blob: 58da87540d8753ec59a29f364e714ff5e606313a [file] [log] [blame]
Misha Brukmanc501f552004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman76307852003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencercb84e432004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
Eric Christopher455c5772009-12-05 02:46:03 +00008 <meta name="description"
Reid Spencercb84e432004-08-26 20:44:00 +00009 content="LLVM Assembly Language Reference Manual.">
Misha Brukman76307852003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattner757528b0b2004-05-23 21:06:01 +000012
Misha Brukman76307852003-11-08 01:05:38 +000013<body>
Chris Lattner757528b0b2004-05-23 21:06:01 +000014
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +000015<h1>LLVM Language Reference Manual</h1>
Chris Lattner2f7c9632001-06-06 20:29:01 +000016<ol>
Misha Brukman76307852003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +000023 <li><a href="#linkage">Linkage Types</a>
24 <ol>
Bill Wendling8693ef82009-07-20 02:41:50 +000025 <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
26 <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
Bill Wendling03bcd6e2010-07-01 21:55:59 +000027 <li><a href="#linkage_linker_private_weak">'<tt>linker_private_weak</tt>' Linkage</a></li>
Bill Wendling578ee402010-08-20 22:05:50 +000028 <li><a href="#linkage_linker_private_weak_def_auto">'<tt>linker_private_weak_def_auto</tt>' Linkage</a></li>
Bill Wendling8693ef82009-07-20 02:41:50 +000029 <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
30 <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
31 <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
32 <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
33 <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
34 <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
35 <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
Chris Lattner80d73c72009-10-10 18:26:06 +000036 <li><a href="#linkage_linkonce_odr">'<tt>linkonce_odr</tt>' Linkage</a></li>
Bill Wendling8693ef82009-07-20 02:41:50 +000037 <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
38 <li><a href="#linkage_external">'<tt>externally visible</tt>' Linkage</a></li>
39 <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
40 <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +000041 </ol>
42 </li>
Chris Lattner0132aff2005-05-06 22:57:40 +000043 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerbc088212009-01-11 20:53:49 +000044 <li><a href="#namedtypes">Named Types</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000045 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000046 <li><a href="#functionstructure">Functions</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000047 <li><a href="#aliasstructure">Aliases</a></li>
Devang Pateld1a89692010-01-11 19:35:55 +000048 <li><a href="#namedmetadatastructure">Named Metadata</a></li>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +000049 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel9eb525d2008-09-26 23:51:19 +000050 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen71183b62007-12-10 03:18:06 +000051 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner91c15c42006-01-23 23:23:47 +000052 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencer50c723a2007-02-19 23:54:10 +000053 <li><a href="#datalayout">Data Layout</a></li>
Dan Gohman6154a012009-07-27 18:07:55 +000054 <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +000055 <li><a href="#volatile">Volatile Memory Accesses</a></li>
Chris Lattner6af02f32004-12-09 16:11:40 +000056 </ol>
57 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000058 <li><a href="#typesystem">Type System</a>
59 <ol>
Chris Lattner7824d182008-01-04 04:32:38 +000060 <li><a href="#t_classifications">Type Classifications</a></li>
Eric Christopher455c5772009-12-05 02:46:03 +000061 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner48b383b02003-11-25 01:02:51 +000062 <ol>
Nick Lewycky84a1eeb2009-09-27 00:45:11 +000063 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner7824d182008-01-04 04:32:38 +000064 <li><a href="#t_floating">Floating Point Types</a></li>
Dale Johannesen33e5c352010-10-01 00:48:59 +000065 <li><a href="#t_x86mmx">X86mmx Type</a></li>
Chris Lattner7824d182008-01-04 04:32:38 +000066 <li><a href="#t_void">Void Type</a></li>
67 <li><a href="#t_label">Label Type</a></li>
Nick Lewyckyadbc2842009-05-30 05:06:04 +000068 <li><a href="#t_metadata">Metadata Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000069 </ol>
70 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +000071 <li><a href="#t_derived">Derived Types</a>
72 <ol>
Chris Lattner392be582010-02-12 20:49:41 +000073 <li><a href="#t_aggregate">Aggregate Types</a>
74 <ol>
75 <li><a href="#t_array">Array Type</a></li>
76 <li><a href="#t_struct">Structure Type</a></li>
77 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Chris Lattner392be582010-02-12 20:49:41 +000078 <li><a href="#t_vector">Vector Type</a></li>
79 </ol>
80 </li>
Misha Brukman76307852003-11-08 01:05:38 +000081 <li><a href="#t_function">Function Type</a></li>
82 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner37b6b092005-04-25 17:34:15 +000083 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000084 </ol>
85 </li>
Chris Lattnercf7a5842009-02-02 07:32:36 +000086 <li><a href="#t_uprefs">Type Up-references</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +000087 </ol>
88 </li>
Chris Lattner6af02f32004-12-09 16:11:40 +000089 <li><a href="#constants">Constants</a>
Chris Lattner74d3f822004-12-09 17:30:23 +000090 <ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +000091 <li><a href="#simpleconstants">Simple Constants</a></li>
Chris Lattner361bfcd2009-02-28 18:32:25 +000092 <li><a href="#complexconstants">Complex Constants</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000093 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
94 <li><a href="#undefvalues">Undefined Values</a></li>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +000095 <li><a href="#trapvalues">Trap Values</a></li>
Chris Lattner2bfd3202009-10-27 21:19:13 +000096 <li><a href="#blockaddress">Addresses of Basic Blocks</a></li>
Dan Gohmanef9462f2008-10-14 16:51:45 +000097 <li><a href="#constantexprs">Constant Expressions</a></li>
Chris Lattner74d3f822004-12-09 17:30:23 +000098 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +000099 </li>
Chris Lattner98f013c2006-01-25 23:47:57 +0000100 <li><a href="#othervalues">Other Values</a>
101 <ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +0000102 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Devang Pateld1a89692010-01-11 19:35:55 +0000103 <li><a href="#metadata">Metadata Nodes and Metadata Strings</a></li>
Chris Lattner98f013c2006-01-25 23:47:57 +0000104 </ol>
105 </li>
Chris Lattnerae76db52009-07-20 05:55:19 +0000106 <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
107 <ol>
108 <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
Chris Lattner58f9bb22009-07-20 06:14:25 +0000109 <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
110 Global Variable</a></li>
Chris Lattnerae76db52009-07-20 05:55:19 +0000111 <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
112 Global Variable</a></li>
113 <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
114 Global Variable</a></li>
115 </ol>
116 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000117 <li><a href="#instref">Instruction Reference</a>
118 <ol>
119 <li><a href="#terminators">Terminator Instructions</a>
120 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000121 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
122 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000123 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +0000124 <li><a href="#i_indirectbr">'<tt>indirectbr</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000125 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000126 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner08b7d5b2004-10-16 18:04:13 +0000127 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000128 </ol>
129 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000130 <li><a href="#binaryops">Binary Operations</a>
131 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000132 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000133 <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000134 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000135 <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000136 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Dan Gohmana5b96452009-06-04 22:49:04 +0000137 <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
Reid Spencer7e80b0b2006-10-26 06:15:43 +0000138 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
139 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
140 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer7eb55b32006-11-02 01:53:59 +0000141 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
142 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
143 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000144 </ol>
145 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000146 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
147 <ol>
Reid Spencer2ab01932007-02-02 13:57:07 +0000148 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
149 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
150 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000151 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000152 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman76307852003-11-08 01:05:38 +0000153 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000154 </ol>
155 </li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000156 <li><a href="#vectorops">Vector Operations</a>
157 <ol>
158 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
159 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
160 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattnerce83bff2006-04-08 23:07:04 +0000161 </ol>
162 </li>
Dan Gohmanb9d66602008-05-12 23:51:09 +0000163 <li><a href="#aggregateops">Aggregate Operations</a>
164 <ol>
165 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
166 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
167 </ol>
168 </li>
Chris Lattner6ab66722006-08-15 00:45:58 +0000169 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000170 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000171 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino820bc75b2006-02-17 21:18:08 +0000172 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
173 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
174 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000175 </ol>
176 </li>
Reid Spencer97c5fa42006-11-08 01:18:52 +0000177 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000178 <ol>
179 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
180 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
181 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
182 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
183 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencer51b07252006-11-09 23:03:26 +0000184 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
185 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
186 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
187 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencerb7344ff2006-11-11 21:00:47 +0000188 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
189 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5b950642006-11-11 23:08:07 +0000190 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer59b6b7d2006-11-08 01:11:31 +0000191 </ol>
Dan Gohmanef9462f2008-10-14 16:51:45 +0000192 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000193 <li><a href="#otherops">Other Operations</a>
194 <ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +0000195 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
196 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000197 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnerb53c28d2004-03-12 05:50:16 +0000198 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000199 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattner33337472006-01-13 23:26:01 +0000200 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000201 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000202 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000203 </ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000204 </li>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000205 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerbd64b4e2003-05-08 04:57:36 +0000206 <ol>
Chris Lattner48b383b02003-11-25 01:02:51 +0000207 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
208 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000209 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
210 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
211 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000212 </ol>
213 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000214 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
215 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000216 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
217 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
218 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000219 </ol>
220 </li>
Chris Lattner3649c3a2004-02-14 04:08:35 +0000221 <li><a href="#int_codegen">Code Generator Intrinsics</a>
222 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000223 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
224 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
225 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
226 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
227 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
228 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
Dan Gohmane58f7b32010-05-26 21:56:15 +0000229 <li><a href="#int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswellaa1c3c12004-04-09 16:43:20 +0000230 </ol>
231 </li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000232 <li><a href="#int_libc">Standard C Library Intrinsics</a>
233 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000234 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
235 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
236 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
237 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
238 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohmanb6324c12007-10-15 20:30:11 +0000239 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
240 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
241 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattnerfee11462004-02-12 17:01:32 +0000242 </ol>
243 </li>
Nate Begeman0f223bb2006-01-13 23:26:38 +0000244 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000245 <ol>
Reid Spencer96a5f022007-04-04 02:42:35 +0000246 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattnerb748c672006-01-16 22:34:14 +0000247 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
248 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
249 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Andrew Lenharth1d463522005-05-03 18:01:48 +0000250 </ol>
251 </li>
Bill Wendlingf4d70622009-02-08 01:40:31 +0000252 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
253 <ol>
Bill Wendlingfd2bd722009-02-08 04:04:40 +0000254 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
255 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
256 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
257 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
258 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingb9a73272009-02-08 23:00:09 +0000259 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingf4d70622009-02-08 01:40:31 +0000260 </ol>
261 </li>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +0000262 <li><a href="#int_fp16">Half Precision Floating Point Intrinsics</a>
263 <ol>
Chris Lattnerbbd8bd32010-03-14 23:03:31 +0000264 <li><a href="#int_convert_to_fp16">'<tt>llvm.convert.to.fp16</tt>' Intrinsic</a></li>
265 <li><a href="#int_convert_from_fp16">'<tt>llvm.convert.from.fp16</tt>' Intrinsic</a></li>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +0000266 </ol>
267 </li>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000268 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskey2211f492007-03-14 19:31:19 +0000269 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sands86e01192007-09-11 14:10:23 +0000270 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands644f9172007-07-27 12:58:54 +0000271 <ol>
272 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands644f9172007-07-27 12:58:54 +0000273 </ol>
274 </li>
Bill Wendlingf85850f2008-11-18 22:10:53 +0000275 <li><a href="#int_atomics">Atomic intrinsics</a>
276 <ol>
277 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
278 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
279 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
280 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
281 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
282 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
283 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
284 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
285 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
286 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
287 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
288 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
289 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
290 </ol>
291 </li>
Nick Lewycky6f7d8342009-10-13 07:03:23 +0000292 <li><a href="#int_memorymarkers">Memory Use Markers</a>
293 <ol>
294 <li><a href="#int_lifetime_start"><tt>llvm.lifetime.start</tt></a></li>
295 <li><a href="#int_lifetime_end"><tt>llvm.lifetime.end</tt></a></li>
296 <li><a href="#int_invariant_start"><tt>llvm.invariant.start</tt></a></li>
297 <li><a href="#int_invariant_end"><tt>llvm.invariant.end</tt></a></li>
298 </ol>
299 </li>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000300 <li><a href="#int_general">General intrinsics</a>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000301 <ol>
Reid Spencer5b2cb0f2007-07-20 19:59:11 +0000302 <li><a href="#int_var_annotation">
Bill Wendling14313312008-11-19 05:56:17 +0000303 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000304 <li><a href="#int_annotation">
Bill Wendling14313312008-11-19 05:56:17 +0000305 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +0000306 <li><a href="#int_trap">
Bill Wendling14313312008-11-19 05:56:17 +0000307 '<tt>llvm.trap</tt>' Intrinsic</a></li>
308 <li><a href="#int_stackprotector">
309 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Eric Christopher73484322009-11-30 08:03:53 +0000310 <li><a href="#int_objectsize">
311 '<tt>llvm.objectsize</tt>' Intrinsic</a></li>
Tanya Lattner293c0372007-09-21 22:59:12 +0000312 </ol>
Tanya Lattnercb1b9602007-06-15 20:50:54 +0000313 </li>
Chris Lattner48b383b02003-11-25 01:02:51 +0000314 </ol>
315 </li>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000316</ol>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000317
318<div class="doc_author">
319 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
320 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman76307852003-11-08 01:05:38 +0000321</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000322
Chris Lattner2f7c9632001-06-06 20:29:01 +0000323<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000324<h2><a name="abstract">Abstract</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +0000325<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000326
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000327<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000328
329<p>This document is a reference manual for the LLVM assembly language. LLVM is
330 a Static Single Assignment (SSA) based representation that provides type
331 safety, low-level operations, flexibility, and the capability of representing
332 'all' high-level languages cleanly. It is the common code representation
333 used throughout all phases of the LLVM compilation strategy.</p>
334
Misha Brukman76307852003-11-08 01:05:38 +0000335</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000336
Chris Lattner2f7c9632001-06-06 20:29:01 +0000337<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000338<h2><a name="introduction">Introduction</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +0000339<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000340
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000341<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000342
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000343<p>The LLVM code representation is designed to be used in three different forms:
344 as an in-memory compiler IR, as an on-disk bitcode representation (suitable
345 for fast loading by a Just-In-Time compiler), and as a human readable
346 assembly language representation. This allows LLVM to provide a powerful
347 intermediate representation for efficient compiler transformations and
348 analysis, while providing a natural means to debug and visualize the
349 transformations. The three different forms of LLVM are all equivalent. This
350 document describes the human readable representation and notation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000351
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000352<p>The LLVM representation aims to be light-weight and low-level while being
353 expressive, typed, and extensible at the same time. It aims to be a
354 "universal IR" of sorts, by being at a low enough level that high-level ideas
355 may be cleanly mapped to it (similar to how microprocessors are "universal
356 IR's", allowing many source languages to be mapped to them). By providing
357 type information, LLVM can be used as the target of optimizations: for
358 example, through pointer analysis, it can be proven that a C automatic
Bill Wendling7f4a3362009-11-02 00:24:16 +0000359 variable is never accessed outside of the current function, allowing it to
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000360 be promoted to a simple SSA value instead of a memory location.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000361
Chris Lattner2f7c9632001-06-06 20:29:01 +0000362<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000363<h4>
364 <a name="wellformed">Well-Formedness</a>
365</h4>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000366
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000367<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000368
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000369<p>It is important to note that this document describes 'well formed' LLVM
370 assembly language. There is a difference between what the parser accepts and
371 what is considered 'well formed'. For example, the following instruction is
372 syntactically okay, but not well formed:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000373
Benjamin Kramer79698be2010-07-13 12:26:09 +0000374<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +0000375%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattner757528b0b2004-05-23 21:06:01 +0000376</pre>
377
Bill Wendling7f4a3362009-11-02 00:24:16 +0000378<p>because the definition of <tt>%x</tt> does not dominate all of its uses. The
379 LLVM infrastructure provides a verification pass that may be used to verify
380 that an LLVM module is well formed. This pass is automatically run by the
381 parser after parsing input assembly and by the optimizer before it outputs
382 bitcode. The violations pointed out by the verifier pass indicate bugs in
383 transformation passes or input to the parser.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000384
Bill Wendling3716c5d2007-05-29 09:04:49 +0000385</div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000386
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000387</div>
388
Chris Lattner87a3dbe2007-10-03 17:34:29 +0000389<!-- Describe the typesetting conventions here. -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000390
Chris Lattner2f7c9632001-06-06 20:29:01 +0000391<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000392<h2><a name="identifiers">Identifiers</a></h2>
Chris Lattner2f7c9632001-06-06 20:29:01 +0000393<!-- *********************************************************************** -->
Chris Lattner757528b0b2004-05-23 21:06:01 +0000394
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000395<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000396
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000397<p>LLVM identifiers come in two basic types: global and local. Global
398 identifiers (functions, global variables) begin with the <tt>'@'</tt>
399 character. Local identifiers (register names, types) begin with
400 the <tt>'%'</tt> character. Additionally, there are three different formats
401 for identifiers, for different purposes:</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +0000402
Chris Lattner2f7c9632001-06-06 20:29:01 +0000403<ol>
Reid Spencerb23b65f2007-08-07 14:34:28 +0000404 <li>Named values are represented as a string of characters with their prefix.
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000405 For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
406 <tt>%a.really.long.identifier</tt>. The actual regular expression used is
407 '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'. Identifiers which require
408 other characters in their names can be surrounded with quotes. Special
409 characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
410 ASCII code for the character in hexadecimal. In this way, any character
411 can be used in a name value, even quotes themselves.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000412
Reid Spencerb23b65f2007-08-07 14:34:28 +0000413 <li>Unnamed values are represented as an unsigned numeric value with their
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000414 prefix. For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000415
Reid Spencer8f08d802004-12-09 18:02:53 +0000416 <li>Constants, which are described in a <a href="#constants">section about
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000417 constants</a>, below.</li>
Misha Brukman76307852003-11-08 01:05:38 +0000418</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000419
Reid Spencerb23b65f2007-08-07 14:34:28 +0000420<p>LLVM requires that values start with a prefix for two reasons: Compilers
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000421 don't need to worry about name clashes with reserved words, and the set of
422 reserved words may be expanded in the future without penalty. Additionally,
423 unnamed identifiers allow a compiler to quickly come up with a temporary
424 variable without having to avoid symbol table conflicts.</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000425
Chris Lattner48b383b02003-11-25 01:02:51 +0000426<p>Reserved words in LLVM are very similar to reserved words in other
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000427 languages. There are keywords for different opcodes
428 ('<tt><a href="#i_add">add</a></tt>',
429 '<tt><a href="#i_bitcast">bitcast</a></tt>',
430 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
431 ('<tt><a href="#t_void">void</a></tt>',
432 '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others. These
433 reserved words cannot conflict with variable names, because none of them
434 start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000435
436<p>Here is an example of LLVM code to multiply the integer variable
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000437 '<tt>%X</tt>' by 8:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000438
Misha Brukman76307852003-11-08 01:05:38 +0000439<p>The easy way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000440
Benjamin Kramer79698be2010-07-13 12:26:09 +0000441<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +0000442%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnerd79749a2004-12-09 16:36:40 +0000443</pre>
444
Misha Brukman76307852003-11-08 01:05:38 +0000445<p>After strength reduction:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000446
Benjamin Kramer79698be2010-07-13 12:26:09 +0000447<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +0000448%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnerd79749a2004-12-09 16:36:40 +0000449</pre>
450
Misha Brukman76307852003-11-08 01:05:38 +0000451<p>And the hard way:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000452
Benjamin Kramer79698be2010-07-13 12:26:09 +0000453<pre class="doc_code">
Gabor Greifbd0328f2009-10-28 13:05:07 +0000454%0 = <a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
455%1 = <a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
Bill Wendling3716c5d2007-05-29 09:04:49 +0000456%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnerd79749a2004-12-09 16:36:40 +0000457</pre>
458
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000459<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
460 lexical features of LLVM:</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000461
Chris Lattner2f7c9632001-06-06 20:29:01 +0000462<ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000463 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000464 line.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000465
466 <li>Unnamed temporaries are created when the result of a computation is not
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000467 assigned to a named value.</li>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000468
Misha Brukman76307852003-11-08 01:05:38 +0000469 <li>Unnamed temporaries are numbered sequentially</li>
470</ol>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000471
Bill Wendling7f4a3362009-11-02 00:24:16 +0000472<p>It also shows a convention that we follow in this document. When
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000473 demonstrating instructions, we will follow an instruction with a comment that
474 defines the type and name of value produced. Comments are shown in italic
475 text.</p>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000476
Misha Brukman76307852003-11-08 01:05:38 +0000477</div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000478
479<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000480<h2><a name="highlevel">High Level Structure</a></h2>
Chris Lattner6af02f32004-12-09 16:11:40 +0000481<!-- *********************************************************************** -->
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000482<div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000483<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000484<h3>
485 <a name="modulestructure">Module Structure</a>
486</h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000487
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000488<div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000489
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000490<p>LLVM programs are composed of "Module"s, each of which is a translation unit
491 of the input programs. Each module consists of functions, global variables,
492 and symbol table entries. Modules may be combined together with the LLVM
493 linker, which merges function (and global variable) definitions, resolves
494 forward declarations, and merges symbol table entries. Here is an example of
495 the "hello world" module:</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000496
Benjamin Kramer79698be2010-07-13 12:26:09 +0000497<pre class="doc_code">
Chris Lattner54a7be72010-08-17 17:13:42 +0000498<i>; Declare the string constant as a global constant.</i>&nbsp;
Nick Lewyckyfea7ddc2011-01-29 01:09:53 +0000499<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a>&nbsp;<a href="#globalvars">constant</a>&nbsp;<a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>&nbsp;
Chris Lattner6af02f32004-12-09 16:11:40 +0000500
Chris Lattner54a7be72010-08-17 17:13:42 +0000501<i>; External declaration of the puts function</i>&nbsp;
502<a href="#functionstructure">declare</a> i32 @puts(i8*) <i>; i32 (i8*)* </i>&nbsp;
Chris Lattner6af02f32004-12-09 16:11:40 +0000503
504<i>; Definition of main function</i>
Chris Lattner54a7be72010-08-17 17:13:42 +0000505define i32 @main() { <i>; i32()* </i>&nbsp;
506 <i>; Convert [13 x i8]* to i8 *...</i>&nbsp;
507 %cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8*</i>&nbsp;
Chris Lattner6af02f32004-12-09 16:11:40 +0000508
Chris Lattner54a7be72010-08-17 17:13:42 +0000509 <i>; Call puts function to write out the string to stdout.</i>&nbsp;
510 <a href="#i_call">call</a> i32 @puts(i8* %cast210) <i>; i32</i>&nbsp;
511 <a href="#i_ret">ret</a> i32 0&nbsp;
512}
Devang Pateld1a89692010-01-11 19:35:55 +0000513
514<i>; Named metadata</i>
515!1 = metadata !{i32 41}
516!foo = !{!1, null}
Bill Wendling3716c5d2007-05-29 09:04:49 +0000517</pre>
Chris Lattner6af02f32004-12-09 16:11:40 +0000518
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000519<p>This example is made up of a <a href="#globalvars">global variable</a> named
Devang Pateld1a89692010-01-11 19:35:55 +0000520 "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function,
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000521 a <a href="#functionstructure">function definition</a> for
Devang Pateld1a89692010-01-11 19:35:55 +0000522 "<tt>main</tt>" and <a href="#namedmetadatastructure">named metadata</a>
523 "<tt>foo"</tt>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000524
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000525<p>In general, a module is made up of a list of global values, where both
526 functions and global variables are global values. Global values are
527 represented by a pointer to a memory location (in this case, a pointer to an
528 array of char, and a pointer to a function), and have one of the
529 following <a href="#linkage">linkage types</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000530
Chris Lattnerd79749a2004-12-09 16:36:40 +0000531</div>
532
533<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000534<h3>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000535 <a name="linkage">Linkage Types</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000536</h3>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000537
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000538<div>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000539
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000540<p>All Global Variables and Functions have one of the following types of
541 linkage:</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000542
543<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +0000544 <dt><tt><b><a name="linkage_private">private</a></b></tt></dt>
Bill Wendling03bcd6e2010-07-01 21:55:59 +0000545 <dd>Global values with "<tt>private</tt>" linkage are only directly accessible
546 by objects in the current module. In particular, linking code into a
547 module with an private global value may cause the private to be renamed as
548 necessary to avoid collisions. Because the symbol is private to the
549 module, all references can be updated. This doesn't show up in any symbol
550 table in the object file.</dd>
Rafael Espindola6de96a12009-01-15 20:18:42 +0000551
Bill Wendling7f4a3362009-11-02 00:24:16 +0000552 <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt></dt>
Bill Wendling03bcd6e2010-07-01 21:55:59 +0000553 <dd>Similar to <tt>private</tt>, but the symbol is passed through the
554 assembler and evaluated by the linker. Unlike normal strong symbols, they
555 are removed by the linker from the final linked image (executable or
556 dynamic library).</dd>
557
558 <dt><tt><b><a name="linkage_linker_private_weak">linker_private_weak</a></b></tt></dt>
559 <dd>Similar to "<tt>linker_private</tt>", but the symbol is weak. Note that
560 <tt>linker_private_weak</tt> symbols are subject to coalescing by the
561 linker. The symbols are removed by the linker from the final linked image
562 (executable or dynamic library).</dd>
Bill Wendlinga3c6f6b2009-07-20 01:03:30 +0000563
Bill Wendling578ee402010-08-20 22:05:50 +0000564 <dt><tt><b><a name="linkage_linker_private_weak_def_auto">linker_private_weak_def_auto</a></b></tt></dt>
565 <dd>Similar to "<tt>linker_private_weak</tt>", but it's known that the address
566 of the object is not taken. For instance, functions that had an inline
567 definition, but the compiler decided not to inline it. Note,
568 unlike <tt>linker_private</tt> and <tt>linker_private_weak</tt>,
569 <tt>linker_private_weak_def_auto</tt> may have only <tt>default</tt>
570 visibility. The symbols are removed by the linker from the final linked
571 image (executable or dynamic library).</dd>
572
Bill Wendling7f4a3362009-11-02 00:24:16 +0000573 <dt><tt><b><a name="linkage_internal">internal</a></b></tt></dt>
Bill Wendling36321712010-06-29 22:34:52 +0000574 <dd>Similar to private, but the value shows as a local symbol
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000575 (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
576 corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000577
Bill Wendling7f4a3362009-11-02 00:24:16 +0000578 <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt></dt>
Chris Lattner184f1be2009-04-13 05:44:34 +0000579 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000580 into the object file corresponding to the LLVM module. They exist to
581 allow inlining and other optimizations to take place given knowledge of
582 the definition of the global, which is known to be somewhere outside the
583 module. Globals with <tt>available_externally</tt> linkage are allowed to
584 be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
585 This linkage type is only allowed on definitions, not declarations.</dd>
Chris Lattner184f1be2009-04-13 05:44:34 +0000586
Bill Wendling7f4a3362009-11-02 00:24:16 +0000587 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt></dt>
Chris Lattnere20b4702007-01-14 06:51:48 +0000588 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
Chris Lattner0de4caa2010-01-09 19:15:14 +0000589 the same name when linkage occurs. This can be used to implement
590 some forms of inline functions, templates, or other code which must be
591 generated in each translation unit that uses it, but where the body may
592 be overridden with a more definitive definition later. Unreferenced
593 <tt>linkonce</tt> globals are allowed to be discarded. Note that
594 <tt>linkonce</tt> linkage does not actually allow the optimizer to
595 inline the body of this function into callers because it doesn't know if
596 this definition of the function is the definitive definition within the
597 program or whether it will be overridden by a stronger definition.
598 To enable inlining and other optimizations, use "<tt>linkonce_odr</tt>"
599 linkage.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000600
Bill Wendling7f4a3362009-11-02 00:24:16 +0000601 <dt><tt><b><a name="linkage_weak">weak</a></b></tt></dt>
Chris Lattnerd0554882009-08-05 05:21:07 +0000602 <dd>"<tt>weak</tt>" linkage has the same merging semantics as
603 <tt>linkonce</tt> linkage, except that unreferenced globals with
604 <tt>weak</tt> linkage may not be discarded. This is used for globals that
605 are declared "weak" in C source code.</dd>
606
Bill Wendling7f4a3362009-11-02 00:24:16 +0000607 <dt><tt><b><a name="linkage_common">common</a></b></tt></dt>
Chris Lattnerd0554882009-08-05 05:21:07 +0000608 <dd>"<tt>common</tt>" linkage is most similar to "<tt>weak</tt>" linkage, but
609 they are used for tentative definitions in C, such as "<tt>int X;</tt>" at
610 global scope.
611 Symbols with "<tt>common</tt>" linkage are merged in the same way as
612 <tt>weak symbols</tt>, and they may not be deleted if unreferenced.
Chris Lattner0aff0b22009-08-05 05:41:44 +0000613 <tt>common</tt> symbols may not have an explicit section,
Eric Christopher455c5772009-12-05 02:46:03 +0000614 must have a zero initializer, and may not be marked '<a
Chris Lattner0aff0b22009-08-05 05:41:44 +0000615 href="#globalvars"><tt>constant</tt></a>'. Functions and aliases may not
616 have common linkage.</dd>
Chris Lattnerd0554882009-08-05 05:21:07 +0000617
Chris Lattnerd79749a2004-12-09 16:36:40 +0000618
Bill Wendling7f4a3362009-11-02 00:24:16 +0000619 <dt><tt><b><a name="linkage_appending">appending</a></b></tt></dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000620 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000621 pointer to array type. When two global variables with appending linkage
622 are linked together, the two global arrays are appended together. This is
623 the LLVM, typesafe, equivalent of having the system linker append together
624 "sections" with identical names when .o files are linked.</dd>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000625
Bill Wendling7f4a3362009-11-02 00:24:16 +0000626 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000627 <dd>The semantics of this linkage follow the ELF object file model: the symbol
628 is weak until linked, if not linked, the symbol becomes null instead of
629 being an undefined reference.</dd>
Anton Korobeynikova0554d92007-01-12 19:20:47 +0000630
Bill Wendling7f4a3362009-11-02 00:24:16 +0000631 <dt><tt><b><a name="linkage_linkonce_odr">linkonce_odr</a></b></tt></dt>
632 <dt><tt><b><a name="linkage_weak_odr">weak_odr</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000633 <dd>Some languages allow differing globals to be merged, such as two functions
634 with different semantics. Other languages, such as <tt>C++</tt>, ensure
Bill Wendling03bcd6e2010-07-01 21:55:59 +0000635 that only equivalent globals are ever merged (the "one definition rule"
636 &mdash; "ODR"). Such languages can use the <tt>linkonce_odr</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000637 and <tt>weak_odr</tt> linkage types to indicate that the global will only
638 be merged with equivalent globals. These linkage types are otherwise the
639 same as their non-<tt>odr</tt> versions.</dd>
Duncan Sands12da8ce2009-03-07 15:45:40 +0000640
Chris Lattner6af02f32004-12-09 16:11:40 +0000641 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnerd79749a2004-12-09 16:36:40 +0000642 <dd>If none of the above identifiers are used, the global is externally
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000643 visible, meaning that it participates in linkage and can be used to
644 resolve external symbol references.</dd>
Reid Spencer7972c472007-04-11 23:49:50 +0000645</dl>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000646
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000647<p>The next two types of linkage are targeted for Microsoft Windows platform
648 only. They are designed to support importing (exporting) symbols from (to)
649 DLLs (Dynamic Link Libraries).</p>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000650
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000651<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +0000652 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt></dt>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000653 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000654 or variable via a global pointer to a pointer that is set up by the DLL
655 exporting the symbol. On Microsoft Windows targets, the pointer name is
656 formed by combining <code>__imp_</code> and the function or variable
657 name.</dd>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000658
Bill Wendling7f4a3362009-11-02 00:24:16 +0000659 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt></dt>
Anton Korobeynikovd61d39e2006-09-14 18:23:27 +0000660 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000661 pointer to a pointer in a DLL, so that it can be referenced with the
662 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
663 name is formed by combining <code>__imp_</code> and the function or
664 variable name.</dd>
Chris Lattner6af02f32004-12-09 16:11:40 +0000665</dl>
666
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000667<p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
668 another module defined a "<tt>.LC0</tt>" variable and was linked with this
669 one, one of the two would be renamed, preventing a collision. Since
670 "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
671 declarations), they are accessible outside of the current module.</p>
672
673<p>It is illegal for a function <i>declaration</i> to have any linkage type
674 other than "externally visible", <tt>dllimport</tt>
675 or <tt>extern_weak</tt>.</p>
676
Duncan Sands12da8ce2009-03-07 15:45:40 +0000677<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000678 or <tt>weak_odr</tt> linkages.</p>
679
Chris Lattner6af02f32004-12-09 16:11:40 +0000680</div>
681
682<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000683<h3>
Chris Lattner0132aff2005-05-06 22:57:40 +0000684 <a name="callingconv">Calling Conventions</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000685</h3>
Chris Lattner0132aff2005-05-06 22:57:40 +0000686
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000687<div>
Chris Lattner0132aff2005-05-06 22:57:40 +0000688
689<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000690 and <a href="#i_invoke">invokes</a> can all have an optional calling
691 convention specified for the call. The calling convention of any pair of
692 dynamic caller/callee must match, or the behavior of the program is
693 undefined. The following calling conventions are supported by LLVM, and more
694 may be added in the future:</p>
Chris Lattner0132aff2005-05-06 22:57:40 +0000695
696<dl>
697 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000698 <dd>This calling convention (the default if no other calling convention is
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000699 specified) matches the target C calling conventions. This calling
700 convention supports varargs function calls and tolerates some mismatch in
701 the declared prototype and implemented declaration of the function (as
702 does normal C).</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000703
704 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000705 <dd>This calling convention attempts to make calls as fast as possible
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000706 (e.g. by passing things in registers). This calling convention allows the
707 target to use whatever tricks it wants to produce fast code for the
708 target, without having to conform to an externally specified ABI
Jeffrey Yasskinb8677462010-01-09 19:44:16 +0000709 (Application Binary Interface).
710 <a href="CodeGenerator.html#tailcallopt">Tail calls can only be optimized
Chris Lattnera179e4d2010-03-11 00:22:57 +0000711 when this or the GHC convention is used.</a> This calling convention
712 does not support varargs and requires the prototype of all callees to
713 exactly match the prototype of the function definition.</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000714
715 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000716 <dd>This calling convention attempts to make code in the caller as efficient
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000717 as possible under the assumption that the call is not commonly executed.
718 As such, these calls often preserve all registers so that the call does
719 not break any live ranges in the caller side. This calling convention
720 does not support varargs and requires the prototype of all callees to
721 exactly match the prototype of the function definition.</dd>
Chris Lattner0132aff2005-05-06 22:57:40 +0000722
Chris Lattnera179e4d2010-03-11 00:22:57 +0000723 <dt><b>"<tt>cc <em>10</em></tt>" - GHC convention</b>:</dt>
724 <dd>This calling convention has been implemented specifically for use by the
725 <a href="http://www.haskell.org/ghc">Glasgow Haskell Compiler (GHC)</a>.
726 It passes everything in registers, going to extremes to achieve this by
727 disabling callee save registers. This calling convention should not be
728 used lightly but only for specific situations such as an alternative to
729 the <em>register pinning</em> performance technique often used when
730 implementing functional programming languages.At the moment only X86
731 supports this convention and it has the following limitations:
732 <ul>
733 <li>On <em>X86-32</em> only supports up to 4 bit type parameters. No
734 floating point types are supported.</li>
735 <li>On <em>X86-64</em> only supports up to 10 bit type parameters and
736 6 floating point parameters.</li>
737 </ul>
738 This calling convention supports
739 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> but
740 requires both the caller and callee are using it.
741 </dd>
742
Chris Lattner573f64e2005-05-07 01:46:40 +0000743 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattner0132aff2005-05-06 22:57:40 +0000744 <dd>Any calling convention may be specified by number, allowing
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000745 target-specific calling conventions to be used. Target specific calling
746 conventions start at 64.</dd>
Chris Lattner573f64e2005-05-07 01:46:40 +0000747</dl>
Chris Lattner0132aff2005-05-06 22:57:40 +0000748
749<p>More calling conventions can be added/defined on an as-needed basis, to
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000750 support Pascal conventions or any other well-known target-independent
751 convention.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +0000752
753</div>
754
755<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000756<h3>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000757 <a name="visibility">Visibility Styles</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000758</h3>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000759
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000760<div>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000761
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000762<p>All Global Variables and Functions have one of the following visibility
763 styles:</p>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000764
765<dl>
766 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
Chris Lattner67c37d12008-08-05 18:29:16 +0000767 <dd>On targets that use the ELF object file format, default visibility means
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000768 that the declaration is visible to other modules and, in shared libraries,
769 means that the declared entity may be overridden. On Darwin, default
770 visibility means that the declaration is visible to other modules. Default
771 visibility corresponds to "external linkage" in the language.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000772
773 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000774 <dd>Two declarations of an object with hidden visibility refer to the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000775 object if they are in the same shared object. Usually, hidden visibility
776 indicates that the symbol will not be placed into the dynamic symbol
777 table, so no other module (executable or shared library) can reference it
778 directly.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000779
Anton Korobeynikov39f3cff2007-04-29 18:35:00 +0000780 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
Anton Korobeynikov39f3cff2007-04-29 18:35:00 +0000781 <dd>On ELF, protected visibility indicates that the symbol will be placed in
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000782 the dynamic symbol table, but that references within the defining module
783 will bind to the local symbol. That is, the symbol cannot be overridden by
784 another module.</dd>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000785</dl>
786
787</div>
788
789<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000790<h3>
Chris Lattnerbc088212009-01-11 20:53:49 +0000791 <a name="namedtypes">Named Types</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000792</h3>
Chris Lattnerbc088212009-01-11 20:53:49 +0000793
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000794<div>
Chris Lattnerbc088212009-01-11 20:53:49 +0000795
796<p>LLVM IR allows you to specify name aliases for certain types. This can make
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000797 it easier to read the IR and make the IR more condensed (particularly when
798 recursive types are involved). An example of a name specification is:</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000799
Benjamin Kramer79698be2010-07-13 12:26:09 +0000800<pre class="doc_code">
Chris Lattnerbc088212009-01-11 20:53:49 +0000801%mytype = type { %mytype*, i32 }
802</pre>
Chris Lattnerbc088212009-01-11 20:53:49 +0000803
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000804<p>You may give a name to any <a href="#typesystem">type</a> except
Chris Lattner249b9762010-08-17 23:26:04 +0000805 "<a href="#t_void">void</a>". Type name aliases may be used anywhere a type
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000806 is expected with the syntax "%mytype".</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000807
808<p>Note that type names are aliases for the structural type that they indicate,
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000809 and that you can therefore specify multiple names for the same type. This
810 often leads to confusing behavior when dumping out a .ll file. Since LLVM IR
811 uses structural typing, the name is not part of the type. When printing out
812 LLVM IR, the printer will pick <em>one name</em> to render all types of a
813 particular shape. This means that if you have code where two different
814 source types end up having the same LLVM type, that the dumper will sometimes
815 print the "wrong" or unexpected type. This is an important design point and
816 isn't going to change.</p>
Chris Lattnerbc088212009-01-11 20:53:49 +0000817
818</div>
819
Chris Lattnerbc088212009-01-11 20:53:49 +0000820<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000821<h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000822 <a name="globalvars">Global Variables</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000823</h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000824
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000825<div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000826
Chris Lattner5d5aede2005-02-12 19:30:21 +0000827<p>Global variables define regions of memory allocated at compilation time
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000828 instead of run-time. Global variables may optionally be initialized, may
829 have an explicit section to be placed in, and may have an optional explicit
830 alignment specified. A variable may be defined as "thread_local", which
831 means that it will not be shared by threads (each thread will have a
832 separated copy of the variable). A variable may be defined as a global
833 "constant," which indicates that the contents of the variable
834 will <b>never</b> be modified (enabling better optimization, allowing the
835 global data to be placed in the read-only section of an executable, etc).
