blob: b4d2d357088daf4394c8adb792954e937a24ebea [file] [log] [blame]
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for PowerPC --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
Misha Brukman98649d12004-06-24 21:54:47 +000010#define DEBUG_TYPE "isel"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000011#include "PowerPC.h"
12#include "PowerPCInstrBuilder.h"
13#include "PowerPCInstrInfo.h"
14#include "llvm/Constants.h"
15#include "llvm/DerivedTypes.h"
16#include "llvm/Function.h"
17#include "llvm/Instructions.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000018#include "llvm/Pass.h"
Misha Brukman8c9f5202004-06-21 18:30:31 +000019#include "llvm/CodeGen/IntrinsicLowering.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000020#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/SSARegMap.h"
24#include "llvm/Target/MRegisterInfo.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Support/GetElementPtrTypeIterator.h"
27#include "llvm/Support/InstVisitor.h"
Misha Brukman98649d12004-06-24 21:54:47 +000028#include "Support/Debug.h"
29#include <vector>
Misha Brukman5dfe3a92004-06-21 16:55:25 +000030using namespace llvm;
31
32namespace {
Misha Brukman422791f2004-06-21 17:41:12 +000033 /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
34 /// PPC Representation.
Misha Brukman5dfe3a92004-06-21 16:55:25 +000035 ///
36 enum TypeClass {
37 cByte, cShort, cInt, cFP, cLong
38 };
39}
40
41/// getClass - Turn a primitive type into a "class" number which is based on the
42/// size of the type, and whether or not it is floating point.
43///
44static inline TypeClass getClass(const Type *Ty) {
Misha Brukman358829f2004-06-21 17:25:55 +000045 switch (Ty->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +000046 case Type::SByteTyID:
47 case Type::UByteTyID: return cByte; // Byte operands are class #0
48 case Type::ShortTyID:
49 case Type::UShortTyID: return cShort; // Short operands are class #1
50 case Type::IntTyID:
51 case Type::UIntTyID:
Misha Brukman2834a4d2004-07-07 20:07:22 +000052 case Type::PointerTyID: return cInt; // Ints and pointers are class #2
Misha Brukman5dfe3a92004-06-21 16:55:25 +000053
54 case Type::FloatTyID:
55 case Type::DoubleTyID: return cFP; // Floating Point is #3
56
57 case Type::LongTyID:
58 case Type::ULongTyID: return cLong; // Longs are class #4
59 default:
60 assert(0 && "Invalid type to getClass!");
61 return cByte; // not reached
62 }
63}
64
65// getClassB - Just like getClass, but treat boolean values as ints.
66static inline TypeClass getClassB(const Type *Ty) {
67 if (Ty == Type::BoolTy) return cInt;
68 return getClass(Ty);
69}
70
71namespace {
72 struct ISel : public FunctionPass, InstVisitor<ISel> {
73 TargetMachine &TM;
74 MachineFunction *F; // The function we are compiling into
75 MachineBasicBlock *BB; // The current MBB we are compiling
76 int VarArgsFrameIndex; // FrameIndex for start of varargs area
77 int ReturnAddressIndex; // FrameIndex for the return address
78
79 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
80
Misha Brukman2834a4d2004-07-07 20:07:22 +000081 // External functions used in the Module
82 std::map<std::string, Function*> Func;
83
Misha Brukman5dfe3a92004-06-21 16:55:25 +000084 // MBBMap - Mapping between LLVM BB -> Machine BB
85 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
86
87 // AllocaMap - Mapping from fixed sized alloca instructions to the
88 // FrameIndex for the alloca.
89 std::map<AllocaInst*, unsigned> AllocaMap;
90
91 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
92
Misha Brukman2834a4d2004-07-07 20:07:22 +000093 bool doInitialization(Module &M) {
Misha Brukmanb0932592004-07-07 15:36:18 +000094 // Add external functions that we may call
Misha Brukman2834a4d2004-07-07 20:07:22 +000095 Type *d = Type::DoubleTy;
96 Type *l = Type::LongTy;
97 Type *ul = Type::ULongTy;
98 // double fmod(double, double);
99 Func["fmod"] = M.getOrInsertFunction("fmod", d, d, d, 0);
100 // long __moddi3(long, long);
101 Func["__moddi3"] = M.getOrInsertFunction("__moddi3", l, l, l, 0);
102 // long __divdi3(long, long);
103 Func["__divdi3"] = M.getOrInsertFunction("__divdi3", l, l, l, 0);
104 // unsigned long __umoddi3(unsigned long, unsigned long);
105 Func["__umoddi3"] = M.getOrInsertFunction("__umoddi3", ul, ul, ul, 0);
106 // unsigned long __udivdi3(unsigned long, unsigned long);
107 Func["__udivdi3"] = M.getOrInsertFunction("__udivdi3", ul, ul, ul, 0);
108 return false;
109 }
Misha Brukmand18a31d2004-07-06 22:51:53 +0000110
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000111 /// runOnFunction - Top level implementation of instruction selection for
112 /// the entire function.
113 ///
114 bool runOnFunction(Function &Fn) {
115 // First pass over the function, lower any unknown intrinsic functions
116 // with the IntrinsicLowering class.
117 LowerUnknownIntrinsicFunctionCalls(Fn);
118
119 F = &MachineFunction::construct(&Fn, TM);
120
121 // Create all of the machine basic blocks for the function...
122 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
123 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
124
125 BB = &F->front();
126
127 // Set up a frame object for the return address. This is used by the
128 // llvm.returnaddress & llvm.frameaddress intrinisics.
129 ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
130
131 // Copy incoming arguments off of the stack...
132 LoadArgumentsToVirtualRegs(Fn);
133
134 // Instruction select everything except PHI nodes
135 visit(Fn);
136
137 // Select the PHI nodes
138 SelectPHINodes();
139
140 RegMap.clear();
141 MBBMap.clear();
142 AllocaMap.clear();
143 F = 0;
144 // We always build a machine code representation for the function
145 return true;
146 }
147
148 virtual const char *getPassName() const {
149 return "PowerPC Simple Instruction Selection";
150 }
151
152 /// visitBasicBlock - This method is called when we are visiting a new basic
153 /// block. This simply creates a new MachineBasicBlock to emit code into
154 /// and adds it to the current MachineFunction. Subsequent visit* for
155 /// instructions will be invoked for all instructions in the basic block.
156 ///
157 void visitBasicBlock(BasicBlock &LLVM_BB) {
158 BB = MBBMap[&LLVM_BB];
159 }
160
161 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
162 /// function, lowering any calls to unknown intrinsic functions into the
163 /// equivalent LLVM code.
164 ///
165 void LowerUnknownIntrinsicFunctionCalls(Function &F);
166
167 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
168 /// from the stack into virtual registers.
169 ///
170 void LoadArgumentsToVirtualRegs(Function &F);
171
172 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
173 /// because we have to generate our sources into the source basic blocks,
174 /// not the current one.
175 ///
176 void SelectPHINodes();
177
178 // Visitation methods for various instructions. These methods simply emit
179 // fixed PowerPC code for each instruction.
180
181 // Control flow operators
182 void visitReturnInst(ReturnInst &RI);
183 void visitBranchInst(BranchInst &BI);
184
185 struct ValueRecord {
186 Value *Val;
187 unsigned Reg;
188 const Type *Ty;
189 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
190 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
191 };
192 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmand18a31d2004-07-06 22:51:53 +0000193 const std::vector<ValueRecord> &Args, bool isVarArg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000194 void visitCallInst(CallInst &I);
195 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
196
197 // Arithmetic operators
198 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
199 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
200 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
201 void visitMul(BinaryOperator &B);
202
203 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
204 void visitRem(BinaryOperator &B) { visitDivRem(B); }
205 void visitDivRem(BinaryOperator &B);
206
207 // Bitwise operators
208 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
209 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
210 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
211
212 // Comparison operators...
213 void visitSetCondInst(SetCondInst &I);
214 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
215 MachineBasicBlock *MBB,
216 MachineBasicBlock::iterator MBBI);
217 void visitSelectInst(SelectInst &SI);
218
219
220 // Memory Instructions
221 void visitLoadInst(LoadInst &I);
222 void visitStoreInst(StoreInst &I);
223 void visitGetElementPtrInst(GetElementPtrInst &I);
224 void visitAllocaInst(AllocaInst &I);
225 void visitMallocInst(MallocInst &I);
226 void visitFreeInst(FreeInst &I);
227
228 // Other operators
229 void visitShiftInst(ShiftInst &I);
230 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
231 void visitCastInst(CastInst &I);
232 void visitVANextInst(VANextInst &I);
233 void visitVAArgInst(VAArgInst &I);
234
235 void visitInstruction(Instruction &I) {
236 std::cerr << "Cannot instruction select: " << I;
237 abort();
238 }
239
240 /// promote32 - Make a value 32-bits wide, and put it somewhere.
241 ///
242 void promote32(unsigned targetReg, const ValueRecord &VR);
243
244 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
245 /// constant expression GEP support.
246 ///
247 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
248 Value *Src, User::op_iterator IdxBegin,
249 User::op_iterator IdxEnd, unsigned TargetReg);
250
251 /// emitCastOperation - Common code shared between visitCastInst and
252 /// constant expression cast support.
253 ///
254 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
255 Value *Src, const Type *DestTy, unsigned TargetReg);
256
257 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
258 /// and constant expression support.
259 ///
260 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
261 MachineBasicBlock::iterator IP,
262 Value *Op0, Value *Op1,
263 unsigned OperatorClass, unsigned TargetReg);
264
265 /// emitBinaryFPOperation - This method handles emission of floating point
266 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
267 void emitBinaryFPOperation(MachineBasicBlock *BB,
268 MachineBasicBlock::iterator IP,
269 Value *Op0, Value *Op1,
270 unsigned OperatorClass, unsigned TargetReg);
271
272 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
273 Value *Op0, Value *Op1, unsigned TargetReg);
274
275 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
276 unsigned DestReg, const Type *DestTy,
277 unsigned Op0Reg, unsigned Op1Reg);
278 void doMultiplyConst(MachineBasicBlock *MBB,
279 MachineBasicBlock::iterator MBBI,
280 unsigned DestReg, const Type *DestTy,
281 unsigned Op0Reg, unsigned Op1Val);
282
283 void emitDivRemOperation(MachineBasicBlock *BB,
284 MachineBasicBlock::iterator IP,
285 Value *Op0, Value *Op1, bool isDiv,
286 unsigned TargetReg);
287
288 /// emitSetCCOperation - Common code shared between visitSetCondInst and
289 /// constant expression support.
290 ///
291 void emitSetCCOperation(MachineBasicBlock *BB,
292 MachineBasicBlock::iterator IP,
293 Value *Op0, Value *Op1, unsigned Opcode,
294 unsigned TargetReg);
295
296 /// emitShiftOperation - Common code shared between visitShiftInst and
297 /// constant expression support.
298 ///
299 void emitShiftOperation(MachineBasicBlock *MBB,
300 MachineBasicBlock::iterator IP,
301 Value *Op, Value *ShiftAmount, bool isLeftShift,
302 const Type *ResultTy, unsigned DestReg);
303
304 /// emitSelectOperation - Common code shared between visitSelectInst and the
305 /// constant expression support.
306 void emitSelectOperation(MachineBasicBlock *MBB,
307 MachineBasicBlock::iterator IP,
308 Value *Cond, Value *TrueVal, Value *FalseVal,
309 unsigned DestReg);
310
311 /// copyConstantToRegister - Output the instructions required to put the
312 /// specified constant into the specified register.
313 ///
314 void copyConstantToRegister(MachineBasicBlock *MBB,
315 MachineBasicBlock::iterator MBBI,
316 Constant *C, unsigned Reg);
317
318 void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
319 unsigned LHS, unsigned RHS);
320
321 /// makeAnotherReg - This method returns the next register number we haven't
322 /// yet used.
323 ///
324 /// Long values are handled somewhat specially. They are always allocated
325 /// as pairs of 32 bit integer values. The register number returned is the
326 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
327 /// of the long value.
328 ///
329 unsigned makeAnotherReg(const Type *Ty) {
330 assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
331 "Current target doesn't have PPC reg info??");
332 const PowerPCRegisterInfo *MRI =
333 static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
334 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
335 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
336 // Create the lower part
337 F->getSSARegMap()->createVirtualRegister(RC);
338 // Create the upper part.
339 return F->getSSARegMap()->createVirtualRegister(RC)-1;
340 }
341
342 // Add the mapping of regnumber => reg class to MachineFunction
343 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
344 return F->getSSARegMap()->createVirtualRegister(RC);
345 }
346
347 /// getReg - This method turns an LLVM value into a register number.
348 ///
349 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
350 unsigned getReg(Value *V) {
351 // Just append to the end of the current bb.
352 MachineBasicBlock::iterator It = BB->end();
353 return getReg(V, BB, It);
354 }
355 unsigned getReg(Value *V, MachineBasicBlock *MBB,
356 MachineBasicBlock::iterator IPt);
357
358 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
359 /// that is to be statically allocated with the initial stack frame
360 /// adjustment.
361 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
362 };
363}
364
365/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
366/// instruction in the entry block, return it. Otherwise, return a null
367/// pointer.
368static AllocaInst *dyn_castFixedAlloca(Value *V) {
369 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
370 BasicBlock *BB = AI->getParent();
371 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
372 return AI;
373 }
374 return 0;
375}
376
377/// getReg - This method turns an LLVM value into a register number.
378///
379unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
380 MachineBasicBlock::iterator IPt) {
381 // If this operand is a constant, emit the code to copy the constant into
382 // the register here...
