blob: 34f49fb7c1042b387b92d8028c9b76825cb90b64 [file] [log] [blame]
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001//===-- MemorySanitizer.cpp - detector of uninitialized reads -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file is a part of MemorySanitizer, a detector of uninitialized
11/// reads.
12///
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000013/// The algorithm of the tool is similar to Memcheck
14/// (http://goo.gl/QKbem). We associate a few shadow bits with every
15/// byte of the application memory, poison the shadow of the malloc-ed
16/// or alloca-ed memory, load the shadow bits on every memory read,
17/// propagate the shadow bits through some of the arithmetic
18/// instruction (including MOV), store the shadow bits on every memory
19/// write, report a bug on some other instructions (e.g. JMP) if the
20/// associated shadow is poisoned.
21///
22/// But there are differences too. The first and the major one:
23/// compiler instrumentation instead of binary instrumentation. This
24/// gives us much better register allocation, possible compiler
25/// optimizations and a fast start-up. But this brings the major issue
26/// as well: msan needs to see all program events, including system
27/// calls and reads/writes in system libraries, so we either need to
28/// compile *everything* with msan or use a binary translation
29/// component (e.g. DynamoRIO) to instrument pre-built libraries.
30/// Another difference from Memcheck is that we use 8 shadow bits per
31/// byte of application memory and use a direct shadow mapping. This
32/// greatly simplifies the instrumentation code and avoids races on
33/// shadow updates (Memcheck is single-threaded so races are not a
34/// concern there. Memcheck uses 2 shadow bits per byte with a slow
35/// path storage that uses 8 bits per byte).
36///
37/// The default value of shadow is 0, which means "clean" (not poisoned).
38///
39/// Every module initializer should call __msan_init to ensure that the
40/// shadow memory is ready. On error, __msan_warning is called. Since
41/// parameters and return values may be passed via registers, we have a
42/// specialized thread-local shadow for return values
43/// (__msan_retval_tls) and parameters (__msan_param_tls).
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +000044///
45/// Origin tracking.
46///
47/// MemorySanitizer can track origins (allocation points) of all uninitialized
48/// values. This behavior is controlled with a flag (msan-track-origins) and is
49/// disabled by default.
50///
51/// Origins are 4-byte values created and interpreted by the runtime library.
52/// They are stored in a second shadow mapping, one 4-byte value for 4 bytes
53/// of application memory. Propagation of origins is basically a bunch of
54/// "select" instructions that pick the origin of a dirty argument, if an
55/// instruction has one.
56///
57/// Every 4 aligned, consecutive bytes of application memory have one origin
58/// value associated with them. If these bytes contain uninitialized data
59/// coming from 2 different allocations, the last store wins. Because of this,
60/// MemorySanitizer reports can show unrelated origins, but this is unlikely in
Alexey Samsonov3efc87e2012-12-28 09:30:44 +000061/// practice.
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +000062///
63/// Origins are meaningless for fully initialized values, so MemorySanitizer
64/// avoids storing origin to memory when a fully initialized value is stored.
65/// This way it avoids needless overwritting origin of the 4-byte region on
66/// a short (i.e. 1 byte) clean store, and it is also good for performance.
Evgeniy Stepanov5522a702013-09-24 11:20:27 +000067///
68/// Atomic handling.
69///
70/// Ideally, every atomic store of application value should update the
71/// corresponding shadow location in an atomic way. Unfortunately, atomic store
72/// of two disjoint locations can not be done without severe slowdown.
73///
74/// Therefore, we implement an approximation that may err on the safe side.
75/// In this implementation, every atomically accessed location in the program
76/// may only change from (partially) uninitialized to fully initialized, but
77/// not the other way around. We load the shadow _after_ the application load,
78/// and we store the shadow _before_ the app store. Also, we always store clean
79/// shadow (if the application store is atomic). This way, if the store-load
80/// pair constitutes a happens-before arc, shadow store and load are correctly
81/// ordered such that the load will get either the value that was stored, or
82/// some later value (which is always clean).
83///
84/// This does not work very well with Compare-And-Swap (CAS) and
85/// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW
86/// must store the new shadow before the app operation, and load the shadow
87/// after the app operation. Computers don't work this way. Current
88/// implementation ignores the load aspect of CAS/RMW, always returning a clean
89/// value. It implements the store part as a simple atomic store by storing a
90/// clean shadow.
91
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000092//===----------------------------------------------------------------------===//
93
Chandler Carruthed0881b2012-12-03 16:50:05 +000094#include "llvm/Transforms/Instrumentation.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +000095#include "llvm/ADT/DepthFirstIterator.h"
96#include "llvm/ADT/SmallString.h"
97#include "llvm/ADT/SmallVector.h"
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +000098#include "llvm/ADT/StringExtras.h"
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +000099#include "llvm/ADT/Triple.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +0000100#include "llvm/IR/DataLayout.h"
101#include "llvm/IR/Function.h"
102#include "llvm/IR/IRBuilder.h"
103#include "llvm/IR/InlineAsm.h"
Chandler Carruth7da14f12014-03-06 03:23:41 +0000104#include "llvm/IR/InstVisitor.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +0000105#include "llvm/IR/IntrinsicInst.h"
106#include "llvm/IR/LLVMContext.h"
107#include "llvm/IR/MDBuilder.h"
108#include "llvm/IR/Module.h"
109#include "llvm/IR/Type.h"
Chandler Carrutha4ea2692014-03-04 11:26:31 +0000110#include "llvm/IR/ValueMap.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000111#include "llvm/Support/CommandLine.h"
112#include "llvm/Support/Compiler.h"
113#include "llvm/Support/Debug.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000114#include "llvm/Support/raw_ostream.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000115#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Evgeniy Stepanov4fbc0d082012-12-21 11:18:49 +0000116#include "llvm/Transforms/Utils/Local.h"
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000117#include "llvm/Transforms/Utils/ModuleUtils.h"
118
119using namespace llvm;
120
Chandler Carruth964daaa2014-04-22 02:55:47 +0000121#define DEBUG_TYPE "msan"
122
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +0000123static const unsigned kMinOriginAlignment = 4;
124static const unsigned kShadowTLSAlignment = 8;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000125
Evgeniy Stepanov35eb2652014-10-22 00:12:40 +0000126// These constants must be kept in sync with the ones in msan.h.
127static const unsigned kParamTLSSize = 800;
128static const unsigned kRetvalTLSSize = 800;
129
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000130// Accesses sizes are powers of two: 1, 2, 4, 8.
131static const size_t kNumberOfAccessSizes = 4;
132
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +0000133/// \brief Track origins of uninitialized values.
Alexey Samsonov3efc87e2012-12-28 09:30:44 +0000134///
Evgeniy Stepanovd8be0c52012-12-26 10:59:00 +0000135/// Adds a section to MemorySanitizer report that points to the allocation
136/// (stack or heap) the uninitialized bits came from originally.
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000137static cl::opt<int> ClTrackOrigins("msan-track-origins",
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000138 cl::desc("Track origins (allocation sites) of poisoned memory"),
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000139 cl::Hidden, cl::init(0));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000140static cl::opt<bool> ClKeepGoing("msan-keep-going",
141 cl::desc("keep going after reporting a UMR"),
142 cl::Hidden, cl::init(false));
143static cl::opt<bool> ClPoisonStack("msan-poison-stack",
144 cl::desc("poison uninitialized stack variables"),
145 cl::Hidden, cl::init(true));
146static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call",
147 cl::desc("poison uninitialized stack variables with a call"),
148 cl::Hidden, cl::init(false));
149static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern",
150 cl::desc("poison uninitialized stack variables with the given patter"),
151 cl::Hidden, cl::init(0xff));
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000152static cl::opt<bool> ClPoisonUndef("msan-poison-undef",
153 cl::desc("poison undef temps"),
154 cl::Hidden, cl::init(true));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000155
156static cl::opt<bool> ClHandleICmp("msan-handle-icmp",
157 cl::desc("propagate shadow through ICmpEQ and ICmpNE"),
158 cl::Hidden, cl::init(true));
159
Evgeniy Stepanovfac84032013-01-25 15:31:10 +0000160static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact",
161 cl::desc("exact handling of relational integer ICmp"),
Evgeniy Stepanov6f85ef32013-01-28 11:42:28 +0000162 cl::Hidden, cl::init(false));
Evgeniy Stepanovfac84032013-01-25 15:31:10 +0000163
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000164// This flag controls whether we check the shadow of the address
165// operand of load or store. Such bugs are very rare, since load from
166// a garbage address typically results in SEGV, but still happen
167// (e.g. only lower bits of address are garbage, or the access happens
168// early at program startup where malloc-ed memory is more likely to
169// be zeroed. As of 2012-08-28 this flag adds 20% slowdown.
170static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address",
171 cl::desc("report accesses through a pointer which has poisoned shadow"),
172 cl::Hidden, cl::init(true));
173
174static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions",
175 cl::desc("print out instructions with default strict semantics"),
176 cl::Hidden, cl::init(false));
177
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000178static cl::opt<int> ClInstrumentationWithCallThreshold(
179 "msan-instrumentation-with-call-threshold",
180 cl::desc(
181 "If the function being instrumented requires more than "
182 "this number of checks and origin stores, use callbacks instead of "
183 "inline checks (-1 means never use callbacks)."),
Evgeniy Stepanov3939f542014-04-21 15:04:05 +0000184 cl::Hidden, cl::init(3500));
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000185
Evgeniy Stepanov7db296e2014-10-23 01:05:46 +0000186// This is an experiment to enable handling of cases where shadow is a non-zero
187// compile-time constant. For some unexplainable reason they were silently
188// ignored in the instrumentation.
189static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow",
190 cl::desc("Insert checks for constant shadow values"),
191 cl::Hidden, cl::init(false));
192
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000193namespace {
194
Viktor Kutuzovb4ffb5d2014-12-18 12:12:59 +0000195// Memory map parameters used in application-to-shadow address calculation.
196// Offset = (Addr & ~AndMask) ^ XorMask
197// Shadow = ShadowBase + Offset
198// Origin = OriginBase + Offset
199struct MemoryMapParams {
200 uint64_t AndMask;
201 uint64_t XorMask;
202 uint64_t ShadowBase;
203 uint64_t OriginBase;
204};
205
206struct PlatformMemoryMapParams {
207 const MemoryMapParams *bits32;
208 const MemoryMapParams *bits64;
209};
210
211// i386 Linux
Mohit K. Bhakkad46ad7f72015-01-20 13:05:42 +0000212static const MemoryMapParams Linux_I386_MemoryMapParams = {
Viktor Kutuzovb4ffb5d2014-12-18 12:12:59 +0000213 0x000080000000, // AndMask
214 0, // XorMask (not used)
215 0, // ShadowBase (not used)
216 0x000040000000, // OriginBase
217};
218
219// x86_64 Linux
Mohit K. Bhakkad46ad7f72015-01-20 13:05:42 +0000220static const MemoryMapParams Linux_X86_64_MemoryMapParams = {
Viktor Kutuzovb4ffb5d2014-12-18 12:12:59 +0000221 0x400000000000, // AndMask
222 0, // XorMask (not used)
223 0, // ShadowBase (not used)
224 0x200000000000, // OriginBase
225};
226
Mohit K. Bhakkad46ad7f72015-01-20 13:05:42 +0000227// mips64 Linux
228static const MemoryMapParams Linux_MIPS64_MemoryMapParams = {
229 0x004000000000, // AndMask
230 0, // XorMask (not used)
231 0, // ShadowBase (not used)
232 0x002000000000, // OriginBase
233};
234
Viktor Kutuzovb4ffb5d2014-12-18 12:12:59 +0000235// i386 FreeBSD
Mohit K. Bhakkad46ad7f72015-01-20 13:05:42 +0000236static const MemoryMapParams FreeBSD_I386_MemoryMapParams = {
Viktor Kutuzovb4ffb5d2014-12-18 12:12:59 +0000237 0x000180000000, // AndMask
238 0x000040000000, // XorMask
239 0x000020000000, // ShadowBase
240 0x000700000000, // OriginBase
241};
242
243// x86_64 FreeBSD
Mohit K. Bhakkad46ad7f72015-01-20 13:05:42 +0000244static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = {
Viktor Kutuzovb4ffb5d2014-12-18 12:12:59 +0000245 0xc00000000000, // AndMask
246 0x200000000000, // XorMask
247 0x100000000000, // ShadowBase
248 0x380000000000, // OriginBase
249};
250
Mohit K. Bhakkad46ad7f72015-01-20 13:05:42 +0000251static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = {
252 &Linux_I386_MemoryMapParams,
253 &Linux_X86_64_MemoryMapParams,
Viktor Kutuzovb4ffb5d2014-12-18 12:12:59 +0000254};
255
Mohit K. Bhakkad46ad7f72015-01-20 13:05:42 +0000256static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = {
257 NULL,
258 &Linux_MIPS64_MemoryMapParams,
259};
260
261static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = {
262 &FreeBSD_I386_MemoryMapParams,
263 &FreeBSD_X86_64_MemoryMapParams,
Viktor Kutuzovb4ffb5d2014-12-18 12:12:59 +0000264};
265
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000266/// \brief An instrumentation pass implementing detection of uninitialized
267/// reads.
268///
269/// MemorySanitizer: instrument the code in module to find
270/// uninitialized reads.
271class MemorySanitizer : public FunctionPass {
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000272 public:
Alexey Samsonov6d8bab82014-06-02 18:08:27 +0000273 MemorySanitizer(int TrackOrigins = 0)
Evgeniy Stepanov37b86452013-09-19 15:22:35 +0000274 : FunctionPass(ID),
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000275 TrackOrigins(std::max(TrackOrigins, (int)ClTrackOrigins)),
Craig Topperf40110f2014-04-25 05:29:35 +0000276 DL(nullptr),
Evgeniy Stepanove402d9e2014-11-27 14:54:02 +0000277 WarningFn(nullptr) {}
Craig Topper3e4c6972014-03-05 09:10:37 +0000278 const char *getPassName() const override { return "MemorySanitizer"; }
279 bool runOnFunction(Function &F) override;
280 bool doInitialization(Module &M) override;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000281 static char ID; // Pass identification, replacement for typeid.
282
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000283 private:
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000284 void initializeCallbacks(Module &M);
285
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000286 /// \brief Track origins (allocation points) of uninitialized values.
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000287 int TrackOrigins;
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000288
Rafael Espindolaaeff8a92014-02-24 23:12:18 +0000289 const DataLayout *DL;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000290 LLVMContext *C;
291 Type *IntptrTy;
292 Type *OriginTy;
293 /// \brief Thread-local shadow storage for function parameters.
294 GlobalVariable *ParamTLS;
295 /// \brief Thread-local origin storage for function parameters.
296 GlobalVariable *ParamOriginTLS;
297 /// \brief Thread-local shadow storage for function return value.
298 GlobalVariable *RetvalTLS;
299 /// \brief Thread-local origin storage for function return value.
300 GlobalVariable *RetvalOriginTLS;
301 /// \brief Thread-local shadow storage for in-register va_arg function
302 /// parameters (x86_64-specific).
303 GlobalVariable *VAArgTLS;
304 /// \brief Thread-local shadow storage for va_arg overflow area
305 /// (x86_64-specific).
306 GlobalVariable *VAArgOverflowSizeTLS;
307 /// \brief Thread-local space used to pass origin value to the UMR reporting
308 /// function.
309 GlobalVariable *OriginTLS;
310
311 /// \brief The run-time callback to print a warning.
312 Value *WarningFn;
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000313 // These arrays are indexed by log2(AccessSize).
314 Value *MaybeWarningFn[kNumberOfAccessSizes];
315 Value *MaybeStoreOriginFn[kNumberOfAccessSizes];
316
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000317 /// \brief Run-time helper that generates a new origin value for a stack
318 /// allocation.
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +0000319 Value *MsanSetAllocaOrigin4Fn;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000320 /// \brief Run-time helper that poisons stack on function entry.
321 Value *MsanPoisonStackFn;
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000322 /// \brief Run-time helper that records a store (or any event) of an
323 /// uninitialized value and returns an updated origin id encoding this info.
324 Value *MsanChainOriginFn;
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +0000325 /// \brief MSan runtime replacements for memmove, memcpy and memset.
326 Value *MemmoveFn, *MemcpyFn, *MemsetFn;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000327
Viktor Kutuzovb4ffb5d2014-12-18 12:12:59 +0000328 /// \brief Memory map parameters used in application-to-shadow calculation.
329 const MemoryMapParams *MapParams;
330
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000331 MDNode *ColdCallWeights;
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000332 /// \brief Branch weights for origin store.
333 MDNode *OriginStoreWeights;
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000334 /// \brief An empty volatile inline asm that prevents callback merge.
335 InlineAsm *EmptyAsm;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000336
Evgeniy Stepanovda0072b2012-11-29 13:12:03 +0000337 friend struct MemorySanitizerVisitor;
338 friend struct VarArgAMD64Helper;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000339};
340} // namespace
341
342char MemorySanitizer::ID = 0;
343INITIALIZE_PASS(MemorySanitizer, "msan",
344 "MemorySanitizer: detects uninitialized reads.",
345 false, false)
346
Alexey Samsonov6d8bab82014-06-02 18:08:27 +0000347FunctionPass *llvm::createMemorySanitizerPass(int TrackOrigins) {
348 return new MemorySanitizer(TrackOrigins);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000349}
350
351/// \brief Create a non-const global initialized with the given string.
352///
353/// Creates a writable global for Str so that we can pass it to the
354/// run-time lib. Runtime uses first 4 bytes of the string to store the
355/// frame ID, so the string needs to be mutable.
