // We want to multiply across all the factors with the same power so that
1721 // we can raise them to that power as a single entity. Build a mini tree
1722 // for that.
1723 SmallVector<Value *, 4> InnerProduct;
1724 InnerProduct.push_back(Factors[LastIdx].Base);
1725 do {
1726 InnerProduct.push_back(Factors[Idx].Base);
1727 ++Idx;
1728 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1729
1730 // Reset the base value of the first factor to the new expression tree.
1731 // We'll remove all the factors with the same power in a second pass.
Duncan Sands3293f462012-06-08 20:15:33 +00001732 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1733 if (Instruction *MI = dyn_cast<Instruction>(M))
1734 RedoInsts.insert(MI);
Chandler Carruth739ef802012-04-26 05:30:30 +00001735
1736 LastIdx = Idx;
1737 }
1738 // Unique factors with equal powers -- we've folded them into the first one's
1739 // base.
1740 Factors.erase(std::unique(Factors.begin(), Factors.end(),
Justin Bogner90744d22016-04-26 22:22:18 +00001741 [](const Factor &LHS, const Factor &RHS) {
1742 return LHS.Power == RHS.Power;
1743 }),
Chandler Carruth739ef802012-04-26 05:30:30 +00001744 Factors.end());
1745
1746 // Iteratively collect the base of each factor with an add power into the
1747 // outer product, and halve each power in preparation for squaring the
1748 // expression.
1749 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1750 if (Factors[Idx].Power & 1)
1751 OuterProduct.push_back(Factors[Idx].Base);
1752 Factors[Idx].Power >>= 1;
1753 }
1754 if (Factors[0].Power) {
1755 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1756 OuterProduct.push_back(SquareRoot);
1757 OuterProduct.push_back(SquareRoot);
1758 }
1759 if (OuterProduct.size() == 1)
1760 return OuterProduct.front();
1761
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001762 Value *V = buildMultiplyTree(Builder, OuterProduct);
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001763 return V;
Chandler Carruth739ef802012-04-26 05:30:30 +00001764}
1765
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001766Value *ReassociatePass::OptimizeMul(BinaryOperator *I,
1767 SmallVectorImpl<ValueEntry> &Ops) {
Chandler Carruth739ef802012-04-26 05:30:30 +00001768 // We can only optimize the multiplies when there is a chain of more than
1769 // three, such that a balanced tree might require fewer total multiplies.
1770 if (Ops.size() < 4)
Craig Topperf40110f2014-04-25 05:29:35 +00001771 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001772
1773 // Try to turn linear trees of multiplies without other uses of the
1774 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1775 // re-use.
1776 SmallVector<Factor, 4> Factors;
1777 if (!collectMultiplyFactors(Ops, Factors))
Craig Topperf40110f2014-04-25 05:29:35 +00001778 return nullptr; // All distinct factors, so nothing left for us to do.
Chandler Carruth739ef802012-04-26 05:30:30 +00001779
1780 IRBuilder<> Builder(I);
1781 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1782 if (Ops.empty())
1783 return V;
1784
1785 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1786 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
Craig Topperf40110f2014-04-25 05:29:35 +00001787 return nullptr;
Chandler Carruth739ef802012-04-26 05:30:30 +00001788}
1789
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001790Value *ReassociatePass::OptimizeExpression(BinaryOperator *I,
1791 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere1850b82005-05-08 00:19:31 +00001792 // Now that we have the linearized expression tree, try to optimize it.
1793 // Start by folding any constants that we found.
Craig Topperf40110f2014-04-25 05:29:35 +00001794 Constant *Cst = nullptr;
Chris Lattner4c065092006-03-04 09:31:13 +00001795 unsigned Opcode = I->getOpcode();
Duncan Sandsac852c72012-11-15 09:58:38 +00001796 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1797 Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1798 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1799 }
1800 // If there was nothing but constants then we are done.
1801 if (Ops.empty())
1802 return Cst;
1803
1804 // Put the combined constant back at the end of the operand list, except if
1805 // there is no point. For example, an add of 0 gets dropped here, while a
1806 // multiplication by zero turns the whole expression into zero.
1807 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1808 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1809 return Cst;
1810 Ops.push_back(ValueEntry(0, Cst));
1811 }
1812
1813 if (Ops.size() == 1) return Ops[0].Op;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001814
Chris Lattner9039ff82009-12-31 07:33:14 +00001815 // Handle destructive annihilation due to identities between elements in the
Chris Lattnere1850b82005-05-08 00:19:31 +00001816 // argument list here.