383 //
384 if (Constant *C = dyn_cast<Constant>(V)) {
385 unsigned Reg = makeAnotherReg(V->getType());
386 copyConstantToRegister(MBB, IPt, C, Reg);
387 return Reg;
388 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
Misha Brukman7e5812c2004-06-28 18:20:59 +0000389 // GV is located at PC + distance
Misha Brukman7e5812c2004-06-28 18:20:59 +0000390 unsigned CurPC = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000391 unsigned Reg1 = makeAnotherReg(V->getType());
Misha Brukman422791f2004-06-21 17:41:12 +0000392 unsigned Reg2 = makeAnotherReg(V->getType());
Misha Brukman7e5812c2004-06-28 18:20:59 +0000393 // Move PC to destination reg
394 BuildMI(*MBB, IPt, PPC32::MovePCtoLR, 0, CurPC);
Misha Brukman7e5812c2004-06-28 18:20:59 +0000395 // Move value at PC + distance into return reg
396 BuildMI(*MBB, IPt, PPC32::LOADHiAddr, 2, Reg1).addReg(CurPC)
Misha Brukman911afde2004-06-25 14:50:41 +0000397 .addGlobalAddress(GV);
Misha Brukman9ecf3bf2004-06-25 14:57:19 +0000398 BuildMI(*MBB, IPt, PPC32::LOADLoAddr, 2, Reg2).addReg(Reg1)
Misha Brukman911afde2004-06-25 14:50:41 +0000399 .addGlobalAddress(GV);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000400 return Reg2;
401 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
402 // Do not emit noop casts at all.
403 if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()))
404 return getReg(CI->getOperand(0), MBB, IPt);
405 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
406 unsigned Reg = makeAnotherReg(V->getType());
407 unsigned FI = getFixedSizedAllocaFI(AI);
408 addFrameReference(BuildMI(*MBB, IPt, PPC32::ADDI, 2, Reg), FI, 0, false);
409 return Reg;
410 }
411
412 unsigned &Reg = RegMap[V];
413 if (Reg == 0) {
414 Reg = makeAnotherReg(V->getType());
415 RegMap[V] = Reg;
416 }
417
418 return Reg;
419}
420
421/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
422/// that is to be statically allocated with the initial stack frame
423/// adjustment.
424unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
425 // Already computed this?
426 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
427 if (I != AllocaMap.end() && I->first == AI) return I->second;
428
429 const Type *Ty = AI->getAllocatedType();
430 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
431 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
432 TySize *= CUI->getValue(); // Get total allocated size...
433 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
434
435 // Create a new stack object using the frame manager...
436 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
437 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
438 return FrameIdx;
439}
440
441
442/// copyConstantToRegister - Output the instructions required to put the
443/// specified constant into the specified register.
444///
445void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
446 MachineBasicBlock::iterator IP,
447 Constant *C, unsigned R) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000448 if (C->getType()->isIntegral()) {
449 unsigned Class = getClassB(C->getType());
450
451 if (Class == cLong) {
452 // Copy the value into the register pair.
453 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Misha Brukman422791f2004-06-21 17:41:12 +0000454 unsigned hiTmp = makeAnotherReg(Type::IntTy);
455 unsigned loTmp = makeAnotherReg(Type::IntTy);
Misha Brukman911afde2004-06-25 14:50:41 +0000456 BuildMI(*MBB, IP, PPC32::ADDIS, 2, loTmp).addReg(PPC32::R0)
457 .addImm(Val >> 48);
458 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(loTmp)
459 .addImm((Val >> 32) & 0xFFFF);
460 BuildMI(*MBB, IP, PPC32::ADDIS, 2, hiTmp).addReg(PPC32::R0)
461 .addImm((Val >> 16) & 0xFFFF);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000462 BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(hiTmp).addImm(Val & 0xFFFF);
463 return;
464 }
465
466 assert(Class <= cInt && "Type not handled yet!");
467
468 if (C->getType() == Type::BoolTy) {
Misha Brukman911afde2004-06-25 14:50:41 +0000469 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0)
470 .addImm(C == ConstantBool::True);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000471 } else if (Class == cByte || Class == cShort) {
472 ConstantInt *CI = cast<ConstantInt>(C);
Misha Brukman911afde2004-06-25 14:50:41 +0000473 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0)
474 .addImm(CI->getRawValue());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000475 } else {
476 ConstantInt *CI = cast<ConstantInt>(C);
477 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
478 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman911afde2004-06-25 14:50:41 +0000479 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0)
480 .addImm(CI->getRawValue());
Misha Brukman422791f2004-06-21 17:41:12 +0000481 } else {
482 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman911afde2004-06-25 14:50:41 +0000483 BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0)
484 .addImm(CI->getRawValue() >> 16);
485 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TmpReg)
486 .addImm(CI->getRawValue() & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +0000487 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000488 }
489 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000490 // We need to spill the constant to memory...
491 MachineConstantPool *CP = F->getConstantPool();
492 unsigned CPI = CP->getConstantPoolIndex(CFP);
493 const Type *Ty = CFP->getType();
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000494
Misha Brukmand18a31d2004-07-06 22:51:53 +0000495 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukmanfc879c32004-07-08 18:02:38 +0000496
497 // Load addr of constant to reg; constant is located at PC + distance
498 unsigned CurPC = makeAnotherReg(Type::IntTy);
499 unsigned Reg1 = makeAnotherReg(Type::IntTy);
500 unsigned Reg2 = makeAnotherReg(Type::IntTy);
501 // Move PC to destination reg
502 BuildMI(*MBB, IP, PPC32::MovePCtoLR, 0, CurPC);
503 // Move value at PC + distance into return reg
504 BuildMI(*MBB, IP, PPC32::LOADHiAddr, 2, Reg1).addReg(CurPC)
505 .addConstantPoolIndex(CPI);
506 BuildMI(*MBB, IP, PPC32::LOADLoAddr, 2, Reg2).addReg(Reg1)
507 .addConstantPoolIndex(CPI);
508
Misha Brukmand18a31d2004-07-06 22:51:53 +0000509 unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC32::LFS : PPC32::LFD;
Misha Brukmanfc879c32004-07-08 18:02:38 +0000510 BuildMI(*MBB, IP, LoadOpcode, 2, R).addImm(0).addReg(Reg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000511 } else if (isa<ConstantPointerNull>(C)) {
512 // Copy zero (null pointer) to the register.
513 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(0);
514 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000515 BuildMI(*MBB, IP, PPC32::ADDIS, 2, R).addReg(PPC32::R0)
516 .addGlobalAddress(CPR->getValue());
517 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(PPC32::R0)
518 .addGlobalAddress(CPR->getValue());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000519 } else {
520 std::cerr << "Offending constant: " << C << "\n";
521 assert(0 && "Type not handled yet!");
522 }
523}
524
525/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
526/// the stack into virtual registers.
527///
528/// FIXME: When we can calculate which args are coming in via registers
529/// source them from there instead.
530void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
531 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
532 unsigned GPR_remaining = 8;
533 unsigned FPR_remaining = 13;
Misha Brukmand18a31d2004-07-06 22:51:53 +0000534 unsigned GPR_idx = 0, FPR_idx = 0;
535 static const unsigned GPR[] = {
536 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
537 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
538 };
539 static const unsigned FPR[] = {
540 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6, PPC32::F7,
Misha Brukman2834a4d2004-07-07 20:07:22 +0000541 PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12, PPC32::F13
Misha Brukmand18a31d2004-07-06 22:51:53 +0000542 };
Misha Brukman422791f2004-06-21 17:41:12 +0000543
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000544 MachineFrameInfo *MFI = F->getFrameInfo();
Misha Brukmand18a31d2004-07-06 22:51:53 +0000545
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000546 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
547 bool ArgLive = !I->use_empty();
548 unsigned Reg = ArgLive ? getReg(*I) : 0;
549 int FI; // Frame object index
550
551 switch (getClassB(I->getType())) {
552 case cByte:
553 if (ArgLive) {
554 FI = MFI->CreateFixedObject(1, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000555 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000556 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
557 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000558 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000559 addFrameReference(BuildMI(BB, PPC32::LBZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000560 }
561 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000562 break;
563 case cShort:
564 if (ArgLive) {
565 FI = MFI->CreateFixedObject(2, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000566 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000567 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
568 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000569 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000570 addFrameReference(BuildMI(BB, PPC32::LHZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000571 }
572 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000573 break;
574 case cInt:
575 if (ArgLive) {
576 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000577 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000578 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
579 .addReg(GPR[GPR_idx]);
Misha Brukman422791f2004-06-21 17:41:12 +0000580 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000581 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000582 }
583 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000584 break;
585 case cLong:
586 if (ArgLive) {
587 FI = MFI->CreateFixedObject(8, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000588 if (GPR_remaining > 1) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000589 BuildMI(BB, PPC32::OR, 2, Reg).addReg(GPR[GPR_idx])
590 .addReg(GPR[GPR_idx]);
591 BuildMI(BB, PPC32::OR, 2, Reg+1).addReg(GPR[GPR_idx+1])
592 .addReg(GPR[GPR_idx+1]);
Misha Brukman422791f2004-06-21 17:41:12 +0000593 } else {
594 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
595 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg+1), FI, 4);
596 }
597 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000598 ArgOffset += 4; // longs require 4 additional bytes
Misha Brukman422791f2004-06-21 17:41:12 +0000599 if (GPR_remaining > 1) {
600 GPR_remaining--; // uses up 2 GPRs
601 GPR_idx++;
602 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000603 break;
604 case cFP:
605 if (ArgLive) {
606 unsigned Opcode;
607 if (I->getType() == Type::FloatTy) {
608 Opcode = PPC32::LFS;
609 FI = MFI->CreateFixedObject(4, ArgOffset);
610 } else {
611 Opcode = PPC32::LFD;
612 FI = MFI->CreateFixedObject(8, ArgOffset);
613 }
Misha Brukman422791f2004-06-21 17:41:12 +0000614 if (FPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000615 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(FPR[FPR_idx]);
616 FPR_remaining--;
617 FPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000618 } else {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000619 addFrameReference(BuildMI(BB, Opcode, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000620 }
621 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000622 if (I->getType() == Type::DoubleTy) {
623 ArgOffset += 4; // doubles require 4 additional bytes
Misha Brukman422791f2004-06-21 17:41:12 +0000624 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000625 GPR_remaining--; // uses up 2 GPRs
626 GPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000627 }
628 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000629 break;
630 default:
631 assert(0 && "Unhandled argument type!");
632 }
633 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Misha Brukman422791f2004-06-21 17:41:12 +0000634 if (GPR_remaining > 0) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000635 GPR_remaining--; // uses up 2 GPRs
636 GPR_idx++;
Misha Brukman422791f2004-06-21 17:41:12 +0000637 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000638 }
639
640 // If the function takes variable number of arguments, add a frame offset for
641 // the start of the first vararg value... this is used to expand
642 // llvm.va_start.
643 if (Fn.getFunctionType()->isVarArg())
644 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
645}
646
647
648/// SelectPHINodes - Insert machine code to generate phis. This is tricky
649/// because we have to generate our sources into the source basic blocks, not
650/// the current one.
651///
652void ISel::SelectPHINodes() {
653 const TargetInstrInfo &TII = *TM.getInstrInfo();
654 const Function &LF = *F->getFunction(); // The LLVM function...
655 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
656 const BasicBlock *BB = I;
657 MachineBasicBlock &MBB = *MBBMap[I];
658
659 // Loop over all of the PHI nodes in the LLVM basic block...
660 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
661 for (BasicBlock::const_iterator I = BB->begin();
662 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
663
664 // Create a new machine instr PHI node, and insert it.
665 unsigned PHIReg = getReg(*PN);
666 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
667 PPC32::PHI, PN->getNumOperands(), PHIReg);
668
669 MachineInstr *LongPhiMI = 0;
670 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
671 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
672 PPC32::PHI, PN->getNumOperands(), PHIReg+1);
673
674 // PHIValues - Map of blocks to incoming virtual registers. We use this
675 // so that we only initialize one incoming value for a particular block,
676 // even if the block has multiple entries in the PHI node.
677 //
678 std::map<MachineBasicBlock*, unsigned> PHIValues;
679
680 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
681 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
682 unsigned ValReg;
683 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
684 PHIValues.lower_bound(PredMBB);
685
686 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
687 // We already inserted an initialization of the register for this
688 // predecessor. Recycle it.
689 ValReg = EntryIt->second;
690
691 } else {
692 // Get the incoming value into a virtual register.
693 //
694 Value *Val = PN->getIncomingValue(i);
695
696 // If this is a constant or GlobalValue, we may have to insert code
697 // into the basic block to compute it into a virtual register.
698 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
699 isa<GlobalValue>(Val)) {
700 // Simple constants get emitted at the end of the basic block,
701 // before any terminator instructions. We "know" that the code to
702 // move a constant into a register will never clobber any flags.
703 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
704 } else {
705 // Because we don't want to clobber any values which might be in
706 // physical registers with the computation of this constant (which
707 // might be arbitrarily complex if it is a constant expression),
708 // just insert the computation at the top of the basic block.
709 MachineBasicBlock::iterator PI = PredMBB->begin();
710
711 // Skip over any PHI nodes though!
712 while (PI != PredMBB->end() && PI->getOpcode() == PPC32::PHI)
713 ++PI;
714
715 ValReg = getReg(Val, PredMBB, PI);
716 }
717
718 // Remember that we inserted a value for this PHI for this predecessor
719 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
720 }
721
722 PhiMI->addRegOperand(ValReg);
723 PhiMI->addMachineBasicBlockOperand(PredMBB);
724 if (LongPhiMI) {
725 LongPhiMI->addRegOperand(ValReg+1);
726 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
727 }
728 }
729
730 // Now that we emitted all of the incoming values for the PHI node, make
731 // sure to reposition the InsertPoint after the PHI that we just added.