356static GlobalVariable *createPrivateNonConstGlobalForString(Module &M,
357 StringRef Str) {
358 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
359 return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false,
360 GlobalValue::PrivateLinkage, StrConst, "");
361}
362
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000363
364/// \brief Insert extern declaration of runtime-provided functions and globals.
365void MemorySanitizer::initializeCallbacks(Module &M) {
366 // Only do this once.
367 if (WarningFn)
368 return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000369
370 IRBuilder<> IRB(*C);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000371 // Create the callback.
372 // FIXME: this function should have "Cold" calling conv,
373 // which is not yet implemented.
374 StringRef WarningFnName = ClKeepGoing ? "__msan_warning"
375 : "__msan_warning_noreturn";
Reid Kleckner971c3ea2014-11-13 22:55:19 +0000376 WarningFn = M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), nullptr);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000377
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000378 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
379 AccessSizeIndex++) {
380 unsigned AccessSize = 1 << AccessSizeIndex;
381 std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize);
382 MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction(
383 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
Reid Kleckner971c3ea2014-11-13 22:55:19 +0000384 IRB.getInt32Ty(), nullptr);
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000385
386 FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize);
387 MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction(
388 FunctionName, IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8),
Reid Kleckner971c3ea2014-11-13 22:55:19 +0000389 IRB.getInt8PtrTy(), IRB.getInt32Ty(), nullptr);
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000390 }
391
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +0000392 MsanSetAllocaOrigin4Fn = M.getOrInsertFunction(
393 "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy,
Reid Kleckner971c3ea2014-11-13 22:55:19 +0000394 IRB.getInt8PtrTy(), IntptrTy, nullptr);
David Blaikiea92765c2014-11-14 00:41:42 +0000395 MsanPoisonStackFn =
396 M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(),
397 IRB.getInt8PtrTy(), IntptrTy, nullptr);
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000398 MsanChainOriginFn = M.getOrInsertFunction(
Reid Kleckner971c3ea2014-11-13 22:55:19 +0000399 "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty(), nullptr);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000400 MemmoveFn = M.getOrInsertFunction(
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000401 "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
Reid Kleckner971c3ea2014-11-13 22:55:19 +0000402 IRB.getInt8PtrTy(), IntptrTy, nullptr);
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +0000403 MemcpyFn = M.getOrInsertFunction(
404 "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
Reid Kleckner971c3ea2014-11-13 22:55:19 +0000405 IntptrTy, nullptr);
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +0000406 MemsetFn = M.getOrInsertFunction(
407 "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
Reid Kleckner971c3ea2014-11-13 22:55:19 +0000408 IntptrTy, nullptr);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000409
410 // Create globals.
411 RetvalTLS = new GlobalVariable(
Evgeniy Stepanov35eb2652014-10-22 00:12:40 +0000412 M, ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), false,
Craig Topperf40110f2014-04-25 05:29:35 +0000413 GlobalVariable::ExternalLinkage, nullptr, "__msan_retval_tls", nullptr,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000414 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000415 RetvalOriginTLS = new GlobalVariable(
Craig Topperf40110f2014-04-25 05:29:35 +0000416 M, OriginTy, false, GlobalVariable::ExternalLinkage, nullptr,
417 "__msan_retval_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000418
419 ParamTLS = new GlobalVariable(
Evgeniy Stepanov35eb2652014-10-22 00:12:40 +0000420 M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false,
Craig Topperf40110f2014-04-25 05:29:35 +0000421 GlobalVariable::ExternalLinkage, nullptr, "__msan_param_tls", nullptr,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000422 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000423 ParamOriginTLS = new GlobalVariable(
Evgeniy Stepanov35eb2652014-10-22 00:12:40 +0000424 M, ArrayType::get(OriginTy, kParamTLSSize / 4), false,
425 GlobalVariable::ExternalLinkage, nullptr, "__msan_param_origin_tls",
426 nullptr, GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000427
428 VAArgTLS = new GlobalVariable(
Evgeniy Stepanov35eb2652014-10-22 00:12:40 +0000429 M, ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), false,
Craig Topperf40110f2014-04-25 05:29:35 +0000430 GlobalVariable::ExternalLinkage, nullptr, "__msan_va_arg_tls", nullptr,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000431 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000432 VAArgOverflowSizeTLS = new GlobalVariable(
Craig Topperf40110f2014-04-25 05:29:35 +0000433 M, IRB.getInt64Ty(), false, GlobalVariable::ExternalLinkage, nullptr,
434 "__msan_va_arg_overflow_size_tls", nullptr,
Evgeniy Stepanov1e764322013-05-16 09:14:05 +0000435 GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000436 OriginTLS = new GlobalVariable(
Craig Topperf40110f2014-04-25 05:29:35 +0000437 M, IRB.getInt32Ty(), false, GlobalVariable::ExternalLinkage, nullptr,
438 "__msan_origin_tls", nullptr, GlobalVariable::InitialExecTLSModel);
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000439
440 // We insert an empty inline asm after __msan_report* to avoid callback merge.
441 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
442 StringRef(""), StringRef(""),
443 /*hasSideEffects=*/true);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000444}
445
446/// \brief Module-level initialization.
447///
448/// inserts a call to __msan_init to the module's constructor list.
449bool MemorySanitizer::doInitialization(Module &M) {
Rafael Espindola93512512014-02-25 17:30:31 +0000450 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
451 if (!DLP)
Evgeniy Stepanov119cb2e2014-04-23 12:51:32 +0000452 report_fatal_error("data layout missing");
Rafael Espindola93512512014-02-25 17:30:31 +0000453 DL = &DLP->getDataLayout();
454
Viktor Kutuzovb4ffb5d2014-12-18 12:12:59 +0000455 Triple TargetTriple(M.getTargetTriple());
Mohit K. Bhakkad46ad7f72015-01-20 13:05:42 +0000456 switch (TargetTriple.getOS()) {
457 case Triple::FreeBSD:
458 switch (TargetTriple.getArch()) {
459 case Triple::x86_64:
460 MapParams = FreeBSD_X86_MemoryMapParams.bits64;
461 break;
462 case Triple::x86:
463 MapParams = FreeBSD_X86_MemoryMapParams.bits32;
464 break;
465 default:
466 report_fatal_error("unsupported architecture");
467 }
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000468 break;
Mohit K. Bhakkad46ad7f72015-01-20 13:05:42 +0000469 case Triple::Linux:
470 switch (TargetTriple.getArch()) {
471 case Triple::x86_64:
472 MapParams = Linux_X86_MemoryMapParams.bits64;
473 break;
474 case Triple::x86:
475 MapParams = Linux_X86_MemoryMapParams.bits32;
476 break;
477 case Triple::mips64:
478 case Triple::mips64el:
479 MapParams = Linux_MIPS_MemoryMapParams.bits64;
480 break;
481 default:
482 report_fatal_error("unsupported architecture");
483 }
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000484 break;
485 default:
Mohit K. Bhakkad46ad7f72015-01-20 13:05:42 +0000486 report_fatal_error("unsupported operating system");
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000487 }
488
Mohit K. Bhakkad46ad7f72015-01-20 13:05:42 +0000489 C = &(M.getContext());
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000490 IRBuilder<> IRB(*C);
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000491 IntptrTy = IRB.getIntPtrTy(DL);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000492 OriginTy = IRB.getInt32Ty();
493
494 ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000495 OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000496
497 // Insert a call to __msan_init/__msan_track_origins into the module's CTORs.
498 appendToGlobalCtors(M, cast<Function>(M.getOrInsertFunction(
Reid Kleckner971c3ea2014-11-13 22:55:19 +0000499 "__msan_init", IRB.getVoidTy(), nullptr)), 0);
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000500
Evgeniy Stepanov888385e2013-05-31 12:04:29 +0000501 if (TrackOrigins)
502 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
503 IRB.getInt32(TrackOrigins), "__msan_track_origins");
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000504
Evgeniy Stepanov888385e2013-05-31 12:04:29 +0000505 if (ClKeepGoing)
506 new GlobalVariable(M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage,
507 IRB.getInt32(ClKeepGoing), "__msan_keep_going");
Evgeniy Stepanovdcf6bcb2013-01-22 13:26:53 +0000508
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000509 return true;
510}
511
512namespace {
513
514/// \brief A helper class that handles instrumentation of VarArg
515/// functions on a particular platform.
516///
517/// Implementations are expected to insert the instrumentation
518/// necessary to propagate argument shadow through VarArg function
519/// calls. Visit* methods are called during an InstVisitor pass over
520/// the function, and should avoid creating new basic blocks. A new
521/// instance of this class is created for each instrumented function.
522struct VarArgHelper {
523 /// \brief Visit a CallSite.
524 virtual void visitCallSite(CallSite &CS, IRBuilder<> &IRB) = 0;
525
526 /// \brief Visit a va_start call.
527 virtual void visitVAStartInst(VAStartInst &I) = 0;
528
529 /// \brief Visit a va_copy call.
530 virtual void visitVACopyInst(VACopyInst &I) = 0;
531
532 /// \brief Finalize function instrumentation.
533 ///
534 /// This method is called after visiting all interesting (see above)
535 /// instructions in a function.
536 virtual void finalizeInstrumentation() = 0;
Evgeniy Stepanovda0072b2012-11-29 13:12:03 +0000537
538 virtual ~VarArgHelper() {}
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000539};
540
541struct MemorySanitizerVisitor;
542
543VarArgHelper*
544CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
545 MemorySanitizerVisitor &Visitor);
546
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000547unsigned TypeSizeToSizeIndex(unsigned TypeSize) {
548 if (TypeSize <= 8) return 0;
549 return Log2_32_Ceil(TypeSize / 8);
550}
551
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000552/// This class does all the work for a given function. Store and Load
553/// instructions store and load corresponding shadow and origin
554/// values. Most instructions propagate shadow from arguments to their
555/// return values. Certain instructions (most importantly, BranchInst)
556/// test their argument shadow and print reports (with a runtime call) if it's
557/// non-zero.
558struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> {
559 Function &F;
560 MemorySanitizer &MS;
561 SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes;
562 ValueMap<Value*, Value*> ShadowMap, OriginMap;
Ahmed Charles56440fd2014-03-06 05:51:42 +0000563 std::unique_ptr<VarArgHelper> VAHelper;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000564
565 // The following flags disable parts of MSan instrumentation based on
566 // blacklist contents and command-line options.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000567 bool InsertChecks;
Evgeniy Stepanov174242c2014-07-03 11:56:30 +0000568 bool PropagateShadow;
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +0000569 bool PoisonStack;
570 bool PoisonUndef;
Evgeniy Stepanov604293f2013-09-16 13:24:32 +0000571 bool CheckReturnValue;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000572
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000573 struct ShadowOriginAndInsertPoint {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000574 Value *Shadow;
575 Value *Origin;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000576 Instruction *OrigIns;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +0000577 ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000578 : Shadow(S), Origin(O), OrigIns(I) { }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000579 };
580 SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList;
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000581 SmallVector<Instruction*, 16> StoreList;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000582
583 MemorySanitizerVisitor(Function &F, MemorySanitizer &MS)
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000584 : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)) {
Alexey Samsonov6d8bab82014-06-02 18:08:27 +0000585 bool SanitizeFunction = F.getAttributes().hasAttribute(
586 AttributeSet::FunctionIndex, Attribute::SanitizeMemory);
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +0000587 InsertChecks = SanitizeFunction;
Evgeniy Stepanov174242c2014-07-03 11:56:30 +0000588 PropagateShadow = SanitizeFunction;
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +0000589 PoisonStack = SanitizeFunction && ClPoisonStack;
590 PoisonUndef = SanitizeFunction && ClPoisonUndef;
Evgeniy Stepanov604293f2013-09-16 13:24:32 +0000591 // FIXME: Consider using SpecialCaseList to specify a list of functions that
592 // must always return fully initialized values. For now, we hardcode "main".
593 CheckReturnValue = SanitizeFunction && (F.getName() == "main");
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000594
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000595 DEBUG(if (!InsertChecks)
Evgeniy Stepanov00062b42013-02-28 11:25:14 +0000596 dbgs() << "MemorySanitizer is not inserting checks into '"
597 << F.getName() << "'\n");
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000598 }
599
Evgeniy Stepanov302964e2014-03-18 13:30:56 +0000600 Value *updateOrigin(Value *V, IRBuilder<> &IRB) {
601 if (MS.TrackOrigins <= 1) return V;
602 return IRB.CreateCall(MS.MsanChainOriginFn, V);
603 }
604
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000605 void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin,
606 unsigned Alignment, bool AsCall) {
Evgeniy Stepanovd85ddee2014-12-05 14:34:03 +0000607 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000608 if (isa<StructType>(Shadow->getType())) {
Evgeniy Stepanovd85ddee2014-12-05 14:34:03 +0000609 IRB.CreateAlignedStore(updateOrigin(Origin, IRB),
610 getOriginPtr(Addr, IRB, Alignment),
611 OriginAlignment);
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000612 } else {
613 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
614 // TODO(eugenis): handle non-zero constant shadow by inserting an
615 // unconditional check (can not simply fail compilation as this could
616 // be in the dead code).
Evgeniy Stepanov7db296e2014-10-23 01:05:46 +0000617 if (!ClCheckConstantShadow)
618 if (isa<Constant>(ConvertedShadow)) return;
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000619 unsigned TypeSizeInBits =
620 MS.DL->getTypeSizeInBits(ConvertedShadow->getType());
621 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
622 if (AsCall && SizeIndex < kNumberOfAccessSizes) {
623 Value *Fn = MS.MaybeStoreOriginFn[SizeIndex];
624 Value *ConvertedShadow2 = IRB.CreateZExt(
625 ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
626 IRB.CreateCall3(Fn, ConvertedShadow2,
627 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
Evgeniy Stepanovb163f022014-06-25 14:41:57 +0000628 Origin);
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000629 } else {
630 Value *Cmp = IRB.CreateICmpNE(
631 ConvertedShadow, getCleanShadow(ConvertedShadow), "_mscmp");
632 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
633 Cmp, IRB.GetInsertPoint(), false, MS.OriginStoreWeights);
634 IRBuilder<> IRBNew(CheckTerm);
635 IRBNew.CreateAlignedStore(updateOrigin(Origin, IRBNew),
Evgeniy Stepanovd85ddee2014-12-05 14:34:03 +0000636 getOriginPtr(Addr, IRBNew, Alignment),
637 OriginAlignment);
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000638 }
639 }
640 }
641
642 void materializeStores(bool InstrumentWithCalls) {
Alexey Samsonova02e6642014-05-29 18:40:48 +0000643 for (auto Inst : StoreList) {
644 StoreInst &SI = *dyn_cast<StoreInst>(Inst);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000645
Alexey Samsonova02e6642014-05-29 18:40:48 +0000646 IRBuilder<> IRB(&SI);
647 Value *Val = SI.getValueOperand();
648 Value *Addr = SI.getPointerOperand();
649 Value *Shadow = SI.isAtomic() ? getCleanShadow(Val) : getShadow(Val);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000650 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
651
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +0000652 StoreInst *NewSI =
Alexey Samsonova02e6642014-05-29 18:40:48 +0000653 IRB.CreateAlignedStore(Shadow, ShadowPtr, SI.getAlignment());
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000654 DEBUG(dbgs() << " STORE: " << *NewSI << "\n");
NAKAMURA Takumie0b1b462012-12-06 13:38:00 +0000655 (void)NewSI;
Evgeniy Stepanovc4415592013-01-22 12:30:52 +0000656
Alexey Samsonova02e6642014-05-29 18:40:48 +0000657 if (ClCheckAccessAddress) insertShadowCheck(Addr, &SI);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000658
Alexey Samsonova02e6642014-05-29 18:40:48 +0000659 if (SI.isAtomic()) SI.setOrdering(addReleaseOrdering(SI.getOrdering()));
Evgeniy Stepanov5522a702013-09-24 11:20:27 +0000660
Evgeniy Stepanovd85ddee2014-12-05 14:34:03 +0000661 if (MS.TrackOrigins)
662 storeOrigin(IRB, Addr, Shadow, getOrigin(Val), SI.getAlignment(),
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000663 InstrumentWithCalls);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000664 }
665 }
666
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000667 void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin,
668 bool AsCall) {
669 IRBuilder<> IRB(OrigIns);
670 DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n");
671 Value *ConvertedShadow = convertToShadowTyNoVec(Shadow, IRB);
672 DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n");
Evgeniy Stepanov7db296e2014-10-23 01:05:46 +0000673 // See the comment in storeOrigin().