836 Note that variables that need runtime initialization cannot be marked
837 "constant" as there is a store to the variable.</p>
Chris Lattner5d5aede2005-02-12 19:30:21 +0000838
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000839<p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
840 constant, even if the final definition of the global is not. This capability
841 can be used to enable slightly better optimization of the program, but
842 requires the language definition to guarantee that optimizations based on the
843 'constantness' are valid for the translation units that do not include the
844 definition.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000845
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000846<p>As SSA values, global variables define pointer values that are in scope
847 (i.e. they dominate) all basic blocks in the program. Global variables
848 always define a pointer to their "content" type because they describe a
849 region of memory, and all memory objects in LLVM are accessed through
850 pointers.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000851
Rafael Espindola45e6c192011-01-08 16:42:36 +0000852<p>Global variables can be marked with <tt>unnamed_addr</tt> which indicates
853 that the address is not significant, only the content. Constants marked
Rafael Espindolaf1ed7812011-01-15 08:20:57 +0000854 like this can be merged with other constants if they have the same
855 initializer. Note that a constant with significant address <em>can</em>
856 be merged with a <tt>unnamed_addr</tt> constant, the result being a
857 constant whose address is significant.</p>
Rafael Espindola45e6c192011-01-08 16:42:36 +0000858
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000859<p>A global variable may be declared to reside in a target-specific numbered
860 address space. For targets that support them, address spaces may affect how
861 optimizations are performed and/or what target instructions are used to
862 access the variable. The default address space is zero. The address space
863 qualifier must precede any other attributes.</p>
Christopher Lamb308121c2007-12-11 09:31:00 +0000864
Chris Lattner662c8722005-11-12 00:45:07 +0000865<p>LLVM allows an explicit section to be specified for globals. If the target
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000866 supports it, it will emit globals to the section specified.</p>
Chris Lattner662c8722005-11-12 00:45:07 +0000867
Chris Lattner78e00bc2010-04-28 00:13:42 +0000868<p>An explicit alignment may be specified for a global, which must be a power
869 of 2. If not present, or if the alignment is set to zero, the alignment of
870 the global is set by the target to whatever it feels convenient. If an
871 explicit alignment is specified, the global is forced to have exactly that
Chris Lattner4bd85e42010-04-28 00:31:12 +0000872 alignment. Targets and optimizers are not allowed to over-align the global
873 if the global has an assigned section. In this case, the extra alignment
874 could be observable: for example, code could assume that the globals are
875 densely packed in their section and try to iterate over them as an array,
876 alignment padding would break this iteration.</p>
Chris Lattner54611b42005-11-06 08:02:57 +0000877
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000878<p>For example, the following defines a global in a numbered address space with
879 an initializer, section, and alignment:</p>
Chris Lattner5760c502007-01-14 00:27:09 +0000880
Benjamin Kramer79698be2010-07-13 12:26:09 +0000881<pre class="doc_code">
Dan Gohmanaaa679b2009-01-11 00:40:00 +0000882@G = addrspace(5) constant float 1.0, section "foo", align 4
Chris Lattner5760c502007-01-14 00:27:09 +0000883</pre>
884
Chris Lattner6af02f32004-12-09 16:11:40 +0000885</div>
886
887
888<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000889<h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000890 <a name="functionstructure">Functions</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000891</h3>
Chris Lattner6af02f32004-12-09 16:11:40 +0000892
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000893<div>
Chris Lattner6af02f32004-12-09 16:11:40 +0000894
Dan Gohmana269a0a2010-03-01 17:41:39 +0000895<p>LLVM function definitions consist of the "<tt>define</tt>" keyword, an
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000896 optional <a href="#linkage">linkage type</a>, an optional
897 <a href="#visibility">visibility style</a>, an optional
Rafael Espindola45e6c192011-01-08 16:42:36 +0000898 <a href="#callingconv">calling convention</a>,
899 an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000900 <a href="#paramattrs">parameter attribute</a> for the return type, a function
901 name, a (possibly empty) argument list (each with optional
902 <a href="#paramattrs">parameter attributes</a>), optional
903 <a href="#fnattrs">function attributes</a>, an optional section, an optional
904 alignment, an optional <a href="#gc">garbage collector name</a>, an opening
905 curly brace, a list of basic blocks, and a closing curly brace.</p>
Anton Korobeynikovc7f9f3d2007-01-23 12:35:46 +0000906
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000907<p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
908 optional <a href="#linkage">linkage type</a>, an optional
Eric Christopher455c5772009-12-05 02:46:03 +0000909 <a href="#visibility">visibility style</a>, an optional
Rafael Espindola45e6c192011-01-08 16:42:36 +0000910 <a href="#callingconv">calling convention</a>,
911 an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000912 <a href="#paramattrs">parameter attribute</a> for the return type, a function
913 name, a possibly empty list of arguments, an optional alignment, and an
914 optional <a href="#gc">garbage collector name</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000915
Chris Lattner67c37d12008-08-05 18:29:16 +0000916<p>A function definition contains a list of basic blocks, forming the CFG
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000917 (Control Flow Graph) for the function. Each basic block may optionally start
918 with a label (giving the basic block a symbol table entry), contains a list
919 of instructions, and ends with a <a href="#terminators">terminator</a>
920 instruction (such as a branch or function return).</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000921
Chris Lattnera59fb102007-06-08 16:52:14 +0000922<p>The first basic block in a function is special in two ways: it is immediately
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000923 executed on entrance to the function, and it is not allowed to have
924 predecessor basic blocks (i.e. there can not be any branches to the entry
925 block of a function). Because the block can have no predecessors, it also
926 cannot have any <a href="#i_phi">PHI nodes</a>.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +0000927
Chris Lattner662c8722005-11-12 00:45:07 +0000928<p>LLVM allows an explicit section to be specified for functions. If the target
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000929 supports it, it will emit functions to the section specified.</p>
Chris Lattner662c8722005-11-12 00:45:07 +0000930
Chris Lattner54611b42005-11-06 08:02:57 +0000931<p>An explicit alignment may be specified for a function. If not present, or if
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000932 the alignment is set to zero, the alignment of the function is set by the
933 target to whatever it feels convenient. If an explicit alignment is
934 specified, the function is forced to have at least that much alignment. All
935 alignments must be a power of 2.</p>
Chris Lattner54611b42005-11-06 08:02:57 +0000936
Rafael Espindola45e6c192011-01-08 16:42:36 +0000937<p>If the <tt>unnamed_addr</tt> attribute is given, the address is know to not
938 be significant and two identical functions can be merged</p>.
939
Bill Wendling30235112009-07-20 02:39:26 +0000940<h5>Syntax:</h5>
Benjamin Kramer79698be2010-07-13 12:26:09 +0000941<pre class="doc_code">
Chris Lattner0ae02092008-10-13 16:55:18 +0000942define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000943 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
944 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
945 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
946 [<a href="#gc">gc</a>] { ... }
947</pre>
Devang Patel02256232008-10-07 17:48:33 +0000948
Chris Lattner6af02f32004-12-09 16:11:40 +0000949</div>
950
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000951<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000952<h3>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000953 <a name="aliasstructure">Aliases</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000954</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000955
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000956<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000957
958<p>Aliases act as "second name" for the aliasee value (which can be either
959 function, global variable, another alias or bitcast of global value). Aliases
960 may have an optional <a href="#linkage">linkage type</a>, and an
961 optional <a href="#visibility">visibility style</a>.</p>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000962
Bill Wendling30235112009-07-20 02:39:26 +0000963<h5>Syntax:</h5>
Benjamin Kramer79698be2010-07-13 12:26:09 +0000964<pre class="doc_code">
Duncan Sands7e99a942008-09-12 20:48:21 +0000965@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendling2d8b9a82007-05-29 09:42:13 +0000966</pre>
Anton Korobeynikova97b6942007-04-25 14:27:10 +0000967
968</div>
969
Chris Lattner91c15c42006-01-23 23:23:47 +0000970<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000971<h3>
Devang Pateld1a89692010-01-11 19:35:55 +0000972 <a name="namedmetadatastructure">Named Metadata</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000973</h3>
Devang Pateld1a89692010-01-11 19:35:55 +0000974
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000975<div>
Devang Pateld1a89692010-01-11 19:35:55 +0000976
Chris Lattnerc2f8f162010-01-15 21:50:19 +0000977<p>Named metadata is a collection of metadata. <a href="#metadata">Metadata
Dan Gohman093cb792010-07-21 18:54:18 +0000978 nodes</a> (but not metadata strings) are the only valid operands for
Chris Lattnerc2f8f162010-01-15 21:50:19 +0000979 a named metadata.</p>
Devang Pateld1a89692010-01-11 19:35:55 +0000980
981<h5>Syntax:</h5>
Benjamin Kramer79698be2010-07-13 12:26:09 +0000982<pre class="doc_code">
Dan Gohman093cb792010-07-21 18:54:18 +0000983; Some unnamed metadata nodes, which are referenced by the named metadata.
984!0 = metadata !{metadata !"zero"}
Devang Pateld1a89692010-01-11 19:35:55 +0000985!1 = metadata !{metadata !"one"}
Dan Gohman093cb792010-07-21 18:54:18 +0000986!2 = metadata !{metadata !"two"}
Dan Gohman58cd65f2010-07-13 19:48:13 +0000987; A named metadata.
Dan Gohman093cb792010-07-21 18:54:18 +0000988!name = !{!0, !1, !2}
Devang Pateld1a89692010-01-11 19:35:55 +0000989</pre>
Devang Pateld1a89692010-01-11 19:35:55 +0000990
991</div>
992
993<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +0000994<h3>
995 <a name="paramattrs">Parameter Attributes</a>
996</h3>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +0000997
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +0000998<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +0000999
1000<p>The return type and each parameter of a function type may have a set of
1001 <i>parameter attributes</i> associated with them. Parameter attributes are
1002 used to communicate additional information about the result or parameters of
1003 a function. Parameter attributes are considered to be part of the function,
1004 not of the function type, so functions with different parameter attributes
1005 can have the same function type.</p>
1006
1007<p>Parameter attributes are simple keywords that follow the type specified. If
1008 multiple parameter attributes are needed, they are space separated. For
1009 example:</p>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001010
Benjamin Kramer79698be2010-07-13 12:26:09 +00001011<pre class="doc_code">
Nick Lewyckydac78d82009-02-15 23:06:14 +00001012declare i32 @printf(i8* noalias nocapture, ...)
Chris Lattnerd2597d72008-10-04 18:33:34 +00001013declare i32 @atoi(i8 zeroext)
1014declare signext i8 @returns_signed_char()
Bill Wendling3716c5d2007-05-29 09:04:49 +00001015</pre>
Bill Wendling3716c5d2007-05-29 09:04:49 +00001016
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001017<p>Note that any attributes for the function result (<tt>nounwind</tt>,
1018 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001019
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001020<p>Currently, only the following parameter attributes are defined:</p>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001021
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001022<dl>
Bill Wendling7f4a3362009-11-02 00:24:16 +00001023 <dt><tt><b>zeroext</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001024 <dd>This indicates to the code generator that the parameter or return value
Cameron Zwarichac106272011-03-16 22:20:18 +00001025 should be zero-extended to the extent required by the target's ABI (which
1026 is usually 32-bits, but is 8-bits for a i1 on x86-64) by the caller (for a
1027 parameter) or the callee (for a return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001028
Bill Wendling7f4a3362009-11-02 00:24:16 +00001029 <dt><tt><b>signext</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001030 <dd>This indicates to the code generator that the parameter or return value
Cameron Zwarich341c36d2011-03-17 14:21:58 +00001031 should be sign-extended to the extent required by the target's ABI (which
1032 is usually 32-bits) by the caller (for a parameter) or the callee (for a
1033 return value).</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001034
Bill Wendling7f4a3362009-11-02 00:24:16 +00001035 <dt><tt><b>inreg</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001036 <dd>This indicates that this parameter or return value should be treated in a
1037 special target-dependent fashion during while emitting code for a function
1038 call or return (usually, by putting it in a register as opposed to memory,
1039 though some targets use it to distinguish between two different kinds of
1040 registers). Use of this attribute is target-specific.</dd>
Chris Lattner5cee13f2008-01-11 06:20:47 +00001041
Bill Wendling7f4a3362009-11-02 00:24:16 +00001042 <dt><tt><b><a name="byval">byval</a></b></tt></dt>
Chris Lattnerd78dbee2010-11-20 23:49:06 +00001043 <dd><p>This indicates that the pointer parameter should really be passed by
1044 value to the function. The attribute implies that a hidden copy of the
1045 pointee
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001046 is made between the caller and the callee, so the callee is unable to
1047 modify the value in the callee. This attribute is only valid on LLVM
1048 pointer arguments. It is generally used to pass structs and arrays by
1049 value, but is also valid on pointers to scalars. The copy is considered
1050 to belong to the caller not the callee (for example,
1051 <tt><a href="#readonly">readonly</a></tt> functions should not write to
1052 <tt>byval</tt> parameters). This is not a valid attribute for return
Chris Lattnerd78dbee2010-11-20 23:49:06 +00001053 values.</p>
1054
1055 <p>The byval attribute also supports specifying an alignment with
1056 the align attribute. It indicates the alignment of the stack slot to
1057 form and the known alignment of the pointer specified to the call site. If
1058 the alignment is not specified, then the code generator makes a
1059 target-specific assumption.</p></dd>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001060
Dan Gohman3770af52010-07-02 23:18:08 +00001061 <dt><tt><b><a name="sret">sret</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001062 <dd>This indicates that the pointer parameter specifies the address of a
1063 structure that is the return value of the function in the source program.
1064 This pointer must be guaranteed by the caller to be valid: loads and
1065 stores to the structure may be assumed by the callee to not to trap. This
1066 may only be applied to the first parameter. This is not a valid attribute
1067 for return values. </dd>
1068
Dan Gohman3770af52010-07-02 23:18:08 +00001069 <dt><tt><b><a name="noalias">noalias</a></b></tt></dt>
Dan Gohmandf12d082010-07-02 18:41:32 +00001070 <dd>This indicates that pointer values
1071 <a href="#pointeraliasing"><i>based</i></a> on the argument or return
Dan Gohmande256292010-07-02 23:46:54 +00001072 value do not alias pointer values which are not <i>based</i> on it,
1073 ignoring certain "irrelevant" dependencies.
1074 For a call to the parent function, dependencies between memory
1075 references from before or after the call and from those during the call
1076 are "irrelevant" to the <tt>noalias</tt> keyword for the arguments and
1077 return value used in that call.
Dan Gohmandf12d082010-07-02 18:41:32 +00001078 The caller shares the responsibility with the callee for ensuring that
1079 these requirements are met.
1080 For further details, please see the discussion of the NoAlias response in
Dan Gohman6c858db2010-07-06 15:26:33 +00001081 <a href="AliasAnalysis.html#MustMayNo">alias analysis</a>.<br>
1082<br>
John McCall72ed8902010-07-06 21:07:14 +00001083 Note that this definition of <tt>noalias</tt> is intentionally
1084 similar to the definition of <tt>restrict</tt> in C99 for function
Chris Lattner5eff9ca2010-07-06 20:51:35 +00001085 arguments, though it is slightly weaker.
Dan Gohman6c858db2010-07-06 15:26:33 +00001086<br>
1087 For function return values, C99's <tt>restrict</tt> is not meaningful,
1088 while LLVM's <tt>noalias</tt> is.
1089 </dd>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001090
Dan Gohman3770af52010-07-02 23:18:08 +00001091 <dt><tt><b><a name="nocapture">nocapture</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001092 <dd>This indicates that the callee does not make any copies of the pointer
1093 that outlive the callee itself. This is not a valid attribute for return
1094 values.</dd>
1095
Dan Gohman3770af52010-07-02 23:18:08 +00001096 <dt><tt><b><a name="nest">nest</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001097 <dd>This indicates that the pointer parameter can be excised using the
1098 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
1099 attribute for return values.</dd>
1100</dl>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001101
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001102</div>
1103
1104<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001105<h3>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001106 <a name="gc">Garbage Collector Names</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001107</h3>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001108
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001109<div>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001110
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001111<p>Each function may specify a garbage collector name, which is simply a
1112 string:</p>
1113
Benjamin Kramer79698be2010-07-13 12:26:09 +00001114<pre class="doc_code">
Bill Wendling7f4a3362009-11-02 00:24:16 +00001115define void @f() gc "name" { ... }
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001116</pre>
Gordon Henriksen71183b62007-12-10 03:18:06 +00001117
1118<p>The compiler declares the supported values of <i>name</i>. Specifying a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001119 collector which will cause the compiler to alter its output in order to
1120 support the named garbage collection algorithm.</p>
1121
Gordon Henriksen71183b62007-12-10 03:18:06 +00001122</div>
1123
1124<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001125<h3>
Devang Patel9eb525d2008-09-26 23:51:19 +00001126 <a name="fnattrs">Function Attributes</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001127</h3>
Devang Patelcaacdba2008-09-04 23:05:13 +00001128
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001129<div>
Devang Patel9eb525d2008-09-26 23:51:19 +00001130
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001131<p>Function attributes are set to communicate additional information about a
1132 function. Function attributes are considered to be part of the function, not
1133 of the function type, so functions with different parameter attributes can
1134 have the same function type.</p>
Devang Patel9eb525d2008-09-26 23:51:19 +00001135
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001136<p>Function attributes are simple keywords that follow the type specified. If
1137 multiple attributes are needed, they are space separated. For example:</p>
Devang Patelcaacdba2008-09-04 23:05:13 +00001138
Benjamin Kramer79698be2010-07-13 12:26:09 +00001139<pre class="doc_code">
Devang Patel9eb525d2008-09-26 23:51:19 +00001140define void @f() noinline { ... }
1141define void @f() alwaysinline { ... }
1142define void @f() alwaysinline optsize { ... }
Bill Wendling7f4a3362009-11-02 00:24:16 +00001143define void @f() optsize { ... }
Bill Wendlingb175fa42008-09-07 10:26:33 +00001144</pre>
Devang Patelcaacdba2008-09-04 23:05:13 +00001145
Bill Wendlingb175fa42008-09-07 10:26:33 +00001146<dl>
Charles Davisbe5557e2010-02-12 00:31:15 +00001147 <dt><tt><b>alignstack(&lt;<em>n</em>&gt;)</b></tt></dt>
1148 <dd>This attribute indicates that, when emitting the prologue and epilogue,
1149 the backend should forcibly align the stack pointer. Specify the
1150 desired alignment, which must be a power of two, in parentheses.
1151
Bill Wendling7f4a3362009-11-02 00:24:16 +00001152 <dt><tt><b>alwaysinline</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001153 <dd>This attribute indicates that the inliner should attempt to inline this
1154 function into callers whenever possible, ignoring any active inlining size
1155 threshold for this caller.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001156
Charles Davis22fe1862010-10-25 15:37:09 +00001157 <dt><tt><b>hotpatch</b></tt></dt>
Charles Davis1b2d3722010-10-25 16:29:03 +00001158 <dd>This attribute indicates that the function should be 'hotpatchable',
Charles Davis74205252010-10-25 19:07:39 +00001159 meaning the function can be patched and/or hooked even while it is
1160 loaded into memory. On x86, the function prologue will be preceded
1161 by six bytes of padding and will begin with a two-byte instruction.
1162 Most of the functions in the Windows system DLLs in Windows XP SP2 or
1163 higher were compiled in this fashion.</dd>
Charles Davis22fe1862010-10-25 15:37:09 +00001164
Jakob Stoklund Olesen74bb06c2010-02-06 01:16:28 +00001165 <dt><tt><b>inlinehint</b></tt></dt>
1166 <dd>This attribute indicates that the source code contained a hint that inlining
1167 this function is desirable (such as the "inline" keyword in C/C++). It
1168 is just a hint; it imposes no requirements on the inliner.</dd>
1169
Nick Lewycky14b58da2010-07-06 18:24:09 +00001170 <dt><tt><b>naked</b></tt></dt>
1171 <dd>This attribute disables prologue / epilogue emission for the function.
1172 This can have very system-specific consequences.</dd>
1173
1174 <dt><tt><b>noimplicitfloat</b></tt></dt>
1175 <dd>This attributes disables implicit floating point instructions.</dd>
1176
Bill Wendling7f4a3362009-11-02 00:24:16 +00001177 <dt><tt><b>noinline</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001178 <dd>This attribute indicates that the inliner should never inline this
1179 function in any situation. This attribute may not be used together with
1180 the <tt>alwaysinline</tt> attribute.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +00001181
Nick Lewycky14b58da2010-07-06 18:24:09 +00001182 <dt><tt><b>noredzone</b></tt></dt>
1183 <dd>This attribute indicates that the code generator should not use a red
1184 zone, even if the target-specific ABI normally permits it.</dd>
Devang Patel9eb525d2008-09-26 23:51:19 +00001185
Bill Wendling7f4a3362009-11-02 00:24:16 +00001186 <dt><tt><b>noreturn</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001187 <dd>This function attribute indicates that the function never returns
1188 normally. This produces undefined behavior at runtime if the function
1189 ever does dynamically return.</dd>
Bill Wendlinga8130172008-11-13 01:02:51 +00001190
Bill Wendling7f4a3362009-11-02 00:24:16 +00001191 <dt><tt><b>nounwind</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001192 <dd>This function attribute indicates that the function never returns with an
1193 unwind or exceptional control flow. If the function does unwind, its
1194 runtime behavior is undefined.</dd>
Bill Wendling0f5541e2008-11-26 19:07:40 +00001195
Nick Lewycky14b58da2010-07-06 18:24:09 +00001196 <dt><tt><b>optsize</b></tt></dt>
1197 <dd>This attribute suggests that optimization passes and code generator passes
1198 make choices that keep the code size of this function low, and otherwise
1199 do optimizations specifically to reduce code size.</dd>
1200
Bill Wendling7f4a3362009-11-02 00:24:16 +00001201 <dt><tt><b>readnone</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001202 <dd>This attribute indicates that the function computes its result (or decides
1203 to unwind an exception) based strictly on its arguments, without
1204 dereferencing any pointer arguments or otherwise accessing any mutable
1205 state (e.g. memory, control registers, etc) visible to caller functions.
1206 It does not write through any pointer arguments
1207 (including <tt><a href="#byval">byval</a></tt> arguments) and never
1208 changes any state visible to callers. This means that it cannot unwind
1209 exceptions by calling the <tt>C++</tt> exception throwing methods, but
1210 could use the <tt>unwind</tt> instruction.</dd>
Devang Patel310fd4a2009-06-12 19:45:19 +00001211
Bill Wendling7f4a3362009-11-02 00:24:16 +00001212 <dt><tt><b><a name="readonly">readonly</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001213 <dd>This attribute indicates that the function does not write through any
1214 pointer arguments (including <tt><a href="#byval">byval</a></tt>
1215 arguments) or otherwise modify any state (e.g. memory, control registers,
1216 etc) visible to caller functions. It may dereference pointer arguments
1217 and read state that may be set in the caller. A readonly function always
1218 returns the same value (or unwinds an exception identically) when called
1219 with the same set of arguments and global state. It cannot unwind an
1220 exception by calling the <tt>C++</tt> exception throwing methods, but may
1221 use the <tt>unwind</tt> instruction.</dd>
Anton Korobeynikovc8ce7b082009-07-17 18:07:26 +00001222
Bill Wendling7f4a3362009-11-02 00:24:16 +00001223 <dt><tt><b><a name="ssp">ssp</a></b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001224 <dd>This attribute indicates that the function should emit a stack smashing
1225 protector. It is in the form of a "canary"&mdash;a random value placed on
1226 the stack before the local variables that's checked upon return from the
1227 function to see if it has been overwritten. A heuristic is used to
1228 determine if a function needs stack protectors or not.<br>
1229<br>
1230 If a function that has an <tt>ssp</tt> attribute is inlined into a
1231 function that doesn't have an <tt>ssp</tt> attribute, then the resulting
1232 function will have an <tt>ssp</tt> attribute.</dd>
1233
Bill Wendling7f4a3362009-11-02 00:24:16 +00001234 <dt><tt><b>sspreq</b></tt></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001235 <dd>This attribute indicates that the function should <em>always</em> emit a
1236 stack smashing protector. This overrides
Bill Wendling30235112009-07-20 02:39:26 +00001237 the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
1238<br>
1239 If a function that has an <tt>sspreq</tt> attribute is inlined into a
1240 function that doesn't have an <tt>sspreq</tt> attribute or which has
1241 an <tt>ssp</tt> attribute, then the resulting function will have
1242 an <tt>sspreq</tt> attribute.</dd>
Bill Wendlingb175fa42008-09-07 10:26:33 +00001243</dl>
1244
Devang Patelcaacdba2008-09-04 23:05:13 +00001245</div>
1246
1247<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001248<h3>
Chris Lattner93564892006-04-08 04:40:53 +00001249 <a name="moduleasm">Module-Level Inline Assembly</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001250</h3>
Chris Lattner91c15c42006-01-23 23:23:47 +00001251
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001252<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001253
1254<p>Modules may contain "module-level inline asm" blocks, which corresponds to
1255 the GCC "file scope inline asm" blocks. These blocks are internally
1256 concatenated by LLVM and treated as a single unit, but may be separated in
1257 the <tt>.ll</tt> file if desired. The syntax is very simple:</p>
Chris Lattner91c15c42006-01-23 23:23:47 +00001258
Benjamin Kramer79698be2010-07-13 12:26:09 +00001259<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00001260module asm "inline asm code goes here"
1261module asm "more can go here"
1262</pre>
Chris Lattner91c15c42006-01-23 23:23:47 +00001263
1264<p>The strings can contain any character by escaping non-printable characters.
1265 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001266 for the number.</p>
Chris Lattner91c15c42006-01-23 23:23:47 +00001267
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001268<p>The inline asm code is simply printed to the machine code .s file when
1269 assembly code is generated.</p>
1270
Chris Lattner91c15c42006-01-23 23:23:47 +00001271</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001272
Reid Spencer50c723a2007-02-19 23:54:10 +00001273<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001274<h3>
Reid Spencer50c723a2007-02-19 23:54:10 +00001275 <a name="datalayout">Data Layout</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001276</h3>
Reid Spencer50c723a2007-02-19 23:54:10 +00001277
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001278<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001279
Reid Spencer50c723a2007-02-19 23:54:10 +00001280<p>A module may specify a target specific data layout string that specifies how
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001281 data is to be laid out in memory. The syntax for the data layout is
1282 simply:</p>
1283
Benjamin Kramer79698be2010-07-13 12:26:09 +00001284<pre class="doc_code">
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001285target datalayout = "<i>layout specification</i>"
1286</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001287
1288<p>The <i>layout specification</i> consists of a list of specifications
1289 separated by the minus sign character ('-'). Each specification starts with
1290 a letter and may include other information after the letter to define some
1291 aspect of the data layout. The specifications accepted are as follows:</p>
1292
Reid Spencer50c723a2007-02-19 23:54:10 +00001293<dl>
1294 <dt><tt>E</tt></dt>
1295 <dd>Specifies that the target lays out data in big-endian form. That is, the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001296 bits with the most significance have the lowest address location.</dd>
1297
Reid Spencer50c723a2007-02-19 23:54:10 +00001298 <dt><tt>e</tt></dt>
Chris Lattner67c37d12008-08-05 18:29:16 +00001299 <dd>Specifies that the target lays out data in little-endian form. That is,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001300 the bits with the least significance have the lowest address
1301 location.</dd>
1302
Reid Spencer50c723a2007-02-19 23:54:10 +00001303 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher455c5772009-12-05 02:46:03 +00001304 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001305 <i>preferred</i> alignments. All sizes are in bits. Specifying
1306 the <i>pref</i> alignment is optional. If omitted, the
1307 preceding <tt>:</tt> should be omitted too.</dd>
1308
Reid Spencer50c723a2007-02-19 23:54:10 +00001309 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1310 <dd>This specifies the alignment for an integer type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001311 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1312
Reid Spencer50c723a2007-02-19 23:54:10 +00001313 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher455c5772009-12-05 02:46:03 +00001314 <dd>This specifies the alignment for a vector type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001315 <i>size</i>.</dd>
1316
Reid Spencer50c723a2007-02-19 23:54:10 +00001317 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher455c5772009-12-05 02:46:03 +00001318 <dd>This specifies the alignment for a floating point type of a given bit
Dale Johannesence522852010-05-28 18:54:47 +00001319 <i>size</i>. Only values of <i>size</i> that are supported by the target
1320 will work. 32 (float) and 64 (double) are supported on all targets;
1321 80 or 128 (different flavors of long double) are also supported on some
1322 targets.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001323
Reid Spencer50c723a2007-02-19 23:54:10 +00001324 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1325 <dd>This specifies the alignment for an aggregate type of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001326 <i>size</i>.</dd>
1327
Daniel Dunbar7921a592009-06-08 22:17:53 +00001328 <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1329 <dd>This specifies the alignment for a stack object of a given bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001330 <i>size</i>.</dd>
Chris Lattnera381eff2009-11-07 09:35:34 +00001331
1332 <dt><tt>n<i>size1</i>:<i>size2</i>:<i>size3</i>...</tt></dt>
1333 <dd>This specifies a set of native integer widths for the target CPU
1334 in bits. For example, it might contain "n32" for 32-bit PowerPC,
1335 "n32:64" for PowerPC 64, or "n8:16:32:64" for X86-64. Elements of
Eric Christopher455c5772009-12-05 02:46:03 +00001336 this set are considered to support most general arithmetic
Chris Lattnera381eff2009-11-07 09:35:34 +00001337 operations efficiently.</dd>
Reid Spencer50c723a2007-02-19 23:54:10 +00001338</dl>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001339
Reid Spencer50c723a2007-02-19 23:54:10 +00001340<p>When constructing the data layout for a given target, LLVM starts with a
Dan Gohman61110ae2010-04-28 00:36:01 +00001341 default set of specifications which are then (possibly) overridden by the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001342 specifications in the <tt>datalayout</tt> keyword. The default specifications
1343 are given in this list:</p>
1344
Reid Spencer50c723a2007-02-19 23:54:10 +00001345<ul>
1346 <li><tt>E</tt> - big endian</li>
Dan Gohman8ad777d2010-02-23 02:44:03 +00001347 <li><tt>p:64:64:64</tt> - 64-bit pointers with 64-bit alignment</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001348 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1349 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1350 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1351 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattner67c37d12008-08-05 18:29:16 +00001352 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencer50c723a2007-02-19 23:54:10 +00001353 alignment of 64-bits</li>
1354 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1355 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1356 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1357 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1358 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
Daniel Dunbar7921a592009-06-08 22:17:53 +00001359 <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001360</ul>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001361
1362<p>When LLVM is determining the alignment for a given type, it uses the
1363 following rules:</p>
1364
Reid Spencer50c723a2007-02-19 23:54:10 +00001365<ol>
1366 <li>If the type sought is an exact match for one of the specifications, that
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001367 specification is used.</li>
1368
Reid Spencer50c723a2007-02-19 23:54:10 +00001369 <li>If no match is found, and the type sought is an integer type, then the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001370 smallest integer type that is larger than the bitwidth of the sought type
1371 is used. If none of the specifications are larger than the bitwidth then
1372 the the largest integer type is used. For example, given the default
1373 specifications above, the i7 type will use the alignment of i8 (next
1374 largest) while both i65 and i256 will use the alignment of i64 (largest
1375 specified).</li>
1376
Reid Spencer50c723a2007-02-19 23:54:10 +00001377 <li>If no match is found, and the type sought is a vector type, then the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001378 largest vector type that is smaller than the sought vector type will be
1379 used as a fall back. This happens because &lt;128 x double&gt; can be
1380 implemented in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencer50c723a2007-02-19 23:54:10 +00001381</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001382
Reid Spencer50c723a2007-02-19 23:54:10 +00001383</div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001384
Dan Gohman6154a012009-07-27 18:07:55 +00001385<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001386<h3>
Dan Gohman6154a012009-07-27 18:07:55 +00001387 <a name="pointeraliasing">Pointer Aliasing Rules</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001388</h3>
Dan Gohman6154a012009-07-27 18:07:55 +00001389
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001390<div>
Dan Gohman6154a012009-07-27 18:07:55 +00001391
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001392<p>Any memory access must be done through a pointer value associated
Andreas Bolkae39f0332009-07-27 20:37:10 +00001393with an address range of the memory access, otherwise the behavior
Dan Gohman6154a012009-07-27 18:07:55 +00001394is undefined. Pointer values are associated with address ranges
1395according to the following rules:</p>
1396
1397<ul>
Dan Gohmandf12d082010-07-02 18:41:32 +00001398 <li>A pointer value is associated with the addresses associated with
1399 any value it is <i>based</i> on.
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001400 <li>An address of a global variable is associated with the address
Dan Gohman6154a012009-07-27 18:07:55 +00001401 range of the variable's storage.</li>
1402 <li>The result value of an allocation instruction is associated with
1403 the address range of the allocated storage.</li>
1404 <li>A null pointer in the default address-space is associated with
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001405 no address.</li>
Dan Gohman6154a012009-07-27 18:07:55 +00001406 <li>An integer constant other than zero or a pointer value returned
1407 from a function not defined within LLVM may be associated with address
1408 ranges allocated through mechanisms other than those provided by
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001409 LLVM. Such ranges shall not overlap with any ranges of addresses
Dan Gohman6154a012009-07-27 18:07:55 +00001410 allocated by mechanisms provided by LLVM.</li>
Dan Gohmandf12d082010-07-02 18:41:32 +00001411</ul>
1412
1413<p>A pointer value is <i>based</i> on another pointer value according
1414 to the following rules:</p>
1415
1416<ul>
1417 <li>A pointer value formed from a
1418 <tt><a href="#i_getelementptr">getelementptr</a></tt> operation
1419 is <i>based</i> on the first operand of the <tt>getelementptr</tt>.</li>
1420 <li>The result value of a
1421 <tt><a href="#i_bitcast">bitcast</a></tt> is <i>based</i> on the operand
1422 of the <tt>bitcast</tt>.</li>
1423 <li>A pointer value formed by an
1424 <tt><a href="#i_inttoptr">inttoptr</a></tt> is <i>based</i> on all
1425 pointer values that contribute (directly or indirectly) to the
1426 computation of the pointer's value.</li>
1427 <li>The "<i>based</i> on" relationship is transitive.</li>
1428</ul>
1429
1430<p>Note that this definition of <i>"based"</i> is intentionally
1431 similar to the definition of <i>"based"</i> in C99, though it is
1432 slightly weaker.</p>
Dan Gohman6154a012009-07-27 18:07:55 +00001433
1434<p>LLVM IR does not associate types with memory. The result type of a
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001435<tt><a href="#i_load">load</a></tt> merely indicates the size and
1436alignment of the memory from which to load, as well as the
Dan Gohman4eb47192010-06-17 19:23:50 +00001437interpretation of the value. The first operand type of a
Andreas Bolka8ae4e242009-07-29 00:02:05 +00001438<tt><a href="#i_store">store</a></tt> similarly only indicates the size
1439and alignment of the store.</p>
Dan Gohman6154a012009-07-27 18:07:55 +00001440
1441<p>Consequently, type-based alias analysis, aka TBAA, aka
1442<tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
1443LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
1444additional information which specialized optimization passes may use
1445to implement type-based alias analysis.</p>
1446
1447</div>
1448
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00001449<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001450<h3>
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00001451 <a name="volatile">Volatile Memory Accesses</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001452</h3>
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00001453
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001454<div>
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00001455
1456<p>Certain memory accesses, such as <a href="#i_load"><tt>load</tt></a>s, <a
1457href="#i_store"><tt>store</tt></a>s, and <a
1458href="#int_memcpy"><tt>llvm.memcpy</tt></a>s may be marked <tt>volatile</tt>.
1459The optimizers must not change the number of volatile operations or change their
1460order of execution relative to other volatile operations. The optimizers
1461<i>may</i> change the order of volatile operations relative to non-volatile
1462operations. This is not Java's "volatile" and has no cross-thread
1463synchronization behavior.</p>
1464
1465</div>
1466
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001467</div>
1468
Chris Lattner2f7c9632001-06-06 20:29:01 +00001469<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001470<h2><a name="typesystem">Type System</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +00001471<!-- *********************************************************************** -->
Chris Lattner6af02f32004-12-09 16:11:40 +00001472
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001473<div>
Chris Lattner6af02f32004-12-09 16:11:40 +00001474
Misha Brukman76307852003-11-08 01:05:38 +00001475<p>The LLVM type system is one of the most important features of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001476 intermediate representation. Being typed enables a number of optimizations
1477 to be performed on the intermediate representation directly, without having
1478 to do extra analyses on the side before the transformation. A strong type
1479 system makes it easier to read the generated code and enables novel analyses
1480 and transformations that are not feasible to perform on normal three address
1481 code representations.</p>
Chris Lattner6af02f32004-12-09 16:11:40 +00001482
Chris Lattner2f7c9632001-06-06 20:29:01 +00001483<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001484<h3>
1485 <a name="t_classifications">Type Classifications</a>
1486</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001487
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001488<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001489
1490<p>The types fall into a few useful classifications:</p>
Misha Brukmanc501f552004-03-01 17:47:27 +00001491
1492<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00001493 <tbody>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001494 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001495 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001496 <td><a href="#t_integer">integer</a></td>
Reid Spencer138249b2007-05-16 18:44:01 +00001497 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001498 </tr>
1499 <tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001500 <td><a href="#t_floating">floating point</a></td>
1501 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001502 </tr>
1503 <tr>
1504 <td><a name="t_firstclass">first class</a></td>
Chris Lattner7824d182008-01-04 04:32:38 +00001505 <td><a href="#t_integer">integer</a>,
1506 <a href="#t_floating">floating point</a>,
1507 <a href="#t_pointer">pointer</a>,
Dan Gohman08783a882008-06-18 18:42:13 +00001508 <a href="#t_vector">vector</a>,
Dan Gohmanb9d66602008-05-12 23:51:09 +00001509 <a href="#t_struct">structure</a>,
1510 <a href="#t_array">array</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001511 <a href="#t_label">label</a>,
1512 <a href="#t_metadata">metadata</a>.
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001513 </td>
Chris Lattner48b383b02003-11-25 01:02:51 +00001514 </tr>
Chris Lattner7824d182008-01-04 04:32:38 +00001515 <tr>
1516 <td><a href="#t_primitive">primitive</a></td>
1517 <td><a href="#t_label">label</a>,
1518 <a href="#t_void">void</a>,
Tobias Grosser4c8c95b2010-12-28 20:29:31 +00001519 <a href="#t_integer">integer</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001520 <a href="#t_floating">floating point</a>,
Dale Johannesen33e5c352010-10-01 00:48:59 +00001521 <a href="#t_x86mmx">x86mmx</a>,
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001522 <a href="#t_metadata">metadata</a>.</td>
Chris Lattner7824d182008-01-04 04:32:38 +00001523 </tr>
1524 <tr>
1525 <td><a href="#t_derived">derived</a></td>
Chris Lattner392be582010-02-12 20:49:41 +00001526 <td><a href="#t_array">array</a>,
Chris Lattner7824d182008-01-04 04:32:38 +00001527 <a href="#t_function">function</a>,
1528 <a href="#t_pointer">pointer</a>,
1529 <a href="#t_struct">structure</a>,
1530 <a href="#t_pstruct">packed structure</a>,
1531 <a href="#t_vector">vector</a>,
1532 <a href="#t_opaque">opaque</a>.
Dan Gohman93bf60d2008-10-14 16:32:04 +00001533 </td>
Chris Lattner7824d182008-01-04 04:32:38 +00001534 </tr>
Chris Lattner48b383b02003-11-25 01:02:51 +00001535 </tbody>
Misha Brukman76307852003-11-08 01:05:38 +00001536</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00001537
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001538<p>The <a href="#t_firstclass">first class</a> types are perhaps the most
1539 important. Values of these types are the only ones which can be produced by
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001540 instructions.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001541
Misha Brukman76307852003-11-08 01:05:38 +00001542</div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001543
Chris Lattner2f7c9632001-06-06 20:29:01 +00001544<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001545<h3>
1546 <a name="t_primitive">Primitive Types</a>
1547</h3>
Chris Lattner43542b32008-01-04 04:34:14 +00001548
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001549<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001550
Chris Lattner7824d182008-01-04 04:32:38 +00001551<p>The primitive types are the fundamental building blocks of the LLVM
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001552 system.</p>
Chris Lattner7824d182008-01-04 04:32:38 +00001553
1554<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001555<h4>
1556 <a name="t_integer">Integer Type</a>
1557</h4>
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001558
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001559<div>
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001560
1561<h5>Overview:</h5>
1562<p>The integer type is a very simple type that simply specifies an arbitrary
1563 bit width for the integer type desired. Any bit width from 1 bit to
1564 2<sup>23</sup>-1 (about 8 million) can be specified.</p>
1565
1566<h5>Syntax:</h5>
1567<pre>
1568 iN
1569</pre>
1570
1571<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1572 value.</p>
1573
1574<h5>Examples:</h5>
1575<table class="layout">
1576 <tr class="layout">
1577 <td class="left"><tt>i1</tt></td>
1578 <td class="left">a single-bit integer.</td>
1579 </tr>
1580 <tr class="layout">
1581 <td class="left"><tt>i32</tt></td>
1582 <td class="left">a 32-bit integer.</td>
1583 </tr>
1584 <tr class="layout">
1585 <td class="left"><tt>i1942652</tt></td>
1586 <td class="left">a really big integer of over 1 million bits.</td>
1587 </tr>
1588</table>
1589
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001590</div>
1591
1592<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001593<h4>
1594 <a name="t_floating">Floating Point Types</a>
1595</h4>
Chris Lattner7824d182008-01-04 04:32:38 +00001596
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001597<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001598
1599<table>
1600 <tbody>
1601 <tr><th>Type</th><th>Description</th></tr>
1602 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1603 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1604 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1605 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1606 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1607 </tbody>
1608</table>
1609
Chris Lattner7824d182008-01-04 04:32:38 +00001610</div>
1611
1612<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001613<h4>
1614 <a name="t_x86mmx">X86mmx Type</a>
1615</h4>
Dale Johannesen33e5c352010-10-01 00:48:59 +00001616
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001617<div>
Dale Johannesen33e5c352010-10-01 00:48:59 +00001618
1619<h5>Overview:</h5>
1620<p>The x86mmx type represents a value held in an MMX register on an x86 machine. The operations allowed on it are quite limited: parameters and return values, load and store, and bitcast. User-specified MMX instructions are represented as intrinsic or asm calls with arguments and/or results of this type. There are no arrays, vectors or constants of this type.</p>
1621
1622<h5>Syntax:</h5>
1623<pre>
Dale Johannesenb1f0ff12010-10-01 01:07:02 +00001624 x86mmx
Dale Johannesen33e5c352010-10-01 00:48:59 +00001625</pre>
1626
1627</div>
1628
1629<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001630<h4>
1631 <a name="t_void">Void Type</a>
1632</h4>
Chris Lattner7824d182008-01-04 04:32:38 +00001633
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001634<div>
Bill Wendling30235112009-07-20 02:39:26 +00001635
Chris Lattner7824d182008-01-04 04:32:38 +00001636<h5>Overview:</h5>
1637<p>The void type does not represent any value and has no size.</p>
1638
1639<h5>Syntax:</h5>
Chris Lattner7824d182008-01-04 04:32:38 +00001640<pre>
1641 void
1642</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001643
Chris Lattner7824d182008-01-04 04:32:38 +00001644</div>
1645
1646<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001647<h4>
1648 <a name="t_label">Label Type</a>
1649</h4>
Chris Lattner7824d182008-01-04 04:32:38 +00001650
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001651<div>
Bill Wendling30235112009-07-20 02:39:26 +00001652
Chris Lattner7824d182008-01-04 04:32:38 +00001653<h5>Overview:</h5>
1654<p>The label type represents code labels.</p>
1655
1656<h5>Syntax:</h5>
Chris Lattner7824d182008-01-04 04:32:38 +00001657<pre>
1658 label
1659</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001660
Chris Lattner7824d182008-01-04 04:32:38 +00001661</div>
1662
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001663<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001664<h4>
1665 <a name="t_metadata">Metadata Type</a>
1666</h4>
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001667
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001668<div>
Bill Wendling30235112009-07-20 02:39:26 +00001669
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001670<h5>Overview:</h5>
Nick Lewycky93e06a52009-09-27 23:27:42 +00001671<p>The metadata type represents embedded metadata. No derived types may be
1672 created from metadata except for <a href="#t_function">function</a>
1673 arguments.