732 // This is needed because we might have inserted a constant into this
733 // block, right after the PHI's which is before the old insert point!
734 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
735 ++PHIInsertPoint;
736 }
737 }
738}
739
740
741// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
742// it into the conditional branch or select instruction which is the only user
743// of the cc instruction. This is the case if the conditional branch is the
744// only user of the setcc, and if the setcc is in the same basic block as the
745// conditional branch. We also don't handle long arguments below, so we reject
746// them here as well.
747//
748static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
749 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
750 if (SCI->hasOneUse()) {
751 Instruction *User = cast<Instruction>(SCI->use_back());
752 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
753 SCI->getParent() == User->getParent() &&
754 (getClassB(SCI->getOperand(0)->getType()) != cLong ||
755 SCI->getOpcode() == Instruction::SetEQ ||
756 SCI->getOpcode() == Instruction::SetNE))
757 return SCI;
758 }
759 return 0;
760}
761
762// Return a fixed numbering for setcc instructions which does not depend on the
763// order of the opcodes.
764//
765static unsigned getSetCCNumber(unsigned Opcode) {
Misha Brukmane9c65512004-07-06 15:32:44 +0000766 switch (Opcode) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000767 default: assert(0 && "Unknown setcc instruction!");
768 case Instruction::SetEQ: return 0;
769 case Instruction::SetNE: return 1;
770 case Instruction::SetLT: return 2;
771 case Instruction::SetGE: return 3;
772 case Instruction::SetGT: return 4;
773 case Instruction::SetLE: return 5;
774 }
775}
776
Misha Brukmane9c65512004-07-06 15:32:44 +0000777static unsigned getPPCOpcodeForSetCCNumber(unsigned Opcode) {
778 switch (Opcode) {
779 default: assert(0 && "Unknown setcc instruction!");
780 case Instruction::SetEQ: return PPC32::BEQ;
781 case Instruction::SetNE: return PPC32::BNE;
782 case Instruction::SetLT: return PPC32::BLT;
783 case Instruction::SetGE: return PPC32::BGE;
784 case Instruction::SetGT: return PPC32::BGT;
785 case Instruction::SetLE: return PPC32::BLE;
786 }
787}
788
789static unsigned invertPPCBranchOpcode(unsigned Opcode) {
790 switch (Opcode) {
791 default: assert(0 && "Unknown PPC32 branch opcode!");
792 case PPC32::BEQ: return PPC32::BNE;
793 case PPC32::BNE: return PPC32::BEQ;
794 case PPC32::BLT: return PPC32::BGE;
795 case PPC32::BGE: return PPC32::BLT;
796 case PPC32::BGT: return PPC32::BLE;
797 case PPC32::BLE: return PPC32::BGT;
798 }
799}
800
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000801/// emitUCOM - emits an unordered FP compare.
802void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
803 unsigned LHS, unsigned RHS) {
Misha Brukman422791f2004-06-21 17:41:12 +0000804 BuildMI(*MBB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(LHS).addReg(RHS);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000805}
806
807// EmitComparison - This function emits a comparison of the two operands,
808// returning the extended setcc code to use.
809unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
810 MachineBasicBlock *MBB,
811 MachineBasicBlock::iterator IP) {
812 // The arguments are already supposed to be of the same type.
813 const Type *CompTy = Op0->getType();
814 unsigned Class = getClassB(CompTy);
815 unsigned Op0r = getReg(Op0, MBB, IP);
816
817 // Special case handling of: cmp R, i
818 if (isa<ConstantPointerNull>(Op1)) {
Misha Brukmane9c65512004-07-06 15:32:44 +0000819 BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(Op0r).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000820 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
821 if (Class == cByte || Class == cShort || Class == cInt) {
822 unsigned Op1v = CI->getRawValue();
823
824 // Mask off any upper bits of the constant, if there are any...
825 Op1v &= (1ULL << (8 << Class)) - 1;
826
Misha Brukman422791f2004-06-21 17:41:12 +0000827 // Compare immediate or promote to reg?
828 if (Op1v <= 32767) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000829 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3,
830 PPC32::CR0).addImm(0).addReg(Op0r).addImm(Op1v);
Misha Brukman422791f2004-06-21 17:41:12 +0000831 } else {
832 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman2fec9902004-06-21 20:22:03 +0000833 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 3,
834 PPC32::CR0).addImm(0).addReg(Op0r).addReg(Op1r);
Misha Brukman422791f2004-06-21 17:41:12 +0000835 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000836 return OpNum;
837 } else {
838 assert(Class == cLong && "Unknown integer class!");
839 unsigned LowCst = CI->getRawValue();
840 unsigned HiCst = CI->getRawValue() >> 32;
841 if (OpNum < 2) { // seteq, setne
842 unsigned LoTmp = Op0r;
843 if (LowCst != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +0000844 unsigned LoLow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000845 unsigned LoTmp = makeAnotherReg(Type::IntTy);
846 BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r).addImm(LowCst);
Misha Brukman2fec9902004-06-21 20:22:03 +0000847 BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow)
848 .addImm(LowCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000849 }
850 unsigned HiTmp = Op0r+1;
851 if (HiCst != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +0000852 unsigned HiLow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000853 unsigned HiTmp = makeAnotherReg(Type::IntTy);
854 BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r+1).addImm(HiCst);
Misha Brukman2fec9902004-06-21 20:22:03 +0000855 BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow)
856 .addImm(HiCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000857 }
858 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
859 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
860 //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0);
861 return OpNum;
862 } else {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000863 // FIXME: Not Yet Implemented
Misha Brukman911afde2004-06-25 14:50:41 +0000864 std::cerr << "EmitComparison unimplemented: Opnum >= 2\n";
865 abort();
Misha Brukman422791f2004-06-21 17:41:12 +0000866 return OpNum;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000867 }
868 }
869 }
870
871 unsigned Op1r = getReg(Op1, MBB, IP);
872 switch (Class) {
873 default: assert(0 && "Unknown type class!");
874 case cByte:
875 case cShort:
876 case cInt:
Misha Brukman2fec9902004-06-21 20:22:03 +0000877 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 2,
878 PPC32::CR0).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000879 break;
Misha Brukmand18a31d2004-07-06 22:51:53 +0000880
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000881 case cFP:
882 emitUCOM(MBB, IP, Op0r, Op1r);
883 break;
884
885 case cLong:
886 if (OpNum < 2) { // seteq, setne
887 unsigned LoTmp = makeAnotherReg(Type::IntTy);
888 unsigned HiTmp = makeAnotherReg(Type::IntTy);
889 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
890 BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r).addReg(Op1r);
891 BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
892 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
893 //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0);
894 break; // Allow the sete or setne to be generated from flags set by OR
895 } else {
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000896 // FIXME: Not Yet Implemented
Misha Brukman911afde2004-06-25 14:50:41 +0000897 std::cerr << "EmitComparison (cLong) unimplemented: Opnum >= 2\n";
898 abort();
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000899 return OpNum;
900 }
901 }
902 return OpNum;
903}
904
Misha Brukmand18a31d2004-07-06 22:51:53 +0000905/// visitSetCondInst - emit code to calculate the condition via
906/// EmitComparison(), and possibly store a 0 or 1 to a register as a result
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000907///
908void ISel::visitSetCondInst(SetCondInst &I) {
Misha Brukmand18a31d2004-07-06 22:51:53 +0000909 if (canFoldSetCCIntoBranchOrSelect(&I))
Misha Brukmane9c65512004-07-06 15:32:44 +0000910 return;
911
Misha Brukman425ff242004-07-01 21:34:10 +0000912 unsigned Op0Reg = getReg(I.getOperand(0));
913 unsigned Op1Reg = getReg(I.getOperand(1));
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000914 unsigned DestReg = getReg(I);
Misha Brukman2834a4d2004-07-07 20:07:22 +0000915 unsigned OpNum = I.getOpcode();
Misha Brukman425ff242004-07-01 21:34:10 +0000916 const Type *Ty = I.getOperand (0)->getType();
917
Misha Brukmand18a31d2004-07-06 22:51:53 +0000918 EmitComparison(OpNum, I.getOperand(0), I.getOperand(1), BB, BB->end());
919
920 unsigned Opcode = getPPCOpcodeForSetCCNumber(OpNum);
Misha Brukman425ff242004-07-01 21:34:10 +0000921 MachineBasicBlock *thisMBB = BB;
922 const BasicBlock *LLVM_BB = BB->getBasicBlock();
923 // thisMBB:
924 // ...
925 // cmpTY cr0, r1, r2
926 // bCC copy1MBB
927 // b copy0MBB
928
929 // FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
930 // if we could insert other, non-terminator instructions after the
931 // bCC. But MBB->getFirstTerminator() can't understand this.
932 MachineBasicBlock *copy1MBB = new MachineBasicBlock(LLVM_BB);
933 F->getBasicBlockList().push_back(copy1MBB);
934 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0).addMBB(copy1MBB);
935 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
936 F->getBasicBlockList().push_back(copy0MBB);
937 BuildMI(BB, PPC32::B, 1).addMBB(copy0MBB);
938 // Update machine-CFG edges
939 BB->addSuccessor(copy1MBB);
940 BB->addSuccessor(copy0MBB);
941
942 // copy0MBB:
943 // %FalseValue = li 0
Misha Brukmane9c65512004-07-06 15:32:44 +0000944 // b sinkMBB
Misha Brukman425ff242004-07-01 21:34:10 +0000945 BB = copy0MBB;
946 unsigned FalseValue = makeAnotherReg(I.getType());
947 BuildMI(BB, PPC32::LI, 1, FalseValue).addZImm(0);
948 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
949 F->getBasicBlockList().push_back(sinkMBB);
950 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
951 // Update machine-CFG edges
952 BB->addSuccessor(sinkMBB);
953
954 DEBUG(std::cerr << "thisMBB is at " << (void*)thisMBB << "\n");
955 DEBUG(std::cerr << "copy1MBB is at " << (void*)copy1MBB << "\n");
956 DEBUG(std::cerr << "copy0MBB is at " << (void*)copy0MBB << "\n");
957 DEBUG(std::cerr << "sinkMBB is at " << (void*)sinkMBB << "\n");
958
959 // copy1MBB:
960 // %TrueValue = li 1
Misha Brukmane9c65512004-07-06 15:32:44 +0000961 // b sinkMBB
Misha Brukman425ff242004-07-01 21:34:10 +0000962 BB = copy1MBB;
963 unsigned TrueValue = makeAnotherReg (I.getType ());
964 BuildMI(BB, PPC32::LI, 1, TrueValue).addZImm(1);
965 BuildMI(BB, PPC32::B, 1).addMBB(sinkMBB);
966 // Update machine-CFG edges
967 BB->addSuccessor(sinkMBB);
968
969 // sinkMBB:
970 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
971 // ...
972 BB = sinkMBB;
973 BuildMI(BB, PPC32::PHI, 4, DestReg).addReg(FalseValue)
974 .addMBB(copy0MBB).addReg(TrueValue).addMBB(copy1MBB);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000975}
976
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000977void ISel::visitSelectInst(SelectInst &SI) {
978 unsigned DestReg = getReg(SI);
979 MachineBasicBlock::iterator MII = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +0000980 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
981 SI.getFalseValue(), DestReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000982}
983
984/// emitSelect - Common code shared between visitSelectInst and the constant
985/// expression support.
986/// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has
987/// no select instruction. FSEL only works for comparisons against zero.
988void ISel::emitSelectOperation(MachineBasicBlock *MBB,
989 MachineBasicBlock::iterator IP,
990 Value *Cond, Value *TrueVal, Value *FalseVal,
991 unsigned DestReg) {
992 unsigned SelectClass = getClassB(TrueVal->getType());
993
994 unsigned TrueReg = getReg(TrueVal, MBB, IP);
995 unsigned FalseReg = getReg(FalseVal, MBB, IP);
996
997 if (TrueReg == FalseReg) {
Misha Brukman422791f2004-06-21 17:41:12 +0000998 if (SelectClass == cFP) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000999 BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(TrueReg);
Misha Brukman422791f2004-06-21 17:41:12 +00001000 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00001001 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TrueReg).addReg(TrueReg);
Misha Brukman422791f2004-06-21 17:41:12 +00001002 }
1003
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001004 if (SelectClass == cLong)
Misha Brukman2fec9902004-06-21 20:22:03 +00001005 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TrueReg+1)
1006 .addReg(TrueReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001007 return;
1008 }
1009
1010 unsigned CondReg = getReg(Cond, MBB, IP);
1011 unsigned numZeros = makeAnotherReg(Type::IntTy);
1012 unsigned falseHi = makeAnotherReg(Type::IntTy);
1013 unsigned falseAll = makeAnotherReg(Type::IntTy);
1014 unsigned trueAll = makeAnotherReg(Type::IntTy);
1015 unsigned Temp1 = makeAnotherReg(Type::IntTy);
1016 unsigned Temp2 = makeAnotherReg(Type::IntTy);
1017
1018 BuildMI(*MBB, IP, PPC32::CNTLZW, 1, numZeros).addReg(CondReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001019 BuildMI(*MBB, IP, PPC32::RLWINM, 4, falseHi).addReg(numZeros).addImm(26)
1020 .addImm(0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001021 BuildMI(*MBB, IP, PPC32::SRAWI, 2, falseAll).addReg(falseHi).addImm(31);
1022 BuildMI(*MBB, IP, PPC32::NOR, 2, trueAll).addReg(falseAll).addReg(falseAll);
1023 BuildMI(*MBB, IP, PPC32::AND, 2, Temp1).addReg(TrueReg).addReg(trueAll);
1024 BuildMI(*MBB, IP, PPC32::AND, 2, Temp2).addReg(FalseReg).addReg(falseAll);
1025 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Temp1).addReg(Temp2);
1026
1027 if (SelectClass == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001028 unsigned Temp3 = makeAnotherReg(Type::IntTy);
1029 unsigned Temp4 = makeAnotherReg(Type::IntTy);
1030 BuildMI(*MBB, IP, PPC32::AND, 2, Temp3).addReg(TrueReg+1).addReg(trueAll);
1031 BuildMI(*MBB, IP, PPC32::AND, 2, Temp4).addReg(FalseReg+1).addReg(falseAll);
1032 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(Temp3).addReg(Temp4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001033 }
1034
1035 return;
1036}
1037
1038
1039
1040/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
1041/// operand, in the specified target register.