674 if (!ClCheckConstantShadow)
675 if (isa<Constant>(ConvertedShadow)) return;
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000676 unsigned TypeSizeInBits =
677 MS.DL->getTypeSizeInBits(ConvertedShadow->getType());
678 unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits);
679 if (AsCall && SizeIndex < kNumberOfAccessSizes) {
680 Value *Fn = MS.MaybeWarningFn[SizeIndex];
681 Value *ConvertedShadow2 =
682 IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex)));
683 IRB.CreateCall2(Fn, ConvertedShadow2, MS.TrackOrigins && Origin
684 ? Origin
685 : (Value *)IRB.getInt32(0));
686 } else {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000687 Value *Cmp = IRB.CreateICmpNE(ConvertedShadow,
688 getCleanShadow(ConvertedShadow), "_mscmp");
Evgeniy Stepanova9164e92013-12-19 13:29:56 +0000689 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
690 Cmp, OrigIns,
691 /* Unreachable */ !ClKeepGoing, MS.ColdCallWeights);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000692
693 IRB.SetInsertPoint(CheckTerm);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000694 if (MS.TrackOrigins) {
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000695 IRB.CreateStore(Origin ? (Value *)Origin : (Value *)IRB.getInt32(0),
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000696 MS.OriginTLS);
697 }
Evgeniy Stepanov2275a012014-03-19 12:56:38 +0000698 IRB.CreateCall(MS.WarningFn);
Evgeniy Stepanov1d2da652012-11-29 12:30:18 +0000699 IRB.CreateCall(MS.EmptyAsm);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000700 DEBUG(dbgs() << " CHECK: " << *Cmp << "\n");
701 }
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000702 }
703
704 void materializeChecks(bool InstrumentWithCalls) {
Alexey Samsonova02e6642014-05-29 18:40:48 +0000705 for (const auto &ShadowData : InstrumentationList) {
706 Instruction *OrigIns = ShadowData.OrigIns;
707 Value *Shadow = ShadowData.Shadow;
708 Value *Origin = ShadowData.Origin;
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000709 materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls);
710 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000711 DEBUG(dbgs() << "DONE:\n" << F);
712 }
713
714 /// \brief Add MemorySanitizer instrumentation to a function.
715 bool runOnFunction() {
Evgeniy Stepanov94b257d2012-12-05 13:14:33 +0000716 MS.initializeCallbacks(*F.getParent());
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000717 if (!MS.DL) return false;
Evgeniy Stepanov4fbc0d082012-12-21 11:18:49 +0000718
719 // In the presence of unreachable blocks, we may see Phi nodes with
720 // incoming nodes from such blocks. Since InstVisitor skips unreachable
721 // blocks, such nodes will not have any shadow value associated with them.
722 // It's easier to remove unreachable blocks than deal with missing shadow.
723 removeUnreachableBlocks(F);
724
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000725 // Iterate all BBs in depth-first order and create shadow instructions
726 // for all instructions (where applicable).
727 // For PHI nodes we create dummy shadow PHIs which will be finalized later.
David Blaikieceec2bd2014-04-11 01:50:01 +0000728 for (BasicBlock *BB : depth_first(&F.getEntryBlock()))
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000729 visit(*BB);
David Blaikieceec2bd2014-04-11 01:50:01 +0000730
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000731
732 // Finalize PHI nodes.
Alexey Samsonova02e6642014-05-29 18:40:48 +0000733 for (PHINode *PN : ShadowPHINodes) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000734 PHINode *PNS = cast<PHINode>(getShadow(PN));
Craig Topperf40110f2014-04-25 05:29:35 +0000735 PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000736 size_t NumValues = PN->getNumIncomingValues();
737 for (size_t v = 0; v < NumValues; v++) {
738 PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v));
Evgeniy Stepanov174242c2014-07-03 11:56:30 +0000739 if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000740 }
741 }
742
743 VAHelper->finalizeInstrumentation();
744
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000745 bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 &&
746 InstrumentationList.size() + StoreList.size() >
747 (unsigned)ClInstrumentationWithCallThreshold;
748
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000749 // Delayed instrumentation of StoreInst.
Evgeniy Stepanov47ac9ba2012-12-06 11:58:59 +0000750 // This may add new checks to be inserted later.
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000751 materializeStores(InstrumentWithCalls);
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +0000752
753 // Insert shadow value checks.
Evgeniy Stepanov65120ec2014-04-18 12:17:20 +0000754 materializeChecks(InstrumentWithCalls);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000755
756 return true;
757 }
758
759 /// \brief Compute the shadow type that corresponds to a given Value.
760 Type *getShadowTy(Value *V) {
761 return getShadowTy(V->getType());
762 }
763
764 /// \brief Compute the shadow type that corresponds to a given Type.
765 Type *getShadowTy(Type *OrigTy) {
766 if (!OrigTy->isSized()) {
Craig Topperf40110f2014-04-25 05:29:35 +0000767 return nullptr;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000768 }
769 // For integer type, shadow is the same as the original type.
770 // This may return weird-sized types like i1.
771 if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy))
772 return IT;
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +0000773 if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) {
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000774 uint32_t EltSize = MS.DL->getTypeSizeInBits(VT->getElementType());
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +0000775 return VectorType::get(IntegerType::get(*MS.C, EltSize),
776 VT->getNumElements());
777 }
Evgeniy Stepanov5997feb2014-07-31 11:02:27 +0000778 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) {
779 return ArrayType::get(getShadowTy(AT->getElementType()),
780 AT->getNumElements());
781 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000782 if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
783 SmallVector<Type*, 4> Elements;
784 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
785 Elements.push_back(getShadowTy(ST->getElementType(i)));
786 StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked());
787 DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n");
788 return Res;
789 }
Rafael Espindola37dc9e12014-02-21 00:06:31 +0000790 uint32_t TypeSize = MS.DL->getTypeSizeInBits(OrigTy);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000791 return IntegerType::get(*MS.C, TypeSize);
792 }
793
794 /// \brief Flatten a vector type.
795 Type *getShadowTyNoVec(Type *ty) {
796 if (VectorType *vt = dyn_cast<VectorType>(ty))
797 return IntegerType::get(*MS.C, vt->getBitWidth());
798 return ty;
799 }
800
801 /// \brief Convert a shadow value to it's flattened variant.
802 Value *convertToShadowTyNoVec(Value *V, IRBuilder<> &IRB) {
803 Type *Ty = V->getType();
804 Type *NoVecTy = getShadowTyNoVec(Ty);
805 if (Ty == NoVecTy) return V;
806 return IRB.CreateBitCast(V, NoVecTy);
807 }
808
Viktor Kutuzovb4ffb5d2014-12-18 12:12:59 +0000809 /// \brief Compute the integer shadow offset that corresponds to a given
810 /// application address.
811 ///
812 /// Offset = (Addr & ~AndMask) ^ XorMask
813 Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) {
814 uint64_t AndMask = MS.MapParams->AndMask;
815 assert(AndMask != 0 && "AndMask shall be specified");
816 Value *OffsetLong =
817 IRB.CreateAnd(IRB.CreatePointerCast(Addr, MS.IntptrTy),
818 ConstantInt::get(MS.IntptrTy, ~AndMask));
819
820 uint64_t XorMask = MS.MapParams->XorMask;
821 if (XorMask != 0)
822 OffsetLong = IRB.CreateXor(OffsetLong,
823 ConstantInt::get(MS.IntptrTy, XorMask));
824 return OffsetLong;
825 }
826
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000827 /// \brief Compute the shadow address that corresponds to a given application
828 /// address.
829 ///
Viktor Kutuzovb4ffb5d2014-12-18 12:12:59 +0000830 /// Shadow = ShadowBase + Offset
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000831 Value *getShadowPtr(Value *Addr, Type *ShadowTy,
832 IRBuilder<> &IRB) {
Viktor Kutuzovb4ffb5d2014-12-18 12:12:59 +0000833 Value *ShadowLong = getShadowPtrOffset(Addr, IRB);
834 uint64_t ShadowBase = MS.MapParams->ShadowBase;
835 if (ShadowBase != 0)
836 ShadowLong =
837 IRB.CreateAdd(ShadowLong,
838 ConstantInt::get(MS.IntptrTy, ShadowBase));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000839 return IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
840 }
841
842 /// \brief Compute the origin address that corresponds to a given application
843 /// address.
844 ///
Viktor Kutuzovb4ffb5d2014-12-18 12:12:59 +0000845 /// OriginAddr = (OriginBase + Offset) & ~3ULL
Evgeniy Stepanovd85ddee2014-12-05 14:34:03 +0000846 Value *getOriginPtr(Value *Addr, IRBuilder<> &IRB, unsigned Alignment) {
Viktor Kutuzovb4ffb5d2014-12-18 12:12:59 +0000847 Value *OriginLong = getShadowPtrOffset(Addr, IRB);
848 uint64_t OriginBase = MS.MapParams->OriginBase;
849 if (OriginBase != 0)
850 OriginLong =
851 IRB.CreateAdd(OriginLong,
852 ConstantInt::get(MS.IntptrTy, OriginBase));
Evgeniy Stepanovd85ddee2014-12-05 14:34:03 +0000853 if (Alignment < kMinOriginAlignment) {
854 uint64_t Mask = kMinOriginAlignment - 1;
Viktor Kutuzovb4ffb5d2014-12-18 12:12:59 +0000855 OriginLong = IRB.CreateAnd(OriginLong,
856 ConstantInt::get(MS.IntptrTy, ~Mask));
Evgeniy Stepanovd85ddee2014-12-05 14:34:03 +0000857 }
Viktor Kutuzovb4ffb5d2014-12-18 12:12:59 +0000858 return IRB.CreateIntToPtr(OriginLong,
859 PointerType::get(IRB.getInt32Ty(), 0));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000860 }
861
862 /// \brief Compute the shadow address for a given function argument.
863 ///
864 /// Shadow = ParamTLS+ArgOffset.
865 Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB,
866 int ArgOffset) {
867 Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy);
868 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
869 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
870 "_msarg");
871 }
872
873 /// \brief Compute the origin address for a given function argument.
874 Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB,
875 int ArgOffset) {
Craig Topperf40110f2014-04-25 05:29:35 +0000876 if (!MS.TrackOrigins) return nullptr;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000877 Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy);
878 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
879 return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0),
880 "_msarg_o");
881 }
882
883 /// \brief Compute the shadow address for a retval.
884 Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) {
885 Value *Base = IRB.CreatePointerCast(MS.RetvalTLS, MS.IntptrTy);
886 return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0),
887 "_msret");
888 }
889
890 /// \brief Compute the origin address for a retval.
891 Value *getOriginPtrForRetval(IRBuilder<> &IRB) {
892 // We keep a single origin for the entire retval. Might be too optimistic.
893 return MS.RetvalOriginTLS;
894 }
895
896 /// \brief Set SV to be the shadow value for V.
897 void setShadow(Value *V, Value *SV) {
898 assert(!ShadowMap.count(V) && "Values may only have one shadow");
Evgeniy Stepanov174242c2014-07-03 11:56:30 +0000899 ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000900 }
901
902 /// \brief Set Origin to be the origin value for V.
903 void setOrigin(Value *V, Value *Origin) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +0000904 if (!MS.TrackOrigins) return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000905 assert(!OriginMap.count(V) && "Values may only have one origin");
906 DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n");
907 OriginMap[V] = Origin;
908 }
909
910 /// \brief Create a clean shadow value for a given value.
911 ///
912 /// Clean shadow (all zeroes) means all bits of the value are defined
913 /// (initialized).
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000914 Constant *getCleanShadow(Value *V) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000915 Type *ShadowTy = getShadowTy(V);
916 if (!ShadowTy)
Craig Topperf40110f2014-04-25 05:29:35 +0000917 return nullptr;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000918 return Constant::getNullValue(ShadowTy);
919 }
920
921 /// \brief Create a dirty shadow of a given shadow type.
922 Constant *getPoisonedShadow(Type *ShadowTy) {
923 assert(ShadowTy);
924 if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy))
925 return Constant::getAllOnesValue(ShadowTy);
Evgeniy Stepanov5997feb2014-07-31 11:02:27 +0000926 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) {
927 SmallVector<Constant *, 4> Vals(AT->getNumElements(),
928 getPoisonedShadow(AT->getElementType()));
929 return ConstantArray::get(AT, Vals);
930 }
931 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) {
932 SmallVector<Constant *, 4> Vals;
933 for (unsigned i = 0, n = ST->getNumElements(); i < n; i++)
934 Vals.push_back(getPoisonedShadow(ST->getElementType(i)));
935 return ConstantStruct::get(ST, Vals);
936 }
937 llvm_unreachable("Unexpected shadow type");
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000938 }
939
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000940 /// \brief Create a dirty shadow for a given value.
941 Constant *getPoisonedShadow(Value *V) {
942 Type *ShadowTy = getShadowTy(V);
943 if (!ShadowTy)
Craig Topperf40110f2014-04-25 05:29:35 +0000944 return nullptr;
Evgeniy Stepanova9a962c2013-03-21 09:38:26 +0000945 return getPoisonedShadow(ShadowTy);
946 }
947
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000948 /// \brief Create a clean (zero) origin.
949 Value *getCleanOrigin() {
950 return Constant::getNullValue(MS.OriginTy);
951 }
952
953 /// \brief Get the shadow value for a given Value.
954 ///
955 /// This function either returns the value set earlier with setShadow,
956 /// or extracts if from ParamTLS (for function arguments).
957 Value *getShadow(Value *V) {
Evgeniy Stepanov174242c2014-07-03 11:56:30 +0000958 if (!PropagateShadow) return getCleanShadow(V);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000959 if (Instruction *I = dyn_cast<Instruction>(V)) {
960 // For instructions the shadow is already stored in the map.
961 Value *Shadow = ShadowMap[V];
962 if (!Shadow) {
963 DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()));
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000964 (void)I;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000965 assert(Shadow && "No shadow for a value");
966 }
967 return Shadow;
968 }
969 if (UndefValue *U = dyn_cast<UndefValue>(V)) {
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +0000970 Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000971 DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +0000972 (void)U;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000973 return AllOnes;
974 }
975 if (Argument *A = dyn_cast<Argument>(V)) {
976 // For arguments we compute the shadow on demand and store it in the map.
977 Value **ShadowPtr = &ShadowMap[V];
978 if (*ShadowPtr)
979 return *ShadowPtr;
980 Function *F = A->getParent();
981 IRBuilder<> EntryIRB(F->getEntryBlock().getFirstNonPHI());
982 unsigned ArgOffset = 0;
Alexey Samsonova02e6642014-05-29 18:40:48 +0000983 for (auto &FArg : F->args()) {
984 if (!FArg.getType()->isSized()) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000985 DEBUG(dbgs() << "Arg is not sized\n");
986 continue;
987 }
Alexey Samsonova02e6642014-05-29 18:40:48 +0000988 unsigned Size = FArg.hasByValAttr()
989 ? MS.DL->getTypeAllocSize(FArg.getType()->getPointerElementType())
990 : MS.DL->getTypeAllocSize(FArg.getType());
991 if (A == &FArg) {
Evgeniy Stepanov35eb2652014-10-22 00:12:40 +0000992 bool Overflow = ArgOffset + Size > kParamTLSSize;
Alexey Samsonova02e6642014-05-29 18:40:48 +0000993 Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset);
994 if (FArg.hasByValAttr()) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +0000995 // ByVal pointer itself has clean shadow. We copy the actual
996 // argument shadow to the underlying memory.
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000997 // Figure out maximal valid memcpy alignment.
Alexey Samsonova02e6642014-05-29 18:40:48 +0000998 unsigned ArgAlign = FArg.getParamAlignment();
Evgeniy Stepanovfca01232013-05-28 13:07:43 +0000999 if (ArgAlign == 0) {
1000 Type *EltType = A->getType()->getPointerElementType();
Rafael Espindola37dc9e12014-02-21 00:06:31 +00001001 ArgAlign = MS.DL->getABITypeAlignment(EltType);
Evgeniy Stepanovfca01232013-05-28 13:07:43 +00001002 }
Evgeniy Stepanov35eb2652014-10-22 00:12:40 +00001003 if (Overflow) {
1004 // ParamTLS overflow.
1005 EntryIRB.CreateMemSet(
1006 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB),
1007 Constant::getNullValue(EntryIRB.getInt8Ty()), Size, ArgAlign);
1008 } else {
1009 unsigned CopyAlign = std::min(ArgAlign, kShadowTLSAlignment);
1010 Value *Cpy = EntryIRB.CreateMemCpy(
1011 getShadowPtr(V, EntryIRB.getInt8Ty(), EntryIRB), Base, Size,
1012 CopyAlign);
1013 DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n");
1014 (void)Cpy;
1015 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001016 *ShadowPtr = getCleanShadow(V);
1017 } else {
Evgeniy Stepanov35eb2652014-10-22 00:12:40 +00001018 if (Overflow) {
1019 // ParamTLS overflow.
1020 *ShadowPtr = getCleanShadow(V);
1021 } else {
1022 *ShadowPtr =
1023 EntryIRB.CreateAlignedLoad(Base, kShadowTLSAlignment);
1024 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001025 }
Alexey Samsonova02e6642014-05-29 18:40:48 +00001026 DEBUG(dbgs() << " ARG: " << FArg << " ==> " <<
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001027 **ShadowPtr << "\n");
Evgeniy Stepanov35eb2652014-10-22 00:12:40 +00001028 if (MS.TrackOrigins && !Overflow) {
Alexey Samsonova02e6642014-05-29 18:40:48 +00001029 Value *OriginPtr =
1030 getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001031 setOrigin(A, EntryIRB.CreateLoad(OriginPtr));
Evgeniy Stepanov2e5a1f12014-12-03 14:15:53 +00001032 } else {
1033 setOrigin(A, getCleanOrigin());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001034 }
1035 }
David Majnemerf3cadce2014-10-20 06:13:33 +00001036 ArgOffset += RoundUpToAlignment(Size, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001037 }
1038 assert(*ShadowPtr && "Could not find shadow for an argument");
1039 return *ShadowPtr;
1040 }
1041 // For everything else the shadow is zero.
1042 return getCleanShadow(V);
1043 }
1044
1045 /// \brief Get the shadow for i-th argument of the instruction I.
1046 Value *getShadow(Instruction *I, int i) {
1047 return getShadow(I->getOperand(i));
1048 }
1049
1050 /// \brief Get the origin for a value.