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001674
1675<h5>Syntax:</h5>
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001676<pre>
1677 metadata
1678</pre>
Bill Wendling30235112009-07-20 02:39:26 +00001679
Nick Lewyckyadbc2842009-05-30 05:06:04 +00001680</div>
1681
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001682</div>
Chris Lattner7824d182008-01-04 04:32:38 +00001683
1684<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001685<h3>
1686 <a name="t_derived">Derived Types</a>
1687</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00001688
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001689<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001690
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001691<p>The real power in LLVM comes from the derived types in the system. This is
1692 what allows a programmer to represent arrays, functions, pointers, and other
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00001693 useful types. Each of these types contain one or more element types which
1694 may be a primitive type, or another derived type. For example, it is
1695 possible to have a two dimensional array, using an array as the element type
1696 of another array.</p>
Dan Gohman142ccc02009-01-24 15:58:40 +00001697
Chris Lattner392be582010-02-12 20:49:41 +00001698
Chris Lattner392be582010-02-12 20:49:41 +00001699<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001700<h4>
1701 <a name="t_aggregate">Aggregate Types</a>
1702</h4>
Chris Lattner392be582010-02-12 20:49:41 +00001703
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001704<div>
Chris Lattner392be582010-02-12 20:49:41 +00001705
1706<p>Aggregate Types are a subset of derived types that can contain multiple
1707 member types. <a href="#t_array">Arrays</a>,
Chris Lattner13ee7952010-08-28 04:09:24 +00001708 <a href="#t_struct">structs</a>, and <a href="#t_vector">vectors</a> are
1709 aggregate types.</p>
Chris Lattner392be582010-02-12 20:49:41 +00001710
1711</div>
1712
Reid Spencer138249b2007-05-16 18:44:01 +00001713<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001714<h4>
1715 <a name="t_array">Array Type</a>
1716</h4>
Chris Lattner74d3f822004-12-09 17:30:23 +00001717
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001718<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00001719
Chris Lattner2f7c9632001-06-06 20:29:01 +00001720<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00001721<p>The array type is a very simple derived type that arranges elements
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001722 sequentially in memory. The array type requires a size (number of elements)
1723 and an underlying data type.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001724
Chris Lattner590645f2002-04-14 06:13:44 +00001725<h5>Syntax:</h5>
Chris Lattner74d3f822004-12-09 17:30:23 +00001726<pre>
1727 [&lt;# elements&gt; x &lt;elementtype&gt;]
1728</pre>
1729
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001730<p>The number of elements is a constant integer value; <tt>elementtype</tt> may
1731 be any type with a size.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00001732
Chris Lattner590645f2002-04-14 06:13:44 +00001733<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001734<table class="layout">
1735 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001736 <td class="left"><tt>[40 x i32]</tt></td>
1737 <td class="left">Array of 40 32-bit integer values.</td>
1738 </tr>
1739 <tr class="layout">
1740 <td class="left"><tt>[41 x i32]</tt></td>
1741 <td class="left">Array of 41 32-bit integer values.</td>
1742 </tr>
1743 <tr class="layout">
1744 <td class="left"><tt>[4 x i8]</tt></td>
1745 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001746 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001747</table>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001748<p>Here are some examples of multidimensional arrays:</p>
1749<table class="layout">
1750 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001751 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1752 <td class="left">3x4 array of 32-bit integer values.</td>
1753 </tr>
1754 <tr class="layout">
1755 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1756 <td class="left">12x10 array of single precision floating point values.</td>
1757 </tr>
1758 <tr class="layout">
1759 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1760 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001761 </tr>
1762</table>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001763
Dan Gohmanc74bc282009-11-09 19:01:53 +00001764<p>There is no restriction on indexing beyond the end of the array implied by
1765 a static type (though there are restrictions on indexing beyond the bounds
1766 of an allocated object in some cases). This means that single-dimension
1767 'variable sized array' addressing can be implemented in LLVM with a zero
1768 length array type. An implementation of 'pascal style arrays' in LLVM could
1769 use the type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00001770
Misha Brukman76307852003-11-08 01:05:38 +00001771</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001772
Chris Lattner2f7c9632001-06-06 20:29:01 +00001773<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001774<h4>
1775 <a name="t_function">Function Type</a>
1776</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001777
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001778<div>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001779
Chris Lattner2f7c9632001-06-06 20:29:01 +00001780<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001781<p>The function type can be thought of as a function signature. It consists of
1782 a return type and a list of formal parameter types. The return type of a
Chris Lattner13ee7952010-08-28 04:09:24 +00001783 function type is a first class type or a void type.</p>
Devang Pateld6cff512008-03-10 20:49:15 +00001784
Chris Lattner2f7c9632001-06-06 20:29:01 +00001785<h5>Syntax:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001786<pre>
Nick Lewycky14d1ccc2009-09-27 07:55:32 +00001787 &lt;returntype&gt; (&lt;parameter list&gt;)
Chris Lattnerda508ac2008-04-23 04:59:35 +00001788</pre>
1789
John Criswell4c0cf7f2005-10-24 16:17:18 +00001790<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001791 specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1792 which indicates that the function takes a variable number of arguments.
1793 Variable argument functions can access their arguments with
1794 the <a href="#int_varargs">variable argument handling intrinsic</a>
Chris Lattner47f2a832010-03-02 06:36:51 +00001795 functions. '<tt>&lt;returntype&gt;</tt>' is any type except
Nick Lewycky93e06a52009-09-27 23:27:42 +00001796 <a href="#t_label">label</a>.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00001797
Chris Lattner2f7c9632001-06-06 20:29:01 +00001798<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001799<table class="layout">
1800 <tr class="layout">
Reid Spencer58c08712006-12-31 07:18:34 +00001801 <td class="left"><tt>i32 (i32)</tt></td>
1802 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001803 </td>
Reid Spencer58c08712006-12-31 07:18:34 +00001804 </tr><tr class="layout">
Chris Lattner47f2a832010-03-02 06:36:51 +00001805 <td class="left"><tt>float&nbsp;(i16,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencer655dcc62006-12-31 07:20:23 +00001806 </tt></td>
Eric Christopher455c5772009-12-05 02:46:03 +00001807 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
Chris Lattner47f2a832010-03-02 06:36:51 +00001808 an <tt>i16</tt> and a <a href="#t_pointer">pointer</a> to <tt>i32</tt>,
1809 returning <tt>float</tt>.
Reid Spencer58c08712006-12-31 07:18:34 +00001810 </td>
1811 </tr><tr class="layout">
1812 <td class="left"><tt>i32 (i8*, ...)</tt></td>
Eric Christopher455c5772009-12-05 02:46:03 +00001813 <td class="left">A vararg function that takes at least one
1814 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
1815 which returns an integer. This is the signature for <tt>printf</tt> in
Reid Spencer58c08712006-12-31 07:18:34 +00001816 LLVM.
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001817 </td>
Devang Patele3dfc1c2008-03-24 05:35:41 +00001818 </tr><tr class="layout">
1819 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Nick Lewycky14d1ccc2009-09-27 07:55:32 +00001820 <td class="left">A function taking an <tt>i32</tt>, returning a
1821 <a href="#t_struct">structure</a> containing two <tt>i32</tt> values
Devang Patele3dfc1c2008-03-24 05:35:41 +00001822 </td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001823 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001824</table>
Misha Brukmanc501f552004-03-01 17:47:27 +00001825
Misha Brukman76307852003-11-08 01:05:38 +00001826</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001827
Chris Lattner2f7c9632001-06-06 20:29:01 +00001828<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001829<h4>
1830 <a name="t_struct">Structure Type</a>
1831</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001832
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001833<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001834
Chris Lattner2f7c9632001-06-06 20:29:01 +00001835<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001836<p>The structure type is used to represent a collection of data members together
1837 in memory. The packing of the field types is defined to match the ABI of the
1838 underlying processor. The elements of a structure may be any type that has a
1839 size.</p>
1840
Jeffrey Yasskinf991bbb2010-01-11 19:19:26 +00001841<p>Structures in memory are accessed using '<tt><a href="#i_load">load</a></tt>'
1842 and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field
1843 with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
1844 Structures in registers are accessed using the
1845 '<tt><a href="#i_extractvalue">extractvalue</a></tt>' and
1846 '<tt><a href="#i_insertvalue">insertvalue</a></tt>' instructions.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001847<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00001848<pre>
1849 { &lt;type list&gt; }
1850</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001851
Chris Lattner2f7c9632001-06-06 20:29:01 +00001852<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001853<table class="layout">
1854 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00001855 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1856 <td class="left">A triple of three <tt>i32</tt> values</td>
1857 </tr><tr class="layout">
1858 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1859 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1860 second element is a <a href="#t_pointer">pointer</a> to a
1861 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1862 an <tt>i32</tt>.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001863 </tr>
Chris Lattner2f7c9632001-06-06 20:29:01 +00001864</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00001865
Misha Brukman76307852003-11-08 01:05:38 +00001866</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001867
Chris Lattner2f7c9632001-06-06 20:29:01 +00001868<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001869<h4>
1870 <a name="t_pstruct">Packed Structure Type</a>
1871</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001872
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001873<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001874
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001875<h5>Overview:</h5>
1876<p>The packed structure type is used to represent a collection of data members
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001877 together in memory. There is no padding between fields. Further, the
1878 alignment of a packed structure is 1 byte. The elements of a packed
1879 structure may be any type that has a size.</p>
1880
1881<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> and
1882 '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with
1883 the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
1884
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001885<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00001886<pre>
1887 &lt; { &lt;type list&gt; } &gt;
1888</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001889
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001890<h5>Examples:</h5>
1891<table class="layout">
1892 <tr class="layout">
Jeff Cohen5819f182007-04-22 01:17:39 +00001893 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1894 <td class="left">A triple of three <tt>i32</tt> values</td>
1895 </tr><tr class="layout">
Bill Wendlingb175fa42008-09-07 10:26:33 +00001896 <td class="left">
1897<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen5819f182007-04-22 01:17:39 +00001898 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1899 second element is a <a href="#t_pointer">pointer</a> to a
1900 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1901 an <tt>i32</tt>.</td>
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001902 </tr>
1903</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001904
Andrew Lenharth8df88e22006-12-08 17:13:00 +00001905</div>
1906
1907<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001908<h4>
1909 <a name="t_pointer">Pointer Type</a>
1910</h4>
Chris Lattner4a67c912009-02-08 19:53:29 +00001911
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001912<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001913
1914<h5>Overview:</h5>
Dan Gohman88481112010-02-25 16:50:07 +00001915<p>The pointer type is used to specify memory locations.
1916 Pointers are commonly used to reference objects in memory.</p>
1917
1918<p>Pointer types may have an optional address space attribute defining the
1919 numbered address space where the pointed-to object resides. The default
1920 address space is number zero. The semantics of non-zero address
1921 spaces are target-specific.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001922
1923<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
1924 permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
Chris Lattner4a67c912009-02-08 19:53:29 +00001925
Chris Lattner590645f2002-04-14 06:13:44 +00001926<h5>Syntax:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00001927<pre>
1928 &lt;type&gt; *
1929</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001930
Chris Lattner590645f2002-04-14 06:13:44 +00001931<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001932<table class="layout">
1933 <tr class="layout">
Dan Gohman623806e2009-01-04 23:44:43 +00001934 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner747359f2007-12-19 05:04:11 +00001935 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1936 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1937 </tr>
1938 <tr class="layout">
Dan Gohmanaabfdb32010-05-28 17:13:49 +00001939 <td class="left"><tt>i32 (i32*) *</tt></td>
Chris Lattner747359f2007-12-19 05:04:11 +00001940 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00001941 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner747359f2007-12-19 05:04:11 +00001942 <tt>i32</tt>.</td>
1943 </tr>
1944 <tr class="layout">
1945 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1946 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1947 that resides in address space #5.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001948 </tr>
Misha Brukman76307852003-11-08 01:05:38 +00001949</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001950
Misha Brukman76307852003-11-08 01:05:38 +00001951</div>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001952
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001953<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001954<h4>
1955 <a name="t_vector">Vector Type</a>
1956</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001957
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001958<div>
Chris Lattner37b6b092005-04-25 17:34:15 +00001959
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001960<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001961<p>A vector type is a simple derived type that represents a vector of elements.
1962 Vector types are used when multiple primitive data are operated in parallel
1963 using a single instruction (SIMD). A vector type requires a size (number of
Duncan Sands31c0e0e2009-11-27 13:38:03 +00001964 elements) and an underlying primitive data type. Vector types are considered
Bill Wendlingd9a66f72009-07-20 02:29:24 +00001965 <a href="#t_firstclass">first class</a>.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00001966
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001967<h5>Syntax:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00001968<pre>
1969 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1970</pre>
1971
Chris Lattnerf11031a2010-10-10 18:20:35 +00001972<p>The number of elements is a constant integer value larger than 0; elementtype
1973 may be any integer or floating point type. Vectors of size zero are not
1974 allowed, and pointers are not allowed as the element type.</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00001975
Chris Lattnerc8cb6952004-08-12 19:12:28 +00001976<h5>Examples:</h5>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001977<table class="layout">
1978 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00001979 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1980 <td class="left">Vector of 4 32-bit integer values.</td>
1981 </tr>
1982 <tr class="layout">
1983 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1984 <td class="left">Vector of 8 32-bit floating-point values.</td>
1985 </tr>
1986 <tr class="layout">
1987 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1988 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerc3c4c4f2004-11-01 08:19:36 +00001989 </tr>
1990</table>
Dan Gohman142ccc02009-01-24 15:58:40 +00001991
Misha Brukman76307852003-11-08 01:05:38 +00001992</div>
1993
Chris Lattner37b6b092005-04-25 17:34:15 +00001994<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00001995<h4>
1996 <a name="t_opaque">Opaque Type</a>
1997</h4>
1998
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00001999<div>
Chris Lattner37b6b092005-04-25 17:34:15 +00002000
2001<h5>Overview:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00002002<p>Opaque types are used to represent unknown types in the system. This
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002003 corresponds (for example) to the C notion of a forward declared structure
2004 type. In LLVM, opaque types can eventually be resolved to any type (not just
2005 a structure type).</p>
Chris Lattner37b6b092005-04-25 17:34:15 +00002006
2007<h5>Syntax:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00002008<pre>
2009 opaque
2010</pre>
2011
2012<h5>Examples:</h5>
Chris Lattner37b6b092005-04-25 17:34:15 +00002013<table class="layout">
2014 <tr class="layout">
Chris Lattner747359f2007-12-19 05:04:11 +00002015 <td class="left"><tt>opaque</tt></td>
2016 <td class="left">An opaque type.</td>
Chris Lattner37b6b092005-04-25 17:34:15 +00002017 </tr>
2018</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002019
Chris Lattner37b6b092005-04-25 17:34:15 +00002020</div>
2021
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002022</div>
2023
Chris Lattnercf7a5842009-02-02 07:32:36 +00002024<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002025<h3>
Chris Lattnercf7a5842009-02-02 07:32:36 +00002026 <a name="t_uprefs">Type Up-references</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002027</h3>
Chris Lattnercf7a5842009-02-02 07:32:36 +00002028
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002029<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002030
Chris Lattnercf7a5842009-02-02 07:32:36 +00002031<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002032<p>An "up reference" allows you to refer to a lexically enclosing type without
2033 requiring it to have a name. For instance, a structure declaration may
2034 contain a pointer to any of the types it is lexically a member of. Example
2035 of up references (with their equivalent as named type declarations)
2036 include:</p>
Chris Lattnercf7a5842009-02-02 07:32:36 +00002037
2038<pre>
Chris Lattnerbf1d5452009-02-09 10:00:56 +00002039 { \2 * } %x = type { %x* }
Chris Lattnercf7a5842009-02-02 07:32:36 +00002040 { \2 }* %y = type { %y }*
2041 \1* %z = type %z*
2042</pre>
2043
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002044<p>An up reference is needed by the asmprinter for printing out cyclic types
2045 when there is no declared name for a type in the cycle. Because the
2046 asmprinter does not want to print out an infinite type string, it needs a
2047 syntax to handle recursive types that have no names (all names are optional
2048 in llvm IR).</p>
Chris Lattnercf7a5842009-02-02 07:32:36 +00002049
2050<h5>Syntax:</h5>
2051<pre>
2052 \&lt;level&gt;
2053</pre>
2054
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002055<p>The level is the count of the lexical type that is being referred to.</p>
Chris Lattnercf7a5842009-02-02 07:32:36 +00002056
2057<h5>Examples:</h5>
Chris Lattnercf7a5842009-02-02 07:32:36 +00002058<table class="layout">
2059 <tr class="layout">
2060 <td class="left"><tt>\1*</tt></td>
2061 <td class="left">Self-referential pointer.</td>
2062 </tr>
2063 <tr class="layout">
2064 <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td>
2065 <td class="left">Recursive structure where the upref refers to the out-most
2066 structure.</td>
2067 </tr>
2068</table>
Chris Lattnercf7a5842009-02-02 07:32:36 +00002069
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002070</div>
Chris Lattner37b6b092005-04-25 17:34:15 +00002071
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002072</div>
2073
Chris Lattner74d3f822004-12-09 17:30:23 +00002074<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002075<h2><a name="constants">Constants</a></h2>
Chris Lattner74d3f822004-12-09 17:30:23 +00002076<!-- *********************************************************************** -->
2077
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002078<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002079
2080<p>LLVM has several different basic types of constants. This section describes
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002081 them all and their syntax.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002082
Chris Lattner74d3f822004-12-09 17:30:23 +00002083<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002084<h3>
2085 <a name="simpleconstants">Simple Constants</a>
2086</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002087
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002088<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002089
2090<dl>
2091 <dt><b>Boolean constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002092 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00002093 constants of the <tt><a href="#t_integer">i1</a></tt> type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002094
2095 <dt><b>Integer constants</b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002096 <dd>Standard integers (such as '4') are constants of
2097 the <a href="#t_integer">integer</a> type. Negative numbers may be used
2098 with integer types.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002099
2100 <dt><b>Floating point constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002101 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002102 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
2103 notation (see below). The assembler requires the exact decimal value of a
2104 floating-point constant. For example, the assembler accepts 1.25 but
2105 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
2106 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002107
2108 <dt><b>Null pointer constants</b></dt>
John Criswelldfe6a862004-12-10 15:51:16 +00002109 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002110 and must be of <a href="#t_pointer">pointer type</a>.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002111</dl>
2112
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002113<p>The one non-intuitive notation for constants is the hexadecimal form of
2114 floating point constants. For example, the form '<tt>double
2115 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
2116 '<tt>double 4.5e+15</tt>'. The only time hexadecimal floating point
2117 constants are required (and the only time that they are generated by the
2118 disassembler) is when a floating point constant must be emitted but it cannot
2119 be represented as a decimal floating point number in a reasonable number of
2120 digits. For example, NaN's, infinities, and other special values are
2121 represented in their IEEE hexadecimal format so that assembly and disassembly
2122 do not cause any bits to change in the constants.</p>
2123
Dale Johannesencd4a3012009-02-11 22:14:51 +00002124<p>When using the hexadecimal form, constants of types float and double are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002125 represented using the 16-digit form shown above (which matches the IEEE754
2126 representation for double); float values must, however, be exactly
2127 representable as IEE754 single precision. Hexadecimal format is always used
2128 for long double, and there are three forms of long double. The 80-bit format
2129 used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
2130 The 128-bit format used by PowerPC (two adjacent doubles) is represented
2131 by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit format
2132 is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
2133 currently supported target uses this format. Long doubles will only work if
2134 they match the long double format on your target. All hexadecimal formats
2135 are big-endian (sign bit at the left).</p>
2136
Dale Johannesen33e5c352010-10-01 00:48:59 +00002137<p>There are no constants of type x86mmx.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002138</div>
2139
2140<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002141<h3>
Bill Wendling972b7202009-07-20 02:32:41 +00002142<a name="aggregateconstants"></a> <!-- old anchor -->
2143<a name="complexconstants">Complex Constants</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002144</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002145
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002146<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002147
Chris Lattner361bfcd2009-02-28 18:32:25 +00002148<p>Complex constants are a (potentially recursive) combination of simple
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002149 constants and smaller complex constants.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002150
2151<dl>
2152 <dt><b>Structure constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002153 <dd>Structure constants are represented with notation similar to structure
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002154 type definitions (a comma separated list of elements, surrounded by braces
2155 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
2156 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
2157 Structure constants must have <a href="#t_struct">structure type</a>, and
2158 the number and types of elements must match those specified by the
2159 type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002160
2161 <dt><b>Array constants</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002162 <dd>Array constants are represented with notation similar to array type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002163 definitions (a comma separated list of elements, surrounded by square
2164 brackets (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74
2165 ]</tt>". Array constants must have <a href="#t_array">array type</a>, and
2166 the number and types of elements must match those specified by the
2167 type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002168
Reid Spencer404a3252007-02-15 03:07:05 +00002169 <dt><b>Vector constants</b></dt>
Reid Spencer404a3252007-02-15 03:07:05 +00002170 <dd>Vector constants are represented with notation similar to vector type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002171 definitions (a comma separated list of elements, surrounded by
2172 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32
2173 42, i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must
2174 have <a href="#t_vector">vector type</a>, and the number and types of
2175 elements must match those specified by the type.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002176
2177 <dt><b>Zero initialization</b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002178 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
Chris Lattner392be582010-02-12 20:49:41 +00002179 value to zero of <em>any</em> type, including scalar and
2180 <a href="#t_aggregate">aggregate</a> types.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002181 This is often used to avoid having to print large zero initializers
2182 (e.g. for large arrays) and is always exactly equivalent to using explicit
2183 zero initializers.</dd>
Nick Lewycky49f89192009-04-04 07:22:01 +00002184
2185 <dt><b>Metadata node</b></dt>
Nick Lewycky8e2c4f42009-05-30 16:08:30 +00002186 <dd>A metadata node is a structure-like constant with
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002187 <a href="#t_metadata">metadata type</a>. For example: "<tt>metadata !{
2188 i32 0, metadata !"test" }</tt>". Unlike other constants that are meant to
2189 be interpreted as part of the instruction stream, metadata is a place to
2190 attach additional information such as debug info.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002191</dl>
2192
2193</div>
2194
2195<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002196<h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002197 <a name="globalconstants">Global Variable and Function Addresses</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002198</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002199
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002200<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002201
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002202<p>The addresses of <a href="#globalvars">global variables</a>
2203 and <a href="#functionstructure">functions</a> are always implicitly valid
2204 (link-time) constants. These constants are explicitly referenced when
2205 the <a href="#identifiers">identifier for the global</a> is used and always
2206 have <a href="#t_pointer">pointer</a> type. For example, the following is a
2207 legal LLVM file:</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002208
Benjamin Kramer79698be2010-07-13 12:26:09 +00002209<pre class="doc_code">
Chris Lattner00538a12007-06-06 18:28:13 +00002210@X = global i32 17
2211@Y = global i32 42
2212@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattner74d3f822004-12-09 17:30:23 +00002213</pre>
2214
2215</div>
2216
2217<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002218<h3>
2219 <a name="undefvalues">Undefined Values</a>
2220</h3>
2221
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002222<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002223
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002224<p>The string '<tt>undef</tt>' can be used anywhere a constant is expected, and
Benjamin Kramer0f420382009-10-12 14:46:08 +00002225 indicates that the user of the value may receive an unspecified bit-pattern.
Bill Wendling6bbe0912010-10-27 01:07:41 +00002226 Undefined values may be of any type (other than '<tt>label</tt>'
2227 or '<tt>void</tt>') and be used anywhere a constant is permitted.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002228
Chris Lattner92ada5d2009-09-11 01:49:31 +00002229<p>Undefined values are useful because they indicate to the compiler that the
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002230 program is well defined no matter what value is used. This gives the
2231 compiler more freedom to optimize. Here are some examples of (potentially
2232 surprising) transformations that are valid (in pseudo IR):</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002233
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002234
Benjamin Kramer79698be2010-07-13 12:26:09 +00002235<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002236 %A = add %X, undef
2237 %B = sub %X, undef
2238 %C = xor %X, undef
2239Safe:
2240 %A = undef
2241 %B = undef
2242 %C = undef
2243</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002244
2245<p>This is safe because all of the output bits are affected by the undef bits.
Bill Wendling6bbe0912010-10-27 01:07:41 +00002246 Any output bit can have a zero or one depending on the input bits.</p>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002247
Benjamin Kramer79698be2010-07-13 12:26:09 +00002248<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002249 %A = or %X, undef
2250 %B = and %X, undef
2251Safe:
2252 %A = -1
2253 %B = 0
2254Unsafe:
2255 %A = undef
2256 %B = undef
2257</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002258
2259<p>These logical operations have bits that are not always affected by the input.
Bill Wendling6bbe0912010-10-27 01:07:41 +00002260 For example, if <tt>%X</tt> has a zero bit, then the output of the
2261 '<tt>and</tt>' operation will always be a zero for that bit, no matter what
2262 the corresponding bit from the '<tt>undef</tt>' is. As such, it is unsafe to
2263 optimize or assume that the result of the '<tt>and</tt>' is '<tt>undef</tt>'.
2264 However, it is safe to assume that all bits of the '<tt>undef</tt>' could be
2265 0, and optimize the '<tt>and</tt>' to 0. Likewise, it is safe to assume that
2266 all the bits of the '<tt>undef</tt>' operand to the '<tt>or</tt>' could be
2267 set, allowing the '<tt>or</tt>' to be folded to -1.</p>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002268
Benjamin Kramer79698be2010-07-13 12:26:09 +00002269<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002270 %A = select undef, %X, %Y
2271 %B = select undef, 42, %Y
2272 %C = select %X, %Y, undef
2273Safe:
2274 %A = %X (or %Y)
2275 %B = 42 (or %Y)
2276 %C = %Y
2277Unsafe:
2278 %A = undef
2279 %B = undef
2280 %C = undef
2281</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002282
Bill Wendling6bbe0912010-10-27 01:07:41 +00002283<p>This set of examples shows that undefined '<tt>select</tt>' (and conditional
2284 branch) conditions can go <em>either way</em>, but they have to come from one
2285 of the two operands. In the <tt>%A</tt> example, if <tt>%X</tt> and
2286 <tt>%Y</tt> were both known to have a clear low bit, then <tt>%A</tt> would
2287 have to have a cleared low bit. However, in the <tt>%C</tt> example, the
2288 optimizer is allowed to assume that the '<tt>undef</tt>' operand could be the
2289 same as <tt>%Y</tt>, allowing the whole '<tt>select</tt>' to be
2290 eliminated.</p>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002291
Benjamin Kramer79698be2010-07-13 12:26:09 +00002292<pre class="doc_code">
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002293 %A = xor undef, undef
Eric Christopher455c5772009-12-05 02:46:03 +00002294
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002295 %B = undef
2296 %C = xor %B, %B
2297
2298 %D = undef
2299 %E = icmp lt %D, 4
2300 %F = icmp gte %D, 4
2301
2302Safe:
2303 %A = undef
2304 %B = undef
2305 %C = undef
2306 %D = undef
2307 %E = undef
2308 %F = undef
2309</pre>
Chris Lattnerec72b9b2009-09-07 22:52:39 +00002310
Bill Wendling6bbe0912010-10-27 01:07:41 +00002311<p>This example points out that two '<tt>undef</tt>' operands are not
2312 necessarily the same. This can be surprising to people (and also matches C
2313 semantics) where they assume that "<tt>X^X</tt>" is always zero, even
2314 if <tt>X</tt> is undefined. This isn't true for a number of reasons, but the
2315 short answer is that an '<tt>undef</tt>' "variable" can arbitrarily change
2316 its value over its "live range". This is true because the variable doesn't
2317 actually <em>have a live range</em>. Instead, the value is logically read
2318 from arbitrary registers that happen to be around when needed, so the value
2319 is not necessarily consistent over time. In fact, <tt>%A</tt> and <tt>%C</tt>
2320 need to have the same semantics or the core LLVM "replace all uses with"
2321 concept would not hold.</p>
Chris Lattnera34a7182009-09-07 23:33:52 +00002322
Benjamin Kramer79698be2010-07-13 12:26:09 +00002323<pre class="doc_code">
Chris Lattnera34a7182009-09-07 23:33:52 +00002324 %A = fdiv undef, %X
2325 %B = fdiv %X, undef
2326Safe:
2327 %A = undef
2328b: unreachable
2329</pre>
Chris Lattnera34a7182009-09-07 23:33:52 +00002330
2331<p>These examples show the crucial difference between an <em>undefined
Bill Wendling6bbe0912010-10-27 01:07:41 +00002332 value</em> and <em>undefined behavior</em>. An undefined value (like
2333 '<tt>undef</tt>') is allowed to have an arbitrary bit-pattern. This means that
2334 the <tt>%A</tt> operation can be constant folded to '<tt>undef</tt>', because
2335 the '<tt>undef</tt>' could be an SNaN, and <tt>fdiv</tt> is not (currently)
2336 defined on SNaN's. However, in the second example, we can make a more
2337 aggressive assumption: because the <tt>undef</tt> is allowed to be an
2338 arbitrary value, we are allowed to assume that it could be zero. Since a
2339 divide by zero has <em>undefined behavior</em>, we are allowed to assume that
2340 the operation does not execute at all. This allows us to delete the divide and
2341 all code after it. Because the undefined operation "can't happen", the
2342 optimizer can assume that it occurs in dead code.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00002343
Benjamin Kramer79698be2010-07-13 12:26:09 +00002344<pre class="doc_code">
Chris Lattnera34a7182009-09-07 23:33:52 +00002345a: store undef -> %X
2346b: store %X -> undef
2347Safe:
2348a: &lt;deleted&gt;
2349b: unreachable
2350</pre>
Chris Lattnera34a7182009-09-07 23:33:52 +00002351
Bill Wendling6bbe0912010-10-27 01:07:41 +00002352<p>These examples reiterate the <tt>fdiv</tt> example: a store <em>of</em> an
2353 undefined value can be assumed to not have any effect; we can assume that the
2354 value is overwritten with bits that happen to match what was already there.
2355 However, a store <em>to</em> an undefined location could clobber arbitrary
2356 memory, therefore, it has undefined behavior.</p>
Chris Lattnera34a7182009-09-07 23:33:52 +00002357
Chris Lattner74d3f822004-12-09 17:30:23 +00002358</div>
2359
2360<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002361<h3>
2362 <a name="trapvalues">Trap Values</a>
2363</h3>
2364
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002365<div>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002366
Dan Gohmanb2a709b2010-04-26 20:21:21 +00002367<p>Trap values are similar to <a href="#undefvalues">undef values</a>, however
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002368 instead of representing an unspecified bit pattern, they represent the
2369 fact that an instruction or constant expression which cannot evoke side
2370 effects has nevertheless detected a condition which results in undefined
Dan Gohmanb2a709b2010-04-26 20:21:21 +00002371 behavior.</p>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002372
Dan Gohman2f1ae062010-04-28 00:49:41 +00002373<p>There is currently no way of representing a trap value in the IR; they
Dan Gohmanac355aa2010-05-03 14:51:43 +00002374 only exist when produced by operations such as
Dan Gohman2f1ae062010-04-28 00:49:41 +00002375 <a href="#i_add"><tt>add</tt></a> with the <tt>nsw</tt> flag.</p>
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002376
Dan Gohman2f1ae062010-04-28 00:49:41 +00002377<p>Trap value behavior is defined in terms of value <i>dependence</i>:</p>
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002378
Dan Gohman2f1ae062010-04-28 00:49:41 +00002379<ul>
2380<li>Values other than <a href="#i_phi"><tt>phi</tt></a> nodes depend on
2381 their operands.</li>
2382
2383<li><a href="#i_phi"><tt>Phi</tt></a> nodes depend on the operand corresponding
2384 to their dynamic predecessor basic block.</li>
2385
2386<li>Function arguments depend on the corresponding actual argument values in
2387 the dynamic callers of their functions.</li>
2388
2389<li><a href="#i_call"><tt>Call</tt></a> instructions depend on the
2390 <a href="#i_ret"><tt>ret</tt></a> instructions that dynamically transfer
2391 control back to them.</li>
2392
Dan Gohman7292a752010-05-03 14:55:22 +00002393<li><a href="#i_invoke"><tt>Invoke</tt></a> instructions depend on the
2394 <a href="#i_ret"><tt>ret</tt></a>, <a href="#i_unwind"><tt>unwind</tt></a>,
2395 or exception-throwing call instructions that dynamically transfer control
2396 back to them.</li>
2397
Dan Gohman2f1ae062010-04-28 00:49:41 +00002398<li>Non-volatile loads and stores depend on the most recent stores to all of the
2399 referenced memory addresses, following the order in the IR
2400 (including loads and stores implied by intrinsics such as
2401 <a href="#int_memcpy"><tt>@llvm.memcpy</tt></a>.)</li>
2402
Dan Gohman3513ea52010-05-03 14:59:34 +00002403<!-- TODO: In the case of multiple threads, this only applies if the store
2404 "happens-before" the load or store. -->
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002405
Dan Gohman2f1ae062010-04-28 00:49:41 +00002406<!-- TODO: floating-point exception state -->
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002407
Dan Gohman2f1ae062010-04-28 00:49:41 +00002408<li>An instruction with externally visible side effects depends on the most
2409 recent preceding instruction with externally visible side effects, following
Dan Gohman6c858db2010-07-06 15:26:33 +00002410 the order in the IR. (This includes
2411 <a href="#volatile">volatile operations</a>.)</li>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002412
Dan Gohman7292a752010-05-03 14:55:22 +00002413<li>An instruction <i>control-depends</i> on a
2414 <a href="#terminators">terminator instruction</a>
2415 if the terminator instruction has multiple successors and the instruction
2416 is always executed when control transfers to one of the successors, and
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002417 may not be executed when control is transferred to another.</li>
Dan Gohman2f1ae062010-04-28 00:49:41 +00002418
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002419<li>Additionally, an instruction also <i>control-depends</i> on a terminator
2420 instruction if the set of instructions it otherwise depends on would be
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002421 different if the terminator had transferred control to a different
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002422 successor.</li>
2423
Dan Gohman2f1ae062010-04-28 00:49:41 +00002424<li>Dependence is transitive.</li>
2425
2426</ul>
Dan Gohman2f1ae062010-04-28 00:49:41 +00002427
2428<p>Whenever a trap value is generated, all values which depend on it evaluate
2429 to trap. If they have side effects, the evoke their side effects as if each
2430 operand with a trap value were undef. If they have externally-visible side
2431 effects, the behavior is undefined.</p>
2432
2433<p>Here are some examples:</p>
Dan Gohman48a25882010-04-26 20:54:53 +00002434
Benjamin Kramer79698be2010-07-13 12:26:09 +00002435<pre class="doc_code">
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002436entry:
2437 %trap = sub nuw i32 0, 1 ; Results in a trap value.
Dan Gohman2f1ae062010-04-28 00:49:41 +00002438 %still_trap = and i32 %trap, 0 ; Whereas (and i32 undef, 0) would return 0.
2439 %trap_yet_again = getelementptr i32* @h, i32 %still_trap
2440 store i32 0, i32* %trap_yet_again ; undefined behavior
2441
2442 store i32 %trap, i32* @g ; Trap value conceptually stored to memory.
2443 %trap2 = load i32* @g ; Returns a trap value, not just undef.
2444
2445 volatile store i32 %trap, i32* @g ; External observation; undefined behavior.
2446
2447 %narrowaddr = bitcast i32* @g to i16*
2448 %wideaddr = bitcast i32* @g to i64*
Nick Lewycky9c876bf2011-05-16 19:29:30 +00002449 %trap3 = load i16* %narrowaddr ; Returns a trap value.
2450 %trap4 = load i64* %wideaddr ; Returns a trap value.
Dan Gohman2f1ae062010-04-28 00:49:41 +00002451
Nick Lewycky9c876bf2011-05-16 19:29:30 +00002452 %cmp = icmp slt i32 %trap, 0 ; Returns a trap value.
2453 br i1 %cmp, label %true, label %end ; Branch to either destination.
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002454
2455true:
Dan Gohman2f1ae062010-04-28 00:49:41 +00002456 volatile store i32 0, i32* @g ; This is control-dependent on %cmp, so
2457 ; it has undefined behavior.
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002458 br label %end
2459
2460end:
2461 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2462 ; Both edges into this PHI are
2463 ; control-dependent on %cmp, so this
Dan Gohman2f1ae062010-04-28 00:49:41 +00002464 ; always results in a trap value.
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002465
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002466 volatile store i32 0, i32* @g ; This would depend on the store in %true
2467 ; if %cmp is true, or the store in %entry
2468 ; otherwise, so this is undefined behavior.
2469
Nick Lewycky9c876bf2011-05-16 19:29:30 +00002470 br i1 %cmp, label %second_true, label %second_end
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002471 ; The same branch again, but this time the
2472 ; true block doesn't have side effects.
2473
2474second_true:
2475 ; No side effects!
Nick Lewycky9c876bf2011-05-16 19:29:30 +00002476 ret void
Dan Gohmanc8454ee2011-04-12 23:05:59 +00002477
2478second_end:
2479 volatile store i32 0, i32* @g ; This time, the instruction always depends
2480 ; on the store in %end. Also, it is
2481 ; control-equivalent to %end, so this is
Nick Lewycky9c876bf2011-05-16 19:29:30 +00002482 ; well-defined (again, ignoring earlier
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002483 ; undefined behavior in this example).