1042///
1043void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
1044 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
1045
1046 Value *Val = VR.Val;
1047 const Type *Ty = VR.Ty;
1048 if (Val) {
1049 if (Constant *C = dyn_cast<Constant>(Val)) {
1050 Val = ConstantExpr::getCast(C, Type::IntTy);
1051 Ty = Type::IntTy;
1052 }
1053
Misha Brukman2fec9902004-06-21 20:22:03 +00001054 // If this is a simple constant, just emit a load directly to avoid the copy
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001055 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1056 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
1057
1058 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman422791f2004-06-21 17:41:12 +00001059 BuildMI(BB, PPC32::ADDI, 2, targetReg).addReg(PPC32::R0).addImm(TheVal);
1060 } else {
1061 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001062 BuildMI(BB, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0)
1063 .addImm(TheVal >> 16);
1064 BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(TmpReg)
1065 .addImm(TheVal & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +00001066 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001067 return;
1068 }
1069 }
1070
1071 // Make sure we have the register number for this value...
1072 unsigned Reg = Val ? getReg(Val) : VR.Reg;
1073
1074 switch (getClassB(Ty)) {
1075 case cByte:
1076 // Extend value into target register (8->32)
1077 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001078 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1079 .addZImm(24).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001080 else
1081 BuildMI(BB, PPC32::EXTSB, 1, targetReg).addReg(Reg);
1082 break;
1083 case cShort:
1084 // Extend value into target register (16->32)
1085 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001086 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1087 .addZImm(16).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001088 else
1089 BuildMI(BB, PPC32::EXTSH, 1, targetReg).addReg(Reg);
1090 break;
1091 case cInt:
1092 // Move value into target register (32->32)
Misha Brukman972569a2004-06-25 18:36:53 +00001093 BuildMI(BB, PPC32::OR, 2, targetReg).addReg(Reg).addReg(Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001094 break;
1095 default:
1096 assert(0 && "Unpromotable operand class in promote32");
1097 }
1098}
1099
Misha Brukman2fec9902004-06-21 20:22:03 +00001100/// visitReturnInst - implemented with BLR
1101///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001102void ISel::visitReturnInst(ReturnInst &I) {
Misha Brukmand47bbf72004-06-25 19:04:27 +00001103 // Only do the processing if this is a non-void return
1104 if (I.getNumOperands() > 0) {
1105 Value *RetVal = I.getOperand(0);
1106 switch (getClassB(RetVal->getType())) {
1107 case cByte: // integral return values: extend or move into r3 and return
1108 case cShort:
1109 case cInt:
1110 promote32(PPC32::R3, ValueRecord(RetVal));
1111 break;
1112 case cFP: { // Floats & Doubles: Return in f1
1113 unsigned RetReg = getReg(RetVal);
1114 BuildMI(BB, PPC32::FMR, 1, PPC32::F1).addReg(RetReg);
1115 break;
1116 }
1117 case cLong: {
1118 unsigned RetReg = getReg(RetVal);
1119 BuildMI(BB, PPC32::OR, 2, PPC32::R3).addReg(RetReg).addReg(RetReg);
1120 BuildMI(BB, PPC32::OR, 2, PPC32::R4).addReg(RetReg+1).addReg(RetReg+1);
1121 break;
1122 }
1123 default:
1124 visitInstruction(I);
1125 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001126 }
1127 BuildMI(BB, PPC32::BLR, 1).addImm(0);
1128}
1129
1130// getBlockAfter - Return the basic block which occurs lexically after the
1131// specified one.
1132static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1133 Function::iterator I = BB; ++I; // Get iterator to next block
1134 return I != BB->getParent()->end() ? &*I : 0;
1135}
1136
1137/// visitBranchInst - Handle conditional and unconditional branches here. Note
1138/// that since code layout is frozen at this point, that if we are trying to
1139/// jump to a block that is the immediate successor of the current block, we can
1140/// just make a fall-through (but we don't currently).
1141///
1142void ISel::visitBranchInst(BranchInst &BI) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001143 // Update machine-CFG edges
1144 BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
1145 if (BI.isConditional())
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001146 BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
Misha Brukman2fec9902004-06-21 20:22:03 +00001147
1148 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
Misha Brukmane9c65512004-07-06 15:32:44 +00001149
Misha Brukman2fec9902004-06-21 20:22:03 +00001150 if (!BI.isConditional()) { // Unconditional branch?
Misha Brukmane9c65512004-07-06 15:32:44 +00001151 if (BI.getSuccessor(0) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001152 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1153 return;
Misha Brukman2fec9902004-06-21 20:22:03 +00001154 }
1155
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001156 // See if we can fold the setcc into the branch itself...
1157 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
1158 if (SCI == 0) {
1159 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1160 // computed some other way...
1161 unsigned condReg = getReg(BI.getCondition());
Misha Brukmane9c65512004-07-06 15:32:44 +00001162 BuildMI(BB, PPC32::CMPLI, 3, PPC32::CR1).addImm(0).addReg(condReg)
Misha Brukman2fec9902004-06-21 20:22:03 +00001163 .addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001164 if (BI.getSuccessor(1) == NextBB) {
1165 if (BI.getSuccessor(0) != NextBB)
Misha Brukmane9c65512004-07-06 15:32:44 +00001166 BuildMI(BB, PPC32::BNE, 2).addReg(PPC32::CR1)
Misha Brukman2fec9902004-06-21 20:22:03 +00001167 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001168 } else {
Misha Brukmane9c65512004-07-06 15:32:44 +00001169 BuildMI(BB, PPC32::BNE, 2).addReg(PPC32::CR1)
Misha Brukman2fec9902004-06-21 20:22:03 +00001170 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001171
1172 if (BI.getSuccessor(0) != NextBB)
1173 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1174 }
1175 return;
1176 }
1177
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001178 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Misha Brukmane9c65512004-07-06 15:32:44 +00001179 unsigned Opcode = getPPCOpcodeForSetCCNumber(SCI->getOpcode());
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001180 MachineBasicBlock::iterator MII = BB->end();
1181 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001182
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001183 if (BI.getSuccessor(0) != NextBB) {
Misha Brukmane9c65512004-07-06 15:32:44 +00001184 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001185 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001186 if (BI.getSuccessor(1) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001187 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001188 } else {
1189 // Change to the inverse condition...
1190 if (BI.getSuccessor(1) != NextBB) {
Misha Brukmane9c65512004-07-06 15:32:44 +00001191 Opcode = invertPPCBranchOpcode(Opcode);
1192 BuildMI(BB, Opcode, 2).addReg(PPC32::CR0)
Misha Brukman2fec9902004-06-21 20:22:03 +00001193 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001194 }
1195 }
1196}
1197
Misha Brukmanfc879c32004-07-08 18:02:38 +00001198static Constant* minUConstantForValue(uint64_t val) {
1199 if (val <= 1)
1200 return ConstantBool::get(val);
1201 else if (ConstantUInt::isValueValidForType(Type::UShortTy, val))
1202 return ConstantUInt::get(Type::UShortTy, val);
1203 else if (ConstantUInt::isValueValidForType(Type::UIntTy, val))
1204 return ConstantUInt::get(Type::UIntTy, val);
1205 else if (ConstantUInt::isValueValidForType(Type::ULongTy, val))
1206 return ConstantUInt::get(Type::ULongTy, val);
1207
1208 std::cerr << "Value: " << val << " not accepted for any integral type!\n";
1209 abort();
1210}
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001211
1212/// doCall - This emits an abstract call instruction, setting up the arguments
1213/// and the return value as appropriate. For the actual function call itself,
1214/// it inserts the specified CallMI instruction into the stream.
1215///
1216/// FIXME: See Documentation at the following URL for "correct" behavior
1217/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html>
1218void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmand18a31d2004-07-06 22:51:53 +00001219 const std::vector<ValueRecord> &Args, bool isVarArg) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001220 // Count how many bytes are to be pushed on the stack...
1221 unsigned NumBytes = 0;
1222
1223 if (!Args.empty()) {
1224 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1225 switch (getClassB(Args[i].Ty)) {
1226 case cByte: case cShort: case cInt:
1227 NumBytes += 4; break;
1228 case cLong:
1229 NumBytes += 8; break;
1230 case cFP:
1231 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
1232 break;
1233 default: assert(0 && "Unknown class!");
1234 }
1235
1236 // Adjust the stack pointer for the new arguments...
1237 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
1238
1239 // Arguments go on the stack in reverse order, as specified by the ABI.
1240 unsigned ArgOffset = 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001241 int GPR_remaining = 8, FPR_remaining = 13;
Misha Brukmanfc879c32004-07-08 18:02:38 +00001242 unsigned GPR_idx = 0, FPR_idx = 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001243 static const unsigned GPR[] = {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001244 PPC32::R3, PPC32::R4, PPC32::R5, PPC32::R6,
1245 PPC32::R7, PPC32::R8, PPC32::R9, PPC32::R10,
1246 };
Misha Brukmand18a31d2004-07-06 22:51:53 +00001247 static const unsigned FPR[] = {
Misha Brukman2834a4d2004-07-07 20:07:22 +00001248 PPC32::F1, PPC32::F2, PPC32::F3, PPC32::F4, PPC32::F5, PPC32::F6,
1249 PPC32::F7, PPC32::F8, PPC32::F9, PPC32::F10, PPC32::F11, PPC32::F12,
1250 PPC32::F13
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001251 };
Misha Brukman422791f2004-06-21 17:41:12 +00001252
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001253 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1254 unsigned ArgReg;
1255 switch (getClassB(Args[i].Ty)) {
1256 case cByte:
1257 case cShort:
1258 // Promote arg to 32 bits wide into a temporary register...
1259 ArgReg = makeAnotherReg(Type::UIntTy);
1260 promote32(ArgReg, Args[i]);
Misha Brukman422791f2004-06-21 17:41:12 +00001261
1262 // Reg or stack?
1263 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001264 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001265 .addReg(ArgReg);
Misha Brukman422791f2004-06-21 17:41:12 +00001266 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001267 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1268 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001269 }
1270 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001271 case cInt:
1272 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1273
Misha Brukman422791f2004-06-21 17:41:12 +00001274 // Reg or stack?
1275 if (GPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001276 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001277 .addReg(ArgReg);
Misha Brukman422791f2004-06-21 17:41:12 +00001278 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001279 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1280 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001281 }
1282 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001283 case cLong:
Misha Brukman422791f2004-06-21 17:41:12 +00001284 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001285
Misha Brukman422791f2004-06-21 17:41:12 +00001286 // Reg or stack?
1287 if (GPR_remaining > 1) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001288 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx]).addReg(ArgReg)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001289 .addReg(ArgReg);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001290 BuildMI(BB, PPC32::OR, 2, GPR[GPR_idx + 1]).addReg(ArgReg+1)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001291 .addReg(ArgReg+1);
Misha Brukman422791f2004-06-21 17:41:12 +00001292 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001293 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1294 .addReg(PPC32::R1);
1295 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addImm(ArgOffset+4)
1296 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001297 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001298
1299 ArgOffset += 4; // 8 byte entry, not 4.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001300 GPR_remaining -= 1; // uses up 2 GPRs
1301 GPR_idx += 1;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001302 break;
1303 case cFP:
1304 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1305 if (Args[i].Ty == Type::FloatTy) {
Misha Brukmanfc879c32004-07-08 18:02:38 +00001306 assert(!isVarArg && "Cannot pass floats to vararg functions!");
Misha Brukman1916bf92004-06-24 21:56:15 +00001307 // Reg or stack?
1308 if (FPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001309 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001310 FPR_remaining--;
1311 FPR_idx++;
Misha Brukman1916bf92004-06-24 21:56:15 +00001312 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001313 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addImm(ArgOffset)
1314 .addReg(PPC32::R1);
Misha Brukman1916bf92004-06-24 21:56:15 +00001315 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001316 } else {
1317 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman1916bf92004-06-24 21:56:15 +00001318 // Reg or stack?
1319 if (FPR_remaining > 0) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001320 BuildMI(BB, PPC32::FMR, 1, FPR[FPR_idx]).addReg(ArgReg);
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001321 FPR_remaining--;
1322 FPR_idx++;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001323 // For vararg functions, must pass doubles via int regs as well
1324 if (isVarArg) {
Misha Brukmanfc879c32004-07-08 18:02:38 +00001325 union DU {
1326 double FVal;
1327 struct {
1328 uint32_t hi32;
1329 uint32_t lo32;
1330 } UVal;
1331 } U;
1332 U.FVal = cast<ConstantFP>(Args[i].Val)->getValue();
1333 if (GPR_remaining > 0) {
1334 Constant *hi32 = minUConstantForValue(U.UVal.hi32);
1335 copyConstantToRegister(BB, BB->end(), hi32, GPR[GPR_idx]);
1336 }
Misha Brukmand18a31d2004-07-06 22:51:53 +00001337 if (GPR_remaining > 1) {
Misha Brukmanfc879c32004-07-08 18:02:38 +00001338 Constant *lo32 = minUConstantForValue(U.UVal.lo32);
1339 copyConstantToRegister(BB, BB->end(), lo32, GPR[GPR_idx+1]);
Misha Brukmand18a31d2004-07-06 22:51:53 +00001340 }
1341 }
Misha Brukman1916bf92004-06-24 21:56:15 +00001342 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001343 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset)
1344 .addReg(PPC32::R1);
Misha Brukman1916bf92004-06-24 21:56:15 +00001345 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001346
Misha Brukman1916bf92004-06-24 21:56:15 +00001347 ArgOffset += 4; // 8 byte entry, not 4.