Chandler Carruth739ef802012-04-26 05:30:30 +00001817 unsigned NumOps = Ops.size();
Chris Lattner5847e5e2005-05-08 18:59:37 +00001818 switch (Opcode) {
1819 default: break;
1820 case Instruction::And:
1821 case Instruction::Or:
Chris Lattner5f8a0052009-12-31 07:59:34 +00001822 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1823 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001824 break;
1825
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001826 case Instruction::Xor:
1827 if (Value *Result = OptimizeXor(I, Ops))
1828 return Result;
1829 break;
1830
Chandler Carruth739ef802012-04-26 05:30:30 +00001831 case Instruction::Add:
Chad Rosier11ab9412014-08-14 15:23:01 +00001832 case Instruction::FAdd:
Chris Lattner177140a2009-12-31 18:17:13 +00001833 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001834 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001835 break;
Chandler Carruth739ef802012-04-26 05:30:30 +00001836
1837 case Instruction::Mul:
Chad Rosier11ab9412014-08-14 15:23:01 +00001838 case Instruction::FMul:
Chandler Carruth739ef802012-04-26 05:30:30 +00001839 if (Value *Result = OptimizeMul(I, Ops))
1840 return Result;
1841 break;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001842 }
1843
Duncan Sands3293f462012-06-08 20:15:33 +00001844 if (Ops.size() != NumOps)
Chris Lattner4c065092006-03-04 09:31:13 +00001845 return OptimizeExpression(I, Ops);
Craig Topperf40110f2014-04-25 05:29:35 +00001846 return nullptr;
Chris Lattnere1850b82005-05-08 00:19:31 +00001847}
1848
Aditya Nandakumar12d06042016-01-04 19:48:14 +00001849// Remove dead instructions and if any operands are trivially dead add them to
1850// Insts so they will be removed as well.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001851void ReassociatePass::RecursivelyEraseDeadInsts(
Aditya Nandakumar12d06042016-01-04 19:48:14 +00001852 Instruction *I, SetVector<AssertingVH<Instruction>> &Insts) {
1853 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1854 SmallVector<Value *, 4> Ops(I->op_begin(), I->op_end());
1855 ValueRankMap.erase(I);
1856 Insts.remove(I);
1857 RedoInsts.remove(I);
1858 I->eraseFromParent();
1859 for (auto Op : Ops)
1860 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1861 if (OpInst->use_empty())
1862 Insts.insert(OpInst);
1863}
1864
Sanjay Patelc96ee082015-04-22 18:04:46 +00001865/// Zap the given instruction, adding interesting operands to the work list.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001866void ReassociatePass::EraseInst(Instruction *I) {
Duncan Sands3293f462012-06-08 20:15:33 +00001867 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1868 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1869 // Erase the dead instruction.
1870 ValueRankMap.erase(I);
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001871 RedoInsts.remove(I);
Duncan Sands3293f462012-06-08 20:15:33 +00001872 I->eraseFromParent();
1873 // Optimize its operands.
Duncan Sands78386032012-06-15 08:37:50 +00001874 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
Duncan Sands3293f462012-06-08 20:15:33 +00001875 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1876 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1877 // If this is a node in an expression tree, climb to the expression root
1878 // and add that since that's where optimization actually happens.
1879 unsigned Opcode = Op->getOpcode();
Chandler Carruthcdf47882014-03-09 03:16:01 +00001880 while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
David Blaikie70573dc2014-11-19 07:49:26 +00001881 Visited.insert(Op).second)
Chandler Carruthcdf47882014-03-09 03:16:01 +00001882 Op = Op->user_back();
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001883 RedoInsts.insert(Op);
Duncan Sands3293f462012-06-08 20:15:33 +00001884 }
1885}
1886
Chad Rosier094ac772014-11-11 22:58:35 +00001887// Canonicalize expressions of the following form:
1888// x + (-Constant * y) -> x - (Constant * y)
1889// x - (-Constant * y) -> x + (Constant * y)
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001890Instruction *ReassociatePass::canonicalizeNegConstExpr(Instruction *I) {
Chad Rosier094ac772014-11-11 22:58:35 +00001891 if (!I->hasOneUse() || I->getType()->isVectorTy())
1892 return nullptr;
1893
David Majnemer587336d2015-05-28 06:16:39 +00001894 // Must be a fmul or fdiv instruction.