Dan Gohmanb8b85c12010-04-26 23:36:52 +00002484</pre>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002485
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00002486</div>
2487
2488<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002489<h3>
2490 <a name="blockaddress">Addresses of Basic Blocks</a>
2491</h3>
2492
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002493<div>
Chris Lattnere4801f72009-10-27 21:01:34 +00002494
Chris Lattneraa99c942009-11-01 01:27:45 +00002495<p><b><tt>blockaddress(@function, %block)</tt></b></p>
Chris Lattnere4801f72009-10-27 21:01:34 +00002496
2497<p>The '<tt>blockaddress</tt>' constant computes the address of the specified
Chris Lattner5c5f0ac2009-10-27 21:49:40 +00002498 basic block in the specified function, and always has an i8* type. Taking
Chris Lattneraa99c942009-11-01 01:27:45 +00002499 the address of the entry block is illegal.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00002500
Chris Lattnere4801f72009-10-27 21:01:34 +00002501<p>This value only has defined behavior when used as an operand to the
Bill Wendling6bbe0912010-10-27 01:07:41 +00002502 '<a href="#i_indirectbr"><tt>indirectbr</tt></a>' instruction, or for
2503 comparisons against null. Pointer equality tests between labels addresses
2504 results in undefined behavior &mdash; though, again, comparison against null
2505 is ok, and no label is equal to the null pointer. This may be passed around
2506 as an opaque pointer sized value as long as the bits are not inspected. This
2507 allows <tt>ptrtoint</tt> and arithmetic to be performed on these values so
2508 long as the original value is reconstituted before the <tt>indirectbr</tt>
2509 instruction.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00002510
Bill Wendling6bbe0912010-10-27 01:07:41 +00002511<p>Finally, some targets may provide defined semantics when using the value as
2512 the operand to an inline assembly, but that is target specific.</p>
Chris Lattnere4801f72009-10-27 21:01:34 +00002513
2514</div>
2515
2516
2517<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002518<h3>
2519 <a name="constantexprs">Constant Expressions</a>
2520</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002521
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002522<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002523
2524<p>Constant expressions are used to allow expressions involving other constants
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002525 to be used as constants. Constant expressions may be of
2526 any <a href="#t_firstclass">first class</a> type and may involve any LLVM
2527 operation that does not have side effects (e.g. load and call are not
Bill Wendling6bbe0912010-10-27 01:07:41 +00002528 supported). The following is the syntax for constant expressions:</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002529
2530<dl>
Dan Gohmand6a6f612010-05-28 17:07:41 +00002531 <dt><b><tt>trunc (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002532 <dd>Truncate a constant to another type. The bit size of CST must be larger
2533 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002534
Dan Gohmand6a6f612010-05-28 17:07:41 +00002535 <dt><b><tt>zext (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002536 <dd>Zero extend a constant to another type. The bit size of CST must be
Duncan Sandsa522e562010-07-13 12:06:14 +00002537 smaller than the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002538
Dan Gohmand6a6f612010-05-28 17:07:41 +00002539 <dt><b><tt>sext (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002540 <dd>Sign extend a constant to another type. The bit size of CST must be
Duncan Sandsa522e562010-07-13 12:06:14 +00002541 smaller than the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002542
Dan Gohmand6a6f612010-05-28 17:07:41 +00002543 <dt><b><tt>fptrunc (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002544 <dd>Truncate a floating point constant to another floating point type. The
2545 size of CST must be larger than the size of TYPE. Both types must be
2546 floating point.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002547
Dan Gohmand6a6f612010-05-28 17:07:41 +00002548 <dt><b><tt>fpext (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002549 <dd>Floating point extend a constant to another type. The size of CST must be
2550 smaller or equal to the size of TYPE. Both types must be floating
2551 point.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002552
Dan Gohmand6a6f612010-05-28 17:07:41 +00002553 <dt><b><tt>fptoui (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002554 <dd>Convert a floating point constant to the corresponding unsigned integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002555 constant. TYPE must be a scalar or vector integer type. CST must be of
2556 scalar or vector floating point type. Both CST and TYPE must be scalars,
2557 or vectors of the same number of elements. If the value won't fit in the
2558 integer type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002559
Dan Gohmand6a6f612010-05-28 17:07:41 +00002560 <dt><b><tt>fptosi (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002561 <dd>Convert a floating point constant to the corresponding signed integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002562 constant. TYPE must be a scalar or vector integer type. CST must be of
2563 scalar or vector floating point type. Both CST and TYPE must be scalars,
2564 or vectors of the same number of elements. If the value won't fit in the
2565 integer type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002566
Dan Gohmand6a6f612010-05-28 17:07:41 +00002567 <dt><b><tt>uitofp (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002568 <dd>Convert an unsigned integer constant to the corresponding floating point
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002569 constant. TYPE must be a scalar or vector floating point type. CST must be
2570 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2571 vectors of the same number of elements. If the value won't fit in the
2572 floating point type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002573
Dan Gohmand6a6f612010-05-28 17:07:41 +00002574 <dt><b><tt>sitofp (CST to TYPE)</tt></b></dt>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002575 <dd>Convert a signed integer constant to the corresponding floating point
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002576 constant. TYPE must be a scalar or vector floating point type. CST must be
2577 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2578 vectors of the same number of elements. If the value won't fit in the
2579 floating point type, the results are undefined.</dd>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00002580
Dan Gohmand6a6f612010-05-28 17:07:41 +00002581 <dt><b><tt>ptrtoint (CST to TYPE)</tt></b></dt>
Reid Spencer5b950642006-11-11 23:08:07 +00002582 <dd>Convert a pointer typed constant to the corresponding integer constant
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002583 <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
2584 type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
2585 make it fit in <tt>TYPE</tt>.</dd>
Reid Spencer5b950642006-11-11 23:08:07 +00002586
Dan Gohmand6a6f612010-05-28 17:07:41 +00002587 <dt><b><tt>inttoptr (CST to TYPE)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002588 <dd>Convert a integer constant to a pointer constant. TYPE must be a pointer
2589 type. CST must be of integer type. The CST value is zero extended,
2590 truncated, or unchanged to make it fit in a pointer size. This one is
2591 <i>really</i> dangerous!</dd>
Reid Spencer5b950642006-11-11 23:08:07 +00002592
Dan Gohmand6a6f612010-05-28 17:07:41 +00002593 <dt><b><tt>bitcast (CST to TYPE)</tt></b></dt>
Chris Lattner789dee32009-02-28 18:27:03 +00002594 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2595 are the same as those for the <a href="#i_bitcast">bitcast
2596 instruction</a>.</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002597
Dan Gohmand6a6f612010-05-28 17:07:41 +00002598 <dt><b><tt>getelementptr (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
2599 <dt><b><tt>getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
Chris Lattner74d3f822004-12-09 17:30:23 +00002600 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002601 constants. As with the <a href="#i_getelementptr">getelementptr</a>
2602 instruction, the index list may have zero or more indexes, which are
2603 required to make sense for the type of "CSTPTR".</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002604
Dan Gohmand6a6f612010-05-28 17:07:41 +00002605 <dt><b><tt>select (COND, VAL1, VAL2)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002606 <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
Reid Spencer9965ee72006-12-04 19:23:19 +00002607
Dan Gohmand6a6f612010-05-28 17:07:41 +00002608 <dt><b><tt>icmp COND (VAL1, VAL2)</tt></b></dt>
Reid Spencer9965ee72006-12-04 19:23:19 +00002609 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2610
Dan Gohmand6a6f612010-05-28 17:07:41 +00002611 <dt><b><tt>fcmp COND (VAL1, VAL2)</tt></b></dt>
Reid Spencer9965ee72006-12-04 19:23:19 +00002612 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002613
Dan Gohmand6a6f612010-05-28 17:07:41 +00002614 <dt><b><tt>extractelement (VAL, IDX)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002615 <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
2616 constants.</dd>
Robert Bocchino7e97a6d2006-01-10 19:31:34 +00002617
Dan Gohmand6a6f612010-05-28 17:07:41 +00002618 <dt><b><tt>insertelement (VAL, ELT, IDX)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002619 <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
2620 constants.</dd>
Chris Lattner016a0e52006-04-08 00:13:41 +00002621
Dan Gohmand6a6f612010-05-28 17:07:41 +00002622 <dt><b><tt>shufflevector (VEC1, VEC2, IDXMASK)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002623 <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
2624 constants.</dd>
Chris Lattner016a0e52006-04-08 00:13:41 +00002625
Nick Lewycky9ab9a7f2010-05-29 06:44:15 +00002626 <dt><b><tt>extractvalue (VAL, IDX0, IDX1, ...)</tt></b></dt>
2627 <dd>Perform the <a href="#i_extractvalue">extractvalue operation</a> on
2628 constants. The index list is interpreted in a similar manner as indices in
2629 a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
2630 index value must be specified.</dd>
2631
2632 <dt><b><tt>insertvalue (VAL, ELT, IDX0, IDX1, ...)</tt></b></dt>
2633 <dd>Perform the <a href="#i_insertvalue">insertvalue operation</a> on
2634 constants. The index list is interpreted in a similar manner as indices in
2635 a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
2636 index value must be specified.</dd>
2637
Dan Gohmand6a6f612010-05-28 17:07:41 +00002638 <dt><b><tt>OPCODE (LHS, RHS)</tt></b></dt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002639 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2640 be any of the <a href="#binaryops">binary</a>
2641 or <a href="#bitwiseops">bitwise binary</a> operations. The constraints
2642 on operands are the same as those for the corresponding instruction
2643 (e.g. no bitwise operations on floating point values are allowed).</dd>
Chris Lattner74d3f822004-12-09 17:30:23 +00002644</dl>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002645
Chris Lattner74d3f822004-12-09 17:30:23 +00002646</div>
Chris Lattnerb1652612004-03-08 16:49:10 +00002647
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002648</div>
2649
Chris Lattner2f7c9632001-06-06 20:29:01 +00002650<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002651<h2><a name="othervalues">Other Values</a></h2>
Chris Lattner98f013c2006-01-25 23:47:57 +00002652<!-- *********************************************************************** -->
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002653<div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002654<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002655<h3>
Chris Lattner98f013c2006-01-25 23:47:57 +00002656<a name="inlineasm">Inline Assembler Expressions</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002657</h3>
Chris Lattner98f013c2006-01-25 23:47:57 +00002658
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002659<div>
Chris Lattner98f013c2006-01-25 23:47:57 +00002660
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002661<p>LLVM supports inline assembler expressions (as opposed
2662 to <a href="#moduleasm"> Module-Level Inline Assembly</a>) through the use of
2663 a special value. This value represents the inline assembler as a string
2664 (containing the instructions to emit), a list of operand constraints (stored
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002665 as a string), a flag that indicates whether or not the inline asm
Dale Johannesen1cfb9582009-10-21 23:28:00 +00002666 expression has side effects, and a flag indicating whether the function
2667 containing the asm needs to align its stack conservatively. An example
2668 inline assembler expression is:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002669
Benjamin Kramer79698be2010-07-13 12:26:09 +00002670<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00002671i32 (i32) asm "bswap $0", "=r,r"
Chris Lattner98f013c2006-01-25 23:47:57 +00002672</pre>
2673
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002674<p>Inline assembler expressions may <b>only</b> be used as the callee operand of
2675 a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we
2676 have:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002677
Benjamin Kramer79698be2010-07-13 12:26:09 +00002678<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00002679%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattner98f013c2006-01-25 23:47:57 +00002680</pre>
2681
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002682<p>Inline asms with side effects not visible in the constraint list must be
2683 marked as having side effects. This is done through the use of the
2684 '<tt>sideeffect</tt>' keyword, like so:</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002685
Benjamin Kramer79698be2010-07-13 12:26:09 +00002686<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00002687call void asm sideeffect "eieio", ""()
Chris Lattner98f013c2006-01-25 23:47:57 +00002688</pre>
2689
Dale Johannesen1cfb9582009-10-21 23:28:00 +00002690<p>In some cases inline asms will contain code that will not work unless the
2691 stack is aligned in some way, such as calls or SSE instructions on x86,
2692 yet will not contain code that does that alignment within the asm.
2693 The compiler should make conservative assumptions about what the asm might
2694 contain and should generate its usual stack alignment code in the prologue
2695 if the '<tt>alignstack</tt>' keyword is present:</p>
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002696
Benjamin Kramer79698be2010-07-13 12:26:09 +00002697<pre class="doc_code">
Dale Johannesen1cfb9582009-10-21 23:28:00 +00002698call void asm alignstack "eieio", ""()
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002699</pre>
Dale Johannesen63c94fe2009-10-13 21:56:55 +00002700
2701<p>If both keywords appear the '<tt>sideeffect</tt>' keyword must come
2702 first.</p>
2703
Chris Lattner98f013c2006-01-25 23:47:57 +00002704<p>TODO: The format of the asm and constraints string still need to be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002705 documented here. Constraints on what can be done (e.g. duplication, moving,
2706 etc need to be documented). This is probably best done by reference to
2707 another document that covers inline asm from a holistic perspective.</p>
Chris Lattner51065562010-04-07 05:38:05 +00002708
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002709<h4>
Chris Lattner51065562010-04-07 05:38:05 +00002710<a name="inlineasm_md">Inline Asm Metadata</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002711</h4>
Chris Lattner51065562010-04-07 05:38:05 +00002712
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002713<div>
Chris Lattner51065562010-04-07 05:38:05 +00002714
2715<p>The call instructions that wrap inline asm nodes may have a "!srcloc" MDNode
Chris Lattner79ffdc72010-11-17 08:20:42 +00002716 attached to it that contains a list of constant integers. If present, the
2717 code generator will use the integer as the location cookie value when report
Chris Lattner51065562010-04-07 05:38:05 +00002718 errors through the LLVMContext error reporting mechanisms. This allows a
Dan Gohman61110ae2010-04-28 00:36:01 +00002719 front-end to correlate backend errors that occur with inline asm back to the
Chris Lattner51065562010-04-07 05:38:05 +00002720 source code that produced it. For example:</p>
2721
Benjamin Kramer79698be2010-07-13 12:26:09 +00002722<pre class="doc_code">
Chris Lattner51065562010-04-07 05:38:05 +00002723call void asm sideeffect "something bad", ""()<b>, !srcloc !42</b>
2724...
2725!42 = !{ i32 1234567 }
2726</pre>
Chris Lattner51065562010-04-07 05:38:05 +00002727
2728<p>It is up to the front-end to make sense of the magic numbers it places in the
Chris Lattner79ffdc72010-11-17 08:20:42 +00002729 IR. If the MDNode contains multiple constants, the code generator will use
2730 the one that corresponds to the line of the asm that the error occurs on.</p>
Chris Lattner98f013c2006-01-25 23:47:57 +00002731
2732</div>
2733
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002734</div>
2735
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002736<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002737<h3>
2738 <a name="metadata">Metadata Nodes and Metadata Strings</a>
2739</h3>
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002740
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002741<div>
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002742
2743<p>LLVM IR allows metadata to be attached to instructions in the program that
2744 can convey extra information about the code to the optimizers and code
2745 generator. One example application of metadata is source-level debug
2746 information. There are two metadata primitives: strings and nodes. All
2747 metadata has the <tt>metadata</tt> type and is identified in syntax by a
2748 preceding exclamation point ('<tt>!</tt>').</p>
2749
2750<p>A metadata string is a string surrounded by double quotes. It can contain
2751 any character by escaping non-printable characters with "\xx" where "xx" is
2752 the two digit hex code. For example: "<tt>!"test\00"</tt>".</p>
2753
2754<p>Metadata nodes are represented with notation similar to structure constants
2755 (a comma separated list of elements, surrounded by braces and preceded by an
2756 exclamation point). For example: "<tt>!{ metadata !"test\00", i32
2757 10}</tt>". Metadata nodes can have any values as their operand.</p>
2758
2759<p>A <a href="#namedmetadatastructure">named metadata</a> is a collection of
2760 metadata nodes, which can be looked up in the module symbol table. For
2761 example: "<tt>!foo = metadata !{!4, !3}</tt>".
2762
Devang Patel9984bd62010-03-04 23:44:48 +00002763<p>Metadata can be used as function arguments. Here <tt>llvm.dbg.value</tt>
Benjamin Kramer79698be2010-07-13 12:26:09 +00002764 function is using two metadata arguments.</p>
Devang Patel9984bd62010-03-04 23:44:48 +00002765
Bill Wendlingc0e10672011-03-02 02:17:11 +00002766<div class="doc_code">
2767<pre>
2768call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2769</pre>
2770</div>
Devang Patel9984bd62010-03-04 23:44:48 +00002771
2772<p>Metadata can be attached with an instruction. Here metadata <tt>!21</tt> is
Benjamin Kramer79698be2010-07-13 12:26:09 +00002773 attached with <tt>add</tt> instruction using <tt>!dbg</tt> identifier.</p>
Devang Patel9984bd62010-03-04 23:44:48 +00002774
Bill Wendlingc0e10672011-03-02 02:17:11 +00002775<div class="doc_code">
2776<pre>
2777%indvar.next = add i64 %indvar, 1, !dbg !21
2778</pre>
2779</div>
2780
Chris Lattnerc2f8f162010-01-15 21:50:19 +00002781</div>
2782
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002783</div>
Chris Lattnerae76db52009-07-20 05:55:19 +00002784
2785<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002786<h2>
Chris Lattnerae76db52009-07-20 05:55:19 +00002787 <a name="intrinsic_globals">Intrinsic Global Variables</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002788</h2>
Chris Lattnerae76db52009-07-20 05:55:19 +00002789<!-- *********************************************************************** -->
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002790<div>
Chris Lattnerae76db52009-07-20 05:55:19 +00002791<p>LLVM has a number of "magic" global variables that contain data that affect
2792code generation or other IR semantics. These are documented here. All globals
Chris Lattner58f9bb22009-07-20 06:14:25 +00002793of this sort should have a section specified as "<tt>llvm.metadata</tt>". This
2794section and all globals that start with "<tt>llvm.</tt>" are reserved for use
2795by LLVM.</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00002796
2797<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002798<h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00002799<a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002800</h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00002801
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002802<div>
Chris Lattnerae76db52009-07-20 05:55:19 +00002803
2804<p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
2805href="#linkage_appending">appending linkage</a>. This array contains a list of
2806pointers to global variables and functions which may optionally have a pointer
2807cast formed of bitcast or getelementptr. For example, a legal use of it is:</p>
2808
2809<pre>
2810 @X = global i8 4
2811 @Y = global i32 123
2812
2813 @llvm.used = appending global [2 x i8*] [
2814 i8* @X,
2815 i8* bitcast (i32* @Y to i8*)
2816 ], section "llvm.metadata"
2817</pre>
2818
2819<p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
2820compiler, assembler, and linker are required to treat the symbol as if there is
2821a reference to the global that it cannot see. For example, if a variable has
2822internal linkage and no references other than that from the <tt>@llvm.used</tt>
2823list, it cannot be deleted. This is commonly used to represent references from
2824inline asms and other things the compiler cannot "see", and corresponds to
2825"attribute((used))" in GNU C.</p>
2826
2827<p>On some targets, the code generator must emit a directive to the assembler or
2828object file to prevent the assembler and linker from molesting the symbol.</p>
2829
2830</div>
2831
2832<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002833<h3>
2834 <a name="intg_compiler_used">
2835 The '<tt>llvm.compiler.used</tt>' Global Variable
2836 </a>
2837</h3>
Chris Lattner58f9bb22009-07-20 06:14:25 +00002838
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002839<div>
Chris Lattner58f9bb22009-07-20 06:14:25 +00002840
2841<p>The <tt>@llvm.compiler.used</tt> directive is the same as the
2842<tt>@llvm.used</tt> directive, except that it only prevents the compiler from
2843touching the symbol. On targets that support it, this allows an intelligent
2844linker to optimize references to the symbol without being impeded as it would be
2845by <tt>@llvm.used</tt>.</p>
2846
2847<p>This is a rare construct that should only be used in rare circumstances, and
2848should not be exposed to source languages.</p>
2849
2850</div>
2851
2852<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002853<h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00002854<a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002855</h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00002856
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002857<div>
David Chisnalla9d4a6f2010-04-30 19:23:49 +00002858<pre>
2859%0 = type { i32, void ()* }
David Chisnallb492b812010-04-30 19:27:35 +00002860@llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
David Chisnalla9d4a6f2010-04-30 19:23:49 +00002861</pre>
2862<p>The <tt>@llvm.global_ctors</tt> array contains a list of constructor functions and associated priorities. The functions referenced by this array will be called in ascending order of priority (i.e. lowest first) when the module is loaded. The order of functions with the same priority is not defined.
2863</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00002864
2865</div>
2866
2867<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002868<h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00002869<a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002870</h3>
Chris Lattnerae76db52009-07-20 05:55:19 +00002871
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002872<div>
David Chisnalla9d4a6f2010-04-30 19:23:49 +00002873<pre>
2874%0 = type { i32, void ()* }
David Chisnallb492b812010-04-30 19:27:35 +00002875@llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
David Chisnalla9d4a6f2010-04-30 19:23:49 +00002876</pre>
Chris Lattnerae76db52009-07-20 05:55:19 +00002877
David Chisnalla9d4a6f2010-04-30 19:23:49 +00002878<p>The <tt>@llvm.global_dtors</tt> array contains a list of destructor functions and associated priorities. The functions referenced by this array will be called in descending order of priority (i.e. highest first) when the module is loaded. The order of functions with the same priority is not defined.
2879</p>
Chris Lattnerae76db52009-07-20 05:55:19 +00002880
2881</div>
2882
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002883</div>
Chris Lattnerae76db52009-07-20 05:55:19 +00002884
Chris Lattner98f013c2006-01-25 23:47:57 +00002885<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002886<h2><a name="instref">Instruction Reference</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +00002887<!-- *********************************************************************** -->
Chris Lattner74d3f822004-12-09 17:30:23 +00002888
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002889<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002890
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002891<p>The LLVM instruction set consists of several different classifications of
2892 instructions: <a href="#terminators">terminator
2893 instructions</a>, <a href="#binaryops">binary instructions</a>,
2894 <a href="#bitwiseops">bitwise binary instructions</a>,
2895 <a href="#memoryops">memory instructions</a>, and
2896 <a href="#otherops">other instructions</a>.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002897
Chris Lattner2f7c9632001-06-06 20:29:01 +00002898<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002899<h3>
2900 <a name="terminators">Terminator Instructions</a>
2901</h3>
Chris Lattner74d3f822004-12-09 17:30:23 +00002902
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002903<div>
Chris Lattner74d3f822004-12-09 17:30:23 +00002904
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002905<p>As mentioned <a href="#functionstructure">previously</a>, every basic block
2906 in a program ends with a "Terminator" instruction, which indicates which
2907 block should be executed after the current block is finished. These
2908 terminator instructions typically yield a '<tt>void</tt>' value: they produce
2909 control flow, not values (the one exception being the
2910 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
2911
Duncan Sands626b0242010-04-15 20:35:54 +00002912<p>There are seven different terminator instructions: the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002913 '<a href="#i_ret"><tt>ret</tt></a>' instruction, the
2914 '<a href="#i_br"><tt>br</tt></a>' instruction, the
2915 '<a href="#i_switch"><tt>switch</tt></a>' instruction, the
Bill Wendling33fef7e2009-11-02 00:25:26 +00002916 '<a href="#i_indirectbr">'<tt>indirectbr</tt></a>' Instruction, the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002917 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the
2918 '<a href="#i_unwind"><tt>unwind</tt></a>' instruction, and the
2919 '<a href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattner74d3f822004-12-09 17:30:23 +00002920
Chris Lattner2f7c9632001-06-06 20:29:01 +00002921<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002922<h4>
2923 <a name="i_ret">'<tt>ret</tt>' Instruction</a>
2924</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002925
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002926<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002927
Chris Lattner2f7c9632001-06-06 20:29:01 +00002928<h5>Syntax:</h5>
Dan Gohmancc3132e2008-10-04 19:00:07 +00002929<pre>
2930 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner590645f2002-04-14 06:13:44 +00002931 ret void <i>; Return from void function</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002932</pre>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002933
Chris Lattner2f7c9632001-06-06 20:29:01 +00002934<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002935<p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
2936 a value) from a function back to the caller.</p>
2937
2938<p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
2939 value and then causes control flow, and one that just causes control flow to
2940 occur.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002941
Chris Lattner2f7c9632001-06-06 20:29:01 +00002942<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002943<p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
2944 return value. The type of the return value must be a
2945 '<a href="#t_firstclass">first class</a>' type.</p>
Dan Gohmancc3132e2008-10-04 19:00:07 +00002946
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002947<p>A function is not <a href="#wellformed">well formed</a> if it it has a
2948 non-void return type and contains a '<tt>ret</tt>' instruction with no return
2949 value or a return value with a type that does not match its type, or if it
2950 has a void return type and contains a '<tt>ret</tt>' instruction with a
2951 return value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002952
Chris Lattner2f7c9632001-06-06 20:29:01 +00002953<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002954<p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
2955 the calling function's context. If the caller is a
2956 "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
2957 instruction after the call. If the caller was an
2958 "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
2959 the beginning of the "normal" destination block. If the instruction returns
2960 a value, that value shall set the call or invoke instruction's return
2961 value.</p>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002962
Chris Lattner2f7c9632001-06-06 20:29:01 +00002963<h5>Example:</h5>
Chris Lattnerda508ac2008-04-23 04:59:35 +00002964<pre>
2965 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner590645f2002-04-14 06:13:44 +00002966 ret void <i>; Return from a void function</i>
Bill Wendling050ee8f2009-02-28 22:12:54 +00002967 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002968</pre>
Dan Gohman3065b612009-01-12 23:12:39 +00002969
Misha Brukman76307852003-11-08 01:05:38 +00002970</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002971<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00002972<h4>
2973 <a name="i_br">'<tt>br</tt>' Instruction</a>
2974</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002975
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00002976<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002977
Chris Lattner2f7c9632001-06-06 20:29:01 +00002978<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002979<pre>
2980 br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00002981</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002982
Chris Lattner2f7c9632001-06-06 20:29:01 +00002983<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002984<p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
2985 different basic block in the current function. There are two forms of this
2986 instruction, corresponding to a conditional branch and an unconditional
2987 branch.</p>
2988
Chris Lattner2f7c9632001-06-06 20:29:01 +00002989<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002990<p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
2991 '<tt>i1</tt>' value and two '<tt>label</tt>' values. The unconditional form
2992 of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
2993 target.</p>
2994
Chris Lattner2f7c9632001-06-06 20:29:01 +00002995<h5>Semantics:</h5>
Reid Spencer36a15422007-01-12 03:35:51 +00002996<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Bill Wendlingd9a66f72009-07-20 02:29:24 +00002997 argument is evaluated. If the value is <tt>true</tt>, control flows to the
2998 '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2999 control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
3000
Chris Lattner2f7c9632001-06-06 20:29:01 +00003001<h5>Example:</h5>
Bill Wendling30235112009-07-20 02:39:26 +00003002<pre>
3003Test:
3004 %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
3005 br i1 %cond, label %IfEqual, label %IfUnequal
3006IfEqual:
3007 <a href="#i_ret">ret</a> i32 1
3008IfUnequal:
3009 <a href="#i_ret">ret</a> i32 0
3010</pre>
3011
Misha Brukman76307852003-11-08 01:05:38 +00003012</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003013
Chris Lattner2f7c9632001-06-06 20:29:01 +00003014<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003015<h4>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003016 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003017</h4>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003018
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003019<div>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003020
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003021<h5>Syntax:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003022<pre>
3023 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
3024</pre>
3025
Chris Lattner2f7c9632001-06-06 20:29:01 +00003026<h5>Overview:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003027<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003028 several different places. It is a generalization of the '<tt>br</tt>'
3029 instruction, allowing a branch to occur to one of many possible
3030 destinations.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003031
Chris Lattner2f7c9632001-06-06 20:29:01 +00003032<h5>Arguments:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003033<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003034 comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
3035 and an array of pairs of comparison value constants and '<tt>label</tt>'s.
3036 The table is not allowed to contain duplicate constant entries.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003037
Chris Lattner2f7c9632001-06-06 20:29:01 +00003038<h5>Semantics:</h5>
Chris Lattner48b383b02003-11-25 01:02:51 +00003039<p>The <tt>switch</tt> instruction specifies a table of values and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003040 destinations. When the '<tt>switch</tt>' instruction is executed, this table
3041 is searched for the given value. If the value is found, control flow is
Benjamin Kramer0f420382009-10-12 14:46:08 +00003042 transferred to the corresponding destination; otherwise, control flow is
3043 transferred to the default destination.</p>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003044
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003045<h5>Implementation:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003046<p>Depending on properties of the target machine and the particular
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003047 <tt>switch</tt> instruction, this instruction may be code generated in
3048 different ways. For example, it could be generated as a series of chained
3049 conditional branches or with a lookup table.</p>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003050
3051<h5>Example:</h5>
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003052<pre>
3053 <i>; Emulate a conditional br instruction</i>
Reid Spencer36a15422007-01-12 03:35:51 +00003054 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman623806e2009-01-04 23:44:43 +00003055 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003056
3057 <i>; Emulate an unconditional br instruction</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003058 switch i32 0, label %dest [ ]
Chris Lattnercf96c6c2004-02-24 04:54:45 +00003059
3060 <i>; Implement a jump table:</i>
Dan Gohman623806e2009-01-04 23:44:43 +00003061 switch i32 %val, label %otherwise [ i32 0, label %onzero
3062 i32 1, label %onone
3063 i32 2, label %ontwo ]
Chris Lattner2f7c9632001-06-06 20:29:01 +00003064</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003065
Misha Brukman76307852003-11-08 01:05:38 +00003066</div>
Chris Lattner0132aff2005-05-06 22:57:40 +00003067
Chris Lattner3ed871f2009-10-27 19:13:16 +00003068
3069<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003070<h4>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00003071 <a name="i_indirectbr">'<tt>indirectbr</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003072</h4>
Chris Lattner3ed871f2009-10-27 19:13:16 +00003073
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003074<div>
Chris Lattner3ed871f2009-10-27 19:13:16 +00003075
3076<h5>Syntax:</h5>
3077<pre>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00003078 indirectbr &lt;somety&gt;* &lt;address&gt;, [ label &lt;dest1&gt;, label &lt;dest2&gt;, ... ]
Chris Lattner3ed871f2009-10-27 19:13:16 +00003079</pre>
3080
3081<h5>Overview:</h5>
3082
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00003083<p>The '<tt>indirectbr</tt>' instruction implements an indirect branch to a label
Chris Lattner3ed871f2009-10-27 19:13:16 +00003084 within the current function, whose address is specified by
Chris Lattnere4801f72009-10-27 21:01:34 +00003085 "<tt>address</tt>". Address must be derived from a <a
3086 href="#blockaddress">blockaddress</a> constant.</p>
Chris Lattner3ed871f2009-10-27 19:13:16 +00003087
3088<h5>Arguments:</h5>
3089
3090<p>The '<tt>address</tt>' argument is the address of the label to jump to. The
3091 rest of the arguments indicate the full set of possible destinations that the
3092 address may point to. Blocks are allowed to occur multiple times in the
3093 destination list, though this isn't particularly useful.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00003094
Chris Lattner3ed871f2009-10-27 19:13:16 +00003095<p>This destination list is required so that dataflow analysis has an accurate
3096 understanding of the CFG.</p>
3097
3098<h5>Semantics:</h5>
3099
3100<p>Control transfers to the block specified in the address argument. All
3101 possible destination blocks must be listed in the label list, otherwise this
3102 instruction has undefined behavior. This implies that jumps to labels
3103 defined in other functions have undefined behavior as well.</p>
3104
3105<h5>Implementation:</h5>
3106
3107<p>This is typically implemented with a jump through a register.</p>
3108
3109<h5>Example:</h5>
3110<pre>
Chris Lattnerd04cb6d2009-10-28 00:19:10 +00003111 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
Chris Lattner3ed871f2009-10-27 19:13:16 +00003112</pre>
3113
3114</div>
3115
3116
Chris Lattner2f7c9632001-06-06 20:29:01 +00003117<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003118<h4>
Chris Lattner0132aff2005-05-06 22:57:40 +00003119 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003120</h4>
Chris Lattner0132aff2005-05-06 22:57:40 +00003121
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003122<div>
Chris Lattner0132aff2005-05-06 22:57:40 +00003123
Chris Lattner2f7c9632001-06-06 20:29:01 +00003124<h5>Syntax:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00003125<pre>
Devang Patel02256232008-10-07 17:48:33 +00003126 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner6b7a0082006-05-14 18:23:06 +00003127 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattner0132aff2005-05-06 22:57:40 +00003128</pre>
3129
Chris Lattnera8292f32002-05-06 22:08:29 +00003130<h5>Overview:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00003131<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003132 function, with the possibility of control flow transfer to either the
3133 '<tt>normal</tt>' label or the '<tt>exception</tt>' label. If the callee
3134 function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
3135 control flow will return to the "normal" label. If the callee (or any
3136 indirect callees) returns with the "<a href="#i_unwind"><tt>unwind</tt></a>"
3137 instruction, control is interrupted and continued at the dynamically nearest
3138 "exception" label.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003139
Chris Lattner2f7c9632001-06-06 20:29:01 +00003140<h5>Arguments:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003141<p>This instruction requires several arguments:</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003142
Chris Lattner2f7c9632001-06-06 20:29:01 +00003143<ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003144 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
3145 convention</a> the call should use. If none is specified, the call
3146 defaults to using C calling conventions.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00003147
3148 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003149 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
3150 '<tt>inreg</tt>' attributes are valid here.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00003151
Chris Lattner0132aff2005-05-06 22:57:40 +00003152 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003153 function value being invoked. In most cases, this is a direct function
3154 invocation, but indirect <tt>invoke</tt>s are just as possible, branching
3155 off an arbitrary pointer to function value.</li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003156
3157 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003158 function to be invoked. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003159
3160 <li>'<tt>function args</tt>': argument list whose types match the function
Chris Lattner47f2a832010-03-02 06:36:51 +00003161 signature argument types and parameter attributes. All arguments must be
3162 of <a href="#t_firstclass">first class</a> type. If the function
3163 signature indicates the function accepts a variable number of arguments,
3164 the extra arguments can be specified.</li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003165
3166 <li>'<tt>normal label</tt>': the label reached when the called function
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003167 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003168
3169 <li>'<tt>exception label</tt>': the label reached when a callee returns with
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003170 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
Chris Lattner0132aff2005-05-06 22:57:40 +00003171
Devang Patel02256232008-10-07 17:48:33 +00003172 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003173 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
3174 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003175</ol>
Chris Lattner0132aff2005-05-06 22:57:40 +00003176
Chris Lattner2f7c9632001-06-06 20:29:01 +00003177<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003178<p>This instruction is designed to operate as a standard
3179 '<tt><a href="#i_call">call</a></tt>' instruction in most regards. The
3180 primary difference is that it establishes an association with a label, which
3181 is used by the runtime library to unwind the stack.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003182
3183<p>This instruction is used in languages with destructors to ensure that proper
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003184 cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
3185 exception. Additionally, this is important for implementation of
3186 '<tt>catch</tt>' clauses in high-level languages that support them.</p>
Chris Lattner0132aff2005-05-06 22:57:40 +00003187
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003188<p>For the purposes of the SSA form, the definition of the value returned by the
3189 '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
3190 block to the "normal" label. If the callee unwinds then no return value is
3191 available.</p>
Dan Gohman9069d892009-05-22 21:47:08 +00003192
Chris Lattner97257f82010-01-15 18:08:37 +00003193<p>Note that the code generator does not yet completely support unwind, and
3194that the invoke/unwind semantics are likely to change in future versions.</p>
3195
Chris Lattner2f7c9632001-06-06 20:29:01 +00003196<h5>Example:</h5>
Chris Lattner0132aff2005-05-06 22:57:40 +00003197<pre>
Nick Lewycky084ab472008-03-16 07:18:12 +00003198 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00003199 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewycky084ab472008-03-16 07:18:12 +00003200 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen5819f182007-04-22 01:17:39 +00003201 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003202</pre>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003203
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003204</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003205
Chris Lattner5ed60612003-09-03 00:41:47 +00003206<!-- _______________________________________________________________________ -->
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003207
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003208<h4>
3209 <a name="i_unwind">'<tt>unwind</tt>' Instruction</a>
3210</h4>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003211
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003212<div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003213
Chris Lattner5ed60612003-09-03 00:41:47 +00003214<h5>Syntax:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003215<pre>
3216 unwind
3217</pre>
3218
Chris Lattner5ed60612003-09-03 00:41:47 +00003219<h5>Overview:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003220<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003221 at the first callee in the dynamic call stack which used
3222 an <a href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.
3223 This is primarily used to implement exception handling.</p>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003224
Chris Lattner5ed60612003-09-03 00:41:47 +00003225<h5>Semantics:</h5>
Chris Lattnerfe8519c2008-04-19 21:01:16 +00003226<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003227 immediately halt. The dynamic call stack is then searched for the
3228 first <a href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.