Misha Brukmanfc879c32004-07-08 18:02:38 +00001348 GPR_remaining--; // uses up 2 GPRs
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001349 GPR_idx++;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001350 }
1351 break;
1352
1353 default: assert(0 && "Unknown class!");
1354 }
1355 ArgOffset += 4;
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001356 GPR_remaining--;
1357 GPR_idx++;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001358 }
1359 } else {
1360 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(0);
1361 }
1362
1363 BB->push_back(CallMI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001364 BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addImm(NumBytes);
1365
1366 // If there is a return value, scavenge the result from the location the call
1367 // leaves it in...
1368 //
1369 if (Ret.Ty != Type::VoidTy) {
1370 unsigned DestClass = getClassB(Ret.Ty);
1371 switch (DestClass) {
1372 case cByte:
1373 case cShort:
1374 case cInt:
1375 // Integral results are in r3
Misha Brukman422791f2004-06-21 17:41:12 +00001376 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
Misha Brukmane327e492004-06-24 23:53:24 +00001377 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001378 case cFP: // Floating-point return values live in f1
1379 BuildMI(BB, PPC32::FMR, 1, Ret.Reg).addReg(PPC32::F1);
1380 break;
1381 case cLong: // Long values are in r3:r4
Misha Brukman422791f2004-06-21 17:41:12 +00001382 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
1383 BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R4).addReg(PPC32::R4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001384 break;
1385 default: assert(0 && "Unknown class!");
1386 }
1387 }
1388}
1389
1390
1391/// visitCallInst - Push args on stack and do a procedure call instruction.
1392void ISel::visitCallInst(CallInst &CI) {
1393 MachineInstr *TheCall;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001394 Function *F = CI.getCalledFunction();
1395 if (F) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001396 // Is it an intrinsic function call?
1397 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
1398 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1399 return;
1400 }
1401
1402 // Emit a CALL instruction with PC-relative displacement.
1403 TheCall = BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(F, true);
1404 } else { // Emit an indirect call through the CTR
1405 unsigned Reg = getReg(CI.getCalledValue());
1406 BuildMI(PPC32::MTSPR, 2).addZImm(9).addReg(Reg);
1407 TheCall = BuildMI(PPC32::CALLindirect, 1).addZImm(20).addZImm(0);
1408 }
1409
1410 std::vector<ValueRecord> Args;
1411 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
1412 Args.push_back(ValueRecord(CI.getOperand(i)));
1413
1414 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
Misha Brukmand18a31d2004-07-06 22:51:53 +00001415 bool isVarArg = F ? F->getFunctionType()->isVarArg() : true;
1416 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args, isVarArg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001417}
1418
1419
1420/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
1421///
1422static Value *dyncastIsNan(Value *V) {
1423 if (CallInst *CI = dyn_cast<CallInst>(V))
1424 if (Function *F = CI->getCalledFunction())
Misha Brukmana2916ce2004-06-21 17:58:36 +00001425 if (F->getIntrinsicID() == Intrinsic::isunordered)
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001426 return CI->getOperand(1);
1427 return 0;
1428}
1429
1430/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
1431/// or's whos operands are all calls to the isnan predicate.
1432static bool isOnlyUsedByUnorderedComparisons(Value *V) {
1433 assert(dyncastIsNan(V) && "The value isn't an isnan call!");
1434
1435 // Check all uses, which will be or's of isnans if this predicate is true.
1436 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1437 Instruction *I = cast<Instruction>(*UI);
1438 if (I->getOpcode() != Instruction::Or) return false;
1439 if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
1440 if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
1441 }
1442
1443 return true;
1444}
1445
1446/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1447/// function, lowering any calls to unknown intrinsic functions into the
1448/// equivalent LLVM code.
1449///
1450void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1451 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1452 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1453 if (CallInst *CI = dyn_cast<CallInst>(I++))
1454 if (Function *F = CI->getCalledFunction())
1455 switch (F->getIntrinsicID()) {
1456 case Intrinsic::not_intrinsic:
1457 case Intrinsic::vastart:
1458 case Intrinsic::vacopy:
1459 case Intrinsic::vaend:
1460 case Intrinsic::returnaddress:
1461 case Intrinsic::frameaddress:
Misha Brukmana2916ce2004-06-21 17:58:36 +00001462 // FIXME: should lower this ourselves
1463 // case Intrinsic::isunordered:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001464 // We directly implement these intrinsics
1465 break;
1466 case Intrinsic::readio: {
1467 // On PPC, memory operations are in-order. Lower this intrinsic
1468 // into a volatile load.
1469 Instruction *Before = CI->getPrev();
1470 LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
1471 CI->replaceAllUsesWith(LI);
1472 BB->getInstList().erase(CI);
1473 break;
1474 }
1475 case Intrinsic::writeio: {
1476 // On PPC, memory operations are in-order. Lower this intrinsic
1477 // into a volatile store.
1478 Instruction *Before = CI->getPrev();
1479 StoreInst *LI = new StoreInst(CI->getOperand(1),
1480 CI->getOperand(2), true, CI);
1481 CI->replaceAllUsesWith(LI);
1482 BB->getInstList().erase(CI);
1483 break;
1484 }
1485 default:
1486 // All other intrinsic calls we must lower.
1487 Instruction *Before = CI->getPrev();
1488 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
1489 if (Before) { // Move iterator to instruction after call
1490 I = Before; ++I;
1491 } else {
1492 I = BB->begin();
1493 }
1494 }
1495}
1496
1497void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
1498 unsigned TmpReg1, TmpReg2, TmpReg3;
1499 switch (ID) {
1500 case Intrinsic::vastart:
1501 // Get the address of the first vararg value...
1502 TmpReg1 = getReg(CI);
1503 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1), VarArgsFrameIndex);
1504 return;
1505
1506 case Intrinsic::vacopy:
1507 TmpReg1 = getReg(CI);
1508 TmpReg2 = getReg(CI.getOperand(1));
1509 BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
1510 return;
1511 case Intrinsic::vaend: return;
1512
1513 case Intrinsic::returnaddress:
1514 case Intrinsic::frameaddress:
1515 TmpReg1 = getReg(CI);
1516 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1517 if (ID == Intrinsic::returnaddress) {
1518 // Just load the return address
1519 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, TmpReg1),
1520 ReturnAddressIndex);
1521 } else {
1522 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1),
1523 ReturnAddressIndex, -4, false);
1524 }
1525 } else {
1526 // Values other than zero are not implemented yet.
1527 BuildMI(BB, PPC32::ADDI, 2, TmpReg1).addReg(PPC32::R0).addImm(0);
1528 }
1529 return;
1530
Misha Brukmana2916ce2004-06-21 17:58:36 +00001531#if 0
1532 // This may be useful for supporting isunordered
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001533 case Intrinsic::isnan:
1534 // If this is only used by 'isunordered' style comparisons, don't emit it.
1535 if (isOnlyUsedByUnorderedComparisons(&CI)) return;
1536 TmpReg1 = getReg(CI.getOperand(1));
1537 emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
Misha Brukman422791f2004-06-21 17:41:12 +00001538 TmpReg2 = makeAnotherReg(Type::IntTy);
1539 BuildMI(BB, PPC32::MFCR, TmpReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001540 TmpReg3 = getReg(CI);
1541 BuildMI(BB, PPC32::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
1542 return;
Misha Brukmana2916ce2004-06-21 17:58:36 +00001543#endif
1544
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001545 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
1546 }
1547}
1548
1549/// visitSimpleBinary - Implement simple binary operators for integral types...
1550/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1551/// Xor.
1552///
1553void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1554 unsigned DestReg = getReg(B);
1555 MachineBasicBlock::iterator MI = BB->end();
1556 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
1557 unsigned Class = getClassB(B.getType());
1558
1559 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
1560}
1561
1562/// emitBinaryFPOperation - This method handles emission of floating point
1563/// Add (0), Sub (1), Mul (2), and Div (3) operations.
1564void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
1565 MachineBasicBlock::iterator IP,
1566 Value *Op0, Value *Op1,
1567 unsigned OperatorClass, unsigned DestReg) {
1568
1569 // Special case: op Reg, <const fp>
1570 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001571 // Create a constant pool entry for this constant.
1572 MachineConstantPool *CP = F->getConstantPool();
1573 unsigned CPI = CP->getConstantPoolIndex(Op1C);
1574 const Type *Ty = Op1->getType();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001575
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001576 static const unsigned OpcodeTab[][4] = {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001577 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1578 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001579 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001580
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001581 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1582 unsigned TempReg = makeAnotherReg(Ty);
Misha Brukmand18a31d2004-07-06 22:51:53 +00001583 unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC32::LFS : PPC32::LFD;
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001584 addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001585
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001586 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
1587 unsigned Op0r = getReg(Op0, BB, IP);
1588 BuildMI(*BB, IP, Opcode, DestReg).addReg(Op0r).addReg(TempReg);
1589 return;
1590 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001591
1592 // Special case: R1 = op <const fp>, R2
1593 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
1594 if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) {
1595 // -0.0 - X === -X
1596 unsigned op1Reg = getReg(Op1, BB, IP);
1597 BuildMI(*BB, IP, PPC32::FNEG, 1, DestReg).addReg(op1Reg);
1598 return;
1599 } else {
1600 // R1 = op CST, R2 --> R1 = opr R2, CST
1601
1602 // Create a constant pool entry for this constant.
1603 MachineConstantPool *CP = F->getConstantPool();
1604 unsigned CPI = CP->getConstantPoolIndex(CFP);
1605 const Type *Ty = CFP->getType();
1606
1607 static const unsigned OpcodeTab[][4] = {
Misha Brukmand18a31d2004-07-06 22:51:53 +00001608 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1609 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001610 };
1611
1612 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman422791f2004-06-21 17:41:12 +00001613 unsigned TempReg = makeAnotherReg(Ty);
Misha Brukmand18a31d2004-07-06 22:51:53 +00001614 unsigned LoadOpcode = (Ty == Type::FloatTy) ? PPC32::LFS : PPC32::LFD;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001615 addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI);
1616
1617 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
1618 unsigned Op1r = getReg(Op1, BB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001619 BuildMI(*BB, IP, Opcode, DestReg).addReg(TempReg).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001620 return;
1621 }
1622
1623 // General case.
Misha Brukman911afde2004-06-25 14:50:41 +00001624 static const unsigned OpcodeTab[] = {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001625 PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV
1626 };
1627
1628 unsigned Opcode = OpcodeTab[OperatorClass];
1629 unsigned Op0r = getReg(Op0, BB, IP);
1630 unsigned Op1r = getReg(Op1, BB, IP);
1631 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1632}
1633
1634/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1635/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1636/// Or, 4 for Xor.
1637///
1638/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1639/// and constant expression support.
1640///
1641void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
1642 MachineBasicBlock::iterator IP,
1643 Value *Op0, Value *Op1,
1644 unsigned OperatorClass, unsigned DestReg) {
1645 unsigned Class = getClassB(Op0->getType());
1646
Misha Brukman422791f2004-06-21 17:41:12 +00001647 // Arithmetic and Bitwise operators
Misha Brukman911afde2004-06-25 14:50:41 +00001648 static const unsigned OpcodeTab[] = {
Misha Brukman422791f2004-06-21 17:41:12 +00001649 PPC32::ADD, PPC32::SUB, PPC32::AND, PPC32::OR, PPC32::XOR
1650 };
1651 // Otherwise, code generate the full operation with a constant.
1652 static const unsigned BottomTab[] = {
1653 PPC32::ADDC, PPC32::SUBC, PPC32::AND, PPC32::OR, PPC32::XOR
1654 };
1655 static const unsigned TopTab[] = {
1656 PPC32::ADDE, PPC32::SUBFE, PPC32::AND, PPC32::OR, PPC32::XOR
1657 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001658
1659 if (Class == cFP) {
1660 assert(OperatorClass < 2 && "No logical ops for FP!");
1661 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
1662 return;
1663 }
1664
1665 if (Op0->getType() == Type::BoolTy) {
1666 if (OperatorClass == 3)
1667 // If this is an or of two isnan's, emit an FP comparison directly instead
1668 // of or'ing two isnan's together.
1669 if (Value *LHS = dyncastIsNan(Op0))
1670 if (Value *RHS = dyncastIsNan(Op1)) {
1671 unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001672 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001673 emitUCOM(MBB, IP, Op0Reg, Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00001674 BuildMI(*MBB, IP, PPC32::MFCR, TmpReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001675 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
1676 .addImm(31).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001677 return;
1678 }
1679 }
1680
1681 // sub 0, X -> neg X
1682 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
1683 if (OperatorClass == 1 && CI->isNullValue()) {
1684 unsigned op1Reg = getReg(Op1, MBB, IP);
1685 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg).addReg(op1Reg);
1686
1687 if (Class == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001688 unsigned zeroes = makeAnotherReg(Type::IntTy);
1689 unsigned overflow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001690 unsigned T = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00001691 BuildMI(*MBB, IP, PPC32::CNTLZW, 1, zeroes).addReg(op1Reg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001692 BuildMI(*MBB, IP, PPC32::RLWINM, 4, overflow).addReg(zeroes).addImm(27)
1693 .addImm(5).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00001694 BuildMI(*MBB, IP, PPC32::ADD, 2, T).addReg(op1Reg+1).addReg(overflow);
1695 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg+1).addReg(T);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001696 }
1697 return;
1698 }
1699
1700 // Special case: op Reg, <const int>
1701 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1702 unsigned Op0r = getReg(Op0, MBB, IP);
1703
1704 // xor X, -1 -> not X
1705 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1706 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1707 if (Class == cLong) // Invert the top part too
Misha Brukman2fec9902004-06-21 20:22:03 +00001708 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg+1).addReg(Op0r+1)
1709 .addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001710 return;
1711 }
1712
1713 unsigned Opcode = OpcodeTab[OperatorClass];
1714 unsigned Op1r = getReg(Op1, MBB, IP);
1715
1716 if (Class != cLong) {
1717 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1718 return;
1719 }
1720
1721 // If the constant is zero in the low 32-bits, just copy the low part
1722 // across and apply the normal 32-bit operation to the high parts. There
1723 // will be no carry or borrow into the top.