1051 Value *getOrigin(Value *V) {
Craig Topperf40110f2014-04-25 05:29:35 +00001052 if (!MS.TrackOrigins) return nullptr;
Evgeniy Stepanov2e5a1f12014-12-03 14:15:53 +00001053 if (!PropagateShadow) return getCleanOrigin();
1054 if (isa<Constant>(V)) return getCleanOrigin();
1055 assert((isa<Instruction>(V) || isa<Argument>(V)) &&
1056 "Unexpected value type in getOrigin()");
1057 Value *Origin = OriginMap[V];
1058 assert(Origin && "Missing origin");
1059 return Origin;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001060 }
1061
1062 /// \brief Get the origin for i-th argument of the instruction I.
1063 Value *getOrigin(Instruction *I, int i) {
1064 return getOrigin(I->getOperand(i));
1065 }
1066
1067 /// \brief Remember the place where a shadow check should be inserted.
1068 ///
1069 /// This location will be later instrumented with a check that will print a
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001070 /// UMR warning in runtime if the shadow value is not 0.
1071 void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) {
1072 assert(Shadow);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001073 if (!InsertChecks) return;
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +00001074#ifndef NDEBUG
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001075 Type *ShadowTy = Shadow->getType();
1076 assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) &&
1077 "Can only insert checks for integer and vector shadow types");
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +00001078#endif
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001079 InstrumentationList.push_back(
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001080 ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns));
1081 }
1082
1083 /// \brief Remember the place where a shadow check should be inserted.
1084 ///
1085 /// This location will be later instrumented with a check that will print a
1086 /// UMR warning in runtime if the value is not fully defined.
1087 void insertShadowCheck(Value *Val, Instruction *OrigIns) {
1088 assert(Val);
Evgeniy Stepanovd337a592014-10-24 23:34:15 +00001089 Value *Shadow, *Origin;
1090 if (ClCheckConstantShadow) {
1091 Shadow = getShadow(Val);
1092 if (!Shadow) return;
1093 Origin = getOrigin(Val);
1094 } else {
1095 Shadow = dyn_cast_or_null<Instruction>(getShadow(Val));
1096 if (!Shadow) return;
1097 Origin = dyn_cast_or_null<Instruction>(getOrigin(Val));
1098 }
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001099 insertShadowCheck(Shadow, Origin, OrigIns);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001100 }
1101
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001102 AtomicOrdering addReleaseOrdering(AtomicOrdering a) {
1103 switch (a) {
1104 case NotAtomic:
1105 return NotAtomic;
1106 case Unordered:
1107 case Monotonic:
1108 case Release:
1109 return Release;
1110 case Acquire:
1111 case AcquireRelease:
1112 return AcquireRelease;
1113 case SequentiallyConsistent:
1114 return SequentiallyConsistent;
1115 }
Evgeniy Stepanov32be0342013-09-25 08:56:00 +00001116 llvm_unreachable("Unknown ordering");
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001117 }
1118
1119 AtomicOrdering addAcquireOrdering(AtomicOrdering a) {
1120 switch (a) {
1121 case NotAtomic:
1122 return NotAtomic;
1123 case Unordered:
1124 case Monotonic:
1125 case Acquire:
1126 return Acquire;
1127 case Release:
1128 case AcquireRelease:
1129 return AcquireRelease;
1130 case SequentiallyConsistent:
1131 return SequentiallyConsistent;
1132 }
Evgeniy Stepanov32be0342013-09-25 08:56:00 +00001133 llvm_unreachable("Unknown ordering");
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001134 }
1135
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00001136 // ------------------- Visitors.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001137
1138 /// \brief Instrument LoadInst
1139 ///
1140 /// Loads the corresponding shadow and (optionally) origin.
1141 /// Optionally, checks that the load address is fully defined.
1142 void visitLoadInst(LoadInst &I) {
Matt Beaumont-Gayc76536f2012-11-29 18:15:49 +00001143 assert(I.getType()->isSized() && "Load type must have size");
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001144 IRBuilder<> IRB(I.getNextNode());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001145 Type *ShadowTy = getShadowTy(&I);
1146 Value *Addr = I.getPointerOperand();
Kostya Serebryany543f3db2014-12-03 23:28:26 +00001147 if (PropagateShadow && !I.getMetadata("nosanitize")) {
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001148 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1149 setShadow(&I,
1150 IRB.CreateAlignedLoad(ShadowPtr, I.getAlignment(), "_msld"));
1151 } else {
1152 setShadow(&I, getCleanShadow(&I));
1153 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001154
1155 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001156 insertShadowCheck(I.getPointerOperand(), &I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001157
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001158 if (I.isAtomic())
1159 I.setOrdering(addAcquireOrdering(I.getOrdering()));
1160
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +00001161 if (MS.TrackOrigins) {
Evgeniy Stepanov174242c2014-07-03 11:56:30 +00001162 if (PropagateShadow) {
Evgeniy Stepanovd85ddee2014-12-05 14:34:03 +00001163 unsigned Alignment = I.getAlignment();
1164 unsigned OriginAlignment = std::max(kMinOriginAlignment, Alignment);
1165 setOrigin(&I, IRB.CreateAlignedLoad(getOriginPtr(Addr, IRB, Alignment),
1166 OriginAlignment));
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001167 } else {
1168 setOrigin(&I, getCleanOrigin());
1169 }
Evgeniy Stepanov5eb5bf82012-12-26 11:55:09 +00001170 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001171 }
1172
1173 /// \brief Instrument StoreInst
1174 ///
1175 /// Stores the corresponding shadow and (optionally) origin.
1176 /// Optionally, checks that the store address is fully defined.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001177 void visitStoreInst(StoreInst &I) {
Evgeniy Stepanov4f220d92012-12-06 11:41:03 +00001178 StoreList.push_back(&I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001179 }
1180
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001181 void handleCASOrRMW(Instruction &I) {
1182 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
1183
1184 IRBuilder<> IRB(&I);
1185 Value *Addr = I.getOperand(0);
1186 Value *ShadowPtr = getShadowPtr(Addr, I.getType(), IRB);
1187
1188 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001189 insertShadowCheck(Addr, &I);
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001190
1191 // Only test the conditional argument of cmpxchg instruction.
1192 // The other argument can potentially be uninitialized, but we can not
1193 // detect this situation reliably without possible false positives.
1194 if (isa<AtomicCmpXchgInst>(I))
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001195 insertShadowCheck(I.getOperand(1), &I);
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001196
1197 IRB.CreateStore(getCleanShadow(&I), ShadowPtr);
1198
1199 setShadow(&I, getCleanShadow(&I));
Evgeniy Stepanov2e5a1f12014-12-03 14:15:53 +00001200 setOrigin(&I, getCleanOrigin());
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001201 }
1202
1203 void visitAtomicRMWInst(AtomicRMWInst &I) {
1204 handleCASOrRMW(I);
1205 I.setOrdering(addReleaseOrdering(I.getOrdering()));
1206 }
1207
1208 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
1209 handleCASOrRMW(I);
Tim Northovere94a5182014-03-11 10:48:52 +00001210 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
Evgeniy Stepanov5522a702013-09-24 11:20:27 +00001211 }
1212
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001213 // Vector manipulation.
1214 void visitExtractElementInst(ExtractElementInst &I) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001215 insertShadowCheck(I.getOperand(1), &I);
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001216 IRBuilder<> IRB(&I);
1217 setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1),
1218 "_msprop"));
1219 setOrigin(&I, getOrigin(&I, 0));
1220 }
1221
1222 void visitInsertElementInst(InsertElementInst &I) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001223 insertShadowCheck(I.getOperand(2), &I);
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001224 IRBuilder<> IRB(&I);
1225 setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1),
1226 I.getOperand(2), "_msprop"));
1227 setOriginForNaryOp(I);
1228 }
1229
1230 void visitShuffleVectorInst(ShuffleVectorInst &I) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001231 insertShadowCheck(I.getOperand(2), &I);
Evgeniy Stepanov30484fc2012-11-29 15:22:06 +00001232 IRBuilder<> IRB(&I);
1233 setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1),
1234 I.getOperand(2), "_msprop"));
1235 setOriginForNaryOp(I);
1236 }
1237
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001238 // Casts.
1239 void visitSExtInst(SExtInst &I) {
1240 IRBuilder<> IRB(&I);
1241 setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop"));
1242 setOrigin(&I, getOrigin(&I, 0));
1243 }
1244
1245 void visitZExtInst(ZExtInst &I) {
1246 IRBuilder<> IRB(&I);
1247 setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop"));
1248 setOrigin(&I, getOrigin(&I, 0));
1249 }
1250
1251 void visitTruncInst(TruncInst &I) {
1252 IRBuilder<> IRB(&I);
1253 setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop"));
1254 setOrigin(&I, getOrigin(&I, 0));
1255 }
1256
1257 void visitBitCastInst(BitCastInst &I) {
1258 IRBuilder<> IRB(&I);
1259 setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I)));
1260 setOrigin(&I, getOrigin(&I, 0));
1261 }
1262
1263 void visitPtrToIntInst(PtrToIntInst &I) {
1264 IRBuilder<> IRB(&I);
1265 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1266 "_msprop_ptrtoint"));
1267 setOrigin(&I, getOrigin(&I, 0));
1268 }
1269
1270 void visitIntToPtrInst(IntToPtrInst &I) {
1271 IRBuilder<> IRB(&I);
1272 setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false,
1273 "_msprop_inttoptr"));
1274 setOrigin(&I, getOrigin(&I, 0));
1275 }
1276
1277 void visitFPToSIInst(CastInst& I) { handleShadowOr(I); }
1278 void visitFPToUIInst(CastInst& I) { handleShadowOr(I); }
1279 void visitSIToFPInst(CastInst& I) { handleShadowOr(I); }
1280 void visitUIToFPInst(CastInst& I) { handleShadowOr(I); }
1281 void visitFPExtInst(CastInst& I) { handleShadowOr(I); }
1282 void visitFPTruncInst(CastInst& I) { handleShadowOr(I); }
1283
1284 /// \brief Propagate shadow for bitwise AND.
1285 ///
1286 /// This code is exact, i.e. if, for example, a bit in the left argument
1287 /// is defined and 0, then neither the value not definedness of the
1288 /// corresponding bit in B don't affect the resulting shadow.
1289 void visitAnd(BinaryOperator &I) {
1290 IRBuilder<> IRB(&I);
1291 // "And" of 0 and a poisoned value results in unpoisoned value.
1292 // 1&1 => 1; 0&1 => 0; p&1 => p;
1293 // 1&0 => 0; 0&0 => 0; p&0 => 0;
1294 // 1&p => p; 0&p => 0; p&p => p;
1295 // S = (S1 & S2) | (V1 & S2) | (S1 & V2)
1296 Value *S1 = getShadow(&I, 0);
1297 Value *S2 = getShadow(&I, 1);
1298 Value *V1 = I.getOperand(0);
1299 Value *V2 = I.getOperand(1);
1300 if (V1->getType() != S1->getType()) {
1301 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1302 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1303 }
1304 Value *S1S2 = IRB.CreateAnd(S1, S2);
1305 Value *V1S2 = IRB.CreateAnd(V1, S2);
1306 Value *S1V2 = IRB.CreateAnd(S1, V2);
1307 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1308 setOriginForNaryOp(I);
1309 }
1310
1311 void visitOr(BinaryOperator &I) {
1312 IRBuilder<> IRB(&I);
1313 // "Or" of 1 and a poisoned value results in unpoisoned value.
1314 // 1|1 => 1; 0|1 => 1; p|1 => 1;
1315 // 1|0 => 1; 0|0 => 0; p|0 => p;
1316 // 1|p => 1; 0|p => p; p|p => p;
1317 // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2)
1318 Value *S1 = getShadow(&I, 0);
1319 Value *S2 = getShadow(&I, 1);
1320 Value *V1 = IRB.CreateNot(I.getOperand(0));
1321 Value *V2 = IRB.CreateNot(I.getOperand(1));
1322 if (V1->getType() != S1->getType()) {
1323 V1 = IRB.CreateIntCast(V1, S1->getType(), false);
1324 V2 = IRB.CreateIntCast(V2, S2->getType(), false);
1325 }
1326 Value *S1S2 = IRB.CreateAnd(S1, S2);
1327 Value *V1S2 = IRB.CreateAnd(V1, S2);
1328 Value *S1V2 = IRB.CreateAnd(S1, V2);
1329 setShadow(&I, IRB.CreateOr(S1S2, IRB.CreateOr(V1S2, S1V2)));
1330 setOriginForNaryOp(I);
1331 }
1332
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001333 /// \brief Default propagation of shadow and/or origin.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001334 ///
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001335 /// This class implements the general case of shadow propagation, used in all
1336 /// cases where we don't know and/or don't care about what the operation
1337 /// actually does. It converts all input shadow values to a common type
1338 /// (extending or truncating as necessary), and bitwise OR's them.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001339 ///
1340 /// This is much cheaper than inserting checks (i.e. requiring inputs to be
1341 /// fully initialized), and less prone to false positives.
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001342 ///
1343 /// This class also implements the general case of origin propagation. For a
1344 /// Nary operation, result origin is set to the origin of an argument that is
1345 /// not entirely initialized. If there is more than one such arguments, the
1346 /// rightmost of them is picked. It does not matter which one is picked if all
1347 /// arguments are initialized.
1348 template <bool CombineShadow>
1349 class Combiner {
1350 Value *Shadow;
1351 Value *Origin;
1352 IRBuilder<> &IRB;
1353 MemorySanitizerVisitor *MSV;
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00001354
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001355 public:
1356 Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) :
Craig Topperf40110f2014-04-25 05:29:35 +00001357 Shadow(nullptr), Origin(nullptr), IRB(IRB), MSV(MSV) {}
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001358
1359 /// \brief Add a pair of shadow and origin values to the mix.
1360 Combiner &Add(Value *OpShadow, Value *OpOrigin) {
1361 if (CombineShadow) {
1362 assert(OpShadow);
1363 if (!Shadow)
1364 Shadow = OpShadow;
1365 else {
1366 OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType());
1367 Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop");
1368 }
1369 }
1370
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001371 if (MSV->MS.TrackOrigins) {
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001372 assert(OpOrigin);
1373 if (!Origin) {
1374 Origin = OpOrigin;
1375 } else {
Evgeniy Stepanov70d1b0a2014-06-09 14:29:34 +00001376 Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin);
1377 // No point in adding something that might result in 0 origin value.
1378 if (!ConstOrigin || !ConstOrigin->isNullValue()) {
1379 Value *FlatShadow = MSV->convertToShadowTyNoVec(OpShadow, IRB);
1380 Value *Cond =
1381 IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow));
1382 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
1383 }
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001384 }
1385 }
1386 return *this;
1387 }
1388
1389 /// \brief Add an application value to the mix.
1390 Combiner &Add(Value *V) {
1391 Value *OpShadow = MSV->getShadow(V);
Craig Topperf40110f2014-04-25 05:29:35 +00001392 Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr;
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001393 return Add(OpShadow, OpOrigin);
1394 }
1395
1396 /// \brief Set the current combined values as the given instruction's shadow
1397 /// and origin.
1398 void Done(Instruction *I) {
1399 if (CombineShadow) {
1400 assert(Shadow);
1401 Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I));
1402 MSV->setShadow(I, Shadow);
1403 }
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001404 if (MSV->MS.TrackOrigins) {
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001405 assert(Origin);
1406 MSV->setOrigin(I, Origin);
1407 }
1408 }
1409 };
1410
1411 typedef Combiner<true> ShadowAndOriginCombiner;
1412 typedef Combiner<false> OriginCombiner;
1413
1414 /// \brief Propagate origin for arbitrary operation.
1415 void setOriginForNaryOp(Instruction &I) {
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001416 if (!MS.TrackOrigins) return;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001417 IRBuilder<> IRB(&I);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001418 OriginCombiner OC(this, IRB);
1419 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1420 OC.Add(OI->get());
1421 OC.Done(&I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001422 }
1423
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001424 size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) {
Evgeniy Stepanovf19c0862012-12-25 16:04:38 +00001425 assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&
1426 "Vector of pointers is not a valid shadow type");
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001427 return Ty->isVectorTy() ?
1428 Ty->getVectorNumElements() * Ty->getScalarSizeInBits() :
1429 Ty->getPrimitiveSizeInBits();
1430 }
1431
1432 /// \brief Cast between two shadow types, extending or truncating as
1433 /// necessary.
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001434 Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy,
1435 bool Signed = false) {
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001436 Type *srcTy = V->getType();
1437 if (dstTy->isIntegerTy() && srcTy->isIntegerTy())
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001438 return IRB.CreateIntCast(V, dstTy, Signed);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001439 if (dstTy->isVectorTy() && srcTy->isVectorTy() &&
1440 dstTy->getVectorNumElements() == srcTy->getVectorNumElements())
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001441 return IRB.CreateIntCast(V, dstTy, Signed);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001442 size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy);
1443 size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy);
1444 Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits));
1445 Value *V2 =
Evgeniy Stepanov21a9c932013-10-17 10:53:50 +00001446 IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed);
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001447 return IRB.CreateBitCast(V2, dstTy);
1448 // TODO: handle struct types.
1449 }
1450
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00001451 /// \brief Cast an application value to the type of its own shadow.
1452 Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) {
1453 Type *ShadowTy = getShadowTy(V);
1454 if (V->getType() == ShadowTy)
1455 return V;
1456 if (V->getType()->isPtrOrPtrVectorTy())
1457 return IRB.CreatePtrToInt(V, ShadowTy);
1458 else
1459 return IRB.CreateBitCast(V, ShadowTy);
1460 }
1461
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001462 /// \brief Propagate shadow for arbitrary operation.