Chad Rosier094ac772014-11-11 22:58:35 +00001895 unsigned Opcode = I->getOpcode();
David Majnemer587336d2015-05-28 06:16:39 +00001896 if (Opcode != Instruction::FMul && Opcode != Instruction::FDiv)
Chad Rosier094ac772014-11-11 22:58:35 +00001897 return nullptr;
1898
David Majnemer587336d2015-05-28 06:16:39 +00001899 auto *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
1900 auto *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
1901
1902 // Both operands are constant, let it get constant folded away.
1903 if (C0 && C1)
Chad Rosier094ac772014-11-11 22:58:35 +00001904 return nullptr;
1905
David Majnemer587336d2015-05-28 06:16:39 +00001906 ConstantFP *CF = C0 ? C0 : C1;
1907
1908 // Must have one constant operand.
1909 if (!CF)
1910 return nullptr;
1911
1912 // Must be a negative ConstantFP.
1913 if (!CF->isNegative())
Chad Rosier094ac772014-11-11 22:58:35 +00001914 return nullptr;
1915
1916 // User must be a binary operator with one or more uses.
1917 Instruction *User = I->user_back();
David Majnemer587336d2015-05-28 06:16:39 +00001918 if (!isa<BinaryOperator>(User) || !User->hasNUsesOrMore(1))
Chad Rosier094ac772014-11-11 22:58:35 +00001919 return nullptr;
1920
1921 unsigned UserOpcode = User->getOpcode();
David Majnemer587336d2015-05-28 06:16:39 +00001922 if (UserOpcode != Instruction::FAdd && UserOpcode != Instruction::FSub)
Chad Rosier094ac772014-11-11 22:58:35 +00001923 return nullptr;
1924
1925 // Subtraction is not commutative. Explicitly, the following transform is
1926 // not valid: (-Constant * y) - x -> x + (Constant * y)
1927 if (!User->isCommutative() && User->getOperand(1) != I)
1928 return nullptr;
1929
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001930 // Change the sign of the constant.
David Majnemer587336d2015-05-28 06:16:39 +00001931 APFloat Val = CF->getValueAPF();
1932 Val.changeSign();
1933 I->setOperand(C0 ? 0 : 1, ConstantFP::get(CF->getContext(), Val));
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001934
Chad Rosier094ac772014-11-11 22:58:35 +00001935 // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
1936 // ((-Const*y) + x) -> (x + (-Const*y)).
1937 if (User->getOperand(0) == I && User->isCommutative())
1938 cast<BinaryOperator>(User)->swapOperands();
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001939
Chad Rosier094ac772014-11-11 22:58:35 +00001940 Value *Op0 = User->getOperand(0);
1941 Value *Op1 = User->getOperand(1);
1942 BinaryOperator *NI;
David Majnemer587336d2015-05-28 06:16:39 +00001943 switch (UserOpcode) {
Chad Rosier094ac772014-11-11 22:58:35 +00001944 default:
1945 llvm_unreachable("Unexpected Opcode!");
Chad Rosier094ac772014-11-11 22:58:35 +00001946 case Instruction::FAdd:
1947 NI = BinaryOperator::CreateFSub(Op0, Op1);
1948 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1949 break;
1950 case Instruction::FSub:
1951 NI = BinaryOperator::CreateFAdd(Op0, Op1);
1952 NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
1953 break;
1954 }
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001955
Chad Rosier094ac772014-11-11 22:58:35 +00001956 NI->insertBefore(User);
1957 NI->setName(User->getName());
1958 User->replaceAllUsesWith(NI);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001959 NI->setDebugLoc(I->getDebugLoc());
Chad Rosier094ac772014-11-11 22:58:35 +00001960 RedoInsts.insert(I);
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001961 MadeChange = true;
Chad Rosier094ac772014-11-11 22:58:35 +00001962 return NI;
Erik Verbruggen2b98bd22014-08-21 10:45:30 +00001963}
1964
Sanjay Patelc96ee082015-04-22 18:04:46 +00001965/// Inspect and optimize the given instruction. Note that erasing
Duncan Sands3293f462012-06-08 20:15:33 +00001966/// instructions is not allowed.
Justin Bognerc2bf63d2016-04-26 23:39:29 +00001967void ReassociatePass::OptimizeInst(Instruction *I) {
Duncan Sands3293f462012-06-08 20:15:33 +00001968 // Only consider operations that we understand.