1724 if (cast<ConstantInt>(Op1C)->getRawValue() == 0) {
1725 if (OperatorClass != 2) // All but and...
1726 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1727 else
1728 BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
Misha Brukman422791f2004-06-21 17:41:12 +00001729 BuildMI(*MBB, IP, Opcode, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001730 return;
1731 }
1732
1733 // If this is a long value and the high or low bits have a special
1734 // property, emit some special cases.
1735 unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
1736
1737 // If this is a logical operation and the top 32-bits are zero, just
1738 // operate on the lower 32.
1739 if (Op1h == 0 && OperatorClass > 1) {
1740 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1741 if (OperatorClass != 2) // All but and
Misha Brukman2fec9902004-06-21 20:22:03 +00001742 BuildMI(*MBB, IP, PPC32::OR, 2,DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001743 else
Misha Brukman2fec9902004-06-21 20:22:03 +00001744 BuildMI(*MBB, IP, PPC32::ADDI, 2,DestReg+1).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001745 return;
1746 }
1747
1748 // TODO: We could handle lots of other special cases here, such as AND'ing
1749 // with 0xFFFFFFFF00000000 -> noop, etc.
1750
Misha Brukman2fec9902004-06-21 20:22:03 +00001751 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
1752 .addImm(Op1r);
1753 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
1754 .addImm(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001755 return;
1756 }
1757
1758 unsigned Op0r = getReg(Op0, MBB, IP);
1759 unsigned Op1r = getReg(Op1, MBB, IP);
1760
1761 if (Class != cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001762 unsigned Opcode = OpcodeTab[OperatorClass];
1763 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001764 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00001765 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
1766 .addImm(Op1r);
1767 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
1768 .addImm(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001769 }
1770 return;
1771}
1772
1773/// doMultiply - Emit appropriate instructions to multiply together the
1774/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1775/// result should be given as DestTy.
1776///
1777void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
1778 unsigned DestReg, const Type *DestTy,
1779 unsigned op0Reg, unsigned op1Reg) {
1780 unsigned Class = getClass(DestTy);
1781 switch (Class) {
1782 case cLong:
Misha Brukman2fec9902004-06-21 20:22:03 +00001783 BuildMI(*MBB, MBBI, PPC32::MULHW, 2, DestReg+1).addReg(op0Reg+1)
1784 .addReg(op1Reg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001785 case cInt:
1786 case cShort:
1787 case cByte:
1788 BuildMI(*MBB, MBBI, PPC32::MULLW, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
1789 return;
1790 default:
Misha Brukman422791f2004-06-21 17:41:12 +00001791 assert(0 && "doMultiply cannot operate on unknown type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001792 }
1793}
1794
1795// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1796// returns zero when the input is not exactly a power of two.
1797static unsigned ExactLog2(unsigned Val) {
1798 if (Val == 0 || (Val & (Val-1))) return 0;
1799 unsigned Count = 0;
1800 while (Val != 1) {
1801 Val >>= 1;
1802 ++Count;
1803 }
1804 return Count+1;
1805}
1806
1807
1808/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
1809/// 16, or 32-bit integer multiply by a constant.
Misha Brukman2fec9902004-06-21 20:22:03 +00001810///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001811void ISel::doMultiplyConst(MachineBasicBlock *MBB,
1812 MachineBasicBlock::iterator IP,
1813 unsigned DestReg, const Type *DestTy,
1814 unsigned op0Reg, unsigned ConstRHS) {
1815 unsigned Class = getClass(DestTy);
1816 // Handle special cases here.
1817 switch (ConstRHS) {
1818 case 0:
1819 BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
1820 return;
1821 case 1:
1822 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(op0Reg).addReg(op0Reg);
1823 return;
1824 case 2:
1825 BuildMI(*MBB, IP, PPC32::ADD, 2,DestReg).addReg(op0Reg).addReg(op0Reg);
1826 return;
1827 }
1828
1829 // If the element size is exactly a power of 2, use a shift to get it.
1830 if (unsigned Shift = ExactLog2(ConstRHS)) {
1831 switch (Class) {
1832 default: assert(0 && "Unknown class for this function!");
1833 case cByte:
1834 case cShort:
1835 case cInt:
Misha Brukman2fec9902004-06-21 20:22:03 +00001836 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(op0Reg)
1837 .addImm(Shift-1).addImm(0).addImm(31-Shift-1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001838 return;
1839 }
1840 }
1841
1842 // Most general case, emit a normal multiply...
1843 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
1844 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001845 BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg1).addReg(PPC32::R0)
1846 .addImm(ConstRHS >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001847 BuildMI(*MBB, IP, PPC32::ORI, 2, TmpReg2).addReg(TmpReg1).addImm(ConstRHS);
1848
1849 // Emit a MUL to multiply the register holding the index by
1850 // elementSize, putting the result in OffsetReg.
1851 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg2);
1852}
1853
1854void ISel::visitMul(BinaryOperator &I) {
1855 unsigned ResultReg = getReg(I);
1856
1857 Value *Op0 = I.getOperand(0);
1858 Value *Op1 = I.getOperand(1);
1859
1860 MachineBasicBlock::iterator IP = BB->end();
1861 emitMultiply(BB, IP, Op0, Op1, ResultReg);
1862}
1863
1864void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
1865 Value *Op0, Value *Op1, unsigned DestReg) {
1866 MachineBasicBlock &BB = *MBB;
1867 TypeClass Class = getClass(Op0->getType());
1868
1869 // Simple scalar multiply?
1870 unsigned Op0Reg = getReg(Op0, &BB, IP);
1871 switch (Class) {
1872 case cByte:
1873 case cShort:
1874 case cInt:
1875 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1876 unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
1877 doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
1878 } else {
1879 unsigned Op1Reg = getReg(Op1, &BB, IP);
1880 doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
1881 }
1882 return;
1883 case cFP:
1884 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
1885 return;
1886 case cLong:
1887 break;
1888 }
1889
1890 // Long value. We have to do things the hard way...
1891 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1892 unsigned CLow = CI->getRawValue();
1893 unsigned CHi = CI->getRawValue() >> 32;
1894
1895 if (CLow == 0) {
1896 // If the low part of the constant is all zeros, things are simple.
1897 BuildMI(BB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
1898 doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
1899 return;
1900 }
1901
1902 // Multiply the two low parts
1903 unsigned OverflowReg = 0;
1904 if (CLow == 1) {
1905 BuildMI(BB, IP, PPC32::OR, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg);
1906 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00001907 unsigned TmpRegL = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001908 unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
1909 OverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001910 BuildMI(BB, IP, PPC32::ADDIS, 2, TmpRegL).addReg(PPC32::R0)
1911 .addImm(CLow >> 16);
Misha Brukman422791f2004-06-21 17:41:12 +00001912 BuildMI(BB, IP, PPC32::ORI, 2, Op1RegL).addReg(TmpRegL).addImm(CLow);
1913 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1RegL);
Misha Brukman2fec9902004-06-21 20:22:03 +00001914 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg)
1915 .addReg(Op1RegL);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001916 }
1917
1918 unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
1919 doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
1920
1921 unsigned AHBLplusOverflowReg;
1922 if (OverflowReg) {
1923 AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001924 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001925 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
1926 } else {
1927 AHBLplusOverflowReg = AHBLReg;
1928 }
1929
1930 if (CHi == 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001931 BuildMI(BB, IP, PPC32::OR, 2, DestReg+1).addReg(AHBLplusOverflowReg)
1932 .addReg(AHBLplusOverflowReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001933 } else {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001934 unsigned ALBHReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001935 doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
1936
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001937 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001938 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1939 }
1940 return;
1941 }
1942
1943 // General 64x64 multiply
1944
1945 unsigned Op1Reg = getReg(Op1, &BB, IP);
1946
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001947 // Multiply the two low parts...
1948 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001949
1950 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001951 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001952
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001953 unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001954 BuildMI(BB, IP, PPC32::MULLW, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
1955
1956 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001957 BuildMI(BB, IP, PPC32::ADD, 2, AHBLplusOverflowReg).addReg(AHBLReg)
1958 .addReg(OverflowReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001959
1960 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
1961 BuildMI(BB, IP, PPC32::MULLW, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
1962
Misha Brukman14d8c7a2004-06-29 23:45:05 +00001963 BuildMI(BB, IP, PPC32::ADD, 2,
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001964 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1965}
1966
1967
1968/// visitDivRem - Handle division and remainder instructions... these
1969/// instruction both require the same instructions to be generated, they just
1970/// select the result from a different register. Note that both of these
1971/// instructions work differently for signed and unsigned operands.
1972///
1973void ISel::visitDivRem(BinaryOperator &I) {
1974 unsigned ResultReg = getReg(I);
1975 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1976
1977 MachineBasicBlock::iterator IP = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00001978 emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
1979 ResultReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001980}
1981
1982void ISel::emitDivRemOperation(MachineBasicBlock *BB,
1983 MachineBasicBlock::iterator IP,
1984 Value *Op0, Value *Op1, bool isDiv,
1985 unsigned ResultReg) {
1986 const Type *Ty = Op0->getType();
1987 unsigned Class = getClass(Ty);
1988 switch (Class) {
1989 case cFP: // Floating point divide
1990 if (isDiv) {
1991 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
1992 return;
1993 } else { // Floating point remainder...
1994 unsigned Op0Reg = getReg(Op0, BB, IP);
1995 unsigned Op1Reg = getReg(Op1, BB, IP);
1996 MachineInstr *TheCall =
Misha Brukman2834a4d2004-07-07 20:07:22 +00001997 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(Func["fmod"], true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001998 std::vector<ValueRecord> Args;
1999 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
2000 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Misha Brukmand18a31d2004-07-06 22:51:53 +00002001 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002002 }
2003 return;
2004 case cLong: {
Misha Brukman425ff242004-07-01 21:34:10 +00002005 // FIXME: Make sure the module has external function
Misha Brukman2834a4d2004-07-07 20:07:22 +00002006 static const char *Fn[] =
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002007 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
2008 unsigned Op0Reg = getReg(Op0, BB, IP);
2009 unsigned Op1Reg = getReg(Op1, BB, IP);
2010 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
2011 MachineInstr *TheCall =
Misha Brukman2834a4d2004-07-07 20:07:22 +00002012 BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(Func[Fn[NameIdx]], true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002013
2014 std::vector<ValueRecord> Args;
2015 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
2016 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Misha Brukmand18a31d2004-07-06 22:51:53 +00002017 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002018 return;
2019 }
2020 case cByte: case cShort: case cInt:
2021 break; // Small integrals, handled below...
2022 default: assert(0 && "Unknown class!");
2023 }
2024
2025 // Special case signed division by power of 2.
2026 if (isDiv)
2027 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
2028 assert(Class != cLong && "This doesn't handle 64-bit divides!");
2029 int V = CI->getValue();
2030
2031 if (V == 1) { // X /s 1 => X
2032 unsigned Op0Reg = getReg(Op0, BB, IP);
2033 BuildMI(*BB, IP, PPC32::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
2034 return;
2035 }
2036
2037 if (V == -1) { // X /s -1 => -X
2038 unsigned Op0Reg = getReg(Op0, BB, IP);
2039 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(Op0Reg);
2040 return;
2041 }
2042
2043 bool isNeg = false;
2044 if (V < 0) { // Not a positive power of 2?
2045 V = -V;
2046 isNeg = true; // Maybe it's a negative power of 2.
2047 }
2048 if (unsigned Log = ExactLog2(V)) {
2049 --Log;
2050 unsigned Op0Reg = getReg(Op0, BB, IP);
2051 unsigned TmpReg = makeAnotherReg(Op0->getType());
2052 if (Log != 1)
Misha Brukman2fec9902004-06-21 20:22:03 +00002053 BuildMI(*BB, IP, PPC32::SRAWI,2, TmpReg).addReg(Op0Reg).addImm(Log-1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002054 else
2055 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(Op0Reg).addReg(Op0Reg);
2056
2057 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
Misha Brukman2fec9902004-06-21 20:22:03 +00002058 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg2).addReg(TmpReg).addImm(Log)
2059 .addImm(32-Log).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002060
2061 unsigned TmpReg3 = makeAnotherReg(Op0->getType());
2062 BuildMI(*BB, IP, PPC32::ADD, 2, TmpReg3).addReg(Op0Reg).addReg(TmpReg2);
2063
2064 unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg;
2065 BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg4).addReg(Op0Reg).addImm(Log);
2066
2067 if (isNeg)
2068 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(TmpReg4);
2069 return;
2070 }
2071 }
2072
2073 unsigned Op0Reg = getReg(Op0, BB, IP);
2074 unsigned Op1Reg = getReg(Op1, BB, IP);
2075
2076 if (isDiv) {
Misha Brukman422791f2004-06-21 17:41:12 +00002077 if (Ty->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002078 BuildMI(*BB, IP, PPC32::DIVW, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002079 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002080 BuildMI(*BB, IP,PPC32::DIVWU, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002081 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002082 } else { // Remainder
Misha Brukman422791f2004-06-21 17:41:12 +00002083 unsigned TmpReg1 = makeAnotherReg(Op0->getType());
2084 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2085
2086 if (Ty->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002087 BuildMI(*BB, IP, PPC32::DIVW, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002088 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002089 BuildMI(*BB, IP, PPC32::DIVWU, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002090 }
2091 BuildMI(*BB, IP, PPC32::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
2092 BuildMI(*BB, IP, PPC32::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002093 }
2094}
2095
2096
2097/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2098/// for constant immediate shift values, and for constant immediate
2099/// shift values equal to 1. Even the general case is sort of special,
2100/// because the shift amount has to be in CL, not just any old register.