1463 void handleShadowOr(Instruction &I) {
1464 IRBuilder<> IRB(&I);
1465 ShadowAndOriginCombiner SC(this, IRB);
1466 for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI)
1467 SC.Add(OI->get());
1468 SC.Done(&I);
1469 }
1470
Evgeniy Stepanovdf187fe2014-06-17 09:23:12 +00001471 // \brief Handle multiplication by constant.
1472 //
1473 // Handle a special case of multiplication by constant that may have one or
1474 // more zeros in the lower bits. This makes corresponding number of lower bits
1475 // of the result zero as well. We model it by shifting the other operand
1476 // shadow left by the required number of bits. Effectively, we transform
1477 // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B).
1478 // We use multiplication by 2**N instead of shift to cover the case of
1479 // multiplication by 0, which may occur in some elements of a vector operand.
1480 void handleMulByConstant(BinaryOperator &I, Constant *ConstArg,
1481 Value *OtherArg) {
1482 Constant *ShadowMul;
1483 Type *Ty = ConstArg->getType();
1484 if (Ty->isVectorTy()) {
1485 unsigned NumElements = Ty->getVectorNumElements();
1486 Type *EltTy = Ty->getSequentialElementType();
1487 SmallVector<Constant *, 16> Elements;
1488 for (unsigned Idx = 0; Idx < NumElements; ++Idx) {
1489 ConstantInt *Elt =
1490 dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx));
1491 APInt V = Elt->getValue();
1492 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
1493 Elements.push_back(ConstantInt::get(EltTy, V2));
1494 }
1495 ShadowMul = ConstantVector::get(Elements);
1496 } else {
1497 ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg);
1498 APInt V = Elt->getValue();
1499 APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros();
1500 ShadowMul = ConstantInt::get(Elt->getType(), V2);
1501 }
1502
1503 IRBuilder<> IRB(&I);
1504 setShadow(&I,
1505 IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst"));
1506 setOrigin(&I, getOrigin(OtherArg));
1507 }
1508
1509 void visitMul(BinaryOperator &I) {
1510 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
1511 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
1512 if (constOp0 && !constOp1)
1513 handleMulByConstant(I, constOp0, I.getOperand(1));
1514 else if (constOp1 && !constOp0)
1515 handleMulByConstant(I, constOp1, I.getOperand(0));
1516 else
1517 handleShadowOr(I);
1518 }
1519
Evgeniy Stepanovf18e3af2012-12-14 12:54:18 +00001520 void visitFAdd(BinaryOperator &I) { handleShadowOr(I); }
1521 void visitFSub(BinaryOperator &I) { handleShadowOr(I); }
1522 void visitFMul(BinaryOperator &I) { handleShadowOr(I); }
1523 void visitAdd(BinaryOperator &I) { handleShadowOr(I); }
1524 void visitSub(BinaryOperator &I) { handleShadowOr(I); }
1525 void visitXor(BinaryOperator &I) { handleShadowOr(I); }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001526
1527 void handleDiv(Instruction &I) {
1528 IRBuilder<> IRB(&I);
1529 // Strict on the second argument.
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001530 insertShadowCheck(I.getOperand(1), &I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001531 setShadow(&I, getShadow(&I, 0));
1532 setOrigin(&I, getOrigin(&I, 0));
1533 }
1534
1535 void visitUDiv(BinaryOperator &I) { handleDiv(I); }
1536 void visitSDiv(BinaryOperator &I) { handleDiv(I); }
1537 void visitFDiv(BinaryOperator &I) { handleDiv(I); }
1538 void visitURem(BinaryOperator &I) { handleDiv(I); }
1539 void visitSRem(BinaryOperator &I) { handleDiv(I); }
1540 void visitFRem(BinaryOperator &I) { handleDiv(I); }
1541
1542 /// \brief Instrument == and != comparisons.
1543 ///
1544 /// Sometimes the comparison result is known even if some of the bits of the
1545 /// arguments are not.
1546 void handleEqualityComparison(ICmpInst &I) {
1547 IRBuilder<> IRB(&I);
1548 Value *A = I.getOperand(0);
1549 Value *B = I.getOperand(1);
1550 Value *Sa = getShadow(A);
1551 Value *Sb = getShadow(B);
Evgeniy Stepanovd14e47b2013-01-15 16:44:52 +00001552
1553 // Get rid of pointers and vectors of pointers.
1554 // For ints (and vectors of ints), types of A and Sa match,
1555 // and this is a no-op.
1556 A = IRB.CreatePointerCast(A, Sa->getType());
1557 B = IRB.CreatePointerCast(B, Sb->getType());
1558
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001559 // A == B <==> (C = A^B) == 0
1560 // A != B <==> (C = A^B) != 0
1561 // Sc = Sa | Sb
1562 Value *C = IRB.CreateXor(A, B);
1563 Value *Sc = IRB.CreateOr(Sa, Sb);
1564 // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now)
1565 // Result is defined if one of the following is true
1566 // * there is a defined 1 bit in C
1567 // * C is fully defined
1568 // Si = !(C & ~Sc) && Sc
1569 Value *Zero = Constant::getNullValue(Sc->getType());
1570 Value *MinusOne = Constant::getAllOnesValue(Sc->getType());
1571 Value *Si =
1572 IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero),
1573 IRB.CreateICmpEQ(
1574 IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero));
1575 Si->setName("_msprop_icmp");
1576 setShadow(&I, Si);
1577 setOriginForNaryOp(I);
1578 }
1579
Evgeniy Stepanovfac84032013-01-25 15:31:10 +00001580 /// \brief Build the lowest possible value of V, taking into account V's
1581 /// uninitialized bits.
1582 Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1583 bool isSigned) {
1584 if (isSigned) {
1585 // Split shadow into sign bit and other bits.
1586 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1587 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1588 // Maximise the undefined shadow bit, minimize other undefined bits.
1589 return
1590 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit);
1591 } else {
1592 // Minimize undefined bits.
1593 return IRB.CreateAnd(A, IRB.CreateNot(Sa));
1594 }
1595 }
1596
1597 /// \brief Build the highest possible value of V, taking into account V's
1598 /// uninitialized bits.
1599 Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa,
1600 bool isSigned) {
1601 if (isSigned) {
1602 // Split shadow into sign bit and other bits.
1603 Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1);
1604 Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits);
1605 // Minimise the undefined shadow bit, maximise other undefined bits.
1606 return
1607 IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits);
1608 } else {
1609 // Maximize undefined bits.
1610 return IRB.CreateOr(A, Sa);
1611 }
1612 }
1613
1614 /// \brief Instrument relational comparisons.
1615 ///
1616 /// This function does exact shadow propagation for all relational
1617 /// comparisons of integers, pointers and vectors of those.
1618 /// FIXME: output seems suboptimal when one of the operands is a constant
1619 void handleRelationalComparisonExact(ICmpInst &I) {
1620 IRBuilder<> IRB(&I);
1621 Value *A = I.getOperand(0);
1622 Value *B = I.getOperand(1);
1623 Value *Sa = getShadow(A);
1624 Value *Sb = getShadow(B);
1625
1626 // Get rid of pointers and vectors of pointers.
1627 // For ints (and vectors of ints), types of A and Sa match,
1628 // and this is a no-op.
1629 A = IRB.CreatePointerCast(A, Sa->getType());
1630 B = IRB.CreatePointerCast(B, Sb->getType());
1631
Evgeniy Stepanov2cb0fa12013-01-25 15:35:29 +00001632 // Let [a0, a1] be the interval of possible values of A, taking into account
1633 // its undefined bits. Let [b0, b1] be the interval of possible values of B.
1634 // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0).
Evgeniy Stepanovfac84032013-01-25 15:31:10 +00001635 bool IsSigned = I.isSigned();
1636 Value *S1 = IRB.CreateICmp(I.getPredicate(),
1637 getLowestPossibleValue(IRB, A, Sa, IsSigned),
1638 getHighestPossibleValue(IRB, B, Sb, IsSigned));
1639 Value *S2 = IRB.CreateICmp(I.getPredicate(),
1640 getHighestPossibleValue(IRB, A, Sa, IsSigned),
1641 getLowestPossibleValue(IRB, B, Sb, IsSigned));
1642 Value *Si = IRB.CreateXor(S1, S2);
1643 setShadow(&I, Si);
1644 setOriginForNaryOp(I);
1645 }
1646
Evgeniy Stepanov857d9d22012-11-29 14:25:47 +00001647 /// \brief Instrument signed relational comparisons.
1648 ///
1649 /// Handle (x<0) and (x>=0) comparisons (essentially, sign bit tests) by
1650 /// propagating the highest bit of the shadow. Everything else is delegated
1651 /// to handleShadowOr().
1652 void handleSignedRelationalComparison(ICmpInst &I) {
1653 Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0));
1654 Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1));
Craig Topperf40110f2014-04-25 05:29:35 +00001655 Value* op = nullptr;
Evgeniy Stepanov857d9d22012-11-29 14:25:47 +00001656 CmpInst::Predicate pre = I.getPredicate();
1657 if (constOp0 && constOp0->isNullValue() &&
1658 (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE)) {
1659 op = I.getOperand(1);
1660 } else if (constOp1 && constOp1->isNullValue() &&
1661 (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) {
1662 op = I.getOperand(0);
1663 }
1664 if (op) {
1665 IRBuilder<> IRB(&I);
1666 Value* Shadow =
1667 IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), "_msprop_icmpslt");
1668 setShadow(&I, Shadow);
1669 setOrigin(&I, getOrigin(op));
1670 } else {
1671 handleShadowOr(I);
1672 }
1673 }
1674
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001675 void visitICmpInst(ICmpInst &I) {
Evgeniy Stepanov6f85ef32013-01-28 11:42:28 +00001676 if (!ClHandleICmp) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001677 handleShadowOr(I);
Evgeniy Stepanov6f85ef32013-01-28 11:42:28 +00001678 return;
1679 }
1680 if (I.isEquality()) {
1681 handleEqualityComparison(I);
1682 return;
1683 }
1684
1685 assert(I.isRelational());
1686 if (ClHandleICmpExact) {
1687 handleRelationalComparisonExact(I);
1688 return;
1689 }
1690 if (I.isSigned()) {
1691 handleSignedRelationalComparison(I);
1692 return;
1693 }
1694
1695 assert(I.isUnsigned());
1696 if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) {
1697 handleRelationalComparisonExact(I);
1698 return;
1699 }
1700
1701 handleShadowOr(I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001702 }
1703
1704 void visitFCmpInst(FCmpInst &I) {
1705 handleShadowOr(I);
1706 }
1707
1708 void handleShift(BinaryOperator &I) {
1709 IRBuilder<> IRB(&I);
1710 // If any of the S2 bits are poisoned, the whole thing is poisoned.
1711 // Otherwise perform the same shift on S1.
1712 Value *S1 = getShadow(&I, 0);
1713 Value *S2 = getShadow(&I, 1);
1714 Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)),
1715 S2->getType());
1716 Value *V2 = I.getOperand(1);
1717 Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2);
1718 setShadow(&I, IRB.CreateOr(Shift, S2Conv));
1719 setOriginForNaryOp(I);
1720 }
1721
1722 void visitShl(BinaryOperator &I) { handleShift(I); }
1723 void visitAShr(BinaryOperator &I) { handleShift(I); }
1724 void visitLShr(BinaryOperator &I) { handleShift(I); }
1725
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001726 /// \brief Instrument llvm.memmove
1727 ///
1728 /// At this point we don't know if llvm.memmove will be inlined or not.
1729 /// If we don't instrument it and it gets inlined,
1730 /// our interceptor will not kick in and we will lose the memmove.
1731 /// If we instrument the call here, but it does not get inlined,
1732 /// we will memove the shadow twice: which is bad in case
1733 /// of overlapping regions. So, we simply lower the intrinsic to a call.
1734 ///
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +00001735 /// Similar situation exists for memcpy and memset.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001736 void visitMemMoveInst(MemMoveInst &I) {
1737 IRBuilder<> IRB(&I);
1738 IRB.CreateCall3(
1739 MS.MemmoveFn,
1740 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1741 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1742 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1743 I.eraseFromParent();
1744 }
1745
Evgeniy Stepanov62b5db92012-11-29 12:49:04 +00001746 // Similar to memmove: avoid copying shadow twice.
1747 // This is somewhat unfortunate as it may slowdown small constant memcpys.
1748 // FIXME: consider doing manual inline for small constant sizes and proper
1749 // alignment.
1750 void visitMemCpyInst(MemCpyInst &I) {
1751 IRBuilder<> IRB(&I);
1752 IRB.CreateCall3(
1753 MS.MemcpyFn,
1754 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1755 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
1756 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1757 I.eraseFromParent();
1758 }
1759
1760 // Same as memcpy.
1761 void visitMemSetInst(MemSetInst &I) {
1762 IRBuilder<> IRB(&I);
1763 IRB.CreateCall3(
1764 MS.MemsetFn,
1765 IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
1766 IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false),
1767 IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false));
1768 I.eraseFromParent();
1769 }
1770
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00001771 void visitVAStartInst(VAStartInst &I) {
1772 VAHelper->visitVAStartInst(I);
1773 }
1774
1775 void visitVACopyInst(VACopyInst &I) {
1776 VAHelper->visitVACopyInst(I);
1777 }
1778
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001779 enum IntrinsicKind {
1780 IK_DoesNotAccessMemory,
1781 IK_OnlyReadsMemory,
1782 IK_WritesMemory
1783 };
1784
1785 static IntrinsicKind getIntrinsicKind(Intrinsic::ID iid) {
1786 const int DoesNotAccessMemory = IK_DoesNotAccessMemory;
1787 const int OnlyReadsArgumentPointees = IK_OnlyReadsMemory;
1788 const int OnlyReadsMemory = IK_OnlyReadsMemory;
1789 const int OnlyAccessesArgumentPointees = IK_WritesMemory;
1790 const int UnknownModRefBehavior = IK_WritesMemory;
1791#define GET_INTRINSIC_MODREF_BEHAVIOR
1792#define ModRefBehavior IntrinsicKind
Chandler Carruthdb25c6c2013-01-02 12:09:16 +00001793#include "llvm/IR/Intrinsics.gen"
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001794#undef ModRefBehavior
1795#undef GET_INTRINSIC_MODREF_BEHAVIOR
1796 }
1797
1798 /// \brief Handle vector store-like intrinsics.
1799 ///
1800 /// Instrument intrinsics that look like a simple SIMD store: writes memory,
1801 /// has 1 pointer argument and 1 vector argument, returns void.
1802 bool handleVectorStoreIntrinsic(IntrinsicInst &I) {
1803 IRBuilder<> IRB(&I);
1804 Value* Addr = I.getArgOperand(0);
1805 Value *Shadow = getShadow(&I, 1);
1806 Value *ShadowPtr = getShadowPtr(Addr, Shadow->getType(), IRB);
1807
1808 // We don't know the pointer alignment (could be unaligned SSE store!).
1809 // Have to assume to worst case.
1810 IRB.CreateAlignedStore(Shadow, ShadowPtr, 1);
1811
1812 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001813 insertShadowCheck(Addr, &I);
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001814
1815 // FIXME: use ClStoreCleanOrigin
1816 // FIXME: factor out common code from materializeStores
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00001817 if (MS.TrackOrigins)
Evgeniy Stepanovd85ddee2014-12-05 14:34:03 +00001818 IRB.CreateStore(getOrigin(&I, 1), getOriginPtr(Addr, IRB, 1));
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001819 return true;
1820 }
1821
1822 /// \brief Handle vector load-like intrinsics.
1823 ///
1824 /// Instrument intrinsics that look like a simple SIMD load: reads memory,
1825 /// has 1 pointer argument, returns a vector.
1826 bool handleVectorLoadIntrinsic(IntrinsicInst &I) {
1827 IRBuilder<> IRB(&I);
1828 Value *Addr = I.getArgOperand(0);
1829
1830 Type *ShadowTy = getShadowTy(&I);
Evgeniy Stepanov174242c2014-07-03 11:56:30 +00001831 if (PropagateShadow) {
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001832 Value *ShadowPtr = getShadowPtr(Addr, ShadowTy, IRB);
1833 // We don't know the pointer alignment (could be unaligned SSE load!).
1834 // Have to assume to worst case.
1835 setShadow(&I, IRB.CreateAlignedLoad(ShadowPtr, 1, "_msld"));
1836 } else {
1837 setShadow(&I, getCleanShadow(&I));
1838 }
1839
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001840 if (ClCheckAccessAddress)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001841 insertShadowCheck(Addr, &I);
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001842
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001843 if (MS.TrackOrigins) {
Evgeniy Stepanov174242c2014-07-03 11:56:30 +00001844 if (PropagateShadow)
Evgeniy Stepanovd85ddee2014-12-05 14:34:03 +00001845 setOrigin(&I, IRB.CreateLoad(getOriginPtr(Addr, IRB, 1)));
Evgeniy Stepanov00062b42013-02-28 11:25:14 +00001846 else
1847 setOrigin(&I, getCleanOrigin());
1848 }
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00001849 return true;
1850 }
1851
1852 /// \brief Handle (SIMD arithmetic)-like intrinsics.
1853 ///
1854 /// Instrument intrinsics with any number of arguments of the same type,
1855 /// equal to the return type. The type should be simple (no aggregates or
1856 /// pointers; vectors are fine).
1857 /// Caller guarantees that this intrinsic does not access memory.