1969 if (!isa<BinaryOperator>(I))
1970 return;
1971
Chad Rosier11ab9412014-08-14 15:23:01 +00001972 if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
Duncan Sands3293f462012-06-08 20:15:33 +00001973 // If an operand of this shift is a reassociable multiply, or if the shift
1974 // is used by a reassociable multiply or add, turn into a multiply.
1975 if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
1976 (I->hasOneUse() &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00001977 (isReassociableOp(I->user_back(), Instruction::Mul) ||
1978 isReassociableOp(I->user_back(), Instruction::Add)))) {
Duncan Sands3293f462012-06-08 20:15:33 +00001979 Instruction *NI = ConvertShiftToMul(I);
1980 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00001981 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00001982 I = NI;
Chris Lattner877b1142005-05-08 21:28:52 +00001983 }
Chris Lattner8fdf75c2002-10-31 17:12:59 +00001984
Chad Rosier094ac772014-11-11 22:58:35 +00001985 // Canonicalize negative constants out of expressions.
1986 if (Instruction *Res = canonicalizeNegConstExpr(I))
1987 I = Res;
1988
Chad Rosierdf8f2a22014-11-14 17:09:19 +00001989 // Commute binary operators, to canonicalize the order of their operands.
1990 // This can potentially expose more CSE opportunities, and makes writing other
1991 // transformations simpler.
1992 if (I->isCommutative())
1993 canonicalizeOperands(I);
Chad Rosier11ab9412014-08-14 15:23:01 +00001994
Robert Lougher1858ba72015-03-13 20:53:01 +00001995 // TODO: We should optimize vector Xor instructions, but they are
1996 // currently unsupported.
1997 if (I->getType()->isVectorTy() && I->getOpcode() == Instruction::Xor)
Chad Rosierdf8f2a22014-11-14 17:09:19 +00001998 return;
Owen Andersonf4f80e12012-05-07 20:47:23 +00001999
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002000 // Don't optimize floating point instructions that don't have unsafe algebra.
Owen Anderson630077e2015-11-20 08:16:13 +00002001 if (I->getType()->isFPOrFPVectorTy() && !I->hasUnsafeAlgebra())
Chad Rosierdf8f2a22014-11-14 17:09:19 +00002002 return;
Owen Andersonf4f80e12012-05-07 20:47:23 +00002003
Dan Gohman1c6c3482011-04-12 00:11:56 +00002004 // Do not reassociate boolean (i1) expressions. We want to preserve the
2005 // original order of evaluation for short-circuited comparisons that
2006 // SimplifyCFG has folded to AND/OR expressions. If the expression
2007 // is not further optimized, it is likely to be transformed back to a
2008 // short-circuited form for code gen, and the source order may have been
2009 // optimized for the most likely conditions.
Duncan Sands3293f462012-06-08 20:15:33 +00002010 if (I->getType()->isIntegerTy(1))
Dan Gohman1c6c3482011-04-12 00:11:56 +00002011 return;
Chris Lattner7bc532d2002-05-16 04:37:07 +00002012
Dan Gohman1c6c3482011-04-12 00:11:56 +00002013 // If this is a subtract instruction which is not already in negate form,
2014 // see if we can convert it to X+-Y.
Duncan Sands3293f462012-06-08 20:15:33 +00002015 if (I->getOpcode() == Instruction::Sub) {
2016 if (ShouldBreakUpSubtract(I)) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002017 Instruction *NI = BreakUpSubtract(I, RedoInsts);
Duncan Sands3293f462012-06-08 20:15:33 +00002018 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002019 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002020 I = NI;
2021 } else if (BinaryOperator::isNeg(I)) {
Dan Gohman1c6c3482011-04-12 00:11:56 +00002022 // Otherwise, this is a negation. See if the operand is a multiply tree
2023 // and if this is not an inner node of a multiply tree.
Duncan Sands3293f462012-06-08 20:15:33 +00002024 if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
2025 (!I->hasOneUse() ||
Chandler Carruthcdf47882014-03-09 03:16:01 +00002026 !isReassociableOp(I->user_back(), Instruction::Mul))) {
Duncan Sands3293f462012-06-08 20:15:33 +00002027 Instruction *NI = LowerNegateToMultiply(I);
Owen Anderson2de9f542015-11-16 18:07:30 +00002028 // If the negate was simplified, revisit the users to see if we can
2029 // reassociate further.