3229 Once found, execution continues at the "exceptional" destination block
3230 specified by the <tt>invoke</tt> instruction. If there is no <tt>invoke</tt>
3231 instruction in the dynamic call chain, undefined behavior results.</p>
3232
Chris Lattner97257f82010-01-15 18:08:37 +00003233<p>Note that the code generator does not yet completely support unwind, and
3234that the invoke/unwind semantics are likely to change in future versions.</p>
3235
Misha Brukman76307852003-11-08 01:05:38 +00003236</div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003237
3238<!-- _______________________________________________________________________ -->
3239
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003240<h4>
3241 <a name="i_unreachable">'<tt>unreachable</tt>' Instruction</a>
3242</h4>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003243
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003244<div>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003245
3246<h5>Syntax:</h5>
3247<pre>
3248 unreachable
3249</pre>
3250
3251<h5>Overview:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003252<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003253 instruction is used to inform the optimizer that a particular portion of the
3254 code is not reachable. This can be used to indicate that the code after a
3255 no-return function cannot be reached, and other facts.</p>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003256
3257<h5>Semantics:</h5>
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003258<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003259
Chris Lattner08b7d5b2004-10-16 18:04:13 +00003260</div>
3261
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003262</div>
3263
Chris Lattner2f7c9632001-06-06 20:29:01 +00003264<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003265<h3>
3266 <a name="binaryops">Binary Operations</a>
3267</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003268
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003269<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003270
3271<p>Binary operators are used to do most of the computation in a program. They
3272 require two operands of the same type, execute an operation on them, and
3273 produce a single value. The operands might represent multiple data, as is
3274 the case with the <a href="#t_vector">vector</a> data type. The result value
3275 has the same type as its operands.</p>
3276
Misha Brukman76307852003-11-08 01:05:38 +00003277<p>There are several different binary operators:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003278
Chris Lattner2f7c9632001-06-06 20:29:01 +00003279<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003280<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003281 <a name="i_add">'<tt>add</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003282</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003283
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003284<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003285
Chris Lattner2f7c9632001-06-06 20:29:01 +00003286<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003287<pre>
Dan Gohmanb07de442009-07-20 22:41:19 +00003288 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003289 &lt;result&gt; = add nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3290 &lt;result&gt; = add nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3291 &lt;result&gt; = add nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003292</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003293
Chris Lattner2f7c9632001-06-06 20:29:01 +00003294<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003295<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003296
Chris Lattner2f7c9632001-06-06 20:29:01 +00003297<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003298<p>The two arguments to the '<tt>add</tt>' instruction must
3299 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3300 integer values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003301
Chris Lattner2f7c9632001-06-06 20:29:01 +00003302<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003303<p>The value produced is the integer sum of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003304
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003305<p>If the sum has unsigned overflow, the result returned is the mathematical
3306 result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003307
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003308<p>Because LLVM integers use a two's complement representation, this instruction
3309 is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003310
Dan Gohman902dfff2009-07-22 22:44:56 +00003311<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3312 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3313 <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00003314 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3315 respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003316
Chris Lattner2f7c9632001-06-06 20:29:01 +00003317<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003318<pre>
3319 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003320</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003321
Misha Brukman76307852003-11-08 01:05:38 +00003322</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003323
Chris Lattner2f7c9632001-06-06 20:29:01 +00003324<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003325<h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003326 <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003327</h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003328
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003329<div>
Dan Gohmana5b96452009-06-04 22:49:04 +00003330
3331<h5>Syntax:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003332<pre>
3333 &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3334</pre>
3335
3336<h5>Overview:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003337<p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
3338
3339<h5>Arguments:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003340<p>The two arguments to the '<tt>fadd</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003341 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3342 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003343
3344<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003345<p>The value produced is the floating point sum of the two operands.</p>
3346
3347<h5>Example:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003348<pre>
3349 &lt;result&gt; = fadd float 4.0, %var <i>; yields {float}:result = 4.0 + %var</i>
3350</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003351
Dan Gohmana5b96452009-06-04 22:49:04 +00003352</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003353
Dan Gohmana5b96452009-06-04 22:49:04 +00003354<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003355<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003356 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003357</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003358
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003359<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003360
Chris Lattner2f7c9632001-06-06 20:29:01 +00003361<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003362<pre>
Dan Gohman902dfff2009-07-22 22:44:56 +00003363 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003364 &lt;result&gt; = sub nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3365 &lt;result&gt; = sub nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3366 &lt;result&gt; = sub nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003367</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003368
Chris Lattner2f7c9632001-06-06 20:29:01 +00003369<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003370<p>The '<tt>sub</tt>' instruction returns the difference of its two
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003371 operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003372
3373<p>Note that the '<tt>sub</tt>' instruction is used to represent the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003374 '<tt>neg</tt>' instruction present in most other intermediate
3375 representations.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003376
Chris Lattner2f7c9632001-06-06 20:29:01 +00003377<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003378<p>The two arguments to the '<tt>sub</tt>' instruction must
3379 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3380 integer values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003381
Chris Lattner2f7c9632001-06-06 20:29:01 +00003382<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003383<p>The value produced is the integer difference of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003384
Dan Gohmana5b96452009-06-04 22:49:04 +00003385<p>If the difference has unsigned overflow, the result returned is the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003386 mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
3387 result.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003388
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003389<p>Because LLVM integers use a two's complement representation, this instruction
3390 is appropriate for both signed and unsigned integers.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003391
Dan Gohman902dfff2009-07-22 22:44:56 +00003392<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3393 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3394 <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00003395 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3396 respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003397
Chris Lattner2f7c9632001-06-06 20:29:01 +00003398<h5>Example:</h5>
Bill Wendling2d8b9a82007-05-29 09:42:13 +00003399<pre>
3400 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003401 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003402</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003403
Misha Brukman76307852003-11-08 01:05:38 +00003404</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003405
Chris Lattner2f7c9632001-06-06 20:29:01 +00003406<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003407<h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003408 <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003409</h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003410
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003411<div>
Dan Gohmana5b96452009-06-04 22:49:04 +00003412
3413<h5>Syntax:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003414<pre>
3415 &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3416</pre>
3417
3418<h5>Overview:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003419<p>The '<tt>fsub</tt>' instruction returns the difference of its two
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003420 operands.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003421
3422<p>Note that the '<tt>fsub</tt>' instruction is used to represent the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003423 '<tt>fneg</tt>' instruction present in most other intermediate
3424 representations.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003425
3426<h5>Arguments:</h5>
Bill Wendling972b7202009-07-20 02:32:41 +00003427<p>The two arguments to the '<tt>fsub</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003428 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3429 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003430
3431<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003432<p>The value produced is the floating point difference of the two operands.</p>
3433
3434<h5>Example:</h5>
3435<pre>
3436 &lt;result&gt; = fsub float 4.0, %var <i>; yields {float}:result = 4.0 - %var</i>
3437 &lt;result&gt; = fsub float -0.0, %val <i>; yields {float}:result = -%var</i>
3438</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003439
Dan Gohmana5b96452009-06-04 22:49:04 +00003440</div>
3441
3442<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003443<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003444 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003445</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003446
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003447<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003448
Chris Lattner2f7c9632001-06-06 20:29:01 +00003449<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003450<pre>
Dan Gohman902dfff2009-07-22 22:44:56 +00003451 &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003452 &lt;result&gt; = mul nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3453 &lt;result&gt; = mul nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3454 &lt;result&gt; = mul nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003455</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003456
Chris Lattner2f7c9632001-06-06 20:29:01 +00003457<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003458<p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003459
Chris Lattner2f7c9632001-06-06 20:29:01 +00003460<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003461<p>The two arguments to the '<tt>mul</tt>' instruction must
3462 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3463 integer values. Both arguments must have identical types.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00003464
Chris Lattner2f7c9632001-06-06 20:29:01 +00003465<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003466<p>The value produced is the integer product of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003467
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003468<p>If the result of the multiplication has unsigned overflow, the result
3469 returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
3470 width of the result.</p>
3471
3472<p>Because LLVM integers use a two's complement representation, and the result
3473 is the same width as the operands, this instruction returns the correct
3474 result for both signed and unsigned integers. If a full product
3475 (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
3476 be sign-extended or zero-extended as appropriate to the width of the full
3477 product.</p>
3478
Dan Gohman902dfff2009-07-22 22:44:56 +00003479<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3480 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3481 <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
Dan Gohmanffc9a6b2010-04-22 23:14:21 +00003482 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3483 respectively, occurs.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003484
Chris Lattner2f7c9632001-06-06 20:29:01 +00003485<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003486<pre>
3487 &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003488</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003489
Misha Brukman76307852003-11-08 01:05:38 +00003490</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003491
Chris Lattner2f7c9632001-06-06 20:29:01 +00003492<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003493<h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003494 <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003495</h4>
Dan Gohmana5b96452009-06-04 22:49:04 +00003496
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003497<div>
Dan Gohmana5b96452009-06-04 22:49:04 +00003498
3499<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003500<pre>
3501 &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmana5b96452009-06-04 22:49:04 +00003502</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003503
Dan Gohmana5b96452009-06-04 22:49:04 +00003504<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003505<p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003506
3507<h5>Arguments:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003508<p>The two arguments to the '<tt>fmul</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003509 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3510 floating point values. Both arguments must have identical types.</p>
Dan Gohmana5b96452009-06-04 22:49:04 +00003511
3512<h5>Semantics:</h5>
Dan Gohmana5b96452009-06-04 22:49:04 +00003513<p>The value produced is the floating point product of the two operands.</p>
3514
3515<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003516<pre>
3517 &lt;result&gt; = fmul float 4.0, %var <i>; yields {float}:result = 4.0 * %var</i>
Dan Gohmana5b96452009-06-04 22:49:04 +00003518</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003519
Dan Gohmana5b96452009-06-04 22:49:04 +00003520</div>
3521
3522<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003523<h4>
3524 <a name="i_udiv">'<tt>udiv</tt>' Instruction</a>
3525</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003526
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003527<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003528
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003529<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003530<pre>
Chris Lattner35315d02011-02-06 21:44:57 +00003531 &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3532 &lt;result&gt; = udiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003533</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003534
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003535<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003536<p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003537
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003538<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003539<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003540 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3541 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003542
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003543<h5>Semantics:</h5>
Chris Lattner2f2427e2008-01-28 00:36:27 +00003544<p>The value produced is the unsigned integer quotient of the two operands.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003545
Chris Lattner2f2427e2008-01-28 00:36:27 +00003546<p>Note that unsigned integer division and signed integer division are distinct
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003547 operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
3548
Chris Lattner2f2427e2008-01-28 00:36:27 +00003549<p>Division by zero leads to undefined behavior.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003550
Chris Lattner35315d02011-02-06 21:44:57 +00003551<p>If the <tt>exact</tt> keyword is present, the result value of the
3552 <tt>udiv</tt> is a <a href="#trapvalues">trap value</a> if %op1 is not a
3553 multiple of %op2 (as such, "((a udiv exact b) mul b) == a").</p>
3554
3555
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003556<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003557<pre>
3558 &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003559</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003560
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003561</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003562
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003563<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003564<h4>
3565 <a name="i_sdiv">'<tt>sdiv</tt>' Instruction</a>
3566</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003567
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003568<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003569
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003570<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003571<pre>
Dan Gohmanb07de442009-07-20 22:41:19 +00003572 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohman957b1312009-09-02 17:31:42 +00003573 &lt;result&gt; = sdiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003574</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003575
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003576<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003577<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003578
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003579<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003580<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003581 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3582 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003583
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003584<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003585<p>The value produced is the signed integer quotient of the two operands rounded
3586 towards zero.</p>
3587
Chris Lattner2f2427e2008-01-28 00:36:27 +00003588<p>Note that signed integer division and unsigned integer division are distinct
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003589 operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
3590
Chris Lattner2f2427e2008-01-28 00:36:27 +00003591<p>Division by zero leads to undefined behavior. Overflow also leads to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003592 undefined behavior; this is a rare case, but can occur, for example, by doing
3593 a 32-bit division of -2147483648 by -1.</p>
3594
Dan Gohman71dfd782009-07-22 00:04:19 +00003595<p>If the <tt>exact</tt> keyword is present, the result value of the
Dan Gohman57255802010-04-23 15:23:32 +00003596 <tt>sdiv</tt> is a <a href="#trapvalues">trap value</a> if the result would
Dan Gohmane501ff72010-07-11 00:08:34 +00003597 be rounded.</p>
Dan Gohmanb07de442009-07-20 22:41:19 +00003598
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003599<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003600<pre>
3601 &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003602</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003603
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003604</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003605
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003606<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003607<h4>
3608 <a name="i_fdiv">'<tt>fdiv</tt>' Instruction</a>
3609</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003610
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003611<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003612
Chris Lattner2f7c9632001-06-06 20:29:01 +00003613<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003614<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003615 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003616</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003617
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003618<h5>Overview:</h5>
3619<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003620
Chris Lattner48b383b02003-11-25 01:02:51 +00003621<h5>Arguments:</h5>
Jeff Cohen5819f182007-04-22 01:17:39 +00003622<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003623 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3624 floating point values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003625
Chris Lattner48b383b02003-11-25 01:02:51 +00003626<h5>Semantics:</h5>
Reid Spencer7e80b0b2006-10-26 06:15:43 +00003627<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003628
Chris Lattner48b383b02003-11-25 01:02:51 +00003629<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003630<pre>
3631 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003632</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003633
Chris Lattner48b383b02003-11-25 01:02:51 +00003634</div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003635
Chris Lattner48b383b02003-11-25 01:02:51 +00003636<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003637<h4>
3638 <a name="i_urem">'<tt>urem</tt>' Instruction</a>
3639</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003640
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003641<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003642
Reid Spencer7eb55b32006-11-02 01:53:59 +00003643<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003644<pre>
3645 &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003646</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003647
Reid Spencer7eb55b32006-11-02 01:53:59 +00003648<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003649<p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
3650 division of its two arguments.</p>
3651
Reid Spencer7eb55b32006-11-02 01:53:59 +00003652<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003653<p>The two arguments to the '<tt>urem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003654 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3655 values. Both arguments must have identical types.</p>
3656
Reid Spencer7eb55b32006-11-02 01:53:59 +00003657<h5>Semantics:</h5>
3658<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003659 This instruction always performs an unsigned division to get the
3660 remainder.</p>
3661
Chris Lattner2f2427e2008-01-28 00:36:27 +00003662<p>Note that unsigned integer remainder and signed integer remainder are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003663 distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
3664
Chris Lattner2f2427e2008-01-28 00:36:27 +00003665<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003666
Reid Spencer7eb55b32006-11-02 01:53:59 +00003667<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003668<pre>
3669 &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003670</pre>
3671
3672</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003673
Reid Spencer7eb55b32006-11-02 01:53:59 +00003674<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003675<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003676 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003677</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003678
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003679<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003680
Chris Lattner48b383b02003-11-25 01:02:51 +00003681<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003682<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003683 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003684</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003685
Chris Lattner48b383b02003-11-25 01:02:51 +00003686<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003687<p>The '<tt>srem</tt>' instruction returns the remainder from the signed
3688 division of its two operands. This instruction can also take
3689 <a href="#t_vector">vector</a> versions of the values in which case the
3690 elements must be integers.</p>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00003691
Chris Lattner48b383b02003-11-25 01:02:51 +00003692<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003693<p>The two arguments to the '<tt>srem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003694 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3695 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003696
Chris Lattner48b383b02003-11-25 01:02:51 +00003697<h5>Semantics:</h5>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003698<p>This instruction returns the <i>remainder</i> of a division (where the result
Duncan Sands2769c6e2011-03-07 09:12:24 +00003699 is either zero or has the same sign as the dividend, <tt>op1</tt>), not the
3700 <i>modulo</i> operator (where the result is either zero or has the same sign
3701 as the divisor, <tt>op2</tt>) of a value.
3702 For more information about the difference,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003703 see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
3704 Math Forum</a>. For a table of how this is implemented in various languages,
3705 please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
3706 Wikipedia: modulo operation</a>.</p>
3707
Chris Lattner2f2427e2008-01-28 00:36:27 +00003708<p>Note that signed integer remainder and unsigned integer remainder are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003709 distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
3710
Chris Lattner2f2427e2008-01-28 00:36:27 +00003711<p>Taking the remainder of a division by zero leads to undefined behavior.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003712 Overflow also leads to undefined behavior; this is a rare case, but can
3713 occur, for example, by taking the remainder of a 32-bit division of
3714 -2147483648 by -1. (The remainder doesn't actually overflow, but this rule
3715 lets srem be implemented using instructions that return both the result of
3716 the division and the remainder.)</p>
3717
Chris Lattner48b383b02003-11-25 01:02:51 +00003718<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003719<pre>
3720 &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003721</pre>
3722
3723</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003724
Reid Spencer7eb55b32006-11-02 01:53:59 +00003725<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003726<h4>
3727 <a name="i_frem">'<tt>frem</tt>' Instruction</a>
3728</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003729
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003730<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003731
Reid Spencer7eb55b32006-11-02 01:53:59 +00003732<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003733<pre>
3734 &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer7eb55b32006-11-02 01:53:59 +00003735</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003736
Reid Spencer7eb55b32006-11-02 01:53:59 +00003737<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003738<p>The '<tt>frem</tt>' instruction returns the remainder from the division of
3739 its two operands.</p>
3740
Reid Spencer7eb55b32006-11-02 01:53:59 +00003741<h5>Arguments:</h5>
3742<p>The two arguments to the '<tt>frem</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003743 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3744 floating point values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003745
Reid Spencer7eb55b32006-11-02 01:53:59 +00003746<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003747<p>This instruction returns the <i>remainder</i> of a division. The remainder
3748 has the same sign as the dividend.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003749
Reid Spencer7eb55b32006-11-02 01:53:59 +00003750<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003751<pre>
3752 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner48b383b02003-11-25 01:02:51 +00003753</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003754
Misha Brukman76307852003-11-08 01:05:38 +00003755</div>
Robert Bocchino820bc75b2006-02-17 21:18:08 +00003756
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003757</div>
3758
Reid Spencer2ab01932007-02-02 13:57:07 +00003759<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003760<h3>
3761 <a name="bitwiseops">Bitwise Binary Operations</a>
3762</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003763
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003764<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003765
3766<p>Bitwise binary operators are used to do various forms of bit-twiddling in a
3767 program. They are generally very efficient instructions and can commonly be
3768 strength reduced from other instructions. They require two operands of the
3769 same type, execute an operation on them, and produce a single value. The
3770 resulting value is the same type as its operands.</p>
3771
Reid Spencer04e259b2007-01-31 21:39:12 +00003772<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003773<h4>
3774 <a name="i_shl">'<tt>shl</tt>' Instruction</a>
3775</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003776
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003777<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003778
Reid Spencer04e259b2007-01-31 21:39:12 +00003779<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003780<pre>
Chris Lattnera676c0f2011-02-07 16:40:21 +00003781 &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3782 &lt;result&gt; = shl nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3783 &lt;result&gt; = shl nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3784 &lt;result&gt; = shl nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003785</pre>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003786
Reid Spencer04e259b2007-01-31 21:39:12 +00003787<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003788<p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
3789 a specified number of bits.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003790
Reid Spencer04e259b2007-01-31 21:39:12 +00003791<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003792<p>Both arguments to the '<tt>shl</tt>' instruction must be the
3793 same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3794 integer type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Eric Christopher455c5772009-12-05 02:46:03 +00003795
Reid Spencer04e259b2007-01-31 21:39:12 +00003796<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003797<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
3798 2<sup>n</sup>, where <tt>n</tt> is the width of the result. If <tt>op2</tt>
3799 is (statically or dynamically) negative or equal to or larger than the number
3800 of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3801 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3802 shift amount in <tt>op2</tt>.</p>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003803
Chris Lattnera676c0f2011-02-07 16:40:21 +00003804<p>If the <tt>nuw</tt> keyword is present, then the shift produces a
3805 <a href="#trapvalues">trap value</a> if it shifts out any non-zero bits. If
Chris Lattnerf10dfdc2011-02-09 16:44:44 +00003806 the <tt>nsw</tt> keyword is present, then the shift produces a
Chris Lattnera676c0f2011-02-07 16:40:21 +00003807 <a href="#trapvalues">trap value</a> if it shifts out any bits that disagree
3808 with the resultant sign bit. As such, NUW/NSW have the same semantics as
3809 they would if the shift were expressed as a mul instruction with the same
3810 nsw/nuw bits in (mul %op1, (shl 1, %op2)).</p>
3811
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003812<h5>Example:</h5>
3813<pre>
Reid Spencer04e259b2007-01-31 21:39:12 +00003814 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
3815 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
3816 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003817 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00003818 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003819</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003820
Reid Spencer04e259b2007-01-31 21:39:12 +00003821</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003822
Reid Spencer04e259b2007-01-31 21:39:12 +00003823<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003824<h4>
3825 <a name="i_lshr">'<tt>lshr</tt>' Instruction</a>
3826</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003827
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003828<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003829
Reid Spencer04e259b2007-01-31 21:39:12 +00003830<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003831<pre>
Chris Lattnera676c0f2011-02-07 16:40:21 +00003832 &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3833 &lt;result&gt; = lshr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003834</pre>
3835
3836<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003837<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
3838 operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003839
3840<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003841<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003842 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3843 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003844
3845<h5>Semantics:</h5>
3846<p>This instruction always performs a logical shift right operation. The most
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003847 significant bits of the result will be filled with zero bits after the shift.
3848 If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
3849 number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3850 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3851 shift amount in <tt>op2</tt>.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003852
Chris Lattnera676c0f2011-02-07 16:40:21 +00003853<p>If the <tt>exact</tt> keyword is present, the result value of the
3854 <tt>lshr</tt> is a <a href="#trapvalues">trap value</a> if any of the bits
3855 shifted out are non-zero.</p>
3856
3857
Reid Spencer04e259b2007-01-31 21:39:12 +00003858<h5>Example:</h5>
3859<pre>
3860 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
3861 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
3862 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
3863 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003864 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00003865 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003866</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003867
Reid Spencer04e259b2007-01-31 21:39:12 +00003868</div>
3869
Reid Spencer2ab01932007-02-02 13:57:07 +00003870<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003871<h4>
3872 <a name="i_ashr">'<tt>ashr</tt>' Instruction</a>
3873</h4>
3874
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003875<div>
Reid Spencer04e259b2007-01-31 21:39:12 +00003876
3877<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003878<pre>
Chris Lattnera676c0f2011-02-07 16:40:21 +00003879 &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3880 &lt;result&gt; = ashr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003881</pre>
3882
3883<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003884<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
3885 operand shifted to the right a specified number of bits with sign
3886 extension.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003887
3888<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003889<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003890 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3891 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003892
3893<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003894<p>This instruction always performs an arithmetic shift right operation, The
3895 most significant bits of the result will be filled with the sign bit
3896 of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
3897 larger than the number of bits in <tt>op1</tt>, the result is undefined. If
3898 the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
3899 the corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer04e259b2007-01-31 21:39:12 +00003900
Chris Lattnera676c0f2011-02-07 16:40:21 +00003901<p>If the <tt>exact</tt> keyword is present, the result value of the
3902 <tt>ashr</tt> is a <a href="#trapvalues">trap value</a> if any of the bits
3903 shifted out are non-zero.</p>
3904
Reid Spencer04e259b2007-01-31 21:39:12 +00003905<h5>Example:</h5>
3906<pre>
3907 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
3908 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
3909 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
3910 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattnerf0e50112007-10-03 21:01:14 +00003911 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wang4dd832d2008-12-09 05:46:39 +00003912 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer04e259b2007-01-31 21:39:12 +00003913</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003914
Reid Spencer04e259b2007-01-31 21:39:12 +00003915</div>
3916
Chris Lattner2f7c9632001-06-06 20:29:01 +00003917<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003918<h4>
3919 <a name="i_and">'<tt>and</tt>' Instruction</a>
3920</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003921
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003922<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003923
Chris Lattner2f7c9632001-06-06 20:29:01 +00003924<h5>Syntax:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003925<pre>
Gabor Greif0f75ad02008-08-07 21:46:00 +00003926 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003927</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003928
Chris Lattner2f7c9632001-06-06 20:29:01 +00003929<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003930<p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
3931 operands.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003932
Chris Lattner2f7c9632001-06-06 20:29:01 +00003933<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003934<p>The two arguments to the '<tt>and</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003935 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3936 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003937
Chris Lattner2f7c9632001-06-06 20:29:01 +00003938<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00003939<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003940
Misha Brukman76307852003-11-08 01:05:38 +00003941<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner48b383b02003-11-25 01:02:51 +00003942 <tbody>
3943 <tr>
3944 <td>In0</td>
3945 <td>In1</td>
3946 <td>Out</td>
3947 </tr>
3948 <tr>
3949 <td>0</td>
3950 <td>0</td>
3951 <td>0</td>
3952 </tr>
3953 <tr>
3954 <td>0</td>
3955 <td>1</td>
3956 <td>0</td>
3957 </tr>
3958 <tr>
3959 <td>1</td>
3960 <td>0</td>
3961 <td>0</td>
3962 </tr>
3963 <tr>
3964 <td>1</td>
3965 <td>1</td>
3966 <td>1</td>
3967 </tr>
3968 </tbody>
3969</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003970
Chris Lattner2f7c9632001-06-06 20:29:01 +00003971<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003972<pre>
3973 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00003974 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
3975 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003976</pre>
Misha Brukman76307852003-11-08 01:05:38 +00003977</div>
Chris Lattner2f7c9632001-06-06 20:29:01 +00003978<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00003979<h4>
3980 <a name="i_or">'<tt>or</tt>' Instruction</a>
3981</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00003982
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00003983<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003984
3985<h5>Syntax:</h5>
3986<pre>
3987 &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3988</pre>
3989
3990<h5>Overview:</h5>
3991<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
3992 two operands.</p>
3993
3994<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00003995<p>The two arguments to the '<tt>or</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00003996 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3997 values. Both arguments must have identical types.</p>
3998
Chris Lattner2f7c9632001-06-06 20:29:01 +00003999<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004000<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004001
Chris Lattner48b383b02003-11-25 01:02:51 +00004002<table border="1" cellspacing="0" cellpadding="4">
4003 <tbody>
4004 <tr>
4005 <td>In0</td>
4006 <td>In1</td>
4007 <td>Out</td>
4008 </tr>
4009 <tr>
4010 <td>0</td>
4011 <td>0</td>
4012 <td>0</td>
4013 </tr>
4014 <tr>
4015 <td>0</td>
4016 <td>1</td>
4017 <td>1</td>
4018 </tr>
4019 <tr>
4020 <td>1</td>
4021 <td>0</td>
4022 <td>1</td>
4023 </tr>
4024 <tr>
4025 <td>1</td>
4026 <td>1</td>
4027 <td>1</td>
4028 </tr>
4029 </tbody>
4030</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004031
Chris Lattner2f7c9632001-06-06 20:29:01 +00004032<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004033<pre>
4034 &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004035 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
4036 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004037</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004038
Misha Brukman76307852003-11-08 01:05:38 +00004039</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004040
Chris Lattner2f7c9632001-06-06 20:29:01 +00004041<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004042<h4>
4043 <a name="i_xor">'<tt>xor</tt>' Instruction</a>
4044</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004045
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004046<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004047
Chris Lattner2f7c9632001-06-06 20:29:01 +00004048<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004049<pre>
4050 &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004051</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004052
Chris Lattner2f7c9632001-06-06 20:29:01 +00004053<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004054<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
4055 its two operands. The <tt>xor</tt> is used to implement the "one's
4056 complement" operation, which is the "~" operator in C.</p>
4057
Chris Lattner2f7c9632001-06-06 20:29:01 +00004058<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004059<p>The two arguments to the '<tt>xor</tt>' instruction must be
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004060 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4061 values. Both arguments must have identical types.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00004062
Chris Lattner2f7c9632001-06-06 20:29:01 +00004063<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004064<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004065
Chris Lattner48b383b02003-11-25 01:02:51 +00004066<table border="1" cellspacing="0" cellpadding="4">
4067 <tbody>
4068 <tr>
4069 <td>In0</td>
4070 <td>In1</td>
4071 <td>Out</td>
4072 </tr>
4073 <tr>
4074 <td>0</td>
4075 <td>0</td>
4076 <td>0</td>
4077 </tr>
4078 <tr>
4079 <td>0</td>
4080 <td>1</td>
4081 <td>1</td>
4082 </tr>
4083 <tr>
4084 <td>1</td>
4085 <td>0</td>
4086 <td>1</td>
4087 </tr>
4088 <tr>
4089 <td>1</td>
4090 <td>1</td>
4091 <td>0</td>
4092 </tr>
4093 </tbody>
4094</table>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004095
Chris Lattner2f7c9632001-06-06 20:29:01 +00004096<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004097<pre>
4098 &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004099 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
4100 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
4101 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004102</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004103
Misha Brukman76307852003-11-08 01:05:38 +00004104</div>
Chris Lattner54611b42005-11-06 08:02:57 +00004105
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004106</div>
4107
Chris Lattner2f7c9632001-06-06 20:29:01 +00004108<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004109<h3>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004110 <a name="vectorops">Vector Operations</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004111</h3>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004112
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004113<div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004114
4115<p>LLVM supports several instructions to represent vector operations in a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004116 target-independent manner. These instructions cover the element-access and
4117 vector-specific operations needed to process vectors effectively. While LLVM
4118 does directly support these vector operations, many sophisticated algorithms
4119 will want to use target-specific intrinsics to take full advantage of a
4120 specific target.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004121
Chris Lattnerce83bff2006-04-08 23:07:04 +00004122<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004123<h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004124 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004125</h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004126
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004127<div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004128
4129<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004130<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004131 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004132</pre>
4133
4134<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004135<p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
4136 from a vector at a specified index.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004137
4138
4139<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004140<p>The first operand of an '<tt>extractelement</tt>' instruction is a value
4141 of <a href="#t_vector">vector</a> type. The second operand is an index
4142 indicating the position from which to extract the element. The index may be
4143 a variable.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004144
4145<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004146<p>The result is a scalar of the same type as the element type of
4147 <tt>val</tt>. Its value is the value at position <tt>idx</tt> of
4148 <tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
4149 results are undefined.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004150
4151<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004152<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00004153 &lt;result&gt; = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004154</pre>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004155
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004156</div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004157
4158<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004159<h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004160 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004161</h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004162
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004163<div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004164
4165<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004166<pre>
Dan Gohman43ba0672008-05-12 23:38:42 +00004167 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004168</pre>
4169
4170<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004171<p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
4172 vector at a specified index.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004173
4174<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004175<p>The first operand of an '<tt>insertelement</tt>' instruction is a value
4176 of <a href="#t_vector">vector</a> type. The second operand is a scalar value
4177 whose type must equal the element type of the first operand. The third
4178 operand is an index indicating the position at which to insert the value.
4179 The index may be a variable.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004180
4181<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004182<p>The result is a vector of the same type as <tt>val</tt>. Its element values
4183 are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
4184 value <tt>elt</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
4185 results are undefined.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004186
4187<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004188<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00004189 &lt;result&gt; = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004190</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004191
Chris Lattnerce83bff2006-04-08 23:07:04 +00004192</div>
4193
4194<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004195<h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004196 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004197</h4>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004198
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004199<div>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004200
4201<h5>Syntax:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004202<pre>
Mon P Wang25f01062008-11-10 04:46:22 +00004203 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004204</pre>
4205
4206<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004207<p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
4208 from two input vectors, returning a vector with the same element type as the
4209 input and length that is the same as the shuffle mask.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004210
4211<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004212<p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
4213 with types that match each other. The third argument is a shuffle mask whose
4214 element type is always 'i32'. The result of the instruction is a vector
4215 whose length is the same as the shuffle mask and whose element type is the
4216 same as the element type of the first two operands.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004217
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004218<p>The shuffle mask operand is required to be a constant vector with either
4219 constant integer or undef values.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004220
4221<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004222<p>The elements of the two input vectors are numbered from left to right across
4223 both of the vectors. The shuffle mask operand specifies, for each element of
4224 the result vector, which element of the two input vectors the result element
4225 gets. The element selector may be undef (meaning "don't care") and the
4226 second operand may be undef if performing a shuffle from only one vector.</p>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004227
4228<h5>Example:</h5>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004229<pre>
Eric Christopher455c5772009-12-05 02:46:03 +00004230 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen5819f182007-04-22 01:17:39 +00004231 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Eric Christopher455c5772009-12-05 02:46:03 +00004232 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004233 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Eric Christopher455c5772009-12-05 02:46:03 +00004234 &lt;result&gt; = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
Mon P Wang25f01062008-11-10 04:46:22 +00004235 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
Eric Christopher455c5772009-12-05 02:46:03 +00004236 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Mon P Wang25f01062008-11-10 04:46:22 +00004237 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004238</pre>
Chris Lattnerce83bff2006-04-08 23:07:04 +00004239
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004240</div>
Tanya Lattnerb138bbe2006-04-14 19:24:33 +00004241
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004242</div>
4243
Chris Lattnerce83bff2006-04-08 23:07:04 +00004244<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004245<h3>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004246 <a name="aggregateops">Aggregate Operations</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004247</h3>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004248
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004249<div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004250
Chris Lattner392be582010-02-12 20:49:41 +00004251<p>LLVM supports several instructions for working with
4252 <a href="#t_aggregate">aggregate</a> values.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004253
Dan Gohmanb9d66602008-05-12 23:51:09 +00004254<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004255<h4>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004256 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004257</h4>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004258
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004259<div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004260
4261<h5>Syntax:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004262<pre>
4263 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
4264</pre>
4265
4266<h5>Overview:</h5>
Chris Lattner392be582010-02-12 20:49:41 +00004267<p>The '<tt>extractvalue</tt>' instruction extracts the value of a member field
4268 from an <a href="#t_aggregate">aggregate</a> value.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004269
4270<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004271<p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
Chris Lattner13ee7952010-08-28 04:09:24 +00004272 of <a href="#t_struct">struct</a> or
Chris Lattner392be582010-02-12 20:49:41 +00004273 <a href="#t_array">array</a> type. The operands are constant indices to
4274 specify which value to extract in a similar manner as indices in a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004275 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
Frits van Bommel7cf63ac2010-12-05 20:54:38 +00004276 <p>The major differences to <tt>getelementptr</tt> indexing are:</p>
4277 <ul>
4278 <li>Since the value being indexed is not a pointer, the first index is
4279 omitted and assumed to be zero.</li>
4280 <li>At least one index must be specified.</li>
4281 <li>Not only struct indices but also array indices must be in
4282 bounds.</li>
4283 </ul>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004284
4285<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004286<p>The result is the value at the position in the aggregate specified by the
4287 index operands.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004288
4289<h5>Example:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004290<pre>
Gabor Greif03ab4dc2009-10-28 13:14:50 +00004291 &lt;result&gt; = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004292</pre>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004293
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004294</div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004295
4296<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004297<h4>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004298 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004299</h4>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004300
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004301<div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004302
4303<h5>Syntax:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004304<pre>
Jeffrey Yasskinf991bbb2010-01-11 19:19:26 +00004305 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, &lt;idx&gt; <i>; yields &lt;aggregate type&gt;</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004306</pre>
4307
4308<h5>Overview:</h5>
Chris Lattner392be582010-02-12 20:49:41 +00004309<p>The '<tt>insertvalue</tt>' instruction inserts a value into a member field
4310 in an <a href="#t_aggregate">aggregate</a> value.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004311
4312<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004313<p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
Chris Lattner13ee7952010-08-28 04:09:24 +00004314 of <a href="#t_struct">struct</a> or
Chris Lattner392be582010-02-12 20:49:41 +00004315 <a href="#t_array">array</a> type. The second operand is a first-class
4316 value to insert. The following operands are constant indices indicating
4317 the position at which to insert the value in a similar manner as indices in a
Frits van Bommel7cf63ac2010-12-05 20:54:38 +00004318 '<tt><a href="#i_extractvalue">extractvalue</a></tt>' instruction. The
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004319 value to insert must have the same type as the value identified by the
4320 indices.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004321
4322<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004323<p>The result is an aggregate of the same type as <tt>val</tt>. Its value is
4324 that of <tt>val</tt> except that the value at the position specified by the
4325 indices is that of <tt>elt</tt>.</p>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004326
4327<h5>Example:</h5>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004328<pre>
Jeffrey Yasskinf991bbb2010-01-11 19:19:26 +00004329 %agg1 = insertvalue {i32, float} undef, i32 1, 0 <i>; yields {i32 1, float undef}</i>
4330 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 <i>; yields {i32 1, float %val}</i>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004331</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004332
Dan Gohmanb9d66602008-05-12 23:51:09 +00004333</div>
4334
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004335</div>
Dan Gohmanb9d66602008-05-12 23:51:09 +00004336
4337<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004338<h3>
Chris Lattner6ab66722006-08-15 00:45:58 +00004339 <a name="memoryops">Memory Access and Addressing Operations</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004340</h3>
Chris Lattner54611b42005-11-06 08:02:57 +00004341
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004342<div>
Chris Lattner54611b42005-11-06 08:02:57 +00004343
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004344<p>A key design point of an SSA-based representation is how it represents
4345 memory. In LLVM, no memory locations are in SSA form, which makes things
Victor Hernandeza70c6df2009-10-26 23:44:29 +00004346 very simple. This section describes how to read, write, and allocate
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004347 memory in LLVM.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004348
Chris Lattner2f7c9632001-06-06 20:29:01 +00004349<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004350<h4>
Chris Lattner54611b42005-11-06 08:02:57 +00004351 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004352</h4>
Chris Lattner54611b42005-11-06 08:02:57 +00004353
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004354<div>
Chris Lattner54611b42005-11-06 08:02:57 +00004355
Chris Lattner2f7c9632001-06-06 20:29:01 +00004356<h5>Syntax:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00004357<pre>
Dan Gohman2140a742010-05-28 01:14:11 +00004358 &lt;result&gt; = alloca &lt;type&gt;[, &lt;ty&gt; &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004359</pre>
Chris Lattner54611b42005-11-06 08:02:57 +00004360
Chris Lattner2f7c9632001-06-06 20:29:01 +00004361<h5>Overview:</h5>
Jeff Cohen5819f182007-04-22 01:17:39 +00004362<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004363 currently executing function, to be automatically released when this function
4364 returns to its caller. The object is always allocated in the generic address
4365 space (address space zero).</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004366
Chris Lattner2f7c9632001-06-06 20:29:01 +00004367<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004368<p>The '<tt>alloca</tt>' instruction
4369 allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the
4370 runtime stack, returning a pointer of the appropriate type to the program.
4371 If "NumElements" is specified, it is the number of elements allocated,
4372 otherwise "NumElements" is defaulted to be one. If a constant alignment is
4373 specified, the value result of the allocation is guaranteed to be aligned to
4374 at least that boundary. If not specified, or if zero, the target can choose
4375 to align the allocation on any convenient boundary compatible with the
4376 type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004377
Misha Brukman76307852003-11-08 01:05:38 +00004378<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004379
Chris Lattner2f7c9632001-06-06 20:29:01 +00004380<h5>Semantics:</h5>
Bill Wendling9ee6a312009-05-08 20:49:29 +00004381<p>Memory is allocated; a pointer is returned. The operation is undefined if
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004382 there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
4383 memory is automatically released when the function returns. The
4384 '<tt>alloca</tt>' instruction is commonly used to represent automatic
4385 variables that must have an address available. When the function returns
4386 (either with the <tt><a href="#i_ret">ret</a></tt>
4387 or <tt><a href="#i_unwind">unwind</a></tt> instructions), the memory is
4388 reclaimed. Allocating zero bytes is legal, but the result is undefined.</p>
Chris Lattner54611b42005-11-06 08:02:57 +00004389
Chris Lattner2f7c9632001-06-06 20:29:01 +00004390<h5>Example:</h5>
Chris Lattner54611b42005-11-06 08:02:57 +00004391<pre>
Dan Gohman7a5acb52009-01-04 23:49:44 +00004392 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
4393 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
4394 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
4395 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner2f7c9632001-06-06 20:29:01 +00004396</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004397
Misha Brukman76307852003-11-08 01:05:38 +00004398</div>
Chris Lattner54611b42005-11-06 08:02:57 +00004399
Chris Lattner2f7c9632001-06-06 20:29:01 +00004400<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004401<h4>
4402 <a name="i_load">'<tt>load</tt>' Instruction</a>
4403</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004404
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004405<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004406
Chris Lattner095735d2002-05-06 03:03:22 +00004407<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004408<pre>
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004409 &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]
4410 &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]
4411 !&lt;index&gt; = !{ i32 1 }
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004412</pre>
4413
Chris Lattner095735d2002-05-06 03:03:22 +00004414<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004415<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004416
Chris Lattner095735d2002-05-06 03:03:22 +00004417<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004418<p>The argument to the '<tt>load</tt>' instruction specifies the memory address
4419 from which to load. The pointer must point to
4420 a <a href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
4421 marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00004422 number or order of execution of this <tt>load</tt> with other <a
4423 href="#volatile">volatile operations</a>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004424
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004425<p>The optional constant <tt>align</tt> argument specifies the alignment of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004426 operation (that is, the alignment of the memory address). A value of 0 or an
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004427 omitted <tt>align</tt> argument means that the operation has the preferential
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004428 alignment for the target. It is the responsibility of the code emitter to
4429 ensure that the alignment information is correct. Overestimating the
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004430 alignment results in undefined behavior. Underestimating the alignment may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004431 produce less efficient code. An alignment of 1 is always safe.</p>
4432
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004433<p>The optional <tt>!nontemporal</tt> metadata must reference a single
4434 metatadata name &lt;index&gt; corresponding to a metadata node with
Dan Gohmana269a0a2010-03-01 17:41:39 +00004435 one <tt>i32</tt> entry of value 1. The existence of
Bill Wendlingbc4024f2010-02-25 21:23:24 +00004436 the <tt>!nontemporal</tt> metatadata on the instruction tells the optimizer
4437 and code generator that this load is not expected to be reused in the cache.
4438 The code generator may select special instructions to save cache bandwidth,
Dan Gohmana269a0a2010-03-01 17:41:39 +00004439 such as the <tt>MOVNT</tt> instruction on x86.</p>
David Greene9641d062010-02-16 20:50:18 +00004440
Chris Lattner095735d2002-05-06 03:03:22 +00004441<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004442<p>The location of memory pointed to is loaded. If the value being loaded is of
4443 scalar type then the number of bytes read does not exceed the minimum number
4444 of bytes needed to hold all bits of the type. For example, loading an
4445 <tt>i24</tt> reads at most three bytes. When loading a value of a type like
4446 <tt>i20</tt> with a size that is not an integral number of bytes, the result
4447 is undefined if the value was not originally written using a store of the
4448 same type.</p>
4449
Chris Lattner095735d2002-05-06 03:03:22 +00004450<h5>Examples:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004451<pre>
4452 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
4453 <a href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004454 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00004455</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004456
Misha Brukman76307852003-11-08 01:05:38 +00004457</div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004458
Chris Lattner095735d2002-05-06 03:03:22 +00004459<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004460<h4>
4461 <a name="i_store">'<tt>store</tt>' Instruction</a>
4462</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004463
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004464<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004465
Chris Lattner095735d2002-05-06 03:03:22 +00004466<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004467<pre>
Benjamin Kramer79698be2010-07-13 12:26:09 +00004468 store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;] <i>; yields {void}</i>
4469 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;] <i>; yields {void}</i>
Chris Lattner095735d2002-05-06 03:03:22 +00004470</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004471
Chris Lattner095735d2002-05-06 03:03:22 +00004472<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004473<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004474
Chris Lattner095735d2002-05-06 03:03:22 +00004475<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004476<p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
4477 and an address at which to store it. The type of the
4478 '<tt>&lt;pointer&gt;</tt>' operand must be a pointer to
4479 the <a href="#t_firstclass">first class</a> type of the
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00004480 '<tt>&lt;value&gt;</tt>' operand. If the <tt>store</tt> is marked as
4481 <tt>volatile</tt>, then the optimizer is not allowed to modify the number or
4482 order of execution of this <tt>store</tt> with other <a
4483 href="#volatile">volatile operations</a>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004484
4485<p>The optional constant "align" argument specifies the alignment of the
4486 operation (that is, the alignment of the memory address). A value of 0 or an
4487 omitted "align" argument means that the operation has the preferential
4488 alignment for the target. It is the responsibility of the code emitter to
4489 ensure that the alignment information is correct. Overestimating the
4490 alignment results in an undefined behavior. Underestimating the alignment may
4491 produce less efficient code. An alignment of 1 is always safe.</p>
4492
David Greene9641d062010-02-16 20:50:18 +00004493<p>The optional !nontemporal metadata must reference a single metatadata
Benjamin Kramer79698be2010-07-13 12:26:09 +00004494 name &lt;index&gt; corresponding to a metadata node with one i32 entry of
Dan Gohmana269a0a2010-03-01 17:41:39 +00004495 value 1. The existence of the !nontemporal metatadata on the
David Greene9641d062010-02-16 20:50:18 +00004496 instruction tells the optimizer and code generator that this load is
4497 not expected to be reused in the cache. The code generator may
4498 select special instructions to save cache bandwidth, such as the
Dan Gohmana269a0a2010-03-01 17:41:39 +00004499 MOVNT instruction on x86.</p>
David Greene9641d062010-02-16 20:50:18 +00004500
4501
Chris Lattner48b383b02003-11-25 01:02:51 +00004502<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004503<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>' at the
4504 location specified by the '<tt>&lt;pointer&gt;</tt>' operand. If
4505 '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes written
4506 does not exceed the minimum number of bytes needed to hold all bits of the
4507 type. For example, storing an <tt>i24</tt> writes at most three bytes. When
4508 writing a value of a type like <tt>i20</tt> with a size that is not an
4509 integral number of bytes, it is unspecified what happens to the extra bits
4510 that do not belong to the type, but they will typically be overwritten.</p>
4511
Chris Lattner095735d2002-05-06 03:03:22 +00004512<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004513<pre>
4514 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8830ffe2007-10-22 05:10:05 +00004515 store i32 3, i32* %ptr <i>; yields {void}</i>
4516 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner095735d2002-05-06 03:03:22 +00004517</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004518
Reid Spencer443460a2006-11-09 21:15:49 +00004519</div>
4520
Chris Lattner095735d2002-05-06 03:03:22 +00004521<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004522<h4>
Chris Lattner33fd7022004-04-05 01:30:49 +00004523 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004524</h4>
Chris Lattner33fd7022004-04-05 01:30:49 +00004525
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004526<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004527
Chris Lattner590645f2002-04-14 06:13:44 +00004528<h5>Syntax:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00004529<pre>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00004530 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Dan Gohman1639c392009-07-27 21:53:46 +00004531 &lt;result&gt; = getelementptr inbounds &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattner33fd7022004-04-05 01:30:49 +00004532</pre>
4533
Chris Lattner590645f2002-04-14 06:13:44 +00004534<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004535<p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
Chris Lattner392be582010-02-12 20:49:41 +00004536 subelement of an <a href="#t_aggregate">aggregate</a> data structure.
4537 It performs address calculation only and does not access memory.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00004538
Chris Lattner590645f2002-04-14 06:13:44 +00004539<h5>Arguments:</h5>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00004540<p>The first argument is always a pointer, and forms the basis of the
Chris Lattnera40b9122009-07-29 06:44:13 +00004541 calculation. The remaining arguments are indices that indicate which of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004542 elements of the aggregate object are indexed. The interpretation of each
4543 index is dependent on the type being indexed into. The first index always
4544 indexes the pointer value given as the first argument, the second index
4545 indexes a value of the type pointed to (not necessarily the value directly
4546 pointed to, since the first index can be non-zero), etc. The first type
Chris Lattner392be582010-02-12 20:49:41 +00004547 indexed into must be a pointer value, subsequent types can be arrays,
Chris Lattner13ee7952010-08-28 04:09:24 +00004548 vectors, and structs. Note that subsequent types being indexed into
Chris Lattner392be582010-02-12 20:49:41 +00004549 can never be pointers, since that would require loading the pointer before
4550 continuing calculation.</p>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00004551
4552<p>The type of each index argument depends on the type it is indexing into.