2101///
2102void ISel::visitShiftInst(ShiftInst &I) {
2103 MachineBasicBlock::iterator IP = BB->end ();
Misha Brukman2fec9902004-06-21 20:22:03 +00002104 emitShiftOperation(BB, IP, I.getOperand (0), I.getOperand (1),
2105 I.getOpcode () == Instruction::Shl, I.getType (),
2106 getReg (I));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002107}
2108
2109/// emitShiftOperation - Common code shared between visitShiftInst and
2110/// constant expression support.
Misha Brukman2fec9902004-06-21 20:22:03 +00002111///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002112void ISel::emitShiftOperation(MachineBasicBlock *MBB,
2113 MachineBasicBlock::iterator IP,
2114 Value *Op, Value *ShiftAmount, bool isLeftShift,
2115 const Type *ResultTy, unsigned DestReg) {
2116 unsigned SrcReg = getReg (Op, MBB, IP);
2117 bool isSigned = ResultTy->isSigned ();
2118 unsigned Class = getClass (ResultTy);
2119
2120 // Longs, as usual, are handled specially...
2121 if (Class == cLong) {
2122 // If we have a constant shift, we can generate much more efficient code
2123 // than otherwise...
2124 //
2125 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2126 unsigned Amount = CUI->getValue();
2127 if (Amount < 32) {
2128 if (isLeftShift) {
Misha Brukman422791f2004-06-21 17:41:12 +00002129 // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002130 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2131 .addImm(Amount).addImm(0).addImm(31-Amount);
2132 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg)
2133 .addImm(Amount).addImm(32-Amount).addImm(31);
2134 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2135 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002136 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002137 // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002138 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2139 .addImm(32-Amount).addImm(Amount).addImm(31);
2140 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1)
2141 .addImm(32-Amount).addImm(0).addImm(Amount-1);
2142 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2143 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002144 }
2145 } else { // Shifting more than 32 bits
2146 Amount -= 32;
2147 if (isLeftShift) {
2148 if (Amount != 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002149 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg)
2150 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002151 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002152 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2153 .addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002154 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002155 BuildMI(*MBB, IP, PPC32::ADDI, 2,DestReg).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002156 } else {
2157 if (Amount != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +00002158 if (isSigned)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00002159 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg+1)
2160 .addImm(Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002161 else
Misha Brukmanfadb82f2004-06-24 22:00:15 +00002162 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1)
2163 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002164 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002165 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1)
2166 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002167 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002168 BuildMI(*MBB, IP,PPC32::ADDI,2,DestReg+1).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002169 }
2170 }
2171 } else {
2172 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
2173 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002174 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
2175 unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
2176 unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
2177 unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
2178 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2179
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002180 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002181 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
2182 .addImm(32);
2183 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg+1)
2184 .addReg(ShiftAmountReg);
2185 BuildMI(*MBB, IP, PPC32::SRW, 2,TmpReg3).addReg(SrcReg).addReg(TmpReg1);
2186 BuildMI(*MBB, IP, PPC32::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
2187 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
2188 .addImm(-32);
2189 BuildMI(*MBB, IP, PPC32::SLW, 2,TmpReg6).addReg(SrcReg).addReg(TmpReg5);
2190 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4)
2191 .addReg(TmpReg6);
2192 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2193 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002194 } else {
2195 if (isSigned) {
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002196 // FIXME: Unimplemented
Misha Brukman2fec9902004-06-21 20:22:03 +00002197 // Page C-3 of the PowerPC 32bit Programming Environments Manual
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002198 std::cerr << "Unimplemented: signed right shift\n";
2199 abort();
Misha Brukman422791f2004-06-21 17:41:12 +00002200 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002201 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
2202 .addImm(32);
2203 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg)
2204 .addReg(ShiftAmountReg);
2205 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg+1)
2206 .addReg(TmpReg1);
2207 BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2)
2208 .addReg(TmpReg3);
2209 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
2210 .addImm(-32);
2211 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg+1)
2212 .addReg(TmpReg5);
2213 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4)
2214 .addReg(TmpReg6);
2215 BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg+1).addReg(SrcReg+1)
2216 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002217 }
2218 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002219 }
2220 return;
2221 }
2222
2223 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2224 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
2225 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
2226 unsigned Amount = CUI->getValue();
2227
Misha Brukman422791f2004-06-21 17:41:12 +00002228 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002229 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2230 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002231 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002232 if (isSigned) {
2233 BuildMI(*MBB, IP, PPC32::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
2234 } else {
2235 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2236 .addImm(32-Amount).addImm(Amount).addImm(31);
2237 }
Misha Brukman422791f2004-06-21 17:41:12 +00002238 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002239 } else { // The shift amount is non-constant.
2240 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2241
Misha Brukman422791f2004-06-21 17:41:12 +00002242 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002243 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2244 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002245 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002246 BuildMI(*MBB, IP, isSigned ? PPC32::SRAW : PPC32::SRW, 2, DestReg)
2247 .addReg(SrcReg).addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002248 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002249 }
2250}
2251
2252
2253/// visitLoadInst - Implement LLVM load instructions
2254///
2255void ISel::visitLoadInst(LoadInst &I) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002256 static const unsigned Opcodes[] = {
2257 PPC32::LBZ, PPC32::LHZ, PPC32::LWZ, PPC32::LFS
2258 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002259 unsigned Class = getClassB(I.getType());
2260 unsigned Opcode = Opcodes[Class];
2261 if (I.getType() == Type::DoubleTy) Opcode = PPC32::LFD;
2262
2263 unsigned DestReg = getReg(I);
2264
2265 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
Misha Brukman422791f2004-06-21 17:41:12 +00002266 unsigned FI = getFixedSizedAllocaFI(AI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002267 if (Class == cLong) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002268 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg), FI);
2269 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg+1), FI, 4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002270 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002271 addFrameReference(BuildMI(BB, Opcode, 2, DestReg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +00002272 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002273 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002274 unsigned SrcAddrReg = getReg(I.getOperand(0));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002275
2276 if (Class == cLong) {
2277 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2278 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(SrcAddrReg);
2279 } else {
2280 BuildMI(BB, Opcode, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2281 }
2282 }
2283}
2284
2285/// visitStoreInst - Implement LLVM store instructions
2286///
2287void ISel::visitStoreInst(StoreInst &I) {
2288 unsigned ValReg = getReg(I.getOperand(0));
2289 unsigned AddressReg = getReg(I.getOperand(1));
2290
2291 const Type *ValTy = I.getOperand(0)->getType();
2292 unsigned Class = getClassB(ValTy);
2293
2294 if (Class == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00002295 BuildMI(BB, PPC32::STW, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002296 BuildMI(BB, PPC32::STW, 3).addReg(ValReg+1).addImm(4).addReg(AddressReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002297 return;
2298 }
2299
2300 static const unsigned Opcodes[] = {
2301 PPC32::STB, PPC32::STH, PPC32::STW, PPC32::STFS
2302 };
2303 unsigned Opcode = Opcodes[Class];
2304 if (ValTy == Type::DoubleTy) Opcode = PPC32::STFD;
2305 BuildMI(BB, Opcode, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
2306}
2307
2308
2309/// visitCastInst - Here we have various kinds of copying with or without sign
2310/// extension going on.
2311///
2312void ISel::visitCastInst(CastInst &CI) {
2313 Value *Op = CI.getOperand(0);
2314
2315 unsigned SrcClass = getClassB(Op->getType());
2316 unsigned DestClass = getClassB(CI.getType());
2317 // Noop casts are not emitted: getReg will return the source operand as the
2318 // register to use for any uses of the noop cast.
2319 if (DestClass == SrcClass)
2320 return;
2321
2322 // If this is a cast from a 32-bit integer to a Long type, and the only uses
2323 // of the case are GEP instructions, then the cast does not need to be
2324 // generated explicitly, it will be folded into the GEP.
2325 if (DestClass == cLong && SrcClass == cInt) {
2326 bool AllUsesAreGEPs = true;
2327 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
2328 if (!isa<GetElementPtrInst>(*I)) {
2329 AllUsesAreGEPs = false;
2330 break;
2331 }
2332
2333 // No need to codegen this cast if all users are getelementptr instrs...
2334 if (AllUsesAreGEPs) return;
2335 }
2336
2337 unsigned DestReg = getReg(CI);
2338 MachineBasicBlock::iterator MI = BB->end();
2339 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
2340}
2341
2342/// emitCastOperation - Common code shared between visitCastInst and constant
2343/// expression cast support.
2344///
2345void ISel::emitCastOperation(MachineBasicBlock *BB,
2346 MachineBasicBlock::iterator IP,
2347 Value *Src, const Type *DestTy,
2348 unsigned DestReg) {
2349 const Type *SrcTy = Src->getType();
2350 unsigned SrcClass = getClassB(SrcTy);
2351 unsigned DestClass = getClassB(DestTy);
2352 unsigned SrcReg = getReg(Src, BB, IP);
2353
2354 // Implement casts to bool by using compare on the operand followed by set if
2355 // not zero on the result.
2356 if (DestTy == Type::BoolTy) {
2357 switch (SrcClass) {
2358 case cByte:
Misha Brukman422791f2004-06-21 17:41:12 +00002359 case cShort:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002360 case cInt: {
2361 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002362 BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addImm(-1);
2363 BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002364 break;
2365 }
2366 case cLong: {
2367 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2368 unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
2369 BuildMI(*BB, IP, PPC32::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
Misha Brukman422791f2004-06-21 17:41:12 +00002370 BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addImm(-1);
2371 BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002372 break;
2373 }
2374 case cFP:
2375 // FIXME
Misha Brukman422791f2004-06-21 17:41:12 +00002376 // Load -0.0
2377 // Compare
2378 // move to CR1
2379 // Negate -0.0
2380 // Compare
2381 // CROR
2382 // MFCR
2383 // Left-align
2384 // SRA ?
Misha Brukmand18a31d2004-07-06 22:51:53 +00002385 std::cerr << "Cast fp-to-bool not implemented!";
2386 abort();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002387 }
2388 return;
2389 }
2390
2391 // Implement casts between values of the same type class (as determined by
2392 // getClass) by using a register-to-register move.
2393 if (SrcClass == DestClass) {
Misha Brukman422791f2004-06-21 17:41:12 +00002394 if (SrcClass <= cInt) {
2395 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2396 } else if (SrcClass == cFP && SrcTy == DestTy) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002397 BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2398 } else if (SrcClass == cFP) {
2399 if (SrcTy == Type::FloatTy) { // float -> double
2400 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
2401 BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2402 } else { // double -> float
2403 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
2404 "Unknown cFP member!");
Misha Brukman422791f2004-06-21 17:41:12 +00002405 BuildMI(*BB, IP, PPC32::FRSP, 1, DestReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002406 }
2407 } else if (SrcClass == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00002408 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002409 BuildMI(*BB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
2410 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002411 } else {
2412 assert(0 && "Cannot handle this type of cast instruction!");
2413 abort();
2414 }
2415 return;
2416 }
2417
2418 // Handle cast of SMALLER int to LARGER int using a move with sign extension
2419 // or zero extension, depending on whether the source type was signed.
2420 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
2421 SrcClass < DestClass) {
2422 bool isLong = DestClass == cLong;
2423 if (isLong) DestClass = cInt;
2424
2425 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
2426 if (SrcClass < cInt) {
2427 if (isUnsigned) {
Misha Brukman422791f2004-06-21 17:41:12 +00002428 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002429 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2430 .addImm(shift).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002431 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002432 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH,
2433 1, DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002434 }
2435 } else {
2436 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2437 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002438
2439 if (isLong) { // Handle upper 32 bits as appropriate...
2440 if (isUnsigned) // Zero out top bits...
2441 BuildMI(*BB, IP, PPC32::ADDI, 2, DestReg+1).addReg(PPC32::R0).addImm(0);
2442 else // Sign extend bottom half...
2443 BuildMI(*BB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(DestReg).addImm(31);
2444 }
2445 return;
2446 }
2447
2448 // Special case long -> int ...
2449 if (SrcClass == cLong && DestClass == cInt) {
2450 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2451 return;
2452 }
2453
2454 // Handle cast of LARGER int to SMALLER int with a clear or sign extend
2455 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
2456 && SrcClass > DestClass) {
2457 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
Misha Brukman422791f2004-06-21 17:41:12 +00002458 if (isUnsigned) {
2459 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002460 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2461 .addImm(shift).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00002462 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002463 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH, 1,
2464 DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002465 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002466 return;
2467 }
2468
2469 // Handle casts from integer to floating point now...