2030 for (User *U : NI->users()) {
2031 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2032 RedoInsts.insert(Tmp);
2033 }
Duncan Sands3293f462012-06-08 20:15:33 +00002034 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002035 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00002036 I = NI;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002037 }
2038 }
Chad Rosier11ab9412014-08-14 15:23:01 +00002039 } else if (I->getOpcode() == Instruction::FSub) {
2040 if (ShouldBreakUpSubtract(I)) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002041 Instruction *NI = BreakUpSubtract(I, RedoInsts);
Chad Rosier11ab9412014-08-14 15:23:01 +00002042 RedoInsts.insert(I);
2043 MadeChange = true;
2044 I = NI;
2045 } else if (BinaryOperator::isFNeg(I)) {
2046 // Otherwise, this is a negation. See if the operand is a multiply tree
2047 // and if this is not an inner node of a multiply tree.
2048 if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
2049 (!I->hasOneUse() ||
2050 !isReassociableOp(I->user_back(), Instruction::FMul))) {
Owen Anderson2de9f542015-11-16 18:07:30 +00002051 // If the negate was simplified, revisit the users to see if we can
2052 // reassociate further.
Chad Rosier11ab9412014-08-14 15:23:01 +00002053 Instruction *NI = LowerNegateToMultiply(I);
Owen Anderson2de9f542015-11-16 18:07:30 +00002054 for (User *U : NI->users()) {
2055 if (BinaryOperator *Tmp = dyn_cast<BinaryOperator>(U))
2056 RedoInsts.insert(Tmp);
2057 }
Chad Rosier11ab9412014-08-14 15:23:01 +00002058 RedoInsts.insert(I);
2059 MadeChange = true;
2060 I = NI;
2061 }
2062 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002063 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002064
Duncan Sands3293f462012-06-08 20:15:33 +00002065 // If this instruction is an associative binary operator, process it.
2066 if (!I->isAssociative()) return;
2067 BinaryOperator *BO = cast<BinaryOperator>(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00002068
2069 // If this is an interior node of a reassociable tree, ignore it until we
2070 // get to the root of the tree, to avoid N^2 analysis.
Nadav Rotem10888112012-07-23 13:44:15 +00002071 unsigned Opcode = BO->getOpcode();
Owen Anderson2de9f542015-11-16 18:07:30 +00002072 if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode) {
2073 // During the initial run we will get to the root of the tree.
2074 // But if we get here while we are redoing instructions, there is no
2075 // guarantee that the root will be visited. So Redo later
Aditya Nandakumarf94c1492016-01-07 23:22:55 +00002076 if (BO->user_back() != BO &&
2077 BO->getParent() == BO->user_back()->getParent())
Owen Anderson2de9f542015-11-16 18:07:30 +00002078 RedoInsts.insert(BO->user_back());
Dan Gohman1c6c3482011-04-12 00:11:56 +00002079 return;
Owen Anderson2de9f542015-11-16 18:07:30 +00002080 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002081
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002082 // If this is an add tree that is used by a sub instruction, ignore it
Dan Gohman1c6c3482011-04-12 00:11:56 +00002083 // until we process the subtract.
Duncan Sands3293f462012-06-08 20:15:33 +00002084 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
Chandler Carruthcdf47882014-03-09 03:16:01 +00002085 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
Dan Gohman1c6c3482011-04-12 00:11:56 +00002086 return;
Chad Rosier11ab9412014-08-14 15:23:01 +00002087 if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
2088 cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
2089 return;
Dan Gohman1c6c3482011-04-12 00:11:56 +00002090
Duncan Sands3293f462012-06-08 20:15:33 +00002091 ReassociateExpression(BO);
Chris Lattner2fc319d2006-03-14 07:11:11 +00002092}
Chris Lattner1e506502005-05-07 21:59:39 +00002093
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002094void ReassociatePass::ReassociateExpression(BinaryOperator *I) {
Chris Lattner60b71b52009-12-31 19:24:52 +00002095 // First, walk the expression tree, linearizing the tree, collecting the
2096 // operand information.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002097 SmallVector<RepeatedValue, 8> Tree;
2098 MadeChange |= LinearizeExprTree(I, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00002099 SmallVector<ValueEntry, 8> Ops;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00002100 Ops.reserve(Tree.size());
2101 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
2102 RepeatedValue E = Tree[i];
2103 Ops.append(E.second.getZExtValue(),
2104 ValueEntry(getRank(E.first), E.first));
2105 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002106
Duncan Sandsc94ac6f2012-05-26 07:47:48 +00002107 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
2108
Chris Lattner2fc319d2006-03-14 07:11:11 +00002109 // Now that we have linearized the tree to a list and have gathered all of
2110 // the operands and their ranks, sort the operands by their rank. Use a
2111 // stable_sort so that values with equal ranks will have their relative
2112 // positions maintained (and so the compiler is deterministic). Note that
2113 // this sorts so that the highest ranking values end up at the beginning of
2114 // the vector.