Chris Lattner13ee7952010-08-28 04:09:24 +00004553 When indexing into a (optionally packed) structure, only <tt>i32</tt>
Chris Lattner392be582010-02-12 20:49:41 +00004554 integer <b>constants</b> are allowed. When indexing into an array, pointer
4555 or vector, integers of any width are allowed, and they are not required to be
Chris Lattnera40b9122009-07-29 06:44:13 +00004556 constant.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00004557
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004558<p>For example, let's consider a C code fragment and how it gets compiled to
4559 LLVM:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00004560
Benjamin Kramer79698be2010-07-13 12:26:09 +00004561<pre class="doc_code">
Bill Wendling3716c5d2007-05-29 09:04:49 +00004562struct RT {
4563 char A;
Chris Lattnera446f1b2007-05-29 15:43:56 +00004564 int B[10][20];
Bill Wendling3716c5d2007-05-29 09:04:49 +00004565 char C;
4566};
4567struct ST {
Chris Lattnera446f1b2007-05-29 15:43:56 +00004568 int X;
Bill Wendling3716c5d2007-05-29 09:04:49 +00004569 double Y;
4570 struct RT Z;
4571};
Chris Lattner33fd7022004-04-05 01:30:49 +00004572
Chris Lattnera446f1b2007-05-29 15:43:56 +00004573int *foo(struct ST *s) {
Bill Wendling3716c5d2007-05-29 09:04:49 +00004574 return &amp;s[1].Z.B[5][13];
4575}
Chris Lattner33fd7022004-04-05 01:30:49 +00004576</pre>
4577
Misha Brukman76307852003-11-08 01:05:38 +00004578<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00004579
Benjamin Kramer79698be2010-07-13 12:26:09 +00004580<pre class="doc_code">
Chris Lattnerbc088212009-01-11 20:53:49 +00004581%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
4582%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
Chris Lattner33fd7022004-04-05 01:30:49 +00004583
Dan Gohman6b867702009-07-25 02:23:48 +00004584define i32* @foo(%ST* %s) {
Bill Wendling3716c5d2007-05-29 09:04:49 +00004585entry:
4586 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
4587 ret i32* %reg
4588}
Chris Lattner33fd7022004-04-05 01:30:49 +00004589</pre>
4590
Chris Lattner590645f2002-04-14 06:13:44 +00004591<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00004592<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004593 type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
4594 }</tt>' type, a structure. The second index indexes into the third element
4595 of the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
4596 i8 }</tt>' type, another structure. The third index indexes into the second
4597 element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
4598 array. The two dimensions of the array are subscripted into, yielding an
4599 '<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a
4600 pointer to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00004601
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004602<p>Note that it is perfectly legal to index partially through a structure,
4603 returning a pointer to an inner element. Because of this, the LLVM code for
4604 the given testcase is equivalent to:</p>
Chris Lattner33fd7022004-04-05 01:30:49 +00004605
4606<pre>
Dan Gohman6b867702009-07-25 02:23:48 +00004607 define i32* @foo(%ST* %s) {
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004608 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen5819f182007-04-22 01:17:39 +00004609 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
4610 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004611 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
4612 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
4613 ret i32* %t5
Chris Lattner33fd7022004-04-05 01:30:49 +00004614 }
Chris Lattnera8292f32002-05-06 22:08:29 +00004615</pre>
Chris Lattnerc0ad71e2005-06-24 17:22:57 +00004616
Dan Gohman1639c392009-07-27 21:53:46 +00004617<p>If the <tt>inbounds</tt> keyword is present, the result value of the
Dan Gohman57255802010-04-23 15:23:32 +00004618 <tt>getelementptr</tt> is a <a href="#trapvalues">trap value</a> if the
4619 base pointer is not an <i>in bounds</i> address of an allocated object,
4620 or if any of the addresses that would be formed by successive addition of
4621 the offsets implied by the indices to the base address with infinitely
4622 precise arithmetic are not an <i>in bounds</i> address of that allocated
4623 object. The <i>in bounds</i> addresses for an allocated object are all
4624 the addresses that point into the object, plus the address one byte past
4625 the end.</p>
Dan Gohman1639c392009-07-27 21:53:46 +00004626
4627<p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
4628 the base address with silently-wrapping two's complement arithmetic, and
4629 the result value of the <tt>getelementptr</tt> may be outside the object
4630 pointed to by the base pointer. The result value may not necessarily be
4631 used to access memory though, even if it happens to point into allocated
4632 storage. See the <a href="#pointeraliasing">Pointer Aliasing Rules</a>
4633 section for more information.</p>
4634
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004635<p>The getelementptr instruction is often confusing. For some more insight into
4636 how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
Chris Lattner6ab66722006-08-15 00:45:58 +00004637
Chris Lattner590645f2002-04-14 06:13:44 +00004638<h5>Example:</h5>
Chris Lattner33fd7022004-04-05 01:30:49 +00004639<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004640 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijman0e268272008-10-13 13:44:15 +00004641 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
4642 <i>; yields i8*:vptr</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004643 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijman0e268272008-10-13 13:44:15 +00004644 <i>; yields i8*:eptr</i>
4645 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Sanjiv Gupta0c155e62009-04-25 07:27:44 +00004646 <i>; yields i32*:iptr</i>
Sanjiv Gupta77abea02009-04-24 16:38:13 +00004647 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
Chris Lattner33fd7022004-04-05 01:30:49 +00004648</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004649
Chris Lattner33fd7022004-04-05 01:30:49 +00004650</div>
Reid Spencer443460a2006-11-09 21:15:49 +00004651
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004652</div>
4653
Chris Lattner2f7c9632001-06-06 20:29:01 +00004654<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004655<h3>
4656 <a name="convertops">Conversion Operations</a>
4657</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004658
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004659<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004660
Reid Spencer97c5fa42006-11-08 01:18:52 +00004661<p>The instructions in this category are the conversion instructions (casting)
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004662 which all take a single operand and a type. They perform various bit
4663 conversions on the operand.</p>
4664
Chris Lattnera8292f32002-05-06 22:08:29 +00004665<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004666<h4>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004667 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004668</h4>
4669
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004670<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004671
4672<h5>Syntax:</h5>
4673<pre>
4674 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4675</pre>
4676
4677<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004678<p>The '<tt>trunc</tt>' instruction truncates its operand to the
4679 type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004680
4681<h5>Arguments:</h5>
Nadav Rotem502f1b92011-02-24 21:01:34 +00004682<p>The '<tt>trunc</tt>' instruction takes a value to trunc, and a type to trunc it to.
4683 Both types must be of <a href="#t_integer">integer</a> types, or vectors
4684 of the same number of integers.
4685 The bit size of the <tt>value</tt> must be larger than
4686 the bit size of the destination type, <tt>ty2</tt>.
4687 Equal sized types are not allowed.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004688
4689<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004690<p>The '<tt>trunc</tt>' instruction truncates the high order bits
4691 in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
4692 source size must be larger than the destination size, <tt>trunc</tt> cannot
4693 be a <i>no-op cast</i>. It will always truncate bits.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004694
4695<h5>Example:</h5>
4696<pre>
Nadav Rotem502f1b92011-02-24 21:01:34 +00004697 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
4698 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
4699 %Z = trunc i32 122 to i1 <i>; yields i1:false</i>
4700 %W = trunc &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i8&gt; <i>; yields &lt;i8 8, i8 7&gt;</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004701</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004702
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004703</div>
4704
4705<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004706<h4>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004707 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004708</h4>
4709
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004710<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004711
4712<h5>Syntax:</h5>
4713<pre>
4714 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4715</pre>
4716
4717<h5>Overview:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004718<p>The '<tt>zext</tt>' instruction zero extends its operand to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004719 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004720
4721
4722<h5>Arguments:</h5>
Nadav Rotem25f2ac92011-02-20 12:37:50 +00004723<p>The '<tt>zext</tt>' instruction takes a value to cast, and a type to cast it to.
4724 Both types must be of <a href="#t_integer">integer</a> types, or vectors
4725 of the same number of integers.
4726 The bit size of the <tt>value</tt> must be smaller than
4727 the bit size of the destination type,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004728 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004729
4730<h5>Semantics:</h5>
4731<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004732 bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004733
Reid Spencer07c9c682007-01-12 15:46:11 +00004734<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004735
4736<h5>Example:</h5>
4737<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004738 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencer36a15422007-01-12 03:35:51 +00004739 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Nadav Rotem25f2ac92011-02-20 12:37:50 +00004740 %Z = zext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004741</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004742
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004743</div>
4744
4745<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004746<h4>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004747 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004748</h4>
4749
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004750<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004751
4752<h5>Syntax:</h5>
4753<pre>
4754 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4755</pre>
4756
4757<h5>Overview:</h5>
4758<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
4759
4760<h5>Arguments:</h5>
Nadav Rotem502f1b92011-02-24 21:01:34 +00004761<p>The '<tt>sext</tt>' instruction takes a value to cast, and a type to cast it to.
4762 Both types must be of <a href="#t_integer">integer</a> types, or vectors
4763 of the same number of integers.
4764 The bit size of the <tt>value</tt> must be smaller than
4765 the bit size of the destination type,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004766 <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004767
4768<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004769<p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
4770 bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
4771 of the type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004772
Reid Spencer36a15422007-01-12 03:35:51 +00004773<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004774
4775<h5>Example:</h5>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004776<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004777 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencer36a15422007-01-12 03:35:51 +00004778 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Nadav Rotem502f1b92011-02-24 21:01:34 +00004779 %Z = sext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004780</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004781
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004782</div>
4783
4784<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004785<h4>
Reid Spencer2e2740d2006-11-09 21:48:10 +00004786 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004787</h4>
Reid Spencer2e2740d2006-11-09 21:48:10 +00004788
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004789<div>
Reid Spencer2e2740d2006-11-09 21:48:10 +00004790
4791<h5>Syntax:</h5>
Reid Spencer2e2740d2006-11-09 21:48:10 +00004792<pre>
4793 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4794</pre>
4795
4796<h5>Overview:</h5>
4797<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004798 <tt>ty2</tt>.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00004799
4800<h5>Arguments:</h5>
4801<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004802 point</a> value to cast and a <a href="#t_floating">floating point</a> type
4803 to cast it to. The size of <tt>value</tt> must be larger than the size of
Eric Christopher455c5772009-12-05 02:46:03 +00004804 <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004805 <i>no-op cast</i>.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00004806
4807<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004808<p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
Eric Christopher455c5772009-12-05 02:46:03 +00004809 <a href="#t_floating">floating point</a> type to a smaller
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004810 <a href="#t_floating">floating point</a> type. If the value cannot fit
4811 within the destination type, <tt>ty2</tt>, then the results are
4812 undefined.</p>
Reid Spencer2e2740d2006-11-09 21:48:10 +00004813
4814<h5>Example:</h5>
4815<pre>
4816 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
4817 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
4818</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004819
Reid Spencer2e2740d2006-11-09 21:48:10 +00004820</div>
4821
4822<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004823<h4>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004824 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004825</h4>
4826
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004827<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004828
4829<h5>Syntax:</h5>
4830<pre>
4831 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4832</pre>
4833
4834<h5>Overview:</h5>
4835<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004836 floating point value.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004837
4838<h5>Arguments:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004839<p>The '<tt>fpext</tt>' instruction takes a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004840 <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
4841 a <a href="#t_floating">floating point</a> type to cast it to. The source
4842 type must be smaller than the destination type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004843
4844<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004845<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004846 <a href="#t_floating">floating point</a> type to a larger
4847 <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
4848 used to make a <i>no-op cast</i> because it always changes bits. Use
4849 <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004850
4851<h5>Example:</h5>
4852<pre>
Nick Lewycky9feca672011-03-31 18:20:19 +00004853 %X = fpext float 3.125 to double <i>; yields double:3.125000e+00</i>
4854 %Y = fpext double %X to fp128 <i>; yields fp128:0xL00000000000000004000900000000000</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004855</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004856
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004857</div>
4858
4859<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004860<h4>
Reid Spencer2eadb532007-01-21 00:29:26 +00004861 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004862</h4>
4863
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004864<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004865
4866<h5>Syntax:</h5>
4867<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00004868 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004869</pre>
4870
4871<h5>Overview:</h5>
Reid Spencer753163d2007-07-31 14:40:14 +00004872<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004873 unsigned integer equivalent of type <tt>ty2</tt>.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004874
4875<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004876<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
4877 scalar or vector <a href="#t_floating">floating point</a> value, and a type
4878 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4879 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4880 vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004881
4882<h5>Semantics:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004883<p>The '<tt>fptoui</tt>' instruction converts its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004884 <a href="#t_floating">floating point</a> operand into the nearest (rounding
4885 towards zero) unsigned integer value. If the value cannot fit
4886 in <tt>ty2</tt>, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004887
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004888<h5>Example:</h5>
4889<pre>
Reid Spencer753163d2007-07-31 14:40:14 +00004890 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00004891 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00004892 %Z = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004893</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004894
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004895</div>
4896
4897<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004898<h4>
Reid Spencer51b07252006-11-09 23:03:26 +00004899 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004900</h4>
4901
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004902<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004903
4904<h5>Syntax:</h5>
4905<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00004906 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004907</pre>
4908
4909<h5>Overview:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004910<p>The '<tt>fptosi</tt>' instruction converts
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004911 <a href="#t_floating">floating point</a> <tt>value</tt> to
4912 type <tt>ty2</tt>.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004913
Chris Lattnera8292f32002-05-06 22:08:29 +00004914<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004915<p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
4916 scalar or vector <a href="#t_floating">floating point</a> value, and a type
4917 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4918 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4919 vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004920
Chris Lattnera8292f32002-05-06 22:08:29 +00004921<h5>Semantics:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00004922<p>The '<tt>fptosi</tt>' instruction converts its
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004923 <a href="#t_floating">floating point</a> operand into the nearest (rounding
4924 towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
4925 the results are undefined.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004926
Chris Lattner70de6632001-07-09 00:26:23 +00004927<h5>Example:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00004928<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00004929 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner5b95a172007-09-22 03:17:52 +00004930 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00004931 %Z = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004932</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004933
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004934</div>
4935
4936<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004937<h4>
Reid Spencer51b07252006-11-09 23:03:26 +00004938 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004939</h4>
4940
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004941<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004942
4943<h5>Syntax:</h5>
4944<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00004945 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004946</pre>
4947
4948<h5>Overview:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004949<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004950 integer and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004951
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004952<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00004953<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004954 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4955 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4956 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4957 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004958
4959<h5>Semantics:</h5>
Reid Spencer51b07252006-11-09 23:03:26 +00004960<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004961 integer quantity and converts it to the corresponding floating point
4962 value. If the value cannot fit in the floating point value, the results are
4963 undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004964
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004965<h5>Example:</h5>
4966<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00004967 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00004968 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004969</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004970
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004971</div>
4972
4973<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004974<h4>
Reid Spencer51b07252006-11-09 23:03:26 +00004975 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00004976</h4>
4977
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00004978<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004979
4980<h5>Syntax:</h5>
4981<pre>
Reid Spencer51b07252006-11-09 23:03:26 +00004982 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004983</pre>
4984
4985<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004986<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
4987 and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004988
4989<h5>Arguments:</h5>
Nate Begemand4d45c22007-11-17 03:58:34 +00004990<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004991 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4992 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4993 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4994 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00004995
4996<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00004997<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
4998 quantity and converts it to the corresponding floating point value. If the
4999 value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005000
5001<h5>Example:</h5>
5002<pre>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005003 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005004 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005005</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005006
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005007</div>
5008
5009<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005010<h4>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005011 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005012</h4>
5013
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005014<div>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005015
5016<h5>Syntax:</h5>
5017<pre>
5018 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5019</pre>
5020
5021<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005022<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
5023 the integer type <tt>ty2</tt>.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005024
5025<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005026<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
5027 must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
5028 <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005029
5030<h5>Semantics:</h5>
5031<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005032 <tt>ty2</tt> by interpreting the pointer value as an integer and either
5033 truncating or zero extending that value to the size of the integer type. If
5034 <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
5035 <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
5036 are the same size, then nothing is done (<i>no-op cast</i>) other than a type
5037 change.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005038
5039<h5>Example:</h5>
5040<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005041 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
5042 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005043</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005044
Reid Spencerb7344ff2006-11-11 21:00:47 +00005045</div>
5046
5047<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005048<h4>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005049 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005050</h4>
5051
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005052<div>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005053
5054<h5>Syntax:</h5>
5055<pre>
5056 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5057</pre>
5058
5059<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005060<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
5061 pointer type, <tt>ty2</tt>.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005062
5063<h5>Arguments:</h5>
Duncan Sands16f122e2007-03-30 12:22:09 +00005064<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005065 value to cast, and a type to cast it to, which must be a
5066 <a href="#t_pointer">pointer</a> type.</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005067
5068<h5>Semantics:</h5>
5069<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005070 <tt>ty2</tt> by applying either a zero extension or a truncation depending on
5071 the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
5072 size of a pointer then a truncation is done. If <tt>value</tt> is smaller
5073 than the size of a pointer then a zero extension is done. If they are the
5074 same size, nothing is done (<i>no-op cast</i>).</p>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005075
5076<h5>Example:</h5>
5077<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005078 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
Gabor Greiff50fd572009-10-28 09:21:30 +00005079 %Y = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
5080 %Z = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencerb7344ff2006-11-11 21:00:47 +00005081</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005082
Reid Spencerb7344ff2006-11-11 21:00:47 +00005083</div>
5084
5085<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005086<h4>
Reid Spencer5b950642006-11-11 23:08:07 +00005087 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005088</h4>
5089
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005090<div>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005091
5092<h5>Syntax:</h5>
5093<pre>
Reid Spencer5b950642006-11-11 23:08:07 +00005094 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005095</pre>
5096
5097<h5>Overview:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00005098<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005099 <tt>ty2</tt> without changing any bits.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005100
5101<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005102<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
5103 non-aggregate first class value, and a type to cast it to, which must also be
5104 a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
5105 of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
5106 identical. If the source type is a pointer, the destination type must also be
5107 a pointer. This instruction supports bitwise conversion of vectors to
5108 integers and to vectors of other types (as long as they have the same
5109 size).</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005110
5111<h5>Semantics:</h5>
Reid Spencer5b950642006-11-11 23:08:07 +00005112<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005113 <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
5114 this conversion. The conversion is done as if the <tt>value</tt> had been
5115 stored to memory and read back as type <tt>ty2</tt>. Pointer types may only
5116 be converted to other pointer types with this instruction. To convert
5117 pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
5118 <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer59b6b7d2006-11-08 01:11:31 +00005119
5120<h5>Example:</h5>
5121<pre>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005122 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005123 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Eric Christopher455c5772009-12-05 02:46:03 +00005124 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner70de6632001-07-09 00:26:23 +00005125</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005126
Misha Brukman76307852003-11-08 01:05:38 +00005127</div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005128
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005129</div>
5130
Reid Spencer97c5fa42006-11-08 01:18:52 +00005131<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005132<h3>
5133 <a name="otherops">Other Operations</a>
5134</h3>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005135
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005136<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005137
5138<p>The instructions in this category are the "miscellaneous" instructions, which
5139 defy better classification.</p>
5140
Reid Spencerc828a0e2006-11-18 21:50:54 +00005141<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005142<h4>
5143 <a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
5144</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005145
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005146<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005147
Reid Spencerc828a0e2006-11-18 21:50:54 +00005148<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005149<pre>
5150 &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005151</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005152
Reid Spencerc828a0e2006-11-18 21:50:54 +00005153<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005154<p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
5155 boolean values based on comparison of its two integer, integer vector, or
5156 pointer operands.</p>
5157
Reid Spencerc828a0e2006-11-18 21:50:54 +00005158<h5>Arguments:</h5>
5159<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005160 the condition code indicating the kind of comparison to perform. It is not a
5161 value, just a keyword. The possible condition code are:</p>
5162
Reid Spencerc828a0e2006-11-18 21:50:54 +00005163<ol>
5164 <li><tt>eq</tt>: equal</li>
5165 <li><tt>ne</tt>: not equal </li>
5166 <li><tt>ugt</tt>: unsigned greater than</li>
5167 <li><tt>uge</tt>: unsigned greater or equal</li>
5168 <li><tt>ult</tt>: unsigned less than</li>
5169 <li><tt>ule</tt>: unsigned less or equal</li>
5170 <li><tt>sgt</tt>: signed greater than</li>
5171 <li><tt>sge</tt>: signed greater or equal</li>
5172 <li><tt>slt</tt>: signed less than</li>
5173 <li><tt>sle</tt>: signed less or equal</li>
5174</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005175
Chris Lattnerc0f423a2007-01-15 01:54:13 +00005176<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005177 <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
5178 typed. They must also be identical types.</p>
5179
Reid Spencerc828a0e2006-11-18 21:50:54 +00005180<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005181<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
5182 condition code given as <tt>cond</tt>. The comparison performed always yields
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00005183 either an <a href="#t_integer"><tt>i1</tt></a> or vector of <tt>i1</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005184 result, as follows:</p>
5185
Reid Spencerc828a0e2006-11-18 21:50:54 +00005186<ol>
Eric Christopher455c5772009-12-05 02:46:03 +00005187 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005188 <tt>false</tt> otherwise. No sign interpretation is necessary or
5189 performed.</li>
5190
Eric Christopher455c5772009-12-05 02:46:03 +00005191 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005192 <tt>false</tt> otherwise. No sign interpretation is necessary or
5193 performed.</li>
5194
Reid Spencerc828a0e2006-11-18 21:50:54 +00005195 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005196 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5197
Reid Spencerc828a0e2006-11-18 21:50:54 +00005198 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005199 <tt>true</tt> if <tt>op1</tt> is greater than or equal
5200 to <tt>op2</tt>.</li>
5201
Reid Spencerc828a0e2006-11-18 21:50:54 +00005202 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005203 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
5204
Reid Spencerc828a0e2006-11-18 21:50:54 +00005205 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005206 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5207
Reid Spencerc828a0e2006-11-18 21:50:54 +00005208 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005209 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5210
Reid Spencerc828a0e2006-11-18 21:50:54 +00005211 <li><tt>sge</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005212 <tt>true</tt> if <tt>op1</tt> is greater than or equal
5213 to <tt>op2</tt>.</li>
5214
Reid Spencerc828a0e2006-11-18 21:50:54 +00005215 <li><tt>slt</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005216 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
5217
Reid Spencerc828a0e2006-11-18 21:50:54 +00005218 <li><tt>sle</tt>: interprets the operands as signed values and yields
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005219 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005220</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005221
Reid Spencerc828a0e2006-11-18 21:50:54 +00005222<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005223 values are compared as if they were integers.</p>
5224
5225<p>If the operands are integer vectors, then they are compared element by
5226 element. The result is an <tt>i1</tt> vector with the same number of elements
5227 as the values being compared. Otherwise, the result is an <tt>i1</tt>.</p>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005228
5229<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005230<pre>
5231 &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005232 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
5233 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
5234 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
5235 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
5236 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005237</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00005238
5239<p>Note that the code generator does not yet support vector types with
5240 the <tt>icmp</tt> instruction.</p>
5241
Reid Spencerc828a0e2006-11-18 21:50:54 +00005242</div>
5243
5244<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005245<h4>
5246 <a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
5247</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005248
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005249<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005250
Reid Spencerc828a0e2006-11-18 21:50:54 +00005251<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005252<pre>
5253 &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005254</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005255
Reid Spencerc828a0e2006-11-18 21:50:54 +00005256<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005257<p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
5258 values based on comparison of its operands.</p>
5259
5260<p>If the operands are floating point scalars, then the result type is a boolean
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00005261(<a href="#t_integer"><tt>i1</tt></a>).</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005262
5263<p>If the operands are floating point vectors, then the result type is a vector
5264 of boolean with the same number of elements as the operands being
5265 compared.</p>
5266
Reid Spencerc828a0e2006-11-18 21:50:54 +00005267<h5>Arguments:</h5>
5268<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005269 the condition code indicating the kind of comparison to perform. It is not a
5270 value, just a keyword. The possible condition code are:</p>
5271
Reid Spencerc828a0e2006-11-18 21:50:54 +00005272<ol>
Reid Spencerf69acf32006-11-19 03:00:14 +00005273 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005274 <li><tt>oeq</tt>: ordered and equal</li>
5275 <li><tt>ogt</tt>: ordered and greater than </li>
5276 <li><tt>oge</tt>: ordered and greater than or equal</li>
5277 <li><tt>olt</tt>: ordered and less than </li>
5278 <li><tt>ole</tt>: ordered and less than or equal</li>
5279 <li><tt>one</tt>: ordered and not equal</li>
5280 <li><tt>ord</tt>: ordered (no nans)</li>
5281 <li><tt>ueq</tt>: unordered or equal</li>
5282 <li><tt>ugt</tt>: unordered or greater than </li>
5283 <li><tt>uge</tt>: unordered or greater than or equal</li>
5284 <li><tt>ult</tt>: unordered or less than </li>
5285 <li><tt>ule</tt>: unordered or less than or equal</li>
5286 <li><tt>une</tt>: unordered or not equal</li>
5287 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerf69acf32006-11-19 03:00:14 +00005288 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005289</ol>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005290
Jeff Cohen222a8a42007-04-29 01:07:00 +00005291<p><i>Ordered</i> means that neither operand is a QNAN while
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005292 <i>unordered</i> means that either operand may be a QNAN.</p>
5293
5294<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
5295 a <a href="#t_floating">floating point</a> type or
5296 a <a href="#t_vector">vector</a> of floating point type. They must have
5297 identical types.</p>
5298
Reid Spencerc828a0e2006-11-18 21:50:54 +00005299<h5>Semantics:</h5>
Gabor Greif0f75ad02008-08-07 21:46:00 +00005300<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005301 according to the condition code given as <tt>cond</tt>. If the operands are
5302 vectors, then the vectors are compared element by element. Each comparison
Nick Lewycky84a1eeb2009-09-27 00:45:11 +00005303 performed always yields an <a href="#t_integer">i1</a> result, as
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005304 follows:</p>
5305
Reid Spencerc828a0e2006-11-18 21:50:54 +00005306<ol>
5307 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005308
Eric Christopher455c5772009-12-05 02:46:03 +00005309 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005310 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
5311
Reid Spencerf69acf32006-11-19 03:00:14 +00005312 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Dan Gohmana269a0a2010-03-01 17:41:39 +00005313 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005314
Eric Christopher455c5772009-12-05 02:46:03 +00005315 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005316 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
5317
Eric Christopher455c5772009-12-05 02:46:03 +00005318 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005319 <tt>op1</tt> is less than <tt>op2</tt>.</li>
5320
Eric Christopher455c5772009-12-05 02:46:03 +00005321 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005322 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5323
Eric Christopher455c5772009-12-05 02:46:03 +00005324 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005325 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
5326
Reid Spencerf69acf32006-11-19 03:00:14 +00005327 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005328
Eric Christopher455c5772009-12-05 02:46:03 +00005329 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005330 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
5331
Eric Christopher455c5772009-12-05 02:46:03 +00005332 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005333 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5334
Eric Christopher455c5772009-12-05 02:46:03 +00005335 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005336 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
5337
Eric Christopher455c5772009-12-05 02:46:03 +00005338 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005339 <tt>op1</tt> is less than <tt>op2</tt>.</li>
5340
Eric Christopher455c5772009-12-05 02:46:03 +00005341 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005342 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5343
Eric Christopher455c5772009-12-05 02:46:03 +00005344 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005345 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
5346
Reid Spencerf69acf32006-11-19 03:00:14 +00005347 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005348
Reid Spencerc828a0e2006-11-18 21:50:54 +00005349 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
5350</ol>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005351
5352<h5>Example:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005353<pre>
5354 &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanc579d972008-09-09 01:02:47 +00005355 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
5356 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
5357 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerc828a0e2006-11-18 21:50:54 +00005358</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00005359
5360<p>Note that the code generator does not yet support vector types with
5361 the <tt>fcmp</tt> instruction.</p>
5362
Reid Spencerc828a0e2006-11-18 21:50:54 +00005363</div>
5364
Reid Spencer97c5fa42006-11-08 01:18:52 +00005365<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005366<h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005367 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005368</h4>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005369
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005370<div>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005371
Reid Spencer97c5fa42006-11-08 01:18:52 +00005372<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005373<pre>
5374 &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
5375</pre>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005376
Reid Spencer97c5fa42006-11-08 01:18:52 +00005377<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005378<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in the
5379 SSA graph representing the function.</p>
5380
Reid Spencer97c5fa42006-11-08 01:18:52 +00005381<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005382<p>The type of the incoming values is specified with the first type field. After
5383 this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
5384 one pair for each predecessor basic block of the current block. Only values
5385 of <a href="#t_firstclass">first class</a> type may be used as the value
5386 arguments to the PHI node. Only labels may be used as the label
5387 arguments.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005388
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005389<p>There must be no non-phi instructions between the start of a basic block and
5390 the PHI instructions: i.e. PHI instructions must be first in a basic
5391 block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005392
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005393<p>For the purposes of the SSA form, the use of each incoming value is deemed to
5394 occur on the edge from the corresponding predecessor block to the current
5395 block (but after any definition of an '<tt>invoke</tt>' instruction's return
5396 value on the same edge).</p>
Jay Foad1a4eea52009-06-03 10:20:10 +00005397
Reid Spencer97c5fa42006-11-08 01:18:52 +00005398<h5>Semantics:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005399<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005400 specified by the pair corresponding to the predecessor basic block that
5401 executed just prior to the current block.</p>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005402
Reid Spencer97c5fa42006-11-08 01:18:52 +00005403<h5>Example:</h5>
Chris Lattnerb54c30f2008-05-20 20:48:21 +00005404<pre>
5405Loop: ; Infinite loop that counts from 0 on up...
5406 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5407 %nextindvar = add i32 %indvar, 1
5408 br label %Loop
5409</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005410
Reid Spencer97c5fa42006-11-08 01:18:52 +00005411</div>
5412
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005413<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005414<h4>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005415 <a name="i_select">'<tt>select</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005416</h4>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005417
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005418<div>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005419
5420<h5>Syntax:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005421<pre>
Dan Gohmanc579d972008-09-09 01:02:47 +00005422 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
5423
Dan Gohmanef9462f2008-10-14 16:51:45 +00005424 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005425</pre>
5426
5427<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005428<p>The '<tt>select</tt>' instruction is used to choose one value based on a
5429 condition, without branching.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005430
5431
5432<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005433<p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
5434 values indicating the condition, and two values of the
5435 same <a href="#t_firstclass">first class</a> type. If the val1/val2 are
5436 vectors and the condition is a scalar, then entire vectors are selected, not
5437 individual elements.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005438
5439<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005440<p>If the condition is an i1 and it evaluates to 1, the instruction returns the
5441 first value argument; otherwise, it returns the second value argument.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005442
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005443<p>If the condition is a vector of i1, then the value arguments must be vectors
5444 of the same size, and the selection is done element by element.</p>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005445
5446<h5>Example:</h5>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005447<pre>
Reid Spencer36a15422007-01-12 03:35:51 +00005448 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005449</pre>
Dan Gohmana5127ab2009-01-22 01:39:38 +00005450
5451<p>Note that the code generator does not yet support conditions
5452 with vector type.</p>
5453
Chris Lattnerb53c28d2004-03-12 05:50:16 +00005454</div>
5455
Robert Bocchinof72fdfe2006-01-15 20:48:27 +00005456<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005457<h4>
Chris Lattnere23c1392005-05-06 05:47:36 +00005458 <a name="i_call">'<tt>call</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005459</h4>
Chris Lattnere23c1392005-05-06 05:47:36 +00005460
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005461<div>
Chris Lattnere23c1392005-05-06 05:47:36 +00005462
Chris Lattner2f7c9632001-06-06 20:29:01 +00005463<h5>Syntax:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00005464<pre>
Devang Patel02256232008-10-07 17:48:33 +00005465 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattnere23c1392005-05-06 05:47:36 +00005466</pre>
5467
Chris Lattner2f7c9632001-06-06 20:29:01 +00005468<h5>Overview:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00005469<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00005470
Chris Lattner2f7c9632001-06-06 20:29:01 +00005471<h5>Arguments:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00005472<p>This instruction requires several arguments:</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00005473
Chris Lattnera8292f32002-05-06 22:08:29 +00005474<ol>
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00005475 <li>The optional "tail" marker indicates that the callee function does not
5476 access any allocas or varargs in the caller. Note that calls may be
5477 marked "tail" even if they do not occur before
5478 a <a href="#i_ret"><tt>ret</tt></a> instruction. If the "tail" marker is
5479 present, the function call is eligible for tail call optimization,
5480 but <a href="CodeGenerator.html#tailcallopt">might not in fact be
Evan Cheng59676492010-03-08 21:05:02 +00005481 optimized into a jump</a>. The code generator may optimize calls marked
5482 "tail" with either 1) automatic <a href="CodeGenerator.html#sibcallopt">
5483 sibling call optimization</a> when the caller and callee have
5484 matching signatures, or 2) forced tail call optimization when the
5485 following extra requirements are met:
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00005486 <ul>
5487 <li>Caller and callee both have the calling
5488 convention <tt>fastcc</tt>.</li>
5489 <li>The call is in tail position (ret immediately follows call and ret
5490 uses value of call or is void).</li>
5491 <li>Option <tt>-tailcallopt</tt> is enabled,
Dan Gohman6232f732010-03-02 01:08:11 +00005492 or <code>llvm::GuaranteedTailCallOpt</code> is <code>true</code>.</li>
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00005493 <li><a href="CodeGenerator.html#tailcallopt">Platform specific
5494 constraints are met.</a></li>
5495 </ul>
5496 </li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00005497
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005498 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
5499 convention</a> the call should use. If none is specified, the call
Jeffrey Yasskinb8677462010-01-09 19:44:16 +00005500 defaults to using C calling conventions. The calling convention of the
5501 call must match the calling convention of the target function, or else the
5502 behavior is undefined.</li>
Devang Patel7e9b05e2008-10-06 18:50:38 +00005503
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005504 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
5505 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
5506 '<tt>inreg</tt>' attributes are valid here.</li>
5507
5508 <li>'<tt>ty</tt>': the type of the call instruction itself which is also the
5509 type of the return value. Functions that return no value are marked
5510 <tt><a href="#t_void">void</a></tt>.</li>
5511
5512 <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
5513 being invoked. The argument types must match the types implied by this
5514 signature. This type can be omitted if the function is not varargs and if
5515 the function type does not return a pointer to a function.</li>
5516
5517 <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
5518 be invoked. In most cases, this is a direct function invocation, but
5519 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
5520 to function value.</li>
5521
5522 <li>'<tt>function args</tt>': argument list whose types match the function
Chris Lattner47f2a832010-03-02 06:36:51 +00005523 signature argument types and parameter attributes. All arguments must be
5524 of <a href="#t_firstclass">first class</a> type. If the function
5525 signature indicates the function accepts a variable number of arguments,
5526 the extra arguments can be specified.</li>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005527
5528 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
5529 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
5530 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattnera8292f32002-05-06 22:08:29 +00005531</ol>
Chris Lattnere23c1392005-05-06 05:47:36 +00005532
Chris Lattner2f7c9632001-06-06 20:29:01 +00005533<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005534<p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
5535 a specified function, with its incoming arguments bound to the specified
5536 values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
5537 function, control flow continues with the instruction after the function
5538 call, and the return value of the function is bound to the result
5539 argument.</p>
Chris Lattnere23c1392005-05-06 05:47:36 +00005540
Chris Lattner2f7c9632001-06-06 20:29:01 +00005541<h5>Example:</h5>
Chris Lattnere23c1392005-05-06 05:47:36 +00005542<pre>
Nick Lewyckya9b13d52007-09-08 13:57:50 +00005543 %retval = call i32 @test(i32 %argc)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00005544 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) <i>; yields i32</i>
Chris Lattnerfb7c88d2008-03-21 17:24:17 +00005545 %X = tail call i32 @foo() <i>; yields i32</i>
5546 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
5547 call void %foo(i8 97 signext)
Devang Pateld6cff512008-03-10 20:49:15 +00005548
5549 %struct.A = type { i32, i8 }
Devang Patel7e9b05e2008-10-06 18:50:38 +00005550 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmancc3132e2008-10-04 19:00:07 +00005551 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
5552 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner6cbe8e92008-10-08 06:26:11 +00005553 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmaneefa7df2008-10-07 10:03:45 +00005554 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattnere23c1392005-05-06 05:47:36 +00005555</pre>
5556
Dale Johannesen68f971b2009-09-24 18:38:21 +00005557<p>llvm treats calls to some functions with names and arguments that match the
Dale Johannesen722212d2009-09-25 17:04:42 +00005558standard C99 library as being the C99 library functions, and may perform
5559optimizations or generate code for them under that assumption. This is
5560something we'd like to change in the future to provide better support for
Dan Gohmana269a0a2010-03-01 17:41:39 +00005561freestanding environments and non-C-based languages.</p>
Dale Johannesen68f971b2009-09-24 18:38:21 +00005562
Misha Brukman76307852003-11-08 01:05:38 +00005563</div>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005564
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005565<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005566<h4>
Chris Lattner33337472006-01-13 23:26:01 +00005567 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005568</h4>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005569
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005570<div>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005571
Chris Lattner26ca62e2003-10-18 05:51:36 +00005572<h5>Syntax:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005573<pre>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005574 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattner6a4a0492004-09-27 21:51:25 +00005575</pre>
5576
Chris Lattner26ca62e2003-10-18 05:51:36 +00005577<h5>Overview:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005578<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005579 the "variable argument" area of a function call. It is used to implement the
5580 <tt>va_arg</tt> macro in C.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005581
Chris Lattner26ca62e2003-10-18 05:51:36 +00005582<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005583<p>This instruction takes a <tt>va_list*</tt> value and the type of the
5584 argument. It returns a value of the specified argument type and increments
5585 the <tt>va_list</tt> to point to the next argument. The actual type
5586 of <tt>va_list</tt> is target specific.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005587
Chris Lattner26ca62e2003-10-18 05:51:36 +00005588<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005589<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
5590 from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
5591 to the next argument. For more information, see the variable argument
5592 handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005593
5594<p>It is legal for this instruction to be called in a function which does not
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005595 take a variable number of arguments, for example, the <tt>vfprintf</tt>
5596 function.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005597
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005598<p><tt>va_arg</tt> is an LLVM instruction instead of
5599 an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
5600 argument.</p>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005601
Chris Lattner26ca62e2003-10-18 05:51:36 +00005602<h5>Example:</h5>
Chris Lattner6a4a0492004-09-27 21:51:25 +00005603<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
5604
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005605<p>Note that the code generator does not yet fully support va_arg on many
5606 targets. Also, it does not currently support va_arg with aggregate types on
5607 any target.</p>
Dan Gohman3065b612009-01-12 23:12:39 +00005608
Misha Brukman76307852003-11-08 01:05:38 +00005609</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005610
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005611</div>
5612
5613</div>
5614
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005615<!-- *********************************************************************** -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005616<h2><a name="intrinsics">Intrinsic Functions</a></h2>
Chris Lattner48b383b02003-11-25 01:02:51 +00005617<!-- *********************************************************************** -->
Chris Lattner941515c2004-01-06 05:31:32 +00005618
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005619<div>
Chris Lattnerfee11462004-02-12 17:01:32 +00005620
5621<p>LLVM supports the notion of an "intrinsic function". These functions have
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005622 well known names and semantics and are required to follow certain
5623 restrictions. Overall, these intrinsics represent an extension mechanism for
5624 the LLVM language that does not require changing all of the transformations
5625 in LLVM when adding to the language (or the bitcode reader/writer, the
5626 parser, etc...).</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005627
John Criswell88190562005-05-16 16:17:45 +00005628<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005629 prefix is reserved in LLVM for intrinsic names; thus, function names may not
5630 begin with this prefix. Intrinsic functions must always be external
5631 functions: you cannot define the body of intrinsic functions. Intrinsic
5632 functions may only be used in call or invoke instructions: it is illegal to
5633 take the address of an intrinsic function. Additionally, because intrinsic
5634 functions are part of the LLVM language, it is required if any are added that
5635 they be documented here.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005636
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005637<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
5638 family of functions that perform the same operation but on different data
5639 types. Because LLVM can represent over 8 million different integer types,
5640 overloading is used commonly to allow an intrinsic function to operate on any
5641 integer type. One or more of the argument types or the result type can be
5642 overloaded to accept any integer type. Argument types may also be defined as
5643 exactly matching a previous argument's type or the result type. This allows
5644 an intrinsic function which accepts multiple arguments, but needs all of them
5645 to be of the same type, to only be overloaded with respect to a single
5646 argument or the result.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005647
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005648<p>Overloaded intrinsics will have the names of its overloaded argument types
5649 encoded into its function name, each preceded by a period. Only those types
5650 which are overloaded result in a name suffix. Arguments whose type is matched
5651 against another type do not. For example, the <tt>llvm.ctpop</tt> function
5652 can take an integer of any width and returns an integer of exactly the same
5653 integer width. This leads to a family of functions such as
5654 <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
5655 %val)</tt>. Only one type, the return type, is overloaded, and only one type
5656 suffix is required. Because the argument's type is matched against the return
5657 type, it does not require its own name suffix.</p>
Reid Spencer4eefaab2007-04-01 08:04:23 +00005658
Eric Christopher455c5772009-12-05 02:46:03 +00005659<p>To learn how to add an intrinsic function, please see the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005660 <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00005661
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005662<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005663<h3>
Chris Lattner941515c2004-01-06 05:31:32 +00005664 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005665</h3>
Chris Lattner941515c2004-01-06 05:31:32 +00005666
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005667<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005668
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005669<p>Variable argument support is defined in LLVM with
5670 the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
5671 intrinsic functions. These functions are related to the similarly named
5672 macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005673
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005674<p>All of these functions operate on arguments that use a target-specific value
5675 type "<tt>va_list</tt>". The LLVM assembly language reference manual does
5676 not define what this type is, so all transformations should be prepared to
5677 handle these functions regardless of the type used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005678
Chris Lattner30b868d2006-05-15 17:26:46 +00005679<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005680 instruction and the variable argument handling intrinsic functions are
5681 used.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005682
Benjamin Kramer79698be2010-07-13 12:26:09 +00005683<pre class="doc_code">
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00005684define i32 @test(i32 %X, ...) {
Chris Lattnerfee11462004-02-12 17:01:32 +00005685 ; Initialize variable argument processing
Jeff Cohen222a8a42007-04-29 01:07:00 +00005686 %ap = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005687 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00005688 call void @llvm.va_start(i8* %ap2)
Chris Lattnerfee11462004-02-12 17:01:32 +00005689
5690 ; Read a single integer argument
Jeff Cohen222a8a42007-04-29 01:07:00 +00005691 %tmp = va_arg i8** %ap, i32
Chris Lattnerfee11462004-02-12 17:01:32 +00005692
5693 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohen222a8a42007-04-29 01:07:00 +00005694 %aq = alloca i8*
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005695 %aq2 = bitcast i8** %aq to i8*
Jeff Cohen222a8a42007-04-29 01:07:00 +00005696 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00005697 call void @llvm.va_end(i8* %aq2)
Chris Lattnerfee11462004-02-12 17:01:32 +00005698
5699 ; Stop processing of arguments.