1858 bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) {
1859 Type *RetTy = I.getType();
1860 if (!(RetTy->isIntOrIntVectorTy() ||
1861 RetTy->isFPOrFPVectorTy() ||
1862 RetTy->isX86_MMXTy()))
1863 return false;
1864
1865 unsigned NumArgOperands = I.getNumArgOperands();
1866
1867 for (unsigned i = 0; i < NumArgOperands; ++i) {
1868 Type *Ty = I.getArgOperand(i)->getType();
1869 if (Ty != RetTy)
1870 return false;
1871 }
1872
1873 IRBuilder<> IRB(&I);
1874 ShadowAndOriginCombiner SC(this, IRB);
1875 for (unsigned i = 0; i < NumArgOperands; ++i)
1876 SC.Add(I.getArgOperand(i));
1877 SC.Done(&I);
1878
1879 return true;
1880 }
1881
1882 /// \brief Heuristically instrument unknown intrinsics.
1883 ///
1884 /// The main purpose of this code is to do something reasonable with all
1885 /// random intrinsics we might encounter, most importantly - SIMD intrinsics.
1886 /// We recognize several classes of intrinsics by their argument types and
1887 /// ModRefBehaviour and apply special intrumentation when we are reasonably
1888 /// sure that we know what the intrinsic does.
1889 ///
1890 /// We special-case intrinsics where this approach fails. See llvm.bswap
1891 /// handling as an example of that.
1892 bool handleUnknownIntrinsic(IntrinsicInst &I) {
1893 unsigned NumArgOperands = I.getNumArgOperands();
1894 if (NumArgOperands == 0)
1895 return false;
1896
1897 Intrinsic::ID iid = I.getIntrinsicID();
1898 IntrinsicKind IK = getIntrinsicKind(iid);
1899 bool OnlyReadsMemory = IK == IK_OnlyReadsMemory;
1900 bool WritesMemory = IK == IK_WritesMemory;
1901 assert(!(OnlyReadsMemory && WritesMemory));
1902
1903 if (NumArgOperands == 2 &&
1904 I.getArgOperand(0)->getType()->isPointerTy() &&
1905 I.getArgOperand(1)->getType()->isVectorTy() &&
1906 I.getType()->isVoidTy() &&
1907 WritesMemory) {
1908 // This looks like a vector store.
1909 return handleVectorStoreIntrinsic(I);
1910 }
1911
1912 if (NumArgOperands == 1 &&
1913 I.getArgOperand(0)->getType()->isPointerTy() &&
1914 I.getType()->isVectorTy() &&
1915 OnlyReadsMemory) {
1916 // This looks like a vector load.
1917 return handleVectorLoadIntrinsic(I);
1918 }
1919
1920 if (!OnlyReadsMemory && !WritesMemory)
1921 if (maybeHandleSimpleNomemIntrinsic(I))
1922 return true;
1923
1924 // FIXME: detect and handle SSE maskstore/maskload
1925 return false;
1926 }
1927
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001928 void handleBswap(IntrinsicInst &I) {
1929 IRBuilder<> IRB(&I);
1930 Value *Op = I.getArgOperand(0);
1931 Type *OpType = Op->getType();
1932 Function *BswapFunc = Intrinsic::getDeclaration(
Craig Toppere1d12942014-08-27 05:25:25 +00001933 F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1));
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00001934 setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op)));
1935 setOrigin(&I, getOrigin(Op));
1936 }
1937
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001938 // \brief Instrument vector convert instrinsic.
1939 //
1940 // This function instruments intrinsics like cvtsi2ss:
1941 // %Out = int_xxx_cvtyyy(%ConvertOp)
1942 // or
1943 // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp)
1944 // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same
1945 // number \p Out elements, and (if has 2 arguments) copies the rest of the
1946 // elements from \p CopyOp.
1947 // In most cases conversion involves floating-point value which may trigger a
1948 // hardware exception when not fully initialized. For this reason we require
1949 // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise.
1950 // We copy the shadow of \p CopyOp[NumUsedElements:] to \p
1951 // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always
1952 // return a fully initialized value.
1953 void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements) {
1954 IRBuilder<> IRB(&I);
1955 Value *CopyOp, *ConvertOp;
1956
1957 switch (I.getNumArgOperands()) {
1958 case 2:
1959 CopyOp = I.getArgOperand(0);
1960 ConvertOp = I.getArgOperand(1);
1961 break;
1962 case 1:
1963 ConvertOp = I.getArgOperand(0);
Craig Topperf40110f2014-04-25 05:29:35 +00001964 CopyOp = nullptr;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001965 break;
1966 default:
1967 llvm_unreachable("Cvt intrinsic with unsupported number of arguments.");
1968 }
1969
1970 // The first *NumUsedElements* elements of ConvertOp are converted to the
1971 // same number of output elements. The rest of the output is copied from
1972 // CopyOp, or (if not available) filled with zeroes.
1973 // Combine shadow for elements of ConvertOp that are used in this operation,
1974 // and insert a check.
1975 // FIXME: consider propagating shadow of ConvertOp, at least in the case of
1976 // int->any conversion.
1977 Value *ConvertShadow = getShadow(ConvertOp);
Craig Topperf40110f2014-04-25 05:29:35 +00001978 Value *AggShadow = nullptr;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00001979 if (ConvertOp->getType()->isVectorTy()) {
1980 AggShadow = IRB.CreateExtractElement(
1981 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0));
1982 for (int i = 1; i < NumUsedElements; ++i) {
1983 Value *MoreShadow = IRB.CreateExtractElement(
1984 ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i));
1985 AggShadow = IRB.CreateOr(AggShadow, MoreShadow);
1986 }
1987 } else {
1988 AggShadow = ConvertShadow;
1989 }
1990 assert(AggShadow->getType()->isIntegerTy());
1991 insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I);
1992
1993 // Build result shadow by zero-filling parts of CopyOp shadow that come from
1994 // ConvertOp.
1995 if (CopyOp) {
1996 assert(CopyOp->getType() == I.getType());
1997 assert(CopyOp->getType()->isVectorTy());
1998 Value *ResultShadow = getShadow(CopyOp);
1999 Type *EltTy = ResultShadow->getType()->getVectorElementType();
2000 for (int i = 0; i < NumUsedElements; ++i) {
2001 ResultShadow = IRB.CreateInsertElement(
2002 ResultShadow, ConstantInt::getNullValue(EltTy),
2003 ConstantInt::get(IRB.getInt32Ty(), i));
2004 }
2005 setShadow(&I, ResultShadow);
2006 setOrigin(&I, getOrigin(CopyOp));
2007 } else {
2008 setShadow(&I, getCleanShadow(&I));
Evgeniy Stepanov2e5a1f12014-12-03 14:15:53 +00002009 setOrigin(&I, getCleanOrigin());
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00002010 }
2011 }
2012
Evgeniy Stepanov77be5322014-03-03 13:47:42 +00002013 // Given a scalar or vector, extract lower 64 bits (or less), and return all
2014 // zeroes if it is zero, and all ones otherwise.
2015 Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) {
2016 if (S->getType()->isVectorTy())
2017 S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true);
2018 assert(S->getType()->getPrimitiveSizeInBits() <= 64);
2019 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
2020 return CreateShadowCast(IRB, S2, T, /* Signed */ true);
2021 }
2022
2023 Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) {
2024 Type *T = S->getType();
2025 assert(T->isVectorTy());
2026 Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S));
2027 return IRB.CreateSExt(S2, T);
2028 }
2029
2030 // \brief Instrument vector shift instrinsic.
2031 //
2032 // This function instruments intrinsics like int_x86_avx2_psll_w.
2033 // Intrinsic shifts %In by %ShiftSize bits.
2034 // %ShiftSize may be a vector. In that case the lower 64 bits determine shift
2035 // size, and the rest is ignored. Behavior is defined even if shift size is
2036 // greater than register (or field) width.
2037 void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) {
2038 assert(I.getNumArgOperands() == 2);
2039 IRBuilder<> IRB(&I);
2040 // If any of the S2 bits are poisoned, the whole thing is poisoned.
2041 // Otherwise perform the same shift on S1.
2042 Value *S1 = getShadow(&I, 0);
2043 Value *S2 = getShadow(&I, 1);
2044 Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2)
2045 : Lower64ShadowExtend(IRB, S2, getShadowTy(&I));
2046 Value *V1 = I.getOperand(0);
2047 Value *V2 = I.getOperand(1);
2048 Value *Shift = IRB.CreateCall2(I.getCalledValue(),
2049 IRB.CreateBitCast(S1, V1->getType()), V2);
2050 Shift = IRB.CreateBitCast(Shift, getShadowTy(&I));
2051 setShadow(&I, IRB.CreateOr(Shift, S2Conv));
2052 setOriginForNaryOp(I);
2053 }
2054
Evgeniy Stepanovf7c29a92014-06-09 08:40:16 +00002055 // \brief Get an X86_MMX-sized vector type.
2056 Type *getMMXVectorTy(unsigned EltSizeInBits) {
2057 const unsigned X86_MMXSizeInBits = 64;
2058 return VectorType::get(IntegerType::get(*MS.C, EltSizeInBits),
2059 X86_MMXSizeInBits / EltSizeInBits);
2060 }
2061
2062 // \brief Returns a signed counterpart for an (un)signed-saturate-and-pack
2063 // intrinsic.
2064 Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) {
2065 switch (id) {
2066 case llvm::Intrinsic::x86_sse2_packsswb_128:
2067 case llvm::Intrinsic::x86_sse2_packuswb_128:
2068 return llvm::Intrinsic::x86_sse2_packsswb_128;
2069
2070 case llvm::Intrinsic::x86_sse2_packssdw_128:
2071 case llvm::Intrinsic::x86_sse41_packusdw:
2072 return llvm::Intrinsic::x86_sse2_packssdw_128;
2073
2074 case llvm::Intrinsic::x86_avx2_packsswb:
2075 case llvm::Intrinsic::x86_avx2_packuswb:
2076 return llvm::Intrinsic::x86_avx2_packsswb;
2077
2078 case llvm::Intrinsic::x86_avx2_packssdw:
2079 case llvm::Intrinsic::x86_avx2_packusdw:
2080 return llvm::Intrinsic::x86_avx2_packssdw;
2081
2082 case llvm::Intrinsic::x86_mmx_packsswb:
2083 case llvm::Intrinsic::x86_mmx_packuswb:
2084 return llvm::Intrinsic::x86_mmx_packsswb;
2085
2086 case llvm::Intrinsic::x86_mmx_packssdw:
2087 return llvm::Intrinsic::x86_mmx_packssdw;
2088 default:
2089 llvm_unreachable("unexpected intrinsic id");
2090 }
2091 }
2092
Evgeniy Stepanov5d972932014-06-17 11:26:00 +00002093 // \brief Instrument vector pack instrinsic.
Evgeniy Stepanovd425a2b2014-06-02 12:31:44 +00002094 //
2095 // This function instruments intrinsics like x86_mmx_packsswb, that
Evgeniy Stepanov5d972932014-06-17 11:26:00 +00002096 // packs elements of 2 input vectors into half as many bits with saturation.
Evgeniy Stepanovf7c29a92014-06-09 08:40:16 +00002097 // Shadow is propagated with the signed variant of the same intrinsic applied
2098 // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer).
2099 // EltSizeInBits is used only for x86mmx arguments.
2100 void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) {
Evgeniy Stepanovd425a2b2014-06-02 12:31:44 +00002101 assert(I.getNumArgOperands() == 2);
Evgeniy Stepanovf7c29a92014-06-09 08:40:16 +00002102 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
Evgeniy Stepanovd425a2b2014-06-02 12:31:44 +00002103 IRBuilder<> IRB(&I);
2104 Value *S1 = getShadow(&I, 0);
2105 Value *S2 = getShadow(&I, 1);
Evgeniy Stepanovf7c29a92014-06-09 08:40:16 +00002106 assert(isX86_MMX || S1->getType()->isVectorTy());
2107
2108 // SExt and ICmpNE below must apply to individual elements of input vectors.
2109 // In case of x86mmx arguments, cast them to appropriate vector types and
2110 // back.
2111 Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType();
2112 if (isX86_MMX) {
2113 S1 = IRB.CreateBitCast(S1, T);
2114 S2 = IRB.CreateBitCast(S2, T);
2115 }
Evgeniy Stepanovd425a2b2014-06-02 12:31:44 +00002116 Value *S1_ext = IRB.CreateSExt(
2117 IRB.CreateICmpNE(S1, llvm::Constant::getNullValue(T)), T);
2118 Value *S2_ext = IRB.CreateSExt(
2119 IRB.CreateICmpNE(S2, llvm::Constant::getNullValue(T)), T);
Evgeniy Stepanovf7c29a92014-06-09 08:40:16 +00002120 if (isX86_MMX) {
2121 Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C);
2122 S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy);
2123 S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy);
2124 }
2125
2126 Function *ShadowFn = Intrinsic::getDeclaration(
2127 F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID()));
2128
2129 Value *S = IRB.CreateCall2(ShadowFn, S1_ext, S2_ext, "_msprop_vector_pack");
2130 if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I));
Evgeniy Stepanovd425a2b2014-06-02 12:31:44 +00002131 setShadow(&I, S);
2132 setOriginForNaryOp(I);
2133 }
2134
Evgeniy Stepanov4ea16472014-06-18 12:02:29 +00002135 // \brief Instrument sum-of-absolute-differencies intrinsic.
2136 void handleVectorSadIntrinsic(IntrinsicInst &I) {
2137 const unsigned SignificantBitsPerResultElement = 16;
2138 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2139 Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType();
2140 unsigned ZeroBitsPerResultElement =
2141 ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement;
2142
2143 IRBuilder<> IRB(&I);
2144 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2145 S = IRB.CreateBitCast(S, ResTy);
2146 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
2147 ResTy);
2148 S = IRB.CreateLShr(S, ZeroBitsPerResultElement);
2149 S = IRB.CreateBitCast(S, getShadowTy(&I));
2150 setShadow(&I, S);
2151 setOriginForNaryOp(I);
2152 }
2153
2154 // \brief Instrument multiply-add intrinsic.