2115 std::stable_sort(Ops.begin(), Ops.end());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002116
Sanjay Patelc96ee082015-04-22 18:04:46 +00002117 // Now that we have the expression tree in a convenient
Chris Lattner2fc319d2006-03-14 07:11:11 +00002118 // sorted form, optimize it globally if possible.
2119 if (Value *V = OptimizeExpression(I, Ops)) {
Duncan Sands78386032012-06-15 08:37:50 +00002120 if (V == I)
2121 // Self-referential expression in unreachable code.
2122 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002123 // This expression tree simplified to something that isn't a tree,
2124 // eliminate it.
David Greened17c3912010-01-05 01:27:24 +00002125 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner2fc319d2006-03-14 07:11:11 +00002126 I->replaceAllUsesWith(V);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002127 if (Instruction *VI = dyn_cast<Instruction>(V))
2128 VI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002129 RedoInsts.insert(I);
Chris Lattnerba1f36a2009-12-31 17:51:05 +00002130 ++NumAnnihil;
Duncan Sands78386032012-06-15 08:37:50 +00002131 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00002132 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002133
Chris Lattner2fc319d2006-03-14 07:11:11 +00002134 // We want to sink immediates as deeply as possible except in the case where
2135 // this is a multiply tree used only by an add, and the immediate is a -1.
2136 // In this case we reassociate to put the negation on the outside so that we
2137 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
Chad Rosier11ab9412014-08-14 15:23:01 +00002138 if (I->hasOneUse()) {
2139 if (I->getOpcode() == Instruction::Mul &&
2140 cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
2141 isa<ConstantInt>(Ops.back().Op) &&
2142 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
2143 ValueEntry Tmp = Ops.pop_back_val();
2144 Ops.insert(Ops.begin(), Tmp);
2145 } else if (I->getOpcode() == Instruction::FMul &&
2146 cast<Instruction>(I->user_back())->getOpcode() ==
2147 Instruction::FAdd &&
2148 isa<ConstantFP>(Ops.back().Op) &&
2149 cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
2150 ValueEntry Tmp = Ops.pop_back_val();
2151 Ops.insert(Ops.begin(), Tmp);
2152 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00002153 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002154
David Greened17c3912010-01-05 01:27:24 +00002155 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002156
Chris Lattner2fc319d2006-03-14 07:11:11 +00002157 if (Ops.size() == 1) {
Duncan Sands78386032012-06-15 08:37:50 +00002158 if (Ops[0].Op == I)
2159 // Self-referential expression in unreachable code.
2160 return;
2161
Chris Lattner2fc319d2006-03-14 07:11:11 +00002162 // This expression tree simplified to something that isn't a tree,
2163 // eliminate it.
2164 I->replaceAllUsesWith(Ops[0].Op);
Devang Patel80d1d3a2011-04-28 22:48:14 +00002165 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
2166 OI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00002167 RedoInsts.insert(I);
Duncan Sands78386032012-06-15 08:37:50 +00002168 return;
Chris Lattnerc0f58002002-05-08 22:19:27 +00002169 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00002170
Chris Lattner60b71b52009-12-31 19:24:52 +00002171 // Now that we ordered and optimized the expressions, splat them back into
2172 // the expression tree, removing any unneeded nodes.
2173 RewriteExprTree(I, Ops);
Chris Lattnerc0f58002002-05-08 22:19:27 +00002174}
2175
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002176PreservedAnalyses ReassociatePass::run(Function &F) {
Aditya Nandakumar3d0c46d2016-01-26 18:42:36 +00002177 // Reassociate needs for each instruction to have its operands already
2178 // processed, so we first perform a RPOT of the basic blocks so that
2179 // when we process a basic block, all its dominators have been processed
2180 // before.