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00005700 call void @llvm.va_end(i8* %ap2)
Reid Spencerb5ebf3d2006-12-31 07:07:53 +00005701 ret i32 %tmp
Chris Lattnerfee11462004-02-12 17:01:32 +00005702}
Anton Korobeynikov640bbe02007-03-21 23:58:04 +00005703
5704declare void @llvm.va_start(i8*)
5705declare void @llvm.va_copy(i8*, i8*)
5706declare void @llvm.va_end(i8*)
Chris Lattnerfee11462004-02-12 17:01:32 +00005707</pre>
Chris Lattner941515c2004-01-06 05:31:32 +00005708
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005709<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005710<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00005711 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005712</h4>
Chris Lattner941515c2004-01-06 05:31:32 +00005713
5714
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005715<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005716
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005717<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005718<pre>
5719 declare void %llvm.va_start(i8* &lt;arglist&gt;)
5720</pre>
5721
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005722<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005723<p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt>
5724 for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005725
5726<h5>Arguments:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005727<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005728
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005729<h5>Semantics:</h5>
Dan Gohmanef9462f2008-10-14 16:51:45 +00005730<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005731 macro available in C. In a target-dependent way, it initializes
5732 the <tt>va_list</tt> element to which the argument points, so that the next
5733 call to <tt>va_arg</tt> will produce the first variable argument passed to
5734 the function. Unlike the C <tt>va_start</tt> macro, this intrinsic does not
5735 need to know the last argument of the function as the compiler can figure
5736 that out.</p>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005737
Misha Brukman76307852003-11-08 01:05:38 +00005738</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005739
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005740<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005741<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00005742 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005743</h4>
Chris Lattner941515c2004-01-06 05:31:32 +00005744
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005745<div>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005746
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005747<h5>Syntax:</h5>
5748<pre>
5749 declare void @llvm.va_end(i8* &lt;arglist&gt;)
5750</pre>
5751
5752<h5>Overview:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005753<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005754 which has been initialized previously
5755 with <tt><a href="#int_va_start">llvm.va_start</a></tt>
5756 or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005757
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005758<h5>Arguments:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005759<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005760
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005761<h5>Semantics:</h5>
Misha Brukman76307852003-11-08 01:05:38 +00005762<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005763 macro available in C. In a target-dependent way, it destroys
5764 the <tt>va_list</tt> element to which the argument points. Calls
5765 to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
5766 and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
5767 with calls to <tt>llvm.va_end</tt>.</p>
Chris Lattnerdb0790c2007-01-08 07:55:15 +00005768
Misha Brukman76307852003-11-08 01:05:38 +00005769</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005770
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005771<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005772<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00005773 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005774</h4>
Chris Lattner941515c2004-01-06 05:31:32 +00005775
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005776<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005777
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005778<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005779<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005780 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattner757528b0b2004-05-23 21:06:01 +00005781</pre>
5782
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005783<h5>Overview:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005784<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005785 from the source argument list to the destination argument list.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005786
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005787<h5>Arguments:</h5>
Andrew Lenharth5fb787c2005-06-18 18:28:17 +00005788<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005789 The second argument is a pointer to a <tt>va_list</tt> element to copy
5790 from.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005791
Chris Lattnerbd64b4e2003-05-08 04:57:36 +00005792<h5>Semantics:</h5>
Jeff Cohen222a8a42007-04-29 01:07:00 +00005793<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005794 macro available in C. In a target-dependent way, it copies the
5795 source <tt>va_list</tt> element into the destination <tt>va_list</tt>
5796 element. This intrinsic is necessary because
5797 the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
5798 arbitrarily complex and require, for example, memory allocation.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005799
Misha Brukman76307852003-11-08 01:05:38 +00005800</div>
Chris Lattner941515c2004-01-06 05:31:32 +00005801
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005802</div>
5803
Chris Lattnerfee11462004-02-12 17:01:32 +00005804<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005805<h3>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005806 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005807</h3>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005808
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005809<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005810
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005811<p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattner67c37d12008-08-05 18:29:16 +00005812Collection</a> (GC) requires the implementation and generation of these
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005813intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
5814roots on the stack</a>, as well as garbage collector implementations that
5815require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
5816barriers. Front-ends for type-safe garbage collected languages should generate
5817these intrinsics to make use of the LLVM garbage collectors. For more details,
5818see <a href="GarbageCollection.html">Accurate Garbage Collection with
5819LLVM</a>.</p>
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00005820
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005821<p>The garbage collection intrinsics only operate on objects in the generic
5822 address space (address space zero).</p>
Christopher Lamb55c6d4f2007-12-17 01:00:21 +00005823
Chris Lattner757528b0b2004-05-23 21:06:01 +00005824<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005825<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00005826 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005827</h4>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005828
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005829<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005830
5831<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005832<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005833 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattner757528b0b2004-05-23 21:06:01 +00005834</pre>
5835
5836<h5>Overview:</h5>
John Criswelldfe6a862004-12-10 15:51:16 +00005837<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005838 the code generator, and allows some metadata to be associated with it.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005839
5840<h5>Arguments:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005841<p>The first argument specifies the address of a stack object that contains the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005842 root pointer. The second pointer (which must be either a constant or a
5843 global value address) contains the meta-data to be associated with the
5844 root.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005845
5846<h5>Semantics:</h5>
Chris Lattner851b7712008-04-24 05:59:56 +00005847<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005848 location. At compile-time, the code generator generates information to allow
5849 the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
5850 intrinsic may only be used in a function which <a href="#gc">specifies a GC
5851 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005852
5853</div>
5854
Chris Lattner757528b0b2004-05-23 21:06:01 +00005855<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005856<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00005857 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005858</h4>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005859
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005860<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005861
5862<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005863<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005864 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattner757528b0b2004-05-23 21:06:01 +00005865</pre>
5866
5867<h5>Overview:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005868<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005869 locations, allowing garbage collector implementations that require read
5870 barriers.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005871
5872<h5>Arguments:</h5>
Chris Lattnerf9228072006-03-14 20:02:51 +00005873<p>The second argument is the address to read from, which should be an address
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005874 allocated from the garbage collector. The first object is a pointer to the
5875 start of the referenced object, if needed by the language runtime (otherwise
5876 null).</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005877
5878<h5>Semantics:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005879<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005880 instruction, but may be replaced with substantially more complex code by the
5881 garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
5882 may only be used in a function which <a href="#gc">specifies a GC
5883 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005884
5885</div>
5886
Chris Lattner757528b0b2004-05-23 21:06:01 +00005887<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005888<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00005889 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005890</h4>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005891
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005892<div>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005893
5894<h5>Syntax:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005895<pre>
Chris Lattner12477732007-09-21 17:30:40 +00005896 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattner757528b0b2004-05-23 21:06:01 +00005897</pre>
5898
5899<h5>Overview:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005900<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005901 locations, allowing garbage collector implementations that require write
5902 barriers (such as generational or reference counting collectors).</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005903
5904<h5>Arguments:</h5>
Chris Lattnerf9228072006-03-14 20:02:51 +00005905<p>The first argument is the reference to store, the second is the start of the
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005906 object to store it to, and the third is the address of the field of Obj to
5907 store to. If the runtime does not require a pointer to the object, Obj may
5908 be null.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005909
5910<h5>Semantics:</h5>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005911<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005912 instruction, but may be replaced with substantially more complex code by the
5913 garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
5914 may only be used in a function which <a href="#gc">specifies a GC
5915 algorithm</a>.</p>
Chris Lattner757528b0b2004-05-23 21:06:01 +00005916
5917</div>
5918
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005919</div>
5920
Chris Lattner757528b0b2004-05-23 21:06:01 +00005921<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005922<h3>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005923 <a name="int_codegen">Code Generator Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005924</h3>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005925
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005926<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005927
5928<p>These intrinsics are provided by LLVM to expose special features that may
5929 only be implemented with code generator support.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005930
Chris Lattner3649c3a2004-02-14 04:08:35 +00005931<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005932<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00005933 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005934</h4>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005935
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005936<div>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005937
5938<h5>Syntax:</h5>
5939<pre>
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00005940 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00005941</pre>
5942
5943<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005944<p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
5945 target-specific value indicating the return address of the current function
5946 or one of its callers.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005947
5948<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005949<p>The argument to this intrinsic indicates which function to return the address
5950 for. Zero indicates the calling function, one indicates its caller, etc.
5951 The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005952
5953<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005954<p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
5955 indicating the return address of the specified call frame, or zero if it
5956 cannot be identified. The value returned by this intrinsic is likely to be
5957 incorrect or 0 for arguments other than zero, so it should only be used for
5958 debugging purposes.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005959
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005960<p>Note that calling this intrinsic does not prevent function inlining or other
5961 aggressive transformations, so the value returned may not be that of the
5962 obvious source-language caller.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005963
Chris Lattner3649c3a2004-02-14 04:08:35 +00005964</div>
5965
Chris Lattner3649c3a2004-02-14 04:08:35 +00005966<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005967<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00005968 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00005969</h4>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005970
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00005971<div>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005972
5973<h5>Syntax:</h5>
5974<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00005975 declare i8* @llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00005976</pre>
5977
5978<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005979<p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
5980 target-specific frame pointer value for the specified stack frame.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005981
5982<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005983<p>The argument to this intrinsic indicates which function to return the frame
5984 pointer for. Zero indicates the calling function, one indicates its caller,
5985 etc. The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005986
5987<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005988<p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
5989 indicating the frame address of the specified call frame, or zero if it
5990 cannot be identified. The value returned by this intrinsic is likely to be
5991 incorrect or 0 for arguments other than zero, so it should only be used for
5992 debugging purposes.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005993
Bill Wendlingd9a66f72009-07-20 02:29:24 +00005994<p>Note that calling this intrinsic does not prevent function inlining or other
5995 aggressive transformations, so the value returned may not be that of the
5996 obvious source-language caller.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00005997
Chris Lattner3649c3a2004-02-14 04:08:35 +00005998</div>
5999
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006000<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006001<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006002 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006003</h4>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006004
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006005<div>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006006
6007<h5>Syntax:</h5>
6008<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006009 declare i8* @llvm.stacksave()
Chris Lattner2f0f0012006-01-13 02:03:13 +00006010</pre>
6011
6012<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006013<p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
6014 of the function stack, for use
6015 with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>. This is
6016 useful for implementing language features like scoped automatic variable
6017 sized arrays in C99.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006018
6019<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006020<p>This intrinsic returns a opaque pointer value that can be passed
6021 to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When
6022 an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
6023 from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
6024 to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
6025 In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
6026 stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006027
6028</div>
6029
6030<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006031<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006032 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006033</h4>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006034
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006035<div>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006036
6037<h5>Syntax:</h5>
6038<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006039 declare void @llvm.stackrestore(i8* %ptr)
Chris Lattner2f0f0012006-01-13 02:03:13 +00006040</pre>
6041
6042<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006043<p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
6044 the function stack to the state it was in when the
6045 corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
6046 executed. This is useful for implementing language features like scoped
6047 automatic variable sized arrays in C99.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006048
6049<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006050<p>See the description
6051 for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
Chris Lattner2f0f0012006-01-13 02:03:13 +00006052
6053</div>
6054
Chris Lattner2f0f0012006-01-13 02:03:13 +00006055<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006056<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006057 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006058</h4>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006059
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006060<div>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006061
6062<h5>Syntax:</h5>
6063<pre>
Chris Lattner12477732007-09-21 17:30:40 +00006064 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006065</pre>
6066
6067<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006068<p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
6069 insert a prefetch instruction if supported; otherwise, it is a noop.
6070 Prefetches have no effect on the behavior of the program but can change its
6071 performance characteristics.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006072
6073<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006074<p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
6075 specifier determining if the fetch should be for a read (0) or write (1),
6076 and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
6077 locality, to (3) - extremely local keep in cache. The <tt>rw</tt>
6078 and <tt>locality</tt> arguments must be constant integers.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006079
6080<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006081<p>This intrinsic does not modify the behavior of the program. In particular,
6082 prefetches cannot trap and do not produce a value. On targets that support
6083 this intrinsic, the prefetch can provide hints to the processor cache for
6084 better performance.</p>
Chris Lattnerc8a2c222005-02-28 19:24:19 +00006085
6086</div>
6087
Andrew Lenharthb4427912005-03-28 20:05:49 +00006088<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006089<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006090 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006091</h4>
Andrew Lenharthb4427912005-03-28 20:05:49 +00006092
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006093<div>
Andrew Lenharthb4427912005-03-28 20:05:49 +00006094
6095<h5>Syntax:</h5>
6096<pre>
Chris Lattner12477732007-09-21 17:30:40 +00006097 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharthb4427912005-03-28 20:05:49 +00006098</pre>
6099
6100<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006101<p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
6102 Counter (PC) in a region of code to simulators and other tools. The method
6103 is target specific, but it is expected that the marker will use exported
6104 symbols to transmit the PC of the marker. The marker makes no guarantees
6105 that it will remain with any specific instruction after optimizations. It is
6106 possible that the presence of a marker will inhibit optimizations. The
6107 intended use is to be inserted after optimizations to allow correlations of
6108 simulation runs.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00006109
6110<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006111<p><tt>id</tt> is a numerical id identifying the marker.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00006112
6113<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006114<p>This intrinsic does not modify the behavior of the program. Backends that do
Dan Gohmana269a0a2010-03-01 17:41:39 +00006115 not support this intrinsic may ignore it.</p>
Andrew Lenharthb4427912005-03-28 20:05:49 +00006116
6117</div>
6118
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006119<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006120<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006121 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006122</h4>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006123
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006124<div>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006125
6126<h5>Syntax:</h5>
6127<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00006128 declare i64 @llvm.readcyclecounter()
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006129</pre>
6130
6131<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006132<p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
6133 counter register (or similar low latency, high accuracy clocks) on those
6134 targets that support it. On X86, it should map to RDTSC. On Alpha, it
6135 should map to RPCC. As the backing counters overflow quickly (on the order
6136 of 9 seconds on alpha), this should only be used for small timings.</p>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006137
6138<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006139<p>When directly supported, reading the cycle counter should not modify any
6140 memory. Implementations are allowed to either return a application specific
6141 value or a system wide value. On backends without support, this is lowered
6142 to a constant 0.</p>
Andrew Lenharth01aa5632005-11-11 16:47:30 +00006143
6144</div>
6145
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006146</div>
6147
Chris Lattner3649c3a2004-02-14 04:08:35 +00006148<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006149<h3>
Chris Lattnerfee11462004-02-12 17:01:32 +00006150 <a name="int_libc">Standard C Library Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006151</h3>
Chris Lattnerfee11462004-02-12 17:01:32 +00006152
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006153<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006154
6155<p>LLVM provides intrinsics for a few important standard C library functions.
6156 These intrinsics allow source-language front-ends to pass information about
6157 the alignment of the pointer arguments to the code generator, providing
6158 opportunity for more efficient code generation.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006159
Chris Lattnerfee11462004-02-12 17:01:32 +00006160<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006161<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006162 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006163</h4>
Chris Lattnerfee11462004-02-12 17:01:32 +00006164
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006165<div>
Chris Lattnerfee11462004-02-12 17:01:32 +00006166
6167<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006168<p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
Mon P Wang508127b2010-04-07 06:35:53 +00006169 integer bit width and for different address spaces. Not all targets support
6170 all bit widths however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006171
Chris Lattnerfee11462004-02-12 17:01:32 +00006172<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006173 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006174 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006175 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006176 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattnerfee11462004-02-12 17:01:32 +00006177</pre>
6178
6179<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006180<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
6181 source location to the destination location.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006182
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006183<p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006184 intrinsics do not return a value, takes extra alignment/isvolatile arguments
6185 and the pointers can be in specified address spaces.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006186
6187<h5>Arguments:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006188
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006189<p>The first argument is a pointer to the destination, the second is a pointer
6190 to the source. The third argument is an integer argument specifying the
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006191 number of bytes to copy, the fourth argument is the alignment of the
6192 source and destination locations, and the fifth is a boolean indicating a
6193 volatile access.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006194
Dan Gohmana269a0a2010-03-01 17:41:39 +00006195<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006196 then the caller guarantees that both the source and destination pointers are
6197 aligned to that boundary.</p>
Chris Lattner4c67c482004-02-12 21:18:15 +00006198
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00006199<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6200 <tt>llvm.memcpy</tt> call is a <a href="#volatile">volatile operation</a>.
6201 The detailed access behavior is not very cleanly specified and it is unwise
6202 to depend on it.</p>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006203
Chris Lattnerfee11462004-02-12 17:01:32 +00006204<h5>Semantics:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006205
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006206<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
6207 source location to the destination location, which are not allowed to
6208 overlap. It copies "len" bytes of memory over. If the argument is known to
6209 be aligned to some boundary, this can be specified as the fourth argument,
6210 otherwise it should be set to 0 or 1.</p>
Chris Lattnerfee11462004-02-12 17:01:32 +00006211
Chris Lattnerfee11462004-02-12 17:01:32 +00006212</div>
6213
Chris Lattnerf30152e2004-02-12 18:10:10 +00006214<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006215<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006216 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006217</h4>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006218
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006219<div>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006220
6221<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00006222<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
Mon P Wang508127b2010-04-07 06:35:53 +00006223 width and for different address space. Not all targets support all bit
6224 widths however.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006225
Chris Lattnerf30152e2004-02-12 18:10:10 +00006226<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006227 declare void @llvm.memmove.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006228 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006229 declare void @llvm.memmove.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006230 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattnerf30152e2004-02-12 18:10:10 +00006231</pre>
6232
6233<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006234<p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
6235 source location to the destination location. It is similar to the
6236 '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
6237 overlap.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006238
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006239<p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006240 intrinsics do not return a value, takes extra alignment/isvolatile arguments
6241 and the pointers can be in specified address spaces.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006242
6243<h5>Arguments:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006244
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006245<p>The first argument is a pointer to the destination, the second is a pointer
6246 to the source. The third argument is an integer argument specifying the
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006247 number of bytes to copy, the fourth argument is the alignment of the
6248 source and destination locations, and the fifth is a boolean indicating a
6249 volatile access.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006250
Dan Gohmana269a0a2010-03-01 17:41:39 +00006251<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006252 then the caller guarantees that the source and destination pointers are
6253 aligned to that boundary.</p>
Chris Lattner4c67c482004-02-12 21:18:15 +00006254
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00006255<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6256 <tt>llvm.memmove</tt> call is a <a href="#volatile">volatile operation</a>.
6257 The detailed access behavior is not very cleanly specified and it is unwise
6258 to depend on it.</p>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006259
Chris Lattnerf30152e2004-02-12 18:10:10 +00006260<h5>Semantics:</h5>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006261
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006262<p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
6263 source location to the destination location, which may overlap. It copies
6264 "len" bytes of memory over. If the argument is known to be aligned to some
6265 boundary, this can be specified as the fourth argument, otherwise it should
6266 be set to 0 or 1.</p>
Chris Lattnerf30152e2004-02-12 18:10:10 +00006267
Chris Lattnerf30152e2004-02-12 18:10:10 +00006268</div>
6269
Chris Lattner3649c3a2004-02-14 04:08:35 +00006270<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006271<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006272 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006273</h4>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006274
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006275<div>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006276
6277<h5>Syntax:</h5>
Chris Lattnerdd708342008-11-21 16:42:48 +00006278<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
John Criswellad05ae42010-07-30 16:30:28 +00006279 width and for different address spaces. However, not all targets support all
6280 bit widths.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006281
Chris Lattner3649c3a2004-02-14 04:08:35 +00006282<pre>
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006283 declare void @llvm.memset.p0i8.i32(i8* &lt;dest&gt;, i8 &lt;val&gt;,
Chris Lattner685db9d2010-04-08 00:54:34 +00006284 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanaabfdb32010-05-28 17:13:49 +00006285 declare void @llvm.memset.p0i8.i64(i8* &lt;dest&gt;, i8 &lt;val&gt;,
Chris Lattner685db9d2010-04-08 00:54:34 +00006286 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattner3649c3a2004-02-14 04:08:35 +00006287</pre>
6288
6289<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006290<p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
6291 particular byte value.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006292
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006293<p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
John Criswellad05ae42010-07-30 16:30:28 +00006294 intrinsic does not return a value and takes extra alignment/volatile
6295 arguments. Also, the destination can be in an arbitrary address space.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006296
6297<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006298<p>The first argument is a pointer to the destination to fill, the second is the
John Criswellad05ae42010-07-30 16:30:28 +00006299 byte value with which to fill it, the third argument is an integer argument
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006300 specifying the number of bytes to fill, and the fourth argument is the known
John Criswellad05ae42010-07-30 16:30:28 +00006301 alignment of the destination location.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006302
Dan Gohmana269a0a2010-03-01 17:41:39 +00006303<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006304 then the caller guarantees that the destination pointer is aligned to that
6305 boundary.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006306
Jeffrey Yasskin5d284ae2010-04-26 21:21:24 +00006307<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6308 <tt>llvm.memset</tt> call is a <a href="#volatile">volatile operation</a>.
6309 The detailed access behavior is not very cleanly specified and it is unwise
6310 to depend on it.</p>
Chris Lattnerbd4ca622010-04-08 00:53:57 +00006311
Chris Lattner3649c3a2004-02-14 04:08:35 +00006312<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006313<p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
6314 at the destination location. If the argument is known to be aligned to some
6315 boundary, this can be specified as the fourth argument, otherwise it should
6316 be set to 0 or 1.</p>
Chris Lattner3649c3a2004-02-14 04:08:35 +00006317
Chris Lattner3649c3a2004-02-14 04:08:35 +00006318</div>
6319
Chris Lattner3b4f4372004-06-11 02:28:03 +00006320<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006321<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006322 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006323</h4>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006324
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006325<div>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006326
6327<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006328<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
6329 floating point or vector of floating point type. Not all targets support all
6330 types however.</p>
6331
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006332<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00006333 declare float @llvm.sqrt.f32(float %Val)
6334 declare double @llvm.sqrt.f64(double %Val)
6335 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6336 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6337 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006338</pre>
6339
6340<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006341<p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
6342 returning the same value as the libm '<tt>sqrt</tt>' functions would.
6343 Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
6344 behavior for negative numbers other than -0.0 (which allows for better
6345 optimization, because there is no need to worry about errno being
6346 set). <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006347
6348<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006349<p>The argument and return value are floating point numbers of the same
6350 type.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006351
6352<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006353<p>This function returns the sqrt of the specified operand if it is a
6354 nonnegative floating point number.</p>
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006355
Chris Lattner8a8f2e52005-07-21 01:29:16 +00006356</div>
6357
Chris Lattner33b73f92006-09-08 06:34:02 +00006358<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006359<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006360 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006361</h4>
Chris Lattner33b73f92006-09-08 06:34:02 +00006362
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006363<div>
Chris Lattner33b73f92006-09-08 06:34:02 +00006364
6365<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006366<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
6367 floating point or vector of floating point type. Not all targets support all
6368 types however.</p>
6369
Chris Lattner33b73f92006-09-08 06:34:02 +00006370<pre>
Dale Johannesendd89d272007-10-02 17:47:38 +00006371 declare float @llvm.powi.f32(float %Val, i32 %power)
6372 declare double @llvm.powi.f64(double %Val, i32 %power)
6373 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6374 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6375 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattner33b73f92006-09-08 06:34:02 +00006376</pre>
6377
6378<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006379<p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
6380 specified (positive or negative) power. The order of evaluation of
6381 multiplications is not defined. When a vector of floating point type is
6382 used, the second argument remains a scalar integer value.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00006383
6384<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006385<p>The second argument is an integer power, and the first is a value to raise to
6386 that power.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00006387
6388<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006389<p>This function returns the first value raised to the second power with an
6390 unspecified sequence of rounding operations.</p>
Chris Lattner33b73f92006-09-08 06:34:02 +00006391
Chris Lattner33b73f92006-09-08 06:34:02 +00006392</div>
6393
Dan Gohmanb6324c12007-10-15 20:30:11 +00006394<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006395<h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006396 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006397</h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006398
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006399<div>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006400
6401<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006402<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
6403 floating point or vector of floating point type. Not all targets support all
6404 types however.</p>
6405
Dan Gohmanb6324c12007-10-15 20:30:11 +00006406<pre>
6407 declare float @llvm.sin.f32(float %Val)
6408 declare double @llvm.sin.f64(double %Val)
6409 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6410 declare fp128 @llvm.sin.f128(fp128 %Val)
6411 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
6412</pre>
6413
6414<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006415<p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006416
6417<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006418<p>The argument and return value are floating point numbers of the same
6419 type.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006420
6421<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006422<p>This function returns the sine of the specified operand, returning the same
6423 values as the libm <tt>sin</tt> functions would, and handles error conditions
6424 in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006425
Dan Gohmanb6324c12007-10-15 20:30:11 +00006426</div>
6427
6428<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006429<h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006430 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006431</h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006432
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006433<div>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006434
6435<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006436<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
6437 floating point or vector of floating point type. Not all targets support all
6438 types however.</p>
6439
Dan Gohmanb6324c12007-10-15 20:30:11 +00006440<pre>
6441 declare float @llvm.cos.f32(float %Val)
6442 declare double @llvm.cos.f64(double %Val)
6443 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
6444 declare fp128 @llvm.cos.f128(fp128 %Val)
6445 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
6446</pre>
6447
6448<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006449<p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006450
6451<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006452<p>The argument and return value are floating point numbers of the same
6453 type.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006454
6455<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006456<p>This function returns the cosine of the specified operand, returning the same
6457 values as the libm <tt>cos</tt> functions would, and handles error conditions
6458 in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006459
Dan Gohmanb6324c12007-10-15 20:30:11 +00006460</div>
6461
6462<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006463<h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006464 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006465</h4>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006466
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006467<div>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006468
6469<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006470<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
6471 floating point or vector of floating point type. Not all targets support all
6472 types however.</p>
6473
Dan Gohmanb6324c12007-10-15 20:30:11 +00006474<pre>
6475 declare float @llvm.pow.f32(float %Val, float %Power)
6476 declare double @llvm.pow.f64(double %Val, double %Power)
6477 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
6478 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
6479 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
6480</pre>
6481
6482<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006483<p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
6484 specified (positive or negative) power.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006485
6486<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006487<p>The second argument is a floating point power, and the first is a value to
6488 raise to that power.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006489
6490<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006491<p>This function returns the first value raised to the second power, returning
6492 the same values as the libm <tt>pow</tt> functions would, and handles error
6493 conditions in the same way.</p>
Dan Gohmanb6324c12007-10-15 20:30:11 +00006494
Dan Gohmanb6324c12007-10-15 20:30:11 +00006495</div>
6496
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006497</div>
6498
Andrew Lenharth1d463522005-05-03 18:01:48 +00006499<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006500<h3>
Nate Begeman0f223bb2006-01-13 23:26:38 +00006501 <a name="int_manip">Bit Manipulation Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006502</h3>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006503
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006504<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006505
6506<p>LLVM provides intrinsics for a few important bit manipulation operations.
6507 These allow efficient code generation for some algorithms.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006508
Andrew Lenharth1d463522005-05-03 18:01:48 +00006509<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006510<h4>
Reid Spencer96a5f022007-04-04 02:42:35 +00006511 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006512</h4>
Nate Begeman0f223bb2006-01-13 23:26:38 +00006513
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006514<div>
Nate Begeman0f223bb2006-01-13 23:26:38 +00006515
6516<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00006517<p>This is an overloaded intrinsic function. You can use bswap on any integer
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006518 type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
6519
Nate Begeman0f223bb2006-01-13 23:26:38 +00006520<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00006521 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
6522 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
6523 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman0f223bb2006-01-13 23:26:38 +00006524</pre>
6525
6526<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006527<p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
6528 values with an even number of bytes (positive multiple of 16 bits). These
6529 are useful for performing operations on data that is not in the target's
6530 native byte order.</p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00006531
6532<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006533<p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
6534 and low byte of the input i16 swapped. Similarly,
6535 the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
6536 bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
6537 2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
6538 The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
6539 extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
6540 more, respectively).</p>
Nate Begeman0f223bb2006-01-13 23:26:38 +00006541
6542</div>
6543
6544<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006545<h4>
Reid Spencerb4f9a6f2006-01-16 21:12:35 +00006546 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006547</h4>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006548
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006549<div>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006550
6551<h5>Syntax:</h5>
Reid Spencer4eefaab2007-04-01 08:04:23 +00006552<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006553 width. Not all targets support all bit widths however.</p>
6554
Andrew Lenharth1d463522005-05-03 18:01:48 +00006555<pre>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006556 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00006557 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00006558 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00006559 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
6560 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00006561</pre>
6562
6563<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006564<p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
6565 in a value.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006566
6567<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006568<p>The only argument is the value to be counted. The argument may be of any
6569 integer type. The return type must match the argument type.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006570
6571<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006572<p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006573
Andrew Lenharth1d463522005-05-03 18:01:48 +00006574</div>
6575
6576<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006577<h4>
Chris Lattnerb748c672006-01-16 22:34:14 +00006578 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006579</h4>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006580
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006581<div>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006582
6583<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006584<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
6585 integer bit width. Not all targets support all bit widths however.</p>
6586
Andrew Lenharth1d463522005-05-03 18:01:48 +00006587<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00006588 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
6589 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00006590 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00006591 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
6592 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharth1d463522005-05-03 18:01:48 +00006593</pre>
6594
6595<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006596<p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
6597 leading zeros in a variable.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006598
6599<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006600<p>The only argument is the value to be counted. The argument may be of any
6601 integer type. The return type must match the argument type.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006602
6603<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006604<p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
6605 zeros in a variable. If the src == 0 then the result is the size in bits of
6606 the type of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
Andrew Lenharth1d463522005-05-03 18:01:48 +00006607
Andrew Lenharth1d463522005-05-03 18:01:48 +00006608</div>
Chris Lattner3b4f4372004-06-11 02:28:03 +00006609
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006610<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006611<h4>
Chris Lattnerb748c672006-01-16 22:34:14 +00006612 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006613</h4>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006614
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006615<div>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006616
6617<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006618<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
6619 integer bit width. Not all targets support all bit widths however.</p>
6620
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006621<pre>
Chandler Carruth7132e002007-08-04 01:51:18 +00006622 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
6623 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovbe9c93c2007-03-22 00:02:17 +00006624 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth7132e002007-08-04 01:51:18 +00006625 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
6626 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006627</pre>
6628
6629<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006630<p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
6631 trailing zeros.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006632
6633<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006634<p>The only argument is the value to be counted. The argument may be of any
6635 integer type. The return type must match the argument type.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006636
6637<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006638<p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
6639 zeros in a variable. If the src == 0 then the result is the size in bits of
6640 the type of src. For example, <tt>llvm.cttz(2) = 1</tt>.</p>
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006641
Chris Lattnerefa20fa2005-05-15 19:39:26 +00006642</div>
6643
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006644</div>
6645
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006646<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006647<h3>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006648 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006649</h3>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006650
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006651<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006652
6653<p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
Bill Wendlingfd2bd722009-02-08 04:04:40 +00006654
Bill Wendlingf4d70622009-02-08 01:40:31 +00006655<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006656<h4>
6657 <a name="int_sadd_overflow">
6658 '<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics
6659 </a>
6660</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006661
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006662<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006663
6664<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006665<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006666 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006667
6668<pre>
6669 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
6670 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6671 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
6672</pre>
6673
6674<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006675<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006676 a signed addition of the two arguments, and indicate whether an overflow
6677 occurred during the signed summation.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006678
6679<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006680<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006681 be of integer types of any bit width, but they must have the same bit
6682 width. The second element of the result structure must be of
6683 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6684 undergo signed addition.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006685
6686<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006687<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006688 a signed addition of the two variables. They return a structure &mdash; the
6689 first element of which is the signed summation, and the second element of
6690 which is a bit specifying if the signed summation resulted in an
6691 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006692
6693<h5>Examples:</h5>
6694<pre>
6695 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6696 %sum = extractvalue {i32, i1} %res, 0
6697 %obit = extractvalue {i32, i1} %res, 1
6698 br i1 %obit, label %overflow, label %normal
6699</pre>
6700
6701</div>
6702
6703<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006704<h4>
6705 <a name="int_uadd_overflow">
6706 '<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics
6707 </a>
6708</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006709
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006710<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006711
6712<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006713<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006714 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006715
6716<pre>
6717 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
6718 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6719 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
6720</pre>
6721
6722<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006723<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006724 an unsigned addition of the two arguments, and indicate whether a carry
6725 occurred during the unsigned summation.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006726
6727<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006728<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006729 be of integer types of any bit width, but they must have the same bit
6730 width. The second element of the result structure must be of
6731 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6732 undergo unsigned addition.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006733
6734<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006735<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006736 an unsigned addition of the two arguments. They return a structure &mdash;
6737 the first element of which is the sum, and the second element of which is a
6738 bit specifying if the unsigned summation resulted in a carry.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006739
6740<h5>Examples:</h5>
6741<pre>
6742 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6743 %sum = extractvalue {i32, i1} %res, 0
6744 %obit = extractvalue {i32, i1} %res, 1
6745 br i1 %obit, label %carry, label %normal
6746</pre>
6747
6748</div>
6749
6750<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006751<h4>
6752 <a name="int_ssub_overflow">
6753 '<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics
6754 </a>
6755</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006756
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006757<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006758
6759<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006760<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006761 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006762
6763<pre>
6764 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6765 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6766 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6767</pre>
6768
6769<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006770<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006771 a signed subtraction of the two arguments, and indicate whether an overflow
6772 occurred during the signed subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006773
6774<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006775<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006776 be of integer types of any bit width, but they must have the same bit
6777 width. The second element of the result structure must be of
6778 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6779 undergo signed subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006780
6781<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006782<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006783 a signed subtraction of the two arguments. They return a structure &mdash;
6784 the first element of which is the subtraction, and the second element of
6785 which is a bit specifying if the signed subtraction resulted in an
6786 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006787
6788<h5>Examples:</h5>
6789<pre>
6790 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6791 %sum = extractvalue {i32, i1} %res, 0
6792 %obit = extractvalue {i32, i1} %res, 1
6793 br i1 %obit, label %overflow, label %normal
6794</pre>
6795
6796</div>
6797
6798<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006799<h4>
6800 <a name="int_usub_overflow">
6801 '<tt>llvm.usub.with.overflow.*</tt>' Intrinsics
6802 </a>
6803</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006804
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006805<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006806
6807<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006808<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006809 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006810
6811<pre>
6812 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6813 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6814 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6815</pre>
6816
6817<h5>Overview:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006818<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006819 an unsigned subtraction of the two arguments, and indicate whether an
6820 overflow occurred during the unsigned subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006821
6822<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006823<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006824 be of integer types of any bit width, but they must have the same bit
6825 width. The second element of the result structure must be of
6826 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6827 undergo unsigned subtraction.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006828
6829<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006830<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006831 an unsigned subtraction of the two arguments. They return a structure &mdash;
6832 the first element of which is the subtraction, and the second element of
6833 which is a bit specifying if the unsigned subtraction resulted in an
6834 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006835
6836<h5>Examples:</h5>
6837<pre>
6838 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6839 %sum = extractvalue {i32, i1} %res, 0
6840 %obit = extractvalue {i32, i1} %res, 1
6841 br i1 %obit, label %overflow, label %normal
6842</pre>
6843
6844</div>
6845
6846<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006847<h4>
6848 <a name="int_smul_overflow">
6849 '<tt>llvm.smul.with.overflow.*</tt>' Intrinsics
6850 </a>
6851</h4>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006852
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006853<div>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006854
6855<h5>Syntax:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006856<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006857 on any integer bit width.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006858
6859<pre>
6860 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6861 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6862 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6863</pre>
6864
6865<h5>Overview:</h5>
6866
6867<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006868 a signed multiplication of the two arguments, and indicate whether an
6869 overflow occurred during the signed multiplication.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006870
6871<h5>Arguments:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006872<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006873 be of integer types of any bit width, but they must have the same bit
6874 width. The second element of the result structure must be of
6875 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6876 undergo signed multiplication.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006877
6878<h5>Semantics:</h5>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006879<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006880 a signed multiplication of the two arguments. They return a structure &mdash;
6881 the first element of which is the multiplication, and the second element of
6882 which is a bit specifying if the signed multiplication resulted in an
6883 overflow.</p>
Bill Wendlingf4d70622009-02-08 01:40:31 +00006884
6885<h5>Examples:</h5>
6886<pre>
6887 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6888 %sum = extractvalue {i32, i1} %res, 0
6889 %obit = extractvalue {i32, i1} %res, 1
6890 br i1 %obit, label %overflow, label %normal
6891</pre>
6892
Reid Spencer5bf54c82007-04-11 23:23:49 +00006893</div>
6894
Bill Wendlingb9a73272009-02-08 23:00:09 +00006895<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006896<h4>
6897 <a name="int_umul_overflow">
6898 '<tt>llvm.umul.with.overflow.*</tt>' Intrinsics
6899 </a>
6900</h4>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006901
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006902<div>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006903
6904<h5>Syntax:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006905<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006906 on any integer bit width.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006907
6908<pre>
6909 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
6910 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6911 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
6912</pre>
6913
6914<h5>Overview:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006915<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006916 a unsigned multiplication of the two arguments, and indicate whether an
6917 overflow occurred during the unsigned multiplication.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006918
6919<h5>Arguments:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006920<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006921 be of integer types of any bit width, but they must have the same bit
6922 width. The second element of the result structure must be of
6923 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6924 undergo unsigned multiplication.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006925
6926<h5>Semantics:</h5>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006927<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlingd9a66f72009-07-20 02:29:24 +00006928 an unsigned multiplication of the two arguments. They return a structure
6929 &mdash; the first element of which is the multiplication, and the second
6930 element of which is a bit specifying if the unsigned multiplication resulted
6931 in an overflow.</p>
Bill Wendlingb9a73272009-02-08 23:00:09 +00006932
6933<h5>Examples:</h5>
6934<pre>
6935 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6936 %sum = extractvalue {i32, i1} %res, 0
6937 %obit = extractvalue {i32, i1} %res, 1
6938 br i1 %obit, label %overflow, label %normal
6939</pre>
6940
6941</div>
6942
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006943</div>
6944
Chris Lattner941515c2004-01-06 05:31:32 +00006945<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006946<h3>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00006947 <a name="int_fp16">Half Precision Floating Point Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006948</h3>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00006949
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006950<div>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00006951
Chris Lattner022a9fb2010-03-15 04:12:21 +00006952<p>Half precision floating point is a storage-only format. This means that it is
6953 a dense encoding (in memory) but does not support computation in the
6954 format.</p>
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00006955
Chris Lattner022a9fb2010-03-15 04:12:21 +00006956<p>This means that code must first load the half-precision floating point
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00006957 value as an i16, then convert it to float with <a
6958 href="#int_convert_from_fp16"><tt>llvm.convert.from.fp16</tt></a>.