2155 void handleVectorPmaddIntrinsic(IntrinsicInst &I,
2156 unsigned EltSizeInBits = 0) {
2157 bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy();
2158 Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType();
2159 IRBuilder<> IRB(&I);
2160 Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1));
2161 S = IRB.CreateBitCast(S, ResTy);
2162 S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)),
2163 ResTy);
2164 S = IRB.CreateBitCast(S, getShadowTy(&I));
2165 setShadow(&I, S);
2166 setOriginForNaryOp(I);
2167 }
2168
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00002169 void visitIntrinsicInst(IntrinsicInst &I) {
2170 switch (I.getIntrinsicID()) {
2171 case llvm::Intrinsic::bswap:
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00002172 handleBswap(I);
2173 break;
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00002174 case llvm::Intrinsic::x86_avx512_cvtsd2usi64:
2175 case llvm::Intrinsic::x86_avx512_cvtsd2usi:
2176 case llvm::Intrinsic::x86_avx512_cvtss2usi64:
2177 case llvm::Intrinsic::x86_avx512_cvtss2usi:
2178 case llvm::Intrinsic::x86_avx512_cvttss2usi64:
2179 case llvm::Intrinsic::x86_avx512_cvttss2usi:
2180 case llvm::Intrinsic::x86_avx512_cvttsd2usi64:
2181 case llvm::Intrinsic::x86_avx512_cvttsd2usi:
2182 case llvm::Intrinsic::x86_avx512_cvtusi2sd:
2183 case llvm::Intrinsic::x86_avx512_cvtusi2ss:
2184 case llvm::Intrinsic::x86_avx512_cvtusi642sd:
2185 case llvm::Intrinsic::x86_avx512_cvtusi642ss:
2186 case llvm::Intrinsic::x86_sse2_cvtsd2si64:
2187 case llvm::Intrinsic::x86_sse2_cvtsd2si:
2188 case llvm::Intrinsic::x86_sse2_cvtsd2ss:
2189 case llvm::Intrinsic::x86_sse2_cvtsi2sd:
2190 case llvm::Intrinsic::x86_sse2_cvtsi642sd:
2191 case llvm::Intrinsic::x86_sse2_cvtss2sd:
2192 case llvm::Intrinsic::x86_sse2_cvttsd2si64:
2193 case llvm::Intrinsic::x86_sse2_cvttsd2si:
2194 case llvm::Intrinsic::x86_sse_cvtsi2ss:
2195 case llvm::Intrinsic::x86_sse_cvtsi642ss:
2196 case llvm::Intrinsic::x86_sse_cvtss2si64:
2197 case llvm::Intrinsic::x86_sse_cvtss2si:
2198 case llvm::Intrinsic::x86_sse_cvttss2si64:
2199 case llvm::Intrinsic::x86_sse_cvttss2si:
2200 handleVectorConvertIntrinsic(I, 1);
2201 break;
2202 case llvm::Intrinsic::x86_sse2_cvtdq2pd:
2203 case llvm::Intrinsic::x86_sse2_cvtps2pd:
2204 case llvm::Intrinsic::x86_sse_cvtps2pi:
2205 case llvm::Intrinsic::x86_sse_cvttps2pi:
2206 handleVectorConvertIntrinsic(I, 2);
2207 break;
Evgeniy Stepanov77be5322014-03-03 13:47:42 +00002208 case llvm::Intrinsic::x86_avx512_psll_dq:
2209 case llvm::Intrinsic::x86_avx512_psrl_dq:
2210 case llvm::Intrinsic::x86_avx2_psll_w:
2211 case llvm::Intrinsic::x86_avx2_psll_d:
2212 case llvm::Intrinsic::x86_avx2_psll_q:
2213 case llvm::Intrinsic::x86_avx2_pslli_w:
2214 case llvm::Intrinsic::x86_avx2_pslli_d:
2215 case llvm::Intrinsic::x86_avx2_pslli_q:
2216 case llvm::Intrinsic::x86_avx2_psll_dq:
2217 case llvm::Intrinsic::x86_avx2_psrl_w:
2218 case llvm::Intrinsic::x86_avx2_psrl_d:
2219 case llvm::Intrinsic::x86_avx2_psrl_q:
2220 case llvm::Intrinsic::x86_avx2_psra_w:
2221 case llvm::Intrinsic::x86_avx2_psra_d:
2222 case llvm::Intrinsic::x86_avx2_psrli_w:
2223 case llvm::Intrinsic::x86_avx2_psrli_d:
2224 case llvm::Intrinsic::x86_avx2_psrli_q:
2225 case llvm::Intrinsic::x86_avx2_psrai_w:
2226 case llvm::Intrinsic::x86_avx2_psrai_d:
2227 case llvm::Intrinsic::x86_avx2_psrl_dq:
2228 case llvm::Intrinsic::x86_sse2_psll_w:
2229 case llvm::Intrinsic::x86_sse2_psll_d:
2230 case llvm::Intrinsic::x86_sse2_psll_q:
2231 case llvm::Intrinsic::x86_sse2_pslli_w:
2232 case llvm::Intrinsic::x86_sse2_pslli_d:
2233 case llvm::Intrinsic::x86_sse2_pslli_q:
2234 case llvm::Intrinsic::x86_sse2_psll_dq:
2235 case llvm::Intrinsic::x86_sse2_psrl_w:
2236 case llvm::Intrinsic::x86_sse2_psrl_d:
2237 case llvm::Intrinsic::x86_sse2_psrl_q:
2238 case llvm::Intrinsic::x86_sse2_psra_w:
2239 case llvm::Intrinsic::x86_sse2_psra_d:
2240 case llvm::Intrinsic::x86_sse2_psrli_w:
2241 case llvm::Intrinsic::x86_sse2_psrli_d:
2242 case llvm::Intrinsic::x86_sse2_psrli_q:
2243 case llvm::Intrinsic::x86_sse2_psrai_w:
2244 case llvm::Intrinsic::x86_sse2_psrai_d:
2245 case llvm::Intrinsic::x86_sse2_psrl_dq:
2246 case llvm::Intrinsic::x86_mmx_psll_w:
2247 case llvm::Intrinsic::x86_mmx_psll_d:
2248 case llvm::Intrinsic::x86_mmx_psll_q:
2249 case llvm::Intrinsic::x86_mmx_pslli_w:
2250 case llvm::Intrinsic::x86_mmx_pslli_d:
2251 case llvm::Intrinsic::x86_mmx_pslli_q:
2252 case llvm::Intrinsic::x86_mmx_psrl_w:
2253 case llvm::Intrinsic::x86_mmx_psrl_d:
2254 case llvm::Intrinsic::x86_mmx_psrl_q:
2255 case llvm::Intrinsic::x86_mmx_psra_w:
2256 case llvm::Intrinsic::x86_mmx_psra_d:
2257 case llvm::Intrinsic::x86_mmx_psrli_w:
2258 case llvm::Intrinsic::x86_mmx_psrli_d:
2259 case llvm::Intrinsic::x86_mmx_psrli_q:
2260 case llvm::Intrinsic::x86_mmx_psrai_w:
2261 case llvm::Intrinsic::x86_mmx_psrai_d:
2262 handleVectorShiftIntrinsic(I, /* Variable */ false);
2263 break;
2264 case llvm::Intrinsic::x86_avx2_psllv_d:
2265 case llvm::Intrinsic::x86_avx2_psllv_d_256:
2266 case llvm::Intrinsic::x86_avx2_psllv_q:
2267 case llvm::Intrinsic::x86_avx2_psllv_q_256:
2268 case llvm::Intrinsic::x86_avx2_psrlv_d:
2269 case llvm::Intrinsic::x86_avx2_psrlv_d_256:
2270 case llvm::Intrinsic::x86_avx2_psrlv_q:
2271 case llvm::Intrinsic::x86_avx2_psrlv_q_256:
2272 case llvm::Intrinsic::x86_avx2_psrav_d:
2273 case llvm::Intrinsic::x86_avx2_psrav_d_256:
2274 handleVectorShiftIntrinsic(I, /* Variable */ true);
2275 break;
2276
2277 // Byte shifts are not implemented.
2278 // case llvm::Intrinsic::x86_avx512_psll_dq_bs:
2279 // case llvm::Intrinsic::x86_avx512_psrl_dq_bs:
2280 // case llvm::Intrinsic::x86_avx2_psll_dq_bs:
2281 // case llvm::Intrinsic::x86_avx2_psrl_dq_bs:
2282 // case llvm::Intrinsic::x86_sse2_psll_dq_bs:
2283 // case llvm::Intrinsic::x86_sse2_psrl_dq_bs:
2284
Evgeniy Stepanovd425a2b2014-06-02 12:31:44 +00002285 case llvm::Intrinsic::x86_sse2_packsswb_128:
2286 case llvm::Intrinsic::x86_sse2_packssdw_128:
2287 case llvm::Intrinsic::x86_sse2_packuswb_128:
2288 case llvm::Intrinsic::x86_sse41_packusdw:
2289 case llvm::Intrinsic::x86_avx2_packsswb:
2290 case llvm::Intrinsic::x86_avx2_packssdw:
2291 case llvm::Intrinsic::x86_avx2_packuswb:
2292 case llvm::Intrinsic::x86_avx2_packusdw:
Evgeniy Stepanovd425a2b2014-06-02 12:31:44 +00002293 handleVectorPackIntrinsic(I);
2294 break;
2295
Evgeniy Stepanovf7c29a92014-06-09 08:40:16 +00002296 case llvm::Intrinsic::x86_mmx_packsswb:
2297 case llvm::Intrinsic::x86_mmx_packuswb:
2298 handleVectorPackIntrinsic(I, 16);
2299 break;
2300
2301 case llvm::Intrinsic::x86_mmx_packssdw:
2302 handleVectorPackIntrinsic(I, 32);
2303 break;
2304
Evgeniy Stepanov4ea16472014-06-18 12:02:29 +00002305 case llvm::Intrinsic::x86_mmx_psad_bw:
2306 case llvm::Intrinsic::x86_sse2_psad_bw:
2307 case llvm::Intrinsic::x86_avx2_psad_bw:
2308 handleVectorSadIntrinsic(I);
2309 break;
2310
2311 case llvm::Intrinsic::x86_sse2_pmadd_wd:
2312 case llvm::Intrinsic::x86_avx2_pmadd_wd:
2313 case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw_128:
2314 case llvm::Intrinsic::x86_avx2_pmadd_ub_sw:
2315 handleVectorPmaddIntrinsic(I);
2316 break;
2317
2318 case llvm::Intrinsic::x86_ssse3_pmadd_ub_sw:
2319 handleVectorPmaddIntrinsic(I, 8);
2320 break;
2321
2322 case llvm::Intrinsic::x86_mmx_pmadd_wd:
2323 handleVectorPmaddIntrinsic(I, 16);
2324 break;
2325
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00002326 default:
Evgeniy Stepanovd7571cd2012-12-19 11:22:04 +00002327 if (!handleUnknownIntrinsic(I))
2328 visitInstruction(I);
Evgeniy Stepanov88b8dce2012-12-17 16:30:05 +00002329 break;
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00002330 }
2331 }
2332
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002333 void visitCallSite(CallSite CS) {
2334 Instruction &I = *CS.getInstruction();
2335 assert((CS.isCall() || CS.isInvoke()) && "Unknown type of CallSite");
2336 if (CS.isCall()) {
Evgeniy Stepanov7ad7e832012-11-29 14:32:03 +00002337 CallInst *Call = cast<CallInst>(&I);
2338
2339 // For inline asm, do the usual thing: check argument shadow and mark all
2340 // outputs as clean. Note that any side effects of the inline asm that are
2341 // not immediately visible in its constraints are not handled.
2342 if (Call->isInlineAsm()) {
2343 visitInstruction(I);
2344 return;
2345 }
2346
Evgeniy Stepanov8b51bab2012-12-05 14:39:55 +00002347 assert(!isa<IntrinsicInst>(&I) && "intrinsics are handled elsewhere");
Evgeniy Stepanov383b61e2012-12-07 09:08:32 +00002348
2349 // We are going to insert code that relies on the fact that the callee
2350 // will become a non-readonly function after it is instrumented by us. To
2351 // prevent this code from being optimized out, mark that function
2352 // non-readonly in advance.
2353 if (Function *Func = Call->getCalledFunction()) {
2354 // Clear out readonly/readnone attributes.
2355 AttrBuilder B;
Bill Wendling3d7b0b82012-12-19 07:18:57 +00002356 B.addAttribute(Attribute::ReadOnly)
2357 .addAttribute(Attribute::ReadNone);
Bill Wendling430fa9b2013-01-23 00:45:55 +00002358 Func->removeAttributes(AttributeSet::FunctionIndex,
2359 AttributeSet::get(Func->getContext(),
2360 AttributeSet::FunctionIndex,
2361 B));
Evgeniy Stepanov383b61e2012-12-07 09:08:32 +00002362 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002363 }
2364 IRBuilder<> IRB(&I);
Evgeniy Stepanov37b86452013-09-19 15:22:35 +00002365
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002366 unsigned ArgOffset = 0;
2367 DEBUG(dbgs() << " CallSite: " << I << "\n");
2368 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
2369 ArgIt != End; ++ArgIt) {
2370 Value *A = *ArgIt;
2371 unsigned i = ArgIt - CS.arg_begin();
2372 if (!A->getType()->isSized()) {
2373 DEBUG(dbgs() << "Arg " << i << " is not sized: " << I << "\n");
2374 continue;
2375 }
2376 unsigned Size = 0;
Craig Topperf40110f2014-04-25 05:29:35 +00002377 Value *Store = nullptr;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002378 // Compute the Shadow for arg even if it is ByVal, because
2379 // in that case getShadow() will copy the actual arg shadow to
2380 // __msan_param_tls.
2381 Value *ArgShadow = getShadow(A);
2382 Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset);
2383 DEBUG(dbgs() << " Arg#" << i << ": " << *A <<
2384 " Shadow: " << *ArgShadow << "\n");
Evgeniy Stepanovc8227aa2014-07-17 09:10:37 +00002385 bool ArgIsInitialized = false;
Bill Wendling3d7b0b82012-12-19 07:18:57 +00002386 if (CS.paramHasAttr(i + 1, Attribute::ByVal)) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002387 assert(A->getType()->isPointerTy() &&
2388 "ByVal argument is not a pointer!");
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002389 Size = MS.DL->getTypeAllocSize(A->getType()->getPointerElementType());
Evgeniy Stepanov35eb2652014-10-22 00:12:40 +00002390 if (ArgOffset + Size > kParamTLSSize) break;
Evgeniy Stepanove08633e2014-10-17 23:29:44 +00002391 unsigned ParamAlignment = CS.getParamAlignment(i + 1);
2392 unsigned Alignment = std::min(ParamAlignment, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002393 Store = IRB.CreateMemCpy(ArgShadowBase,
2394 getShadowPtr(A, Type::getInt8Ty(*MS.C), IRB),
2395 Size, Alignment);
2396 } else {
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002397 Size = MS.DL->getTypeAllocSize(A->getType());
Evgeniy Stepanov35eb2652014-10-22 00:12:40 +00002398 if (ArgOffset + Size > kParamTLSSize) break;
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002399 Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase,
2400 kShadowTLSAlignment);
Evgeniy Stepanovc8227aa2014-07-17 09:10:37 +00002401 Constant *Cst = dyn_cast<Constant>(ArgShadow);
2402 if (Cst && Cst->isNullValue()) ArgIsInitialized = true;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002403 }
Evgeniy Stepanovc8227aa2014-07-17 09:10:37 +00002404 if (MS.TrackOrigins && !ArgIsInitialized)
Evgeniy Stepanov49175b22012-12-14 13:43:11 +00002405 IRB.CreateStore(getOrigin(A),
2406 getOriginPtrForArgument(A, IRB, ArgOffset));
Edwin Vane82f80d42013-01-29 17:42:24 +00002407 (void)Store;
Craig Toppere73658d2014-04-28 04:05:08 +00002408 assert(Size != 0 && Store != nullptr);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002409 DEBUG(dbgs() << " Param:" << *Store << "\n");
David Majnemerf3cadce2014-10-20 06:13:33 +00002410 ArgOffset += RoundUpToAlignment(Size, 8);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002411 }
2412 DEBUG(dbgs() << " done with call args\n");
2413
2414 FunctionType *FT =
Evgeniy Stepanov37b86452013-09-19 15:22:35 +00002415 cast<FunctionType>(CS.getCalledValue()->getType()->getContainedType(0));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002416 if (FT->isVarArg()) {
2417 VAHelper->visitCallSite(CS, IRB);
2418 }
2419
2420 // Now, get the shadow for the RetVal.
2421 if (!I.getType()->isSized()) return;
2422 IRBuilder<> IRBBefore(&I);
Alp Tokercb402912014-01-24 17:20:08 +00002423 // Until we have full dynamic coverage, make sure the retval shadow is 0.
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002424 Value *Base = getShadowPtrForRetval(&I, IRBBefore);
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002425 IRBBefore.CreateAlignedStore(getCleanShadow(&I), Base, kShadowTLSAlignment);
Craig Topperf40110f2014-04-25 05:29:35 +00002426 Instruction *NextInsn = nullptr;
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002427 if (CS.isCall()) {
2428 NextInsn = I.getNextNode();
2429 } else {
2430 BasicBlock *NormalDest = cast<InvokeInst>(&I)->getNormalDest();
2431 if (!NormalDest->getSinglePredecessor()) {
2432 // FIXME: this case is tricky, so we are just conservative here.
2433 // Perhaps we need to split the edge between this BB and NormalDest,
2434 // but a naive attempt to use SplitEdge leads to a crash.
2435 setShadow(&I, getCleanShadow(&I));
2436 setOrigin(&I, getCleanOrigin());
2437 return;
2438 }
2439 NextInsn = NormalDest->getFirstInsertionPt();
2440 assert(NextInsn &&
2441 "Could not find insertion point for retval shadow load");
2442 }
2443 IRBuilder<> IRBAfter(NextInsn);
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002444 Value *RetvalShadow =
2445 IRBAfter.CreateAlignedLoad(getShadowPtrForRetval(&I, IRBAfter),
2446 kShadowTLSAlignment, "_msret");
2447 setShadow(&I, RetvalShadow);
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00002448 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002449 setOrigin(&I, IRBAfter.CreateLoad(getOriginPtrForRetval(IRBAfter)));
2450 }
2451
2452 void visitReturnInst(ReturnInst &I) {
2453 IRBuilder<> IRB(&I);
Evgeniy Stepanov604293f2013-09-16 13:24:32 +00002454 Value *RetVal = I.getReturnValue();
2455 if (!RetVal) return;
2456 Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB);
2457 if (CheckReturnValue) {
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00002458 insertShadowCheck(RetVal, &I);
Evgeniy Stepanov604293f2013-09-16 13:24:32 +00002459 Value *Shadow = getCleanShadow(RetVal);
Evgeniy Stepanovd2bd3192012-12-11 12:34:09 +00002460 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
Evgeniy Stepanov604293f2013-09-16 13:24:32 +00002461 } else {
2462 Value *Shadow = getShadow(RetVal);
2463 IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment);
2464 // FIXME: make it conditional if ClStoreCleanOrigin==0
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00002465 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002466 IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB));
2467 }
2468 }
2469
2470 void visitPHINode(PHINode &I) {
2471 IRBuilder<> IRB(&I);
Evgeniy Stepanovd948a5f2014-07-07 13:28:31 +00002472 if (!PropagateShadow) {
2473 setShadow(&I, getCleanShadow(&I));
Evgeniy Stepanov2e5a1f12014-12-03 14:15:53 +00002474 setOrigin(&I, getCleanOrigin());
Evgeniy Stepanovd948a5f2014-07-07 13:28:31 +00002475 return;
2476 }
2477
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002478 ShadowPHINodes.push_back(&I);
2479 setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(),
2480 "_msphi_s"));
Evgeniy Stepanovabeae5c2012-12-19 13:55:51 +00002481 if (MS.TrackOrigins)
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002482 setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(),
2483 "_msphi_o"));
2484 }
2485
2486 void visitAllocaInst(AllocaInst &I) {
2487 setShadow(&I, getCleanShadow(&I));
Evgeniy Stepanov2e5a1f12014-12-03 14:15:53 +00002488 setOrigin(&I, getCleanOrigin());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002489 IRBuilder<> IRB(I.getNextNode());
Rafael Espindola37dc9e12014-02-21 00:06:31 +00002490 uint64_t Size = MS.DL->getTypeAllocSize(I.getAllocatedType());
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +00002491 if (PoisonStack && ClPoisonStackWithCall) {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002492 IRB.CreateCall2(MS.MsanPoisonStackFn,
2493 IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
2494 ConstantInt::get(MS.IntptrTy, Size));
2495 } else {
2496 Value *ShadowBase = getShadowPtr(&I, Type::getInt8PtrTy(*MS.C), IRB);
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +00002497 Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0);
2498 IRB.CreateMemSet(ShadowBase, PoisonValue, Size, I.getAlignment());
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002499 }
2500
Evgeniy Stepanovdc6d7eb2013-07-03 14:39:14 +00002501 if (PoisonStack && MS.TrackOrigins) {
Alp Tokere69170a2014-06-26 22:52:05 +00002502 SmallString<2048> StackDescriptionStorage;
2503 raw_svector_ostream StackDescription(StackDescriptionStorage);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002504 // We create a string with a description of the stack allocation and
2505 // pass it into __msan_set_alloca_origin.