2470 if (DestClass == cFP) {
2471
Misha Brukman422791f2004-06-21 17:41:12 +00002472 // Emit a library call for long to float conversion
2473 if (SrcClass == cLong) {
2474 std::vector<ValueRecord> Args;
2475 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002476 MachineInstr *TheCall =
2477 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("__floatdidf", true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002478 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukman422791f2004-06-21 17:41:12 +00002479 return;
2480 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002481
2482 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman358829f2004-06-21 17:25:55 +00002483 switch (SrcTy->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002484 case Type::BoolTyID:
2485 case Type::SByteTyID:
2486 BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
2487 break;
2488 case Type::UByteTyID:
Misha Brukman2fec9902004-06-21 20:22:03 +00002489 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0)
2490 .addImm(24).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002491 break;
2492 case Type::ShortTyID:
2493 BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
2494 break;
2495 case Type::UShortTyID:
Misha Brukman2fec9902004-06-21 20:22:03 +00002496 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0)
2497 .addImm(16).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002498 break;
Misha Brukman422791f2004-06-21 17:41:12 +00002499 case Type::IntTyID:
2500 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
2501 break;
2502 case Type::UIntTyID:
2503 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
2504 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002505 default: // No promotion needed...
2506 break;
2507 }
2508
2509 SrcReg = TmpReg;
Misha Brukman422791f2004-06-21 17:41:12 +00002510
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002511 // Spill the integer to memory and reload it from there.
Misha Brukman422791f2004-06-21 17:41:12 +00002512 // Also spill room for a special conversion constant
2513 int ConstantFrameIndex =
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002514 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2515 int ValueFrameIdx =
2516 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2517
Misha Brukman422791f2004-06-21 17:41:12 +00002518 unsigned constantHi = makeAnotherReg(Type::IntTy);
2519 unsigned constantLo = makeAnotherReg(Type::IntTy);
2520 unsigned ConstF = makeAnotherReg(Type::DoubleTy);
2521 unsigned TempF = makeAnotherReg(Type::DoubleTy);
2522
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002523 if (!SrcTy->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002524 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0)
2525 .addImm(0x4330);
Misha Brukman422791f2004-06-21 17:41:12 +00002526 BuildMI(*BB, IP, PPC32::ADDI, 2, constantLo).addReg(PPC32::R0).addImm(0);
Misha Brukman2fec9902004-06-21 20:22:03 +00002527 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2528 ConstantFrameIndex);
2529 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2530 ConstantFrameIndex, 4);
2531 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2532 ValueFrameIdx);
2533 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(SrcReg),
2534 ValueFrameIdx, 4);
2535 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2536 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002537 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
2538 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
2539 } else {
2540 unsigned TempLo = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00002541 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0)
2542 .addImm(0x4330);
2543 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantLo).addReg(PPC32::R0)
2544 .addImm(0x8000);
2545 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2546 ConstantFrameIndex);
2547 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2548 ConstantFrameIndex, 4);
2549 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2550 ValueFrameIdx);
Misha Brukman422791f2004-06-21 17:41:12 +00002551 BuildMI(*BB, IP, PPC32::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002552 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(TempLo),
2553 ValueFrameIdx, 4);
2554 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2555 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002556 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
Misha Brukman2fec9902004-06-21 20:22:03 +00002557 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF ).addReg(ConstF);
Misha Brukman422791f2004-06-21 17:41:12 +00002558 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002559 return;
2560 }
2561
2562 // Handle casts from floating point to integer now...
2563 if (SrcClass == cFP) {
2564
Misha Brukman422791f2004-06-21 17:41:12 +00002565 // emit library call
2566 if (DestClass == cLong) {
2567 std::vector<ValueRecord> Args;
2568 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002569 MachineInstr *TheCall =
2570 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("__fixdfdi", true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002571 doCall(ValueRecord(DestReg, DestTy), TheCall, Args, false);
Misha Brukman422791f2004-06-21 17:41:12 +00002572 return;
2573 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002574
2575 int ValueFrameIdx =
2576 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2577
Misha Brukman422791f2004-06-21 17:41:12 +00002578 // load into 32 bit value, and then truncate as necessary
2579 // FIXME: This is wrong for unsigned dest types
2580 //if (DestTy->isSigned()) {
2581 unsigned TempReg = makeAnotherReg(Type::DoubleTy);
2582 BuildMI(*BB, IP, PPC32::FCTIWZ, 1, TempReg).addReg(SrcReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002583 addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3)
2584 .addReg(TempReg), ValueFrameIdx);
2585 addFrameReference(BuildMI(*BB, IP, PPC32::LWZ, 2, DestReg),
2586 ValueFrameIdx+4);
Misha Brukman422791f2004-06-21 17:41:12 +00002587 //} else {
2588 //}
2589
2590 // FIXME: Truncate return value
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002591 return;
2592 }
2593
2594 // Anything we haven't handled already, we can't (yet) handle at all.
2595 assert(0 && "Unhandled cast instruction!");
2596 abort();
2597}
2598
2599/// visitVANextInst - Implement the va_next instruction...
2600///
2601void ISel::visitVANextInst(VANextInst &I) {
2602 unsigned VAList = getReg(I.getOperand(0));
2603 unsigned DestReg = getReg(I);
2604
2605 unsigned Size;
Misha Brukman358829f2004-06-21 17:25:55 +00002606 switch (I.getArgType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002607 default:
2608 std::cerr << I;
2609 assert(0 && "Error: bad type for va_next instruction!");
2610 return;
2611 case Type::PointerTyID:
2612 case Type::UIntTyID:
2613 case Type::IntTyID:
2614 Size = 4;
2615 break;
2616 case Type::ULongTyID:
2617 case Type::LongTyID:
2618 case Type::DoubleTyID:
2619 Size = 8;
2620 break;
2621 }
2622
2623 // Increment the VAList pointer...
2624 BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addImm(Size);
2625}
2626
2627void ISel::visitVAArgInst(VAArgInst &I) {
2628 unsigned VAList = getReg(I.getOperand(0));
2629 unsigned DestReg = getReg(I);
2630
Misha Brukman358829f2004-06-21 17:25:55 +00002631 switch (I.getType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002632 default:
2633 std::cerr << I;
2634 assert(0 && "Error: bad type for va_next instruction!");
2635 return;
2636 case Type::PointerTyID:
2637 case Type::UIntTyID:
2638 case Type::IntTyID:
2639 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2640 break;
2641 case Type::ULongTyID:
2642 case Type::LongTyID:
2643 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2644 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(VAList);
2645 break;
2646 case Type::DoubleTyID:
2647 BuildMI(BB, PPC32::LFD, 2, DestReg).addImm(0).addReg(VAList);
2648 break;
2649 }
2650}
2651
2652/// visitGetElementPtrInst - instruction-select GEP instructions
2653///
2654void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
2655 unsigned outputReg = getReg(I);
Misha Brukman2fec9902004-06-21 20:22:03 +00002656 emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(),
2657 outputReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002658}
2659
2660void ISel::emitGEPOperation(MachineBasicBlock *MBB,
2661 MachineBasicBlock::iterator IP,
2662 Value *Src, User::op_iterator IdxBegin,
2663 User::op_iterator IdxEnd, unsigned TargetReg) {
2664 const TargetData &TD = TM.getTargetData();
2665 if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src))
2666 Src = CPR->getValue();
2667
2668 std::vector<Value*> GEPOps;
2669 GEPOps.resize(IdxEnd-IdxBegin+1);
2670 GEPOps[0] = Src;
2671 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
2672
2673 std::vector<const Type*> GEPTypes;
2674 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
2675 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
2676
2677 // Keep emitting instructions until we consume the entire GEP instruction.
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002678 while (!GEPOps.empty()) {
2679 if (GEPTypes.empty()) {
2680 // Load the base pointer into a register.
2681 unsigned Reg = getReg(Src, MBB, IP);
2682 BuildMI(*MBB, IP, PPC32::OR, 2, TargetReg).addReg(Reg).addReg(Reg);
2683 break; // we are now done
2684 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002685 // It's an array or pointer access: [ArraySize x ElementType].
2686 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
2687 Value *idx = GEPOps.back();
2688 GEPOps.pop_back(); // Consume a GEP operand
2689 GEPTypes.pop_back();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002690
Misha Brukman2fec9902004-06-21 20:22:03 +00002691 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002692 // operand. Handle this case directly now...
Misha Brukman2fec9902004-06-21 20:22:03 +00002693 if (CastInst *CI = dyn_cast<CastInst>(idx))
2694 if (CI->getOperand(0)->getType() == Type::IntTy ||
2695 CI->getOperand(0)->getType() == Type::UIntTy)
2696 idx = CI->getOperand(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002697
Misha Brukman2fec9902004-06-21 20:22:03 +00002698 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
2699 // must find the size of the pointed-to type (Not coincidentally, the next
2700 // type is the type of the elements in the array).
2701 const Type *ElTy = SqTy->getElementType();
2702 unsigned elementSize = TD.getTypeSize(ElTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002703
Misha Brukman14d8c7a2004-06-29 23:45:05 +00002704 if (idx == Constant::getNullValue(idx->getType())) {
2705 // GEP with idx 0 is a no-op
2706 } else if (elementSize == 1) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002707 // If the element size is 1, we don't have to multiply, just add
2708 unsigned idxReg = getReg(idx, MBB, IP);
2709 unsigned Reg = makeAnotherReg(Type::UIntTy);
2710 BuildMI(*MBB, IP, PPC32::ADD, 2,TargetReg).addReg(Reg).addReg(idxReg);
2711 --IP; // Insert the next instruction before this one.
2712 TargetReg = Reg; // Codegen the rest of the GEP into this
2713 } else {
2714 unsigned idxReg = getReg(idx, MBB, IP);
2715 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002716
Misha Brukman2fec9902004-06-21 20:22:03 +00002717 // Make sure we can back the iterator up to point to the first
2718 // instruction emitted.
2719 MachineBasicBlock::iterator BeforeIt = IP;
2720 if (IP == MBB->begin())
2721 BeforeIt = MBB->end();
2722 else
2723 --BeforeIt;
2724 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002725
Misha Brukman2fec9902004-06-21 20:22:03 +00002726 // Emit an ADD to add OffsetReg to the basePtr.
2727 unsigned Reg = makeAnotherReg(Type::UIntTy);
2728 BuildMI(*MBB, IP, PPC32::ADD, 2, TargetReg).addReg(Reg).addReg(OffsetReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002729
Misha Brukman2fec9902004-06-21 20:22:03 +00002730 // Step to the first instruction of the multiply.
2731 if (BeforeIt == MBB->end())
2732 IP = MBB->begin();
2733 else
2734 IP = ++BeforeIt;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002735
Misha Brukman2fec9902004-06-21 20:22:03 +00002736 TargetReg = Reg; // Codegen the rest of the GEP into this
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002737 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002738 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002739}
2740
2741/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2742/// frame manager, otherwise do it the hard way.
2743///
2744void ISel::visitAllocaInst(AllocaInst &I) {
2745 // If this is a fixed size alloca in the entry block for the function, we
2746 // statically stack allocate the space, so we don't need to do anything here.
2747 //
2748 if (dyn_castFixedAlloca(&I)) return;
2749
2750 // Find the data size of the alloca inst's getAllocatedType.
2751 const Type *Ty = I.getAllocatedType();
2752 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2753
2754 // Create a register to hold the temporary result of multiplying the type size
2755 // constant by the variable amount.
2756 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2757 unsigned SrcReg1 = getReg(I.getArraySize());
2758
2759 // TotalSizeReg = mul <numelements>, <TypeSize>
2760 MachineBasicBlock::iterator MBBI = BB->end();
2761 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
2762
2763 // AddedSize = add <TotalSizeReg>, 15
2764 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2765 BuildMI(BB, PPC32::ADD, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
2766
2767 // AlignedSize = and <AddedSize>, ~15
2768 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00002769 BuildMI(BB, PPC32::RLWNM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
2770 .addImm(0).addImm(27);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002771
2772 // Subtract size from stack pointer, thereby allocating some space.
2773 BuildMI(BB, PPC32::SUB, 2, PPC32::R1).addReg(PPC32::R1).addReg(AlignedSize);
2774
2775 // Put a pointer to the space into the result register, by copying
2776 // the stack pointer.
2777 BuildMI(BB, PPC32::OR, 2, getReg(I)).addReg(PPC32::R1).addReg(PPC32::R1);
2778
2779 // Inform the Frame Information that we have just allocated a variable-sized
2780 // object.
2781 F->getFrameInfo()->CreateVariableSizedObject();
2782}
2783
2784/// visitMallocInst - Malloc instructions are code generated into direct calls
2785/// to the library malloc.
2786///
2787void ISel::visitMallocInst(MallocInst &I) {
2788 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2789 unsigned Arg;
2790
2791 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2792 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2793 } else {
2794 Arg = makeAnotherReg(Type::UIntTy);
2795 unsigned Op0Reg = getReg(I.getOperand(0));
2796 MachineBasicBlock::iterator MBBI = BB->end();
2797 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
2798 }
2799
2800 std::vector<ValueRecord> Args;
2801 Args.push_back(ValueRecord(Arg, Type::UIntTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002802 MachineInstr *TheCall =
2803 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("malloc", true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002804 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002805}
2806
2807
2808/// visitFreeInst - Free instructions are code gen'd to call the free libc
2809/// function.
2810///
2811void ISel::visitFreeInst(FreeInst &I) {
2812 std::vector<ValueRecord> Args;
2813 Args.push_back(ValueRecord(I.getOperand(0)));
Misha Brukman2fec9902004-06-21 20:22:03 +00002814 MachineInstr *TheCall =
2815 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("free", true);
Misha Brukmand18a31d2004-07-06 22:51:53 +00002816 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args, false);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002817}
2818
2819/// createPPC32SimpleInstructionSelector - This pass converts an LLVM function
2820/// into a machine code representation is a very simple peep-hole fashion. The
2821/// generated code sucks but the implementation is nice and simple.
2822///
2823FunctionPass *llvm::createPPCSimpleInstructionSelector(TargetMachine &TM) {
2824 return new ISel(TM);
2825}