6959 Computation can then be performed on the float value (including extending to
Chris Lattner022a9fb2010-03-15 04:12:21 +00006960 double etc). To store the value back to memory, it is first converted to
6961 float if needed, then converted to i16 with
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00006962 <a href="#int_convert_to_fp16"><tt>llvm.convert.to.fp16</tt></a>, then
6963 storing as an i16 value.</p>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00006964
6965<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00006966<h4>
6967 <a name="int_convert_to_fp16">
6968 '<tt>llvm.convert.to.fp16</tt>' Intrinsic
6969 </a>
6970</h4>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00006971
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00006972<div>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00006973
6974<h5>Syntax:</h5>
6975<pre>
6976 declare i16 @llvm.convert.to.fp16(f32 %a)
6977</pre>
6978
6979<h5>Overview:</h5>
6980<p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
6981 a conversion from single precision floating point format to half precision
6982 floating point format.</p>
6983
6984<h5>Arguments:</h5>
6985<p>The intrinsic function contains single argument - the value to be
6986 converted.</p>
6987
6988<h5>Semantics:</h5>
6989<p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
6990 a conversion from single precision floating point format to half precision
Chris Lattner022a9fb2010-03-15 04:12:21 +00006991 floating point format. The return value is an <tt>i16</tt> which
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00006992 contains the converted number.</p>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00006993
6994<h5>Examples:</h5>
6995<pre>
6996 %res = call i16 @llvm.convert.to.fp16(f32 %a)
6997 store i16 %res, i16* @x, align 2
6998</pre>
6999
7000</div>
7001
7002<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007003<h4>
7004 <a name="int_convert_from_fp16">
7005 '<tt>llvm.convert.from.fp16</tt>' Intrinsic
7006 </a>
7007</h4>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007008
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007009<div>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007010
7011<h5>Syntax:</h5>
7012<pre>
7013 declare f32 @llvm.convert.from.fp16(i16 %a)
7014</pre>
7015
7016<h5>Overview:</h5>
7017<p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs
7018 a conversion from half precision floating point format to single precision
7019 floating point format.</p>
7020
7021<h5>Arguments:</h5>
7022<p>The intrinsic function contains single argument - the value to be
7023 converted.</p>
7024
7025<h5>Semantics:</h5>
7026<p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs a
Chris Lattner022a9fb2010-03-15 04:12:21 +00007027 conversion from half single precision floating point format to single
Chris Lattnerbbd8bd32010-03-14 23:03:31 +00007028 precision floating point format. The input half-float value is represented by
7029 an <tt>i16</tt> value.</p>
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007030
7031<h5>Examples:</h5>
7032<pre>
7033 %a = load i16* @x, align 2
7034 %res = call f32 @llvm.convert.from.fp16(i16 %a)
7035</pre>
7036
7037</div>
7038
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007039</div>
7040
Anton Korobeynikovcd4dd9c2010-03-14 18:42:47 +00007041<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007042<h3>
Chris Lattner941515c2004-01-06 05:31:32 +00007043 <a name="int_debugger">Debugger Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007044</h3>
Chris Lattner941515c2004-01-06 05:31:32 +00007045
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007046<div>
Chris Lattner941515c2004-01-06 05:31:32 +00007047
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007048<p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
7049 prefix), are described in
7050 the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
7051 Level Debugging</a> document.</p>
7052
7053</div>
Chris Lattner941515c2004-01-06 05:31:32 +00007054
Jim Laskey2211f492007-03-14 19:31:19 +00007055<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007056<h3>
Jim Laskey2211f492007-03-14 19:31:19 +00007057 <a name="int_eh">Exception Handling Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007058</h3>
Jim Laskey2211f492007-03-14 19:31:19 +00007059
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007060<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007061
7062<p>The LLVM exception handling intrinsics (which all start with
7063 <tt>llvm.eh.</tt> prefix), are described in
7064 the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
7065 Handling</a> document.</p>
7066
Jim Laskey2211f492007-03-14 19:31:19 +00007067</div>
7068
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007069<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007070<h3>
Duncan Sands86e01192007-09-11 14:10:23 +00007071 <a name="int_trampoline">Trampoline Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007072</h3>
Duncan Sands644f9172007-07-27 12:58:54 +00007073
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007074<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007075
7076<p>This intrinsic makes it possible to excise one parameter, marked with
Dan Gohman3770af52010-07-02 23:18:08 +00007077 the <a href="#nest"><tt>nest</tt></a> attribute, from a function.
7078 The result is a callable
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007079 function pointer lacking the nest parameter - the caller does not need to
7080 provide a value for it. Instead, the value to use is stored in advance in a
7081 "trampoline", a block of memory usually allocated on the stack, which also
7082 contains code to splice the nest value into the argument list. This is used
7083 to implement the GCC nested function address extension.</p>
7084
7085<p>For example, if the function is
7086 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
7087 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as
7088 follows:</p>
7089
Benjamin Kramer79698be2010-07-13 12:26:09 +00007090<pre class="doc_code">
Duncan Sands86e01192007-09-11 14:10:23 +00007091 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
7092 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
Dan Gohmand6a6f612010-05-28 17:07:41 +00007093 %p = call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval)
Duncan Sands86e01192007-09-11 14:10:23 +00007094 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands644f9172007-07-27 12:58:54 +00007095</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007096
Dan Gohmand6a6f612010-05-28 17:07:41 +00007097<p>The call <tt>%val = call i32 %fp(i32 %x, i32 %y)</tt> is then equivalent
7098 to <tt>%val = call i32 %f(i8* %nval, i32 %x, i32 %y)</tt>.</p>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007099
Duncan Sands644f9172007-07-27 12:58:54 +00007100<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007101<h4>
7102 <a name="int_it">
7103 '<tt>llvm.init.trampoline</tt>' Intrinsic
7104 </a>
7105</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007106
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007107<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007108
Duncan Sands644f9172007-07-27 12:58:54 +00007109<h5>Syntax:</h5>
7110<pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007111 declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands644f9172007-07-27 12:58:54 +00007112</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007113
Duncan Sands644f9172007-07-27 12:58:54 +00007114<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007115<p>This fills the memory pointed to by <tt>tramp</tt> with code and returns a
7116 function pointer suitable for executing it.</p>
7117
Duncan Sands644f9172007-07-27 12:58:54 +00007118<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007119<p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
7120 pointers. The <tt>tramp</tt> argument must point to a sufficiently large and
7121 sufficiently aligned block of memory; this memory is written to by the
7122 intrinsic. Note that the size and the alignment are target-specific - LLVM
7123 currently provides no portable way of determining them, so a front-end that
7124 generates this intrinsic needs to have some target-specific knowledge.
7125 The <tt>func</tt> argument must hold a function bitcast to
7126 an <tt>i8*</tt>.</p>
7127
Duncan Sands644f9172007-07-27 12:58:54 +00007128<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007129<p>The block of memory pointed to by <tt>tramp</tt> is filled with target
7130 dependent code, turning it into a function. A pointer to this function is
7131 returned, but needs to be bitcast to an <a href="#int_trampoline">appropriate
7132 function pointer type</a> before being called. The new function's signature
7133 is the same as that of <tt>func</tt> with any arguments marked with
7134 the <tt>nest</tt> attribute removed. At most one such <tt>nest</tt> argument
7135 is allowed, and it must be of pointer type. Calling the new function is
7136 equivalent to calling <tt>func</tt> with the same argument list, but
7137 with <tt>nval</tt> used for the missing <tt>nest</tt> argument. If, after
7138 calling <tt>llvm.init.trampoline</tt>, the memory pointed to
7139 by <tt>tramp</tt> is modified, then the effect of any later call to the
7140 returned function pointer is undefined.</p>
7141
Duncan Sands644f9172007-07-27 12:58:54 +00007142</div>
7143
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007144</div>
7145
Duncan Sands644f9172007-07-27 12:58:54 +00007146<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007147<h3>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007148 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007149</h3>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007150
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007151<div>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007152
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007153<p>These intrinsic functions expand the "universal IR" of LLVM to represent
7154 hardware constructs for atomic operations and memory synchronization. This
7155 provides an interface to the hardware, not an interface to the programmer. It
7156 is aimed at a low enough level to allow any programming models or APIs
7157 (Application Programming Interfaces) which need atomic behaviors to map
7158 cleanly onto it. It is also modeled primarily on hardware behavior. Just as
7159 hardware provides a "universal IR" for source languages, it also provides a
7160 starting point for developing a "universal" atomic operation and
7161 synchronization IR.</p>
7162
7163<p>These do <em>not</em> form an API such as high-level threading libraries,
7164 software transaction memory systems, atomic primitives, and intrinsic
7165 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
7166 application libraries. The hardware interface provided by LLVM should allow
7167 a clean implementation of all of these APIs and parallel programming models.
7168 No one model or paradigm should be selected above others unless the hardware
7169 itself ubiquitously does so.</p>
7170
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007171<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007172<h4>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007173 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007174</h4>
7175
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007176<div>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007177<h5>Syntax:</h5>
7178<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007179 declare void @llvm.memory.barrier(i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;, i1 &lt;device&gt;)
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007180</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007181
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007182<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007183<p>The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
7184 specific pairs of memory access types.</p>
7185
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007186<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007187<p>The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
7188 The first four arguments enables a specific barrier as listed below. The
Dan Gohmana269a0a2010-03-01 17:41:39 +00007189 fifth argument specifies that the barrier applies to io or device or uncached
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007190 memory.</p>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007191
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007192<ul>
7193 <li><tt>ll</tt>: load-load barrier</li>
7194 <li><tt>ls</tt>: load-store barrier</li>
7195 <li><tt>sl</tt>: store-load barrier</li>
7196 <li><tt>ss</tt>: store-store barrier</li>
7197 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
7198</ul>
7199
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007200<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007201<p>This intrinsic causes the system to enforce some ordering constraints upon
7202 the loads and stores of the program. This barrier does not
7203 indicate <em>when</em> any events will occur, it only enforces
7204 an <em>order</em> in which they occur. For any of the specified pairs of load
7205 and store operations (f.ex. load-load, or store-load), all of the first
7206 operations preceding the barrier will complete before any of the second
7207 operations succeeding the barrier begin. Specifically the semantics for each
7208 pairing is as follows:</p>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007209
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007210<ul>
7211 <li><tt>ll</tt>: All loads before the barrier must complete before any load
7212 after the barrier begins.</li>
Eric Christopher455c5772009-12-05 02:46:03 +00007213 <li><tt>ls</tt>: All loads before the barrier must complete before any
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007214 store after the barrier begins.</li>
Eric Christopher455c5772009-12-05 02:46:03 +00007215 <li><tt>ss</tt>: All stores before the barrier must complete before any
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007216 store after the barrier begins.</li>
Eric Christopher455c5772009-12-05 02:46:03 +00007217 <li><tt>sl</tt>: All stores before the barrier must complete before any
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007218 load after the barrier begins.</li>
7219</ul>
7220
7221<p>These semantics are applied with a logical "and" behavior when more than one
7222 is enabled in a single memory barrier intrinsic.</p>
7223
7224<p>Backends may implement stronger barriers than those requested when they do
7225 not support as fine grained a barrier as requested. Some architectures do
7226 not need all types of barriers and on such architectures, these become
7227 noops.</p>
7228
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007229<h5>Example:</h5>
7230<pre>
Victor Hernandeza70c6df2009-10-26 23:44:29 +00007231%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7232%ptr = bitcast i8* %mallocP to i32*
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007233 store i32 4, %ptr
7234
7235%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007236 call void @llvm.memory.barrier(i1 false, i1 true, i1 false, i1 false)
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007237 <i>; guarantee the above finishes</i>
7238 store i32 8, %ptr <i>; before this begins</i>
7239</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007240
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007241</div>
7242
Andrew Lenharth95528942008-02-21 06:45:13 +00007243<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007244<h4>
Mon P Wang6a490372008-06-25 08:15:39 +00007245 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007246</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007247
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007248<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007249
Andrew Lenharth95528942008-02-21 06:45:13 +00007250<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007251<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
7252 any integer bit width and for different address spaces. Not all targets
7253 support all bit widths however.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00007254
7255<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007256 declare i8 @llvm.atomic.cmp.swap.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt;)
7257 declare i16 @llvm.atomic.cmp.swap.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt;)
7258 declare i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt;)
7259 declare i64 @llvm.atomic.cmp.swap.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt;)
Andrew Lenharth95528942008-02-21 06:45:13 +00007260</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007261
Andrew Lenharth95528942008-02-21 06:45:13 +00007262<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007263<p>This loads a value in memory and compares it to a given value. If they are
7264 equal, it stores a new value into the memory.</p>
7265
Andrew Lenharth95528942008-02-21 06:45:13 +00007266<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007267<p>The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result
7268 as well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
7269 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
7270 this integer type. While any bit width integer may be used, targets may only
7271 lower representations they support in hardware.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00007272
Andrew Lenharth95528942008-02-21 06:45:13 +00007273<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007274<p>This entire intrinsic must be executed atomically. It first loads the value
7275 in memory pointed to by <tt>ptr</tt> and compares it with the
7276 value <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the
7277 memory. The loaded value is yielded in all cases. This provides the
7278 equivalent of an atomic compare-and-swap operation within the SSA
7279 framework.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00007280
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007281<h5>Examples:</h5>
Andrew Lenharth95528942008-02-21 06:45:13 +00007282<pre>
Victor Hernandeza70c6df2009-10-26 23:44:29 +00007283%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7284%ptr = bitcast i8* %mallocP to i32*
Andrew Lenharth95528942008-02-21 06:45:13 +00007285 store i32 4, %ptr
7286
7287%val1 = add i32 4, 4
Dan Gohmand6a6f612010-05-28 17:07:41 +00007288%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* %ptr, i32 4, %val1)
Andrew Lenharth95528942008-02-21 06:45:13 +00007289 <i>; yields {i32}:result1 = 4</i>
7290%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
7291%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
7292
7293%val2 = add i32 1, 1
Dan Gohmand6a6f612010-05-28 17:07:41 +00007294%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* %ptr, i32 5, %val2)
Andrew Lenharth95528942008-02-21 06:45:13 +00007295 <i>; yields {i32}:result2 = 8</i>
7296%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
7297
7298%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
7299</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007300
Andrew Lenharth95528942008-02-21 06:45:13 +00007301</div>
7302
7303<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007304<h4>
Andrew Lenharth95528942008-02-21 06:45:13 +00007305 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007306</h4>
7307
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007308<div>
Andrew Lenharth95528942008-02-21 06:45:13 +00007309<h5>Syntax:</h5>
7310
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007311<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
7312 integer bit width. Not all targets support all bit widths however.</p>
7313
Andrew Lenharth95528942008-02-21 06:45:13 +00007314<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007315 declare i8 @llvm.atomic.swap.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;val&gt;)
7316 declare i16 @llvm.atomic.swap.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;val&gt;)
7317 declare i32 @llvm.atomic.swap.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;val&gt;)
7318 declare i64 @llvm.atomic.swap.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;val&gt;)
Andrew Lenharth95528942008-02-21 06:45:13 +00007319</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007320
Andrew Lenharth95528942008-02-21 06:45:13 +00007321<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007322<p>This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
7323 the value from memory. It then stores the value in <tt>val</tt> in the memory
7324 at <tt>ptr</tt>.</p>
7325
Andrew Lenharth95528942008-02-21 06:45:13 +00007326<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007327<p>The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both
7328 the <tt>val</tt> argument and the result must be integers of the same bit
7329 width. The first argument, <tt>ptr</tt>, must be a pointer to a value of this
7330 integer type. The targets may only lower integer representations they
7331 support.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00007332
Andrew Lenharth95528942008-02-21 06:45:13 +00007333<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007334<p>This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
7335 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
7336 equivalent of an atomic swap operation within the SSA framework.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00007337
Andrew Lenharth95528942008-02-21 06:45:13 +00007338<h5>Examples:</h5>
7339<pre>
Victor Hernandeza70c6df2009-10-26 23:44:29 +00007340%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7341%ptr = bitcast i8* %mallocP to i32*
Andrew Lenharth95528942008-02-21 06:45:13 +00007342 store i32 4, %ptr
7343
7344%val1 = add i32 4, 4
Dan Gohmand6a6f612010-05-28 17:07:41 +00007345%result1 = call i32 @llvm.atomic.swap.i32.p0i32(i32* %ptr, i32 %val1)
Andrew Lenharth95528942008-02-21 06:45:13 +00007346 <i>; yields {i32}:result1 = 4</i>
7347%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
7348%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
7349
7350%val2 = add i32 1, 1
Dan Gohmand6a6f612010-05-28 17:07:41 +00007351%result2 = call i32 @llvm.atomic.swap.i32.p0i32(i32* %ptr, i32 %val2)
Andrew Lenharth95528942008-02-21 06:45:13 +00007352 <i>; yields {i32}:result2 = 8</i>
7353
7354%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
7355%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
7356</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007357
Andrew Lenharth95528942008-02-21 06:45:13 +00007358</div>
7359
7360<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007361<h4>
Mon P Wang6a490372008-06-25 08:15:39 +00007362 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007363</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007364
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007365<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007366
Andrew Lenharth95528942008-02-21 06:45:13 +00007367<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007368<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on
7369 any integer bit width. Not all targets support all bit widths however.</p>
7370
Andrew Lenharth95528942008-02-21 06:45:13 +00007371<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007372 declare i8 @llvm.atomic.load.add.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7373 declare i16 @llvm.atomic.load.add.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7374 declare i32 @llvm.atomic.load.add.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7375 declare i64 @llvm.atomic.load.add.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Andrew Lenharth95528942008-02-21 06:45:13 +00007376</pre>
Andrew Lenharth95528942008-02-21 06:45:13 +00007377
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007378<h5>Overview:</h5>
7379<p>This intrinsic adds <tt>delta</tt> to the value stored in memory
7380 at <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
7381
7382<h5>Arguments:</h5>
7383<p>The intrinsic takes two arguments, the first a pointer to an integer value
7384 and the second an integer value. The result is also an integer value. These
7385 integer types can have any bit width, but they must all have the same bit
7386 width. The targets may only lower integer representations they support.</p>
7387
Andrew Lenharth95528942008-02-21 06:45:13 +00007388<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007389<p>This intrinsic does a series of operations atomically. It first loads the
7390 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
7391 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.</p>
Andrew Lenharth95528942008-02-21 06:45:13 +00007392
7393<h5>Examples:</h5>
7394<pre>
Victor Hernandeza70c6df2009-10-26 23:44:29 +00007395%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7396%ptr = bitcast i8* %mallocP to i32*
7397 store i32 4, %ptr
Dan Gohmand6a6f612010-05-28 17:07:41 +00007398%result1 = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 4)
Andrew Lenharth95528942008-02-21 06:45:13 +00007399 <i>; yields {i32}:result1 = 4</i>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007400%result2 = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 2)
Andrew Lenharth95528942008-02-21 06:45:13 +00007401 <i>; yields {i32}:result2 = 8</i>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007402%result3 = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 5)
Andrew Lenharth95528942008-02-21 06:45:13 +00007403 <i>; yields {i32}:result3 = 10</i>
Mon P Wang6a490372008-06-25 08:15:39 +00007404%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharth95528942008-02-21 06:45:13 +00007405</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007406
Andrew Lenharth95528942008-02-21 06:45:13 +00007407</div>
7408
Mon P Wang6a490372008-06-25 08:15:39 +00007409<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007410<h4>
Mon P Wang6a490372008-06-25 08:15:39 +00007411 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007412</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007413
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007414<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007415
Mon P Wang6a490372008-06-25 08:15:39 +00007416<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007417<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
7418 any integer bit width and for different address spaces. Not all targets
7419 support all bit widths however.</p>
7420
Mon P Wang6a490372008-06-25 08:15:39 +00007421<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007422 declare i8 @llvm.atomic.load.sub.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7423 declare i16 @llvm.atomic.load.sub.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7424 declare i32 @llvm.atomic.load.sub.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7425 declare i64 @llvm.atomic.load.sub.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang6a490372008-06-25 08:15:39 +00007426</pre>
Mon P Wang6a490372008-06-25 08:15:39 +00007427
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007428<h5>Overview:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00007429<p>This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007430 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
7431
7432<h5>Arguments:</h5>
7433<p>The intrinsic takes two arguments, the first a pointer to an integer value
7434 and the second an integer value. The result is also an integer value. These
7435 integer types can have any bit width, but they must all have the same bit
7436 width. The targets may only lower integer representations they support.</p>
7437
Mon P Wang6a490372008-06-25 08:15:39 +00007438<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007439<p>This intrinsic does a series of operations atomically. It first loads the
7440 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
7441 result to <tt>ptr</tt>. It yields the original value stored
7442 at <tt>ptr</tt>.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00007443
7444<h5>Examples:</h5>
7445<pre>
Victor Hernandeza70c6df2009-10-26 23:44:29 +00007446%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7447%ptr = bitcast i8* %mallocP to i32*
7448 store i32 8, %ptr
Dan Gohmand6a6f612010-05-28 17:07:41 +00007449%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 4)
Mon P Wang6a490372008-06-25 08:15:39 +00007450 <i>; yields {i32}:result1 = 8</i>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007451%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 2)
Mon P Wang6a490372008-06-25 08:15:39 +00007452 <i>; yields {i32}:result2 = 4</i>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007453%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 5)
Mon P Wang6a490372008-06-25 08:15:39 +00007454 <i>; yields {i32}:result3 = 2</i>
7455%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
7456</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007457
Mon P Wang6a490372008-06-25 08:15:39 +00007458</div>
7459
7460<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007461<h4>
7462 <a name="int_atomic_load_and">
7463 '<tt>llvm.atomic.load.and.*</tt>' Intrinsic
7464 </a>
7465 <br>
7466 <a name="int_atomic_load_nand">
7467 '<tt>llvm.atomic.load.nand.*</tt>' Intrinsic
7468 </a>
7469 <br>
7470 <a name="int_atomic_load_or">
7471 '<tt>llvm.atomic.load.or.*</tt>' Intrinsic
7472 </a>
7473 <br>
7474 <a name="int_atomic_load_xor">
7475 '<tt>llvm.atomic.load.xor.*</tt>' Intrinsic
7476 </a>
7477</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007478
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007479<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007480
Mon P Wang6a490372008-06-25 08:15:39 +00007481<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007482<p>These are overloaded intrinsics. You can
7483 use <tt>llvm.atomic.load_and</tt>, <tt>llvm.atomic.load_nand</tt>,
7484 <tt>llvm.atomic.load_or</tt>, and <tt>llvm.atomic.load_xor</tt> on any integer
7485 bit width and for different address spaces. Not all targets support all bit
7486 widths however.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00007487
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007488<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007489 declare i8 @llvm.atomic.load.and.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7490 declare i16 @llvm.atomic.load.and.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7491 declare i32 @llvm.atomic.load.and.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7492 declare i64 @llvm.atomic.load.and.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang6a490372008-06-25 08:15:39 +00007493</pre>
7494
7495<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007496 declare i8 @llvm.atomic.load.or.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7497 declare i16 @llvm.atomic.load.or.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7498 declare i32 @llvm.atomic.load.or.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7499 declare i64 @llvm.atomic.load.or.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang6a490372008-06-25 08:15:39 +00007500</pre>
7501
7502<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007503 declare i8 @llvm.atomic.load.nand.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7504 declare i16 @llvm.atomic.load.nand.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7505 declare i32 @llvm.atomic.load.nand.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7506 declare i64 @llvm.atomic.load.nand.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang6a490372008-06-25 08:15:39 +00007507</pre>
7508
7509<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007510 declare i8 @llvm.atomic.load.xor.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7511 declare i16 @llvm.atomic.load.xor.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7512 declare i32 @llvm.atomic.load.xor.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7513 declare i64 @llvm.atomic.load.xor.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang6a490372008-06-25 08:15:39 +00007514</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007515
Mon P Wang6a490372008-06-25 08:15:39 +00007516<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007517<p>These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
7518 the value stored in memory at <tt>ptr</tt>. It yields the original value
7519 at <tt>ptr</tt>.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00007520
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007521<h5>Arguments:</h5>
7522<p>These intrinsics take two arguments, the first a pointer to an integer value
7523 and the second an integer value. The result is also an integer value. These
7524 integer types can have any bit width, but they must all have the same bit
7525 width. The targets may only lower integer representations they support.</p>
7526
Mon P Wang6a490372008-06-25 08:15:39 +00007527<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007528<p>These intrinsics does a series of operations atomically. They first load the
7529 value stored at <tt>ptr</tt>. They then do the bitwise
7530 operation <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the
7531 original value stored at <tt>ptr</tt>.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00007532
7533<h5>Examples:</h5>
7534<pre>
Victor Hernandeza70c6df2009-10-26 23:44:29 +00007535%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7536%ptr = bitcast i8* %mallocP to i32*
7537 store i32 0x0F0F, %ptr
Dan Gohmand6a6f612010-05-28 17:07:41 +00007538%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32(i32* %ptr, i32 0xFF)
Mon P Wang6a490372008-06-25 08:15:39 +00007539 <i>; yields {i32}:result0 = 0x0F0F</i>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007540%result1 = call i32 @llvm.atomic.load.and.i32.p0i32(i32* %ptr, i32 0xFF)
Mon P Wang6a490372008-06-25 08:15:39 +00007541 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007542%result2 = call i32 @llvm.atomic.load.or.i32.p0i32(i32* %ptr, i32 0F)
Mon P Wang6a490372008-06-25 08:15:39 +00007543 <i>; yields {i32}:result2 = 0xF0</i>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007544%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32(i32* %ptr, i32 0F)
Mon P Wang6a490372008-06-25 08:15:39 +00007545 <i>; yields {i32}:result3 = FF</i>
7546%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
7547</pre>
Mon P Wang6a490372008-06-25 08:15:39 +00007548
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007549</div>
Mon P Wang6a490372008-06-25 08:15:39 +00007550
7551<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007552<h4>
7553 <a name="int_atomic_load_max">
7554 '<tt>llvm.atomic.load.max.*</tt>' Intrinsic
7555 </a>
7556 <br>
7557 <a name="int_atomic_load_min">
7558 '<tt>llvm.atomic.load.min.*</tt>' Intrinsic
7559 </a>
7560 <br>
7561 <a name="int_atomic_load_umax">
7562 '<tt>llvm.atomic.load.umax.*</tt>' Intrinsic
7563 </a>
7564 <br>
7565 <a name="int_atomic_load_umin">
7566 '<tt>llvm.atomic.load.umin.*</tt>' Intrinsic
7567 </a>
7568</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007569
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007570<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007571
Mon P Wang6a490372008-06-25 08:15:39 +00007572<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007573<p>These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
7574 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
7575 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
7576 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00007577
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007578<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007579 declare i8 @llvm.atomic.load.max.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7580 declare i16 @llvm.atomic.load.max.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7581 declare i32 @llvm.atomic.load.max.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7582 declare i64 @llvm.atomic.load.max.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang6a490372008-06-25 08:15:39 +00007583</pre>
7584
7585<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007586 declare i8 @llvm.atomic.load.min.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7587 declare i16 @llvm.atomic.load.min.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7588 declare i32 @llvm.atomic.load.min.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7589 declare i64 @llvm.atomic.load.min.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang6a490372008-06-25 08:15:39 +00007590</pre>
7591
7592<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007593 declare i8 @llvm.atomic.load.umax.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7594 declare i16 @llvm.atomic.load.umax.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7595 declare i32 @llvm.atomic.load.umax.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7596 declare i64 @llvm.atomic.load.umax.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang6a490372008-06-25 08:15:39 +00007597</pre>
7598
7599<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007600 declare i8 @llvm.atomic.load.umin.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7601 declare i16 @llvm.atomic.load.umin.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7602 declare i32 @llvm.atomic.load.umin.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7603 declare i64 @llvm.atomic.load.umin.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang6a490372008-06-25 08:15:39 +00007604</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007605
Mon P Wang6a490372008-06-25 08:15:39 +00007606<h5>Overview:</h5>
Eric Christopher455c5772009-12-05 02:46:03 +00007607<p>These intrinsics takes the signed or unsigned minimum or maximum of
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007608 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
7609 original value at <tt>ptr</tt>.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00007610
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007611<h5>Arguments:</h5>
7612<p>These intrinsics take two arguments, the first a pointer to an integer value
7613 and the second an integer value. The result is also an integer value. These
7614 integer types can have any bit width, but they must all have the same bit
7615 width. The targets may only lower integer representations they support.</p>
7616
Mon P Wang6a490372008-06-25 08:15:39 +00007617<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007618<p>These intrinsics does a series of operations atomically. They first load the
7619 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or
7620 max <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They
7621 yield the original value stored at <tt>ptr</tt>.</p>
Mon P Wang6a490372008-06-25 08:15:39 +00007622
7623<h5>Examples:</h5>
7624<pre>
Victor Hernandeza70c6df2009-10-26 23:44:29 +00007625%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7626%ptr = bitcast i8* %mallocP to i32*
7627 store i32 7, %ptr
Dan Gohmand6a6f612010-05-28 17:07:41 +00007628%result0 = call i32 @llvm.atomic.load.min.i32.p0i32(i32* %ptr, i32 -2)
Mon P Wang6a490372008-06-25 08:15:39 +00007629 <i>; yields {i32}:result0 = 7</i>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007630%result1 = call i32 @llvm.atomic.load.max.i32.p0i32(i32* %ptr, i32 8)
Mon P Wang6a490372008-06-25 08:15:39 +00007631 <i>; yields {i32}:result1 = -2</i>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007632%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32(i32* %ptr, i32 10)
Mon P Wang6a490372008-06-25 08:15:39 +00007633 <i>; yields {i32}:result2 = 8</i>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007634%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32(i32* %ptr, i32 30)
Mon P Wang6a490372008-06-25 08:15:39 +00007635 <i>; yields {i32}:result3 = 8</i>
7636%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
7637</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007638
Mon P Wang6a490372008-06-25 08:15:39 +00007639</div>
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007640
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007641</div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007642
7643<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007644<h3>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007645 <a name="int_memorymarkers">Memory Use Markers</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007646</h3>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007647
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007648<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007649
7650<p>This class of intrinsics exists to information about the lifetime of memory
7651 objects and ranges where variables are immutable.</p>
7652
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007653<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007654<h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007655 <a name="int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007656</h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007657
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007658<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007659
7660<h5>Syntax:</h5>
7661<pre>
7662 declare void @llvm.lifetime.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7663</pre>
7664
7665<h5>Overview:</h5>
7666<p>The '<tt>llvm.lifetime.start</tt>' intrinsic specifies the start of a memory
7667 object's lifetime.</p>
7668
7669<h5>Arguments:</h5>
Nick Lewycky9bc89042009-10-13 07:57:33 +00007670<p>The first argument is a constant integer representing the size of the
7671 object, or -1 if it is variable sized. The second argument is a pointer to
7672 the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007673
7674<h5>Semantics:</h5>
7675<p>This intrinsic indicates that before this point in the code, the value of the
7676 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
Nick Lewyckyd20fd592009-10-27 16:56:58 +00007677 never be used and has an undefined value. A load from the pointer that
7678 precedes this intrinsic can be replaced with
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007679 <tt>'<a href="#undefvalues">undef</a>'</tt>.</p>
7680
7681</div>
7682
7683<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007684<h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007685 <a name="int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007686</h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007687
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007688<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007689
7690<h5>Syntax:</h5>
7691<pre>
7692 declare void @llvm.lifetime.end(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7693</pre>
7694
7695<h5>Overview:</h5>
7696<p>The '<tt>llvm.lifetime.end</tt>' intrinsic specifies the end of a memory
7697 object's lifetime.</p>
7698
7699<h5>Arguments:</h5>
Nick Lewycky9bc89042009-10-13 07:57:33 +00007700<p>The first argument is a constant integer representing the size of the
7701 object, or -1 if it is variable sized. The second argument is a pointer to
7702 the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007703
7704<h5>Semantics:</h5>
7705<p>This intrinsic indicates that after this point in the code, the value of the
7706 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
7707 never be used and has an undefined value. Any stores into the memory object
7708 following this intrinsic may be removed as dead.
7709
7710</div>
7711
7712<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007713<h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007714 <a name="int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007715</h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007716
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007717<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007718
7719<h5>Syntax:</h5>
7720<pre>
Nick Lewycky2965d3e2010-11-30 04:13:41 +00007721 declare {}* @llvm.invariant.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007722</pre>
7723
7724<h5>Overview:</h5>
7725<p>The '<tt>llvm.invariant.start</tt>' intrinsic specifies that the contents of
7726 a memory object will not change.</p>
7727
7728<h5>Arguments:</h5>
Nick Lewycky9bc89042009-10-13 07:57:33 +00007729<p>The first argument is a constant integer representing the size of the
7730 object, or -1 if it is variable sized. The second argument is a pointer to
7731 the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007732
7733<h5>Semantics:</h5>
7734<p>This intrinsic indicates that until an <tt>llvm.invariant.end</tt> that uses
7735 the return value, the referenced memory location is constant and
7736 unchanging.</p>
7737
7738</div>
7739
7740<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007741<h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007742 <a name="int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007743</h4>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007744
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007745<div>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007746
7747<h5>Syntax:</h5>
7748<pre>
7749 declare void @llvm.invariant.end({}* &lt;start&gt;, i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7750</pre>
7751
7752<h5>Overview:</h5>
7753<p>The '<tt>llvm.invariant.end</tt>' intrinsic specifies that the contents of
7754 a memory object are mutable.</p>
7755
7756<h5>Arguments:</h5>
7757<p>The first argument is the matching <tt>llvm.invariant.start</tt> intrinsic.
Nick Lewycky9bc89042009-10-13 07:57:33 +00007758 The second argument is a constant integer representing the size of the
7759 object, or -1 if it is variable sized and the third argument is a pointer
7760 to the object.</p>
Nick Lewycky6f7d8342009-10-13 07:03:23 +00007761
7762<h5>Semantics:</h5>
7763<p>This intrinsic indicates that the memory is mutable again.</p>
7764
7765</div>
7766
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007767</div>
7768
Andrew Lenharth9b254ee2008-02-16 01:24:58 +00007769<!-- ======================================================================= -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007770<h3>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007771 <a name="int_general">General Intrinsics</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007772</h3>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007773
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007774<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007775
7776<p>This class of intrinsics is designed to be generic and has no specific
7777 purpose.</p>
7778
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007779<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007780<h4>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007781 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007782</h4>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007783
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007784<div>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007785
7786<h5>Syntax:</h5>
7787<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007788 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007789</pre>
7790
7791<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007792<p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007793
7794<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007795<p>The first argument is a pointer to a value, the second is a pointer to a
7796 global string, the third is a pointer to a global string which is the source
7797 file name, and the last argument is the line number.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007798
7799<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007800<p>This intrinsic allows annotation of local variables with arbitrary strings.
7801 This can be useful for special purpose optimizations that want to look for
7802 these annotations. These have no other defined use, they are ignored by code
7803 generation and optimization.</p>
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007804
Tanya Lattnercb1b9602007-06-15 20:50:54 +00007805</div>
7806
Tanya Lattner293c0372007-09-21 22:59:12 +00007807<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007808<h4>
Tanya Lattner0186a652007-09-21 23:57:59 +00007809 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007810</h4>
Tanya Lattner293c0372007-09-21 22:59:12 +00007811
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007812<div>
Tanya Lattner293c0372007-09-21 22:59:12 +00007813
7814<h5>Syntax:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007815<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
7816 any integer bit width.</p>
7817
Tanya Lattner293c0372007-09-21 22:59:12 +00007818<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007819 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
7820 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
7821 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
7822 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
7823 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
Tanya Lattner293c0372007-09-21 22:59:12 +00007824</pre>
7825
7826<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007827<p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00007828
7829<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007830<p>The first argument is an integer value (result of some expression), the
7831 second is a pointer to a global string, the third is a pointer to a global
7832 string which is the source file name, and the last argument is the line
7833 number. It returns the value of the first argument.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00007834
7835<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007836<p>This intrinsic allows annotations to be put on arbitrary expressions with
7837 arbitrary strings. This can be useful for special purpose optimizations that
7838 want to look for these annotations. These have no other defined use, they
7839 are ignored by code generation and optimization.</p>
Tanya Lattner293c0372007-09-21 22:59:12 +00007840
Tanya Lattner293c0372007-09-21 22:59:12 +00007841</div>
Jim Laskey2211f492007-03-14 19:31:19 +00007842
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007843<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007844<h4>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007845 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007846</h4>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007847
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007848<div>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007849
7850<h5>Syntax:</h5>
7851<pre>
7852 declare void @llvm.trap()
7853</pre>
7854
7855<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007856<p>The '<tt>llvm.trap</tt>' intrinsic.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007857
7858<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007859<p>None.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007860
7861<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007862<p>This intrinsics is lowered to the target dependent trap instruction. If the
7863 target does not have a trap instruction, this intrinsic will be lowered to
7864 the call of the <tt>abort()</tt> function.</p>
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007865
Anton Korobeynikov06cbb652008-01-15 22:31:34 +00007866</div>
7867
Bill Wendling14313312008-11-19 05:56:17 +00007868<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007869<h4>
Misha Brukman50de2b22008-11-22 23:55:29 +00007870 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007871</h4>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007872
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007873<div>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007874
Bill Wendling14313312008-11-19 05:56:17 +00007875<h5>Syntax:</h5>
7876<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007877 declare void @llvm.stackprotector(i8* &lt;guard&gt;, i8** &lt;slot&gt;)
Bill Wendling14313312008-11-19 05:56:17 +00007878</pre>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007879
Bill Wendling14313312008-11-19 05:56:17 +00007880<h5>Overview:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007881<p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
7882 stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
7883 ensure that it is placed on the stack before local variables.</p>
7884
Bill Wendling14313312008-11-19 05:56:17 +00007885<h5>Arguments:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007886<p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
7887 arguments. The first argument is the value loaded from the stack
7888 guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
7889 that has enough space to hold the value of the guard.</p>
7890
Bill Wendling14313312008-11-19 05:56:17 +00007891<h5>Semantics:</h5>
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007892<p>This intrinsic causes the prologue/epilogue inserter to force the position of
7893 the <tt>AllocaInst</tt> stack slot to be before local variables on the
7894 stack. This is to ensure that if a local variable on the stack is
7895 overwritten, it will destroy the value of the guard. When the function exits,
Bill Wendling6bbe0912010-10-27 01:07:41 +00007896 the guard on the stack is checked against the original guard. If they are
Bill Wendlingd9a66f72009-07-20 02:29:24 +00007897 different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
7898 function.</p>
7899
Bill Wendling14313312008-11-19 05:56:17 +00007900</div>
7901
Eric Christopher73484322009-11-30 08:03:53 +00007902<!-- _______________________________________________________________________ -->
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007903<h4>
Eric Christopher73484322009-11-30 08:03:53 +00007904 <a name="int_objectsize">'<tt>llvm.objectsize</tt>' Intrinsic</a>
NAKAMURA Takumifc8d9302011-04-18 23:59:50 +00007905</h4>
Eric Christopher73484322009-11-30 08:03:53 +00007906
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007907<div>
Eric Christopher73484322009-11-30 08:03:53 +00007908
7909<h5>Syntax:</h5>
7910<pre>
Dan Gohmand6a6f612010-05-28 17:07:41 +00007911 declare i32 @llvm.objectsize.i32(i8* &lt;object&gt;, i1 &lt;type&gt;)
7912 declare i64 @llvm.objectsize.i64(i8* &lt;object&gt;, i1 &lt;type&gt;)
Eric Christopher73484322009-11-30 08:03:53 +00007913</pre>
7914
7915<h5>Overview:</h5>
Bill Wendling6bbe0912010-10-27 01:07:41 +00007916<p>The <tt>llvm.objectsize</tt> intrinsic is designed to provide information to
7917 the optimizers to determine at compile time whether a) an operation (like
7918 memcpy) will overflow a buffer that corresponds to an object, or b) that a
7919 runtime check for overflow isn't necessary. An object in this context means
7920 an allocation of a specific class, structure, array, or other object.</p>
Eric Christopher73484322009-11-30 08:03:53 +00007921
7922<h5>Arguments:</h5>
Bill Wendling6bbe0912010-10-27 01:07:41 +00007923<p>The <tt>llvm.objectsize</tt> intrinsic takes two arguments. The first
Eric Christopher31e39bd2009-12-23 00:29:49 +00007924 argument is a pointer to or into the <tt>object</tt>. The second argument
Bill Wendling6bbe0912010-10-27 01:07:41 +00007925 is a boolean 0 or 1. This argument determines whether you want the
7926 maximum (0) or minimum (1) bytes remaining. This needs to be a literal 0 or
Eric Christopher31e39bd2009-12-23 00:29:49 +00007927 1, variables are not allowed.</p>
7928
Eric Christopher73484322009-11-30 08:03:53 +00007929<h5>Semantics:</h5>
7930<p>The <tt>llvm.objectsize</tt> intrinsic is lowered to either a constant
Bill Wendling6bbe0912010-10-27 01:07:41 +00007931 representing the size of the object concerned, or <tt>i32/i64 -1 or 0</tt>,
7932 depending on the <tt>type</tt> argument, if the size cannot be determined at
7933 compile time.</p>
Eric Christopher73484322009-11-30 08:03:53 +00007934
7935</div>
7936
NAKAMURA Takumiaa3d6242011-04-23 00:30:22 +00007937</div>
7938
7939</div>
7940
Chris Lattner2f7c9632001-06-06 20:29:01 +00007941<!-- *********************************************************************** -->
Chris Lattner2f7c9632001-06-06 20:29:01 +00007942<hr>
Misha Brukmanc501f552004-03-01 17:47:27 +00007943<address>
7944 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman86242e12008-12-11 17:34:48 +00007945 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00007946 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman86242e12008-12-11 17:34:48 +00007947 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmanc501f552004-03-01 17:47:27 +00007948
7949 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
NAKAMURA Takumica46f5a2011-04-09 02:13:37 +00007950 <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
Misha Brukmanc501f552004-03-01 17:47:27 +00007951 Last modified: $Date$
7952</address>
Chris Lattnerb8f816e2008-01-04 04:33:49 +00007953
Misha Brukman76307852003-11-08 01:05:38 +00007954</body>
7955</html>