2506 // It will be printed by the run-time if stack-originated UMR is found.
2507 // The first 4 bytes of the string are set to '----' and will be replaced
2508 // by __msan_va_arg_overflow_size_tls at the first call.
2509 StackDescription << "----" << I.getName() << "@" << F.getName();
2510 Value *Descr =
2511 createPrivateNonConstGlobalForString(*F.getParent(),
2512 StackDescription.str());
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +00002513
2514 IRB.CreateCall4(MS.MsanSetAllocaOrigin4Fn,
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002515 IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()),
2516 ConstantInt::get(MS.IntptrTy, Size),
Evgeniy Stepanov0435ecd2013-09-13 12:54:49 +00002517 IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()),
2518 IRB.CreatePointerCast(&F, MS.IntptrTy));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002519 }
2520 }
2521
2522 void visitSelectInst(SelectInst& I) {
2523 IRBuilder<> IRB(&I);
Evgeniy Stepanov566f5912013-09-03 10:04:11 +00002524 // a = select b, c, d
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002525 Value *B = I.getCondition();
2526 Value *C = I.getTrueValue();
2527 Value *D = I.getFalseValue();
2528 Value *Sb = getShadow(B);
2529 Value *Sc = getShadow(C);
2530 Value *Sd = getShadow(D);
2531
2532 // Result shadow if condition shadow is 0.
2533 Value *Sa0 = IRB.CreateSelect(B, Sc, Sd);
2534 Value *Sa1;
Evgeniy Stepanove95d37c2013-09-03 13:05:29 +00002535 if (I.getType()->isAggregateType()) {
2536 // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do
2537 // an extra "select". This results in much more compact IR.
2538 // Sa = select Sb, poisoned, (select b, Sc, Sd)
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002539 Sa1 = getPoisonedShadow(getShadowTy(I.getType()));
Evgeniy Stepanove95d37c2013-09-03 13:05:29 +00002540 } else {
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002541 // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ]
2542 // If Sb (condition is poisoned), look for bits in c and d that are equal
2543 // and both unpoisoned.
2544 // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd.
2545
2546 // Cast arguments to shadow-compatible type.
2547 C = CreateAppToShadowCast(IRB, C);
2548 D = CreateAppToShadowCast(IRB, D);
2549
2550 // Result shadow if condition shadow is 1.
2551 Sa1 = IRB.CreateOr(IRB.CreateXor(C, D), IRB.CreateOr(Sc, Sd));
Evgeniy Stepanove95d37c2013-09-03 13:05:29 +00002552 }
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002553 Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select");
2554 setShadow(&I, Sa);
Evgeniy Stepanovec837122012-12-25 14:56:21 +00002555 if (MS.TrackOrigins) {
2556 // Origins are always i32, so any vector conditions must be flattened.
2557 // FIXME: consider tracking vector origins for app vectors?
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002558 if (B->getType()->isVectorTy()) {
2559 Type *FlatTy = getShadowTyNoVec(B->getType());
2560 B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy),
Evgeniy Stepanovcb5bdff2013-11-21 12:00:24 +00002561 ConstantInt::getNullValue(FlatTy));
Evgeniy Stepanovfc742ac2014-03-25 13:08:34 +00002562 Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy),
Evgeniy Stepanovcb5bdff2013-11-21 12:00:24 +00002563 ConstantInt::getNullValue(FlatTy));
Evgeniy Stepanovec837122012-12-25 14:56:21 +00002564 }
Evgeniy Stepanovcb5bdff2013-11-21 12:00:24 +00002565 // a = select b, c, d
2566 // Oa = Sb ? Ob : (b ? Oc : Od)
Evgeniy Stepanova0b68992014-11-28 11:17:58 +00002567 setOrigin(
2568 &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()),
2569 IRB.CreateSelect(B, getOrigin(I.getTrueValue()),
2570 getOrigin(I.getFalseValue()))));
Evgeniy Stepanovec837122012-12-25 14:56:21 +00002571 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002572 }
2573
2574 void visitLandingPadInst(LandingPadInst &I) {
2575 // Do nothing.
2576 // See http://code.google.com/p/memory-sanitizer/issues/detail?id=1
2577 setShadow(&I, getCleanShadow(&I));
2578 setOrigin(&I, getCleanOrigin());
2579 }
2580
2581 void visitGetElementPtrInst(GetElementPtrInst &I) {
2582 handleShadowOr(I);
2583 }
2584
2585 void visitExtractValueInst(ExtractValueInst &I) {
2586 IRBuilder<> IRB(&I);
2587 Value *Agg = I.getAggregateOperand();
2588 DEBUG(dbgs() << "ExtractValue: " << I << "\n");
2589 Value *AggShadow = getShadow(Agg);
2590 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
2591 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
2592 DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n");
2593 setShadow(&I, ResShadow);
Evgeniy Stepanov560e08932013-11-11 13:37:10 +00002594 setOriginForNaryOp(I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002595 }
2596
2597 void visitInsertValueInst(InsertValueInst &I) {
2598 IRBuilder<> IRB(&I);
2599 DEBUG(dbgs() << "InsertValue: " << I << "\n");
2600 Value *AggShadow = getShadow(I.getAggregateOperand());
2601 Value *InsShadow = getShadow(I.getInsertedValueOperand());
2602 DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n");
2603 DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n");
2604 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
2605 DEBUG(dbgs() << " Res: " << *Res << "\n");
2606 setShadow(&I, Res);
Evgeniy Stepanov560e08932013-11-11 13:37:10 +00002607 setOriginForNaryOp(I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002608 }
2609
2610 void dumpInst(Instruction &I) {
2611 if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2612 errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n";
2613 } else {
2614 errs() << "ZZZ " << I.getOpcodeName() << "\n";
2615 }
2616 errs() << "QQQ " << I << "\n";
2617 }
2618
2619 void visitResumeInst(ResumeInst &I) {
2620 DEBUG(dbgs() << "Resume: " << I << "\n");
2621 // Nothing to do here.
2622 }
2623
2624 void visitInstruction(Instruction &I) {
2625 // Everything else: stop propagating and check for poisoned shadow.
2626 if (ClDumpStrictInstructions)
2627 dumpInst(I);
2628 DEBUG(dbgs() << "DEFAULT: " << I << "\n");
2629 for (size_t i = 0, n = I.getNumOperands(); i < n; i++)
Evgeniy Stepanovbe83d8f2013-10-14 15:16:25 +00002630 insertShadowCheck(I.getOperand(i), &I);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002631 setShadow(&I, getCleanShadow(&I));
2632 setOrigin(&I, getCleanOrigin());
2633 }
2634};
2635
2636/// \brief AMD64-specific implementation of VarArgHelper.
2637struct VarArgAMD64Helper : public VarArgHelper {
2638 // An unfortunate workaround for asymmetric lowering of va_arg stuff.
2639 // See a comment in visitCallSite for more details.
Evgeniy Stepanov9b72e992012-12-14 13:48:31 +00002640 static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002641 static const unsigned AMD64FpEndOffset = 176;
2642
2643 Function &F;
2644 MemorySanitizer &MS;
2645 MemorySanitizerVisitor &MSV;
2646 Value *VAArgTLSCopy;
2647 Value *VAArgOverflowSize;
2648
2649 SmallVector<CallInst*, 16> VAStartInstrumentationList;
2650
2651 VarArgAMD64Helper(Function &F, MemorySanitizer &MS,
2652 MemorySanitizerVisitor &MSV)
Craig Topperf40110f2014-04-25 05:29:35 +00002653 : F(F), MS(MS), MSV(MSV), VAArgTLSCopy(nullptr),
2654 VAArgOverflowSize(nullptr) {}
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002655
2656 enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory };
2657
2658 ArgKind classifyArgument(Value* arg) {
2659 // A very rough approximation of X86_64 argument classification rules.
2660 Type *T = arg->getType();
2661 if (T->isFPOrFPVectorTy() || T->isX86_MMXTy())
2662 return AK_FloatingPoint;
2663 if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64)
2664 return AK_GeneralPurpose;
2665 if (T->isPointerTy())
2666 return AK_GeneralPurpose;
2667 return AK_Memory;
2668 }
2669
2670 // For VarArg functions, store the argument shadow in an ABI-specific format
2671 // that corresponds to va_list layout.
2672 // We do this because Clang lowers va_arg in the frontend, and this pass
2673 // only sees the low level code that deals with va_list internals.
2674 // A much easier alternative (provided that Clang emits va_arg instructions)
2675 // would have been to associate each live instance of va_list with a copy of
2676 // MSanParamTLS, and extract shadow on va_arg() call in the argument list
2677 // order.
Craig Topper3e4c6972014-03-05 09:10:37 +00002678 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002679 unsigned GpOffset = 0;
2680 unsigned FpOffset = AMD64GpEndOffset;
2681 unsigned OverflowOffset = AMD64FpEndOffset;
2682 for (CallSite::arg_iterator ArgIt = CS.arg_begin(), End = CS.arg_end();
2683 ArgIt != End; ++ArgIt) {
2684 Value *A = *ArgIt;
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002685 unsigned ArgNo = CS.getArgumentNo(ArgIt);
2686 bool IsByVal = CS.paramHasAttr(ArgNo + 1, Attribute::ByVal);
2687 if (IsByVal) {
2688 // ByVal arguments always go to the overflow area.
2689 assert(A->getType()->isPointerTy());
2690 Type *RealTy = A->getType()->getPointerElementType();
2691 uint64_t ArgSize = MS.DL->getTypeAllocSize(RealTy);
2692 Value *Base = getShadowPtrForVAArgument(RealTy, IRB, OverflowOffset);
David Majnemerf3cadce2014-10-20 06:13:33 +00002693 OverflowOffset += RoundUpToAlignment(ArgSize, 8);
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002694 IRB.CreateMemCpy(Base, MSV.getShadowPtr(A, IRB.getInt8Ty(), IRB),
2695 ArgSize, kShadowTLSAlignment);
2696 } else {
2697 ArgKind AK = classifyArgument(A);
2698 if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset)
2699 AK = AK_Memory;
2700 if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset)
2701 AK = AK_Memory;
2702 Value *Base;
2703 switch (AK) {
2704 case AK_GeneralPurpose:
2705 Base = getShadowPtrForVAArgument(A->getType(), IRB, GpOffset);
2706 GpOffset += 8;
2707 break;
2708 case AK_FloatingPoint:
2709 Base = getShadowPtrForVAArgument(A->getType(), IRB, FpOffset);
2710 FpOffset += 16;
2711 break;
2712 case AK_Memory:
2713 uint64_t ArgSize = MS.DL->getTypeAllocSize(A->getType());
2714 Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset);
David Majnemerf3cadce2014-10-20 06:13:33 +00002715 OverflowOffset += RoundUpToAlignment(ArgSize, 8);
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002716 }
2717 IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002718 }
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002719 }
2720 Constant *OverflowSize =
2721 ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset);
2722 IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS);
2723 }
2724
2725 /// \brief Compute the shadow address for a given va_arg.
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002726 Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB,
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002727 int ArgOffset) {
2728 Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy);
2729 Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset));
Evgeniy Stepanov7ab838e2014-03-13 13:17:11 +00002730 return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0),
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002731 "_msarg");
2732 }
2733
Craig Topper3e4c6972014-03-05 09:10:37 +00002734 void visitVAStartInst(VAStartInst &I) override {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002735 IRBuilder<> IRB(&I);
2736 VAStartInstrumentationList.push_back(&I);
2737 Value *VAListTag = I.getArgOperand(0);
2738 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2739
2740 // Unpoison the whole __va_list_tag.
2741 // FIXME: magic ABI constants.
2742 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
Peter Collingbournef7d65c42013-01-10 22:36:33 +00002743 /* size */24, /* alignment */8, false);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002744 }
2745
Craig Topper3e4c6972014-03-05 09:10:37 +00002746 void visitVACopyInst(VACopyInst &I) override {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002747 IRBuilder<> IRB(&I);
2748 Value *VAListTag = I.getArgOperand(0);
2749 Value *ShadowPtr = MSV.getShadowPtr(VAListTag, IRB.getInt8Ty(), IRB);
2750
2751 // Unpoison the whole __va_list_tag.
2752 // FIXME: magic ABI constants.
2753 IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()),
Peter Collingbournef7d65c42013-01-10 22:36:33 +00002754 /* size */24, /* alignment */8, false);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002755 }
2756
Craig Topper3e4c6972014-03-05 09:10:37 +00002757 void finalizeInstrumentation() override {
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002758 assert(!VAArgOverflowSize && !VAArgTLSCopy &&
2759 "finalizeInstrumentation called twice");
2760 if (!VAStartInstrumentationList.empty()) {
2761 // If there is a va_start in this function, make a backup copy of
2762 // va_arg_tls somewhere in the function entry block.
2763 IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
2764 VAArgOverflowSize = IRB.CreateLoad(MS.VAArgOverflowSizeTLS);
2765 Value *CopySize =
2766 IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset),
2767 VAArgOverflowSize);
2768 VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize);
2769 IRB.CreateMemCpy(VAArgTLSCopy, MS.VAArgTLS, CopySize, 8);
2770 }
2771
2772 // Instrument va_start.
2773 // Copy va_list shadow from the backup copy of the TLS contents.
2774 for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) {
2775 CallInst *OrigInst = VAStartInstrumentationList[i];
2776 IRBuilder<> IRB(OrigInst->getNextNode());
2777 Value *VAListTag = OrigInst->getArgOperand(0);
2778
2779 Value *RegSaveAreaPtrPtr =
2780 IRB.CreateIntToPtr(
2781 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
2782 ConstantInt::get(MS.IntptrTy, 16)),
2783 Type::getInt64PtrTy(*MS.C));
2784 Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrPtr);
2785 Value *RegSaveAreaShadowPtr =
2786 MSV.getShadowPtr(RegSaveAreaPtr, IRB.getInt8Ty(), IRB);
2787 IRB.CreateMemCpy(RegSaveAreaShadowPtr, VAArgTLSCopy,
2788 AMD64FpEndOffset, 16);
2789
2790 Value *OverflowArgAreaPtrPtr =
2791 IRB.CreateIntToPtr(
2792 IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy),
2793 ConstantInt::get(MS.IntptrTy, 8)),
2794 Type::getInt64PtrTy(*MS.C));
2795 Value *OverflowArgAreaPtr = IRB.CreateLoad(OverflowArgAreaPtrPtr);
2796 Value *OverflowArgAreaShadowPtr =
2797 MSV.getShadowPtr(OverflowArgAreaPtr, IRB.getInt8Ty(), IRB);
Evgeniy Stepanovd42863c2013-08-23 12:11:00 +00002798 Value *SrcPtr = IRB.CreateConstGEP1_32(VAArgTLSCopy, AMD64FpEndOffset);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002799 IRB.CreateMemCpy(OverflowArgAreaShadowPtr, SrcPtr, VAArgOverflowSize, 16);
2800 }
2801 }
2802};
2803
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002804/// \brief A no-op implementation of VarArgHelper.
2805struct VarArgNoOpHelper : public VarArgHelper {
2806 VarArgNoOpHelper(Function &F, MemorySanitizer &MS,
2807 MemorySanitizerVisitor &MSV) {}
2808
Craig Topper3e4c6972014-03-05 09:10:37 +00002809 void visitCallSite(CallSite &CS, IRBuilder<> &IRB) override {}
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002810
Craig Topper3e4c6972014-03-05 09:10:37 +00002811 void visitVAStartInst(VAStartInst &I) override {}
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002812
Craig Topper3e4c6972014-03-05 09:10:37 +00002813 void visitVACopyInst(VACopyInst &I) override {}
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002814
Craig Topper3e4c6972014-03-05 09:10:37 +00002815 void finalizeInstrumentation() override {}
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002816};
2817
2818VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan,
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002819 MemorySanitizerVisitor &Visitor) {
Evgeniy Stepanovebd7f8e2013-05-21 12:27:47 +00002820 // VarArg handling is only implemented on AMD64. False positives are possible
2821 // on other platforms.
2822 llvm::Triple TargetTriple(Func.getParent()->getTargetTriple());
2823 if (TargetTriple.getArch() == llvm::Triple::x86_64)
2824 return new VarArgAMD64Helper(Func, Msan, Visitor);
2825 else
2826 return new VarArgNoOpHelper(Func, Msan, Visitor);
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002827}
2828
2829} // namespace
2830
2831bool MemorySanitizer::runOnFunction(Function &F) {
2832 MemorySanitizerVisitor Visitor(F, *this);
2833
2834 // Clear out readonly/readnone attributes.
2835 AttrBuilder B;
Bill Wendling3d7b0b82012-12-19 07:18:57 +00002836 B.addAttribute(Attribute::ReadOnly)
2837 .addAttribute(Attribute::ReadNone);
Bill Wendling430fa9b2013-01-23 00:45:55 +00002838 F.removeAttributes(AttributeSet::FunctionIndex,
2839 AttributeSet::get(F.getContext(),
2840 AttributeSet::FunctionIndex, B));
Evgeniy Stepanovd4bd7b72012-11-29 09:57:20 +00002841
2842 return Visitor.runOnFunction();
2843}