2181 ReversePostOrderTraversal<Function *> RPOT(&F);
2182 BuildRankMap(F, RPOT);
Chris Lattnerc0f58002002-05-08 22:19:27 +00002183
Chris Lattner1e506502005-05-07 21:59:39 +00002184 MadeChange = false;
Aditya Nandakumar3d0c46d2016-01-26 18:42:36 +00002185 for (BasicBlock *BI : RPOT) {
2186 // Use a worklist to keep track of which instructions have been processed
2187 // (and which insts won't be optimized again) so when redoing insts,
2188 // optimize insts rightaway which won't be processed later.
2189 SmallSet<Instruction *, 8> Worklist;
2190
2191 // Insert all instructions in the BB
2192 for (Instruction &I : *BI)
2193 Worklist.insert(&I);
2194
Duncan Sands3293f462012-06-08 20:15:33 +00002195 // Optimize every instruction in the basic block.
Aditya Nandakumar3d0c46d2016-01-26 18:42:36 +00002196 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE;) {
2197 // This instruction has been processed.
2198 Worklist.erase(&*II);
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002199 if (isInstructionTriviallyDead(&*II)) {
2200 EraseInst(&*II++);
Duncan Sands3293f462012-06-08 20:15:33 +00002201 } else {
Duncan P. N. Exon Smithbe4d8cb2015-10-13 19:26:58 +00002202 OptimizeInst(&*II);
Duncan P. N. Exon Smithe9bc5792016-02-21 20:39:50 +00002203 assert(II->getParent() == &*BI && "Moved to a different block!");
Duncan Sands3293f462012-06-08 20:15:33 +00002204 ++II;
2205 }
Duncan Sands9a5cf922012-06-08 13:37:30 +00002206
Aditya Nandakumar3d0c46d2016-01-26 18:42:36 +00002207 // If the above optimizations produced new instructions to optimize or
2208 // made modifications which need to be redone, do them now if they won't
2209 // be handled later.
2210 while (!RedoInsts.empty()) {
2211 Instruction *I = RedoInsts.pop_back_val();
2212 // Process instructions that won't be processed later, either
2213 // inside the block itself or in another basic block (based on rank),
2214 // since these will be processed later.
2215 if ((I->getParent() != BI || !Worklist.count(I)) &&
2216 RankMap[I->getParent()] <= RankMap[BI]) {
2217 if (isInstructionTriviallyDead(I))
2218 EraseInst(I);
2219 else
2220 OptimizeInst(I);
2221 }
2222 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00002223 }
Duncan Sands3293f462012-06-08 20:15:33 +00002224 }
Chris Lattnerc0f58002002-05-08 22:19:27 +00002225
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00002226 // We are done with the rank map.
2227 RankMap.clear();
2228 ValueRankMap.clear();
2229
Davide Italiano39893bd2016-05-29 00:41:17 +00002230 if (MadeChange) {
2231 // FIXME: Reassociate should also 'preserve the CFG'.
2232 // The new pass manager has currently no way to do it.
2233 auto PA = PreservedAnalyses();
2234 PA.preserve<GlobalsAA>();
2235 return PA;
2236 }
Justin Bognerc2bf63d2016-04-26 23:39:29 +00002237
2238 return PreservedAnalyses::all();
2239}
2240
2241namespace {
2242 class ReassociateLegacyPass : public FunctionPass {
2243 ReassociatePass Impl;
2244 public:
2245 static char ID; // Pass identification, replacement for typeid
2246 ReassociateLegacyPass() : FunctionPass(ID) {
2247 initializeReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
2248 }
2249
2250 bool runOnFunction(Function &F) override {
2251 if (skipFunction(F))
2252 return false;
2253
2254 auto PA = Impl.run(F);
2255 return !PA.areAllPreserved();
2256 }
2257
2258 void getAnalysisUsage(AnalysisUsage &AU) const override {
2259 AU.setPreservesCFG();
2260 AU.addPreserved<GlobalsAAWrapperPass>();
2261 }
2262 };
2263}
2264
2265char ReassociateLegacyPass::ID = 0;
2266INITIALIZE_PASS(ReassociateLegacyPass, "reassociate",
2267 "Reassociate expressions", false, false)
2268
2269// Public interface to the Reassociate pass
2270FunctionPass *llvm::createReassociatePass() {
2271 return new ReassociateLegacyPass();
Chris Lattnerc0f58002002-05-08 22:19:27 +00002272}